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Resume 

Dans les annales de l'Intelligence Artificielle (IA), la que e incessante pour emuler la cognition 
humaine dans les machines a sou -tendu l'evolution technologique, repoussan les limites du 
potenti 1 humain et d s capacit 's de resolution de pro bl' mes. L int, gration d 1 IA a catalyse 
des progres r marquables, pen' rant div rs domain s et r definissant d s industries. 

Cependant un defi demeure imperturbable : l'ob tacle de la generalisation hors de la 
distribution (OOD). Alors que l'IA triomphe ave des donnees familieres elle echoue avec 
des donnee en dehors d son dornaine d ntrainemen . En sante, en finance e au-dela, Jes 
limitations de 1 IA entravent l'adaptation a des scenarios nouveaux. Cette lacune decoule de 
1 ecart entre les schemas appris et les caracteristiques causales e invariantes sous-jacentes 
entravan 1 adaptabilite a des scenarios inexplores. 

C tt these franchit des etapes significa ives pour a.border cet e que tion en innovant et 
en exploitant des methode is ues de l'apprentis age de tructure causale et de representa-
tion. Le parcours commence par un algorithme novateur d'apprentissage de structure les 
"Reusable Factor Graphs', qui tire parti des biais induct_ifs issus de la causalite et de la 
cognition humaine pour une meilleure g'n'ralisation. Ensuite, en explorant l'apprenti sage 
de representation causale, nous decouvrons des representations desenchevetrees centrees sur 
les objets en utilisant une upervi ion faibl basee sur un connais anc partielle de la stru -
ture causale des donnees. Ces connaissances se conjuguen pour preconiser 1 apprentis age 
conjoint de la ructur cau ale t de la repre entation. L'architect ire proposee le 'Reu-
sable Slo wise /Jechanisms" (RSM) re lie theorie et pratiqu , d 'montrant un pro mess reelle 
a trav r ses representations cen rees sur 1 s objet et ses mecanismes causaux reutilisables. 
Cette fusion offr une solu ion pot ntielle pour surmonter 1 s limitation d la gen, ralisation 
OOD en IA. 

Mots-cles: apprentissage automatiqu apprentissage profond, apprentissage de repre-
s ntation causal apprentissage de tructure rn, canism causaux 1 gen' ralisation hors de la 
distribution apprentissage centre sur les ob jets repr 'senta ions desench vetrees 
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Abstract 

In the annals of Artificial Intelligence (AI) an enduring quest to emulate human cognition in 
machines has underpinned technological evolution, driving the boundaries of human poten ial 
and probl m-solving capabilities. Th int gration of AI has catalyz d r markable progress, 
infil rating various domains and r defining industri s. 

Yet a challenge remain un haken: the hurdle of out-of-di tribution (OOD) generaliza-
tion. While AI triumphs with familiar da a, i falters with data ou side its training realm. In 
healthcare, finance and b yond, Al's limitation hinder adaptation to novel cenarios. Thi 
deficiency arises frorr1 the gap between learned patterns and underlying causal and invariant 
fea ures, hindering adaptability to uncharted scenarios. 

This thesis takes significant s eps toward tackling hi issue by innovating and leveraging 
method from cau al tructure and repre en ation learning. The journey begins with an 
innovative structure learning algorithm, Reusable Factor Graph , leveraging inductiv biase 
from causality and human cognition for improved generalization. Next delving into causal 
representation learning, we uncover object-centric disentangled representations using weak 
sup rvision from partial knowledg of he cau al tructur of data. Th s insights synergize 
in advocating joint learning of causal structure and representa ion. The proposed Reusable 
Slotwise Mechanisms (RSM) archi ecture bridges heory and practice, demonstrating real-
world promise hrough its object-cen ric representations and reusable causal mechanisms. 
Thi fu ion offer a potential olution for tackling OOD generalization limitation in AI. 

Keywords: machine learning deep learning causal representa ion learning struc ure 
learning causal mechanisms, out-of-dis ribution generalization, object-centric learning, dis-
entangl d r pr sentations 
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Introduction 

Throughout his ory, h pursuit of Artificial In elligence (AI) has been fueled by an unwave-
ring human fascina ion with recrea ing intelligence in machines. The ambition to r plicate 
human thought processes and decision-making within algorithms has driven AI s evolution 
transcending generations and shaping technological paradigms. From the visionary aspira-
tions of early computer sci ntists to th transformative applications of today) the quest for AI 
has be n und rpinned by he de ire to amplify human potential, augment problem- olving 
capabilities, and forge connection between human cognition and ma hine operation. In 
recent years the progress of I has be n nothing shor of remarkable permea ing variou 
facets of om lives and revolutionizing industries ranging from healthcare to transpor ation. 
State-of-the-art AI yst ms have astounded us with their abiliti s to diagnose diseas from 
medical images translate languages with human-like fluency and even defeat world cham-
pions in complex gam s. As AI has advanc d, the fields of Machin Learning (ML) and 
De p L arning (DL) hav emerged as pivotal paths in this journ y, each contributing di -
tine dimensions to he realization of in elligent systems. 1achine Learning, nestled wi hin 
the AI framework repres nts a paradigm shift tha pivot away from traditional rule-based 
programming. Instead it empowers algorithms to learn patterns and relationships from 
data, adaptively refining their performance over time. This adaptive learning capability has 
bes owed ML systems with the capacity to tackle complex problems, ranging from language 
translation to fraud detection, by disc rning patterns that migh lude conventional pro-
gramming approaches. ML' v r atility and ability to extrapolate in ights from data have 
elevated it to a cornerstone of modern AI facilitating predictive modeling, classification 
clustering, and mar . Within th realm of l\!Iachine Learning D ep Learning em rges as a 
subs t that stands out for its remarkabl aptitud in handling compl x high-dim nsional 
data. Inspired by the architecture of neural networks in he human brain Deep Learning 
models consist of multiple layer tha hierarchically extract intricate feature· from input 
da a. Thi hierarchical fea ure ex rac ion enable DL model to xcel in tasks like image 
recognition, natural language processing, and even playing strategic games. The succes 



of Deep Learning stems from its capacity to automatically learn hierarchical abstractions, 
capturing nuanced representations from massive datasets. 

Yet, even within this era of triumphs, a persistent hurdle remains: the challenge of out-
of-distribution (OOD) generalization. While AI systems excel when presented with data 
that resembles their training samples, they often falter when confronted with inputs that 
deviate even slightly from their training distribution. This phenomenon, known as out-of-
distribution generalization, highlights a fundamental limitation of contemporary AI models. 
Out-of-distribution generalization encapsulates the limitation of AI systems to adapt to new 
or uncommon situations that differ from their training data. Jmagine a model trained to 
recognize faces under perfect lighting conditions. When exposed to low-light or obscured 
images, its performance plummets, revealing the fragility of its training. This deficiency in 
adapting to novel instances stems from the fact that AI systems are often bound by the pat-
terns they have learned during training that do not necessarily correspond to the underlying 
causal and invariant features of interest, failing to generalize effectively to new and unfore-
seen data points. For more examples, consider a self-driving car trained on clear, sunny day 
scenes. When confronted with foggy or rainy conditions, the car's ability to perceive obs-
tacles and make informed decisions might significantly degrade due to its lack of exposure to 
such conditions during training. OOD generalization challenge poses significant implications 
across various sectors. In healthcare, models trained on specific patient populations might 
fail to provide accurate diagnoses for individuals with unique medical conditions. In finance, 
AI systems optimized for normal market conditions could prove ineffective during unexpec-
ted economic fluctuations. Addressing the challenge of out-of-distribution generalization is 
imperative for unlocking the full potential of AI in diverse real-world scenarios. 

In this thesis, we embark on a journey to address the central challenge of out-of-
distribution generalization through the lens of causal structure and representation learning. 
Our research is fueled by the understanding that effectively learning causal relationships 
and building robust representations could offer the key to bridging the gap between Al's 
performance on known data and its adaptability to unforeseen scenarios. After a brief intro-
duction to the foundations required to grasp the rest of the thesis in Chapter 1, in Chapter 
2, we start by studying causal structure learning in the form of reusable factor graphs to 
learn the reusable relationships among causal variables, assuming the availability of the lat-
ter. The latter assumption is then relaxed in Chapter 3 where we shift our focus to causal 
representation learning by leveraging weak assumptions on the causal structure. The results 
of chapters 2 and 3 then converge into a practical proposal in Chapter 4 for joint causal 
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structure and representation learning in various challenging real-world tasks, enabling the 
generalization of performance to unseen distributions. 

The first article (Chapter 2) proposes an innovative structure learning algorithm named 
Reusable Factor Graphs and navigates theoretical waters and tests them on synthetic envi-
ronments. The goal is to find an efficient way for leveraging crucial inductive biases from 
both causality and higher-level human cognition into structure learning for better genera-
lization. These inductive biases include the principle of independent causal mechanisms, 
modularity and reusability of such mechanisms, and the sparsity of their input space. This 
work enhances the sample efficiency of structure learning by successfully showing how we 
can exploit the reusability of causal mechanisms and thus opens avenues for more effective 
causal discovery. 

In the first article, we assume access to causal representations and leverage their temporal 
changes to uncover a (reusable) causal structure. However, the availability of such causal 
representations is far from guaranteed. Thus, in the second article (Chapter 3), we pivot 
our focus to the realm of causal representation learning, effectively revisiting the challenge 
posed in the first article. Crucially, this work also departs from the traditional assumptions 
of causal representation learning and embraces the idea that natural phenomena often re-
volve around objects and their interactions and proposes an algorithm, for the first time, to 
learn object-centric disentangled representations, as opposed to monolithic fixed-size vector 
representations. This work harnesses weak supervision derived from partial and incomplete 
knowledge of the underlying causal structure inherent within observations to learn causal 
representations. We also demonstrate how embracing the object-centricity of the natural 
world can lead to significant sample efficiency gains for learning such representations. 

These articles interact in a complementary manner, setting the stage for the third and 
our concluding paper. The first article starts by assuming access to causal representations, 
which are used to infer the causal structme. In contrast, the second article takes a different 
approach and deals with the challenge of learning causal representations in the presence of 
scarce knowledge of the causal structure in the form of weak supervision. The synergy of 
these insights suggests a promising avenue-a direction that naturally emerges as both facets 
of the problem find their respective resolutions, and that is the joint learning of the causal 
structure and representation given the gathered insights on how they enable one another. 

Finally, the third article (Chapter 4) bridges theory and practice by introducing the 
Reusable Slotwise Mechanisms (RSM) architecture. Through joint learning of object-centric 
representations and leveraging the reusability of causal mechanisms, RSM demonstrates 
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promise in real-world scenarios. The culmination of these articles emphasizes the potential 
for merging causal structure and representation learning to tackle the challenge of out-of-
distribution generalization. 

Contributions 
Contributions of this thesis encompass a threefold exploration into the realm of out-of-

distribution generalization. The first contribution, presented in the initial article, introduces 
the Reusable Factor Graphs algorithm, highlighting an effective means to integrate key induc-
tive biases from both causal understanding and higher-level cognitive processes into structure 
learning. The second contribution, represented by the subsequent article, proposes a pio-
neering approach to causal representation learning, uncovering object-centric disentangled 
representations sample efficiently by leveraging weak supervision. These two contributions 
collectively contribute to the overarching goal of augmenting the existing generalization 
capabilities of current deep learning methods, therefore, they merge seamlessly in the third 
and concluding article, where the Reusable Slotwise Mechanisms (RSM) architecture bridges 
theory and practice. Through the joint learning of object-centric representations and reu-
sable causal mechanisms, this work holds potential for real-world application. Collectively, 
these contributions carve a path towards addressing the challenge of out-of-distribution ge-
neralization, harnessing insights from causal structure and representation learning to push 
the field forward. 
Personal Contributions. 

(1) Structure Learning of Reusable Factor Graphs 
• The inception of the idea of RFG should be credited to Kartik, however, the final 

version of RFG, and TD-RFG is the result of discussions between me and Kartik 
• I implemented and ran all the experiments (including hyperparameter search) 

with the exception of those resulting in figures 2.6, 2. 7 
• I produced and analyzed all the plots except for those in figures 2.6, 2.7 
• I established the connection to EM and wrote the corresponding section. 
• I came up with how to infer the number of factors when it is unknown, using soft 

Hamming Distance. 
• I co-authored the paper together with Kartik. 

(2) Object-Centric Causal Representation Learning 
• I did the literature review surrounding object-centric learning and methods to 

use alongside Ahuja et al. (2022a) for disentanglement. 
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• I implemented an extensive and scalable codebase for the fast generation of nume-
rous variations of both the 2D and 3D datasets, each designed to probe a specific 
aspect of our method and explore the possible failure modes. The datasets used 
different engines, therefore there was little transfer of code from one to another, 
and I carried out both from scratch. 

• I implemented all the baselines, and our disentanglement method based on Slot 
Attention (SA) and SA-MESH. Then ran all the experiments with known and 
unknown perturbations, with various combinations of parameters, as well as the 
hyperparameter search. This was achieved due to the expansive codebase I had 
written for swift integration of different models and datasets. 

• I extensively and meticulously troubleshooted the failure modes of our method 
resulting in crucial theoretical insights about the necessary conditions on the 
perturbations. 

• I came up with three solutions to address the problem of matching, implemen-
ted them, extensively compared their run-time complexities and performance 
in various settings, and carried out the experiments with the fastest and best-
performing algorithm. 

• I produces all the plots, figures, and result tables. 
• I wrote all of the paper with the exception of these sections: 3.3, 3.4, B.l 
• I co-authored the rest of the paper together with Jason, Yan, and Kartik. 

(3) Reusable Slotwise Mechanisms 
• I did the literature review surrounding object-centric learning and dynamics mo-

deling and the baselines NPS, C-SWM. 
• I implemented an extensive and scalable codebase for swift prototyping of various 

models in conjunctions with different datasets. However, the implementation of 
the final version of RSM and fitting that alongside baselines in the codebase I 
provided, was done by Trang. 

• I oversaw the smooth conduction of the experiment, providing frequent imple-
mentation and troubleshooting feedback to Trang. The troubleshooting includes 
delving into low-level details of coding, and suggesting experimentation to probe 
the various aspects of the model. 

• The final version of the RSM algorithm was the result of discussions among 
myself, Dianbo, Kartik, and Yoshua. 
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• I provided guidance regarding the implementation and usage of object-centric 
methods. 

• Trang and I produced figure 4.1. 
• Throughout the various stages of the project, I mentored 'fi'ang in implementa-

tion, writing, presenting results, co-authoring author rebuttals for our submission, 
as well as presenting Trang with the ideas and math behind RSM and guiding 
her in realizing those in practice. 

• I wrote the Introduction, Related Work, and Conclusion, and extensively edited 
the rest of the paper toward its final version. 

Outline 
The thesis is organized into five chapters, beginning with an introductory chapter that 

acquaints the reader with the foundational aspects of the subjects and the challenges ad-
dressed in the subsequent chapters. Each article is prefaced with context, and the author's 
individual contribution. Chapter 5 summarizes the thesis with an overview of the article 
conclusions, and is then followed by supplementary material for each paper in appendices A, 
B, and C. 
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Chapter 1 

Background 

This section provides an overview of the key concepts that are essential for comprehending 
the contributions of this work. It b gins by revi wing th fundamentals of machine learning 
including its foundations in stati tic and variou t pes of learning paradigm . I is then 
followed by an introduction of neural network and variou layers that often are employed 
within them. Subsequently, we provide an overview of optimization methods for training 
deep models and technique for stabilizing hem. The chapt r end with touching on the 
topic of repr s n ation 1 arning and d lving into the problem of OOD g neralization and 
its relation to causal learning. 

1.1. Machine Learning 
The field of machine learning addresses problems where deterministic solutions through 

human-interpretable rules are infeasible. It i a branch of applied statistics that leverages 
compu, ers to model complex data distributions and solve challenging problems without 
th ne d for explicit rule-based programming. The primary goal of machine learning is 
to develop models that can learn patterns and relation hip from data and make accura e 
predictions or decisions on new, unseen data. his is achieved by training the rr odels 01 a 
dataset and optimizing their parameter to minimize the discrepan y be ween predict d and 
actual outcomes. More concretely given a dataset of input-output pair (x(i), y(il) where xCi) 

represents the inpu data and y(i) represents the corresponding output or target value, the 
goal of machine 1 arning is o find a model he tha is parameterized by 0 tha approximate 
th underlying relation hip between x and y, uch that h(x(i)) provides accurate prediction 



of y(i) for new, unseen inputs. Machine learning tasks are typically categorized into several 
major paradigms: supervised learning, unsupervised learning, reinforcement learning, and 
weakly supervised learning. 

• Supervised Learning: In supervised learning, the algorithm learns from a labeled 
dataset where each data point is associated with a corresponding target label. The 
goal is to learn a mapping from input data to output labels in order to make accurate 
predictions on new, unseen data. For example, in an image classification task, the 
algorithm learns to differentiate between various objects by analyzing a dataset of 
images paired with corresponding labels denoting the object in the image. 

• Unsupervised Learning: Unsupervised learning involves working with unlabeled 
data, where the algorithm seeks to uncover hidden patterns or structures within the 
data. Clustering and dimensionality reduction are common tasks in unsupervised 
learning. Clustering involves grouping similar data points together, while dimen-
sionality reduction aims to reduce the complexity of the data by representing it in a 
lower-dimensional space. An example of unsupervised learning is customer segmenta-
tion in marketing, where similar customer behavior is grouped together for targeted 
campaigns. 

• Reinforcement Learning: Reinforcement learning focuses on training algorithms 
to make sequences of decisions in an environment to maximize a cumulative reward. 
This paradigm is often applied in tasks involving decision-making and control. In 
reinforcement learning, an agent intera.cts with an environment, learns from the con-
sequences of its actions, and adjusts its strategy to achieve optimal performance. A 
classic example is training an AI agent to play games like chess or Go, where it learns 
to make moves that lead to winning outcomes. 

• Weakly Supervised Learning: Weakly supervised learning bridges the gap be-
tween supervised and unsupervised learning. It involves learning from partially la-
beled or noisy data, where the labels are not fully precise or complete. This paradigm 
is particularly useful when obtaining accurate labels for training data is expensive or 
time-consuming. \i\f eak supervision methods aim to extract useful information from 
imperfect labels, allowing the algorithm to learn patterns and make predictions in 
scenarios where fully labeled data is scarce. 

The main emphasis of this thesis revolves around unsupervised and weakly supervised 
learning, and we provide further elaboration on these topics as well as supervised learning in 
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the following sections for completeness. However, the scope of this work does not encompass 
reinforcement learning, and therefore, it will not be discussed any further. 

1. 1. 1. Supervised Learning 

Supervised learning constitutes a foundational component of machine learning, wherein 
models extract patterns from labeled data to formulate predictions. To illustrate this, con-
sider the archetype of linear regression, a technique aimed at discerning the optimal linear 
relationship between input x and output y by identifying suitable values for the slope wand 
the intercept b, formulated as y = wx + b. 

At its core, the objective is to minimize the difference between the predicted y and the 
observed y values. This minimization is typically accomplished by computing the mean 
squared error (MSE) across all data points, expressed as: 

Here, n signifies the count of data samples, while Yi denotes the predicted output for 
the i-th sample. Through iterative optimization techniques like gradient descent, the model 
refines the values of w and b to diminish the l\lISE. 

Supervised learning serves as a powerful approach for constructing predictive models from 
labeled data. However, the effectiveness of this approach largely depends on the avaifability 
of labeled data, which can be limited or costly to acquire. In domains like natural language 
processing or video analysis, where the volume of data far exceeds the capacity for manual 
annotation, solely relying on labeled data becomes infeasible. This challenge is particularly 
evident in tasks such as language translation or video classification, where the nuances of hu-
man language or the complexity of visual content demand extensive training data to capture 
their richness. As a result, the traditional supervised learning pasadigm encounters limita-
tions in cases where the resource-intensive process of labeling data becomes a bottleneck. It 
is precisely in these situations that the significance of unsupervised and weakly supervised 
learning comes to the fore, offering alternative approaches that capitalize on vast amounts 
of available, yet unlabeled or partially labeled, data. By harnessing the inherent structures 
and patterns within such data, these techniques extend the reach of machine learning to 
tackle complex, real-world challenges that surpass the boundaries of traditional supervised 
methods. 
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1.1.2. Unsupervised Learning 

Unsupervised learning constitutes a pivotal realm of machine learning where the pri-
mary objective is to discern patterns, structures, or relationships within a dataset devoid of 
explicit labels. Here, we expand on unsupervised learning by studying one of its popular 
methods, the k-means algorithm, and leverage it to elucidate concepts of capacity, over.fit-
ting, and underfitting, that are central to understanding the concept of generalization. It 
is important to note that unsupervised and supervised learning are not mutually exclusive 
and their boundaries are nebulous Goodfellow et al. (2016). That is why we demonstrate 
the concepts of capacity, overfitting, and underfitting tlu·ough an example of unsupervised 
learning, whereas traditionally these are introduced by an example of supervised learning 
algorithms such as linear regression. 

Unsupervised learning finds its niche in scenarios where the provided data lacks predefined 
labels, rendering traditional supervised methods infeasible. It is akin to tackling a puzzle 
without a picture on the box - the challenge lies in deciphering the inherent structures 
that underlie the data. Clustering, dimensionality reduction, and generative modeling are 
common unsupervised learning tasks. 

A quintessential algorithm that represents unsupervised learning is k-means clustering. 
Given a dataset X comprising n data points x(l), x(2), ... , x(n), the k-means algorithm seeks 
to partition the data into k clusters, with each point belonging to the cluster whose centroid 
is closest. The k-means algorithm operates as follows: 

• Initialization: Randomly select k initial cluster centroids c1, c2 , ... , ck. 

• Assignment: Assign each data point x(i) to the nearest centroid ci based on Euclidean 
distance: j = argminjjxCi) - c_7j2 . 

• Update: Recalculate centroids as the mean of the points assigned to each cluster: 
Cj = 1d;I I:xc9ECj x(i), where G_1 is the set of data points assigned to cluster j. 

• Repeat: Iterate the assignment and update steps until convergence. 
The k-means algorithm operates as follows: Given a dataset and the desired number of 

clusters k, it initializes k cluster centroids randomly. The algorithm then iterates through 
two main steps. First, it assigns each data point to the nearest cluster centroid based on 
the Euclidean distance. Second, it updates the cluster centroids to the mean of the data 
points assigned to each cluster. These two steps iteratively refine the cluster assignments 
and centroids until convergence. Through these iterations, the algorithm aims to minimize 
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the within-cluster sum of squared distances, effectively clustering data points around cen-
troids that represent the center of each cluster. The k-means algorithm converges when the 
centroids no longer change significantly between iterations or after a specified number of 
iterations. The resulting centroids define the cluster centers, and the assignment of data 
points to clusters provides the clustering solution. Now with the help of this example, we 
can introduce the fundamental concepts of model capacity, overfitting, and underfitting that 
influence the performance of machine learning models, irrespective of their unsupervised or 
supervised context. Let us examine these within the k-means framework. 

Capacity: The capacity of a model refers to its ability to capture intricate patterns in 
data. A k-means model's capacity is determined by the choice of k. Small k may result in 
the underrepresentation of data patterns, whereas excessive]y large k rnig·ht lead to capturing 
noise rather than genuine clusters. 

Overfitting: Overfitting occurs when a model learns noise or anomalies present in the 
training data, resulting in poor generalization to new data. In k-means, overfitting can 
manifest if k is set too high, causing the algorithm to partition noise into spurious clusters. 

Underfitting: Underfitting transpires when a model's capacity is too low to capture the 
underlying patterns. In k-means, underfitting can materialize if k is set too low, leading to 
the amalgamation of distinct clusters. 

These notions of capacity, overfitting, and underfitting, showcased in the realm of unsu-
pervised learning, come together to shed light on the heart of generalization in machine learn-
ing. Capacity dictates a model's knack for captming underlying patterns while overfitting 
warns against tailoring to noise, and underfitting reminds us of the dangers of oversimplifi-
cation. This trio plays a role in how well a model extends its insights to new, unseen data. 
Generalization is like finding a sweet spot-capturing patterns without being bogged down 
by noise-enabling the model to truly grasp the essence of data. This harmony resonates 
through various machine learning techniques, underscoring the importance of comprehending 
generalization across different algorithms and applications. 

1.1.3. Weakly Supervised Learning 

In the realm of machine learning, gathering labeled data for supervised training can be a 
laborious endeavor. Weakly supervised learning arises as a strategy to mitigate the labeling 
burden while still harnessing the power of supervised methods. Weakly supervised learning 
addresses scenarios where complete, accurate labels are scarce or expensive to obtain. It 
operates under the premise that partial or noisy labels, along with domain knowledge or 
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constraints, can guide model learning. This paradigm bridges the gap between supervised 
and unsupervised learning, allowing models to learn from imperfect information. 

Consider an example of classifying images of objects into categories but obtaining detailed 
annotations for every object in a large dataset might be impractical. Instead of having precise 
object-level labels, you might have access to image-level labels indicating the presence of 
certain categories, such as "beach," "mountain," or "city" to guide the model's learning 
process. This is a weak form of supervision, as the labels are less informative than specifying 
the exact objects within the image. 

Weakly supervised learning encompasses a variety of strategies to exploit limited labels 
effectively: 

• Multi-instance Learning: In cases where multiple instances share a single label, 
multi-instance learning leverages the collective information from instances to make 
predictions (Dietterich et al., 1997; Maron and Lozano-Perez, 1998; Andrews et al., 
2003). 

• Noisy Labels: Models can be trained to tolerate and adapt to noisy labels by 
incorporating uncertainty measures during training (Reed et al., 2014; Goldberger 
et al., 2016; Sukhbaa.tar et al., 2014). 

• Constraint-based Learning: Introducing domain-specific constraints or rules can 
guide the learning process in the absence of accurate labels (Patel and Dolz, 2022; 
Pathak et al., 2015). 

The landscape of machine learning is intricate and nuanced, with unsupervised, super-
vised, and weakly supervised learning often intertwined. Weakly supervised learning's versa-
tile nature allows it to harness the strengths of both unsupervised and supervised learning. 
It demonstrates that harnessing even limited labeling information can yield meaningful in-
sights and predictions. As we will see in chapter 3, a form of weak supervision is exactly 
what allows for a minimal realistic assumption on the data distribution that still yields useful 
results for representation learning. 

1.2. Deep Learning 
In this section, we provide an introduction to deep learning, a subset of machine learning 

that harnesses the power of neural networks with multiple layers. These networks excel in 
capturing complex patterns and representations within data, making them a fundamental 
tool in modern AI research and applications. 
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1.2.1. Neural Networks 

In this section, we provide an introduction to the fundamental components of neural 
networks, which serve as the building blocks of deep learning models. Neural networks are 
powerful architectures capable of learning intricate patterns from data. They consist of layers 
that transform input data through a series of operations to produce meaningful outputs. 
Layers in a Neural Network. A neural network typically comprises an input layer, hidden 
layers, and an output layer. Each layer consists of multiple neurons, also known as nodes, 
which process and propagate information through weighted connections. A layer's output 
serves as the input to the subsequent layer, creating a hierarchical representation of the data. 
Fully Connected (Dense) Layers. A fully connected layer, also referred to as a dense 
layer, is the simplest type of layer in a neural network. Neurons in this layer are connected 
to all neurons in the previous layer. Let x be the input vector of size n, and vV be the weight 
matrix of size m x n, where m is the number of neurons in the current layer. The output y 

of the fully connected layer can be calculated as: 

y= Wx+b 

where bis the bias vector of size m. 
Convolutional Layers. Convolutional layers are essential for processing grid-like data, such 
as images. They employ filters (kernels) to extract features from local regions of the input. 
Let I be the input feature map 1 K be the filter, and S be the stride. The output feature 
map O can be computed using the convolution operation: 

P-l Q-1 

O[i, j] = LL I[i . s + P, j • s + q] . K[p, q] 
p=O q=O 

where P and Q are the filter dimensions. 
Transpose Convolution (Deconvolution) Layers. Transpose convolution layers, also 
known as deconvolution layers, are used for upsampling or generating higher-resolution fea-
ture maps. Let I be the input feature map, K be the filter, and S be the stride. The output 
feature map O is computed as: 

P-lQ-1 

O[i, j] = LL J[i . s + P, j • s + q] . K[p, q] 
7J=O q=O 
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Transpose convolution layers can help reconstruct spatial details lost during pooling or 
downsampling operations. 
Activation Functions. Activation functions introduce non-linearity to neural networks, 
enabling them to model complex relationships in data. One common activation function is 
the Rectified Linear Unit (ReLU), defined as: 

J(x) = max(O,x) 

ReLU has gained popularity due to its simplicity and effectiveness in preventing the 
vanishing gradient problem (see next section on recurrent layers), allowing deep networks 
to be trained more effectively. Sigmoid and hyperbolic tangent (tanh) are other activation 
functions often used. The sigmoid function is defined as: 

1 a(x)=----
1 + exp(-x) 

It maps inputs to values between O and 1, making it suitable for binary classification 
problems. The hyperbolic tangent (tanh) function is defined as: 

h 
exp(x) - exp(-:i.:) 

tan (x) = ------
exp(x) + exp(-x) 

It maps inputs to values between -1 and 1, providing a centered activation that can also 
help mitigate the vanishing gradient problem. 
Recurrent Layers. Recurrent layers are a crucial component of neural networks designed 
to handle sequential data, such as time series or natural language. Unlike feedforward layers, 
recurrent layers possess connections that loop back, allowing them to maintain a hidden state 
that captures temporal information. 

A general recurrent layer computes the hidden state ht at time step t using the input 
Xt, the previous hidden state ht-i, and the weight matrices W, U, and V. The hidden state 
update equation can be expressed as: 

ht= a(Wxt + Uht-1 + b) 

where a represents the activation function and b is the bias vector. 
However, the training of deep recurrent networks often faces the problem of vanishing 

gradients. This issue arises when gradients propagated backward through the network be-
come extremely small, causing the network to learn slowly or even stagnate. The vanishing 
gradient problem is particularly evident in deep architectures with multiple layers. 
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Long Short-Term Memory (LSTM). LSTM is a popular form of recurrent layer designed to 
mitigate the vanishing gradient problem and capture long-term dependencies in sequential 
data. It achieves this by introducing three gating mechanisms: the input gate, the forget 
gate, and the output gate. These gates control the flow of information into and out of the 
cell state, enabling the LSTM to selectively retain or discard information. 

Mathematically, an LSTM unit computes the hidden state ht and the cell state Ct at time 
step t using the input Xt, the previous hidden state ht-l, the previous cell state Ct-i, and 
learnable weight matrices and bias terms (in the equations below, 0 denotes element-wise 
multiplication). 

ft = o-(Hlf • [ht-1, xt] +bi) 

it= a(Hli • [ht-1,xd + b,i) 

Ct = tanh(Hlc • [ht-I, xt] + be) 

Ct = ft 0 Ct-1 + it 0 Ct 

Ot = o-(Wo • [ht-I, xd + bo) 

ht = Ot 0 tanh( Ct) 

Gated Recurrent Unit (GRU). GRU is another popular recurrent layer that simplifies the 
LSTM architecture while maintaining competitive performance. GRU introduces the update 
gate and reset gate, which determine the balance between retaining and updating information 
in the hidden state. 

The update gate Zt and reset gate rt are calculated using the input Xt, the previous 
hidden state ht-l, and appropriate weight matrices. The hidden state ht is then updated as 
a combination of the previous hidden state and a new candidate hidden state. 

Zt = o-(Wz • [ht-1, Xt] + bz) 

Tt = a(Wr • [ht-1, xt] + b1-) 

ht= tanh(Wh • [rt 0 ht-1, xd + bh) 

ht = (1 - Zt) 0 ht-1 + Zt 0 ht 

Normalization Layers. Normalization layers, such as Batch Normalization (Ioffe and 
Szegedy, 2015), Layer Normalization (Ba et al., 2016), and Instance Normalization (Ulyanov 
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t al. 2016) are employed to stabilize and ace lerate th training process by reducing inter-
nal covariate . hift. They ensure that he input to each layer ha a consistent distribution 
leading to mor stable gradient and fast r convergence. 

Mathematically Batch orrnalization adju t h mean µ and standard deviation <J of 
the input batch applying a cale , and shift (3 factor to normalize the output. 

In these equa ions, xi represents the input to the Batch Normalization layer for the ith 
exampl in a mini-batch of size m. µ3 and (}'1 are he mean and variance comput d over 
the mini-batch respectively. Xi is he normaliz d input , and /3 ar learnable scaling and 
shifting parameters, and Yi is the outpu of the Ba ch ormalization layer. 

Ba ch Normalization helps stabilize training and accelerate onvergence by normalizing 
the inpu distributions of layers within a neural network. The parameter<: is a mall constant 
added o the denominator o prev nt divi ion by zero. 

Layer ormalization and Instance ormalization perform similar opera ions but across 
different dimensions. Batch ormaliza ion is commonly used in onvolu ional neural net-
works for imag data; while Layer ormalization is pre£ rred in recurr nt n tworks to han-
dl variable-I ngth sequences. Instance Normalization is often appli d in styl transfer and 
image- o-image translation tasks. 
Attention Mechanisms. Attention mechanisms nabl neural n works to focus on specific 
part of the input whil ignoring other . Th y are particularly useful for tasks involving 
sequences, such as language translation. The attention weight a assigned to each inpu 
lemen can b calculated as: 

ai = n 
Lj=l exp(ej) 

exp(ei) 

where ei is a measure of compa ibility between he current targ element and the ith 
input 1 m nt. 

42 



In summary) neural networks encompass a variety of layers, including fully connected, 
convolutional, transpose convolution, attention, and recurrent layers like LSTM and GRU, 
each serving specific purposes. Activation functions introduce non-linearity, aiding in feature 
extraction and pattern recognition. Normalization layers play a crucial role in stabilizing 
training and speeding up convergence by standardizing input distributions. These compo-
nents work in harmony to extract features, capture patterns, and enable the network to learn 
complex mappings from input to output. 

1.2.2. Neural Network Optimization 

Neural network training involves finding the model parameters that minimize a chosen 
loss function. Optimization methods play a critical role in this process, as they determine 
how the model parameters are updated during training to converge towards an optimal 
solution. Various optimization algorithms have been developed, each with its strengths and 
weaknesses. 
Gradient Descent. Gradient Descent is a fundamental optimization algorithm widely used 
in neural network training. Given a loss function L and model parameters 0, the goal is to 
minimize L by updating 0 in the opposite direction of the gradient of L with respect to 0. 
The update rule is given by: 

where r, is the learning rate, controlling the step size of the updates. 
Stochastic Gradient Descent (SGD). Stochastic Gradient Descent optimizes the loss 
function using random subsets of the training data, known as mini-batches. The update rule 
becomes: 

0t+1 = 0t -7J'\JL(Bi;x(i),y(i)) 

where (x(i), y(i)) is a mini-batch sample. 
Momentum. Momentum addresses the slow convergence of Gradient Descent by incorpo-
rating a moving average of past gradients. The update rule becomes: 

0t+l = 0t + Vt+] 

where Vt is the velocity at step t) and µ is the momentum hyperparameter. 
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Adagrad (Adaptive Gradient Algorithm). Adagrad (Duchi et al., 2011) adapts the 
learning rate for each parameter based on the historical gradient information. It provides 
larger updates for parameters with infrequent updates and smaller updates for frequently 
updated parameters. The update rule is given by: 

9t+1 = 9t + ('v L(0t)) 2 

et+l = el - TJ v1 L(Bt.) 
+ E 

where 9t is the sum of squared gradients up to step t, and E prevents division by zero. 
Adagrad's accumulation of squared gradients ensures that parameters with small gradi-

ents receive a larger learning rate adjustment, making it suitable for sparse data or features. 
However, this accumulation can cause the learning rates to shrink over time, leading to slow 
convergence. 
Adam (Adaptive Moment Estimation). Adam (Kingma and Ba, 2015) combines the 
benefits of both Momentum and AdaGrad. It adapts the learning rate for each parameter 
based on the first and second moments of the gradients. The update rule is given by: 

fht+l 
0t+l = 0t- 7/ 

y Vt+l + E 

where /31 and /32 are exponential decay rates, and E prevents division by zero. 
Adam's combination of momentum and adaptive learning rates makes it effective for a 

wide range of neural network architectures and tasks, thus it has become one of the most 
popular optimization methods of deep neural networks. 

In summary, these optimization methods are essential for training neural networks ef-
fectively. Choosing the appropriate optimization algorithm and tuning its hyperparameters 
can significantly impact convergence speed and final performance. 
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1.2.3. Regularization in Neural Networks 

Regularization is a fundamental technique in neural networks to prevent over:fitting, 
where the model performs well on the training data but fails to generalize to new, un-
seen data. Overfitting occurs when the model captures noise in the training data, leading 
to poor performance on validation or test sets .. Regularization methods aim to constrain the 
model's complexity, encouraging it to learn essential patterns rather than memorizing noise. 
L2 Regularization (Weight Decay). 12 regularization, also known as weight decay, adds 
a penalty term to the loss function based on the squared magnitudes of the model's weights. 
This encourages the model to use smaller weights, preventing them from growing excessively. 
The modified loss function is 

N 
;.~ 2 

Lregularized = Lorigiual + 2 6 Wi 
·i=l 

where Loriginal is the original loss function, A is the regularization parameter, N is the number 
of model parameters, and wi represents the weights. 
Dropout. Dropout (Hinton et al., 2014) is a widely used regularization technique that ran-
domly drops a fraction of the neurons during each training iteration. This prevents individual 
neurons from relying too heavily on specific input features and encourages the network to 
learn robust representations. The dropout regularization can be applied to hidden layers 
using the following equation adropout = a 0 d where adropou1. is the output after dropout, a is 
the original activation, and d is a binary mask that determines which neurons to drop. 
Early Stopping. Early stopping is a form of regularization that monitors the model's per-
formance on a validation set during training. It halts training when the validation loss stops 
decreasing or starts increasing, preventing the model from fitting noise in the training data. 

Regularization methods are often used in combination to achieve better generalization. 
For example, a neural network can be trained with both L2 regularization and dropout to 
simultaneously control the complexity of weights and neuron interactions. Regularization 
techniques play a vital role in improving a neural network's generalization and robustness. 
By constraining the model's behavior, these methods help ensure that the network learns 
meaningful patterns and performs well on new, unseen data. 
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1.2.4. Representation Learning 

Representation learning lies at the heart of deep learning, enabling models to automati-
cally learn data representations that uncover essential patterns and features within the data. 
In deep learning, the objective is to find representations that simplify the task at hand, 
making it more amenable to computation and manipulation. 

In essence, representation learning strives to transform raw input data into a form that 
exposes relevant characteristics in a more expressive and structured manner. Instead of 
relying on handcrafted features, representation learning empowers models to autonomously 
learn features directly from the data. Through this automatic feature extraction, the model 
repeatedly maps the input in various ways to a space in which solving the task at hand 
becomes easier. Classic examples include the classification of data where in the original 
domain they cannot be linearly separated, but there exist transformations under which the 
data becomes easily linearly separable. 

Mathematically, representation learning in deep networks involves constructing a series 
of transformations applied to the input data. Each layer captures increasingly abstract and 
higher-level features:h(I) = j(l)(x), hC2

) = j( 2 )(h( 1
)), ... , h,(L) = j(L)(h,(L- 1)). The process of 

representation learning constructs featmes that are not only discriminative for the task at 
hand but also transferable across related tasks. By learning invariant and robust featmes, 
deep networks are less likely to overfit to noisy or irrelevant aspects of the data, thus im-
proving their ability to generalize to diverse scenarios. Pretrained models on large datasets 
can be repurposed for specific tasks with limited data, as the initial layers capture general 
features that are useful across domains. Fine-tuning the later layers to task-specific data 
further refines the model's performance. 

Furthermore, deep representations often have the potential to disentangle factors of vari-
ation in the data, allowing the model to manipulate and interpret the learned features 
independently. This disentanglement enhances the interpretability of the model's decisions, 
promoting more informed and controlled generalization (chapters 3,4). 

Representation learning in deep learning has revolutionized various applications by em-
powering models to generalize more effectively by capturing essential patterns, promoting 
transfer learning, disentangling factors of variation, and hierarchically structuring informa-
tion. In natural language processing, for example, deep neural networks can learn word 
embeddings that capture semantic relationships between words, enabling more effective text 
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analysis. Similarly, in computer vision, deep networks can autonomously learn to extract 
intricate features from images, leading to impressive image recognition capabilities. 

1.3. Out-of-Distribution Generalization 
Most of the contents in this and the following section are based on Liu et al. (2021); 

Scholkopf et al. (2021). 
The landscape of contemporary machine learning methodologies has showcased remark-

able advancements across diverse domains such as natural language processing, computer 
vision, and recommendation systems. \i\Thile these techniques have demonstrated superior-
ity in controlled experimental conditions, their vulnerability to data distribution shifts has 
emerged as a pressing concern. The potential consequences of such errors span a spectrum 
from minor inconveniences to severe implications in high-stakes domains like healthcare and 
autonomous driving. Below we will define the problem of out-of-distribution generalization 
formally and categorize the important methods that have been proposed to address this 
challenge. 
Problem Definition. Consider a supervised learning scenario in which data. is collected 
from distinct environments, each characterized by its own underlying probability distribu-
tion. Let (Xe, Ye) ~ pe, where Xe E X represents the feature random variable and Ye E Y 
signifies the corresponding label. Here, e E £ = {1, ... , E} denotes the index of environ-
ments, and E encompasses all potential environments. The collection E is partitioned into 
two subsets: Eseen representing observed environments and l'unseen encompassing unobserved 
ones (£ = Eseen U Eunseen)- The training dataset consists of samples originating from Eseen· 

Data from environment e is denoted as Ve = { ( xT, yf)} ~~1 , where each data point ( xf, y;) is 
an independent and identically distributed (i.i.d.) sample drawn from pe, and ne represents 
the number of samples in environment e. The training dataset is the combination of all Ve 
fore E Eseen, which can be expressed as Vtrain = UeE"' Ve. vsecu 

Let J0 : X-+ Y denote a parametric model with parameters 0 E 0. Define the risk asso-
ciated with the model as Ro= lEcxe,Ye)~n>e[.e(fe(Xe), Ye)L where .e represents the per-sample 
loss function (e.g., cross-entropy, squared loss). The objective of the Out-of-Distribution 
generalization problem is to learn a model that minimizes the maximum risk across different 
environments: 

minmaxR 0. 0E8 eE£ 

Since the training data is drawn only from Perain and does not include samples from unob-
served environments, solving the above problem becomes a challenging task. 
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This problem can be partitioned into three components: (1) Feature representation of X 

(e.g., denoted as g(X)); (2) The mapping function fo(X) from features X to the label Y, 
often referred to as the model; (3) The optimization objective. There has been a surge of 
interest in tackling this problem from various perspectives toward this pipeline, which can 
be divided into the following categories: 

• Unsupervised Representation Learning for OOD Generalization: This category in-
cludes methods involving unsupervised doma.in generalization and disentangled rep-
resentation learning. These techniques utilize unsupervised representation learning 
approaches to enhance the initialization of downstream OOD generalization tasks, 
leading to improved feature representations. 

• Supervised Model Learning for OOD Generalization: This group encompasses strate-
gies like invariant representation learning, training tactics, causal learning, invariant 
risk minimization, stable learning, and heterogeneity-aware invariant learning. Vari-
ous model architectures and learning strategies are designed within this category to 
enable OOD generalization. 

• Optimization for OOD Generalization: This category considers methods that find 
distributionally robust optimization. 

The contributions of this thesis fall under the first two categories, therefore, we will 
expand further on those in what follows. 
Disentangled Representation Learning. Disentangled representation learning endeav-
ors to acquire representations in which distinct and meaningful aspects of data variation are 
disentangled from each other Bengio et al. (2012); Locatello et al. (2019). This characteristic 
is indicative of representations of high quality and holds potential advantages for generaliz-
ing beyond the original distribution. The prevailing strategies for achieving disentanglement 
are primarily based on Variational Autoencoders (VAE Higgins et al. (2016); Kim and Mnih 
(2018)). These techniques are executed in an entirely unsupervised manner within a single 
environment, without requiring supplementary information. Both interpretability and spar-
sity are emphasized by these methods. In this context, «sparsity" pertains to the notion that 
minor alterations in distribution usually manifest in a sparse or localized manner within the 
disentangled decomposition Scholkopf et al. (2021). 
Causal Learning. Causal learning approaches aspire to uncover the underlying causal struc-
ture inherent in the data and predict outcome variables based on the identified causal factors. 
By accurately discerning cause-and-effect relationships, these techniques are anticipated to 
exhibit strong performance even amidst changes in data distribution. This is rooted in the 
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assumption that the fundamental causal structure remains invariant across different envi-
ronments or domains. 

V\fe now delve deeper into the realm of causal learning, introducing its foundational 
concepts. At the heart of causal learning lies Assumption A, originating from the causal 
inference literature. This assumption posits a. causally invariant relationship between the 
target variable Y and its direct causes Xpa(Y)· Under this assumption, causal variables 
Xpa(Y) are anticipat-ed to remain stable across various enviromnents or data biases, fueling 
investigations into leveraging these causal variables exclusively. 
Assumption A. (Causality Assumption Buhlmann (2018)). The structural equation models: 

Ye= fy(X;a(Y)> cf), €~ J_ X~a(Y) 

remain consistent across all environments e E supp(Ea11), signifying that Ey maintains the 
same distribution for all environments. Here, pa(Y) represents the direct causes of Y. 

We proceed to examine methods tied to causal inference, which aim to extract causal 
variables from heterogeneous data. Although randomized experiments, such as A/B testing, 
are the gold standard for identifying causal effects, their practicality diminishes in real-world 
settings due to their cost and complexity. 

Hence, the development of techniques that provide a "causal explanation" beyond stan-
dard regTession or classification while offering some degree of invariance across environments 
is more pragmatic. As motivated by this idea, a series of methods has been proposed, 
including those by Peters ct al. (2016); Pfister ct al. (2018); Rothenhausler et al. (2018); 
Heinze-Demi et al. (2018); Gamella and Heinze-Demi (2020); Oberst et al. (2021), which 
exploit the inherent heterogeneity within data across multiple environments. 
Assumption B. (Invariance Assumption) There exists a subset S* {1, ... ,P} of covariate 
indices (including the empty set) such that 

P(YelXf~) is the same, for all e E £. 

This implies that the conditional distribution remains invariant across all environments when 
conditioning on covariates from S*. 

Peters et al. Peters et al. (2016) explore the concept that "invariance" can infer causal 
structure under specific conditions and introduce the Invariant Causal Prediction (ICP) ap-
proach. They leverage the observation that when considering all direct causes of a target 
variable, the conditional distribution of the target given these direct causes remains un-
changed even when intervening on all other variables except the target itself. A statistical 
test is conducted to assess if a covariate subset S satisfies the invariance assumption B for the 
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observed environments in£. For more details see Liu et al. (2021). Under the assumption of 
a structural equation model with Gaussian residuals (Peters et al., 2016), ICP employs the 
Chow test (Chow, 1960) to identify subsets of true causal variables. Then ICP is capable of 
uncovering subsets of true causal variables (with some probability). 

Now that we hav,e established a foundational understanding of the key concepts sunound-
ing Out-of-Distribution (OOD) generalization and explored the important concepts around 
it, we are well-prepared to delve into the articles and learn about the ways in which causal 
structure and representation learning can offer solutions to address this central challenge. 
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This work has not yet b en publi hed but is ready to b submitted and it erves a th 
corner ton for th articl s present d in chapt rs 3 and 4. Chapter 3 draws dir ct inspiration 
from the core ideas in roduced in his work effectively reversing the problems perspective. 
Additionally chapt r 4 further build upon his foundation and insights from chapt r 3 
extending the results to rnor realistic scenarios. Unlike the current article, which lay down 
the theoretical groundwork accompanied by evaluations in synthetic environments, chapter 
4 focuses on jointly learning the r presentation and reusabl underlying struc ure of the 
observation in various real-world task . Given its pivotal role in shaping the the is thi 
work has been pre ented as a tandalone chapter. 



Contributions. I have had a strong interest in tackling the challenge of OOD general-
ization using invariance principles to learn better structures, as highlighted in my earlier 
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learning within Directed Acyclic Graphs (DAGs). The inception of the notion of Reusable 
Factor Graphs should be attributed to Kartik Ahuja, who also deserves full credit for the 
accompanying theoretical findings. When it came to practical aspects such as designing 
and conducting experiments, Kartik and I coHaborated closely to fine-tune our approach. I 
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experimentation process, and performing subsequent analyses. My involvement extended to 
mathematical derivations establishing connections to the Expectation-Maximization (EM) 
technique. The resultant article was a joint effort between Kartik and me, with his guidance 
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RESUME. La decouverte de la structure causale qui sous-tend les donnees observees a emerge 
en tant que voie prometteuse pour renforcer les capacites de transfert des modeles d'appren-
tissage profond, ameliorant leur capacite a generaliser vers de nouvelles distributions non 
observees. Cette etude introduit une approche novatrice appelee Reusable Factor Graphs 
(RFG), un nouvel algorithme d'apprentissage de structure qui se distingue des methodes 
existantes en adoptant une representation de graphe de facteurs pour les mecanismes cau-
saux, par opposition a l'approche classique des graphes acycliques diriges (DAG). 

L'a.doption du graphe de facteurs repose sur des biais inductifs precedemment inexplores, 
notamment la reutilisabilite des mecanismes causaux et la sparsite i11berente de leur espace 
d'entree. Ces biais, informes a Ra fois par la causalite et la cognition humaine de baut niveau, 
constituent le camr des RFG. L'algorithme propose exploite l'acces aux representations 
causales de la distribution gen6ratrice des donnces et revele le potentiel de gains significatifs 
en efficacite d'echantillonnage grace a la reutiUsation des mecanismes causaux clans un cadre 
de graphe de facteurs. 

A travers des evaluations approfondies sur des ensembles de donnees synthetiques, ce 
travail confirme l'efficacite de deux variantes de RFG, offrant une preuve convaincante de 
sa faisabilite. De plus, l'etude etablit des connexions significatives entre l'apprentissage de 
structure des RFG et l'algorithme EM classique pour le regroupement (clustering). 
Mots cles : apprentissage causal, apprentissage de structure, graphes de facteurs, meca-
nisme causal reutilisable 

ABSTRACT. Discovering the causal structure that underlies observed data has emerged as a 
promising avenue to bolster the transfer capabilities of deep learning models, enhancing their 
ability to generalize to new and unseen clistributions. This study introduces an innovative 
approach called Reusable Factor Graphs (RFG), a novel structure learning algorithm that 
distinguishes itself from existing methods by adopting a factor graph representation of causal 
mechanisms, as opposed to the conventional Directed Acyclic Graph (DAG) approach. 

The adoption of the factor graph is rooted in previously unexplored inductive biases, 
including the reusability of causal mechanisms and the inherent sparsity within their input 
space. These biases, informed by both causality and higher-level human cognition, constitute 
the heart of RFG. The proposed algorithm leverages access to causal representations of 
the data-generating distribution and reveals the potential for significant gains in sample 
efficiency through the reuse of causal mechanisms within a factor graph framework. 

Through comprehensive evaluations on synthetic datasets, this work substantiates the 
efficacy of two variants of RFGs, offering a compelling proof of concept for its practicality. 
Furthermore, the study establishes meaningful connections bet,veen the structure learning 
of RFGs and the classical EM algorithm for clustering. 
Keywords: causal learning, structure learning, factor graphs, reusable causal mechanism 

55 



2.1. Introduction 
A subject of rising interest in deep learning theory is the ability of learned models to gen-

eralize their performance outside of the distribution on which they were trained. Commonly 
referred to as Out-of-Distribution (OOD) generalization, this has been the subject of many 
recent studies that try to approach this challenge from various perspectives. Discovering the 
causal structure that underlies observed data has emerged as a compelling avenue in enhanc-
ing the transfer capabilities of deep learning models, enabling them to generalize effectively to 
novel and unseen distributions. Causality, as the backbone of relationships among variables, 
provides a deeper understanding of the underlying mechanisms driving data distributions. 
Uncovering such causal structures in practice can be decomposed as the learning of inde-
pendent causal mechanisms along with the learning of invariant features (instead of spurious 
features) that give rise to the observed data distribution (Parascandolo et al., 2020; Goyal 
et al., 2020; Goyal and Bengio, 2020; Arjovsky, 2020). By identifying causal relationships, 
models can distinguish between true causal factors and spurious correlations, thereby cap-
turing the fundamental drivers of data distribution. Such causal relationships encapsulate 
the invariances that models need to generalize effectively. Causal relationships are expected 
to remain stable across different environments, enabling models to leverage this stability for 
improved OOD performance. It is important to emphasize that causal mechanisms govern 
the relations among some ( causal) latent variables, and it is only in the correct space that we 
could learn such parsimonious models; thus, the problem of causal representation learning 
should be considered closely to structure learning, and as a matter of fact, these two inform 
each other deeply (Ahuja et al., 2022b,a). In this work, similar to the prevalent approach 
in the structure learning literature, we assume access to such representations and focus on 
finding efficient ways of structure learning. 

The realm of causal structure learning has established its significance across various scien-
tific domains, including genetics, biology, and economics (Koller and Friedman, 2009; Peters 
et al., 2017; Sachs et al., 2005; Pearl, 2009). Bayesian networks (BNs), characterized by di-
rected acyclic graphs (DAGs), are influential models renowned for their interpretability and 
computational feasibility. Causal graphical models (CGMs) (Peters et al., 2016) enable the 
exploration of interventional queries, empowering us to probe the consequences of external 
interventions on variables. In the context of machine learning models, we believe models 
with the ability to comprehend and reason about the dynamics of entities would be expected 
to exhibit improved robustness and generalization in novel scenarios. 
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Causal structure learning entails the inference of causal graphical models, frequently 
taking the form of directed acyclic graphs (DAGs). This learning is complicated by the 
fact that multiple causal DAG models can yield identical observational distributions. While 
interventions help reduce this ambiguity, their effectiveness depends on the availability of 
interventional data. Various methods have been proposed for causal structure learning, with 
certain algorithms assuming causal sufficiency in the absence of latent confounders. 

This study introduces an innovative a,pproach named Reusable Factor Graphs (RFG), 
a novel structure learning algorithm that diverges from prevailing methods by adopting a 
factor graph representation of causal mechanisms, in contrast to the conventional Directed 
Acyclic Graph (DAG) paradigm. The adoption of the factor graph is rooted in previously 
unexplored inductive biases, including the reusability of causal mechanisms and the inherent 
sparsity within their input space. These biases, informed by both causality and higher-level 
human cognition, constitute the heart of RFG. The proposed algorithm leverages access 
to causal representations of the data-generating distribution and reveals the potential for 
significant gains in sample efficiency through the reuse of causal mechanisms within a factor 
graph framework. 

We combine ideas from Kahneman (2011), the "Consciousness Priorn (Bengio, 2019), and 
its relation to Global Workspace Theory (GST) (Baars, 2005), a hypothesis regarding the 
working mechanism of the human brain in reasoning tasks. According to Kahneman (2011) 
system one mode of thinking or thinking fast is intuitive and instinctive. On the other hand, 
system two, or thinking slow, is rational and based on logic, and indecisive. The former is the 
domain in which current Deep Learning is good, and the latter is what motivates this work. 
These works conjecture that conscious thought is conceived based on the conscious thought 
at the previous moment and an attention mechanism that acts as a bottleneck on the output 
of all sensory modules. The probabilistic and logical nature of this mode of thinking inspires 
us to explore structme learning in the form of a particular modification of the graphical 
models, i.e., a factor gTaph, and its compositional nature motivates thinking in terms of 
independent mechanisms. The consciousness prior (Bengio, 2019) brings the importance of 
two crucial inductive biases to our attention-reusability and sparsity of interactions. These 
hypotheses and intuitions can be modeled neatly by a sparse factor graph representation. 
A factor graph is a bipartite graph, where on one side, we keep the nodes corresponding 
to factors or mechanisms, and on one side, we keep the subsets of random variables that 
our factor nodes can operate on to generate the observations. However, we enforce the 
number of factor nodes to be small ( enforcing reusability), and the size of each subset of 
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random variables be limited too ( enforcing sparsity, i.e., resembling the attention bottleneck 
in GST). Our goal is to learn the structure of this bipartite graph, i.e., both the parameters 
of the mechanisms and the connections (edges) between these mechanisms and the causal 
variables (i.e., the variables a mechanism takes as input). We do not consider DAGs as they 
have been explored Abbeel et al. (2006); Brouillard et al. (2020); Lachapelle et al. (2019); 
Zheng et al. (2018) since they do not allow the inductive bias of reusability to be exploited 
efficiently and explicitly, meaning that while a parent-child relation in a DAG could reappear 
in many other edges of a causal DAG, settings such as earlier methods learn all of them from 
scratch and do not exploit the reusability arising from decomposing the causal structure into 
repeating factors. 

This approach enables the learning of reusable mechanisms, and Bengio ct al. (2019) 
suggests that through slight modifications our method could be capable of translating the 
RFG to a causal DAG by learning the causal directions. We establish the theory and carry 
out experiments for learning a factor graph comprising a small number of factors operating 
on small subsets of random variables. The former encourages reusability of mechanisms 
(as opposed to learning a new mechanism for every edge in a causal DAG), and the latter 
encourages sparsity (a typical causal mechanism most likely cannot manipulate a large set 
of elements in an environment simultaneously). We establish the connection of our proposed 
algorithm with the Expectation-Maximization algorithm in appendix A.3. 

2.2. Related works 
Structure learning. Abbeel et al. (2006) is one of the most important works on learning 
factor graphs. Most of the existing works on structure learning in factor graphs are discrete 
optimization approaches. There has been a lot of work recently on structure learning in DA Gs 
using continuous optimization-based approaches for linear settings Zheng et al. (2018) and 
non-linear settings exploiting neural networks Lachapelle et al. (2019). Factor graphs offer 
many a.dvantages that standard DAGs-based models may not. To the best of our knowledge, 
continuous optimization-based approaches for structure learning of factor graphs have not 
been extensively explored. 
Importance of reusability. Ours is the first work to employ and exploit reusability con-
straints for structure learning in factor graphs. These constraints allow us to approximate 
the partition function. If the reusability degree is a constant, then the number of distinct 
terms in the partition function grows exponentially in the reusability degree which can be a 
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small value in many problems of interest (see section 2.3 for the definitions of reusability de-
gree a.nd the partition function). Existing ideas on reusing parameters in structure learning 
such as dynamic Bayesian networks hard code the parameter sharing across time steps. In 
contrast, in the current setup, we learn which subsets of variables share a common factor. 
Other reusability based representations. Efficient representation of factor graphs was 
first presented in the form of plated factor graphs Obermeyer et al. (2019), which expresses 
reusability in the form of plates; the representation in their paper and our work are not the 
same. In Obermeyer et al. (2019) the authors showed the advantage of such a representation 
in terms of inference but the advantages from the structure learning point of view were not 
explored. 

2.3. Methodology 
We start by describing the limitations of structural causal models (SCMs) Goyal and 

Bengio (2020). SCMs can be inflexible in their ability to capture independent knowledge 
factors thus making it hard to learn the independent causal mechanisms. Moreover, the 
problem is exacerbated to a great degree if each causal mechanism is composed of some 
simpler rules that are generic and are reused in other me-chanisms. In Goya.I and Bengio 
(2020), the authors propose that building factor graphs can alleviate some of these key 
concerns. 

We first discuss how the standard representation of factor graphs has certain important 
limitations that can also prohibit it from learning reusable generic rules. Consider a stan-
dard factor graph, one side of vertices corresponding to factors {Ji, ... , f M} and the other 
side corresponds to the random variables {X 1, ... ,XJV }. The joint probability distribution 
P(X 1, ... ,XN) can lbe written as a factorization over factors in {f1, ... , fM} as follows. 

1 
P(X 1, ... ,XN) = 2 Tijfi(Sj) 

where Sj {X1 , ... ,XN} and Z is a normalization constant. Sj contains all the random 
variables that share an edge with fj, In Figure 2.1, we show the example of a factor graph 
with a distribution P(X 1 , ... , X4 ) = fi(X 1)h(X 1 ,X2)h(X2,X3)f 4 (X2,X3). The bipartite 
graph in Figure 2.1 looks at each function .fi as a separate vertex even if some of the func-
tions are the same. As a result, the graphical representation is ineffective in capturing the 
reusability of the factors. For instance, if the factors h and h are equal, then it can be 
easier to learn such a shared rule from the data. Moreover, learning such shared factors can 
be useful from the point of view of identifying some generic mechanisms that are used in 
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Fig. 2.1. Example of a standard factor graph with factorized joint distribution 
P(X1,X2, X3) = fi(X1)h(X1,X2)h(X2,X3)f4(X2,X3). 

data generation. Keeping this in mind, we propose an alternate way to represent the factor 
graphs. We construct a bipartite graph, where on one side each vertex corresponds to a 
unique function and on the other side we have the subsets Sj on which the factor operates. 
Therefore, we can rewrite the distribution to highlight this fact. 

1 
P(XJ' ... ,XN) = ZITjITSiEN(j)ij(Sj) 

In the above factorization, each function [j is unique and the set N (j) are the neighbors 
corresponding to the sets Sj on which the factor operates. In Figure 2.2, we present the 
example in Figure 2.1 under the new representation taking into account the fact that h = h. 

What can we directly infer from the new factor graph representation? The number of 
vertices on the factor side expresses how many distinct functions need to be learned. The 
number of neighbors of each factor vertex describes how many times the factor is used. The 
number of neighbors of each vertex on the right side describes how many times the same 
subset of variables appears in the factorization. The ma,ximum number of nodes inside a 
vertex on the variable side describes the sparsity in the graph. 

2.3.1. Structure learning of reusable factor graphs 

We described some of the important advantages that the new representation brings. What 
are the advantages of the above representation from the perspective of structure learning? 
The assumptions made on the graph representation form the inductive bias for structure 
learning. For instance, a graph is directed acyclic, graph has a bounded degree form different 
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0------------(0 

f,(X,)Jj_(X,, x,)J,(X,. X3) J+(X,. x,) 

Fig. 2.2. Example of bipartite graph of Figure 2.1 under the new representation taking into 
account the fact that h = fs. 

types of inductive biases. The representation proposed above can be used to encourage the 
reusability of factors. We should try to learn a graph with three properties: a) the number 
of factor vertices is small, b) allows for some factor vertices to have a high degree thus 
encouraging reusabiility, and c) the maximum size of the subset S,1 on the variable side 
should be small. 

Each data sample X = [X1, ... Xv] is drawn i.i.d. from a distribution P. Suppose ,ve 
have m factor vertices ( rn is a hyperparameter) denoted by set F = { 1, ... m}. We model 
the ith factor vertex using a neural network Jo; with parameters 0i. We restrict the maximum 
cardinality of a variable vertex Si to be d. The vertices on the variable side correspond to 
all possible subsets Si of X of cardinality up to d, where d controls the sparsity in the factor 
graph. Therefore, the total number of variable vertices are Q = I:::=1 (f), which grows as 
O(pd). Vve index the vertices to form a set V such that from the index j of the vertex we 
can identify the subset Si of the random variables. We tTeat the adjacency matrix NI of 
the bipartite graph as a random, where each entry Jvfij of the matrix is a Bernoulli random 
variable with success probability a(>..ij), where CJ is a sigmoid function and Aij is a parameter 
that we learn. We write the parameters for aU the edges in the form of a matrix A E JRMxQ_ 
We can wTite the loss function that we want to optimize under this parameterization as 
follows. For each neural network i with parameters 0i, we assign the dimension of the input 
that it operates on. For simplicity, let us assume that for each input size there are q neural 
networks. Therefore, q * d = m. 
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L( { 0j ho·, A) = -lEM~u(A)lEx~P [LL log(foi (Sk))Mjkljk - log(Z( {0j ho·, A)] (2.3.1) 
jEF kEV 

where Z( {0jho·, A) is the normalization constant and Ijk is an indicator function which 
takes a value 1 is the size of Sk matches the input dimension that neural network i can take 
and otherwise it is zero. Note that optimization of A can be handled using Gumbel-softmax 
reparameterization trick Brouillard et al. (2020). One main challenge in trying to minimize 
the above loss is how to compute Z( {0jhEF, A). One possible approach is to use standard 
Monte-Carlo integration. The approach in Abbeel et al. (2006) focused on learning factor 
graphs used a way to factorize where we do not need to compute the normalization constant. 
However, the approach in Abbcel cL al. (200G) is only applicable to discrete random variables. 
Moving forward, we can apply the above ideas to directed factor graphs Frey (2012) in a 
similar fashion. Other than parameterizing the adjacency matrix with parameters >.ij and 
taking the expectation above w.r.t. M ~ a(A), we could also use a softmax over the 
outputs of the neural nets modeling the factors. This way, the softmax operation encourages 
competition among the neural nets and naturally provides a normalized set of weights that 
could r•eplace Mjk in the above equation. We denote this method in the experiment section 
(as well a.s plot legends) by the softmax method, and use the A method to refer to the former. 

2.3.2. Equivalence classes representation 

In order to avoid choosing subsets of variables that are incompatible with the signature 
of a factor (which is enforced by the indicator function Ijl. in Equation 2.3.1), we can break 
down the set of possible unique factors F into subsets of factors that share the same signature. 
Concretely, if we assume that d is the maximum number of variables in any given factor, we 
can define F = LJt=l Fd, where Fis the set of unique factors that have k inputs; we also call 
Qk = IFkl- One consequence is that we can also break down the set of subsets of variables 
(i.e. the vertices on the left-hand side of Figure 2.2) into subsets of exactly k variables; we 
call this set Sk ={SE 2v I ISi = k}, and Mk= !Ski = (:). The adjacency matrix is now 
parametrized by A E JRM1 xQi x ... x JRMdxQ", as opposed to an Ad x Q = Lk !11lk x Lk Qk 
matrix, reducing significantly the number of parameters. The objective from Equation 2.3.1 
can now be written as 

C({0;};eF, A) - -IEM~u(A)IEX~P [ t LL log/,;(S,)Mjt 1 - logZ( {0,}JeF, M)] {2.3.2) 
k=l JEFk iESk 
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2.3.3. Partition computation advantage for reusable factor graphs 

Here we briefly try to lay down some intuition that can help explain why the partition 
function computation can be tractable in reusable factor graphs with a larger reusability 
degree than the standard factor graphs. Consider a very simple setting where there are K 
factors that take as input a scalar binary valued variable. The partition function is given as 
Z = Ex II{~ifm(Xi) The above summation involves 21< terms. However, let us consider the 
case when all the functions fm were identical. In such a case, we only need to compute the 
product function over K distinct sequences and re-express it as z = Lx c;)J(O)Cf(l)I<-c_ 
If we were to construct an estimate of the partition function using Monte Carlo integration, 
then the integral would require fewer random samples to estimate the Z. 

We now describe a more general case of the setting described above. Let us assume that 
the size of the input to each factor is the san1.e and is equal to d. Also, let us assume that 
no two subsets Si and Sk intersect. The total number of subsets is ~. In addition, we say 
that each Si is only associated with one factor k Therefore, the total number of factors is 
m = ~. Suppose there are only r distinct factors {g1 , • • • , g,,.}. Suppose 9i is repeated mi 

times, which implies :E:-=1 mi = m. The total number of possible values 9i can take assuming 
binary valued input is d = 2d. The total number of possible values the product of factors 91 

can take given that 9i are multiplied mi times is mi + (i=~). 

(2.3.3) 

The total number of possible terms across the factors are 

(2.3.4) 

2 .4. Time-directed reusable factor graphs 
In this work, we aim to show as a proof of concept why the above framework is powerful, 

and that the above formulation can lead to more effective sample complexity in structure 
learning. Therefore, we will make additional assumptions that will allow us to simplify the 
objective defined in equation 2.3.2 further. In this section, we discuss a class of reusable 
factor graphs, which we refer to as time-directed reusable factor graphs. 
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Fig. 2.3. Illustrating time-directed reusable factor graph 

2.4.1. Reusable mechanisms in a Markov chain 

Suppose X = [X1, ... , Xv] can be factorized as a Markov chain. 

(2.4.1) 

We can write the factorization in factor graph notation as follows. 

(2.4.2) 

If tlie Markov chain wa8 stationary then all the factors fH 1 (Xi, Xi+1) would be the ::;ame 
say f(Xi, Xi+1). We consider the setting where each of the factors .h+1 (Xi, Xi+1) are drawn 
from the set of reusable mechanisms {g1, ... , 9r}, i.e., 'iii E { 1, ... , p}, /i E {g1, ... , 91.}. In 
Figure 2.3 we illustrate an example of a reusable mechanism-based Markov chain. 
Learning. Here, we describe how we can set up a simple continuous relaxation of the like-
lihood objective (similar to the one described in the previous section). Assume that we 
have m neural networks {f0 1 , ••• , f0"'}. Let 8 be the set of parameters characterizing the 
different neural networks. Each neural network operates on the pair Xi, Xi+i and models a 
conditional density given as ]0 .(Xi, Xi+1) = I: 1·~;·:~t)- ) (we assume discrete support for 

J x 0j ,, 1.+1-X 

each random variable to simplify the normalization). Recall that Mis the adjacency matrix 
with the number of rows equal to the number of factors m and the number of columns equal 
top. Observe that the number of parameters in M grows with the length of the chain and 
we will describe how to tackle this issue in a bit. We define the likelihood next. 

(2.4.3) 
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In the above likelihood, we assume that each column of the matrix M adds up to 1. Define 
a constrained maximization of the likelihood as follows 

max IE(log (L( {0i}~1 , M, X)]] 
{0i}~'.!a1 ,J\!f 

m 

s.t.\/ij Mii E {0,1}, LMii = 1 
i=l 

(2.4.4) 

We define a continuous relaxation of the above objective as follows. We model M as a 
softmax over a real-valued matrix A with softmax taken over each column of the matrix, 
which ensures that each column adds up to one and each entry is positive and less than one. 

m max IE ( log ( L( {0i}~ 1, softmax(A), X)]] 
{0;}i=l •so~max(A) 

(2.4.5) 

In Figure 2.4, we show an example to illustrate the graph being learned. 
Assumption 1. 3 01 E 0 such that for all k E {1, · · · ,r} J0, (Xi, Xi+1) = 9k(Xi,Xi+I) 

Proposition 1. If m 2: r and Assumption 1 holds, then from the solution of equation 
equation 2. 4. 5; we can exactly recover the true factors {g1 , • • • , 9r}. 

Proof. Observe that solving equation 2.4.5 and equation 2.4.4 are equivalent (from the so-
lutions of one problem we can recover all the solutions to the other problem). Also, note 
that the optimal value of the objective in equation 2.4.5 and equation 2.4.4 are the same 
( due to the linearity of the objective in A and M). Since Assumption 1 holds and m 2: r ,;i,,e 
can construct one of the optimal solutions. Select 0j values for the different NNs such that 
there is at least one NN h that imitates gj. Select Afj such that at each time step i assigns 
the entire weight to the factor that is used at that time to generate the data. As a result, 
the term inside equation equation 2.4.5 becomes the exact distribution that generates the 
data. Ytve need to show the other side of the result that if the maximum is achieved, we can 
construct the factors {g1, ... 9r}- We argue that we can below. 

p-t m 

IE [ log [ L( {0i}~1 , softmax(A), X)]) = IE[ LL Afj log (f0_1 (Xi, Xi+1))] 
i=l j=l 

~l m ~l m 
(2.4.6) 

LL AfjlE[log (fo.1(Xi, Xi+1))] =LL AfjL;j(0j) 
i=l j=l i=l j=l 
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0,n 8 
Fig. 2.4. Illustrating time-directed reusable factor graph parameterized by { 01 , ... 0m} 

where L;j ( 0 J) = lE [ log ( J0i ( Xi X i+l)) ] . Con ider one of the optimal set of values for { e; }y~1 

defin the set of indices that are in the se S = arg maxj L'';j ( 0j). The optimal value of Afj 
have a zero weight on all h indices outside the t S. Since all th valu s Afi corr sponding 
to j E S, wi hou lo s of generality consider the solutions in which th en ire weigh Afj is 
assigned to one of the elements in S. Each term in h optimal solution corresponds to a 
valid conditional probability distribution. At the optimum, the distribution learn d and th 
true distribution are he same. By marginalizing the LHS and RHS of the distributions, we 
can show that the factors are exactly recovered. 

Define log likelihood for each time step as Lji = JE[log(l0i (Xi Xi+1))]. For each time step 
i Lji i th expected log likelihood that we observe from u ing N parame rized by 0J· 

Proposition 2. Suppose we .fix { 0j }~ 1 then the solution to optimal ]\If in equation 
equation 2.4.4 is simply the row corresponding to the maximum likelihood, i.e., let j* = 
arg maxjE{l, ... ,m} Lji l\llj•i = 1 and for all j f- j* Mji = 0. 

Proof. Follows from the lineari y of the likelihood in !VI. The same argument as shown in 
the proof of he previous proposition. 

Inferring mechanisms. Suppose we are given more samples from the chain {Xp+l, ... Xq} 
and our goal i to infer what are the mechani ms tha cause the tran itions. Vve parametrize 
th likelihood only int rm of the adjacency matrix "Alf and a sume that ,v know the r usable 
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mechanisms {g1, ... , 9r}- If we know these mechanisms and we only want to learn what the 
adjacency matrix is we can write the likelihood as follows 

(2.4.7) 

In the above, it is assumed that the columns of M add up to one. Consider the ith column 
of NI. Pick a j* E argmaxgji(Xi,Xi+1) and set M_;.i = 1 and MJi = 0 for all j =/-j*, then 
M* maximizes the likelihood above. 

2.5. Experiments 

2.5.1. A simple illustrative example 

In this section, we provide an illustrative example on which we carry out the experiments. 
Recall X = [X1, ... , Xv]- Suppose there are two functions a : JR ----+ JR and b : JR----+ R We 
will assume that one of these two mechanisms a orb that are used generate Xk from Xk-l· 
For a k 2: 1, 

or (2.5.1) 

In Figure 2.5, we illustrate the above model. We will use extra structural knowledge of 
the above model to simplify the factor graph learning. Assume that the model knows Xk 

generates Xk+l· In addition to the above structural assumptions, we will also assume that 
the learner knows that Xk and Xk-I are related through additive noise. Therefore, we can 
simplify the learning further for this example and say that instead of learning the condlitional 
probability distributions, we can try to learn the mean of the conditional distribution. Vve 
use the extra knowledge in this setting to simplify the objective in equation equation 2.3.1 as 
follows. We use each neural network Jo; to model the conditional expectation JE[Xk1Xk_1]. 
Recall A E JRMxp, which was used to model the i.i.d. Bernoulli random variables in the 
adjacency matrix. Since we know that each variable X1r. is associated with exactly one 
neural network, we need to make sure that the sum of the probabilities adds up to one for 
each row and we use a softmax function to ensure that such a constraint is met. 

P M 

L({0j}_r~1 ,A) = LLlEx[(Xi -fo;(Xi-1))2]softmax(A[: ,i])[j] (2.5.2) 
i=l j=l 
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······~ 

Fig. 2.5. Illustrative example: Markov model 

where A[: ,i] is the ith column of the matrix A and softmax(A[: /]) is the probability vector 
corresponding to it. 

Now, we describe the results of experiments on the illustrative model we described. We 
assume a linear generative model given as 

(2.5.3) 

where Ai is i th generating mechanism and X1,; E lRu. The set of all the models that are 
reused is { A}I"=1 . Our goal is to minimize the objective in equation equation 2.5.2 and learn 
the matrices Ai. We also need to correctly identify which matrix is associated with which 
variable Xk. We sample Ai to be a random unitary matrix and Nk is a Gaussian noise vector 
with unit variance. Indicator vector I dictates which unitary matrix is associated with which 
variable, i.e. Xk maps to the unitary matrix A1.:. 

We give an example of the case when the length of the chain p = 10, the dimension of 
each X1,~ u = 2, and the number of reusable factors r = 2 and number of samples is 100. 

A
1 

= [-0.325 0.945 l A
2 

= [0.996 0.086 l 
-0.945 -0.325 ' 0.086 -0.996 

(2.5.4) 

I= [2,1,2,1,1,2,1,2,1] 
Case 1. We first start with the case when the number of matrices to be learned (use 

a one-layer neural network for this purpose) exactly match the number of true distinct 
matrices, which is two in the above case. The estimated outputs are 

A = [-0.318 0.941 l , A2 = [0.985 0.094 l 
1 -0.941 -0.328 0.078 -0.991 

(2.5.5) 

f = [2,1,2,1,1,2,1,2,1] 
Case 2. I ext, we move to the case when the number of matrices to be learned (we 

set them to four) is greater than the number of generating matrices that are distinct. The 
estimated outputs are 
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Fig. 2.6. Comparison of the method as a function of the number of samples. p = 10, r = 2 
u=2 

A.1 = ,A.2 = [-0.304 0.932 l [0.985 
-0.929 -0.335 0.078 

A = [-0.025 0. 751 l · A = [-0.319 
3 -0. 709 -0.4 78 , 4 -0.041 

0.094 l 
-0.991 

0.942 l 
-0.327 

(2.5.6) 

(2.5.7) 

I [2 4 2 4,4 2 4 2 1] In the above ca e we saw that the propo ed obje tive is almo t 
p rfectly able to recover the structure, i.e., the matric sand where in the chain they operate. 
For th sam s tting, w av rag d the r sults over fifty trials and plotted the performanc as a 
function of the training sample size. We measure the performance in terms of the parameter 
distance - the distance between the estimated matrices and the average Hamming distance 
betwe n he indicator vector . In Figures 2.6 ,2. 7 we show the plots showing he p rformance 
of the propo ed approach as a function of the number of training sample . 

Given the initial uccess in the above example, below we scale up h experiment to very 
long chains and high dimensions of X. As we want to showcas the benefit of reusability we 
will us only 1 ample in the training set for which the Markov Chain Length (L) varies in 
[20,40,60 80 100,200,400 600 800,1000]. We also vary the complexity of the task by letting 
d E [20 40,60,80,100]. V./e will show how increasingly longer chains will exploit the reusability 
of he ingle sampl to both recov r the underl 1ing data generation parameters as well as 
the indices I of where the mechani ms operate along the chain. In this section we let the 
number of matrices to be learned exactly matches the number of true distinc matrices. We 
will see in the following sections how varying these number affi c s the learned parame ers. 
For further training detail plea re£ r to appendix A. 
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Fig. 2. 7. Comparison of the method as a function of the number of samples. p = 25 r = 2 
u=5 

Figures 2.8, 2.9 .how he average parameter di tance and te t Hamming di ance over the 
Markov chain length as metrics for the performance of our tructure learning algorithm. For 
training Hamming distances please see the appendix A. We can clearly observe the benefit 
of reu ability when he parameter and Hamming distances bo h diminish as the chain length 
increa s and we have only acce s to a single ampl . 
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2.6. Unknown number of reusable factors 
In this section, we observe how learned models behave in a setting where the number of 

ground truth factors is fixed (r = 6), but that number is unknown to the model, therefore 
we have to train with varying numbers of neural nets modeling the factors. We will explore 
the behavior of the learned models, and study if there exists a way to infer the correct 
number of neural nets to be used for modeling the reusable structure. To make sure each 
factor appears with enough frequency in the chain, we set the chain length to L = 100 in 
the generation process, and keep the dimension low at d = 2. For the training dataset, we 
sample 100 chains of length L. oise standard deviation a equals to 15% of the elements 
of IIAXII-We only use the A matrix approach here. \i\lhen we employ 9 neural nets when 
there are actually 6 factors, figures 2.10, 2.11 that show the pairwise distances of neural 
networks and ground truth factors, clearly show that for each factor, there is exactly one 
neural net that perfectly models them. Figures 2.12, 2.13 reflect the situation where we have 
fewer neural nets to model all the ground truth factors, and as is expected it should not be 
possible, which is confirmed by the pairwise parameter distances confirming that no neural 
net perfectly models any factor. Instead, they all converge to some mixture of the factors to 
minimize the objective as much as possible. Figures 2.14, 2.15 show the successful recovery 
of all factors uniquely by each neural net when there are as many neural nets available for 
modeling as there are ground truth factors. In the next section, we will propose a metric 
that will assist us in finding the correct number of factors r. 
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Fig. 2.10. Each plot corresponds to he pairwise parameter distance ( over training steps) 
of one ground truth factor to all h neural ne works modeling th r usable s ructure. There 
ar 6 fac ors and 9 neural networks. 
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modeling a factor compared to all the ground truth factors. There are 9 neural networks 
and 6 factors. 
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Fig. 2.12. Each plot corresponds to he pairwise parameter distance ( over training steps) 
of one ground truth factor to all h n ural networks mod ling the r usable structure. There 
ar 6 factors and 2 neural networks. 
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Fig. 2.13. Each plot corresponds to the pairwise pararne er distance of one neural ne work 
modeling a factor compared to all the ground truth factor . Th re ar 2 neural network 
and 6 factors. 
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Fig. 2.15. Each plot, corresponds to the pairwise parameter distance of one neural network 
modeling a factor compared to all the ground truth factorn. There are 6 neural networks 
and 6 factors. 

2.6.1. Inferring r with Soft Hamming Distance 

Notice that when there are fewer neural nets k than the number of factors r, there is no 
way we can have an estimate of the Hamming distance because we do not have enough models 
to construct a sequence similar to the ground truth. Hence, we introduce a soft Hamming 
distance. So far, we have measured the average parameter distance between a factor and 
its corresponding neural net model. Separately, we predict a sequence that represents our 
estimate of the position that each neural net operates on. But a natural step from here 
would be to measure the parameter distance between the ground truth factor that operates 
at position i with the neural net model we predict for that position and sum these distances 
over all positions i E [l, ... ,L]. This way we have the benefits of both. It also gives a more 
robust and accurate estimate of how close we are to the true underlying reusable structure. 
Because neither the Hamming distance nor parameter distance alone lack such expression; 
We can only learn the parameters to some approximation but recover the sequence, and vice 
versa. To see where both measures do well, we need to combine them as suggested. Doing 
so, we see a very clear distinction between data points related to k < r and k > r in the plot 
for test soft Hamming distance versus k (Figure 2.16). We see that the measure plateaus 
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and we can confid ntly <let rmine the number of ground tr 1th factor . See appendix for 
experiment that stre te t he propo ed algorithm by caling the number of factor and 
the latent dimension ven further. 

10 

Fig. 2.16. Tes set oft Hamming distan e ver u k, the number of neural nets to model 
the reu abl factor graph when there are r = 6 factor . The metric introduc d an pinpoint 
the correct value of r by a clear knee point. 

2. 7. Con cl us ion 
In pursuit of improving generalization capabilities in deep learning models we proposed 

a novel stru ture learning method for Reu abl Factor Graphs. RFG departs from the 
conv n ional Direc ed cyclic Graph (D G) paradigm. By embracing fac or graphs a an 
effective representation of causal tructures RFG not only harnesses previou ly unexplored 
inductive biases from causality and human cognition but also sets the stage for more sample-
effi ient and effectiv struc ure learning. 

W howca ed the efficacy of RFG which exploits the principl s of reu ability and par ity 
bo-h theoretically and experimentally in omprehensive evaluations on synthetic data, and 
demonstrated how we can uccessfully infer the number of ground truths. We established 
conne ions between our work and h cla sical EM algorithm, augmenting this work with 
theoretical insights. As we move forward th exploration of new variants of RFG and its 
application in real-world scenarios holds promise for advancing our understanding of causal 
relationship and enhancing the generaliza ion capacitie of deep learning models. We build 
on thi work and th results of chapter 3 to arrive at an end-to-end mod 1 apable of jointly 
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learning the structure and the representations in chapter 4 to tackle challenging problems 
with realistic environments and various tasks. 
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Chapter 3 

Object-Centric Causal 
Representation Learning 

by 

Amin Mansouri 1 Jason Hartford 1 Yan Zhang 2 Irina Rish1 and Yoshua Bengio1 

(1) Mila Quebec AI Institute and niversite de Montreal 
(2) Samsung SAIT AI Lab Montreal 

A shorter version of this work was initially published and presented at eurIPS 2022 Work-
shop on Symmetry and Geome ry in Neural Representations. An expanded version of it was 
ace pt d at NeurIPS 2023 Workshop on Cau al Repr sentation L arning. Th full version 
of this work as appearing in this chapter is under review in th main track of ICLR 2024. 

Context and Contributions. In the preceding chapter (2), our focal point rested on ac-
quiring a reu able structure through access o causal representations. However it was evident 
from the outset that an v ntual relaxation of this assumption would be nee ssary. Mean-
while, concurr nt advanc ment have m rg d in id ntifying causal represen ations through 



partial structural knowledge (Ahuja et al., 2022a) and in the domain of object-centric learn-
ing (Locatello et al., 2020b). ·with these new ideas in play, we decided to use these insights 
to push our current efforts beyond conventional assumptions. Our present pursuit involves 
a departure from established conventions in the non-linear ICA literature, delving more 
deeply into the realm of causal representation learning. This study was set to strengthen 
the groundwork established in chapter 2 and set the stage for chapter 4. 

Hence, the genesis of this project emerged from a collaborative effort between Kartik 
Ahuja, Jason Hartford, and myself. Notably, Yoshua Bengio provided guidance and encour-
aged this exploration (Kartik contributed significantly to the initial phase resulting in the 
workshop version, before moving to Meta AI Research). We collectively delved into rele-
vant literature-Jason, Kartik, and I-to absorb theories and devise experiments. I took 
charge of translating ideas into practical experiments and implemented all the variants of 
our models and baselines, as well as creating a vast number of diverse vision datasets each 
purposed to evaluate a specific aspect of our model's capabilities. I then carried out all 
the experiments and subsequent analysis. My contributions extended to theoretical insights 
during troubleshooting the model failures. The theoretical framework, a result of discussions 
with Jason, Yan, and me, shaped our work profoundly. Yan's contribution through his work 
(Zhang et al., 2022b) was pivotal, stabilizing our training and introducing us to its working 
mechanisms and advantages over (Locatello et al., 2020b). The manuscript was collectively 
written by me, Jason, and Yan. Yan and Jason (and Kartik during his engagement) con-
sistently offered me priceless feedback at every step of the project's evolution, which was 
accompanied by guidance from Irina and Yoshua, which steered the project toward success. 
Everyone's collective insights and support we.re truly instrumental in the project's achieve-
ments. 
Personal Contributions. 

• I did the literature review surrounding object-centric learning and methods to use 
alongside Ahuja et al. (2022a) for disentanglement. 

• I implemented an extensive and scalable codebase for the fast generation of numerous 
variations of both the 2D and 3D datasets, each designed to probe a specific aspect 
of our method and explore the possible failure modes. The datasets used different 
engines, therefore there was little transfer of code from one to another, and I carried 
out both from scratch. 

• I implemented all the baselines, and our disentanglement method based on Slot At-
tention (SA) and SA-:t-.1IESH. Then ran all the experiments with known and unknown 
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perturbations, with various combinations of parameters, as well as the hyperparam-
eter search. This was achieved due to the expansive codebase I had written for swift 
integration of different models and datasets. 

• I extensively and meticulously troubleshooted the failure modes of our method result-
ing in crucial theoretical insights about the necessary conditions on the perturbations. 

• I came up with three solutions to address the problem of matching, implemented 
them, extensively compared their run-time complexities and performance in vari-
ous settings, and carried out the experiments with the fastest and best-performing 
algorithm. 

• I produces aH the plots, figures, and result tables. 
• I wrote all of the paper with the exception of these sections: 3.3, 3.4, B.1 
• I co-authored the rest of the paper together with Jason, Yan, and Kartik. 

RESUME. Des progres recents et significatifs ont ete realises dans l'apprentissage de repre-
sentation causale, qui ont montre une variete de contextes clans lesquels nous pouvons deme-
ler les variables latentes avec des garanties d'identifiabilite (jusqu'a, une classe d'equivalence 
raisonnable). L'hypothese commune a toutes ces approches est que (1) !es variables latentes 
sont des vecteurs d-dimensionnels, et (2) que ftes observations sont le resultat d'une fonction 
d'observation injective de ces variables latentes. Bien que ces hypotheses semblent benig11es 
- elles reviennent a supposer que tout changement clans l'espace latent sc reflete clans l'es-
pace d'observation et que nous pouvons utiliser des encodeurs standards pour deduire !es 
variables latentes - nous montrons que lorsque Jes observations sont de multiples objets, la 
fonction d'observation n'est plus injective et le demelage echoue en pratique. Nous pouvons 
remedier a cet echec en combinant les developpements recents en matiere d'apprentissage 
centre sur Jes objets et d'apprentissage par representation causale. En modifiant !'architec-
ture Slot Attention (Locatello et al., 20206), nous developpons une architecture centree sur 
Jes objets qui exploite une faib1e supervision des perturbations clairsemees pour demeler Jes 
proprietes de chaque objet. Nous soutenons que cette approc.he est plus efficace en matiere 
de donnees dans le sens ou elle necessite beaucoup mains de perturbations qu'W1e approche 
comparable qui encode clans un espace euclidien et nous montrons que cette approche reus-
sit a demeler les proprietes d'un ensemble d'objets clans une serie de simples experiences de 
demelage basees Sur des images. 
Mots cles : Apprentissage de representations causales, Apprentissage centre sur les ob-
jets, Representations desentrelacees, Attention par emplacement, Apprentissage faiblement 
supervise 
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AB TRACT. There has been ign.ificant recent progre s in causal r presenta ion l arning 
that ha shown a variety of settings in which we can di entangle latent variables with id n-
tifiability guarantees (up o some reasonable equivalence class). Common to all of these 
approaches is the assumption that (1) the latent variables are d-dimensional vectors and 
(2) that th ob rvation are th output of some injective obs rvation function of hes 
laten variables. ,¥bile these assumptions appear benign-they amoun to as urning that 
any change in the latent space ar reflected in the observation space and that we can use 
tandard encod rs to infer the lat nt variable -we how that when the ob ervation are of 

multiple objects, the observation function is no longer injec ive and disentanglemen fails 
in practice. We can address his failure by combining recent developments in object-centric 
learning and cau al r pre entation 1 a.ming. By modifying the Slot Attention archit ctm 
(Locatello e al. 2020b) we develop an object-centric architecture that leverages weak su-
pervision from sparse perturbations to disentangle each object's properties. We argue that 
this approach i more data-efficient in the ense that i require significantly fewer p rtur-
bations than a comparable approach that encodes to a Euclidean space and we show that 
this approach successfully disentangles he properties of a set of objects in a series of simple 
imag bas d di ntangl ment xp riment . 
Keywords: cau al repre entation learning, object-centric learning, disentangled represen-
tations slo attention weakly-supervised learning 

3.1. Introduction 
Consider the image in Figure 3.1 (left). We can clearly see four different colored balls 

ach at a diff rent position. But asking 'Which is th first shape? And which is the 
second? does not have a clear an wer: the image jus depic s an unordered set of objects. 
This observation seems rivial, but it implies that there exist permutations of the object 
which leave the image unchanged. For example, we could swap the positions of he two blue 
ball without changing a single pix 1 in h image. 

In causal repres ntation learning, the standard assumption is tha our observations x are 
"rendered ' by some generative function g( ·) that maps the latent properties of the image z to 
pixel pace (i.e. x = g(z)); the goal i to disentangle the image by finding an inver e' map 
that recovers z from x up to ome irrelevant transformation. The only constraint on g( ·) that 
is assumed by all recent papers (for example Hyvarinen and :tviorioka, 20 6 2017· Locatello 
et al. 2020a; Khemakhem e al. 2020a,b; Lachapelle et al. 2022; Ahuja et al. 2022a b 
2023), is that g(·) i injective 1, uch that g(z1) = g(z2) implie that z1 = z2 . But notice 

1Som pap r plac trong r constraint on g(·), such as lin arity Hyvarin n and Oja, 2000· Squires 
ct al. 2023 sparsity foran ct al. 2022· Zheng al., 2022, or constraint on gs Jacobian Cresci e al., 
2021· Brady et al. 2023 bu injectivity is the weakest assumption common to all approaches. 
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Fig. 3.1. (Left) An example image of simple objects. (Right} i\Iean correlation coefficient 
(}/ICC) score which measures the conelation between inferred latent variables and their 
associated gTotmd truth values. Ahuja et al (2022b)"s approach achieYes almost perfect 
MCC scores (i.e. a score 1) when the ball color is used to make the generative function 
injective (''Injective ResKet"), but achieves an ~ICC score of at most¾ where k is the number 
of objects when colors are selected randomly ("Non-injcctiYe ResNet"). \\,'e show that it is 
possible to recover the injective performance by disentangling object-centric representations 
("Disentangled Slot Attention"). 

that if we represent the latents z as some d-climensional vectors in Euclidean space. then 
whenever we observe objects like those shown in Figure 3.1, this injectivity assumption fails: 
symmetries in the objects· pixel representation imply that there exist non-trivial permutation 
matrices II. such that g(z) = g(IIz). Th.is is not just a theoretical inconvenience: Figme 3.1 
(right) shows that when the identity of the balls is not distinguishable, the disentanglement 
perfmmance of a recent approach from Ahuja et al. {2022b) is upper-bounded by 1/k where 
I.; is the nwnber of balls. 

1n parallel to trus line of work. there has been significant progress in the object-centric 
learning literature (e.g. rnn Steenkiste et al.. 2018a: Goyal et al.. 2019: Locatello et al., 
2020b: Goyal et al., 2020: Lin et al., 2020; Zhang et al., 2023; Chang et al., 2022) that has 
developed a suite of architectmes that allow us to separate obsen·ations into sets of object 
representations. Two recent papers (Brady et al., 2023: Lachapelle et al., 2023) showed that 
the additive decoders used in these architectures give rise to provable object-wise disentan-
glement, but they did not address the task of disentangling the objects' associated properties. 
In this paper, we show that by leveraging object-centric architectures, we effectively reduce 
the multi-object problem to a set of single-object disentanglement problems which not only 
addresses injectivity failures but also results in a significant reduction in the number of per-
turbations \\·e need to observe to disentangle properties using Ahuja ct al. (2022b) ·s approach. 
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We illustrate the results by dev loping a prop rty di ntanglem nt algorithm that com-
bines Zhang et al. (2023)' SA-MESH object-cen ric architecture with Ahuja et al. (2022b)' 
approa h o disentanglement and how tha our approach is very effe tive at disentangling 
the proper ies of objects on bo h 2D and 3D ynthetic benchmarks. 

In ummary we make the following contributions: 
• We highlight two problems hat arise from objects that violate standard assumptions 

used to iden ify latent variabl s (Section 3.3). 
• Wi show that the e problems can be addr ssed by 1 veraging object-centric archit cture 

and that using obje t-centric architecture al o enables u to us a factor of k fewer 
perturbations to disentangle properties where k is he number of objects (S ction 3.4). 

• W, impl men th first obj ct-c ntric disentangl m nt approach that dis ntangl s obj ct 
prop rtie with identifiability guarantees (Section 3.5). 

• We achieves rang empirical results 2 on both 2D and 3D synthetic benchmarks (Section 
3.7). 

3.2. Background 
Cau al representation learning (Scholkopf e al., 2021) seeks to reliably extra t meaningful 

latent variables from unstructmed observa ions u ha images. This problem is impos ible 
without additional structure because ther are infinitely many latent distributions p(z) that 
ar con istent with the observed distribution p(x) = Jp(xlz)dp(z) only one of which cor-
responds to he ground truth distribution (Hyvarinen and Pajunen 1999; Locatello et al. 
2019). We therefore need to restrict the solution space either hrough distributional assump-
tions on the form of the lat nt distribu ion p( z) or hrough a sumptions on the fun tional 
form of th generativ function g : Z X tha maps from the lat nt space to the observed 
space (Xi and Bloem-Reddy 2023). Ake assump ion that (to the best of our knowledge) 
is leveraged by all pap rs that provide iden ifiabili y guarantees, is hat g( ·) is injective such 
that if we see iden ical images, the laten s are iden ical (i.e. if g(z 1) = g(z 2) then z1 = z2). 

Given these res rictions, we can analyze the identifiability of la en variables for a given 
inference algorithm b considering the set of optimal solutions that satisfy these assumptions. 
We say latent variables are identifi d if he procedure will rncover he latents exactly in the 
infinite data limi . Typically some irredu ible indetennina y will remain, so latent variables 
will be identified up to some equivalence class A. For example if the true latent vector is 

2The code to reproduce our results can be found at: hLtps://github.com/amansow·i3 76/0C-CRL 
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z, and we have an algorithm for which all optimal solutions return a linear transformation 
of z uch hat A = {A : £ = Az} then we ay the algorithm i linearly identifie latent 
variables. We will call la ent variables di entangled if th learning algorithm r covers the 
true latent variable up to a permu ation ( corresponding to a relabeling of the original 
variables), and element-wise transformation. That is, for all i, zi = hi(Z1r(i)), where 1r is a 
permutation and hi ( ·) is an element-wise function; for the results we consider in this paper 
this function is simply a scaling and offs t fi(z) = aizi + bi corresponding to a chang of 
units of measurement and interc pt. 

In this paper we will build on a recent line of work that leverages paired ample from 
sparse perturbations to identify latent variables (Loca ello e al., 2020a; Brehmer e al. 
2022· Ahuja e al. 2022b). Our approach g neraliz s Ahuja al. (2022b) to addr ss the 
non-injectivi y induc d by objects so we will briefly review their main results. Ahuja et al. 
assume that they hav access o paired samples (x, x') where x = g(z), x' = g(z') and 
zi is perturbed b a set of sparse offsets 6. = { 61 ... , 61,;}, such that z; = Zi + 6.i for all 
i E { 1, . . . k}. They how that if g(-) i an injective analytic function from JR.d ---+ X, every 
o E 6. iis I-sparse and at least d linearly independent offsets are observed then an encoder 
f that minimizes the following objective recovers the true z up to permutations scaling and 
an offset (Ahuja et al., 2022b, Theorem 1) 

J E argminrEx,x',6 [U'(x) + 6 - J'(x'))2] i{x) = z = ITAz + c (3.2.1) 

where TI is a permutation matrix, A is an invertible diagonal matrix and c is an offse . 

3.3. Objects result in non-identifiability 
W b gin by formally charact rizing the halleng s tha aris wh n images contain m 11-

tiple objects. 
Da a genera ing proces . We assume that a et Z := {zi}f=1 of k object i drawn from ome 
joint distribution, IP'z. In order to compar set and vector representations let vecr,(Z) denote 
a flatt n d v ctor r presentation of Z ord red according to some p rmuta ion 1r E Sym(k) 
the symmetric group of permutation of k obj,ects· when 1r is omitted vec(Z) imply refer 
to an arbitrary default ordering (i.e. the identity element of the group). Each object is 
de crib d by a d-dimensional vector of prop rti s3 zi E JRd, and h nc vec(Z) E JR.kd_ We 

3 A natural extension of the perspective we take in this paper is to al o trea properties as sets rather 
ban ordered vector • for example, see Singh al. (2023). We leave understanding the identifiability of these 

approaches to future work. 
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say objects have shared properties if the coordinates of zi have consistent meaning across 
objects. For example, the objects in Figure 3.1 (left), each have x, y coordinates and a color 
which can be represented by its hue, so zi = [p~,Pt, h/]. In general, the set of properties 
associated with an object can be different across objects, but for simplicity, our discussion 
will focus on properties that are fully shared between all objects. 
The non-injectivity problem. We observe images x which are generated via a generative 
function g(-) that renders a set of object properties into a scene in pixel space, such that 
x = g(Z). While g(·) is a set function, we can define an equivalent vector generative 
function, g, which, by definition, produces the same output as g(Z); i.e. for all 1r E Sym(k), 
g(vec1r(Z)) = g(Z). This generative function g taking vectors as input is consistent with 
standard disentanglement assumptions except that it is not injective: 
Proposition 3. If g( vec1r ( Z)) = g( Z) for all 1r E Sym( k), then g(-) is not injective. 

Proof. The contrapositive of the definition of injectivity states that z1 =I z2 implies g(z 1) =I= 

g(z
2

), but by definition of g(·), there exist z
1 

=I= z
2 

such that g(z
1

) = g(z
2

). In particular, 
for any set Z and permutations 1r1 =I= 1r2 E Sym(k), the vectors vec1r1 (Z) = z1 =/=-z2 

vec1r2 (Z). 

This proposition simply states that if images are composed of sets of objects, then if we model 
the generative function as a map from a Euclidean space, this map will not be injective by 
construction. 

With the exception of Lachapelle et al. (2023), all of the causal representation learning 
papers cited in section 3.6 assume the generative function g is injective. To see why injectivity 
is necessary in general, consider an image with two objects. If the two objects are identical, 
then there are two disentangled solutions corresponding to the two permutations, so it is not 
possible to identify a unique solution. 
The object identity problem. When applying sparse perturbations on Z (see section 3.2), we 
are effectively pertmbing one coordinate of one object. However, how can we know which 
object of the multiple possible objects in Z we have perturbed? In the case of injective 
mappings, this is simple: since there is a consistent ordering for them, we know that a 
coordinate in vec(Z) corresponds to the same object before and after the perturbation. 

However, this is no longer the case in our setting. Since the objects are actually part of a 
set, we cannot rely on their ordering: the perturbed object can, in principle, freely swap order 
with other objects; there is no guarantee that the ordering before and after the perturbation 
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remains the same. In fact 1 we know that these ordering changes must be present due to the 
responsibility problem: 
Proposition 4 (Zhang et al. (2020); Hayes et al. (2023)). If the data is generated according 
to the data generating process described above with g(ve½(Z)) := g(Z) and k > I, then f(·) 
is discontinuous. 

Proof Sketch. Consider Figw-e 3.2, notice that if we perform a 90° rotation in the pixel space 
of the image, the image is identical, but the latent space has been permuted since each ball 
has swapped positions. Because the image on the left and the image on the right are identical 
in pixel space, any encoder, f : X JRkd, will map them them to identical latents. There 
exists a continuous pixel-space rotation from 0° to 90°, but it must entail a discontinuous 
swap in which latent is responsible for which part of pixel-space according to the encoder. 0 

A general proof can be found in Hayes et al (2023). These discontinuities manifest 
themselves as changes in permutation from one vecrr, (Z) to another vecrr2 ;frr 1 (Z). In disen-
tanglement approaches that leverage paired samples (e.g. Ahuja et al., 2022b; Brehmer et al., 
2022), continuity enables the learning algorithm to implicitly rely on the object identities to 
stay consistent. Without continuity, one cannot rely on the fact that vec(Z) and vec(Z) + 8 
should be the same up to the perturbation vector o> because the perturbation may result in 
a discontinuous change of vec(Z) + o when an observation is encoded back to latent space. 
As a consequence, we lose track of which object we have perturbed in the first place, so nai:ve 
use of existing disentanglement methods fails. 

Another challenge is that the encoder f (Equation 3.2.1) has to map observatiions to 
vec(Z) in a discontinuous way, which is traditionally difficult to model with standard ma-
chine learning techniques. 

In summary, the unordered nature of objects in Z results in non-injectivity, losing track 
of object identities, and the need for learning discontinuous functions. These all contribute 
to the non-identifiability of traditional disentanglement methods in theory and practice. 

3.4. Object-centric causal representation learning 
A natural solution to this problem is to recognize that the latent representations of multi-

object images are sets and should be treated as such by our encoders and decoders in order to 
enforce invariance among these permutations. Both Brady et al. (2023) and Lachapelle et al. 
(2023) showed that architectures that enforce an appropriate object-wise decomposition in 
their decoders provably disentangle images into object-wise blocks of latent variables. These 
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X = g([;::J, 22, 23, 41) 
Onglnal: Permuled: 

Fig. 3.2. n illu tra ion of th object identity problem. Permuting h order of the lat nt. 
[z1 --2-Z3 z3] i equi a lent to a 90-dcgT e rotation in pixel- pace. 

re ult do not Ii entangle th properti e an important pre u.r. or: 
umption hat her exi an object-\vi e de ompo ition of the generative function i 

uffici n o par ition the la ent into object . 
Like he e two pap r w will a urn that natural imag can be d compo d into 

obje t ,4 each of which occupie a disjoint s t of pixels. v\ h n hi i he cas we say that 
an imag- i obje t- eparable. To defin o j t parability formall~--w "ill ne d to on ider 
a partition P of an image into k di ·joint sub et of pixel P = { x<1) .... , x("')} indexed by 
an index t Ip = {1; ... , k}· further. denot an ind x t hat index th t of lat n 
variables Z a I 2 . Vv, can h n ay 
Definition 1. An imag . :i:. 'i object-separable if there exist an object-wise partition 
P and a bijection er : Ip --+ Iz that associate each subs t of pixels in P w'ith a particular 
l ment of the t of lat nt zi. uch that ach ub et of pixel :1.Y) E P • th output of an 

-in_j clive map wilh re:;pecl lo -its a soC'ialed lul nl Za(i)· That i ·, for all i (.1:U)' C g(Z'). _i;(i) C 

g( Z)). we have that .r.(il' = :rUl implie :(i) = Za('i) · 

This d finition ay ha an imag can be parat d in o obj if it can be partition d 
into part uch that each part i rendered , ia an injectiv map from ome latent :::; . \iVe can 
think of ach :1f) as a patch of pix ls. wi h a bijection a that relates ach of th k patches 
of pixels in the partition { .1/i) }t 1 to a 1aten variable in Z = { zi}i 1. Each patch ··depends 
on it a o iatecl la ent via an injective map. 

•1Thi,.; is a pragrnat.k approxinrnJion hat s11ffir.P.s for t.hf' p1ni,os . of t;hi. p::ip r, h11t a r.::iJ"Pfnl tn~atmP11 

of obj ct i far mor ubtle b cau e what ,-.;, intcrpr t as an ··obj ct'· oft n d pend on a task r a hoic 
of hierarch r: for a more nuanced tr atmeut. mith (2019) ·s Chapter i au excellent introduction into the 
subtleties around d marca ing au "obj t''. 
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Brady et al. (2023) and Lachapell t al. (2023) give two different formal characteri-
zation of partition P that are consi tent with our obje ·t-wi e defini ion. Brad et al.' 
charac erization require that a diffi rentiable g nera ive function g is compositional in the 
sense that each x(i) E P only functionally depends 5 on a , ingle ZJ E Z and irreducible in 
the sens no :1/i) E P can be further decomposed into non-trivial ·ubsets that have function-
ally independent la ents. Lachapelle e al. 's .assumption is weaker than ours in that they 
only requi.r that h gen rative function is defin d as g(Z) = a(LziEZ gi(zi)) wher O' is 
an inv rtibl func ion and that g is a diffeomorphism that is sufficien ly nonlin arn ( e 
A sumption 2 Lachapelle t al., 2023)· objec -separable images are a special case with a as 
the identity func ion and each 9i(·) rendering a disjoint subset of x, and h nee their results 
apply to our s tting. 
Disentangling properties with object-cen ric encoding. In ection 3.3 we showed tl at the as-
sumptions underlying the sparse perturbation-based disentanglement approach are violated 
in multi-object cenes. But, th results from Brad et al. (2023) and La hapel1e t al. (2023) 
how that the obj cts can be separated into disjoint (but entangled) sets of latent variables. 

This suggests a natural approach to disentangling properties in multi-object scenes: 
• we can reduce the multi-object disentanglement problem to a single-object problem with 

an object-wise partition of the image. Within each patch of pixels xU) E P injectivity 
holds and o we no longer have multiple olutions at a patch level. Thi partition 
is identifiable and we can use an object-c ntric archi ec ure to learn the object-wise 
partition. We require hat this object-centric architecture can handle the responsibility 
problem. 

• we 1 v rage Ahuja et al. (2022b)' approach to using weak upervi ion to disentangle the 
properties of each object individually. Since we assume that proper ies between objects 
are shared, this requires a factor of k fewer perturbations in the perturbation et .6, 
where k is the number of objects. 

• we address he object identi y problem where we lose track of object iden ities after 
perturbations hrough an explicit matching procedure ha re-identifies the object being 
perturbed. 
Se sec ion 3.5 for details of how we implement this. This approach not only addresses 

the challenge ou lined in Section 3.3, but i also ignificantly reduce the number of pertur-
bations tha we have to apply in order to di entangle shared properties. 

5Functional dependence is defined by non-zero partial derivatives i.e. i;'. -f 0. , 
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Theorem 1 (informal). If a data generating process outputs observations with k objects that 
have shared properties, then an object-centric architecture of the form, F(x) := {f(x(i))}x<i>eP 
where P is an object-wise partition and f : X JRd will disentangle in k times fewer 
perturbations than an encoder of the form f: X JRkd_ 

The proof is given in Appendbc B.l. The main insight is that if we have an object-centric 
architecture that learns an object-wise partition P and uses the same encoding function f on 
every patch, then every perturbation provides weak supervision to every object, despite the 
fact that only one was perturbed. As a result, we do not need to disentangle each object's 
properties separately, and hence we reduce the number of required interventions by a factor 
of k. 

3.5. Method 
Object-wise partitions. There exist a number of ways to decompose an image into objects, 
but for our purposes, pixel segmentation-based approaches ( Greff et al., 2019; Locatello et al., 
2020b; Zhang et al., 2023) let us directly adapt existing disentanglement techniques to work 
with object-centric encoders. A pixel segmentation encoder J maps from images x to a set of 
slot vectors { s1, ... , sk}, each of which depends on a subset of the pixels x(il E P. Images are 
then reconstructed using a slot decoder g that maps from the set of slot representations back 
to pixel space. The dependence between slots and patches of pixels is typically controlled 
by a soft-attention matrix, which will typically not result in a partition of the pixels. In our 
implementation, we use Zhang et al.'s SA-MESH modification of the original Locatello et al. 
slot attention architecture, which adds an entropy regularization term based on Sinkhorn 
and Knopp (1967); Cuturi (2013) to learn sparse attention matrices that do approximately 
partition the input by encouraging the subsets of pixels x(i) to be disjoint (for details on 
the architectures, see Appendix B.2). Importantly for us, Zhang et al. (2023) is exclusively 
multiset-equivariant (Zhang et al., 2022a), which allows it to model discontinuous functions, 
thus handling the responsibility problem. 

Slot attention is usually trained with a reconstruction loss from relatively high-
dimensional per-object slot representations, Si E JR0 , but for the images that we work 
with, we want a relatively low dimensional latent description (in the simplest case, just the 
two dimensions representing the (x, y) coordinates of each object). To disentangle these 
high-dimensional slot representations, we simply add a projection head, fj : Si zi, that is 
trained by a latent space loss. 
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Disentanglement via weak supervision with matching. Ahuja et al. assume access to pairs 
of images (x, x') that differ by a sparse offset !J. They enforce this assumption via a dis-
entanglement loss that requires that the latent representations of this pair of images differ 
by 8, such that f(x) + 8 = f(x 1). When using a slot attention architecture, we introduce 
a matching step to the loss to infer the object to which the offset o was applied. With 
1-sparse 8 vectors, the matching step reduces to a simple minimization over a cost matrix 
that measmes llz(x'(j))-(z(x(i))+8)ll 2 for all pairs of slots i,j. In Appendix B.4, we provide 
a more general matching procedure that applies to settings with dense offsets o. We jointly 
optimize the following reconstruction and disentanglement loss, 

The first term in this loss enforces that the encoder / decoder pair J, g capture enough 
information in the slot representations Si to reconstruct x. The second term contains the 
matching term and ensures that the function that projects from slot representation to latents 
p disentangles the slot representations into individual properties. The offset 8 could be 
known or unknown to the model, and for the remainder of this paper, we focus on the more 
challenging and natural case of unknown offsets. See appendix B.3 for more details. 

3.6. Related work 
Causal representation learning. Our work builds on the nascent field of causal representation 
learning (Sch6lkopf et al., 2021). In particular, our disentanglement approaches builds on 
ideas in Ahuja et al. (2022b) which uses the same assumptions as Locatello et al. (2020a) 
but relaxes the requirement that the latent variables are independently distributed. These 
approaches form part of a larger body of recent work that shows the importance of sparsity 
and weak supervision from actions in disentanglement (Lachapelle et al., 2022; Lachapelle 
and Lacoste-Julien, 2022; Brehmer et al., 2022; Lippe et al., 2022, 2023b,a). In the appen-
dix, we also show how known mechanisms from Ahuja et al. (2022a) can be dealt with in 
our framework. A closely related, but more general setting, is the recent progTess on dis-
entanglement from interventional distributions which do not require paired samples (Ahuja 
et al., 2023; Buchholz et al., 2023; von Kiigelgen et al., 2023); we believe a useful extension 
of our approach would consider these settings. This literature builds on the foundational 
work from the nonlinear independent component analysis (ICA) literature (Hyvarinen and 
Morioka, 2016, 2017; Hyvarinen et al., 2019; Khemakhcm et al., 2020a). 
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Object-centric learning. Natural data can often be decomposed into smaller entities-
objects-that explain the data. The overarching goal of object-centric learning is to model 
such data in terms of these multiple objects. The reason for this is simple: it is usually 
easier to reason over a small set of relevant objects rather than, for example, a large grid 
of feature vectors. Representing data in this way has downstream benefits like better ro-
bustness (Huang et al. 1 2020). An important line of research in this ar,ea is how to obtain 
such objects from data like images and video in the first place. Typically, a reconstruction 
setup is used: given an image input, the model learns the objects in the latent space, which 
are then decoded back into the original image with a standard reconstruction loss (Locatello 
et al., 2020b; van Steenkiste et al., 2018b ). Nguyen et al. (2023) propose RSl\iI, a conceptu-
ally close idea to our work. They jointly learn object-centric representations with a modular 
dynamics model by minimizing a rolled-out reconstruction loss. However, they do not obtain 
any disentanglement of object properties, and the form of our proposed weak supervision 
provides insights into the effectiveness of their method for improving generalization. 

We use slot attention since it makes very few assumptions about the desired data. For 
instance, some methods model foreground differently from background. Additionally, DI-
NOSAUR (Seitzer et al., 2022) shows recent success on more complex images, which demon-
strates the versatility of the slot attention approach. While in general object-centric models 
operate on image inputs and thus identify visual objects, it is in principle applicable to other 
domains like audio (Reddy et al., 2023) as well. 

3.7. Empirical evaluation 
Setup. We evaluate our method on 2D and 3D synthetic image datasets generated using 
Shinners (2011); Greff et al. (2022) that allow us to carefuHy control various aspects of the 
environment, such as the number of objects, their sizes, shapes, colors, relative positions, and 
dynamics. Such a controllable environment is an essential first step as it enables us to easily 
iterate and find the sources of non-identifiability for the proposed method. Examples of our 
2D and 3D datasets are shown in figures 3.1,3.3 respectively. The object-wise true latents 
in either dataset consist of z = (P,c,Py,h,s,r,¢), where Px,Py denote the coordinates of the 
center of an object, followed by color hue h, shape s, sizer, and rotation angle</> about the 
z-axis. Based on object properties, they are each rendered and placed on a white background 
(for the 2D dataset) or placed on a floor that is illuminated by source lights and is being 
visited from somewhere above the floor (for the 3D dataset) and then aggregated to produce 
Xt- We use a ID parameterization for colour by fixing colom saturation and value and only 
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altering the colour hues. We also discretize the range of colour hues so we can test the 
model's ability to obtain disentangled representations in the simultaneous presence of both 
continuous (position, size, and rotation angle) and discrete properties ( colour and shape). 
Our goal is to identify (up to irrelevant transformations) at the object level such true latents 
z E ]Rd that give rise to the model's observations x by exploiting weak supervision from sparse 
perturbations. The model receives Xt,Xt+l along with some knowledge about the subset of 
mechanisms that caused the perturbations and is tasked to jointly reconstruct the image at 
both t,t + 1 as well as to minimize an objective function in the latent space (see Equation 
3.2.1). We show that this objective gives rise to disentangling the properties Px,Py)i,s,r,cp 
at the object level. Note that the model is agnostic to the continuous or discrete nature of 
the true latents, and the objective regardless produces a disentangled representation. All 
experiments in this section are carried out in the unknown mechanism setting v.rith fully 
sparse perturbations. For results under known mechanisms and fully dense perturbations 
see appendix B.6. 

Fig. 3.3. (Left) An example image before any augmentations. {Right} Possible augmenta-
tions in the synthetic 3D dataset i.e., change in size, orientation, colour, position, and shape. 

Disentanglement Metrics. We compared z-the projections of non-background slots-to the 
true latents z of objects to measure the disentanglement of the properties in z. We evaluated 
the identifiability of the learned representations either up to affine transformations or up to 
permutation and scaling. These two metrics were computed by fitting a linear regression 
between z,z and reporting the coefficient of determination R2, and using the mean correlation 
coefficient (MCC) (Hyvarinen and Morioka, 2016, 2017). 
Baselines. Our method projects slots to a latent space that has the same dimensionality d 
as the true latents. The model does not know anything about the structure of the true latent 
space z and tlu-oughout the training converges to an equivalence class of it. However, slot 
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attention, our object-centric baseline, does not have such a projection, thus we need to have 
a meaningful extraction of features from high-dimensional slot representations so that we 
can measure if slot representations encode object properties in a disentangled manner. We 
use the following approaches to project slots to ad-dimensional space. For all slot attention 
baselines we match the ground truth segmentation masks to slots decoder masks to align slot 
projections and object-wise true latents to fit the projections. We use the same matching 
only for the evaluation of representations learned by our proposed method. 
Random Projections (RP): Random projections of high-dimensional representations preserve 
distances in the projected space, so we can use d-dimensional random projections of slots 
that correspond to objects (requires matching with the ground truth segmentation masks) 
to obtain a crude estimate of vanilla slot attention's disentanglement. 
Principal Components (PC}: If the slots contain reasonably disentangled representations, 
then most of the variance of slots is expected to be clue to object properties, therefore ex-
tra.cting the top d principal components of slot representations is a justified approach for the 
computation of the disentanglement scores. This should give a finer estimate than random 
projections. 
Linear Regression (LR): Vve can also directly use the true latents and learn a linear map-
ping from non-background slots to the z space and use this projection with disentanglement 
metrics. Note however, that this gives an upper bound on what slot attention could achieve 
under linear transformations as it is completely supervised by the knowledge of the true 
latents, i.e., the representation we aim to discover through a much weaker signal (partial 
knowledge of perturbations); we only use the true latents for evaluation and not in any way 
we exploit them for training. 
ConvNet: As the main reason for adopting set-based representations was to relax the as-
sumption of an injective observation function, we need to compare our method against a 
conventional CNN encoder that can act as the inverse of an injective observation function. 
Concretely, if the objects in the scene are never identical and we define an ordering over 
objects in the scene and organize z according to that order in the dataset, then the observa-
tion function is injective, and a CN I encoder with enough capacity (such as ResNet18 (He 
et al., 2015)) should in principle be able to recover z up to irrelevant transformations (Ahuja 
et al., 2022b) by following the same disentanglement procedure we use (same as Ahuja et al. 
(2022a,b)). If object latents z are not organized according to a fixed ordering, then the 
observation function is no longer injective and we expect this baseline to fail. We denote the 
injective and non-injective variations by CNNt and CN in the results table, respectively. 
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2D Shapes. In this ection we pr sent th empirical results that compare lot attention-
ba ed a1chitecture with a Re etl8 trained on a non-injective and injective DGP6 of 2,3,4 
obje ts. Tabl s 3.1,3.2 confirm that a long as the observation function is injective we can 
empirically achieve iden ification (see C Nf). But the moment we drop any ordering over the 
objects and render x via a non-injective function, then identification via Res et18 which is 
suited only to injective renderers fails disastrously (see the row corresponding to C Nin table 
3.1. Also s e figure 3.1). On th other hand we cans e that our method has no difficulty 
id ntifying object propertie becau e it treats them as a et lby leveraging slot attention and a 
matching procedure. It is also noteworthy to men ion that an injective encoder requires al out 
n times more samples to achieve the ame p rformance because it ncodes the scene onto a 
monolithic JRnd spac wber non of the d-dimensional sub-spaces shar any representation 
cau ing the model to re-learn very property for every object exhau tively, while one key 
aspe t of our method is to share such property representations across objects. 
Table B.5 in the appendix shows the results for a par icularly difficult training set1 ing in 
which all of the objects are identical and have he ame color, so the model cannot solely 
rely on colour cues to separa e objec s. This se ting demonstrates that the failure of the 
injectivity assump ion is no just a theoretical inconvenience and he matching has to be 
succe sful to enable disentanglement. It is needle s to say this cenario amount to a non-
injec ive g, and a can be een Re et18 completely fail on any number of obje ts wherea 
our method keeps achieving perfect disentanglemen . For the results on other combinations 
of properties please see appendix B.5.1. 
3D Shapes. Figure 3.3 shows examples of perturbation hat the model observes and uses 
for di entangling object propertie . We present he disentanglement scores for various com-
binations of proper i and environments with n = {2 3,4} number of objects in he scene. 
Since ConvNe (Res et18) failed consi tently in the simpler dataset of 2D hapes we do 
not employ it with 3D shapes. In tables 3.3,3.4 the results for our method are reported 
under unknown fully sparse perturbations ( ote that he SA baselines do not use any mech-
anisms for disentanglement.). Results for our method are averag d ov r 3 seeds, but since 
the ba elines r quir training SA-MESH from scratch they w re train d only once as it i 

compu ationally expensive to obtain excellen reconstruc ions wi h Slot A tention (and its 

6We make g injectiv by using th properties that ar not th targ t of di entangl m nt, i. . , if x y ar 
he target properties, we \\rill uniquely color each object based on its order in the default permutation. If 

x y care targets we will use uniqu shape for each object based on its order in the permutation. The same 
logic foll!ows for other property combinations. 
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derivative architectur SA-MESH). Th e results ssentially confirm our foundations in the 
impler 2D data et and demon trate how treating the scene as a set with our method re ult 

in perfect disentanglement of object propertie . For h result on other combinations of 
proper ies please see appendix B.5.2. 

Table 3.1. Linear Di entanglement (LD) core on 2D hapes test set under unknown fully 
sparse perturbation . All results are averag d over 3 eeds exc pt those requiring training 
SA-MESH from scratch hat w r train d only once. SA-LR which i sup rvised by the 
gTound truth latent and is an upper bound on the disentanglement performance, achieve a 
score of 1.0 in all settings. 

posx posy posx,posy,color size rotation 

Mod 1 n=2 n=3 n=4 n=2 n=3 n=4 
Our 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00 0.95 ±0.01 0.93 ±0.01 0.94 ±0.02 

SA-RP 0.92 0.96 0.94 0.75 0.70 0.68 
SA-PC 1.00 1.00 1.00 0.93 0.88 0.86 
CNNt 0.94 ±0.05 0.99 ±0.00 0.96 ±0.03 0.87 ±0.01 0.84 ±0.01 0.86 ±0.01 
CN 0.24 ±0.01 0.13 ±0.01 0.07 ±0.01 0.35 ±0.00 0.19 ±0.00 0.08 ±0.01 

Table 3.2. Permuta ion Disentanglement (MCC) scores on 2D shapes test set under un-
known fully spar perturbations. All results are averaged over 3 eeds excep hose requiring 
training SA-MESH from scratch that were trained only one . SA-LR (sup rvis d) achiev s 
a score of 1.0 in all settings. 

posx,POSY posx posy ,color ,size rotation 

Mod 1 n=2 n=3 n=4 n=2 n=3 n=4 
Ours 1.00 ±0.01 1.00 ±0.01 0.98 ±0.01 0.95 ±0.01 0.93 ±0.00 0.94 ±0.01 

SA-RP 0.80 0.90 0. 2 0.58 0.52 0.50 
SA-PC 1.00 1.00 1.00 0.86 0.85 0.84 
CN rt 0.96 ±0.02 0.99 ±0.01 0.98 ±0.02 0.91 ±0 .. 01 0.89 ±0.01 0.90 ±0.01 
C N 0.40 ±0.01 0.25 ±0.03 0.21 ±0.01 0.58 ±0.00 0.42 ±0.00 0.27 ±0.01 
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Table 3.3. LD scores on 3D shapes test set under unknown fully sparse perturbations. SA-
LR a hieve a core of 1.0 in all etting . 

posx ,posy ,color posx,posy,color size rotation 

Model n=2 n=3 n=4 n=2 n=3 n=4 
Ours 0.99 ±0.01 0.99 ±0.00 1.00 ±0.01 0.91 ±0.03 0.95 ±0.01 0.93 ±0.01 

SA-RP 0.67 0.58 0.58 0.51 0.56 0.60 
SA-PC 0.64 0.62 0.6 0.56 0.76 0.76 

Table 3.4. MCC scores on 3D shapes test set under unknown fully sparse perturbations. 
SA-LR achieves a score of 1.0 in all tting . 

posx ,posy color po x po y,color, ize,rotation 

Model n=2 n=3 n=4 n=2 n=3 n=4 
Ours 0.99 ±0.01 0.99 ±0.00 0.99 ±0.01 0.89 ±0.02 0.92 ±0.03 0.92 ±0.02 

SA-RP 0.62 0.54 0.54 0.49 0.50 0.46 
SA-PC 0.69 0.68 0.70 0.64 0.77 0.78 

3.8. Conclusion 
This study es ablishes a conne tion b tween causal repre ·entation learning and object-

centric learning 1 and (to the best of our knowledge) for the first time shows how to achieve 
disentangled representa ion in environments with multipl interchangeable objects. Theim-
portance of recognizing this synergy is two-fold. Firstly causal representation learning has 
largely ignor d the subtletie of object in a suming inje tivity and fixed ]Rd r pr entation . 
Conversely object-centric learning has not dealt with the challenge of unsupervised disentan-
glement. Yet disen angled representations can significan ly improve a models generalization 
capabilities under distribu ion shifts and could also allow for learning parsimonious models 
of the dynamic when such proper repre entations are achieved which we deem as impor-
tant avenues for future research. In this study, we provided empirical evidence showcasing 
the uccessful disentanglemen of object-centric representation through the fusion of slot 
attention with recent advance in causal repre entation learning. 
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3.9. Limitations 
Our study focuses on showing when disentanglement is possible when treating object-

centric environments as a set of representations instead of fixed-size vectors. We have an-
alyzed the performance of our model comprehensively on two synthetic datasets that are 
relatively limited in capturing the complexities of real-world scenarios. Yet, we believe and 
showed such analysis is a necessary first step to identify the intricacies involved in making 
our algorithm work. Our analysis has been limited in a number of directions. First, while 
we do consider a wide range of continuous and discrete properties to be disentangled, the 
number of objects we use is rather low, which ideally should be scaled to real-world scenes 
containing more objects. Second, although our experiments include artifacts related to oc-
clusion, depth, and lighting, in all of our experiments we simplify the problem by having 
the objects situated on homogenous backgrounds, whereas real-world scenes would comprise 
more complex backgrounds. Such decisions were mainly due to (1) generating datasets of 
size more than 5k for each combination of properties being a computationally heavy task on 
its own, (2) training SA-MESH from scratch for each combination of properties and number 
of objects would quickly add up as each training takes ~ 12 hours on a single AlOO GPU 
to achieve nice reconstructions, (3) details related to the backgTound and the number of 
objects are tangential to the focus of this study, which is to demonstrate how to disentangle 
the causal factors in an object-centric environment. 
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As highlight d in preceding chapters this body of work serves as the culmination of the 
thesis, ynthesizing all antecedent concepts and solutions addre sing the multifaceted chal-
lenges of structure and representation learning. It adeptly illustrates how these concepts 
can significantly enhance out-of-distribution gen ralization within real-world cont xts and 
downstream tasks. Building upon th foundations laid in chapter 2, h collaboration with 
Trang guyen gained momentum, propelling the experimentation proces to new height . 
This collaborative ffort allowed me to allocate more focused time to he endeavors delin-
eated in hapter 3. On the other han i whil Trang diligently carried forward our collec ive 



efforts, I facilitated her rapid integration by equipping her with an expansive, adaptable, 
and scalable codebase, optimized for swift prototyping and experimentation. As the second 
co-author of this work, I embraced an exciting dual responsibility. Firstly, I served as a 
mentor to Trang, who was also an intern under Yoshua's guidance. I frequently provided her 
with abundant feedback spanning implementation intricacies and troubleshooting hurdles 
in various stages of the project. On a different front, I assumed a more significant role in 
orchestrating the broader perspective and charting the course towards achieving the most 
impactful outcomes. Collaborating closely with Kartik, Dianbo, and Kanika, I contributed to 
high-level analyses pertaining to experimental design, dataset selection, .algorithmic choices, 
and establishment of baseline benchmarks. The collaborative effort with TI.'ang stands as a 
source of pride for me and Trang as this endeavor afforded me the opportunity to engage 
with brilliant researchers and exert influence across both strategic vision and implementation 
intricacies. Provided with the codebase and feedback from me, Trang meticulously executed 
numerous experiments, and we analyzed them together. The composition process involved 
the collective contributions of 'I\-ang, myself, Dianbo, Yoshua, and Kanika. Valuable input 
from Kartik and Nguyen Duy further enriched our manuscript. Notably, Yoshua provided 
unwavering support throughout this journey, offering pivotal insights and probing questions 
that fundamentally guided the project to its successful fruition. 
Personal Contributions. 

• I did the literature review surrounding object-centric learning and dynamics modeling 
and the baselines NPS, C-S\iVM. 

• I implemented an extensive and scalable codebase for swift prototyping of various 
models in conjunctions with different datasets. However, the implementation of the 
final version of RSM and fitting that alongside baselines in the codebase I provided, 
was done by Ttang. 

• I oversaw smooth conduction of the experiment, providing frequent implementation 
and troubleshooting feedback to Trang. The troubleshooting includes delving into 
low-level details of coding, and suggesting experimentation to probe the various as-
pects of the model. 

• The final version of the RSM algorithm was the result of discussions among me, 
Dianbo, Kartik, and Yoshua. 

• I provided guidance regarding the implementation and usage of object-centric meth-
ods. 

• Trang a.nd I produced figure 4.1. 
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• Throughout the various stages of the project> I mentored Trang in implementation, 
writing, presenting results, co-authoring author rebuttals for our submission, as well 
as presenting Trang with the ideas and math behind RSM and guiding her for realizing 
those in practice. 

• I wrote the Introduction, Related \,\Tork, and Conclusion, and extensively edited the 
rest of the paper toward its final version. 

RESUME. Les agents capables de comprendre et de raisonner sur la dynamique des objets 
devraient faire preuve d'une robustesse et d'une generalisation ameliorees dans de nouveaux 
scenarios. Cependant, pour parvenir a cette capacite, ii faut non seulement une represen-
tation efficace de la scene, ma.is egalement une comprehension des mecanismes regissant les 
interactions entre les sous-ensembles d'objets. Des etudes recentes ont fait des progres signi-
ficatifs dans la representation de scenes a !'aided' emplacement d'objets. Dans ce travail, 
nous introduisons "Reusable Slotwise Mechanisms", ou "RSM", un cadre qui roodelise lady-
namique des objets en tirant parti de la communication entre les emplacements ainsi qu'une 
architecture rnodulaire capable de selectionner dynamiquement des mecanismes reutilisables 
pour predire les etats futurs de chaque emplacement d'objet. De maniere cruciale, "RSM" 
exploite Jes Informations contextuelles centrales (CCI}, permettant a des mecanismes se-
lectionnes d'acceder aux emplacements restants via un goulot d'etranglement, permettant 
ainsi la modelisation d'interactions complexes d'ordre superieur qui pourraient necessiter 
w1 sous-ensemble creux d'objets. Les resultats experimentaux demontrent les performances 
superiemes de RSM par rapport aux methodes de pointe pour cliverses predictions futures 
et taches associees en aval, notamment la reponse visuelle aux questions et la planification 
d'actions. De plus, nous presentons la capacite de generalisation hors distribution de "RSM" 
a gerer des scenes dans des scenarios complexes. 
Mots des : Apprentissage centre sur les objets, Mecanismes independants reutilisables, 
Modelisation de la dynamique, Generalisation hors distribution 
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ABSTRACT. Agents with the ability to comprnhend and reason about the dynamics of ob-
jects would be expected to exhibit improved robustnes~ and generalization in novel scena.rios. 
However, achieving this capability necessitates not only an effective scene representation but 
also au understanding of the mechanisms governing interactions among object subsets. Re-
cent studies have made significant progress in representing scenes using object slots. In this 
work, we introduce Reusable Slotwise Mechanisms, or RSM, a framework that models object 
dynamics by leveraging communication among slots along with a modular architecture ca-
pable of dynamically selecting reusable mechanisms for predicting the future states of each 
object slot. Crucially, RSM leverages the Central Contextual Information (CCI), enabling 
selected mechanisms to access -the remaining slots through a bottleneck, effectively allowing 
for modeling of higher order and complex interactions that might require a sparse subset of 
objects. Experimental results demonstrate the superior performance of RSM compared to 
state-of-the-art methods across various future prediction and related downstream tasks, in-
cluding Visual Question Answering and action planning. Turthermore, we showcase RSlVI's 
Out-of-Distribution generalization ability to handle scenes in intricate scenarios. 
Keywords: object-centric learning, reusable independent mechanisms, dynamics modeling, 
out-of-distribution generalization 

4.1. Introduction 
Accurate prediction of future frames and reasoning over objects is crucial in various com-

puter vision tasks. These capabilities are essential for constructing comprehensive world 
models in applications like autonomous driving and reinforcement learning for robots. Tra-
ditional deep learning-based representation learning methods compress entire scenes into 
monolithic representations, lacking compositionality and object-centric understanding. As 
a result, these representations struggle with systematic generalization, interpretability, and 
capturing interactions between objects. This limitation leads to poor generalization perfor-
mance as causal variables become entangled in non-trivial ways. 

There has been growing interest in slot-based and modular representations that decom-
pose scenes into individual entities, deviating from fixed-size monolithic feature vector rep-
resentations (Graves et al., 2014; Santoro et al., 2018; Goyal et al., 2020, 2021a; Goyal and 
Bengio, 2020; Goyal et al., 2021b; Madan et al., 2021; Henaff et al., 2017; Li et al., 2018; 
Rosenbaum et al., 2019; Shazeer et al., 2017; Zhao et al., 2021; Liu et al., 2022). These novel 
approaches offer significantly more flexibility when dealing with environments that com-
prise multiple objects. By employing an encoder that segments a scene into its independent 
constituent entities instead of compressing information into a fixed-size representation, these 
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methods allow for greater flexibility and parameter sharing when learning object-centric rep-
resentations, and their compositional nature enables better generalization. Compositional 
and object-centric representations can be effectively utilized alongside complex world models 
that accurately capture the interactions and dynamics of different entities in a scene. 

These world models, when presented with proper representations, in principle, can model 
the transition functions that relate latent causal factors across consecutive time steps of a 
rollout. vVhile monolithic blocks are still used occasionally with object-centric methods 
Wu et al. (2023), recent attempts have incorporated similar inductive biases related to the 
object-centricity of images in modeling interactions (Kip£ et al., 2020). Structured world 
models and representations seem truly promising for systematically generalizing to novel 
scenes. Structured world models would ideally decompose the description of the evolution of 
a scene into causal and independent sub-modules, making it easy to recombine and repurpose 
those mechanisms in novel ways to solve challenges in unseen scenarios. Such separation of 
dynamics modeling makes structured world models more adaptable to distribution shifts, as 
only the parameters of a few mechanisms that have changed in a new environment would 
have to be retrained, and not all of the parameters in the case of a monolithic model (Bengio 
et al., 2019). 

A major class of such structured world models aims at baking in some inductive bias 
about the natme of object interactions. On one extreme, there have been studies that employ 
Graph Neural Networks (GNNs) to capture object dependencies through dense connections 
(Kipf et al., 2020), while on the other hand, there has been contrasting work aiming at 
modeling the dynamics through only pairwise interactions ( Goyal et al., 2021a). We believe, 
however, that ideally, an agent should be able to learn, select, and reuse a set of prediction 
rules based on contextual information and the characteristics of each object. 

In this work, we argue that the assumptions made in previous attempts at learning 
the dynamics among slots may be insufficient in more realistic domains. To address these 
limitations, we propose Reusable Slotwise Mechanisms (RSM), a novel modular architecture 
incorporating a set of deep neural networks representing reusable mechanisms on top of 
slotwise representations (Locatello et al., 2020; Burgess et al., 2019). Drawing inspiration 
from the Global \i\lorkspace Theory (G\i\TT) in the cognitive neuroscience of working memory 
Baars (2005, 2017), we introduce the concept of Central Contextual Information (CCI), 
which allows each reusable mechanism, i.e., a possible explanation of state evolution, to 
access information from all other slots through a bottleneck, enabling accurate predictions 
of the next state for a specific slot. The CCI's bottleneck amounts to a relaxed inductive 
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bias compared to the extreme cases of pairwise or fully dense interactions among slots. 
Finally, through comprehensive experiments, we demonstrate that RSM outperforms the 
state-of-the-art in various next-step prediction tasks, including independent and identically 
distributed (i.i.d.) and Out-of-Distribution (0OD) scenarios. 

In summary, the presented work makes the following contributions: (1) RSM: A modu-
lar dynamics model comprising a set of reusable mechanisms that take as input slot repre-
sentations through an attention bottleneck and sequential slot updates, (2) RSM achieves 
state-of-the-art OOD performance compared to baseline modular architectures in a range of 
long-term prediction tasks, based on ranking metrics in the latent space and as well as re-
construction loss, and (3) Ablation studies show how CCI benefits the mechanism selection 
and the prediction task, compared to the baselines. 

4.2. Proposed Method: RSM - Reusable Slotwise Mech-
. an1sms 

4.2.1. RSM Overview 

\Ve introduce RSM, a modular architecture consisting of a set of NI Niultilayer Per-
ceptrons (MLPs) that act as reusable mechanisms, operating on slotwise representations to 
predict changes in the slots. What sets RSM apart from other architectures is incorporating 
the CCI buffer, which enhances its adaptability when dealing with environments character-
ized by varying levels of interactiion complexity among objects by allowing the propagation 
of information about all other slots. Unlike previous approaches (Goyal et al., 2021b, 2020, 
2021a; Ke et al., 2021), we enable a sparse subset of slots to transmit contextual information 
through a bottleneck for updating each slot. This inductive bias becomes helpful in environ-
ments where higher-order complex interactions need to be captured by reusable mechanisms 
as the CCI effectively modulates the complexity of the mechanisms and accommodates those 
that require one or two slots, as well as those that rely on a larger subset of slots. 

The training pipeline of RSM, which is visualized in Figure l(a), is designed to predict 
K rollout steps of N object slots, based on T burn-in frames with a temporal window 
of maximum T history steps for each prediction step. Prediction of the rollout begins by 
processing the given T burn-in frames to obtain the N slot representations for each of 
the T burn-in steps using an object-centric model. For any rollout step after the burn-in 
frames, the slots in a window of T T previous steps will be fed to the model as additional 
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of rich distributions. The prediction process is repeated until the slots are predicted for K 
rollout steps. 

4.2.2. Computational Flow in RSM 

This section describes the computational flow of RSM in more detail along with a 4-step 
process that will be repeated for all slots within a time-step t, in a sequential manner, as 
illustrated in figure l(c) and Algorithm 1 in the Appendix. The following are the main 
components of the architecture, where d5 and dcci denote the dimension of slots and the 
CCI, respectively: 

(1) MultiheadAttention(·) : JR((r+l)xN)xcl$ -+ ]Rd• followed by a projection </{) : 
JRds -+ JRdcci that computes the CCT, denoted as cci E JRdcci, from a.11 of the N slots in 
the past T steps concatenated. Keys, queries, and values all come from slots, so the 
CCI is not affected by the order of slot representations. 

(2) The set of M reusable mechanisms {g1, ... ,9M} where 9i(·) : JRdcci+ds -+ ]Rds are 
represented by independently parametrized MLPs implicitly trained to specialize in 
explaining different transitions. Each such 9i ( ·) takes as input one slot concatenated 
with the CCI. 

(3) 'lj;(•) : JRdcci+d, -+ JRM that takes as input the CCI and the slot of interest sl. It 
computes a categorical distribution over the possible choices of mechanisms for sL 
and outputs a sample of that distribution to be used for updating sr 

Considering the N slots per each of the T steps in the temporal window before t, s;'!j, = 
{ sl-r+l, sf-r+l, ... , sf:..r+l, ... , st, sf, ... , s{"} with 7* = t-T+ 1, RSM predicts the next state 
of slots, denoted as s't~f, using the following 4-step process, which is sequentially applied 
to each of the slots. Suppose an ordering has been fixed over the slots for a rollout, and 
according to that ordering, for some O < n ::; N, we have that n - l slots have been updated 
to their predicted values at t + 1 and are denoted by s~~1 , ... , s~~ 1 . Below we explain the 
process of computing the next state for sr (e.g. the blue slot in Figure l(c)). 

Step 1. Compute the CCI: We first append s?'N to the current temporal window to 
achieve s;f,;,+1. The duplicated s?=N serves as a placeholde.r) which will be overwritten with 
the predicted values in subsequent steps. Subsequently, as presented in Equation 4.2.1, a 
MultiheadAttention(-) takes s;';j,+1 as input before passing through ¢(-) to produce the 
central contextual information cci. 

cci = ¢(MultiheadAttention(s;/~+ 1)) (4.2.1) 
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Step 2. Select a mechanism for sf: ¢(·) takes two arguments as inputs, cci from Step 
1 and sf, to outputs the logits of a categorical distribution 1r1,N1 over M possible choices of 
mechanisms. During training, we employ a Gumbel-softmax layer Maddison et al. (2016); 

Jang et al. (2017) on top of '!/J's outputs, as described in Eq. 4.2.2, to select the mechanism. 
During inference, we simply choose argmax value of 'Tri as the selected mechanism. 

1r1,M = Gumbel-softmax('I/J(cci, s;1)) (4.2.2) 

Step 3. Predict the changes of sf: Let l::,.s~•i denote the change of sf from the previous 
step, predicted by the selected mechanism gi. The transformation of sf, denoted as .6.sf, is 
the sum of i6.s;,J:M weighted by nuvr, as presented in Eq. 4.2.3. 

M 
l::,.s;•,j = gj(cci, s;1'), 6s? = 2).6.s~,j • 1ri) (4.2.3) 

j=l 

Step 4. Update and sync s?+1: s~i1 is then computed by adding the predicted transfor-
mation from the previous step and replaces the value of s?+i in the slots buffer, as described 
in Eq. 4.2.4. 

(4.2.4) 

The process above is repeated for all slots at time t, to obtain the next state (slots) prediction 
S l:N 

t+l· 

4.3. Experiments Setup 
This study evaluates RSM's dynamics modeling and generalization capabilities through 

video prediction, VQA, and action planning tasks. We aim to provide empirical evidence 
supporting the underlying hypotheses that guided the architectural design of RSM. 

• 1-l1 : Slots communication through the CCI and reusable mechanisms reduces infor-
mation loss during prediction, resulting in an accurate prediction of future rollout 
frames (Sec. 4.4.1). 

• 1-£2 : RSM produces more accurate results and effectively handles novel scenarios in 
the downstream tasks (Sec. 4.4.2), especially enhancing OOD generalization (Sec. 
4.4.3). 

• 1-£3: The synergy between the CCI and the disentanglement of objects dynamics into 
reusable mechanisms is essential to RSM ( qualitative analyses in Sec. 4.4 .4 and 
ablations in Sec. 4.4.5). 
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In the following subsections, we describe the experiments focusing on the transition of slots 
over rollout steps with pre-trained object-centric models. Additionally, Appendix C.5 pro-
vides experiments and analyses with an end-to-end training pipeline. 

4.3.1. Environments 

OBJ3D (Lin et al., 2020) contains dynamic scenes of a sphere colliding with static 
objects. Following Lin et al. (2020); Wu et al. (2023), we use 3 to 5 static objects and one 
launched sphere for interaction. 

CLEVRER (Yi et al., 2020) shares similarities with OBJ3D, but additionally has mul-
tiple moving objects in various directions throughout the scene. For the VQA downstream 
task, CLEVRER offers four question types: descriptive, explanatory, predictive, and coun-
terfactual, among which, in the spirit of improving video prediction, we focus on boosting 
the performance on answering predictive questions which require an understanding of future 
object interactions. 

PHYRE (Bakhtin et al., 2019) is a 2D physics puzz]e platform where the goal is to 
strategically place red objects such that the green object touches the blue or purple object. 
Bakhtin et al. (2019) design templates that d,escribe such tasks with varying initial states. 
Subsequently, they define (1) within-template protocol where the test set contains the same 
templates as in training, and (2) cross-template protocol that tests on different templates that 
those in training. \Ve report results both on within-template as iid and on cross-template to 
obtain the OOD evaluation. 

Physion (Bear et al., 2021) is a VQA dataset that assesses a model's capability in 
predicting objects' movement and interaction in realistic simulated 3D environments in eight 
physical phenomena.. 

For further details and data visualization, we refer the readers to Appendix C.2. 

4.3.2. Baselines 

We compare RSM against three main baselines: SlotFormer (Wu et al., 2023), Switch 
TI·ansformer (Fedus et al., 2021) denoted as SwitchFormer, and NPS (Goyal et al., 2021a). 
We show the efficacy of relaxing the inductive bias on communication density among slots 
by contrasting RSM with dense communication methods (SlotFormer and SwitchFormer) 
and a pair-wise communication method (NPS). Likewise, comparing RSM to SlotFormer 
highlights the role of disentangling objects' dynamics into mechanisms, while comparing to 
SwitchFormer and NPS emphasizes the vital role of communication among slots via the 
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CCI. Additionally we compar to SAVi-Dyn (Wu et al. 2023), which is the SOTA on 
CLEVRER. In o her experiments we compare to SlotFormer (current SOTA). 

In the tables we present our reproduc d Slo Former (marked by •t ") and our re-
implemented SwitchFormer and PS (marked by '*') alongside SAVi-Dyn reported by Wu 
et al. (2023). 1 

4.3.3. Implementation Details 

Following Wu et al. (2023), we focus on the transition of slots and take advantage of the 
pre-trained object-centric encoder-decoder pair that converts input frames into slots and vice 
versa. We u the pre-trained weights of SAVi and STEVE provided by Wu e al. (2023) 
including SAVi (Kipf et al. 2022a) for OBJ3D, CLEVRER and PHYRE; and STEVE 
(Singh et al., 2022) for Physion. 

We present he best valida ion se configuration of RSM for each dataset, along with 
fine-tuning results and mod 1 size scaling in Appendix C.4. In summary, (1) OBJ3D and 
CLEVRER include 7 mechanisms, while PHYRE and Physion use 5, and (2) the number of 
param ters in RSM i slightly lower han that of SlotFormer in corresponding experiment . 
Additionally we r -implem nted SwitchFormer and PS with a imilar number of param ters 
as in RSM and SlotForm r. 

4.4. Experimental Results 
We report mean and standard deviation across 5 different runs. Video visualizations of 

our experiments are provided in our repo itory 2 . See also App ndix .1 on the reproducibil-
i y of o ir results. 

4.4.1. Video Prediction Quality 

To demonstrate H 1 we provid the video prediction quality on OBJ3D and CLEVRER 
in Table 4.1 and Fig. 4.2. In g n ral RS demonstrat s its efl ctiven ss in handling object 
dynamics in the long-term future prediction over baselines. 

Evaluation Metrics We evaluate the quality and similarity of predicted rollou frames 
using SSIM (Wang et al., 2004) and LPIPS (Zhang e al. 2018) metrics. Sine th range 

1We adapt the code for Switch Transformer and PS to ensure consi tency of experimental setups and 
evalua ions with Slo Former and RSM (See Appendix .3). 

2github.com/trangnnp/RSM 
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Table 4.1. Future frame prediction quality on OBJ3D and CLEVRER. Bold scores 
indicate the be t performance, with RS 1 consi tently outperforming ba eline by a remark-
able margin. 

OBJ3D I CLEVRER 
Method 

SSI ft LPIPSxrno+I SSIMt LPIPSx10o+I ARit FG-ARit FG-mlo Ut 

SAVi-Dyn 0.91 12.00 0.89 19.00 8.64 64.32 18.25 

PS* 0.90±0•2 _24±0.2 o.sg±o.2 12.51 ±O.O 62.84±0 •2 64.62±0-3 30.39±0-2 

Swi chFormer* 0.91 ±0-2 8.09±03 0.88±0-3 14.28±0.l 60.61 ±0,4 59_32±o.3 28.94±0-2 

Slot Former t 0.90±02 8.32±02 o.ss± 0-2 13.09±0.l 53_3g±o.3 62.91±0-2 29.68±0-3 

RSM (Ours) 0.92±0.l 7.88 ±O.l 0.91 ±O.l 11.96±0.l 67.72± 0-2 66.15±o. 2 32.73± 0-2 

of LPIPS me ri is small we report the ac ual values times 100, denoted as LPIPSx 1oo 
to facilitate compari ons among th m thods. Additionally w also ass ss th p rformanc 
using ARI, FG-ARI and FG-mloU metric , which measure clustering imilarity and 
foreground segmentation accuracy of object bounding boxes and segmentation masks. We 
valuate the model's p rformance av rag d ov. r unrolling 44 steps on OBJ3D and 42 st ps 

on CLEVRER with 6 burn-in frames in both datas ts. 
Table 4.1 exh.ibii.ts that RS outperforms other approaches and achieves the highest 

core across evaluation metrics for both dataset . Notably, compared to SlotFormer, RS f 
improves LPIPSxioo by 0.46 points in OBJ3D 1.12 points in CLEVRER and increase· 
FG-mloU by 3.05 points in CLEVRER. Following RSM NPS consi tently ranks second in 
performance among the baselines. 

These results are supported by Fig. 4.2, which illustrates the rollout frames in OBJ3D. 
RSM outputs accurate rollout predi tions with high visual fidelity demon trate the ffi-
cacy of slot communication by having les error accumulated along time steps than any of 
the baselines. It is worth emphasizing that RSM excels in handling a significant series of 
complex mov ments in steps 20-40 particularly during th upward propulsion of h red 
metallic cube. In contrast we find that the baselines struggle with complex object move-
ments during this period, leading to inaccuracies in predicting the dynamics towards the end. 
Furthermore RSM demonstrates flexible slo communication with relaxed inductive bia e 
on interaction density enabling it to adapt to environm nt compri ing m chani m with 
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Lo t sharpnes 
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Fig. 4.2. Comparison of rollout frames in OBJ3D. RSM generates frames wi h preci e 
dynamics and maintains visual quality, even during complex actions in steps 20 to 40. In 
contrast th bas lin s produc on with artifact (y llow boxe ) and inaccurat dynamics 
( red boxes) . 

varying levels of complexity. In contrast, we find that NPS with pars interaction faces 
difficul ies with close-by object and rapid co]lisions (seen in OBJ3D) while Swi chFormer 
with d ns communication struggles with di tant obj cts (as in CLEVRER). 

4.4.2. Downstream Tasks: Visual Question Answering and Action 
Planning 

4.4.2.1. Visual Question Answering task. To demons rate 1'-2, we validate the per-
formance of future frame generat d by the models on the VQA task in CLEVRER and 
Physion and the action planning ta k in PHYRE in the next ection. The general pipeline 
is to solve the VQA task with the predicted rollout frames from the given input frames. 
Specifically we employ Aloe (Ding t al. 2021) a the base reasoning model on top of the 
unrolled frames in CLEVRER. Likewise in Physion, we adhere to the official protocol by 
training a linear model on the predicted future slots o det,ect objects contact. In Physion 
we also include the re ults obtained from human participan s B a· al. (2021) for reference· 
Likewi e we collect the re ult from ob erved frame ( Ob .) which are obtained by training 
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Table 4.2. VQA performance on CLEVRER and Physion. Despite not surpassing 
human performance in Phy ion RSM outp rforms baseline in both datase s. All core are 
in percentage. 

Method CLEVRER 
I 

Physion 

per opt. t per que . t I Obs. t Dyn. t Gap t 

Human 74.7 
PS* 95_3±o.3 93.8±0-2 65.6±0-3 +0.6 

Swi chFormer* 92_g±o.3 90.4±0.2 66.2±0-1 +1.2 
SlotFormert 96.1 ±0-2 93_3±0.J 

65.0 
66.9±0-2 +1.9 

RSM (Ours) 96.8±0.l 94_3±o.o 68.1 ±O.O +3.1 

the VQA model on top of pre-trained burn-in slot and compare them to the performance 
of rollout slot (Dyn.). 

In Table 4.2, RSM consistently outperforms all hree baselines in VQA for CLEVRER 
and Physion. On CLEVRER RS 11 achieves the highest scores of 96.8% (per option) and 
94.3% (per question) surpassing SlotFormer and PS. In Physion, RSNI shows notable 
improvement with a 3.1 % increase from 65.0% in Obs. to 68.1 % in Dyn. ou performing all 
other baselines indicating the benefit of enhancing the dynamics modeling to improve the 
downstream tasks. However, RSM i still far from human performance in Physion, showing 
room for fur her research into this class of algorithms. 

4.4.2.2. Action Planning task. 'Ne adopt the approach from prior works (Qi e al., 2021· 
Wu et al. 2023) and construct a. task success cla sifier as an action scoring function. Thi 
function i designed as a simple linear cla sifier which considers the predicted object slots, 
to rank a pre-d fined et of 10 000 a tion from Bakhtin t al. (2019) which are executed 
accordingly. We u ilize AUCCESS which quantifies the success ra e over the number of 
attempts curves Area Under Curve (AUC) for he first 100 actions. We report the average 
core over 10 folds wi h he best performanc among 5 different run on each fold. 

The first line in Table 4.3 indicates the action planning result of the proposed RSM and 
baselines in he iid setting ( within-template protocol). RS achieves the highest performance 
compared to baseline indicating the critical role of flicien communication of lo s in 
complex ta ks like action planning. In addition, Fig. 4.3 hows a succ ssful ca e of RS 1 
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solving the planning task by strategically placing the red object at step 0, causing a collision 
between the green and blue objects at the end. 

4.4.3. Out-of-Distribution ( OOD) Generalization 

To provide more evidence for 1-l2 , we resume analyzing the performance of the action 
planning task in PHYRE but with the cross-template protocol, with results indicated in the 
last line in Table 4.3. Overall, RSM demonstrates strong generalization and has the smallest 
gap between iid and OOD performance compared to the baselines. The cross-template is 
a natural method to evaluate the OOD generalization in PHYRE since scenes in the train 
and test sets are in distinct templates and contain dissimilar object sizes and objects in the 
background (Dakhtin et al., 2019). We refer the reader to Appendix C.2 for further details 
and visualizations, and Appendix C.4 for the discussion on the reproduced results. 

4.4.4. The Ability to Disentangle Object Dynamics into Mecha-
nisms 

To demonstrate 1-1,3 , we conduct qualitative analysis on the underlying mechanisms as-
signment within the 4 steps of Fig. 4.3 and visualize results in Fig. 4.4. While there is no 
explicit assignment of roles to mechanisms during training, we can infer their functionality 
at convergence based on slot visualizations and patterns of activation as follows: Mechanism 
2 handles collisions, which can be observed in the collision between the green and red ball 
in step 1 and that of the red ball with the right-side wall in step 5 (blue boxes). Mechanism 
3 controls the horizontal movements, observed in the gTeen ball from steps 5 to 10 (green 
boxes). Mechanism 4 acts as an idleness mechanism. Mechanism 5 handles downward free-
fall motion, observed from steps 2 to 3 of the two balls. Mechanism 1 does not seem to be 
doing anything meaningful and this could be due to the model using more capacity than 
it requires to model the dynamics in this environment. The inferred functions provide the 
following insights into understanding the efficacy of RSM: Firstly, RSM successfully disen-
tangles the dynamics into reusable mechanisms, as described in Sec. 4.2. l. Secondly, RSM 
assigns proper such mechanisms to slots throughout the rollout steps, which not only helps 
to preserve the accuracy of prediction but also emphasizes the effectiveness of communica-
tion among slots in deciding mechanisms for each other. The automatic emergence of a null 
mechanism (mechanism 4) is also worth highlighting, which significantly helps reduce the 
error accumulation in action-free settings, such as idle objects in the background. 
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Table 4.3. Action planning task in PHYRE. RSM outperforms all baselines in both 
iid and 00D up . 

PHYRE-B NPS* SwitchFormer* SlotFormert RSM 

iid ( within-template) 80.52±l.O 

OOD (cross-template) 42.63±1.3 

Step=O 1 2 3 4 5 

78.27±1.9 

43,35±1.4 

6 7 

82.89± 0-6 

42_45±1.7 57_37±1.4 

8 9 10 

Fig. 4.3. Action planning task in PHYRE. RS If strat gically position a r d ball at 
tep O prevents h green ball from falling onto the gla by cau ing a colli ion tha alter 

the original trajectory of the green ball and causing it to make contact with the blue floor 
(indicated by the arrow). 

4.4.5. Ablation Studies 

To provide mor evidence for 1-{3 , we conduct ablations to understand the individual 
ffec s of (1) the CCI (2) m chanisms and h ir disentanglement, and (3) h equential 
lots updating in RSM, and vi ualize the results in Fig. C .. In general the ablation re ult 

confirm he superiority of the original RSM design compared to all variations, highlighting 
a significan disparity in he absence of CCI. 

RSM 12 ma ks out the CCI in st p 2 at inference. Vie ob erv hat the lack of CCI lead 
to a degenerate sele tion of mechani ·ms for slots, with 4 out of 5 objec lots being controlled 
by mechanism 3 (horizontal movement). 
RSM!3 mask ou the CCI in step 3 during inference. We have found hat CCI not only 
capture comprehensive spatial-temporal information but also provides guidance regarding 
specific movement details including directions. In particular even when the correct mecha-
nism is as igned ( e.g. moving leftward) the slo become confused abou th exact direction 
of movement. Additionally slot en ountered a color-related is ue in th sub equent tep . 
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Rollout Pred Slot 1 Slot 2 Slot 3 Slot 4 Slot 5 Slot 6 Slot 7 Slot 8 

t =] 

Mechanism 

t=2 

Mechanism 

Mechanism 

t=5 
Mechanism 

Fig. 4.4. The underlying mechanism assignment in PHYRE. l\Ie<:hanisros are as-
signed to each slot at t to obtain the updates at t + 1. RSl\I disentangles objects· dynamics 
into reusable mechanisms. which can be expressed as Collision (2). J\loving left or right (3), 
Idle (4). and Falling (5). 

RSMic randomly assigns mechanisms to slots by a randomized mechanism index. /,;. to re-
place the distribution n in Eq. 4.2.2. Y\1e observe that the launched ball moves in the wrong 
direction and exits the scene early. while other objects shake in their positions, underscoring 
the importance of correctly assigning mechanisms to slots. 
RSMP is the parallel version of RS!\,I that modifies the model 1p(•) in Eq. 4.2.2 to assign 
mechanisms to N slots simultaneously. in both training and inference time. v\"e find that 
RSMp stands out as a promising model, as it demonstrates a notable LPIPS performance; 
however. it is essential to note the partially inaccurate dynamics caused by the weaker com-
munication among slots. 

4.5. Related Work 
Modular dynamics models. In the domain of modular nemal networks, RI}lfs (Goyal et al., 
2021b) pioneered the exploration of modularity for learning dynamics and long-term de-
pendencies in non-stationary settings. However) Rii\Is suffer from conflating object and 
mechanism concepts. limiting their effectiveness. SCOFF (Goyal et al.. 2020) introduced 
object files (OF) and schemata to address this limitation, but it struggles with generaliz-
ing out-of-distribution (OOD) scenarios. Key distinctions between RSi\I and SCOFF are 
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as follows: SCOFF schemas can handle only one OF at a time, while RSM allows multiple 
slots to be input to reusable mechanisms using an attention bottleneck. SCOFF and RIMs 
use sparse communication among OFs for rare events involving multiple objects, whereas 
RSM leverages the CCI to activate suitable reusable mechanisms. NPS ( Goyal et al., 2021a) 
incorporates sparse interactions directly into its modular architecture, eliminating the need 
for sparse communication among slots or OFs. Their ''production rules" handle rare events 
involving multiple objects by taking one primary slot and a contextual slot as input. A 
recent benchma.rk (Ke ct al., 2021) evaluates causal discovery models and introduces a mod-
ular architecture with dense object interactions, similar to CNN-based methods, but assigns 
separate mechanisms to each object. Among the class of algorithms with less modularity in 
their dynamics model, R-NEM (van Steenkistc et al., 2018) was a pioneering unsupervised 
method for modeling dynamics using a learned object-centric latent space through iterative 
inference (see also Eslami et al. (2016)) which along similar approaches (Battaglia et al., 
2018), (Battaglia et al., 2016) used Graph Neural Networks (GNNs) to model pairwise in-
teractions and differ from our work in two key aspects. Firstly, we do not rely on GNNs 
to mod!el interactions, as dense interactions are not always realistic in many environments. 
Secondly, we focus on learning a set of simple and reusable mechanisms that can be applied 
flexibly to different scenarios, rather than compressing information through shared node and 
edge updates in a GNN. 
Unsupervised learning of object-centric representations. To decompose a scene into meaning-
ful sub-parts, there have been lots of recent works on unsupervised learning of object-centric 
representations from static images (Zhao et al., 2021; Greff et al., 2017; Locatello et al., 
2020; Zhang et al., 2023), videos (Pervez et al., 2022; Li et al., 2022; Kipf et al., 2022b; 
Elsayed et al., 2022; Wu et al., 2023), and theoretical results on the identifiability of such 
representations (Mansouri et al., 2022; Ahuja et al., 2022; Brady et al, 2023). Although 
lots of these methods work very well in practice, we decided to proceed with slot attention 
(Locatello et al., 2020) to be consistent with the baselines. 

4.6. Conclusion 
In this study, we developed RSM, a novel framework that leverages an efficient commu-

nication protocol among slots to model object dynamics. RSM comprises a set of reusable 
mechanisms that take as input slot representations passed through a bottleneck, the Cen-
tral Contextual Information (CCI), and then they are processed sequentially to obtain slot 
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updates. Through comprehensive empirical evaluations and analysis, we show RSM's ad-
vantages over the baselines in various tasks, including video prediction, visual question an-
swering, and action planning tasks, especially in OOD settings. Our results suggest the 
importance of CCI, which integrates and coordinates knowledge from djfferent slots for both 
mechanism assignment and predicting slot updates. We believe there is a promise for fu-
ture research endeavors in exploring more sophisticated stochastic attention mechanisms for 
information integration, aligning with the principles of higher-level cognition, to be able to 
cope with a large number of slots and objects, and enable ways of uncertainty quantification 
in the predictions. In Appendix C.6, we delve into the limitations of this work and future 
directions. 

References 
Ahuja, K., Hartford, J., and Bengio, Y. (2022). Weakly supervised representation learning 

with sparse perturbations. arXiv preprint arXiv: Arxiv-2206.01101. 
Baars, B. J. (2005). Global workspace theory of consciousness: toward a cognitive neuro-

science of human experience. In Laureys, S., editor, The Boundaries of Consciousness: 
Neurobiology and Neuropathology, volume 150 of Progress in Brain Research, pages 45-53. 
Elsevier. 

Baars, B. J. (2017). The Global Workspace Theory of Consciousness. John Wiley Sons, Ltd. 
Bakhtin, A., van der Maaten, L., Johnson, J., Gustafson, L., and Girshick, R. (2019). Phyre: 

A new benchmark for physical reasoning. 
Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-Gonzalez, A., Zambaldi, V. F., Ma-

linowski, M., Tacchetti, A., Raposo, D., Santoro, A., Faulkner, R., Giilgehre, Q., Song, 
H. F., Ballard, A. J., Gilmer, J., Dahl, G. E., Vaswani, A., Allen, K. R., Nash, C., 
Langston, V., Dyer, C., Heess, N., Wierstra, D., Kohli, P., Botvinick, M. M., Vinyals, 
0., Li, Y., and Pascanu, R. (2018). Relational inductive biases, deep learning, and graph 
networks. CoRR, abs/1806.01261. 

Battaglia, P. W., Pascanu, R., Lai, M., Rezende, D. J., and Kavukcuoglu, K. (2016). Inter-
action networks for learning about objects, relations and physics. In NIPS. 

Bear, D. M., \iVang, E., Mrowca, D., Binder, F. J., Tung, H. F., Pramod, R. T., Holdaway, 
C., Tao, S., Smith, K. A., Sun, F., Fei-Fei, L., Kanwisher, N., Tenenbaum, J. B., Yamins, 
D. L. K., and Fan, J. E. (2021). Physion: Evaluating physical prediction from vision in 
humans and machines. CoRR, abs/2106.08261. 

123 



Bengio, Y., Deleu, T., Rahaman, N., Ke1 R., Lachapelle, S., Bilaniuk, 0., Goyal, A., and 
Pal, C. (2019). A meta-transfer objective for learning to disentangle causal mechanisms. 
In ICLR)2020, arXiv:1901.10912. 

Brady, J., Zimmermann, R. S., Sharma, Y., Scholkopf, B., von Kiigelgen, J., and Bren-
del, W. (2023). Provably learning object-centric representations. arXiv preprint arXiv: 
2305.14229. 

Burgess, C. P., Matthey, L., Watters, N., Kabra, R., Higgins, I., Botvinick, M. M., and Ler-
chner, A. (2019). Monet: Unsupervised scene decomposition and representation. CoRR. 

Ding, D., Hill, F., Santoro, A., Reynolds, NL, and Botvinick, M. (2021). Attention over 
learned object embeddings enables complex visual reasoning. In Beygelzimer, A., Dauphin, 
Y., Liang, P., and Vaughan, J. W., editors, Advances in Neural Information Processing 
Systems. 

Elsayed, G. F., Mahendran, A., van Steenkiste, S., Greff, K., Mozer, M. C., and Kipf, T. 
(2022). SAVi++: Towards endl-to-end object-centric learning from real-world videos. 

Eslami, S. M. A., Heess, N., Weber, T., Tassa, Y., Kavukcuoglu, K., and Hinton, G. E. 
(2016). Attend, infer, repeat: Fast scene understanding with generative models. CoRR, 
abs/1603.08575. 

Fedus, W., Zoph, B., and Shazeer, N. (2021). Switch transformers: Scaling to trillion 
parameter models with simple and efficient sparsity. CoRR, abs/2101.03961. 

Goyal, A. and Bengio, Y. (2020). Inductive biases for deep learning of higher-level cognition. 
CoRR, abs/2011.ll.5091. 

Goyal, A., Didolkar, A., Ke, . R., Blundell, C., Beaudoin, P., Heess, N., Mozer, M., and 
Bengio, Y. (2021a). Ieural production systems. CoRR, abs/2103.01937. 

Goyal, A., Lamb, A., Gampa, P., Beaudoin, P., Levine, S., Blundell, C., Bengio, Y., and 
Mozer, M. (2020). Object files and schemata: Factorizing declarative and procedural 
knowledge in dynamical systems. arXiv preprint arXiv:2006.16225. 

Goyal, A., Lamb, A., Hoffmann, J., Sodhani, S., Levine, S., Bengio, Y., and Scholkopf, B. 
(2021b). Recurrent independent mechanisms. 

Graves, A., Wayne, G., and Danihelka, I. (2014). Neural turing machines. CoRR, 
abs/1410.5401. 

Greff, K., Van Steenkiste, S., and Schmidhuber, J. (2017). eural expectation maximization. 
Advances in Neural Information Processing Systems. 

Henaff, M., vVeston1 J.> Szlam, A., Bordes, A., and LeCun, Y. (2017). Tracking the world 
state with recurrent entity networks. 

124 



Jang, E., Gu, S., and Poole, B. (2017). Categorical reparameterization with gumbel-softmax. 
In 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, 
April 24-26, 2017, Conference Track Proceedings. OpenReview.net. 

Ke, N. R., Didolkar, A., Mittal, S., Goyal, A., Lajoie, G., Bauer, S., Rezende, D., Bengio, 
Y., Mozer, M., and Pal, C. (2021). Systematic evaluation of causal discovery in visual 
model based reinforcement learning. 

Kip£, T., Elsayed, G. F., Mahendran, A., Stone, A., Sabour, S., Heigold, G., Jonschkowski, 
R., Dosovitskiy, A., and Greff, K. (2022a). Conditional object-centric learning from video. 
In International Conference on Learning Representations. 

Kipf, T., Elsayed, G. F., Mahendran, A., Stone, A., Sabour, S., Heigold, G., Jonschkowski, 
R., Dosovitskiy, A., and Greff, K. (2022b). Conditional object-centric learning from video. 
ICLR. 

Kipf, T., van der Pol, E., and Welling, M. (2020). Contrastive learning of structured world 
models. In International Conference on Learning Representations. 

Li, S., Li, W., Cook, C., Zhu, C., and Gao, Y. (2018). Independently recurrent neural 
network (indrnn): Building a longer and deeper rnn. 

Li, S., Wu, K., Zhang, C., and Zhu, Y. (2022). On the learning mechanisms in physical 
reasoning. ArXiv, abs/2210.02075. 

Lin, Z., Wu, Y.-F., Peri, S., Fu, B., Jiang, J., and Ahn, S. (2020). Improving generative imag-
ination in object-centric world models. In Proceedings of the 37th International Conference 
on Machine Learning, ICML'20. JMLR.org. 

Liu, D., Shah, V., Boussif, 0., Meo, C., Goyal, A., Shu, T., Mozer, M. C., Heess, N. 
M. 0., and Bengio, Y. (2022). Stateful active facilitator: Coordination and environmental 
heterogeneity in cooperative multi-agent reinforcement learning. ArXiv, abs/2210.03022. 

Locatello, F., Weissenborn, D., Unterthiner, T., Mahendran, A., Heigold, G., Uszkoreit, J., 
Dosovitskiy, A., and Kipf, T. (2020). Object-centric learning with slot attention. NIPS'20. 

Madan, K., Ke, N. R., Goyal, A., Scholkopf, B., and Bengio, Y. (2021). Fast and slow 
learning of recurrent independent mechanisms. 

Maddison, C. J., Mnih, A., and Teh, Y. (2016). The concrete distribution: A continuous 
relaxation of discrete random variables. International Conference On Learning Represen-
tations. 

Mansouri, A., Hartford, J., Ahuja, K., and Bengio, Y. (2022). Object-centric causal repre-
sentation learning. NeurIPS Workshop on Symmetry and Geometry. 

125 



Pervez, A., Lippe, P., and Gavves, E. (2022). Differentiable mathematical programming for 
object-centric representation learning. ar Xiv preprint ar Xiv: Arxiv-2210. 02159. 

Qi, H., Wang, X., Pathak, D., Ma, Y., and Malik, J. (2021). Learning long-term visual dy-
namics with region proposal interaction networks. In International Conference on Learning 
Representations. 

Rosenbaum, C., Cases, I., Riemer, M., and Klinger, T. (2019). Routing networks and the 
challenges of modular and compositional computation. CoRR, abs/1904.12774. 

Santoro, A., Faulkner, R., Raposo, D., Rae, J., Chrzanowski, M., Weber, T., Wierstra, D., 
Vinyals, 0., Pascanu, R., and Lillicrap, T. (2018). Relational recurrent neural networks. 

Shazeer, N., Mirhoseini, A., Maziarz, K., Davis, A., Le, Q. V., Hinton, G. E., and Dean, J. 
(2017). Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. 
CoRR, abs/1701.06538. 

Singh, G., Wu, Y.-F., and Ahn, S. (2022). Simple unsupervised object-centric learning for 
complex and naturalistic videos. In Oh, A. H., Agarwal, A., Belgrave, D., and Cho, K., 
editors, Advances in Neural Information Processing Systems. 

van Steenkiste, S., Chang, M., Greff, K., and Schmidhuber, J. (2018). Relational neural 
expectation maximization: Unsupervised discovery of objects and their interactions. In-
ternational Conference On Learning Representations. 

Wang, Z., Bovik, A., Sheikh, H., and Simoncelli, E. (2004). Image quality assessment: 
from error visibility to structural similarity. IEEE Transactions on Image Processing, 
13(4):600 612. 

\i\Tu, Z., Dvornik, ., Greff, K., Kipf, T., and Garg, A. (2023). Slotformer: Unsupervised 
visual dynamics simulation with object-centric models. In The Eleventh International 
Conference on Learnfog Representations. 

Yi, K., Gan*, C., Li, Y., Kohli, P., Wu, J., Torralba, A., and Tenenbaum, J. B. (2020). 
Clevrer: Collision events for video representation and reasoning. In International Confer-
ence on Learning Representations. 

Zhang, R., Isola, P., Efros, A. A., Shechtman, E., and Wang, 0. (2018). The unreasonable 
effectiveness of deep features as a perceptual metric. In 2018 IEEE/CVF Conference on 
Computer Vision and Pattern Recognition (CVPR), pages 586-595, Los Alamitos, CA, 
USA. IEEE Computer Society. 

Zhang, Y., Zhang, D. W., Lacoste-Julien, S., Burghouts, G., and Snoek, C. G. M. (2023). 
Unlocking slot attention by changing optimal transport costs. ARXIV. ORG. 

126 



Zhao, M., Liu, Z., Lua.n, S., Zhang, S., Precup, D., and Bengio, Y. (2021). A consciousness-
inspired planning agent for model-based reinforcement learning. Advances in neural in-
formation processing systems, 34: 1569-1581. 

127 





Chapter 5 

Conclusion and Future Directions 

In this thesis our journey has been an exploration of utmost importanc addressing the 
formidable challenge of out-of-distribution generalization through th innovative perspec-
tives from causal structure and representation learning. Our research was rooted in the 
understanding that effectively learning causal Telationships and the construction robust rep-
resen ations could offer the mi ·sing link between Al's performance on known data and its 
adaptability to unforeseen cenario . The culmination of our efforts resulted in a coherent 
narrative of innova ions building toward RSM, a method that achieves state-of-the-art in 
generaliza ion under real-world benchmarks. 

The hesis commenced with the introduction of Reusable Fae or Graphs (RFG) that 
departed from the conven ional Directed cyclic Graph (D G) approach to structur learn-
ing. RFG modified and harnessed the potential of factor g,Taph a a representation of causal 
mechanisms since the modification allowed for effe tively incorporating the important induc-
tive biase of reusbaility, modulari y and sparsi y. This work enhanced the sample efficiency 
of structure learning by successfully shmving how we can exploit the reu ability of causal 
mechanisms) and thus opens avenue for more effective causal discovery. 
While our experiments yielded promising ou comes in the contex of s ructure learning on 
synth tic datas ts there are numerous av nu s for furth r research. To avoid th computa-
tional intricacie associat d with computing th partition function we simplifi d th problem 
by focusing on time-directed reusable factor graphs. However) recent advancements in Gen-
era ive Flow etworks (GFlowNe s) offer potential avenues to addre s his computational 
challenge. It is not worthy that our approach thus far has predominantly addr ssed cenar-
ios wh re a singl fa tor at each t p of th Markov chain transforms the entir ty of latents 
z. A natural progression could involve the incorporation of multiple factors competing for 
transforming blocks of latents (akin to the principles underpinning object-centric represen-
tation ). Although Chapter 4 extensively build on this idea and show its effectivene s in 



practice, an in-depth exploration of its theoretical aspects could be insightful. Furthermore, 
extending our perspective from time-directed RFGs, there lies the opportunity to generalize 
our findings by recovering a broader class of factor graphs. Additionally, the translation of 
RFGs into Causal DAGs merits exploration, as the directionality of causality holds signifi-
cance in specific tasks. On the front of inferring the number of ground truth factors, a more 
refined approach might involve the use of sophisticated adaptive clustering techniques, such 
as Dirichlet Process Mixtures. 

Though we leveraged access to causal representations to learn RFG structures, we later 
pivoted our focus to learning such representations in an attempt to relax the aforementioned 
assumption. Recognizing that the world is inherently object-centric, our research departed 
from traditional assumptions, marking the inception of an algorithm that, for the first time, 
learns object-centric disentangled representations-breaking away from the limitations of 
simplistic assumptions surrounding monolithic fixed-size vectors. 
This work harnessed weak supervision derived from partial and incomplete knowledge of the 
underlying causal structure inherent within observations to learn causal representations. We 
also demonstrated how embracing object-centricity of the natural world can lead to signifi-
cant sample efficiency gains for learning such representations. This approach, while rooted 
in theoretical insights, shines a light on the practical implications of object-centric represen-
tation learning. 
'Ne analyzed the performance of our model comprehensively on two synthetic datasets that 
are relatively limited in capturing the complexities of very real-world scenarios. Yet, we 
found and demonstrated that such level of complexity was a necessary first step to identify 
the intricacies involved in making our algorithm work. Therefore, our analysis has been 
limited in several aspects, which present challenges that we are enthusiastic to address in 
future research endeavors. 
First, while we do consider a wide range of properties to be disentangled, we focused on 
relatively low numbers of objects. Future research could explore how our model scales 
to real-world scenes with a multitude of objects-offering a deeper understanding of the 
complexities that lie ahead. Second, although our experiments include artifacts related to 
occlusion, depth, and lighting, in all of our experiments we simplify the problem by having 
the objects situated in a plain white background. Future directions include attempts to ex-
tend our results to real-world scenes containing far more complex backgrounds and artifacts. 
Additionally, depth is a strong signal that is widely available with today's Lidar sensors. 
Incorporating such signals and potential interventions on them could enrich the capabilities 
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of our method. Lastly> much like our approach of embracing the inherent set nature of envi-
ronments and uncovering object-centric disentangled representations, a promising avenue for 
future research lies in the exploration of per-object set representations. This entails encoding 
individual objects not as fixed vectors, but as sets of properties. This approach would allow 
for varying-sized sets of disentangled properties, catering to the unique characteristics of 
different objects. This extension could further enhance our ability to capture the complexity 
and diversity of real-world scenes, propelling us closer to achieving more comprehensive and 
robust representation learning. 

The narrative of our thesis culminated in the third chapter where the synergy of the 
previous distinct perspectives naturally converged, igniting the idea of joint learning of the 
reusable structure and representation-a path that naturally emerged as a resolution to 
both facets of the challenge. We introduced the Reusable Slot Mechanisms (RSM) that 
shows great promise and holds potential for real-world applications. With an emphasis on 
efficient communication among object-centric representations, RSM showcased its prowess 
in modeling object dynamics. The empirical evidence, showcased through various tasks and 
evaluation scenarios, reinforced the significance of the Central Contextual Information (CCI). 

The RSM architecture, while robust in modeling objects' dynamics across tasks and 
settings, reveals its limitations in the following areas: 

• Sensitivity to Hyperparameters: The process of fine-tuning the number and size of 
mechanisms within RSM requires careful manual adjustment. Future exploration 
could focus on enhancing the model's robustness to hyperparameters. 

• Threat to Time Complexity: In larger systems with numerous slots, the sequential 
update of slots can become computationally intensive. While this limitation does not 
currently impact our work, parallelization techniques could be explored to optimize 
computational efficiency, simultaneously assigning mechanisms and predicting states 
for large-scalle systems. 

• Observable Environments: The environments studied in this work are predominantly 
observable. To expand the horizons of RSM's applicability, future research could 
explore a wider range of observable and unobservable environments to gather deeper 
insights into the architecture's capabilities and limitations. 

The culmination of this thesis underscores the transformative potential of merging causal 
structure and representation learning to address the challenge of out-of-distribution gener-
alization. As our contributions converged, they carved a pathway towards enhancing the 

131 



generalization capacities of deep learning models. From RFG's innovative approach to struc-
ture learning to the innovative concept of object-centric disentangled representations and the 
practical manifestation of RSM, this journey spans theoretical innovation to real-world ap-
plication. 

As we conclude the thesis, we stand at the intersection of knowledge and possibility. 
The fusion of theory and practice of structure and representation learning has equipped us 
with novel tools to tackle challenges, bridge gaps, and spark further advancements toward 
addressing the challenge of out-of-distribution generalization. We look back with pride at 
our contributions and forward with anticipation of the prospects that await. Our journey 
bas been a testament to the power of blending diverse perspectives, challenging conventional 
wisdom, and embarking on uncharted territories. Our contributions in the realm of causal 
structure and representation learning has not only enriched these fields, but it has also 
leveraged their power to enhance out-of-distribution generalization. As we conclude this 
chapter, we stand on the threshold of new beginnings, armed with insights, innovation, and 
an insatiable thirst for knowledge. 
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Appendix A 

Supplementary Materials for Structure 
Learning of Reusable Factor Graphs 



A.1. Implementation Details 
In all experiments X 0 ~ uniform[-0.3,0.3]<1, and the coefficient matrices of the ground 

truth factors are sampled as unitary matrices of dimension similar to the dimension of X 0 , 

i.e. dim(X 0) = d. The noise variance is set to o}v = 0.1 (or 1/3 of X 0 's range). We train the 
models for either 100 or 1000 epochs with Adam optimizer with default parameters for /3s 
with an initial learning rate of 0.1 for neural networks and 0.01 for the optimization of the 
lambda matrix. Learning rate scheduler is ReduceLROn.Plateau. The results are averaged 
over 5 runs. The test set is composed of 20 samples ( chains) of Length 50, dimension d same 
as the training, and they are generated by a new sequence but with the same factors as the 
training. 
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A.2. Scaling r,k as well as the latent dimension d 
Here we consider the ca e where r = k and observe the impact of larger number of factors 

as w 11 as high r dim nsions in attempt to stress test th mod I and see where it starts to 
break. We increa ed r to 5, 10 20 30, and we e that the te t Hamming Distan (HD) 
star s to deviate from zero. However this break is rather graceful. The settings we explore 
are as follows: L = 5000 n = 100, d E [2 5 10 15 20 25,30 35,40 50], r E [2,5,10,15 20 25 30], 
noise tandard deviation t7 is 15% of th element of IIAXll-

sing the lambda method, below is a descrip ive summary of our observations (Also see 
figure A.2): 

• r = 10 d = 10: HD = 0, all 10 factors are learned after epoch 300. 
• r = 15 d = 10: HD= 0 all 15 fa tor are learned after epoch 300. 
• r = 30 d = 10: HD= 0.1 26/30 factors are learned after epoch 600. 
• r = 20 d = 20: HD = 0.04 18/20 factors are learned after epoch 400. 
• r = 20, d = 30: HD= 0.05, 18/20 factors are 1 arned aft r poch 300. 

The fact that Hamming distance for mor factors and higher dimensions stays at 0.1 - 0.2 
should not be disappoin ing, becau e as we inspected, only several out of 20-30 factors are 
no learned. So this could be though of as a good sign that with relatively large number 
of factors, our algorithm managed to learn th po ition and th param t rs of abo 1t o/c90 of 
the factors. 
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Fig. A.2. Stress esting the proposed method when presented with large latent dimensions 
in a reusable structure comprising of increasing number of factors. Given the large chain 
1 nght the metric shows that th algorithm is succes fully r covering about %90 of the 
structure. 
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A.3. Connection to Expectation-Maximization 
Here we show how our A approach connects to the EM algorithm. Consider a Markov 

Chain (MC) of length L. At each time t we have a random vector X of length p, the 
concatenation of p random variables. Suppose there are r unique factors generating the 
observed data, and at each time ta latent variable Zt picks a factor fi E F = {fi,h, ... ,fr} 
that operates on Xt and generates Xt+i• Vve want to maximize the expected log-likelihood 
of the observations. Using the Markov property of the chain we have: 

(A.3.1) 

= IE[log LL··· LP0(X1 I z1)p(z1)P0(X2 I z2,X1)p(z2) ... P0(XL I ZL,XL-i)p(zL)] 

(A.3.2) 
L 

= IE[L log LP0(Xt I Zt,Xt-i)p(zt)] (A.3.3) 
t=] Zt 

Denoting p(zt) by 7r(zt), our objective would be the following: 

L 

lE[log-likelihood (X 1,X2, ... ,Xi)] = lE[L log L Pe(Xt I Zt,Xt-t)7r(Zt)] (A.3.4) 
t=l Zt 

Now we'll make use of Jensen's inequality. If f : ill: --, JR is convex, and X is an integrable 
RV.: 

lEx(f(X)) > f(lEx(X)) 

If f : JR--, JR is strictly convex, we have equality if and only if X = constant. 
If we introduce a proposal density q(z) (which we will use as an approxirnator for the posterior 
p(z Ix)), then our objective will become: 
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Now since log is strictly concave, we have the following inequality for the objective: 
L L 

LIEx[logIEq
1
[P0(Xt I Zt(Xt1)1r(zt)l] 2 LIEx[IEqiflogPo(Xt I Zt(X;-1)'1r(Zt)l] = C(q,B) 

l=l qt Zt t=l qt Zt 
(A.3.7) 

where £(q,0) is the evidence lower bound (ELBO). In the EM algorithm, we first achieve 
the equality case of the Jensen's inequality by finding the argmaxq l(q,0) = po(z I x), and 
then we will maximize the ELBO w.r.t. model parameters 0. Note that in EM, we find 
the argmax of ELBO, and its maximum exactly. Now let's revisit the objective of our A 
approach (0 includes the parameters of all factors): 

L-1 r 

!Ex [ log [ L(0, softmax(A), X) ]] = !Ex [LL Alj log (]0/Xt, Xt+1))] 
t=l j=l 

L-1 r 
(A.3.8) 

= L lEx [ L A:j log (f0j(Xt, Xt+1))] 
t=l j=l 

Compare the last equation to ELBO in EM: 
l L r L IEx [IEq[log P0(Xt I Zt,~t-1)w(zt) ]) = L IEx [ L q(zt = j) log Po(Xt I Zt,~t-:1)1r(zt)] 

t=l q( ) t=l j=l q(Zt - J) 
(A.3.9) 

We should note that log (Joi ( Xt, Xt+l)) is a Log-likelihood under some factor. Also after E 
step where qt(Zt = j) = p(zt = j I x), then log Po(Xilz~;t:)i)1r(zt) = logpe;(Xt I Xt-1) is the 
log-likelihood under Zt = j. 
So the connection starts to become clear. The rows of our A matrix are the proposal densities 
q for different time steps. By imposing a softmax over the rows A, we constrain the entries 
in each row to sum up to one. In EM, at each time t, we require that ~;=1 qt(Zt = j) = 1. 
In EM, we compute the posterior exactly, and replacing that in ELBO, we exactly maximize 
the log-likelihood. However in the A approach, we do not compute the posterior and log-
likelihood exactly. We take gradient steps in the proper directions. In implementation of 
the A method, we do both of the E,M steps at the same time, and hence updating with 
SGD, could be considered as an approximation to exact EM. But more interestingly, our 
softmax approach which takes the softmax over the losses of r different factors at any time 
t as the weights, amounts to EM where we do the E step exactly and only leave the M step 
to gradient updates. This is because in E step we find the proposal density which satisfies 
qt(Zt = j) = p(zt = j I x), and since the posteTior p(zt = j I x) is propo1-tional to likelihood 
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p0 (x,z), computing the softmax over negative losses> results in the true posterior under the 
model parameterized by 0, and hence in this case we have obtained the optimal proposal 
density ql at each time. It is noteworthy to mention that our experiments with very long 
Markov chains demonstrate the effectiveness of the approximation of EM with A compared 
to using the softmax approach which does the Estep exactly. 
Thus while EM gives a more direct intuition on the latent variables of the model, we should 
keep this observation in mind> so that if required, we can translate them to one another and 
evaluate the performance of each method. 
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Appendix B 

Supplementary Materials for Object-Centric 
Causal Representation Learning 



B.1. Proof of theorem 1 
We want to compare the number of perturbations needed to disentangle shared properties 

with a standard encoder to those needed by an object-centric encoder. Our strategy will be 
as follows, 

(1) Setup a data generating process with multiple objects where injectivity holds by 
construction so that we can restate Theorem 1 from Ahuja et al. (2022b) to show 
they need k x d perturbations. 

(2) Define an object-centric architecture in terms of the object-wise partitions that we 
defined in Definition 1. 

(3) Restate an analog of Theorem 1 from Ahuja et al. based on the object-centric encoder. 
( 4) Theorem 1 in the main text will follow as a collary of the difference between the 

number of perturbations used in the two theorems above. 
We begin by defining a data generating process such that g(vecr.(Z)) is injective by 

construction. We can achieve this by appending an id, i, to each zi in Z, such that Z = 
{ zi EB [i]}f=1 where EB denotes concatenation, and then choosing g such that x depends on i 
(for example, each i could be rendered in a different color). Like Ahuja et al., we assume 
we have data that is perturbed by 6,. := { {8i,j}ff=1}f=1 , a set of 1-sparse perturbations that 
perturbs each of the d properties from each of the k objects. Taken together, we have the 
following data generating process (DGP), 

Z = {zi EB [i]}f=1 ~ lPz, x := g(Z) Zj,t := Zj + 8i/<f 8iJ E 6,., Xj.l := g({z1, ... ,zj,t, •.. ,zk}) 
(B.1.1) 

where each object has d shared properties, zi E JRd, and Z-i,j and zi',j are of the same 
type-e.g. position x, hue, etc.- for all j. As before, assume g is injective, and define 
g* = g(vecr..(Z)) where n* is the permutation that sorts Z by the index i, so that g* is 
injective by construction. 

Now, Ahuja et al. show that if the encoder, j : X -+ JRkd, is chosen to minimize the 
following loss, 

J E argminrEx,x',o [ (f'(x) + 6 - f'(x'))2] (B.1.2) 

and the following assumptions hold, 
Assumption 2. The dimension of the span of the perturbations in equation B.l.l is kd! 
'i.e., dim(span(t::,.)) = kd. 
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Assumption 3. a(z) := f o g*(z) is an analytic fimction. For each component i E 

{1, · · · , kd} of a(z) and each component j E {1, · · · , kd} of z, define the set Si,j = 
{0 I v'jai(z + b) = v'jai(z) + v'Jai(0)b, z E JRkd}, where b is a .fixed vector in JRkd_ Each 
set Sii has a non-zero Lebesgue measure in JRkd_ 

Then we have, 
Theorem 2 ((Ahuja et al., 2022b)). Assume we have data from the DGP in equation B.1.1 
and assumption 2 and 3 hold and the number of perturbations per example equals the latent 
dimension, m = kd, then the encoder that solves equation B.1.1 identifies true latents up 
to permutation and scaling, i.e. 2 = IIAz + c, where A E Rkdxkd is an invertible diagonal 
matrixr II E Rkdxkd is a permutation matrix and c is an offset. 

Proof. See Ahuja et al. for the proof. 

Now, consider an object-centric architecture encoder of the form F(x) ·- {f(xi)}x;EP 
where Pis an object-wise partition and f : X ]Rd_ Leto- E :E denote a. permutation of the 
latents from the set of all k-perrnutations. Let: 

(B.1.3) 

Note that since 8 is non-zero for only one pair of patches x(i), x(i)' and zero otherwise, the 
minimizer over :B is almost surely unique. Assumptions 4 and 5 are analogs of 2 and 3 above, 
but make reference to the dimensionality of the co-domain off rather than f. 
Assumption 4. The dimension of the span of the perturbations in equation B.1.1 is d, i.e., 
dim(span(~)) = d. 
Assumption 5. a(z) := fog*(z) is an analytic function. For each component i E {1, · · · , d} 
of a(z) and each component _j E {1, · · · , d} of z, define the set Sii = {0 I v'jai(z + b) = 
v'jai(z) + v';ai(0)b, z E IRd}, where b is a .fixed vector in JRd_ Each set Sii has a non-zero 
Lebesgue measure in ]Rd. 

With this setup, the following theorem follows directly from Theorem 2 as a reduction 
from the multi-object to single-object setting, 
Theorem 3. Assume we have data from the DGP in equation B.1.1 and assumption 4 and 
5 hold and the number of perturbations per example equals the latent dimension, m = d, then 
the encoder that solves equation B.1.3 for an object-wise partition P, identifies true latents 
up to permutation and scaling, i.e. z = IIAz + c, where A E Rkdxkd is an invertible diagonal 
matrix,. fl E Rk<lxkct is a perrnutation matrix and c is an offset. 
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Proof. Because P is an object-wise partition, the function that produces each xCi) E P is 
injective with respect to some Za(i) (i.e. one of the objec.t1s latents). Thus for each x(i), 

the solution to equation B.1.3 is equivalent to the single object setting with k = 1, and 
thus theorem 2 applies, which implies that f(xCil) = zi = ITAzi + c for all i. Now let 
z = vecrr( {.z,i}}=1). Because each Zi is identified up to a permutation, scaling and offset, and 
for any 1r, there exists a TI such that z = ITAz + c which completes the result. 

Corollary 1. If the asS'umptions for Theorem 2 and 3 hold and a data generating process 
outputs observations containing k objects with shared properties, then an object-centric ar-
chitecture of the form F(x) := {f(x(i)}x<ileP will disentangle in 1/k fewer perturbations than 
an encoder of the form f : X ----t ]Rkd. 

Proof. This follows directly from comparing the the number of perturbations required in 
Theorems 2 and 3. 

B.2. Background on slot-attention-based architectures 
Slot attention (Locatello et al., 2020b) is a neural network component that, intuitively, 

summa.rizes the relevant information in the input set (most commonly, image featmes with 
position embeddings) into a smaller set of so-called "slots". Each slot is a feature vector that 
can be thought of as capturing information about one "object" in the input set, which usually 
comprises multiple elements of the input set. This is done by repeating cross-attention 
between the inputs and the slots to compute per-slot updates. 

In the traditional set-up, these slots are then used to reconstruct the input with an 
auto-encoder objective: each slot is decoded into a separate image through a shared image 
decoder, which is followed by merging these per-slot images into a single reconstructed image. 
Ideally, slot attention is able to decompose the original image into distinct objects, each of 
which is modeled by a single slot. 

More concretely, slot attention takes as input a matrix X E JR.nxc with n as the number 
of inputs and c the dimensionality of each input. vVe also randomly initialize the slots 
z(o) E Rm.xd_ We start by computing the query, key, and value matrices as part of cross-
attention. 

Q(t> = z(t>wQ K = xw[( v = xwv (B.2.1) 
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This is followed by the normalized cross-attentiion to det rmin the attention map A E JRmxn 

then a GRU to apply this update to the slo s. 

A(t) = normalize(Q(l)KT) 

z(t+l) = GRU (z(t) A (t)V) 

(B.2.2) 

(B.2.3) 

The function normalize encourages slots to compete for inputs by applying a softmax 
over ~lots and normalizing the weight for each inpu to sum to one. fter T s ep the 
algorithm outputs z(T), a et of m embedding vector { z~T) }f:;,1 that can be u ed a input to 
a shared imag decoder. 
SA-MESH .. The specific version of slo attention we use in this paper is SA-MESH (Zhang 
e al. 2023). It makes regular slo attention more pow rful by giving it the ability to break 
ties be ween slots more ffectively. 1 In practice this improves the quality of th individual 
slot represen ations significantly due o less mixing of unrelated inpu s into the same slot. 

Th key difference with regular slot attention i that it features an entropy minimization 
procedure to approximate an optimal tran port elution which make the attention map 
par e. The connection to optimal tran port i made by the use of the standard Sinkhorn 

algorithm (Siukhorn and Knopp, 1967· Cuturi, 2013). 

MESH(C) = argmin H(sinkhorn(C)) 
C 

A (t) = sinkhorn(MESH( q(tlK T)) 

(B.2.4) 

(B.2.5) 

The optimiza ion problem is solv d by unrolling gradient descent with a noisy initialization 
to ensure hat ties are broken. 

B.3. Alternative perturbation mechanisms 
Dense vs. Sparse. We can have a number of assumptions on the perturbation mechanism 
and the nature of model's knowledge about hose mechanism . In the most general case, 
suppo M = { m1(-) m2(·) ... mk(·)} denotes the t of all pos ible perturba ion mechanisms. 
To obtain x' the perturbed variant of x we then selec a subset of k' ::; k objects as argets 
that undergo per urbations determined by a ubset of k' mechanisms M' CM from he set 
of all possible perturbation mechanisms. The correspondenc between th k' mechanism 
and k' perturbed objects is decided by a random permutation 1r("1, i.e. i = 1r("1[J] means 
that mechanism i governs the transition dynamics of object j to produce Z1,+1 (for objects 

1Concretely, it makes the mapping from the initial slots to he final slots exclusively multiset-equivariant 
(Zhang t al. 2022a) rather than permutation-equivaria.nt/set-equivariant. 
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that are not supposed to change from t t + l a dummy mechanism with index -1 can be 
assumed which results in no change). A mechanism mi(-) : JR.d ]Rd in Mis a vector-valued 
function that operates on object-wise true latents z{ and outputs zf+i = z{ + bi such that 
i = 1r['1[j]. Perturbation vectors c5i could be sparse or not. The subset M' can contain k' = k 
mechanisms to perturb all of the k objects in the environment, and if none of the k' = k 
resulting perturbations is sparse, we denote the set M' as fully dense perturbations, i.e., all 
of the properties of all objects will change from t t + l. M' can also contain at least 
one object but not all of them (l ::; k' < k) with sparse or dense perturbations, or it may 
consist of only a single object (k1 = 1) that is perturbed by a fully sparse mechanism, one 
that only alters a single property and leaves the rest unchanged. Vie denote this scenario as 
fully sparse perturbation. 

B.4. Matching 
Perturbations alter the properties of objects from t t + l and the model has to infer 

which object's properties were perturbed to update its representations and minimize the 
latent foss equation 3.2.1. But recall that the model ha8 no direct access to objects. It 
receives the observations at t,t + 1 and encodes each of them to a set of slots St, Si+i- These 
slots do not follow any fixed ordering, and moreover, there is no guarantee that each slot 
binds to exactly one unique object. Slots can also correspond to the background. Each 
pertmba.tion Jf changes the properties of some object zL so the model rnqnires to find a 

pair of slots (sf, sf+1) that are bound to object zi at t and t + l, respectively. Once the 
model figures out such a matching, then the fatent loss that results in disentanglement can 
be computed via the projections of these slots .z: 

(B.4.1) 

The problem of finding a correspondence between slot projections at t,t + 1 and the pertur-
bations is an instance of the 3-dimensional matching. We can use the following methods to 
solve this problem. 
Hungarian Matching. If the changes from t t + 1 are not dramatic, or the scene is not 
composed of exactly identical objects (same shape and color), then empirically we observe 
that more often than not, initializing the slots identically at t,t + 1 results in sets of slots 
that preserve the ordering from t t + 1. When this assumption is valid for many samples, 
our problem reduces to a bipartite matching of perturbations and slots for which the order 
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does not change for two consecutive steps. This bipartite matching can be accomplished via 
the Hungarian algorithm. Concretely, the cost matrix required by the Hungarian algorithm 
CH is an m x ISi matrix composed as the following: 

(B.4.2) 

i.e., each row consists of the squared errors of applying one mechanism ( corresponding to 
that row) to each slot (the columns). Hungarian algorithm finds an optimal assignment 
1r; of slot projections and mechanisms such that mi(-) is applied to MLP(s;i(i]) 1r.;[i] for 
i E 1, ... , m. Then the latent loss is computed as follows: 

in 

Lz = L llfz(s;i[i]) + o; - Jz(s;it 1)112 (B.4.3) 
i=l 

Note that in equation B.4 the summation index runs over object indices, but in equation 
B.4 it runs over the mechanism indices (same range, but slightly different meaning.) 
Double Matching via Constrained Linear Programs (CLP). Although Hungarian 
matching can work in many situations, there exist some cases where the assumption of 
preserved order of slots from t to t + l does not hold anymore. For instance in situations 
where there exist a lot of symmetries (i.e., same color for all objects), then slots' binding to 
object will face a higher degree of randomness, and thus, using Hungarian matching would 
result in very noisy gradients that hinder convergence. Or when the perturbations are not 
very local, i.e. two relatively distant objects swap their positions from t --+ t + 1, then we 
can no longer assume that slots obtained at t + 1 reflect the same binding to objects as slots 
that were obtained at t. 
In such situations we resort to a more accurate matching scheme that significantly reduces 
the noise slot-object bindings and speeds up convergence drastically for these corner cases. 
This method deals with the more difficult problem of 3-dimensional matching, and uses slots 
at both t,t + 1 to find the assignments, hence the name double matching. Recall that n}, 1r,t1' 
relate slots in St and mechanisms to the objects in Zt, respectively. Thus, the model at each 
step is required to jointly solve for these permutations at t,t + 1 to minimize the following: 

(B.4.4) 

Notice that we are effectively finding the correspondence between perturbations M' and 
pairs of slots (sLs{+1 ) for i,j E [1 : ISi], such that the pair of slots correspond to the same 
object as the one that is perturbed by the assigned mechanism. To find such assignments 
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we could construct an m x 1S12 cost matrix (1S12 denotes all the possible pairs of (stsf+ 1)) 

as follows: 

C [i 7"] = IIJA (ltU) + fi - !A (/•t+1U)) 112 CLP ,. z l t z l+l , i E [l : mj, j E [l : 1S12] 

kt(j) = u /ISIJ 
kt+i(j) = mod(j, ISi) 

(B.4.5) 

(B.4.6) 

(B.4.7) 

However, the assignment cannot be recovered by Hungarian matching alone. The reason 
is that there are constraints that need to be satisfied for a matching in this scenario to be 
valid. ote that for each row i (mechanism), the matched column index j determines the 
pair of slots that correspond to the same object at t,t + l, which is perturbed by mechanism 
i. Such assignments have to satisfy the following constraints: 

• Selected js for all rows should be such that no slot at time t is selected more than 
once as the first element of any slot pair, i.e. a slot cannot be the subject of two 
perturbations at any given t because each object fa affected by one and only one 
mechanism. 

• Selected js for all rows should be such that similarly, no slot at time t + l is selected 
more than once as the second element of any slot pair, i.e. a slot cannot be the 
outcome of two perturbations at any given t+ l because again, each object is affected 
by one and only one mechanism. 

Since any matching has to fulfill these constraints, it can no longer be treated as a simple 
bipartite matching solvable by the Hungarian algorithm. But we can still find an assignment 
as the solution of a constrained linear program (LP). We can define a binary m x 1S12 weight 
matrix W such that when multiplied element-wise by CcLP, masks all the entries that do not 
correspond to the matching by zero, and leaves the entries corresponding to the matching 
unchanged. Thus we can find the assignments simply by looking at the non-zero entries. So 
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to summarize, the matching could be found by solving the following Constrained LP: 

m 1s12 m 1s12 

minimize L L W 0 CcLP = L L Cmasked 
i=l j=l i=l j=l 

subject to W[i,j] E {0,1} 'ii,j 
m 

i=l jE{k,k+ISl,k+2ISI,--·} 
711 

(B.4.8) 

(B.4.9) 

Cmasked[i,j] = 1 'ik E [1: ISi] (B.4.10) 

Cmasked[i,j] = 1 \lk E [1 : ISi] 
i=l jE{klSl,klSl+l,klSl+2, ... } 

1s12 

L Cmasked [i,j] = 1 'ii 
j=l 

(B.4.11) 

(B.4.12) 

Equations B.4.10, B.4.11 make sure the constraints mentioned above are satisfied, and the 
last constraint makes sure each mechanism is exactly assigned to one pair only. Although 
solving this CLP provides an exact solution to our matching problem, we do not opt for 
a binarized W as it will result in a mixed-integer CLP, which is NP-hard, and in practice 
would become intractable fairly quickly as the number of slots increases ( I Sl2 dependence). 
Hence we will relax the constraint of equation B.4.9 to O W[i,j] 1 'ii,j to avoid any 
mixed-integer situation in the program. It is noteworthy to mention that although the 
relaxed CLP is significantly faster than the binarized version, it is still much slower than 
the Hungarian matching, despite our efforts to implement the constraints and the objective 
as parallel-friendly as possible. The bottleneck results from the constraints that we have 
introduced, but this is the price we need to pay to overcome those particularly hard cases 
with significant symmetries in the scene that otherwise could not be dealt with. As a matter 
of fact, even running Hungarian matching in those situations can still reasonably guide the 
latent representations toward disentanglement but it is for the evaluation of the predicted 
properties of all objects z against their true properties z that we absolutely require double 
matching via CLPs. 
Matching Fully Sparse Perturbations. Fully sparse perturbations not only tend to be 
a more realistic choice than fully dense ones, but also they result in a much easier matching 
scheme which significantly improves the efficiency of our method. ·when the model is pre-
sented with fully sparse perturbations, then the 3-dimensional matching reduces to finding 
the minimum element in a lD array of size 1S12 , where ISi is the number of slots. The reason 
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is that since only one property o,f a single object z: is being altered (and the model knows 
perturbations are fully sparse), the model can apply that I-sparse perturbation dt (or the 
transformed version in the unknown setting) to all of slot projections z{ for j E {l, ... ,ISi} 
at time t, and only find one pair of slots from the set of 1S12 possible pairs at t,t + 1, which 
correspond to the perturbed object: 

(B.4.13) 

However, this minimization can be made simpler if we use the slots obtained at t to initialize 
the slots at t + 1. This way, in practice, the order of slots at t,t + 1 is very likely to be 
preserved, not only since the slots at t + l are initialized with hints from t, but also the 
sparse perturbation makes it much easier for all slots to bind to the same object as only a 
small subset of the scene needs to be readjusted among tbe slots. Therefore the matching 
would reduce to a simple minimization over ISi elements: 

(B.4.14) 

Note however that we still would use all slot projections for evaluation, the only difference 
with this matching scheme is that gradient signals are only propagated from the perturbed 
object (as they also should, since there is no change in other slots, there is nothing there to 
be learned that helps disentanglement.) 

B.5. Further Experimental Results 

B.5.1. 2D Shapes 

Tables B.l,B.2 extend our results under unknown fully sparse perturbations on the 2D 
shapes dataset to more combinations of disentanglement target properties. We can observe 
that our results stay very close to the upper bound on the achievable performance which uses 
a supervised linear regression from slot projections .z to ground truth latents z. These tables 
highlight once again how big of a role the injectivity assumption plays in achieving identifi-
cation with conventional encoders that ignore the object-centricity of the environment (see 
the performance drop from CNNt to CNN, where the latter drops the unrealistic injectivity 
assumption). 
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Table B.1. Linear Disentanglement (LD) scores on 2D shapes test set under unknown fully 
par e perturbation . All result are averaged over 3 se d except tho e requiring to train 

SA-MESH from cratch that were trained only once. SA-LR achieves a score of 1.0 in all 
setting . 

Px,Pv color Px,Pv shape 

Model n=2 n=3 n=4 n=2 n=3 n=4 
Ours 1.00 ±0.01 0.98 ±0.01 0.99 ±0.00 1.00 ±0.01 1 o.98 ±0.01 1 o.99 ±0.01 

SA-RP 0.77 0.61 0.60 0.71 0.68 0.70 
SA-PC 0.97 0.98 0.99 0.80 0.66 0.87 
CN t 1.00 ±0.00 0.99 ±0.01 0.98 ±0.00 1.00 ±0.00 1.00 ±0.00 0.99 ±0.00 
C 0.35 ±0.00 0.15 ±0.00 0.07 ±0.01 0.32 ±0.01 0.15 ±0.01 0.11 ±0.01 

Px ,Py ,color ,shape 
Model n=2 n=3 n=4 
Ours 0.99 ±0.00 0.98 ±0.01 0.99 ±0.00 

SA-RP 0.69 0.73 0.60 
SA-PC 0.74 0.75 0.52 
CI t 1.00 ±0.00 0.99 ±0.01 1.00 ±0.00 
CNN 0.40 ±0.00 0.21 ±0.00 0.11 ±0.00 

B.5.2. 3D Shapes 

Quantitative Results. Tables B.3 B.4 extend our results under unknown fully sparse per-
turbations on the 3D hape dataset to more combinations of di entanglement target prop-
erties. Again, we can observe he applicability of our m hod to this more comp[ex 3D 
dataset hat contains artifacts related to depth, occlusion and lighting, to name a few. 
Again our re ults sta very los to the upper bound on the achievable performanc which 
uses a supervised linear regTe sion from slot projections z to ground truth latents z. 
Qualitative Results. Figures B.1-B.3 illustra e the learned disen angled (object-centric) 
representation . Each figur show a sequ nee of 3D samples evolving over 5 tep (shown 
on the left), and how the learned representations respond to the perturbations (shown on 
the right). Perturbations include changing the object's Px Py, colour,¢ (rota ion). The 
model u ed here is rained wi h 3 slo s, and h learned representa ion are the res 1lt of a 
projection layer learned through our weakly-supervi ed method applied to 64-dim n ion.al 
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Table B.2. Permutation Disentanglement (MCC) scores on 2D shapes test set under un-
known fully sparse perturbations. All re ult ar av raged over 3 eed excep those r quiring 
to train SA-MESH from scratch that were trained only once. SA-LR achieves a score of 1.0 
in all settings. 

Px,Py color Px,Pv shape 

Model n=2 n=3 n=4 n=2 n=3 n=4 
Ours 1.00 ±0.01 0.95 ±0.05 0.97 ±0.02 o.99 ±0.01 I o.99 ±0.01 1 o.99 ±0.01 

SA-RP 0.74 0.60 0.60 0.66 0.63 0.59 
SA-PC 0.87 0.89 0.90 0.83 0.81 0.89 
CN t 1.00 ±0.00 0.99 ±0.01 0.99 ±0.01 1.00 ±0.00 1.00 ±0.00 0.99 ±0.00 
C 0.55 ±0.01 0.35 ±0.01 0.24 ±0.01 0.52 ±0.02 0.33 ±0.02 0.28 ±0.02 

Px ,Py ,color ,shape 
Model n=2 n=3 n=4 
Ours 0.99 ±0.01 0.98 ±0.01 0.99 ±0.01 

SA-RP 0.54 0.68 0.55 
SA-PC 0.64 0.63 0.57 
CI t 1.00 ±0.00 0.99 ±0.01 1.00 ±0.00 
CNN 0.61 ±0.00 0.43 ±0.00 0.30 ±0.00 

Table B.3. Linear Disentanglement (LD) scores on 3D shapes test et under unknown fully 
parse perturbation . All re ult aP averaged ov r 3 e d except tho e requiring to train 

SA-MESH from cratch that wer trained on[y once. SA-LR a hieve a scor of 1.0 in all 
se ting . 

Px,Py size P. ,Py ,color ,rotation 

Mod 1 n=2 n=3 n=4 n=2 n=3 n=4 
Ours 0.98 ±0.01 0.98 ±0.01 0.98 ±0.00 0.98 ±0.00 0.97 ±0.01 0.98 ±0.01 

SA-RP 0.61 0.62 0.53 0.59 0.54 0.55 
SA-PC 0.78 0.84 0.78 0.70 0.72 0.69 

object-cen ric representations. The projection maps each slot from Iffi.64 IR4 i.e., the 
disentangl men arget space. In .figures B.1-B.3 the 4 dimension of such projections for 
obj ct lot are pre ented ov r 5 t ps, i. . -ach et of coloured lin how the volution 
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Table B.4. Permutation Disentanglement (MCC) scores on 3D shapes test set under un-
known fully sparse perturbations. All re ult ar av raged over 3 eed excep those r quiring 
to train SA-MESH from scratch that were trained only once. SA-LR achieves a score of 1.0 
in all settings. 

Px Py siz,e Px Py color rotation 

Model n=2 n=3 n=4 n=2 n=3 n=4 
Ours 0.96 ±0.02 0.96 ±0.05 0.96 ±0.03 0.98 ±0 .. 01 0.98 ±0.02 0.97 ±0.01 

SA-RP 0.60 0.57 0.52 0.55 0.51 0.49 
SA-PC 0.87 0.90 0.86 0.73 0.76 0.74 

of the projection of a slot corresponding to the object with he same colour. Please refer 
to the figures for details of he perturbations. Las ly, we have kept the number of objects 
in he e scene to wo for clarity of the presentation however ables 3.3, 3. , B.3 B.4 how 
that we achieve similar performances with other sets of properties and number of objects in 
the scene. 

B.5.3. Comparison of Sample Efficiency 

Figure B.4 demonstrates the ample efficiency of our object-centric model compared to a 
ResNe tha • achieves disen anglement with an inje tive DGP. Both models are trained with 
varying number of training samples that contain n = 4 object for which Px,Py colour shape 
ar the disentanglement target properties. Since we sample 1-sparse perturbations uniformly 
the training dataset size could be thought of a a proxy for the number of differen pertur-
ba ion a given configuration of objects would encounter. Although according to theory, the 
injectiv Res et should require at least n times more perturba ions to identify the latents up 
to affin€ transforma ions we observe that the advantage of our object-centri model in terms 
of sample effici ncy i much more pronounced in practice. Our m hod can achieve lose to 
perfect disentanglement wi has few as 100 training samples, while an injective Res et takes 
100 times more samples to raise o a comparable performance. This highligh s the practical 
importance of exploiting the inherent se tructure of object in a scene for representation 
learning. 
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Fig. B.1. (Left) From top to bottom, each step perturb the Px coordinate of the red object 
by 0.2 in the gr01md-truth latent space, (Right) which is refle ted (through an affine trans-
form) as a linear increase in P.-i; while the rest of the properties for both objects remain the 
ame demonstrating that the learned representations are indeed di entangled. In generating 

these amples camera has some non-zero angle w.r.t. the origin, therefore perturbations in 
the x dir ction appear as vertical displacements. 

B.6. (Known) Dense Perturbations 
We consider the known perturbations when the vectors c5t for all objec s are fully dense. 

Known spar e perturbation are ju ta simpler in tance than unknown spars perturbation' 
for which we presented successful results in section 3.7. Table B.5 B.6 how the perfor-
mance of our model compared to the baselines when the disentanglement target properties 
ar obje ts Px,Py coordinates. Table B.5 i a particularly hallenging case where all proper-
ties other than Px,Pv are kept fixed even the colour. Therefore the objects look completely 
identical and are only placed in different parts of the scene and the mode[ should iden ify the 
true positional la ents up to irrelevant ransformations based on fully dense perturbations. 
Such perturbation could totally alter the obj ct arrangem nt from t tot+ 1 owe cannot 
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Fig. B.2. (Left) From top to bottom, the objects are perturbed a follow ; Red: Downward 
per urbation so it sits at the same x coordinate a the Blue cube (1-2), Rotates counter-
clockwise along the z-axis to be at the same orientation as the Blue cube (2-4), F\1rther 
downward perturbation (2 time the displacement from tep 1 to 2). Blue: Rotate coun-
terclockwis along the z-axis (4-5). (Right) Note how the learned representations mapping 
correctly reflects the similar posi ions and rota ions in the ground-truth i.e., both by having 
proper ie of obj cts. coincide a h same valu and by pre erving the ratio of perturbations. 

rely on Hungarian matching wi h approximate gTadients to recover the true latents as it 
re ult in a very un table training. Therefore, thi situation highlight how identical objects 
are not jus a theoretical inconvenience and how a set treatment of the e obje ts result in 
disentanglemen . U ing the constrained linear program defined in B. and the disentangle-
ment procedure from (Ahuja al. 2022b) we can iden ify the po itional properties as shown 
in table B.5. 
In table B.6, we show the results for when objects are allowed to only differ in colour. This 
i a simpler ca e wh re if we order object according o some ord ring (not a realistic as-
umption) th nan injective Conv t could recover the true latents ( ee the row for CNNt). 
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Fig. B.3. (Left) From top to bottom, the object are pertmbed as follow • Since the object 
change colour, let us call the red cube in the top frame to be object 1 and the blue one 
to be object 2. Object 1: The colour is perturbed to be equal to object 2 (1-2) loves 
to the right as its Py is perturb d by 0.2 (2-3), The colour hue is once again per urbed to 
b come purple (3-4). Object 2: Move toward right (perturbation in Py by 0.2) to be at 
the same y coordinate as objec 1 (1-2) The colour hue is decreased so now the colours of 
objects 1 2 are wapped (2-3). Moves by 0.2 in they dire tion to align with he other objec 
once again (3-4), Change its colour hue twi e the previous colour perturba ion with the 
opposi e sign to match he colour of the othe1· object (4-5). (Right) Red curves correspond 
to object 1 and th blue curves correspond to object 2. o-ain no ice he sections where the 
curv s coincide a well as the ratio of jumps in th prop rtie showing consi tency of the 
learned representations with the ground-truth causal representation tha gives rise o these 
observations. 

Although we show our method works under (known) dense perturbations, here exist a num-
ber of sources of non-iden ifiabili y which r nder this scenario les feasible, in addi ion to the 
fact hat the a umption of having all object hange propertie is not so reali tic. Below is a 
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Fig. B.4. Comparing the disentanglement performance of an injective ResNet vs. our 
object-centric method based on the number of training samples. The dataset contains fom 
2D objects in which Px,Py,colour,shape can vary. 

number of scenarios in which the matching has no way of identifying the correct assignment 
and fails: 

• If two or more perturbations are identical or have close norms, then the matching 
procedure has no way of assigning the correct perturbation to the correct object's slot, 
which results in obtaining wrong gradients and hinders identification. The sensitivity 
of the matching procedure depends on the dimensionality of the perturbations, as 
well as the permissible perturbation steps (i.e., for discrete properties). Therefore, 
further fine-tuning of the cost matrix is required to prevent numerical issues when 
two or more norms are close. Identical perturbations which are more likely in lower 
dimensions and higher number of objects would still be impossible to distinguish. 

• Due to the same reason, objects that are not perturbed at all from t to t + I would 
be confused because they induce the same b = 0 in the cost matrix. There exist ways 
to tackle this problem such as identifying the objects that remain the same using 
slot attention decoder masks, and then removing all such slots from the matching 
procedure. However, such tricks would only make the method more complex, and 
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are tangential to the point we wish to mak in thi study. With spars perturbation 
however we do not care about any zero mechani ms as we are only after a ingle pair 
that minimize he predic ion rror norm. 

• Since the number of slot is arbitrary and always more than the number of objects, 
it is possibl that more than one slot binds to h same object. A duplicate slot 
can confuse the matching procedure into assigning two different perturba ions ( cor-
r sponding o two different objects) o two duplicat slots that bind to th same 
object. Thi i becau e the cost matrix only operat s on he norm of differential . 
Such incorre t assignments will then propagate and cause the matching to fail for 
the rest of he object as well which results in incorre gradi n s. With sparse 
p rturba ions we do not n d to deal with such issu s as only finding one slot that 
minimize he error norm suffices whe her it i a duplicate slot or not. 

• With dense perturbations., it is quite likely that the scene drastically changes from t 
to t + 1 ther fore, i would b increasingly difficult to obtain the same ord r of slots at 
t t+ 1 given the same initialization, hence, olving the constrained linear program for 
finding the optimal matching becomes inevitable which is not ideal due its imposed 
computational burden. On the other hand full sparse perturbations reduce such 
heavy computation to a fast and simple arg min operation over an array of size ISi 
on average. 

Having a synthetic dataset where all object proper ies as well as the perturbations can be 
carefully tuned has been particularly helpful in the early stages of this study when identifying 
non-identifiability sources. 

Table B.5. Disentanglement scor sunder known mechanisms and fully dense perturbations 
when the target properties are Px Py and objec s are identical i.e., all have the same colour 
shape size, and rotation angle. 

LD 1cc 
Model n=2 n=3 n=4 n=2 n=3 n=4 
Ours 0.99 0.94 0.92 0.99 0.97 0.96 

SA-RP 0.19 0.07 0.06 0.28 0.15 0.12 
SA-PC 0.40 0.20 0.13 0.36 0.25 0.17 
C N 0.31 0.15 0.07 0.44 0.32 0.24 

SA-LR 0.43 0.25 0.16 0.50 0.36 0.23 
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Table B.6. Disentanglement scores under known mechanisms and fully dense perturbations 
when he targ t propertie ar P:r.:,Py and objec are not identical, i.e., have different color 
(but have the same hape size, and rotation angle.). 

LD 1cc 
Model n=2 n=3 n=4 n=2 n=3 n=4 
Ours 0.96 0.90 0.87 0.98 0.94 0.93 

SA-RP 0.1 0.07 0.05 0.16 0.15 0.08 
s -PC 0.16 0.18 0.10 0.18 0.30 0.18 
CN t 0.99 0.97 0.98 0.91 0.95 0.97 
C N 0.25 0.12 0.07 0.39 0.27 0.21 

SA-LR 0.44 0.24 0.17 0.47 0.31 0.24 

B. 7. Implementation and Experimental Details 

B.7.1. SA-MESH Architecture 

For the slot a tention architecture, we closely follow Loca ello e al. (2020b), in particular, 
we use the same C N encoder and decoder as hey use for CLEVR except for the initial 
resolution of the spatial broadcast decoder with 3D shapes where we use 4 x 4 since we are 
dealing with 64 x 64 image . We u e a slot size of 64 and alway use n + l number of slots, 
where n is the number of objects in the scene. We use 3 i era ions for the recurren updates in 
SA-MESH. For details concerning SA-MESH we follow Zhang t al. (2022b). Addi ionally, 
we al o truncate the back.propagation through lot update a ugge ted by Chang et al. 
(2022) to improve training stability. 

B. 7.2. Disentanglement Heads 

SA-MESH output n + I slots that are of ize 64 yet we n ed to proje t ach of these 
lots o a d-dimen ional space so we can leverage the disentanglement method from Ahuja 

e al. (2022b). We can simply achieve this projection by a single MLP, however we decided 
to allocate more parameters for thi projection and use d epara e projection heads mapping 
64-dimensional vector to d separate scalars. This way identification of different properties 
will no affect one another due to model capacity constrain s. We s ack the layers shown in 
table B.7 to obtain a projection head per each property. The same set of d proj ctions will 
be shared among all lot . 
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Table B. 7. Layers in a proje ion head for disentanglement. 

Layer Input Size Output Size 
Linear (1) 64 32 
Linear (2) 32 32 True ReL 
Linear (3) 32 16 Fal e ReL 
Linear (4) 16 1 False ReL 

B. 7.3. ConvNet Baseline 

As a baseline for injective scenarios, we use a ResNet18 with an output width of 128 that 
is pas ed through LeakyReLU activation, which i then followed by d linear projection head 
(for the same reason we use separate disentanglement heads) that map the 128-dimensional 
output of the CNN encoder to d separate !-dimensional scalars that should correspond to 
the target d-dirnensional space. 

B. 7.4. Training 

For each n and for ach set of disentanglement target properties we first train SA-MESH 
for 2000 epochs with a batch siz,e of 64 for 2D shapes (as the images are 128 x 12 )) and 
128 for 3D shapes (since imag s ar 64 x 64) on a single AlO0 GPU with 40GB of memory. 
W us d a fixed schedule for th 1 arning rat at 2 x 10-\ and w u ed AdamW with a 
weight decay of 0.01 along with E = 10- /31 = 0.9 {32 = 0.999. SA-MESH was firstly solely 
trained by minimizing for recon truction error on the training et, then its di entanglement 
performance was repor ed on the tes e for proje tion-based baselines (RP, PC, LR). Due 
to the high number of combinations of target disentanglement propertie and n, we just 
trained SA-MESH for each configuration only once. 

nsupervised disentanglement with our method has an additional stage which takes the 
aforementioned pre-trained SA-MESH models and jointly minimizes the reconstruction and 
the latent lo s. Note that at this stage, the SA-MESH model is not frozen, so the gradients 
flow through its network as well and help adjust he slo representations with the signal 
from the la ent los . nder known perturbation we us the actual perturbations from the 
DGP to guide the model by optimizing the total loss however under unknown perturbations 
setting we replace all perturbation by a hyperparameter C (see section 3.5). 
CN baselines were trained similar to SA-MESH but for mu h shor er, i.e. 200 epochs, and 
u ually converge very fast in less han 50 epochs. 
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B.7.5. Hyperparameter Optimization 

We started around the hyperparameters used by Locatello et al. (2020b) and Zhang et al. 
(2022b) where applicable, and tuned on small subsets of the 2D shapes training data based 
on linear and permutation disentanglement metrics. We considered 5 values for the learning 
rate [2 x 10- 3 ,2 x 10- 4 ,10- 4 ,6 x 10- 5 ,2 x 10-5]. Larger batch sizes were always better and we 
were only constrained by memory in the case of 128 x 128 images of the 2D shapes dataset. 
We considered 2 values [0.1,0.5] for JCJ, the fix value representing all unknown perturbations, 
and found JCJ = 0.1 to perform better. We also considered slot sizes [64,128] on a small 
subset of the 2D shapes training dataset. Lastly we considered 9 combinations for the 
relative importance of latent loss and reconstruction loss when training the disentanglement 
heads, i.e., we considered all combinations of WJatent E {l, 10,100}, Wrecons E {1, 10,100}, 
and found the combination of Wrecons = 100, W1atent = 10 to strike the optimal balance 
between maintaining good reconstructions and allowing the slot representations to give rise 
to disentangled projections. 

B.7.6. Datasets 

2D Shapes. We use pygame engine (Shinners, 2011) for generating multi-object 2D scenes. 
Object properties in both datasets include Px,Pu, colour, shape, size, and rotation angle. In 
the 2D dataset: 

• Px,Pu are generated randomly and uniformly in the [O,l] range, i.e., the boundaries of 
the scene, such that no two objects overlap and no object falls even partially outside 
the boundaries. Positional coordinates can be perturbed by ±0.2. 

• For colour, we use RSV colour representations and fix saturation (S) and value (V) 
at 0.6 and choose hue (H) from a set of values predefined before training (for instance 
[0.0, 0.25, 0.5, 0.75]). We adopted this 1-d representation to be consistent and have 
each property be represented by a scalar. Additionally we wanted to test the model's 
capacity when dealing with mixed discrete (colour, shape) and continuous (Px,Py, 
size, rotation angle) properties because the theory does not prevent us from doing so. 
Also, training Slot Attention or SA-MESH with discrete colours is computationally 
advantageous since the model will not have to deal with reconstructing all colours. 
However it should be noted that HSV is a cylindrical geometry with colour hues 
being the angular dimension which results in values that have a distance of 1.0 being 
exactly the same colour (given a fixed saturation and value). That is why a list of 
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colour hues such as [0.0, 0.33, 0.66, 1.00] would not work since 0.0 and 1.0 are the same 
colour, yet our model interprets the difference as a perturbation with the amount of 
1.0, which is clearly wrong. A change of colour from colour i to .i where i,.i index 
the list of colour hues H would be provided to the model as a perturbation in the 
amount of (H[j] - H[i])/IH[, where [Hf denotes the number of colours in H. 

• Shape is also clearly discrete and is selected at random uniformly from the following 
set of shapes S = { circle, square, triangle, heart, diamond}. Note however, that the 
effects of perturbations need to be visible in the pixel space, and we should b,e wary 
of the disentanglement target properties, and for instance if the rotation angle ef>t is 
a property we aim to disentangle with perturbations, then we should exclude circle 
from the set of possible shapes as it does not reflect in the pixel space the angle 
perturbations. A shape transformation from shape i to j where i,j index S, would 
be provided to the model as a perturbation with the amount of (j - i) /ISi. 

• Size is a continuous property in the range [0.12, 0.24] of the height or width of the 
image which is 1. It can be perturbed by ±0.02. 

• Rotation angle is also another continuous property in [0, 1r / 4]. Similar to colour 
hues, since this property is also angular, we have limited the range not to encounter 
situations that appear the same in the pixel space but have very different rotation 
angles ( a square that is rntated 1r /2 clockwise seems unaltered, or 1r / 4 and 31r / 4 
rotations both look the same for a square.). Angular perturbations are ±0.2. 

We generate samples in pairs corresponding to t,t + l. For fully dense perturbations, we 
generate n vectors of dimension d, where n is the number of objects. We repeat the gen-
eration until the conditions of non-overlapping objects and non-identifiability are met, i.e., 
no two objects at eiither t or t + 1 should overlap (before and after the perturbations), no 
object should fall in whole or partially out of the scene, and no two objects should be per-
turbed by d-dimensional offsets that are closer than some €. The last condition is necessary 
for fully dense perturbations as otherwise the matching has no way of distinguishing which 
perturbation to assign to which object since the matching solely relies on the difference 
between t,t + 1. For fully sparse perturbations, we are not constrained by the latter, and 
we only need to choose perturbations that do not push the chosen object out of bound-
aries, or make it overlap with another object. For any experiment we can have a subset 
of {Px,Py,colour, shape, size, rotation angle} as the properties we wish to disentangle by ob-
serving perturbations in the pixel space, and we call them disentanglement target properties. 
In the generation process, any non-target property will be fixed for all objects in the whole 
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dataset to avoid introducing unwanted variance to the disentanglement of target properties, 
i.e., if we choose {Px,Py,colour, shape, rotation angle} as target properties, then all the objects 
in all samples would have the same fixed size. Lastly, we can choose to make a DGP injec-
tive or not. If we choose to make a DGP injective, we would index the objects and choose a 
property to be set for objects according to the indices, i.e., we can choose to make the DGP 
injective by colour; Suppose n = 4 and the list of our colour hues is [0.0, 0.25, 0.5, 0.75]. Vie 
would colour the objects, which are now ordered according to some index set I, according to 
I. The rest is as before, non-target properties ( excluding the injectivity imposing property) 
will be kept fixed for the whole dataset, and target properties are generated according to 
fully dense or fully sparse perturbation schemes. The perturbations to all properties are 
signed, and this is especially crucial for discrete properties such as shape. The reason is 
that disentanglement is achieved through observing relative distances in the pixel space, and 
having only positive or only negative perturbations deprives the model of having a reference 
for each property. 
For training we generate 1000 pair per target property such that the model on average sees 
at least 500 samples for either positive or negative perturbations to each property, i.e., if 
we choose {Px,Py,co1our} as target properties, we will generate 3000 samples for training. 
The validation and test sets always have 1000 samples. For the 2D dataset, we generate 
128 x 128 images for better visual quality that is not distorted due to artifacts caused by 
perturbations. Vie then normalize and clip the image features (RGB values) to be in [-1,1] 
range. 
3D Shapes. For generating the 3D datasets we leverage kubric library (Greff et al., 2022) to 
obtain realistic scenes which we can highly customize. Objects sit on a floor, a perspective 
camera is situated at (2.5, 0, 3.0) and looks at (0.0, 0.0, 0.0). Directional light illuminates the 
scene from (LO, 0.0, 1.0) towards the center. The set of possible target properties are similar 
to 2D shapes, and the range of properties in which each object is spawned is as follows: 

• Px,Py are generated randomly and uniformly in the [-1.5,1.5] and [-1.0,1.0] ranges 
respectively, such that no two objects overlap and no object falls even partially outside 
the boundaries. Note however, by overlap we mean that objects are spawned such that 
they mutually fill a volume in the 3D space, and w,e only prevent such occurrences, 
but we do allow occlusions from the perspective of the camera, which adds to the 
complexity of this synthetic dataset. posz is never a disentanglement target property 
and is always set such that objects sit on the floor (except when rotated). The reason 
for fixing the z coordinate is that any possible perturbation to the 3D coordinates is 
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always going to be interpreted on a 2D scene that is observed by a camera that is 
placed somewhere above the floor. Therefore, introducing a third coordinate in the 
DGP and target properties has no point. Positional coordinates can be perturbed by 
±0.3. 

• Colour is similarly parameterized by a scalar in HSV format as in 2D. 
• Shape can be any of { sphere, cube, cylinder, cone}. Again, since the effects of per-

turbations need to be visible in the pixel space, and we will not use spheres if the 
rotation angle <!>t is a property we aim to disentangle with perturbations, as sphere 
rotations do not reflect in the pixel space. For rotation in the 3D space we choose 
the z-axis as the axis of rotation so that angular perturbations are maximally visible 
(w.r.t. the perspective camera's location). 

• Size is a continuous property in the range [0.3, 0.7] and can be perturbed by ±0.15. 
• Rotation angle follows the convention of 2D shapes DGP, except that the rotations 

are around the z-axis for better visual quality. 
Since images are already generated by high fidelity using the kubric library, we use 64 x 64 
images to lower the computational burden of SA-MESH autoencoder. The number of samples 
is always fixed at 20,000 regardless of the target properties since the 3D dataset is more 
complex. We use a similar transformation as in 2D, and normalize .and clip the image 
features (RGB values) to be in [-1,1] range. 
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Appendix C 

Supplementary Materials for Reusable 
Slotwise Mechanisms 



LPIPSx100..J.. 7.88 15.32 9.36 13.72 8.43 

Step 10 

Step 49 

Fig. C.1. Ablation studies in OBJ3D. The original de ign of RSM always demon-
strates th dominant performance and th accurately predicted futur frames compared to 
the modified version including breaking the 1sages of th CCI in st p 2 (RSM 12) and step 3 
(RSM 13 ) randomly electing mechanisms (RSMk) and parallelly slots updating (RSMp)-
Best view in video format. 

C.1. Reproducibility 
Each experimen i rained on 4 AlO0-GPU with 12 CP s, using a distributed data-

parallel training strategy. The number of parameters and the average training time over 
5 run ar ummariz d in Tab. C.1. In addition, Tab. .2 provides th n cessary config-
mations to reproduce our work including h setting related to datasets and th training 
process that follows the prior work \i\ u et al. (2023), and RSM s design that achieve the 
bes tuning resul s. 

Regarding th rollout frames K and th vid o 1 ngth V in Tab. .2 w pr diet and 
con ider K future frames from the la t burn-in teps for training, whereas we produce the 
total of V frames in the inference time including T burn-in and V - T rollout steps. In 
other words, V equals T plus the actual rollout frames in the infer nee time. Regarding th 
training proce s, we employ the Adam optimizer with an initial learning rate of 2 x 10- 4 and 
employ the decay cosine schedule to 0. We further discuss the RSM design in Appendix C.3. 

C.2. Dataset Collection 
We follow the collection and pre-processing of the dataset, including video length and 

th dataset splits, as don by \i\Tu t al. (2023). In addition we provid th g neral datas t 
visualization in Fig. .2 and the visualization of templates in PHYRE in Fig. C.3. 

OBJ3D We collect the OBJ3D dataset from the official GitHub repository 1. 

1https://github.com/zhixuau-lin/G-SWM##data,sets 
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Algorithm 1 Reusable Slotwise Mechanisms 
N: number of slots 
M_: number of mechanisms 
T: numbe1· of burn-in frames 
K: number of rollou st p • 
d,: slot dirnen ion 
dcci: central contextua] information djmen ion 
Input: s~':v1 = {sLT+ 1 , s;_.,.+1 , ... , sf...,+ 1 ... , sf, sl, ... , sf'} E lR{.,-xN)xd. with r• = t - T + 1: unrolled N slots 
of the previous T st ps to tirn t 
Output: s}t'i,r+ 1(: predicted N lot in th next K step from time T + 1 to T + I< 
Variables in RSM 

• cci E JR"cci: the Central Cont xtual Information (CCI). 
• s;' E JRd•: the lot of intere t whjch i lot nt" at time t. 
• p E !RM: th Gumbel distribution over M choices of selecting mechanisms_ 
• ~s;' E !Rd•: changes of the slot nth from ime t to t + l. 

Components in RSM: 
• W q Wk W v : rn:_d. IRd• denote query key, and value projection layer transforming the unrolled s;-1;'1 in 

the attention m clhanism. 
• MultiheadAttention(·) : IR((.,-+ 1) xN)xd. apply self-attention on th s;'!'; 1 

• efi(·) : ]Rd• JRd«i computes he cen ral cot textual information by pas ing the ou puts of he 
MultiheadAttention(,) thrnugh a nonlinear transformation ( 1ILP). 

• 7/J(·) : JRd~ci+d. IIR1''1 comput s the unnormalized probability of sel cting a mechanism from M possibl choices 
by taking the CI and slot of interest as input and feeding that to an MLP. 

• et of M mechanisms gj( •) : JRd«;+d, j E {l ... M}: predict the changes of each slo based on the CCI 
and current state of the slot. These are al o realiz d with MLP . 

for each t in [T ... t + I<) do 
Step 0: Prepare slots buffer 
s;'.N,_ = concat(s;'. ,t, st'N) E R((T+I) ><N)xd, 

for each s;:' in !'N with n E 1 ... N do 
Step 1: Compute the central context 
cci = </>(MultiheadAttention(Wq(s~':' 1+1) Wk(s~'·,i+il, Wv(s~;;~i+ 1))) 

Step 2: Select a mechanism for slot sf 
p = Gumbel-max('ljl(concat(cci, sr )) 

Step 3: Apply the selected mechanism to slots;', Note that p is one-hot-like distribution . 
.6.st'j = 9i(concat(cci s}')) * 'r/j E {l, ... M} 
.6.st = EJ;,,1 .6.s;"i 

Step 4: Update the slots buffer with the new value of s~+i 
sf+1 = s~ + 6sf 

end for 
end for 167 
return s} f 1 :T+K 



Table C.1. Summary of the number of parameters and training duration. M' stands for 
millions. h) stand for GP how-. 

RS 1 NPS SwitchFormer SlotFormer 

OBJ3D 
um. Params 0.76 0.99M 0.821\11 0.82M 

Training Duration 21h 25h 20h 21h 

CLEVRER 
um. Params 3.lM 4.06M 3.22 1 3.22M 

Training Duration 2h 94h 72h 6h 

PHYRE 
um. Pa.rams 5.13 1 5.98M 6.3 M 6.38M 

Training Duration 29h 33h 28h 3Oh 

Physion 
um. Params 5.61 6.7M 6.41NI 6.41M 

Training Duration 32h 41h 30h 34h 

CLEVRER In this work w directly download th CLEVRER dataset from th official 
websit 2. 

PHYRE In his work, we explore the PHYRE-lB version that defines the amount of 
the red ball as 1. The PHYRE dataset is generated by the instructions provided from the 
official GitHub pag 3. 

Physion W directly download the Physion dataset from the official GitHub page4 

C.3. Implementation Details 

C.3.1. Loss Functions 

The following is the training objective that follows the prior work (vVu et al. 2023). 

2cI 'VI' ,r.csail.mit.edu/ 
3github.com/faccbookrescarch/phyre 
4github.com/cogtoolslab/physics-be11chmarking-ncurips202l#downloading-the-physiou-da ·as t 
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Table C.2. Summary of experiments co11fig1ua ion including the configuration of datasets 
training proc s, and RS 

OBJ3D CLEVRER Physion PHYRE 

Frame Size 64 X 64 64 X 64 128 X 128 128 X 128 
um. Slots 6 7 6 8 

Slot Size d.s 128 128 192 128 
Burn-in Frame T 6 15 15 1 
Temporal Window T 6 15 15 6 
Rollout Steps K 10 10 10 10 
Video Length V 6+44 15+42 15+35 1+14 

Batch Size 128 128 128 64 
um. Epoch 200 80 25 50 

Object-centric fodel SAVi SAVi STEVE SAVi 
Loss Weight A 1.0 1.0 0.0 0.0 

um. Mechani ms NI 7 7 5 5 
um. Layer of (·) 1 2 2 2 
um. Layers of Mechanism 1 3 3 3 

We employ slot reconstruc ion loss to train he rollou future frames prediction as de-
cribed in Eq. C.3.1 with n i lot ind x ST+k i the pr dieted rollout slot and Sr~k is the 

pre-trained slot ( hat is used as he target slot). 

(C.3.1) 

Experiments using SAVi as he object-centric model also use the image reconstruc ion loss, 
as des ribed in Eq. C.3.2 with !dee as frozen decoder and XT+k is the ground truth image. 
Experiments u ing STEVE a the object-centric model can still employ the image recon-
struction loss· however, we do not conduct such experiments with image reconstruction loss 
d 1e to the dramatically extended training time. In PHYRE, we do not utiliz the image 
r construction los £ 1 due o th large image size that ould affect the training time and the 
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Step= 0 6 12 18 24 30 36 42 48 

OBJ3D 

Step= 14 18 22 26 30 34 38 42 46 

CLEVRER 

Step= 10 15 20 25 30 35 40 45 50 

Physion 

Step= 1 2 3 4 5 6 7 8 9 

PHYRE 

Fig. C.2. Dataset visualization over steps. 

Fig. C.3. Pairs of PHYRE scenes in the same template with similar objects in the 
background and differences in objects' positions. 

simplicity of PHYRE's object compared to other environments in this work. 

l K 2 
£1 = ]{ I:)fdec(sr+k) - XT+kll 

k=l 

(C.3.2) 

The overall objective function is the weighted sum of the above losses, as presented in Eq. 
C.3.3. 

(C.3.3) 

Note that when using slot and image reconstruction losses as presented in Eq. C.3.1 and 
Eq. C.3.2, the model will fail in the end-to-end training since the overall objective function 
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is constrain d to pr -trained slots (s*'!r+k) and well-trained decoder (!dee(·)). Motivated by 
this ob. erva ion, in Appendix C.5 we provide the end-to-end training objective to compare 
RSM and oth r approaches' abilities in object ·' dynamics mod ling from scratch. 

C.3.2. Model Architecture 

The distinction among methods is in the process of predicting the next state based on 
the provid d input of past tates. In hi ection we provide a detailed description of how 
both the baselines and the proposed RSM approach the task of the next state prediction. 
Specifi ally we examine two key spects: (1) how slots communicate with each other and (2) 
the precise value to be predicted as revealed hrough he design specifics of each method. 

C.3.2.1. Baselines. SlotFormer (Wu et al. 2023) SlotFormer consi ts of 3 main parts: 
(1) he Multi-Layer Perceptron (MLP) input projection layer (2) a Transformer architec ure 
layer, and (3) the MLP output projection layer. Firs , the unrolled past state (the s quence 
of T x N lots) are pass d through th input proj ction lay r b for b ing proce d by 
th- Transformer model. Afterward the output projection produces the next state from the 
Transformer's output. Through his process slots densely communicate with each other in 
all 3 parts of SlotFormer. In addition, the entir n xt state of slots i dir ctly generat d by 
the models. In this work w utilize the public implem ntation 5 of SlotFormer. 

SwitchFormer from Switch Transformer (Fedu e al. 2021) The Switch Tran former 
is a variant of the Transformer architecture designed o improve efficiency and scalabili y. 
I achiev his hro 1gh th usag of dynamic routing and adaptive computation. This 
archit cture mploys a "switch~ modul that intelligently rout s tok ns to differ n layer 
based on heir content. 
In this work, we create SwithFormer that integrates the Switch Transformer implementation 6 

into the SlotFormer codebase and replace the vanilla Transformer by Switch Transformer. In 
this way, SwitchFormer follows the same strateg as SlotFormer, which conducts the dense 
communication among slots and directly predicts the entire next s ate of slots. 

NPS (Goyal et al. 2021a) NPS is a framework tha combine neural networks and 
production sy terns for object modeling that integrates neural network into the production 
system. In traditional production sys ems rules are used to represent knowledge and guide 
the system's behavior. In the case of NPS they conduct as t of rules to handle the pair-wise 

5github.com/pairlab/SlotFormcr 
6nn.labml.ai/ rausfonners/swiLch/index.hLml 
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interaction of lots. The two slots involved in an interaction, which ar named th primary 
and contextual slots ate selected through attention mechanisn . In addition the official 
d sign of NPS for object dynamics' modeling, inspir d by I<ipf e al. (2020) predicts the 
changes of the primary lot wi hin a time step instead of the entire slots. Afterward the 
predicted next state of slots is the um of the mrent state and the pr dieted slots changes. 
In this work, we integra e the official NPS 7 to the SlotFormer's codebase for consistent 
in the training pipeline and sharing th pre-trained obj ct-centric model. NPS con is s of 
an MLP slots encod r that require a fixed input size· therefor at th beginning of the 
rollout predi tion process of PHYRE which environment has the actual temporal window 
size increases from 1 to 6 we duplicate the burn-in frame to have a fixed 6 steps window 
siz along th rollout proc ss. 

C.3.2.2. RSM. We design RSM as a framework for dynamic modeling wi h a relaxed 
inductive bia in th communi ation d nsity of lots hat enables a subset of lots involved 
in communication, based on a particular context through the CCI. RSM con i ts of 3 main 
elemen s as described in Sec. 4.2.l: (1) the multi-head self-attention tha computes he CCI, 
(2) th '!f(·) that stimat s the suitabl m chanism and (3) a Ii t of m chanisms. Int rms of 
the multi-head self-attention, We employ a 4-head architecture for multi-head elf-attention, 
where the hidden size of the Feed-forward etworks is set to 2 x d8 . We de ign 'tf;( ·) a 
MLP with the numb r of hidden layers b ing tuned (Se App ndix C.4.3). imilarly, ach 
individual m chanism is design d as MLP lay rs with a tun d numb r of hidden lay rs. All 
mechanisms share the same architecture but have separate weights. In addition the total 
param ters from all mechanisms are constrained to be similar across different amounts of 
mechani m meaning that as he number of allocated mechanisms in reases the ize of each 
mechanism decreases (fur her inve tigated in Appendix C.4.3). Like NPS, the mechanism 
predicts the changes in a slot wi hin 2 consecutive step instead of the entire slot. Last 
but not least, we (and NPS) omit the input and outpu projection layers of SlotFonner and 
Swi tchForrner. 

C.3.2.3. Downstream tasks. CLEVRER VQA model Inherit from baseline (\iVu et al. 
2023) we mploy Aloe as the VQA model tha concatenates he predicted rollout slots and 
the processed question (represented as language tokens) before passing through a tack of 
Aloe Transformer encoder to predict the an wer. 

7 github.com/auiruclh9119/ucural_production_systems 
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Physion VQA model In the VQA task of Physion, the objective is to determine whether 
the red object will come into contact with the yellow object once the dynamics of all the 
objects have been completed. Since the task does not involve any language processing, we 
construct an MLP model that takes the rollout slots as input. The MLP processes these 
slots and produces a binary prediction, indicating whether the red object and the yellow 
object or not ((touched" and "did not touch" each other. 

PHYRE Readout In the PHYRE action planning task, an action involves determining 
the size and position of the red ball. In our approach, we utilize the set of 10,000 predefined 
actions introduced by Bakhtin et al. (2019) and train a readout model to determine if a given 
action can solve the task. To construct the readout model, we draw inspiration from Wu et al. 
(2023) that designs a 2-layer MLP model on top of the encoded states. The readout model 
takes the predicted rollout states as input. To process these states, we employ an encoder, 
which differs depending on the specific model variant used. In SlotFormer, a Transformer 
is used, while in SwitchFormer, a Switch Transformer is employed. An MLP is used as the 
encoder in the NPS model, and a Multi-head Self-Attention mechanism is utilized in the 
RSM model. Once the states have been processed by the encoder, the classifier generates a 
binary output that indicates whether the task has been solved or not. This output serves as 
an inference for the task's solvability. 

C .4. Further Discussion on Experiment Results 

C.4.1. Future Roll-out Prediction 

In Fig. 4.3, we provide the upgraded version of Fig. 4. 2 with the exact the same prediction 
results but with significantly higher dpi ( dots per inch) in plotting the predicted frames. 
Despite leveraging pre-trained slots and object-centric models, RSM effectively maintains 
visual quality by predicting the changes of slots instead of predicting the next state of a slot 
instead of the entire slot. This approach allows RSM to handle action-free scenarios well and 
significantly reduce error accumulation by facilitating null transitions (predict zero changes 
of the slot) that preserve slot integrity. 

Fig. 4.2 depicts the rollout frames generated by RSM alongside the baselines. Notably, 
RSM excels in producing robust future frames that accurately capture the dynamics of 
objects while maintaining visual fidelity. Nevertheless, we have encountered a challenge 
in generating objects with sharpness within the CLEVRER dataset. SlotFormer marks a 
partially incorrect object's dynamics in this case. 
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Fig. C.4. Th eating of RSP-I parameter with different amount of mechanism . 

C.4.2. Discussion on the Action Planning task in PHYRE 

\\~ en ounter d diffi ultie • in r produ ing the a ion planning re ult of Sl Former. even 
wh n u ing tl ir provi ed ch ckpoint . In able 4.3. we report he iid re ul of 76.4 for lot-
Former, which is 5.6 point lower han the officially reported value. To inYe tigate thi i ue, 
we explored potential rea on and identified • he follo" ing po sible factor : ( 1) In tability of 
result : The official GitI-Iub page of lotFormer' acknowledge tha the re ults in his specific 
ta k ma, exhibit in tability. Thi ugge s that achieving con i ent and reproducibl re ults 
wi h lotFormer can be challenging, and (2) Data discrepancies: The PHYRE data et. be-
ing regenera ed rather han downloaded from a common ource introduc varia ions in the 
computing configura ion. These datn callee ion and processing differences may con ribute 
to th di pari ie ob rved betwe n our re ult and the official reports. 

C.4.3. Finetuning Results in RSM 

In Figme .4.3. we present the re ult of l perp rame er fine-tuning on CLE ER 
aud Ph sion da a ets. Thi section explore the impa of he nun ber of mechanisms. the 
e}._1>ansion of ( ·) param ters, and the tructur of th mechanism mod l . The term number 
of layer in this anal si refers o he hidden layers within the MLP tru ure that map the 
input dimen ion to the ou pu dime ion in the re p ive model . 

In terms of h numb r of m chanisms, w hav observed ha having i her a larg or 
a mall valu for i\I ignifican ly war n h re ult. and 1 ads to high arian . How v r, 
we have a o di overcd that the asks can be olved with relativ ly few mechanism . even 
when d aling wi h diver obj moYement . To va.lida e th de ign prin iple ated in 

github.com/pairlab/SlotFormer 
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Fig. C.5. The finetuning results in CLEVRER and Physion. Th first box of ach 
,.ubplot ·s the configuration that 8.chieves the best performa11ce whereas other boxe .. a.re 
p • rformance hat has a different number of mechani m . layer of th mod 1. or layer 
of ea h m bani m from he b . ttiug. Th plotted value ar th mean and standard 
d • viation ov r 5 different run corr ponding to each configiu-ation. ee tex"t for more detail . 

ppendix C.3.2.2. which propo an inver e relationship between the nu ber of the mech-
anism's parameter and the number of mechani ms, Ke conducted experiment with named 
JO*. wh.i hr pl.i ate m chani rn o achi ve a total of O mechani ms without redu ing the 
numb r of parameters, a· compared to the be t con.figtu·ation ( h firs boxe '). Om findings 
indicate that the replicated con.figura ion (10*) achieves a lightly lower core han th best 
configur tion, and th additional mechanism ar not ele ed by he (·) models. 

In erm of h number of layer in 'I/(·). the challeno-e is o map a 2 x d. vector to 
a ompact vector of siz H. Our finding ugge t that using 1 or 2 hidden lay rs yi lds 
favorable r ults in term of achieving a high score. How ver, ,ve find a complication in 
identifying consistent pattern for fine-tu11ing 0( ·) acros different datase . 

La tly, "·hen con idering the m chani m ru ture we hav notic d hat increasing th 
number of param ter allows a ingl mechanism to achi v a moderat ly d cen cor , 
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although not a high score. Consequently, the 'l/J(·) model has a tendency to choose only 
one mechanism for all cases, resulting in a lower score when assigning 5 or 7 layers to the 
mechanism. 

C.4.4. Ablation Studies 

Fig. C.l provides the visualization that supports the ablation studies in Sec. 4.4.5 in the 
main text. 

C.5. Experiments on End-to-end Training Pipeline 
Vve propose an additional experiment to verify the methods' ability to model objects' 

dynamics from scratch, additionally, in action-conditioned environments. We establish an 
end-to-end training pipeline that comprehensively assesses the models' effectiveness in the 
entire process of extracting slots from frames, handling the objects' action-conditioned dy-
namics, and finally decoding slots back into frames. 

RSM generally demonstrates the dominant ability to model objects' dynamics and pro-
duce meaningful slots compared to the baselines. 

C.5.1. Experiments Setup 

Environment: This dataset consists of objects arranged in a 5 x 5 grid. At each time 
step, a single frame and an action are provided. The action specifies one object and one 
manipulation from the set of UP, RIGHT, DOWN, and LEFT. The challenge of this task is to 
determine the feasibility of the given action and predict the resulting frame. For example, 
an action of moving an object to the LEFT is executable if no objects are obstructing the 
left side of the target object. Otherwise, the frame remains unchanged. 

Encoder and Decoder architecture In this experiment, we follow the encoder pro-
posed lby Kipf et al. (2020) that contains a simple CNN-base Object Extractor to extract 
input frame to N feature maps and MLP-base Object Encoder to encode feature maps to vec-
tor space, i.e. the object slots. Afterward, we propose a Decoder architecture for slot-based 
visual prediction, consisting of N Slot Decoders with separate weights. Each slot is decoded 
into an RGB reconstruction, and the final frame reconstruction is obtained by summing the 
reconstructions of all slots. 

Training Objective This experiment foHows the Contrastive loss setup as Kipf et al. 
(2020) that uses the prediction result of the transition model to form the positive hypothesis, 
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whereas, sampling random input states in the same batch to form the opposing hypothesis. 
The target slots, st}=f', are obtained by passing the target next frame through the Encoder, 
whereas, sf:f represent the predicted slots, and s£'N indicates the random slots in the training 
batch. 

Contrastive Loss : .C = H + max(O, 1 - H) 
(C.5.1) 

We consider the sum of two BCE loss terms in training Decoder, £ 1 and £ 2 . £ 1 is applied on 
x~, obtained by passing sz'N through Decoder, which is expected to close to the input frame 
Xt- £ 2 is applied on x;,+1, obtained by passing s}:f through Decoder to achieve the prediction 
of next frames reconstruction, which is desired to close to the target next frame Xt+i. 

x~ = Decoder(sI:N), = Decoder(s~~n 

£1 = BCE(x;, :r;t), £2 = BCE(x;+1, xt+1) 

BCE Loss: £Decoder= £1 + £2 

C.5.2:. Experimental and Analytical Results 

Step= 
Action= 

0 1 2 3 4 5 
5-R3-U 2-L 1-U 5-D -

Gold 

RSM 

e, Mech=LEFT 

•, 

•, Mech=UP 

(C.5.2) 

Fig. C.6. Observation of mechanisms assignment and performance in 5 rollout steps in 2D 
Shapes. In the last three rows, we present the reconstruction by only changing 1 slot with 1 
mechanism applied to that slot over 5 steps, while all other slots are untouched. 

Disentangling objects' transition to mechanisms In Figure C.6, we study the role 
of each mechanism in RSM. The analysis shows that RSM produces a reasonable reconstruc-
tion compared to the ground-truth frame and encourages the mechanisms to distinguish 
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Fig. C. 7. Comparison of extracted feature maps from a scene and reconstructions in 3D 
Cubes. RS:.l deals with object slots better than baseline in both slots extracting and slots 
decoding phases. 

themselves in their roles. In this sample, we can infer the 5 slots corresponding to: 1: red 
round, 2: blue triangle. 3: green square. 4: purple round, and 5: yellow triangle. Likewise, 
we observe from the mechanism assignment i11 each step and list the role of each mecha-
nism (5 mechanisms in this experiment) specialize as in the following aclions: :).Iechanism 
1: RIGHT. :Mechanism 2: UP. Mechanism 3: LEFT. Mechanism 4: DO NOT MOVE. and 
Mechanism 5: DOWN. 

Looking deeper into the reconstruction result, RSi\l takes advantage of the CCI to assign 
a suitable mechanism for each slot in all scenarios. considers the particular situation. and 
reacts differently to the same action. For instance. we observe that with the same action 
UP given in step 1 on the green rectangle and step 3 on the red round, RSivl recognizes the 
situations that the object is allowed to move and blocked by the upper wall, respectively, 
then applies the movement at step 1 \Yhile not modifying objects at step 3 and generating the 
correct reconstruction in both cases. v\"e can see a similar example in the row of mechanism 
2 at step 3 ---t 4 when the green object does not move UP and remains at the same position 
since the red object blocks it. 

The ability to decompose frame into slots "\Ve analyze RSf\I's slot-centric represen-
tation ability. In Figure C. 7, we illustrate a comparison of the extracted feature maps with 
a size of 10 x 10, which are constructed bv the Encoder model and the reconstructed slots 
and frame "ith a size of 3 x 50 x 50. acquired by the SlotDecoder models that receive the 
input as the predicted next state. \i\·e find that RS:.I decomposes in the input frame into 
separated slots and keeps each object in the same slot until the decoding phase. In contrast, 
the baselines do not capture all objects but produce noised feature maps (SlotFormer and 
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Fig. C.8. Reconstruction comparison on 3D Cubes dataset 

SwitchFormer), or put the same object in two slots and identify two objects in another slot 
(NPS). 

We observe that combining the CCI with the sequential updates that encourage slots 
to observe the modification of each other benefits from recognizing the overlap of objects. 
More specifically, RSM only generates a pa.rt of the object in case that object is covered by 
another one (e.g. the green and blue cubes in slot 2 and slot 4 are partially covered by the 
yellow cube). On the other hand, the baselines overlook the condition of executability of 
action and generate overlapped objects in some cases (e.g. the green, blue, and yellow cubes 
in SlotFotmer overlapped with each other). Lastly, SwitchFormer produces blurry objects 
and incorrectly predicts objects' dynamics. 

Reconstruction in 3D Cubes One of the challenges to generating reconstructions in 
3D Cubes is to recognize the visibility order of objects. Figure C.8 exposes RSM's strength 
in communication among slots to obtain the order information, as well as generate the proper 
movement of slots and achieve an accurate reconstruction compared to the ground truth. In 
contrast, SlotFotmer misses that kind of information from the beginning steps and renders 
the blue and green objects inside each other. Besides, other methods lose the information 
about some objects and produce a not completed reconstruction at the end, witnessing a 
huge gap from the following steps to step 10. 

C.6. Limitations and Future Works 
While RSM has demonstrated its robustness for modeling objects' dynamics in various 

tasks in both iid and OOD settings, there is room to expand this work due to the following 
limitations: 
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(1) Sensitivity to Hyperparameters: RSM requires tuning the number and size of mech-
anisms. Future research could explore automated methods for determining optimal 
values, and enhancing RSM's adaptability across tasks and scenarios. 

(2) Environments in this study are all observable. Future work should explore a larger 
range of observable and unobservable environments for more insights. 
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