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Résumé
Dans l’apprentissage par renforcement profond basé sur la valeur avec des

mémoires de relecture, le paramètre de taille de lot joue un rôle crucial en déterminant
le nombre de transitions échantillonnées pour chaque mise à jour de gradient.
Étonnamment, malgré son importance, ce paramètre n’est généralement pas ajusté
lors de la proposition de nouveaux algorithmes.

Dans ce travail, nous menons une vaste étude empirique qui suggère que la réduc-
tion de la taille des lots peut entrâıner un certain nombre de gains de performances
significatifs ; ceci est surprenant et contraire à la pratique courante consistant à
utiliser de plus grandes tailles de lots pour améliorer la formation du réseau neuronal.
Ce résultat inattendu défie la sagesse conventionnelle et appelle à une compréhension
plus approfondie des gains de performances observés associés à des tailles de lots
plus petites.

Pour faire la lumière sur les facteurs sous-jacents, nous complétons nos résultats
expérimentaux par une série d’analyses empiriques. Ces analyses approfondissent
divers aspects du processus d’apprentissage, tels que l’analyse de la dynamique
d’optimisation du réseau, la vitesse de convergence, la stabilité et les capacités
d’exploration.

Le chapitre 1 présente les concepts nécessaires pour comprendre le travail pré-
senté, notamment des aperçus de l’Apprentissage Profond (Deep Learning) et de
l’Apprentissage par Renforcement (Reinforcement Learning). Le chapitre 2 contient
une description détaillée de nos contributions visant à comprendre les gains de
performance observés associés à des tailles de lots plus petites lors de l’utilisation
d’algorithmes d’apprentissage par renforcement profond basés sur la valeur. À la
fin, des conclusions tirées de ce travail sont fournies, incluant des suggestions pour
des travaux futurs. Le chapitre 3 aborde ce travail dans le contexte plus large de la
recherche en apprentissage par renforcement.

Mots-clés: Apprentissage par renforcement, Apprentissage par renforcement
approfondi, Basé sur la valeur, Taille des lots
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Summary
In value-based deep reinforcement learning with replay memories, the batch size

parameter plays a crucial role by determining the number of transitions sampled
for each gradient update. Surprisingly, despite its importance, this parameter is
typically not adjusted when proposing new algorithms.

In this work, we conduct a broad empirical study that suggests reducing the
batch size can result in a number of significant performance gains; this is surprising
and contrary to the prevailing practice of using larger batch sizes to enhance neural
network training. This unexpected result challenges the conventional wisdom and
calls for a deeper understanding of the observed performance gains associated with
smaller batch sizes.

To shed light on the underlying factors, we complement our experimental findings
with a series of empirical analyses such as analysis of network optimization dynamics,
convergence speed, stability, and exploration capabilities.

Chapter 1 introduces concepts necessary to understand the work presented,
including overviews of Deep Learning and Reinforcement Learning. Chapter 2
contains a detailed description of our contributions towards understanding the
observed performance gains associated with smaller batch sizes when using value
based deep reinforcement learning algorithms. At the end, some conclusions drawn
from this work are provided, including some exciting suggestion as future work.
Chapter 3 talks about this work in the broader context of reinforcement learning
research.

Keywords: Reinforcement Learning, Deep Reinforcement Learning, Value based,
Batch Size
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1 Introduction

In this chapter, we will present an overview of the fundamental concepts required

to understand the contributions presented in this thesis. Our work resides at the

intersection of the fields of deep learning and reinforcement learning, and we organize

the overview accordingly. We first introduce important concepts in machine learning

and we briefly discuss the emergence of deep learning in recent years and what

characterizes the improvements it can bring to our work.

We introduce the field of reinforcement learning (RL), focusing on reinforcement

learning techniques using neural networks, or deep reinforcement learning (DRL).

We then briefly explain some value based DRL algorithms which are extensively

used in this thesis. We assume knowledge of basic techniques and terminology in

deep learning, including convolutional, feedforward, and recurrent neural networks,

gradient-based optimization and regularization. A foundational understanding of

conventional supervised learning tasks, such as classification and regression, is also

presumed. For readers unfamiliar with these topics, we recommend the following

books: Pattern Recognition and Machine Learning (Bishop and Nasrabadi, 2006)

and Deep Learning (Goodfellow et al., 2016).

1.1 Deep Learning

In this section, we will introduce background material on representation learning

in deep learning and the relationship with the amount of data sampled when

training neural networks models. We begin with early developments in the field and

preliminary studies on deep learning models and batch size. We wrap up with a

discussion of recent discoveries, from which this work draws directly. It’s important

to note that this isn’t intended to serve as an exhaustive overview of representation

learning and batch size for supervised learning tasks in deep learning; we present
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only a few essential papers, leaving out numerous significant historical topics not

essential to understanding the techniques employed in this thesis.

Machine Learning is the field of study focused on computational systems that

possess the ability to learn and adapt from data without explicitly being programmed.

Although the terminology has remained consistent since Samuel’s Checkers-playing

program in 1959, the landscape of learning has evolved significantly. It entails the

development of learning algorithms to tackle complex tasks where it is challenging

(or practically impossible) to construct explicit step-by-step instructions. Some of

these tasks were detecting intricate patterns, extracting information, performing

reasoning, and decision-making, among others. As any intelligent agent should be

capable of adapting its behavior based on observations and experiences, the study

of machine learning plays a crucial role in the advancement of artificial intelligence.

Designing algorithms to solve challenging tasks using rule-based systems, where a

predetermined set of rules is defined by humans, proves exceedingly difficult. Machine

learning algorithms, on the other hand, leverage statistical regularities present in

the data to learn from examples. The primary objective of such learning procedures

is generalization, which sets them apart from template matching algorithms or

look-up tables.

Deep learning is a subfield of machine learning that focuses on the development

and application of artificial neural networks, which are inspired by the structure

and function of the human brain. Deep learning algorithms automatically learn and

extract higher-level features from raw large amounts of data, such as images, text,

or audio. These have gained significant attention and achieved remarkable success

in various complex domains such as natural language processing, speech recognition

and image, and game playing.

Deep learning algorithms are composed of multiple layers of interconnected

artificial neurons, forming what is known as a neural network. Each neuron receives

inputs, performs a mathematical operation on those inputs, and produces an output

that is passed on to the next layer of neurons. The network learns to adjust the

parameters of its neurons based on the patterns in the data it is trained on, with

the goal of optimizing its performance on a specific task, such as image recognition

or natural language processing.

The core focus of deep learning is to learn multiple levels of representation of data

and coming up with higher levels of abstraction (LeCun et al., 2015; Schmidhuber,
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2015). This approach draws inspiration from studies in neuroscience, which suggest

that the human brain processes information in multiple stages (McCulloch and

Pitts, 1943). Moreover, the hierarchical structure aligns well with the inherent

characteristics of the data itself. For example, in language, words combine to form

sentences, and sentences construct paragraphs in a document. In vision, pixels

contribute to edges, edges contribute to basic shapes, and these shapes collectively

compose more complex structures in a natural image.

While deep learning does not impose strict assumptions about the learned

representations, the concept of distributed representations plays an important role

(Hinton, 1984). Here, as opposed to learning local representations, the key idea is

to distribute information about data observations across multiple dimensions of the

feature space.

By doing so deep learning neural networks can express highly complex relation-

ships between features (Expressiveness). This allows the network to model intricate

patterns and dependencies that may not be evident in individual features or local

representations. The network can learn to combine features in non-linear ways,

enabling it to capture the complex interactions and dependencies that exist within

the data.

1.1.1 Neural networks

We use Artificial Neural Networks (ANNs) as multi-layered non-linear function

approximators, drawing loose inspiration from the biological neural networks found

in animal brains. ANNs are not algorithms per se, but rather structures composed

of multiple layers of mathematical transformations applied to input values. A promi-

nent example of a neural network architecture is the Feedforward Neural network or

multi-layer perceptron (MLP) (Rumelhart et al., 1986). This model consists of one

or more layers of arbitrary (usually, differentiable) functions. In general, a single

layer is a linear transformation followed by a non-linear transformation.

Let’s start with the standard case of a single hidden layer neural network as an

example, where vector-valued inputs are mapped to vector-valued outputs, as in

regression tasks. Let’s consider:

h(x) = b + Wa(c + V x)

3



where,

⇒ x is a d-dimensional vector (input)

⇒ V is a k × d matrix (input-to-hidden weights)

⇒ c is a k-dimensional vector (hidden units offsets or biases)

⇒ b is an m-dimensional vector (output units offset or biases)

⇒W is an m× k matrix (hidden-to-output weights)

⇒ a is a threshold-like (non-linear) activation function differentiable almost every-

where (e.g. Tanh, or ReLU function) applied element-wise.

The vector-valued function h(x) = a(c + V x) is called the output of the hidden

layer and we call hidden units the elements of the hidden layer. The neural

network’s learnable parameters consist of weights and biases. Essentially, the

operation performed by h(x) can be applied to h(x) itself, but with different biases

and weights (different parameters).

By extending the aforementioned approach, we can construct a deep neural

network with two hidden layers. One can create a feed-forward multi-layer network

by stacking additional layers, each with potentially different dimensions (represented

as k in the previous example). Throughout this thesis, we will typically represent

the complete set of learnable parameters in a function approximator using lowercase

Greek letters, such as θ or ω.

A widely used variant in neural networks involves incorporating skip connections,

allowing a layer to receive input not only from the preceding layer but also from select

lower layers. Residual neural networks accomplish this by using skip connections

to jump over some layers, for instance, ResNets (He et al., 2016) or DenseNets

(Huang et al., 2017). Silver et al. (2017) and Espeholt et al. (2018) are examples of

reinforcement learning methods using a deep residual network architecture. The

parameters of each layer in the network are learnable, meaning they are modified by

an algorithm until the network approximates the target function with a satisfactory

degree of accuracy. This adjustment process, commonly termed learning or training,

is a key aspect of neural networks which will be explained in later sections. Despite

various algorithms having been introduced for training Multi-Layer Perceptrons

(MLPs), the most prevalent approaches are based on stochastic gradient descent

(Reddi et al., 2019; Ruder, 2017; Goodfellow et al., 2016).
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1.1.2 CNN networks

Convolutional neural networks (CNNs) are a cascade of layers with each layer

generating an abstract representation of input by applying transformations across

interconnected layers (LeCun et al., 1989). These networks draw inspiration from

the human brain’s processing of visual information, mimicking its mechanisms

(Patterson and Gibson, 2017). The primary feature of CNNs are the convolutional

layers that make up the network. The convolutional layers consist of filters that

act upon the input image x in a pixel-wise manner to produce an output y, at

a given pixel position (i, j). Each of these filters, of dimensions M by N , has a

corresponding set of learnable parameters—weights denoted as W , and biases, b,

that the network learns.

Every convolutional layer generates feature maps by convolving the input with

the corresponding layer’s filter. The output feature maps vary in their abstraction

levels based on the layer’s position within the network. Lower level semantic features

such as edges or colors are closer to the input layer, while mid to high level semantic

features such as object parts or entire objects themselves can be determined near

the output at the later layers.

In addition to the convolutional layers, a CNN is constructed by incorporating

supplementary layers, each playing distinct roles in shaping the ultimate output of

the network. Some of these common layers include pooling layers, unpooling layers,

batch normalization layers (Ioffe and Szegedy, 2015), dropout layers (Srivastava

et al., 2014), linear layers, and activation layers (Sharma et al., 2017).

Pooling layers serve to decrease the input’s scale, reducing the number of network

computations (Scherer et al., 2010). This downsampling reduces the feature map

resolution. With the lower feature map resolution, spatial feature invariance is

improved, making the network more robust to translational shifts. Max pooling

and average pooling are typical methods employed in pooling, offering a means to

extract salient information (Lee et al., 2016). Conversely, unpooling layers perform

the approximate inverse function of the pooling layers by upsampling the input

data.

Batch normalization layers compute normalized outputs across each dimension

of the layer’s input (Ioffe and Szegedy, 2015). This normalization occurs prior to

the activation layers, serving to stabilize the activation distribution and acting as a

regularizer technique. This regularization allows for much higher learning rates to
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be used in training, with less emphasis needed on the initialization of weights, while

simultaneously enhancing accuracy and speeding up convergence time. Dropout

Layers are similar to batch normalization layers, in that dropout layers also work to

regularize the neural network (Srivastava et al., 2014). However, dropout layers do

this regularization by introducing noise to the units within the neural network layer,

and randomly removing some of these units. The removal of the units additionally

aids to prevent overfitting of the network.

The relationship between the depth of a CNN and its performance has been

studied through the development of VGGNet, revealing that deeper networks

result in higher accuracy for image classification tasks (Simonyan and Zisserman,

2014). Additionally, this high performance from deep networks can be extended

to other object recognition or localization tasks as well. Based on a standard

CNN architecture, which usually has fewer than five convolutional layers, VGGNet

extends the number of convolutional layers to form a 19-layer network.

1.1.3 Training

In the standard set-up for gradient descent, we address the general optimization

problem of minimizing a loss function L: minθ L(θ). This function takes the neural

network’s parameters, denoted as f(θ), as input and returns a scalar value that

quantifies how well the network represents the target function. Given access only

to first-order evaluations of L, the parameters θ are iteratively updated by stepping

in the opposite direction of the gradient until convergence: θk+1 ← θk − αk ▽ θkL.

Here, k is the index of the update iteration and αk is the learning rate.

We distinguish three variants of gradient descent which are called batch gradient

descent, stochastic gradient descent, and minibatch gradient descent.

The first one follows a gradient computed on the whole dataset. The second

follows a gradient computed on a single example sampled uniformly from the dataset.

The third one, which is the one we will use in practice and sits in the middle of

both, processes a small subset of the training examples at a time. Minibatch

gradient descent is our method of choice because computational considerations,

batch gradient descent demands fitting the whole dataset into memory (often not

realistic), while stochastic gradient descent suffers from too much variance.

Minibatch gradient descent still has variance, albeit reduced compared to the
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stochastic version, and it has been shown that this remaining variance aids in

exploring the parameter space, effectively serving as a form of regularization. In

what follows, we employ two different gradient descent optimizers: Adam (Kingma

and Ba, 2014) and RMSProp (Tieleman and Hinton, 2017). These optimizers adjust

the learning rate α based on approximations of the first and second moments of

past gradients.

Overall, the procedure used for computing gradients in the case of feed-forward

multi-layer networks is called the back-propagation algorithm (Rumelhart et al.,

1985; LeCun et al., 1988). In broad terms, diverse strategies for MLP training

are guided by two core considerations: (i) training as efficiently as possible, which

involves reducing training error while sidestepping local minima traps, and (ii)

controlling the expressiveness of the neural network subject to the amount of

training data so as to prevent overfitting and subsequently minimize generalization

error.

1.1.4 Optimization

Thoughtfully configuring the neural network structure, fine-tuning hyperparam-

eters, and defining an appropriate regularization for the loss function are essential

factors to consider before the training of neural networks. Despite their significance,

these crucial design choices can be nuanced and occasionally remain implicit in

scientific literature. For example, the difficult task of training deep neural networks

is notably influenced by the choice of network initialization (Goodfellow et al., 2016).

A few widely adopted initialization techniques include (Glorot and Bengio, 2010)

and (He et al., 2016), and all depend on the neural network design choices (network

structure and activation functions).

Furthermore, various principles govern the establishment of the learning rate,

and in many cases, a fixed value is not employed due to potential issues arising from

excessively large or small gradients. By automatically adjusting the learning rate,

one aims to maintain gradients within favorable ranges that evade problems such as

error landscape plateaus (where gradients are too small) or may overstep minima,

preventing the goal of finding good solutions (when gradients are too large). Adam

optimization (Kingma and Ba, 2014) builds upon the idea of adaptive learning rates

from AdaGrad (Duchi et al., 2011) and RMSProp (Tieleman and Hinton, 2017).
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Unless specified, we use Adam as our optimization method in the rest of this thesis.

1.2 Reinforcement Learning

Reinforcement learning is a subfield of machine learning that studies how agents

learn behavioral patterns, referred to as policies, to maximize an objective, denoted

as reward, while interacting with an environment. In the standard reinforcement

learning setting (see Sutton and Barto, 2018), agents interact with a Markov Decision

Process (MDP), characterized by a set of states S, a set of possible actions A, a

set of possible rewards R, a state transition distribution p(s′|s, a) and a reward

distribution p(r|s′, s, a) 1 (Puterman, 2014).

Agents interact with their environment by selecting actions based on a policy

π(a|s), which is a probability mass (or density, if A is infinite) function. Once an

action is selected, agents observe a reward and the next state; this sequence of

state-action-reward-state is often termed as a transition. Agents’ interactions are

frequently categorized into episodes, and are denoted as s0, a0, r0, s1, a1, r1, . . .. These

episodes may be infinite, in which case the quantity of interest is the discounted

sum of rewards (or return), defined as Gt ≜ rt + γrt+1 + γ2rt+2 + . . . =
∑∞

k=t γ
t−krk,

where γ ∈ [0, 1) is a discount factor that causes the agent to prioritize nearer

rewards (Sutton and Barto, 2018).

Agents frequently estimate these returns using a learned value function, V :

S → R, which is trained to approximate the true expected return of a state

vπ(s) ≜ Eπ[Gt|st = s]. Alternatively, many algorithms opt to estimate an action-

conditioned variant of the value function, generally denoted as Q : S × A →
R : Q∗(s, a) ≜ E[Gt|st = s, at = a]. When actions are chosen based on a policy

π, estimating Q is strictly more general than estimating V , given that a value

function V can be recovered by calculating the expectation of Q over actions:

V (s) = Ea∼π(a|s)[Q(s, a)].

1. These take the form either of probability mass functions or probability density functions,
depending on the finiteness of S and R.
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1.2.1 TD Learning

While numerous techniques exist to estimate Q and V , the methods used in

this thesis are based on temporal-difference (TD) learning. In TD methods, agents

learn from individual transitions of the form (st, at, rt, st+1) ∈ S × A × R × S,

updating their estimates of V (st) or Q(st, at) using their estimate for the value of

st+1. In the context of value learning, the TD error of a transition is characterized

as δt ≜ rt + γV (st+1)− V (s). Under the premise of unlimited data and particular

optimization assumptions (Robbins and Monro, 1951), the correct value function

can be learned through iterative minimization of this error, resulting in convergence

with a rate determined by γ (Sutton and Barto, 2018).

This work predominantly centers on Q-learning (Watkins and Dayan, 1992), a

variant of TD learning used to jointly estimate the optimal policy π∗, defined as

π∗ ≜ arg maxπ Eπ,so [G0], and the optimal value function, expressed as q∗(s, t) =

Eπ∗ [Gt|st = s, at = a]. In scenarios where the MDP is perfectly known, and

states and actions can be enumerated, an agent’s estimate of Q can be iteratively

improved by applying the Bellman optimality operator, defined as Qi+1(St, At) =

E[rt + γ maxa Qi(St+1, a)] (Sutton and Barto, 2018); this operator converges to the

optimal policy π = π∗ and Q function Q = q∗ at its fixed point. Conversely, when

the MDP is not known, Q must be learned from data, generally done by minimizing

a TD error corresponding to the operator δt ≜ rt + γ maxat+1 Q(st+1, at+1)−Q(s, a).

If the state and action spaces are small, one can store all the Q-values in a table

of size |S| × |A|. For most problems of interest, however, state spaces are very large

(and possibly infinite). In these cases, one can use a function approximator, such as

a neural network, parameterized by θ: Qθ ≈ Q.

1.2.2 Off-Policy Learning

The objectives established in TD learning involve multiple expectations: over

the agent’s policy, the environment’s reward distribution, and the environment’s

transition function. In cases where the MDP in question is fully known, these

expectations are not problematic, as they can be directly evaluated. However,

real-world scenarios often deviate from this ideal, necessitating the approximation

of these expectations through samples drawn from the agent’s interactions with the

environment.

9



Strategies for doing so can be categorized into two classes: on-policy and off-

policy, determined by whether the data utilized is collected according to the current

policy π or some other policy or set of policies. Off-policy methods offer notable

theoretical advantages, enabling agents to learn from arbitrarily-collected data, but

frequently suffer from instability, particularly when combined with TD learning and

function approximators such as neural networks (Sutton and Barto, 2018).

In the context of Q-learning, the agent’s policy often leans towards determinism.

This allows the agent to learn what is strictly the optimal policy, it means that

the agent will generally not select a wide-enough variety of actions leading to

insufficient exploration of its environment. This limited exploration can result in

situations where the best action for a given state remains unexplored. Consequently,

in Q-learning, it’s a common practice for agents to collect data in their environment

according to stochastic exploration policy based on π but with added noise. As a

result, data for Q-learning is never sampled according to the agent’s actual policy

(Schwarzer et al., 2021).

1.2.3 Deep Reinforcement Learning

In scenarios where states and actions can be explicitly enumerated, the learning

process for Q involves constructing a matrix of dimensions |S| × |A|, and V can

be learned as an |A|-dimensional vector. In broader contexts, however, function

approximation must be used for Q and V . Among parametric function approxima-

tion methods, both linear regression and neural networks are frequently adopted.

In cases where linear function approximation is employed, some guarantees of

stability or performance are available (Sutton and Barto, 2018). Nonetheless, in

practice nonlinear function approximation is commonly used in numerous instances,

particularly those with visual inputs (for example, see Mnih et al., 2015).

When using parametric function approximation with Q-learning, as we do in this

work, it’s a common practice to minimize the subsequent objective using gradient

descent on the parameters of Q:

LQ(st, at, rt, st+1) = (Q(st, at)− E[rt + γ max
a

Qt(st+1, a)])2 (1.1)

where Qt is a separate “target” function reflecting an older version of Q. It is key

that Q not be modified by gradients taken through the target Qt, even when Qt
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is defined to be the same as Q; failing to do this can often lead the algorithm to

arrive at incorrect solutions (Sutton and Barto, 2018). In practice, this objective is

optimized using samples taken from the environment. The data gathered by the

agent is stored in a replay buffer, a buffer of the agent’s most recent experiences.

It’s typical for buffer sizes to range up to several million transitions.

Deep Q-Learning, also known as Deep Q Networks (DQN), has emerged as a

particularly successful technique in reinforcement learning. This success is primarily

attributed to the incorporation of numerous algorithmic enhancements that go

beyond the foundational Q-learning algorithm; when combined, in Rainbow (Hessel

et al., 2018), the resulting algorithm brings enormous benefits, improving by far

efficiency and final performance over DQN agent (Mnih et al., 2015). We refer the

reader to (Hessel et al., 2018) for a full summary of these improvements.

Deep reinforcement learning has witnessed notable algorithmic advancements,

especially in the realm of distributional RL (Bellemare et al., 2017; Hessel et al., 2018).

Distributional RL approaches go beyond traditional RL methods by considering

not just the expected return but also the entire distribution of possible returns

(Bellemare et al., 2023). Instead of estimating a single value for each state-action

pair, distributional RL agents model the distribution of possible returns, providing

a more comprehensive understanding of the uncertainty and variability associated

with different actions.

Different ways of parameterizing return distributions were proposed in the form

of IQN (Dabney et al., 2018b) and QR-DQN (Dabney et al., 2018a) algorithms.

QR-DQN agent (Dabney et al., 2018a) computes the return quantile values for

N fixed, uniform quantiles. This has no restrictions or bound for value, as the

distribution of the random return is approximated by a uniform mixture of N

Diracs: Zθ(x, a) := 1
N

∑N
i=1 δθi(x,a), with each θi assigned a quantile value trained

with quantile regression. IQN agent uses implicit quantile networks (IQN) as the

parameterization of the return distribution (Dabney et al., 2018b). IQN learns

to transform a base distribution (typically a uniform distribution in [0, 1]) to the

quantile values of the return distribution.
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1.2.4 Replay buffer and batch size

A replay buffer, also known as an experience replay buffer, is a data structure

used to store and manage past experiences or transitions encountered by an RL

agent. Each experience typically consists of the agent’s current state, the action it

took, the resulting reward, and the next state it transitioned to. By storing and

randomly sampling experiences from the replay buffer, RL algorithms can break

the sequential correlation of experiences and alleviate issues such as catastrophic

forgetting.

Replay buffers are a valuable component that enhance the efficiency of algorithms

by enabling the reuse of data for multiple training iterations, rather than discarding

it immediately after collection. This reuse of data leads to improved sample efficiency.

Additionally, the replay buffer contributes to the stability of the network during

training.

Additionally, the replay buffer helps in creating a diverse and uncorrelated

dataset for training. It collects experiences during the agent’s interactions with

the environment and stores them in memory. These experiences are then sampled

randomly during the training process. By randomly sampling transitions from the

replay buffer, the RL algorithm can learn from a more diverse set of experiences

and reduce the bias introduced by sequential data (Mnih et al., 2015).

During training, the reinforcement learning algorithm updates its policy or value

function using a batch of experiences rather than updating after each individual

experience. The batch size refers to the number of experiences sampled from the

replay buffer in each training iteration. The choice of an appropriate batch size

depends on various factors, such as the complexity of the RL task, the available

computational resources, and the specific algorithm being used. It is often deter-

mined through experimentation and balancing the trade-off between computational

efficiency and learning stability.

The replay buffer is typically implemented as a circular buffer, where the oldest

transition in the buffer is removed to accommodate the new data that was just

collected. The most basic sampling strategy used is uniform sampling. In 2015,

Schaul et al. (2015) introduce prioritized experience replay, a method that assigns

priorities to experiences stored in the replay buffer based on their importance for

learning. Other variations, such as a distributed experience replay buffer (Horgan

et al., 2018), can be used.
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1.2.5 Plasticity and Stability

Plasticity in reinforcement learning refers to the ability of an agent to adapt and

update its behavior based on new experiences or changes in the environment. It

involves modifying the agent’s policy or value function to improve its performance

over time. Plasticity is a crucial aspect of reinforcement learning as it allows an

agent to learn from interactions and adjust its decision-making process accordingly.

Issues with plasticity and related phenomena have recently garnered attention

in deep RL under a plethora of various terminologies. Lyle et al. (2022) show loss

of capacity for fitting targets in online RL and Kumar et al. (2021a) demonstrate a

related implicit underparameterization phenomenon caused by bootstrapping with

a greater emphasis on the offline RL scenario.

Both of these studies employ the feature rank as a proxy measure for plasticity.

Feature rank corresponds to an approximation of the rank of a feature embedding,

which represents how well states can be differentiated by updating only the final

layer of a neural network. It serves as a measure of the network’s capacity to adapt

rapidly to variations in the target function.

The works conducted by Sokar et al. (2023), Graesser et al. (2022) and, Abbas

et al. (2023) center around the topic of neuron saturation during the training

process, but Lyle et al. (2023) demonstrate that the phenomenon of plasticity loss

cannot be entirely attributed to saturation alone. Nikishin et al. (2022) discuss the

primacy bias in deep RL, a tendency to excessively train on early data damaging

further learning progress, and propose a strategy of periodically resetting a section

of the network to address this issue, while utilizing the replay buffer as a means of

transferring knowledge. Earlier, Igl et al. (2020) had previously observed that deep

RL agents might lose the ability to generalize due to non-stationarity and proposed

to use distillation as a mitigation mechanism.

Balancing stability and plasticity is a challenge in DRL. Too much plasticity

may result in the agent quickly forgetting previously learned knowledge, while too

much stability may hinder the agent’s ability to adapt to new situations or learn

new strategies. Achieving the right balance often requires careful design choices.
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1.2.6 The Arcade Learning Environment

The introduction of the Arcade Learning Environment (ALE) by Bellemare et al.

(2013) marked the inception of a challenging suite for reinforcement learning, in

which agents learn to play Atari games using visual inputs. This task is different

from the conventional domains commonly explored in reinforcement learning in that

nonlinear function approximation (e.g., neural networks) are key. Atari games are

discrete control tasks, in which agents choose between up to 18 available actions

at each step. To further the progress in the field, Machado et al. (2017) present

some methodological best practices and a new version of the Arcade Learning

Environment that supports stochasticity and multiple game modes. These modes

were developed by game designers to make each game progressively more challenging

for human players.

1.2.7 Evaluation in Atari

Performance on Atari is typically calculated as the human-normalized score,

calculated separately on each game as agent score−random score
human score−random score

. Bellemare et al. (2013)

introduce human score and random score values with some simple metrics that help

compare agents across a diverse set of domains. In contrast to numerous continuous

control domains like DM Control, where algorithm hyperparameters are frequently

tailored for individual tasks, the standard practice in deep reinforcement learning for

Atari games has since Bellemare et al. (2013) been to use a uniform hyperparameter

setting across all games. This practice significantly influences algorithmic design;

by forcing methods to be successful on a wide range of games, approaches requiring

finely-tuned hyperparameters are relatively disadvantaged, and encourages the

development of methods that organically tune hyperparameters during training,

such as Agent57 (Badia et al., 2020). Consequently, methods that deviate from

this standard, like Sunrise (Lee et al., 2020), cannot be directly compared to those

adhering to it.

Recently, Agarwal et al. (2021) introduce three tools for improving the quality

of experimental reporting in the few-run regime, all aligned with the principle of

accounting for statistical uncertainty in results. The tools are Stratified Bootstrap

Confidence Intervals, Performance Profiles, and, Robust and Efficient Aggregate

Metrics. For more rigorous and statistically meaningful analyses, we follow the
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guidelines suggested by them. Specifically, we normalize all runs by the human scores

for each game, aggregate them, and report metrics with 95% stratified bootstrap

CIs and sample efficiency curves.

1.2.8 Data Efficiency and Representations

Data efficiency is a major challenge in deep reinforcement learning. Despite the

achievements of recent algorithms in solving complex tasks like DotA 2 (OpenAI

et al., 2019), Starcraft 2 (Vinyals et al., 2019), and Atari (Badia et al., 2020), their

success is often reliant on substantial amounts of experience. Consequently, there

has been an increasing emphasis on enhancing the data efficiency of reinforcement

learning, generally defined as improving performance with limited environment

interaction time. Several methods have been proposed to tackle this issue, from

model-based methods that aim to accelerate learning by learning an explicit model of

environment dynamics and reward distributions (e.g., Kaiser et al., 2019) to modified

versions of existing algorithms that were previously optimized for performance in

large-data regimes (for example, Data-Efficient Rainbow from Van Hasselt et al.,

2019).

Representation learning is an integral part of reinforcement learning algorithms,

and the success of reinforcement learning algorithms in large-scale, complex tasks

hinges on their ability to construct valuable representations of the environment with

which the algorithms interact. Thus, improving the representations learned by the

neural networks could improve data efficiency in Deep Reinforcement learning.

Feature selection and feature learning has long been an important subdomain

of RL, and with the advent of deep reinforcement learning there has been much

recent interest in comprehending and enhancing the representations acquired by

RL agents. Much of the work in representation learning has taken place from the

perspective of auxiliary tasks like self-supervised, contrastive or bisimulation metrics

losses (Jaderberg et al., 2016; Anand et al., 2020; Mazoure et al., 2020; Castro

et al., 2021)]; in addition to the primary reinforcement learning task, the agent may

attempt to predict and control additional aspects of the environment. Auxiliary

tasks shape the agent’s representation of the environment typically via gradient

descent on the additional learning objectives.

The idea behind using auxiliary tasks is to encourage the agent to learn useful
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representations or acquire specific skills that help the agent learn faster or improve

its overall performance by providing additional learning signals.

Sample-Efficient RL on ALE: Sample efficiency has always been an import aspect

of evaluation in RL, as it can often be expensive to interact with an environment.

Kaiser et al. (2020) introduced the Atari 100K benchmark, which has proven to be

useful for evaluating sample-efficiency, and has led to a number of recent advances.

Kostrikov et al. (2020) use data augmentation to design a sample-efficient RL

method, DrQ, which outperformed prior methods on Atari 100K. Data-Efficient

Rainbow (DER) (Van Hasselt et al., 2019) and DrQ(ϵ) (Agarwal et al., 2021)

simply modified the hyperparameters of existing model-free algorithms to exceed

the performance of existing methods without any algorithmic innovation.

Schwarzer et al. (2021) introduced SPR, which builds on Rainbow (Hessel et al.,

2018) and uses a self-supervised temporal consistency loss based on BYOL (Grill

et al., 2020) combined with data augmentation. SR-SPR (Schwarzer et al., 2021)

combines SPR with periodic network resets to achieve state-of-the-art performance

on the 100K benchmark. Ye et al. (2021) used a self-supervised consistency loss

similar to SPR (Chen and He, 2021).

EfficientZero (Ye et al., 2021), an efficient variant of MuZero (Schrittwieser et al.,

2020), learns a discrete-action latent dynamics model from environment interactions,

and selects actions via lookahead MCTS in the latent space of the model. Micheli

et al. (2023) introduce IRIS, a data-efficient agent that learns in a world model

composed of an autoencoder and an auto-regressive Transformer.

Recently, Schwarzer, Obando-Ceron, et al. (2023) introduced a value-based RL

agent, BBF (Bigger, Better, Faster), that achieves super-human performance in the

Atari 100K benchmark. BBF relies on scaling the neural networks used for value

estimation, as well as a number of other design choices that enable this scaling in a

sample-efficient manner.

1.3 Offline deep Reinforcement Learning

Offline RL focuses on the challenge of developing a policy using a static dataset

of trajectories, without any additional interactions with the environment. This
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setting is particularly valuable for leveraging extensive historical interaction data in

real-world decision-making domains like robotics, recommendation systems, and

healthcare. (Shortreed et al., 2011).

Offline reinforcement learning (RL) refers to a scenario where the algorithm

operates without direct access to the MDP, instead relying on a pre-existing dataset

of transitions D = (s, a, s′, r(s, a)). The (unknown) policy that generated this

data is referred to as a behavior policy πB. Successful offline RL methods must

handle distributional shifts, as well as data collected via processes that may not be

representable by the chosen policy class. The challenges associated with offline RL

are extensively examined and discussed by Levine et al. (2020).

Despite the offline RL benefits such as sample efficiency, data reusability or risk

reduction, offline RL presents unique challenges. Offline RL algorithms typically

face challenges such as distributional shift, where the data distribution in the dataset

may differ from the distribution the agent would encounter during online interaction.

This can lead to poor performance or even catastrophic divergence when standard

RL algorithms are directly applied to offline data. Mitigating distributional shift

and ensuring effective policy improvement are active areas of research in offline RL.

Researchers are developing various algorithms and techniques, such as Con-

servative Q-Learning (CQL) (Kumar et al., 2020), Behavior Regularized Offline

Reinforcement Learning (BRAC) (Wu et al., 2019), DR3 (Kumar et al., 2021b) and

others, to address the challenges and improve the stability and performance on a

wide range of offline RL problems.

Although there is a large literature for offline RL algorithms, CQL still performs

very well on diverse domains and it is widely used as a backbone for building new

state of the art offline reinforcement learning algorithms. For instance, recently

Kumar et al. (2022) demonstrate that with careful design decisions, offline Q-learning

(CQL) can scale to high capacity models trained on large, diverse datasets from

many tasks, leading to policies that not only generalize broadly, but also learn

representations that effectively transfer to new downstream tasks and exceed the

performance in the training dataset. The authors combine CQL (Kumar et al.,

2020) with C51 (Bellemare et al., 2017) which leads to a drastic improvement in

performance when using large neural networks architectures.

17



2 Small batch deep
reinforcement learning

Authors: Johan Obando-Ceron, Marc G. Bellemare, and Pablo Samuel Castro.

This chapter presents a lengthened version of a joint work with Marc G. Belle-

mare and Pablo Samuel Castro. It was accepted to the conference track of the

Thirty-seventh Conference on Neural Information Processing Systems 2023 (Ceron

et al., 2023).

Contributions: I formulated the project, wrote code for and performed all of

the experiments for Atari listed in the paper. Marc Bellemare and Pablo Samuel

Castro provided advising and helped refine the paper.

Affiliation

— Johan Obando-Ceron, Mila, University of Montreal

— Marc G. Bellemare, Mila, University of Montreal

— Pablo Samuel Castro, Google Deepmind, University of Montreal

18



2.1 Introduction

One of the central concerns for deep reinforcement learning (RL) is how to

efficiently make the most use of the collected data for policy improvement. This is

particularly important in online settings, where RL agents learn while interacting

with an environment, as interactions can be expensive. Since the introduction

of DQN (Mnih et al., 2015), one of the core components of most modern deep

RL algorithms is the use of a finite replay memory where experienced transitions

are stored. During learning, the agent samples mini-batches from this memory to

update its network parameters.

Since the policy used to collect transitions is changing throughout learning, the

replay memory contains data coming from a mixture of policies (that differ from

the agent’s current policy), and results in what is known as off-policy learning. In

contrast with training data for supervised learning problems, online RL data is

highly non-stationary. Still, at any point during training the replay memory exhibits

a distribution over transitions, which the agent samples from at each learning step.

The number of sampled transitions at each learning step is known as the batch size,

and is meant to produce an unbiased estimator of the underlying data distribution.

Thus, in theory, larger batch sizes should be more accurate representations of the

true distribution.

Some in the supervised learning community suggest that learning with large

batch sizes leads to better optimization (Shallue et al., 2019), since smaller batches

yield noisier gradient estimations. Contrastingly, others have observed that larger

batch sizes tend to converge to “sharper” optimization landscapes, which can result

in worsened generalization (Keskar et al., 2017); smaller batches, on the other hand,

seem to result in “flatter” landscapes, resulting in better generalization.

Learning dynamics in deep RL are drastically different than those observed

in supervised learning, in large part due to the data non-stationarity mentioned

above. Given that the choice of batch size will have a direct influence on the agent’s

sample efficiency and ultimate performance, developing a better understanding of

its impact is critical. Surprisingly, to the best of our knowledge there have been no

studies exploring the impact of the choice of batch size in deep RL. Most recent

works have focused on related questions, such as the number of gradient updates

per environment step (Nikishin et al., 2022; D’Oro et al., 2023; Sokar et al., 2023),
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but have kept the batch size fixed.

In this work we conduct a broad empirical study of batch size in online value-

based deep reinforcement learning. We uncover the surprising finding that reducing

the batch size seems to provide substantial performance benefits and computational

savings. We showcase this finding in a variety of agents and training regimes

(subsection 2.2.1), and conduct in-depth analyses of the possible causes (subsec-

tion 2.2.2). The impact of our findings and analyses go beyond the choice of the

batch size hyper-parameter, and help us develop a better understanding of the

learning dynamics in online deep RL.

2.2 Experimental results

2.2.1 The small batch effect on agent performance

In this section we showcase the performance gains that arise when training

with smaller batch sizes. We do so first with four standard value-based agents

(§2.2.1.1), with varying architectures (§2.2.1.2), agents optimized for sample effi-

ciency (§2.2.1.3), and with extended training (§2.2.1.4). Additionally, we explore

the impact of reduced batch sizes on exploration (§2.2.1.5) and computational cost

(§2.2.1.6).

Experimental setup: We use the Jax implementations of RL agents, with their

default hyper-parameter values, provided by the Dopamine library (Castro et al.,

2018) 1 and applied to the Arcade Learning Environment (ALE) (Bellemare et al.,

2013). 2 It is worth noting that the default batch size is 32, which we indicate

with a black color in all the plots below, for clarity. We evaluate our agents on 20

games chosen by Fedus et al. (2020) for their analysis of replay ratios, picked to

offer a diversity of difficulty and dynamics. To reduce the computational burden,

we ran most of our experiments for 100 million frames (as opposed to the standard

200 million). For evaluation, we follow the guidelines of Agarwal et al. (2021).

1. Dopamine code available at https://github.com/google/dopamine.
2. Dopamine uses sticky actions by default (Machado et al., 2017).
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Specifically, we run 3 independent seeds for each experiment and report the human-

normalized interquantile mean (IQM), aggregated over the 20 games, configurations,

and seeds, with the 95% stratified bootstrap confidence intervals. Note that this

means that for most of the aggregate results presented here, we are reporting mean

and confidence intervals over 60 independent seeds. All experiments were run on

NVIDIA Tesla P100 GPUs.

2.2.1.1 Standard agents

Figure 2.1 – IQM for human normalized scores for DQN, Rainbow, QR-DQN, and IQN. All games
run with 3 independent seeds, shaded areas representing 95% confidence intervals.

We begin by investigating the impact reducing the batch size can have on four

popular value-based agents, which were initially benchmarked on the ALE suite:

DQN (Mnih et al., 2015), Rainbow (Hessel et al., 2018) (Note that Dopamine uses a

“compact” version of the original Rainbow agent, including only multi-step updates,

prioritized replay, and C51), QR-DQN (Dabney et al., 2018a), and IQN (Dabney
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et al., 2018b). In Figure 2.1 we can observe that, in general, reduced batch size

results in improved performance. The notable exception is DQN, for which we

provide an analysis and explanation for why this is the case below. To verify that

our results are not a consequence of the set of 20 games used in our analyses, we ran

QR-DQN (where the effect is most observed) over the full 60 games in the suite and

report the results in Figure 2.2. Remarkably, a batch size of 8 results in significant

gains on 38 out of the full 60 games, for an average performance improvement of

98.25%. We provide complete results for all games using QR-DQN agent in Figure

2.3. In Figure 2.4, we can observe that using a smaller batch size value yields to a

37% of improving Aggregate Interquantile Mean over all 60 Atari 2600 games using

QR-DQN (Dabney et al., 2018a).

Figure 2.2 – Evaluating QR-DQN (Dabney et al., 2018a) with varying batch sizes over all 60 Atari
2600 games. Average improvement obtained when using a batch size of 8 over 32 (default); All
games run for 3 seeds, with shaded areas displaying 95% stratified bootstrap confidence intervals.

2.2.1.2 Varying architectures

Deep neural networks have proven to be effective in extracting relevant features

from data for a variety of downstream tasks. Recently, researchers have become

interested in understanding the impact of scaling neural network architectures.

It has been observed that increasing the size of models often leads to significant

performance improvements in applications such as language modeling and computer

vision.
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Building upon these promising findings, the deep reinforcement learning com-

munity has started exploring the effects of scaling the model size in function

approximation. By increasing the capacity of the neural network used to approxi-

mate the value or policy functions in RL algorithms, researchers aim to enhance

the agent’s learning and decision-making capabilities.

Figure 2.3 – Training curves for QR-DQN agent. The results for all games are over 3 independent
runs.
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Figure 2.4 – Aggregate Interquantile Mean (Agarwal et al., 2021) of human normalized scores
over all 60 Atari 2600 games using QR-DQN (Dabney et al., 2018a). All games run for 3 seeds,
with shaded areas displaying 95% stratified bootstrap confidence intervals.

Although the CNN architecture originally introduced by DQN (Mnih et al.,

2015) has been the backbone for most deep RL networks, there have been some

recent works exploring the effects of varying architectures (Espeholt et al., 2018;

Agarwal et al., 2022; Sokar et al., 2023; Schwarzer et al., 2023). We investigate the

small batch effect by varying the QR-DQN architecture in two ways: (1) expanding

the convolutional widths by 4 times (resulting in a substantial increase in the

number of parameters), and (2) using the Resnet architecture proposed by Espeholt

et al. (2018) (which results in a similar number of parameters to the original CNN

architecture, but is a deeper network). In Figure 2.5 we can observe that not only

do reduced batch sizes yield improved performance, but they are better able to

leverage the increased number of parameters (CNNx4) and the increased depth

(Resnet). We include the learning curves for each game when varying batch size

and using CNNx4 (see Figure 2.6) or Resnet (see Figure 2.7) architecture.
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Figure 2.5 – IQM for human normalized scores with varying neural network architectures over 20
games, with 3 seeds per experiment. Shaded areas represent 95% stratified bootstrap confidence
intervals.

Figure 2.6 – Evaluating the effect of CNNx4 to QR-DQN, learning curves for all games.
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Figure 2.7 – Evaluating the effect of Resnet to QR-DQN, learning curves for all games.

2.2.1.3 Atari 100k agents

There has been an increased interest in evaluating Atari agents on very few envi-

ronment interactions, for which Kaiser et al. (2020) proposed the 100k benchmark 3.

We evaluate the effect of reduced batch size on three of the most widely used agents

for this regime: Data-efficient Rainbow (DER), a version of the Rainbow algorithm

with hyper-parameters tuned for faster early learning (van Hasselt et al., 2019);

DrQ(ϵ), which is a variant of DQN that uses data augmentation (Agarwal et al.,

2021); and SPR, which incorporates self-supervised learning to improve sample

efficiency (Schwarzer et al., 2020). For this evaluation we evaluate on the standard

26 games for this benchmark (Kaiser et al., 2020), aggregated over 6 independent

trials.

3. Here, 100k refers to agent steps, or 400k environment frames, due to skipping frames in the
standard training setup.
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Figure 2.8 – Measured IQM of human-normalized scores on the 26 100k benchmark games, with
varying batch sizes, of DER and SPR. We evaluate performance at 100k agent steps (or 400k
environment frames), and at 30 million environment frames, run with 6 independent seeds for
each experiment, and shaded areas display 95% confidence intervals.

Figure 2.9 – Measured IQM of human-normalized scores on the 26 100k benchmark games, with
varying batch sizes, of DrQ(ϵ). We evaluate performance at 100k agent steps (or 400k environment
frames), and at 30 million environment frames, run with 6 independent seeds for each experiment,
and shaded areas display 95% confidence intervals.

In Figure 2.8 and Figure 2.9, we include results both at the 100k benchmark

(left side of plots), and when trained for 30 million frames. Our intent is to evaluate

the batch size effect on agents that were optimized for a different training regime.

We can see that although there is little difference in 100k, there is a much more

pronounced effect when trained for longer. This finding suggests that reduced batch

sizes enables continued performance improvements when trained for longer.
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2.2.1.4 Training Stability

In deep reinforcement learning, it is not uncommon for the performance to

plateau or reach a point where there is minimal improvement despite continued

training. Several factors can saturate the agent’s learning process as overfitting,

limited exploration or insufficient training data. Overcoming the performance

plateau in deep RL can be challenging, and it often requires a combination of

exploration strategies, architectural adjustments, and careful experimentation.

To further investigate whether reduced batch sizes enables continual improve-

ments with longer training, we extend the training of QR-DQN up to the standard

200 million frames. In Figure 2.10 we can see that training performance tends to

plateau for the higher batch sizes. In contrast, the smaller batch sizes seem to be

able to continuously improve their performance.

Figure 2.10 – Measuring IQM for human-normalized scores when training for 200 million frames
using Left: QR-DQN (Dabney et al., 2018a) and Right: IQN (Dabney et al., 2018b). Results
aggregated over 20 games, where each experiment was run with 3 independent seeds and we report
95% confidence intervals.

We include the learning curves for each game when varying batch size and using

QR-DQN (see Figure 2.11) or IQN (see Figure 2.12) algorithm. We report the

scores when training for 200 million frames.
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Figure 2.11 – Learning curves for individual games, when trained for 200 million frames using
QR-DQN (Dabney et al., 2018a). Results aggregated over 3 seeds, reporting 95% confidence
intervals.

Figure 2.12 – Learning curves for individual games, when trained for 200 million frames using
IQN (Dabney et al., 2018b). Results aggregated over 3 seeds, reporting 95% confidence intervals.
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2.2.1.5 Impact on exploration

Exploration is a fundamental aspect of deep reinforcement learning that involves

the agent actively seeking out and gathering information about the environment

in order to discover new and potentially better policies. Effective exploration

strategies are crucial for learning optimal or near-optimal policies in complex RL

tasks. Without adequate exploration, the agent may get stuck in suboptimal policies

and fail to discover better solutions.

The simplest and most widely used approach for exploration is to select actions

randomly with a probability ϵ, as opposed to selecting them greedily from the

current Qθ estimate. The increased variance resulting from reduced batch sizes (as

we will explore in more depth below) may also result in a natural form of exploration.

To investigate this, we set the target ϵ value to 0.0 for QR-DQN 4. In Figure 2.13 we

compare performance across four known hard exploration games (Bellemare et al.,

2016; Taiga et al., 2020) and observe that reduced batch sizes tends to result in

improved performance for these games.

Figure 2.13 – Performance of QR-DQN on four hard exploration games with a target ϵ value of
0.0, and with varying batch sizes.

We include the IQM of human-normalized scores for the 20 games when varying

batch size and using ϵ = 0 (see Figure 2.14). We report the scores when training

for 100 million frames.

4. Note that we follow the training schedule of Mnih et al. (2015) where the ϵ value begins at
1.0 and is linearly decayed to its target value over the first million environment frames.
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Figure 2.14 – Aggregate IQM of human-normalized scores over 20 games with a target ϵ value of
0.0. In all the plots 3 independent seeds were used for each game/batch-size configuration, with
shaded areas representing 95% confidence intervals.

2.2.1.6 Computational impact

In the last few years, deep learning has made remarkable advancements across a

wide range of applications. Notable examples include protein structure prediction

(Jumper et al., 2021, AlphaFold), text-to-image synthesis (Ramesh et al., 2021,

DALL-E), text generation (Brown et al., 2020, GPT-3), deep RL algorithms for

solving complex games (Dota2, Berner et al., 2019) and (GATO, Reed et al., 2022).

These achievements have been primarily driven by the strategy of scaling up deep

learning models to extremely large sizes and training them on massive amounts of

data.

While scaling of deep learning models has paved the way for significant progress,

training large models has become extremely expensive. For example, GPT-3 training

was estimated to cost $1.65 million with Google v3 TPUs (Lohn and Musser, 2022)

and inefficient/naive development of a transformer model would emit carbon dioxide

(CO2) equivalent to the lifetime carbon footprint of five cars (Strubell et al., 2019).

Concerningly, deep learning has still not reached the performance level required

by many of its applications. For example, deploying fully autonomous vehicles in
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the real world demands human-level performance, which has not been reached yet.

Increasing the sizes of models and datasets to achieve such required performance

will render current training strategies financially, environmentally, and otherwise

unsustainable.

Considering the unsuitable increase in computational requirements, progress

with deep learning demands more compute-efficient training methods. A natural

direction is to eliminate algorithmic inefficiencies in the learning process, aiming to

reduce the time, cost, energy consumption, and carbon footprint associated with

training deep learning models (Bartoldson et al., 2023).

Figure 2.15 – Measuring wall-time versus IQM of human-normalized scores when varying batch
sizes in DQN (with n-step set to 3), Rainbow, QR-DQN, and IQN. Each experiment had 3
independent runs, and the confidence intervals show 95% confidence intervals.

Empirical advances in deep reinforcement learning are generally measured with

respect to sample efficiency; that is, the number of environment interactions required

before achieving a certain level of performance. It fails to capture computational
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differences between algorithms. If two algorithms have the same performance with

respect to environment interactions, but one takes twice as long to perform each

training step, one would clearly opt for the faster of the two. This important

distinction, however, is largely overlooked in the standard evaluation methodologies

used by the DRL community.

We have already demonstrated the performance benefits obtained when reducing

batch size, but an additional important consequence is the reduction in computation

wall-time. Figure 2.15 demonstrates that not only can we obtain better performance

with a reduced batch size, but we can do so at a fraction of the runtime. As a

concrete example, when changing the batch size of QR-DQN from the default value

of 32 to 8, we achieve both a 50% performance increase and a 29% speedup in

wall-time.

It may seem surprising that smaller batch sizes have a faster runtime, since larger

batches presumably make better use of GPU parallelism. However, as pointed out

by Masters and Luschi (2018), the speedups may be a result of a smaller memory

footprint, enabling better machine throughput.

Key observations on reduced batch sizes:

— They generally improve performance, as evaluated across a variety of agents

and network architectures.

— When trained for longer, the performance gains continue, rather than plateau-

ing.

— They seem to have a beneficial effect on exploration.

— They result in faster training, as measured by wall-time.

Takeaway: The impact of reducing batch size on performance enhancement is

consistently evident when assessed across various agents and network architectures.

Interestingly, extending the training duration reveals a continual progression of

performance gains, in contrast to the typical plateau observed in other scenarios.

Notably, smaller batch size value influence exploration, fostering a more thorough

and effective learning process.

Many methods have been proposed to address the exploitation-exploration

dilemma, and some techniques emphasize exploration by adding noise directly to
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the parameter space of agents (Fortunato et al., 2018; Hao et al., 2023; Plappert

et al., 2017; Gupta et al., 2018) which inherently adds variance to the learning

process. Noise perturbation is another approach that has been taken to induce

exploration (Eberhard et al., 2022).

Like these works, our analyses show that increasing variance by reducing the

batch size may result in similar beneficial exploratory effects, as the mentioned

works suggest. It is difficult to isolate the direct impact on exploration; however, the

improved performance observed on all the hard exploration games in Atari suggests

that improved exploration may be an advantageous consequence of the variance

induced by reduced batch size. We believe further work exploring the impact of

variance injection in deep RL algorithms is necessary.

Beyond enhanced performance, another notable advantage is the reduction in

training time, evident through faster convergence as measured by wall-time. When

focusing on the aspect of reducing batch size, the benefits become apparent in terms

of more efficient wall-time during training. While lowering the batch size might

seem counterintuitive at first, it often leads to enhanced training speed due to the

reduction in computation and memory requirements. Overall, these experiments

highlight the positive impact of smaller batch when optimizing compute efficiency

and agent’s performance.

2.2.2 Understanding the small batch effect

Having demonstrated the performance benefits arising from a reduced batch

size across a wide range of tasks, in this section we seek to gain some insight into

possible causes. We will focus on QR-DQN, as this is the agent where the small

batch effect is most pronounced (Figure 2.1). We begin by investigating possible

confounding factors for the small batch effect, and then provide analyses on the

effect of reduced batch sizes on network dynamics.

2.2.2.1 Relation to other hyperparameters

Learning rates The learning rate is a crucial hyperparameter in deep reinforcement

learning that determines the step size at which the parameters of the neural network

are updated during training. It plays a significant role in the convergence and

stability of the learning process. For instance the Adam optimizer combines the
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Figure 2.16 – Varying batch sizes for different learning values. Results aggregated IQM of human-
normalized scores over 20 games for QR-DQN.

benefits of both adaptive learning rates and momentum, allowing to converge faster

and more accurately, especially in high-dimensional parameter spaces (Kingma and

Ba, 2015).

Therefore, it is natural to wonder whether an improved learning rate could

produce the same effect as simply reducing the batch size. In Figure 2.16 we

explored a variety of different learning rates and observe that, although performance

is relatively stable with a batch size of 32, it is unable to reach the performance

gains obtained with a batch size of 8 or 16.

Second order optimizer effects All our experiments, like most modern RL agents,

use the Adam optimizer (Kingma and Ba, 2015), a variant of stochastic gradient

descent (SGD) that adapts its learning rate based on the first- and second-order

moments of the gradients, as estimated from mini-batches used for training. It is

thus possible that smaller batch sizes have a second-order effect on the learning-rate

adaptation that benefits agent performance. To investigate this we evaluated, for

each training step, performing multiple gradient updates on subsets of the original

sampled batch; we define the parameter BatchDivisor as the number of gradient

updates and dividing factor (where a value of 1 is the default setting). Thus, for

a BatchDivisor of 4, we would perform 4 gradient updates with subsets of size 8
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instead of a single gradient update with a mini-batch of size 32. With an optimizer

like SGD this has no effect (as they are mathematically equivalent), but we may

see differing performance due to Adam’s adaptive learning rates. Figure 2.18 and

Figure 2.17 demonstrate that, while there are differences, these are not consistent

nor significant enough to explain the performance boost observed.

Figure 2.17 – Varying the number of gradient updates per training step, for a fixed batch size of
32. Performance of QR-DQN on tweenty games with different BatchDivisor value.

Relationship with multi-step learning In Figure 2.1 we observed that DQN was

the only agent where reducing batch size did not improve performance. Recalling

that the Dopamine version of Rainbow used is simply adding three components to

the base DQN agent, we follow the analyses of Hessel et al. (2018) and Ceron and

Castro (2021). Specifically, in Figure 2.21 (top row) we simultaneously add these

components to DQN (top left plot) and remove these components from Rainbow

(top right plot). Remarkably, batch size is inversely correlated with performance
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Figure 2.18 – Results aggregated IQM of human-normalized scores over 20 games for QR-DQN.

only when multi-step returns are used. Given that DQN is the only agent considered

here without multi-step learning, this discovery explains the anomalous findings

in Figure 2.1. Indeed, as Figure 2.20 shows, adding multi-step learning to DQN

results in improved performance with smaller batch sizes. To further investigate the

relationship between batch size and multi-step returns, in Figure 2.21 we evaluate

varying both batch sizes and n-step values for DQN, Rainbow, and QR-DQN. We

can observe that smaller batch sizes suffer less from degrading performance as the

n-step value is increased.
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Figure 2.19 – Measured IQM human normalized scores over 20 games with 3 independent seeds
for each configuration, displaying 95% stratified bootstrap confidence intervals. Left: Adding
components to DQN; Right: Removing components from Rainbow.

Figure 2.20 – Aggregate DQN performance with n-step of 3

Figure 2.21 – Varying batch sizes and n-steps in DQN (left), Rainbow (center), and QR-DQN
(right)

Key insights:

— The small batch effect does not seem to be a consequence of a sub-optimal

choice of learning rate for the default value of 32.
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— The small batch effect does not arise due to beneficial interactions with the

Adam optimizer.

— The small batch effect appears to be more pronounced with multi-step learning.

— When increasing the update horizon in multi-step learning, smaller batches

produce better results.

Takeaway: The previous observed gains (arising because of a smaller batch size)

does not appear to stem from a sub-optimal selection of learning rate. The default

learning rate used (5e-05) was one optimized by prior work for a batch size of 32. It

has been previously shown that one should reduce learning rates when increasing

batch sizes (Wilson and Martinez, 2003), which is consistent with our findings (e.g.

reducing the learning rate can be beneficial when increasing the batch size).

Additionally, this effect remains distinct from any advantageous interactions with

the Adam optimizer and interestingly, its presence becomes more prominent within

the context of multi-step learning. Notably, as the update horizon in multi-step

learning is larger, the advantages of using smaller batches become increasingly

evident. This trend highlights that reducing batch size when using multi-step

learning can yield improved outcomes, suggesting a nuanced interplay between

batch size, learning dynamics, and optimization strategies.

2.2.2.2 Analysis of network optimization dynamics

In this section we will focus on three representative games (Asteroids, DemonAt-

tack, and SpaceInvaders), and include results for more games in the supplemental

material. In Figure 2.22 we present the training returns as well as a variety of

metrics we collected for our analyses. We will discuss each in more detail below.

The first column in this figure displays the training returns for each game, where

we can observe the inverse correlation between batch size and performance.

Variance of updates Intuition suggests that as we decrease the batch size, we will

observe an increase in the variance of our updates as our gradient estimates will

be noisier. This is confirmed in the second column of Figure 2.22, where we see an

increased variance with reduced batch size.

A natural question is whether directly increasing variance results in improved
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Figure 2.22 – Empirical analyses for three representative games with varying batch sizes. From left
to right: training returns, aggregate loss variance, average gradient norm, average representation
norm, srank (Kumar et al., 2021a), and dormant neurons (Sokar et al., 2023). All results averaged
over 3 seeds, shaded areas represent 95% confidence intervals.

performance, thereby (partially) explaining the results with reduced batch size. To

investigate, we added Gaussian noise (at varying scales) to the learning target Qθ̄.

As Figure 2.23 and Figure 2.24 demonstrates, simply adding noise to the target

does provide benefits, albeit with some variation across games.

Gradient and representation norms Keskar et al. (2017) and Zhao et al. (2022)

both argue that smaller gradient norms can lead to improved generalization and

performance, in part due to less “sharp” optimization landscapes. In Figure 2.22

(third column) we can see that batch size is, in fact, correlated with gradient norms,

which may be an important factor in the improved performance.

There have been a number of recent works suggesting RL representations, taken

to be the output of the convolutional layers in our networks 5, yield better agent

performance when their norms are smaller. Gogianu et al. (2021) demonstrated

that normalizing representations yields improved agent performance as a result of

a change to optimization dynamics; Kumar et al. (2021b) further observed that

smaller representation norms can help mitigate feature co-adaptation, which can

5. This is a common interpretation used recently, for example, by Castro et al. (2021), Gogianu
et al. (2021), and Farebrother et al. (2023)
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Figure 2.23 – Adding noise of varying scales to the learning target with the default batch size of
32. Performance of QR-DQN on twenty games with different target noise scale values.

degrade agent performance in the offline setting. As Figure 2.22 (fourth column)

shows, the norms of the representations are correlated with batch size, which aligns

well with the works just mentioned.

Effect on network expressivity and plasticity Kumar et al. (2021a) introduced the

notion of the effective rank of the representation srankδ(ϕ) 6, and argued that it is

correlated with a network’s expressivity: a reduction in effective rank results in an

implicit under-parameterization. The authors provide evidence that bootstrapping is

the likeliest cause for effective rank collapse (and reduced performance). Interestingly,

in Figure 2.22 (fifth column) we see that with smaller batch sizes srank collapse

occurs earlier in training than with larger batch sizes. Given that there is mounting

evidence that deep RL networks tend to overfit during training (Dabney et al., 2021;

6. δ is a threshold parameter. We used the same value of 0.01 as used by Kumar et al. (2021a).
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Figure 2.24 – Results aggregated IQM of human-normalized scores over 20 games for QR-DQN.

Nikishin et al., 2022; Sokar et al., 2023), it is possible that the network is better

able to adapt to an earlier rank collapse than to a later one.

To further investigate the effects on network expressivity, we measured the

fraction of dormant neurons (neurons with near-zero activations). Sokar et al. (2023)

demonstrated that deep RL agents suffer from an increase in the number of dormant

neurons in their network; further, the higher the level of dormant neurons, the worse

the performance. In Figure 2.22 (rightmost column) we can see that, although

the relationship with batch size is not as clear as with some of the other metrics,

smaller batch sizes appear to have a much milder increase in their frequency. Further,

there does appear to be a close relationship with the measured srank findings above.

Key insights:

— Reduced batch sizes result in increased variance of losses and gradients. This

increased variance can have a beneficial effect during training.

— Smaller batch sizes result in smaller gradient and representation norms, which

tend to result in improved performance.

— Smaller batch sizes seem to result in networks that are both more expressive

and with greater plasticity.

Takeaway: Reducing batch sizes in training neural networks leads to an ampli-
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fied variance of losses and gradients, which interestingly can yield advantageous

outcomes during the learning process. The introduction of this heightened variance

can be surprisingly beneficial, fostering exploration in the optimization landscape.

Consequently, the utilization of smaller batch sizes yields diminutive gradient

and representation norms, ultimately contributing to enhanced performance. Ad-

ditionally, these reduced batch sizes appear to foster networks with augmented

expressiveness and heightened plasticity, highlighting the potential for creating

models that are both adaptable and capable of capturing intricate patterns in data.

The conclusions drawn from reducing batch size emphasize the importance of

enhancing the stability of the loss landscape as a pivotal measure to foster plasticity.

A more seamless loss landscape not only streamlines the optimization process

but also demonstrates a propensity for superior generalization capabilities. These

plasticity results are likely to have many ancillary benefits, presenting an exciting

direction for future investigation.

2.2.3 Offline reinforcement learning

We next turn our attention to the offline reinforcement learning regime (Gulcehre

et al., 2020; Levine et al., 2020), where we are given a dataset of sample transitions

from which we would like to obtain a policy that performs well. Compared to

the online regime, learning offline is more challenging as there is more room for

overfitting to the fixed dataset, and there is no possibility for the agent to correct

its estimation mistakes by interacting with the environment (as argued by Ostrovski

et al. (2021)). We study the effect of using smaller batch size parameter for three

offline algorithms: DQN, CQL+C51, and CQL+DR3. Except for DQN, these

algorithms are specifically tailored to the offline regime, incorporating among other

things a penalty to mitigate value overestimation. We follow the training scheme

of (Kumar et al., 2021b): each agent is trained on 17 games from the ALE for 200

iterations (where each iteration consists of 62.5K gradient steps), and after each

iteration the agent is evaluated for 125K steps on the environment. The offline

dataset consists of the transitions experienced during the full training of a DQN

agent (Agarwal et al., 2020).

Figure 2.25 illustrates the impact of jointly varying multi-step learning and batch

43



Figure 2.25 – Training curves for DQN, CQL+DR3 and CQL+C51 offline agents with multi-step
learning Top: n = 1 and Bottom: n = 3. The results for all games are over 5 independent runs.

size as we do in section 2.2.2. In the case of CQL+C51 (the highest-performing

method), it is clear that when n is increased from 1 to 3, it is beneficial to also

reduce the batch size (from 32 to 16), in line with our previous findings. For DQN

and CQL+DR3, the relative performance improvement is larger when using smaller

batch size and using multi-step learning.

2.3 Related Work

There is a considerable amount of literature on understanding the effect of batch

size in supervised learning settings. Keskar et al. (2016) presented quantitative

experiments that support the view that large-batch methods tend to converge to

sharp minimizers of the training and testing functions, and as has been shown in

the optimization community, sharp minima tends to lead to poorer generalization.

Masters and Luschi (2018) support the previous finding, presenting an empirical

study of stochastic gradient descent’s performance, and reviewing the underlying

theoretical assumptions surrounding smaller batches. They conclude that using

smaller batch sizes achieves the best training stability and generalization perfor-

mance. Additionally, Golmant et al. (2018) reported that across a wide range of
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network architectures and problem domains, increasing the batch size yields no

decrease in wall-clock time to convergence for either train or test loss.

Although batch size is central to deep reinforcement learning algorithms, it has

not been extensively studied. One of the few results in this space is the work by

Stooke and Abbeel (2018), where they argued that larger batch sizes can lead to

improved performance when training in distributed settings. Our work finds the

opposite effect: smaller batch sizes tends to improve performance; this suggests that

empirical findings may not directly carry over between single-agent and distributed

training scenarios.

Fedus et al. (2020) presented a systematic and extensive analysis of experience

replay in Q-learning methods, focusing on two fundamental properties: the replay

capacity and the ratio of learning updates to experience collected (e.g. the replay

ratio). Although their findings are complementary to ours, further investigation into

the interplay of batch size and replay ratio is an interesting avenue for future work.

Finally, there have been a number of recent works investigating network plasticity

(Nikishin et al., 2022; D’Oro et al., 2023; Sokar et al., 2023), but all have kept the

batch size fixed.

2.4 Conclusion

In online deep RL, the amount of data sampled during each training step is

crucial to an agent’s learning effectiveness. Common intuition would lead one to

believe that larger batches yield better estimates of the data distribution and yield

computational savings due to data parallelism on GPUs. Our findings here suggest

the opposite: the batch size parameter generally alters the agent’s learning curves

in surprising ways, and reducing the batch size below its standard value is often

beneficial.

From a practical perspective, our experimental results make it clear that the

effect of batch size on performance is substantially more complex than in supervised

learning. Beyond the obvious performance and wall-time gains we observe, changing

the batch size appears to have knock-on effects on exploration as well as asymptotic

behaviour. Figure 2.16 hints at a complex relationship between learning rate and
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batch size, suggesting the potential usefulness of “scaling laws” for adjusting these

parameters appropriately.

Conversely, our results also highlight a number of theoretically-unexplained

effects in deep reinforcement learning. For example, one would naturally expect that

increasing the batch size should increase variance, and eventually affect prediction

accuracy. That its effect on performance, both transient and asymptotic, should so

critically depend on the degree to which bootstrapping occurs (as in n-step returns;

Figure 2.21) suggest that gradient-based temporal-difference learning algorithms

need a fundamentally different analysis from supervised learning methods.

2.4.1 Future Work

Our focus in this paper has been on value-based online methods. This raises the

question of whether our findings carry over to actor-critic methods, and different

training scenarios such distributed training (Stooke and Abbeel, 2018). While

similar findings are likely for actor-critic methods, the dynamics are sufficiently

different in distributed training that it would likely require a different investigative

and analytical approach.

Our work has broader implications than just the choice of the batch size hyper-

parameter. For instance, our findings on the impact of variance on performance

suggest a promising avenue for new algorithmic innovations via the explicit injection

of variance. Most exploration algorithms are designed for tabular settings and then

adapted for deep networks; our results in section 2.2.1.5 suggests there may be

opportunities for exploratory algorithms designed specifically for use with neural

networks.

Another interesting direction would be to study how large networks interact

with RL algorithms when using smaller batch size. Lastly, our analysis on smaller

batch size point towards stabilizing the loss landscape as a crucial step towards

promoting plasticity. This approach is expected to yield numerous additional

advantages, opening up exciting avenues for future research. A more seamless

loss landscape offers several benefits, making optimization easier and leading to

improved generalization.

Therefore, investigating the interplay between generalization and small batch

size for reinforcement learning could be a promising direction for further exploration,

46



as it can provide deeper insights into their complementary roles. We hope our

analyses can prove useful for further advances in the development and understanding

of deep networks for reinforcement learning.
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3 Conclusion

Experimental design in reinforcement learning is no small task (Eimer et al.,

2023; Araújo et al., 2021; Andrychowicz et al., 2021). Running good experiments

requires attention to detail and at times significant computational resources. The

large computational limitations and the complex interplay between Deep Learning

models and RL algorithms make it hard to characterize the learning dynamics of

DRL agents and the interplay among components. Despite the great potential

of DRL in several domains, DRL is far from well understood. This impedes the

development of more advanced algorithms and also prevents the deployment of

DRL agents in broader real-world scenarios. Although the learning dynamics of

RL agents has been studied with tabular and linear approximation, knowing the

learning dynamics of DRL agents is challenging and still an open research problem.

Our work is a contribution in this direction. We investigate the critical role of

the interplay between different components (batch size and multi-step learning) in

the performance of deep RL algorithms, and explore how this affects the learning

dynamics of DRL agents.

Despite recent progress (Sokar et al., 2023; D’Oro et al., 2023; Schaul et al.,

2022), there is still much room for developing a better understanding of the many

components, and their complex interactions, in training deep networks for RL.

Increasing this understanding can aid in the development of new methods and in

more rigorous methods for evaluating them. We encourage researchers to conduct

experiments to obtain a deeper understanding of new methods so as to better

prepare the community (both academic and applied) when building new deep RL

agents.

It is worth emphasizing that the landscape of deep RL is marked by its rapid

evolution. New methods are constantly being introduced, each with its unique

set of promises and challenges. By engaging in experimental pursuits, researchers

not only aid in demystifying these novel techniques but also contribute to their

understanding and refinement when creating more capable deep RL algorithms.
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Given the current level of design complexity achieved by deep reinforcement

learning agents, any design choice may have a cascade effect whose consequences we

do not predict in advance. Acknowledging this possibility and being aware of it may

be an important step toward uncovering latent impacts, and potentially reshaping

them into design choices with clearer consequences.

In a broader context, this paper delves into the utilization of a newfound insight

to inform the development of forthcoming deep reinforcement learning algorithms.

We view this endeavor as an illustration of how the advancement of proficient deep

reinforcement learning methods should encompass more than just extending current

algorithms or devising novel ones. It should also involve uncovering phenomena

associated with deep RL systems, along with the development of strategies to

harness them in order to enhance performance.
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