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Résumé

Nous vivons a une époque marquée par une abondance de données cosmologiques de haute
résolution. Cet aflux de données engendré par les missions d’observation de nouvelle gé-
nération au sol et dans ’espace porte le potentiel de remodeler fondamentalement notre
compréhension de 'univers et de ses principes physiques sous-jacents. Cependant, la com-
plexité grande des données observées pose des défis aux approches conventionnelles d’analyse
de données, soit en raison de cofits de calcul irréalisables, soit en raison des hypotheses sim-
plificatrices utilisées dans ces algorithmes qui deviennent inadéquates dans des contextes

haute résolution a faible bruit, conduisant a des résultats sous-optimaux.

En réponse, la communauté scientifique s’est tournée vers des méthodes innovantes d’ana-
lyse de données, notamment les techniques d’apprentissage automatique (ML). Les modéles
de ML, lorsqu’ils sont bien entrainés, peuvent identifier de maniere autonome des correla-
tions significatives dans les données de maniere plus efficace et sans hypotheses restrictives
inutiles. Bien que les méthodes de ML aient montré des promesses en astrophysique, elles
présentent également des problemes tels que le manque d’interprétabilité, les biais cachés et
les estimations d’incertitude non calibrées, ce qui, jusqu’a maintenant, a entrave leur appli-
cation dans d’importantes découvertes scientifiques. Ce projet s’inscrit dans le cadre de la
collaboration "Learning the Universe" (LtU), axée sur la reconstruction des conditions ini-
tiales de 'univers, en utilisant une approche de modélisation bayésienne et en exploitant la
puissance du ML. L’objectif de ce projet est de développer un cadre pour mener une inférence

bayésienne au niveau des pixels dans des problemes multidimensionnels.

Dans cette these, je présente le développement d’un cadre d’apprentissage profond pour
un échantillonnage rapide des postérieurs en dimensions élevées. Ce cadre utilise 1’archi-
tecture "Hierarchical Probabilistic U-Net", qui combine la puissance de I'architecture U-Net
dans 'apprentissage de cartes multidimensionnelles avec le rigoureux cadre d’inférence des
autoencodeurs variationnels conditionnels. Notre modele peut quantifier les incertitudes
dans ses données d’entrainement et générer des échantillons a partir de la distribution a
posteriori des parametres, pouvant étre utilisés pour dériver des estimations d’incertitude

pour les parametres inférés. L’efficacité de notre cadre est démontrée en 'appliquant au



probléme de la reconstruction de cartes du fond diffus cosmologique (CMB) pour en retirer
de l'effet de lentille gravitationnelle faible. Notre travail constitue un atout essentiel pour
effectuer une inférence de vraisemblance implicite en dimensions élevées dans les domaines
astrophysiques. Il permet d’exploiter pleinement le potentiel des missions d’observation de
nouvelle génération pour améliorer notre compréhension de 'univers et de ses lois physiques

fondamentales.

Mots clés: Inférence Bayésienne de Grande Dimension, Echantillonnage Postérieur,
Apprentissage Profond, Modeles Génératifs, Cosmologie, Délentillage du CMB
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Abstract

We live in an era marked by an abundance of high-resolution cosmological data. This influx of
data brought about by next-generation observational missions on the ground and in space,
bears the potential of fundamentally reshaping our understanding of the universe and its
underlying physical principles. However, the elevated complexity of the observed data poses
challenges to conventional data analysis approaches, either due to infeasible computational
costs or the simplifying assumptions used in these algorithms that become inadequate in

high-resolution, low-noise contexts, leading to suboptimal results.

In response, the scientific community has turned to innovative data analysis methods, in-
cluding machine learning (ML) techniques. ML models, when well-trained, can autonomously
identify meaningful patterns in data more efficiently and without unnecessary restrictive as-
sumptions. Although ML methods have shown promise in astrophysics, they also exhibit
issues like lack of interpretability, hidden biases, and uncalibrated uncertainty estimates,
which have hindered their application in significant scientific discoveries. This project is
defined within the context of the Learning the Universe (LtU) collaboration, focused on
reconstructing the initial conditions of the universe, utilizing a Bayesian forward modeling
approach and harnessing the power of ML. The goal of this project is to develop a framework

for conducting Bayesian inference at the pixel level in high-dimensional problems.

In this thesis, I present the development of a deep learning framework for fast high-
dimensional posterior sampling. This framework utilizes the Hierarchical Probabilistic U-
Net architecture, which combines the power of the U-Net architecture in learning high-
dimensional mappings with the rigorous inference framework of Conditional Variational Au-
toencoders. Our model can quantify uncertainties in its training data and generate samples
from the posterior distribution of parameters, which can be used to derive uncertainty esti-
mates for the inferred parameters. The effectiveness of our framework is demonstrated by
applying it to the problem of removing the weak gravitational lensing effect from the CMB.
Our work stands as an essential asset to performing high-dimensional implicit likelihood

inference in astrophysical domains. It enables utilizing the full potential of next-generation
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observational missions to improve our understanding of the universe and its fundamental

physical laws.

Keywords: High-dimensional Bayesian Inference, Posterior Sampling, Deep Learning,

Generative Models, Cosmology, CMB Delensing
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Chapter 1

Introduction

We live in the era of unprecedentedly large, high-resolution, and low-noise cosmological
datasets. The wealth of data provided by next-generation observational missions such as
the James Webb Space Telescope, Fuclid, Roman Space Telescope, SPHEREx, Vera Ru-
bin Observatory, Simons Observatory, and CMB-S4 holds the promise of revolutionizing
our understanding of the universe and its underlying physics. However, the complexity of
the observed data presents challenges in applying traditional data analysis techniques to
explore this vast information landscape. First, running conventional algorithms on expo-
nentially larger data is computationally infeasible. Furthermore, such algorithms often rely
on simplifying assumptions no longer valid in high-resolution, low-noise regimes, leading to

suboptimality and/or biased predictions.

This situation has led the community to explore innovative data analysis approaches,
with a high potential lying in machine learning (ML) techniques. If properly trained, these
models can automatically extract meaningful patterns, relationships, and features from the
data much more efficiently and without relying on restrictive assumptions. In recent years,
ML methods have been successfully applied to various areas in astrophysics for classifica-
tion, detection, accelerating simulations, and statistical inference. While the results look
promising, it should be noted that ML methods are prone to lack of interpretability, hidden
biases, and rigorous uncertainty estimates, which introduce hurdles to using them for major
scientific discoveries. For instance, various ML methods used for Bayesian simulation-based

inference often yield overconfident (i.e., smaller-than-expected) uncertainty measures [33].

This project is defined within the context of the Learning the Universe (LtU) interna-
tional collaboration, which aims to reconstruct the initial conditions of the universe. The
term "initial conditions" is used to refer to: 1) a handful of cosmological parameters that
describe the matter-energy content of the universe, and 2) a large number of parameters
that describe the initial spatial distribution of this content shortly after the Big Bang. LtU



tackles this problem using a Bayesian forward modeling approach. Breaking it down further,
the Bayesian approach aims to infer the posterior distribution of parameters (here, initial
conditions) given some observations. Furthermore, the forward model is a computational
model that can generate synthetic observations given a set of initial conditions. Using a
dataset of different initial conditions and their corresponding synthetic observations, as well
as a well-defined learning objective, one can train an ML model to learn the inverse of the
forward model. This model can then be used to infer the initial conditions from actual

observations.

Apart from having observational noise that makes parameter estimates uncertain, such
complex problems are often underconstrained, meaning that given the available information,
there might exist several acceptable answers, or more precisely, a manifold of acceptable an-
swers that are consistent with observations. Hence, the ML model must be able to account
for multimodal posterior distributions. This task is arduous when observations and parame-
ters are high-dimensional (e.g., images consisting of many pixels). Throughout this project,
we developed a deep learning framework for fast Bayesian inference in high-dimensional
problems. We use a deep generative architecture called Hierarchical Probabilistic U-Net
(HPU-Net) that combines U-Net architecture with the Variational Autoencoder (VAE) ap-
proximate inference framework to perform this task. To demonstrate its efficacy, we apply
our method to the problem of removing the weak gravitational lensing effect from the Cosmic
Microwave Background (CMB).

The rest of this thesis is structured as follows: Chapter 2 provides theoretical background
on CMB and gravitational lensing. The discussion then delves into the topic of CMB lensing
and delineates the cosmological scope of the project. The chapter ends by formally defining
the problem and outlining the employed framework for inference. Moving forward, Chapter
3 is dedicated to exploring the deep learning aspects of this project. It commences with the
basic concepts of neural networks. Then, it covers deep probabilistic models, and VAEs in
particular, which will set the stage for introducing the HPU-Net architecture and its under-
lying statistical framework. The chapter ends with a discussion of methods for evaluating
the learned posterior distribution. Subsequently, in Chapter 4, we present the scientific pa-
per that details our contribution and main results. The thesis concludes with a summary of

findings and future remarks presented in Chapter 5.



Chapter 2

Gravity’s Fingerprint

In this chapter, we delve into fundamental astrophysical concepts of our study and lay its
statistical groundwork. The first two sections present the cosmic microwave background
(CMB) and gravitational lensing as independent topics. Subsequently, Section 2.3 discusses
the weak lensing effect of large scale structure on CMB. Finally, Section 2.4 presents the
formal definition of the scientific problem and Bayesian inference approach to tacke this

problem.

2.1. Cosmic Microwave Background

Fig. 2.1. Cosmic Microwave Background (CMB) observed by the Planck satellite. The
figure presents a color map illustrating observed CMB temperatures from different directions

in the sky, where blue indicates lower temperatures and red indicates higher temperatures.
Credit: ESA and the Planck Collaboration.



2.1.1. Discoveries & Frontiers

It was in 1964 that Arno Penzias and Robert Wilson, two radio astronomers working at
Bell Telephone Laboratories in New Jersey, were conducting experiments using a sensitive
radio antenna to detect faint radio signals. In their experiments, they kept encountering an
unexpected noise in their measurements that could not be attributed to any terrestrial or
atmospheric sources, and it seemed to persist regardless of the direction of their antenna.
While investigating various possible radiation sources, they were unaware that they were on
the brink of discovering the relic radiation left over from the early stages of the universe. This
radiation called the Cosmic Microwave Background (CMB), became the most compelling

evidence for the Big Bang theory and one of the most important discoveries in cosmology.

Since then, numerous ground-based and space-borne telescopes have been dedicated to
studying the properties of the CMB. The Cosmic Background Explorer (COBE), launched by
NASA in 1989, achieved the first major milestone. COBE made groundbreaking measure-
ments of the CMB’s temperature fluctuations, providing the first evidence for the almost
perfect isotropy of the CMB and confirming the Big Bang’s predictions [61]. In the late
1990s, the Degree Angular Scale Interferometer (DASI) operated at the Amundsen-Scott
South Pole Station. DASI focused on measuring the polarization of the CMB [53], revealing
essential information about the physical state of early universe and supporting the theory of

cosmic inflation. DASI’s observations further confirmed the standard cosmological model.

In 2001, NASA launched the Wilkinson Microwave Anisotropy Probe (WMAP) [7], de-
livering even more precise measurements of CMB temperature fluctuations. WMAP’s data
refined our understanding of the composition, age, and expansion rate of the universe. The
Atacama Cosmology Telescope (ACT) began its operations in the Atacama Desert in Chile
in 2007. ACT focused on detecting small-scale temperature anisotropies in the CMB [22],
refining measurements of cosmological parameters, and providing insights into dark energy
and dark matter properties. Also, at the South Pole, the South Pole Telescope (SPT)
[12] has been instrumental in studying the CMB’s polarization and small-scale temperature

anisotropies, providing valuable constraints on neutrino masses and early universe conditions.

Launched by the European Space Agency in 2009, the Planck satellite [16] conducted
a comprehensive and precise study of the CMB until 2013, which remains the most precise
CMB full-sky survey to date. Figure 2.1 presents the temperature map constructed using
Planck data, and Figure 2.2 compares the resolution of COBE, WMAP, and Planck. In
subsequent years, various experiments and upgraded versions of existing telescopes, such as
QUaD [36], ACTPol [78], BICEP [46], BICEP2 [65], and SPTpol [5], continued to advance
our knowledge of the CMB.
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Fig. 2.2. Resolution improvement of the CMB space missions over time. Credit: NASA,
JPL-Caltech, and ESA.

Looking ahead, the most important future CMB missions, including the Simons Observatory
[3] and the CMB-S4 [2] experiment, hold great promise for expanding our understanding of

cosmology.

2.1.2. Physics of the CMB

Formation of the CMB

Before the radiation of CMB photons, the universe was a hot and dense expanding fluid of
photons and baryons. During those times, interactions between photons and baryons were so
frequent that photons were unable to travel freely without being absorbed and re-emitted by

their surrounding particles. The two main interactions between photons and baryons were

(1) The equilibrium bound-free reactions that kept the universe ionized®:

H+y=p+e (2.1)

(2) Thomson scattering of photons by free electrons:

y+e = y+e” (2.2)

As the universe expanded and cooled, two things happened:

(1) First, with the energy scale (kT) of the photon-baryon fluid dropping below the
ionization energy of hydrogen atoms (13.6 ¢V = 3760 K) around redshift z = 1400 2,

"n fact, the heavier elements produced during big bang nucleosynthesis also had a contribution, which are
neglected in this discussion for simplicity.
2A more sophisticated analysis involves using the Saha equation to find the temperature where the ionization
fraction of hydrogen dropped below 50%.



photons were no longer energetic enough to ionize atoms. As a result, electrons
and protons combined and formed neutral hydrogen atoms. This process, known
as recombination, significantly reduced the number of free electrons in the photon-
baryon fluid.

(2) In parallel, the expansion of the universe kept decreasing the energy density of
the photon-baryon fluid; accordingly, the rate of the Thomson scattering reactions
(I'r = neorc) was diminished, leading to a more transparent environment for photons.
Eventually, around z = 1100, with the reaction rate dropping below the expansion
rate of the universe (H := a/a), the photon-baryon fluid reached a state where the
electrons were being diluted by expansion more rapidly than photons could reach
them. This led to photons becoming decoupled from baryons. Shortly after decou-
pling, at the moment?® of last scattering, photons became able to travel freely without

being scattered.

Prior to the last scattering, the frequent scattering and thermalization processes put
photons in thermal equilibrium with baryons. They were constantly absorbed and re-emitted
by their surrounding baryons, making the photon-baryon fluid a perfect blackbody. After
decoupling, the blackbody spectrum was maintained, but the energy of the photons and
hence the characteristic temperature of the blackbody radiation decreased inversely with the

1

scale factor, i.e., T' o< a=*. Today, we receive CMB photons perfectly following blackbody

radiation with nearly the same temperature Ty = 2.73 K from every direction in the sky*.

Temperature Fluctuations

Although CMB radiation exhibits remarkable isotropy, it is not entirely isotropic across
the sky. Each region in the sky could have slightly lower or higher temperatures than the
average, leading to cold and hot patches seen in Figure 2.1. The root mean square of these

fluctuations is
1/2

<<5Tf>2> ~107° (2.3)

These temperature fluctuations (or anisotropies) are believed to be originated by quantum
fluctuations during inflation. There exist numerous physical processes that affect the inten-
sity and/or pattern of fluctuations. This can happen during or before the last scattering
(primary effects) or throughout the path of CMB photons to us (secondary effects), with

3To be precise, since the last scattering of different photons hapenned at slightly different times, last scattering
is more of a momentary epoch rather than a singular "moment".

4Assuming an entirely radiation-dominated early universe, the isotropy of CMB is surprising, as the extent of
the causally connected regions at the time of last scattering was much smaller than the size of the observable
universe. Inflationary models suggest an epoch in the early universe with acclerating expansion to overcome
this so-called horizon problem.



each process leaving its imprint on the observed CMB. As a result, CMB studies can be done

based on two approaches:

e By correcting secondary effects, one can use the recovered primordial CMB to study
the pre-recombination physics or measure cosmological parameters by analyzing

anisotropy patterns.

e By analyzing primary and secondary effects, one can study the physical processes
leading to those effects, as well as the state of the universe at the corresponding

times.

Table 2.1 presents well-known examples of primary and secondary anisotropies, focusing on

their effect on the temperature map.

Table 2.1. Examples of CMB Primary and Secondary Anisotropies

Type Name Physical Process Effect on CMB
Initial Fluctuations Quantum fluctuations in the early = Presence of hot and cold
universe generating small density  spots on CMB.
perturbations.
. Sachs-Wolfe (SW) Gravitational redshift of photons A decrease or increase in
= Effect while climbing in or falling into  observed temperatures.
k= the baryonic potential wells at the
& time of the last scattering.
Baryon Acoustic Sound waves in the early universe = Characteristic "bumps"
Oscillations create periodic overdensities in the  in the CMB temperature
matter distribution, which imprint  power spectrum.
corresponding oscillations on the
photons.
Integrated Sachs-Wolfe Gravitational redshift of photons A decrease or increase in
(ISW) Effect while passing through time-  observed temperatures.
varying gravitational potentials
along their path.
Z
= Sunyaev-Zel'dovich Scattering of CMB photons off hot ~ Brighter (hotter) CMB
g (SZ) Effect electrons in galaxy clusters, gain-  in the direction of galaxy
(% ing energy in the process. clusters.

Gravitational Lensing

Gravitational bending of CMB
photons” path by large-scale
structures, without altering their
energies.

Distortion in the appar-
ent positions of CMB
sources.




2.1.3. Characterizing Anisotropies

In order to investigate CMB anisotropies, one needs mathematical tools to describe the
observed features and their statistical properties. Several analysis methods exist for this
purpose, including correlation function, power spectrum, peak statistics, wavelet analysis,
and Minkowski functionals. In this study, we primarily use power spectrum to describe the

statistical properties of CMB.

Power Spectrum
The power spectrum quantifies the amplitude of CMB fluctuations at different angular scales.
It represents the distribution of power, or the variance, of the fluctuations as a function of the
angular scale ¢ = 180°/6 (i.e., multipole moment). Mathematically, the temperature power
spectrum C77 is defined as the average of the square of the magnitude of the (*" coefficient
of the spherical harmonic expansion of CMB temperature anisotropies, expressed as:

CiT = gryy Dl

m

(2.4)

’2
where the summation is performed over all m (angular modes) for a given ¢, and the factor
of 1/(2¢ + 1) normalizes the power spectrum. Each a!’ is a spherical harmonic coefficient
that describes the decomposition of the CMB temperature map into spherical harmonics:
T or :

ol = / / Vi (0,6) :-(60.0) sindf do, (2.5)
where Yy, is the Laplace’s Spherical Harmonic at index (¢,m). The power spectrum is a
key quantity in cosmology and is often used to constrain models, estimate cosmological pa-
rameters, and compare theoretical predictions with observational data. It provides essential
information about the statistical properties and angular distribution of CMB temperature
anisotropies, revealing important details about the early universe and its evolution. Figure

2.3 shows the temperature power spectrum based on Planck’s data.
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Fig. 2.3. Planck 2018 temperature power spectrum D}T = ((¢ + 1) CFT / 27. The red
dots are measurements made with Planck, shown with dark blue error bars. The light blue
curve represents the best fit to the ACDM model. The x-axis is logarithmic up to ¢ = 30
(the vertical dotted line) and linear at higher ¢. Credit: [4].
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2.2. Gravitational Lensing

According to general relativity, mass and energy warp the fabric of spacetime. In addition,
every freely moving object follows a geodesic, which is the path of least spacetime curvature.
Hence, the gravity of nearby massive objects might bend the path of photons propagating
through spacetime. As a result, the photons received on Earth might not be emitted from
their arriving direction. This phenomenon is known as gravitational lensing, and it occurs
when light from distant sources, such as stars or galaxies (the source), passes near massive
objects like black holes or galaxy clusters (the lens). The massive object’s gravitational field
acts as a lens, bending and distorting the light’s path. This effect can lead to magnified,
distorted, or multiple images of the background source. Figure 2.4 shows an example of

gravitational lensing.

L
lensed image-seen of
background galaxy.

background-galaxy

foreground galax:

Fig. 2.4. An example of gravitational lensing: The light of a distant background galaxy
(source) is bent by the foreground galaxy (lens), causing a distorted image of the source.
Credit: ALMA (ESO/NRAO/NAOJ), L. Calgada (ESO), Y. Hezaveh et al.

Gravitational lensing is a powerful tool to study both the lens and source objects, as well
as the intervening environment between the source and the observer. It can be used to infer
the physical properties of the lens, such as the mass and spin of black holes [71, 64, 68] or
the dark matter distribution of galaxies and galaxy clusters [15, 41, 38, 42, 35]. Also, it
can magnify the light from distant objects (e.g., supernovae or ancient galaxies), allowing
us to study them in more detail and even detect otherwise faint or distant objects [26, 27,
14, 31, 62, 13, 34, 37|. It can serve as a probe to constrain cosmological parameters
(23, 57, 72, 25, 29, 32, 9, 47, 18], such as the Hubble constant, dark energy properties,
and the density of the universe. Depending on the relative positions of the source, lens,
and observer, as well as the distribution of mass within the lens, three different regimes of

gravitational lensing exist, which are presented with examples in Figure 2.5.



Strong Lensing

A massive lens that is closely aligned
with the source causes light to take
different paths to the observer,
resulting in more than one image of
the source.

Occurs for both point sources and
extended sources.

Depending on the lens’ mass profile,

the observation can be a ring, distinct Arcs & Arclets Multiple Images Einstein Ring
images of the source, or arcs and Source: Galaxy Source: Quasar Source: Galaxy
arclets. Lens: Galaxy Cluster Lens: Galaxy Lens: Galaxy
. . R
Weak Lensing 3 L al _'~"‘ r d
The lens is not strong enough to form 4 - o, a8
multiple images or arcs. Instead, it will F - ¥
slightly distort the observed shape of < r'& - § UFE>
the source. o LY 4,,;
Occurs for extended sources only. by LG - .""; .
The source can be both stretched A-"—‘ 7 .
(shear) and magnified (convergence). ' ' » v U'. 7,
CMB Lensing Cosmic Shear
Source: CMB Source: Galaxies
Lens: Large Scale Structure Lens: Large Scale Structure
Microlensing

Lensing is too small or faint to lead to
distinguishable multiple images.
Instead, the additional light bent
towards the observer brightens the
source.

More commonly associated with point
sources.

Star-BH Microlensing Star-Star Microlensing

Source: Star Source: Star
Lens: Blackhole Lens: Star + Exoplanet

Fig. 2.5. Different types of gravitational lensing with examples for each cate-
gory. Image Credits: (a) NASA/ESA/JPL-Caltech, (b) NASA/ESA/STScI, (c)
NRAO/ESO/NAOJ/NASA/ESA, (d) W. Hu / T. Okamoto, (e) Canada France Hawaii
Telescope, (f) NASA/ESA/STScl, (g) NASA/JPL-Caltech/Warsaw University Observatory

2.3. CMB Lensing

As presented in Table 2.1 and Figure 2.5, CMB lensing is a secondary effect on cosmic mi-
crowave background and is considered an instance of weak gravitational lensing. When CMB
photons propagate in space, they pass through cosmic structures (e.g., galaxies and galaxy
clusters), the gravity of which can slightly deflect photons from their original path. Hence,
the observed directions of CMB photons do not represent their original emission direction.
Based on a rough estimate, the deflection angles are ~ 2’ (RMS) and they are correlated over
sky areas as large as ~ 2° °, comparable to the degree-scale primary fluctuations of CMB
[55, 30]. The lensing also introduces small amounts of non-Gaussianity (non-zero higher
order moments) and statistical anisotropy (non-zero off-diagonal covariance elements) into

the primordial signal.

5This corresponds to the angular size of a typical galaxy cluster at redshift 2.
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Fig. 2.6. CMB Lensing. Credit: ESA and the Planck Collaboration.

Correcting the lensing effect is important for obtaining unbiased estimates of cosmological
parameters from the CMB. Furthermore, analyzing the additional information introduced
by lensing enables probing the state of the universe during the course of deflection events.
Finally, the lensing alters the polarization of CMB photons, most importantly by introducing
a B-mode pattern that can be confused with the primordial B-mode signal from gravitational
waves®. In this study, we are interested in correcting the lensing effects on the temperature
power spectrum. Hereafter, we assume that the encountered sky extent and angular sizes

are small enough for the validity of flat sky and small angle approximations.
2.3.1. Lensing Equations

Deflection Field

In this part, we quantify CMB lensing by deriving a formula for the deflection angle of CMB
photons. Figure 2.7 depicts the deflection of a CMB photon by an overdense structure,
viewed in the comoving coordinate system. According to general relativity, the deflection
occurs in a plane (i.e., the deflection plane). At each part of the path, the infinitesimal

deflection df from the initial path is given by

dB = -2V, U dy, (2.6)

6In the absence of inflationary tensor perturbations, primordial CMB is expected to exhibit only E-mode
polarization. Detecting B-mode polarization serves as the distinctive signature of tensor perturbations during
inflation, the primary source of primordial gravitational waves.
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Fig. 2.7. Deflection of a CMB photon by an overdense structure.

where V| is the normal component of the gradient (perpendicular to the path), ¥ is the

Weyl potential, and dy is the infinitesimal comoving distance traveled by the photon. If all

the gravitational influence was from a single overdense region, we could have calculated the
total deflection by integrating Equation 2.6 over the photon’s path:

AGM

b=-2 VU dy=—

path bC2

, (2.7)

where M and b are the mass of the overdense region and the closest approach distance (in

the absence of lensing), respectively. Then, we could have used the geometric relation”

Se(xemB — X) B = Sk(XcuB) @ (2.8)

to relate 5 to the observed deflection a. S,(x) comes from the Robertson-Walker metric and

depends on the geometry of the universe,
Rsin (x/R) k = +1 (Closed)
Se(x) =4 x k=0 (Flat) (2.9)
Rsinh (x/R) k= —1 (Open)

with R being the present-day radius of curvature of the universe. Finally, combining Equa-
tions 2.7 and 2.8 would lead to

_ Sk(xemB — Xx) 4GM
Sk(XcMB) be?

(2.10)

In reality, as depicted in Figure 2.8, CMB photons pass through numerous overdensities
(potential wells) and underdensities (potential hills) throughout their journey to the observer.
In this case, we need to compute the exact photon trajectories (i.e., perform ray tracing)

to calculate the deflection angle. Since multiple lenses exist, the deflections do not occur

"Recall that the small angle formula is valid.
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Fig. 2.8. Deflection of a CMB photon by intervening cosmic structures (top), with one
deflection highlighted (bottom).

in a single plane®, which necessitates defining a 2D coordinate system on the sky plane to
quantify deflections®. In this coordinate system, the infinitesimal vector deflection dB from
the initial path is given by

dg = -2V, VU dy, (2.11)
where this time V| represents the normal components of the gradient. In a similar fashion

to Equation 2.8, we can write

Sk(xems — x) dB = Sk(xcuB) da (2.12)
By substituting dB from Equation 2.11, we can find the infinitesimal observed deflection:

SH(XCMB - X)
Sk(XcmB)

and integrate it over the photon’s path to calculate the total observed deflection:

do = —2 V.U dy, (2.13)

SR(XCMB - X)

o= —2
path  Sk(XcMB)

V.U dy. (2.14)

However, there is a caveat to this approach: Performing ray tracing is computationally
expensive, and sometimes impossible. There exist approximate approaches to simplify this

situation. The Born approximation does so by assuming the gravitational deflections are so

8This is why lensing in the presence of multiple lenses is referred to as multiplane lensing.
9For the moment, the orientation of this coordinate system does not matter.
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small that the photon’s path can be considered as a perturbation around the line of sight.
Accordingly, the potential at each location can be approximated using a first-order expansion
around the closest point on the line of sight. As a result, integrations over the photon’s path
can be approximated with integrations over the line of sight (i.e., the unperturbed path).
For instance, the total observed deflection can be approximated as:

o= —2/ Sulxows = X) ¢y gy g [ SXoBZX) G g g (2.15)

path  Sk(XcMmB) s Se(XcMB)

where V| in the last equality represents the gradient components perpendicular to the line

of sight. Figure 2.9 shows a graphical illustration of this approach.

3 Integration Path
° o °‘§

Fig. 2.9. Using Born approximation, one can integrate along the line of sight instead of
performing computationally expensive ray tracing.

Lensing Potential

Since we can safely approximate the source CMB radiation to be instantaneously emitted,
it is convenient to aggregate all lens information in a 2D map of the lensing potential on the

sky plane. To do so, we first use the relation

(2.16)

to convert the spatial gradient to an angular gradient on the sphere. We may now define the

lensing potential,

_ XCMB - X)
2 / 50 U dy, (2.17)

so that the observed deflection angle is given by
a(n) = Vit (2.18)

2.3.2. Observable Effects

We now focus on how the lensing potential affects the observations of CMB. As stated earlier,

we are interested in the effects on the temperature field. In the flat-sky limit, this effect can
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be described as a remapping of the primary (unlensed) CMB map given by
T(x) =T (z + a(z)), (2.19)

where z is a direction in the sky, and T and T represent observed and primary CMB maps,

respectively. It is often useful to Taylor expand the lensing displacements,
~ 1
T(@) = T() + o' VT (@) + 50"’V (@) + - , (2.20)

with a and b referring to different dimensions in the coordinate system, to gain intuition

about the lensing effects.

Mode Coupling

Lensing causes independent temperature modes to become correlated through the lensing

potential. To prove this, we start from the Fourier transform of the temperature map:
T(k) = / T(x)e*dz. (2.21)
Keeping at most the first-order terms, we will have

T(k) ~ / (T(a:) + oﬂVaT(w)> e R dx = T(k) + /a“VaT(a:) e R dg. (2.22)

Using this equation, the average < T(k) T (K > over an ensemble of CMB fluctuations for
fixed lenses can be approximated as:

(T(k)T(K) ) ~ (T(k) T(K') )
+{ T(k) / 0"V, T(x) e *'* da ) (2.23)
+(T(K) / a"V,T(@) e ** da ).

Assuming the unlensed, primary CMB is statistically isotropic and Gaussian distributed, its

independent modes are decoupled. Hence, the first term is equal to
(T(k)T(K) ) =0d(k—K)C{™, (2.24)

with C77 representing the unlensed temperature power spectrum and ¢ = |k|. However, the
integrals in the second and third terms are non-zero. By substituting a® with V%) using

Equation 2.18 and evaluating the integrals, we can find out that:

~ ~ 1

(T(k)T(K) )~ 5 Uk k) [kCIT + KT (2.25)
T

As the lensing potential interacts with CMB, it leads to a mixing of different spatial scales

(i.e., modes) of CMB temperature and polarization fluctuations. This mixing (i.e., mode-

coupling) introduces correlations between fluctuations on different scales, resulting in off-

diagonal elements into the covariance matrix of the observed CMB. The characteristic spacing

of these elements is 6/ = 50, given by the peak of the deflection angle power spectrum.
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Power Spectrum

The lensing also alters the temperature power spectrum. Using the Taylor expansion of CMB
temperature (Equation 2.19) and under the flat sky approximation, the lensed temperature

power spectrum to first order in the lensing potential power spectrum C’g) Y is given by:

d2/

oIT — (1 - PRY)CT +/ (k— k)] Ol CET. (2.26)

where RY is half of the total mean-squared deﬂection, defined by:

= ;WW) ~3x 107, (2.27)

In this project, we aim to reconstruct the unlensed temperature power spectrum. We do
so by removing the lensing effect from observed CMB maps, and computing the power spectra
of the resulting delensed maps. Having the physical foundations of our work discussed, we
now turn to introduce the formal definition of the delensing problem and our statistical

approach in the next section.

2.4. Problem Definition and Statistical Framework

2.4.1. Inverse Problems

Every physical problem involves inferring unknown quantities based on observed data. This
task can take various forms, such as discovering underlying physical laws through an inves-
tigation of relationships between observables, employing well-defined mathematical models
to predict the evolution of a system’s state, or deducing unobservable parameters from their
observed effects. These examples represent only a subset of the various analytical approaches
employed in physics.

Inverse problems are a class of problems that involve inferring underlying parameters
giving rise to a specific set of observations. They stand in contrast to "forward" or "direct"
problems, where predetermined inputs are fed into a well-defined model to predict corre-
sponding outcomes. In the realm of inverse problems, the outcomes are provided, and the
objective is to deduce the inputs that led to them. This is done using a model or system that
might not be entirely known or could be subject to uncertainties. In astrophysics, inverse
problems play a crucial role in understanding the properties and evolution of the universe.

Figure 2.10 presents some examples of inverse problems in astrophysics.
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a. Image Reconstruction

(blurred)

Propagation through
the Earth’s atmosphere
d tel i

isation~on detector

forward model

x = f(¥) + noise (blurred) (pixSllated)

Undistorted Detected
Image Image
y X

Forward Process: Atmospheric effects and instrumental
limitations distort astronomical images.

Inverse Problem: Reconstruct the undistorted images of
celestial objects.

c. Stellar Evolution

forward model

x = f(¥) + noise

Zero Age Main Observed
Sequence Star Red Giant
y X

Forward Process: Stars evolve depending on their physical
properties, leaving signatures on their emitted light.

Inverse Problem: Reconstruct the evolutionary history of
stars based on their observed light.

Fig. 2.10. Examples of inverse problems in astrophysics. Image Credits: (a) R. Mandel-
baum et al. [59], (b) ESA, (¢) Viktor Hahn, (d) Adapted from Learning the Universe (LtU)

Collaboration internal material.

b. Dark Matter Mapping

o N B }U’o > > \\ .
Dy S
- Us - ‘
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\ &
Dark Matter Observed
Distribution Galaxy Cluster
y X

Forward Process: Dark matter gravitationally affects light
from visible matter.

Inverse Problem: Map the distribution of dark matter by
studying its influence on light from distant galaxies.

d. Learning the Initial Conditions of the Universe

forward model

x = f(¥) + noise

Initial Observed
Conditions Light Cone
y b4

Forward Process: Distribution of matter evolves according
to the laws of physics and cosmological parameters.

Inverse Problem: Reconstruct the initial distribution of
matter based on the observed light cone.

Formally speaking, an inverse problem is defined using five components:

e Forward Model: The set of equations that govern the evolution of the system.

e Model Parameters: Inputs of the forward model.

Noise Model:

observations.

Physical State: The state of the system predicted by the forward model.
Observations: The observable implication of the physical state on the environment.

The mathematical representation of uncertainties that affect the

The goal of the inverse problem is to infer model parameters from the observations.
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CMB Delensing as an Inverse Problem

CMB Delensing can be formulated as an inverse problem with the following components:

e Forward Model: The equation to calculate the photon’s deflection angle, i.e., Equa-
tion 2.15.

e Model Parameters: An unlensed CMB temperature map, i.e., a map with all

secondary effects present but weak gravitational lensing.

e Physical State / Observations'’: A CMB temperature map with all secondary

effects, including weak gravitational lensing, present.

e Noise Model: We assume a diagonal Gaussian noise structure for pixels, where each

pixel’s noise is independent of others'®.

Having established the components of the CMB Delensing problem, the next subsection

outlines our employed approach to tackle this problem.
2.4.2. Inference

Due to incompleteness, noise, and uncertainties in observational data, inverse problems are
often ill-posed, i.e., they may have multiple solutions or lack stability. Statistical infer-
ence frameworks can effectively address these challenges by characterizing and quantifying

uncertainties. They offer a rigorous approach to tackling inverse problems.

Bayesian Framework

The Bayesian framework is a statistical approach that deals with uncertainty by using prob-
ability distributions to represent beliefs. It relies on the Bayes theorem to express the belief
about an uncertain parameter based on initial knowledge and observed data. This approach
starts with an initial belief represented by the prior probability distribution p(y), which
incorporates any existing information or prior knowledge about the uncertain parameter y.
With observed data  at hand, the Bayesian framework updates the prior by considering the
likelihood of observing the data given different parameter values p(x|y). This is done using

the Bayes theorem:

p(x|y)p(y)
p(x)

The result p(y|x) is the posterior probability distribution, which represents the updated

plyle) = (2.28)

beliefs about y. The distribution p(x) is called evidence or marginal likelihood and, in

0For our level of rigor, we assume the temperature map corresponds to both the physical state and observa-
tions. In fact, the actual observation is the intensity of the radiation, which the temperature field is inferred
from. However, in our inverse problem, we assume that the temperature field is already calculated and given
to us.

HNevertheless, our framework is designed to be extensible to accommodating non-diagonal noise as well.
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principle, can be calculated by integrating the joint distribution of data and parameters:
plx) = /p(w, y)dy = /p(wly)p(y) dy (2.29)

The Bayesian approach to CMB delensing aims to access the posterior distribution of
unlensed CMB maps given an observed (lensed) map. More specifically, considering that a
map is represented by a group of pixels, the goal is to access the joint distribution of unlensed
pixel values conditioned on the observations. The large number of pixels makes this task
an instance of high-dimensional inference. In such a problem space, direct modeling of the
posterior is challenging due to overwhelming computational complexity. A more favored
approach called posterior sampling aims to generate samples from the posterior'? instead
of directly modeling it. This approach can efficiently handle complex and high-dimensional

posteriors and ones with intricate geometries.

Numerous techniques exist for posterior sampling. Some approaches like Markov Chain
Monte Carlo (MCMC) [63, 8], Nested Sampling [75], and Variational Inference [43, 10]
rely on evaluating the likelihood p(x|y), which in many cases is unknown, intractable, or
difficult to compute, prohibiting the direct application of the Bayes theorem. However, the
group of methods known as Implicit Likelihood Inference (ILI)'® do not need direct access
to the likelihood. Instead, likelihood is implicitly encoded in the data used for inference.
For instance, in Simulation-Based Inference (SBI) [76, 17| (a subclass of ILI), the likelihood
is implicitly defined using a forward model (i.e., a simulator). This computational model
generates simulated data based on a given set of parameters, effectively replacing the need

for directly modeling the likelihood function.

Early approaches to SBI, such as Approximate Bayesian Computation (ABC) [77,
60, 74|, do not involve machine learning (ML). Although these methods can approxi-
mate complex likelihood functions, they remain computationally expensive, particularly
in high-dimensional problems [1]. The reason is they rely on running simulations during
inference. Furthermore, they require repeating the entire inference chain when more ob-
servations become available. On the contrary, incorporating ML into SBI enables efficient
high-dimensional inference. ML methods involve training a surrogate model (e.g., a neural
network) for the simulator in advance, thus eliminating the need for repeated simulations
during inference. This amortization significantly accelerates the inference process in SBI
[17].

To summarize, we intend to delens CMB by performing high-dimensional Bayesian infer-
ence at the pixel level (i.e., infer the value of pixels of the unlensed CMB temperature map).

This task is computationally intractable using conventional methods. Furthermore, the

1211 our case, the posterior samples are potential realizations of the unlensed CMB map.
BImplicit Likelihood Inference is also referred to as Likelihood-free Inference.
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complexities involved in accessing and computing the likelihood even make SBI approaches
challenging. We propose a deep learning framework for posterior sampling to address these

challenges. The deep learning foundations of our work will be laid in the next chapter.
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Chapter 3

Sampling the Unseen, A Deep Dive

This chapter aims to cover the basic concepts of deep learning and introduce the neural
network architecture used for posterior sampling. It begins by introducing the fundamental
components of neural networks in Section 3.1. Then, Section 3.2 discusses the applica-
tions of neural networks to model probability distributions, mainly focusing on Variational
Autoencoders. The first two sections lay the groundwork for presenting the Hierarchical
Probabilistic U-Net architecture in Section 3.3. The chapter will conclude with Section 3.4

exploring methods to evaluate the model’s performance.

3.1. Neural Networks

Neural networks are powerful mathematical models for quantifying complex relationships.
Over the past few decades, they have garnered significant attention and have become a
cornerstone of modern machine learning and artificial intelligence research. Their countless
applications range from pattern recognition and natural language processing to facilitating
scientific discoveries. Figure 3.1 displays some of the remarkable advancements enabled by
deep learning, including COVID-19 vaccine and drug discovery [58, 48], producing realistic
images using generative models like StyleGAN [45], predicting previously unknown protein
structures with AlphaFold [44], "enhancing communication and problem-solving capabilities
with large language models like ChatGPT'! [67, 66, 11], and powering self-driving cars

through reinforcement learning [6, 82].

IThis phrase and its cited references are based on ChatGPT’s generated text and suggestions!



COVID-19 StyleGAN 0 (o ) Ei{cI Al Self-driving
Vaccine Generate Natural Cars

& Drug Realistic Scientific Language Reinforcement
Discovery Images Discoveries \Processing Learning

Fig. 3.1. Some of the remarkable advancements enabled by deep learning. Image Credits
(left to right): Design Cells/Science Photo Library, E. Salvaggio, AlphaFold Protein Struc-
ture Database, D. Thomazini/Shutterstock, IDTechEx.

3.1.1. Perceptron

Perceptrons (aka artificial neurons or simply neurons) are the fundamental components of a
neural network. They resemble neurons in the human nervous system?. As summarized by
Figure 3.2, a perceptron receives its input(s) «, applies a linear transformation w - x + b, and
passes the result to a non-linear function f, leading to the output y of the perceptron. w, b,
and f are called weight(s), bias, and activation function, respectively. A neural network is

mainly constructed by stacking perceptrons together.
3.1.2. Layers

A neural network typically consists of several layers. Each layer is a group of perceptrons
receiving the same input. Depending on the specific task and architecture, neural networks

can have various types of layers, some of which are presented below.

2The idea of using a mathematical model inspired by the human brain for pattern recognition and learning
tasks roots in the work of Frank Rosenblatt, published in his paper [70] in 1958.
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Fig. 3.2. Inside of a perceptron.

Fully Connected Layers

In a fully connected layer, each neuron receives input from every neuron in the previous layer.
By stacking fully connected layers, one can create the simplest type of neural network, called
a Multi-Layer Perceptron (MLP). Figure 3.3 showcases a typical neural network architecture
consisting of four MLPs. Some early applications of MLPs in astrophysics include estimating
galaxy redshifts from their Spectral Energy Distribution (SED) [79] and galaxy classification
[73].

Workload Latent

hy

Fig. 3.3. A neural network consisting of four multi-layer perceptrons. Purple and red
neurons indicate inputs and outputs, respectively. Credit: [21].
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Convolutional Layers

Although MLPs afford plentiful complexity to learn intricate relationships, they are subop-
timal for detecting patterns within a sequence. Convolutional Neural Networks (ConvNets)
[24, 51, 50] exploit translational invariance® through the use of convolutional layers to cap-
ture local patterns and spatial dependencies within their input. Figure 3.4 illustrates the

difference between fully connected and convolutional layers.

\

/

QOO0
@O\OOD

Fully Connected Convolutional
kernel size: 2 | stride: 1 | padding: 0 | dilation: 1

Fig. 3.4. Comparison of a fully connected layer with a convolutional layer. Each arrow
color represents a unique value. In a convolutional layer, parameters are shared between
neurons; hence, their weights are depicted with the same color.

In a convolutional layer, weights (and bias) are shared between neurons. Consequently,
each neuron calculates the inner product of a specific input region with a template known
as a filter. This computation provides a similarity measure, allowing convolutional layers
to capture local patterns. The output of a convolutional layer is termed a feature map,
where each element corresponds to the activation of a specific filter at a spatial location.
This concept is illustrated in Figure 3.5, where applying a layer with shared weights equates
sliding a filter over the input sequence, a process known as convolving the filter with the

input.

Stacking convolutional layers enables the network to extract increasingly complex fea-
tures and representations. Furthermore, sharing weights significantly reduces the number
of learnable parameters compared to fully connected layers, making ConvNets more com-
putationally efficient than MLPs. Figure 3.6 shows a typical ConvNet architecture. Some
early applications of ConvNets in astrophysics and cosmology include identifying pulsars

[83], object classification from 1D spectra [40], and galaxy classification [19].

3Translational invariance refers to the ability of the network to recognize patterns regardless of their position
in the input data. This is particularly important in image processing tasks where the location of an object
or a pattern within an image can vary.
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Fig. 3.6. A typical convolutional neural network. Credit: Sumit Saha.

A convolutional layer has several properties; among them are the number of filters,
kernel size (spatial extent of filters), and stride (step size to slide filters across input). These
properties affect the layer’s output size and its neurons’ receptive field®. It is common to
apply padding to the input (add pixels to the edges) to reach a desired output size, or use
a dilated filter (introduce gaps between filter elements) to expand the receptive field and

4Receptive field is the spatial extent of the network’s input that influences the output of a neuron. Note
that the network’s input differs from the layer’s immediate input.
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capture information from a wider area. Figure 3.7 uses an example to introduce the main

characteristics of a convolutional layer.

Dilation
d=2
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2x2 kernel 4x4 input 2x2 output
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Fig. 3.7. Main properties of convolutional layers.

The output size o of a convolutional layer can be calculated using the following formula:

o V—i—Qp—k—(k—l)(d—l)J_{_l

(3.1)
For a comprehensive guide on convolution arithmetics, see [20].

Downsampling and Upsampling

ConvNets often include layers that reduce the spatial dimensions of feature maps. This helps
the network to reduce computational complexity and capture high-level, abstract features
by progressively decreasing the spatial resolution. Furthermore, they make the network
more robust to small translations in the input by summarizing local information into a more

compact representation.

For ConvNets with dense predictions®, having layers to restore the spatial resolution of
feature maps becomes essential. These layers enable lower-resolution feature maps to be
merged or concatenated with higher-resolution feature maps from previous layers, which is
necessary to recover fine-grained details lost during downsampling, allowing for localization
and reconstruction of objects. Figure 3.8 introduces commonly used downsampling and
upsampling layers in ConvNets. For a more detailed discussion of different neural network

layers, including normalization and regularization layers, see [28, 39].

When a neural network produces dense predictions, it generates output values for multiple locations or
elements in the input data, rather than producing a single output. This is common in tasks such as image
segmentation, object detection, and high-dimensional inference

26



Max Pooling

Slides a window over the input
and selects the maximum
value within each window.

+ Extracts most prominent
and discriminative features.

Average Pooling

Slides a window over the input
and averages pixel values
within each window.

+ Preserves more spatial
information.

Strided Convolution

A convolutional layer with
stride > 1.

+ The network can learn a
customized downsampling.

Saved Locations

Max Unpooling

During max pooling, saves the indices
of pixels with maximum value.

During unpooling, puts each input pixel
values in the corresponding saved index
and puts zero elsewhere.

+ Recovers approximate spatial
information lost during max pooling.

Nearest Neighbor

Duplicates the existing input values over
each output window, without introducing
any new values through interpolation or
complex calculations.

+ Preserves existing values and
Computationally simple.

Transpose Convolution

A convolution-like  operation that
effectively reverses the outcome of a
regular convolution.

+ The network can learn a customized
upsampling.

Fig. 3.8. Commonly used downsampling (top) and upsampling (bottom) layers in convo-
lutional neural networks with the key advantage of each method.
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3.1.3. Computer Scientists As Architects

One of the tasks of computer scientists is finding the proper neural network architecture
for the specific task at hand. Architecture refers to the structure and design of a neural
network, including the types, arrangement, and connectivity of its various layers. The choice
of architecture has a significant impact on the performance and efficiency of the network,
as different architectures are tailored to address specific problem types. In this section, a
ConvNet architecture known as U-Net is introduced to illustrate how design choices can
make a network suitable for specific tasks. It will also lay the foundations to introduce our

high-dimensional inference model.

U-Net

Introduced in [69], a U-Net is a specialized ConvNet designed for image-to-image tasks, i.e.,
where both input and output are images. It consists of three main components: a contract-
ing path that extracts information from the input through convolutional and downsampling
layers, an expanding path that uses the extracted features to generate the output image
through convolutional layers and up-sampling operations, as well as skip connections that
connect corresponding layers between the contracting and expanding paths. The skip con-
nections preserve spatial information and enhance the accuracy of the network by allowing a

direct flow of information at each resolution. Figure 3.9 shows a neural network with U-Net

architecture.
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Fig. 3.9. A neural network with U-Net architecture. Credit: [80].
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3.1.4. Training Neural Networks

So far, we have defined a neural network and discussed its various components. However, it
is still unclear how neural network parameters (i.e., weights and biases) are "tuned" to yield
the desired output. The process of achieving optimal values for these parameters is known

as training and involves several components which are discussed subsequently.

Loss Function

The first component of training is the loss function, L(g,y). It has to be a differentiable
function that measures the performance of the network. It receives the network’s prediction y
and the desired output y for a training example and yields a quantitative comparison between
them: The lower the loss function value, the closer the network is to optimal performance.
With the loss function, one can find out how different sets of network parameters compare

and which one(s) results in "better' network predictions®.

The choice of loss function depends on the network’s specific task. For a detailed dis-
cussion of different loss functions and their usages, see [81]. Two well-known loss function

families for regression’ tasks are Lp-norm and Negative Log-Likelihood (NLL) loss functions.

Lp-norm is a family of loss functions that measure the difference between predicted and

target values based on the p-norm of the error:

N 1.
Li(9,y) = p 19—yl (3.2)

By selecting an appropriate value of p, Lp loss allows the model to prioritize different aspects
of the error, leading to different characteristics in the model’s behavior and sensitivity to
outliers. One of the most famous choices is p = 2, more famously known as Mean Squared
Error (MSE) loss:

. L
Lyise(9,y) = B 15—yl (3.3)
Negative Log-likelihood loss functions are commonly used in regression tasks when

the target variable follows a specific probability distribution. For instance, when the target

is assumed to follow a Gaussian distribution, one can use the Gaussian NLL loss:
S 1 - TA N
Lontn (2 y) = 52+ (y = ) 27 (y — 1)) (3.4)

The above formulas are for the instance-level loss, i.e., they show how the loss function
is calculated for one training example, (z,y). During training, the network’s performance

is usually evaluated based on several training examples (aka, a training batch). In this case,

6By enabling comparative assessment, the loss function defines what is considered as better.
"Regression is a statistical technique used to model and predict numerical values based on the relationship
between variables.
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the individual loss values are averaged together. This value will serve as an estimate of the

expected loss over the entire training dataset Dy = {(xi, ¥:)}, i€,

b
j(g, Dtrain) = E(w,y)NDtmin [['(ga y)] ~ % Zl £<f9<mz)7 y1>7 (35)

where b is the batch size (i.e., the number of training examples in the batch) and 6 is the
network’s parameters. The learning objective of the network can be summarized in the

following equation:
0 = argmin J (60, Dirain ), (3.6)
0

For a detailed discussion on batch training, see Chapter 8 of [28].

Optimization

Due to non-linear and complex relationships between neural network parameters and their
output, determining optimal parameters through closed-form solutions is often impossible.
Hence, one should use an optimization algorithm to traverse the loss landscape® and search
for optimal parameters. Furthermore, since the loss functions are typically non-convex and
high-dimensional, finding the global optimum is computationally infeasible. Therefore, ap-
proximate optimization methods are used to find suboptimal solutions that effectively min-

imize the loss function. Figure 3.10 displays a visualization of a loss landscape.

Fig. 3.10. A typical loss landscape of VGG-56 - a convolutional neural network variant
primarily used for image classification tasks. For more information about how this plot was
generated, see [56].

8Loss landscape refers to the geometric representation of the loss function in the high-dimensional space of
a neural network’s parameters. It provides a visualization of how the loss function changes with respect to
different values of parameters.
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An optimization algorithm adjusts the network’s parameters to reduce the loss function
and improve its performance. It iteratively updates the parameters based on the computed
gradients or higher-order moments of the loss function with respect to the parameters. These
methods are often accompanied by a regularization technique to improve generalization and
prevent overfitting®. Regularization techniques introduce additional terms or constraints
to the loss function, encouraging the network to have smaller weights, sparse solutions, or

smoother decision boundaries.

The simplest optimization algorithm is called Gradient Descent (Algorithm 1), which

updates the parameters in the direction opposite to the gradient of the loss function:
0141 = 0, — VT (6)), (3.7)

with 7 being a factor called the learning rate that determines the step size of parameter
updates. It might be kept constant or adjusted using a predefined schedule throughout

training.

Algorithm 1 Mini-Batch Gradient Descent Optimization Algorithm

1: Initialize parameters: 6

2: Initialize learning rate: n

3: Initialize number of epochs: F

4: Initialize batch size: b

5: for e <~ 1 to F do

6: Shuffle training data

7. for t — 1 to # trainin%examples do

8: Randomly select mini-batch: mb

9: Compute gradient using the examples in mb: g, < V.J(60,)
10: Update parameters: 6,1 < 6, — n g,
11: end for

12: end for

Other optimization algorithms include adaptive learning rate methods (e.g., AdaGrad,
RMSprop, Adam), which dynamically adjust the learning rate during training to acceler-
ate convergence and handle different scales of gradients; momentum-based methods, which
incorporate a momentum term that accelerates the optimization process by accumulating
gradients over time; and second-order optimization methods which consider information
such as Hessian matrix to update parameters. For a detailed discussion about optimization
algorithms, see Chapter 8 of [28].

90verfitting happens when a machine learning model performs too well on training data but fails to generalize
to new, unseen data.
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The convergence of training depends on several choices: optimization algorithm and its
hyperparameters'®, initial values of the parameters, batch size, and the employed regulariza-
tion technique. It is left to the designer to make appropriate choices based on the problem
and "tune" the corresponding hyperparameters using techniques like grid search, random

search, and Bayesian optimization to reach an effective training configuration.

Backpropagation

The last piece of training is a method to compute the loss function’s gradient with respect
to each weight. The most widely used and effective method for this task is known as back-
propagation. It relies on the chain rule of derivatives to efficiently compute gradients layer
by layer. It starts from the output layer and propagates the gradients backward through the

network. For a detailed discussion on backpropagation, see Section 6.5 of [28].

3.2. Probabilistic World

The introduction of probability theory revolutionized our perception of the world, funda-
mentally altering how we analyze and interpret events with varying outcomes. It also had
a profound impact on physical models. Before its emergence, deterministic models assumed
absolute certainty and predictability in physical events. The probability theory revolution-
ized this perspective by acknowledging the inherent uncertainty and variability in physical
systems. In this section, we explore how exceptional modeling capabilities of neural networks
can be combined with the principles of probability theory to construct a powerful inference

framework for physical problems.

3.2.1. Deep Probabilistic Models

Deep probabilistic models leverage the remarkable expressive power of neural networks to
model probabilistic relationships. As illustrated by Figure 3.11, deep probabilistic models
can be trained to predict probability, estimate probability density, or directly sample from
a probability distribution. Our model falls under the last category (also known as deep

generative models), which we will delve into further to explore their characteristics.

Generative Models

Generative models are designed to generate new data samples that resemble their training
data by capturing their underlying probability distribution!!. Figure 3.12 showcases some of

the most prominent deep generative models.

101 machine learning, hyperparameters are externally set configuration settings that impact the behavior
and performance of a learning algorithm, in contrast to "parameters" which are internal and learned from
the training data. A typical example of a hyperparameter is the learning rate and its schedule (i.e., how it
varies throughout training).

Hhis distribution can possibly be the posterior distribution of some physical parameters.
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Fig. 3.12. Overview of deep generative models. Credit: Lilian Weng.
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Here is how each of the models presented in Figure 3.12 work:

(1) Variational AutoEncoders (VAEs) learn the underlying data distribution using
an encoder-decoder architecture. They approximate data distribution using a tech-

nique called variational inference. We will shortly investigate VAEs in more detail.

(2) Generative Adversarial Networks (GANs) consist of two neural networks, a
generator and a discriminator. The generator transforms random noise into synthetic
data samples, while the discriminator tries to distinguish between real and synthetic
samples. Through an adversarial training process, the generator learns to produce

increasingly realistic data by competing and improving against the discriminator.

(3) Normalizing Flows approximate complex probability distributions by applying a
series of invertible transformations to a simple base distribution. These transforma-
tions progressively warp the base distribution to capture the characteristics of the

target distribution.

(4) Diffusion Models iteratively refine a noise source until it closely approximates the
target data distribution. This is done through a process known as the diffusion

process, where noise is gradually added to the initial input.
3.2.2. VAEs, A Closer Look

In this subsection, we delve into the underlying theoretical framework of VAEs. It forms the
foundation of our inference model. We start with the manifold hypothesis, the core assump-
tion of VAEs. Subsequently, we introduce the approximate inference framework employed to
train VAEs. We finish by introducing Conditional VAEs, which enable learning conditional

posteriors.

Manifold Hypothesis

High-dimensional data, such as images, suffer from overparameterization when represented
in pixels. Consider a set of 100 x 100 human face images, which correspond to a 10000-
dimensional space, called data space. If we were to pick an image and randomly modify
its pixel values, it is highly likely that we would deviate from the distribution of valid
human faces and end up with a meaningless image. This phenomenon amplifies as the
number of pixels increases. In other words, the exponential growth of possible configurations
with increasing dimensions poses challenges for accurately modeling the underlying data

distribution. This phenomenon can be regarded as an instance of the curse of dimensionality.

However, it is reasonable to assume that within this vast high-dimensional space, there
exists a manifold - a lower-dimensional structure - that captures the essence of valid human

faces. By traversing this manifold, we can explore points that correspond to different facial
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features, expressions, and shapes while still resembling a human face. This assumption is
known as the manifold hypothesis. The existence of such a manifold and the ability to access

it are essential for VAEs to generate new images that represent data distribution.

The latent manifold is modeled within a lower-dimensional space, called latent space,
and is defined by two transformations: an encoder and a decoder. They convert images
between the data space and the latent space. The optimal encoder-decoder pair to access
the latent manifold is initially unknown and needs to be identified among a given family of
potential transformations. This can be achieved by aiming to preserve maximum information
during the encoding process, resulting in minimal reconstruction error when decoding the
corresponding latent representation'?. Figure 3.13 summarizes the latent space concepts and

terminology. We often denote data space variables by @ and latent space variables by z.

Encoder Decoder
e:RY - R? d: R -» R4

Data Space Latent Space
x € R? z€eR?
(d = # pixels) (1=3)

Fig. 3.13. Latent space concepts and terminology.

Probabilistic Framework

In the realm of machine learning, one approach to learning the latent manifold is through
Variational Autoencoders (VAEs). VAEs combine the power of neural networks with prob-
abilistic inference to learn the encoding and decoding transformations. To generate a data
sample using a VAE, one must first draw a sample from a prior distribution defined in latent
space and then use a neural network (i.e., VAE’s decoder) to map the generated sample to

data space. The prior distribution and the decoder together model the joint distribution of

12The representation of an image in latent space is called a latent representation.
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the data space and latent space variables, p(x,z), which can be decomposed as

p(x,z) = p(z) po(x|2), (3.8)

where the prior p(z) is a simple distribution in the latent space, and the likelihood pg(x|2)
is modeled using the decoder. The subscript @ represents the decoder’s parameters. The

VAE'’s objective is to learn 6, such that the marginal likelihood'® (i.e., evidence),

p@) = [p(@2) dz= [ p(=) po(al2)d= (39)

of training data is maximized.

Approximate Inference

It appears that we have every required element to train a VAE. However, there is one
caveat: The integral in Equation 3.9 is intractable; in other words, it is too computationally
expensive to integrate over all possible values of the latent variables. Hence, accessing the
latent representation of data samples by directly maximizing evidence is not feasible. For
the same reason, we cannot use the Bayes theorem to calculate the posterior distribution of
latent variables,

pe(x|2z)p(2)

p(x)

since p(x) appears in the denominator. To address this issue, one can employ approximate

pe(z|T) = : (3.10)

inference techniques. One such approach is variational inference!, wherein a variational
distribution, denoted as ¢4(z|x), approximates the actual posterior pg(z|x). The approxi-
mate posterior is modeled by a neural network (i.e., VAE’s encoder) parametrized by ¢'°.
By doing so, the challenge of dealing with an intractable integral is replaced with an op-
timization problem aimed at obtaining an optimal approximation for the posterior. The
objective function is derived by establishing a lower bound on p(x), maximizing which en-
sures enhancement of p(x). The derivation of this lower bound starts by introducing and

subtracting a term from the logarithm of p(x):

nplx)=Inplax)+ zZ|xr)n ( ’ ) az — zZ|xr)n ( ’ ) az a
= zlx)npla)dz + zZ|xr)n ( ’ ) az — zZ|xr)n ( ’ ) az b

B3t is called marginal likelihood since it is derived by marginalizing out the latent variables from p(x,z).
14The name refers to the optimization problem formulation that involves finding the best approximation by
minimizing a wvariational divergence or distance measure.

5The encoder can model a family of variational distributions. Each combination of its parameters corre-
sponds to a member of this family.
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— [ ¢(z|z) 1n<p("”z)>dz . / ¢(z|z) l1n<p<““"z)> —lnp(w)] dz (3.11c)

dz—/q(z|a:)ln m dz (3.11d)
p(x)q(z|z)

)
= /q(z|a:) 1n<p w’z)>dz — /q(z|m) ln<Z(z|w)>dz (3.11e)

We can use the definition of the Kullback—Leibler (KL) divergence'® to express the sec-
ond term of Equation 3.11e as — Dk, (q(z|:c) | p(z|z)). By designating the first term as

ELBO(q, p), we can rewrite the equation as
Inp(x) = ELBO(q, p) + Dx(q(2lz) || p(z|z)). (3.12)
Since KL divergence is always greater than or equal to zero, we can conclude that
ELBO(gq,p) < Inp(x). (3.13)

ELBO(q, p) is called the Evidence Lower Bound, and its negative Lgrpo := —ELBO(q, p) can
serve as a loss function for VAEs. With some mathematical manipulation, we can decompose

Lgrpo into two easily interpretable terms:

Loigo = — / ¢(z]z) In (p (w’z)>dz (3.14a)

q(z|x)
= —Ey(epo | Inp(x,2) — Ing(z]))] (3.14b)
= ~Eyzm) Inp(]2) + Inp(2) — Ing(2|z)] (3.14c)
= Ey(eim) [~ np(al2)] + Dy (a(=12) || p(2)) (3.14d)
= Lrec + Lx1 (3.14e)

The first term is called the reconstruction term. It evaluates the fidelity of generated data
to the original input. The second term acts as a regularizer. It encourages smooth and
structured latent space representations by penalizing the divergence between prior and ap-
proximate posterior. To further reduce computational costs, one typically uses only one
latent sample to estimate the expectation Eq(;q - |-

Figure 3.14 illustrates the training and sampling processes of a VAE. During sampling,
a random sample is drawn from the prior distribution of latent variables and fed into the

decoder to generate a sample from the data distribution. In the training phase, the encoder

16K, divergence is a measure of the difference between two probability distributions.
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Fig. 3.14. VAE’s training & sampling processes.

is supplied with data examples from the training set to predict the latents’ posterior distri-
bution, followed by drawing samples from the posterior and passing them to the decoder.
Subsequently, the decoder’s outputs are compared with the inputs to calculate the recon-
struction loss L.... This loss is combined with Lkg,, the KL divergence between the prior
and posterior distributions of the latents, to form the total loss function Lgrgo. The loss
function is then used for backpropagation, updating both the decoder’s and the encoder’s

parameters.

Need for Conditions

A VAE has the ability to generate new examples that represent its training data. However,
when data examples can be divided into different classes, the VAE cannot generate examples
belonging to a specific class. The generation process in a VAE is solely driven by latent

variables and is independent of any specific conditions or attributes. Hence,

e A VAE trained on the MNIST dataset!'” cannot generate specific digits.
e A VAE trained on human faces cannot generate faces with a given hair color.

e A VAE trained on galaxy images cannot generate galaxy images that can be regarded

as valid source reconstructions of a particular lens-source system.

"The MNIST dataset [52] is a collection of handwritten digit images commonly used for training and testing
machine learning algorithms in the field of computer vision. It consists of 60,000 training images and 10,000
testing images, each labeled with its represented digit.
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To generate or manipulate data based on specific characteristics, a VAE must incorporate
additional conditional information during its training and sampling processes. In a Condi-
tional VAE (cVAE), the encoder and decoder take conditional information in addition to
their regular input. This leads to a more structured latent space where features relevant to

the provided conditional information are organized and localized in distinct regions.
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Fig. 3.15. ¢VAE’s training & sampling processes.

Figure 3.15 illustrates the training and sampling processes of a cVAE. They are identical
to that of a VAE, except that this time the encoder and decoder are conditioned on a class
variable. In other words, they receive an additional label as input that specifies the category

to which their input belongs.

3.3. U-Nets Can Be Uncertain

In Section 3.1, the U-Net architecture was presented as a way to learn "deterministic" high-
dimensional mappings. Furthermore, VAEs and ¢cVAEs were discussed in detail in Section
3.2. A cVAE can generate new examples from random noise based on given conditional
information. In many inference tasks in astrophysics, the goal is to reconstruct some phys-

ical parameters'® y based on observations &, where both observations and parameters are

18Note that parameters here differs from neural network parameters. It means physical quantities of interest
that we aim to infer.
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1'Y images. In these problem spaces, inputs (or observations) are often not

many-dimensiona
sufficient to narrow down predictions to a single acceptable answer®. Instead, there exists a

manifold of consistent parameters for each observation.

An appropriate inference model for these tasks is one capable of learning the manifold of
acceptable answers and using it to produce consistent samples within the parameter space.
The model must learn high-dimensional mappings while accurately accounting for uncertain-
ties and variations in its predictions. To achieve this objective, a Hierarchical Probabilistic
U-Net (HPU-Net) [49] is constructed by merging the U-Net architecture with the ¢cVAE
framework. This fusion results in a model capable of extracting information across multiple
scales, encoding complex probability distributions, and learning high-dimensional probabilis-

tic mappings. This combination offers a powerful tool for posterior sampling.

Building HPU-Nets upon VAEs offers two advantages compared to other prominent deep
generative models. First, VAEs can be trained more efficiently on large, high-dimensional
datasets. In contrast, diffusion models, for example, require a large number of iterations
to generate a sample. Additionally, VAEs have a well-understood theoretical framework,
which equips HPU-Nets with a sound mathematical formalism to describe their probabilistic
behavior. This especially proves useful in physical applications, where it is important to
learn probability distributions in a principled and robust way. The architecture and training

process of HPU-Nets are described in the following subsections.

3.3.1. Architecture

Figure 3.16 describes the HPU-Net architecture. The model’s contracting path is exactly the
same as a regular U-Net. However, in the expanding path, some of the scales in the hierarchy
are equipped with a latent space with the same dimensionality as the corresponding feature
maps. At those latent scales, there exist three additional steps after regular convolutional
layers and before upsampling. First, additional convolutional layers will predict the required
parameters to sample from the latent space®'. Then, a sample will be drawn from the latent
space, which will finally be appended to the set of existing feature maps at that scale. The
latent spaces enable the model to quantify uncertainties at different resolutions and exhibit

probabilistic behavior.

O There is a subtlety in using the term "dimension" in our discussion. Although a 32 x 32 image is referred
to as a 2-dimensional image, it is important to note that each pixel within the image can be viewed as a
distinct physical parameter. If we were to analyze and infer the pixel values, we would essentially be working
within a 1024-dimensional space, with each dimension representing a unique pixel.

20This can be due to noisy observations, lack of information, or inherent uncertainties.

2For example, if we choose the latent spaces to be pixel-wise Gaussian distributions, the convolutional layers
would predict the means and standard deviations per pixel.
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3.3.2. Probabilistic Framework

Before discussing the training procedure of HPU-Nets, it is essential to explore their under-
lying mathematical foundation. Generating a prediction using an HPU-Net involves drawing
a sample from a prior distribution defined in latent space and decoding it to the parameter
space. Unlike vanilla VAEs, the prior is no longer a simple distribution. Instead, it should be
learned, spans over several scales of the network, and is conditioned on observations. Given

the hierarchical structure of latent spaces, the prior factorizes as

p(z1,...,z0|l®) = p(zL|z<p, @) - ... - p(21|@), (3.15)

where L is the total number of latent spaces. Each factor is modeled by the contracting path
and the skip connections and expanding path components that affect the corresponding
latent space. Figure 3.17 illustrates how different components of the network contribute to

modeling each factor of the prior.

The skip connections and the expanding path serve an additional purpose, which is decoding

latent variables into a prediction of parameters. The network components together model
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the joint distribution of parameters y and latent variables z, conditioned on observations x,

p(y, z|®) = po(z|x) po(y|z, ), (3.16)

where 6 refers to the network’s parameters. The HPU-Net’s objective is to learn 8 such that

the marginal likelihood of parameters y - conditioned on observations & - is maximized??:

p(y|z) =/p(y,ZIw) dz:/pe(ZIw) pe(ylz, ) dz (3.17)

The integral in Equation 3.17 is intractable, rendering it difficult to access the posterior
distribution of latent variables pg(z|y, ). Similar to VAEs, however, we can use a variational
distribution ¢4(2|y, ) to approximate the latents’ posterior. This approximate posterior is
modeled by a neural network which is used during training and will be introduced shortly.
It is possible to use the approximate posterior to derive an ELBO. The derivation starts by

adding and subtracting a term from Inp(y|z) and mathematically manipulating the result:

1np(yla) = plyle) + [ o(zly.a) 1n(p<’“"’“°))dz ~ [ alzly.) 1n(p(y’z"”))dz

q(z|y, ) q(z|y, )

— /q(z|y,af:) lnp(y|w)dz+/q(z]y,q;) 1n<p(y’z|w)>dz _ /q(z|y,:1;) m(]o(:z/,z\ac))dz

q(zly, x) q(z|y, x)

(i oo p{3255) e

_/ (zly, z ln< <( >dz—/q 2|y, z) ( (y’g (Z|T;w)>dz (3.18)

22In Bayesian inference terminology, p(y|x) is the posterior distribution of parameters.
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_/ 2|y, @ ln( Py, z|m)>dz—/q(z\y,a:)ln<p(z|m>dz (3.18b)

(zly, x) q(zly.x)
= ELBO(q, p) + Dx1 (q(ZIy,:v) I p(Z\y,w)) (3.18c¢)
Since KL divergence is always greater than or equal to zero, we can conclude that:

ELBO(q,p) < Inp(y|x). (3.19)

The negative of ELBO Lgpo := —ELBO(q, p) can serve as a loss function for HPU-Nets.

Similar to VAEs, Lg1,80 can be decomposed into the reconstruction and regularization terms:

Loipo — — /q 2|y,x) ln<( Gl )>dz (3.20a)

(zly,z)
= —Eyziy.2) [lnp(y,z]a:) —In q(z!y,w)] (3.20b)
= —Eyapya) [Inp(y|2, @) + Inp(z]) — Ing(z|y,z)] (3.20¢)
= Eyetye [~ np(ylz.2)] + D (a(zly.@) | pl=la)) (3.20d)
= Lree + Lx1, (3.20¢)

3.3.3. Training

Figure 3.18 illustrates the training process of an HPU-Net. As mentioned in the last sub-
section, an additional network is required to model the latents’ variational posterior. This
network called the Posterior Net, is only used during training and has almost the same
structure as the network used for sampling (i.e., the Prior Net), with two exceptions: 1) the
Posterior Net receives both the observation and the actual value of the parameter as input,
and 2) since the sole purpose of the Posterior Net is drawing samples from the variational
posterior, it has a truncated decoder. In other words, the layers whose only purpose is

decoding latents are not present in the Posterior Net.

During training, both the Prior Net and Posterior Net predict the required parameters
to sample from their latent spaces. However, samples are only drawn from the Posterior
Net’s latents and injected in place of the Prior Net’s latent samples. Revisiting Equation
3.20, the reconstruction term is focused on assisting the networks to generate authentic pre-
dictions, and the KL term is focused on enriching the Prior Net latents by incorporating the
information encoded in the posterior net. It also prevents the Posterior Net from overfitting

to the training data.
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Fig. 3.18. HPU-Net’s training process.

3.4. Evaluating Samples

Once a posterior sampling model is trained, we are interested to assess the fidelity of its en-
coded posterior to the true posterior distribution. In principle, two probability distributions
are equal if and only if their probability density functions (PDFs) or cumulative distribution
functions (CDFs) are equal. However, the model only generates posterior samples, and there
is no way to access neither the PDF nor the CDF. To make matters worse, the only informa-
tion we often have about the true posterior is just "one" posterior sample, corresponding to
the true parameter value in the test dataset. Depending on the available information, various
methods can be employed to evaluate the learned posterior distribution. In this study, we

rely on the following methods to assess the statistical performance of the HPU-Net:

(1) Comparing Moments: The moments of a probability distribution are statistical
measures that describe various aspects of its shape and characteristics. By comparing
the moments of learned and true posteriors, we can see how the model’s central ten-
dency, variability, and other shape-related characteristics align with the true values.

This method is applicable to two scenarios:
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(a) If the true posterior is accessible, we can directly compare moments between the
learned and true posteriors. This matching can be conducted up to any order of

moments allowed by the number of posterior samples generated by the model.

(b) The true parameter value (i.e., ground truth, GT) can serve as a point estimate
of the true posterior’s mean, enabling a first-order moment comparison between

the true and learned posteriors.

(2) Assessing Power Spectrum: Power spectrum provides insights into the frequency
content of a signal. In cosmology, the power spectrum of cosmic structures (e.g.,
galaxies or dark matter) or the CMB is a fundamental prediction of various cosmo-
logical models. It is constrained by cosmological parameters and provides information
about the distribution of matter and radiation across different scales. By comparing
the power spectra of the model’s predictions with the target power spectrum, one
can evaluate the model’s accuracy in generating maps with correct spatial features.

This will complement the findings from comparing moments.

(3) Coverage Probability Test: This test measures the accuracy of the interval es-
timates provided by the model. It evaluates the model’s uncertainty estimates to

determine whether they are calibrated. We will shortly discuss this test in detail.

3.4.1. Coverage Probability Test

When employing statistical analysis to infer an unknown parameter, interval estimates pro-
vide more informative insights compared to relying solely on point estimates. In Bayesian
statistics, a credible region defines a range of plausible values for a parameter at a desig-
nated confidence level. For instance, a credible region with 60% credibility level indicates
that the true parameter will be within this range with a 60% probability. This implies that
across multiple Bayesian analyses conducted on distinct datasets from the same population,
the true parameter is expected to fall within the credible region approximately 60% of the
time?*. One measure of the learned posterior’s quality is the accuracy of its credible regions,
i.e., whether they capture the true parameter with the correct frequency or not. This is

evaluated using the coverage probability test through the following steps:

(1) Use the learned posterior to form a large number of different credible regions with

the same credibility level.

(2) Calculate the fraction of times the true parameter falls within the credible region to
estimate the coverage probability, i.e., the probability that the credible region covers

the true parameter.

23From this definition, it is evident that credible regions are not unique. For a given probability distribution,
there exists an infinite number of credible regions with a certain credibility level.
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(3) Compare the coverage probability (CP) with the credibility level (CL). If they match,
we conclude that the model is calibrated. If CP > CL (i.e., the credible regions are
covering the true parameter more frequently than they should), we call the model
underconfident or conservative, meaning that it is constructing larger-than-expected
credible regions. If CP < CL, the model is called overconfident. Figure 3.19 illustrates

what calibrated, conservative, and overconfident models look like.

—— Calibrated
—— Overconfident
—— Conservative

Fig. 3.19. Illustration of calibrated, overconfident, and conservative models in 1D (left)
and 2D (right). Each subplot displays 40 samples from the target distribution—vertical
lines in 1D and plus signs in 2D. Calibrated, overconfident, and conservative models are
denoted by green, red, and blue, respectively. Shaded regions (1D) and inner ellipsoids (2D)
indicate 50% confidence intervals. Calibrated models capture around half of the samples,
while overconfident and conservative models fail to encompass the correct fraction.

1.0 - ~
— - Calibrated Y
- Trained Model /

0.8 /
ey //
5 /
S 06 /
[ /
a.
> /
o /
© 04 /
(]
2 /
O //

0.2

2
7
/
0.0 T T : .
0.0 0.2 0.4 0.6 0.8 1.0

Credibility Level

Fig. 3.20. Example of a coverage probability curve.
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By repeating this process for regions with different credibility levels, one can generate a
coverage probability curve (see Figure 3.20 for an example), illustrating the calibration per-
formance across various credibility levels. For a calibrated model, the curve will resemble a

diagonal line.

The specific steps of the coverage test may differ depending on the circumstances. For
example, numerous ways exist to define credible regions. Furthermore, how we calculate or
estimate the credibility level hinges on whether we have direct access to posterior densities or
are limited to posterior samples. Additionally, the computational costs significantly influence
the test’s design in high-dimensional scenarios. In this study, we will use the Test of Accu-
racy with Random Points (TARP) [54] to perform the coverage probability test. This test
estimates the credibility level based on the posterior samples generated by the model; hence,
it is suitable for assessing HPU-Net’s performance. Furthermore, dealing with distances
rather than probability densities makes the test feasible for high-dimensional problems. The

test involves the following steps (see Figure 4.4 for a visual summary):

Step 1 Step 2 Step 3 Step 4
Generate Simulations Estimate Credibility Level Estimate Coverage Probability Plot Coverage Probability Curve
= > N .. o Calibrated /]
@ Cq = % of regions with Trained Model e
08 7/
— ' smaller or equal z y
”& 2o %
= credibility level than [z, . o
d 5 //
(f:rfi\ . [{Ri : Iz, < 1z} | S
-=_—_— 7/
\@ L = % of samples inside O [ {Ri }

( ® Generated Sample X True Value 4 Random Point O credible Reg\ur\)

Fig. 3.21. TARP coverage probability test in four steps.

(1) Take a set of input-GT pairs (i.e., a test set). Feed the HPU-Net with the inputs to

generate k predictions for each GT.

(2) For each test example, sample a random point in the parameter (output) space. Then,
define the credible region R as the hypersphere centered on the random point and
extended to the GT?%. The fraction of predictions closer than the GT to the random
point (i.e., the ones that fall inside R) will approximate the credibility level Ix.

(3) For each credible region R with credibility level Iz, estimate the coverage probability
cr by calculating the fraction of credible regions with smaller or equal credibility
level than Iz ?°. Figure 3.22 shows why this works.

24This is the smallest possible hypersphere centered on the random point that contains the GT.

25n other words, we estimate the coverage probability using the CDF of the estimated credibility levels. A
calibrated model is represented by a diagonal CDF, i.e., that of a uniform distribution.
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lfR = 9% of samples inside R

Fig. 3.22. Visual explanation of estimating coverage probabilities in TARP.

Estimating the coverage probability for region R involves constructing an l-credible
region R for each test example, followed by calculating the fraction of these regions
that encompass the GT. Our focus is on credible regions in the form of hyperspheres
centered on the random point. For a region R’ with credibility level lz/, in cases
where g > lz/, the corresponding R for that example will be larger than R’. Given
that R’ is inherently the smallest region containing the GT, it is guaranteed that R
will include the GT for that particular example.

(4) Generate a coverage probability curve by plotting cr vs. Iz.

It is important to note while coverage tests provide valuable insights into the calibration
of uncertainties and the accuracy of credible regions, they do not directly measure the
overall accuracy of a model. For instance, a model that generates samples from the "prior"
distribution yields well-calibrated credible regions. However, it completely disregards the

useful information in the input data to constrain its output.

With the astrophysical and deep learning foundations of our work established, we
now turn to present our high-dimensional posterior sampling framework, its application to

CMB delensing, and the main results in the next chapter.
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Abstract

The next generation of telescopes and simulations are set to vastly increase the volume and
resolution of the available astrophysical data. Performing Bayesian inference to derive in-
sights from this data encounters challenges due to the exponential growth in data complexity.
While existing posterior sampling methods bypass the costs of fully modeling the posterior
distribution, they often prove impractical due to high computational complexity or overly
simplified theoretical assumptions that neglect small-scale physics. This paper introduces a
deep generative framework for fast posterior sampling based on the Hierarchical Probabilis-
tic U-Net architecture. We apply this framework to remove the effect of weak gravitational
lensing from CMB and evaluate the learned posterior by examining the generated samples’
power spectra and conducting the coverage probability test. While our model’s uncertainty
estimates are slightly conservative, it can accurately delens CMB maps, such the power spec-
trum of unlensed (target) maps mainly lie within the 20 range defined by the variability in
the model’s generated samples. We also demonstrate our model’s robustness against changes

to cosmological parameters, making it suitable for real-observation scenarios.

Keywords: High-dimensional Bayesian Inference, Posterior Sampling, Deep Learning, Gen-

erative Models, Cosmology, CMB Delensing

1. Introduction

Throughout the present decade, modern instruments and simulations will significantly en-
hance the available astrophysical data in several aspects. Space missions and ground-
based telescopes such as the James Webb Space Telescope, Euclid, Roman Space Telescope,
SPHEREx, Vera Rubin Observatory, Simons Observatory, and CMB-54 will not only bring
about exponential growth to the size of the observed data but also will increase the resolution

and data acquisition rate to unprecedented levels.

Utilizing this data to infer physical and astrophysical parameters relies on Bayesian in-
ference techniques, in which the posterior distribution p(y|x) of parameters y conditioned on
observed data x is computed by combining the initial beliefs about the parameters encoded
in the prior distribution p(y), and the likelihood p(x|y) which captures the probability of
observing the data given the parameters. However, given the vast volume and high dimen-
sionality of the observed data and parameters, directly modeling the posterior distribution
is intractable. Further complicating matters, even performing approximate methods like
Markov Chain Monte Carlo (MCMC), Nested Sampling, Variational Inference, and Approx-
imate Bayesian Computation (ABC) that generate posterior samples becomes infeasible in

the data-intensive regime. This happens for two reasons: First, some posterior sampling
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methods rely on evaluating the likelihood, which is only possible through simplifying as-
sumptions that neglect the complexities of small-scale - but now detectable through observa-
tions - physics. Furthermore, even implicit likelihood approaches that indirectly approximate
likelihood might suffer from excessive computational costs. As a result, exploiting the full po-
tential of the observed data requires innovative data analysis approaches that do not require

direct likelihood modeling and are computationally feasible in high-dimensional scenarios.

In recent years, Machine Learning (ML) methods have gained popularity to address
challenges posed by traditional data analysis algorithms in physics. However, many of them
are limited to providing point estimates of parameters with no measure of uncertainty of
their predictions. This paper presents a deep generative framework to perform fast high-
dimensional Bayesian inference. Our model is based on the Hierarchical Probabilistic U-Net
(HPU-Net) architecture that combines the U-Net architecture [28], appropriate for learning
high-dimensional mappings, with the approximate inference framework of Variational Au-
toencoders (VAEs). To demonstrate the physical application of our framework, we apply it
to the problem of CMB delensing, i.e., removing the effect of weak gravitational lensing from

the cosmic microwave background.

This paper is organized as follows: In Section 2, we introduce the model’s architecture
and learning objective. Section 3 covers the experiments conducted with our model. We
start by introducing the metrics we used to evaluate the model’s performance. Then, we
present the theoretical foundations, data generation process, and main results for the two
experiments conducted. Subsequently, Section 4 highlights the main findings of this project
and discusses future directions to improve our work. Finally, Section 5 concludes the paper

by summarizing the key insights and contributions of this study.

The authors confirm contribution to the paper as follows: MH.S. contributed to the
model’s design, dataset generation, training the model, analyzing the results, and writing the
paper. P.L. contributed to research planning and supervision of dataset generation. L.PL.
contributed to research planning, supervision of model’s design and dataset generation, and

analysis of results.

2. Model
2.1. Deep Generative Models

Our inference framework is built upon deep generative models, a class of deep learning models
designed to generate new data samples resembling existing training examples. The presence
of sampling layers in generative networks enables them to quantify uncertainties and expose

variability in their predictions. Some well-known deep generative models include Generative
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Adversarial Networks (GANs) [9], Variational Autoencoders (VAEs) [17], Normalizing Flows
[26] and Diffusion Models [14].

We base our model on VAEs for several reasons. First, they are sampled more efficiently
on large datasets with a lower computational cost. In contrast, conventional diffusion mod-
els, for example, require a large number of iterations to generate a sample [4], especially
in high-dimensional applications. Furthermore, VAEs have a well-understood approximate
inference framework that describes their probabilistic behavior and can be used to address
their potential limitations. For instance, [27] have leveraged this framework to propose an
alternative optimization algorithm for VAEs based on constrained optimization to train them

in a more principled way and improve their common output blurriness issue.

We use the Hierarchical Probabilistic U-Net (HPU-Net) [18] architecture for inference.
It is constructed by augmenting a U-Net with latent spaces and training the resulting model
using a scheme similar to the approximate inference framework of Conditional Variational
Autoencoders (cVAEs). HPU-Net is suitable for learning high-dimensional probabilistic
mappings, and it is designed for underconstrained problems where the available data is not
sufficient for drawing a single acceptable answer. In this context, the network aims to learn
the latent manifold associated with acceptable answers and employ it to generate parameters
consistent with observations. This makes the network capable of modeling multimodal dis-
tributions, accounting for intrinsic uncertainties, and addressing physical applications where

parameter estimates are always prone to some level of uncertainty due to observational noise.

2.2. Network Architecture

Our general goal can be defined as learning the posterior distribution p(y|x) of some physical
parameters y given observed data @. To achieve this goal, We use two separately trained

networks:

(1) Mean Net: This network is a regular (deterministic) U-Net with the goal of learning

the mean of the posterior distribution (y).

(2) Noise Net: This network is an HPU-Net that aims to learn the distribution of devi-
ations (n :=y — y), i.e., the difference between posterior samples and the posterior
mean. Sampling a deviation from this network and adding it to the posterior mean

makes a posterior sample.

Figure 4.1 illustrates our framework’s architecture. Both the Mean Net and Noise Net
have a base U-Net architecture that includes a contracting path, an expanding path, and
skip connections. The contracting path is responsible for reducing the spatial dimensions of
the input while capturing high-level abstract features. It is composed of convolutional blocks

(consisting of convolutional, batch normalization, and activation layers) and downsampling
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Fig. 4.1. Diagram of our framework’s architecture. It consists of two neural networks:
The Mean Net, which is a U-Net that learns the posterior mean, and the Noise Net, which
is a Hierarchical Probabilistic U-Net that generates deviation samples (i.e., the difference
between posterior samples and the posterior mean).

operations. In order to facilitate the flow of gradients through the network, the convolutional
blocks utilize residual connections suggested by [13]. The expanding path reconstructs a
finely detailed output from the compact representation obtained in the contracting path.
It includes similar convolutional blocks, as well as upsampling operations. Finally, skip
connections preserve spatial information and enhance the accuracy of the network by allowing
a direct flow of information at each resolution.

In the Noise Net, certain scales in the expanding path have a latent space with the same
dimensionality as the corresponding feature maps. Throughout the propagation of feature
maps in the expanding path, they are concatenated with samples drawn from corresponding
latent spaces. This enables the network to quantify uncertainties at different resolutions and
exhibit probabilistic behavior.

2.3. Learning Objective

Each neural network represents a function f using its parameters 6. It is trained on a set

of examples Diain = {(x;,y;)} to minimize a loss function J (@, Dyain). The loss function
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measures the error between the model’s predictions g := fg(x) and the ground truth (GT,
target, or true) values y. We can summarize the learning objective of the network in the
following equation:

0" = argemin J (0, Dirain), (4.21)

J (0, Dipain) is defined using the instance-level loss £(y,y), which determines how the pre-

diction is compared to the ground truth for one training example:

j(0> Dtrain) = ]E(m,y)NDtrain [‘C(ga y)} (422)

In other words, the loss function value is obtained by averaging the instance-level loss over
the training dataset. To improve computational efficiency, this average is typically calculated

over a batch of size b of training examples rather than the entire dataset, i.e.,
1.
j(ea Dtrain) ~ E Z ‘C(Igla yz) (423)
i=1

Mean Net Objective
The Mean Net is trained to minimize the Mean Squared Error (MSE) between its output

and the target value:
1

EMeanNet = 5 ’lj - sz (424>

According to [2], if a deterministic neural network (i.e., with no sampling layers) is trained

with MSE loss, its optimal solution will be the posterior mean'. Hence, if properly trained,
the Mean Net is guaranteed to learn the posterior mean. Figure 4.2 illustrates the training
process of the Noise Net.

Lensed Map Posterior Mean Ground Truth

w

“ ( L Lyse R

- 2

W u-Net

Connection

Mean Net <> Loss Evaluation

Fig. 4.2. Training process of the Mean Net.

IThis is why we used the "bar" in ¥ to denote model’s prediction.
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Noise Net Objective

The Noise Net has the same functionality as the conglomerate of the prior and decoder of
a VAE. It models the joint distribution of deviations n and latent variables® z, conditioned
on observed data a:

p(n, z|lz) = p(z[z) p(n|z, z). (4.25)
The Noise Net’s latent spaces have a hierarchical structure, i.e., the latent variables at each
decoding scale depend on the previous scales’ latent variables. Hence, the joint conditional
probability of the latent variables, also known as the conditional prior of latents, p(z|x) can

be factorized as

p(z1, ..., z0|®) = p(zL|z<p, @) - ... - p(22] 21, @) - p(21]), (4.26)

where L is the total number of latent spaces. The network aims to maximize the Evidence
Lower Bound (ELBO) on the posterior p(n|z), which can be decomposed into the following

terms:
‘CNoiseNet = IEq(z|n,:1:) |:_ lnp(n]z,w)} + DKL (Q(Z‘naw) H p(Z’ZU))

(4.27)
- £rec + L:KL

The first term in Equation 4.27 is called the reconstruction term. It evaluates the fidelity
of the generated data to the expected output. By assuming that p(n|z,x) is a multivariate

Gaussian distribution, the reconstruction term will reduce to the Gaussian Negative Log-
likelihood (GNLL) Loss:

Lo s ST A
Lo = 5 (M[E[+ (n - @) (n — ), (4.28)

with 1 and 3 being the mean and covariance matrix of p(n|z,z) and n being a real posterior
sample. If we further assume that the Gaussian distribution is diagonal®, Equation 4.28 will
be simplified to .

Lroe = ;Z [w 4 &3], (4.29)

i i

where fi; and 62 are the i*" component of i and the i** diagonal element of f), respectively.
Each index corresponds to an output pixel, and the summation is performed over all output
pixels. During training, the fi;s and o?s are estimated by drawing multiple samples from the
Noise Net and calculating their pixel-wise mean and variance. To clarify further, considering
the difference between the GT and the posterior mean as a real posterior sample, the network
aims to produce samples with similar statistical properties. It does so by learning the mean
and variance of p(n|z,x) such that the probability of sampling the GT is maximized.
2OfT,latent variables are simply referred to as latents.

3This means that by knowing the observations & and latent variables z, we can determine each output pixel’s
value independent of other pixels.
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The second term in Equation 4.27 is the Kullback—Leibler (KL) divergence between the
variational posterior ¢(z|n,z) and the prior p(z|x) distribution of latents. The variational
distribution ¢(z|n,z) approximates the true posterior of latent variables p(z|n,z)*, and has

a similar autoregressive structure to the prior:
q(z1,...,z0n,x) = q(zp|z<p,n, @) - ... - q(22|2z1,n, @) - q(z1|n, ). (4.30)

It is modeled by an auxiliary network, which will shortly be introduced. The KL term assim-
ilates p and ¢, enriching p with information from ¢ and encouraging smooth and structured
latent representations. It is shown in [18] that for the HPU-Net, Lk;, decomposes into the

sum of the KL divergences between individual latent spaces:

Dyt (a(zln.) || p(zl2)) = 3 Be g Drc (a(z1l2<m2) || p(2l 220 @) (4.31)

If we choose the latent spaces to represent pixel-wise Gaussian distributions, Lk, can be

evaluated analytically using the pixel-wise means and variances of each (p, q) pair:

1 i oo+ (Hai = Hpi)®
Drr(dllp) = 5 Z{ln (;;) + e - 1}. (4.32)
) gt Py

The summation is performed over the latent spaces’ spatial dimensions (i.e., pixels).
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Fig. 4.3. Training process of the Noise Net

Figure 4.3 illustrates the training process of the Noise Net. The auxiliary network (aka

the Posterior Net) has the same hierarchical topology as the primary network (aka the Prior

4Note that the latents posterior p(z|n,x) differs from the parameters posterior p(n|z).
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Net)®, but with two exceptions: 1) the Posterior Net receives both the observation and the
real sample as input, and 2) since the only purpose of the Posterior Net is to draw samples
from the variational posterior, it has a truncated decoder, i.e., the layers with the sole
purpose of decoding latents are not present in the Posterior Net. During training, pixel-wise
means and variances are calculated for both the Prior and Posterior Net latents. However,
the latent samples used for training are drawn from the Posterior Net and injected into the
Prior Net.

3. Experiments and Results

This section presents the experiments carried out with HPU-Net. It starts with introducing
the employed performance measurement methods. Subsequently, the details of the experi-

ments and their results are presented.

3.1. Performance Measures

We use the following methods to assess the quality of the learned posterior:

(1) Comparing Moments: Since we can only access samples from the learned posterior,
with no direct access to the posterior itself, our examination options are limited. One
option is to compare the moments of the true posterior with estimated moments from
the model’s generated samples. The available orders and the accuracy of moment
comparison are determined by the amount of information available from the true

posterior, as well as the number of generated samples.

(2) Comparing Power Spectra: The power spectrum is a fundamental prediction
of various cosmological models. By comparing the power spectra of the model’s
predictions with the GT’s power spectrum, we can determine how accurately the

model can generate maps with correct spatial features.

(3) Coverage Probability Test: We employ the Test of Accuracy with Random Points
(TARP) [19] to evaluate the accuracy of credible regions predicted by the model. For
each credible region R, this test compares its estimated credibility level Iz with the
fraction of times it actually covers the true parameter, i.e., its coverage probability cg.
For a calibrated model, Iz and ci should match. However, if the model constantly
forms smaller-than-expected credible regions, they will be less likely to cover the true
value than their specified credibility level. In this case, cgx < Iz , and the model is
called overconfident. On the other hand, an underconfident or conservative model
forms larger-than-expected credible regions and has cx > Ix. Figure 4.4 summarizes

how TARP is conducted in four steps.

SPosterior and prior here refer to the distributions of latent variables z, which must be differentiated from
the posterior and prior distributions of parameters y.
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Fig. 4.4. TARP coverage probability test in four steps.

3.2. Problem 1: Rotating Gaussian Random Fields (GRFs)

Motivation and Theoretical Framework

This experiment is aimed to assess the model’s performance on a problem where the posterior
p(y|x) can be analytically derived. In this case, the model was trained to solve a linear inverse

problem, where the inputs () and outputs (y) of the model followed the relation

x = Ry +n, (4.33)

where R is a transformation matrix, and mn is a random noise vector. It can be shown that
if the parameters’ prior p(y) and the noise p(n) follow Gaussian distributions, the posterior

distribution p(y|x) will also be a Gaussian with the following parameters:

Ppost = (M +MT)"'d Soost = M, (4.34)
with M and d defined as:
M= (S5 + R'S'R)
. Te1 (4.35)
d:=2 (Epri y'pri + R Zn CE),

where the pri, post, and n indices indicate the parameters of the prior, posterior, and noise
distributions, respectively. If we choose R to be a 90° rotation, we will have R'R = RR' =

I°. If we further assume that p,; = 0, S = 02,1, and ¥, = 02, Equation 4.35 will reduce

pri
to: ] ] 5
_ _ T
M = (Ufm + 0121) I d= UgR x. (4.36)

6This is true for every orthogonal matrix, and since rotation preserves the norm of its input, we can describe
it using an orthogonal matrix.
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-2

ori T O %) and combining it with Equation 4.36 we can simplify

By defining o2, = 1/(o
Equation 4.34 to:
2
o 0S —

Hpost = 2_2 tRTw Epolst = 012)ost

I (4.37)

Once the model is trained, we can compare s and 2,0s With the empirical mean and

covariance calculated from the model’s predictions.

Data Generation

We train the model on a dataset of 216 examples. The data was generated by sampling from
the prior distribution, rotating the samples and adding noise to the rotated samples. In
order to increase the effective size of the training set and enhance the model’s generalization,
different noise realizations were used for each training epoch. Figure 4.5 summarizes the

data generation process.
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Noise Distribution
|

—
N(/Jpriv Zpri

Prior Distribution
—

© D

Ground Truth Observation

i
-

( Connection —>  Sampling @ 90° Rotation @ EIementwiseAddition)

Fig. 4.5. Data generation process for the GRF rotation experiment.

Evaluating Performance

Thanks to having full access to the true posterior, we can directly compare its moments with
the learned posterior. For this purpose, we use the model to generate posterior samples,
calculate their pixel-wise means fi,.s and standard deviations ., and compare them
t0 Mpost and opest Obtained from Equation 4.37. All higher-order pixel-wise moments are
expected to be zero. In another approach, we can take the GT as a point estimate of fepost
and compare it with fiyes. Figure 4.16 displays the empirical moments calculated from
posterior samples and how they compare with the GT and theoretical moments for a given
test example. Several posterior samples are included in the figure as well. For more examples,
see Appendix A. Figure 4.7 shows the result of the TARP test for this experiment.
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Fig. 4.6. Moment comparison plot for a particular test example of the GRF rotation exper-
iment. 1000 posterior samples were drawn using the model and used to calculate pixel-wise
empirical means and standard deviations. For more examples, see Appendix A.
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Fig. 4.7. TARP test result for the GRF rotation experiment. The test was conducted on
2048 test examples, with 200 posterior samples generated for each example.
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3.3. Problem 2: CMB Delensing

Motivation and Theoretical Framework

CMB lensing is a secondary effect on the cosmic microwave background caused by the weak
gravitational lensing effect of intervening cosmic structures between the last scattering sur-
face and us. It alters the observed directions of CMB photons, such that they no longer
represent their original emission direction. The root mean square of deflection angles is
around 2 arcminutes, and they are correlated over the sky in areas as large as around 2
degrees, which is comparable to the degree-scale primary fluctuations of CMB [20, 11]. The
lensing also introduces small amounts of non-Gaussianity (non-zero higher order moments)
and statistical anisotropy (non-zero off-diagonal covariance elements) into the primordial
signal. Using small angle, flat sky, and Born approximations, the deflection angle a caused
by lensing is given by

SH(XCMB - X)
— ==V, VU dy, 4.38
los SN(XCMB) + X ( )

where the integration is performed along the line of sight (los), V| are the gradient compo-

a~ —2

nents perpendicular to the line of sight, ¥ is the Weyl potential, y is comoving distance, and
S.(x) depends on the geometry of the universe and is given by the following relation:
Rsin (x/R) k= +1 (Closed)
Sk(X) = { x k=0 (Flat) |, (4.39)
Rsinh (x/R) k= —1 (Open)
where R is the present-day radius of curvature of the universe. Since we can safely approxi-

mate the source CMB radiation to be instantaneously emitted, it is convenient to aggregate

all lens information in the projected lensing potential 1) on the sky plane:

XCMB_X)
= -2 U dy, 4.40
[ S 0xonm) Sul) © X (4.40)

such that the deflection angle is given by

al(f) = Vaib, (4.41)

with 7o being the desired direction on the sky and V,(-) = S.(x) V. (-) being the angular
gradient.

As the lensing potential interacts with CMB; it leads to a mixing of different spatial scales
(i.e., modes) of CMB temperature and polarization fluctuations. This mixing (i.e., mode-
coupling) introduces correlations between fluctuations on different scales, resulting in off-
diagonal elements in the covariance matrix of the observed CMB. The characteristic spacing
of these elements is 6¢ = 50, given by the peak of the deflection angle power spectrum. In this

work, we concentrate on the observed temperature map, where lensing alters its primordial
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T
power spectrum Cj

- 2 1./
It = (1 - 2RrRY)CI™ / d k (k — k:’)} qk wiCo s (4.42)

where Cff is the observed power spectrum, CL, is the lensing potential power spectrum,
¢ = |k|, and RY is half of the total mean-squared deflection, defined by:

= ;<|vw|2) ~3x107. (4.43)

Correcting the lensing effect is important for obtaining unbiased estimates of cosmological
parameters from CMB. Furthermore, analyzing the additional information introduced by
lensing enables probing the state of the universe at the moments the deflections took place.
Finally, the lensing alters the polarization of CMB photons, most importantly by introducing
a B-mode pattern that can act as a source of confusion with any primordial signal from
gravitational waves. The latest Planck satellite’s lensing results and analysis are discussed

in [3, 7].

Traditional approaches to CMB delensing are based on reconstructing the projected po-
tential 1) using a quadratic estimator [15]. Despite being successful at the present-generation
instruments’ noise levels, these methods fall short in the high signal-to-noise regime soon to
be brought about by next-generation CMB missions. Hence, alternative analytical methods
(29, 10, 6, 24, 23| have been developed to exploit the full potential of next-generation CMB

data. [8] summarizes various delensing strategies and compares their performance.

Since the upsurge of interest and application of machine learning in scientific domains,
it has emerged as an additional viable option for CMB delensing. Specifically, there have
been efforts to utilize convolutional neural networks for this task [5, 22, 30, 31]. While
the proposed models can remove the lensing effect from CMB with promising accuracy,
they are limited to providing point estimates, with no measure of uncertainty. Our model
is designed to draw samples from the posterior distribution of delensed maps, conditioned
on the observed CMB. This way, we can obtain uncertainty estimates using the generated

samples.

Data Generation

The data we used for this experiment was generated using the Python interface for the Code
for Anisotropies in the Microwave Background (CAMB) [21]. CAMB is a software package
used in cosmology to calculate theoretical predictions for CMB and the large-scale structure
of the universe. CAMB uses cosmological parameters specified by the user to calculate the
evolution of the universe from its early stages to the present time. It considers the primordial

"This approximation is obtained using the taylor expansion of CMB temperature field and under the flat
sky approximation. The terms were kept up to the first order in C;M’.
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fluctuations left by inflation and calculates their statistical properties. These fluctuations
serve as initial conditions for the evolution of density perturbations, which determine the
growth of structures in the universe. CAMB also computes CMB properties, taking into ac-
count how density perturbations affect its temperature and polarization. Finally, it generates
observable quantities, such as temperature and polarization power spectrums, with various
secondary effects (e.g., galactic emission, reionization, gravitational lensing, SZ effect, etc.)
taken into account.

In this work, we use CAMB’s temperature angular power spectra to generate synthetic
CMB maps. To do so, we apply unlensed and lensed power spectra to the same noise
realization in Fourier space and transform the resulting maps back to real space. The training
set consists of 23 maps with fixed cosmological parameters that cover 160’ x 160’ regions
in the sky, with a resolution of 32 pixels per dimension. The model receives a lensed map
as input and provides posterior samples of the difference between the lensed map and its
unlensed variant®. We add a random noise to the lensed maps to simulate observational
noise. Similar to the previous experiment, we apply noise during training and use different

realizations <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>