Université de Montréal

Small batch deep reinforcement learning

par Johan Samir Obando Ceron

Département d’informatique et de recherche opérationnelle
Faculté des arts et des sciences

Mémoire présenté a la Faculté des arts et des sciences
en vue de l'obtention du grade de Maitre es sciences (M.Sc.)
en informatique

November, 2023

(© Johan Samir Obando Ceron, 2023.

Université de Montréal
Faculté des arts et des sciences

Ce mémoire intitulé:

Small batch deep reinforcement learning

présenté par:

Johan Samir Obando Ceron

a été évalué par un jury composé des personnes suivantes:

Glen Berseth, président-rapporteur
Marc Bellemare, directeur de recherche
Pablo Samuel Castro, codirecteur

Aaron Courville, membre du jury

Mémoire accepté le:

Résumé

Dans l'apprentissage par renforcement profond basé sur la valeur avec des
mémoires de relecture, le parametre de taille de lot joue un role crucial en déterminant
le nombre de transitions échantillonnées pour chaque mise a jour de gradient.
Etonnamment, malgré son importance, ce parametre n’est généralement pas ajusté
lors de la proposition de nouveaux algorithmes.

Dans ce travail, nous menons une vaste étude empirique qui suggere que la réduc-
tion de la taille des lots peut entrainer un certain nombre de gains de performances
significatifs ; ceci est surprenant et contraire a la pratique courante consistant a
utiliser de plus grandes tailles de lots pour améliorer la formation du réseau neuronal.
Ce résultat inattendu défie la sagesse conventionnelle et appelle a une compréhension
plus approfondie des gains de performances observés associés a des tailles de lots
plus petites.

Pour faire la lumiere sur les facteurs sous-jacents, nous complétons nos résultats
expérimentaux par une série d’analyses empiriques. Ces analyses approfondissent
divers aspects du processus d’apprentissage, tels que 'analyse de la dynamique
d’optimisation du réseau, la vitesse de convergence, la stabilité et les capacités
d’exploration.

Le chapitre 1 présente les concepts nécessaires pour comprendre le travail pré-
senté, notamment des apergus de I’Apprentissage Profond (Deep Learning) et de
I’Apprentissage par Renforcement (Reinforcement Learning). Le chapitre 2 contient
une description détaillée de nos contributions visant a comprendre les gains de
performance observés associés a des tailles de lots plus petites lors de 1'utilisation
d’algorithmes d’apprentissage par renforcement profond basés sur la valeur. Ala
fin, des conclusions tirées de ce travail sont fournies, incluant des suggestions pour
des travaux futurs. Le chapitre 3 aborde ce travail dans le contexte plus large de la
recherche en apprentissage par renforcement.

Mots-clés: Apprentissage par renforcement, Apprentissage par renforcement
approfondi, Basé sur la valeur, Taille des lots

iii

Suminary

In value-based deep reinforcement learning with replay memories, the batch size
parameter plays a crucial role by determining the number of transitions sampled
for each gradient update. Surprisingly, despite its importance, this parameter is
typically not adjusted when proposing new algorithms.

In this work, we conduct a broad empirical study that suggests reducing the
batch size can result in a number of significant performance gains; this is surprising
and contrary to the prevailing practice of using larger batch sizes to enhance neural
network training. This unexpected result challenges the conventional wisdom and
calls for a deeper understanding of the observed performance gains associated with
smaller batch sizes.

To shed light on the underlying factors, we complement our experimental findings
with a series of empirical analyses such as analysis of network optimization dynamics,
convergence speed, stability, and exploration capabilities.

Chapter 1 introduces concepts necessary to understand the work presented,
including overviews of Deep Learning and Reinforcement Learning. Chapter 2
contains a detailed description of our contributions towards understanding the
observed performance gains associated with smaller batch sizes when using value
based deep reinforcement learning algorithms. At the end, some conclusions drawn
from this work are provided, including some exciting suggestion as future work.
Chapter 3 talks about this work in the broader context of reinforcement learning
research.

Keywords: Reinforcement Learning, Deep Reinforcement Learning, Value based,
Batch Size

iv

Contents

Résumé iii
Summary iv
Contents v
List of Figures vii
List of Abbreviations X
Acknowledgments xi
Introduction 1
1.1 Deep Learning 1
1.1.1 Neural networks 3

1.1.2 CNNnetworks 5

1.1.3 Trainingo 6

1.1.4 Optimization 7

1.2 Reinforcement Learning 8
1.21 TD Learningo 9

1.2.2 Off-Policy Learning 9

1.2.3 Deep Reinforcement Learning 10

1.2.4 Replay buffer and batch size 12

1.2.5 Plasticity and Stability 13

1.2.6 The Arcade Learning Environment 14

1.2.7 Evaluation in Atari 14

1.2.8 Data Efficiency and Representations 15

1.3 Offline deep Reinforcement Learning 16
Small batch deep reinforcement learning 18
2.1 Imtroduction 19
2.2 Experimental results00 oL 20
2.2.1 The small batch effect on agent performance 20
2.2.1.1 Standard agents 21

2.2.1.2 Varying architectures 22

2.2.1.3 Atari 100k agents 26

2.2.1.4 Training Stability 28

2.2.1.5 Impact on exploration 30

2.2.1.6 Computational impact 31

2.2.2 Understanding the small batch effect 34
2.2.2.1 Relation to other hyperparameters 34

2.2.2.2 Analysis of network optimization dynamics. 39

2.2.3 Offline reinforcement learning 43

2.3 Related Work 44
24 Conclusiono 45
24.1 Future Work 46

3 Conclusion 48
Bibliography 50

vi

List of Figures

2.1

2.2

2.3

24

2.5

2.6

2.7

2.8

2.9

IQM for human normalized scores for DQN, Rainbow, QR-DQN,
and IQN. All games run with 3 independent seeds, shaded areas
representing 95% confidence intervals.
Evaluating QR-DQN (Dabney et al., 2018a) with varying batch sizes
over all 60 Atari 2600 games. Average improvement obtained when
using a batch size of 8 over 32 (default); All games run for 3 seeds,
with shaded areas displaying 95% stratified bootstrap confidence
intervals.
Training curves for QR-DQN agent. The results for all games are
over 3 independent runs.
Aggregate Interquantile Mean (Agarwal et al., 2021) of human nor-
malized scores over all 60 Atari 2600 games using QR-DQN (Dabney
et al., 2018a). All games run for 3 seeds, with shaded areas displaying
95% stratified bootstrap confidence intervals.
IQM for human normalized scores with varying neural network archi-
tectures over 20 games, with 3 seeds per experiment. Shaded areas
represent 95% stratified bootstrap confidence intervals.
Evaluating the effect of CNNx4 to QR-DQN, learning curves for all

Measured IQM of human-normalized scores on the 26 100k benchmark
games, with varying batch sizes, of DER and SPR. We evaluate
performance at 100k agent steps (or 400k environment frames), and
at 30 million environment frames, run with 6 independent seeds for

each experiment, and shaded areas display 95% confidence intervals.

Measured IQM of human-normalized scores on the 26 100k bench-
mark games, with varying batch sizes, of DrQ(e). We evaluate
performance at 100k agent steps (or 400k environment frames), and
at 30 million environment frames, run with 6 independent seeds for

each experiment, and shaded areas display 95% confidence intervals.

vii

27

27

2.10 Measuring IQM for human-normalized scores when training for 200
million frames using Left: QR-DQN (Dabney et al., 2018a) and
Right: IQN (Dabney et al., 2018b). Results aggregated over 20
games, where each experiment was run with 3 independent seeds and
we report 95% confidence intervals.

2.11 Learning curves for individual games, when trained for 200 million
frames using QR-DQN (Dabney et al., 2018a). Results aggregated
over 3 seeds, reporting 95% confidence intervals.

2.12 Learning curves for individual games, when trained for 200 million
frames using IQN (Dabney et al., 2018b). Results aggregated over 3
seeds, reporting 95% confidence intervals.

2.13 Performance of QR-DQN on four hard exploration games with a
target € value of 0.0, and with varying batch sizes.

2.14 Aggregate IQM of human-normalized scores over 20 games with a
target e value of 0.0. In all the plots 3 independent seeds were used for
each game/batch-size configuration, with shaded areas representing
95% confidence intervals.

2.15 Measuring wall-time versus IQM of human-normalized scores when
varying batch sizes in DQN (with n-step set to 3), Rainbow, QR-
DQN, and IQN. Each experiment had 3 independent runs, and the
confidence intervals show 95% confidence intervals.

2.16 Varying batch sizes for different learning values. Results aggregated
IQM of human-normalized scores over 20 games for QR-DQN.

2.17 Varying the number of gradient updates per training step, for a fixed
batch size of 32. Performance of QR-DQN on tweenty games with
different BatchDivisor value.

2.18 Results aggregated IQM of human-normalized scores over 20 games
for QR-DQN.

2.19 Measured IQM human normalized scores over 20 games with 3 in-
dependent seeds for each configuration, displaying 95% stratified
bootstrap confidence intervals. Left: Adding components to DQN;
Right: Removing components from Rainbow.

2.20 Aggregate DQN performance with n-stepof3

2.21 Varying batch sizes and n-steps in DQN (left), Rainbow (center),
and QR-DQN (right)o

2.22 Empirical analyses for three representative games with varying batch
sizes. From left to right: training returns, aggregate loss variance,
average gradient norm, average representation norm, srank (Kumar
et al., 2021a), and dormant neurons (Sokar et al., 2023). All results

averaged over 3 seeds, shaded areas represent 95% confidence intervals. 40

viii

2.23 Adding noise of varying scales to the learning target with the default
batch size of 32. Performance of QR-DQN on twenty games with
different target noise scale values.

2.24 Results aggregated IQM of human-normalized scores over 20 games
for QR-DQN.

2.25 Training curves for DQN, CQL+DR3 and CQL+C51 offline agents
with multi-step learning Top: n = 1 and Bottom: n = 3. The results
for all games are over 5 independent runs.

ix

41

List

RL
DRL
DQN
TD
ALE
MSE
HNS
MLP
ANN
CNN
IQM
BBF

of Abbreviations

Reinforcement Learning
Deep Reinforcement Learning
Deep Q-Network

Temporal Difference

Atari Learning Environment
Mean Squared Error
Human-Normalized Score
Multi-layer Perceptron
Artificial Neural Networks
Convolutional Neural Network
Interquartile Mean

Bigger, Better, Faster

Acknowledgments

First and foremost, I extend my gratitude to my family members—Isabel,
Orlando, Maira, Marina, and Yuliana—as well as to the Obando-Ceron relatives
and all my wonderful friends. They have been unconditionally supportive and they
always encouraged me to figure out for myself what I wanted to do in life which is
something I will forever be grateful for.

[am very grateful for the support I have received at Mila. I particularly wish to
thank Marc Bellemare and Pablo Samuel Castro, who have taken immense amounts
of time to introduce me to machine learning research and profoundly shaped my
research career thus far. Thanks a lot Marc for giving me the opportunity to be
your student, and be able to live this amazing academic experience. Pablo, once
again, thank you, thank you and thank you for believing in me and your continuous
support.

Infinite thanks to my roommate, Gopeshh Subbaraj. I have no words to thank
you for everything. You are the best, thanks friend. I also wish to thank my
coauthors, who have made my experience at Mila as productive as it has been: Joao,
Max, Rishabh, Aaron, Marc and, of course, Pablo Samuel Castro.

I would also like to thank my other friends at Mila for interesting and fruitful
conversations on machine learning and other topics, including the above as well as
but not limited to Ghada, Riashat, Nizar, Albert, Aniket, Moskh, Naga, Adrien,
Jesse, Evgenii, Pierluca, Juan Duque, Juan Ramirez, Mahan Fathi, and Zhixuan.

[am also extremely thankful for the astonishing computational resources provided
to me at Mila, both through the Mila cluster and Compute Canada. Finally, the
work reported in this thesis would not have been possible without the financial
support from: Google research, Compute Canada, the Canada Research Chairs and
CIFAR.

To my friends, family, and mentors who are no longer with us, RIP and thank
you for everything. Love you all so much!

xi

Introduction

In this chapter, we will present an overview of the fundamental concepts required
to understand the contributions presented in this thesis. Our work resides at the
intersection of the fields of deep learning and reinforcement learning, and we organize
the overview accordingly. We first introduce important concepts in machine learning
and we briefly discuss the emergence of deep learning in recent years and what
characterizes the improvements it can bring to our work.

We introduce the field of reinforcement learning (RL), focusing on reinforcement
learning techniques using neural networks, or deep reinforcement learning (DRL).
We then briefly explain some value based DRL algorithms which are extensively
used in this thesis. We assume knowledge of basic techniques and terminology in
deep learning, including convolutional, feedforward, and recurrent neural networks,
gradient-based optimization and regularization. A foundational understanding of
conventional supervised learning tasks, such as classification and regression, is also
presumed. For readers unfamiliar with these topics, we recommend the following
books: Pattern Recognition and Machine Learning (Bishop and Nasrabadi, 2006)
and Deep Learning (Goodfellow et al., 2016).

1.1 Deep Learning

In this section, we will introduce background material on representation learning
in deep learning and the relationship with the amount of data sampled when
training neural networks models. We begin with early developments in the field and
preliminary studies on deep learning models and batch size. We wrap up with a
discussion of recent discoveries, from which this work draws directly. It’s important
to note that this isn’t intended to serve as an exhaustive overview of representation

learning and batch size for supervised learning tasks in deep learning; we present

only a few essential papers, leaving out numerous significant historical topics not
essential to understanding the techniques employed in this thesis.

Machine Learning is the field of study focused on computational systems that
possess the ability to learn and adapt from data without explicitly being programmed.
Although the terminology has remained consistent since Samuel’s Checkers-playing
program in 1959, the landscape of learning has evolved significantly. It entails the
development of learning algorithms to tackle complex tasks where it is challenging
(or practically impossible) to construct explicit step-by-step instructions. Some of
these tasks were detecting intricate patterns, extracting information, performing
reasoning, and decision-making, among others. As any intelligent agent should be
capable of adapting its behavior based on observations and experiences, the study
of machine learning plays a crucial role in the advancement of artificial intelligence.

Designing algorithms to solve challenging tasks using rule-based systems, where a
predetermined set of rules is defined by humans, proves exceedingly difficult. Machine
learning algorithms, on the other hand, leverage statistical regularities present in
the data to learn from examples. The primary objective of such learning procedures
is generalization, which sets them apart from template matching algorithms or
look-up tables.

Deep learning is a subfield of machine learning that focuses on the development
and application of artificial neural networks, which are inspired by the structure
and function of the human brain. Deep learning algorithms automatically learn and
extract higher-level features from raw large amounts of data, such as images, text,
or audio. These have gained significant attention and achieved remarkable success
in various complex domains such as natural language processing, speech recognition
and image, and game playing.

Deep learning algorithms are composed of multiple layers of interconnected
artificial neurons, forming what is known as a neural network. Each neuron receives
inputs, performs a mathematical operation on those inputs, and produces an output
that is passed on to the next layer of neurons. The network learns to adjust the
parameters of its neurons based on the patterns in the data it is trained on, with
the goal of optimizing its performance on a specific task, such as image recognition
or natural language processing.

The core focus of deep learning is to learn multiple levels of representation of data

and coming up with higher levels of abstraction (LeCun et al., 2015; Schmidhuber,

2015). This approach draws inspiration from studies in neuroscience, which suggest
that the human brain processes information in multiple stages (McCulloch and
Pitts, 1943). Moreover, the hierarchical structure aligns well with the inherent
characteristics of the data itself. For example, in language, words combine to form
sentences, and sentences construct paragraphs in a document. In vision, pixels
contribute to edges, edges contribute to basic shapes, and these shapes collectively
compose more complex structures in a natural image.

While deep learning does not impose strict assumptions about the learned
representations, the concept of distributed representations plays an important role
(Hinton, 1984). Here, as opposed to learning local representations, the key idea is
to distribute information about data observations across multiple dimensions of the
feature space.

By doing so deep learning neural networks can express highly complex relation-
ships between features (Expressiveness). This allows the network to model intricate
patterns and dependencies that may not be evident in individual features or local
representations. The network can learn to combine features in non-linear ways,
enabling it to capture the complex interactions and dependencies that exist within
the data.

1.1.1 Neural networks

We use Artificial Neural Networks (ANNs) as multi-layered non-linear function
approximators, drawing loose inspiration from the biological neural networks found
in animal brains. ANNs are not algorithms per se, but rather structures composed
of multiple layers of mathematical transformations applied to input values. A promi-
nent example of a neural network architecture is the Feedforward Neural network or
multi-layer perceptron (MLP) (Rumelhart et al., 1986). This model consists of one
or more layers of arbitrary (usually, differentiable) functions. In general, a single
layer is a linear transformation followed by a non-linear transformation.

Let’s start with the standard case of a single hidden layer neural network as an
example, where vector-valued inputs are mapped to vector-valued outputs, as in

regression tasks. Let’s consider:

h(z) =b+ Wa(c+ V)

where,
= x is a d-dimensional vector (input)
= V is a k X d matrix (input-to-hidden weights)
= ¢ is a k-dimensional vector (hidden units offsets or biases)
= b is an m~dimensional vector (output units offset or biases)
=W is an m x k matrix (hidden-to-output weights)
= a is a threshold-like (non-linear) activation function differentiable almost every-

where (e.g. Tanh, or ReLU function) applied element-wise.

The vector-valued function h(z) = a(c+ Vx) is called the output of the hidden
layer and we call hidden units the elements of the hidden layer. The neural
network’s learnable parameters consist of weights and biases. Essentially, the
operation performed by h(x) can be applied to h(z) itself, but with different biases
and weights (different parameters).

By extending the aforementioned approach, we can construct a deep neural
network with two hidden layers. One can create a feed-forward multi-layer network
by stacking additional layers, each with potentially different dimensions (represented
as k in the previous example). Throughout this thesis, we will typically represent
the complete set of learnable parameters in a function approximator using lowercase
Greek letters, such as 6 or w.

A widely used variant in neural networks involves incorporating skip connections,
allowing a layer to receive input not only from the preceding layer but also from select
lower layers. Residual neural networks accomplish this by using skip connections
to jump over some layers, for instance, ResNets (He et al., 2016) or DenseNets
(Huang et al., 2017). Silver et al. (2017) and Espeholt et al. (2018) are examples of
reinforcement learning methods using a deep residual network architecture. The
parameters of each layer in the network are learnable, meaning they are modified by
an algorithm until the network approximates the target function with a satisfactory
degree of accuracy. This adjustment process, commonly termed learning or training,
is a key aspect of neural networks which will be explained in later sections. Despite
various algorithms having been introduced for training Multi-Layer Perceptrons
(MLPs), the most prevalent approaches are based on stochastic gradient descent

(Reddi et al., 2019; Ruder, 2017; Goodfellow et al., 2016).

1.1.2 CNN networks

Convolutional neural networks (CNNs) are a cascade of layers with each layer
generating an abstract representation of input by applying transformations across
interconnected layers (LeCun et al., 1989). These networks draw inspiration from
the human brain’s processing of visual information, mimicking its mechanisms
(Patterson and Gibson, 2017). The primary feature of CNNs are the convolutional
layers that make up the network. The convolutional layers consist of filters that
act upon the input image = in a pixel-wise manner to produce an output y, at
a given pixel position (i,7). Each of these filters, of dimensions M by N, has a
corresponding set of learnable parameters—weights denoted as W, and biases, b,
that the network learns.

Every convolutional layer generates feature maps by convolving the input with
the corresponding layer’s filter. The output feature maps vary in their abstraction
levels based on the layer’s position within the network. Lower level semantic features
such as edges or colors are closer to the input layer, while mid to high level semantic
features such as object parts or entire objects themselves can be determined near
the output at the later layers.

In addition to the convolutional layers, a CNN is constructed by incorporating
supplementary layers, each playing distinct roles in shaping the ultimate output of
the network. Some of these common layers include pooling layers, unpooling layers,
batch normalization layers (Ioffe and Szegedy, 2015), dropout layers (Srivastava
et al., 2014), linear layers, and activation layers (Sharma et al., 2017).

Pooling layers serve to decrease the input’s scale, reducing the number of network
computations (Scherer et al., 2010). This downsampling reduces the feature map
resolution. With the lower feature map resolution, spatial feature invariance is
improved, making the network more robust to translational shifts. Max pooling
and average pooling are typical methods employed in pooling, offering a means to
extract salient information (Lee et al., 2016). Conversely, unpooling layers perform
the approximate inverse function of the pooling layers by upsampling the input
data.

Batch normalization layers compute normalized outputs across each dimension
of the layer’s input (Ioffe and Szegedy, 2015). This normalization occurs prior to
the activation layers, serving to stabilize the activation distribution and acting as a

regularizer technique. This regularization allows for much higher learning rates to

be used in training, with less emphasis needed on the initialization of weights, while
simultaneously enhancing accuracy and speeding up convergence time. Dropout
Layers are similar to batch normalization layers, in that dropout layers also work to
regularize the neural network (Srivastava et al., 2014). However, dropout layers do
this regularization by introducing noise to the units within the neural network layer,
and randomly removing some of these units. The removal of the units additionally
aids to prevent overfitting of the network.

The relationship between the depth of a CNN and its performance has been
studied through the development of VGGNet, revealing that deeper networks
result in higher accuracy for image classification tasks (Simonyan and Zisserman,
2014). Additionally, this high performance from deep networks can be extended
to other object recognition or localization tasks as well. Based on a standard
CNN architecture, which usually has fewer than five convolutional layers, VGGNet

extends the number of convolutional layers to form a 19-layer network.

1.1.3 Training

In the standard set-up for gradient descent, we address the general optimization
problem of minimizing a loss function £: miny £(0). This function takes the neural
network’s parameters, denoted as f(6), as input and returns a scalar value that
quantifies how well the network represents the target function. Given access only
to first-order evaluations of L, the parameters 6 are iteratively updated by stepping
in the opposite direction of the gradient until convergence: €1 < 6 — oy 7 Oi L.
Here, k is the index of the update iteration and «y is the learning rate.

We distinguish three variants of gradient descent which are called batch gradient
descent, stochastic gradient descent, and minibatch gradient descent.

The first one follows a gradient computed on the whole dataset. The second
follows a gradient computed on a single example sampled uniformly from the dataset.
The third one, which is the one we will use in practice and sits in the middle of
both, processes a small subset of the training examples at a time. Minibatch
gradient descent is our method of choice because computational considerations,
batch gradient descent demands fitting the whole dataset into memory (often not
realistic), while stochastic gradient descent suffers from too much variance.

Minibatch gradient descent still has variance, albeit reduced compared to the

stochastic version, and it has been shown that this remaining variance aids in
exploring the parameter space, effectively serving as a form of regularization. In
what follows, we employ two different gradient descent optimizers: Adam (Kingma
and Ba, 2014) and RMSProp (Tieleman and Hinton, 2017). These optimizers adjust
the learning rate o based on approximations of the first and second moments of
past gradients.

Overall, the procedure used for computing gradients in the case of feed-forward
multi-layer networks is called the back-propagation algorithm (Rumelhart et al.,
1985; LeCun et al., 1988). In broad terms, diverse strategies for MLP training
are guided by two core considerations: (i) training as efficiently as possible, which
involves reducing training error while sidestepping local minima traps, and (ii)
controlling the expressiveness of the neural network subject to the amount of
training data so as to prevent overfitting and subsequently minimize generalization

error.

1.1.4 Optimization

Thoughtfully configuring the neural network structure, fine-tuning hyperparam-
eters, and defining an appropriate regularization for the loss function are essential
factors to consider before the training of neural networks. Despite their significance,
these crucial design choices can be nuanced and occasionally remain implicit in
scientific literature. For example, the difficult task of training deep neural networks
is notably influenced by the choice of network initialization (Goodfellow et al., 2016).
A few widely adopted initialization techniques include (Glorot and Bengio, 2010)
and (He et al., 2016), and all depend on the neural network design choices (network
structure and activation functions).

Furthermore, various principles govern the establishment of the learning rate,
and in many cases, a fixed value is not employed due to potential issues arising from
excessively large or small gradients. By automatically adjusting the learning rate,
one aims to maintain gradients within favorable ranges that evade problems such as
error landscape plateaus (where gradients are too small) or may overstep minima,
preventing the goal of finding good solutions (when gradients are too large). Adam
optimization (Kingma and Ba, 2014) builds upon the idea of adaptive learning rates
from AdaGrad (Duchi et al., 2011) and RMSProp (Tieleman and Hinton, 2017).

Unless specified, we use Adam as our optimization method in the rest of this thesis.

1.2 Reinforcement Learning

Reinforcement learning is a subfield of machine learning that studies how agents
learn behavioral patterns, referred to as policies, to maximize an objective, denoted
as reward, while interacting with an environment. In the standard reinforcement
learning setting (see Sutton and Barto, 2018), agents interact with a Markov Decision
Process (MDP), characterized by a set of states S, a set of possible actions A, a
set of possible rewards R, a state transition distribution p(s'|s,a) and a reward
distribution p(r|s’,s,a)! (Puterman, 2014).

Agents interact with their environment by selecting actions based on a policy
m(als), which is a probability mass (or density, if A is infinite) function. Once an
action is selected, agents observe a reward and the next state; this sequence of
state-action-reward-state is often termed as a transition. Agents’ interactions are
frequently categorized into episodes, and are denoted as sg, ag, 9, S1, @1, 71, These
episodes may be infinite, in which case the quantity of interest is the discounted
sum of rewards (or return), defined as Gy = 7+ yryp1 + 72 2+ = Yoo, V1,
where v € [0,1) is a discount factor that causes the agent to prioritize nearer
rewards (Sutton and Barto, 2018).

Agents frequently estimate these returns using a learned value function, V :
S — R, which is trained to approximate the true expected return of a state
vr(8) £ Er[Gy|s; = s]. Alternatively, many algorithms opt to estimate an action-
conditioned variant of the value function, generally denoted as @) : & x A —
R : Q*(s,a) = E[Gy|s; = s,a; = a]. When actions are chosen based on a policy
7, estimating () is strictly more general than estimating V', given that a value

function V' can be recovered by calculating the expectation of) over actions:
V(S) = EaNﬂ(a|5) [Q(S, a)]

1. These take the form either of probability mass functions or probability density functions,
depending on the finiteness of S and R.

1.2.1 TD Learning

While numerous techniques exist to estimate) and V', the methods used in
this thesis are based on temporal-difference (TD) learning. In TD methods, agents
learn from individual transitions of the form (s;, as, 74, 8141) € S X A X R x S,
updating their estimates of V'(s;) or Q(s, a;) using their estimate for the value of
S¢11- In the context of value learning, the T'D error of a transition is characterized
as 8 = r; + vV (s411) — V(s). Under the premise of unlimited data and particular
optimization assumptions (Robbins and Monro, 1951), the correct value function
can be learned through iterative minimization of this error, resulting in convergence
with a rate determined by 7 (Sutton and Barto, 2018).

This work predominantly centers on Q-learning (Watkins and Dayan, 1992), a
variant of TD learning used to jointly estimate the optimal policy 7*, defined as
7 £ argmax, B, [Go], and the optimal value function, expressed as ¢*(s,t) =
E.[Gi|sy = s,a; = a]. In scenarios where the MDP is perfectly known, and
states and actions can be enumerated, an agent’s estimate of) can be iteratively
improved by applying the Bellman optimality operator, defined as @Q;11(S, A;) =
E[r; + v max, Qi(S¢+1,a)] (Sutton and Barto, 2018); this operator converges to the
optimal policy m = 7* and Q function) = ¢* at its fixed point. Conversely, when
the MDP is not known, () must be learned from data, generally done by minimizing
a TD error corresponding to the operator §; £ r, + ymaxe,,, Q(Si+1, a1) — Q(S, a).

If the state and action spaces are small, one can store all the ()-values in a table
of size |S| x |A|. For most problems of interest, however, state spaces are very large
(and possibly infinite). In these cases, one can use a function approximator, such as

a neural network, parameterized by 6: Qg ~ Q).

1.2.2 Off-Policy Learning

The objectives established in TD learning involve multiple expectations: over
the agent’s policy, the environment’s reward distribution, and the environment’s
transition function. In cases where the MDP in question is fully known, these
expectations are not problematic, as they can be directly evaluated. However,
real-world scenarios often deviate from this ideal, necessitating the approximation
of these expectations through samples drawn from the agent’s interactions with the

environment.

Strategies for doing so can be categorized into two classes: on-policy and off-
policy, determined by whether the data utilized is collected according to the current
policy 7 or some other policy or set of policies. Off-policy methods offer notable
theoretical advantages, enabling agents to learn from arbitrarily-collected data, but
frequently suffer from instability, particularly when combined with TD learning and
function approximators such as neural networks (Sutton and Barto, 2018).

In the context of Q-learning, the agent’s policy often leans towards determinism.
This allows the agent to learn what is strictly the optimal policy, it means that
the agent will generally not select a wide-enough variety of actions leading to
insufficient exploration of its environment. This limited exploration can result in
situations where the best action for a given state remains unexplored. Consequently,
in Q-learning, it’s a common practice for agents to collect data in their environment
according to stochastic exploration policy based on 7 but with added noise. As a
result, data for Q-learning is never sampled according to the agent’s actual policy
(Schwarzer et al., 2021).

1.2.3 Deep Reinforcement Learning

In scenarios where states and actions can be explicitly enumerated, the learning
process for @) involves constructing a matrix of dimensions |S| x |A|, and V' can
be learned as an |.A|-dimensional vector. In broader contexts, however, function
approximation must be used for @) and V. Among parametric function approxima-
tion methods, both linear regression and neural networks are frequently adopted.
In cases where linear function approximation is employed, some guarantees of
stability or performance are available (Sutton and Barto, 2018). Nonetheless, in
practice nonlinear function approximation is commonly used in numerous instances,
particularly those with visual inputs (for example, see Mnih et al., 2015).

When using parametric function approximation with Q-learning, as we do in this
work, it’s a common practice to minimize the subsequent objective using gradient

descent on the parameters of Q):
Lo(8t; a5, 74, $e41) = (Q(S1, ar) — Elry + 7y max Qi(St41, a)])2 (1.1)

where @); is a separate “target” function reflecting an older version of Q). It is key
that () not be modified by gradients taken through the target ();, even when Q)

10

is defined to be the same as); failing to do this can often lead the algorithm to
arrive at incorrect solutions (Sutton and Barto, 2018). In practice, this objective is
optimized using samples taken from the environment. The data gathered by the
agent is stored in a replay buffer, a buffer of the agent’s most recent experiences.
It’s typical for buffer sizes to range up to several million transitions.

Deep Q-Learning, also known as Deep Q Networks (DQN), has emerged as a
particularly successful technique in reinforcement learning. This success is primarily
attributed to the incorporation of numerous algorithmic enhancements that go
beyond the foundational Q-learning algorithm; when combined, in Rainbow (Hessel
et al., 2018), the resulting algorithm brings enormous benefits, improving by far
efficiency and final performance over DQN agent (Mnih et al., 2015). We refer the
reader to (Hessel et al., 2018) for a full summary of these improvements.

Deep reinforcement learning has witnessed notable algorithmic advancements,
especially in the realm of distributional RL (Bellemare et al., 2017; Hessel et al., 2018).
Distributional RL approaches go beyond traditional RL methods by considering
not just the expected return but also the entire distribution of possible returns
(Bellemare et al., 2023). Instead of estimating a single value for each state-action
pair, distributional RL agents model the distribution of possible returns, providing
a more comprehensive understanding of the uncertainty and variability associated
with different actions.

Different ways of parameterizing return distributions were proposed in the form
of IQN (Dabney et al., 2018b) and QR-DQN (Dabney et al., 2018a) algorithms.
QR-DQN agent (Dabney et al., 2018a) computes the return quantile values for
N fixed, uniform quantiles. This has no restrictions or bound for value, as the
distribution of the random return is approximated by a uniform mixture of N
Diracs: Zp(z,a) :== + SN 00,(z,a), With each 6; assigned a quantile value trained
with quantile regression. IQN agent uses implicit quantile networks (IQN) as the
parameterization of the return distribution (Dabney et al., 2018b). IQN learns
to transform a base distribution (typically a uniform distribution in [0, 1]) to the

quantile values of the return distribution.

11

1.2.4 Replay buffer and batch size

A replay buffer, also known as an experience replay buffer, is a data structure
used to store and manage past experiences or transitions encountered by an RL
agent. Each experience typically consists of the agent’s current state, the action it
took, the resulting reward, and the next state it transitioned to. By storing and
randomly sampling experiences from the replay buffer, RL algorithms can break
the sequential correlation of experiences and alleviate issues such as catastrophic
forgetting.

Replay buffers are a valuable component that enhance the efficiency of algorithms
by enabling the reuse of data for multiple training iterations, rather than discarding
it immediately after collection. This reuse of data leads to improved sample efficiency.
Additionally, the replay buffer contributes to the stability of the network during
training.

Additionally, the replay buffer helps in creating a diverse and uncorrelated
dataset for training. It collects experiences during the agent’s interactions with
the environment and stores them in memory. These experiences are then sampled
randomly during the training process. By randomly sampling transitions from the
replay buffer, the RL algorithm can learn from a more diverse set of experiences
and reduce the bias introduced by sequential data (Mnih et al., 2015).

During training, the reinforcement learning algorithm updates its policy or value
function using a batch of experiences rather than updating after each individual
experience. The batch size refers to the number of experiences sampled from the
replay buffer in each training iteration. The choice of an appropriate batch size
depends on various factors, such as the complexity of the RL task, the available
computational resources, and the specific algorithm being used. It is often deter-
mined through experimentation and balancing the trade-off between computational
efficiency and learning stability.

The replay buffer is typically implemented as a circular buffer, where the oldest
transition in the buffer is removed to accommodate the new data that was just
collected. The most basic sampling strategy used is uniform sampling. In 2015,
Schaul et al. (2015) introduce prioritized experience replay, a method that assigns
priorities to experiences stored in the replay buffer based on their importance for
learning. Other variations, such as a distributed experience replay buffer (Horgan
et al., 2018), can be used.

12

1.2.5 Plasticity and Stability

Plasticity in reinforcement learning refers to the ability of an agent to adapt and
update its behavior based on new experiences or changes in the environment. It
involves modifying the agent’s policy or value function to improve its performance
over time. Plasticity is a crucial aspect of reinforcement learning as it allows an
agent to learn from interactions and adjust its decision-making process accordingly.

Issues with plasticity and related phenomena have recently garnered attention
in deep RL under a plethora of various terminologies. Lyle et al. (2022) show loss
of capacity for fitting targets in online RL and Kumar et al. (2021a) demonstrate a
related implicit underparameterization phenomenon caused by bootstrapping with
a greater emphasis on the offline RL scenario.

Both of these studies employ the feature rank as a proxy measure for plasticity.
Feature rank corresponds to an approximation of the rank of a feature embedding,
which represents how well states can be differentiated by updating only the final
layer of a neural network. It serves as a measure of the network’s capacity to adapt
rapidly to variations in the target function.

The works conducted by Sokar et al. (2023), Graesser et al. (2022) and, Abbas
et al. (2023) center around the topic of neuron saturation during the training
process, but Lyle et al. (2023) demonstrate that the phenomenon of plasticity loss
cannot be entirely attributed to saturation alone. Nikishin et al. (2022) discuss the
primacy bias in deep RL, a tendency to excessively train on early data damaging
further learning progress, and propose a strategy of periodically resetting a section
of the network to address this issue, while utilizing the replay buffer as a means of
transferring knowledge. Earlier, Igl et al. (2020) had previously observed that deep
RL agents might lose the ability to generalize due to non-stationarity and proposed
to use distillation as a mitigation mechanism.

Balancing stability and plasticity is a challenge in DRL. Too much plasticity
may result in the agent quickly forgetting previously learned knowledge, while too
much stability may hinder the agent’s ability to adapt to new situations or learn

new strategies. Achieving the right balance often requires careful design choices.

13

1.2.6 The Arcade Learning Environment

The introduction of the Arcade Learning Environment (ALE) by Bellemare et al.
(2013) marked the inception of a challenging suite for reinforcement learning, in
which agents learn to play Atari games using visual inputs. This task is different
from the conventional domains commonly explored in reinforcement learning in that
nonlinear function approximation (e.g., neural networks) are key. Atari games are
discrete control tasks, in which agents choose between up to 18 available actions
at each step. To further the progress in the field, Machado et al. (2017) present
some methodological best practices and a new version of the Arcade Learning
Environment that supports stochasticity and multiple game modes. These modes
were developed by game designers to make each game progressively more challenging

for human players.

1.2.7 Evaluation in Atari

Performance on Atari is typically calculated as the human-normalized score,

calculated separately on each game as h?;gﬁ:gf:f;f;;nmfgfe Bellemare et al. (2013)
introduce human_score and random_score values with some simple metrics that help
compare agents across a diverse set of domains. In contrast to numerous continuous
control domains like DM Control, where algorithm hyperparameters are frequently
tailored for individual tasks, the standard practice in deep reinforcement learning for
Atari games has since Bellemare et al. (2013) been to use a uniform hyperparameter
setting across all games. This practice significantly influences algorithmic design;
by forcing methods to be successful on a wide range of games, approaches requiring
finely-tuned hyperparameters are relatively disadvantaged, and encourages the
development of methods that organically tune hyperparameters during training,
such as Agent57 (Badia et al., 2020). Consequently, methods that deviate from
this standard, like Sunrise (Lee et al., 2020), cannot be directly compared to those
adhering to it.

Recently, Agarwal et al. (2021) introduce three tools for improving the quality
of experimental reporting in the few-run regime, all aligned with the principle of
accounting for statistical uncertainty in results. The tools are Stratified Bootstrap
Confidence Intervals, Performance Profiles, and, Robust and Efficient Aggregate

Metrics. For more rigorous and statistically meaningful analyses, we follow the

14

guidelines suggested by them. Specifically, we normalize all runs by the human scores
for each game, aggregate them, and report metrics with 95% stratified bootstrap

CIs and sample efficiency curves.

1.2.8 Data Efficiency and Representations

Data efficiency is a major challenge in deep reinforcement learning. Despite the
achievements of recent algorithms in solving complex tasks like DotA 2 (OpenAl
et al., 2019), Starcraft 2 (Vinyals et al., 2019), and Atari (Badia et al., 2020), their
success is often reliant on substantial amounts of experience. Consequently, there
has been an increasing emphasis on enhancing the data efficiency of reinforcement
learning, generally defined as improving performance with limited environment
interaction time. Several methods have been proposed to tackle this issue, from
model-based methods that aim to accelerate learning by learning an explicit model of
environment dynamics and reward distributions (e.g., Kaiser et al., 2019) to modified
versions of existing algorithms that were previously optimized for performance in
large-data regimes (for example, Data-Efficient Rainbow from Van Hasselt et al.,
2019).

Representation learning is an integral part of reinforcement learning algorithms,
and the success of reinforcement learning algorithms in large-scale, complex tasks
hinges on their ability to construct valuable representations of the environment with
which the algorithms interact. Thus, improving the representations learned by the
neural networks could improve data efficiency in Deep Reinforcement learning.

Feature selection and feature learning has long been an important subdomain
of RL, and with the advent of deep reinforcement learning there has been much
recent interest in comprehending and enhancing the representations acquired by
RL agents. Much of the work in representation learning has taken place from the
perspective of auxiliary tasks like self-supervised, contrastive or bisimulation metrics
losses (Jaderberg et al., 2016; Anand et al., 2020; Mazoure et al., 2020; Castro
et al., 2021)]; in addition to the primary reinforcement learning task, the agent may
attempt to predict and control additional aspects of the environment. Auxiliary
tasks shape the agent’s representation of the environment typically via gradient
descent on the additional learning objectives.

The idea behind using auxiliary tasks is to encourage the agent to learn useful

15

representations or acquire specific skills that help the agent learn faster or improve

its overall performance by providing additional learning signals.

Sample-Efficient RL on ALE: Sample efficiency has always been an import aspect
of evaluation in RL, as it can often be expensive to interact with an environment.
Kaiser et al. (2020) introduced the Atari 100K benchmark, which has proven to be
useful for evaluating sample-efficiency, and has led to a number of recent advances.

Kostrikov et al. (2020) use data augmentation to design a sample-efficient RL
method, DrQ, which outperformed prior methods on Atari 100K. Data-Efficient
Rainbow (DER) (Van Hasselt et al., 2019) and DrQ(e) (Agarwal et al., 2021)
simply modified the hyperparameters of existing model-free algorithms to exceed
the performance of existing methods without any algorithmic innovation.

Schwarzer et al. (2021) introduced SPR, which builds on Rainbow (Hessel et al.,
2018) and uses a self-supervised temporal consistency loss based on BYOL (Grill
et al., 2020) combined with data augmentation. SR-SPR (Schwarzer et al., 2021)
combines SPR with periodic network resets to achieve state-of-the-art performance
on the 100K benchmark. Ye et al. (2021) used a self-supervised consistency loss
similar to SPR (Chen and He, 2021).

EfficientZero (Ye et al., 2021), an efficient variant of MuZero (Schrittwieser et al.,
2020), learns a discrete-action latent dynamics model from environment interactions,
and selects actions via lookahead MCTS in the latent space of the model. Micheli
et al. (2023) introduce IRIS, a data-efficient agent that learns in a world model
composed of an autoencoder and an auto-regressive Transformer.

Recently, Schwarzer, Obando-Ceron, et al. (2023) introduced a value-based RL
agent, BBF (Bigger, Better, Faster), that achieves super-human performance in the
Atari 100K benchmark. BBF relies on scaling the neural networks used for value
estimation, as well as a number of other design choices that enable this scaling in a

sample-efficient manner.

1.3 Offline deep Reinforcement Learning

Offline RL focuses on the challenge of developing a policy using a static dataset

of trajectories, without any additional interactions with the environment. This

16

setting is particularly valuable for leveraging extensive historical interaction data in
real-world decision-making domains like robotics, recommendation systems, and
healthcare. (Shortreed et al., 2011).

Offline reinforcement learning (RL) refers to a scenario where the algorithm
operates without direct access to the MDP, instead relying on a pre-existing dataset
of transitions D = (s,a,s’,7(s,a)). The (unknown) policy that generated this
data is referred to as a behavior policy wg. Successful offline RL methods must
handle distributional shifts, as well as data collected via processes that may not be
representable by the chosen policy class. The challenges associated with offline RL
are extensively examined and discussed by Levine et al. (2020).

Despite the offline RL benefits such as sample efficiency, data reusability or risk
reduction, offline RL presents unique challenges. Offline RL algorithms typically
face challenges such as distributional shift, where the data distribution in the dataset
may differ from the distribution the agent would encounter during online interaction.
This can lead to poor performance or even catastrophic divergence when standard
RL algorithms are directly applied to offline data. Mitigating distributional shift
and ensuring effective policy improvement are active areas of research in offline RL.

Researchers are developing various algorithms and techniques, such as Con-
servative Q-Learning (CQL) (Kumar et al., 2020), Behavior Regularized Offline
Reinforcement Learning (BRAC) (Wu et al., 2019), DR3 (Kumar et al., 2021b) and
others, to address the challenges and improve the stability and performance on a
wide range of offline RL problems.

Although there is a large literature for offline RL algorithms, CQL still performs
very well on diverse domains and it is widely used as a backbone for building new
state of the art offline reinforcement learning algorithms. For instance, recently
Kumar et al. (2022) demonstrate that with careful design decisions, offline Q-learning
(CQL) can scale to high capacity models trained on large, diverse datasets from
many tasks, leading to policies that not only generalize broadly, but also learn
representations that effectively transfer to new downstream tasks and exceed the
performance in the training dataset. The authors combine CQL (Kumar et al.,
2020) with C51 (Bellemare et al., 2017) which leads to a drastic improvement in

performance when using large neural networks architectures.

17

Small batch deep
reinforcement learning

Authors: Johan Obando-Ceron, Marc G. Bellemare, and Pablo Samuel Castro.

This chapter presents a lengthened version of a joint work with Marc G. Belle-
mare and Pablo Samuel Castro. It was accepted to the conference track of the
Thirty-seventh Conference on Neural Information Processing Systems 2023 (Ceron

et al., 2023).

Contributions: I formulated the project, wrote code for and performed all of
the experiments for Atari listed in the paper. Marc Bellemare and Pablo Samuel

Castro provided advising and helped refine the paper.

Affiliation

— Johan Obando-Ceron, Mila, University of Montreal
— Marc G. Bellemare, Mila, University of Montreal
— Pablo Samuel Castro, Google Deepmind, University of Montreal

18

2.1 Introduction

One of the central concerns for deep reinforcement learning (RL) is how to
efficiently make the most use of the collected data for policy improvement. This is
particularly important in online settings, where RL agents learn while interacting
with an environment, as interactions can be expensive. Since the introduction
of DQN (Mnih et al., 2015), one of the core components of most modern deep
RL algorithms is the use of a finite replay memory where experienced transitions
are stored. During learning, the agent samples mini-batches from this memory to
update its network parameters.

Since the policy used to collect transitions is changing throughout learning, the
replay memory contains data coming from a mixture of policies (that differ from
the agent’s current policy), and results in what is known as off-policy learning. In
contrast with training data for supervised learning problems, online RL data is
highly non-stationary. Still, at any point during training the replay memory exhibits
a distribution over transitions, which the agent samples from at each learning step.
The number of sampled transitions at each learning step is known as the batch size,
and is meant to produce an unbiased estimator of the underlying data distribution.
Thus, in theory, larger batch sizes should be more accurate representations of the
true distribution.

Some in the supervised learning community suggest that learning with large
batch sizes leads to better optimization (Shallue et al., 2019), since smaller batches
yield noisier gradient estimations. Contrastingly, others have observed that larger
batch sizes tend to converge to “sharper” optimization landscapes, which can result
in worsened generalization (Keskar et al., 2017); smaller batches, on the other hand,
seem to result in “flatter” landscapes, resulting in better generalization.

Learning dynamics in deep RL are drastically different than those observed
in supervised learning, in large part due to the data non-stationarity mentioned
above. Given that the choice of batch size will have a direct influence on the agent’s
sample efficiency and ultimate performance, developing a better understanding of
its impact is critical. Surprisingly, to the best of our knowledge there have been no
studies exploring the impact of the choice of batch size in deep RL. Most recent
works have focused on related questions, such as the number of gradient updates
per environment step (Nikishin et al., 2022; D’Oro et al., 2023; Sokar et al., 2023),

19

but have kept the batch size fixed.

In this work we conduct a broad empirical study of batch size in online value-
based deep reinforcement learning. We uncover the surprising finding that reducing
the batch size seems to provide substantial performance benefits and computational
savings. We showcase this finding in a variety of agents and training regimes
(subsection 2.2.1), and conduct in-depth analyses of the possible causes (subsec-
tion 2.2.2). The impact of our findings and analyses go beyond the choice of the
batch size hyper-parameter, and help us develop a better understanding of the

learning dynamics in online deep RL.

2.2 Experimental results

2.2.1 The small batch effect on agent performance

In this section we showcase the performance gains that arise when training
with smaller batch sizes. We do so first with four standard value-based agents
(§2.2.1.1), with varying architectures (§2.2.1.2), agents optimized for sample effi-
ciency (§2.2.1.3), and with extended training (§2.2.1.4). Additionally, we explore
the impact of reduced batch sizes on exploration (§2.2.1.5) and computational cost

(§2.2.1.6).

Experimental setup: We use the Jax implementations of RL agents, with their
default hyper-parameter values, provided by the Dopamine library (Castro et al.,
2018) ! and applied to the Arcade Learning Environment (ALE) (Bellemare et al.,
2013).% Tt is worth noting that the default batch size is 32, which we indicate
with a black color in all the plots below, for clarity. We evaluate our agents on 20
games chosen by Fedus et al. (2020) for their analysis of replay ratios, picked to
offer a diversity of difficulty and dynamics. To reduce the computational burden,
we ran most of our experiments for 100 million frames (as opposed to the standard

200 million). For evaluation, we follow the guidelines of Agarwal et al. (2021).

1. Dopamine code available at https://github.com/google/dopamine.
2. Dopamine uses sticky actions by default (Machado et al., 2017).

20

Specifically, we run 3 independent seeds for each experiment and report the human-
normalized interquantile mean (IQM), aggregated over the 20 games, configurations,
and seeds, with the 95% stratified bootstrap confidence intervals. Note that this
means that for most of the aggregate results presented here, we are reporting mean
and confidence intervals over 60 independent seeds. All experiments were run on
NVIDIA Tesla P100 GPUs.

2.2.1.1 Standard agents

o DON 1.5 Rainbow
S
[7p]
o] 08'
I 1.0
'© 0.61
g Batch Size:
Z 0.41 0.5- — 8
% ' 16
£0.2 —e— 32 (default)
T —— 64
= 0.0- 0.0] , . . .
2 3 20 40 60 80 100 0 20 40 60 80 100
Number of Frames (in millions) Number of Frames (in millions)
QR-DON 1.5+ IoN
1.251
1.001
1.01
0.75+1
0.501 0.51
0.254
0.004 ! i ! i i i 0.0 ! i i ‘ ! :
0 20 40 60 80 100 0 20 40 60 80 100
Number of Frames (in millions) Number of Frames (in millions)

Figure 2.1 — IQM for human normalized scores for DQN, Rainbow, QR-DQN, and IQN. All games
run with 3 independent seeds, shaded areas representing 95% confidence intervals.

We begin by investigating the impact reducing the batch size can have on four
popular value-based agents, which were initially benchmarked on the ALE suite:
DQN (Mnih et al., 2015), Rainbow (Hessel et al., 2018) (Note that Dopamine uses a
“compact” version of the original Rainbow agent, including only multi-step updates,
prioritized replay, and C51), QR-DQN (Dabney et al., 2018a), and IQN (Dabney

21

et al., 2018b). In Figure 2.1 we can observe that, in general, reduced batch size
results in improved performance. The notable exception is DQN, for which we
provide an analysis and explanation for why this is the case below. To verify that
our results are not a consequence of the set of 20 games used in our analyses, we ran
QR-DQN (where the effect is most observed) over the full 60 games in the suite and
report the results in Figure 2.2. Remarkably, a batch size of 8 results in significant
gains on 38 out of the full 60 games, for an average performance improvement of
98.25%. We provide complete results for all games using QR-DQN agent in Figure
2.3. In Figure 2.4, we can observe that using a smaller batch size value yields to a
37% of improving Aggregate Interquantile Mean over all 60 Atari 2600 games using
QR-DQN (Dabney et al., 2018a).

Batch Size 8 improvement over 32 when using QR-DQN

C
Q
o 10!
>
g il
5 0 III||||||||||||--- L
—)
o
x—-10
— Illll'illillllIII—IIIIllIll_IilJ:I—I'J:JIlIIIIIIi‘JLI—IIJL—lIIIIJLII'illi
T e e P T LT
DY 80652300555 5E2220SScSETEagYg '6-—"’C-—mw:WC“’=m“---m.o:’"><E°>~Lm-C<TJ“’E
08T 8RR 9ENEoCG00EL 55 oL Y ETT 800 8ANCEGEESRcEoXaXdE el
82 $8025<28vuT ggrines FECGSE S¥ £TLE0gGIEE V4502808 ET5133
> 2 © kS 0o
£8 ETTSE 3§ gz SR TEERRR ¥8 78335 5 FS 9”2 ga S gg
a2 s £ 3 2 3 &l =0 o ®2Ug 2 9 kel 5 £ 3N
5, G £ c N
ic >3 « S 2 23 o Q > £ 8 c=
N we a c] n
= o =
= £
S (]

Figure 2.2 — Evaluating QR-DQN (Dabney et al., 2018a) with varying batch sizes over all 60 Atari
2600 games. Average improvement obtained when using a batch size of 8 over 32 (default); All
games run for 3 seeds, with shaded areas displaying 95% stratified bootstrap confidence intervals.

2.2.1.2 Varying architectures

Deep neural networks have proven to be effective in extracting relevant features
from data for a variety of downstream tasks. Recently, researchers have become
interested in understanding the impact of scaling neural network architectures.
It has been observed that increasing the size of models often leads to significant
performance improvements in applications such as language modeling and computer

vision.

22

Building upon these promising findings, the deep reinforcement learning com-
munity has started exploring the effects of scaling the model size in function
approximation. By increasing the capacity of the neural network used to approxi-

mate the value or policy functions in RL algorithms, researchers aim to enhance

the agent’s learning and decision-making capabilities.

Figure 2.3 — Training curves for QR-DQN agent.
runs.

AirRaid o Alien Amidar Assault Asterix Asteroids
B - . -
. - - - .

Returns

Returns

Atlant\s

i

Batch Size:

8

16

32 (default)

BankHeist

=

BattleZone

i3 88 i

1

BeamRider

55555838

Berzerk

i

Bowlmg

Boxing

[

Breakout

§ 88888

Carnlva\

—~

[REREEER

%{

Centipede

.., ChopperCommand

B

" CrazyClimber

vvvvv r

DemonAttack

Batch Size:

—t'g

i boubIeDunk

16 B
i— 32 (default) | "

EIevatorActlon

Enduro

FishrngDérby

Freeway

[

Frostbite

g § 0§ %

\

3 Ggph“ér L] i

Gravitar

Hero

mlce‘}u-iocwlleyw "

Jamesbond

. JourneyEscape

Kangaroo
vvvvv Batch Size:

32 1defau|t) |

22222

I RRRERE

Krull

B

MsPacman

Wy

. 5 8§ 8§ %

E‘}\

~

NameThisGame

Phoenlx

Pitfall

?

Pong

[RREREEER]

Pooyan

PrivateEye

ﬂ

=

T (:)nbe; T

Vi

Rlverra\d

Batch Size:

sre8iid

-_— 16
= 32 (default)

ﬂm ﬂ

=§§§§§

N

L EEEEERE

ﬁﬂ

RoadRunner

Robotank

Seaquest

N Sknng "

"""" -

Solaris

Spacelnvaders

Tutankham

. . StarGunner Tennis TimePilot
5w 00 . N oo -

UpNDown

Batch Size:
—-='g

= 16

Venture

P e

™1 = 32 (default) "
i

VideoPinball

WizardOfWor

YarsRevenge

Zaxxon

EEREE]

R
?\

23

The results for all games are over 3 independent

—e— 32 (default)

) -
5 1.8 QR-DON

@

o :|+37%
N

=1.2-

£

§ Batch Size:

% 0.61 ——

S 16

T

=

o

0 25 50 75 100
Number of Frames (in millions)
Figure 2.4 — Aggregate Interquantile Mean (Agarwal et al., 2021) of human normalized scores

over all 60 Atari 2600 games using QR-DQN (Dabney et al., 2018a). All games run for 3 seeds,
with shaded areas displaying 95% stratified bootstrap confidence intervals.

Although the CNN architecture originally introduced by DQN (Mnih et al.,
2015) has been the backbone for most deep RL networks, there have been some
recent works exploring the effects of varying architectures (Espeholt et al., 2018;
Agarwal et al., 2022; Sokar et al., 2023; Schwarzer et al., 2023). We investigate the
small batch effect by varying the QR-DQN architecture in two ways: (1) expanding
the convolutional widths by 4 times (resulting in a substantial increase in the
number of parameters), and (2) using the Resnet architecture proposed by Espeholt
et al. (2018) (which results in a similar number of parameters to the original CNN
architecture, but is a deeper network). In Figure 2.5 we can observe that not only
do reduced batch sizes yield improved performance, but they are better able to
leverage the increased number of parameters (CNNx4) and the increased depth
(Resnet). We include the learning curves for each game when varying batch size

and using CNNx4 (see Figure 2.6) or Resnet (see Figure 2.7) architecture.

24

QR-DQN (CNNx4) 2.04 QR-DQN (Resnet)
Batch Size

—_— 8

N
o

1.51

=
u

Default CNN

1.01

Default CNN Default CNN

0.51

IQM Human Normalized Score
=
o

0.0-

0 100 0O 5 100
Number of Frames (in millions)
Figure 2.5 — IQM for human normalized scores with varying neural network architectures over 20

games, with 3 seeds per experiment. Shaded areas represent 95% stratified bootstrap confidence
intervals.

AirRaid Asterix MsPacman Breakout
] 40000 1504
¥ 20000 40004
=
2 100
4 20000
9 10000 2000 o0
0+ T T T T T T 01 T T T T T T 0 T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Freeway Gravitar Jamesbond MontezumaRevenge
400+
304
3000
[0 3004
E 20004
204 20004 4
% 200
1000
o 10 1000 8 1004 ’ '
T T T T T T 0+ T T T T T T 0 T T T T T T 01 T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
PrivateEye Qbert Seaquest Spacelnvaders
20000
o ; 100004
4 40001 15000 60001
S 4000
5 1]
‘q'j 2000+ 10000 5000
o« M{/V'w 50001 20001
0
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Venture Zaxxon Asteroids Bowling
1500+ 804
" A 10000 20001
£ 10007 A 1500
2
[}] 5000 1000
& 500
500
01 T T —'—"I Vﬂru 01 T T T T T T T T T T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
DemonAttack Pong YarsRevenge WizardOfWor
204 -
60000 1000004 10000
) 10
£ 200004 75000 Batch Size 7500
=] 04 8
40-5 50000 5000
o¢ 200004 ~10 e 16
25000 2500
— 32
0~ -20+ 0 0
T T
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100

Number of frames (in millions)

Figure 2.6 — Evaluating the effect of CNNx4 to QR-DQN, learning curves for all games.

25

AirRaid Asterix MsPacman Breakout
30000 300
0 4000001
€ 20000 40007 200
=1
ko] 2000001
o 10000 2000 100
o4 0. — o
T T T T T T T T T T T T T T T T T T T T
0 20 40 60 80 100 20 40 60 80 0 20 40 60 80 100 0 20 40 60 80 100
Freeway Gravitar Jamesbond MontezumaRevenge
30 10001 30004
2000
0
£ 50 Batch Size /°° 2000
= — 8 00
o 5007 1000+
o 10 —% 1000
— 37
o4 T T T T T 01, T T T T T 015 r T r T T
0 20 40 60 80 100 40 60 100 0 20 40 60 80 100 0 20 40 60 80 100
PrivateEye Qbert Seaquest Spacelnvaders
20000+
20000
&2 4000 150001 M 40000
=
=] 10000+
‘Q 2000 200001 100001
* 50007 ’M
01 0+ T T T T T T 04 T T T T T T 04 T T T T T T
100 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Venture Zaxxon Asteroids Bowling
1500 100004 80
20000+
) 7500 60
glooo-
T 500 10000 50007 0]
22 25001
0- 04 0 20
T T ; T r T T r T T r T T r T T r T
40 60 80 00 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
DemonAttack Pong YarsRevenge WizardOfWor
20
0 1000001 104 1000001 10000
=
E 0
@ 500004 50000 5000
22 -10
0- -20 T T T T T T T T T T 0 T T
100 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100

Number of frames (in millions)

Figure 2.7 — Evaluating the effect of Resnet to QR-DQN, learning curves for all games.

2.2.1.3 Atari 100k agents

There has been an increased interest in evaluating Atari agents on very few envi-

ronment interactions, for which Kaiser et al. (2020) proposed the 100k benchmark 3.

We evaluate the effect of reduced batch size on three of the most widely used agents

for this regime: Data-efficient Rainbow (DER), a version of the Rainbow algorithm

with hyper-parameters tuned for faster early learning (van Hasselt et al., 2019);

DrQ(e), which is a variant of DQN that uses data augmentation (Agarwal et al.,

2021); and SPR, which incorporates self-supervised learning to improve sample

efficiency (Schwarzer et al., 2020). For this evaluation we evaluate on the standard

26 games for this benchmark (Kaiser et al., 2020), aggregated over 6 independent

trials.

3. Here, 100k refers to agent steps, or 400k environment frames, due to skipping frames in the

standard training setup.

26

DER

g

S1.25 2.0

(V2]

©1.00 0

& +58% 15

£0.75

S 1.0 ;

Z0.50 Batch Size

S — 8

£0.25 05 16

T / /% —— 32 (default)

%0.00 0.0

= 0.01 0.05 0.11 10 20 30 0.01 0.05 0.11 10 20 30
Number of Frames (in Millions) Number of Frames (in Millions)

Figure 2.8 — Measured IQM of human-normalized scores on the 26 100k benchmark games, with
varying batch sizes, of DER and SPR. We evaluate performance at 100k agent steps (or 400k
environment frames), and at 30 million environment frames, run with 6 independent seeds for
each experiment, and shaded areas display 95% confidence intervals.

DrQ(e)

1.25

1.00

0.75

0.50

0.25'%///'/"
0.00] *~

0.01 0.05 0.11 10 20 30

Number of Frames (in Millions)

Figure 2.9 — Measured IQM of human-normalized scores on the 26 100k benchmark games, with
varying batch sizes, of DrQ(e). We evaluate performance at 100k agent steps (or 400k environment
frames), and at 30 million environment frames, run with 6 independent seeds for each experiment,
and shaded areas display 95% confidence intervals.

In Figure 2.8 and Figure 2.9, we include results both at the 100k benchmark
(left side of plots), and when trained for 30 million frames. Our intent is to evaluate
the batch size effect on agents that were optimized for a different training regime.
We can see that although there is little difference in 100k, there is a much more
pronounced effect when trained for longer. This finding suggests that reduced batch

sizes enables continued performance improvements when trained for longer.

27

2.2.1.4 Training Stability

In deep reinforcement learning, it is not uncommon for the performance to
plateau or reach a point where there is minimal improvement despite continued
training. Several factors can saturate the agent’s learning process as overfitting,
limited exploration or insufficient training data. Overcoming the performance
plateau in deep RL can be challenging, and it often requires a combination of
exploration strategies, architectural adjustments, and careful experimentation.

To further investigate whether reduced batch sizes enables continual improve-
ments with longer training, we extend the training of QR-DQN up to the standard
200 million frames. In Figure 2.10 we can see that training performance tends to
plateau for the higher batch sizes. In contrast, the smaller batch sizes seem to be

able to continuously improve their performance.

o) QR-DQN ION
S Batch Size I g .
315 - S I
% — 8 [3 1.57 i
ke 16 i o :
(O]
= — 939 &
© —_— 64 i + 0= :
.01 : i |
£1.0 y £1.0 !
o -) :
= ! = |
% ! Nt c | Batch Size
0.5 s | g 0.5 ! — 38
S ol S I 16
- Si T i — 32
= I = i — 64
0.0/ : : . . 0.044
0 50 100 150 200 0 50 100 150 200
Number of Frames (in millions) Number of Frames (in millions)

Figure 2.10 — Measuring IQM for human-normalized scores when training for 200 million frames
using Left: QR-DQN (Dabney et al., 2018a) and Right: IQN (Dabney et al., 2018b). Results
aggregated over 20 games, where each experiment was run with 3 independent seeds and we report
95% confidence intervals.

We include the learning curves for each game when varying batch size and using
QR-DQN (see Figure 2.11) or IQN (see Figure 2.12) algorithm. We report the

scores when training for 200 million frames.

28

30000

20000

10000

Returns

Returns

4000

2000

Returns

Returns

60000

40000

20000

Returns

AirRaid Asterix MsPacman Breakout
5000 \ 150
40000 4000
3000 v 100
20000 2000 s
1000
T T T T T 0 T T T T T T T T T T o T T T T T
[} 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
Freeway Gravitar Jamesbond MontezumaRevenge
2000
1500 2000 2000
1000 1000 1000
500 [
0 0 =
[50 100 150 200 0 50 100 150 200 [50 100 150 200 0 50 100 150 200
PrivateEye Qbert Seaquest Spacelnvaders
8000
600004 Batch Size
—_ 6000
40000 e
£8 4000
200001 64 2000
0 o
[50 100 150 200 0 50 100 150 200 0 50 100 150 200
Venture Zaxxon Asteroids Bowling
80
15000
2000 60
10000
5000 1000 40
T — T 0 T T T T T T T T T 0 T T T T T
[50 100 150 200 50 100 150 200 0 50 100 150 200 0 50 100 150 200
DemonAttack Pong YarsRevenge WizardOfWor
20 100000
10 75000
0 50000 v
-1 25000
-20
[50 100 150 200 0 50 100 150 200 [50 100 150 200 0 50 100 150 200

Number of frames (in millions)

Figure 2.11 — Learning curves for individual games, when trained for 200 million frames using
QR-DQN (Dabney et al., 2018a). Results aggregated over 3 seeds, reporting 95% confidence

intervals.

20000

2 15000

£

2 10000

9]

& 5000
0

AirRaid Asterix MsPacman Breakout
30000 6000
200
20000 4000
100
10000 2000
0 0
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
Freeway 3000 Gravitar 6000 Jamesbond , MontezumaRevenge
2000 4000 N
il Wt
1000 . 2000 1 |
r 0 0 A
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
PrivateEye Qbert Seaquest Spacelnvaders
- 40000
Batch Size
40000 e g 30000
i 20000
20000 == 32
—ge . 10000
o o
[50 100 150 200 0 50 100 150 200 0 50 100 150 200
Venture Zaxxon Asteroids Bowling
15000 60
2000
10000
40
5000 1000
20
0
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
DemonAttack Pong YarsRevenge WizardOfWor
20 20000
10 100000 15000
0 10000
50000
-10 5000
-20 0
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200

Number of frames (in millions)

Figure 2.12 — Learning curves for individual games, when trained for 200 million frames using
IQN (Dabney et al., 2018b). Results aggregated over 3 seeds, reporting 95% confidence intervals.

29

2.2.1.5 Impact on exploration

Exploration is a fundamental aspect of deep reinforcement learning that involves
the agent actively seeking out and gathering information about the environment
in order to discover new and potentially better policies. Effective exploration
strategies are crucial for learning optimal or near-optimal policies in complex RL
tasks. Without adequate exploration, the agent may get stuck in suboptimal policies
and fail to discover better solutions.

The simplest and most widely used approach for exploration is to select actions
randomly with a probability €, as opposed to selecting them greedily from the
current (g estimate. The increased variance resulting from reduced batch sizes (as
we will explore in more depth below) may also result in a natural form of exploration.
To investigate this, we set the target e value to 0.0 for QR-DQN 4. In Figure 2.13 we
compare performance across four known hard exploration games (Bellemare et al.,
2016; Taiga et al., 2020) and observe that reduced batch sizes tends to result in

improved performance for these games.

MontezumaRevenge x103 Venture Freeway x103 Gravitar
1.5 r"——‘—_
i 10.
2000+ / 30
E 1.01 20 Batch Size:
=]
ko]] — g 0.54
21000 0.51 16
10q| == 32 (default)
J — 64
01 . 0.0 ! ! ! . 0.01, ! !
0 50 100 O 50 100 O 50 100 0 50 100

Number of Frames (in millions)

Figure 2.13 — Performance of QR-DQN on four hard exploration games with a target e value of
0.0, and with varying batch sizes.

We include the IQM of human-normalized scores for the 20 games when varying
batch size and using € = 0 (see Figure 2.14). We report the scores when training

for 100 million frames.

4. Note that we follow the training schedule of Mnih et al. (2015) where the € value begins at
1.0 and is linearly decayed to its target value over the first million environment frames.

30

QR-DQN(e = 0)
Batch Size

1.251 — s
16
—_ 32

0.75] — 60 G ;

0.25-

IQM Human Normalized Score

0 50 100
Number of Frames (in millions)
Figure 2.14 — Aggregate IQM of human-normalized scores over 20 games with a target e value of

0.0. In all the plots 3 independent seeds were used for each game/batch-size configuration, with
shaded areas representing 95% confidence intervals.

2.2.1.6 Computational impact

In the last few years, deep learning has made remarkable advancements across a
wide range of applications. Notable examples include protein structure prediction
(Jumper et al., 2021, AlphaFold), text-to-image synthesis (Ramesh et al., 2021,
DALL-E), text generation (Brown et al., 2020, GPT-3), deep RL algorithms for
solving complex games (Dota2, Berner et al., 2019) and (GATO, Reed et al., 2022).
These achievements have been primarily driven by the strategy of scaling up deep
learning models to extremely large sizes and training them on massive amounts of
data.

While scaling of deep learning models has paved the way for significant progress,
training large models has become extremely expensive. For example, GPT-3 training
was estimated to cost $1.65 million with Google v3 TPUs (Lohn and Musser, 2022)
and inefficient /naive development of a transformer model would emit carbon dioxide
(CO2) equivalent to the lifetime carbon footprint of five cars (Strubell et al., 2019).
Concerningly, deep learning has still not reached the performance level required

by many of its applications. For example, deploying fully autonomous vehicles in

31

the real world demands human-level performance, which has not been reached yet.
Increasing the sizes of models and datasets to achieve such required performance
will render current training strategies financially, environmentally, and otherwise
unsustainable.

Considering the unsuitable increase in computational requirements, progress
with deep learning demands more compute-efficient training methods. A natural
direction is to eliminate algorithmic inefficiencies in the learning process, aiming to
reduce the time, cost, energy consumption, and carbon footprint associated with

training deep learning models (Bartoldson et al., 2023).

o DQN(n-step=3) 1.5 Rainbow

o

wiof 7 T ‘“/' -:;;—T

-c >

8 1.0 _’_i!

© 4 |

S !

= 0.5 Batch Size:

i 0.5' —_—— 8

£ 16

T —e— 32 (default)

T

2 —— 64

50.01 ¢ i | ; 0.01 ¢ ; R

-0 20 40 60 0 20 40 60
Time (hours) Time (hours)

QR-DQN L5 ION

0.51

0.01
0 20 40 60 0 25 50 75
Time (hours) Time (hours)

Figure 2.15 — Measuring wall-time versus IQM of human-normalized scores when varying batch
sizes in DQN (with n-step set to 3), Rainbow, QR-DQN, and IQN. Each experiment had 3
independent runs, and the confidence intervals show 95% confidence intervals.

Empirical advances in deep reinforcement learning are generally measured with
respect to sample efficiency; that is, the number of environment interactions required

before achieving a certain level of performance. It fails to capture computational

32

differences between algorithms. If two algorithms have the same performance with
respect to environment interactions, but one takes twice as long to perform each
training step, one would clearly opt for the faster of the two. This important
distinction, however, is largely overlooked in the standard evaluation methodologies
used by the DRL community.

We have already demonstrated the performance benefits obtained when reducing
batch size, but an additional important consequence is the reduction in computation
wall-time. Figure 2.15 demonstrates that not only can we obtain better performance
with a reduced batch size, but we can do so at a fraction of the runtime. As a
concrete example, when changing the batch size of QR-DQN from the default value
of 32 to 8, we achieve both a 50% performance increase and a 29% speedup in
wall-time.

It may seem surprising that smaller batch sizes have a faster runtime, since larger
batches presumably make better use of GPU parallelism. However, as pointed out
by Masters and Luschi (2018), the speedups may be a result of a smaller memory
footprint, enabling better machine throughput.

Key observations on reduced batch sizes:

— They generally improve performance, as evaluated across a variety of agents

and network architectures.

— When trained for longer, the performance gains continue, rather than plateau-
ing.
— They seem to have a beneficial effect on exploration.

— They result in faster training, as measured by wall-time.

Takeaway: The impact of reducing batch size on performance enhancement is
consistently evident when assessed across various agents and network architectures.
Interestingly, extending the training duration reveals a continual progression of
performance gains, in contrast to the typical plateau observed in other scenarios.
Notably, smaller batch size value influence exploration, fostering a more thorough
and effective learning process.

Many methods have been proposed to address the exploitation-exploration

dilemma, and some techniques emphasize exploration by adding noise directly to

33

the parameter space of agents (Fortunato et al., 2018; Hao et al., 2023; Plappert
et al., 2017; Gupta et al., 2018) which inherently adds variance to the learning
process. Noise perturbation is another approach that has been taken to induce
exploration (Eberhard et al., 2022).

Like these works, our analyses show that increasing variance by reducing the
batch size may result in similar beneficial exploratory effects, as the mentioned
works suggest. It is difficult to isolate the direct impact on exploration; however, the
improved performance observed on all the hard exploration games in Atari suggests
that improved exploration may be an advantageous consequence of the variance
induced by reduced batch size. We believe further work exploring the impact of
variance injection in deep RL algorithms is necessary.

Beyond enhanced performance, another notable advantage is the reduction in
training time, evident through faster convergence as measured by wall-time. When
focusing on the aspect of reducing batch size, the benefits become apparent in terms
of more efficient wall-time during training. While lowering the batch size might
seem counterintuitive at first, it often leads to enhanced training speed due to the
reduction in computation and memory requirements. Overall, these experiments
highlight the positive impact of smaller batch when optimizing compute efficiency

and agent’s performance.

2.2.2 Understanding the small batch effect

Having demonstrated the performance benefits arising from a reduced batch
size across a wide range of tasks, in this section we seek to gain some insight into
possible causes. We will focus on QR-DQN, as this is the agent where the small
batch effect is most pronounced (Figure 2.1). We begin by investigating possible
confounding factors for the small batch effect, and then provide analyses on the

effect of reduced batch sizes on network dynamics.

2.2.2.1 Relation to other hyperparameters

Learning rates The learning rate is a crucial hyperparameter in deep reinforcement
learning that determines the step size at which the parameters of the neural network
are updated during training. It plays a significant role in the convergence and

stability of the learning process. For instance the Adam optimizer combines the

34

)

s 1.21 Batch Size
R s 3

. 16

Y 0.8+ mmm 32(default)
= = 64

©

=

o 04'

=

s |

o

5e-06 5e-05 5e-04
Learning rate paramater

Figure 2.16 — Varying batch sizes for different learning values. Results aggregated IQM of human-
normalized scores over 20 games for QR-DQN.

benefits of both adaptive learning rates and momentum, allowing to converge faster
and more accurately, especially in high-dimensional parameter spaces (Kingma and
Ba, 2015).

Therefore, it is natural to wonder whether an improved learning rate could
produce the same effect as simply reducing the batch size. In Figure 2.16 we
explored a variety of different learning rates and observe that, although performance
is relatively stable with a batch size of 32, it is unable to reach the performance

gains obtained with a batch size of 8 or 16.

Second order optimizer effects All our experiments, like most modern RL agents,
use the Adam optimizer (Kingma and Ba, 2015), a variant of stochastic gradient
descent (SGD) that adapts its learning rate based on the first- and second-order
moments of the gradients, as estimated from mini-batches used for training. It is
thus possible that smaller batch sizes have a second-order effect on the learning-rate
adaptation that benefits agent performance. To investigate this we evaluated, for
each training step, performing multiple gradient updates on subsets of the original
sampled batch; we define the parameter BatchDivisor as the number of gradient
updates and dividing factor (where a value of 1 is the default setting). Thus, for

a BatchDivisor of 4, we would perform 4 gradient updates with subsets of size 8

35

instead of a single gradient update with a mini-batch of size 32. With an optimizer
like SGD this has no effect (as they are mathematically equivalent), but we may
see differing performance due to Adam’s adaptive learning rates. Figure 2.18 and
Figure 2.17 demonstrate that, while there are differences, these are not consistent

nor significant enough to explain the performance boost observed.

AirRai Asteri: Asteroil Bowli
15000+ irRaid sterix 15004 steroids owling
" 6000
€ 10000+ 12504 60
S 4000
° 1000+ 404
x 50001 2000
750
0 o 204
0 50 100 0 50 100 0 50 100 0 50 100
Breakout DemonAttack Freeway Gravitar
2000
6000 301
£ 401 4000 20
% 10004
o 20 2000+ 101
0 50 100 0 50 100 0 50 100 0 50 100
Jamesbond MontezumaRevenge MsPacman Pong
10004 —v L 4000 201
" 2000{ Batch Divisor
£ —_— 1
2 5001 1000{ —— 4 g 20001 o1
: A
04 T T 01; T T T T - —2015 y T
0 50 100 0 50 100 0 50 100 0 50 100
PrivateEye Qbert Seaquest Spacelnvaders
150007 6000+]
o 20004 1000
S 10000+ 4000
5 1000
& n’,! had %t 5000 20004 500
01
: v - 0ig T - 0l r : T . r
0 50 100 0 50 100 0 50 100 0 50 100
Venture WizardOfWor YarsRevenge Zaxxon
» 10001 75001 750001 75001
c
S 5000+ | 5000+
% 5004 50000
o 25004 25000 2500
04y v - 0l T T T y ~ 04 T r
0 50 100 0 50 100 0 50 100 0 50 100

Number of frames (in millions)

Figure 2.17 — Varying the number of gradient updates per training step, for a fixed batch size of
32. Performance of QR-DQN on tweenty games with different BatchDivisor value.

Relationship with multi-step learning In Figure 2.1 we observed that DQN was
the only agent where reducing batch size did not improve performance. Recalling
that the Dopamine version of Rainbow used is simply adding three components to
the base DQN agent, we follow the analyses of Hessel et al. (2018) and Ceron and
Castro (2021). Specifically, in Figure 2.21 (top row) we simultaneously add these
components to DQN (top left plot) and remove these components from Rainbow

(top right plot). Remarkably, batch size is inversely correlated with performance

36

MiniBatchSplits

_1

—

IQM Human Normalized Score
o
N
[

0 25 50 75 100
Number of Frames (in millions)

Figure 2.18 — Results aggregated IQM of human-normalized scores over 20 games for QR-DQN.

only when multi-step returns are used. Given that DQN is the only agent considered
here without multi-step learning, this discovery explains the anomalous findings
in Figure 2.1. Indeed, as Figure 2.20 shows, adding multi-step learning to DQN
results in improved performance with smaller batch sizes. To further investigate the
relationship between batch size and multi-step returns, in Figure 2.21 we evaluate
varying both batch sizes and n-step values for DQN, Rainbow, and QR-DQN. We
can observe that smaller batch sizes suffer less from degrading performance as the

n-step value is increased.

37

gl 5, DQN: Adding components 1.5 Rainbow: Removing components

ﬁ Default Prioritized

8 Multi-step Distributional

©

£]

§1.0 1.0

=2

e

]

£

:I::’ 0 5.

gO.S i : : : ' ! : : :
- 8 16 32 64 8 16 32 64

Batch size Batch size

Figure 2.19 — Measured IQM human normalized scores over 20 games with 3 independent seeds
for each configuration, displaying 95% stratified bootstrap confidence intervals. Left: Adding
components to DQN; Right: Removing components from Rainbow.

DQN

Batch Size:
—— 8

—o— 16
—e— 32 (default)
—— 64

0 20 40 60 80 100
Number of Frames (in millions)

IQM Human Normalized Score
o
(0]
Q

Figure 2.20 — Aggregate DQN performance with n-step of 3

£1.5 DQN 1.5 Rainbow 1.5 QR-DQN

£1.0 — 1.0 1.0

E o\‘— \\. ’\#‘

s — —y
z ; \\ — Batch Size ™~ /

c L4 —

50.5 . 05{ —2 —— 05 \

] o —= —t— o —t—
= — 64

50.0 0.0 0.0

= 1 3 5 7 9 11 13 15 1 3 5 7 9 11 13 15 1 3 5 7 9 11 13 15

NStep

Figure 2.21 — Varying batch sizes and n-steps in DQN (left), Rainbow (center), and QR-DQN

(right)

Key insights:

— The small batch effect does not seem to be a consequence of a sub-optimal

choice of learning rate for the default value of 32.

38

— The small batch effect does not arise due to beneficial interactions with the

Adam optimizer.
— The small batch effect appears to be more pronounced with multi-step learning.

— When increasing the update horizon in multi-step learning, smaller batches

produce better results.

Takeaway: The previous observed gains (arising because of a smaller batch size)
does not appear to stem from a sub-optimal selection of learning rate. The default
learning rate used (5e-05) was one optimized by prior work for a batch size of 32. It
has been previously shown that one should reduce learning rates when increasing
batch sizes (Wilson and Martinez, 2003), which is consistent with our findings (e.g.
reducing the learning rate can be beneficial when increasing the batch size).

Additionally, this effect remains distinct from any advantageous interactions with
the Adam optimizer and interestingly, its presence becomes more prominent within
the context of multi-step learning. Notably, as the update horizon in multi-step
learning is larger, the advantages of using smaller batches become increasingly
evident. This trend highlights that reducing batch size when using multi-step
learning can yield improved outcomes, suggesting a nuanced interplay between

batch size, learning dynamics, and optimization strategies.

2.2.2.2 Analysis of network optimization dynamics

In this section we will focus on three representative games (Asteroids, DemonAt-
tack, and Spacelnvaders), and include results for more games in the supplemental
material. In Figure 2.22 we present the training returns as well as a variety of
metrics we collected for our analyses. We will discuss each in more detail below.
The first column in this figure displays the training returns for each game, where

we can observe the inverse correlation between batch size and performance.

Variance of updates Intuition suggests that as we decrease the batch size, we will
observe an increase in the variance of our updates as our gradient estimates will
be noisier. This is confirmed in the second column of Figure 2.22, where we see an
increased variance with reduced batch size.

A natural question is whether directly increasing variance results in improved

39

Batch Size:

8

16

32 —— 64

x103 Returns LossVariance GradientNorm RepresentationNorm x102 Srank %] DormantNeurons
2.04 5
T 1.5 20 40+ 104 Al 404
g1.0
gL 104 20 5 N . 20
<0.57
T T T 0- T T T 0- T T T 0- T T T T T T 0- T T
0 50 100 O 50 100 O 50 100 O 50 100 O 50 100 O 50
x10* 20- x102 %102
Ez 1.04 154 5
b 101 41
g 1 101 0.5
o . 5 3
5
2.
n 0- T T T 0- T T |00 T T T 0- T T T T T
0 50 100 O 50 100 O 50 100 O 50 100 O 50
x103 x102
£ 201 401 107 301
o ‘ 44
24- AN s 20+
= 104 20+ E
32 21 104
]
Q
Yo y - 0 T - 01y v - 01 v T T v - 01 y
0 50 100 O 50 100 O 50 100 O 50 100 O 50 100 O 50

Number of Frames (in millions)

Figure 2.22 — Empirical analyses for three representative games with varying batch sizes. From left
to right: training returns, aggregate loss variance, average gradient norm, average representation
norm, srank (Kumar et al., 2021a), and dormant neurons (Sokar et al., 2023). All results averaged
over 3 seeds, shaded areas represent 95% confidence intervals.

performance, thereby (partially) explaining the results with reduced batch size. To
investigate, we added Gaussian noise (at varying scales) to the learning target Q5.
As Figure 2.23 and Figure 2.24 demonstrates, simply adding noise to the target

does provide benefits, albeit with some variation across games.

Gradient and representation norms Keskar et al. (2017) and Zhao et al. (2022)
both argue that smaller gradient norms can lead to improved generalization and
performance, in part due to less “sharp” optimization landscapes. In Figure 2.22
(third column) we can see that batch size is, in fact, correlated with gradient norms,
which may be an important factor in the improved performance.

There have been a number of recent works suggesting RL representations, taken
to be the output of the convolutional layers in our networks?®, yield better agent
performance when their norms are smaller. Gogianu et al. (2021) demonstrated
that normalizing representations yields improved agent performance as a result of
a change to optimization dynamics; Kumar et al. (2021b) further observed that

smaller representation norms can help mitigate feature co-adaptation, which can

5. This is a common interpretation used recently, for example, by Castro et al. (2021), Gogianu
et al. (2021), and Farebrother et al. (2023)

40

AirRaid Asterix Asteroids Bowling

15000 1500
2 60
5 100004 100004 10004
2]
500 204
01, T - 01 T T v T T y T
0 50 100 0 50 100 0 50 100 0 50 100
Breakout DemonAttack Freeway Gravitar
30/ 2000
757 (
] 100004 20
£]
3507 10004
. 5000 10-
01, v - 01 v ~ 01 v ~ 0l T
0 50 100 0 50 100 0 50 100 0 50 100
Jamesbond MontezumaRevenge MsPacman Pong
7.5 Target Noise Scale 201
« 1000 — None
£ 5.0- e 4000 .
© 5001 e 5.0
g 2.5 l 2000
0- T T T 0'0- T T T T T T _20- T T T
0 . 50 100 0 50 100 0 50 100 0 50 100
PrivateEye Qbert Seaquest Spacelnvaders
30001
@ 2000 7500
£]
1 1 50001 2000
£ 10007 0000
o 25001 10004
0.
r r ~ 01; , ~ 017 . r , r r
0 50 100 50 100 0 50 100 0 50 100
Venture WizardOfWor YarsRevenge Zaxxon
, 10007 7500+ 50001 7500
c
= 5000 0000+ 5000
2 500
-4 2500 250004 2500
0 ; - 01y r - ol v - 01 - .
0 50 100 0 50 100 0 50 100 0 50 100

Number of frames (in millions)

Figure 2.23 — Adding noise of varying scales to the learning target with the default batch size of
32. Performance of QR-DQN on twenty games with different target noise scale values.

degrade agent performance in the offline setting. As Figure 2.22 (fourth column)
shows, the norms of the representations are correlated with batch size, which aligns

well with the works just mentioned.

Effect on network expressivity and plasticity Kumar et al. (2021a) introduced the
notion of the effective rank of the representation sranks(¢)°, and argued that it is
correlated with a network’s expressivity: a reduction in effective rank results in an
implicit under-parameterization. The authors provide evidence that bootstrapping is
the likeliest cause for effective rank collapse (and reduced performance). Interestingly,
in Figure 2.22 (fifth column) we see that with smaller batch sizes srank collapse
occurs earlier in training than with larger batch sizes. Given that there is mounting

evidence that deep RL networks tend to overfit during training (Dabney et al., 2021;

6. § is a threshold parameter. We used the same value of 0.01 as used by Kumar et al. (2021a).

41

g

5 0.8-

wn

©

~ 0.6

g() 4 TargetNoiseScale
< = None
£0.2- 1.0
I

= 5.0
0.0+

0 25 50 75 100
Number of Frames (in millions)

Figure 2.24 — Results aggregated IQM of human-normalized scores over 20 games for QR-DQN.

Nikishin et al., 2022; Sokar et al., 2023), it is possible that the network is better
able to adapt to an earlier rank collapse than to a later one.

To further investigate the effects on network expressivity, we measured the
fraction of dormant neurons (neurons with near-zero activations). Sokar et al. (2023)
demonstrated that deep RL agents suffer from an increase in the number of dormant
neurons in their network; further, the higher the level of dormant neurons, the worse
the performance. In Figure 2.22 (rightmost column) we can see that, although
the relationship with batch size is not as clear as with some of the other metrics,
smaller batch sizes appear to have a much milder increase in their frequency. Further,

there does appear to be a close relationship with the measured srank findings above.

Key insights:
— Reduced batch sizes result in increased variance of losses and gradients. This
increased variance can have a beneficial effect during training.
— Smaller batch sizes result in smaller gradient and representation norms, which
tend to result in improved performance.

— Smaller batch sizes seem to result in networks that are both more expressive

and with greater plasticity.

Takeaway: Reducing batch sizes in training neural networks leads to an ampli-

42

fied variance of losses and gradients, which interestingly can yield advantageous
outcomes during the learning process. The introduction of this heightened variance
can be surprisingly beneficial, fostering exploration in the optimization landscape.
Consequently, the utilization of smaller batch sizes yields diminutive gradient
and representation norms, ultimately contributing to enhanced performance. Ad-
ditionally, these reduced batch sizes appear to foster networks with augmented
expressiveness and heightened plasticity, highlighting the potential for creating
models that are both adaptable and capable of capturing intricate patterns in data.

The conclusions drawn from reducing batch size emphasize the importance of
enhancing the stability of the loss landscape as a pivotal measure to foster plasticity.
A more seamless loss landscape not only streamlines the optimization process
but also demonstrates a propensity for superior generalization capabilities. These
plasticity results are likely to have many ancillary benefits, presenting an exciting

direction for future investigation.

2.2.3 Offline reinforcement learning

We next turn our attention to the offline reinforcement learning regime (Gulcehre
et al., 2020; Levine et al., 2020), where we are given a dataset of sample transitions
from which we would like to obtain a policy that performs well. Compared to
the online regime, learning offline is more challenging as there is more room for
overfitting to the fixed dataset, and there is no possibility for the agent to correct
its estimation mistakes by interacting with the environment (as argued by Ostrovski
et al. (2021)). We study the effect of using smaller batch size parameter for three
offline algorithms: DQN, CQL+C51, and CQL+DR3. Except for DQN, these
algorithms are specifically tailored to the offline regime, incorporating among other
things a penalty to mitigate value overestimation. We follow the training scheme
of (Kumar et al., 2021b): each agent is trained on 17 games from the ALE for 200
iterations (where each iteration consists of 62.5K gradient steps), and after each
iteration the agent is evaluated for 125K steps on the environment. The offline
dataset consists of the transitions experienced during the full training of a DQN
agent (Agarwal et al., 2020).

Figure 2.25 illustrates the impact of jointly varying multi-step learning and batch

43

DQN CQL+DR3 CQL+C51

64 W I |
32 (default) [| | [|
16 1 | |
8 s | i | |
0.03 0.06 0.09 0.75 0.90 1.05 1.0 1.1 1.2 1.3
IQM Human Normalized Score
DQN CQL+DR3 CQL+C51
64 M I |
32 (default) W=]| [|
16 I | I
8) | | |
0.04 0.08 0.12 0.16 0.90 1.05 1.20 1.1 1.2 1.3

IQM Human Normalized Score

Figure 2.25 — Training curves for DQN, CQL+DR3 and CQL+C51 offline agents with multi-step
learning Top: n = 1 and Bottom: n = 3. The results for all games are over 5 independent runs.

size as we do in section 2.2.2. In the case of CQL+C51 (the highest-performing
method), it is clear that when n is increased from 1 to 3, it is beneficial to also
reduce the batch size (from 32 to 16), in line with our previous findings. For DQN
and CQL+DR3, the relative performance improvement is larger when using smaller

batch size and using multi-step learning.

2.3 Related Work

There is a considerable amount of literature on understanding the effect of batch
size in supervised learning settings. Keskar et al. (2016) presented quantitative
experiments that support the view that large-batch methods tend to converge to
sharp minimizers of the training and testing functions, and as has been shown in
the optimization community, sharp minima tends to lead to poorer generalization.
Masters and Luschi (2018) support the previous finding, presenting an empirical
study of stochastic gradient descent’s performance, and reviewing the underlying
theoretical assumptions surrounding smaller batches. They conclude that using
smaller batch sizes achieves the best training stability and generalization perfor-

mance. Additionally, Golmant et al. (2018) reported that across a wide range of

44

network architectures and problem domains, increasing the batch size yields no
decrease in wall-clock time to convergence for either train or test loss.

Although batch size is central to deep reinforcement learning algorithms, it has
not been extensively studied. One of the few results in this space is the work by
Stooke and Abbeel (2018), where they argued that larger batch sizes can lead to
improved performance when training in distributed settings. Our work finds the
opposite effect: smaller batch sizes tends to improve performance; this suggests that
empirical findings may not directly carry over between single-agent and distributed
training scenarios.

Fedus et al. (2020) presented a systematic and extensive analysis of experience
replay in Q-learning methods, focusing on two fundamental properties: the replay
capacity and the ratio of learning updates to experience collected (e.g. the replay
ratio). Although their findings are complementary to ours, further investigation into
the interplay of batch size and replay ratio is an interesting avenue for future work.
Finally, there have been a number of recent works investigating network plasticity
(Nikishin et al., 2022; D’Oro et al., 2023; Sokar et al., 2023), but all have kept the
batch size fixed.

2.4 Conclusion

In online deep RL, the amount of data sampled during each training step is
crucial to an agent’s learning effectiveness. Common intuition would lead one to
believe that larger batches yield better estimates of the data distribution and yield
computational savings due to data parallelism on GPUs. Our findings here suggest
the opposite: the batch size parameter generally alters the agent’s learning curves
in surprising ways, and reducing the batch size below its standard value is often
beneficial.

From a practical perspective, our experimental results make it clear that the
effect of batch size on performance is substantially more complex than in supervised
learning. Beyond the obvious performance and wall-time gains we observe, changing
the batch size appears to have knock-on effects on exploration as well as asymptotic

behaviour. Figure 2.16 hints at a complex relationship between learning rate and

45

batch size, suggesting the potential usefulness of “scaling laws” for adjusting these
parameters appropriately.

Conversely, our results also highlight a number of theoretically-unexplained
effects in deep reinforcement learning. For example, one would naturally expect that
increasing the batch size should increase variance, and eventually affect prediction
accuracy. That its effect on performance, both transient and asymptotic, should so
critically depend on the degree to which bootstrapping occurs (as in n-step returns;
Figure 2.21) suggest that gradient-based temporal-difference learning algorithms

need a fundamentally different analysis from supervised learning methods.

2.4.1 Future Work

Our focus in this paper has been on value-based online methods. This raises the
question of whether our findings carry over to actor-critic methods, and different
training scenarios such distributed training (Stooke and Abbeel, 2018). While
similar findings are likely for actor-critic methods, the dynamics are sufficiently
different in distributed training that it would likely require a different investigative
and analytical approach.

Our work has broader implications than just the choice of the batch size hyper-
parameter. For instance, our findings on the impact of variance on performance
suggest a promising avenue for new algorithmic innovations via the explicit injection
of variance. Most exploration algorithms are designed for tabular settings and then
adapted for deep networks; our results in section 2.2.1.5 suggests there may be
opportunities for exploratory algorithms designed specifically for use with neural
networks.

Another interesting direction would be to study how large networks interact
with RL algorithms when using smaller batch size. Lastly, our analysis on smaller
batch size point towards stabilizing the loss landscape as a crucial step towards
promoting plasticity. This approach is expected to yield numerous additional
advantages, opening up exciting avenues for future research. A more seamless
loss landscape offers several benefits, making optimization easier and leading to
improved generalization.

Therefore, investigating the interplay between generalization and small batch

size for reinforcement learning could be a promising direction for further exploration,

46

as it can provide deeper insights into their complementary roles. We hope our
analyses can prove useful for further advances in the development and understanding

of deep networks for reinforcement learning.

47

Conclusion

Experimental design in reinforcement learning is no small task (Eimer et al.,
2023; Aratjo et al., 2021; Andrychowicz et al., 2021). Running good experiments
requires attention to detail and at times significant computational resources. The
large computational limitations and the complex interplay between Deep Learning
models and RL algorithms make it hard to characterize the learning dynamics of
DRL agents and the interplay among components. Despite the great potential
of DRL in several domains, DRL is far from well understood. This impedes the
development of more advanced algorithms and also prevents the deployment of
DRL agents in broader real-world scenarios. Although the learning dynamics of
RL agents has been studied with tabular and linear approximation, knowing the
learning dynamics of DRL agents is challenging and still an open research problem.

Our work is a contribution in this direction. We investigate the critical role of
the interplay between different components (batch size and multi-step learning) in
the performance of deep RL algorithms, and explore how this affects the learning
dynamics of DRL agents.

Despite recent progress (Sokar et al., 2023; D’Oro et al., 2023; Schaul et al.,
2022), there is still much room for developing a better understanding of the many
components, and their complex interactions, in training deep networks for RL.
Increasing this understanding can aid in the development of new methods and in
more rigorous methods for evaluating them. We encourage researchers to conduct
experiments to obtain a deeper understanding of new methods so as to better
prepare the community (both academic and applied) when building new deep RL
agents.

It is worth emphasizing that the landscape of deep RL is marked by its rapid
evolution. New methods are constantly being introduced, each with its unique
set of promises and challenges. By engaging in experimental pursuits, researchers
not only aid in demystifying these novel techniques but also contribute to their

understanding and refinement when creating more capable deep RL algorithms.

48

Given the current level of design complexity achieved by deep reinforcement
learning agents, any design choice may have a cascade effect whose consequences we
do not predict in advance. Acknowledging this possibility and being aware of it may
be an important step toward uncovering latent impacts, and potentially reshaping
them into design choices with clearer consequences.

In a broader context, this paper delves into the utilization of a newfound insight
to inform the development of forthcoming deep reinforcement learning algorithms.
We view this endeavor as an illustration of how the advancement of proficient deep
reinforcement learning methods should encompass more than just extending current
algorithms or devising novel ones. It should also involve uncovering phenomena
associated with deep RL systems, along with the development of strategies to

harness them in order to enhance performance.

49

Bibliography

Zaheer Abbas, Rosie Zhao, Joseph Modayil, Adam White, and Marlos C Machado.
Loss of plasticity in continual deep reinforcement learning. arXiv preprint

arXiv:2303.07507, 2023. Cited on page 13.

Rishabh Agarwal, Dale Schuurmans, and Mohammad Norouzi. An optimistic

perspective on offline reinforcement learning. 2020. Cited on page 43.

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron Courville, and
Marc G Bellemare. Deep reinforcement learning at the edge of the statistical
precipice. Advances in Neural Information Processing Systems, 2021. Cited on
pages vii, 14, 16, 20, 24, and 26.

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron Courville, and
Marc G Bellemare. Beyond tabula rasa: Reincarnating reinforcement learning. In
Thirty-Sizth Conference on Neural Information Processing Systems, 2022. Cited
on page 24.

Ankesh Anand, Evan Racah, Sherjil Ozair, Yoshua Bengio, Marc-Alexandre Coté,
and R Devon Hjelm. Unsupervised state representation learning in atari, 2020.

Cited on page 15.

Marcin Andrychowicz, Anton Raichuk, Piotr Stanczyk, Manu Orsini, Sertan Girgin,
Raphaél Marinier, Leonard Hussenot, Matthieu Geist, Olivier Pietquin, Marcin
Michalski, Sylvain Gelly, and Olivier Bachem. What matters for on-policy deep
actor-critic methods? a large-scale study. In International Conference on Learning
Representations, 2021. URL https://openreview.net/forum?id=nIAxjsniDzg.
Cited on page 48.

Joao Guilherme Madeira Aratjo, Johan Samir Obando Ceron, and Pablo Samuel
Castro. Lifting the veil on hyper-parameters for value-based deep reinforcement
learning. In Deep RL Workshop NeurIPS 2021, 2021. Cited on page 48.

50

https://openreview.net/forum?id=nIAxjsniDzg

Adria Puigdomenech Badia, Bilal Piot, Steven Kapturowski, Pablo Sprechmann,
Alex Vitvitskyi, Daniel Guo, and Charles Blundell. Agent57: Outperforming
the atari human benchmark. arXiv preprint arXiv:2005.13350, 2020. Cited on
pages 14 and 15.

Brian R Bartoldson, Bhavya Kailkhura, and Davis Blalock. Compute-efficient deep
learning: Algorithmic trends and opportunities. Journal of Machine Learning
Research, 24:1-77, 2023. Cited on page 32.

Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Sax-
ton, and Remi Munos. Unifying count-based exploration and intrinsic motiva-
tion. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, editors,
Advances in Neural Information Processing Systems, volume 29. Curran As-
sociates, Inc., 2016. URL https://proceedings.neurips.cc/paper_files/
paper/2016/file/afda332245e2af431fb7b672a68b659d-Paper . pdf. Cited on
page 30.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade
learning environment: An evaluation platform for general agents. Journal of
Artificial Intelligence Research, 47, 2013. Cited on pages 14 and 20.

Marc G. Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on
reinforcement learning. In Proceedings of the 34th International Conference on
Machine Learning - Volume 70, ICML’17, page 449-458, 2017. Cited on pages 11
and 17.

Marc G Bellemare, Will Dabney, and Mark Rowland. Distributional reinforcement
learning. 2023. Cited on page 11.

Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemystaw
Debiak, Christy Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris
Hesse, et al. Dota 2 with large scale deep reinforcement learning. arXiv preprint
arXiv:1912.06680, 2019. Cited on page 31.

Christopher M Bishop and Nasser M Nasrabadi. Pattern recognition and machine
learning, volume 4. Springer, 2006. Cited on page 1.

51

https://proceedings.neurips.cc/paper_files/paper/2016/file/afda332245e2af431fb7b672a68b659d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/afda332245e2af431fb7b672a68b659d-Paper.pdf

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Pra-
fulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell,
et al. Language models are few-shot learners. Advances in neural information
processing systems, 33:1877-1901, 2020. Cited on page 31.

Pablo Samuel Castro, Subhodeep Moitra, Carles Gelada, Saurabh Kumar, and
Marc G. Bellemare. Dopamine: A Research Framework for Deep Reinforcement
Learning. 2018. URL http://arxiv.org/abs/1812.06110. Cited on page 20.

Pablo Samuel Castro, Tyler Kastner, Prakash Panangaden, and Mark Rowland.
Mico: Improved representations via sampling-based state similarity for markov
decision processes. Advances in Neural Information Processing Systems, 34:
30113-30126, 2021. Cited on pages 15 and 40.

Johan Samir Obando Ceron and Pablo Samuel Castro. Revisiting rainbow:
Promoting more insightful and inclusive deep reinforcement learning research.
In Marina Meila and Tong Zhang, editors, Proceedings of the 38th Interna-
tional Conference on Machine Learning, volume 139 of Proceedings of Ma-
chine Learning Research, pages 1373-1383. PMLR, 18-24 Jul 2021. URL
https://proceedings.mlr.press/v139/ceron2ia.html. Cited on page 36.

Johan Samir Obando Ceron, Marc G Bellemare, and Pablo Samuel Castro. Small
batch deep reinforcement learning. In Thirty-seventh Conference on Neural
Information Processing Systems, 2023. URL https://openreview.net/forum?
id=wPqEvmwFEh. Cited on page 18.

Xinlei Chen and Kaiming He. Exploring simple siamese representation learning.
In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 15750-15758, 2021. Cited on page 16.

W. Dabney, M. Rowland, Marc G. Bellemare, and R. Munos. Distributional
reinforcement learning with quantile regression. In AAAIL 2018a. Cited on
pages vii, viii, 11, 21, 22, 24, 28, and 29.

Will Dabney, Georg Ostrovski, David Silver, and Remi Munos. Implicit quantile
networks for distributional reinforcement learning. In Proceedings of the 35th

International Conference on Machine Learning, volume 80 of Proceedings of

52

http://arxiv.org/abs/1812.06110
https://proceedings.mlr.press/v139/ceron21a.html
https://openreview.net/forum?id=wPqEvmwFEh
https://openreview.net/forum?id=wPqEvmwFEh

Machine Learning Research, pages 1096-1105. PMLR, 2018b. Cited on pages viii,
11, 21, 28, and 29.

Will Dabney, Andre Barreto, Mark Rowland, Robert Dadashi, John Quan, Marc G.
Bellemare, and David Silver. The value-improvement path: Towards better
representations for reinforcement learning. In Proceedings of the AAAI Conference
on Artificial Intelligence, 2021. Cited on page 41.

Pierluca D’Oro, Max Schwarzer, Evgenii Nikishin, Pierre-Luc Bacon, Marc G
Bellemare, and Aaron Courville. Sample-efficient reinforcement learning by
breaking the replay ratio barrier. In The FEleventh International Conference
on Learning Representations, 2023. URL https://openreview.net/forum?id=
OpC-9aBBVJe. Cited on pages 19, 45, and 48.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for
online learning and stochastic optimization. Journal of machine learning research,
12(7), 2011. Cited on page 7.

Onno Eberhard, Jakob Hollenstein, Cristina Pinneri, and Georg Martius. Pink
noise is all you need: Colored noise exploration in deep reinforcement learning.
In Deep Reinforcement Learning Workshop NeurIPS 2022, 2022. URL https:
//openreview.net/forum?id=imxyoQIC5XT. Cited on page 34.

Theresa Eimer, Marius Lindauer, and Roberta Raileanu. Hyperparameters in

reinforcement learning and how to tune them, 2023. Cited on page 48.

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom
Ward, Yotam Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. Impala:
Scalable distributed deep-rl with importance weighted actor-learner architectures.
In International conference on machine learning, pages 1407-1416. PMLR, 2018.
Cited on pages 4 and 24.

Jesse Farebrother, Joshua Greaves, Rishabh Agarwal, Charline Le Lan, Ross
Goroshin, Pablo Samuel Castro, and Marc G Bellemare. Proto-value net-
works: Scaling representation learning with auxiliary tasks. In The Eleventh
International Conference on Learning Representations, 2023. URL https:
//openreview.net/forum?id=o0GDKSt9JrZi. Cited on page 40.

53

https://openreview.net/forum?id=OpC-9aBBVJe
https://openreview.net/forum?id=OpC-9aBBVJe
https://openreview.net/forum?id=imxyoQIC5XT
https://openreview.net/forum?id=imxyoQIC5XT
https://openreview.net/forum?id=oGDKSt9JrZi
https://openreview.net/forum?id=oGDKSt9JrZi

William Fedus, Prajit Ramachandran, Rishabh Agarwal, Yoshua Bengio, Hugo
Larochelle, Mark Rowland, and Will Dabney. Revisiting fundamentals of ex-
perience replay. arXiw preprint arXiw:2007.06700, 2020. Cited on pages 20
and 45.

Meire Fortunato, Mohammad Gheshlaghi Azar, Bilal Piot, Jacob Menick, Ian
Osband, Alexander Graves, Vlad Mnih, Remi Munos, Demis Hassabis, Olivier
Pietquin, Charles Blundell, and Shane Legg. Noisy networks for exploration. In

Proceedings of the International Conference on Representation Learning (ICLR
2018), Vancouver (Canada), 2018. Cited on page 34.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep
feedforward neural networks. In Proceedings of the thirteenth international
conference on artificial intelligence and statistics, pages 249-256. JMLR Workshop
and Conference Proceedings, 2010. Cited on page 7.

Florin Gogianu, Tudor Berariu, Mihaela C Rosca, Claudia Clopath, Lucian Busoniu,
and Razvan Pascanu. Spectral normalisation for deep reinforcement learning: An
optimisation perspective. In Marina Meila and Tong Zhang, editors, Proceedings of
the 38th International Conference on Machine Learning, volume 139 of Proceedings
of Machine Learning Research, pages 3734-3744. PMLR, 18-24 Jul 2021. Cited
on page 40.

Noah Golmant, Nikita Vemuri, Zhewei Yao, Vladimir Feinberg, Amir Gholami, Kai
Rothauge, Michael W Mahoney, and Joseph Gonzalez. On the computational

inefficiency of large batch sizes for stochastic gradient descent. arXiv preprint
arXw:1811.12941, 2018. Cited on page 44.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press,
2016. Cited on pages 1, 4, and 7.

Laura Graesser, Utku Evci, Erich Elsen, and Pablo Samuel Castro. The state of
sparse training in deep reinforcement learning. In Kamalika Chaudhuri, Stefanie
Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato, editors, Pro-
ceedings of the 39th International Conference on Machine Learning, volume 162

of Proceedings of Machine Learning Research, pages 7766-7792. PMLR, 17-23 Jul

54

2022. URL https://proceedings.mlr.press/v162/graesser22a.html. Cited
on page 13.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H
Richemond, Elena Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhao-
han Daniel Guo, Mohammad Gheshlaghi Azar, et al. Bootstrap your own latent:
A new approach to self-supervised learning. arXiv preprint arXiv:2006.07733,
2020. Cited on page 16.

Caglar Gulcehre, Ziyu Wang, Alexander Novikov, Thomas Paine, Sergio Gémez,
Konrad Zolna, Rishabh Agarwal, Josh S Merel, Daniel J Mankowitz, Cosmin
Paduraru, et al. Rl unplugged: A suite of benchmarks for offline reinforcement
learning. Advances in Neural Information Processing Systems, 33:7248-7259,
2020. Cited on page 43.

Abhishek Gupta, Russell Mendonca, YuXuan Liu, Pieter Abbeel, and Sergey Levine.
Meta-reinforcement learning of structured exploration strategies. Advances in

neural information processing systems, 31, 2018. Cited on page 34.

Jianye Hao, Tianpei Yang, Hongyao Tang, Chenjia Bai, Jinyi Liu, Zhaopeng Meng,
Peng Liu, and Zhen Wang. Exploration in deep reinforcement learning: From
single-agent to multiagent domain. IEEE Transactions on Neural Networks and

Learning Systems, 2023. Cited on page 34.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 770-778, 2016. Cited on pages 4 and 7.

Matteo Hessel, Joseph Modayil, Hado van Hasselt, Tom Schaul, Georg Ostrovski,
Will Dabney, Dan Horgan, Bilal Piot, Mohammad Gheshlaghi Azar, and David
Silver. Rainbow: Combining improvements in deep reinforcement learning. In
AAAIL 2018. Cited on pages 11, 16, 21, and 36.

Geoffrey E Hinton. Distributed representations. 1984. Cited on page 3.

Dan Horgan, John Quan, David Budden, Gabriel Barth-Maron, Matteo Hessel,
Hado van Hasselt, and David Silver. Distributed prioritized experience replay,
2018. Cited on page 12.

55

https://proceedings.mlr.press/v162/graesser22a.html

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger.
Densely connected convolutional networks. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 4700-4708, 2017. Cited on
page 4.

Maximilian Igl, Gregory Farquhar, Jelena Luketina, Wendelin Boehmer, and Shimon
Whiteson. Transient non-stationarity and generalisation in deep reinforcement
learning. arXiv preprint arXiww:2006.05826, 2020. Cited on page 13.

Sergey loffe and Christian Szegedy. Batch normalization: Accelerating deep network

training by reducing internal covariate shift. In ICML, 2015. Cited on page 5.

Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, Joel Z
Leibo, David Silver, and Koray Kavukcuoglu. Reinforcement learning with
unsupervised auxiliary tasks. arXiv preprint arXiw:1611.05397, 2016. Cited on
page 15.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov,
Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Zidek, Anna
Potapenko, et al. Highly accurate protein structure prediction with alphafold.
Nature, 596(7873):583-589, 2021. Cited on page 31.

Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos, Blazej Osinski, Roy H Camp-
bell, Konrad Czechowski, Dumitru Erhan, Chelsea Finn, Piotr Kozakowski, Sergey
Levine, et al. Model based reinforcement learning for atari. In ICLR, 2019. Cited
on page 15.

Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos, Blazej Osinski, Roy H Camp-
bell, Konrad Czechowski, Dumitru Erhan, Chelsea Finn, Piotr Kozakowski,
Sergey Levine, et al. Model-based reinforcement learning for atari. International

Conference on Learning Representations, 2020. Cited on pages 16 and 26.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and
Ping Tak Peter Tang. On large-batch training for deep learning: Generalization
gap and sharp minima. arXiv preprint arXiv:1609.04836, 2016. Cited on page 44.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and

Ping Tak Peter Tang. On large-batch training for deep learning: Generalization

56

gap and sharp minima. In International Conference on Learning Representations,
2017. URL https://openreview.net/forum?id=HloyR1Ygg. Cited on pages 19
and 40.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014. Cited on page 7.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
In Yoshua Bengio and Yann LeCun, editors, 3rd International Conference on
Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings, 2015. URL http://arxiv.org/abs/1412.6980.
Cited on page 35.

Ilya Kostrikov, Denis Yarats, and Rob Fergus. Image augmentation is all you
need: Regularizing deep reinforcement learning from pixels. arXiv preprint
arXiw:2004.13649, 2020. Cited on page 16.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative
g-learning for offline reinforcement learning. Advances in Neural Information
Processing Systems, 33:1179-1191, 2020. Cited on page 17.

Aviral Kumar, Rishabh Agarwal, Dibya Ghosh, and Sergey Levine. Implicit under-
parameterization inhibits data-efficient deep reinforcement learning. 2021a. URL
https://openreview.net/forum?id=09bnihsF£fXU. Cited on pages viii, 13, 40,
and 41.

Aviral Kumar, Rishabh Agarwal, Tengyu Ma, Aaron Courville, George Tucker, and
Sergey Levine. Dr3: Value-based deep reinforcement learning requires explicit
regularization. arXiv preprint arXiw:2112.04716, 2021b. Cited on pages 17, 40,
and 43.

Aviral Kumar, Rishabh Agarwal, Xinyang Geng, George Tucker, and Sergey Levine.
Offline g-learning on diverse multi-task data both scales and generalizes. arXiv
preprint arXw:2211.15144, 2022. Cited on page 17.

Yann LeCun, D Touresky, G Hinton, and T Sejnowski. A theoretical framework
for back-propagation. In Proceedings of the 1988 connectionist models summer

school, volume 1, pages 21-28, 1988. Cited on page 7.

57

https://openreview.net/forum?id=H1oyRlYgg
http://arxiv.org/abs/1412.6980
https://openreview.net/forum?id=O9bnihsFfXU

Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E
Howard, Wayne Hubbard, and Lawrence D Jackel. Backpropagation applied to
handwritten zip code recognition. Neural computation, 1(4):541-551, 1989. Cited
on page 5.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521
(7553):436-444, 2015. Cited on page 2.

Chen-Yu Lee, Patrick W Gallagher, and Zhuowen Tu. Generalizing pooling functions
in convolutional neural networks: Mixed, gated, and tree. In Artificial intelligence
and statistics, pages 464-472. PMLR, 2016. Cited on page 5.

Kimin Lee, Michael Laskin, Aravind Srinivas, and Pieter Abbeel. Sunrise: A simple
unified framework for ensemble learning in deep reinforcement learning, 2020.

Cited on page 14.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement
learning: Tutorial, review, and perspectives on open problems. arXiv preprint
arXiw:2005.01643, 2020. Cited on pages 17 and 43.

AJ Lohn and Micha Musser. Ai and compute: How much longer can computing
power drive artificial intelligence progress? Center for Securty and Emerging
Technology, 2022. Cited on page 31.

Clare Lyle, Mark Rowland, and Will Dabney. Understanding and preventing
capacity loss in reinforcement learning. In International Conference on Learning
Representations, 2022. URL https://openreview.net/forum?id=ZkC8wKoLbQ7.
Cited on page 13.

Clare Lyle, Zeyu Zheng, Evgenii Nikishin, Bernardo Avila Pires, Razvan Pascanu,
and Will Dabney. Understanding plasticity in neural networks, 2023. Cited on
page 13.

Marlos C. Machado, Marc G. Bellemare, Erik Talvitie, Joel Veness, Matthew
Hausknecht, and Michael Bowling. Revisiting the arcade learning environment:
Evaluation protocols and open problems for general agents, 2017. Cited on

pages 14 and 20.

58

https://openreview.net/forum?id=ZkC8wKoLbQ7

Dominic Masters and Carlo Luschi. Revisiting small batch training for deep neural
networks. ArXiv, abs/1804.07612, 2018. Cited on pages 33 and 44.

Bogdan Mazoure, Remi Tachet des Combes, Thang Doan, Philip Bachman, and
R Devon Hjelm. Deep reinforcement and infomax learning. arXwv preprint

arXw:2006.07217, 2020. Cited on page 15.

Warren S McCulloch and Walter Pitts. A logical calculus of the ideas immanent in
nervous activity. The bulletin of mathematical biophysics, 5:115-133, 1943. Cited
on page 3.

Vincent Micheli, Eloi Alonso, and Francois Fleuret. Transformers are sample-efficient
world models. In To appear in The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=vhFulAcbOxb.
Cited on page 16.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. Human-level control through deep reinforcement learning. nature,
518(7540):529-533, 2015. Cited on pages 10, 11, 12, 19, 21, 24, and 30.

Evgenii Nikishin, Max Schwarzer, Pierluca D’Oro, Pierre-Luc Bacon, and Aaron
Courville. The primacy bias in deep reinforcement learning. In International
Conference on Machine Learning, pages 16828-16847. PMLR, 2022. Cited on
pages 13, 19, 42, and 45.

OpenAl, Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Prze-
mystaw Debiak, Christy Dennison, David Farhi, Quirin Fischer, Shariq Hashme,
Chris Hesse, Rafal Jézefowicz, Scott Gray, Catherine Olsson, Jakub Pachocki,
Michael Petrov, Henrique Pondé de Oliveira Pinto, Jonathan Raiman, Tim
Salimans, Jeremy Schlatter, Jonas Schneider, Szymon Sidor, Ilya Sutskever,
Jie Tang, Filip Wolski, and Susan Zhang. Dota 2 with large scale deep re-
inforcement learning. arXiv preprint arXiv:1912.06680, 2019. URL https:
//arxiv.org/abs/1912.06680. Cited on page 15.

Georg Ostrovski, Pablo Samuel Castro, and Will Dabney. The difficulty of passive

learning in deep reinforcement learning. In A. Beygelzimer, Y. Dauphin, P. Liang,

59

https://openreview.net/forum?id=vhFu1Acb0xb
https://arxiv.org/abs/1912.06680
https://arxiv.org/abs/1912.06680

and J. Wortman Vaughan, editors, Advances in Neural Information Processing
Systems, 2021. URL https://openreview.net/forum?id=nPHA8fGicZk. Cited
on page 43.

2

Josh Patterson and Adam Gibson. Deep learning: A practitioner’s approach.

O’Reilly Media, Inc.”, 2017. Cited on page 5.

Matthias Plappert, Rein Houthooft, Prafulla Dhariwal, Szymon Sidor, Richard Y
Chen, Xi Chen, Tamim Asfour, Pieter Abbeel, and Marcin Andrychowicz. Param-
eter space noise for exploration. arXww preprint arXiv:1706.01905, 2017. Cited
on page 34.

Martin L Puterman. Markov decision processes: discrete stochastic dynamic pro-

gramming. John Wiley & Sons, 2014. Cited on page 8.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec
Radford, Mark Chen, and Ilya Sutskever. Zero-shot text-to-image generation. In
International Conference on Machine Learning, pages 83821-8831. PMLR, 2021.
Cited on page 31.

Sashank J. Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam
and beyond, 2019. Cited on page 4.

Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo, Alexander
Novikov, Gabriel Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay, Jost To-
bias Springenberg, et al. A generalist agent. arXiv preprint arXiv:2205.06175,
2022. Cited on page 31.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The
annals of mathematical statistics, pages 400-407, 1951. Cited on page 9.

Sebastian Ruder. An overview of gradient descent optimization algorithms, 2017.

Cited on page 4.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning internal
representations by error propagation. Technical report, California Univ San Diego

La Jolla Inst for Cognitive Science, 1985. Cited on page 7.

60

https://openreview.net/forum?id=nPHA8fGicZk

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning represen-
tations by back-propagating errors. nature, 323(6088):533-536, 1986. Cited on
page 3.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experi-
ence replay. arXiv preprint arXiv:1511.05952, 2015. Cited on page 12.

Tom Schaul, André Barreto, John Quan, and Georg Ostrovski. The phenomenon of
policy churn. Advances in Neural Information Processing Systems, 35:4235-4246,
2022. Cited on page 48.

Dominik Scherer, Andreas Miiller, and Sven Behnke. Evaluation of pooling opera-
tions in convolutional architectures for object recognition. In Artificial Neural
Networks—ICANN 2010: 20th International Conference, Thessaloniki, Greece,
September 15-18, 2010, Proceedings, Part III 20, pages 92-101. Springer, 2010.
Cited on page 5.

Jiirgen Schmidhuber. Deep learning in neural networks: An overview. Neural
networks, 61:85-117, 2015. Cited on page 2.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent
Sifre, Simon Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore
Graepel, et al. Mastering atari, go, chess and shogi by planning with a learned
model. Nature, 588(7839):604-609, 2020. Cited on page 16.

Max Schwarzer, Ankesh Anand, Rishab Goel, R Devon Hjelm, Aaron Courville,
and Philip Bachman. Data-efficient reinforcement learning with self-predictive
representations. In International Conference on Learning Representations, 2020.

Cited on page 26.

Max Schwarzer, Ankesh Anand, Rishab Goel, R Devon Hjelm, Aaron Courville,
and Philip Bachman. Data-efficient reinforcement learning with self-predictive
representations. In International Conference on Learning Representations, 2021.
URL https://openreview.net/forum?id=uCQfPZwRalu. Cited on pages 10
and 16.

Max Schwarzer, Johan Samir Obando Ceron, Aaron Courville, Marc G Bellemare,

Rishabh Agarwal, and Pablo Samuel Castro. Bigger, better, faster: Human-

61

https://openreview.net/forum?id=uCQfPZwRaUu

level Atari with human-level efficiency. In Andreas Krause, Emma Brunskill,
Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett, edi-
tors, Proceedings of the 40th International Conference on Machine Learning, vol-
ume 202 of Proceedings of Machine Learning Research, pages 30365-30380. PMLR,
23-29 Jul 2023. URL https://proceedings.mlr.press/v202/schwarzer23a.
html. Cited on pages 16 and 24.

Christopher J. Shallue, Jachoon Lee, Joseph Antognini, Jascha Sohl-Dickstein, Roy
Frostig, and George E. Dahl. Measuring the effects of data parallelism on neural
network training. Journal of Machine Learning Research, 20(112):1-49, 2019.
URL http://jmlr.org/papers/v20/18-789.html. Cited on page 19.

Sagar Sharma, Simone Sharma, and Anidhya Athaiya. Activation functions in
neural networks. Towards Data Sci, 6(12):310-316, 2017. Cited on page 5.

Susan M Shortreed, Eric Laber, Daniel J Lizotte, T Scott Stroup, Joelle Pineau,
and Susan A Murphy. Informing sequential clinical decision-making through
reinforcement learning: an empirical study. Machine learning, 84:109-136, 2011.

Cited on page 17.

David Silver, Julian Schrittwieser, Karen Simonyan, loannis Antonoglou, Aja Huang,
Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al.
Mastering the game of go without human knowledge. nature, 550(7676):354-359,
2017. Cited on page 4.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014. Cited on
page 6.

Ghada Sokar, Rishabh Agarwal, Pablo Samuel Castro, and Utku Evci. The
dormant neuron phenomenon in deep reinforcement learning. arXiv preprint
arXiv:2302.12902, 2023. Cited on pages viii, 13, 19, 24, 40, 42, 45, and 48.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting.
The Journal of Machine Learning Research, 15(1), 2014. Cited on pages 5 and 6.

62

https://proceedings.mlr.press/v202/schwarzer23a.html
https://proceedings.mlr.press/v202/schwarzer23a.html
http://jmlr.org/papers/v20/18-789.html

Adam Stooke and Pieter Abbeel. Accelerated methods for deep reinforcement
learning. CoRR, abs/1803.02811, 2018. URL http://arxiv.org/abs/1803.
02811. Cited on pages 45 and 46.

Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy
considerations for deep learning in nlp. arXiv preprint arXiv:1906.02243, 2019.
Cited on page 31.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction.
The MIT Press, second edition, 2018. URL http://incompleteideas.net/
book/the-book-2nd.html. Cited on pages 8, 9, 10, and 11.

Adrien Ali Taiga, William Fedus, Marlos C. Machado, Aaron Courville, and Marc G.
Bellemare. On bonus based exploration methods in the arcade learning envi-
ronment. In International Conference on Learning Representations, 2020. URL

https://openreview.net/forum?id=BJewlyStDr. Cited on page 30.

Tijmen Tieleman and G Hinton. Divide the gradient by a running average of its
recent magnitude. coursera: Neural networks for machine learning. Technical

report, 2017. Cited on page 7.

Hado P van Hasselt, Matteo Hessel, and John Aslanides. When to use para-
metric models in reinforcement learning? In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Ad-
vances in Neural Information Processing Systems, volume 32. Curran Asso-
ciates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/file/
1b742ae215adf18b75449c6e272fd92d-Paper . pdf. Cited on page 26.

Hado P Van Hasselt, Matteo Hessel, and John Aslanides. When to use parametric
models in reinforcement learning? Advances in Neural Information Processing
Systems, 32, 2019. Cited on pages 15 and 16.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaél Mathieu, Andrew
Dudzik, Junyoung Chung, David H Choi, Richard Powell, Timo Ewalds, Petko
Georgiev, et al. Grandmaster level in starcraft ii using multi-agent reinforcement

learning. Nature, 2019. Cited on page 15.

63

http://arxiv.org/abs/1803.02811
http://arxiv.org/abs/1803.02811
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html
https://openreview.net/forum?id=BJewlyStDr
https://proceedings.neurips.cc/paper/2019/file/1b742ae215adf18b75449c6e272fd92d-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/1b742ae215adf18b75449c6e272fd92d-Paper.pdf

Christopher J. C. H. Watkins and Peter Dayan. Q-learning. Machine Learning,
8(3):279-292, May 1992. ISSN 1573-0565. doi: 10.1007/BF00992698. URL
https://doi.org/10.1007/BF00992698. Cited on page 9.

D.R. Wilson and Tony R. Martinez. The general inefficiency of batch training
for gradient descent learning. Neural networks : the official journal of the
International Neural Network Society, 16 10:1429-51, 2003. URL https://api.
semanticscholar.org/CorpusID:652801. Cited on page 39.

Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforce-

ment learning. arXiv preprint arXiv:1911.11361, 2019. Cited on page 17.

Weirui Ye, Shaohuai Liu, Thanard Kurutach, Pieter Abbeel, and Yang Gao. Mas-
tering atari games with limited data. Advances in Neural Information Processing
Systems, 34:25476-25488, 2021. Cited on page 16.

Yang Zhao, Hao Zhang, and Xiuyuan Hu. Penalizing gradient norm for efficiently
improving generalization in deep learning. In Kamalika Chaudhuri, Stefanie
Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato, editors, Pro-
ceedings of the 39th International Conference on Machine Learning, volume 162
of Proceedings of Machine Learning Research, pages 26982-26992. PMLR, 17-23
Jul 2022. URL https://proceedings.mlr.press/v162/zhao22i.html. Cited
on page 40.

64

https://doi.org/10.1007/BF00992698
https://api.semanticscholar.org/CorpusID:652801
https://api.semanticscholar.org/CorpusID:652801
https://proceedings.mlr.press/v162/zhao22i.html

	Résumé
	Summary
	Contents
	List of Figures
	List of Abbreviations
	Acknowledgments
	Introduction
	Deep Learning
	Neural networks
	CNN networks
	Training
	Optimization

	Reinforcement Learning
	TD Learning
	Off-Policy Learning
	Deep Reinforcement Learning
	Replay buffer and batch size
	Plasticity and Stability
	The Arcade Learning Environment
	Evaluation in Atari
	Data Efficiency and Representations

	Offline deep Reinforcement Learning

	Small batch deep reinforcement learning
	Introduction
	Experimental results
	The small batch effect on agent performance
	Standard agents
	Varying architectures
	Atari 100k agents
	Training Stability
	Impact on exploration
	Computational impact

	Understanding the small batch effect
	Relation to other hyperparameters
	Analysis of network optimization dynamics

	Offline reinforcement learning

	Related Work
	Conclusion
	Future Work

	Conclusion
	Bibliography

