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Résumé

Due à l’augmentation de la force des changements climatiques, il devient critique d’éliminer
les combustibles fossiles. Les véhicules électriques sont un bon moyen de réduire notre
dépendance à ces matières polluantes, mais leur adoption est généralement limitée par le
manque d’accessibilité à des stations de recharge. Dans cet article, notre but est d’agrandir
l’infrastrucure liée aux stations de recharge pour fournir une meilleure qualité de service aux
usagers (et une meilleure accessibilité aux stations). Nous nous attaquons spéficiquement
au context urbain. Nous proposons de représenter un modèle d’assignation de demande de
recharge à des stations sous la forme d’un problème de flux maximum. Ce modèle nous sert
de base pour évaluer la satisfaction des usagers étant donné l’infrastruture disponible. Par la
suite, nous incorporons le model de flux maximum à un programme en nombre entier mixte
qui a pour but d’évaluer l’installation de nouvelles stations et d’étendre leur disponibilité
en ajoutant plus de bornes de recharge. Nous présentons notre méthodologie dans le cas de
la ville de Montréal et montrons que notre approche est en mesure résoudre des instances
réalistes. Nous concluons en montrant l’importance de la variation dans le temps et l’espace
de la demande de recharge lorsque l’on résout des instances de taille réelle.

Mots clés: Véhicules électriques, Flux maximum, Programme en nombre entier mixte, Station
de recharge
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Abstract

With the increasing effects of climate change, the urgency to step away from fossil fuels
is greater than ever before. Electric vehicles (EVs) are one way to diminish these effects,
but their widespread adoption is often limited by the insufficient availability of charging
stations. In this work, our goal is to expand the infrastructure of EV charging stations, in
order to provide a better quality of service in terms of user satisfaction (and availability of
charging stations). Specifically, our focus is directed towards urban areas. We first propose
a model for the assignment of EV charging demand to stations, framing it as a maximum
flow problem. This model is the basis for the evaluation of the user satisfaction by a given
charging infrastructure. Secondly, we incorporate the maximum flow model into a mixed-
integer linear program, where decisions on the opening of new stations and on the expansion
of their capacity through additional outlets is accounted for. We showcase our methodology
for the city of Montreal, demonstrating the scalability of our approach to handle real-world
scenarios. We conclude that considering both spacial and temporal variations in charging
demand is meaningful when solving realistic instances.

Keywords: Electric vehicles, Maximum flow, Mixed-integer programming, Charging station
placement
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Chapter 1

Introduction

In the last decade, the popularity of electric vehicles (EVs) has increased year after year.
This is partially due to countries trying to reduce their greenhouse gas emissions and to
provide financial incentives. This is particularly the case in Canada where fully electric car
buyers are eligible to receive up to $5000 (GC [2023]). Similarly, in the province of Quebec,
the government is adding a up to $7000 when purchasing a brand new EV (GQ [2023]).
Beyond monetary incentives, Hydro-Québec, the publicly owned electricity company in the
province, is also interested in other means to increase EV adoption. One such way is to
improve EV infrastructure. This is because EV users fear not having enough range to reach
their destination due to the vehicle’s limited battery size, often referred to as range anxiety.
Studies show that this range anxiety may affect potential buyers when deciding between
an internal combustion engine and an EV (Pevec et al. [2020]). Naturally, the solution is
to build more public stations and add outlets to increase availability. Carley et al. [2013]
mention that, although perceived disadvantages of EVs are a strong deterrent to purchases,
range anxiety could be addressed by increasing the number and visibility of public charging
stations. The challenge is to identify the optimal locations for investment, and to determine
where the funds should be spent.

Unlike typical gas stations, EV users may spend from minutes to hours at a charging
station. This implies we have to take into account potential congestion depending on the
speed of the station. Moreover, besides the selection of locations to open stations, we also
have to select the charging speed and number of outlets to install. Level 1 outlets are usually
not appropriate for public stations due to their speed and are usually instead installed on
houses for personal use. Level 2 outlets are more expensive but fast enough to charge an
empty battery within a few hours. This is sufficient for users who travel short distances
and can leave their vehicle for extended periods of time. Level 3 outlets are fast enough to
fully charge a vehicle in under an hour but are significantly more expensive. Usually level
2 and level 3 outlets are viable for public stations but their number per station will differ.



Beyond their price, level 3 outlets are quite energy consuming and can be taxing for the
energy grid when multiple are installed on a station or in the same area. This can be a
further consideration when picking a location.

A location should cover (i.e., make feasible) the trips of as many users as possible. Typi-
cally, a user will perform long trips between cities (intercity) or short trips between commonly
visited locations (intracity). For long trips, a user may have to charge multiple times be-
tween their origin and destination. For this case, stations should be built between cities on
highways and should be fast enough as to not delay the long trip. For short trips, users will
typically move between home, work and public places. They are more likely to leave their
vehicle to charge for longer periods of time, while they are at a certain location. For this
case, stations should be built as close as possible to that final destination as to reduce the
walking distance. After all, the willingness of drivers to buy an EV will likely depend on the
distance between them and the nearest station. However, like mentioned above, not only
does the station needs to be near, but it should not be occupied when needed. This means
we have to estimate the demand for a given station and monitor how this demand varies over
time. Firstly, demand can peak during certain hours of the day when everyone attempts to
charge at the same time. Secondly, since our goal is to encourage EV adoption, at some point
the number of vehicles in need of charging will increase. Based on this estimated demand,
we can choose to add outlets to existing stations or, if a station is over-saturated or a region
is not well-served, to build a new station nearby.

In this work, we focus on the optimal placement and sizing of EV charging stations in
the intracity case, specifically, for the island of Montreal. To do so, we start by using data
provided by Hydro-Québec to estimate the charging capacity of stations (supply). This is
done using (charging) session data, describing how long a user has been charging at a specific
outlet. It also gives us the amount of kilowatts (kWs) consumed by the vehicle. With this
information, we are able to not only estimate the demand in terms of energy, but to also
measure how it evolves over a day. To estimate the demand in each borough, we use, on
top of the previous data, a 2018 OD survey1 by the ARTM about trips between Montreal
boroughs. The session data is used to estimate how many users charge within a borough.
Next, we use the OD pairs to find from which borough they likely came from. This leaves
us with an estimated demand in each borough.

Once the demand has been estimated, we aim to match (assign) the demand to stations.
This allow us to evaluate the demand supplied by each station, potentially, identifying bot-
tlenecks, namely, over-demanded regions. Another use of this approach is to finding under-
supplied areas where stations are simply too few for the population. We consider these areas
as prime candidate locations for future stations. This matching is defined as a maximum
flow problem and solved using a linear program. The linear program is then extended to a
1https://www.artm.quebec/planification/enqueteod/
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mixed-integer linear program where binary variables describe if a station is built or not on
a candidate location. This program also comes with the possibility of adjusting the number
of outlets for each station based on the demand near the station.

There are certain key differences between this work and most of the existing literature.
Firstly, unlike the flow-based models related to Kuby and Lim [2005], our maximum flow
model is adapted from Ford and Fulkerson [1958]. To the best of our knowledge, this is the
first maximum flow model of its kind used within the context of the EV station location and
sizing problem. Secondly, our work accounts for various features found in other works like
station supply capacities (e.g., Upchurch et al. [2009]), planning considering multiple periods
(e.g., Zhang et al. [2017]) and inclusion of already existing infrastructure (e.g., Yang [2018]).
Moreover, we also focus on tackling real-world large-scale instances (e.g., as in Shahraki et al.
[2015]) and in the development of exact methods (e.g., as in Cavadas et al. [2015]). We thus
combine together into a single model important key modeling and methodologic aspects.
Thirdly, we demonstrate our ability to solve large-scale instances with hundreds of stations
and the aggregated power demand of thousands of users based real-world data. The cur-
rent literature can solve these instances with heuristics, but our maximum-flow formulation
enables its effective exact solving by off-the-shelf optimization solvers.

Importantly, this work provides a way to clearly identify weakness in an EV charging
network with respect to over-demanded regions. However, any solution found through our
methodology should be cautiously analyzed. Due to a lack of data, for example in terms
of the exact location of the demand, we make certain assumptions in our testing. As such,
before deploying our network expansion decisions, a discrete-event simulation should be used
to accurately estimate the demand it can satisfy.

Thesis organization. The thesis is organized in the following way. In Chapter 2, we
provide an extensive literature review of both maximum flow and charging infrastructure
planning. Chapter 3 is our paper and can be divided in multiple sections. In Section 1, we
give a brief introduction to our topic. In Section 3.2, we provide an overview of the existing
literature on EV charging infrastructure planning, focusing particularly on station placement.
In Section 3.3, we present the linear model for charging station network evaluation in terms
of satisfied demand and the mixed-integer program, including station location and sizing
decisions. In Section 3.4, we describe our case study for the island of Montreal and test our
models on realistic instances. Section 3.5 concludes the paper and proposes potential future
research. Finally, Chapter 4 concludes with a more in depth description of future research
topics.
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Chapter 2

Extended literature review

This chapter is divided into two sections. First, we go over the maximum flow literature. This
is closely related to our work since the basis for our problem representation is a maximum
flow which is a type of problem that tends to be fast to solve. Second, we review the
literature related to charging infrastructure planning. Since our problem is about charging
station location and sizing, we extend the existing literature by providing a new approach
to maximum flow models.

2.1. Maximum Flow
The maximum flow problem was introduced by Ford and Fulkerson as a mean to calculate

the optimal distribution of products within a given network (Ford and Fulkerson [1956]).
The network is composed of a source node and a sink node from where products (i.e., flow)
leave and arrive, respectively. Each arc within the network possesses a capacity, which is the
maximum amount of flow that can travel on the arc, and a traversal time (sometimes referred
to as cost) that represents the amount of time it takes for the said flow to travel on the arc.
This model is called maximum static flow since everything is considered to happen within
the same period. Ford and Fulkerson expanded upon their own idea by adding periods which
are discretized over a time horizon. Each period is a copy of the network where flow can
be held over to the next period (Ford and Fulkerson [1958]). This is known as a maximum
dynamic flow. Halpern [1979] proposed to extend this idea by allowing the capacity of arcs to
change between each period. This can model a system that evolves over time. For example,
Chalmet et al. [1982] proposed a maximum dynamic flow model to evacuate a building as
fast as possible. The model evolves over time as people exit the building and certain sections
are cut off by hazards. This allows them to find bottlenecks in both time and space.

Since then, the field of maximum flow problems has undergone extensive research. Kot-
nyek [2003] gives a comprehensive overview of many different maximum flow algorithms to
account for more complex and variations of the problem. Recently, a lot of the research on



maximum flow algorithms has been dedicated to evacuation problems (e.g., Hoppe and Tar-
dos [1995], Hoppe and Tardos [2000], Mamada et al. [2004], Baumann and Skutella [2006],
Baumann and Köhler [2007], Baumann and Skutella [2009], Schmidt and Skutella [2014]).
An example of a maximum flow problem closer to our research topic is Seo and Asakura
[2021]. Their study focuses on a multi-objective shared autonomous vehicle problem, where
travel time, infrastructure and fleet costs are minimized. The key difference is that in this
problem, the number of vehicles to satisfy the demand is minimized, while we try to satisfy
the demand for a maximum number of vehicles.

2.2. Charging Infrastructure Planning
Recently, there has been extensive research on EV charging station placement problems.

Ko et al. [2017] gives a detailed description of the main aspects of this problem: location
modeling, objective/constraints and demand estimation. To these characteristics, other key
elements can be added, namely, (i) the inclusion of intracity travel, intercity travel or both,
since travel range is an important characteristics of EVs, and (ii) the consideration of a dis-
cretized planning horizon in periods, since the charging demand and EV adoption is expected
to vary over time. As the ultimate goal is to solve those problems, it also becomes relevant to
describe the methodology used, which typically revolves around MILP formulations plugged
directly into off-the-shelf solvers, or heuristics. Hence, guided by the enumerated aspects,
we summarize related literature in Table 2.1.

Reference Demand Intracity or Objective Location Methodology Periods
Estimation Intercity Modelling

This work OD pairs Intracity Maximize flow Flow-Based MILP Yes

Anjos et al. [2020]
Node-Based &
OD pairs

Both
Maximize EV
purchases

Maximum Cov-
ering

Heuristic Yes

Baouche et al.
[2014]

OD pairs Intracity
Minimize costs
& distance

Maximum Cov-
ering

MILP No

Bouguerra and
Layeb [2019]

Node-Based Intracity Minimize costs Set Covering MILP No

Capar et al. [2013] OD pairs Intercity Maximize flow
Maximum Cov-
ering

MILP No

Cavadas et al.
[2015]

OD pairs Intracity

Maximize
demand &
Minimize
distance

Maximum Cov-
ering

MILP Yes

Chung and Kwon
[2015]

OD pairs Intercity Maximize flow
Maximum Cov-
ering

MILP Yes

Dong et al. [2014]
GPS trajecto-
ries

Intercity
Minimize
missed trips

Maximum Cov-
ering

Heuristic No

Filippi et al. [2023] Node-Based Intracity
Minimize costs
& distance

Maximum Cov-
ering

MILP Yes

Flath et al. [2014] OD pairs Intracity Minimize costs N/A Heuristic Yes
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Frade et al. [2011] Node-Based Intracity
Minimize costs
& Maximize
coverage

Maximum Cov-
ering

MILP Yes

Gan et al. [2020]
GPS trajecto-
ries

Intracity
Maximize prof-
its

Maximum Cov-
ering

Heuristic No

Hosseini and
MirHassani [2015]

OD pairs Intercity Maximize flow
Maximum Cov-
ering

MILP or Heuristic No

Hosseini et al.
[2017]

OD pairs Intercity Maximize flow
Maximum Cov-
ering

MILP or Heuristic Yes

Huang et al. [2015] OD pairs Intercity Minimize costs
Maximum Cov-
ering

MILP No

Kadri et al. [2020] OD pairs Intercity Maximize flow
Maximum Cov-
ering

MILP or Heuristic Yes

Kim and Kuby
[2012]

OD pairs Intercity Maximize flow
Maximum Cov-
ering

MILP No

Kim and Kuby
[2013]

OD pairs Intercity Maximize flow
Maximum Cov-
ering

Heuristic No

Kuby and Lim
[2005]

OD pairs Intercity Maximize flow
Maximum Cov-
ering

MILP or Heuristic No

Lam et al. [2014] Node-Based Intercity Minimize costs
Maximum Cov-
ering

MILP or Heuristic No

Lamontagne et al.
[2023]

Simulation Intracity
Maximize EV
purchases

Maximum Cov-
ering

MILP or Heuristic Yes

Li and Huang
[2014]

OD pairs Intercity Minimize costs
Maximum Cov-
ering

Heuristic No

Li et al. [2016] OD pairs Intercity Minimize costs Set Covering MILP or Heuristic Yes
Lim and Kuby
[2010]

OD pairs Intercity Maximize flow
Maximum Cov-
ering

Heuristic No

MirHassani and
Ebrazi [2013]

OD pairs Intercity Minimize costs
Maximum Cov-
ering

MILP No

Moghaddam et al.
[2019]

Simulation Intercity
Minimize
costs, waiting
& travel time

N/A Heuristic Yes

Shahraki et al.
[2015]

GPS trajecto-
ries

Intracity
Maximize
coverage

Maximum Cov-
ering

MILP No

Tu et al. [2016]
GPS trajecto-
ries

Intracity
Maximize
demand

Maximum Cov-
ering

Heuristic Yes

Upchurch et al.
[2009]

OD pairs Intercity Maximize flow
Maximum Cov-
ering

MILP Yes

Upchurch and
Kuby [2010]

Node-Based or
OD pairs

Both
Minimize
distance or
Maximize flow

p-Median or
Maximum
Covering

Heuristic No

Wang and Lin
[2009]

OD pairs Intercity Minimize costs
Maximum Cov-
ering

MILP No

Wang and Lin
[2013]

OD pairs Intercity
Maximize flow
or Minimize
costs

Maximum Cov-
ering

MILP No

Xie et al. [2018] OD pairs Intercity Minimize costs Set Covering MILP or Heuristic Yes

Yang et al. [2017]
GPS trajecto-
ries

Intracity Minimize costs
Maximum Cov-
ering

MILP No
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Yang [2018] OD pairs Intracity
Maximize
demand

Maximum Cov-
ering

MILP No

Zhang et al. [2015] OD pairs Intercity Minimize costs Set Covering MILP No

Zhang et al. [2017] OD pairs Intercity Maximize flow
Maximum Cov-
ering

Heuristic Yes

Zhang et al. [2020]
GPS trajecto-
ries

Intracity Multi-Criteria
Maximum Cov-
ering

Heuristic No

Zhong et al. [2022] Simulation Intracity Minimize costs Set Covering Heuristic No

Table 2.1. Summary of key characteristics of EV charging station location models

The demand estimation indicates when and where the charging demand is coming from.
The most common method is based on the use of OD pair data to subsequently model how
users move between locations. This kind of data often comes from surveys (e.g., Baouche
et al. [2014], Zhang et al. [2015], Cavadas et al. [2015]). Another option is to use node-based
demand. In this case, each node in a graph represents a population with demand based
on one or more criteria (e.g., population density) (Frade et al. [2011], Lam et al. [2014],
Bouguerra and Layeb [2019], Filippi et al. [2023]). Sometimes, GPS data of vehicles, usually
taxis, is publicly available and can give a very accurate representation of movements within
cities (Shahraki et al. [2015], Tu et al. [2016], Yang et al. [2017], Zhang et al. [2020], Gan
et al. [2020]). Dong et al. [2014] has GPS data which extends much further than just a city,
which is uncommon. It is also possible to use a simulation with discrete choice models to
estimate user preferences over available stations (Lamontagne et al. [2023]). In our work, we
use OD pairs. However, they only cover travels between boroughs. To improve the coverage,
we generate random locations within the boroughs.

The location modelling usually falls into one of two categories: node-based or flow-based
(Upchurch and Kuby [2010]). In the node-based approach, users are assigned to one or more
locations and are able to charge their vehicle if there is a charging station nearby. A common
node-based modelling is maximum coverage which tries to find locations that minimize the
distance and/or maximize the number of users able to charge at those locations (e.g., Frade
et al. [2011], Tu et al. [2016], Yang [2018]). A key aspect is that the models are provided with
a set of candidate locations, and the goal is to find an optimal subset of locations to open
a station in accordance with a given objective and a set of constraints. Another common
option for node-based modelling is set coverage. The aim is to cover all the demand with
the least number of charging stations (Zhang et al. [2015], Li et al. [2016], Xie et al. [2018],
Bouguerra and Layeb [2019]). Unlike maximum coverage, a set of candidate locations is not
needed and the nodes of the network are used instead. For the flow-based modelling, flow is
assigned origin-destination (OD) pairs, and facilities (charging stations in this context) must
capture as much flow as possible. This is another variant of maximum coverage proposed
by Hodgson [1990]. Using the flow-based modelling, Kuby and Lim [2005] are the first to
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propose the Fuel Refuelling Location Problem (FRLP) which seeks to locate a fixed number
of refuelling stations on a network so as to maximize the total flow volume refuelled. Over
time, improvements have been made to solve the FRLP more efficiently (Lim and Kuby
[2010],Capar et al. [2013]). Others have minimized the costs rather than maximize the flow
(Wang and Lin [2009], Wang and Lin [2013], MirHassani and Ebrazi [2013], Li and Huang
[2014]). Some researches have added a capacity on stations to limit how many vehicles can
charge (Upchurch et al. [2009], Hosseini and MirHassani [2015], Hosseini et al. [2017]). A
limitation of the base FRLP is that users cannot deviate from shortest path possible for
the associated OD. In Kim and Kuby [2012], Kim and Kuby [2013], Huang et al. [2015] and
Hosseini et al. [2017] users are allowed to stray from the shortest path to charge their vehicle.
In our work, since we consider intracity travels, and hence, short trips, we do not consider
the routing of EVs.

Not all EV infrastructure studies focus on the opening of new charging locations. Some
try to optimize the already existing infrastructure. For instance, Flath et al. [2014] created
driving profiles from data and adapted the charging prices to spread out the demand over
time. Hu et al. [2016] minimized costs in a cooperative and competitive environment. More
concretely, they aimed to minimize the load variance to reduce the impacts of peak demand
on the energy grid and keep the prices down. Moghaddam et al. [2019] proposed an algorithm
that incentivizes users to charge at periods of low usage to distribute the demand more
uniformly over multiple periods.

The objective of optimal placement of charging stations can vary a lot, but it is of-
ten closely related to the location modelling. Flow-based models often maximize the total
amount of flow in the network (e.g., Kuby and Lim [2005], Capar et al. [2013], Chung and
Kwon [2015], Kadri et al. [2020]). However, some of them, instead, minimize costs like in
Wang and Lin [2009], Lam et al. [2014] and Li and Huang [2014], or maximize EV purchases
like in Anjos et al. [2020]. For node-based modelling, the objective is often one of four
options or a combination of them: maximization of the covered area (Frade et al. [2011],
Shahraki et al. [2015]), maximization of the satisfied EV demand (Cavadas et al. [2015],
Tu et al. [2016], Yang [2018]), minimization of the costs (Zhang et al. [2015], Yang et al.
[2017], Li et al. [2016], Xie et al. [2018], Bouguerra and Layeb [2019], Zhong et al. [2022])
or minimization of the distance between users and stations (Baouche et al. [2014], Cavadas
et al. [2015], Filippi et al. [2023]). Some other objectives include the maximization of EV
purchases (Lamontagne et al. [2023]), the optimization of profitability and reduction of the
probability of outages (Gan et al. [2020]) and, in a similar vein, the maximization of the
long-term profit of infrastructure investors (Vashisth et al. [2022]). In Zhang et al. [2020],
the objective contains five different sub-objectives: maximization of the covered area, max-
imization of the satisfied EV demand and minimization of the distance between users and
stations but also the reduction on the waiting time and encouragement for charging at the
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origin or the destination. Dong et al. [2014] aimed to minimize the number of failed trips
by the EV users in an attempt to mitigate their concern of being stranded with an empty
battery.

A key aspect of the EV charging station placement problem is whether the problem
is intercity or intracity. The intercity case focuses on long distance travels between cities.
This means that users may charge one or more times midway during a trip (e.g., Chung
and Kwon [2015], Li et al. [2016], Xie et al. [2018]). Sometimes the intercity case allows
for round trips and users can charge on their way back (e.g., Kuby and Lim [2005], Wang
and Lin [2013], Kadri et al. [2020]). The intracity case focuses on a city or a smaller region
where users are more likely to charge near homes, workplaces or public areas (Hardman et al.
[2018]). Examples of concrete case studies include: Frade et al. [2011] who focused on the
neighbourhood of Avenidas Novas in Lisbon, Baouche et al. [2014] who focused on the city
of Lyon and Cavadas et al. [2015] who focused on the city of Coimbra. Upchurch and Kuby
[2010] showed that their model works for the city of Orlando or the state of Florida, meaning
it can do either intracity or intercity. To the best of our knowledge, Anjos et al. [2020] are
the only authors to handle both intra and intercity cases simultaneously.

Some research includes a time component to the EV charging station placement problem.
This is important as it is expected that the charging demand and infrastructure supply
varies over time. Importantly, there are two ways in which periods have been modelled:
in strategical planning, periods can represent years, and in tactical planing, periods can
represent hours. These modelling of the time serves different purposes. If time is modelled
over a number of years, the goal is to show the adoption of EV vehicles and the evolution
of the EV infrastructure (Chung and Kwon [2015], Li et al. [2016], Zhang et al. [2017],
Xie et al. [2018], Anjos et al. [2020], Lamontagne et al. [2023]). If time is modelled over a
number of hours, the goal is to reflect high and low demand over certain times of the day
and evaluate the infrastructure service quality (Frade et al. [2011], Cavadas et al. [2015],
Tu et al. [2016], Filippi et al. [2023]). Zhang et al. [2015] proposed their own approach to
account for temporal utilization of charging stations without using periods.

In this work, we propose a flow-based mixed-integer linear program (MILP) for the EV
charging station placement and sizing problem. Baouche et al. [2014] investigated a case
study of the city of Lyon for their intracity model. They also used OD data to estimate
demand, yet the approach is fundamentally different, with their optimization model ensuring
that all demand is covered at minimum cost, and without complementing the OD data with
EV session data. Filippi et al. [2023] emphasized the importance of accounting for spatial
and temporal variations in demand, which aligns with the considerations in our study. They
adopt a node-based demand model and focus on minimizing installation costs and customers
travel distance, subject to satisfying all the demand (which can be assigned to any opened
station). This contrasts with our approach in two key ways: firstly, we focus on maximizing
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the satisfied energy demand; secondly, we use OD data and we limit the feasibility of the
charging stations to points near the origin or destination, rather than node-based demand
modelling. Lamontagne et al. [2023] proposed a MILP for the maximization of EV adoption
in the long-term. Their model does not consider the stations’ capacity, which is a crucial
factor for our tactical problem, maximizing satisfied demand. Cavadas et al. [2015] considered
an intracity case study as well as a time dimension along with station capacities in their
model. Their work differentiates from ours as they used a node-based model rather than
flow-based, aiming to minimize walking distance, and using a predetermined number of
outlets per station. Finally, MILP approaches have encountered the issue of scalability (e.g.,
Zhang et al. [2017], Anjos et al. [2020] and Lamontagne et al. [2023]). However, by leveraging
on the maximum flow model for the estimation of the satisfied demand, we are able to solve
our MILP for instances based on the real Montreal demand and existing EV infrastructure.
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Abstract. With the increasing effects of climate change, the urgency to step away from
fossil fuels is greater than ever before. Electric vehicles (EVs) are one way to diminish
these effects, but their widespread adoption is often limited by the insufficient availability
of charging stations. In this work, our goal is to expand the infrastructure of EV charging
stations, in order to provide a better quality of service in terms of user satisfaction (and
availability of charging stations). Specifically, our focus is directed towards urban areas. We
first propose a model for the assignment of EV charging demand to stations, framing it as a
maximum flow problem. This model is the basis for the evaluation of the user satisfaction
by a given charging infrastructure. Secondly, we incorporate the maximum flow model into
a mixed-integer linear program, where decisions on the opening of new stations and on
the expansion of their capacity through additional outlets is accounted for. We showcase
our methodology for the city of Montreal, demonstrating the scalability of our approach
to handle real-world scenarios. We conclude that considering both spacial and temporal
variations in charging demand is meaningful when solving realistic instances.
Keywords: Electric vehicles, Maximum flow, Mixed-integer programming, Charging sta-
tion placement

3.1. Introduction
Transportation accounts for 28% of greenhouse gas (GHG) emission in the US (EPA

[2023]) and likewise in the UK (27%) and in Canada (28%) (EEA [2022],GC [2022]). For
countries where a large percentage of electricity is generated from renewable sources, as
is the case in Canada, studies show that electric vehicles (EVs) are a good alternative to
fuel-based vehicles as a measure to curtail GHG emissions (Woo et al. [2017], Axsen et al.
[2015]). To boost EV adoption, expansion and improvements to the already existing charging
infrastructure must be made. This is because the willingness of car users to opt for an EV
is closely linked to the EVs’ travel range and the availability of charging stations (Pevec
et al. [2020]). The addition of new charging stations can alleviate range anxiety, especially
for prospective EV owners (Carley et al. [2013]). As such, Hydro-Québec, a publicly owned
company responsible for most of the electric grid in the province of Quebec, is investing into
more and faster charging stations. In fact, from 2017 to 2022, 1,800 new charging stations
were added in the province of Quebec. Simultaneously, there was a surge in EV purchases,
escalating from 3,347 in 2017 to 34,082 in 2022 (ST [2022]). This increase in EV purchases
is mostly likely influenced by government policies (e.g., GC [2023], GQ [2023]), yet it may
also be due to the introduction, in urban areas, of charging stations near homes, workplaces
or public areas, as this is known to be a crucial incentive for EV adoption (Hardman et al.
[2018]). Homes can sometimes be covered by privately owned chargers (Bailey et al. [2015]),
but this does not apply to every EV owner. To top it off, public charging infrastructure has
been shown to improve EV adoption (Coffman et al. [2017]). This unfortunately leads to the
"chicken and egg" dilemma (Anjos et al. [2020]) where investors are only willing to supply
more infrastructure if adoption is high, but EV purchases are dependent on widespread
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charging availability. As such, initial investment must come from governments and public
institutions.

The motivation for this work is to support decision-makers who need to understand where
infrastructure improvements are needed. Given a set of candidate locations and existing
stations, they must choose where to build new stations and how many outlets should be
installed or added. As mentioned previously, in a city, users mostly carry out intracity trips
between home, workplace and public areas. We assume that it is possible to satisfy these
users by providing them with access to charging stations near these places.

Contributions. Motivated by the context presented above, this paper tackles the chal-
lenge of optimally locating and sizing EV charging stations in urban areas to maximize the
satisfied charging demand. Charging demand refers to the need of EV users to charge their
vehicle at public stations. Satisfying the charging demand implies the availability in both
time and space of a charging station according to its capacity. Maximizing the satisfied charg-
ing demand is an important tactical planning problem faced by EV infrastructure providers
like Hydro-Québec, which regularly take decisions on the expansion of their infrastructure
to meet the growing charging demand based on current usage. Our first contribution is the
formulation of a linear programming model to efficiently evaluate the satisfied demand for
a group of existent charging stations. Even though the satisfied demand can be determined
from data on existing stations, this model serves two purposes: (i) it also allows us to com-
pute the unsatisfied demand and (ii) it enables us to evaluate the satisfied demand for any
set of stations. In this way, given a list of candidate locations for new stations, our second
contribution is the integration of location and sizing decisions in the formulation, resulting
in a mixed-integer linear program, maximizing the satisfied demand. Lastly, our third con-
tribution involves detailing a case study of the island of Montreal. We base our research
on real charging session data and origin-destination (OD) trips across Montreal boroughs.
With it, we validate the effectiveness of our approach to solve large-scale instances and we
conduct an analysis of the solutions it produces.

Our methodology differs from most papers in the literature in three key ways, underlying
the novelty of our contributions.

(1) We solve the problem of determining the charging demand, i.e., the assignment of
the EV users (demand) to stations, by formulating it as a maximum flow problem.
Maximum flow problems have the advantage of being solvable efficiently. Importantly,
our maximum flow problem is based on Ford and Fulkerson [1958] which is different
from the flow-based model commonly found in Kuby and Lim [2005] and other papers
about the station location problem. To the best of our knowledge, this is the first
maximum flow model of its kind used within the context of the EV station location
and sizing problem.
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(2) Existing EV station placement methods can handle capacities (e.g., Upchurch et al.
[2009]), multiple periods (e.g., Zhang et al. [2017]), already existing infrastructure
(e.g., Yang [2018]), large instances (e.g., Shahraki et al. [2015]) or exact solutions
(e.g., Cavadas et al. [2015]). The existing literature usually tackles only one or two
of these aspects at a time. This paper integrates all these aspects in the maximum
flow formulation.

(3) Thanks to our partnership with Hydro-Québec, we have access to real-world data,
including the existing station locations and charging sessions with timestamps and
energy consumption for every user. We use this information to generate realistic
instances for testing our methodology, and demonstrate our ability to solve large-scale
instances with hundreds of stations and the aggregated power demand of thousands
of users.

Paper organization. The paper is organized in the following way. In Section 3.2,
we provide an overview of the existing literature on EV charging infrastructure planning,
focusing particularly on station placement. In Section 3.3, we present the linear model
for charging station network evaluation in terms of satisfied demand and the mixed-integer
program, including station location and sizing decisions. In Section 3.4, we describe our
case study for the island of Montreal and test our models on realistic instances. Section 3.5
concludes the paper and proposes potential future research.

3.2. Related Literature
In this section, we begin with a brief review of the literature pertaining to the optimization

of charging infrastructure utilization. Then, we delve into the literature’s approaches to
estimate charging demand, a crucial element for the optimal placement of charging stations.
Subsequently, we discuss different location models, objective functions, intracity and intercity
case studies, and temporal modeling considerations. Lastly, we position our work within the
reviewed literature.

Research has been conducted on optimizing the existing charging infrastructure, par-
ticularly, through charging price decisions aimed at managing the distribution of demand
(e.g., Flath et al. [2014], Hu et al. [2016], Moghaddam et al. [2019]). However, in our case
study of the island of Montreal, prices cannot be changed and the power grid is prepared to
handle even the most severe winter day. Therefore, we focus our review on charging station
placement.

Decisions on the expansion and opening of charging stations requires the knowledge of its
potential use. Thus, the estimation of charging demand is important, as it indicates when
and where the demand for charging originates. The most common method is based on the
use of OD data to subsequently model how users move between locations. This kind of data
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often comes from surveys (e.g., Baouche et al. [2014], Zhang et al. [2015], Cavadas et al.
[2015]). This is the approach adopted in this paper. Nonetheless, it is important to note
that our data only covers travels between boroughs (i.e., it is not granular) and it is not
exclusive to EVs. Hence, we complement the demand estimation with other available data.

The location modelling usually falls into one of two categories: node-based or flow-based
(Upchurch and Kuby [2010]). In the node-based approach, either a list of candidate locations
is provided and the goal is to maximize the coverage (e.g., Frade et al. [2011], Tu et al. [2016],
Yang [2018]), or population nodes are used as candidate locations and the goal is to satisfy
all the demand at minimum cost, i.e., cost of opening stations (Zhang et al. [2015], Li
et al. [2016], Xie et al. [2018], Bouguerra and Layeb [2019]). For the flow-based modelling,
flow is assigned OD pairs, and facilities (charging stations in this context) must capture as
much flow as possible. This is another variant of maximum coverage proposed by Hodgson
[1990]. Using the flow-based modelling, Kuby and Lim [2005] are the first to propose the
Fuel Refuelling Location Problem (FRLP) which seeks to locate a fixed number of refuelling
stations on a network so as to maximize the total flow volume refuelled. In our work, since
we consider intracity travels, and hence, short trips, we do not consider the routing of EVs.
We define a maximum flow problem in the sense of Ford and Fulkerson [1958] for the location
modelling. The key difference with the FRLP is that we treat flow as a variable rather than
a parameter. In the FRLP each OD is assigned a flow volume on the shortest path between
the origin and destination. A binary variable is then multiplied to validate whether each
flow volume is present or not when maximizing the objective. This is fundamentally different
since we view flow as a variable which can enter and leave both OD pairs and stations using
flow constraints.

In the literature, the objective of the charging station placement problems varies signif-
icantly, but it is often closely related to the location modelling choice. Flow-based models
often maximize the total amount of flow in the network (e.g., Kuby and Lim [2005], Capar
et al. [2013], Chung and Kwon [2015], Kadri et al. [2020]), which is also our case. For node-
based modelling, different objectives have been used, such as maximization of the satisfied
EV demand (Cavadas et al. [2015], Tu et al. [2016], Yang [2018]) and a minimization of the
costs (Zhang et al. [2015], Li et al. [2016], Yang et al. [2017], Xie et al. [2018], Bouguerra
and Layeb [2019], Zhong et al. [2022] Filippi et al. [2023]).

A key aspect of the EV charging station placement problem is whether the problem is
intercity or intracity. The intercity case focuses on long distance travels between cities, with
users potentially charging once or more during a trip (e.g., Chung and Kwon [2015], Li et al.
[2016], Xie et al. [2018]). The intracity case focuses on a city, with users typically charging
near homes, workplaces or public areas (Hardman et al. [2018]). Frade et al. [2011], Baouche
et al. [2014] and Cavadas et al. [2015] are all examples of works on intracity problems. To
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the best of our knowledge, Anjos et al. [2020] are the only authors to handle both intra and
intercity cases simultaneously.

Some works include a time component to the EV charging station placement problem.
Importantly, time periods have been modelled with two different goals: in strategical plan-
ning, periods can represent years, and in tactical planing, periods can represent hours. If
time is modelled over a number of years, the goal is to focus on the adoption of EVs and the
evolution of the EV infrastructure (Chung and Kwon [2015], Li et al. [2016], Zhang et al.
[2017], Xie et al. [2018], Anjos et al. [2020], Lamontagne et al. [2023]). If time is modelled
over a number of hours, the goal is to reflect high and low demand over certain times and
evaluate the infrastructure service quality (Frade et al. [2011], Cavadas et al. [2015], Tu et al.
[2016], Filippi et al. [2023]).

In this paper, we propose a flow-based (in the sense of Ford and Fulkerson [1958]) mixed-
integer linear program (MILP) for the EV charging station placement and sizing problem.
Baouche et al. [2014] investigated a case study of the city of Lyon for their intracity model.
They also use OD data to estimate demand, yet the approach is fundamentally different from
ours, with their optimization model ensuring that all demand is covered at minimum cost, and
without complementing the OD data with EV session data. Filippi et al. [2023] emphasized
the importance of accounting for spatial and temporal variations in demand, which aligns
with the considerations in our study. They adopted a node-based demand model and focused
on minimizing installation costs and customers travel distance, subject to satisfying all the
demand (which can be assigned to any opened station). This contrasts with our approach
in two key ways: firstly, we focus on maximizing the satisfied energy demand; secondly, we
use OD data and we limit the feasibility of the charging stations to points near the origin or
destination, rather than node-based demand modelling. Lamontagne et al. [2023] proposed
a MILP for the maximization of EV adoption in the long-term. Their model does not
consider the stations’ capacity, which is a crucial factor for our tactical problem, maximizing
satisfied demand. Cavadas et al. [2015] considered an intracity case study as well as a time
dimension along with station capacities. Their work differentiates from ours as they use a
node-based model rather than flow-based, aiming to minimize walking distance, and using
a predetermined number of outlets per station. Finally, MILP approaches have encountered
the issue of scalability (e.g., Zhang et al. [2017], Anjos et al. [2020] and Lamontagne et al.
[2023]). However, by leveraging on the maximum flow model for the estimation of the
satisfied demand, we are able to solve our MILP for instances based on the real Montreal
demand and existing EV infrastructure.
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3.3. Mathematical Formulation
3.3.1. Problem Statement

Our problem involves determining the optimal location and sizing (number of outlets) of
EV charging stations in an urban context. The urban area under study can possess existing
stations, but it is not required for the correctness of our model. The decision-maker’s goal
is to maximize the satisfied daily (charging) demand subject to a budget constraint for the
infrastructure costs. Certainly, to address this problem, it is crucial to model how current
EV users utilize the available charging stations, either existing or newly installed. Hence,
we next describe the available information about EV users and the assumptions made in our
work.

Since we consider the urban case, we expect EV users to travel between home and work,
home and childcare, home and leisure areas, and so on, which are relatively short distances
within urban settings. Therefore, we can assume that they do not charge along a path but
rather at its origin or destination. Hence, the problem of determining how the charging
demand is spread over the available stations becomes a matching problem, where we aim to
match EV users to stations close to their origin or destination. Maximizing the number of
matchings is equivalent to determining the maximum demand that can be satisfied. Given
that, in our case study, users have access to an app providing in real-time the information
about station occupancy (The Electric Circuit1), it is reasonable to optimize the assignment
with this objective function.

Another important aspect of our problem is the consideration of time. Over a day,
EV users do not necessarily travel and charge at the same time, nor do charging sessions
have the same duration. For instance, we should expect peaks of demand in the evenings
in residential areas, and significant charging duration differences between level 2 and level
3 charging stations. Therefore, we discretize the day into a finite number of periods over
which the demand varies, and we consider the assignment of users to stations for each of
these periods.

In our case study, we have access to the origin-destination matrix for the urban area
under investigation, along with charging session data for existing stations.

3.3.2. Linear Model: Assigning Users to Stations

In this section, we describe our framework to determine the assign EV charging demand
to stations. To this end, we first provide a graph modeling and then, a linear programming
formulation.

1https://lecircuitelectrique.com/en/mobile-app/
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Graph transformation. Let us go into more detail in the description of our assignment
problem as it consists of a crucial building block for our methodology. We use a bipartite
graph to describe potential matches (assignments). The left side of the bipartite graph is
composed of EV users and the right side of stations. Instead of using individual EV users as
vertices, it is more efficient to group them based on their trips: users with the same origin-
destination (OD) pair are grouped together. The edges must represent feasible stations for
each OD pair. To decide if a station is feasible for a given OD pair, we define a parameter R

which describes the maximum radius around the origin or the destination of an OD pair. If
a station is within either radius, then it is feasible for that OD pair and an edge is created.

The issue with this maximum matching approach is that there can be more than one
user per OD pair and a station can charge more than one user at a time; note that a station
can have more than one outlet. To fix this, we convert the bipartite graph into a flow
graph, and the matching problem into a maximum flow problem. To do so, the edges of
the bipartite graph are transformed into arcs from the vertices representing OD pairs to the
vertices representing stations, a source vertex and a sink vertex are introduced, an arc from
the source to each OD pair vertex is added, and an arc from each station vertex to the sink
is added. Finally, to define a maximum flow problem over the resulting graph, restrictions
regarding the amount of flow that can pass through each arc and the cost of using those arcs
must also be defined. In our problem, there is no cost associated with the use of the arcs. It
would be possible to add a cost based on the distance between an origin or destination and a
station but this is out of the scope of this paper, since we assume that stations are within a
short walking distance. On the other hand, we do define maximum flow capacities to the arcs
between the source and the OD pairs, and between the stations and the sink. The former
maximum flow capacity represents, at a given period, the amount of charging flow demand
for every user travelling on each OD. The latter, the maximum flow capacity on the arc from
a station to the sink, represents the maximum amount of charging flow supply available at
that station within a period. See Figure 3.1 for an illustration. A key aspect here is that the
charging flow is relative to a period. As such, the (flow) graph can be replicated for a certain
number of periods T , where the graph remains the same but the arcs’ maximum capacities
can change between periods. Specifically, the maximum flow capacities on the arcs from the
source to the OD pairs may vary, allowing for the representation of fluctuating number of
users travelling on OD pairs at different times of the day. In this way, if we determine the
maximum flow from the source to the sink of our graph over a finite time horizon (in our case
study, 24 hours), we determine the maximum (daily) charging demand that can be satisfied
by the current infrastructure.

Note that, in order to identify if a potential station location is interesting, we can add
a list of candidate locations to the flow graph, following a similar approach as with existing
stations. For instance, when generating the flow graph, it is possible to encounter OD pairs
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4

4

source sink

2 · e1

3 · e2

4 · f1

4 · f2

Figure 3.1. Converting a bipartite graph to a flow graph
Example: The bipartite graph on the left has two ODs, each with 2 and 3 EV users, and two

stations, each with 4 outlets; the edges represent the feasible stations. On the right, we have the
transformed flow graph, where in some of the arcs we have their maximum flow capacity related
to EV demand and station supply; the conversion factors e1 and e2 map users to flow, while f1

and f2 map outlet supply to flow.

with no arc connected to a station. The demand from such an OD is referred to as impossible
demand. Therefore, it would make sense to have in the list of potential new stations one or
more locations close to the said OD pair; if we open at least one of these stations, it would
guarantee an increase in the overall satisfied demand.
Formulation. We are ready to provide the linear program corresponding to the maximum
flow of the described graph.

source sink

Figure 3.2. Flow model notation
From left to right, source (vertex 1), set L, set O, set M , set S1 ∪ S2, set R1 ∪ R2,

sink (vertex N)

Our notation is summarized in Table 3.1; the elements corresponding to new stations
and outlets are only used in the next section. Figure 3.2 provides a visual summary of the
notation used for the sets of arcs (continuation of the example of Figure 3.1).
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Table 3.1. Notation

Type Notation Description

Sets

T Set of time periods
V Set of vertices {1,2, ..., N} where 1 is the source and N is the sink
O Subset of vertices representing OD pairs
S1 Subset of vertices representing existing stations
S2 Subset of vertices representing candidate locations
L Subset of arcs representing the charging flow demand of users per OD pairs
M Subset of arcs between OD pairs and stations
R1 Subset of arcs representing the charging flow supply at an existing station
R2 Subset of arcs representing the charging flow supply at a candidate location

Parameters

At
e Charging flow demand of an OD in period t for e ∈ L

Ce Charging flow supply at an existing station e ∈ R1

I
(2)
e , I

(3)
e Cost of installing an outlet to a new level 2 or 3 station in location e ∈ R2

J
(2)
e , J

(3)
e Cost of building a new level 2 or 3 station in location e ∈ R2

Ke Cost of adding an outlet to an existing station e ∈ R1
G Budget
Pe Amount of charging flow supply for a single outlet at an existing station e ∈ R1

Q(2), Q(3) Amount of charging flow supply for a single outlet at a new level 2 or 3 station
Y (2), Y (3) Maximum number of outlets in a level 2 or 3 station

Ye Maximum number of outlets in location e ∈ R1

Variables

at
e Amount of charging flow demand generated by an OD in period t for edge e ∈ L

bt
e Amount of charging flow going from an OD to a station in period t for edge e ∈ M

ct
e Amount of charging flow supply going through an existing station in period t for edge e ∈ R1

dt
e Amount of charging flow supply going through a candidate location in period t for edge e ∈ R2

xe Number of outlets to add to an existing station e ∈ R1

y
(2)
e , y

(3)
e Number of outlets of a new level 2 or 3 station e ∈ R2

z
(2)
e , z

(3)
e Binary variable indication whether or not to build a new level 2 or 3 station e ∈ R2

Our maximum flow problem is the following linear program:

max
a,b,c

∑
t∈T

∑
e∈L

at
e (3.3.1a)

s.t. at
(1,v) =

∑
e∈M :e=(v,i)

bt
e ∀v ∈ O,∀t ∈ T (3.3.1b)

∑
e∈M :e=(i,v)

bt
e = ct

(v,N) ∀v ∈ S1,∀t ∈ T (3.3.1c)

0 ≤ at
e ≤ At

e ∀e ∈ L,∀t ∈ T (3.3.1d)

0 ≤ bt
e ∀e ∈ M,∀t ∈ T (3.3.1e)

0 ≤ ct
e ≤ Ce ∀e ∈ R1,∀t ∈ T. (3.3.1f)

The objective function (3.3.1a) is the sum of charging flow leaving the source. Since the flow
constraints (3.3.1b) and (3.3.1c) guarantee that the amount of flow reaching the sink is equal
to the amount leaving the source, this objective function is equivalent to the total amount
of charging flow in the graph. Indeed, the flow constraints (3.3.1b) and (3.3.1c) ensure that
the amount of charging flow entering into the OD pairs is the same amount leaving and
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the amount of charging flow entering the stations is the same amount leaving, respectively.
Constraints (3.3.1d) limit the flow from the source to each OD pair to the charging demand
for that specific OD pair within a given period. This charging demand is equal to the number
of EV users travelling on that OD pair multiplied by the charging flow demand per user.
For example, let a flow f be the average kW/s consumption of an EV and p the length of a
period in seconds, the charging flow demand of a user is f · p. If we multiply that value by
the number of EV users in an OD, we obtain the complete requested charging flow for that
OD. Constraints (3.3.1f) limit the amount of charging flow supply that can be provided at
each station.

3.3.3. Mixed-Integer Model: Placing Stations and Outlets

In the previous section, we described our model for the assignment of the demand to
stations. Next, our objective is to introduce new stations and outlets that remain available
throughout all periods, with the aim of diminishing the existing unsatisfied demand. It is
worth noting that our approach assumes that all stations and outlets are built from the
beginning, rather than gradually over time. We integrate into Program (3.3.1) the decisions
related to the opening of new stations and addition of outlets, leading to the following
mixed-integer program:

max
a,b,c,d,x,y,z

∑
t∈T

∑
e∈L

at
e (3.3.2a)

s.t.
∑

e∈R2

(
I(2)

e y(2)
e + J (2)

e z(2)
e + I(3)

e y(3)
e + J (3)

e z(3)
e

)
+

∑
e∈R1

Kexe ≤ G (3.3.2b)

(3.3.1b) − (3.3.1e)∑
e∈M :e=(i,v)

bt
e = dt

(v,N) ∀v ∈ S2,∀t ∈ T (3.3.2c)

0 ≤ ct
e ≤ Ce + Pexe ∀e ∈ R1,∀t ∈ T (3.3.2d)

0 ≤ dt
e ≤ Q(2)y(2)

e + Q(3)y(3)
e ∀e ∈ R2,∀t ∈ T (3.3.2e)

xe ≤ Ye − Ce

Pe

∀e ∈ R1 (3.3.2f)

y(2)
e ≤ Y (2)z(2)

e ∀e ∈ R2 (3.3.2g)

y(3)
e ≤ Y (3)z(3)

e ∀e ∈ R2 (3.3.2h)

z(2)
e + z(3)

e ≤ 1 ∀e ∈ R2 (3.3.2i)

xe ∈ N ∀e ∈ R1 (3.3.2j)

y(2)
e , y(3)

e ∈ N, z(2)
e , z(3)

e ∈ {0, 1} ∀e ∈ R2. (3.3.2k)

The objective function is the same as before. The constraint (3.3.2b) enforces the costs
of new stations and outlets to be below a given budget. Constraints (3.3.2c) are the same
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as Constraints (3.3.1c) but for candidate stations instead. Constraints (3.3.2d) adapt Con-
straints (3.3.1f) to account for newly added outlets. The number of new outlets is multiplied
by a factor Pe to convert them into flow. Constraints (3.3.2e) limit the maximum amount
of flow that can travel to candidate stations by the amount of new level 2 or level 3 outlets.
Constraints (3.3.2f) limit the maximum amount of newly added outlets to an existing station
by subtracting the already existing number of outlets from the maximum number possible.
The parameters Ye and the variables xe are relative to the level of the station e they are
associated with. If a station is level 2, only level 2 outlets can be installed and the same
applies to level 3. Constraints (3.3.2g) and (3.3.2h) limit the number of outlets according to
whether a new level 2 or level 3 station is built. Due to Constraints (3.3.2i), a new station
can only be level 2 or level 3 but not both. In the rare case where there are level 2 and level
3 outlets at an existing station, that station is considered as two separate stations in the
same location. Constraints (3.3.2j) and (3.3.2k) set the domains for variables x, y, z.

3.4. Computational Experiments
In this section, we aim to validate the use of our linear program to estimate station

demand and the efficiency of solving our mixed-integer model for real-world instances. Hence,
we start in Section 3.4.1 by detailing our case study of the island of Montreal. Then, in
Section 3.4.2, we show experimental results of our linear model when it comes to matching
users to existing stations. Finally, in Section 3.4.3, we provide experimental results for
solving our mixed-integer program, modelling the addition of new stations and outlets. All
experiments are run on an Intel i7-10700F CPU @ 2.90 GHz with 8 cores and 16 GB of
RAM. We use CPLEX Optimization Studio V22.1.0 on a single thread per instance and a
30 minute time limit.

3.4.1. Montreal Case

Data. We focus our experiments on the island of Montreal. For this case study, we obtained
data about the location, level and number of outlets for existing public stations of the
Le Circuit électrique and the time, duration and average kilowatts per second (kW/s) for
charging sessions at these stations. This data does not include privately owned stations, but
these could be added if we had the data, without changing our methodology. In our data,
there are 841 level 2 stations and 41 level 3 stations on the island. The maximum number
of outlets within a station is 16 and 7 for level 2 and level 3 stations, respectively. Figure
3.3 provides the distribution of outlets per station.

We tested two sets of periods: (1) a single time horizon of 24 hours and (2) the same
horizon discretized into 6-hour periods. The goal is to find the impact of relaxing the
demand over 24 hours, i.e., of assuming that the demand can be satisfied at any moment
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(a) Level 2 (b) Level 3

Figure 3.3. Distribution of the number of outlets per station
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(b) Level 3

Figure 3.4. Distribution of the daily average percentage of energy supplied per station per
6-hour period

of the day. Figure 3.4 shows that users leave their vehicles to charge overnight at level 2
stations. However, level 3 stations are used equally each day, since they are sufficiently
fast, making overnight vehicle charging wasteful. As such, accounting for fluctuations of the
charging demand over the day will result in more accurate modeling of the satisfied demand,
which is expected to better inform the placement and sizing of stations. Indeed, using a
24-hour relaxation should overestimate the demand in comparison with the same discretized
horizon, since users can be forced to charge at inconvenient times.

We also used the publicly available data of the 2018 OD survey2 of the Montreal region
collected by the ARTM. This data provides the average number of trips between each pair
of Montreal boroughs within a day. These trips are not limited to EVs, but can be used

2https://www.artm.quebec/planification/enqueteod/
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Figure 3.5. Map of Montreal boroughs

as a reasonable approximation of users’ movements. We only consider the boroughs within
Montreal which leaves us with 32 different boroughs (see Figure 3.5).
Generation of instances. Based on the described data, we now detail the process used
to generate instances, namely, the sets and parameters of Table 3.1. To begin, we need to
decide on two parameters: R for the radius and W for the number of points. The parameter
R stands for the radius between a point and a station. This value indicates the maximum
distance a user is willing to walk between their origin or destination and a charging station.
In our framework, each OD pair could have its own radius, however, we use the same radius
for all of them. We limit our radius between 400 and 700 meters based on research done
on the acceptable walking distance for public transit stops and stores (Yang and Diez-Roux
[2012], Millward et al. [2013], Gunn et al. [2017], Sugiyama et al. [2019]). The parameter
W stands for the number of randomly generated (latitude, longitude) points in an instance.
These randomly generated points serve to create OD pairs, where each point is both an origin
and a destination. We generate points relative to the density of EVs users in each borough.
In principle, we want to have a number of points W capable of covering the entirety of the
urban area relative to the radius R. In practice however, this would require far too many
points or an unrealistically large radius. As such, we try a different number of points to
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Figure 3.6. Example of an instance

test the sensibility of our model. For the rest of this section, we provide a trivial example
to explain each step of our instance generation process. Figure 3.6 is a simple map with
two borrows (Ω and Λ); containing three randomly generated points in red and two stations
represented by the blue squares. Each point has the same radius R. We can convert Figure
3.6 into a bipartite graph. Figure 3.7 gives a visual representation of the transformation.

AB

AC

BC

1

2

Figure 3.7. The bipartite graph representation of Figure 3.6

Our model provides the option to use any kind of data as the flow. We use kW since our
dataset contains the kW/s per session. To calculate the maximum flow capacity of existing
stations, we use the session data to estimate the average kW/s per session for each outlet.
We sum up the outlets per station to get the maximum kW/s per station. This value can
be multiplied by the length of the periods to obtain the maximum flow capacity per period.

To calculate the Ce parameters of our example, we take the average of kW/s per session
from Table 3.2 for each station: 5kW/s for station 1 and 4kW/s for station 2. If we let our
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time horizon be a single 24-hour period, then the total flow supply is 5 ·3600 ·24 = 432000kW
and 4 · 3600 · 24 = 345600kW for stations 1 and 2, respectively. For our example, we assume
that each station only has one outlet.

Table 3.2. Example of session data

Station Duration (s) kW/s
1 110 5
2 100 3
2 10 5

To calculate the maximum flow capacity per OD, we start by calculating the daily average
kW that is being used within a period for each station. We sum this supplied kW for each
borough; this gives us the amount of supply per borough. From there, we need to convert the
supply into its original demand per borough. We use the Montreal OD data to calculate the
percentage of people travelling between two boroughs. This forms a set of linear equations:∑
i∈H

qip
j
i = rj ∀j ∈ H where H is the set of Montreal boroughs. In this set of equations, rj

represents the total amount of supply at each station within borough j. The coefficient pj
i is

the percentage of people travelling from borough i to j. Our variable is qi which is the total
amount of demand in the borough i. To calculate the amount of demand on each OD, we
simply compute qi ·pj

i +qj ·pi
j for each borough i and j. This assumes all travel is bidirectional

within the OD, which is a fair assumption for intracity trips since the majority of trips occur
between home, work and public places. This implies most people leave in the morning and
come back at night which is bidirectional. If we want to account for unidirectional trips,
we would simply need to duplicate each OD vertex. We distribute the previously computed
demand uniformly between each OD pair with the same origin and destination. We also
account for trips within the same borough by computing qi · pi

i.

Table 3.3. Example of an OD matrix

Ω Λ
Ω 50% 50%
Λ 25% 75%

To calculate the At
e parameters of our example, we can take the average session duration

from Table 3.2 per station over our 24-hour period. We assume for this example that all
sessions are from the same day. This implies 110·5 = 550kW for station 1 and 100·3+10·5 =
350kW for station 2. We sum all supplied kW within the same borough. Since station 1
and 2 are in different boroughs, the Λ borough has 550kW of supply and the Ω borough has
350kW. Using the OD matrix 3.3, we can write two equations: 0.5qΩ + 0.25qΛ = 350 and
0.5qΩ + 0.75qΛ = 550. Solving this set of equations gives us qΩ = 500 and qΛ = 400. This
implies that we have 500kW of demand in borough Ω and 400kW in Λ. The resulting demand
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Figure 3.8. Example of a flow graph

flow is as follow: between Ω and Ω, 0.5qΩ = 250kW, between Ω and Λ, 0.5qΩ+0.25qΛ = 350kW
and between Λ and Λ, 0.75qΛ = 300kW. We combine the flow from Ω to Λ and from Λ to
Ω, since we make the assumption that our flow is bidirectional. Finally, we split these flows
between each point to obtain the flow for each OD pair: AC has 250kW, AB has 175kW and
BC has 175kW. It is worth noting that in this example, we lost 300kW of demand because
we cannot represent the flow between Λ and Λ since we only have a single point in that
borough. In practice, we generate a critical mass of points to guarantee at least 2 points in
each borough. This gives us the final flow graph in Figure 3.8.

We do not have a list of potential locations, so we use impossible demand to create
candidate locations. Recall that impossible demand is the demand generated by an OD
vertex with no edges to any station in the bipartite graph. This demand cannot be satisfied,
and as such, considering a candidate location near it is likely a good possibility. To do so, we
add two candidate locations for each impossible OD demand: one at the origin and one at
the destination. Note that any OD vertex within the defined radius R of a candidate location
gets an outgoing arc to that location, including the OD vertex related with the impossible
demand. In our example, OD AB does not have any valid station. As such, we would add
two candidate locations: one at A and one at B. This means both ODs AC and BC would
also gain a new station. The kW/s given to the new station is based on an average across
all stations of the same level. If we assume all stations in our example are of the same level
then a new station would have ≈4.33kW/s.

We do not have data about the cost of adding outlets or building new stations since
the price can vary widely based on the location and electricity grid availability. As such,
for our testing, we use arbitrary costs guided by reasonable considerations. We attribute to
the addition of a level 2 outlet (to an existing station or a new one) a cost of 1. A level 3
outlet is twice that. Building a new level 2 station is 10 and a level 3 is 100. To account for
these arbitrary costs, we run our experiments on multiple budgets ranging from 0 to 700 to
perform a sensibility analysis of our MILP.
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Having described our process for utilizing the data to generate the flow graphs and
established the budget constraint, we now proceed to outline the various instances we
create in accordance with the aforementioned procedure. We consider instances with
R ∈ {400,500,600,700}, where the unit is meters, and with W ∈ {100,150,200,250,300}.
For each combination of the R and W values, we generated 5 instances, where only the
location of the W random OD points differ. Each instance contains the same 882 stations,
which corresponds to set S1, while the set of candidate locations S2 can differ since it de-
pends on the OD pairs (recall the description above). For W = 100, 150, 200, 250 and 300,
the instances have 4,950, 11,175, 19,900, 31,125 and 44,850 ODs (i.e., the cardinality of set
O) and an average of 43.4, 65.8, 92.2, 117.4 and 141.8 candidate locations, respectively. In
the next sections, we provide average results over the 5 generated instances for each (R,W )
pair. All the results are shown as a percentage of the total (average) kW charging demand,
i.e.,

∑
t∈T

∑
e∈L

At
e.

3.4.2. Assigning Users to Stations

Our first tests are meant to evaluate the impact of the radius R and of the number of
points W on Program (3.3.1). The goal is to assess the sensitivity of satisfied and impossible
demand to those parameters, analyze the service of the current infrastructure, as well as to
identify a suitable value of W that balances the model accuracy and computational efficiency
when incorporating location and sizing decision. Note that larger values of W allow a greater
diversity of OD scenarios, but lead to larger optimization problems.

In Figures 3.9 and 3.10 (the y-axis of figure (a) begins at 60% for better readability), we
present our results for the satisfied and impossible demand3 separately for two cases: one
where a single period is considered, and the other where a day is discretized into 4 periods.
In both cases, we observe that the satisfied demand increases as the number of points (W )
increases, and then stabilizes. This is to be expected since the closer the number of points
gets to the real number of EV users, the more accurately we depict the coverage of the
territory by the existing infrastructure. Importantly, it appears that a relatively low value
of W suffices to capture the prevailing charging station coverage, which has a direct impact
on the number of variables and constraints of Program (3.3.2), analyzed in the next section.
Similarly, an increase in the radius R results in an increase in satisfied demand. This can
be attributed to the fact that a larger radius provides each OD with a greater number of
station options to choose from. However, in contrast to the number of points W , opting for a
larger radius distances us from reality, given that fewer individuals are expected to be willing
to walk 700 meters compared to 400 meters. The larger radius can also be perceived as a

3Recall that unsatisfied demand is distinct from both the satisfied and the impossible demand. Unsatisfied
demand arises when the supply is insufficient.
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Figure 3.9. Single period results for Program (3.3.1)

compromise in service quality (coverage). In any case, any increase in the number of points
or radius is limited by the amount of demand that can be satisfied. If the stations provide
enough supply, the limiting factor becomes the impossible demand. It is worth noting that
since our demand generation is closely related to the amount of supply (recall Section 3.4.1),
it makes sense that we are able to satisfy most of the demand for these instances. On the
flip side, increasing the radius reduces the impossible demand. This can be explained by the
fact that a larger radius increases the covered area, meaning ODs are less likely to have no
nearby stations. A less intuitive result is the fact that increasing the number of points does
not affect the impossible demand. The reason behind this comes from the stochastic nature
of our points’ generation. When an instance with 100 points has 20% of impossible demand,
adding 100 more points will still statistically lead to an instance with 20% of impossible
demand.

The main difference between the two cases in these figures is in a slightly lower satisfied
demand when we consider the four 6-hour periods. This is because the unsatisfied demand in
each period cannot be satisfied in others, modeling an implicit constraint on when users are
willing to charge. In the 24 hours instances, users can charge at any point of the day which
is unrealistic. With four blocks of 6 hours, we can more easily reflect when users are looking
for a station. However, it should be noted that adopting a more granular discretization
would lead to more variables and constraints in our models. Moreover, this might also
necessitate the incorporation of charging over consecutive periods (if time blocks are small).
The impossible demand is exactly the same in both cases. This is because the impossible
demand does not change within a day (we have the same OD pairs over the time horizon).

Tables 3.5 and 3.6 give a brief overview of the amount of demand satisfied at each
period. The purpose of these results is to analyze their similarity with regards to the actual
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Figure 3.10. Multi-period results for Program (3.3.1)

satisfied demand of Table 3.4. In other words, we aim to understand if the charging habits
over the time periods are similar. In our results, we note that level 3 stations tend to
mirror the satisfied demand of level 2 stations. This is because we do not model charging
habits, i.e., users preferences. For instance, during the period 0h-6h, level 3 satisfies more
demand than in the other periods because in our instances (and session data) there is more
demand over this period and there is no user preference making users to favour level 2.
This could be improved to better match reality by either changing the capacity of level 3
stations during certain periods or introducing flow costs associated with the use of certain
stations. For the tables with the other radii, we refer to Appendix A; the result trend is
analogous. Figure 3.11 shows a solved instance of Montreal where all points with unsatisfied
and impossible demand are visible. The impossible demand becomes more prevalent as we go
west, away from downtown. The closer we get to downtown, the impossible demand turns to
unsatisfied demand. Near downtown, the unsatisfied demand is nonexistent with no points
visible since all demand is satisfied.

Table 3.4. Percentage of demand per station for each time period (Figure 3.4)

Period Level 2 Level 3
18h-24h 23.64% 23.91%
12h-18h 21.92% 28.35%
6h-12h 22.46% 24.82%
0h-6h 31.96% 22.91%
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Table 3.5. Percentage of satisfied demand assigned to level 2 stations per time period with
a 400 meter radius

# of Randomly Generated Points
Period 100 150 200 250 300

18h-24h 24.57% 24.24% 23.90% 23.66% 23.59%
12h-18h 23.44% 22.68% 22.20% 21.94% 21.74%
6h-12h 23.78% 23.08% 22.76% 22.49% 22.32%
0h-6h 28.22% 30.00% 31.14% 31.91% 32.36%

Table 3.6. Percentage of satisfied demand assigned to level 3 stations per time period with
a 400 meter radius

# of Randomly Generated Points
Period 100 150 200 250 300

18h-24h 23.45% 20.63% 22.92% 24.65% 21.91%
12h-18h 20.27% 20.57% 19.98% 17.30% 18.97%
6h-12h 21.77% 21.46% 20.55% 20.96% 19.30%
0h-6h 34.51% 37.34% 36.55% 37.09% 39.81%

Figure 3.11. Map of the unsatisfied and impossible demand per point (R=400, W=300).
The points’ size represents the unsatisfied demand and the colour represents the impossible

demand (the larger and darker, the higher). Remark that points can have both unsatisfied and
impossible demand as they are related to a set of OD pairs.

3.4.3. Adding and Expanding Stations

Our second set of tests is meant to evaluate the computational performance when solving
our model, Program (3.3.2), for the installation of new stations and outlets. For these
experiments, we exclusively focus on instances with R = 400 meter radius, as it offers the
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greatest flexibility to users. In other words, this radius allows for a concentration of stations
in close proximity to users. We take the instances with W = 100, 150 and 200 random points
to analyze the sensitivity of the optimal objective value (satisfied demand) to the number of
points, while keeping the size of Program (3.3.2) reasonable. As explained in Section 3.4.1,
we use the impossible demand to identify a list of candidate locations S2.

Figures 3.12 and 3.13 provide our results for the case with a single period and for the
case with 4 periods. We can remark two trivial cases. The first is when the budget is 0,
which simply results in the linear model since no station or outlet can be added. The second
is when the budget is so large (G ≥ 700) that we can add as many stations and outlets as
necessary to satisfy all the demand, both unsatisfied and impossible. The interesting cases lie
in the middle, where instances with different numbers of points W have similar percentages.
This can be explained by the fact that the impossible demand is relatively stable among
instances (recall Figures 9(b) and 10(b) for R = 400m) and, as such, adding a budget
reduces impossible demand by similar amounts. We can observe that solving instances with
an increasing number of points W , tens to lead to higher computational times and optimality
gaps. Therefore, going beyond a W value exceeding 200 points is anticipated to substantially
increase computational times. The dips in the graphs are related to the high variance between
instances (refer to the appendix A for detailed results).

In Figures 3.12 and 3.13, the main difference between the single and the multi-period
cases is on the solving times and optimality gaps, with the multi-period one performing
worst on both metrics. This is not surprising as the multi-period instances result in larger
mixed-integer programs. With respect to the percentage of satisfied demand, the single and
multi-period instances seems similar. In fact, the satisfied demand in the multi-period case is
overall lower by at most 4.23% and on average 1% less. Although these differences are small,
it is important to note that this comparison is not entirely fair, given that the instances
are fundamentally distinct due to their utilization of different time discretizations. For
this reason, we evaluate the location and sizing decisions of solutions derived from single-
period instances within the more realistic multi-period program, resulting in Figure 3.14.
We observe a discrepancy of up to 5.28% and an average of 2.75% less satisfied demand
compared to the multi-period solution (Figure 3.13). This shows that accounting for the
time component of the charging location and sizing problem is meaningful.

While analyzing the solutions to our instances, we observed that for the Montreal case,
our model tends to prioritize the addition of level 2 outlets to existing stations and the
addition of level 2 stations, as we increase the budget. In fact, among the solved instances,
no solution included the addition of level 3 outlets or stations. This can be explained by
the fact that the existing infrastructure is mostly sufficient to sustain the already existing
demand. As such, the majority of the budget is spent providing a sparse amount of supply in
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Figure 3.12. Single period results for Program (3.3.2)
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Figure 3.13. Multi-period results for Program (3.3.2)
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Figure 3.14. Single period results with multi-periods evaluation

undersupplied areas. Based on our cost parameters, level 3 stations are simply too expensive
for this specific use case. Figure 3.15 is an example of this behavior.
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Figure 3.15. Map of Montreal with new stations and outlets (R=400, W=200, G=100)
The blue points represents existing level 2 stations and the orange ones are new level 2 stations.

The size of the points corresponds to the number of outlets added. No level 3 stations are
expanded or opened.

3.5. Conclusion
In this work, we propose a maximum flow-based formulation for modelling the problem of

locating and sizing EV charging stations in an intracity context. By solving our mathematical
programming model, we are able to optimize the placement of new stations as well as to
evaluate their expected usage (i.e., the charging demand they satisfy), within a densely
populated city. Performing such an evaluation can be computationally expensive due to
the large number of users, existing stations and candidate locations. However, our key
contribution on the transformation of the charging demand assignment to stations into a
maximum flow problem, allows the scalability of our approach. To the best of our knowledge,
we present one of the few approaches capable of handling realistically-sized instances without
using a heuristic algorithm. Other examples of this are Shahraki et al. [2015] and Yang et al.
[2017] which both provide MILPs for realistically-sized instances using taxi GPS trajectories
as their demand estimation. However, our approach is multi-period which means it can
evolve over time. Multi-period models with large instances tend to become intractable for
MILP. Examples of this are Zhang et al. [2017] and Anjos et al. [2020] which both provide
thorough MILPs but have to rely on heuristics to solve them for realistically-sized instances.

Our mathematical programming models are run based on real-world data. Concretely,
the linear model can evaluate the quality of service provided by an already existing network
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of stations in terms of satisfied demand. Moreover, it can be used to identify impossible
demand and hence, locations where the installation of new stations would be desirable. The
mixed-integer model can take a list of candidate locations and return the most promising
ones or increase the capacity of the already existing infrastructure given a budget. We also
demonstrate the impact of discretizing a 24-hour period to account for highs and lows in
demand over a day.

For the application of our approach to the case study of the island of Montreal, the only
data needed was the charging session records of all the existing infrastructure and the daily
OD travels across all boroughs. We show that the current infrastructure would not require a
large increase in supply to satisfy all the demand at the moment. However, despite providing
enough supply, the network does not provide uniform quality of service across the island,
resulting in certain regions having limited access to public charging facilities.

In practice, our methodology should be especially useful for infrastructure owners to iden-
tify limitations in their provision of charging, namely, regions with impossible and unsatisfied
demand. The direct use of our optimal expansion decisions must be cautiously analyzed for
each specific application as simplifications were made for sake of tractability.

Further research could focus on the integration of our maximum flow model into EV
charging stations placement problems using other objectives such as cost minimization. This
would result in a bilevel program with a maximum flow problem at the lower level. Another
important aspect would be the integration of power grid constraints, which could restrict
candidate locations. Concerning the modeling of the assignment of the demand to stations,
an aspect for future consideration is to account for user preferences over stations (or loca-
tions), instead of assuming that the demand is effectively spread (e.g., through a real-time
app). This could be potentially done by assigning weights to the arcs of our flow network.
Another line on research could be to further explore the best way to discretize a day to
properly reflect reality. On the same topic, although we consider a time horizon for our flow
model, we do not allow for flow to travel between consecutive periods, which could occur in
practice. Finally, expanding our approach to handle both the intracity and intercity cases
would allow for a more complete modelling of the optimal location and sizing of EV charging
stations problem.
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Chapter 4

Conclusion

In this work, we propose a maximum flow-based formulation for modelling the problem of
locating and sizing EV charging stations in an intracity context. By solving our mathematical
programming model, we are able to optimize the placement of new stations as well as to
evaluate their expected usage (i.e., the charging demand they satisfy), within a densely
populated city. Performing such an evaluation can be computationally expensive due to
the large number of users, existing stations and candidate locations. However, our key
contribution on the transformation of the charging demand assignment to stations into a
maximum flow problem, allows the scalability of our approach. To the best of our knowledge,
we present one of the few approaches capable of handling realistically-sized instances without
using a heuristic algorithm. Other examples of this are Shahraki et al. [2015] and Yang et al.
[2017] which both provide MILPs for realistically-sized instances using taxi GPS trajectories
as their demand estimation. However, our approach is multi-period which means it can
evolve over time. Multi-period models with large instances tend to become intractable for
MILP. Examples of this are Zhang et al. [2017] and Anjos et al. [2020] which both provide
thorough MILPs but have to rely on heuristics to solve them for realistically-sized instances.

Our mathematical programming models are run based on real-world data. Concretely,
the linear model can evaluate the quality of service provided by an already existing network
of stations in terms of satisfied demand. Moreover, it can be used to identify impossible
demand and hence, locations where the installation of new stations would be desirable. The
mixed-integer model can take a list of candidate locations and return the most promising
ones or increase the capacity of the already existing infrastructure given a budget. We also
demonstrate the impact of discretizing a 24-hour period to account for highs and lows in
demand over a day.

For the application of our approach to the case study of the island of Montreal, the only
data needed was the charging session records of all the existing infrastructure and the daily
OD travels across all boroughs. We show that the current infrastructure would not require a



large increase in supply to satisfy all the demand at the moment. However, despite providing
enough supply, the network does not provide uniform quality of service across the island,
resulting in certain regions having limited access to public charging facilities.

Further research could focus on the integration of our maximum flow model into EV
charging stations placement problems using other objectives such as cost minimization. This
would result in a bilevel program with a maximum flow problem at the lower level. The
lower level would assign users to different stations or candidate locations and the upper level
would be selecting which stations to expand and which locations to build. Other papers like
Baouche et al. [2014] and Filippi et al. [2023] balance costs with distance between users and
stations. In our model, this would mean to remove the parameter R and include distance
into the upper level’s objective function. Another important aspect would be the integration
of power grid constraints, which could restrict candidate locations. The idea behind this
restriction is that allocating too many stations or outlets in a particular area would overload
the power grid. This would either be infeasible or cause further expenses.

Concerning the modelling of the assignment of the demand to stations, an aspect for
future consideration is to account for user preferences over stations (or locations), instead of
assuming that the demand is effectively spread (e.g., through a real-time app). This could
be potentially done by assigning weights to the arcs of our flow network. Our weights could
represent the cost of charging at a given location. This would be similar to Flath et al.
[2014] where they adapt the charging prices to spread out the demand over time. Another
line on research could be to further explore the best way to discretize a day to properly
reflect reality. This is shown in the discrepancy between level 2 and level 3 demand. Our
data shows, Level 2 stations are used more at night since users leave their vehicle to charge
over night. However, this is not the case for level 3 stations and this could be modelled
better. On the same topic, although we consider a time horizon for our flow model, we
do not allow for flow to travel between consecutive periods, which could occur in practice.
Currently, a single user can be split between multiple periods which can lead to unintended
consequences. For instance, a user could charge between 5h and 7h, but the model would
sometime place the demand between 1h and 2h and 11h and 12h. Allowing users to charge
between periods using heldover constraints as defined in Halpern [1979], would create a more
consistent flow. Finally, expanding our approach to handle both the intracity and intercity
cases would allow for a more complete modelling of the charging station placement problem
similar to what Anjos et al. [2020] have done.
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Chapter A

Appendix

Detailed Results for Section 3.4.2

(a) 0h-6h (b) 6h-12h

(c) 12h-18h (d) 18h-24h

Figure A.1. Example of satisfied demand over time periods (R=700, W=300)



Table A.1. Percentage of satisfied demand assigned to level 2 stations per time period with
a 500 meter radius

# of Randomly Generated Points
Period 100 150 200 250 300

18h-24h 24.17% 23.90% 23.59% 23.44% 23.41%
12h-18h 22.60% 22.04% 21.76% 21.64% 21.54%
6h-12h 23.13% 22.54% 22.32% 22.19% 22.16%
0h-6h 30.10% 31.52% 32.34% 32.72% 32.89%

Table A.2. Percentage of satisfied demand assigned to level 3 stations per time period with
a 500 meter radius

# of Randomly Generated Points
Period 100 150 200 250 300

18h-24h 23.23% 21.46% 22.17% 23.71% 22.20%
12h-18h 21.24% 20.31% 20.05% 18.73% 19.53%
6h-12h 21.34% 21.92% 20.79% 19.89% 20.36%
0h-6h 34.19% 36.31% 36.98% 37.67% 37.91%

Table A.3. Percentage of satisfied demand assigned to level 2 stations per time period with
a 600 meter radius

# of Randomly Generated Points
Period 100 150 200 250 300

18h-24h 23.68% 23.39% 23.44% 23.36% 23.25%
12h-18h 22.02% 21.52% 21.54% 21.62% 21.43%
6h-12h 22.60% 22.10% 22.21% 22.17% 22.02%
0h-6h 31.70% 32.99% 32.82% 32.85% 33.30%

Table A.4. Percentage of satisfied demand assigned to level 3 stations per time period with
a 600 meter radius

# of Randomly Generated Points
Period 100 150 200 250 300

18h-24h 24.14% 23.61% 22.71% 23.02% 23.81%
12h-18h 21.55% 22.09% 21.20% 19.58% 21.10%
6h-12h 21.67% 22.71% 21.15% 20.68% 21.80%
0h-6h 32.64% 31.60% 34.94% 36.71% 33.29%

Table A.5. Percentage of satisfied demand assigned to level 2 stations per time period with
a 700 meter radius

# of Randomly Generated Points
Period 100 150 200 250 300

18h-24h 23.27% 23.35% 23.27% 23.34% 23.21%
12h-18h 21.45% 21.45% 21.44% 21.58% 21.52%
6h-12h 22.06% 22.05% 22.10% 22.11% 22.13%
0h-6h 33.22% 33.16% 33.19% 32.97% 33.13%
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Table A.6. Percentage of satisfied demand assigned to level 3 stations per time period with
a 700 meter radius

# of Randomly Generated Points
Period 100 150 200 250 300

18h-24h 23.99% 22.76% 23.70% 22.87% 23.95%
12h-18h 21.88% 21.19% 21.55% 19.99% 20.41%
6h-12h 22.40% 21.77% 21.77% 21.44% 21.12%
0h-6h 31.73% 34.28% 32.98% 35.69% 34.52%

Detailed Results for Section 3.4.3

Table A.7. Satisfied demand for Program (3.3.2) over a single period

Budget
0 100 200 300 400 500 600 700

100 Points
Instance 1 62.38% 89.14% 95.48% 98.85% 99.86% 99.99% 100.00% 100.00%
Instance 2 67.84% 88.43% 95.79% 98.73% 99.90% 99.99% 100.00% 100.00%
Instance 3 57.72% 84.21% 93.54% 97.88% 99.64% 99.99% 100.00% 100.00%
Instance 4 67.81% 92.85% 97.90% 99.79% 100.00% 100.00% 100.00% 99.99%
Instance 5 65.85% 85.46% 93.54% 97.62% 99.60% 100.00% 100.00% 100.00%

150 Points
Instance 1 76.49% 90.04% 95.07% 97.73% 99.24% 99.87% 99.99% 100.00%
Instance 2 69.97% 86.27% 93.51% 97.23% 98.90% 99.75% 99.99% 100.00%
Instance 3 67.54% 83.65% 91.04% 95.15% 97.85% 99.24% 99.88% 99.99%
Instance 4 76.47% 91.74% 95.81% 98.11% 99.44% 99.91% 100.00% 100.00%
Instance 5 75.85% 87.30% 93.43% 96.86% 98.81% 99.63% 99.96% 99.99%

200 Points
Instance 1 77.00% 88.84% 92.87% 95.91% 97.61% 98.84% 99.53% 99.92%
Instance 2 74.86% 86.25% 91.79% 95.35% 97.42% 98.66% 99.47% 99.88%
Instance 3 71.38% 83.16% 89.46% 93.48% 96.01% 97.92% 99.02% 99.67%
Instance 4 79.68% 91.13% 94.77% 96.90% 98.45% 99.27% 99.79% 99.97%
Instance 5 76.56% 86.06% 91.46% 94.88% 97.07% 98.54% 99.32% 99.81%
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Table A.8. Computing time (s) for Program (3.3.2) over a single period

Budget
0 100 200 300 400 500 600 700

100 Points
Instance 1 0.078 7.156 447.078 80.485 95.047 0.546 0.437 0.469
Instance 2 0.063 7.625 10.079 27.375 19.578 1.016 0.5 0.406
Instance 3 0.078 6.672 16.609 29.156 91.062 7.297 0.343 0.375
Instance 4 0.063 5.282 55.266 14.563 0.281 0.328 0.328 0.422
Instance 5 0.063 6.047 18.282 926.094 88.515 6.063 0.406 0.344

150 Points
Instance 1 0.14 413.594 103.828 1800 861.797 1536.781 23.718 0.735
Instance 2 0.172 33.578 133.328 64.75 657.157 655.625 830.922 0.906
Instance 3 0.172 418.547 42.125 1800 587.137 1800 1031.094 2.453
Instance 4 0.171 14.468 78.828 959.875 503.063 1800 1.578 0.75
Instance 5 0.172 228.953 92.187 312.156 258.016 942.156 693.094 0.969

200 Points
Instance 1 0.328 254.719 1800 1800 1800 1800 1800 1800
Instance 2 0.282 11.719 413.36 1224.313 1428.156 1800 1800 1800
Instance 3 0.421 665.766 468.86 1800 1800 1800 1800 1800
Instance 4 0.36 12.235 61.734 1800 1090 1800 1800 1800
Instance 5 0.344 64.187 94.297 813.891 1800 1800 1800 1800

Table A.9. Optimal gap for Program (3.3.2) over a single period

Budget
0 100 200 300 400 500 600 700

100 Points
Instance 1 0.00% 0.01% 0.01% 0.01% 0.01% 0.00% 0.00% 0.00%
Instance 2 0.00% 0.01% 0.01% 0.01% 0.01% 0.01% 0.00% 0.00%
Instance 3 0.00% 0.01% 0.01% 0.01% 0.01% 0.01% 0.00% 0.00%
Instance 4 0.00% 0.01% 0.01% 0.01% 0.00% 0.00% 0.00% 0.01%
Instance 5 0.00% 0.01% 0.00% 0.01% 0.01% 0.00% 0.00% 0.00%

150 Points
Instance 1 0.00% 0.01% 0.01% 0.02% 0.01% 0.01% 0.01% 0.00%
Instance 2 0.00% 0.00% 0.01% 0.01% 0.01% 0.01% 0.01% 0.00%
Instance 3 0.00% 0.01% 0.01% 0.07% 0.01% 0.10% 0.01% 0.01%
Instance 4 0.00% 0.01% 0.01% 0.01% 0.01% 0.01% 0.00% 0.00%
Instance 5 0.00% 0.01% 0.01% 0.01% 0.01% 0.01% 0.01% 0.01%

200 Points
Instance 1 0.00% 0.01% 0.33% 0.02% 0.45% 0.84% 0.36% 0.08%
Instance 2 0.00% 0.00% 0.01% 0.01% 0.01% 0.48% 0.24% 0.09%
Instance 3 0.00% 0.01% 0.01% 0.01% 0.23% 0.19% 0.58% 0.33%
Instance 4 0.00% 0.01% 0.01% 0.06% 0.01% 0.42% 0.13% 0.02%
Instance 5 0.00% 0.01% 0.01% 0.01% 0.09% 0.09% 0.38% 0.14%
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Table A.10. Satisfied demand for Program (3.3.2) over multiple periods

Budget
0 100 200 300 400 500 600 700

100 Points
Instance 1 62.28% 84.66% 92.94% 97.24% 99.36% 99.97% 100.00% 100.00%
Instance 2 66.20% 84.82% 93.56% 97.35% 99.56% 99.98% 100.00% 100.00%
Instance 3 57.30% 79.99% 89.82% 95.76% 98.73% 99.91% 100.00% 100.00%
Instance 4 67.32% 89.24% 96.26% 99.12% 99.97% 100.00% 100.00% 100.00%
Instance 5 63.91% 80.23% 89.48% 95.71% 98.66% 99.87% 100.00% 100.00%

150 Points
Instance 1 74.87% 87.65% 93.26% 96.79% 98.59% 99.60% 99.97% 100.00%
Instance 2 69.85% 84.17% 91.67% 96.09% 98.19% 99.49% 99.93% 100.00%
Instance 3 66.03% 80.83% 88.18% 93.23% 96.55% 98.57% 99.63% 99.97%
Instance 4 75.62% 89.24% 94.38% 97.23% 98.87% 99.73% 99.99% 100.00%
Instance 5 74.39% 85.71% 91.73% 95.92% 98.17% 99.40% 99.87% 99.99%

200 Points
Instance 1 76.12% 87.07% 91.73% 94.82% 97.00% 98.13% 99.34% 99.78%
Instance 2 74.03% 84.38% 90.70% 94.28% 96.50% 98.13% 99.17% 99.76%
Instance 3 70.63% 81.66% 87.76% 91.96% 95.03% 97.21% 98.50% 99.46%
Instance 4 78.51% 89.43% 93.77% 96.27% 97.88% 99.00% 99.67% 99.87%
Instance 5 76.33% 85.31% 90.39% 94.09% 96.45% 98.14% 99.12% 99.72%

Table A.11. Computing time (s) for Program (3.3.2) over multiple periods

Budget
0 100 200 300 400 500 600 700

100 Points
Instance 1 0.313 9.657 34.235 720.25 1037.297 1308.797 1.922 1.781
Instance 2 0.344 20.422 52.828 1800 222.047 946.719 1.844 1.906
Instance 3 0.422 10.203 41.359 210.234 833.25 743.031 2.234 2.25
Instance 4 0.375 19.437 24.532 97.797 266.703 1.406 1.625 2.188
Instance 5 0.36 51.422 185.687 181.938 1800 1800 2.25 2.343

150 Points
Instance 1 0.922 152.844 1006.859 1421.375 1800 1800 1800 9.109
Instance 2 1.39 55.203 455.813 802.36 1800 1800 1800 29.891
Instance 3 1.047 43.203 1116.75 1800 1800 1800 1800 1800
Instance 4 1.969 34.469 224.922 669.594 1800 1800 218.344 4.781
Instance 5 1.563 73.453 1800 1800 1800 1800 1800 9.969

200 Points
Instance 1 2.156 496.344 1800 1800 1800 1800 1800 1800
Instance 2 2.046 158.906 1765.328 1800 1800 1800 1800 1800
Instance 3 6.375 97.516 1800 1800 1800 1800 1800 1800
Instance 4 2.984 117.078 839.344 1800 1800 1800 1800 1800
Instance 5 3.75 221.328 1800 1800 1800 1800 1800 1800
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Table A.12. Optimal gap for Program (3.3.2) over multiple periods

Budget
0 100 200 300 400 500 600 700

100 Points
Instance 1 0.00% 0.01% 0.01% 0.01% 0.01% 0.01% 0.00% 0.00%
Instance 2 0.00% 0.01% 0.01% 0.09% 0.01% 0.01% 0.00% 0.00%
Instance 3 0.00% 0.01% 0.01% 0.01% 0.01% 0.01% 0.00% 0.00%
Instance 4 0.00% 0.01% 0.01% 0.01% 0.01% 0.00% 0.00% 0.00%
Instance 5 0.00% 0.01% 0.01% 0.01% 0.14% 0.05% 0.00% 0.00%

150 Points
Instance 1 0.00% 0.01% 0.01% 0.01% 0.95% 0.40% 0.03% 0.00%
Instance 2 0.00% 0.01% 0.01% 0.01% 0.44% 0.44% 0.07% 0.00%
Instance 3 0.00% 0.01% 0.01% 0.23% 1.56% 1.17% 0.37% 0.03%
Instance 4 0.00% 0.01% 0.01% 0.01% 0.66% 0.27% 0.01% 0.00%
Instance 5 0.00% 0.01% 0.09% 0.03% 0.07% 0.45% 0.13% 0.01%

200 Points
Instance 1 0.00% 0.01% 0.31% 2.34% 2.33% 1.90% 0.66% 0.22%
Instance 2 0.00% 0.01% 0.01% 2.26% 2.24% 1.82% 0.84% 0.24%
Instance 3 0.00% 0.01% 0.34% 3.21% 3.69% 2.85% 1.52% 0.54%
Instance 4 0.00% 0.01% 0.01% 1.15% 0.97% 0.99% 0.33% 0.13%
Instance 5 0.00% 0.01% 0.46% 2.79% 2.73% 1.89% 0.88% 0.28%
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