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Résumé

La dernière décennie a apporté avec elle une vague de technologies innovantes, modifiant
la manière dont le contenu créatif est créé, consommé et catégorisé. Et, à mesure que nos
interactions avec les contenus multimédias créatifs se déplacent vers les plateformes en ligne,
la quantité de contenu sur ces plateformes a nécessité l’intégration d’un guidage algorith-
mique dans la découverte de ces espaces. De cette façon, les algorithmes de recommandation
qui guident les interactions des utilisateurs avec diverses formes d’art ont été jetés dans le
rôle de gardiens et ont commencé à jouer un rôle de plus en plus influent dans l’élaboration
de la création de contenu artistique.

Le travail présenté dans les chapitres suivants fusionne trois grands domaines de re-
cherche : l’apprentissage de la représentation graphique, la recherche d’informations mu-
sicales et l’équité appliquée à la tâche de recommandation musicale. Alors que l’influence
des systèmes de recommandation continue de s’étendre et de s’intensifier, il est crucial de
prendre en compte les effets en aval que les choix de conception peuvent avoir sur l’éco-
système plus large de la création artistique. Ces dernières années, l’intégration des réseaux
sociaux dans la tâche de recommandation musicale a donné naissance aux réseaux neuronaux
de graphes (GNN), une nouvelle architecture capable de faire des prédictions sur les struc-
tures de graphes. Parallèlement aux gains miraculeux que les GNN sont capables de réaliser,
bon nombre de ces systèmes peuvent également être la proie de biais de popularité, les
forçant à privilégier le contenu grand public par rapport à des éléments potentiellement plus
pertinents, mais de niche ou nouveaux. S’il n’est pas maîtrisé, ce cycle négatif peut perpé-
tuer les disparités de représentation entre la musique d’artistes, de genres ou de populations
minoritaires. Et, ce faisant, les disparités dans la visibilité des éléments peuvent entraîner
des problèmes à la fois du point de vue des performances et de la société.

L’objectif de la thèse est l’atténuation du biais de popularité. Premièrement, le travail
formalise les liens entre l’équité individuelle et la présence d’un biais de popularité parmi
les contenus créatifs. Ensuite, nous étendons un cadre d’équité individuelle, en l’appliquant
au domaine de la recommandation musicale. Le cœur de cette thèse s’articule autour de
la proposition d’une approche basée sur l’équité individuelle et sensible au domaine qui
traite le biais de popularité dans les systèmes de recommandation basés sur les réseaux de
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neurones graphiques (GNN). L’un des éléments clés de ce travail est notre capacité à ancrer
notre notion d’équité dans le domaine musical. Afin de faciliter cette prise de conscience du
domaine, nous effectuons une augmentation étendue des ensembles de données, en prenant
deux ensembles de données de recommandation musicale à la pointe de la technologie et en
les augmentant avec de riches fonctionnalités multimodales au niveau des nœuds. Enfin, nous
fondons notre évaluation sur le démarrage à froid, montrant l’importance des méthodologies
inductives dans l’espace musical.

Mots clés : Équité, recommandation musicale, apprentissage de la représen-
tation graphique
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Abstract

The last decade has brought with it a wave of innovative technology, shifting the channels
through which creative content is created, consumed, and categorized. And, as our inter-
actions with creative multimedia content shift towards online platforms, the sheer quantity
of content on these platforms has necessitated the integration of algorithmic guidance in
the discovery of these spaces. In this way, the recommendation algorithms that guide users’
interactions with various art forms have been cast into the role of gatekeepers and begun to
play an increasingly influential role in shaping the creation of artistic content.

The work laid out in the following chapters fuses three major areas of research: graph rep-
resentation learning, music information retrieval, and fairness as applied to the task of music
recommendation. In recent years, graph neural networks (GNNs), a powerful new architec-
ture which enables deep learning approaches to be applied to graph or network structures,
have proven incredibly influential in the music recommendation domain. In tandem with
the striking performance gains that GNNs are able to achieve, many of these systems, have
been shown to be strongly influenced by the degree, or number of outgoing edges, of in-
dividual nodes. More concretely, recent works have uncovered disparities in the qualities
of representations learned by state of the art GNNs between nodes which are strongly and
weakly connected. Translating these findings to the sphere of recommender systems, where
nodes and edges are used to represent the interactions between users and various items, these
disparities in representation that are contingent upon a node’s connectivity can be seen as
a form of popularity bias. And, indeed, within the broader recommendation community,
popularity bias has long been considered an open problem, in which recommender systems
begin to favor mainstream content over, potentially more relevant, but niche or novel items.
If left unchecked these algorithmic nudged towards previously popular content can create,
intensify, and enforce negative cycles that perpetuate disparities in representation on both
the user and the creator ends of the content consumption pipeline. Particularly in the rec-
ommendation of creative (e.g. musical) content, the downstream effects in these disparities
of visibility can have genuine economic consequences for artists from under-represented com-
munities. Thus, the problem of popularity bias is something that must be addressed from
both a technical and societal perspective. And, as the influence of recommender systems
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continues to spread, the effects of this phenomenon only become more spurious, as they begin
to have critical downstream effects that shape the larger ecosystems in which art is created.

Thus, the broad focus of thesis is the mitigation of popularity bias in music recommen-
dation. In order to tailor our exploration of this issue to the graph domain, we begin by
formalizing the relationship between degree fairness and popularity bias. In doing so, we
concretely define the notion of popularity, grounding it in the structural principles of an
interaction network, and enabling us to design objectives that can mitigate the effects of
popularity on representation learning. In our first work, we focus on understanding the ef-
fects of sampling on degree fairness in uni-partite graphs. The purpose of this work is to
lay the foundation for the graph neural network model which will underlie our music recom-
mender system. We then build off this first work by extending the initial fairness framework
to be compatible with bi-partite graphs and applying it to the music domain. The moti-
vation of this work is rooted in the notion of discovery, or the idea that users engage with
algorithmic curation in order to find content that is both novel and relevant to their artistic
tastes. We present the intrinsic relationship between discovery objectives and the presence
of popularity bias, explaining that the presence of popularity bias can blind a system to the
musical qualities that underpin the underlying needs of music listening. As we will explain
in later sections, one of the key elements of this work is our ability to ground our fairness
notion in the musical domain. Thus, we propose a domain-aware, individual fairness-based
approach which addresses popularity bias in graph neural network (GNNs) based recom-
mender systems. In order to facilitate this domain awareness, we perform extensive dataset
augmentation, taking two state of the art music recommendation datasets and augmenting
them with rich multi-modal node-level features. Finally, we ground our evaluation in the
cold start setting, showing the importance of inductive methodologies in the music space.

Keywords: Fairness, Music Recommendation, Graph Representation Learn-
ing
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Chapter 1

Introduction

As our interactions with creative multimedia content shift towards online platforms, the
recommendation algorithms that guide our interactions with various art forms play an in-
creasingly influential role in shaping how content is created, communicated, and consumed
[13]. The seemingly endless amount of content, coupled with societal expectations of per-
sonalization, have prompted the integration of algorithmic curation [150] into almost every
media platform [129, 77], and particularly music streaming [51]. On one hand, algorithm-
driven platforms have created opportunities for users to consume diverse and innovative
content from far flung corners of the world. However, simultaneously, analysis has shown
that continued interaction with algorithmic curation can create negative feedback loops in
the form of diminished content diversity [29, 96, 111], perpetuation of gender disparities
[56], and overblown attention towards maintream content [12, 4, 29].

Together, these issues have contributed to the growing awareness around the importance
aligning machine learning goals with human ethical values, particularly in the recommenda-
tion domain [5]. Thus, in recent years, the recommendation community has begun the work
of translating normative objectives into mathematical ones in order to minimize the discon-
nect between the desired and actualized outcomes of an algorithmic system. In particular,
this work focuses on the phenomenon of popularity bias [5, 28, 84, 122, 144, 32] which
arises when popular items are given exponential visibility to the detriment of niche or novel
music. At their core, the purpose of recommender systems is to facilitate meaningful con-
nections between consumers and producers, via the art they create. However, the presence
of popularity bias catalyzes two major points of disconnect in relation to this broad direc-
tive. First, as shown extensively in the body of literature related to fairness in recommender
systems, the presence of popularity bias can profoundly hinder a system’s ability to achieve
expose users to novel and relevant content [27, 159, 106, 132, 30, 17, 3]. Furthermore, the
downstream consequences of this bias is explored in a large body of techno-cultural literature
showcasing the ways in which disparities in exposure perpetuates negative feedback loops



which have incredibly potent and serious negative effects on the lives of artists and the art
they are (dis-)empowered to create [12, 13, 18]. At the same time, recent works in the field
of human-computer interaction have shown that there is a large swath of users who expect
curatorial interactions with recommender systems to introduce them to new music that is
both novel and relevant to their self-reported aesthetic tastes [125, 128]. However, a system
which is deeply reliant on popularity to perform recommendation is often unable to serve
niche, or previously undiscovered content, due to the nature of its biases against items with
low levels of previous user interactions.

Thus, our work takes on the task of mitigating popularity bias in the context of facilitating
meaningful music recommendation. In our experimentation we consider the implications
of this phenomenon on graph-based music recommendation, presenting a novel mitigation
strategy that uses ranking based individual fairness to combat popularity bias. We begin by
unpacking the intrinsic relationship between popularity, node degree, individual fairness, and
ranking. Our method is deeply informed both by recent political movements within the music
domain which are associated with artists’ remuneration and signals from the industry that
echo the need for concrete guidance from the research community on how to effectively apply
fairness frameworks that are intuitively relevant to the music domain [14]. Thus, one of the
key tenants underlying this work is the notion that fairness frameworks should be tailored to
the specific needs of their setting, rather than an abstract or generalized formulation. And,
as we will explain in later sections, what differentiates our method from those which have
been previously proposed in mitigating popularity bias is our explicit focus on formulating
fairness from a domain-aware perspective. By grounding our approach in music features,
we are able to design a method that has intuitive connections to the underlying problems
caused by popularity bias: namely that if two songs were musically similar, this similarity
should be represented in their learned representations irrespective of their popularity. And,
while the work of this thesis is explicitly tailored to the music domain, we hope that these
promising findings can inspire future approaches which are grounded in concrete, domain
specific attributes that can be applied to other modalities of creative content.

1.1. Contributions
The contributions of this thesis are structured around the following articles presented

in the chapters below. The work detailed in Chapter 3: Analyzing the Effects of Sam-
pling on Individual Fairness was presented at the FaccTRec Workshop on Trustwor-
thy Recommendation at the RecSys conference in 2022. In addition, the work
laid out in Chapter 4: Fairness Through Domain Awareness: Mitigating Popularity Bias
For Music Discovery has been submitted to a conference and is publicly available (see
https://arxiv.org/abs/2308.14601).
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1.2. Thesis Layout
The work completed in the duration of this thesis fuses several major areas of research:

music information retrieval (MIR), graph representation learning, recommendation, and ma-
chine learning fairness. Thus, in Chapter 2 we introduce the relevant literature necessary for
contextualizing the work done in later chapters. Having introduced the necessary background
information for interpreting our work, we present Chapter 3 where we test the compatibility
of REDRESS with our underlying recommender architecture, showing that, in applying the
framework to a sub-sampling based GNN we are able to better improve fairness performance.
Then, in Chapter 4 we apply this framework to design a domain-aware graph-based music
recommendation model. The goal of our method is to facilitate discovery by designing an
algorithm that is able to build rich, multi-modal and expressive representations for all items,
irrespective of their popularity.
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Chapter 2

Background

The purpose of this chapter is to provide necessary background information for contextu-
alizing the work completed in the duration of this thesis. First, in Section 2.1, we lay out the
various methodologies used by the music information retrieval (MIR) community for learning
representations of musical content. The information laid out in this section is intended as a
basis for understanding our feature selection and general representation learning strategies.
In particular, our work is heavily informed by the approaches taken by various competitors in
the Automatic Playlist Continuation Challenge hosted by Spotify in RecSys 2018 [31]. The
hybrid nature of the various approaches presented in this challenge solidified the importance
of domain-awareness and hybrid recommendation for the field of music recommendation.
Then, in Section 2.2 we present a brief introduction to graph representation learning. The
purpose of this chapter is to show the trajectory of various concepts and their contributions
to the formulation of both our recommendation task and the mitigation strategy. Following
this, in Section 2.3, we acquaint the reader with various important elements of recommender
system research that contextualize the approach for designing and evaluating our music rec-
ommender architecture. Finally, in Section 2.4 we present both the notion of fairness as
applied to machine learning and the specific fairness criteria that are later employed in our
strategy for mitigating popularity bias.

2.1. Music Representation Learning
The question of how to distill musical content into vector representations lies at the

core of all intersections between music and technology, generally termed music information
retrieval (MIR). In addition to the technical challenges of representation learning, MIR tasks
are intrinsically more complicated due to the difficulty of capturing the abstract and multi-
faceted nature of artistic content. This is because music is not just a sonic element, it can
be seen through a multitude of diverse perspectives - it is a cultural product, an artifact of
an individual’s artistic expression, a form of communication, an experience, and much more.



Thus, the field of MIR has a long history of interdisciplinarity, fusing signal processing,
musicology, cognitive science, and many other disciplines. And, the variety of approaches
can be attributed to the fact that architectural design choices are heavily influenced by the
downstream outcomes necessitated by a particular application. As such, various attempts
to codify music have harnessed a variety of information streams in their methodologies for
generating representations. For example, using music notations [124, 177, 158], sonic
elements [126, 39, 92], listening patterns [134, 64, 136, 95], metadata [121, 119, 118],
or a combination of these feature groups.

As we show in later sections our work is heavily influenced by previous research done
in this field expanding upon the modalities of information that is being used to represent
musical items. Concretely, we collect an aggregate collection of features containing sonic
signals, artist demographics, popularity metrics of individual songs, embeddings of album
artworks related to songs, embeddings of lyrics and track names, and extract collaborative
filtering signals from the playlist-track interactions.

Tying the concepts from generalized MIR to the specific needs of a recommendation set-
ting, the various available modalities for representing musical content are often distinguished
into two broad groups: content-based (or descriptive) and context-based (or consumptive)
representational methodologies. In the following section we will introduce these approaches
and later, in Section 2.3 we will explain how they are harnessed in a music recommender
system.

2.1.1. Content-Based Embeddings

The premise of content-based approaches is simple - musical items should be represented
by the content that defines them. Most often, content-based approaches define musical items
based on their acoustic elements. Thus, content-based approaches are often deeply tied with
advances in signal processing. For example, many methods harness either high-level features
such as melody, harmony, or rhythm or low-level features that extract frequencies within
audio such as mel spectrograms and Mel-Frequency Ceptral Coefficients (MFCC) [140].
Currently a majority of the state of the art approaches in this domain harness various deep
learning paradigms. For example [39, 126, 66] build on recent advancements in computer
vision to extract learn item representations from the visualizations of spectrograms. Several
methods have also focused on using contrastive learning paradigms to learn latent feature
representations [142, 166]. Finally, innovations within the nascent field of music generation
has found that using VAEs to learn musical representations for generative tasks can also be
used in content-based representation learning [45, 60].

Ultimately, the strength of this methodology comes from its ability to capture rich in-
formation about each individual musical item in a dataset irrepsective of user engagements
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with it. As such, it doesn’t struggle from issues of sparsity that arise, when for example, a
new song has been uploaded to a database and has yet to be listened to by a large number
of users. However, at the same time, such methods are unable to capture the aggregate lis-
tening patterns, and are thus unable to extract the global patterns and cultural interactions
with musical items that are formed by societal movements. In this way, their granularity is
both a strength and weakness.

2.1.2. Context-Based Embeddings

Another, complementary stream in music representation which is particularly relevant to
music recommendation expresses musical items in relation to the consumption patterns in
which they are interacted with by listeners. Thus, purely context-based methodology requires
interaction data to define musical items using a music agnostic approach. Crucially, unlike
content-based embeddings which require some form of metadata associated with individual
musical items to perform representation learning, this method harnesses various methods of
collaborative filtering (see Section 2.3.3.1 for more details and relevant citations) to extract
latent item representations by aggregating patterns among listeners who interact with a
musical database.

Given the domain-agnostic perspective of this methodology, it is not unusual to see
recommender systems taken from other domains and applied to music in order to extract
musical representations. For a large collection of innovative collaborative filtering approaches
that are applied specifically to music, we direct the reader to [171].

One of the drawbacks of these approaches is their reliance on interaction data between an
item and song. As such, they are particularly sensitive to the popularity of items and poorly
suited to tasks in which new items are being integrated into existing databases. However, due
to their ability to capture aggregate listening patterns, they have been shown to outperform
content based methods on many recommendation tasks [145].

2.1.3. Hybrid Approaches

Given the benefits and drawbacks that are intrinsic to both content and context based
approaches, recent work in the field has presented methods for fusing these methodologies
together. As explained in later sections, this need is particularly poignant in the recommen-
dation space, where the purpose of generating representations for musical items is to enable
comparisons of similarity based on both individual and global listening patterns.

There are many different hybrid approaches for music representation learning. For ex-
ample [55] combine low-level acoustic features with collaborative filtering to perform music
recommendation. Alternatively, [8] design an ensemble architecture which combines exclu-
sively content-based and context-based methods and then weighs their respective scoring
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functions to generate playlist recommendations. Alternatively, [152] use a two-stage ar-
chitecture that combines Weighted Regularized Matrix Factorization (WRMF) [79] with
XGBoost [35], a gradient boosting learning to rank model.

2.2. Graph Representation Learning
The study of networks, or graph-like structures, has a long history within various fields

both in the technical and social sciences [10, 115]. The benefits of these structures arises
from their ability to express connections between data points in addition to the individual
data points themselves. Thus, they are extremely well suited to tasks where individual data
points are influenced by one another. For example, drug discovery [61] and social networks
[24] have been very heavily explored by the graph research community. Within recent years,
this architecture has also been applied to the field of recommendation where harnessing
social structures that emerge within user groups has yielded state-of-the-art results in many
different domains [154, 58]. In this chapter we begin with a brief description of the historical
trajectory of graph learning. We will introduce several graph neural network architectures
and present the most prominent architectures that have been applied to the recommendation
domain. Due to the breadth of this field, we will focus our scope on methods that lay the
foundation for the work presented in this thesis. We direct readers towards the following
works for more detailed presentation of graph learning [133, 69, 115, 10].

2.2.1. Notations

We begin by formalizing some notation and providing definitions that form the backbone
of this research field.
Definition 2.2.1. Graph: A graph is defined as G = (V , E), consisting of:

(1) a set of nodes, V that can have multiple types. For example, in our setting, we have
both user and item nodes such that V = U ⋃ I where U are users and I are items.

(2) a set of edges, E ⊆ V × V that connect two nodes, Vi, Vj and are meant to repre-
sent interactions between the nodes. In our setting we work with unweighted and
undirected edges.

Note: in our setting we consider n = |V| to be the total number of nodes and m = |E| to
represent the total number of edges.
Definition 2.2.2. Adjacency matrix: A adjacency matrix, A ∈ [0,1]n×n, is defined based
on the edges connection in graph, G. Thus, for each entry, A[i,j]:

Aij =

1 if ∃eij ∈ E, between nodes ni, nj ∈ V

0 otherwise

Note: In our setting we remove self loops in that the diagonal entries, A[i,i] = 0.
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Definition 2.2.3. Neighbourhood: A neighbourhood is a set of neighbour nodes, nv ∈
N (u), such that all the nodes, nv, share an edge, evu, with a central node, nu. In relation to
an adjacency matrix, A, a neighborhood can be defined as:

N (u) = {v ∈ V : Avu = 1}.

Note: we will use the term k-hop neighbourhood to refer to neighbourhoods that are
formed by looking at the edges that are k-steps removed from a central node. For example
the definition presented above would be considered a one-hop neighbourhood.
Definition 2.2.4. Degree Matrix A degree matrix, D ∈ [0, n]n×n, is defined based on the
outgoing edges, euv : v ∈ N(u) for each node u. Each entry in D is equivalent to the sum of
a row in an adjacency, A.
Definition 2.2.5. Laplacian Matrix The Laplacian is an important matrix in the field of
graph learning that forms the basis of many different theoretical and empirical innovations
within the field. Broadly, the Laplacian summarizes many important properties of the graph
[141]. In its most general form, the Laplacian matrix is defined as:

L = D − A

There is also a normalized version:

Lnorm = D− 1
2 LD− 1

2

Definition 2.2.6. Transductivity and Inductivity in Graphs One key question when
designing the evaluation schema for a GNN is whether the model is expected to perform
in a transductive or inductive setting. This division refers to the allocation of held-out
information that is used in the test set. An inductive model is one that is able to perform
graph learning tasks on a held out subgraph (that is, a portion of the graph is never used
in the training regime). Meanwhile, a transductive model requires that all of the nodes in a
graph are visible both during training and testing (even if edges between them are masked
during various phases of the representation learning methodology). As we will explain in
Section 2.3.2.3, this setting has important downstream consequences on the applicability of
various GNN architectures to recommendation tasks.

2.2.2. Tasks in Graph Learning

Generally, graph learning is organized with respect to various tasks.

(1) Edge (Link) Prediction: In this particular task, the objective is to recover masked
edges to predict the existence of connections between the nodes of a graph. This task
can be both transductive and inductive (see above), meaning that the masked edges
can be connecting nodes that were present in training or nodes that were not present
in the training set.
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(2) Node Classification: In this particular task, the objective is node classification
which involves predicting some label y for a node v ∈ V .

(3) Graph Clustering: In this particular task the objective is to perform some form
of grouping over the nodes of the graph such that the predicted clusters share some
unifying property. Traditionally, this method has been used heavily to discover com-
munities in social and citation networks.

(4) Graph-Level Prediction: In this particular method, the objectives of node classi-
fication are abstracted to the level of a graph.

In general, the broad directive of graph learning is the extraction and analysis of patterns
within a graph structure [10]. These various methods have a broad range of expressiveness,
starting from statistical methods that extract individual descriptors from a graph and ex-
tending to complex methods used in deep learning.

2.2.3. Statistical Methods

There are several principles that play an important role in the structure, definition, and
categorization of a graph. Two crucial principles that play an important role in the work of
thesis are node degree and node centrality.

2.2.3.1. Node Degree. As described in Section 2.2.1, a graph, G, consists of a node set,
v ∈ V , and edge set, e ∈ E . The degree of a node, u, can be described as the number of
outgoing edges, euv : v ∈ N(u). More formally:

du =
∑
v∈V

A[u, v] (2.2.1)

2.2.3.2. Node Centrality. While node degree is able to capture information about an indi-
vidual node, it does not express the connected-ness of a node with respect to the remainder
of the graph. Thus, the purpose of the node centrality measure is to contextualize the degree
of a node in relation to the degree of other nodes and their importance in the rest of the
graph. In particular, we define a node’s centrality via a recurrence relation in which the
node’s centrality is proportional to the centrality of its neighbours. More formally:

cu = 1
λ

∑
v∈V

A[u,v]cv, ∀u ∈ V, (2.2.2)

As we will show in later sections, the degree of a node can play an important role in the
quality of the representation learned with respect to this node. This is because many of the
recommender architectures introduced in Section 2.3.4 are sensitive to the distribution of a
node’s neighbourhood when learning its representation.
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2.2.4. Kernel Methods

While individual metrics such as those presented in the previous section can provide low-
level information about a node, they are often not expressive enough to truly perform well
on any of the tasks outlined above. There is a large body research devoted to the study of
graph kernels [15, 151]. Here, we present two kernel methods that play an important role
in laid the graph neural networks (GNNs) that contribute to the work of this thesis.

2.2.4.1. The Weisfeiler-Lehman Kernel. The premise of this kernel is to extract node-level
features that are enriched with information from their local neighbourhood nodes [139].
By aggregating over neighbourhoods of nodes in an iterative process, the kernel is able
to extract information about various communities with the graph and integrate this with
the information about individual nodes contributing to these communities. The general
procedure of this kernel is:

(1) Assign an initial label l(0)(v) to each node.

(2) Iteratively assign a new label to each node by aggregating over the labels of its
neighbour nodes: l(i)(v) = l(i − 1)(u)∀u ∈ N(v))

(3) After running K iterations of gathering and relabeling, we have a label l(K)(v)for
each node that summarizes the structure of its K-hop neighborhood.

2.2.4.2. Random Walk Kernel. Another deeply influential kernel is the random-walk ker-
nel proposed by Kashima et al. [90] which involves running random walks over the graph
and then counting the occurrence of different node sequences. A random walk on a graph is
a process that begins at some vertex, and at each time step moves to another vertex [141].
This kernel method has served as a bridge between kernel and spectral methods because it
can be formalized using a variation of the Laplacian matrix:

LRW = D−1L

One of the important properties of this approach is its ability to achieve a stable distribution
over the node representations despite the randomness of the walks [141]. The notion of
random walk based embeddings has been given significant attention since the proposal of this
kernel method.Most notably, Leskovic et al. [100] use the Personalized PageRank algorithm
[120] to compute a one-hot indicator vector for node u that gives the stationary probability
that random walk starting at node u visits node v. Or similarly, a method converted from the
natural language processing, Node2Vec [67] uses an encoder/decoder architecture to learn
the probability of visiting u on a length-T random walk starting at v.

Together these methods contribution to the design and implementation of GraphSAGE
and, later, PinSage, two graph neural network architectures that are discussed in detail
within the following sections of this thesis. Crucially, the ideas of (1) harnessing a node’s
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neighbourhood into its representational learning paradigm and (2) the use of random walks
to summarize the connections between various nodes both play pivotal roles in the relevance
of a network structure on consumption patterns.

2.2.5. Spectral Methods

Another pivotal concept which intersects heavily with the notion of kernel methods is
that of applying spectral analysis to graphs.

As defined in Section 2.2.1, a graph can be defined using the interplay between the
Adjacency and Laplacian matrices. In particular, decomposing the Laplacian matrix into its
eigenvalues can give insight into the connections of a graph such that it can be partitioned
into various clusters.

2.2.5.1. Graph Clustering. This notion of graph clustering has allowed researchers to
develop generalized techniques for learning low dimensional embeddings of a node based on
examining the K smallest eigenvectors of the Laplacian. The general algorithm follows the
following approach:

(1) Find the K smallest eigenvectors, u0, u1, ...uk ∈ ℜ|V |×1, of the Laplacian, L.
(2) Define a matrix, U ∈ ℜ|V |×(k−1) such that the columns of U are the eigenvectors,

e0, e1, ...ek.
(3) Consider each row of the matrix as the representation, zn for a node n ∈ V .
(4) Run K-means clustering on zn, ∀n ∈ V

Since its initial proposal, there have been many works that build on this clustering
approach. But, at the core of this methodology lies the foundational importance of the
eigenvectors of the Laplacian matrix and its ability to express underlying patterns between
the nodes in a graph.

2.2.6. Graph Neural Networks (GNNs)

Generally, the methods expressed in earlier sections can be considered shallow be-
cause they do not contain parameters that can be learned, or tuned through deep learning
paradigms of gradient-based optimization. Extending the mathematical ideas that form the
underpinnings of the previously defined methodologies, are a series of architectures called
graph neural networks which apply the paradigms of deep learning to graphs. In this section
we will provide an introduction to the methods that are used in later sections of this thesis,
however, we leave [163, 69, 149, 41, 25] for more extensive details on the state of the art
in this domain.

2.2.6.1. Message Passing Paradigm. Most GNN architectures can be intuitively under-
stood from the perspective of their neural message passing paradigm [63] in which the nodes
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within a neighbourhood, v ∈ N(u), of a central node, u, iterative exchange information in
the form of vectors to aggregate a localized representation of the central node, u.

The basic structure of a GNN can be abstracted into two functions, UPDATE and
AGGREGATE. Here, AGGREGATE refers to the process of gathering the neighborhood
nodes and UPDATE refers to the procedure used to update a node’s embedding with re-
spect to its neighborhood feature set. Thus, the GNN process of training embeddings, is
based on the interactions between these two processes. At each iteration k of training, the
AGGREGATE function takes the embeddings of u’s neighbors, v ∈ N(u), to generate a
message which the UPDATE function combines with the previous embedding of node u,
h(k−1)

u , to generate the updated embedding h(k)
u . For more details on the specifics of this

formulation, please see Section 3.3.

2.2.6.2. Graph Convolutional Networks. Graph Convolutional Networks are one of the
most prominent graph learning architectures within the larger domain of graph learning.
The underpinnings of this method come from applying convolutions (previously popularized
by the computer vision domain) to graph structures. One critical aspect of the convolution
operation, ∗, is that it can be computed by an element-wise product of the Fourier transforms
applied to two functions:

(f ∗ h)(x) = F −1(F (f(x)) ◦ F (h(x))

Thus, by defining the Fourier transform on the graph domain, we are able to simplify the
process of applying convolutions to a graph. Generally, these methods can be categorized
under two major directions: spectral and spatial convolutions. Spectral GCNs define convo-
lutions through spectral filters by drawing on mathematical principles used in graph signal
processing and rely heavily on the decomposition of the Laplacian matrix. Meanwhile, Spa-
tial GCNs define convolutions based on the graph topology and are motivated by principles
of information propagation on graphs.

Spectral Methods Spectral methods rely heavily on the decomposition of the Lapla-
cian and adjacency matrices into their eigenvectors. In particular, the Normalized graph
Laplacian is a real symmetric positive semi-definite matrix. This means that it can be de-
composed into the form L = UΛUT such that U = [u0, u1, ..., u|V |−1] ∈ ℜ|V |×|V | is a matrix
composed of eigenvectors ordered by the magnitude of their eigenvalues and Λ is a diagonal
matrix of eigenvalues (spectra) where Λii = λi.

The Fourier transform is generalized to graphs through this eigendecomposition of the
Laplacian where the eignevectors U constitute the graph Fourier modes (the complex expo-
nentials of the Fourier series composing the function). Thus, the Fourier transform projects
a graph signal x onto an orthonormal basis defined by U :

F (x) = x̂ = UT x (2.2.3)

35



and the inverse Fourier is defined by:

F −1(x̂) = Ux̂ (2.2.4)

.
Going back to the relationship between convolutions and the Fourier transform presented

above, we can now apply convolutions to the graph domain using the graph Fourier transform
defined a few lines above. Thus, a graph convolution, ∗G, of the an input signal, x, with a
filter, g ∈ ℜn can be defined as:

x ∗G g = F −1(F (x) ⊙ F (g)) = U(UT x ⊙ UT g) (2.2.5)

where ⊙ denotes an elementwise product. We can further simplify this equation if we consider
the filter g in the Fourier domain as UT g ∈ ℜn and diagonalize it as gθ = diag(UT g):

x ∗G g = U(UT x ⊙ gθ) = UgT x (2.2.6)

This forms the abstract blueprint for various spectral GCN implementations, which will dif-
fer on the basis of their filter selection. The Graph Convolutional Network (GCN) method
proposed by Kipf and Welling [93] is the most canonical of these methods due to its im-
provements in computational efficiency. This method defines the filter and the resulting
convolution layer as:

x ∗G gθ = Θ(Ā)x (2.2.7)

where Ā = D̃−1/2ÃD̃−1/2 with Ã = A + I, D̃ii = ∑
j Ãij, and Θ is a set of learnable

parameters.
Since its proposal, this method has become incredibly influential and spawned a variety

of extensions both in graph representation learning and beyond (see Section 2.3 for further
details). Within the graph domain, a notable extension is Adaptive Graph Convolutional
Network (AGCN) [101] which is able to adaptively select the neighbourhood to learn hidden
structural relations unspecified by the graph adjacency matrix. Alternatively, Dual Graph
Convolutional Network (DGCN) [181] introduces a dual graph convolutional architecture
which learns both spatial connections and interdependencies in the feature space among
connected nodes.

Spatial Methods Spatial convolutions can be seen as a relatively direct translation from
the convolutions in CNNs to the graph domain. CNN’s apply n × n filters over localized
sections of an image. Drawing on this principle, these filters in the graph space can are
analogous to the neighbourhood surrounding a node. Drawing on the message passing par-
adigm, a spatial convolution can be understood through the AGGREGATE and UPDATE
defined previously where aggregation is the construction of a spatial filter and update is
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the application of it to a particular node of the graph. There are many variations of spa-
tial GCNs, differing on the basis of their kernel construction and update methodology. In
later sections we work extensively with the GraphSAGE [71] model. The message-passing
paradigm of GraphSAGE differ slightly in that it relies on randomly sampling p neighbours
from the surrounding neighborhood (i.e., Np(u)) rather than interacting with a fixed set of
neighbours. For a more formal definition of the learning paradigm, please see Section 3.3. As
we will address in later sections, since its introduction, GraphSAGE has been extended to
become the canonical recommender system, PinSage [170], which will become the backbone
recommender model used in our music recommendation task.

2.3. Recommender Systems
In this section we present the task of recommendation, beginning with the generalized

setting and then building on the previous sections to explain how it differs in the music
domain. We begin by presenting the relevant notations that are used to formalize the rec-
ommendation setting. Then, we present a variety of settings in which recommender systems
can be evaluated and the metrics which are relevant for these evaluations.

2.3.1. Notations

Definition 2.3.1. Interaction Matrix An interaction matrix is a matrix, M which is used
to codify the interactions between a set of users, U , and a catalogue of items, I. There are
several versions of this matrix:

(1) Binary Interactions: often, the interactions between users and items are codified in
a binary manner. In this case, the entries of the interaction matrix, M ∈ [0,1]|U |×|I|,
are represented with binary values. As we explain in later sections (See Implicit and
Explicit Feedback, Section 2.3.2.1) these values can come from implicitly inferred or
explicitly stated user feedback.

(2) Ratings: in the case that user interactions have the properties of ordered relations,
that is: r1 < r2 < ...rn, rather than using binary entries, the matrix will contain
numerical values. In this case, the entries of an interaction matrix, M ∈ [r1, rn]|U |×|I|,
are represented by the ratings given by a user to an item.

2.3.2. Recommendation Settings

The fundamental goal of recommendation tasks is to recommend relevant items for a
user based on their previous preferences. However, the flexibility in defining user/item
interactions, harnessing external feature sets, and generating recommendations have paved
the way for many different recommender architectures.
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2.3.2.1. Implicit and Explicit Feedback. In order to facilitate the generation of relevant
recommendations, recommender systems must extrapolate the patterns present in previous
user interactions with an item set. One of the crucial design choices that is implicitly made
in dataset selection is the format in which feedback was gathered. The most common form of
user review is called implicit feedback. This method is used when item ratings are based on
whether or not a user has interacted with them. They are termed implicit because a negative
interaction and the lack of an interaction will have the same rating (the lowest possible one
being 0). Thus, implicit feedback can lead to noisy or presumptuous learning that isn’t
necessarily representative of a user’s true feelings about an item. The other, more concrete
form of feedback, is termed explicit feedback. Unlike implicit feedback, in which interaction
data is passively inferred from a user’s browsing patterns, explicit feedback requires direct
responses from a user. For example, consider a user who is interacting with the radio function
on a streaming platform. As the recommender system provides a continuous stream of music
to listen to, a user occasionally responds to one of the songs with a skip. However, the lack
of a skip does not necessarily imply a positive interaction. Alternatively, consider a user
who is constructing their own playlist. In actively selecting songs for this playlist, they are
explicitly marking these songs as those with which they have had positive interactions.

2.3.2.2. External Feature Sets. As mentioned in earlier sections relating to representation
learning in music (see Section 2.1), many recommender systems can also be categorized along
the lines of whether they use content-based or context-based information when generating
item and user level representations. Thus, a crucial question that directly impacts the design
of a recommender system is whether it uses interaction data (context-based), individual
feature sets (content-based) or a fusion of the two (hybrid) when learning representations.
As we will present in later sections, this decision have important consequences on the settings
to which a particular architecture may be suited.

2.3.2.3. Cold Start. The term cold start is an umbrella term that refers to the evaluation
setting in which a recommender system is evaluated on its ability to generate relevant recom-
mendation based on users (or items) that were not present in the training set (see Figure 2.1
for visualization). The purpose of evaluating a recommender system in the cold start setting
is to simulate a dynamic environment in which the catalogue of items or collection of users
changes over time. Evaluating a recommender system in this setting can better approximate
its future performance in an online setting. However, due to the inductive nature of this
setting, there are many models which are simply unable to generalize to this setting. And,
particularly, in the music setting where new artists and songs are added to platforms on a
daily basis [81], this problem has received particular attention [137].
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Figure 2.1 – Cold Start Evaluation. Consider an interaction matrix of size user × item.
In the classic recommendation setting, the training/validation/testing splits are performed
by randomly sampling from matrix. Meanwhile, in the cold start setting, the splits are
preformed by randomly sampling over users. This is intended to simulate an online setting
in which new users are being integrated in a platform.

2.3.3. Foundational Methods for Recommendation

We will now present some important foundational models that form the basis of future
work in the recommendation space.

2.3.3.1. Collaborative Filtering. In the most general case, recommendations are made on
the basis of an interaction matrix where the task of performing recommendation is synony-
mous with matrix completion. The various methodologies presented to engaging with this
task are often referred to as collaborative filtering (CF). Generally speaking, methods that
perform CF have two key components: (1) embedding generation, in which they learn vec-
tor representations of users and items, and (2) interaction modeling, in which interaction
patterns are reproduced using the learned embeddings. One of the most popular approaches
in this category is called matrix factorization. This method relies on the rank decompo-
sition theorem to split an interaction matrix into two smaller matrices that contain latent
factors representing both the users and the items. Multiplying these latent factors recovers
entries that were not present in the initial interaction matrix, thus forming the basis of future
recommendations.

2.3.3.2. Bayesian Personalized Ranking. Another prominent context-based method that
has laid the foundation for future innovations in the recommendation space is Bayesian
Personalized Ranking (BPR) [130]. Unlike matrix factorization, which aims to make pre-
dictions based on individual interactions between a user and an item, BPR harnesses the
power of contrast between two items. One of the major contributions of BPR is the notion
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of performing training in triplets such that each training instance can be expressed as:

x = {(u,i,j) : i ∈ I+
u , j ∈ I \ I+

u }

where u represents a user, i, a positive example of an item liked by user u and j, a negative
example of an item disliked by user u. This notion shows itself in many forms throughout
the machine learning community, under many different variations, such as triplet loss [95],
max-margin loss [170], Siamese loss [126], and many more.

2.3.3.3. Learn to Rank. Another important architecture that plays a foundational role
in the work presented in later sections of this thesis is the learn to rank paradigm. This
category of architectures was originally designed by the retrieval community in order to
calculate the order in which results should be presented with respect to an individual search
query. The basis of this research is based heavily on findings from the human-computer
interaction community indicating that the order in which items are presented has a strong
effect on their likelihood of being interacted with [46]. Thus, in this setting, given a search
query, q, and a set of documents, d ∈ D, a ranking model, M, is trained using query,
document pairs, x = (q,d), such that it can predict their relevance score to users, s = f(x).
There are many different approaches that integrate various deep learning methods into their
architecture design. For a detailed survey, we suggest [73]. In this work, we focus on
the architecture of LambdaRank [20], presented in 2010 and still extremely relevant today.
The general methodology of the LambdaRank model involves learning ordering between
pairs rather than individual relevance score. More concretely, given a query q and two
potential documents, dk, dj ∈ D, where the relevance of a document, di, to a query, q, is
expressed as si = f(xi), xi = (q, di), the learn to rank model will learn the probability that
Pkj = P (sk > sj). This probability can be compared with the true probability distribution,
P̂kj (often based on some browsing history), and can then be trained with gradient descent
using cross entropy loss:

C = −P̂kjlogPkj − (1 − P̂kj)log(1 − Pkj)

The crucial element of this methodology is that, in expressing these orderings as probabil-
ities, the model can be trained using differentiation on ranking, which is generally not a
differentiable function. We will return to this problem formulation and loss function when
discussing the bias mitigation method used in the works of this thesis.

2.3.4. Graph Based Recommendation

In recent years, GNN-based recommender systems have achieved state-of-the-art results
on a multitude of recommendation scenarios. One of the key elements to integrating a
graph-like structure with the tabular format of interaction matrices, is the creation of a
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bipartite user/item graph. More specifically, an interaction matrix M ∈ [0,1]user×items can
be transformed into a graph, G = (V , E), with the sets, U ,I ∈ V as the set of user and
item nodes, respectively. The entries of the interaction matrix, M, are represented as edges
between user/item node pairs, ui ∈ U, ij ∈ I. In this way, matrix completion can be cast a
problem of link prediction (see Section 2.2 for details) which consists of inferring the existence
of an edge between a user/item node pair, ui ∈ U, ij ∈ I.

In this section we summarize some of the canonical models that form the basis for future
innovations in the field. Since the goal of this section is to lay the context for our proposed
work, we select the models which are most pertinent. We draw on a series of surveys for
synthesizing these architectures. For more details, please see [58, 165].

2.3.4.1. Graph Convolutional Matrix Completion: GC-MC (2018). A canonical graph-
based model that contributed to the prominence of GNNs in recommendation is called Graph
Convolutional Matrix Completion (GC-MC) [148]. In a departure from the state of the art
methods that came before it, GC-MC formulated matrix completion as a link prediction
task on a bipartite graph. This laid the foundation for the swift integration of GNNs into
recommender systems because interaction data that was common to the collaborative filtering
paradigm could be represented by a bipartite graph between user and item nodes, with
observed ratings/purchases represented by links. Thus, innovations in the field of GNNs
were operationalized by the recommendation community. The basis of the GC-MC model
relies on using a graph autoencoder to generate node-level representations for users and
items.

2.3.4.2. PinSage (2018). Another canonical model within the graph recommender com-
munity is PinSage [170]. Presented as an extension of the GraphSAGE model [71] (see
Section 2.2.6.2 in for further details). Unlike GC-MC [148] which only used 1-hop neigh-
bours to learn node-level representations, PinSage was able to sample k-hop neighborhoods
by sampling p neighbours using weighted random walks that most commonly appear in
random walks surrounding each training batch node, u.

2.3.4.3. Neural Graph Collaborative Filtering: NGCF (2019). The Neural Graph Collab-
orative Filtering (NGCF) model [155] was presented as an extension of Graph Convolutional
Networks (see Section 2.2.6.2 for details) to the recommendation domain. Unlike GC-MC
[148] which only had one neighbourhood layer, NGCF was able to extract higher connec-
tivity from the graph by stacking multiple convolution layers. In addition, unlike PinSage
[170] which was intended solely for the purpose of learning item-level representations, NGCF
learned both user and item representations at once.

2.3.4.4. LightGCN: LGCN (2020). Proposed by He et al. [75] as an extension to the
NGCF model [155], the Light Graph Convolutional Network (LGCN) has, in recent years,
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become an important state of the art benchmark. This architecture follows the same struc-
ture as the NGCF model but in a lightweight, more compact form, that removes feature
transformation and nonlinear activation between layers. Their work shows both empirically
and theoretically that these layers do not improve performance and their removal significantly
lowers the number of learned parameters.

2.3.4.5. Recent Architectures. In the last few years, as GNNS have become more promi-
nent in the recommendation domain, there have been many innovative works that extend
the previously presented models into more specialized problem settings. While the examples
provided below are by no means exhaustive, we see them as natural extensions which can
be relevant to the work done in later chapters. For example, Dual Channel Hypergraph
Collaborative Filtering (DHCF) [86], presented in 2020, harnesses the power of hyper-graph
GCNs to design a method that is able to distinguish between users and items when learning
embeddings. In this way, DHCF is well aligned with the task of music recommendation,
where there may be different metadata available for users, playlists, songs, artists, etc. Simi-
larly, the Graph Convolution Machine (GCM) model [162], presented in 2022, augments the
NGCF architecture with an encoder/decoder framework to accommodate for the complexity
of adding contextual data to interactions. Such a method is particularly poignant in the
musical space, where the context in which a user is engaging with musical content can have
a very strong impact on relevance of various items. Meanwhile, Diversified GNN-based Rec-
ommender System (DGRec) [169], proposed in 2022, extends the GCN architecture with a
novel neighbor sampling technique to improve the diversity of recommended item categories
in various e-commerce settings.

2.3.5. Graph Based Music Recommendation

We now present three important works that have used GNNs for music recommendation
tasks. Each of these works is selected specifically because, unlike general methods which show
their performance on common musical datasets (like LastFM), these methods are designed
explicitly for musical settings. It is important to note that each of these important works
was published in tandem with one of the major music streaming services. This collaborative
pattern is important to note because it showcases one of the key difficulties of engaging
with music recommendation tasks from an academic perspective. The proprietary nature of
catalogues, feature extraction methods, and methodologies, used by the industry add to the
complexity of researching music recommendation.

2.3.5.1. Pandora - GraphSAGE for Artist Similarity (2021). In their work, Korzeniowkski
et al. apply the GraphSAGE model (see Section 2.2.6.2 for more details) to the task of
learning artist similarity [95]. In this setting the graph is constructed using a slice of the
proprietary artist catalogue at Pandora as nodes and musicologist annotated connections as
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edges. In addition to presenting their work, the authors also publicize OLGA, the dataset
used in their experimentation. Using the terminology presented in Section 2.1, theirs is a
hybrid approach to music representation learning because in addition to using interaction
data to generate edges between artists, they harness proprietary music feature extraction
methods to provide node-level features. This is important because the integration of music
features adds constraints on the graph-based models which can be applied to the setting. In
particular, the authors justify their selection of the GraphSAGE model by citing its ability to
integrate node-level feature sets. Furthermore, Korzenioswki et al. ground their evaluation
setting in the cold start setting (see Section 2.3.2.3 for more details). As they explain in their
work, this too participates in their motivation for selecting the GraphSAGE model, citing
the inductive nature of this architecture as a crucial element in their methodology. As we
will see throughout the works highlighted in this section, the cold start setting is incredibly
important for music recommendation tasks and plays a large role in the selection and design
of architectures applied to this domain.

2.3.5.2. Deezer - Graph Auto-Encoders for Cold Start Artist Similarity (2021). In another
related work, Salha-Galvan et al. design an alternative method for the task of generating
artist similarity. Unlike the previous work, the methodology presented in this work is even
more explicitly focused on the cold start setting. Furthermore, unlike Korzeniowski et al.
[95], which works with undirected graphs, Salha-Galvan et al. focus on the directed graph
setting. In order to accomodate the unsymmetrical relationships between artists encoded in
their training graph, Salha-Galvan et al. use gravity inspired decoders to generate node-level
representations. Similar to Korzeniowski et al., this method is also a hybrid method that
integrates proprietary features with network connections.

2.3.5.3. Spotify - Multi-task Sampling and Inductive learning on Graphs (2021). In their
work, Saravanou et al. approach the broader task of music recommendation through the
lens of link prediction on a bipartite playlist-song graph. Thus, unlike the two previously
presented works which train on graphs with a single artist node type, Saravanou et al. utilize
a bipartite graph to represent the connections between songs and playlists. They posit that,
training representations for multiple, interconnected tasks improves the robustness of the
learned embeddings. In order to do so, they present 3 tasks:

(1) Playlist Prediction: a binary classification task where the model is evaluated on its
ability to predict whether two songs (or tracks) belong to the same playlist.

(2) Genre Prediction: binary classification task where the model is evaluated on its ability
to predict whether two songs (or tracks) belong to the same genre.

(3) Acoustic or audio similarity Prediction: a regression task where the model is evaluated
on its ability to capture similarities in the music content space.
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These three tasks are then unified into a single loss function which is able to apply weighted
importance to each individual loss. Similar to Korzeniowski et al. [95], Saravanou et al.
use the SAGE training paradigm, applying the PinSAGE model [170] to its bipartite graph
structure.

2.3.6. Discovery: A Subset of the Recommendation Task

As the recommendation research community has grown in size, the overarching objective
of designing generalized recommendation techniques has received significant attention. How-
ever, in recent years, an interdisciplinary body of work has begun to explore the ”sub-genres“
of this overarching task by introducing peculiarities of specific recommendation objectives
within a unique domains and differentiating them from the general setting [22, 53, 116].
In parallel, another body of research has begun to codify various consumption patterns that
are prevalent among different user bases [113, 128]. This research seeks to understand users
needs and values when interacting with a particular algorithmic recommendation system
within some specific domain and how these needs differentiate the objectives of this system
from that of generalized recommendation. Together these research streams have hinted at
a future when generalized recommendation methodologies require specialization or tailoring
with respect to a particular e-commerce domain.

Within the music domain, recent work has begun to highlight a particularly poignant
sub-genre encompassed within the general music recommendation objective: discovery [84,
51, 99, 42, 128, 114, 59]. Several works have attempted to concretely define discovery
such that it can be evaluated and operationalized. Most notably [59] present an analysis of
user expectations in discovery-oriented recommendation and present a series of evaluation
techniques for understanding whether meaningful discovery had been achieved. Meanwhile,
[76] suggests that the current metrics used for evaluating recommendation are limited on
the basis of their ability to understand how a system facilitates novelty. In the same vein,
several works have focused on evaluating novelty, using this concept as a proxy for discovery,
[106, 178, 180]. Even more significant than the work formalizing discovery, has been the
work solidifying the connections between discovery and the needs of specific user groups. In
their work, Mok et al. [113] have made a clear distinction between manual and algorithmic
music consumption. This distinction hinges on the way that new music is discovered, or
integrated into a generalized listening pattern. More explicitly, manual listening occurs
when users manually select songs via the search functionality on a platform. Meanwhile,
algorithmic listening occurs when songs are queued via some algorithmic system. Implied
in the outcomes of this work is the intrinsic connection between discovery and consumption
patterns. Raff et al. [128] further break down these two categories into four quadrants
which are defined on the basis of active to passive interactive patterns between a user and
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recommender system. In this work, they concretely associate the notion of discovery with
distinctive user groups. In addition, Raff et al. [128] argue that algorithmic curation is one
of the key attributes that affects user satisfaction with a particular platform. Within the
sphere of computational musicology and anthropology, similar findings have been validated
with qualitative research methods [51, 125, 42, 114, 59], with [114, 117] cementing the
importance of facilitating discovery in music recommendations as a concretely gratifying
behavior for users, and [125] formalizing algorithmic curation and its role on music discovery
as the second most important component contributing to user loyalty.

Together, these bodies of work present an interesting insight into the different needs of
users interacting with music streaming platforms. In later portions of this work, we will
return to the concept of discovery, connecting it with the prevalence of various algorithmic
biases and integrating it into our mitigation technique. Crucially, we wish to note that the
notion of discovery is not at odds with the needs of mainstream listening. The purpose
of facilitating discovery is not to nudge consumption patterns of mainstream users towards
niche content. But rather to shine a light on the distinctive needs of an important tranche of
users and formalize it such that it can be integrated into an algorithmic system’s objective.

2.4. Recommendation Fairness
2.4.1. General Fairness Methods

The field of fair ML has risen to prominence in the last decade as the proliferation of
deep learning has spread throughout the industry and into a large variety of applications and
human-facing domains. The growth of this research direction has come from an interdisci-
plinary mix of perspectives. Most prominently, work in this field has been heavily informed
by practices in humanities-adjacent domains such as law, ethics, and sociology combined
with more technical fields such as mathematics and engineering. In a general sense, the
fairness in machine learning refers to the analysis and mitigation of disparities between the
treatment of users with respect to an algorithmic system. These disparities can be measured
in many different ways, yielding a variety of different fairness definitions that are often used
to assess the outcomes of a particular system. Another important element to the study of
fairness in machine learning is the granularity with which users are considered. Currently,
there are three major branches of fairness research, each of which takes a unique stance on
how fairness should be codified and considered. We will now briefly outline these and then
encourage readers to engage with [11] for a more thorough knowledge base.

Perhaps the most famous of these is group fairness in which users are broken down into
groups based on a particular characteristic or attribute and disparities are assessed on a
group level [11]. The fairness formulations that are most commonly applied in this research
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area can be traced to principles of discrimination and the legal frameworks associated with
it. For example, groups can be defined based on sensitive attributes such as race, gender,
or sexuality. Thus, in order to engage with group fairness metrics, practitioners must have
access to the sensitive attributes for each data point that is interacted with by an algorithmic
system. An alternative approach to fairness is the notion of counterfactual fairness [11].
Unlike group fairness, which often takes the attributes of users at face value, counterfactual
fairness considers the interplay between various individual characteristics. For example,
group fairness metrics might assess the likelihood of an applicant being accepted for a loan
based on their race. Mitigation attempts harnessing group fairness might attempt to equalize
the opportunity for financially stable applicants such that their probability of receiving a loan
is irrespective of their racial group. Meanwhile, counterfactual methods would consider how
an applicant’s racial group might contribute to their financial stability (or lack thereof) and
accommodate for differences within groups. Finally, the last common category of fairness
definitions is individual fairness. This granular approach considers disparities between similar
individuals, attempting to mitigate inequalities in their treatment.

2.4.2. Individual Fairness in Graphs

The general premise underlying various definitions of individual fairness is that similar
individuals should be treated similarly (by an algorithmic system) [52]. However, there are
many different approaches to defining both the notion of similar individuals and similar
treatment when applied to the machine learning setting. Thus, in order to engage with
the principles of individual fairness, machine learning practitioners will often define some
function that is able to encode similarity between individuals.
Definition 2.4.1. Individual Fairness Given a model, M that maps data points, x ∈ X,
to outcomes, y ∈ Y , such that M(x) → y, and two distance functions d(xi, xj), D(yi, yj), the
property of individual fairness holds when D (M(xi), M(xj)) ≤ d(yi, yj) [52]

Particularly in the space of graph learning, this formulation has had many different
interpretations. For example [88] defined the InFoRM framework in which individual fairness
is upheld when

2Tr(Y ′LSY ) ≤ mϵ = δ (2.4.1)

where LS is the laplacian of the node-node similarity matrix, S, and Tr(Y ′LSY ) measures
the difference of the mining results, Y and the debiased results, Y ′ between all pairs of
nodes. Meanwhile, [48] define the REDRESS framework which considers from a ranking
based approach such that for each central node, i, and two graph nodes, j is minimized:

Lj,m(i) = −Pj,m log P̂j,m − (1 − Pj,m) log(1 − P̂j,m) (2.4.2)
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where Pj,m is formed by calculating the probability that node j is more similar to node i

than node m based on the cosine similarity between their input feature vectors and P̂j,m

reflects the same probability but applied to the learned node representation embeddings.
Finally [156] approach fairness from a stochastic perspective to formulate their application
of individual fairness to the knowledge graph-based recommendation.

2.4.3. Popularity Bias

2.4.3.1. Defining Popularity Bias. Most broadly, popularity bias refers to a disparity be-
tween the treatment of popular and unpopular items at the hands of a recommender system.
As such, this term is loosely tied to a collection of complementary terms including exposure
bias [46], item-based fairness [156], user-based fairness [54], superstar economics [12], long
tail recommendation [108], the Matthew effect [112], and aggregate diversity [6, 28]. For a
more detailed discussion of the various methods for definition, please see Section 4.2.1.

2.4.3.2. Mitigating Popularity Bias. There has been a lot of work done analyzing and
codifying the nature of popularity bias in recommender systems [23, 82, 84, 32]. And,
there are several axes on which these methods can be classified.

Primarily, the various approaches to mitigating popularity bias can be separated by the
general methodology used for their mitigation technique. In particular, these can be pre-
processing, where modifications are made to debias input data [17, 88], in-processing,
where modifications to the loss function are made to debias the parameters [132, 159, 179],
or post-processing, where the output of a recommender model is re-ordered to mitigate
position bias [3, 108].

Alternatively, mitigation strategies can also be characterized by their underlying fairness
notions. For example, using group fairness [11] preprocessing techniques sample from
the minority population to balance their representation in the training interactions [17].
Or, various in-processing methods modify loss functions to regularize for group imbalances
[132, 174]. Finally, various post-processing methods use re-ranking [3, 172]. Alternatively,
many approaches use counterfactual fairness to disentangle the effect of popularity on a
recommender system’s score [159, 179, 176]. In comparison with group and counterfactual
fairness, there has been relatively little work done in relation to individual fairness. This
is due to the difficulty of defining a similarity through which to define pairs of individuals.
In their work, [30] define similarity on the basis of relevance, proposing a method in which
items are given exposure that is proportional to their predicted relevance. In a more re-
cent work, [156] define similarity between learned representations, however, their work is
grounded in knowledge graph based recommendation and thus cannot be applied to many
recommendation settings.
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Résumé. Ces dernières années, les méthodes basées sur les réseaux de neurones graphiques
(GNN) ont saturé le domaine des systèmes de recommandation. Les gains de ces sys-
tèmes ont été significatifs, mettant en évidence les avantages de l’interprétation des données
via une structure de réseau. Cependant, malgré les avantages notables de l’utilisation de
structures de graphes dans les tâches de recommandation, cette forme de représentation
a également engendré de nouveaux défis qui exacerbent la complexité de l’atténuation des
biais algorithmiques. Lorsque les GNN sont intégrés dans des tâches en aval, telles que la
recommandation, l’atténuation des biais peut devenir encore plus difficile. En outre, la dif-
ficulté d’appliquer les méthodes existantes de promotion de l’équité à de grands ensembles
de données du monde réel impose des contraintes encore plus sérieuses sur les tentatives
d’atténuation. En tant que tel, notre travail vise à combler cette lacune en prenant une
méthode existante pour promouvoir l’équité individuelle sur les graphiques et en l’étendant
pour prendre en charge la formation par mini-lots ou sous-échantillons d’un GNN, jetant
ainsi les bases de l’application de cette méthode à une tâche de recommandation en aval.
Nous évaluons deux méthodes GNN populaires: Graph Convolutional Network (GCN), qui
s’entraîne sur l’ensemble du graphe, et GraphSAGE, qui utilise des marches aléatoires pro-
babilistes pour créer des sous-graphes pour la formation par mini-lots, et évaluons les effets
du sous-échantillonnage sur l’équité individuelle. Nous implémentons une notion d’équité
individuelle appelée REDRESS, proposée par Dong et al., qui utilise l’optimisation des
rangs pour apprendre les nœuds équitables individuels, ou les éléments. Nous montrons
empiriquement sur deux ensembles de données du monde réel que GraphSAGE est capable
d’atteindre non seulement une précision comparable, mais également une équité améliorée
par rapport au modèle GCN. Ces résultats ont des ramifications conséquentes dans les do-
maines de la promotion de l’équité individuelle, des GNN et, sous une forme en aval, des
systèmes de recommandation, montrant que la formation en mini-batch facilite la promo-
tion de l’équité individuelle en permettant aux nuances locales de guider le processus de
promotion de l’équité dans l’apprentissage de la représentation.
Mots clés : Apprentissage des graphes, apprentissage des représentations, équité indivi-
duelle, échantillonnage
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Abstract. In recent years, graph neural network (GNN) based methods have saturated
the field of recommender systems. The gains of these systems have been significant, show-
casing the advantages of interpreting data through a network structure. However, despite
the noticeable benefits of using graph structures in recommendation tasks, this represen-
tational form has also bred new challenges which exacerbate the complexity of mitigating
algorithmic bias. When GNNs are integrated into downstream tasks, such as recommen-
dation, bias mitigation can become even more difficult. Furthermore, the intractability of
applying existing methods of fairness promotion to large, real world datasets places even
more serious constraints on mitigation attempts. As such, our work sets out to fill in this gap
by taking an existing method for promoting individual fairness on graphs and extending it
to support mini-batch, or sub-sample based, training of a GNN, thus laying the groundwork
for applying this method to a downstream recommendation task. We evaluate two popular
GNN methods: Graph Convolutional Network (GCN), which trains on the entire graph,
and GraphSAGE, which uses probabilistic random walks to create subgraphs for mini-batch
training, and assess the effects of sub-sampling on individual fairness. We implement an
individual fairness notion called REDRESS, proposed by Dong et al., which uses rank op-
timization to learn individual fair node, or item, embeddings. We empirically show on two
real world datasets that GraphSAGE is able to achieve, not just, comparable accuracy, but
also, improved fairness as compared with the GCN model. These finding have consequential
ramifications to the fields of individual fairness promotion, GNNs, and in downstream form,
recommender systems, showing that mini-batch training facilitate individual fairness promo-
tion by allowing for local nuance to guide the process of fairness promotion in representation
learning.
Keywords: Graph Learning, Representation Learning, Individual Fairness, Sampling

3.1. Introduction
As our consumption habits shift towards online spaces, recommender systems are slowly

becoming the gatekeepers between producers and consumers within a wide array of domains.
In recent years, the field of recommender systems has become saturated by one particular
form of representation learning: graph neural networks (GNNs) [164, 175, 127, 68, 43, 37].
The key advantage which distinguishes GNNs from other representation learning methods is
their ability to leverage not just the information embedded in the features associated with
each data point, but also the information which can be extracted from their interactions
[167]. However, in parallel to the proliferation of this important architecture, has come
a rising level of concern that GNNs come with their own set of unique challenges when it
comes to mitigating algorithmic bias. Findings indicating perpetuation or exponentiation of
societal biases at the hands of other deep learning models have prompted similar questions
in the field of GNNs, specifically as applied to recommender systems [33]. As such, the
integration of these architectures into recommender systems can have very real, negative
consequences on the experiences of both producers and consumers who interact with the
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recommender system. Without developing bias mitigation strategies for GNN’s we cannot
properly ameliorate the biases in downstream tasks, such as recommendation.

Within the algorithmic fairness community, there have been several major thrusts, each
associated with a broad definition of what it means to engage with fairness from a mathemat-
ical perspective [52, 97, 94]. The focus of this work is centered on the notion of individual
fairness [52]. This notion dictates that ”similar individuals should be treated similarly by an
algorithmic system“. Intuitively, promotion of this notion can begin to address problematic
discrepancies between the treatment of different consumer and producer groups in the rec-
ommendation space [54]. Recent works that apply individual fairness notions to GNNs take
different perspectives on similarity [98, 88, 48]. In particular, REDRESS [48], one such
fairness framework, proposed by Dong et al., frames individual fairness from a ranking per-
spective. This makes the approach particularly appealing to integration with a downstream
task of recommendation.

Our main contribution is the exploration of the applications of this framework to an-
other, more scalable GNN architecture that allows for sub-sampling. In their work, Dong et
al. design their framework to be compatible with a Graph Convolutional Network (GCN)
[93]. However, the message passing paradigm of this method requires training on the en-
tire graph at once which severely limits the applicability of this fairness framework to large
scale datasets. As such, our work expands the proposed REDRESS framework to support
sub-sampling methods and assesses the effects of this subsampling on the global individual
fairness of the final embeddings. We re-implement the methodology proposed by Dong et al.
and add our own implementation of a modified GraphSAGE [71] which is compatible with
individual fairness promotion. Our empirical evaluation on two real world datasets shows
that the use of subsampling can drastically improve the individual fairness exhibited in the
final embeddings. In doing so, we uncover a connection between neighborhood selection and
individual fairness promotion.

3.2. Related Work
In this section we lay the groundwork for the various facets of work which play a crucial

role in shaping the contribution and relevance of ours. First, we introduce the role that
GNNs play in recommender systems. In doing so, we motivate the relevance of our approach
to the recommendation space. Then, we introduce the need for feasible individual fairness
notions which can be applied to ameliorate issues of bias in recommender systems. In this
discussion, we highlight the ways in which our specific fairness framework, REDRESS [48],
can be applied to a recommendation setting. We follow this with a discussion of other
individual fairness frameworks that have been applied to GNNs. Our discussion contrasts
the other approaches with REDRESS, showcasing its intuitive connections with item-item
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relevance. Finally, we introduce the importance of sub-sampling in GNN mini-batch training.
We position our work in relation to other surveys which explore the relation between sub-
sampling and utility gains. In doing so, we highlight the crucial contribution of our work:
the connection between sub-sampling and individual fairness promotion.
GNNs in Recommender Systems: One of the main factors which cements the success
of GNN techniques in the recommendation domain is their ability to capture both context
and content based patterns [163, 165]. This enables GNNs to encode crucial collaborative
signals embedded in a network of users and/or items as well as individual information about
items and users themselves. The basis of taste and affinity for an item can be expressed
both contextually, via our social circles, and individually, via our interactions with the item
itself. As such, GNNs ability to capture both these sources of information enable them to
build profoundly complex and robust representations of users and items.

The motivation behind our selection of GraphSAGE [71] as a comparison method with
the original GCN architecture which is used in the fairness framework proposed by Dong et
al. [48] is its achievements within the recommender system domain. PinSage [170], proposed
by the authors of GraphSAGE one year after its initial release, is designed as a downstream
extension of GraphSAGE to recommendation tasks. In terms of its architecture, PinSage
remains essentially the same as GraphSAGE, with a slight modification to the neighborhood
selection method, which uses importance pooling to refine the random walks based on the
probability of a node’s occurrence. After generating item and used embeddings using the
iterative representation learning procedure of GraphSAGE, PinSage performs recommenda-
tion based on the k-nearest neighbors of an item or a user in the learned embedding space. As
such, by implementing fairness in GraphSAGE, we lay the foundations for easily extending
this approach to the recommendation task via PinSage.
The Need for Individual Fairness in Recommender Systems:

One of the major issues which plagues the field of recommendation is popularity, or
exposure bias [32]. This phenomenon occurs when users are only exposed to a portion of the
available items. Frequently, this exposure is prioritized in the favor of previously popular
items, leaving niche or new items to be neglected in negative feedback loop which catapults
some items to superstar popularity [12] and leaving others languishing in obscurity. This
issue has a plethora of negative downstream consequences. First, it deteriorates the overall
quality of predictions if a recommender system is able to serve only the needs of a mainstream
audience. Second, it can create unfairness among consumers since not all consumption reflect
mainstream tastes [54]. Finally, it can have very real, extremely negative consequences on
the financial prospects of producers [180], affecting their ability to create content, services,
or merchandise.

Despite a wide range of works approaching exposure and popularity bias from the per-
spectives of group fairness [102, 54] and counterfactual fairness [103, 176], the granularity
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of individual fairness makes the promotion of this notion significantly more difficult. One of
the benefits of the REDRESS [48], the approach we incorporate into our work, is its flexibil-
ity in defining what features/structure is used to define similarity among items (see Section
3.4.3 for more details). For example, in the musical domain, if two songs sound extremely
similar then, by selecting the portion of their feature set that defines their sound qualities,
we can promote similarity between the two songs and regularize for inconsistencies based on
the popularity of their respective primary artists.
Individual Fairness in Graphs: In the broader discussion of fairness in machine learning,
the tasks of promoting fairness is often broken into the three stages of a training pipeline:
pre-processing (model), in-processing (during training, through regularization, constrained
optimization, or novel loss functions), and post-processing (outcome generation). Fairness in
graph representation learning follows a similar break down: fairness in the initial graph [88],
fairness in the mining (or representation building) algorithm [19, 98, 9, 48], and fairness
in the final representations (or other downstream outcomes) [88]. Lastly, the approaches
used can also be loosely categorized based on their fairness notions: group [38, 19, 49, 9],
individual [48, 98, 88], and counterfactual [107] fairness techniques.

Since the focus of this work is individual fairness, we will now detail some of the most
relevant individual fairness notions for GNNs. In their work, Kang et al. convert the premise
of a Lipshitz condition into the graph domain [88]. They define individual fairness as a trace
maximization problem bounded by a fairness tolerance, δ. They break the task of promoting
individual fairness into three steps offering three different approaches to satisfy the notion
defined above: 1. Pre-processing the input graph 2. In-processing within the model, or 3.
Applying post processing on the generated representations. However, due to its reliance on
the graph laplacian for defining fairness, unlike our selected method, REDRESS [48], the
methodology proposed by Kang et al. does not lend itself well to the recommendation setting
due to the nature of their fairness definition. Furthermore, in their paper, Dong et al. show
that REDRESS outperforms InFoRm in empirical studies [48].

Meanwhile, Lahoti et al. take a different understanding of individual fairness [98]. Their
Pairwise Fair Representation (PFR) model uses a sparse fairness graph with expert de-
fined pairwise similarities to learn fair representations. Similar to the previous method, the
methodology proposed by Lahoti et al does not easily lend itself to the recommendation set-
ting. Unlike REDRESS which is able to perform both link prediction and node classification,
Pairwise Fair Representations (PFR) is an unsupervised learning method which is unable to
perform link prediction.
Sampling Methods in GNNs: Despite the significant advances achieved by the GCN
architectures, there are a few drawbacks to this method. The training regime used by this ar-
chitecture, which performs full-batch training on the entire graph, has two major limitations:
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efficiency and scalability. Holding an entire graph in memory whilst performing complex it-
erative convolutions makes training a GCN on large graphs essentially intractable [105].
As such, a series of modifications have been proposed which enable the use of mini-batch
training while maintaining the expressive properties of a GCN’s convolutional representation
building [71, 170, 80, 34, 182, 36, 173]. The variety of these sampling methods and their
effects on accuracy and performance have been well documented both empirically [105, 157]
and theoretically [40]. As mentioned in our introduction of the REDRESS [48] framework,
and explored with more detail in Section 3.4, the primary drawback of this method is its
reliance on the GCN methodology. By exploring the effects of subsampling with respect to
individual fairness, we differentiate our findings from the various surveys that have assessed
subsampling through the lens of utility performance.

3.3. Graph Neural Networks
In this section, we review several key preliminary topics which are necessary for the

discussion for understanding our discussion of REDRESS in Section 3.4. Advances in the
field of GNNs have come in leaps and bounds within the last decade. Here, we briefly review
the two methods integral to our work: GCN [93] and GraphSAGE [71]. For a detailed
overview of GNN methods, we refer to the survey paper by Wu et al. [167] and a textbook
by Hamilton [70].

Given graph data, a GNN iteratively collects feature information from the neighbors
of a node and integrates this information into the representation of the node. As such, the
basic structure of a GNN can be abstracted into two functions, UPDATE and AGGREGATE.
Here, AGGREGATE refers to the process of gathering the neighborhood nodes and UPDATE
refers to the procedure used to update a node’s embedding with respect to its neighborhood
feature set. Thus, the GNN process of training embeddings, is based on the interactions
between these two processes. At each iteration k of training, the AGGREGATE function
takes the embeddings of u’s neighbors, v ∈ N(u), to generate a message which the UPDATE
function combines with the previous embedding of node u, h(k−1)

u , to generate the updated
embedding h(k)

u . This process can be formalized as follows:

h(k)
u = UPDATE(k−1)

(
h(k−1)

u , AGGREGATE(k−1)
(
{h(k−1)

v , ∀v ∈ N(u)}
))

(3.3.1)

More formally, this can be expressed as:

h(k)
u = σ

(
W

(k)
selfh(k−1)

u + W
(k)
neigh

∑
v∈N(u)

h(k−1)
v + b(k)

)
(3.3.2)
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where W
(k)
self , W

(k)
neigh ∈ Rd(k)×d(k−1) are trainable parameter matrices, b(k) is the bias term, and

σ is a non-linear activation function (in our experimentation we use ReLU [7]).

3.3.0.1. GCN. The GCN method proposed by Kipf and Welling [93] is unique because of
its use of neighborhood normalization. Rather than simply aggregating over all the feature
vectors of the neighborhood nodes, which can lead to instability, the neighboring feature set
is first normalized.

h(k)
u = σ

(
W (k) ∑

{v∈N(u)}
⋃

{u}

hv√
|N(u)||N(v)|

)
(3.3.3)

3.3.0.2. GraphSAGE. GraphSAGE [71] makes two major changes to the methodology
proposed by GCN: neighborhood selection and aggregation. First, unlike GCN which inte-
grates information from the all the neighbors of a node, GraphSAGE randomly samples p
neighbours from the surrounding neighborhood (i.e., Np(u)). Second, unlike GCN, which
normalizes based on the degree of the neighborhood nodes, GraphSAGE averages the em-
beddings of the neighborhood feature set before integrating them with the representation of
the current node. As such, this can be expressed as:

h(k)
u = σ

(
W (k) · MEAN

(
{h(k−1)

u }
⋃

{h(k−1)
v , ∀v ∈ Np(u)}

))
(3.3.4)

where the MEAN aggregator is the elementwise mean over the feature vectors, h(k)
v for all

the neighboring nodes, v ∈ N(u).

3.4. Rank Based Individual Fairness in GNNs
In this section, we review the individual fairness notion called REDRESS which is intro-

duced by Dong et al. [48]. We then show how REDRESS can be implemented within the
end-to-end training paradigm of a GNN.

3.4.1. REDRESS

Our problem definition is couched in the graph setting. We are given a graph, G = (V, E),
with a node set, V , and edge set, E. Our setting also involves a set of node-level features,
X ∈ ℜ|V |×d where d is the dimension of each feature vector. Our current task involves
training a GNN model, M, to perform the task of link prediction. In this setting, Y and
Ŷ represent the ground truth and learned node representations. However, this methodology
can easily be extended to the recommendation setting by treating the nodes v ∈ V as
items and attempting to predict items which are similar to each other, while maintaining
individual fairness among them. By training a model, M on graph, G, we can learn a series
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of representations for each node, or item, Ŷ ∈ ℜ|V |×m where m represents the dimension of
the final hidden layer in model, M.

The fairness notion used in this work is based on the framework proposed by Dong et
al. [48]. This fairness notion, which bases itself on ranking, is extremely well suited to
recommendation tasks due to its innate interlacing with item to item relevance. We begin
by explaining this notion intuitively and follow with a formal definition:

For each node pair u, v in a graph G, we can define their similarity, su,v based on some
similarity metric s(., .) in which we input their initial feature vector, X[v] ∈ ℜd or learned
embedding, Ŷ [v] ∈ ℜm. Applying this procedure in a pairwise fashion, we can derive two
matrices. The first is termed the apriori or oracle similarity, SG, in which similarity is based
on some initial feature based, structural, or expert defined vectors which are independent
of the GNN model, M . The second is termed the learned representation similarity, SŶ , in
which similarity is based on a learned embedding generated by the training process of a
GNN model, M . Using these similarity matrices, we can generate two lists which rank each
node with respect to the others. Individual fairness is upheld in this setting if the respecting
orderings of nodes in each ranked list is consistent. That is, items which were ordered based
on similarity before training, will maintain the same similarity ordering in their embedding
space. Formally, we can express this in the following definition:
Definition 3.4.1. (REDRESS: Individual fairness). Given some similarity metric s(., .), an
apriori pairwise similarity matrix, SG ∈ ℜ|V |×|V |, and a learned pairwise similarity matrix,
SŶ ∈ ℜ|V |×|V |, defined by applying s(.,.) to the learned graph representations, Ŷ , we say the
predictions are individual fair if for each each instance i, the ranked list generated from SŶ

is consistent with the ranked list generated from SG.

3.4.2. REDRESS Fairness Construction

Minimizing the differences between the two ranked lists can be seen as a form of ranking
optimization. In order to formulate this task as a differentiable operation, we can draw on the
work in the field of learning to rank [21] to formulate loss based on a probabilistic approach.
Using these matrices, SG and SŶ , we define two probability matrices, P ∈ ℜ|V |×|V |×|V |

and P̂ ∈ ℜ|V |×|V |×|V |. In essence, for every node ui, we can define its similarity with two
neighboring nodes uj, um as si,j and si,m in the case of SG or ŝi,j and ŝi,m in the case of SŶ .
Using these values, the matrices P and P̂ codify the probability Pj,m(si,j, si,m) that node ui

is more similar to node uj than um.
Thus, for each individual node, ui and two other nodes selected from the remaining graph,

uj, um, the embedding based matrix, P̂ is defined as:
P̂j,m(ŝi,j, ŝi,m) = 1

1+exp

(
−α(ŝi,j−ŝi,m)

)
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where α is a scalar which can be treated as a hyperparameter. Similarly, the feature based
matrix, P can be defined as:

Pj,m(si,j,si,m) =


1 si,j > si,m

0.5 si,j = si,m

0 si,j < si,m

3.4.3. Training Individually Fair Embeddings

In defining these matrices, we can now train for fairness by using standard cross entropy
loss. For a node i, we define:

Lj,m(i) = −Pj,m log ˆPj,m − (1 − Pj,m) log(1 − ˆPj,m) (3.4.1)

And over all the nodes i ∈ V :

Lfairness =
∑

i

∑
j,m

Lj,m(i) (3.4.2)

Finally, in order to ease the computational complexity, we can add a weighing factor based
on the changes in NDCG to restrict our modifications to changes in the top k values of each
ranked list. Once we define z@k(., .) as NDCG@k, we can express the fairness loss as:

Lfairness =
∑

i

∑
j,m

Lj,m(i)|△z@k|j,m (3.4.3)

where △ represents the change in NDCG between the two lists.
The broad process of training occurs using two stages: utility based loss and utility +

fairness based loss. The utility loss, Lutility, is the classic cross entropy loss:

Lutility = −
∑

u,v∈G

YuvlnŶuv (3.4.4)

and the joint utility + fairness loss can be defined as:

Ltotal = Lutility + γLfairness (3.4.5)

where γ is a scalable hyperparameter which controls the focus given to fairness. By using
the NDCG metric, commonly used in ranking and recommendation tasks, REDRESS for-
mulates a fairness loss that is, intrinsically, performing the relevance/fairness balance that
is so important to developing novel bias mitigation techniques in recommendation settings.
Furthermore, by creating a loss which can easily interpolate between utility, or relevance,
and fairness, REDRESS follows methodology very similar to a large body of work in recom-
mendation fairness [161, 109]. .
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3.5. Experiments
In this section, we evaluate two implementations of REDRESS, comparing the results

between GCN and GraphSAGE as the backbone model, M. This section shows the ef-
fectiveness of sub-sampling on utility and fairness through empirical evaluations on two
widely known real world benchmark datasets: BlogCatalog [146] and Flickr [147]. Table 3.1
presents the statistics of these two datasets.
The code and data used to obtain these results can be found at FacctRec2022 Github Repos-
itory.

Dataset # Nodes # Edges # Features
BlogCatalog [146] 5,196 171,743 8,189

Flickr [147] 7,575 239,738 1,406

Table 3.1 – Dataset Statistics

Experiments are implemented in Python using the Pytorch compatible version of DGL
[153]. In order to remain faithful to the validation splits used in the REDRESS experiments,
we split the dataset using 40% of the edges for train, 40% for validation, and 20% for test.
For the GCN implementation, we used the hyperparameter settings which had been fine-
tuned by Dong et al. During hyperparameter tuning for GraphSAGE, we used grid search
to explore learning rates ∼ (0.0001, 0.001, and 0.1), negative sampling of (1, 3 and 5) edges
per positive edge, dropout of ∼ (0.0, 0.01, 0.03), weight decay of either (0.0, 0.001, or 0.003),
warmup epochs of (30, 60, 100, 120) and fairness epochs of (30, 60, 100). Finally, to enable
valid comparison with the results attained in REDRESS [48], we performed PCA with 200
components to lower the dimensionality of the feature sets before assigning them to each
node.

The best GraphSAGE results for both BlogCatalog and Flickr are achieved using 2 layers
of convolutions, a hidden size of 256, a learning rate of 0.001, no dropout, 30 epochs of "warm
up" (utility only) training followed by 60 epochs of utility + fairness training, and a batch
size of 32. In both cases, the best neighborhood size performance was achieved using the
smallest neighborhood tests. In the case of BlogCatalog, this was a neighborhood of size 5
(per layer) and in the case of Flickr, this was a neighborhood of size 10 (per layer).
Similarity Notions: We use the cosine similarity metric [91] to define both the apriori
and prediction matrices SG and SŶ , respectively. The purpose of selecting this method is to
combine the idea of individual characteristics native to individual fairness with a commonly
used similarity measure within the recommendation domain. More specifically, cosine simi-
larity is a feature based metric which measures the distance between items in their feature
or embedding space. Note that, although this method is flexible to selecting only portions
of the feature set to define similarity, in our experiments we use the entire feature set when
defining cosine similarity between node pairs.
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Please note that in order to allow for valid comparison between the results listed in the
REDRESS paper and the results which we have achieved, we re-run their implementation
with a γ = 1 for both architectures. As such, the results we are listing here do not reflect
the results listed in their paper (since they are using γ values which have been fine-tuned to
balance utility and fairness).
Neighborhood Selection: We extensively test various neighborhood sizes of GraphSAGE,
motivating the importance of neighborhood selection on fairness promotion. As shown in
Table 3.4, we compare neighborhood sizes of 35, 30, 25, 10, and 5 for subsampling of a 2-hop
subgraph in GraphSAGE mini-batch training.
Evaluation Metric In order to evaluate the performance of the two models on each dataset,
we use the area under receiver operating curve (AUC) metric. Meanwhile, in order to evaluate
the fairness performance, we calculate the NDCG@10 [85] between the apriori similarities,
SG and learned representation similarities, SŶ averaged over all the nodes.

3.6. Results
We investigate four research questions in our experiments:

RQ1: How does the selection of sub-sampling technique affect fairness promo-
tion? As shown in Table 3.2, we can see that GraphSAGE not only meets, but exceeds the
performance achieved by the GCN method proposed in REDRESS [48] even before the bias
mitigation loop (see Vanilla GraphSAGE vs REDRESS GraphSAGE). For example, when
looking at the experiments run on the Flickr data, the GCN method with REDRESS fairness
promotion is able to achieve a maximum fairness of 20.38 using Cosine similarity but Graph-
SAGE, without mitigation, achieves 30.24. This shows that even the use of sub-sampling is
beneficial for individual fairness. Similarly on the BlogCatalog dataset, the REDRESS GCN
achieves a maximum fairness of 19.64 using Cosine similarity, while Vanilla GraphSAGE
achieves 29.95 and REDRESS GraphSAGE achieves 52.02. Intuitively, we believe that this
finding can be attributed to the size of neighborhood which is being used to define individual
fairness. In training over an entire graph, we are attempting to fix all the discrepancies in the
ranked list between disparate areas of the graph. However, it is possible that the features, or
structural elements, affecting fairness have local variations, which are too granular to notice
when training over the entire graph. By training over a smaller sub-graph, we are able to
use local nuances to fine-tune the embeddings towards individual fairness. See RQ4 for more
detailed experiments and explanations.
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Cosine

Data Model AUC Fairness
BlogCatalog Vanilla GCN 86.75 (-) 16.60 (-)

REDRESS GCN 64.15 (-26%) 19.64 (+18%)
Vanilla GraphSAGE 90.86 (-) 29.95 (-)
REDRESS GraphSAGE 71.27 (-21%) 52.02 (+73%)

Flickr Vanilla GCN 86.16 (-) 16.72 (-)
REDRESS GCN 63.31 (-26%) 20.38 (+21%)
Vanilla GraphSAGE 85.80 (-) 30.24 (-)
REDRESS GraphSAGE 64.09 (-25%) 41.51 (+37%)

Table 3.2 – Results for both BlogCatalog and Flickr. Note: the small values in parenthesis
indicating a (+/− %) are meant to indicate the change between a utility based model (such
as Vanilla GCN) and a fairness promoting model (such as REDRESS GCN)

RQ2: How does the selection of model affect the training time? As shown in Table
3.2, GraphSAGE is able to achieve improved performance on both utility and fairness metrics.
In addition, as shown in Table 3.3, the mini-batch training protocol of GraphSAGE enables
it to train for significantly less epochs than GCN. For example, on Flickr, GCN required 200
epochs of pre-training (utility based) and 100 epochs of integrated fairness training to achieve
it maximal results. Meanwhile, on the same dataset, GraphSAGE required only 30 epochs of
pre-training and 60 epochs of fairness training. Similarly for BlogCatalog, GCN required 200
epochs of pretraining and 60 epochs of fairness training, while GraphSAGE required only 30
pretraining epochs and 60 fairness training epochs. For the sake of comparison, we selected
minimally sized graphs (less then 100K nodes) to allow for a valid comparison between GCN
and GraphSAGE. The intractability of training a GCN on a larger graph has been heavily
documented among the graph community [105, 40].

Cosine

Data Model Pre-training epochs Fairness training epochs
BlogCatalog GCN 200 60

GraphSAGE 30 60
Flickr GCN 200 100

GraphSAGE 30 60

Table 3.3 – Number of Epochs to Achieve Maximal Fairness Performance

RQ3: How does the fairness promotion affect the utility performance of Graph-
SAGE? As shown in Table 3.2, we can see that with both GCN and GraphSAGE, the
promotion of individual fairness leads to a drop in utility performance. For example, in
BlogCatalog, the rounds of cosine similarity based fairness training caused the GCN model’s
performance to drop by 26% while GraphSAGE dropped by 21%. Given the formulation of
the fairness and utility losses, this balance, between utility and fairness, can be managed by
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tuning the hyperparameter for γ in the loss function (see 3.4.3 for more details). We leave
the experimentation of hyperparameter tuning for future work.
RQ4: How does the neighborhood selection affect the ability of GraphSAGE
to promote individual fairness? As shown in the discussion of the previous research
questions, there is a noticeable improvement in GraphSAGE over GCN for the promotion of
individual fairness. We hypothesize that this differences is rooted in the mini-batch train-
ing. GraphSAGE’s mini-batch training, uses a sampled sub-graph, while GCN uses the
entire graph. We believe that the noticeably smaller neighborhood size used in GraphSAGE
updates can allow for better fine-tuning of fairness in the representation learning. This is
because the features which affect fairness can potentially differ between disparate areas of
the graph. In order to test this hypothesis, we perform experiments with 5 neighborhood
allocations. As mentioned in 3.3.0.2, GraphSAGE selects a neighborhood by randomly sam-
pling p neighbors from its surrounding neighborhood. As shown in Table 3.4, we can see
that as the neighborhood size grows, the fairness performance drops. Thus, showing a clear
connection between neighborhood size and fairness promotion.

Cosine

REDRESS GraphSAGE Nodes in layer 1 Nodes in layer 2 AUC Fairness
5 5 65.86 58.04
10 10 46.24 56.95
25 15 71.27 52.02
30 30 69.32 48.71
35 35 67.17 46.29

Table 3.4 – Neighborhood Comparison

3.7. Conclusion
The advances in the field of GNNs have prompted this architecture to become widely

adopted into many graph-structured tasks. In tandem with the proliferation of these mod-
els, specifically in the space of recommender systems, has come a growing concern of the
exponentiation of biases embedded in their outcomes. Although a growing body of recent
work has aimed to implement various notions of fairness within the graph space, the area
of individual fairness, has not yet been fully explored. Furthermore, many of the methods
proposed in this sub-field remain intractable to the large, real world datasets used in rec-
ommender settings. Our work sets out to fill in this gap, by implementing REDRESS, an
existing framework for individual fairness, and extending it to GraphSAGE, a scalable GNN
architecture. In doing so, we show that the addition of mini-batch training via sub-sampling
can significantly improve the promotion of individual fairness. Our findings indicate that
this improvement is rooted in the neighborhood selection method, which defines the gran-
ularity of local fairness patterns. Due to the prevalence of GNNs in recommender systems,
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these findings also have ripple effects into the domain of recommendations. Given the shown
scalability of this individual fairness notion and the significant ties between GraphSAGE
and, its down stream recommmender model, PinSage, we lay the foundation for this indi-
vidual fairness method to be applied to recommendations. By imposing the need for items
which are similar in their initial feature space to remain bounded by this similarity in their
embedding space, we believe we can mitigate harmful biases prevalent among recommender
systems, such as popularity bias. Our findings show the important connection between in-
dividual fairness and neighborhood selection. As such, we believe that this work shows the
potential for future implications in field of both GNNs and recommender systems.
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Résumé. À mesure que les plateformes de musique en ligne se développent, les systèmes
de recommandation musicale jouent un rôle essentiel en aidant les utilisateurs à naviguer
et à découvrir le contenu de leurs vastes bases de données musicales. En contradiction avec
cet objectif plus large, il y a la présence d’un biais de popularité, qui amène les systèmes
algorithmiques à privilégier le contenu grand public au détriment d’éléments potentiellement
plus pertinents, mais de niche. Dans ce travail, nous explorons la relation intrinsèque entre la
découverte musicale et les biais de popularité. Pour atténuer ce problème, nous proposons
une approche basée sur l’équité individuelle, sensible au domaine, qui corrige le biais de
popularité dans les systèmes de recommandation basés sur les réseaux neuronaux graphiques
(GNN). Notre approche utilise l’équité individuelle pour refléter une expérience d’écoute de
vérité terrain, c’est-à-dire que si deux chansons se ressemblent, cette similitude devrait
se refléter dans leurs représentations. Ce faisant, nous facilitons une découverte musicale
significative, résistante aux préjugés de popularité et ancrée dans le domaine musical. Nous
appliquons notre méthodologie BOOST à deux tâches basées sur la découverte, en effectuant
des recommandations à la fois au niveau de la playlist et au niveau de l’utilisateur. Ensuite,
nous avons fondé notre évaluation sur le paramètre de démarrage à froid, montrant que
notre approche surpasse les références d’équité existantes en termes de performances et
de recommandation de contenu moins connu. Enfin, notre analyse explique pourquoi la
méthodologie proposée constitue une approche nouvelle et prometteuse pour atténuer les
biais de popularité et améliorer la découverte de contenus nouveaux et de niche dans les
systèmes de recommandation musicale.
Mots clés : Réseaux de neurones graphiques, équité algorithmique, équité individuelle
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Abstract.
As online music platforms grow, music recommender systems play a vital role in helping

users navigate and discover content within their vast musical databases. At odds with
this larger goal, is the presence of popularity bias, which causes algorithmic systems to
favor mainstream content over, potentially more relevant, but niche items. In this work we
explore the intrinsic relationship between music discovery and popularity bias. To mitigate
this issue we propose a domain-aware, individual fairness-based approach which addresses
popularity bias in graph neural network (GNNs) based recommender systems. Our approach
uses individual fairness to reflect a ground truth listening experience, i.e., if two songs sound
similar, this similarity should be reflected in their representations. In doing so, we facilitate
meaningful music discovery that is robust to popularity bias and grounded in the music
domain. We apply our BOOST methodology to two discovery based tasks, performing
recommendations at both the playlist level and user level. Then, we ground our evaluation in
the cold start setting, showing that our approach outperforms existing fairness benchmarks
in both performance and recommendation of lesser-known content. Finally, our analysis
explains why our proposed methodology is a novel and promising approach to mitigating
popularity bias and improving the discovery of new and niche content in music recommender
systems.
Keywords: Graph Neural Networks, Algorithmic Fairness, Individual Fairness

4.1. Introduction
The proliferation of market activity on digital platforms has acted as a catalyst for

research in recommendation, search, and information retrieval [78]. At its core, the goal
of this research is to design systems which can facilitate users’ exploration of an extensive
item catalogue: be it in the domain of journalism [160], films [72], fashion [47], music
[135, 95, 136], or otherwise. Within this larger goal of recommendation, each domain comes
with its own specifics that differentiate it from other settings [116, 53, 22]. Particular to
the music streaming domain, an extensive body of work has explored the importance of
discovery, exploration, and novelty in the larger goal of performing music recommendation
[51, 99, 42, 128, 114, 59]. Broadly, discovery can be considered the ability of a curatorial
system to expose users to relevant content that they would not have manually discovered
themselves [128, 76, 59]. And, most significantly, a collection of works have shown that
music discovery to be the second most important factor for customer loyalty respective to
a particular streaming platform due to the gratifying nature of constructing playlists and
interacting with an algorithmic curatorial system [114, 99, 128].

Crucially, recent work in this domain has begun to uncover an inverse relationship be-
tween novelty, one of the keys to discovery, and the notion of popularity bias [160, 87].
Within the broader recommendation community, popularity bias has long been an important
topic of research. This phenomenon manifest itself when algorithmic reliance on pre-existing
data causes new, or less well known items, to be disregarded in favor of previously popular
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items [84, 122, 144, 32, 5, 27]. And, particularly in the context of discovery, where pur-
pose of a user’s engagement with algorithmic curation hinges on exposure to musical items
which they would not have already been familiar with, the presence of popularity bias can
clearly hinder a system’s ability to serve this need. In this work, we explore the intrinsic
interplay between discovery and popularity bias through the lens of graph neural
network (GNN) based recommender systems [165, 58]. In the graph space, popularity of
individual items is deeply interlaced with the degree centrality of a node, or the number of
outgoing edges that leave this node and connect it to others in the graph. This is because
the innate process of representation learning is affected by the number of neighbors a node
has [89]. And, thus, a node’s centrality can dictate the quality of its learned representation.
This suggests that duplicating the feature information of an extremely popular song, creat-
ing a new song using these duplicate features, and randomly placing it once at the edge of a
graph, will significantly impact its learned representation, even if everything about the song
remains exactly the same. As we show in our experimentation, one solution to this disparity
lies in a debiasing method that is aware of similarities between musical items and is, thus,
grounded in the musical domain.

However, current approaches for mitigating popularity bias in recommender systems ap-
proach this task in a domain agnostic approach [132, 3, 108, 174, 159]. Such abstraction
can be extremely relevant to domains in which item and user level features are scarce, sparse,
or non existent. However, in an environment like music streaming where there is a plethora
of valuable feature information, we believe that grounding fairness notions in domain spe-
cific attributes can prove incredibly valuable. In addition, a majority of these methods focus
on using either group [132, 174] or counterfactual fairness [178, 180], often relying on a
binary sensitive attribute to encode popularity. This can cause intrinsic limitations because
popularity between items is not necessarily a binary state and such attributes may not be
readily available.

In this work, we propose a domain aware, individual fairness based approach for facilitat-
ing engaging music discovery. In order to facilitate the domain awareness of our approach we
generate nuanced multi-modal track features, extensively augmenting two publicly available
datasets. Using these novel feature sets, we show the importance of integrating musical sim-
ilarity into a debiasing technique and show the effects of our method at learning expressive
representations of items that are robust to the effects of popularity bias in the graph setting.
Grounding our approach in the musical domain empowers us to leverage a ranking-based
individual fairness definition and extend it to the bipartite graph setting. In doing so, we
design a method that uses music features to fine-tune item representations such that they are
reflective of information that is, in essence, a ground truth to the listening experience: two
songs that sound similar should, at least somewhat, reflect this similarity in their learned
representations. Finally, we compare our individual fairness-based method with three other
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methods which are grounded in other canonical fairness notions and are not domain-aware.
Through a series of empirical results, we show that our fairness framework enables us to out-
perform a series of accepted fairness benchmarks in both performance and recommendation
of lesser known content on two important music recommendation tasks. In summary, the
contributions of this paper are the following:

(1) Problem Setting: we define the task of music discovery through the lens of domain-
aware individual fairness, showing the intrinsic connections between individual fair-
ness, musical similarity, popularity bias, and music discovery.

(2) Dataset Design: we extensively augment two classic music recommendation
datasets to generate a set of nuanced multi-modal track features, laying the
foundation for future domain-aware mitigation techniques.

(3) Method: (1) we provide a novel technical formulation of popularity bias (2) design
a domain-aware ranking based individual fairness approach to mitigating popularity
bias in graph-based recommendation.

(4) Experiments: we show that our method outperforms three state of the art fairness
benchmarks in the cold start setting.

4.2. Related Work
In this section we contextualize our work by presenting relevant literature on the subjects

of (1) popularity bias and (2) graph neural network (GNN) based recommender systems.

4.2.1. Popularity Bias in Recommendation

Most broadly, popularity bias refers to a disparity between the treatment of popular and
unpopular items at the hands of a recommender system. As such, this term is loosely tied
to a collection of complementary terms including exposure bias [46], superstar economics
[12], long tail recommendation [108], the Matthew effect [112], and aggregate diversity
[6, 28]. There have been several different approaches to formulating popularity through
some quantitative definition. One body of work defines popularity with respect to individual
items’ visibility [176, 46, 108]. Another group of approaches attempts to simplify this
process by applying some form of binning to the raw appearance values. Most notably, the
long tail model [27, 65, 50, 168, 122] has risen to prominence as a popularity definition.
As shown in Figure 4.1, we can see that the first 20% of items, called short head, take up
a vast majority of the user interactions and the remaining 80%, or long tail and distant
tail, have, even in aggregate, significantly fewer interactions. Often, splitting items into the
short head and long tail (either including or removing distant tail) to define disparity in
popularity can overcome the issues of range while still representing concrete disparities in
item level visibility.
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Figure 4.1 – Classic definition of Long Tail popularity settings [2]

There has been a lot of work done analyzing and codifying the nature of popularity
bias in recommender systems [23, 83, 84, 32]. Approaches to mitigating popularity bias
are often grounded in one of three methods: pre-processing [17], in-processing [132,
159, 179], or post-processing, [3, 108]. These mitigation strategies are often based on
the instrumentation of various canonical fairness notions such as group fairness [17, 138,
132, 174, 3], counterfactual fairness [159, 179, 176], or individual fairness [30, 156].

We contrast our work with previous individual fairness approaches in our use of the
music feature space as a form of domain expertise in definition of item-item similarity. We
argue that without this “anchoring” an individual fairness method that uses the output of a
recommender model, whether it be in learned representation [156] or the relevance score [30],
is already influenced by an item’s popularity. Finally, in addition to the classical formulation
of popularity bias, a group of works have explored the connection between popularity bias
and novelty [106, 178, 180] where various metrics are designed to evaluate the novelty
of a recommended list. We see our work as complimentary to the exploration in this area
however, we differentiate our problem formulation because while novelty is an important
aspect of discovery, without domain awareness novelty alone does not account for musical
similarity - a critical aspect of the discovery setting.

4.2.2. GNNs in Recommendation

In recent years various graph neural network (GNN) architectures have been proposed
for the recommendation domain [163]. For brevity, we will focus only on the two methods
that are used as the backbone recommenders to the fairness mitigation techniques discussed
later in this paper, however we refer to the following surveys [165, 58] for recent innovations
in this domain.

In particular, PinSage [170] is an industry solution to graph-based recommendation.
Unlike many competing methods, which train on the entire neighborhood set of a node,
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PinSage trains on a randomly sampled subset of the graph. In order to construct neighbor-
hoods, PinSage uses k random walks to select the top m most relevant neighbors to use as
the neighbor set. However, it is important to note that PinSage learns representations of
items but not users. Meanwhile, LightGCN [75], is a method that learns both user and item
embeddings simultaneously. Since its proposal in 2020, it is still considered state of the art.

4.3. Methodology
In this section we detail the dataset augmentation procedure and architecture of our

domain-aware, individually fair music recommendation system. First, we introduce our
datasets in Section 4.3.1. Then, following the problem setting in Section 4.3.2, we reformulate
popularity bias in Section 4.3.3 and introduce our domain-aware, individually fair music
recommender system in Section 4.3.4.

4.3.1. Dataset Augmentation Procedure

One of the limitations with working on music recommendation is the scarcity of up-
to-date, publicly available feature-based datasets. This is because the datasets which are
available are often purely interaction-based, meaning that they lack the necessary track-level
features to implement domain-aware fairness measures. Thus, one of the preliminary steps
of our work was the extensive augmentation of two publicly available datasets: LastFM
[110] and the Million Playlist Dataset [31]. The augmentation and release of these two
complementary datasets is an important contribution because it paves the way for further
work in domain-aware music recommendation and alleviates the reproducibility issues often
posed by the use of music datasets. Although we are limited by the number of publicly
available music datasets which are compatible with our feature augmentation procedure, we
believe that in selecting these two datasets, we highlight the benefits of our methodology on
a broad range of settings related to music recommendation. First, these datasets encompass
two important levels of recommendation: playlist (MPD) and user (LFM) based. Second,
they showcase two different methods of user feedback data: implicit and explicit. MPD
consists of user generated playlists meaning that its interactions consist of songs which are
explicitly pronounced as relevant due to the explicit nature of a user selecting the song
for their playlist. Meanwhile, LFM contains user/song interactions that are gathered by
aggregating all the songs that a user clicked on (even if they did not necessarily finish or
enjoy the content). Thus, these implicit interactions have no guarantee of relevance, making
the dataset more prone to noise. And, particularly in the cold start setup (see Section
4.4.1), this can significantly increase the difficulty of making predictions because implicit
interactions are less indicative of a user’s latent taste and less homogeneous in nature than
that of a unified playlist.
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We augment both of our datasets to include a rich set of features scraped from Spotify
API [1]. To achieve this, we draw on a large body of work from the music information
retrieval community (MIR) [57, 62]. We will publicly release the constructed datasets, the
construction code, along with the code for using various feature sets, in our repository upon
the publication of this paper. The details of the augmented features are as follows.

(1) Sonic features. Spotify has a series of 9 proprietary features which are used to
define the audio elements associated with a track. They are danceability, energy,
loudness, speechiness, acousticness, instrumentalness, liveness, valence, and tempo.
Each of these features is a continuous scalar value. In order to normalize the scales,
we apply 10 leveled binning to the values.

(2) Genre features. We identify the primary artist associated with each collect all
the genre tags associated with them. For the emebddings, we select the top 20 and
convert them to a one-hot encoding.

(3) Track Name features. For each song in the dataset, we extract the song title
and pass it through a pre-trained language transformer model, BERT [44], into an
embedding of dimension 512.

(4) Image features. For each song in the dataset we extract the associated album
artwork. We pass this image through a pre-trained convolutional neural network,
ResNet50 [74], to generate an embedding of dimension 1024.

4.3.2. Problem Setting

The task of performing recommendation can be seen as link prediction an undirected
bipartite graph. We denote such undirected bipartite graph as G = (V, E). The note set
V = T ∪P consists of a set containing song (or track) nodes, T , and playlist (or user) nodes,
P (or U). The edge set E are defined between a playlist pk (or user uk) and a song ti if ti is
contained in pk (or listened to by uk). Following this setting, our goal (link prediction) is to
predict whether any two song nodes ti, tj ∈ T share a common parent playlist p.

4.3.3. Reformulating Popularity Bias

4.3.3.1. Defining Popularity. As mentioned in Section 4.2.1, there is no true consensus
within the community on how to define popularity. Here, we present a methodology which
we believe allows for both the granularity and expressiveness necessary to highlight differ-
ences among various mitigation methods. Broadly, our method consists of important steps
(1) logarithmic smoothing and (2) binning. In doing so, we combine the best of each method-
ology. Applying a logarithmic transformation to the raw values, solves the scaling issues that
are caused by the extremes of the long-tail distribution. Meanwhile, binning allows us to
provide aggregate statistics that highlight large scale patterns in the recommendations. And,
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Figure 4.2 – Binning procedure for popularity definition. We show the breakdown of the
bin locations for both dataset using our method as compared with the classic long tail model
[108]. We can see that our logarithmic smoothing and increased bin count allow for a more
granular visualization of popularity between various item groups.

while there are many methods which apply binning [132, 3, 46], without the logarithmic
smoothing, due to the nature of our datasets’ distributions the amount of items in the bins
would be unevenly distributed, leaving some bins empty. Finally, we select 10 bins based
on the distribution of the datasets and the formulation of our BOOST methodology (see
Section 4.3.4).

We use the following steps to define our popularity setting. First, we count the number
of times each song track, ti appears within the playlist (or user) training interactions such
that for each ti, ati

= | {pi : ti ∈ pi} |. Then, we apply the base 10 logarithmic smoothing to
these values such that for each ti, popti

= log10 (ati
). Finally, we apply binning onto these

values to split them into 10 groups such that for each ti, pop_bin (ti) ∈ {0, . . . , 9} where bin
9 has a higher popularity value than bin 0. The visualization of this binning procedure and
its comparison with the long tail method can be seen in Figure 4.2. As demonstrated by our
visualizations, transforming the raw values into the logarithmic space shows that the bins
are filled in relatively even intervals, where, as the popularity increases, so does the number
of songs included in a bin.
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We showcase the gains that our method has over the canonical long tail model in Figure
4.2 where we compare the positioning of our binning methodology with the classic long tail
model. Furthermore, as we later show Figures 4.5 and 4.6 our formulation of popularity is
able to elucidate crucial differences among both the datasets and baseline model performances
on these datasets.

4.3.3.2. Popularity Bias and Music Discovery. In addition we formalize the inverse rela-
tionship between music discovery and popularity bias. For each song track, ti ∈ TOG, we
generate a counterfactual example song, t∗

i ∈ TCF , where everything about the features is
exactly the same and the only difference is that ti has a high degree while t∗

i has a degree
of one. We calculate the distance between an original song node, ti and its counterfactual
duplicate, t∗

i . A system with high potential for musical discovery will have a low distance
between the songs, showing a low popularity bias and an understanding of musical similarity.
We will return to this formulation in Section 4.5.1, showing that a node’s placement and
degree in the graph can exacerbate the presence of popularity bias, reflecting itself in the
node’s learned representation.

4.3.4. Mitigating Popularity Bias Through Individual Fairness

Ranking-based individual fairness. REDRESS is an individual fairness framework pro-
posed by [48] for learning fair representations in single node graphs. We extend this frame-
work to the bipartite recommendation setting and integrate it into our popularity bias mit-
igation approach. In the REDRESS setting, individual fairness requires that nodes which
were similar in their initial feature space should remain similar in their learned represen-
tation embeddings [52]. More concretely, for each song node, ti, and node pair tu, tv in a
graph G, similarity is defined on the basis of the cosine similarity metric, s(·, ·), as applied
to either a feature X[v] ∈ ℜd, or learned embedding set, Z[v] ∈ ℜm. Applying this proce-
dure in a pairwise fashion produces two similarity matrices. The first, or apriori similarity,
SG, in which similarity is calculated on input features and the second, or learned similarity,
SZ , in which similarity is calculated between learned embeddings generated by some GNN
model, M . The purpose of REDRESS is to formulate this as a ranking on the basis of
similarity and differentiate on the disparity between differences in rankings of the two rep-
resentational spaces. Thus, drawing on principles from learn to rank [20, 21], each entry in
these similarity matrices is re-cast as the probability that node ti is more similar to node tu

than tv and transformed into an apriori probability tensor, PG ∈ ℜ|T |×|T |×|T |, and a learned
probability tensor, PZ ∈ ℜ|T |×|T |×|T |. Having defined these two probability tensors, for each
individual node the fairness loss, Ltu,tv(ti), can be treated the cross entropy loss applied to
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these probability distributions such that for an individual node, ti:

Ltu,tv(ti) = −PG[u,v,i] log PZ [u,v,i] − (1 − PG[u,v,i]) log(1 − PZ [u,v,i]) (4.3.1)

and aggregated over all nodes ti ∈ V as:

Lfairness =
|T |∑
i

|T |∑
u

|T |∑
v

Ltu,tv(ti) (4.3.2)

Individually fair music discovery. The original formulation of individual fairness requires
some form of domain expertise [52] to determine how (dis-)similar two items are. For
the music discovery domain, we use music features (see Section 4.3.1 for exact details) as
the basis for calculating cosine similarity. Thus, our apriori similarity, SG, is defined as
the cosine similarity between the musical features, X[v] ∈ ℜ|T |×9, associated with song
nodes. Meanwhile, our learned similarity contains the song-level embeddings, SZ ∈ ℜ|T |×m,
learned by PinSage. In this way, REDRESS acts as a regularizer that ensures that rank-
based similarity between songs is preserved between the input and embedding space. Thus,
our similarity notion is domain-aware and grounded in the essence of musical experiences:
acoustics.

To learn the embedding of songs, we follow the learning paradigm of PinSage [170]
and make a few deviations. Unlike [170], we use uniform random sampling to avoid the
computational burden of calculating negative samples on our large graph and compensate
for the potential loss of information by using focal loss [104], rather than the margin loss,
to train the network. It is important to note that since the potential benefits or drawbacks
of PinSage as a general recommender system are out of the scope of this paper, we do not
focus on the performance gains that such a change might provide and leave the addition of
various negative sampling techniques to future work.
Bringing popularity into individual fairness. The REDRESS framework does not ex-
plicitly encode any attributes of popularity in its training regimen. Thus increased visibility
given of niche items comes only from innate similarities in the musical features, not explicit
promotion of niche content. To extend this technique for explicitly counteracting popular-
ity bias, we define the BOOST technique which is used to further increase the penalty on
misrepresentation of items that come from diverse popularity categories. As mentioned in
Section 4.3.3, we define 10 popularity bins by applying a logarithmic transformation and
binning the degrees of a node i (i.e., degi) such that pop_bin(i) = bin (log10 (degi)). This
popularity bin can then be integrated with the REDRESS calculations. More formally, given
the learned representation matrix, SZ ∈ ℜ|T |×|T |, we define another matrix B in which

Bij = |pop_bin(i) − pop_bin(j)| (4.3.3)
Then, in the BOOST loss formulation, in place of SZ we use S ′

Z = SZ + B.
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Objective function. The representation learning objective used during training is:

Ltotal = Lutility + γLfairness (4.3.4)
where γ is a scalable hyperparameter which controls the focus given to fairness and can be
used to select a balance between utility (Lutility) and fairness (Lfairness) during the second
training phase. For Lutility, we apply the aforementioned focal loss [104]. And Lfairness is
Equation 4.3.2 defined above.
Generating recommendations. Crucially, the PinSage architecture is only designed to
learn embeddings for songs, not for playlists (or users). Thus we design our own procedure
for generating playlist (or user) embeddings using the learned song embeddings. For each
playlist (or user) node, pi, we have a set of songs, T (pi) = {ti ∈ T, epi,ti

∈ E}, which are
contained in a playlist. For a test playlist, pt, we split the associated track set into two
groups:

T (tp) = {ti : ti ∈ ui} = tpeek ∪ tholdout

such that tpeek is a set of k songs that are used to generate the playlist representation and
tholdout are masked for evaluation. Thus, in order to generate a playlist (or user) embedding
we define:

zpt = MEAN({ztj
: tj ∈ tpeek})

where the zk ∈ ℜ1×d are the learned representations of dimension d. Having learned these
playlist representations, we apply cosine similarity between an individual playlist, zpt , and the
set of songs in the database, ZT = {ztj

: tj ∈ T}, selecting the top-k items by their score. We
leave further experimentation on designing user-based embeddings via the PinSage paradigm
for future work.

4.4. Experimental Settings
In this section we introduce the experimental settings, defining the recommendation sce-

nario (Section 4.4.1), datasets (Section 4.4.2), evaluation metrics (Section 4.4.3), baselines
(Section 4.4.4) , and reproducibility settings (Section 4.4.5) encompassed in our experimen-
tation.

4.4.1. Recommendation Scenario

As user consumption habits have shifted away from albums and towards playlists, stream-
ing companies have invested significant energy into the task of Automatic Playlist Continu-
ation and Weekly Discovery [137, 143]. In the first task, Automatic Playlist Continuation
requires the recommender system to perform next k recommendation on a user generated
playlist. Meanwhile, in Weekly Discovery, rather than augmenting a specific playlist, an
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Table 4.1 – Dataset statistics

Dataset Recommendation Setting Feedback Type #Users/Playlists #Songs #Artists
MPD Automatic Playlist Continuation Explicit 11,100 183,408 37,509
LFM Weekly Discovery Implicit 10,267 890,568 100,638

algorithm is tasked with the creation of a new playlist based on a user’s aggregated listen-
ing habits. Given our similar treatment of the playlists and users in this recommendation
setting, we will use them interchangeably in our formal definition of the task.
Definition 4.4.1. Automatic Playlist Continuation/Weekly Discovery: Given a set of users
U , or playlists, P = Ptrain ∪ Pvalid ∪ Ptest, and a set of songs (or tracks) T , our goal is to
generate a set of k recommendations, R(Ptest).

Following the paradigm of the cold start setting [137], we extract train/validation/testing
splits on the playlist level by randomly sampling without replacement such that each split
trains on a distinct subset of the playlist pool. In this way, we simulate the real world
situation in which new users are joining the platform and require relevant, unbiased recom-
mendations without providing a large body of their previous interaction data. It is exactly
at this junction, before a user’s musical preference solidifies, that the need to mitigate pop-
ularity bias is most acute because once a majoritarian pattern has been installed in a user’s
embedding, it will continue to influence all further music discovery.

4.4.2. Datasets

As introduced in Section 4.3.1, we extensively augment two publicly available datasets,
LastFM (LFM) [110] and the Million Playlist Dataset (MPD) [31], with rich multi-modal
track-level feature sets. Table 4.1 presents the graph statistics of both datasets.

4.4.3. Evaluation Metrics

In addition to canonical utility metrics, we design a series of metrics to analyze the
effectiveness of our debiasing methods from both a musical and fairness perspective (see
Table 4.2 for the details of the formulations).

4.4.3.1. Music Performance Metrics. The purpose of these metrics is to broaden the scope
of evaluation to include hidden positive hits. We use Artist Recall to evaluate a system’s
ability to identify correct artists in a recommendation pool, an auxiliary task in music rec-
ommendation [95]. In addition, we design Sound Homogeneity to capture the musical cohe-
siveness of the recommended songs in a playlist [16].

4.4.3.2. Fairness Metrics. To assess the debiasing techniques used to promote of long tail
songs we draw on a series of metrics which have been previously used to evaluate the fairness
performance of a model [3, 123, 27]. Percentage metrics capture the ratio of niche to popular
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Table 4.2 – Music and fairness performance metrics. We define a ground truth set, G,
and a recommended set, R, we define the set of unique artists in a playlist as A(.) and the
d-dimensional musical feature matrix associated with the tracks of a playlist as F (.) ∈ ℜ|.|×d.

Metric Category Formulation

Artist Recall@100 Music 1
|Ptest|

∑
p∈Ptest

1
|A(Gp)| |A(Gp) ∩ A(Rp)|

Sound Homogeneity@100 Music 1
|Ptest|

∑
p∈Ptest

cos(F (ti), F (ti)) ∀(ti, tj) ∈ Rp

Artist Diversity (per playlist) Fairness 1
|Ptest|

∑
p∈Ptest

1
|A(P )| |{A(Rp)}|

Percentage of Long Tail Items Fairness 1
|Ptest|

∑
p∈Ptest

1
|p| |{ti : ti ∈ Rp ∩ ti ∈ LT}|

Coverage over Long Tail Items Fairness 1
|LT | |{ti : ti ∈ R

⋂
ti ∈ |LT |}

Coverage over Artists Fairness 1
|A| |{arid(ti) : ti ∈ R|}

content that is being recommended on a playlist (or user) level. Meanwhile, coverage looks
at the aggregate sets of niche songs and artists over all recommendations. If a recommender
has a high percentage but low coverage, the same niche items are being selected many times.
Meanwhile, if an item has high coverage but a low percentage, the algorithm is selecting a
diverse set of niche content but recommending it very rarely. The gold standard is a high
value on both metrics.

4.4.4. Baselines

First, we use two naive baselines: (1) Features: Instead of the learned representations,
we use the raw feature vectors and (2) MostPop: we calculate most popular tracks in
each dataset and recommend them each time. Then, we select three state of the art fairness
mitigation techniques: (1) ZeroSum[132]: an in-processing group fairness that defines a
regularization term which forces scores within negative and positive item groups to remain
close. Following their original implementation, we select LGCN [75] as the backbone recom-
mender. (2) MACR[159]: an inprocessing method which uses counterfactual estimation
to denoise for the effects of popularity bias in user and item embeddings. Here too, Following
their original implementation, we select LGCN [75] as the backbone recommender, and (3)
Smooth xQuAD[3]: a post-processing method that reranks recommendations to improved
diversity.

78



4.4.5. Parameter Settings & Reproducibility

Each of the baseline methods was tested with learning rates ∼ (0.01, 0.0001), embedding
sizes of [10, 24, 64, 128] and batch sizes of [256, 512, 1024]. For the values in the tables below,
each stochastic method was run 5 times and averaged. All details and further hyperparameter
settings can be found on our GitHub repository 1.

4.5. Results
In this section we present the results of our experimentation. First, we show the connec-

tions between individual fairness, popularity bias, and music discovery in the graph domain.
Then, we evaluate our method, comparing with a series of the debiasing benchmarks.

4.5.1. RQ1: How does incorporating individual fairness improve
the mitigation of popularity bias and facilitate music discov-
ery?

To showcase the performance of our algorithm in the discovery setting and motivate the
need for individual fairness in the mitigation of popularity bias, we draw on the definition of
music discovery presented in Section 4.3.3.2 by evaluating the effects of popularity bias on
learned representations of popular and unpopular songs.

To simulate a situation of maximal popularity bias, we consider the hypothetical example
in which extremely popular songs are reversed to become unpopular and measure the effects
of degree on their learned representations. From a discovery perspective, the purpose of this
simulation is to imagine the most popular song by a listener’s favorite artist before it became
popular. Our simulation aims to approximate how likely it is that they have discovered
the song in relation to its musical attributes, with and without debiasing for the effects
of popularity. More formally, for each song track, ti ∈ TOG, we generate a counterfactual
example song, t∗

i ∈ TCF , where everything about the features is exactly the same and the
only difference is that ti appears in many playlists while t∗

i appears only once. We augment
the original dataset to include these counterfactual songs, T = TOG

⋃
TCF . Then, we use five

methods to learn the item level representations: one baseline recommender, PinSage, and
four bias mitigation methods, ZeroSum [132], MACR [159], REDRESS, and BOOST. We
apply 2-dimensional PCA to each embedding set and analyze the Euclidean distance between
the centroids of original track embeddings, T̄OG, and counterfactual track embeddings, T̄CF .
Due to the size of our dataset, we run this metric using the 100 most popular tracks in the
MPD dataset and leave further exploration of this phenomenon for future work.

1. preliminary version: https://anonymous.4open.science/r/RecSys23-9B7F/README.md
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Figure 4.3 – Simulating Popularity Bias: We select 100 of the most popular songs in
MPD [137], duplicate their node level features, add them with new song track ids, and
connecting them to one randomly selected playlist. Then, we analyze the distances between
the embedding group centroids. We find that REDRESS and BOOST have the lowest
distance between the original, popular and duplicated, unpopular track groups, showing the
least amount of popularity bias.

As shown in Figure 4.3, we find that all fairness interventions decrease the distance
between the two centroids. Furthermore, as the granularity of fairness increases, the distance
between the centroids of learned representations decreases. For example, PinSage, which
has no mitigation of popularity bias, has the largest distance of 0.172. ZeroSum [132],
which considers group fairness, decreases the distance to 0.143, MACR [159], which uses
counterfactual estimation, shrinks to 0.055. Finally, our methods, REDRESS and BOOST
are able to achieve both the lowest distance and the correct orientation between the two
embedding spaces.

In these results, we see that the domain-awareness of our methodology, which enables
it to understand musical similarity between items, allows it to be robust to the effects of
popularity bias on a learned song embedding. Thus, in the setting of musical discovery, it is
able to uncover proximity between items which are musically coherent even if they are not
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Table 4.3 – Comparison between all methods.Note: We use bold highlights to represent
the best performance within a column for each of the datasets. The p values of this table
are calculated by applying the Wilcoxon signed-rank test [131] to results between PinSage
and BOOST. As you can see, the BOOST method achieves the best performance along all
Fairness metrics when compared with the other debiasing benchmarks.

Classic Music Fairness
Data Model Recall@100 NDCG@100 Artist Recall@100 Flow Diversity %LT LT Cvg Artist Cvg

MPD

Features 0.041 0.073 0.073 0.900 0.841 0.588 0.022 0.073
MostPop 0.044 0.048 0.141 0.908 0.680 0.0 0.0 0.001
LightGCN 0.106 ± 0.004 0.119 ± 0.004 0.272 ± 0.011 0.905 ± 0.000 0.672 ± 0.025 0.002 ± 0.000 0.000 ± 0.000 0.025 ± 0.001
PinSage 0.068 ± 0.002 0.144 ± 0.003 0.139 ± 0.003 0.931 ± 0.001 0.707 ± 0.003 0.476 ± 0.002 0.032 ± 0.000 0.105 ± 0.000
ZeroSum 0.044 ± 0.002 0.043 ± 0.002 0.220 ± 0.008 0.904 ± 0.001 0.765 ± 0.013 0.000 ± 0.003 0.000 ± 0.000 0.048 ± 0.002
xQuAD 0.064 ± 0.005 0.104 ± 0.006 0.135 ± 0.013 0.927 ± 0.004 0.703 ± 0.059 0.226 ± 0.001 0.017 ± 0.000 0.098 ± 0.004
MACR 0.028 ± 0.014 0.030 ± 0.015 0.149 ± 0.022 0.902 ± 0.002 0.831 ± 0.034 0.019 ± 0.006 0.000 ± 0.001 0.011 ± 0.003
REDRESS 0.045 ± 0.002 0.100 ± 0.003 0.162 ± 0.004 0.969 ± 0.032 0.829 ± 0.001 0.504 ± 0.003 0.036 ± 0.004 0.117 ± 0.000
BOOST 0.020 ± 0.004 0.047 ± 0.003 0.137 ± 0.002 0.979 ± 0.000 0.899 ± 0.002 0.522 ± 0.001 0.037 ±0.003 0.125 ±0.000
p values 4.408083e-16 1.768725e-19 0.727897 3.751961e-61 1.168816e-29 0.000596 - -

LFM

Features 0.033 0.037 0.041 0.996 0.919 0.486 0.005 0.034
MostPop 0.015 0.011 0.046 0.926 0.600 0.000 0.000 0.001
LightGCN 0.026 ± 0.001 0.023 ± 0.001 0.068 ± 0.001 0.998± 0.000 0.505 ± 0.012 0.000 ± 0.000 0.000 ± 0.000 0.003 ± 0.001
PinSage 0.064 ± 0.001 0.095 ± 0.002 0.077 ± 0.002 0.969 ± 0.000 0.775 ± 0.003 0.437 ± 0.001 0.008 ± 0.000 0.053 ± 0.001
ZeroSum 0.001 ± 0.003 0.001 ± 0.001 0.045 ± 0.004 0.996 ± 0.008 0.866 ± 0.000 0.007 ± 0.000 0.000 ± 0.000 0.032 ± 0.001
xQuAD 0.055 ± 0.001 0.064 ± 0.001 0.068 ± 0.002 0.998 ± 0.000 0.801 ± 0.008 0.212 ± 0.000 0.004 ± 0.000 0.053 ± 0.001
MACR 0.014 ± 0.001 0.014 ± 0.001 0.049 ± 0.007 0.996 ± 0.003 0.777 ± 0.050 0.002 ± 0.004 0.000 ± 0.000 0.001 ± 0.000
REDRESS 0.038 ± 0.002 0.053 ± 0.004 0.057 ± 0.001 0.998 ± 0.002 0.862 ± 0.004 0.451 ± 0.000 0.008 ± 0.002 0.056 ± 0.000
BOOST 0.005 ± 0.001 0.007 ± 0.001 0.029 ± 0.002 0.999 ± 0.000 0.941 ± 0.003 0.498 ± 0.006 0.010 ± 0.000 0.068 ± 0.001
p values 5.696989e-08 1.179627e-15 1.914129e-07 0.001408 1.112495e-34 2.477700e-11 - -

necessarily of similar popularity status. And, in doing so, we build representations that are
complex, expressive, and effective for music recommendation.

4.5.2. RQ2: How does our individual fairness approach compare to
existing methods for mitigating popularity bias?

In Table 4.3 we show a side by side comparison of the various recommendation and
debiasing methods. We apply the Wilcoxon signed-rank test [131] to the BOOST, PinSage
results to assess the statistical significance of our method’s performance. In Table 4.3, we
select only the best hyperparameter results for each method. However, for each fairness
baseline, there is a hyperparameter which tunes the balance between fairness intervention
and performance, γ. Thus, we present Figure 4.4 to show the ranges of these hyperparameter
values.
Analyzing Debiasing Performance: First, we look at the comparison between the back-
bone recommender systems and their debiasing counterparts. Within the greater fairness
community it is typical to see a trade-off between recommendation utility and the effec-
tiveness of a debiasing technique [76]. And, indeed, in our experiments we witness such a
trade-off. For example, evaluating the columns of Recall and NDCG on Table 4.3 we can
see that both recommender systems outperform their debiasing counterparts. This can be
largely attributed to the formulations of the utility metrics, the interaction with the debi-
asing objectives, and the underlying distribution of the datasets. Since the premise of the
canonical recommendation utility metrics is to reward a system that can accurately recover
the exact tracks a user liked, any attempts to promote long tail content that wasn’t originally
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listened to is penalized, even if it isn’t truly indicative of a user’s underlying taste. We note
that the trade-off is significantly more severe in the LFM dataset as opposed to the MPD
dataset. As shown in Figure 4.5, this can be attributed to the underlying distribution of a
datasets. Where MPD has a training set which contains a significant portion of interactions
on the lower end of the popularity spectrum, LFM skews towards higher popularity. Thus, if
evaluating using utility metrics that penalize mistakes on the track-level prediction, even if a
system is selecting musically coherent and relevant content, this trade-off becomes inevitable.
Indeed, within the music recommendation community, there have been several works sug-
gesting that this trade-off, though present in offline testing, doesn’t necessarily carry over
into online testing [26, 76]. Thus, to provide a deeper analysis of our debiasing method-
ology, we present two musically relevant metrics, Artist Recall and Flow. As explained in
Section 4.4.3 and detailed in Table 4.2, the Artist Recall metric evaluates the recommender
systems ability to identify correct artist-level recommendations and the Flow evaluates the
overall homogeneity of the selected music. In particular, Flow plays an important role in the
music discovery task because studies have indicated that users are drawn to homogeneous
listening suggestions when engaging with algorithmic curation [16, 76]. As we can see in
both datasets, REDRESS and BOOST consistently achieve the highest Flow. This is be-
cause, by harnessing musical features and in our debiasing technique, our method generates
representations that are indicative of musical similarity, which affects the downstream musi-
cal similarity of the recommendations it generates. Meanwhile, looking at the Artist Recall
columns, we can see a much less significant drop (or, in the case of MPD an increase) in
the performance between backbone recommender models and their debiasing counterparts.
Crucially, if we consider the implications of such a debiasing technique on a user who’s taste
skews towards popular music, high performance on these metrics means that our debiasing
methods’ awareness of musical similarity will enable it to maintain the stylistic elements that
a user is drawn to while simultaneously promoting niche content.

Next, we compare the performance among the various fairness promotion methods. Look-
ing at the columns of recall and ndcg on Table 4.3, we can see that, as expected, xQuAD
[3] which is a re-ranking method is able to preserve the highest utility. However, we note
that among the remaining methods, REDRESS is able to achieve the second highest utility.
Meanwhile, if we look at the fairness metrics, we can see that REDRESS and BOOST are
the highest performing methods. In particular, looking at the columns for %LT and LT
Cvg, we can see that REDRESS is noticeably better than the other methods and BOOST
is able to improve on its performance. Crucially, our method is able to have high values
in both coverage and percentage of long tail items meaning that REDRESS/BOOST is not
just prioritizing niche items but also choosing a diverse selection from this category. We
attribute the relative gains of REDRESS and BOOST to their ability to integrate musical
features into their fairness mitigation because they are able to select not just niche items,
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Figure 4.4 – Plots showing the effects of fairness intervention method on per-
formance/fairness metrics: we show the effects of tuning a hyperparameter to balance
fairness and performance in each of our fairness methods, we explore the entire range of the
values and report the trade-off that increasing this fairness intervention can have. Note, that
REDRESS has the best robustness with respect to balancing recall and %LT.

but also musically relevant ones for recommendation. Finally, our method’s ability to in-
terpolate between these two perspectives of content and consumption patterns, shows that
REDRESS/BOOST is able to recommend similar ratios of niche items compared to the bare
features while having significantly better performance.
Hyperparameter Sensitivity: While the results in Table 4.3 are compared among the best
hyperparameter tuning that balances between utility and fairness, we also present Figure
4.4 where we show the balance between %LT and recall along the range of each method’s
hyperparameter value. For example, xQuAD, ZeroSum, REDRESS and BOOST all have
ranges that scale between (0.1, 0.9) and MACR has a value somewhere along (0, 45). As we
can see, for any value of hyperparameter along the various methods, REDRESS and BOOST
are able to outperform the collection of benchmarks. Given these results, we conclude that
our BOOST approach is able to achieve the most effective debiasing performance while
REDRESS is able to achieve the most balanced performance.
Popularity Definition: As we can see in Figure 4.6 the definition of popularity plays a
significant role in the model selection method especially in the case where user preferences
encoded in the training data skew towards popular items. In particular, using a less granular
definition for popularity bins can synthetically inflate the performance of %LT and LTCvg.
For example, we can see that methods like xQuAD and ZeroSum are selecting a majority
of their items from bins 1,2 or 3. Using a classical long tail methodology, these differences
would not be as visible, masking distinctions among the baselines’ fairness.
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Figure 4.5 – Dataset Breakdown by Long Tail Definition: We show visualizations of
the user preferences indicated in the training set for each of the datasets used in evaluation.
Using our formulation of popularity we can see that the two datasets have different distribu-
tions of popularity in their training data which, in turn, helps explain fairness/performance
tradeoffs.

4.6. Conclusion
In this work, we address the problem of mitigating popularity bias in music recommenda-

tion. Starting from the perspective of discovery and how it relates to algorithmic curation,
we consider the effects of popularity bias on users’ ability to discover novel and relevant
music. On the basis of this motivation, we highlight the intrinsic ties between popularity
bias and individual fairness on both song and artist levels. We ground our individual fair-
ness notion in the music domain, presenting a method to mitigate popularity bias through
fine tuning of representation learning via musical similarities. We perform extensive eval-
uation on two music datasets showing the improvements of our domain aware method in
comparison with three state of the art popularity bias mitigation techniques. We hope that
these promising findings showcase the importance of developing domain aware methods of
mitigating popularity bias in addition to domain agnostic options.
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Figure 4.6 – Group By Group Analysis of Recommendations: we look at a break-
down of the recommendations for each dataset. We define visibility as the number of times
an item from this group appears in the recommendations normalized by the total number of
items in the recommendation lists. Bins are defined using the methodology of Section 4.3.3
where bin 0 has the lowest popularity.
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Chapter 5

Conclusion

The focus of this work has been the exploration of domain-aware strategies for mitigating
popularity bias in music recommendation. We began by defining the relationship between
popularity bias and individual fairness, cementing the intrinsic connection between these two
important research directions through the unique needs and objectives of music discovery.
Then, on the basis of this interconnected relationship, we presented a debiasing methodol-
ogy for combating popularity bias in music recommendation that is grounded our individual
fairness notion in the music domain. Finally, we showed the effectiveness of our approach in
mitigating popularity bias in graph based recommendation through fine tuning of represen-
tation learning via musical similarities. Ultimately, the goal of this work is to highlight the
potential for domain-aware approaches to mitigating popularity bias in music recommenda-
tion. We hope that the work of this thesis presents a compelling argument why grounding
fairness approaches in musical notions is an important research direction. As algorithmic
curation becomes a mainstay in facilitating music recommendation for millions of listeners
all over the world, it is up to the researchers designing these systems to consider the larger
implications of their architectural choices on every facet of the music creation process.

5.1. Limitations of Our Work
It is important to note that there are several limitations of the work presented in earlier

sections. First, due to the limited nature of publicly available datasets, we lack access to the
underlying mechanisms used by Spotify to generate the various modalities of features used in
our dataset augmentation. We suspect that both of the datasets used in our experimentation
may skew towards Western, anglophone content and would not be representative of the wide
array of music that is available for consumption. As such, future work on understanding how
the various feature extraction techniques which were used to achieve the metadata used in our
analysis can affect the downstream fairness among tracks is an important avenue for further
exploration. Second, due to the lack of access to online evaluation mechanism, we must



acknowledge that our understanding of both relevance and quality in music recommendation
presupposes the effectiveness of various offline metrics (such as recall or ndcg) as proxies for
true user engagement. Furthermore, it is important to remember that recommender systems
are responsible for serving the tastes of listeners, not policing them, and we do not deny
the validity of mainstream listening practices. Given our focus on the mitigation of bias, we
cannot say how well our method serves the tastes of different listener profiles and whether
our mitigation technique might affect those with majoritarian tastes. We leave this deeper
user preference analysis for future work.

5.2. Future Work
There are several directions for future extensions and improvements to the work pre-

sented before. For example, the work in Chapter 3 has uncovered an underlying relationship
between various message passing paradigms and individual fairness in the learned represen-
tations of nodes. We believe that understanding the roots of this surprising finding could
be instrumental in the design of future fair and effective graph neural network structures.
Additionally, in Chapter 4, we focused on designing a debiasing technique that is compat-
ible with the representation learning paradigm of GraphSAGE and later PinSage. While
grounding our debiasing technique in a well-known GNN recommender system provides a
context for evaluating its results, designing a recommender system that is centered around
provide node-level individual fairness without requiring additional mitigation methodologies
as an important and necessary future direction of research.
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