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Résumé

Dans les annales de I'Intelligence Artificielle (IA), la quéte incessante pour émuler la cognition
humaine dans les machines a sous-tendu I’évolution technologique, repoussant les limites du
potentiel humain et des capacités de résolution de problemes. L’intégration de I'IA a catalysé
des progres remarquables, pénétrant divers domaines et redéfinissant des industries.

Cependant, un défi demeure imperturbable : I'obstacle de la généralisation hors de la
distribution (OOD). Alors que I'IA triomphe avec des données familieres, elle échoue avec
des données en dehors de son domaine d’entrainement. En santé, en finance et au-dela, les
limitations de I'TA entravent 'adaptation a des scénarios nouveaux. Cette lacune découle de
I’écart entre les schémas appris et les caractéristiques causales et invariantes sous-jacentes,
entravant l'adaptabilité a des scénarios inexplorés.

Cette these franchit des étapes significatives pour aborder cette question en innovant et
en exploitant des méthodes issues de 'apprentissage de structure causale et de représenta-
tion. Le parcours commence par un algorithme novateur d’apprentissage de structure, les
“Reusable Factor Graphs”, qui tire parti des biais inductifs issus de la causalité et de la
cognition humaine pour une meilleure généralisation. Ensuite, en explorant 'apprentissage
de représentation causale, nous découvrons des représentations désenchevétrées centrées sur
les objets en utilisant une supervision faible basée sur une connaissance partielle de la struc-
ture causale des données. Ces connaissances se conjuguent pour préconiser l'apprentissage
conjoint de la structure causale et de la représentation. L’architecture proposée, les “Reu-
sable Slotwise Mechanisms” (RSM), relie théorie et pratique, démontrant une promesse réelle
a travers ses représentations centrées sur les objets et ses mécanismes causaux réutilisables.
Cette fusion offre une solution potentielle pour surmonter les limitations de la généralisation
OOD en IA.

Mots-clés: apprentissage automatique, apprentissage profond, apprentissage de repré-
sentation causale, apprentissage de structure, mécanismes causaux, généralisation hors de la

distribution, apprentissage centré sur les objets, représentations désenchevétrées






Abstract

In the annals of Artificial Intelligence (Al), an enduring quest to emulate human cognition in
machines has underpinned technological evolution, driving the boundaries of human potential
and problem-solving capabilities. The integration of Al has catalyzed remarkable progress,
infiltrating various domains and redefining industries.

Yet, a challenge remains unshaken: the hurdle of out-of-distribution (OOD) generaliza-
tion. While Al triumphs with familiar data, it falters with data outside its training realm. In
healthcare, finance, and beyond, Al's limitations hinder adaptation to novel scenarios. This
deficiency arises from the gap between learned patterns and underlying causal and invariant
features, hindering adaptability to uncharted scenarios.

This thesis takes significant steps toward tackling this issue by innovating and leveraging
methods from causal structure and representation learning. The journey begins with an
innovative structure learning algorithm, Reusable Factor Graphs, leveraging inductive biases
from causality and human cognition for improved generalization. Next, delving into causal
representation learning, we uncover object-centric disentangled representations using weak
supervision from partial knowledge of the causal structure of data. These insights synergize
in advocating joint learning of causal structure and representation. The proposed Reusable
Slotwise Mechanisms (RSM) architecture bridges theory and practice, demonstrating real-
world promise through its object-centric representations and reusable causal mechanisms.
This fusion offers a potential solution for tackling OOD generalization limitations in Al

Keywords: machine learning, deep learning, causal representation learning, structure
learning, causal mechanisms, out-of-distribution generalization, object-centric learning, dis-

entangled representations
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Shapes. In the last three rows, we present the reconstruction by only changing 1
slot with 1 mechanism applied to that slot over 5 steps, while all other slots are
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Comparison of extracted feature maps from a scene and reconstructions in 3D
Cubes. RSM deals with object slots better than baseline in both slots extracting
aitl Sl01s HerBing BRHAEEE, . ooy im0 0 S S A R S R s SR 418 178

Reconstruction comparison on 3D Cubes dataset..........ccovviiviiniiiiiinnnn. 179

21






List of acronyms and abbreviations

General Al
Al

ML

DL

NN

BN

FC

MLP
CNN/ConvNet
RNN

ReLU

LSTM

GRU

i..d.

OOD

MSE

SGD

DGP

Adam
Methodology
RFG

RSM
TD-RFG
DAG

CGM

ICP

SCM

Artificial Intelligence

Machine Learning

Deep Learning

Neural Network

Bayesian Network

Fully Connected (layer)
Multilayer Perceptron
Convolutional Neural Network
Recurrent Neural Network
Rectified Linear Unit

Long Short-Term Memory
Gated Recurrent Unit
independent and identically distributed
Out-of-distribution

Mean Squared Error
Stochatic gradient descent
Data Generation Process

Adaptive Moment Estimation

Reusable Factor Graphs

Reusable Slotwise Mechanisms
Time-Directed Reusable Factor Graphs
Directed Acyclic Graph

Causal Graphical Model

Invariant Causal Prediction

Structural Causal Models
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GST

ICA

EM

VAE

LP

CLP

LR

RP

PC

GNNs

LD

MCC

CCI

HSV
VQA

HD
Models
SA

MESH
SA-MESH
SAVi
SAVi-Dyn
STEVE
NPS
C-SWM
ResNet
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CLEVR
CLEVRER
PHYRE

Global Workspace Theory
Independent Component Analysis
Expectation-Maximization technique
Variational autoencoder
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Constrained Linear Programs
Linear Regression

Random Projections
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Graph Neural Networks

Linear Disentanglement

Mean Correlation Coefficient

Central Contextual Information

A colour encoding using Hue, Saturation, Value instead of RGB

Visual Question Answering

Hamming Distance

Slot Attention

Minimize Entropy of Sinkhorn

Slot Attention augmented with MESH

Slot Attention for Video

SAVi angmented with Transformer-LSTM dynamics module
Slot-TransformEr for VidEos

Neural Production Systems

Contrastively-trained Structured World Models

Residual Networks

Compositional Language and Elementary Visual Reasoning
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Introduction

Throughout history, the pursuit of Artificial Intelligence (AI) has been fueled by an unwave-
ring human fascination with recreating intelligence in machines. The ambition to replicate
human thought processes and decision-making within algorithms has driven AI’s evolution,
transcending generations and shaping technological paradigms. From the visionary aspira-
tions of early computer scientists to the transformative applications of today, the quest for Al
has been underpinned by the desire to amplify human potential, augment problem-solving
capabilities, and forge connections between human cognition and machine operation. In
recent years, the progress of Al has been nothing short of remarkable, permeating various
facets of our lives and revolutionizing industries ranging from healthcare to transportation.
State-of-the-art Al systems have astounded us with their abilities to diagnose diseases from
medical images, translate languages with human-like fluency, and even defeat world cham-
pions in complex games. As Al has advanced, the fields of Machine Learning (ML) and
Deep Learning (DL) have emerged as pivotal paths in this journey, each contributing dis-
tinct dimensions to the realization of intelligent systems. Machine Learning, nestled within
the AI framework, represents a paradigm shift that pivots away from traditional rule-based
programming. Instead, it empowers algorithms to learn patterns and relationships from
data, adaptively refining their performance over time. This adaptive learning capability has
bestowed ML systems with the capacity to tackle complex problems, ranging from language
translation to fraud detection, by discerning patterns that might elude conventional pro-
gramming approaches. ML’s versatility and ability to extrapolate insights from data have
elevated it to a cornerstone of modern Al, facilitating predictive modeling, classification,
clustering, and more. Within the realm of Machine Learning, Deep Learning emerges as a
subset that stands out for its remarkable aptitude in handling complex, high-dimensional
data. Inspired by the architecture of neural networks in the human brain, Deep Learning
models consist of multiple layers that hierarchically extract intricate features from input
data. This hierarchical feature extraction enables DL models to excel in tasks like image

recognition, natural language processing, and even playing strategic games. The success



of Deep Learning stems from its capacity to automatically learn hierarchical abstractions,
capturing nuanced representations from massive datasets.

Yet, even within this era of triumphs, a persistent hurdle remains: the challenge of out-
of-distribution (OOD) generalization. While Al systems excel when presented with data
that resembles their training samples, they often falter when confronted with inputs that
deviate even slightly from their training distribution. This phenomenon, known as out-of-
distribution generalization, highlights a fundamental limitation of contemporary Al models.
Out-of-distribution generalization encapsulates the limitation of Al systems to adapt to new
or uncommon situations that differ from their training data. Imagine a model trained to
recognize faces under perfect lighting conditions. When exposed to low-light or obscured
images, its performance plummets, revealing the fragility of its training. This deficiency in
adapting to novel instances stems from the fact that Al systems are often bound by the pat-
terns they have learned during training that do not necessarily correspond to the underlying
causel and invariant features of interest, failing to generalize effectively to new and unfore-
seen data points. For more examples, consider a self-driving car trained on clear, sunny day
scenes. When confronted with foggy or rainy conditions, the car’s ability to perceive obs-
tacles and make informed decisions might significantly degrade due to its lack of exposure to
such conditions during training. OOD generalization challenge poses significant implications
across various sectors. In healthcare, models trained on specific patient populations might
fail to provide accurate diagnoses for individuals with unique medical conditions. In finance,
Al systems optimized for normal market conditions could prove ineffective during unexpec-
ted economic fluctuations. Addressing the challenge of out-of-distribution generalization is
imperative for unlocking the full potential of Al in diverse real-world scenarios.

In this thesis, we embark on a journey to address the central challenge of out-of-
distribution generalization through the lens of causal structure and representation learning.
Our research is fueled by the understanding that effectively learning causal relationships
and building robust representations could offer the key to bridging the gap between Al's
performance on known data and its adaptability to unforeseen scenarios. After a brief intro-
duction to the foundations required to grasp the rest of the thesis in Chapter 1, in Chapter
2, we start by studying causal structure learning in the form of reusable factor graphs to
learn the reusable relationships among causal variables, assuming the availability of the lat-
ter. The latter assumption is then relaxed in Chapter 3 where we shift our focus to causal
representation learning by leveraging weak assumptions on the causal structure. The results

of chapters 2 and 3 then converge into a practical proposal in Chapter 4 for joint causal
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structure and representation learning in various challenging real-world tasks, enabling the
generalization of performance to unseen distributions.

The first article (Chapter 2) proposes an innovative structure learning algorithm named
Reusable Factor Graphs and navigates theoretical waters and tests them on synthetic envi-
ronments. The goal is to find an efficient way for leveraging crucial inductive biases from
both causality and higher-level human cognition into structure learning for better genera-
lization. These inductive biases include the principle of independent causal mechanisms,
modularity and reusability of such mechanisms, and the sparsity of their input space. This
work enhances the sample efficiency of structure learning by successfully showing how we
can exploit the reusability of causal mechanisms and thus opens avenues for more effective
causal discovery.

In the first article, we assume access to causal representations and leverage their temporal
changes to uncover a (reusable) causal structure. However, the availability of such causal
representations is far from guaranteed. Thus, in the second article (Chapter 3), we pivot
our focus to the realm of causal representation learning, effectively revisiting the challenge
posed in the first article. Crucially, this work also departs from the traditional assumptions
of causal representation learning and embraces the idea that natural phenomena often re-
volve around objects and their interactions and proposes an algorithm, for the first time, to
learn object-centric disentangled representations, as opposed to monolithic fixed-size vector
representations. This work harnesses weak supervision derived from partial and incomplete
knowledge of the underlying causal structure inherent within observations to learn causal
representations. We also demonstrate how embracing the object-centricity of the natural
world can lead to significant sample efficiency gains for learning such representations.

These articles interact in a complementary manner, setting the stage for the third and
our concluding paper. The first article starts by assuming access to causal representations,
which are used to infer the causal structure. In contrast, the second article takes a different
approach and deals with the challenge of learning causal representations in the presence of
scarce knowledge of the causal structure in the form of weak supervision. The synergy of
these insights suggests a promising avenue—a direction that naturally emerges as both facets
of the problem find their respective resolutions, and that is the joint learning of the causal
structure and representation given the gathered insights on how they enable one another.

Finally, the third article (Chapter 4) bridges theory and practice by introducing the
Reusable Slotwise Mechanisms (RSM) architecture. Through joint learning of object-centric

representations and leveraging the reusability of causal mechanisms, RSM demonstrates
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promise in real-world scenarios. The culmination of these articles emphasizes the potential

for merging causal structure and representation learning to tackle the challenge of out-of-
distribution generalization.

Contributions

Contributions of this thesis encompass a threefold exploration into the realm of out-of-
distribution generalization. The first contribution, presented in the initial article, introduces
the Reusable Factor Graphs algorithm, highlighting an effective means to integrate key induc-
tive biases from both causal understanding and higher-level cognitive processes into structure
learning. The second contribution, represented by the subsequent article, proposes a pio-
neering approach to causal representation learning, uncovering object-centric disentangled
representations sample efficiently by leveraging weak supervision. These two contributions
collectively contribute to the overarching goal of augmenting the existing generalization
capabilities of current deep learning methods, therefore, they merge seamlessly in the third
and concluding article, where the Reusable Slotwise Mechanisms (RSM) architecture bridges
theory and practice. Through the joint learning of object-centric representations and reu-
sable causal mechanisms, this work holds potential for real-world application. Collectively,
these contributions carve a path towards addressing the challenge of out-of-distribution ge-
neralization, harnessing insights from causal structure and representation learning to push
the field forward.

Personal Contributions.
(1) Structure Learning of Reusable Factor Graphs
e The inception of the idea of RFG should be credited to Kartik, however, the final
version of RFG, and TD-RFG is the result of discussions between me and Kartik
e [ implemented and ran all the experiments (including hyperparameter search)
with the exception of those resulting in figures 2.6, 2.7
e | produced and analyzed all the plots except for those in figures 2.6, 2.7
e [ established the connection to EM and wrote the corresponding section.
e [ came up with how to infer the number of factors when it is unknown, using soft
Hamming Distance.
e | co-authored the paper together with Kartik.
(2) Object-Centric Causal Representation Learning
e | did the literature review surrounding object-centric learning and methods to
use alongside Ahuja et al. (2022a) for disentanglement.
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e [implemented an extensive and scalable codebase for the fast generation of nume-
rous variations of both the 2D and 3D datasets, each designed to probe a specific
aspect of our method and explore the possible failure modes. The datasets used
different engines, therefore there was little transfer of code from one to another,
and I carried out both from scratch.

e | implemented all the baselines, and our disentanglement method based on Slot
Attention (SA) and SA-MESH. Then ran all the experiments with known and
unknown perturbations, with various combinations of parameters, as well as the
hyperparameter search. This was achieved due to the expansive codebase I had
written for swift integration of different models and datasets.

e | extensively and meticulously troubleshooted the failure modes of our method
resulting in crucial theoretical insights about the necessary conditions on the
perturbations.

e | came up with three solutions to address the problem of matching, implemen-
ted them, extensively compared their run-time complexities and performance
in various settings, and carried out the experiments with the fastest and best-
performing algorithm.

e | produces all the plots, figures, and result tables.

e [ wrote all of the paper with the exception of these sections: 3.3, 3.4, B.1

e | co-authored the rest of the paper together with Jason, Yan, and Kartik.

(3) Reusable Slotwise Mechanisms

e [ did the literature review surrounding object-centric learning and dynamics mo-
deling and the baselines NPS, C-SWM.

e | implemented an extensive and scalable codebase for swift prototyping of various
models in conjunctions with different datasets. However, the implementation of
the final version of RSM and fitting that alongside baselines in the codebase 1
provided, was done by Trang.

e | oversaw the smooth conduction of the experiment, providing frequent imple-
mentation and troubleshooting feedback to Trang. The troubleshooting includes
delving into low-level details of coding, and suggesting experimentation to probe
the various aspects of the model.

e The final version of the RSM algorithm was the result of discussions among
myself, Dianbo, Kartik, and Yoshua.
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I provided guidance regarding the implementation and usage of object-centric

methods.

Trang and I produced figure 4.1.

Throughout the various stages of the project, I mentored Trang in implementa-
tion, writing, presenting results, co-authoring author rebuttals for our submission,
as well as presenting Trang with the ideas and math behind RSM and guiding

her in realizing those in practice.

I wrote the Introduction, Related Work, and Conclusion, and extensively edited

the rest of the paper toward its final version.

Outline

The thesis is organized into five chapters, beginning with an introductory chapter that
acquaints the reader with the foundational aspects of the subjects and the challenges ad-
dressed in the subsequent chapters. Each article is prefaced with context, and the author’s
individual contribution. Chapter 5 summarizes the thesis with an overview of the article
conclusions, and is then followed by supplementary material for each paper in appendices A,

B, and C.
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Chapter 1

Background

This section provides an overview of the key concepts that are essential for comprehending
the contributions of this work. It begins by reviewing the fundamentals of machine learning,
including its foundations in statistics and various types of learning paradigms. It is then
followed by an introduction of neural networks and various layers that often are employed
within them. Subsequently, we provide an overview of optimization methods for training
deep models and techniques for stabilizing them. The chapter ends with touching on the
topics of representation learning and delving into the problem of OOD generalization and

its relation to causal learning.

1.1. Machine Learning

The field of machine learning addresses problems where deterministic solutions through
human-interpretable rules are infeasible. It is a branch of applied statistics that leverages
computers to model complex data distributions and solve challenging problems without
the need for explicit rule-based programming. The primary goal of machine learning is
to develop models that can learn patterns and relationships from data and make accurate
predictions or decisions on new, unseen data. This is achieved by training the models on a
dataset and optimizing their parameters to minimize the discrepancy between predicted and
actual outcomes. More concretely, given a dataset of input-output pairs (z®, y®) where 2
represents the input data and y® represents the corresponding output or target value, the
goal of machine learning is to find a model hy that is parameterized by € that approximates

the underlying relationship between z and y, such that h(z")) provides accurate predictions



of ¥ for new, unseen inputs. Machine learning tasks are typically categorized into several
major paradigms: supervised learning, unsupervised learning, reinforcement learning, and
weakly supervised learning.

e Supervised Learning: In supervised learning, the algorithm learns from a labeled
dataset where each data point is associated with a corresponding target label. The
goal is to learn a mapping from input data to output labels in order to make accurate
predictions on new, unseen data. For example, in an image classification task, the
algorithm learns to differentiate between various objects by analyzing a dataset of
images paired with corresponding labels denoting the object in the image.

e Unsupervised Learning: Unsupervised learning involves working with unlabeled
data, where the algorithm seeks to uncover hidden patterns or structures within the
data. Clustering and dimensionality reduction are common tasks in unsupervised
learning. Clustering involves grouping similar data points together, while dimen-
sionality reduction aims to reduce the complexity of the data by representing it in a
lower-dimensional space. An example of unsupervised learning is customer segmenta-
tion in marketing, where similar customer behavior is grouped together for targeted
campaigns.

e Reinforcement Learning: Reinforcement learning focuses on training algorithms
to make sequences of decisions in an environment to maximize a cumulative reward.
This paradigm is often applied in tasks involving decision-making and control. In
reinforcement learning, an agent interacts with an environment, learns from the con-
sequences of its actions, and adjusts its strategy to achieve optimal performance. A
classic example is training an Al agent to play games like chess or Go, where it learns
to make moves that lead to winning outcomes.

e Weakly Supervised Learning: Weakly supervised learning bridges the gap be-
tween supervised and unsupervised learning. It involves learning from partially la-
beled or noisy data, where the labels are not fully precise or complete. This paradigm
is particularly useful when obtaining accurate labels for training data is expensive or
time-consuming. Weak supervision methods aim to extract useful information from
imperfect labels, allowing the algorithm to learn patterns and make predictions in
scenarios where fully labeled data is scarce.

The main emphasis of this thesis revolves around unsupervised and weakly supervised

learning, and we provide further elaboration on these topics as well as supervised learning in



the following sections for completeness. However, the scope of this work does not encompass

reinforcement learning, and therefore, it will not be discussed any further.

1.1.1. Supervised Learning

Supervised learning constitutes a foundational component of machine learning, wherein
models extract patterns from labeled data to formulate predictions. To illustrate this, con-
sider the archetype of linear regression, a technique aimed at discerning the optimal linear
relationship between input z and output y by identifying suitable values for the slope w and
the intercept b, formulated as y = wzx + b.

At its core, the objective is to minimize the difference between the predicted § and the
observed y values. This minimization is typically accomplished by computing the mean

squared error (MSE) across all data points, expressed as:

1 T g
MSE =~ (4 — 4)’

i=1

Here, n signifies the count of data samples, while §; denotes the predicted output for
the i-th sample. Through iterative optimization techniques like gradient descent, the model
refines the values of w and b to diminish the MSE.

Supervised learning serves as a powerful approach for constructing predictive models from
labeled data. However, the effectiveness of this approach largely depends on the availability
of labeled data, which can be limited or costly to acquire. In domains like natural language
processing or video analysis, where the volume of data far exceeds the capacity for manual
annotation, solely relying on labeled data becomes infeasible. This challenge is particularly
evident in tasks such as language translation or video classification, where the nuances of hu-
man language or the complexity of visual content demand extensive training data to capture
their richness. As a result, the traditional supervised learning paradigm encounters limita-
tions in cases where the resource-intensive process of labeling data becomes a bottleneck. It
is precisely in these situations that the significance of unsupervised and weakly supervised
learning comes to the fore, offering alternative approaches that capitalize on vast amounts
of available, yet unlabeled or partially labeled, data. By harnessing the inherent structures
and patterns within such data, these techniques extend the reach of machine learning to
tackle complex, real-world challenges that surpass the boundaries of traditional supervised

methods.



1.1.2. Unsupervised Learning

Unsupervised learning constitutes a pivotal realm of machine learning where the pri-
mary objective is to discern patterns, structures, or relationships within a dataset devoid of
explicit labels. Here, we expand on unsupervised learning by studying one of its popular
methods, the k-means algorithm, and leverage it to elucidate concepts of capacity, overfit-
ting, and underfitting, that are central to understanding the concept of generalization. It
is important to note that unsupervised and supervised learning are not mutually exclusive
and their boundaries are nebulous Goodfellow et al. (2016). That is why we demonstrate
the concepts of capacity, overfitting, and underfitting through an example of unsupervised
learning, whereas traditionally these are introduced by an example of supervised learning
algorithms such as linear regression.

Unsupervised learning finds its niche in scenarios where the provided data lacks predefined
labels, rendering traditional supervised methods infeasible. It is akin to tackling a puzzle
without a picture on the box — the challenge lies in deciphering the inherent structures
that underlie the data. Clustering, dimensionality reduction, and generative modeling are
common unsupervised learning tasks.

A quintessential algorithm that represents unsupervised learning is k-means clustering.
Given a dataset X comprising n data points ", z(?, ..., (), the k-means algorithm secks
to partition the data into k clusters, with each point belonging to the cluster whose centroid
is closest. The k-means algorithm operates as follows:

e Initialization: Randomly select k initial cluster centroids ¢, ¢s, ..., ;.

e Assignment: Assign each data point z*) to the nearest centroid ¢; based on Euclidean
distance: j = argmin, |2 — ¢;|?.

e Update: Recalculate centroids as the mean of the points assigned to each cluster:
¢j = ﬁ D_atvec, 2 where C} is the set of data points assigned to cluster j.

e Repeat: Iterate the assignment and update steps until convergence.

The k-means algorithm operates as follows: Given a dataset and the desired number of
clusters k, it initializes k cluster centroids randomly. The algorithm then iterates through
two main steps. First, it assigns each data point to the nearest cluster centroid based on
the Euclidean distance. Second, it updates the cluster centroids to the mean of the data
points assigned to each cluster. These two steps iteratively refine the cluster assignments

and centroids until convergence. Through these iterations, the algorithm aims to minimize
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the within-cluster sum of squared distances, effectively clustering data points around cen-
troids that represent the center of each cluster. The k-means algorithm converges when the
centroids no longer change significantly between iterations or after a specified number of
iterations. The resulting centroids define the cluster centers, and the assignment of data
points to clusters provides the clustering solution. Now with the help of this example, we
can introduce the fundamental concepts of model capacity, overfitting, and underfitting that
influence the performance of machine learning models, irrespective of their unsupervised or
supervised context. Let us examine these within the k-means framework.

Capacity: The capacity of a model refers to its ability to capture intricate patterns in
data. A k-means model’s capacity is determined by the choice of k. Small & may result in
the underrepresentation of data patterns, whereas excessively large k might lead to capturing
noise rather than genuine clusters.

Overfitting: Overfitting occurs when a model learns noise or anomalies present in the
training data, resulting in poor generalization to new data. In k-means, overfitting can
manifest if k is set too high, causing the algorithm to partition noise into spurious clusters.

Underfitting: Underfitting transpires when a model’s capacity is too low to capture the
underlying patterns. In k-means, underfitting can materialize if & is set too low, leading to
the amalgamation of distinct clusters.

These notions of capacity, overfitting, and underfitting, showcased in the realm of unsu-
pervised learning, come together to shed light on the heart of generalization in machine learn-
ing. Capacity dictates a model’s knack for capturing underlying patterns while overfitting
warns against tailoring to noise, and underfitting reminds us of the dangers of oversimplifi-
cation. This trio plays a role in how well a model extends its insights to new, unseen data.
Generalization is like finding a sweet spot—capturing patterns without being bogged down
by noise—enabling the model to truly grasp the essence of data. This harmony resonates
through various machine learning techniques, underscoring the importance of comprehending

generalization across different algorithms and applications.

1.1.3. Weakly Supervised Learning

In the realm of machine learning, gathering labeled data for supervised training can be a
laborious endeavor. Weakly supervised learning arises as a strategy to mitigate the labeling
burden while still harnessing the power of supervised methods. Weakly supervised learning
addresses scenarios where complete, accurate labels are scarce or expensive to obtain. It

operates under the premise that partial or noisy labels, along with domain knowledge or
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constraints, can guide model learning. This paradigm bridges the gap between supervised
and unsupervised learning, allowing models to learn from imperfect information.

Consider an example of classifying images of objects into categories but obtaining detailed
annotations for every object in a large dataset might be impractical. Instead of having precise
object-level labels, you might have access to image-level labels indicating the presence of
certain categories, such as “beach,” “mountain,” or “city” to guide the model’s learning
process. This is a weak form of supervision, as the labels are less informative than specifying
the exact objects within the image.

Weakly supervised learning encompasses a variety of strategies to exploit limited labels
effectively:

e Multi-instance Learning: In cases where multiple instances share a single label,
multi-instance learning leverages the collective information from instances to make
predictions (Dietterich et al., 1997; Maron and Lozano-Pérez, 1998; Andrews et al.,
2003).

e Noisy Labels: Models can be trained to tolerate and adapt to noisy labels by
incorporating uncertainty measures during training (Reed et al., 2014; Goldberger
et al., 2016; Sukhbaatar et al., 2014).

e Constraint-based Learning: Introducing domain-specific constraints or rules can
guide the learning process in the absence of accurate labels (Patel and Dolz, 2022;
Pathak et al., 2015).

The landscape of machine learning is intricate and nuanced, with unsupervised, super-
vised, and weakly supervised learning often intertwined. Weakly supervised learning’s versa-
tile nature allows it to harness the strengths of both unsupervised and supervised learning.
It demonstrates that harnessing even limited labeling information can yield meaningful in-
sights and predictions. As we will see in chapter 3, a form of weak supervision is exactly
what allows for a minimal realistic assumption on the data distribution that still yields useful

results for representation learning.

1.2. Deep Learning

In this section, we provide an introduction to deep learning, a subset of machine learning
that harnesses the power of neural networks with multiple layers. These networks excel in

capturing complex patterns and representations within data, making them a fundamental

tool in modern Al research and applications.
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1.2.1. Neural Networks

In this section, we provide an introduction to the fundamental components of neural
networks, which serve as the building blocks of deep learning models. Neural networks are
powerful architectures capable of learning intricate patterns from data. They consist of layers
that transform input data through a series of operations to produce meaningful outputs.
Layers in a Neural Network. A neural network typically comprises an input layer, hidden
layers, and an output layer. Each layer consists of multiple neurons, also known as nodes,
which process and propagate information through weighted connections. A layer’s output
serves as the input to the subsequent layer, creating a hierarchical representation of the data.
Fully Connected (Dense) Layers. A fully connected layer, also referred to as a dense
layer, is the simplest type of layer in a neural network. Neurons in this layer are connected
to all neurons in the previous layer. Let x be the input vector of size n, and W be the weight
matrix of size m x n, where m is the number of neurons in the current layer. The output y

of the fully connected layer can be calculated as:

y=Wz+b

where b is the bias vector of size m.
Convolutional Layers. Convolutional layers are essential for processing grid-like data, such
as images. They employ filters (kernels) to extract features from local regions of the input.
Let I be the input feature map, K be the filter, and S be the stride. The output feature

map O can be computed using the convolution operation:

P—1Q—1
Oli, =Y ) I[i-S+p,j-S+4q]-K[p.q
p=0 g=0
where P and (Q are the filter dimensions.
Transpose Convolution (Deconvolution) Layers. Transpose convolution layers, also
known as deconvolution layers, are used for upsampling or generating higher-resolution fea-
ture maps. Let I be the input feature map, K be the filter, and S be the stride. The output

feature map O is computed as:

—

_]Q_
Oli, j] = Ii- S +p,j-S+4q]-Klp.q]

=
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Transpose convolution layers can help reconstruct spatial details lost during pooling or
downsampling operations.
Activation Functions. Activation functions introduce non-linearity to neural networks,
enabling them to model complex relationships in data. One common activation function is
the Rectified Linear Unit (ReLU), defined as:

f(z) = max(0,z)

ReLLU has gained popularity due to its simplicity and effectiveness in preventing the
vanishing gradient problem (see next section on recurrent layers), allowing deep networks
to be trained more effectively. Sigmoid and hyperbolic tangent (tanh) are other activation

functions often used. The sigmoid function is defined as:

1
1+ exp(—x)
It maps inputs to values between 0 and 1, making it suitable for binary classification

o(z) =

problems. The hyperbolic tangent (tanh) function is defined as:

-y — &Xp(z) — exp(—2)
tanh(z) = exp(z) + exp(—z)

It maps inputs to values between -1 and 1, providing a centered activation that can also

help mitigate the vanishing gradient problem.
Recurrent Layers. Recurrent layers are a crucial component of neural networks designed
to handle sequential data, such as time series or natural langnage. Unlike feedforward layers,
recurrent layers possess connections that loop back, allowing them to maintain a hidden state
that captures temporal information.

A general recurrent layer computes the hidden state h; at time step ¢ using the input
1y, the previous hidden state h;_;, and the weight matrices W, U, and V. The hidden state

update equation can be expressed as:

hy =oc(Wazy +Uhy_1 + b)

where o represents the activation function and b is the bias vector.

However, the training of deep recurrent networks often faces the problem of vanishing
gradients. This issue arises when gradients propagated backward through the network be-
come extremely small, causing the network to learn slowly or even stagnate. The vanishing

gradient problem is particularly evident in deep architectures with multiple layers.
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Long Short-Term Memory (LSTM). LSTM is a popular form of recurrent layer designed to
mitigate the vanishing gradient problem and capture long-term dependencies in sequential
data. It achieves this by introducing three gating mechanisms: the input gate, the forget
gate, and the output gate. These gates control the flow of information into and out of the
cell state, enabling the LSTM to selectively retain or discard information.

Mathematically, an LSTM unit computes the hidden state h; and the cell state ¢; at time
step t using the input z;, the previous hidden state h;_;, the previous cell state ¢;,_;, and
learnable weight matrices and bias terms (in the equations below, @ denotes element-wise

multiplication).

fo=0(Wy - [h_1, 2] + by)

= g(W; - [he—1, 7] + by)

C, = tanh(We - [hy—1, 2] + be)
Ci=fi0C1+i6C

o = o(Wo - [he—1, 2] + )

.
—_

\

= 0; ® tanh(C})

—
oy
=

Gated Recurrent Unit (GRU). GRU is another popular recurrent layer that simplifies the
LSTM architecture while maintaining competitive performance. GRU introduces the update
gate and reset gate, which determine the balance between retaining and updating information
in the hidden state.

The update gate z; and reset gate r; are calculated using the input x;, the previous
hidden state h;_j, and appropriate weight matrices. The hidden state A; is then updated as

a combination of the previous hidden state and a new candidate hidden state.

2 =0(W, - [hy—1,2¢) + b,)
Ty = o(W, - [hy—1, o) + b;)
E! = tallh(ml . [Tt. ® h!.—l: xi] + bh)
hi‘. = (1 — Zt) ® h;_l + 2 © ':{Lt
Normalization Layers. Normalization layers, such as Batch Normalization (loffe and

Szegedy, 2015), Layer Normalization (Ba et al., 2016), and Instance Normalization (Ulyanov
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et al., 2016), are employed to stabilize and accelerate the training process by reducing inter-
nal covariate shift. They ensure that the input to each layer has a consistent distribution,
leading to more stable gradients and faster convergence.

Mathematically, Batch Normalization adjusts the mean p and standard deviation o of

the input batch, applying a scale v and shift 3 factor to normalize the output.

1
HB = — Z;
m
=1
1 m
a% - - ‘ (x; — ;1,3)2
i=1
s i — URB
o T
\/03 + €
Yy =7+ B

In these equations, x; represents the input to the Batch Normalization layer for the ith
example in a mini-batch of size m. up and 0% are the mean and variance computed over
the mini-batch, respectively. Z; is the normalized input, v and 3 are learnable scaling and
shifting parameters, and y; is the output of the Batch Normalization layer.

Batch Normalization helps stabilize training and accelerates convergence by normalizing
the input distributions of layers within a neural network. The parameter € is a small constant
added to the denominator to prevent division by zero.

Layer Normalization and Instance Normalization perform similar operations but across

different dimensions. Batch Normalization is commonly used in convolutional neural net-
works for image data, while Layer Normalization is preferred in recurrent networks to han-
dle variable-length sequences. Instance Normalization is often applied in style transfer and
image-to-image translation tasks.
Attention Mechanisms. Attention mechanisms enable neural networks to focus on specific
parts of the input while ignoring others. They are particularly useful for tasks involving
sequences, such as language translation. The attention weight a assigned to each input
element can be calculated as:

0 = xp(es)
R —— - T —————
2 =1 exp(e;)
where e; is a measure of compatibility between the current target element and the ith

input element.
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In summary, neural networks encompass a variety of layers, including fully connected.
convolutional, transpose convolution, attention, and recurrent layers like LSTM and GRU,
each serving specific purposes. Activation functions introduce non-linearity, aiding in feature
extraction and pattern recognition. Normalization layers play a crucial role in stabilizing
training and speeding up convergence by standardizing input distributions. These compo-
nents work in harmony to extract features, capture patterns, and enable the network to learn

complex mappings from input to output.
1.2.2. Neural Network Optimization

Neural network training involves finding the model parameters that minimize a chosen
loss function. Optimization methods play a critical role in this process, as they determine
how the model parameters are updated during training to converge towards an optimal
solution. Various optimization algorithms have been developed, each with its strengths and
weaknesses.

Gradient Descent. Gradient Descent is a fundamental optimization algorithm widely used
in neural network training. Given a loss function L and model parameters 4, the goal is to
minimize L by updating # in the opposite direction of the gradient of L with respect to 6.

The update rule is given by:

Or1 = 0y —nVL(6;)

where 7 is the learning rate, controlling the step size of the updates.
Stochastic Gradient Descent (SGD). Stochastic Gradient Descent optimizes the loss
function using random subsets of the training data, known as mini-batches. The update rule

becomes:

Ors1 = 0 — V' L(6;; 29, yD)

where (29, y()) is a mini-batch sample.
Momentum. Momentum addresses the slow convergence of Gradient Descent by incorpo-
rating a moving average of past gradients. The update rule becomes:

V41 = pvy — nVL(6;)

0111 = @ + v

where v; is the velocity at step £, and g is the momentum hyperparameter.
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Adagrad (Adaptive Gradient Algorithm). Adagrad (Duchi et al., 2011) adapts the
learning rate for each parameter based on the historical gradient information. It provides
larger updates for parameters with infrequent updates and smaller updates for frequently

updated parameters. The update rule is given by:

Ji+1 = Gt T (VL(EJ,,))2

e . S
0,01 = 0, mvz,(gi)

where g; is the sum of squared gradients up to step t, and € prevents division by zero.
Adagrad’s accumulation of squared gradients ensures that parameters with small gradi-
ents receive a larger learning rate adjustment, making it suitable for sparse data or features.
However, this accumulation can cause the learning rates to shrink over time, leading to slow
convergence.
Adam (Adaptive Moment Estimation). Adam (Kingma and Ba, 2015) combines the
benefits of both Momentum and AdaGrad. It adapts the learning rate for each parameter

based on the first and second moments of the gradients. The update rule is given by:

M1 = Bimy + (1 — B1)VL(6;)

U1 = Pavy + (1 — B2)(VL(:))?

My

M1 — 1_—B¢+1
1

5 Vi1

(3] s & —
B 1= R

Ori1 = 0; — ﬁiﬁntﬂ
Ve + e

where [3; and [, are exponential decay rates, and e prevents division by zero.

Adam’s combination of momentum and adaptive learning rates makes it effective for a
wide range of neural network architectures and tasks, thus it has become one of the most
popular optimization methods of deep neural networks.

In summary, these optimization methods are essential for training neural networks ef-
fectively. Choosing the appropriate optimization algorithm and tuning its hyperparameters

can significantly impact convergence speed and final performance.
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1.2.3. Regularization in Neural Networks

Regularization is a fundamental technique in neural networks to prevent overfitting,
where the model performs well on the training data but fails to generalize to new, un-
seen data. Overfitting occurs when the model captures noise in the training data, leading
to poor performance on validation or test sets. Regularization methods aim to constrain the
model’s complexity, encouraging it to learn essential patterns rather than memorizing noise.
L2 Regularization (Weight Decay). L2 regularization, also known as weight decay, adds
a penalty term to the loss function based on the squared magnitudes of the model’s weights.
This encourages the model to use smaller weights, preventing them from growing excessively.

The modified loss function is

N
/\ 2
chgularizcd = Lorjginal -+ 5 E wy

i=1

where Lgyiginal is the original loss function, A is the regularization parameter, N is the number
of model parameters, and w; represents the weights.

Dropout. Dropout (Hinton et al., 2014) is a widely used regularization technique that ran-
domly drops a fraction of the neurons during each training iteration. This prevents individual
neurons from relying too heavily on specific input features and encourages the network to
learn robust representations. The dropout regularization can be applied to hidden layers
using the following equation agqropout = @ @ d where agopout is the output after dropout, a is
the original activation, and d is a binary mask that determines which neurons to drop.
Early Stopping. Early stopping is a form of regularization that monitors the model’s per-
formance on a validation set during training. It halts training when the validation loss stops

decreasing or starts increasing, preventing the model from fitting noise in the training data.

Regularization methods are often used in combination to achieve better generalization.
For example, a neural network can be trained with both L2 regularization and dropout to
simultaneously control the complexity of weights and neuron interactions. Regularization
techniques play a vital role in improving a neural network’s generalization and robustness.
By constraining the model’s behavior, these methods help ensure that the network learns

meaningful patterns and performs well on new, unseen data.
giul p P )



1.2.4. Representation Learning

Representation learning lies at the heart of deep learning, enabling models to automati-
cally learn data representations that uncover essential patterns and features within the data.
In deep learning, the objective is to find representations that simplify the task at hand,
making it more amenable to computation and manipulation.

In essence, representation learning strives to transform raw input data into a form that
exposes relevant characteristics in a more expressive and structured manner. Instead of
relying on handcrafted features, representation learning empowers models to autonomously
learn features directly from the data. Through this automatic feature extraction, the model
repeatedly maps the input in various ways to a space in which solving the task at hand
becomes easier. Classic examples include the classification of data where in the original
domain they cannot be linearly separated, but there exist transformations under which the
data becomes easily linearly separable.

Mathematically, representation learning in deep networks involves constructing a series
of transformations applied to the input data. Each layer captures increasingly abstract and
higher-level features:h") = fW(x), h® = f@ (W), ... AE) = fE(RED), The process of
representation learning constructs features that are not only discriminative for the task at
hand but also transferable across related tasks. By learning invariant and robust features,
deep networks are less likely to overfit to noisy or irrelevant aspects of the data, thus im-
proving their ability to generalize to diverse scenarios. Pretrained models on large datasets
can be repurposed for specific tasks with limited data, as the initial layers capture general
features that are useful across domains. Fine-tuning the later layers to task-specific data
further refines the model’s performance.

Furthermore, deep representations often have the potential to disentangle factors of vari-
ation in the data, allowing the model to manipulate and interpret the learned features
independently. This disentanglement enhances the interpretability of the model’s decisions,
promoting more informed and controlled generalization (chapters 3,4).

Representation learning in deep learning has revolutionized various applications by em-
powering models to generalize more effectively by capturing essential patterns, promoting
transfer learning, disentangling factors of variation, and hierarchically structuring informa-
tion. In natural language processing, for example, deep neural networks can learn word

embeddings that capture semantic relationships between words, enabling more effective text
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analysis. Similarly, in computer vision, deep networks can autonomously learn to extract

intricate features from images, leading to impressive image recognition capabilities.

1.3. Out-of-Distribution Generalization

Most of the contents in this and the following section are based on Liu et al. (2021);
Scholkopf et al. (2021).

The landscape of contemporary machine learning methodologies has showcased remark-

able advancements across diverse domains such as natural language processing, computer
vision, and recommendation systems. While these techniques have demonstrated superior-
ity in controlled experimental conditions, their vulnerability to data distribution shifts has
emerged as a pressing concern. The potential consequences of such errors span a spectrum
from minor inconveniences to severe implications in high-stakes domains like healthcare and
autonomous driving. Below we will define the problem of out-of-distribution generalization
formally and categorize the important methods that have been proposed to address this
challenge.
Problem Definition. Consider a supervised learning scenario in which data is collected
from distinct environments, each characterized by its own underlying probability distribu-
tion. Let (X,,Y.) ~ P, where X, € X represents the feature random variable and Y, € Y
signifies the corresponding label. Here, e € £ = {1, ..., E'} denotes the index of environ-
ments, and £ encompasses all potential environments. The collection £ is partitioned into
two subsets: Een representing observed environments and &,qcen €ncompassing unobserved
ones (€ = Eeen U Eunseen)- The training dataset consists of samples originating from Egeen-
Data from environment e is denoted as D, = {(zf,y¢)}1<,, where each data point (zf,yf) is
an independent and identically distributed (i.i.d.) sample drawn from P¢, and n, represents
the number of samples in environment e. The training dataset is the combination of all D,
for € € Eeen, Which can be expressed as Dyain = |, o BP6

Let fp : X — Y denote a parametric model with parameters § € ©. Define the risk asso-
ciated with the model as Rjj = E(x, v,)~pe[¢(fo(X.), Ye)], where £ represents the per-sample
loss function (e.g., cross-entropy, squared loss). The objective of the Out-of-Distribution
generalization problem is to learn a model that minimizes the maximum risk across different
environments:

min max Rj.
fe@ ecf

Since the training data is drawn only from Di,.;, and does not include samples from unob-

served environments, solving the above problem becomes a challenging task.
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This problem can be partitioned into three components: (1) Feature representation of X
(e.g., denoted as g(X)); (2) The mapping function fo(X) from features X to the label Y,
often referred to as the model; (3) The optimization objective. There has been a surge of
interest in tackling this problem from various perspectives toward this pipeline, which can
be divided into the following categories:

e Unsupervised Representation Learning for OOD Generalization: This category in-
cludes methods involving unsupervised domain generalization and disentangled rep-
resentation learning. These techniques utilize unsupervised representation learning
approaches to enhance the initialization of downstream OOD generalization tasks,
leading to improved feature representations.

e Supervised Model Learning for OOD Generalization: This group encompasses strate-
gies like invariant representation learning, training tactics, causal learning, invariant
risk minimization, stable learning, and heterogeneity-aware invariant learning. Vari-
ous model architectures and learning strategies are designed within this category to
enable OOD generalization.

e Optimization for OOD Generalization: This category considers methods that find
distributionally robust optimization.

The contributions of this thesis fall under the first two categories, therefore, we will
expand further on those in what follows.

Disentangled Representation Learning. Disentangled representation learning endeav-
ors to acquire representations in which distinet and meaningful aspects of data variation are
disentangled from each other Bengio et al. (2012); Locatello et al. (2019). This characteristic
is indicative of representations of high quality and holds potential advantages for generaliz-
ing beyond the original distribution. The prevailing strategies for achieving disentanglement
are primarily based on Variational Autoencoders (VAE Higgins et al. (2016); Kim and Mnih
(2018)). These techniques are executed in an entirely unsupervised manner within a single
environment, without requiring supplementary information. Both interpretability and spar-
sity are emphasized by these methods. In this context, “sparsity” pertains to the notion that
minor alterations in distribution usually manifest in a sparse or localized manner within the
disentangled decomposition Scholkopf et al. (2021).

Causal Learning. Causal learning approaches aspire to uncover the underlying causal struc-
ture inherent in the data and predict outcome variables based on the identified causal factors.
By accurately discerning cause-and-effect relationships, these techniques are anticipated to

exhibit strong performance even amidst changes in data distribution. This is rooted in the
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assumption that the fundamental causal structure remains invariant across different envi-
ronments or domains.

We now delve deeper into the realm of causal learning, introducing its foundational
concepts. At the heart of causal learning lies Assumption A, originating from the causal
inference literature. This assumption posits a causally invariant relationship between the
target variable Y and its direct causes X,.(y). Under this assumption, causal variables
Xya(y) are anticipated to remain stable across various environments or data biases, fueling
investigations into leveraging these causal variables exclusively.

Assumption A. (Causality Assumption Bithlmann (2018)). The structural equation models:

Yo= fr(Xowy6y) & L XSm

remain consistent across all environments e & supp(&), signifying that €. maintains the
same distribution for all environments. Here, pa(Y’) represents the direct causes of Y.

We proceed to examine methods tied to causal inference, which aim to extract causal
variables from heterogeneous data. Although randomized experiments, such as A /B testing,
are the gold standard for identifying causal effects, their practicality diminishes in real-world
settings due to their cost and complexity.

Hence, the development of techniques that provide a “causal explanation” beyond stan-
dard regression or classification while offering some degree of invariance across environments
is more pragmatic. As motivated by this idea, a series of methods has been proposed,
including those by Peters et al. (2016); Pfister et al. (2018); Rothenhéusler et al. (2018);
Heinze-Deml et al. (2018); Gamella and Heinze-Deml (2020); Oberst et al. (2021), which
exploit the inherent heterogeneity within data across multiple environments.

Assumption B. (Invariance Assumption) There exists a subset S* C {1,...,p} of covariate
indices (including the empty set) such that

P(Y*¢|Xg.) is the same,forall e € £.

This implies that the conditional distribution remains invariant across all environments when
conditioning on covariates from S*.

Peters et al. Peters et al. (2016) explore the concept that “invariance” can infer causal
structure under specific conditions and introduce the Invariant Causal Prediction (ICP) ap-
proach. They leverage the observation that when considering all direct causes of a target
variable, the conditional distribution of the target given these direct causes remains un-
changed even when intervening on all other variables except the target itself. A statistical

test is conducted to assess if a covariate subset S satisfies the invariance assumption B for the
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observed environments in €. For more details see Liu et al. (2021). Under the assumption of
a structural equation model with Gaussian residuals (Peters et al., 2016), ICP employs the
Chow test (Chow, 1960) to identify subsets of true causal variables. Then ICP is capable of
uncovering subsets of true causal variables (with some probability).

Now that we have established a foundational understanding of the key concepts surround-
ing Out-of-Distribution (OOD) generalization and explored the important concepts around
it, we are well-prepared to delve into the articles and learn about the ways in which causal

structure and representation learning can offer solutions to address this central challenge.
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Chapter 2

Structure Learning of

Reusable Factor Graphs

by

Amin Mansouri', Kartik Ahuja', Irina Rish', and Yoshua Bengio'

(1) Mila, Quebec Al Institute and Université de Montréal

This work has not yet been published but is ready to be submitted, and it serves as the
cornerstone for the articles presented in chapters 3 and 4. Chapter 3 draws direct inspiration
from the core ideas introduced in this work, effectively reversing the problem’s perspective.
Additionally, chapter 4 further builds upon this foundation and insights from chapter 3,
extending the results to more realistic scenarios. Unlike the current article, which lays down
the theoretical groundwork accompanied by evaluations in synthetic environments, chapter
4 focuses on jointly learning the representation and reusable underlying structure of the
observations in various real-world tasks. Given its pivotal role in shaping the thesis, this

work has been presented as a standalone chapter.



Contributions. I have had a strong interest in tackling the challenge of OOD general-
ization using invariance principles to learn better structures, as highlighted in my earlier
work (Mansouri et al., 2021). This curiosity led me to delve deeper into explicit structure
learning within Directed Acyclic Graphs (DAGs). The inception of the notion of Reusable
Factor Graphs should be attributed to Kartik Ahuja, who also deserves full credit for the
accompanying theoretical findings. When it came to practical aspects such as designing
and conducting experiments, Kartik and I collaborated closely to fine-tune our approach. I
then took the lead in implementing our ideas, creating the necessary models, overseeing the
experimentation process, and performing subsequent analyses. My involvement extended to
mathematical derivations establishing connections to the Expectation-Maximization (EM)
technique. The resultant article was a joint effort between Kartik and me, with his guidance
being a cornerstone of the project’s development. It is pivotal to acknowledge the invalu-
able high-level guidance provided by Irina Rish and Yoshua Bengio throughout the project’s
progression.
Personal Contributions.
e The inception of the idea of RFG should be credited to Kartik, however, the final
version of RFG, and TD-RFG is the result of discussions between me and Kartik
e | implemented and ran all the experiments (including hyperparameter search) with
the exception of those resulting in figures 2.6, 2.7
e | produced and analyzed all the plots with the exception of those in figures 2.6, 2.7
e [ established the connection to EM and wrote the corresponding section.
e | came up with how to infer the number of factors when it is unknown, using soft
Hamming Distance.

e | co-authored the paper together with Kartik.
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RESUME. La découverte de la structure causale qui sous-tend les données observées a émergé
en tant que voie prometteuse pour renforcer les capacités de transfert des modeles d’appren-
tissage profond, améliorant leur capacité a généraliser vers de nouvelles distributions non
observées. Cette étude introduit une approche novatrice appelée Reusable Factor Graphs
(RFG), un nouvel algorithme d’apprentissage de structure qui se distingue des méthodes
existantes en adoptant une représentation de graphe de facteurs pour les mécanismes cau-
saux, par opposition & I'approche classique des graphes acycliques dirigés (DAG).

L’adoption du graphe de facteurs repose sur des biais inductifs précédemment inexplorés,
notamment la réutilisabilité des mécanismes causaux et la sparsité inhérente de leur espace
d’entrée. Ces biais, informés a la fois par la causalité et la cognition humaine de haut niveau,
constituent le cceur des RFG. L’algorithme proposé exploite 'accés aux représentations
causales de la distribution génératrice des données et réveéle le potentiel de gains significatifs
en efficacité d’échantillonnage grace a la réutilisation des mécanismes causaux dans un cadre
de graphe de facteurs.

A travers des évaluations approfondies sur des ensembles de données synthétiques, ce
travail confirme l'efficacité de deux variantes de RFG, offrant une preuve convaincante de
sa faisabilité. De plus, I’étude établit des connexions significatives entre 'apprentissage de
structure des RFG et I'algorithme EM classique pour le regroupement (clustering).

Mots clés : apprentissage causal, apprentissage de structure, graphes de facteurs, méca-

nisme causal réutilisable

ABSTRACT. Discovering the causal structure that underlies observed data has emerged as a
promising avenue to bolster the transfer capabilities of deep learning models, enhancing their
ability to generalize to new and unseen distributions. This study introduces an innovative
approach called Reusable Factor Graphs (RF'G), a novel structure learning algorithm that
distinguishes itself from existing methods by adopting a factor graph representation of causal
mechanisms, as opposed to the conventional Directed Acyclic Graph (DAG) approach.

The adoption of the factor graph is rooted in previously unexplored inductive biases,
including the reusability of causal mechanisms and the inherent sparsity within their input
space. These biases, informed by both causality and higher-level human cognition, constitute
the heart of RFG. The proposed algorithm leverages access to causal representations of
the data-generating distribution and reveals the potential for significant gains in sample
cfficiency through the reuse of causal mechanisms within a factor graph framework.

Through comprehensive evaluations on synthetic datasets, this work substantiates the
efficacy of two variants of RFGs, offering a compelling proof of concept for its practicality.
Furthermore, the study establishes meaningful connections between the structure learning
of RFGs and the classical EM algorithm for clustering.

Keywords: causal learning, structure learning, factor graphs, reusable causal mechanism



2.1. Introduction

A subject of rising interest in deep learning theory is the ability of learned models to gen-
eralize their performance outside of the distribution on which they were trained. Commonly
referred to as Out-of-Distribution (OOD) generalization, this has been the subject of many
recent studies that try to approach this challenge from various perspectives. Discovering the
causal structure that underlies observed data has emerged as a compelling avenue in enhanc-
ing the transfer capabilities of deep learning models, enabling them to generalize effectively to
novel and unseen distributions. Causality, as the backbone of relationships among variables,
provides a deeper understanding of the underlying mechanisms driving data distributions.
Uncovering such causal structures in practice can be decomposed as the learning of inde-
pendent causal mechanisms along with the learning of invariant features (instead of spurious
features) that give rise to the observed data distribution (Parascandolo et al., 2020; Goyal
et al., 2020; Goyal and Bengio, 2020; Arjovsky, 2020). By identifying causal relationships,
models can distinguish between true causal factors and spurious correlations, thereby cap-
turing the fundamental drivers of data distribution. Such causal relationships encapsulate
the invariances that models need to generalize effectively. Causal relationships are expected
to remain stable across different environments, enabling models to leverage this stability for
improved OOD performance. It is important to emphasize that causal mechanisms govern
the relations among some (causal) latent variables, and it is only in the correct space that we
could learn such parsimonious models; thus, the problem of causal representation learning
should be considered closely to structure learning, and as a matter of fact, these two inform
each other deeply (Ahuja et al., 2022b,a). In this work, similar to the prevalent approach
in the structure learning literature, we assume access to such representations and focus on
finding efficient ways of structure learning.

The realm of causal structure learning has established its significance across various scien-
tific domains, including genetics, biology, and economics (Koller and Friedman, 2009; Peters
et al., 2017; Sachs et al., 2005; Pearl, 2009). Bayesian networks (BNs), characterized by di-
rected acyclic graphs (DAGs), are influential models renowned for their interpretability and
computational feasibility. Causal graphical models (CGMs) (Peters et al., 2016) enable the
exploration of interventional queries, empowering us to probe the consequences of external
interventions on variables. In the context of machine learning models, we believe models
with the ability to comprehend and reason about the dynamics of entities would be expected

to exhibit improved robustness and generalization in novel scenarios.
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Causal structure learning entails the inference of causal graphical models, frequently
taking the form of directed acyclic graphs (DAGs). This learning is complicated by the
fact that multiple causal DAG models can yield identical observational distributions. While
interventions help reduce this ambiguity, their effectiveness depends on the availability of
interventional data. Various methods have been proposed for causal structure learning, with
certain algorithms assuming causal sufficiency in the absence of latent confounders.

This study introduces an innovative approach named Reusable Factor Graphs (RFG),
a novel structure learning algorithm that diverges from prevailing methods by adopting a
factor graph representation of causal mechanisms, in contrast to the conventional Directed
Acyclic Graph (DAG) paradigm. The adoption of the factor graph is rooted in previously
unexplored inductive biases, including the reusability of cansal mechanisms and the inherent
sparsity within their input space. These biases, informed by both causality and higher-level
human cognition, constitute the heart of RFG. The proposed algorithm leverages access
to causal representations of the data-generating distribution and reveals the potential for
significant gains in sample efficiency through the reuse of causal mechanisms within a factor
graph framework.

We combine ideas from Kahneman (2011), the “Consciousness Prior” (Bengio, 2019), and
its relation to Global Workspace Theory (GST) (Baars, 2005), a hypothesis regarding the
working mechanism of the human brain in reasoning tasks. According to Kahneman (2011)
system one mode of thinking or thinking fast is intuitive and instinctive. On the other hand,
system two, or thinking slow, is rational and based on logic, and indecisive. The former is the
domain in which current Deep Learning is good, and the latter is what motivates this work.
These works conjecture that conscious thought is conceived based on the conscious thought
at the previous moment and an attention mechanism that acts as a bottleneck on the output
of all sensory modules. The probabilistic and logical nature of this mode of thinking inspires
us to explore structure learning in the form of a particular modification of the graphical
models, i.e., a factor graph, and its compositional nature motivates thinking in terms of
independent mechanisms. The consciousness prior (Bengio, 2019) brings the importance of
two crucial inductive biases to our attention—reusability and sparsity of interactions. These
hypotheses and intuitions can be modeled neatly by a sparse factor graph representation.
A factor graph is a bipartite graph, where on one side, we keep the nodes corresponding
to factors or mechanisms, and on one side, we keep the subsets of random wvariables that
our factor nodes can operate on to generate the observations. However, we enforce the

number of factor nodes to be small (enforcing reusability), and the size of each subset of
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random variables be limited too (enforcing sparsity, i.e., resembling the attention bottleneck
in GST). Our goal is to learn the structure of this bipartite graph. i.e., both the parameters
of the mechanisms and the connections (edges) between these mechanisms and the causal
variables (i.e., the variables a mechanism takes as input). We do not consider DAGs as they
have been explored Abbeel et al. (2006); Brouillard et al. (2020); Lachapelle et al. (2019);
Zheng et al. (2018) since they do not allow the inductive bias of reusability to be exploited
efficiently and explicitly, meaning that while a parent-child relation in a DAG could reappear
in many other edges of a causal DAG, settings such as earlier methods learn all of them from
scratch and do not exploit the reusability arising from decomposing the causal structure into
repeating factors.

This approach enables the learning of reusable mechanisms, and Bengio et al. (2019)
suggests that through slight modifications our method could be capable of translating the
RFG to a causal DAG by learning the causal directions. We establish the theory and carry
out experiments for learning a factor graph comprising a small number of factors operating
on small subsets of random variables. The former encourages reusability of mechanisms
(as opposed to learning a new mechanism for every edge in a causal DAG), and the latter
encourages sparsity (a typical causal mechanism most likely cannot manipulate a large set
of elements in an environment simultaneously). We establish the connection of our proposed

algorithm with the Expectation-Maximization algorithm in appendix A.3.

2.2. Related works

Structure learning. Abbeel et al. (2006) is one of the most important works on learning
factor graphs. Most of the existing works on structure learning in factor graphs are discrete
optimization approaches. There has been a lot of work recently on structure learning in DAGs
using continuous optimization-based approaches for linear settings Zheng et al. (2018) and
non-linear settings exploiting neural networks Lachapelle et al. (2019). Factor graphs offer
many advantages that standard DAGs-based models may not. To the best of our knowledge,
continuous optimization-based approaches for structure learning of factor graphs have not
been extensively explored.

Importance of reusability. Ours is the first work to employ and exploit reusability con-
straints for structure learning in factor graphs. These constraints allow us to approximate
the partition function. If the reusability degree is a constant, then the number of distinct

terms in the partition function grows exponentially in the reusability degree which can be a
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small value in many problems of interest (see section 2.3 for the definitions of reusability de-
gree and the partition function). Existing ideas on reusing parameters in structure learning
such as dynamic Bayesian networks hard code the parameter sharing across time steps. In
contrast, in the current setup, we learn which subsets of variables share a common factor.

Other reusability based representations. Efficient representation of factor graphs was
first presented in the form of plated factor graphs Obermeyer et al. (2019), which expresses
reusability in the form of plates; the representation in their paper and our work are not the
same. In Obermeyer et al. (2019) the authors showed the advantage of such a representation
in terms of inference but the advantages from the structure learning point of view were not

explored.

2.3. Methodology

We start by describing the limitations of structural causal models (SCMs) Goyal and
Bengio (2020). SCMs can be inflexible in their ability to capture independent knowledge
factors thus making it hard to learn the independent causal mechanisms. Moreover, the
problem is exacerbated to a great degree if each causal mechanism is composed of some
simpler rules that are generic and are reused in other mechanisms. In Goyal and Bengio
(2020), the authors propose that building factor graphs can alleviate some of these key
concerns.

We first discuss how the standard representation of factor graphs has certain important
limitations that can also prohibit it from learning reusable generic rules. Consider a stan-
dard factor graph, one side of vertices corresponding to factors {fi,..., fas} and the other
side corresponds to the random variables {X7,...,Xx}. The joint probability distribution
P(Xj,...,Xy) can be written as a factorization over factors in {f,..., fuar} as follows.

P(X,.... Xx) = 71 55(5))

where S; C {X,..., Xy} and Z is a normalization constant. S; contains all the random
variables that share an edge with f;. In Figure 2.1, we show the example of a factor graph
with a distribution P(Xy,...,Xy) = fi(Xy) fo( X1, X3) f3( X2, X3) f4(X2,X3). The bipartite
graph in Figure 2.1 looks at each function f; as a separate vertex even if some of the func-
tions are the same. As a result, the graphical representation is ineffective in capturing the
reusability of the factors. For instance, if the factors fo and f; are equal, then it can be
easier to learn such a shared rule from the data. Moreover, learning such shared factors can

be useful from the point of view of identifying some generic mechanisms that are used in
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F06) A, Xa) A X3) FiX, X)

Fig. 2.1. Example of a standard factor graph with factorized joint distribution
P(X1,X9, X3) = f1(X1) fo(X1,X2) f3(X2,X3) fa( X2, X3).

data generation. Keeping this in mind, we propose an alternate way to represent the factor
graphs. We construct a bipartite graph, where on one side each vertex corresponds to a
unique function and on the other side we have the subsets S; on which the factor operates.

Therefore, we can rewrite the distribution to highlight this fact.

P(Xy,...,Xn) = énjﬂsiewm.fj(%)

In the above factorization, each function f; is unique and the set N(j) are the neighbors
corresponding to the sets S; on which the factor operates. In Figure 2.2, we present the
example in Figure 2.1 under the new representation taking into account the fact that fo = fs.

What can we directly infer from the new factor graph representation? The number of
vertices on the factor side expresses how many distinct functions need to be learned. The
number of neighbors of each factor vertex describes how many times the factor is used. The
number of neighbors of each vertex on the right side describes how many times the same

subset of variables appears in the factorization. The maximum number of nodes inside a

vertex on the variable side describes the sparsity in the graph.
2.3.1. Structure learning of reusable factor graphs

We described some of the important advantages that the new representation brings. What
are the advantages of the above representation from the perspective of structure learning?

The assumptions made on the graph representation form the inductive bias for structure
learning. For instance, a graph is directed acyclic, graph has a bounded degree form different
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S0 X Xo) S, X X5, X5)

Fig. 2.2. Example of bipartite graph of Figure 2.1 under the new representation taking into
account the fact that fo = f5.

types of inductive biases. The representation proposed above can be used to encourage the
reusability of factors. We should try to learn a graph with three properties: a) the number
of factor vertices is small, b) allows for some factor vertices to have a high degree thus
encouraging reusability, and c¢) the maximum size of the subset S; on the variable side
should be small.

Each data sample X = [X,,... X, is drawn ii.d. from a distribution P. Suppose we
have m factor vertices (m is a hyperparameter) denoted by set F = {1,...m}. We model
the i"" factor vertex using a neural network fy, with parameters #;. We restrict the maximum
cardinality of a variable vertex S; to be d. The vertices on the variable side correspond to
all possible subsets .S; of X of cardinality up to d, where d controls the sparsity in the factor
graph. Therefore, the total number of variable vertices are () = Ele (f), which grows as
O(p?). We index the vertices to form a set V' such that from the index j of the vertex we
can identify the subset S; of the random variables. We treat the adjacency matrix M of
the bipartite graph as a random, where each entry M;; of the matrix is a Bernoulli random
variable with success probability o();;), where o is a sigmoid function and A;; is a parameter
that we learn. We write the parameters for all the edges in the form of a matrix A € RY*¢,
We can write the loss function that we want to optimize under this parameterization as
follows. For each neural network ¢ with parameters 6;, we assign the dimension of the input
that it operates on. For simplicity, let us assume that for each input size there are ¢ neural

networks. Therefore, ¢ * d = m.
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L({0;}jer,A) = —Eh-rw(.f\)]EXwP[Z > log(fo, (Sk)) My —log(Z({6;}je7,A)|  (2.3.1)
JEF kev

where Z({0;};er.A) is the normalization constant and [;; is an indicator function which
takes a value 1 is the size of S, matches the input dimension that neural network ¢ can take
and otherwise it is zero. Note that optimization of A can be handled using Gumbel-softmax
reparameterization trick Brouillard et al. (2020). One main challenge in trying to minimize
the above loss is how to compute Z({6;};cr, A). One possible approach is to use standard
Monte-Carlo integration. The approach in Abbeel et al. (2006) focused on learning factor
graphs used a way to factorize where we do not need to compute the normalization constant.
However, the approach in Abbeel et al. (2006) is only applicable to discrete random variables.
Moving forward, we can apply the above ideas to directed factor graphs Frey (2012) in a
similar fashion. Other than parameterizing the adjacency matrix with parameters A;; and
taking the expectation above w.r.t. M ~ o(A), we could also use a softmax over the
outputs of the neural nets modeling the factors. This way, the softmax operation encourages
competition among the neural nets and naturally provides a normalized set of weights that
could replace Mj; in the above equation. We denote this method in the experiment section

(as well as plot legends) by the softmaz method, and use the A method to refer to the former.
2.3.2. Equivalence classes representation

In order to avoid choosing subsets of variables that are incompatible with the signature
of a factor (which is enforced by the indicator function [, in Equation 2.3.1), we can break
down the set of possible unique factors F into subsets of factors that share the same signature.
Concretely, if we assume that d is the maximum number of variables in any given factor, we
can define F = U§:1 Fa, where F is the set of unique factors that have k inputs; we also call
Qi = |Fr|. One consequence is that we can also break down the set of subsets of variables
(i.e. the vertices on the left-hand side of Figure 2.2) into subsets of exactly k variables; we
call this set S, = {S € 2V | |S| = k}, and M;, = |S| = (}). The adjacency matrix is now
parametrized by A € RM*Q1 x . x RMaxQa_ a5 opposed to an M x Q = 5, My x 3, Qx
matrix, reducing significantly the number of parameters. The objective from Equation 2.3.1

can now be written as

d
L{0;}jex ) = —Eptmo)Exop [Z >N log fo, ()M —log Z({8;}jex. M)| (2:3.2)

k=1 jeF; i€S;
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2.3.3. Partition computation advantage for reusable factor graphs

Here we briefly try to lay down some intuition that can help explain why the partition
function computation can be tractable in reusable factor graphs with a larger reusability
degree than the standard factor graphs. Consider a very simple setting where there are K
factors that take as input a scalar binary valued variable. The partition function is given as
Z =% x I8 _, fin(X;) The above summation involves 2% terms. However, let us consider the
case when all the functions f,, were identical. In such a case, we only need to compute the
product function over K distinct sequences and re-express it as Z = ) x (’f‘) O L)
If we were to construct an estimate of the partition function using Monte Carlo integration,
then the integral would require fewer random samples to estimate the Z.

We now describe a more general case of the setting described above. Let us assume that
the size of the input to each factor is the same and is equal to d. Also, let us assume that
no two subsets S; and Sy intersect. The total number of subsets is 5 In addition, we say
that each S; is only associated with one factor f;. Therefore, the total number of factors is
m = E. Suppose there are only r distinct factors {g1,---,g,}. Suppose g; is repeated m;
times, which implies Y., m; = m. The total number of possible values g; can take assuming
binary valued input is d = 2%. The total number of possible values the product of factors g;

can take given that g; are multiplied m; times is m; + ("H).

d—1
| e(m; +d — 1)\ d-1 ‘
¥l _g) S\ —— 2.3.3
m'+(d—1)_( d—1 ) (2.3.3)
The total number of possible terms across the factors are
e(m; + d— 1)\a-1 e(2 + 4 — 1)\ rd—r
N e R 2.3.4

2.4. Time-directed reusable factor graphs

In this work, we aim to show as a proof of concept why the above framework is powerful,
and that the above formulation can lead to more effective sample complexity in structure
learning. Therefore, we will make additional assumptions that will allow us to simplify the
objective defined in equation 2.3.2 further. In this section, we discuss a class of reusable

factor graphs, which we refer to as time-directed reusable factor graphs.
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Fig. 2.3. Illustrating time-directed reusable factor graph
2.4.1. Reusable mechanisms in a Markov chain

Suppose X = [X},...,X,] can be factorized as a Markov chain.
P(X) = P(X1)ITP2 P(Xi41| X)) (2.4.1)

We can write the factorization in factor graph notation as follows.

P(X) = P(X)TES P(Xis1 | Xe) = fi(X)TED fign (X, Xia) (2.4.2)
If the Markov chain was stationary then all the factors f;(X;, X;41) would be the same
say f(X;, Xir1). We consider the setting where each of the factors fi,1(X;, X;.1) are drawn
from the set of reusable mechanisms {gy,..., 9.}, e, Vi e {1,....p}, fi € {91,...,9:}. In
Figure 2.3 we illustrate an example of a reusable mechanism-based Markov chain.
Learning. Here, we describe how we can set up a simple continuous relaxation of the like-
lihood objective (similar to the one described in the previous section). Assume that we
have m neural networks {fy,,..., fo,.}. Let © be the set of parameters characterizing the

different neural networks. Each neural network operates on the pair X;, X;;, and models a
L fo (XX

2 fo(Xi X =x)
each random variable to simplify the normalization). Recall that M is the adjacency matrix

conditional density given as fgj(X._;_, Xit1) (we assume discrete support for
with the number of rows equal to the number of factors m and the number of columns equal
to p. Observe that the number of parameters in M grows with the length of the chain and
we will describe how to tackle this issue in a bit. We define the likelihood next.

LHOFR, M, X) = TSI, o, (X, Xoga) ™5 (243)
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In the above likelihood, we assume that each column of the matrix M adds up to 1. Define

a constrained maximization of the likelihood as follows

{Br{lax IE[Iog[ ({0 }iZ 1vﬂf!X)]]

m (2.4.4)
s.t.Vij My € {01}, ) My =1
i=1
We define a continuous relaxation of the above objective as follows. We model M as a
softmax over a real-valued matrix A with softmax taken over each column of the matrix,

which ensures that each column adds up to one and each entry is positive and less than one.

E|l . A), X

20 EL108 [ LG softmax(A), X)) (2.4.5)
In Figure 2.4, we show an example to illustrate the graph being learned.

Assumption 1. 36' € © such that for all k € {1,--- 1} fg’(Xi, Xiv1) = gi( X5, Xiv1)

Proposition 1. If m > r and Assumption [ holds, then from the solution of equation

equation 2.4.5, we can ezxactly recover the true factors {g, -+ ,g.}.

Proof. Observe that solving equation 2.4.5 and equation 2.4.4 are equivalent (from the so-
lutions of one problem we can recover all the solutions to the other problem). Also, note
that the optimal value of the objective in equation 2.4.5 and equation 2.4.4 are the same
(due to the linearity of the objective in A and M ). Since Assumption | holds and m > r we
can construct one of the optimal solutions. Select ¢; values for the different NNs such that
there is at least one NN fj that imitates g;. Select Aj; such that at each time step ¢ assigns
the entire weight to the factor that is used at that time to generate the data. As a result,
the term inside equation equation 2.4.5 becomes the exact distribution that generates the
data. We need to show the other side of the result that if the maximum is achieved, we can

construct the factors {gy,...¢g.}. We argue that we can below.

p=1 m
E[log [L({6;}",,softmax(A), X)]] ZZA log (fo, (X;, Xi+1))]
= (2.4.6)
p~1 m p-1 m
> ALE[log (fo, (Xi, Xii1)) ]ZZZAf?Lf?(Bj)
=1 g=1 TR



Fig. 2.4. Illustrating time-directed reusable factor graph parameterized by {6;,...,0,,}

where Lj;(0;) = E|log ( fgj (X, Xi41))]. Consider one of the optimal set of values for {6;}7.,,
define the set of indices that are in the set S = argmax; L;(6;). The optimal values of Aj;
have a zero weight on all the indices outside the set S. Since all the values Aj; corresponding
to j € S, without loss of generality consider the solutions in which the entire weight Aj; is
assigned to one of the elements in S. Each term in the optimal solution corresponds to a
valid conditional probability distribution. At the optimum, the distribution learned and the
true distribution are the same. By marginalizing the LHS and RHS of the distributions, we

can show that the factors are exactly recovered.
O

Define log likelihood for each time step as L;; = E[log( f()j (X, Xis1))]. For each time step
i, Lj; is the expected log likelihood that we observe from using NN parametrized by 0;.
Proposition 2. Suppose we fix {0;}7.,, then the solution to optimal M in equation
equation 2.4.4 is simply the row corresponding to the maximum likelihood, i.e., let 7% =

arg maxje{1,..m} Lji, M+ = 1 and for all j # 5%, M;; = 0.

Proof. Follows from the linearity of the likelihood in M. The same argument as shown in

the proof of the previous proposition. O

Inferring mechanisms. Suppose we are given more samples from the chain {X,,..., X}
and our goal is to infer what are the mechanisms that cause the transitions. We parametrize

the likelihood only in terms of the adjacency matrix M and assume that we know the reusable

66



mechanisms {¢i,...,¢.}. If we know these mechanisms and we only want to learn what the

adjacency matrix is we can write the likelihood as follows

B S T -I_“
LM {Xpi1,- -, Xg}) = P(Xps )T T [95(Xi, Xia)] (2.4.7)

b column

In the above, it is assumed that the columns of M add up to one. Consider the i
of M. Pick a j* € arg max g5i( X, Xiy1) and set Mj’-'l_,-_ =1 and 1";1'3’-",-_ = () for all j # 57, then

M* maximizes the likelihood abave.

2.5. Experiments
2.5.1. A simple illustrative example

In this section, we provide an illustrative example on which we carry out the experiments.
Recall X = [Xj,... ,Xp]. Suppose there are two functions ¢ : R -+ Rand b: R - R. We
will assume that one of these two mechanisms a or b that are used generate X from Xj_;.
Fora k > 1,

X + (L(X_k_l) + N;
or (2.5.1)
Xy ¢ b(Xp-1) + Ny

In Figure 2.5, we illustrate the above model. We will use extra structural knowledge of
the above model to simplify the factor graph learning. Assume that the model knows X
generates Xp;. In addition to the above structural assumptions, we will also assume that
the learner knows that X; and X, _; are related through additive noise. Therefore, we can
simplify the learning further for this example and say that instead of learning the conditional
probability distributions, we can try to learn the mean of the conditional distribution. We
use the extra knowledge in this setting to simplify the objective in equation equation 2.3.1 as
follows. We use each neural network fy, to model the conditional expectation E[X}.|X;_].
Recall A € RM*P which was used to model the i.i.d. Bernoulli random variables in the
adjacency matrix. Since we know that each variable X is associated with exactly one
neural network, we need to make sure that the sum of the probabilities adds up to one for

each row and we use a softmax function to ensure that such a constraint is met.
P M

LML A) = 37 S Bxl(X; — fo, (X)) Plsoftmax(Al: D] (252)

i=1 j=1
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Fig. 2.5. Illustrative example: Markov model
where A[: ,i] is the i* column of the matrix A and softmax(A[: ,i]) is the probability vector
corresponding to it.
Now, we describe the results of experiments on the illustrative model we described. We

assume a linear generative model given as

X = AiXp1 + Ny (2.5.3)

where A; is i" generating mechanism and X; € R“ The set of all the models that are
reused is {A;}1_,. Our goal is to minimize the objective in equation equation 2.5.2 and learn
the matrices A;. We also need to correctly identify which matrix is associated with which
variable X ;.. We sample A; to be a random unitary matrix and N, is a Gaussian noise vector
with unit variance. Indicator vector I dictates which unitary matrix is associated with which
variable, i.e. X} maps to the unitary matrix Ay, .

We give an example of the case when the length of the chain p = 10, the dimension of

each X u = 2, and the number of reusable factors r = 2 and number of samples is 100.

_[-0325 0945 |  0.996 0.086
YT 0945 —03250 777 [0.086 —0.996

I=1[2,1,2,1,1,2,12]1]
Case 1. We first start with the case when the number of matrices to be learned (use
a one-layer neural network for this purpose) exactly match the number of true distinet

matrices, which is two in the above case. The estimated outputs are

. [-o 941 . 985  0.094
A‘zl 0.318  0.94 ] P [0980 009] —_

—0.941 —0.328]° 2T 0.078 —0.991

I=1021211212]1]
Case 2. Next, we move to the case when the number of matrices to be learned (we

set them to four) is greater than the number of generating matrices that are distinct. The

estimated outputs are
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Fig. 2.6. Comparison of the method as a function of the number of samples. p = 10, r = 2,

u=2
i —0.304 i ~ ) :
i - 0.30 0.932 - 0.985 0.094 (25.6)
—0.929 —-0.335 0.078 —0.991
2 —0.025 0.751 & —0.319 0.942
As= e (2.5.7)
—0.709 —0.478 —0.041 —-0.327

I= [2,4,2,4,4,24,2.1] In the above cases, we saw that the proposed objective is almost
perfectly able to recover the structure, i.e., the matrices and where in the chain they operate.
For the same setting, we averaged the results over fifty trials and plotted the performance as a
function of the training sample size. We measure the performance in terms of the parameter
distance — the distance between the estimated matrices and the average Hamming distance
between the indicator vectors. In Figures 2.6 ,2.7, we show the plots showing the performance
of the proposed approach as a function of the number of training samples.

Given the initial success in the above example, below we scale up the experiment to very
long chains and high dimensions of X. As we want to showcase the benefit of reusability, we
will use only 1 sample in the training set for which the Markov Chain Length (L) varies in
[20,40,60,80,100,200,400,600,800,1000]. We also vary the complexity of the task by letting
d € [20,40,60,80,100]. We will show how increasingly longer chains will exploit the reusability
of the single sample to both recover the underlying data generation parameters, as well as
the indices I of where the mechanisms operate along the chain. In this section we let the
number of matrices to be learned exactly matches the number of true distinet matrices. We
will see in the following sections how varying these numbers affects the learned parameters.

For further training details please refer to appendix A.
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Fig. 2.7. Comparison of the method as a function of the number of samples. p = 25, r = 2,

u=:>5

Figures 2.8, 2.9 show the average parameter distance and test Hamming distance over the
Markov chain length as metrics for the performance of our structure learning algorithm. For
training Hamming distances please see the appendix A. We can clearly observe the benefit
of reusability when the parameter and Hamming distances both diminish as the chain length

increases and we have only access to a single sample.
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2.6. Unknown number of reusable factors

In this section, we observe how learned models behave in a setting where the number of
ground truth factors is fixed (r = 6), but that number is unknown to the model, therefore
we have to train with varying numbers of neural nets modeling the factors. We will explore
the behavior of the learned models, and study if there exists a way to infer the correct
number of neural nets to be used for modeling the reusable structure. To make sure each
factor appears with enough frequency in the chain, we set the chain length to L = 100 in
the generation process, and keep the dimension low at d = 2. For the training dataset, we
sample 100 chains of length L. Noise standard deviation ¢ equals to 15% of the elements
of |[AX]|. We only use the A matrix approach here. When we employ 9 neural nets when
there are actually 6 factors, figures 2.10, 2.11 that show the pairwise distances of neural
networks and ground truth factors, clearly show that for each factor, there is exactly one
neural net that perfectly models them. Figures 2.12, 2.13 reflect the situation where we have
fewer neural nets to model all the ground truth factors, and as is expected it should not be
possible, which is confirmed by the pairwise parameter distances confirming that no neural
net perfectly models any factor. Instead, they all converge to some mixture of the factors to
minimize the objective as much as possible. Figures 2.14, 2.15 show the successful recovery
of all factors uniquely by each neural net when there are as many neural nets available for
modeling as there are ground truth factors. In the next section, we will propose a metric

that will assist us in finding the correct number of factors r.
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Each plot, corresponds to the pairwise parameter distance (over training steps)

of one ground truth factor to all the neural networks modeling the reusable structure. There

are 6 factors and 9 neural networks.
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Fig. 2.11. Each plot corresponds to the pairwise parameter distance of one neural network
modeling a factor compared to all the ground truth factors. There are 9 neural networks

and 6 factors.
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Fig. 2.12. Each plot, corresponds to the pairwise parameter distance (over training steps)
of one ground truth factor to all the neural networks modeling the reusable structure. There

are 6 factors and 2 neural networks.
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Fig. 2.13. Each plot, corresponds to the pairwise parameter distance of one neural network
modeling a factor compared to all the ground truth factors. There are 2 neural networks

and 6 factors.
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Fig. 2.14. Each plot, corresponds to the pairwise parameter distance (over training steps)
of one ground truth factor to all the neural networks modeling the reusable structure. There

are 6 factors and 6 neural networks.
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Fig. 2.15. Each plot, corresponds to the pairwise parameter distance of one neural network
modeling a factor compared to all the ground truth factors. There are 6 neural networks

and 6 factors.

2.6.1. Inferring r with Soft Hamming Distance

Notice that when there are fewer neural nets & than the number of factors r, there is no
way we can have an estimate of the Hamming distance because we do not have enough models
to construct a sequence similar to the ground truth. Hence, we introduce a soft Hamming
distance. So far, we have measured the average parameter distance between a factor and
its corresponding neural net model. Separately, we predict a sequence that represents our
estimate of the position that each neural net operates on. But a natural step from here
would be to measure the parameter distance between the ground truth factor that operates
at position ¢ with the neural net model we predict for that position and sum these distances
over all positions 7 € [1,...,L]. This way we have the benefits of both. It also gives a more
robust and accurate estimate of how close we are to the true underlying reusable structure.
Because neither the Hamming distance nor parameter distance alone lack such expression;
We can only learn the parameters to some approximation but recover the sequence, and vice
versa. 1o see where both measures do well, we need to combine them as suggested. Doing
so, we see a very clear distinction between data points related to £ < r and k£ > r in the plot
for test soft Hamming distance versus k& (Figure 2.16). We see that the measure plateaus
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and we can confidently determine the number of ground truth factors. See appendix A for

experiments that stress test the proposed algorithm by scaling the number of factors and
the latent dimension even further.

Methad: A, Test Soft Hamming Distance, r=6, L_test=100, n=100, dim=2

Fig. 2.16. Test set soft Hamming distance versus k, the number of neural nets to model
the reusable factor graph when there are r = 6 factors. The metric introduced can pinpoint

the correct value of r by a clear knee point.

2.7. Conclusion

In pursuit of improving generalization capabilities in deep learning models, we proposed
a novel structure learning method for Reusable Factor Graphs. RFG departs from the
conventional Directed Acyclic Graph (DAG) paradigm. By embracing factor graphs as an
effective representation of causal structures, RFG not only harnesses previously unexplored
inductive biases from causality and human cognition but also sets the stage for more sample-
efficient and effective structure learning.

We showcased the efficacy of RFG which exploits the principles of reusability and sparsity
both theoretically, and experimentally in comprehensive evaluations on synthetic data, and
demonstrated how we can successfully infer the number of ground truths. We established
connections between our work and the classical EM algorithm, augmenting this work with
theoretical insights. As we move forward, the exploration of new variants of RFG and its
application in real-world scenarios holds promise for advancing our understanding of causal
relationships and enhancing the generalization capacities of deep learning models. We build

on this work and the results of chapter 3 to arrive at an end-to-end model capable of jointly
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learning the structure and the representations in chapter 4 to tackle challenging problems

with realistic environments and various tasks.
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Chapter 3

Object-Centric Causal

Representation Learning

by

Amin Mansouri', Jason Hartford!, Yan Zhang?, Irina Rish', and Yoshua Bengio'

(1) Mila, Quebec Al Institute and Université de Montréal
(2) Samsung, SAIT AI Lab Montréal

A shorter version of this work was initially published and presented at NeurIPS 2022 Work-
shop on Symmetry and Geometry in Neural Representations. An expanded version of it was
accepted at NeurIPS 2023 Workshop on Causal Representation Learning. The full version

of this work as appearing in this chapter is under review in the main track of ICLR 2024.

Context and Contributions. In the preceding chapter (2), our focal point rested on ac-
quiring a reusable structure through access to causal representations. However, it was evident
from the outset that an eventual relaxation of this assumption would be necessary. Mean-

while, concurrent advancements have emerged in identifying causal representations through



partial structural knowledge (Ahuja et al., 2022a) and in the domain of object-centric learn-
ing (Locatello et al., 2020b). With these new ideas in play, we decided to use these insights
to push our current efforts beyond conventional assumptions. Our present pursuit involves
a departure from established conventions in the non-linear ICA literature, delving more
deeply into the realm of causal representation learning. This study was set to strengthen
the groundwork established in chapter 2 and set the stage for chapter 4.

Hence, the genesis of this project emerged from a collaborative effort between Kartik
Ahuja, Jason Hartford, and myself. Notably, Yoshua Bengio provided guidance and encour-
aged this exploration (Kartik contributed significantly to the initial phase resulting in the
workshop version, before moving to Meta AI Research). We collectively delved into rele-
vant literature—Jason, Kartik, and [-—to absorb theories and devise experiments. I took
charge of translating ideas into practical experiments and implemented all the variants of
our models and baselines, as well as creating a vast number of diverse vision datasets each
purposed to evaluate a specific aspect of our model’s capabilities. 1 then carried out all
the experiments and subsequent analysis. My contributions extended to theoretical insights
during troubleshooting the model failures. The theoretical framework, a result of discussions
with Jason, Yan, and me, shaped our work profoundly. Yan’s contribution through his work
(Zhang et al., 2022b) was pivotal, stabilizing our training and introducing us to its working
mechanisms and advantages over (Locatello et al., 2020b). The manuscript was collectively
written by me, Jason, and Yan. Yan and Jason (and Kartik during his engagement) con-
sistently offered me priceless feedback at every step of the project’s evolution, which was
accompanied by guidance from Irina and Yoshua, which steered the project toward success.
Everyone’s collective insights and support were truly instrumental in the project’s achieve-
ments.

Personal Contributions.

e | did the literature review surrounding object-centric learning and methods to use
alongside Ahuja et al. (2022a) for disentanglement.

e | implemented an extensive and scalable codebase for the fast generation of numerous
variations of both the 2D and 3D datasets, each designed to probe a specific aspect
of our method and explore the possible failure modes. The datasets used different
engines, therefore there was little transfer of code from one to another, and I carried
out both from scratch.

e [ implemented all the baselines, and our disentanglement method based on Slot At-

tention (SA) and SA-MESH. Then ran all the experiments with known and unknown
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perturbations, with various combinations of parameters, as well as the hyperparam-
eter search. This was achieved due to the expansive codebase I had written for swift
integration of different models and datasets.

I extensively and meticulously troubleshooted the failure modes of our method result-
ing in crucial theoretical insights about the necessary conditions on the perturbations.
I came up with three solutions to address the problem of matching, implemented
them, extensively compared their run-time complexities and performance in vari-
ous settings, and carried out the experiments with the fastest and best-performing
algorithm.

I produces all the plots, figures, and result tables.

I wrote all of the paper with the exception of these sections: 3.3, 3.4, B.1

I co-authored the rest of the paper together with Jason, Yan, and Kartik.

RESUME. Des progrés récents et significatifs ont été réalisés dans 'apprentissage de repré-
sentation causale, qui ont montré une variété de contextes dans lesquels nous pouvons démé-
ler les variables latentes avec des garanties d’identifiabilité (jusqu'a une classe d’équivalence
raisonnable). L’hypotheése commune & toutes ces approches est que (1) les variables latentes
sont des vecteurs d—dimensionnels, et (2) que les observations sont le résultat d'une fonction
d’observation injective de ces variables latentes. Bien que ces hypothéses semblent bénignes
— elles reviennent & supposer que tout changement dans espace latent se reflete dans Pes-
pace d’observation et que nous pouvons utiliser des encodeurs standards pour déduire les
variables latentes — nous montrons que lorsque les observations sont de multiples objets, la
fonction d’observation n’est plus injective et le démélage échoue en pratique. Nous pouvons
remédier a cet échec en combinant les développements récents en matiére d'apprentissage
centré sur les objets et d’apprentissage par représentation causale. En modifiant 1'architec-
ture Slot Attention (Locatello et al., 2020b), nous développons une architecture centrée sur
les objets qui exploite une faible supervision des perturbations clairsemées pour déméler les
propriétés de chaque objet. Nous soutenons que cette approche est plus efficace en matiére
de données dans le sens ol elle nécessite beaucoup moins de perturbations qu'une approche
comparable qui encode dans un espace euclidien et nous montrons que cette approche réus-
sit a déméler les propriétés d’'un ensemble d'objets dans une série de simples expériences de
démélage basées sur des images.

Mots clés : Apprentissage de représentations causales, Apprentissage centré sur les ob-
jets, Représentations désentrelacées, Attention par emplacement, Apprentissage faiblement

supervisé
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ABSTRACT. There has been significant recent progress in causal representation learning
that has shown a variety of settings in which we can disentangle latent variables with iden-
tifiability guarantees (up to some reasonable equivalence class). Common to all of these
approaches is the assumption that (1) the latent variables are d—dimensional vectors, and
(2) that the observations are the output of some injective observation function of these
latent variables. While these assumptions appear benign—they amount to assuming that
any changes in the latent space are reflected in the observation space and that we can use
standard encoders to infer the latent variables—we show that when the observations are of
multiple objects, the observation function is no longer injective, and disentanglement fails
in practice. We can address this failure by combining recent developments in object-centric
learning and causal representation learning. By modifying the Slot Attention architecture
(Locatello et al., 2020b), we develop an object-centric architecture that leverages weak su-
pervision from sparse perturbations to disentangle each object’s properties. We argue that
this approach is more data-efficient in the sense that it requires significantly fewer pertur-
bations than a comparable approach that encodes to a Euclidean space and, we show that
this approach successfully disentangles the properties of a set of objects in a series of simple
image-based disentanglement experiments.

Keywords: causal representation learning, object-centric learning, disentangled represen-

tations, slot attention, weakly-supervised learning

3.1. Introduction

Consider the image in Figure 3.1 (left). We can clearly see four different colored balls,
each at a different position. But asking, “Which is the first shape? And which is the
second?” does not have a clear answer: the image just depicts an unordered set of objects.
This observation seems trivial, but it implies that there exist permutations of the objects
which leave the image unchanged. For example, we could swap the positions of the two blue
balls without changing a single pixel in the image.

In causal representation learning, the standard assumption is that our observations x are
“rendered” by some generative function g(-) that maps the latent properties of the image z to
pixel space (i.e. x = g(z)); the goal is to disentangle the image by finding an “inverse” map
that recovers z from z up to some irrelevant transformation. The only constraint on g(-) that
is assumed by all recent papers (for example Hyvarinen and Morioka, 2016, 2017; Locatello
et al., 2020a; Khemakhem et al., 2020a,b; Lachapelle et al., 2022; Ahuja et al., 2022a,b,
2023), is that g(-) is injective', such that g(z;) = g(22) implies that 2, = 2,. But notice

ISome papers place stronger constraints on g(-), such as linearity Hyvirinen and Oja, 2000; Squires
et al., 2023, sparsity Moran et al., 2022; Zheng et al., 2022, or constraints on g’s Jacobian Gresele et al.,

2021; Brady et al., 2023 but injectivity is the weakest assumption common to all approaches.
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Fig. 3.1. (Left) An example image of simple objects. (Right) Mean correlation coefficient
(MCC) score which measures the correlation between inferred latent variables and their
associated ground truth values. Ahuja et al. (2022b)’s approach achieves almost perfect
MCC scores (i.e. a score = 1) when the ball color is used to make the generative function
injective (“Injective ResNet™), but achieves an MCC score of at most —:— where k is the number
of objects when colors are selected randomly (“Non-injective ResNet”). We show that it is
possible to recover the injective performance by disentangling object-centric representations
(“Disentangled Slot Attention”).

that if we represent the latents z as some d-dimensional vectors in Euclidean space. then
whenever we observe objects like those shown in Figure 3.1, this injectivity assumption fails:
symmetries in the objects’ pixel representation imply that there exist non-trivial permutation
matrices II. such that g(z) = g(I1z). This is not just a theoretical inconvenience: Figure 3.1
(right) shows that when the identity of the balls is not distinguishable, the disentanglement
performance of a recent approach from Ahuja et al. (2022b) is upper-bounded by 1/k where
k is the number of balls.

In parallel to this line of work, there has been significant progress in the object-centric
learning literature (e.g. van Steenkiste et al., 2018a; Goyal et al., 2019; Locatello et al.,
2020b; Goyal et al., 2020; Lin et al., 2020; Zhang et al., 2023; Chang et al., 2022) that has
developed a suite of architectures that allow us to separate observations into sets of object
representations. Two recent papers (Brady et al., 2023; Lachapelle et al., 2023) showed that
the additive decoders used in these architectures give rise to provable object-wise disentan-
glement, but they did not address the task of disentangling the objects’ associated properties.
In this paper, we show that by leveraging object-centric architectures, we effectively reduce
the multi-object problem to a set of single-object disentanglement problems which not only
addresses injectivity failures but also results in a significant reduction in the number of per-

turbations we need to observe to disentangle properties using Ahuja et al. (2022b)’s approach.
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We illustrate these results by developing a property disentanglement algorithm that com-
bines Zhang et al. (2023)’s SA-MESH object-centric architecture with Ahuja et al. (2022b)’s
approach to disentanglement and show that our approach is very effective at disentangling
the properties of objects on both 2D and 3D synthetic benchmarks.

In summary, we make the following contributions:

e We highlight two problems that arise from objects that violate standard assumptions
used to identify latent variables (Section 3.3).

e We show that these problems can be addressed by leveraging object-centric architectures,
and that using object-centric architectures also enables us to use a factor of k fewer
perturbations to disentangle properties, where k is the number of objects (Section 3.4).

e We implement the first object-centric disentanglement approach that disentangles object
properties with identifiability guarantees (Section 3.5).

e We achieve strong empirical results® on both 2D and 3D synthetic benchmarks (Section
37)

3.2. Background

Causal representation learning (Scholkopf et al., 2021) seeks to reliably extract meaningful
latent variables from unstructured observations such as images. This problem is impossible
without additional structure because there are infinitely many latent distributions p(z) that
are consistent with the observed distribution, p(x) = [ p(z|z)dp(z), only one of which cor-
responds to the ground truth distribution (Hyvéirinen and Pajunen, 1999; Locatello et al.,
2019). We therefore need to restrict the solution space either through distributional assump-
tions on the form of the latent distribution p(z), or through assumptions on the functional
form of the generative function g : Z — X’ that maps from the latent space to the observed
space (Xi and Bloem-Reddy, 2023). A key assumption that (to the best of our knowledge)
is leveraged by all papers that provide identifiability guarantees, is that g(-) is injective such
that if we see identical images, the latents are identical (i.e. if g(21) = g(22) then z; = 2).

Given these restrictions, we can analyze the identifiability of latent variables for a given
inference algorithm by considering the set of optimal solutions that satisfy these assumptions.
We say latent variables are identified if the procedure will recover the latents exactly in the
infinite data limit. Typically, some irreducible indeterminacy will remain, so latent variables

will be identified up to some equivalence class A. For example, if the true latent vector is

2The code to reproduce our results can be found at: https://github.com /amansouri3476/OC-CRL
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z, and we have an algorithm for which all optimal solutions return a linear transformation
of z such that, A = {A : 2 = Az}, then we say the algorithm is linearly identifies latent
variables. We will call latent variables disentangled if the learning algorithm recovers the
true latent variables up to a permutation (corresponding to a relabeling of the original
variables), and element-wise transformation. That is, for all i, 2; = h;(2x)), where 7 is a
permutation, and h;(-) is an element-wise function; for the results we consider in this paper
this function is simply a scaling and offset, f;(z) = a;2; + b; corresponding to a change of
units of measurement and intercept.

In this paper, we will build on a recent line of work that leverages paired samples from
sparse perturbations to identify latent variables (Locatello et al., 2020a; Brehmer et al.,
2022; Ahuja et al., 2022b). Our approach generalizes Ahuja et al. (2022b) to address the
non-injectivity induced by objects, so we will briefly review their main results. Ahuja et al.
assume that they have access to paired samples, (z,z’) where z = ¢(z), ' = ¢(2’), and
z; is perturbed by a set of sparse offsets A = {d;,...,0;}, such that 2/ = z; + ¢; for all
i €{l,...,k}. They show that if g(-) is an injective analytic function from R? — X, every
0 € A is 1-sparse, and at least d linearly independent offsets are observed, then an encoder,
f that minimizes the following objective recovers the true z up to permutations, scaling and
an offset (Ahuja et al., 2022b, Theorem 1),

f e argming B, 5 [(f’(:z:) +0— f’(x'))z] = fz)=2=IAz+c (3.2.1)

where IT is a permutation matrix, A is an invertible diagonal matrix and ¢ is an offset.

3.3. Objects result in non-identifiability

We begin by formally characterizing the challenges that arise when images contain mul-
tiple objects.
Data generating process. We assume that a set Z := {z;}}_, of k objects is drawn from some
joint distribution, Pz. In order to compare set and vector representations, let vec,(Z) denote
a flattened vector representation of Z ordered according to some permutation 7 € Sym(k),
the symmetric group of permutations of k objects; when 7 is omitted, vec(Z) simply refers
to an arbitrary default ordering (i.e. the identity element of the group). Each object is

described by a d-dimensional vector of properties® z; € R% and hence vec(Z) € R¥. We

3A natural extension of the perspective we take in this paper is to also treat properties as sets rather
than ordered vectors: for example, see Singh et al. (2023). We leave understanding the identifiability of these

approaches to future work.
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say objects have shared properties if the coordinates of 2; have consistent meaning across
objects. For example, the objects in Figure 3.1 (left), each have z,y coordinates and a color
which can be represented by its hue, so z; = [pj,,p;;}h'i]. In general, the set of properties
associated with an object can be different across objects, but for simplicity, our discussion
will focus on properties that are fully shared between all objects.

The non-injectivity problem. We observe images x which are generated via a generative
function g(-) that renders a set of object properties into a scene in pixel space, such that
x = g(Z). While g(-) is a set function, we can define an equivalent vector generative
function, g, which, by definition, produces the same output as g(Z); i.e. for all 7 € Sym(k),
g(vec.(Z)) = g(Z). This generative function g taking vectors as input is consistent with
standard disentanglement assumptions except that it is not injective:

Proposition 3. If g(vec,(Z)) = a(Z) for all = € Sym(k), then g(-) is not injective.

Proof. The contrapositive of the definition of injectivity states that z; # 25 implies g(z1) #
g(z3), but by definition of g(-), there exist z; # 25 such that g(z;) = g(22). In particular,
for any set Z and permutations m; # m € Sym(k), the vectors vecy, (Z) = 21 # 2z, =
vec,,(Z). O

This proposition simply states that if images are composed of sets of objects, then if we model
the generative function as a map from a Euclidean space, this map will not be injective by
construction.

With the exception of Lachapelle et al. (2023), all of the causal representation learning

papers cited in section 3.6 assume the generative function g is injective. To see why injectivity
is necessary in general, consider an image with two objects. If the two objects are identical,
then there are two disentangled solutions corresponding to the two permutations, so it is not
possible to identify a unique solution.
The object identity problem. When applying sparse perturbations on Z (see section 3.2), we
are effectively perturbing one coordinate of one object. However, how can we know which
object of the multiple possible objects in Z we have perturbed? In the case of injective
mappings, this is simple: since there is a consistent ordering for them, we know that a
coordinate in vec(Z) corresponds to the same object before and after the perturbation.

However, this is no longer the case in our setting. Since the objects are actually part of a
set, we cannot rely on their ordering: the perturbed object can, in principle, freely swap order

with other objects; there is no guarantee that the ordering before and after the perturbation
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remains the same. In fact, we know that these ordering changes must be present due to the
responsibility problem:

Proposition 4 (Zhang et al. (2020); Hayes et al. (2023)). If the data is generated according
to the data generating process described above with g(vec,(Z)) := g(Z) and k > 1, then f(-)

1s discontinuous.

Proof Sketch. Consider Figure 3.2, notice that if we perform a 90° rotation in the pixel space
of the image, the image is identical, but the latent space has been permuted since each ball
has swapped positions. Because the image on the left and the image on the right are identical
in pixel space, any encoder, f : X — R*_ will map them them to identical latents. There
exists a continuous pixel-space rotation from 0° to 90°, but it must entail a discontinuous
swap in which latent is responsible for which part of pixel-space according to the encoder. [

A general proof can be found in Hayes et al. (2023). These discontinuities manifest
themselves as changes in permutation from one vec,, (Z) to another vec,,+.,(Z). In disen-
tanglement approaches that leverage paired samples (e.g. Ahuja et al., 2022b; Brehmer et al.,
2022), continuity enables the learning algorithm to implicitly rely on the object identities to
stay consistent. Without continuity, one cannot rely on the fact that vec(Z) and vec(Z)+4
should be the same up to the perturbation vector d, because the perturbation may result in
a discontinuous change of vec(Z) + d when an observation is encoded back to latent space.
As a consequence, we lose track of which object we have perturbed in the first place, so naive
use of existing disentanglement methods fails.

Another challenge is that the encoder f (Equation 3.2.1) has to map observations to
vec(Z) in a discontinuous way, which is traditionally difficult to model with standard ma-
chine learning techniques.

In summary, the unordered nature of objects in Z results in non-injectivity, losing track
of object identities, and the need for learning discontinuous functions. These all contribute

to the non-identifiability of traditional disentanglement methods in theory and practice.

3.4. Object-centric causal representation learning

A natural solution to this problem is to recognize that the latent representations of multi-
object images are sets and should be treated as such by our encoders and decoders in order to
enforce invariance among these permutations. Both Brady et al. (2023) and Lachapelle et al.
(2023) showed that architectures that enforce an appropriate object-wise decomposition in
their decoders provably disentangle images into object-wise blocks of latent variables. These
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x = g([2), 22, 3. %)) i x = g([23, 23: 24, 541
Oniginal z Parmutad =

Fig. 3.2. An illustration of the object identity problem. Permuting the order of the latents

[21,22,23,25] is equivalent to a 90-degree rotation in pixel-space.

results do not disentangle the properties of objects, but they solve an important precursor:
the assumption that there exists an object-wise decomposition of the generative function is
sufficient to partition the latents into objects.

Like these two papers, we will assume that natural images can be decomposed into

objects,” each of which occupies a disjoint set of pixels. When this is the case, we say that
an image is object-separable. To define object separability formally, we will need to consider
a partition P of an image into & disjoint subsets of pixels P = {zV,....2®} indexed by
an index set Zp = {1,...,k}; further, denote an index set that indexes the set of latent
variables Z as Z;. We can then say.
Definition 1. An image. x. is object-separable if there exists an object-wise partition
P and a bijection o : Tp — Tz that associates each subset of pixels in P with a particular
element of the set of latents, z;, such that each subset of pizels ") € P is the output of an
injective map with respect to ils associaled latent z ;). That is. for alli, (;1.'(")’ c g(2), 9 ¢
8(2)), we have that 21" = & implies 2|, = z,().

This definition says that an image can be separated into objects if it can be partitioned
into parts such that each part is rendered via an injective map from some latent z;. We can
think of each (¥ as a patch of pixels, with a bijection o that relates each of the k patches
of pixels in the partition {z(V}%_ to a latent variable in Z = {z;}%_,. Each patch “depends”

on its associated latent via an injective map.

AThis is a pragmatic approximation that suffices for the purposes of this paper. but a careful treatment
of objects is far more subtle because what we interpret as an “object™ often depends on a task or a choice
of hierarchy: for a more nuanced treatment, Smith (2019)’s Chapter 8 is an excellent introduction into the

subtleties around demarcating an “object”.

90



Brady et al. (2023) and Lachapelle et al. (2023) give two different formal characteri-

zations of partitions P that are consistent with our object-wise definition. Brady et al.’s
characterization requires that a differentiable generative function g is compositional, in the
sense that each z(Y) € P only functionally depends® on a single zj € Z, and irreducible in
the sense no (¥ € P can be further decomposed into non-trivial subsets that have function-
ally independent latents. Lachapelle et al.’s assumption is weaker than ours in that they
only require that the generative function is defined as g(Z) = J(Zz', c79i(z)) where o is
an invertible function and that g is a diffeomorphism that is “sufficiently nonlinear” (see
Assumption 2 Lachapelle et al., 2023); object-separable images are a special case with o as
the identity function and each g;(-) rendering a disjoint subset of z, and hence their results
apply to our setting.
Disentangling properties with object-centric encoding. In section 3.3 we showed that the as-
sumptions underlying the sparse perturbation-based disentanglement approach are violated
in multi-object scenes. But, the results from Brady et al. (2023) and Lachapelle et al. (2023)
show that the objects can be separated into disjoint (but entangled) sets of latent variables.
This suggests a natural approach to disentangling properties in multi-object scenes:

e we can reduce the multi-object disentanglement problem to a single-object problem with
an object-wise partition of the image. Within each patch of pixels z(!) € P injectivity
holds, and so we no longer have multiple solutions at a patch level. This partition
is identifiable and we can use an object-centric architecture to learn the object-wise
partition. We require that this object-centric architecture can handle the responsibility
problem.

e we leverage Ahuja et al. (2022b)’s approach to using weak supervision to disentangle the
properties of each object individually. Since we assume that properties between objects
are shared, this requires a factor of k fewer perturbations in the perturbation set A,
where k is the number of objects.

e we address the object identity problem where we lose track of object identities after
perturbations through an explicit matching procedure that re-identifies the object being
perturbed.

See section 3.5 for details of how we implement this. This approach not only addresses
the challenges outlined in Section 3.3, but it also significantly reduces the number of pertur-
bations that we have to apply in order to disentangle shared properties.

5 . . . . . . . o Tk
“Functional dependence is defined by non-zero partial derivatives, i.e. 3; # 0.
rg
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Theorem 1 (informal). If a data generating process outputs observations with k objects that
have shared properties, then an object-centric architecture of the form F(z) := {f(;r“))}ﬂ.me p
where P is an object-wise partition and £ : X — R will disentangle in k times fewer
perturbations than an encoder of the form f : X — R¥,

The proof is given in Appendix B.1. The main insight is that if we have an object-centric
architecture that learns an object-wise partition PP and uses the same encoding function § on
every patch, then every perturbation provides weak supervision to every object, despite the
fact that only one was perturbed. As a result, we do not need to disentangle each object’s
properties separately, and hence we reduce the number of required interventions by a factor
of k.

3.5. Method

Object-wise partitions. There exist a number of ways to decompose an image into objects,
but for our purposes, pixel segmentation-based approaches (Greff et al., 2019; Locatello et al.,
2020b; Zhang et al., 2023) let us directly adapt existing disentanglement techniques to work
with object-centric encoders. A pixel segmentation encoder f maps from images x to a set of
slot vectors {si, ..., si}, each of which depends on a subset of the pixels ) € P. Images are
then reconstructed using a slot decoder § that maps from the set of slot representations back
to pixel space. The dependence between slots and patches of pixels is typically controlled
by a soft-attention matrix, which will typically not result in a partition of the pixels. In our
implementation, we use Zhang et al.’s SA-MESH modification of the original Locatello et al.
slot attention architecture, which adds an entropy regularization term based on Sinkhorn
and Knopp (1967); Cuturi (2013) to learn sparse attention matrices that do approximately
partition the input by encouraging the subsets of pixels 'V to be disjoint (for details on
the architectures, see Appendix B.2). Importantly for us, Zhang et al. (2023) is exclusively
multiset-equivariant (Zhang et al., 2022a), which allows it to model discontinuous functions,
thus handling the responsibility problem.

Slot attention is usually trained with a reconstruction loss from relatively high-
dimensional per-object slot representations, s; € R, but for the images that we work
with, we want a relatively low dimensional latent description (in the simplest case, just the
two dimensions representing the (z,y) coordinates of each object). To disentangle these
high-dimensional slot representations, we simply add a projection head, p : s; — 2;, that is

trained by a latent space loss.
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Disentanglement via weak supervision with matching. Ahuja et al. assume access to pairs
of images (z,2) that differ by a sparse offset §. They enforce this assumption via a dis-
entanglement loss that requires that the latent representations of this pair of images differ
by 8, such that f(z) + 6 = f(2'). When using a slot attention architecture, we introduce
a matching step to the loss to infer the object to which the offset 6 was applied. With
1-sparse 0 vectors, the matching step reduces to a simple minimization over a cost matrix
that measures ||2(z'?)) — (2(x®) +6)||? for all pairs of slots 7,j. In Appendix B.4, we provide
a more general matching procedure that applies to settings with dense offsets 4. We jointly

optimize the following reconstruction and disentanglement loss,

fape arJg;Tﬂ Exllz — g(f@)I*] + Ezar.s [min | (p(f (")) = (p(f(2)?) +8)*] (3.5.1)

The first term in this loss enforces that the encoder / decoder pair f , g capture enough
information in the slot representations s; to reconstruct x. The second term contains the
matching term and ensures that the function that projects from slot representation to latents
p disentangles the slot representations into individual properties. The offset § could be
known or unknown to the model, and for the remainder of this paper, we focus on the more

challenging and natural case of unknown offsets. See appendix B.3 for more details.

3.6. Related work

Causal representation learning. Our work builds on the nascent field of causal representation
learning (Scholkopf et al., 2021). In particular, our disentanglement approaches builds on
ideas in Ahuja et al. (2022b) which uses the same assumptions as Locatello et al. (2020a)
but relaxes the requirement that the latent variables are independently distributed. These
approaches form part of a larger body of recent work that shows the importance of sparsity
and weak supervision from actions in disentanglement (Lachapelle et al., 2022; Lachapelle
and Lacoste-Julien, 2022; Brehmer et al., 2022; Lippe et al., 2022, 2023b,a). In the appen-
dix, we also show how known mechanisms from Ahuja et al. (2022a) can be dealt with in
our framework. A closely related, but more general setting, is the recent progress on dis-
entanglement from interventional distributions which do not require paired samples (Ahuja
et al., 2023; Buchholz et al., 2023; von Kiigelgen et al., 2023); we believe a useful extension
of our approach would consider these settings. This literature builds on the foundational
work from the nonlinear independent component analysis (ICA) literature (Hyvarinen and
Morioka, 2016, 2017; Hyvarinen et al., 2019; Khemakhem et al., 2020a).
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Object-centric learning. Natural data can often be decomposed into smaller entities—
objects—that explain the data. The overarching goal of object-centric learning is to model
such data in terms of these multiple objects. The reason for this is simple: it is usually
easier to reason over a small set of relevant objects rather than, for example, a large grid
of feature vectors. Representing data in this way has downstream benefits like better ro-
bustness (Huang et al., 2020). An important line of research in this area is how to obtain
such objects from data like images and video in the first place. Typically, a reconstruction
setup is used: given an image input, the model learns the objects in the latent space, which
are then decoded back into the original image with a standard reconstruction loss (Locatello
et al., 2020b; van Steenkiste et al., 2018b). Nguyen et al. (2023) propose RSM, a conceptu-
ally close idea to our work. They jointly learn object-centric representations with a modular
dynamics model by minimizing a rolled-out reconstruction loss. However, they do not obtain
any disentanglement of object properties, and the form of our proposed weak supervision
provides insights into the effectiveness of their method for improving generalization.

We use slot attention since it makes very few assumptions about the desired data. For
instance, some methods model foreground differently from background. Additionally, DI-
NOSAUR (Seitzer et al., 2022) shows recent success on more complex images, which demon-
strates the versatility of the slot attention approach. While in general object-centric models
operate on image inputs and thus identify visual objects, it is in principle applicable to other

domains like audio (Reddy et al., 2023) as well.

3.7. Empirical evaluation

Setup. We evaluate our method on 2D and 3D synthetic image datasets generated using
Shinners (2011); Greff et al. (2022) that allow us to carefully control various aspects of the
environment, such as the number of objects, their sizes, shapes, colors, relative positions, and
dynamics. Such a controllable environment is an essential first step as it enables us to easily
iterate and find the sources of non-identifiability for the proposed method. Examples of our
2D and 3D datasets are shown in figures 3.1,3.3 respectively. The object-wise true latents
in either dataset consist of z = (p,.py.h,s,7,®), where p,,p, denote the coordinates of the
center of an object, followed by color hue k, shape s, size r, and rotation angle ¢ about the
z-axis. Based on object properties, they are each rendered and placed on a white background
(for the 2D dataset) or placed on a floor that is illuminated by source lights and is being
visited from somewhere above the floor (for the 3D dataset) and then aggregated to produce

;. We use a 1D parameterization for colour by fixing colour saturation and value and only
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altering the colour hues. We also discretize the range of colour hues so we can test the
model’s ability to obtain disentangled representations in the simultaneous presence of both
continuous (position, size, and rotation angle) and discrete properties (colour and shape).
Our goal is to identify (up to irrelevant transformations) at the object level such true latents
2 € R? that give rise to the model’s observations z by exploiting weak supervision from sparse
perturbations. The model receives z;,x;1 along with some knowledge about the subset of
mechanisms that caused the perturbations and is tasked to jointly reconstruct the image at
both t,t + 1 as well as to minimize an objective function in the latent space (see Equation
3.2.1). We show that this objective gives rise to disentangling the properties p,.py.h.s,7,0
at the object level. Note that the model is agnostic to the continuous or discrete nature of
the true latents, and the objective regardless produces a disentangled representation. All
experiments in this section are carried out in the unknown mechanism setting with fully
sparse perturbations. For results under known mechanisms and fully dense perturbations

see appendix B.6.

Fig. 3.3. (Left) An example image before any augmentations. (Right) Possible augmenta-
tions in the synthetic 3D dataset i.e., change in size, orientation, colour, position, and shape.

Disentanglement Metrics. We compared Z—the projections of non-background slots—to the
true latents z of objects to measure the disentanglement of the properties in 2. We evaluated
the identifiability of the learned representations either up to affine transformations or up to
permutation and scaling. These two metrics were computed by fitting a linear regression
between z,2 and reporting the coefficient of determination R?, and using the mean correlation
coefficient (MCC) (Hyvarinen and Morioka, 2016, 2017).

Baselines. Our method projects slots to a latent space that has the same dimensionality d
as the true latents. The model does not know anything about the structure of the true latent
space z and throughout the training converges to an equivalence class of it. However, slot
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attention, our object-centric baseline, does not have such a projection, thus we need to have
a meaningful extraction of features from high-dimensional slot representations so that we
can measure if slot representations encode object properties in a disentangled manner. We
use the following approaches to project slots to a d—dimensional space. For all slot attention
baselines we match the ground truth segmentation masks to slots decoder masks to align slot
projections and object-wise true latents to fit the projections. We use the same matching
only for the evaluation of representations learned by our proposed method.

Random Projections (RP): Random projections of high-dimensional representations preserve
distances in the projected space, so we can use d—dimensional random projections of slots
that correspond to objects (requires matching with the ground truth segmentation masks)
to obtain a crude estimate of vanilla slot attention’s disentanglement.

Principal Components (PC): If the slots contain reasonably disentangled representations,
then most of the variance of slots is expected to be due to object properties, therefore ex-
tracting the top d principal components of slot representations is a justified approach for the
computation of the disentanglement scores. This should give a finer estimate than random
projections.

Linear Regression (LR): We can also directly use the true latents and learn a linear map-
ping from non-background slots to the z space and use this projection with disentanglement
metrics. Note however, that this gives an upper bound on what slot attention could achieve
under linear transformations as it is completely supervised by the knowledge of the true
latents, i.e., the representation we aim to discover through a much weaker signal (partial
knowledge of perturbations); we only use the true latents for evaluation and not in any way
we exploit them for training,.

ConuNet: As the main reason for adopting set-based representations was to relax the as-
sumption of an injective observation function, we need to compare our method against a
conventional CNN encoder that can act as the inverse of an injective observation function.
Concretely, if the objects in the scene are never identical and we define an ordering over
objects in the scene and organize z according to that order in the dataset, then the observa-
tion function is injective, and a CNN encoder with enough capacity (such as ResNet18 (He
et al., 2015)) should in principle be able to recover z up to irrelevant transformations (Ahuja
et al., 2022b) by following the same disentanglement procedure we use (same as Ahuja et al.
(2022a,b)). If object latents z are not organized according to a fixed ordering, then the
observation function is no longer injective and we expect this baseline to fail. We denote the

injective and non-injective variations by CNNT and CNN in the results table, respectively.
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2D Shapes. In this section we present the empirical results that compare slot attention-
based architectures with a ResNet18 trained on a non-injective and injective DGPY of 2,34
objects. Tables 3.1,3.2 confirm that as long as the observation function is injective we can
empirically achieve identification (see CNNT). But the moment we drop any ordering over the
objects and render z via a non-injective function, then identification via ResNet18, which is
suited only to injective renderers fails disastrously (see the row corresponding to CNN in table
3.1. Also see figure 3.1). On the other hand, we can see that our method has no difficulty
identifying object properties because it treats them as a set by leveraging slot attention and a
matching procedure. It is also noteworthy to mention that an injective encoder requires about
n times more samples to achieve the same performance because it encodes the scene onto a
monolithic R"? space where none of the d—dimensional sub-spaces share any representation
causing the model to re-learn every property for every object exhaustively, while one key
aspect of our method is to share such property representations across objects.

Table B.5 in the appendix shows the results for a particularly difficult training setting in
which all of the objects are identical and have the same color, so the model cannot solely
rely on colour cues to separate objects. This setting demonstrates that the failure of the
injectivity assumption is not just a theoretical inconvenience, and the matching has to be
successful to enable disentanglement. It is needless to say this scenario amounts to a non-
injective g, and as can be seen, ResNet18 completely fails on any number of objects, whereas
our method keeps achieving perfect disentanglement. For the results on other combinations
of properties please see appendix B.5.1.

3D Shapes. Figure 3.3 shows examples of perturbations that the model observes and uses
for disentangling object properties. We present the disentanglement scores for various com-
binations of properties and environments with n = {2,3,4} number of objects in the scene.
Since ConvNet (ResNet18) failed consistently in the simpler dataset of 2D shapes, we do
not employ it with 3D shapes. In tables 3.3,3.4 the results for our method are reported
under unknown fully sparse perturbations (Note that the SA baselines do not use any mech-
anisms for disentanglement.). Results for our method are averaged over 3 seeds, but since
the baselines require training SA-MESH from scratch, they were trained only once as it is

computationally expensive to obtain excellent reconstructions with Slot Attention (and its

6We make ¢ injective by using the properties that are not the target of disentanglement, i.e., if z,y are
the target properties, we will uniquely color each object based on its order in the default permutation. If
x.y,c are targets, we will use unique shapes for each object based on its order in the permutation. The same

logic follows for other property combinations.
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derivative architecture SA-MESH). These results essentially confirm our foundations in the
simpler 2D dataset and demonstrate how treating the scene as a set with our method results
in perfect disentanglement of object properties. For the results on other combinations of

properties please see appendix B.5.2.

Table 3.1. Linear Disentanglement (LD) scores on 2D shapes test set under unknown fully
sparse perturbations. All results are averaged over 3 seeds except those requiring training
SA-MESH from scratch that were trained only once. SA-LR, which is supervised by the
ground truth latents, and is an upper bound on the disentanglement performance, achieve a

score of 1.0 in all settings.

POs,,pos, posﬂ,,posy,color,size,rotation
Model n=2 n=:3 =>4 0 =2 =3 =4
Ours 1.00 £0.00 1.00 £0.00 1.00 £0.00 0.95 £0.01 0.93 £0.01 0.94 +0.02
SA-RP 0.92 0.96 0.94 0.75 0.70 0.68
SA-PC 1.00 1.00 1.00 0.93 0.88 0.86

CNNT  0.94 £0.05 0.99 +£0.00 0.96 +0.03 0.87 £0.01 0.84 £0.01 0.86 £0.01
CNN 0.24 £0.01 0.13 +£0.01 0.07 £0.01 0.35 +£0.00 0.19 £0.00 0.08 £0.01

Table 3.2. Permutation Disentanglement (MCC) scores on 2D shapes test set under un-
known fully sparse perturbations. All results are averaged over 3 seeds except those requiring
training SA-MESH from scratch that were trained only once. SA-LR (supervised) achieves

a score of 1.0 in all settings.

pos,,pos, posm,posy,color,size,rotation
Model n=2 n=:3 n=4 n =2 n=23 =
Ours 1.00 £0.01 1.00 +£0.01 0.98 +0.01 0.95 +0.01 0.93 +£0.00 0.94 +0.01
SA-RP 0.80 0.90 0.82 0.58 0.52 0.50
SA-PC 1.00 1.00 1.00 0.86 0.85 0.84

CNNT  0.96 £0.02 0.99 £0.01 0.98 £0.02 0.91 +0.01 0.89 +0.01  0.90 £0.01
CNN 040 £0.01 0.25 £0.03 0.21 +£0.01 0.58 +0.00 0.42 £0.00 0.27 £0.01
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Table 3.3. LD scores on 3D shapes test set under unknown fully sparse perturbations. SA-

LR achieves a score of 1.0 in all settings.

pos,,,pos, ,color pos,,pos, ,color,size,rotation
Model n=2 n=3 n=4 n=2 n=3 n=4
Ours 0.99 +0.01 0.99 +0.00 1.00 +0.01 0.91 +0.03 0.95 +0.01 0.93 4+0.01
SA-RP 0.67 0.58 0.58 0.51 0.56 0.60
SA-PC 0.64 0.62 0.64 0.56 0.76 0.76

Table 3.4. MCC scores on 3D shapes test set under unknown fully sparse perturbations.

SA-LR achieves a score of 1.0 in all settings.

pos,,,pos,,color pos,,pos,,color size,rotation
Model "= =3 n=4 =2 0= n=4
Ours 0.99 +£0.01 0.99 £0.00 0.99 +0.01 0.89 +0.02 0.92 +0.03 0.92 +0.02
SA-RP 0.62 0.54 0.54 0.49 0.50 0.46
SA-PC 0.69 0.68 0.70 0.64 0.77 0.78

3.8. Conclusion

This study establishes a connection between causal representation learning and object-
centric learning, and (to the best of our knowledge) for the first time shows how to achieve
disentangled representations in environments with multiple interchangeable objects. The im-
portance of recognizing this synergy is two-fold. Firstly, causal representation learning has
largely ignored the subtleties of objects in assuming injectivity and fixed R? representations.
Conversely, object-centric learning has not dealt with the challenge of unsupervised disentan-
glement. Yet disentangled representations can significantly improve a model’s generalization
capabilities under distribution shifts, and could also allow for learning parsimonious models
of the dynamics when such proper representations are achieved, which we deem as impor-
tant avenues for future research. In this study, we provided empirical evidence showcasing
the successful disentanglement of object-centric representations through the fusion of slot

attention with recent advances in causal representation learning.
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3.9. Limitations

Our study focuses on showing when disentanglement is possible when treating object-
centric environments as a set of representations instead of fixed-size vectors. We have an-
alyzed the performance of our model comprehensively on two synthetic datasets that are
relatively limited in capturing the complexities of real-world scenarios. Yet, we believe and
showed such analysis is a necessary first step to identify the intricacies involved in making
our algorithm work. Our analysis has been limited in a number of directions. First, while
we do consider a wide range of continuous and discrete properties to be disentangled, the
number of objects we use is rather low, which ideally should be scaled to real-world scenes
containing more objects. Second, although our experiments include artifacts related to oc-
clusion, depth, and lighting, in all of our experiments we simplify the problem by having
the objects situated on homogenous backgrounds, whereas real-world scenes would comprise
more complex backgrounds. Such decisions were mainly due to (1) generating datasets of
size more than 5k for each combination of properties being a computationally heavy task on
its own, (2) training SA-MESH from scratch for each combination of properties and number
of objects would quickly add up as each training takes ~ 12 hours on a single A100 GPU
to achieve nice reconstructions, (3) details related to the background and the number of
objects are tangential to the focus of this study, which is to demonstrate how to disentangle

the causal factors in an object-centric environment.
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As highlighted in preceding chapters, this body of work serves as the culmination of the
thesis, synthesizing all antecedent concepts and solutions addressing the multifaceted chal-
lenges of structure and representation learning. It adeptly illustrates how these concepts
can significantly enhance out-of-distribution generalization within real-world contexts and
downstream tasks. Building upon the foundations laid in chapter 2, the collaboration with
Trang Nguyen gained momentum, propelling the experimentation process to new heights.
This collaborative effort allowed me to allocate more focused time to the endeavors delin-

eated in chapter 3. On the other hand, while Trang diligently carried forward our collective



efforts, I facilitated her rapid integration by equipping her with an expansive, adaptable,
and scalable codebase, optimized for swift prototyping and experimentation. As the second
co-author of this work, I embraced an exciting dual responsibility. Firstly, I served as a
mentor to Trang, who was also an intern under Yoshua's guidance. I frequently provided her
with abundant feedback spanning implementation intricacies and troubleshooting hurdles
in various stages of the project. On a different front, I assumed a more significant role in
orchestrating the broader perspective and charting the course towards achieving the most
impactful outcomes. Collaborating closely with Kartik, Dianbo, and Kanika, I contributed to
high-level analyses pertaining to experimental design, dataset selection, algorithmic choices,
and establishment of baseline benchmarks. The collaborative effort with Trang stands as a
source of pride for me and Trang as this endeavor afforded me the opportunity to engage
with brilliant researchers and exert influence across both strategic vision and implementation
intricacies. Provided with the codebase and feedback from me, Trang meticulously executed
numerous experiments, and we analyzed them together. The composition process involved
the collective contributions of Trang, myself, Dianbo, Yoshua, and Kanika. Valuable input
from Kartik and Nguyen Duy further enriched our manuscript. Notably, Yoshua provided
unwavering support throughout this journey, offering pivotal insights and probing questions
that fundamentally guided the project to its successful fruition.

Personal Contributions.

e | did the literature review surrounding object-centric learning and dynamics modeling
and the baselines NPS, C-SWM.

e | implemented an extensive and scalable codebase for swift prototyping of various
models in conjunctions with different datasets. However, the implementation of the
final version of RSM and fitting that alongside baselines in the codebase I provided,
was done by Trang.

e | oversaw smooth conduction of the experiment, providing frequent implementation
and troubleshooting feedback to Trang. The troubleshooting includes delving into
low-level details of coding, and suggesting experimentation to probe the various as-
pects of the model.

e The final version of the RSM algorithm was the result of discussions among me,
Dianbo, Kartik, and Yoshua.

e [ provided guidance regarding the implementation and usage of object-centric meth-
ods.

e Trang and I produced figure 4.1.
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e Throughout the various stages of the project, I mentored Trang in implementation,
writing, presenting results, co-authoring author rebuttals for our submission, as well
as presenting Trang with the ideas and math behind RSM and guiding her for realizing
those in practice.

e [ wrote the Introduction, Related Work, and Conclusion, and extensively edited the

rest of the paper toward its final version.

RESUME. Les agents capables de comprendre et de raisonner sur la dynamique des objets
devraient faire preuve d'une robustesse et d'une généralisation améliorées dans de nouveaux
scénarios. Cependant, pour parvenir a cette capacité, il faut non seulement une représen-
tation efficace de la scéne, mais également une compréhension des mécanismes régissant les
interactions entre les sous-ensembles d’objets. Des études récentes ont fait des progres signi-
ficatifs dans la représentation de scénes a 'aide d” emplacement d’objets. Dans ce travail,
nous introduisons “Reusable Slotwise Mechanisms”, ou “RSM”, un cadre qui modélise la dy-
namique des objets en tirant parti de la communication entre les emplacements ainsi qu'une
architecture modulaire capable de sélectionner dynamiquement des mécanismes réutilisables
pour prédire les états futurs de chaque emplacement d’objet. De maniére cruciale, “RSM”
exploite les Informations contextuelles centrales (CCI), permettant & des mécanismes sé-
lectionnés d’accéder aux emplacements restants via un goulot d’étranglement, permettant
ainsi la modélisation d’interactions complexes d’ordre supérieur qui pourraient nécessiter
un sous-ensemble creux d’objets. Les résultats expérimentaux démontrent les performances
supérieures de RSM par rapport aux méthodes de pointe pour diverses prédictions futures
et tAches associées en aval, notamment la réponse visuelle aux questions et la planification
d’actions. De plus, nous présentons la capacité de généralisation hors distribution de “RSM”
a gérer des scénes dans des scénarios complexes.

Mots clés : Apprentissage centré sur les objets, Mécanismes indépendants réutilisables,

Modélisation de la dynamique, Généralisation hors distribution
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ABSTRACT. Agents with the ability to comprehend and reason about the dynamics of ob-
jects would be expected to exhibit improved robustness and generalization in novel scenarios.
However, achieving this capability necessitates not only an effective scene representation but
also an understanding of the mechanisms governing interactions among object subsets. Re-
cent studies have made significant progress in representing scenes using object slots. In this
work, we introduce Reusable Slotwise Mechanisms, or RSM, a framework that models object
dynamics by leveraging communication among slots along with a modular architecture ca-
pable of dynamically selecting reusable mechanisms for predicting the future states of each
object slot. Crucially, RSM leverages the Central Contextual Information (CCI), enabling
selected mechanisms to access the remaining slots through a bottleneck, effectively allowing
for modeling of higher order and complex interactions that might require a sparse subset of
objects. Experimental results demonstrate the superior performance of RSM compared to
state-of-the-art methods across various future prediction and related downstream tasks, in-
cluding Visual Question Answering and action planning. Furthermore, we showcase RSM'’s
Out-of-Distribution generalization ability to handle scenes in intricate scenarios.

Keywords: object-centric learning, reusable independent mechanisms, dynamics modeling,

out-of-distribution generalization

4.1. Introduction

Accurate prediction of future frames and reasoning over objects is crucial in various com-
puter vision tasks. These capabilities are essential for constructing comprehensive world
models in applications like autonomous driving and reinforcement learning for robots. Tra-
ditional deep learning-based representation learning methods compress entire scenes into
monolithic representations, lacking compositionality and object-centric understanding. As
a result, these representations struggle with systematic generalization, interpretability, and
capturing interactions between objects. This limitation leads to poor generalization perfor-
mance as causal variables become entangled in non-trivial ways.

There has been growing interest in slot-based and modular representations that decom-
pose scenes into individual entities, deviating from fixed-size monolithic feature vector rep-
resentations (Graves et al., 2014; Santoro et al., 2018; Goyal et al., 2020, 2021a; Goyal and
Bengio, 2020; Goyal et al., 2021b; Madan et al., 2021; Henaff et al., 2017; Li et al., 2018;
Rosenbaum et al., 2019; Shazeer et al., 2017; Zhao et al., 2021; Liu et al., 2022). These novel
approaches offer significantly more flexibility when dealing with environments that com-
prise multiple objects. By employing an encoder that segments a scene into its independent

constituent entities instead of compressing information into a fixed-size representation, these
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methods allow for greater flexibility and parameter sharing when learning object-centric rep-
resentations, and their compositional nature enables better generalization. Compositional
and object-centric representations can be effectively utilized alongside complex world models
that accurately capture the interactions and dynamics of different entities in a scene.

These world models, when presented with proper representations, in principle, can model
the transition functions that relate latent causal factors across consecutive time steps of a
rollout. While monolithic blocks are still used occasionally with object-centric methods
Wu et al. (2023), recent attempts have incorporated similar inductive biases related to the
object-centricity of images in modeling interactions (Kipf et al., 2020). Structured world
models and representations seem truly promising for systematically generalizing to novel
scenes. Structured world models would ideally decompose the description of the evolution of
a scene into causal and independent sub-modules, making it easy to recombine and repurpose
those mechanisms in novel ways to solve challenges in unseen scenarios. Such separation of
dynamics modeling makes structured world models more adaptable to distribution shifts, as
only the parameters of a few mechanisms that have changed in a new environment would
have to be retrained, and not all of the parameters in the case of a monolithic model (Bengio
et al., 2019).

A major class of such structured world models aims at baking in some inductive bias
about the nature of object interactions. On one extreme, there have been studies that employ
Graph Neural Networks (GNNs) to capture object dependencies through dense connections
(Kipf et al., 2020), while on the other hand, there has been contrasting work aiming at
modeling the dynamics through only pairwise interactions (Goyal et al., 2021a). We believe,
however, that ideally, an agent should be able to learn, select, and reuse a set of prediction
rules based on contextual information and the characteristics of each object.

In this work, we argue that the assumptions made in previous attempts at learning
the dynamics among slots may be insufficient in more realistic domains. To address these
limitations, we propose Reusable Slotwise Mechanisms (RSM), a novel modular architecture
incorporating a set of deep neural networks representing reusable mechanisms on top of
slotwise representations (Locatello et al., 2020; Burgess et al., 2019). Drawing inspiration
from the Global Workspace Theory (GWT) in the cognitive neuroscience of working memory
Baars (2005, 2017), we introduce the concept of Central Contextual Information (CCI),
which allows each reusable mechanism, 7.e., a possible explanation of state evolution, to
access information from all other slots through a bottleneck, enabling accurate predictions

of the next state for a specific slot. The CCI's bottleneck amounts to a relaxed inductive

109



bias compared to the extreme cases of pairwise or fully dense interactions among slots.
Finally, through comprehensive experiments, we demonstrate that RSM outperforms the
state-of-the-art in various next-step prediction tasks, including independent and identically
distributed (i.i.d.) and Out-of-Distribution (OOD) scenarios.

In summary, the presented work makes the following contributions: (1) RSM: A modu-
lar dynamics model comprising a set of reusable mechanisms that take as input slot repre-
sentations through an attention bottleneck and sequential slot updates, (2) RSM achieves
state-of-the-art OOD performance compared to baseline modular architectures in a range of
long-term prediction tasks, based on ranking metrics in the latent space and as well as re-
construction loss, and (3) Ablation studies show how CCI benefits the mechanism selection

and the prediction task, compared to the baselines.

4.2. Proposed Method: RSM - Reusable Slotwise Mech-

anisms

4.2.1. RSM Overview

We introduce RSM, a modular architecture consisting of a set of M Multilayer Per-
ceptrons (MLPs) that act as reusable mechanisms, operating on slotwise representations to
predict changes in the slots. What sets RSM apart from other architectures is incorporating
the CCI buffer, which enhances its adaptability when dealing with environments character-
ized by varying levels of interaction complexity among objects by allowing the propagation
of information about all other slots. Unlike previous approaches (Goyal et al., 2021, 2020,
2021a; Ke et al., 2021), we enable a sparse subset of slots to transmit contextual information
through a bottleneck for updating each slot. This inductive bias becomes helpful in environ-
ments where higher-order complex interactions need to be captured by reusable mechanisms
as the CCI effectively modulates the complexity of the mechanisms and accommodates those
that require one or two slots, as well as those that rely on a larger subset of slots.

The training pipeline of RSM, which is visualized in Figure 1(a), is designed to predict
K rollout steps of N object slots, based on 7" burn-in frames with a temporal window
of maximum 7 history steps for each prediction step. Prediction of the rollout begins by
processing the given 7" burn-in frames to obtain the N slot representations for each of
the T' burn-in steps using an object-centric model. For any rollout step after the burn-in

frames, the slots in a window of 7 < T previous steps will be fed to the model as additional
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Fig. 4.1. The future prediction pipeline (Figure 1(a)), RSM Intuition (Figure 1(b)). and
Computational Flow (Figure 1(c¢)). The colored circles represent slots, with the dashed
border denoting changes in the slot. The Central Contextual Information (CCI) is derived
from all object slots as context, assists in selecting a mechanism for slots, and acts as an
input of mechanisms. Slots are sequentially updated in four steps: (1) Compute CCI by
unrolling slots (updated and non-updated) over the past 7 steps, (2) Select a mechanism
based on CCI and the slot of interest, (3) Predict the next state by the selected mechanism’s
dynamics, and (4) Update the predicted slot and prepare for the next object’s turn.

context to predict the state (slots) at £ + 1. The model takes this input and updates the
slots sequentially to output the slots at t + 1. The sequential updating of slots means that
updates from (according to some ordering) slots can influence the prediction of later slots
within a prediction step. as illustrated in 1(b). It is worth highlighting that the sequential
way of updating slots breaks the symmetries in mechanism selection, and also allows for a

more expressive transition function, similar to how autoregressive models enable encoding
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of rich distributions. The prediction process is repeated until the slots are predicted for K

rollout steps.
4.2.2. Computational Flow in RSM

This section describes the computational flow of RSM in more detail along with a 4-step
process that will be repeated for all slots within a time-step ¢, in a sequential manner, as
illustrated in figure 1(c) and Algorithm 1 in the Appendix. The following are the main
components of the architecture, where ds and d.; denote the dimension of slots and the
CCl, respectively:

(1) MultiheadAttention(:) : R(THxN)xds s R« followed by a projection ¢(-) :
R — R that computes the CCI, denoted as cci € R%e, from all of the N slots in
the past T" steps concatenated. Keys, queries, and values all come from slots, so the
CCI is not. affected by the order of slot representations.

(2) The set of M reusable mechanisms {g,...,gx} where g;(-) : Réetds — R are
represented by independently parametrized MLPs implicitly trained to specialize in
explaining different transitions. Each such g;(-) takes as input one slot concatenated
with the CCIL.

(3) ¥(-) : Réatds — RM that takes as input the CCI and the slot of interest si. It
computes a categorical distribution over the possible choices of mechanisms for s,

and outputs a sample of that distribution to be used for updating s;.

Considering the N slots per each of the 7 steps in the temporal window before t, sk =
{8t i1y 5 sty -9 Sh sy < w3815 85544+, 8 } with 7% = t—7+1, RSM predicts the next state

of slots, denoted as s, using the following 4-step process, which is sequentially applied

to each of the slots. Suppose an ordering has been fixed over the slots for a rollout, and
according to that ordering, for some 0 < n < /N, we have that n — 1 slots have been updated
to their predicted values at ¢ + 1 and are denoted by s/ . ..., s '. Below we explain the
process of computing the next state for s} (e.g. the blue slot in Figure 1(c)).

Step 1. Compute the CCI: We first append sV to the current temporal window to
achieve sL7 . The duplicated s;'V serves as a placeholder, which will be overwritten with
the predicted values in subsequent steps. Subsequently, as presented in Equation 4.2.1, a
Multihead Attention(-) takes s, as input before passing through ¢(-) to produce the

central contextual information cci.

cci = ¢(Multihead Attention (s, ) (4.2.1)
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Step 2. Select a mechanism for s}: ¥(-) takes two arguments as inputs, cci from Step
1 and s, to outputs the logits of a categorical distribution m.a; over M possible choices of
mechanisms. During training, we employ a Gumbel-softmax layer Maddison et al. (2016);
Jang et al. (2017) on top of ¥’s outputs, as described in Eq. 4.2.2, to select the mechanism.

During inference, we simply choose argmax value of 7; as the selected mechanism.
T = Gumbel-softmax(v(cci, s}')) (4.2.2)

Step 3. Predict the changes of s}': Let Asf'j denote the change of s}' from the previous

step, predicted by the selected mechanism g;. The transformation of s}', denoted as As}, is

the sum of As{"*" weighted by 7.5/, as presented in Eq. 4.2.3.
. ""‘f .
Asp? = gj(cci,sp),  Asp =Y (Aspd ) (4.2.3)
j=1

Step 4. Update and sync s}, ;: s/}, is then computed by adding the predicted transfor-

T

mation from the previous step and replaces the value of s, | in the slots buffer, as described
in Eq. 4.2.4.

By =& - ARY (4.2.4)

The process above is repeated for all slots at time ¢, to obtain the next state (slots) prediction
1:N
St41-

4.3. Experiments Setup

This study evaluates RSM’s dynamics modeling and generalization capabilities through
video prediction, VQA, and action planning tasks. We aim to provide empirical evidence
supporting the underlying hypotheses that guided the architectural design of RSM.

e H,;: Slots communication through the CCI and reusable mechanisms reduces infor-
mation loss during prediction, resulting in an accurate prediction of future rollout
frames (Sec. 4.4.1).

e H,: RSM produces more accurate results and effectively handles novel scenarios in
the downstream tasks (Sec. 4.4.2), especially enhancing OOD generalization (Sec.
4.4.3).

e Hj: The synergy between the CCI and the disentanglement of objects dynamics into
reusable mechanisms is essential to RSM (qualitative analyses in Sec. 4.4.4 and
ablations in Sec. 4.4.5).
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In the following subsections, we describe the experiments focusing on the transition of slots
over rollout steps with pre-trained object-centric models. Additionally, Appendix C.5 pro-
vides experiments and analyses with an end-to-end training pipeline.

4.3.1. Environments

OBJ3D (Lin et al., 2020) contains dynamic scenes of a sphere colliding with static
objects. Following Lin et al. (2020); Wu et al. (2023), we use 3 to 5 static objects and one
launched sphere for interaction.

CLEVRER (Yi et al., 2020) shares similarities with OBJ3D, but additionally has mul-
tiple moving objects in various directions throughout the scene. For the VQA downstream
task, CLEVRER offers four question types: descriptive, explanatory, predictive, and coun-
terfactual, among which, in the spirit of improving video prediction, we focus on boosting
the performance on answering predictive questions which require an understanding of future
object interactions.

PHYRE (Bakhtin et al., 2019) is a 2D physics puzzle platform where the goal is to
strategically place red objects such that the green object touches the blue or purple object.
Bakhtin et al. (2019) design templates that describe such tasks with varying initial states.
Subsequently, they define (1) within-template protocol where the test set contains the same
templates as in training, and (2) cross-template protocol that tests on different templates that
those in training. We report results both on within-template as iid and on cross-template to
obtain the OOD evaluation.

Physion (Bear et al., 2021) is a VQA dataset that assesses a model’s capability in
predicting objects’ movement and interaction in realistic simulated 3D environments in eight
physical phenomena.

For further details and data visualization, we refer the readers to Appendix C.2.
4.3.2. Baselines

We compare RSM against three main baselines: SlotFormer (Wu et al., 2023), Switch
Transformer (Fedus et al., 2021) denoted as SwitchFormer, and NPS (Goyal et al., 2021a).
We show the efficacy of relaxing the inductive bias on communication density among slots
by contrasting RSM with dense communication methods (SlotFormer and SwitchFormer)
and a pair-wise communication method (NPS). Likewise, comparing RSM to SlotFormer
highlights the role of disentangling objects’ dynamics into mechanisms, while comparing to

SwitchFormer and NPS emphasizes the vital role of communication among slots via the
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CCI. Additionally, we compare to SAVi-Dyn (Wu et al., 2023), which is the SOTA on
CLEVRER. In other experiments, we compare to SlotFormer (current SOTA).

In the tables, we present our reproduced SlotFormer (marked by ''") and our re-
implemented SwitchFormer and NPS (marked by "*"), alongside SAVi-Dyn reported by Wu
et al. (2023). !

4.3.3. Implementation Details

Following Wu et al. (2023), we focus on the transition of slots and take advantage of the
pre-trained object-centric encoder-decoder pair that converts input frames into slots and vice
versa. We use the pre-trained weights of SAVi and STEVE provided by Wu et al. (2023),
including SAVi (Kipf et al., 2022a) for OBJ3D, CLEVRER, and PHYRE; and STEVE
(Singh et al., 2022) for Physion.

We present the best validation set configuration of RSM for each dataset, along with
fine-tuning results and model size scaling in Appendix C.4. In summary, (1) OBJ3D and
CLEVRER include 7 mechanisms, while PHYRE and Physion use 5, and (2) the number of
parameters in RSM is slightly lower than that of SlotFormer in corresponding experiments.
Additionally, we re-implemented SwitchFormer and NPS with a similar number of parameters
as in RSM and SlotFormer.

4.4. Experimental Results

We report mean and standard deviation across 5 different runs. Video visualizations of
our experiments are provided in our repository %. See also Appendix C.1 on the reproducibil-

ity of our results.
4.4.1. Video Prediction Quality

To demonstrate H;, we provide the video prediction quality on OBJ3D and CLEVRER
in Table 4.1 and Fig. 4.2. In general, RSM demonstrates its effectiveness in handling object
dynamics in the long-term future prediction over baselines.

Evaluation Metrics We evaluate the quality and similarity of predicted rollout frames
using SSIM (Wang et al., 2004) and LPIPS (Zhang et al., 2018) metrics. Since the range

'We adapt the code for Switch Transformer and NPS to ensure consistency of experimental setups and
evaluations with SlotFormer and RSM (See Appendix C.3).
2github.com/trangnnp/RSM
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Table 4.1. Future frame prediction quality on OBJ3D and CLEVRER. Bold scores

indicate the best performance, with RSM consistently outperforming baselines by a remark-

able margin.

OBJ3D CLEVRER
Method
SSIMt LPIPS,j00l| SSIM LPIPS,0l| ARt FG-ARIt FG-mlIoUt
SAVi-Dyn 0.91 12.00 0.89 19.00 8.64 64.32 18.25
NPS* 0.90%%2 824*02 |(0.89%02 1251*00 |§2.84%02 64.62+03 30.39+0-2

SwitchFormer*|0.91¥02  8.09%03 10.88*03 14.28*0! |60.61%04 59.32%03 28.94*02
SlotFormer! |0.90%%2 8.32%02 |(0.88%02 13.09*%! |63.38%%3 62.91%02 29.68*03
BSM {(Ours) (0:82*%1 7.88="1 09179 11.96*%" |e7. 72" 86.15=9% 32,7872

of LPIPS metric is small, we report the actual values times 100, denoted as LPIPS, o,
to facilitate comparisons among the methods. Additionally, we also assess the performance
using ARI, FG-ARI, and FG-mlIoU metrics, which measure clustering similarity and
foreground segmentation accuracy of object bounding boxes and segmentation masks. We
evaluate the model’s performance averaged over unrolling 44 steps on OBJ3D and 42 steps
on CLEVRER with 6 burn-in frames in both datasets.

Table 4.1 exhibits that RSM outperforms other approaches and achieves the highest
scores across evaluation metrics for both datasets. Notably, compared to SlotFormer, RSM
improves LPIPS, 1990 by 0.46 points in OBJ3D, 1.12 points in CLEVRER, and increases
FG-mloU by 3.05 points in CLEVRER. Following RSM, NPS consistently ranks second in
performance among the baselines.

These results are supported by Fig. 4.2, which illustrates the rollout frames in OBJ3D.
RSM'’s outputs’ accurate rollout predictions with high visual fidelity demonstrate the effi-
cacy of slot communication by having less error accumulated along time steps than any of
the baselines. It is worth emphasizing that RSM excels in handling a significant series of
complex movements in steps 20-40, particularly during the upward propulsion of the red
metallic cube. In contrast, we find that the baselines struggle with complex object move-
ments during this period, leading to inaccuracies in predicting the dynamics towards the end.
Furthermore, RSM demonstrates flexible slot communication with relaxed inductive biases

on interaction density, enabling it to adapt to environments comprising mechanisms with

116



Rollout step= Remarks

Incorrect dynamics
Incorrect dynamics

Fig. 4.2. Comparison of rollout frames in OBJ3D. RSM generates frames with precise

Accurate dynamics

Sharpness preserved

Incorrect dynamics
Changed shapes

dynamics and maintains visual quality, even during complex actions in steps 20 to 40. In
contrast, the baselines produce ones with artifacts (yellow boxes) and inaccurate dynamics
(red boxes).

varying levels of complexity. In contrast, we find that NPS with sparse interactions faces
difficulties with close-by objects and rapid collisions (seen in OBJ3D), while SwitchFormer
with dense communication struggles with distant objects (as in CLEVRER).

4.4.2. Downstream Tasks: Visual Question Answering and Action
Planning

4.4.2.1. Visual Question Answering task. To demonstrate H,, we validate the per-
formance of future frames generated by the models on the VQA task in CLEVRER and
Physion, and the action planning task in PHYRE in the next section. The general pipeline
is to solve the VQA task with the predicted rollout frames from the given input frames.
Specifically, we employ Aloe (Ding et al., 2021) as the base reasoning model on top of the
unrolled frames in CLEVRER. Likewise, in Physion, we adhere to the official protocol by
training a linear model on the predicted future slots to detect objects’ contact. In Physion,
we also include the results obtained from human participants Bear et al. (2021) for reference;
Likewise, we collect the results from observed frames (Obs.), which are obtained by training
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Table 4.2. VQA performance on CLEVRER and Physion. Despite not surpassing
human performance in Physion, RSM outperforms baselines in both datasets. All scores are

in percentage.

Method CLEVRER Physion

per opt. T per ques. 7| Obs. T Dyn. T Gap T

Human - - 74.7 - -

NPS* g5.9t0E  gagtos 65.659% 40.6
SwitchFormer* | 92.8+0-3 90,492 _ 66.2401  41.2
SlotFormer' 96.1+0-2 93.3%91 66.9%%%  +1.9
RSM (Ours) | 96.8%0!  94,3+00 68.1*90 3.1

the VQA model on top of pre-trained burn-in slots and compare them to the performance
of rollout slots (Dyn.).

In Table 4.2, RSM consistently outperforms all three baselines in VQA for CLEVRER
and Physion. On CLEVRER, RSM achieves the highest scores of 96.8% (per option) and
94.3% (per question), surpassing SlotFormer and NPS. In Physion, RSM shows notable
improvement, with a 3.1% increase from 65.0% in Obs. to 68.1% in Dyn., outperforming all
other baselines, indicating the benefit of enhancing the dynamics modeling to improve the
downstream tasks. However, RSM is still far from human performance in Physion, showing
room for further research into this class of algorithms.

4.4.2.2. Action Planning task. We adopt the approach from prior works (Qi et al., 2021;
Wu et al., 2023) and construct a task success classifier as an action scoring function. This
function is designed as a simple linear classifier, which considers the predicted object slots,
to rank a pre-defined set of 10,000 actions from Bakhtin et al. (2019), which are executed
accordingly. We utilize AUCCESS, which quantifies the success rate over the number of
attempts curve’s Area Under Curve (AUC) for the first 100 actions. We report the average
score over 10 folds, with the best performance among 5 different runs on each fold.

The first line in Table 4.3 indicates the action planning results of the proposed RSM and
baselines in the iid setting (within-template protocol). RSM achieves the highest performance
compared to baselines, indicating the critical role of efficient communication of slots in

complex tasks like action planning. In addition, Fig. 4.3 shows a successful case of RSM
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solving the planning task by strategically placing the red object at step 0, causing a collision

between the green and blue objects at the end.

4.4.3. Out-of-Distribution (OOD) Generalization

To provide more evidence for H,, we resume analyzing the performance of the action
planning task in PHYRE but with the cross-template protocol, with results indicated in the
last line in Table 4.3. Overall, RSM demonstrates strong generalization and has the smallest
gap between iid and OOD performance compared to the baselines. The cross-template is
a natural method to evaluate the OOD generalization in PHYRE since scenes in the train
and test sets are in distinct templates and contain dissimilar object sizes and objects in the
background (Bakhtin et al., 2019). We refer the reader to Appendix C.2 for further details
and visualizations, and Appendix C.4 for the discussion on the reproduced results.

4.4.4. The Ability to Disentangle Object Dynamics into Mecha-

nisms

To demonstrate Hjz, we conduct qualitative analysis on the underlying mechanisms as-
signment within the 4 steps of Fig. 4.3 and visualize results in Fig. 4.4. While there is no
explicit assignment of roles to mechanisms during training, we can infer their functionality
at convergence based on slot visualizations and patterns of activation as follows: Mechanism
2 handles collisions, which can be observed in the collision between the green and red ball
in step 1 and that of the red ball with the right-side wall in step 5 (blue boxes). Mechanism
3 controls the horizontal movements, observed in the green ball from steps 5 to 10 (green
boxes). Mechanism 4 acts as an idleness mechanism. Mechanism 5 handles downward free-
fall motion, observed from steps 2 to 3 of the two balls. Mechanism 1 does not seem to be
doing anything meaningful and this could be due to the model using more capacity than
it requires to model the dynamics in this environment. The inferred functions provide the
following insights into understanding the efficacy of RSM: Firstly, RSM successfully disen-
tangles the dynamics into reusable mechanisms, as described in Sec. 4.2.1. Secondly, RSM
assigns proper such mechanisms to slots throughout the rollout steps, which not only helps
to preserve the accuracy of prediction but also emphasizes the effectiveness of communica-
tion among slots in deciding mechanisms for each other. The automatic emergence of a null
mechanism (mechanism 4) is also worth highlighting, which significantly helps reduce the

error accumulation in action-free settings, such as idle objects in the background.
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Table 4.3. Action planning task in PHYRE. RSM outperforms all baselines in both
iid and OOD setups.

PHYRE-B NPS*  SwitchFormer* SlotFormer® RSM

iid (within-template) | 80.52*10 78.929 764+ 82.89+06

OOD (cross-template) | 42.63*!3 48.36+14 104677 BraTEA
Step=0 1 2 3 4 5] 6 7 8 9 10

o Uele U

Fig. 4.3. Action planning task in PHYRE. RSM strategically positions a red ball at
step 0 prevents the green ball from falling onto the glass by causing a collision that alters
the original trajectory of the green ball and causing it to make contact with the blue floor

(indicated by the arrow).

4.4.5. Ablation Studies

To provide more evidence for Hjz, we conduct ablations to understand the individual
effects of (1) the CCI, (2) mechanisms and their disentanglement, and (3) the sequential
slots updating in RSM, and visualize the results in Fig. C.1. In general, the ablation results
confirm the superiority of the original RSM design compared to all variations, highlighting
a significant disparity in the absence of CCI.

RSM; masks out the CCI in step 2 at inference. We observe that the lack of CCI leads
to a degenerate selection of mechanisms for slots, with 4 out of 5 object slots being controlled
by mechanism 3 (horizontal movement).

RSM,3 masks out the CCI in step 3 during inference. We have found that CCI not only
captures comprehensive spatial-temporal information but also provides guidance regarding
specific movement details, including directions. In particular, even when the correct mecha-
nism is assigned (e.g. moving leftward), the slots become confused about the exact direction

of movement. Additionally, slots encountered a color-related issue in the subsequent steps.
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Rollout Pred Slot1 Slot 2 Slot3 Slot4 Slot5 Slot 6 Slot 7 Slot 8

=il
Mechanism

=2
Mechanism

t=3

Mechanism

t=5

Mechanism
Fig. 4.4. The underlying mechanism assignment in PHYRE. Mechanisms are as-
signed to each slot at t to obtain the updates at ¢ + 1. RSM disentangles objects” dynamics

into reusable mechanisms, which can be expressed as Collision (2), Moving left or right (3),
Idle (4), and Falling (5).

RSMj randomly assigns mechanisms to slots by a randomized mechanism index, £, to re-
place the distribution 7 in Eq. 4.2.2. We observe that the launched ball moves in the wrong
direction and exits the scene early. while other objects shake in their positions, underscoring
the importance of correctly assigning mechanisms to slots.

RSM,, is the parallel version of RSM that modifies the model () in Eq. 4.2.2 to assign
mechanisms to N slots simultaneously. in both training and inference time. We find that
RSM,, stands out as a promising model, as it demonstrates a notable LPIPS performance;
however, it is essential to note the partially inaccurate dynamics caused by the weaker com-

munication among slots.

4.5. Related Work

Modular dynamics models. In the domain of modular neural networks, RIMs (Goyal et al.,
2021b) pioneered the exploration of modularity for learning dynamics and long-term de-
pendencies in non-stationary settings. However, RIMs suffer from conflating object and
mechanism concepts, limiting their effectiveness. SCOFF (Goyal et al., 2020) introduced
object files (OF) and schemata to address this limitation. but it struggles with generaliz-
ing out-of-distribution (OOD) scenarios. Key distinctions between RSM and SCOFF are
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as follows: SCOFF schemas can handle only one OF at a time, while RSM allows multiple
slots to be input to reusable mechanisms using an attention bottleneck. SCOFF and RIMs
use sparse communication among OFs for rare events involving multiple objects, whereas
RSM leverages the CCI to activate suitable reusable mechanisms. NPS (Goyal et al., 2021a)
incorporates sparse interactions directly into its modular architecture, eliminating the need
for sparse communication among slots or OFs. Their “production rules” handle rare events
involving multiple objects by taking one primary slot and a contextual slot as input. A
recent benchmark (Ke et al., 2021) evaluates causal discovery models and introduces a mod-
ular architecture with dense object interactions, similar to GNN-based methods, but assigns
separate mechanisms to each object. Among the class of algorithms with less modularity in
their dynamics model, R-NEM (van Steenkiste et al., 2018) was a pioneering unsupervised
method for modeling dynamics using a learned object-centric latent space through iterative
inference (see also Eslami et al. (2016)) which along similar approaches (Battaglia et al.,
2018), (Battaglia et al., 2016) used Graph Neural Networks (GNNs) to model pairwise in-
teractions and differ from our work in two key aspects. Firstly, we do not rely on GNNs
to model interactions, as dense interactions are not always realistic in many environments.
Secondly, we focus on learning a set of simple and reusable mechanisms that can be applied
flexibly to different scenarios, rather than compressing information through shared node and
edge updates in a GNN.

Unsupervised learning of object-centric representations. To decompose a scene into meaning-
ful sub-parts, there have been lots of recent works on unsupervised learning of object-centric
representations from static images (Zhao et al., 2021; Greff et al., 2017; Locatello et al.,
2020; Zhang et al., 2023), videos (Pervez et al., 2022; Li et al., 2022; Kipf et al., 2022b;
Elsayed et al., 2022; Wu et al., 2023), and theoretical results on the identifiability of such
representations (Mansouri et al., 2022; Ahuja et al., 2022; Brady et al., 2023). Although
lots of these methods work very well in practice, we decided to proceed with slot attention

(Locatello et al., 2020) to be consistent with the baselines.

4.6. Conclusion

In this study, we developed RSM, a novel framework that leverages an efficient commu-
nication protocol among slots to model object dynamics. RSM comprises a set of reusable
mechanisms that take as input slot representations passed through a bottleneck, the Cen-
tral Contextual Information (CCI), and then they are processed sequentially to obtain slot
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updates. Through comprehensive empirical evaluations and analysis, we show RSM’s ad-
vantages over the baselines in various tasks, including video prediction, visual question an-
swering, and action planning tasks, especially in OOD settings. Our results suggest the
importance of CCI, which integrates and coordinates knowledge from different slots for both
mechanism assignment and predicting slot updates. We believe there is a promise for fu-
ture research endeavors in exploring more sophisticated stochastic attention mechanisms for
information integration, aligning with the principles of higher-level cognition, to be able to
cope with a large number of slots and objects, and enable ways of uncertainty quantification
in the predictions. In Appendix C.6, we delve into the limitations of this work and future
directions.
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Chapter 5

Conclusion and Future Directions

In this thesis, our journey has been an exploration of utmost importance—addressing the
formidable challenge of out-of-distribution generalization through the innovative perspec-
tives from causal structure and representation learning. Our research was rooted in the
understanding that effectively learning causal relationships and the construction robust rep-
resentations could offer the missing link between AI’s performance on known data and its
adaptability to unforeseen scenarios. The culmination of our efforts resulted in a coherent
narrative of innovations building toward RSM, a method that achieves state-of-the-art in
generalization under real-world benchmarks.

The thesis commenced with the introduction of Reusable Factor Graphs (RFG) that
departed from the conventional Directed Acyclic Graph (DAG) approach to structure learn-
ing. RFG modified and harnessed the potential of factor graphs as a representation of causal
mechanisms since the modification allowed for effectively incorporating the important induc-
tive biases of reusbaility, modularity, and sparsity. This work enhanced the sample efficiency
of structure learning by successfully showing how we can exploit the reusability of causal
mechanisms, and thus opens avenues for more effective causal discovery.

While our experiments yielded promising outcomes in the context of structure learning on
synthetic datasets, there are numerous avenues for further research. To avoid the computa-
tional intricacies associated with computing the partition function, we simplified the problem
by focusing on time-directed reusable factor graphs. However, recent advancements in Gen-
erative Flow Networks (GFlowNets) offer potential avenues to address this computational
challenge. It is noteworthy that our approach thus far has predominantly addressed scenar-
ios where a single factor, at each step of the Markov chain, transforms the entirety of latents
z. A natural progression could involve the incorporation of multiple factors competing for
transforming blocks of latents (akin to the principles underpinning object-centric represen-

tations). Although Chapter 4 extensively builds on this idea and shows its effectiveness in



practice, an in-depth exploration of its theoretical aspects could be insightful. Furthermore,
extending our perspective from time-directed RFGs, there lies the opportunity to generalize
our findings by recovering a broader class of factor graphs. Additionally, the translation of
RFGs into Causal DAGs merits exploration, as the directionality of causality holds signifi-
cance in specific tasks. On the front of inferring the number of ground truth factors, a more
refined approach might involve the use of sophisticated adaptive clustering techniques, such
as Dirichlet Process Mixtures.

Though we leveraged access to causal representations to learn RFG structures, we later
pivoted our focus to learning such representations in an attempt to relax the aforementioned
assumption. Recognizing that the world is inherently object-centric, our research departed
from traditional assumptions, marking the inception of an algorithm that, for the first time,
learns object-centric disentangled representations—breaking away from the limitations of
simplistic assumptions surrounding monolithic fixed-size vectors.

This work harnessed weak supervision derived from partial and incomplete knowledge of the
underlying causal structure inherent within observations to learn causal representations. We
also demonstrated how embracing object-centricity of the natural world can lead to signifi-
cant sample efficiency gains for learning such representations. This approach, while rooted
in theoretical insights, shines a light on the practical implications of object-centric represen-
tation learning.

We analyzed the performance of our model comprehensively on two synthetic datasets that
are relatively limited in capturing the complexities of very real-world scenarios. Yet, we
found and demonstrated that such level of complexity was a necessary first step to identify
the intricacies involved in making our algorithm work. Therefore, our analysis has been
limited in several aspects, which present challenges that we are enthusiastic to address in
future research endeavors.

First, while we do consider a wide range of properties to be disentangled, we focused on
relatively low numbers of objects. Future research could explore how our model scales
to real-world scenes with a multitude of objects—offering a deeper understanding of the
complexities that lie ahead. Second, although our experiments include artifacts related to
occlusion, depth, and lighting, in all of our experiments we simplify the problem by having
the objects situated in a plain white background. Future directions include attempts to ex-
tend our results to real-world scenes containing far more complex backgrounds and artifacts.
Additionally, depth is a strong signal that is widely available with today’s Lidar sensors.

Incorporating such signals and potential interventions on them could enrich the capabilities
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of our method. Lastly, much like our approach of embracing the inherent set nature of envi-
ronments and uncovering object-centric disentangled representations, a promising avenue for
future research lies in the exploration of per-object set representations. This entails encoding
individual objects not as fixed vectors, but as sets of properties. This approach would allow
for varying-sized sets of disentangled properties, catering to the unique characteristics of
different objects. This extension could further enhance our ability to capture the complexity
and diversity of real-world scenes, propelling us closer to achieving more comprehensive and
robust representation learning.

The narrative of our thesis culminated in the third chapter where the synergy of the
previous distinct perspectives naturally converged, igniting the idea of joint learning of the
reusable structure and representation—a path that naturally emerged as a resolution to
both facets of the challenge. We introduced the Reusable Slot Mechanisms (RSM) that
shows great promise and holds potential for real-world applications. With an emphasis on
efficient communication among object-centric representations, RSM showcased its prowess
in modeling object dynamics. The empirical evidence, showcased through various tasks and
evaluation scenarios, reinforced the significance of the Central Contextual Information (CCI).

The RSM architecture, while robust in modeling objects’ dynamics across tasks and
settings, reveals its limitations in the following areas:

e Sensitivity to Hyperparameters: The process of fine-tuning the number and size of
mechanisms within RSM requires careful manual adjustment. Future exploration
could focus on enhancing the model’s robustness to hyperparameters.

e Threat to Time Complexity: In larger systems with numerous slots, the sequential
update of slots can become computationally intensive. While this limitation does not
currently impact our work, parallelization techniques could be explored to optimize
computational efficiency, simultaneously assigning mechanisms and predicting states
for large-scale systems.

e Observable Environments: The environments studied in this work are predominantly
observable. To expand the horizons of RSM’s applicability, future research could
explore a wider range of observable and unobservable environments to gather deeper
insights into the architecture’s capabilities and limitations.

The culmination of this thesis underscores the transformative potential of merging causal
structure and representation learning to address the challenge of out-of-distribution gener-
alization. As our contributions converged, they carved a pathway towards enhancing the
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generalization capacities of deep learning models. From RFG’s innovative approach to struc-
ture learning to the innovative concept of object-centric disentangled representations and the
practical manifestation of RSM, this journey spans theoretical innovation to real-world ap-
plication.

As we conclude the thesis, we stand at the intersection of knowledge and possibility.
The fusion of theory and practice of structure and representation learning has equipped us
with novel tools to tackle challenges, bridge gaps, and spark further advancements toward
addressing the challenge of out-of-distribution generalization. We look back with pride at
our contributions and forward with anticipation of the prospects that await. Our journey
has been a testament to the power of blending diverse perspectives, challenging conventional
wisdom, and embarking on uncharted territories. Our contributions in the realm of causal
structure and representation learning has not only enriched these fields, but it has also
leveraged their power to enhance out-of-distribution generalization. As we conclude this
chapter, we stand on the threshold of new beginnings, armed with insights, innovation, and
an insatiable thirst for knowledge.
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Appendix A

Supplementary Materials for Structure

Learning of Reusable Factor Graphs



A.1. Implementation Details

In all experiments X, ~ uniform[—0.3,0.3]¢, and the coefficient matrices of the ground
truth factors are sampled as unitary matrices of dimension similar to the dimension of Xj,
i.e. dim(Xy) = d. The noise variance is set to a3, = 0.1 (or 1/3 of X;’s range). We train the
models for either 100 or 1000 epochs with Adam optimizer with default parameters for s
with an initial learning rate of 0.1 for neural networks and 0.01 for the optimization of the
lambda matrix. Learning rate scheduler is ReduceLROnPlateau. The results are averaged
over 5 runs. The test set is composed of 20 samples (chains) of Length 50, dimension d same
as the training, and they are generated by a new sequence but with the same factors as the

training.
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A.2. Scaling rk as well as the latent dimension d

Here we consider the case where r = k and observe the impact of larger number of factors
as well as higher dimensions in attempt to stress test the model and see where it starts to
break. We increased r to 5, 10, 20, 30, and we see that the test Hamming Distance (HD)
starts to deviate from zero. However this break is rather graceful. The settings we explore
are as follows: L = 5000,n = 100, d € [2,5,10,15,20,25,30,35,40,50], r € [2,5,10,15,20,25,30],
noise standard deviation o is 15% of the elements of || AX||.

Using the lambda method, below is a descriptive summary of our observations (Also see
figure A.2):

e r=10,d = 10: HD = 0, all 10 factors are learned after epoch 300.

e r =15,d=10: HD = 0, all 15 factors are learned after epoch 300.

e r=30,d =10: HD = 0.1, 26/30 factors are learned after epoch 600.

o = 20,d = 20: HD = 0.04, 18/20 factors are learned after epoch 400.

o r =20,d = 30: HD = 0.05, 18/20 factors are learned after epoch 300.
The fact that Hamming distance for more factors and higher dimensions stays at 0.1 — (.2
should not be disappointing, because as we inspected, only several out of 20-30 factors are
not learned. So this could be thought of as a good sign that with relatively large number
of factors, our algorithm managed to learn the position and the parameters of about %90 of

the factors.
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Fig. A.2. Stress testing the proposed method when presented with large latent dimensions
in a reusable structure comprising of increasing number of factors. Given the large chain
lenght, the metric shows that the algorithm is successfully recovering about %90 of the

structure.
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A.3. Connection to Expectation-Maximization

Here we show how our A approach connects to the EM algorithm. Consider a Markov
Chain (MC) of length L. At each time ¢ we have a random vector X of length p, the
concatenation of p random variables. Suppose there are r unique factors generating the
observed data, and at each time t a latent variable z, picks a factor f; € F = {fi1,fo,-...fr}
that operates on X; and generates X;,;. We want to maximize the expected log-likelihood

of the observations. Using the Markov property of the chain we have:

Eflog-likelihood (X1,Xa,...,.X.)] =Eflog » > -+ > " po(X1,21.Xs,20,. .., X,2L)]
z1 z3 L

(A.3.1)
=Eflog) > -+ pe(Xa | 21)p(21)pe(Xa | 22,.X1)p(22) ... po(Xs | 2. Xp-1)p(21)]
R (A.32)

B[ log > p0(Xe | 20X )pl(20)] (A33)

Denoting p(z;) by 7(2;), our objective would be the following:
L
E[log-likelihood (X1.Xa, ..., Xp)]| =E[>_log ¥ po(X; | 2,X¢-1)m(2)] (A.34)
t=1 2t

Now we’ll make use of Jensen’s inequality. If f: R — R is convex, and X is an integrable

R.V.
Ex(f(X)) = f(Ex(X))

If f:R — R is strictly convex, we have equality if and only if X = constant.
If we introduce a proposal density g(z) (which we will use as an approximator for the posterior

p(z | ), then our objective will become:

X1 )?‘T(Z:)

= o) (A35)

L oA R | Xyt T - e ( Xy | 26, X4-1)7( 2
=§EX[IOE§ZP( lq(z) ) )q(z)J=§1Ex[1ugEq,[? ( Iqt(zt) )

Zt

(A.3.6)
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Now since log is strictly concave, we have the following inequality for the objective:

L L

Pe(Xt | ZuXr.—J)ﬂ’(Zr) Po (X | L, S 1 Zf
S Ex|[logE, > Ex[E,llog = L(q,0
t=1 X[ = Q[ qi(z) ]] t=1 X[ Q[ q(z) ]] Ll )

(A.3.7)
where L(g,0) is the evidence lower bound (ELBO). In the EM algorithm, we first achieve
the equality case of the Jensen’s inequality by finding the arg max, £(q.0) = py(z | x), and
then we will maximize the ELBO w.r.t. model parameters §. Note that in EM, we find
the argmax of ELBO, and its maximum ezactly. Now let’s revisit the objective of our A

approach (6 includes the parameters of all factors):

L-1 v

Ex [log [L(8, softmax(A), X)]] = Ex| ZZA log (fo, (Xt, Xi41))]

: (A.3.8)
= IE)([ZA?&: log (.fﬂj(Xth‘H))]

t=1 j=1

Compare the last equation to ELBO in EM:

L L 5
> Ex [, flog 2% z;’;"l)“(z‘)]] = Y Ex[Yae = ) log 22X {l(‘j’}ff;;)”(z‘-)}
ped t=1 j=1 =

(A.3.9)
We should note that log ( fgj(Xt, Xt—i—l)) is a log-likelihood under some factor. Also after E

step where ¢(z = j) = p(2 = j | z), then log py(xm&:ﬁi)ljw = = logpy, (X | Xi—1) is the

log-likelihood under z; = j.

So the connection starts to become clear. The rows of our A matrix are the proposal densities
q for different time steps. By imposing a softmax over the rows A, we constrain the entries
in each row to sum up to one. In EM, at each time ¢, we require that Z}':] glz=1]=1.
In EM, we compute the posterior ezactly, and replacing that in ELBO, we ezactly maximize
the log-likelihood. However in the A approach, we do not compute the posterior and log-
likelihood exactly. We take gradient steps in the proper directions. In implementation of
the A method, we do both of the E,M steps at the same time, and hence updating with
SGD, could be considered as an approzimation to exact EM. But more interestingly, our
softmax approach which takes the softmax over the losses of r different factors at any time
t as the weights, amounts to EM where we do the E step ezactly and only leave the M step
to gradient updates. This is because in E step we find the proposal density which satisfies
qi(z = j) = p(z = j | =), and since the posterior p(z; = j | x) is proportional to likelihood
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po(x,z), computing the softmax over negative losses, results in the true posterior under the
model parameterized by 0, and hence in this case we have obtained the optimal proposal
density ¢; at each time. It is noteworthy to mention that our experiments with very long
Markov chains demonstrate the effectiveness of the approzimation of EM with A compared
to using the softmax approach which does the E step exactly.

Thus while EM gives a more direct intuition on the latent variables of the model, we should
keep this observation in mind, so that if required, we can translate them to one another and

evaluate the performance of each method.
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Appendix B

Supplementary Materials for Object-Centric

Causal Representation Learning



B.1. Proof of theorem 1

We want to compare the number of perturbations needed to disentangle shared properties
with a standard encoder to those needed by an object-centric encoder. Our strategy will be
as follows,

(1) Setup a data generating process with multiple objects where injectivity holds by
construction so that we can restate Theorem 1 from Ahuja et al. (2022b) to show
they need k x d perturbations.

(2) Define an object-centric architecture in terms of the object-wise partitions that we
defined in Definition 1.

(3) Restate an analog of Theorem 1 from Ahuja et al. based on the object-centric encoder.

(4) Theorem 1 in the main text will follow as a collary of the difference between the
number of perturbations used in the two theorems above.

We begin by defining a data generating process such that g(vec,(Z)) is injective by
construction. We can achieve this by appending an id, i, to each z; in Z, such that Z =
{2z @ [i]}_, where & denotes concatenation, and then choosing g such that 2 depends on i
(for example, each ¢ could be rendered in a different color). Like Ahuja et al., we assume
we have data that is perturbed by A := {{0;;}]_,}\_,, a set of l-sparse perturbations that
perturbs each of the d properties from each of the k objects. Taken together, we have the

following data generating process (DGP),

Z={z;0[i]}}, ~Ps,x:=9(2) Zi=2z+06,V6;€A, Zi=0({21,. 50 2})

(B.1.1)

where each object has d shared properties, z; € R, and z; ; and zy; are of the same

type—e.g. position z, hue, etc.— for all j. As before, assume g is injective, and define

g* = g(vecy«(Z)) where 7* is the permutation that sorts Z by the index i, so that ¢* is
injective by construction.

Now, Ahuja et al. show that if the encoder, f : X — R* s chosen to minimize the

following loss,
f € argming By | ((2) +6 = f(2"))’] (B.L.2)

and the following assumptions hold,

Assumption 2. The dimension of the span of the perturbations in equation B.1.1 is kd,
i.e., dim (span(A)) = kd.
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Assumption 3. a(z) = f o g*(z) is an analytic function. For each component i €
{1,--- ,kd} of a(z) and each component j € {1,--- kd} of 2, define the set S =
{0 | Vjai(z+b) = Vja;(2) + Via(0)b,z € R}, where b is a fized vector in R¥. Each
set SY has a non-zero Lebesque measure in R*.
Then we have,

Theorem 2 ((Ahuja et al., 2022b)). Assume we have data from the DGP in equation B.1.1
and assumption 2 and 3 hold and the number of perturbations per ezample equals the latent
dimension, m = kd, then the encoder that solves equation B.1.1 identifies true latents up
to permutation and scaling, i.e. 2 = IIAz + ¢, where A € RF** s an invertible diagonal

matriz, II € RF*** 45 q permutation matriz and c is an offset.
Proof. See Ahuja et al. for the proof. O

Now, consider an object-centric architecture encoder of the form F(z) := {f(z*)}.icp
where P is an object-wise partition and f: X — R?. Let 0 € ¥ denote a permutation of the

latents from the set of all k—permutations. Let:

A

F(z) € argfmin Byt 5[min ()7 D) = ((5()@) + 8)117] (B.1.3)

Note that since J is non-zero for only one pair of patches @, 29" and zero otherwise, the
minimizer over X is almost surely unique. Assumptions 4 and 5 are analogs of 2 and 3 above,
but make reference to the dimensionality of the co-domain of § rather than f.
Assumption 4. The dimension of the span of the perturbations in equation B.1.1 is d, i.e.,
dim (Span(A)) =d.
Assumption 5. a(z) := fog*(2) is an analytic function. For each componenti € {1,--- ,d}
of a(z) and each component j € {1,---,d} of z, define the set 89 = {0 | V;a;(z + b) =
Vjai(z) + Via;(0)b, = € R}, where b is a fized vector in RY. Each set 8" has a non-zero
Lebesque measure in RY.

With this setup, the following theorem follows directly from Theorem 2 as a reduction
from the multi-object to single-object setting,
Theorem 3. Assume we have data from the DGP in equation B.1.1 and assumption 4 and
5 hold and the number of perturbations per example equals the latent dimension, m = d, then
the encoder that solves equation B.1.3 for an object-wise partition P, identifies true latents
up to permutation and scaling, i.e. 3 = IIAz + ¢, where A € RF*k js an invertible diagonal

matriz, 11 € RF>* 4s q permutation matriz and c is an offset.
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Proof. Because P is an object-wise partition, the function that produces each z') € P is
injective with respect to some z,(; (i.e. one of the object’s latents). Thus for each 2,
the solution to equation B.1.3 is equivalent to the single object setting with & = 1, and
thus theorem 2 applies, which implies that f(z")) = % = TIAz + ¢ for all i. Now let
2 = vec, ({2} ). Because each 2; is identified up to a permutation, scaling and offset, and

for any 7, there exists a Il such that Z = IIAz 4 ¢ which completes the result. [

Corollary 1. If the assumptions for Theorern 2 and 3 hold and a data generating process
outputs observations containing k objects with shared properties, then an object-centric ar-
chitecture of the form F(x) := {f(z"} i) p will disentangle in 1/k fewer perturbations than
an encoder of the form f : X — Rk,

Proof. This follows directly from comparing the the number of perturbations required in
Theorems 2 and 3. O

B.2. Background on slot-attention-based architectures

Slot attention (Locatello et al., 2020b) is a neural network component that, intuitively,
summarizes the relevant information in the input set (most commonly, image features with
position embeddings) into a smaller set of so-called “slots”. Each slot is a feature vector that
can be thought of as capturing information about one “object” in the input set, which usually
comprises multiple elements of the input set. This is done by repeating cross-attention
between the inputs and the slots to compute per-slot updates.

In the traditional set-up, these slots are then used to reconstruct the input with an
auto-encoder objective: each slot is decoded into a separate image through a shared image
decoder, which is followed by merging these per-slot images into a single reconstructed image.
Ideally, slot attention is able to decompose the original image into distinct objects, each of
which is modeled by a single slot.

More concretely, slot attention takes as input a matrix X € R™* with n as the number
of inputs and ¢ the dimensionality of each input. We also randomly initialize the slots
Z© ¢ R™*4  We start by computing the query, key, and value matrices as part of cross-

attention.

QY =ZOW, K=XWy; V=XWy (B.2.1)
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This is followed by the normalized cross-attention to determine the attention map A € R™*",

then a GRU to apply this update to the slots.
A" = normalize(QVK") (B.2.2)
Zt+) = GRU(Z®, ADV) (B.2.3)

The function normalize encourages slots to compete for inputs by applying a softmax

over slots and normalizing the weights for each input to sum to one. After T steps, the
algorithm outputs Z™), a set of m embedding vectors {zET) }m, that can be used as input to
a shared image decoder.
SA-MESH.. The specific version of slot attention we use in this paper is SA-MESH (Zhang
et al., 2023). It makes regular slot attention more powerful by giving it the ability to break
ties between slots more effectively. ' In practice, this improves the quality of the individual
slot representations significantly due to less mixing of unrelated inputs into the same slot.

The key difference with regular slot attention is that it features an entropy minimization
procedure to approximate an optimal transport solution, which makes the attention map
sparse. The connection to optimal transport is made by the use of the standard Sinkhorn

algorithm (Sinkhorn and Knopp, 1967; Cuturi, 2013).
MESH(C) = arg min H (sinkhorn(C)) (B.2.4)
C
A = sinkhorn(MESH(QWK ™)) (B.2.5)

The optimization problem is solved by unrolling gradient descent, with a noisy initialization
to ensure that ties are broken.

B.3. Alternative perturbation mechanisms

Dense vs. Sparse. We can have a number of assumptions on the perturbation mechanisms
and the nature of model’s knowledge about those mechanisms. In the most general case,
suppose M = {m!(-),m?(-),...,m"(-)} denotes the set of all possible perturbation mechanisms.
To obtain z’, the perturbed variant of x, we then select a subset of k' < k objects as targets
that undergo perturbations determined by a subset of k' mechanisms M’ C M from the set
of all possible perturbation mechanisms. The correspondence between the &’ mechanisms
and k' perturbed objects is decided by a random permutation 7, i.e. i = m[j] means
that mechanism 7 governs the transition dynamics of object j to produce z{ 41 (for objects

IConcretely, it makes the mapping from the initial slots to the final slots ezclusively multiset-equivariant

(Zhang et al., 2022a) rather than permutation-equivariant/set-equivariant.
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that are not supposed to change from t — t + 1 a dummy mechanism with index —1 can be
assumed which results in no change). A mechanism m'(-) : R — R% in M is a vector-valued
function that operates on object-wise true latents 2/ and outputs 2/ = 2l 4 §; such that
i = m[j]. Perturbation vectors d; could be sparse or not. The subset M’ can contain &' = k
mechanisms to perturb all of the k objects in the environment, and if none of the &' = k
resulting perturbations is sparse, we denote the set M’ as fully dense perturbations, i.e., all
of the properties of all objects will change from ¢ — ¢ + 1. M’ can also contain at least
one object but not all of them (1 < k' < k) with sparse or dense perturbations, or it may
consist of only a single object (k' = 1) that is perturbed by a fully sparse mechanism, one
that only alters a single property and leaves the rest unchanged. We denote this scenario as

fully sparse perturbation.

B.4. Matching

Perturbations alter the properties of objects from ¢t — ¢ + 1 and the model has to infer
which object’s properties were perturbed to update its representations and minimize the
latent loss equation 3.2.1. But recall that the model has no direct access to objects. It
receives the observations at ,f + 1 and encodes each of them to a set of slots &;, 8;1. These
slots do not follow any fixed ordering, and moreover, there is no gnarantee that each slot
binds to exactly one unique object. Slots can also correspond to the background. Each
perturbation (5{ changes the properties of some object z!, so the model requires to find a
pair of slots (sf,sy, ;) that are bound to object z* at ¢ and t + 1, respectively. Once the
model figures out such a matching, then the latent loss that results in disentanglement can
be computed via the projections of these slots Z:

L ’
L= I+ U—silf,  #=R0 da=FfE) (B4

i=1
The problem of finding a correspondence between slot projections at t,t + 1 and the pertur-
bations is an instance of the 3-dimensional matching. We can use the following methods to
solve this problem.
Hungarian Matching. If the changes from # — £ + 1 are not dramatic, or the scene is not
composed of exactly identical objects (same shape and color), then empirically we observe
that more often than not, initializing the slots identically at ¢, + 1 results in sets of slots
that preserve the ordering from ¢ — ¢+ 1. When this assumption is valid for many samples,

our problem reduces to a bipartite matching of perturbations and slots for which the order

146



does not change for two consecutive steps. This bipartite matching can be accomplished via

the Hungarian algorithm. Concretely, the cost matrix required by the Hungarian algorithm
Cy is an m X |S| matrix composed as the following:

Culing] = 1 fo(s]) + 67 B — fu(st)|? (B.4.2)

i.e., each row consists of the squared errors of applying one mechanism (corresponding to
that row) to each slot (the columns). Hungarian algorithm finds an optimal assignment
77 of slot projections and mechanisms such that m'(-) is applied to MLP(sin]) 7, [i] for

i €1,...,m. Then the latent loss is computed as follows:

ZHfz (s5Hy + 8 ~ ()P (B.4.3)

Note that in equation B.4 the summation index runs over object indices, but in equation
B.4 it runs over the mechanism indices (same range, but slightly different meaning.)
Double Matching via Constrained Linear Programs (CLP). Although Hungarian
matching can work in many situations, there exist some cases where the assumption of
preserved order of slots from t to t + 1 does not hold anymore. For instance in situations
where there exist a lot of symmetries (i.e., same color for all objects), then slots’ binding to
object will face a higher degree of randomness, and thus, using Hungarian matching would
result in very noisy gradients that hinder convergence. Or when the perturbations are not
very local, i.e. two relatively distant objects swap their positions from t — ¢ + 1, then we
can no longer assume that slots obtained at £ + 1 reflect the same binding to objects as slots
that were obtained at ¢.

In such situations we resort to a more accurate matching scheme that significantly reduces
the noise slot-object bindings and speeds up convergence drastically for these corner cases.
This method deals with the more difficult problem of 3-dimensional matching, and uses slots
at both ¢,t+1 to find the assignments, hence the name double matching. Recall that 7}, 71';“'
relate slots in §; and mechanisms to the objects in Z;, respectively. Thus, the model at each
step is required to jointly solve for these permutations at ¢, + 1 to minimize the following:

m

(18, W, = argmin Y (|5 + 67 ¥~ F(sin™))? (B.4.4)

M
T =]

Notice that we are effectively finding the correspondence between perturbations M’ and
pairs of slots (si,s{ +q) for i,j € [1: S]], such that the pair of slots correspond to the same

object as the one that is perturbed by the assigned mechanism. To find such assignments
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we could construct an m x |S|? cost matrix (|S|> denotes all the possible pairs of (si,s,,))

as follows:

Corplig] = If: (58D + 8 = (S8 )|2,  ie[1:m),je[1:|SP (B.4.5)
k(3) = Li/|S]] (B.4.6)
ki1 () = mod(4, | S]) (B.4.7)

However, the assignment cannot be recovered by Hungarian matching alone. The reason
is that there are constraints that need to be satisfied for a matching in this scenario to be
valid. Note that for each row ¢ (mechanism), the matched column index j determines the
pair of slots that correspond to the same object at t,f + 1, which is perturbed by mechanism
i. Such assignments have to satisfy the following constraints:

e Selected js for all rows should be such that no slot at time ¢ is selected more than
once as the first element of any slot pair, i.e. a slot cannot be the subject of two
perturbations at any given ¢ because each object is affected by one and only one
mechanism.

e Selected js for all rows should be such that similarly, no slot at time ¢ + 1 is selected
more than once as the second element of any slot pair, i.e. a slot cannot be the
outcome of two perturbations at any given ¢+ 1 because again, each object is affected
by one and only one mechanism.

Since any matching has to fulfill these constraints, it can no longer be treated as a simple
bipartite matching solvable by the Hungarian algorithm. But we can still find an assignment
as the solution of a constrained linear program (LP). We can define a binary m x | S|? weight
matrix W such that when multiplied element-wise by Cepp, masks all the entries that do not
correspond to the matching by zero, and leaves the entries corresponding to the matching

unchanged. Thus we can find the assignments simply by looking at the non-zero entries. So
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to summarize, the matching could be found by solving the following Constrained LP:

e |5|2 m |"S’.i2

minimize Z Z W ® Corp = Z Z e naciicd (B.4.8)
i=1 j=1 i=1 j=1

subject to Wli,j) € {0,1} Vij (B.4.9)

>, Y. Cossked[ij] =1 VE€[1:]S]] (B.4.10)
i=1 jel{k.k+|S|.k+2]8|.... }

m

Z Z Cmaslced{r":!j] =1 Vke [1 : |S|]

i=1 je{k|S|,k|S|+1.k|S|+2,... }

(B.4.11)
512
Z Cumskec_l [ﬂ,}] =1 % (B412)
j=1

Equations B.4.10, B.4.11 make sure the constraints mentioned above are satisfied, and the
last constraint makes sure each mechanism is exactly assigned to one pair only. Although
solving this CLP provides an exact solution to our matching problem, we do not opt for
a binarized W as it will result in a mixed-integer CLP, which is NP-hard, and in practice
would become intractable fairly quickly as the number of slots increases (|S|* dependence).
Hence we will relax the constraint of equation B.4.9 to 0 < W/i,j] < 1Vi,j to avoid any
mixed-integer situation in the program. It is noteworthy to mention that although the
relaxed CLP is significantly faster than the binarized version, it is still much slower than
the Hungarian matching, despite our efforts to implement the constraints and the objective
as parallel-friendly as possible. The bottleneck results from the constraints that we have
introduced, but this is the price we need to pay to overcome those particularly hard cases
with significant symmetries in the scene that otherwise could not be dealt with. As a matter
of fact, even running Hungarian matching in those situations can still reasonably guide the
latent representations toward disentanglement but it is for the evaluation of the predicted
properties of all objects Z against their true properties z that we absolutely require double
matching via CLPs.

Matching Fully Sparse Perturbations. Fully sparse perturbations not only tend to be
a more realistic choice than fully dense ones, but also they result in a much easier matching
scheme which significantly improves the efficiency of our method. When the model is pre-
sented with fully sparse perturbations, then the 3-dimensional matching reduces to finding

the minimum element in a 1D array of size |S|?, where |S| is the number of slots. The reason
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is that since only one property of a single object z{ is being altered (and the model knows
perturbations are fully sparse), the model can apply that 1-sparse perturbation §, (or the
transformed version in the unknown setting) to all of slot projections 2/ for j € {1,...,|S|}
at time ¢, and only find one pair of slots from the set of |S|? possible pairs at t,t + 1, which
correspond to the perturbed object:

(i.j) = argmin |57, — (3 +6,)? (B.4.13)

i
However, this minimization can be made simpler if we use the slots obtained at ¢ to initialize
the slots at t + 1. This way, in practice, the order of slots at t,t + 1 is very likely to be
preserved, not only since the slots at ¢t + 1 are initialized with hints from ¢, but also the
sparse perturbation makes it much easier for all slots to bind to the same object as only a
small subset of the scene needs to be readjusted among the slots. Therefore the matching

would reduce to a simple minimization over |S| elements:
i =argmin |87, , — &7 +6)|? (B.4.14)
if

Note however that we still would use all slot projections for evaluation, the only difference
with this matching scheme is that gradient signals are only propagated from the perturbed
object (as they also should, since there is no change in other slots, there is nothing there to

be learned that helps disentanglement.)

B.5. Further Experimental Results
B.5.1. 2D Shapes

Tables B.1,B.2 extend our results under unknown fully sparse perturbations on the 2D
shapes dataset to more combinations of disentanglement target properties. We can abserve
that our results stay very close to the upper bound on the achievable performance which uses
a supervised linear regression from slot projections 2 to ground truth latents z. These tables
highlight once again how big of a role the injectivity assumption plays in achieving identifi-
cation with conventional encoders that ignore the object-centricity of the environment (see
the performance drop from CNNT to CNN, where the latter drops the unrealistic injectivity

assumption).
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Table B.1. Linear Disentanglement (LD) scores on 2D shapes test set under unknown fully
sparse perturbations. All results are averaged over 3 seeds except those requiring to train

SA-MESH from scratch that were trained only once. SA-LR achieves a score of 1.0 in all

settings.
PasPy,color Pa:Py,Shape
Model n=2 =3 n=4 n=2 n=3 n=4
Ours 1.00 £0.01 0.98 +0.01 0.99 +0.00 1.00 +0.01 | 0.98 +0.01 | 0.99 +0.01
SA-RP 0.77 0.61 0.60 0.71 0.68 0.70
SA-PC 0.97 0.98 0.99 0.80 0.66 0.87

CNNT  1.00 £0.00 0.99 £0.01 0.98 £0.00 1.00 £0.00 1.00 £0.00 0.99 £0.00
CNN  0.35 £0.00 0.15 +0.00 0.07 £0.01 0.32 £0.01 0.15 +0.01 0.11 £0.01

Pz:Py,color,shape

Model n=2 n=3 =4
Ours 0.99 £0.00 0.98 +0.01 0.99 +0.00

. SA-RP 0.69 0.73 0.60

SA-PC 0.74 0.75 0.52

CNN'  1.00 +£0.00 0.99 £0.01 1.00 £0.00
CNN  0.40 £0.00 0.21 £0.00 0.11 £0.00

B.5.2. 3D Shapes

Quantitative Results. Tables B.3,B.4 extend our results under unknown fully sparse per-
turbations on the 3D shapes dataset to more combinations of disentanglement target prop-
erties. Again, we can observe the applicability of our method to this more complex 3D
dataset that contains artifacts related to depth, occlusion, and lighting, to name a few.
Again our results stay very close to the upper bound on the achievable performance which
uses a supervised linear regression from slot projections Z to ground truth latents z.

Qualitative Results. Figures B.1-B.3 illustrate the learned disentangled (object-centric)
representations. Each figure shows a sequence of 3D samples evolving over 5 steps (shown
on the left), and how the learned representations respond to the perturbations (shown on
the right). Perturbations include changing the object’s p,,p,,colour, ¢ (rotation). The
model used here is trained with 3 slots, and the learned representations are the result of a

projection layer learned through our weakly-supervised method applied to 64—dimensional
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Table B.2. Permutation Disentanglement (MCC) scores on 2D shapes test set under un-
known fully sparse perturbations. All results are averaged over 3 seeds except those requiring
to train SA-MESH from scratch that were trained only once. SA-LR achieves a score of 1.0

in all settings.

PasPy,color Pa:Py,Shape
Model n=2 n=3 n=4 n=2 n=3 n=4
Ours 1.00 £0.01 0.95 +0.05 0.97 +£0.02 0.99 +0.01 | 0.99 +0.01 | 0.99 +0.01
SA-RP 0.74 0.60 0.60 0.66 0.63 0.59
SA-PC 0.87 0.89 0.90 0.83 0.81 0.89

CNNT  1.00 £0.00 0.99 £0.01 0.99 £0.01 1.00 £0.00 1.00 +£0.00 0.99 +0.00
CNN  0.55 £0.01 0.35 +£0.01 0.24 £0.01 0.52 £0.02 0.33 +£0.02 0.28 £+0.02

Pz:Py,color,shape

Model n=2 n=3 =4
Ours 0.99 £0.01 0.98 +0.01 0.99 +0.01

. SA-RP 0.54 0.68 0.55

SA-PC 0.64 0.63 0.57

CNN'  1.00 +£0.00 0.99 £0.01 1.00 £0.00
CNN  0.61 £0.00 0.43 £0.00 0.30 £0.00

Table B.3. Linear Disentanglement (LD) scores on 3D shapes test set under unknown fully
sparse perturbations. All results are averaged over 3 seeds except those requiring to train

SA-MESH from scratch that were trained only once. SA-LR achieves a score of 1.0 in all

settings.
Das Py Size Pa,Dy,color,rotation
Model n=2 n=3 n=4 n=2 n=3 n =4
Ours 0.98 +0.01 0.98 +0.01 0.98 +0.00 0.98 +0.00 0.97 +0.01 0.98 +0.01
SA-RP 0.61 0.62 0.53 0.59 0.54 0.55
SA-PC 0.78 0.84 0.78 0.70 0.72 0.69

object-centric representations. The projection maps each slot from R% — R*, ie., the
disentanglement target space. In figures B.1-B.3, the 4 dimensions of such projections for

object slots are presented over 5 steps, i.e., each set of coloured lines shows the evolution
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Table B.4. Permutation Disentanglement (MCC) scores on 3D shapes test set under un-
known fully sparse perturbations. All results are averaged over 3 seeds except those requiring
to train SA-MESH from scratch that were trained only once. SA-LR achieves a score of 1.0

in all settings.

Pa: Py Size p;,,,py,color,rotation
Model =12 n=3 n=4 n=2 n=3 =4
Ours 0.96 +£0.02 0.96 +0.05 0.96 +£0.03 0.98 +£0.01 0.98 +£0.02 0.97 +£0.01
SA-RP 0.60 0.57 0.52 0.55 0.51 0.49
SA-PC 0.87 0.90 0.86 0.73 0.76 0.74

of the projection of a slot corresponding to the object with the same colour. Please refer
to the figures for details of the perturbations. Lastly, we have kept the number of objects
in these scenes to two for clarity of the presentation, however tables 3.3, 3.4, B.3, B.4 show
that we achieve similar performances with other sets of properties and number of objects in

the scene.

B.5.3. Comparison of Sample Efficiency

Figure B.4 demonstrates the sample efficiency of our object-centric model compared to a
ResNet that achieves disentanglement with an injective DGP. Both models are trained with
varying number of training samples that contain n = 4 objects for which p,,p,.colour shape
are the disentanglement target properties. Since we sample 1-sparse perturbations uniformly,
the training dataset size could be thought of as a proxy for the number of different pertur-
bations a given configuration of objects would encounter. Although according to theory, the
injective ResNet should require af least n times more perturbations to identify the latents up
to affine transformations, we observe that the advantage of our object-centric model in terms
of sample efficiency is much more pronounced in practice. Our method can achieve close to
perfect disentanglement with as few as 100 training samples, while an injective ResNet takes
100 times more samples to raise to a comparable performance. This highlights the practical
importance of exploiting the inherent set structure of objects in a scene for representation

learning.
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Fig. B.1. (Left) From top to bottom, each steps perturbs the p, coordinate of the red object
by 0.2 in the ground-truth latent space, (Right) which is reflected (through an affine trans-
form) as a linear increase in p,, while the rest of the properties for both objects remain the
same, demonstrating that the learned representations are indeed disentangled. In generating
these samples, camera has some non-zero angle w.r.t. the origin, therefore, perturbations in
the x direction appear as vertical displacements.

B.6. (Known) Dense Perturbations

We consider the known perturbations when the vectors d; for all objects are fully dense.
Known sparse perturbations are just a simpler instance than unknown sparse perturbations
for which we presented successful results in section 3.7. Tables B.5, B.6 show the perfor-
mance of our model compared to the baselines when the disentanglement target properties
are objects’ p,,p, coordinates. Table B.5 is a particularly challenging case where all proper-
ties other than p,.p, are kept fixed, even the colour. Therefore, the objects look completely
identical and are only placed in different parts of the scene and the model should identify the
true positional latents up to irrelevant transformations based on fully dense perturbations.
Such perturbations could totally alter the object arrangements from £ to ¢ + 1, so we cannot
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Fig. B.2. (Left) From top to bottom, the objects are perturbed as follows; Red: Downward
perturbation so it sits at the same z coordinate as the Blue cube (1-2), Rotates counter-
clockwise along the z—axis to be at the same orientation as the Blue cube (2-4), Further
downward perturbation (2 times the displacement from step 1 to 2). Blue: Rotates coun-
terclockwise along the z—axis (4-5). (Right) Note how the learned representations mapping
correctly reflects the similar positions and rotations in the ground-truth, i.e., both by having

properties of objects coincide at the same value, and by preserving the ratio of perturbations.

rely on Hungarian matching with approximate gradients to recover the true latents as it
results in a very unstable training. Therefore, this situation highlights how identical objects
are not just a theoretical inconvenience and how a set treatment of these objects results in
disentanglement. Using the constrained linear program defined in B.4 and the disentangle-
ment procedure from (Ahuja et al., 2022b) we can identify the positional properties as shown
in table B.5.

In table B.6, we show the results for when objects are allowed to only differ in colour. This
is a simpler case where if we order objects according to some ordering (not a realistic as-
sumption), then an injective ConvNet could recover the true latents (see the row for CNNT).
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Fig. B.3. (Left) From top to bottom, the objects are perturbed as follows; Since the objects
change colour, let us call the red cube in the top frame to be object 1, and the blue one
to be object 2. Object 1: The colour is perturbed to be equal to object 2 (1-2), Moves
to the right as its p, is perturbed by 0.2 (2-3), The colour hue is once again perturbed to
become purple (3-4). Object 2: Moves toward right (perturbation in p, by 0.2) to be at
the same y coordinate as object 1 (1-2), The colour hue is decreased so now the colours of
objects 1,2 are swapped (2-3). Moves by 0.2 in the y direction to align with the other object
once again (3-4), Change its colour hue twice the previous colour perturbation with the
opposite sign to match the colour of the other object (4-5). (Right) Red curves correspond
to object 1, and the blue curves correspond to object 2. Again, notice the sections where the
curves coincide, as well as the ratio of jumps in the properties, showing consistency of the
learned representations with the ground-truth causal representation that gives rise to these
observations.

Although we show our method works under (known) dense perturbations, there exist a num-
ber of sources of non-identifiability which render this scenario less feasible, in addition to the
fact that the assumption of having all objects change properties is not so realistic. Below is a
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Fig. B.4. Comparing the disentanglement performance of an injective ResNet vs. our
object-centric method based on the number of training samples. The dataset contains four

2D objects in which p,.p,,colour,shape can vary.

number of scenarios in which the matching has no way of identifying the correct assignment
and fails:

e If two or more perturbations are identical or have close norms, then the matching
procedure has no way of assigning the correct perturbation to the correct object’s slot,
which results in obtaining wrong gradients and hinders identification. The sensitivity
of the matching procedure depends on the dimensionality of the perturbations, as
well as the permissible perturbation steps (i.e., for discrete properties). Therefore,
further fine-tuning of the cost matrix is required to prevent numerical issues when
two or more norms are close. Identical perturbations which are more likely in lower
dimensions and higher number of objects would still be impossible to distinguish.

e Due to the same reason, objects that are not perturbed at all from ¢ to £ + 1 would
be confused because they induce the same d = 0 in the cost matrix. There exist ways
to tackle this problem such as identifying the objects that remain the same using
slot attention decoder masks, and then removing all such slots from the matching

procedure. However, such tricks would only make the method more complex, and
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are tangential to the point we wish to make in this study. With sparse perturbations
however, we do not care about any zero mechanisms as we are only after a single pair
that minimizes the prediction error norm.

e Since the number of slots is arbitrary and always more than the number of objects,
it is possible that more than one slot binds to the same object. A duplicate slot
can confuse the matching procedure into assigning two different perturbations (cor-
responding to two different objects) to two duplicate slots that bind to the same
object. This is because the cost matrix only operates on the norm of differentials.
Such incorrect assignments will then propagate and cause the matching to fail for
the rest of the objects as well, which results in incorrect gradients. With sparse
perturbations we do not need to deal with such issues, as only finding one slot that
minimizes the error norm suffices, whether it is a duplicate slot or not.

e With dense perturbations, it is quite likely that the scene drastically changes from ¢
to t+1, therefore, it would be increasingly difficult to obtain the same order of slots at
t,t+1 given the same initialization, hence, solving the constrained linear programs for
finding the optimal matching becomes inevitable, which is not ideal due its imposed

computational burden. On the other hand, fully sparse perturbations reduce such

S|

heavy computation to a fast and simple arg min operation over an array of size
on average.
Having a synthetic dataset where all object properties as well as the perturbations can be
carefully tuned has been particularly helpful in the early stages of this study when identifying

non-identifiability sources.

Table B.5. Disentanglement scores under known mechanisms and fully dense perturbations
when the target properties are p,.,p, and objects are identical, i.e., all have the same colour,

shape, size, and rotation angle.

LD MCC

Mgdel mn=2 =3 n=4 n=2 n=3 n=4
Ours 0.99 0.94 0.92 0.99 0.97 0.96
SA-RP 0.19 0.07 006 028 0.15 0.12
SA-PC 040 020 0.13 036 025 0.17
CNN 031 015 0.07 044 032 024
SA-LR 043 025 0.16 050 036 0.23
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Table B.6. Disentanglement scores under known mechanisms and fully dense perturbations
when the target properties are p,.p, and objects are not identical, i.e., have different colors

(but have the same shape, size, and rotation angle.).

LD MCC

Model =2 n=3 n=4 =2 n=3 n=4

Ours 0.96 0.90 0.87 0.98 0.94 0.93
SA-RP 0.14 0.07 0.05 0.16 0.15 0.08
SA-PC 0.16 0.18 0.10 0.18 0.30 0.18
CNNT 099 097 098 091 095 097
CNN 025 0.12 0.07 039 027 0.21
SA-LR 044 024 0.17 047 031 0.24

B.7. Implementation and Experimental Details

B.7.1. SA-MESH Architecture

For the slot attention architecture, we closely follow Locatello et al. (2020b), in particular,
we use the same CNN encoder and decoder as they use for CLEVR, except for the initial
resolution of the spatial broadcast decoder with 3D shapes where we use 4 X 4 since we are
dealing with 64 x 64 images. We use a slot size of 64 and always use n + 1 number of slots,
where n is the number of objects in the scene. We use 3 iterations for the recurrent updates in
SA-MESH. For details concerning SA-MESH we follow Zhang et al. (2022b). Additionally,
we also truncate the backpropagation through slot updates as suggested by Chang et al.

(2022) to improve training stability.
B.7.2. Disentanglement Heads

SA-MESH outputs n + 1 slots that are of size 64, yet we need to project each of these
slots to a d—dimensional space so we can leverage the disentanglement method from Ahuja
et al. (2022b). We can simply achieve this projection by a single MLP, however, we decided
to allocate more parameters for this projection and use d separate projection heads mapping
64-dimensional vectors to d separate scalars. This way identification of different properties
will not affect one another due to model capacity constraints. We stack the layers shown in
table B.7 to obtain a projection head per each property. The same set of d projections will

be shared among all slots.
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Table B.7. Layers in a projection head for disentanglement.

Layer  Input Size Output Size Bias Activation

Linear (1) 64 32 True  ReLU
Linear (2) 32 32 True  ReLU
Linear (3) 32 16 False = ReLU
Linear (4) 16 1 False = ReLU

B.7.3. ConvINet Baseline

As a baseline for injective scenarios, we use a ResNet18 with an output width of 128 that
is passed through LeakyReLU activation, which is then followed by d linear projection heads
(for the same reason we use separate disentanglement heads) that map the 128-dimensional
output of the CNN encoder to d separate 1-dimensional scalars that should correspond to

the target d—dimensional space.
B.7.4. Training

For each n and for each set of disentanglement target properties, we first train SA-MESH
for 2000 epochs with a batch size of 64 for 2D shapes (as the images are 128 x 128), and
128 for 3D shapes (since images are 64 x 64) on a single A100 GPU with 40GB of memory.
We used a fixed schedule for the learning rate at 2 x 107, and we used AdamW with a
weight decay of 0.01 along with € = 1075, 3; = 0.9, 8, = 0.999. SA-MESH was firstly solely
trained by minimizing for reconstruction error on the training set, then its disentanglement
performance was reported on the test set for projection-based baselines (RP, PC, LR). Due
to the high number of combinations of target disentanglement properties and n, we just
trained SA-MESH for each configuration only once.

Unsupervised disentanglement with our method has an additional stage which takes the
aforementioned pre-trained SA-MESH models and jointly minimizes the reconstruction and
the latent loss. Note that at this stage, the SA-MESH model is not frozen, so the gradients
flow through its network as well and help adjust the slot representations with the signal
from the latent loss. Under known perturbations, we use the actual perturbations from the
DGP to guide the model by optimizing the total loss, however, under unknown perturbations
setting, we replace all perturbation by a hyperparameter C' (see section 3.5).

CNN baselines were trained similar to SA-MESH but for much shorter, i.e., 200 epochs, and
usually converge very fast in less than 50 epochs.
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B.7.5. Hyperparameter Optimization

We started around the hyperparameters used by Locatello et al. (2020b) and Zhang et al.
(2022b) where applicable, and tuned on small subsets of the 2D shapes training data based
on linear and permutation disentanglement metrics. We considered 5 values for the learning
rate [2x 1073,2x 107410716 x 107°,2 x 107°]. Larger batch sizes were always better and we
were only constrained by memory in the case of 128 x 128 images of the 2D shapes dataset.
We considered 2 values [0.1,0.5] for |C], the fix value representing all unknown perturbations,
and found |C'| = 0.1 to perform better. We also considered slot sizes [64,128] on a small
subset of the 2D shapes training dataset. Lastly we considered 9 combinations for the
relative importance of latent loss and reconstruction loss when training the disentanglement
heads, i.e., we considered all combinations of wiatent € {1,10,100}, Wrecons € {1.10,100},
and found the combination of wWiecons = 100, Wiaens = 10 to strike the optimal balance
between maintaining good reconstructions and allowing the slot representations to give rise

to disentangled projections.

B.7.6. Datasets

2D Shapes. We use pygame engine (Shinners, 2011) for generating multi-object 2D scenes.
Object properties in both datasets include p,.p,. colour, shape, size, and rotation angle. In
the 2D dataset:

® p..p, are generated randomly and uniformly in the [0,1] range, i.e., the boundaries of
the scene, such that no two objects overlap and no object falls even partially outside
the boundaries. Positional coordinates can be perturbed by £0.2.

e For colour, we use HSV colour representations and fix saturation (S) and value (V)
at 0.6 and choose hue (H) from a set of values predefined before training (for instance
[0.0,0.25,0.5,0.75]). We adopted this 1-d representation to be consistent and have
each property be represented by a scalar. Additionally we wanted to test the model’s
capacity when dealing with mixed discrete (colour, shape) and continuous (p,.py,
size, rotation angle) properties because the theory does not prevent us from doing so.
Also, training Slot Attention or SA-MESH with discrete colours is computationally
advantageous since the model will not have to deal with reconstructing all colours.
However it should be noted that HSV is a cylindrical geometry with colour hues
being the angular dimension which results in values that have a distance of 1.0 being

exactly the same colour (given a fixed saturation and value). That is why a list of
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colour hues such as [0.0, 0.33, 0.66, 1.00] would not work since 0.0 and 1.0 are the same
colour, yvet our model interprets the difference as a perturbation with the amount of
1.0, which is clearly wrong. A change of colour from colour i to j where 7,7 index
the list of colour hues H would be provided to the model as a perturbation in the
amount of (H[j| — H[i])/|H

e Shape is also clearly discrete and is selected at random uniformly from the following

, where |H| denotes the number of colours in H.

set of shapes S = {circle, square, triangle, heart, diamond}. Note however, that the
effects of perturbations need to be visible in the pixel space, and we should be wary
of the disentanglement target properties, and for instance if the rotation angle ¢; is
a property we aim to disentangle with perturbations, then we should exclude circle
from the set of possible shapes as it does not reflect in the pixel space the angle
perturbations. A shape transformation from shape i to j where 4,7 index S, would
be provided to the model as a perturbation with the amount of (j —)/|S]|.

e Size is a continuous property in the range [0.12,0.24] of the height or width of the
image which is 1. It can be perturbed by +0.02.

e Rotation angle is also another continuous property in [0,7/4]. Similar to colour
hues, since this property is also angular, we have limited the range not to encounter
situations that appear the same in the pixel space but have very different rotation
angles (a square that is rotated 7/2 clockwise seems unaltered, or m/4 and 3m/4
rotations both look the same for a square.). Angular perturbations are 40.2.

We generate samples in pairs corresponding to t,t + 1. For fully dense perturbations, we
generate n vectors of dimension d, where n is the number of objects. We repeat the gen-
eration until the conditions of non-overlapping objects and non-identifiability are met, i.e.,
no two objects at either ¢ or ¢ + 1 should overlap (before and after the perturbations), no
object should fall in whole or partially out of the scene, and no two objects should be per-
turbed by d-dimensional offsets that are closer than some e. The last condition is necessary
for fully dense perturbations as otherwise the matching has no way of distinguishing which
perturbation to assign to which object since the matching solely relies on the difference
between t,t + 1. For fully sparse perturbations, we are not constrained by the latter, and
we only need to choose perturbations that do not push the chosen object out of bound-
aries, or make it overlap with another object. For any experiment we can have a subset
of {p.,py.colour, shape, size, rotation angle} as the properties we wish to disentangle by ob-
serving perturbations in the pixel space, and we call them disentanglement target properties.

In the generation process, any non-target property will be fixed for all objects in the whole
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dataset to avoid introducing unwanted variance to the disentanglement of target properties,
i.e., if we choose {p..p,,colour, shape, rotation angle} as target properties, then all the objects
in all samples would have the same fixed size. Lastly, we can choose to make a DGP injec-
tive or not. If we choose to make a DGP injective, we would index the objects and choose a
property to be set for objects according to the indices, i.e., we can choose to make the DGP
injective by colour; Suppose n = 4 and the list. of our colour hues is [0.0,0.25,0.5,0.75]. We
would colour the objects, which are now ordered according to some index set Z, according to
Z. The rest is as before, non-target properties (excluding the injectivity imposing property)
will be kept fixed for the whole dataset, and target properties are generated according to
fully dense or fully sparse perturbation schemes. The perturbations to all properties are
signed, and this is especially crucial for discrete properties such as shape. The reason is
that disentanglement is achieved through observing relative distances in the pixel space, and
having only positive or only negative perturbations deprives the model of having a reference
for each property.
For training we generate 1000 pair per target property such that the model on average sees
at least 500 samples for either positive or negative perturbations to each property, i.e., if
we choose {p.,py.colour} as target properties, we will generate 3000 samples for training.
The validation and test sets always have 1000 samples. For the 2D dataset, we generate
128 x 128 images for better visual quality that is not distorted due to artifacts caused by
perturbations. We then normalize and clip the image features (RGB values) to be in [—1,1]
range.
3D Shapes. For generating the 3D datasets we leverage kubric library (Greff et al., 2022) to
obtain realistic scenes which we can highly customize. Objects sit on a floor, a perspective
camera is situated at (2.5,0, 3.0) and looks at (0.0,0.0,0.0). Directional light illuminates the
scene from (1.0, 0.0, 1.0) towards the center. The set of possible target properties are similar
to 2D shapes, and the range of properties in which each object is spawned is as follows:
® p..py are generated randomly and uniformly in the [-1.5,1.5] and [-1.0,1.0] ranges
respectively, such that no two objects overlap and no object falls even partially outside
the boundaries. Note however, by overlap we mean that objects are spawned such that
they mutually fill a volume in the 3D space, and we only prevent such occurrences,
but we do allow occlusions from the perspective of the camera, which adds to the
complexity of this synthetic dataset. pos, is never a disentanglement target property
and is always set such that objects sit on the floor (except when rotated). The reason

for fixing the 2z coordinate is that any possible perturbation to the 3D coordinates is

163



always going to be interpreted on a 2D scene that is observed by a camera that is
placed somewhere above the floor. Therefore, introducing a third coordinate in the
DGP and target properties has no point. Positional coordinates can be perturbed by
£0.3.

e Colour is similarly parameterized by a scalar in HSV format as in 2D.

e Shape can be any of {sphere, cube, cylinder,cone}. Again, since the effects of per-
turbations need to be visible in the pixel space, and we will not use spheres if the
rotation angle ¢; is a property we aim to disentangle with perturbations, as sphere
rotations do not reflect in the pixel space. For rotation in the 3D space we choose
the z-axis as the axis of rotation so that angular perturbations are maximally visible
(w.r.t. the perspective camera’s location).

e Size is a continuous property in the range [0.3,0.7] and can be perturbed by =40.15.

e Rotation angle follows the convention of 2D shapes DGP, except that the rotations
are around the z-axis for better visual quality.

Since images are already generated by high fidelity using the kubric library, we use 64 x 64
images to lower the computational burden of SA-MESH autoencoder. The number of samples
is always fixed at 20,000 regardless of the target properties since the 3D dataset is more
complex. We use a similar transformation as in 2D, and normalize and clip the image
features (RGB values) to be in [—1,1] range.
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Gold RSM RSMi, RSM;3; RSM; RSM,

LPIPS 100 - 7.88 1532 9.36 13.72 843

Fig. C.1. Ablation studies in OBJ3D. The original design of RSM always demon-

strates the dominant performance and the accurately predicted future frames compared to

the modified versions, including breaking the usages of the CCI in step 2 (RSM,3) and step 3
(RSM,3), randomly selecting mechanisms (RSMj), and parallelly slots updating (RSM,,).
Best view in video format.

C.1. Reproducibility

Each experiment is trained on 4 A100-GPUs with 12 CPUs, using a distributed data-
parallel training strategy. The number of parameters and the average training time over
5 runs are summarized in Tab. C.1. In addition, Tab. C.2 provides the necessary config-
urations to reproduce our work, including the setting related to datasets and the training
process that follows the prior work Wu et al. (2023), and RSM’s design that achieves the
best tuning results.

Regarding the rollout frames K and the video length V' in Tab. C.2, we predict and
consider K future frames from the last burn-in steps for training, whereas, we produce the
total of V' frames in the inference time, including 7" burn-in and V' — T rollout steps. In
other words, V' equals T plus the actual rollout frames in the inference time. Regarding the
training process, we employ the Adam optimizer with an initial learning rate of 2 x 10~* and

employ the decay cosine schedule to 0. We further discuss the RSM design in Appendix C.3.

C.2. Dataset Collection

We follow the collection and pre-processing of the dataset, including video length and
the dataset splits, as done by Wu et al. (2023). In addition, we provide the general datasets
visualization in Fig. C.2 and the visualization of templates in PHYRE in Fig. C.3.

OBJ3D We collect the OBJ3D dataset from the official GitHub repository".

Thttps://github.com /zhixuan-lin/G-SWM##datasets
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Algorithm 1 Reusable Slotwise Mechanisms

N: number of slots

M: number of mechanisms

T: number of burn-in frames

K: number of rollout steps

d: slot dimension

deci: central contextual information dimension

SR (1, 1 2 N ; S |
Inpuks 8550 S8t ritn St —rdivee o Bt rfinemey StpSEyanios

sV} e RPN Xds with 7* =t — 7 + 1: unrolled N slots
of the previous 7 steps to time ¢
Output: s}ifl:T+ x: predicted N slots in the next K steps from time 7'+ 1 to T+ K
Variables in RSM
e cci € R%i: the Central Contextual Information (CCI).
e 57 € R%: the slot of interest, which is slot n*" at time ¢.
e p € RM: the Gumbel distribution over M choices of selecting mechanisms.

e As} € R%: changes of the slot n'"* from time ¢ to ¢ + 1.

Components in RSM:

e W, W, W, :R% R denote query, key, and value projection layers transforming the unrolled s, in
the attention mechanism.

e Multihead Attention(-) : RI(TF1xNixde _y pds: apply self-attention on the sk,

o o) : R 5 Rk computes the central contextual information by passing the outputs of the
Multihead Attention(-) through a nonlinear transformation (MLP).

o () Rieitds 3 RM computes the unnormalized probability of selecting a mechanism from M possible choices
by taking the CCI and slot of interest as input and feeding that to an MLP.

e Set of M mechanisms g;(-) :R%< "9 5 R% j e {1...M}: predict the changes of each slot based on the CCI

and current state of the slot. These are also realized with MLPs.

for each t in [T'...t 4+ K) do
Step 0: Prepare slots buffer
si¥, = concat(sld,, siV) e R+ N)xds

for each s!' in s,V withne1l...N do
Step 1: Compuie the central context
cci = ¢(Multihead Attention(Wq (st 1), Wic(si% 1), Wo(s2% 1))

Step 2: Select @ mechanism for slot s}

p = Gumbel-max(v)(concat(cci, s}’ ))

Step 3: Apply the selected mechanism to slot s;'. Note that p is one-hot-like distribution.
As?? = gj(concat(cci,s7)) *p’ Vi€ {1,...,M}
Asp = T, s

Step 4: Update the slots buffer with the new value of sy,
ss1 = s + Asy’
end for

end for 167

return sy 1k




Table C.1. Summary of the number of parameters and training duration. “M” stands for

millions. “h” stands for GPU hours.

RSM NPS SwitchFormer SlotFormer
OBJ3D
Num. Params 0.76M 0.99M 0.82M 0.82M
Training Duration | 21h 25h 20h 21h
CLEVRER
Num. Params 3.1IM  4.06M 3.22M 3.22M
Training Duration | 82h 94h 72h 86h
PHYRE
Num. Params 5.13M  5.98M 6.38M 6.38M
Training Duration | 29h 33h 28h 30h
Physion
Num. Params 5.61M 6.7M 6.41M 6.41M
Training Duration | 32h 41h 30h 34h

CLEVRER In this work, we directly download the CLEVRER dataset from the official
website”.

PHYRE In this work, we explore the PHYRE-1B version that defines the amount of
the red ball as 1. The PHYRE dataset is generated by the instructions provided from the
official GitHub page®.

Physion We directly download the Physion dataset from the official GitHub page’

C.3. Implementation Details

C.3.1. Loss Functions
The following is the training objective that follows the prior work (Wu et al., 2023).
2clevrer.csail.mit.edu/

3githnb.com /facebookresearch /phyre

4github.com /cogtoolslab/physics-benchmarking-neurips2021#downloading-the-physion-dataset
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Table C.2. Summary of experiments’ configuration, including the configuration of datasets,

training process, and RSM.

OBJ3D CLEVRER Physion PHYRE
Frame Size 64 x 64 64 x 64 128 x 128 128 x 128
Num. Slots N 6 7 6 8
Slot Size d; 128 128 192 128
Burn-in Frames T 6 15 15 1
Temporal Window 7 6 15 15 6
Rollout Steps K 10 10 10 10
Video Length V/ 6-+44 15+42 15+35 1+14
Batch Size 128 128 128 64
Num. Epochs 200 80 25 50
Object-centric Model SAVi SAVi STEVE SAVi
Loss Weight A 1.0 1.0 0.0 0.0
Num. Mechanisms M 7 7 5 )
Num. Layers of 9(+) 1 2 2 2
Num. Layers of Mechanism | 3 3 3

We employ slot reconstruction loss to train the rollout future frames prediction, as de-
scribed in Eq. C.3.1 with n is slot index, si.,, is the predicted rollout slot, and s3", ;. is the

pre-trained slot (that is used as the target slot).

K N

1 Tn *7T
Ls= K- N ZZ l$7x — 37‘+k||2 (C.3.1)

k=1 n=1

Experiments using SAVi as the object-centric model also use the image reconstruction loss,
as described in Eq. C.3.2 with fy.. as frozen decoder and zryy is the ground truth image.
Experiments using STEVE as the object-centric model can still employ the image recon-
struction loss; however, we do not conduct such experiments with image reconstruction loss
due to the dramatically extended training time. In PHYRE, we do not utilize the image

reconstruction loss £; due to the large image size that could affect the training time and the
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Fig. C.3. Pairs of PHYRE scenes in the same template with similar objects in the

background and differences in objects’ positions.

simplicity of PHYRE’s object compared to other environments in this work.

K
1 5
L= I ; | faee(574k) — Trsie|” (C.3.2)

The overall objective function is the weighted sum of the above losses, as presented in Eq.
C.3.3.

L=Lsg+ AL; (C.3.3)

Note that when using slot and image reconstruction losses as presented in Eq. C.3.1 and

Eq. C.3.2, the model will fail in the end-to-end training since the overall objective function
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is constrained to pre-trained slots (s#%,) and well-trained decoder (fze.(-)). Motivated by
this observation, in Appendix C.5, we provide the end-to-end training objective to compare
RSM and other approaches’ abilities in objects’ dynamics modeling from scratch.

C.3.2. Model Architecture

The distinction among methods is in the process of predicting the next state based on
the provided input of past states. In this section, we provide a detailed description of how
both the baselines and the proposed RSM approach the task of the next state prediction.
Specifically, we examine two key aspects: (1) how slots communicate with each other and (2)

the precise value to be predicted, as revealed through the design specifics of each method.

C.3.2.1. Baselines. SlotFormer (Wu et al., 2023) SlotFormer consists of 3 main parts:
(1) the Multi-Layer Perceptron (MLP) input projection layer, (2) a Transformer architecture
layer, and (3) the MLP output projection layer. First, the unrolled past states (the sequence
of 7 x N slots) are passed through the input projection layer before being processed by
the Transformer model. Afterward, the output projection produces the next state from the
Transformer’s output. Through this process, slots densely communicate with each other in
all 3 parts of SlotFormer. In addition, the entire next state of slots is directly generated by
the models. In this work, we utilize the public implementation” of SlotFormer.

SwitchFormer from Switch Transformer (Fedus et al., 2021) The Switch Transformer
is a variant of the Transformer architecture designed to improve efficiency and scalability.
It achieves this through the usage of dynamic routing and adaptive computation. This
architecture employs a "switch" module that intelligently routes tokens to different layers
based on their content.
In this work, we create SwithFormer that integrates the Switch Transformer implementation®
into the SlotFormer codebase and replace the vanilla Transformer by Switch Transformer. In
this way, SwitchFormer follows the same strategy as SlotFormer, which conducts the dense
communication among slots and directly predicts the entire next state of slots.

NPS (Goyal et al., 2021a) NPS is a framework that combines neural networks and
production systems for object modeling that integrates neural networks into the production
system. In traditional production systems, rules are used to represent knowledge and guide

the system’s behavior. In the case of NPS, they conduct a set of rules to handle the pair-wise

Sgit hub.com/pairlab/SlotFormer

61n.labml.ai/transformers /switch /index.html
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interaction of slots. The two slots involved in an interaction, which are named the primary
and contextual slots, are selected through attention mechanisms. In addition, the official
design of NPS for object dynamics’ modeling, inspired by Kipf et al. (2020), predicts the
changes of the primary slot within a time step instead of the entire slots. Afterward, the
predicted next state of slots is the sum of the current state and the predicted slots changes.
In this work, we integrate the official NPS® to the SlotFormer’s codebase for consistent
in the training pipeline and sharing the pre-trained object-centric model. NPS consists of
an MLP slots encoder that requires a fixed input size; therefore, at the beginning of the
rollout prediction process of PHYRE, which environment has the actual temporal window
size increases from 1 to 6, we duplicate the burn-in frame to have a fixed 6 steps window

size along the rollout process.

C.3.2.2. RSM. We design RSM as a framework for dynamics modeling with a relaxed
inductive bias in the communication density of slots that enables a subset of slots involved
in communication, based on a particular context through the CCI. RSM consists of 3 main
elements as described in Sec. 4.2.1: (1) the multi-head self-attention that computes the CCI,
(2) the ¥(-) that estimates the suitable mechanism, and (3) a list of mechanisms. In terms of
the multi-head self-attention, We employ a 4-head architecture for multi-head self-attention,
where the hidden size of the Feed-forward Networks is set to 2 x ds. We design #(-) as
MLP with the number of hidden layers being tuned (See Appendix C.4.3). Similarly, each
individual mechanism is designed as MLP layers with a tuned number of hidden layers. All
mechanisms share the same architecture but have separate weights. In addition, the total
parameters from all mechanisms are constrained to be similar across different amounts of
mechanisms, meaning that as the number of allocated mechanisms increases, the size of each
mechanism decreases (further investigated in Appendix C.4.3). Like NPS, the mechanism
predicts the changes in a slot within 2 consecutive steps instead of the entire slot. Last
but not least, we (and NPS) omit the input and output projection layers of SlotFormer and
SwitchFormer.

C.3.2.3. Downstream tasks. CLEVRER VQA model Inherit from baseline (Wu et al.,
2023), we employ Aloe as the VQA model that concatenates the predicted rollout slots and
the processed question (represented as language tokens) before passing through a stack of

Aloe Transformer encoder to predict the answer.s

Tgithub.com /anirudh9119/neural _production_systems
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Physion VQA model In the VQA task of Physion, the objective is to determine whether
the red object will come into contact with the yellow object once the dynamics of all the
objects have been completed. Since the task does not involve any language processing, we
construct an MLP model that takes the rollout slots as input. The MLP processes these
slots and produces a binary prediction, indicating whether the red object and the yellow
object or not “touched” and “did not touch” each other.

PHYRE Readout In the PHYRE action planning task, an action involves determining
the size and position of the red ball. In our approach, we utilize the set of 10,000 predefined
actions introduced by Bakhtin et al. (2019) and train a readout model to determine if a given
action can solve the task. To construct the reacdout model, we draw inspiration from Wu et al.
(2023) that designs a 2-layer MLP model on top of the encoded states. The readout model
takes the predicted rollout states as input. To process these states, we employ an encoder,
which differs depending on the specific model variant used. In SlotFormer, a Transformer
is used, while in SwitchFormer, a Switch Transformer is employed. An MLP is used as the
encoder in the NPS model, and a Multi-head Self-Attention mechanism is utilized in the
RSM model. Once the states have been processed by the encoder, the classifier generates a
binary output that indicates whether the task has been solved or not. This output serves as
an inference for the task’s solvability.

C.4. Further Discussion on Experiment Results

C.4.1. Future Roll-out Prediction

In Fig. 4.3, we provide the upgraded version of Fig. 4.2 with the exact the same prediction
results but with significantly higher dpi (dots per inch) in plotting the predicted frames.
Despite leveraging pre-trained slots and object-centric models, RSM effectively maintains
visual quality by predicting the changes of slots instead of predicting the next state of a slot
instead of the entire slot. This approach allows RSM to handle action-free scenarios well and
significantly reduce error accumulation by facilitating null transitions (predict zero changes
of the slot) that preserve slot integrity.

Fig. 4.2 depicts the rollout frames generated by RSM alongside the baselines. Notably,
RSM excels in producing robust future frames that accurately capture the dynamics of
objects while maintaining visual fidelity. Nevertheless, we have encountered a challenge
in generating objects with sharpness within the CLEVRER dataset. SlotFormer marks a

partially incorrect object’s dynamics in this case.
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Fig. C.4. The scaling of RSM’s parameters with different amounts of mechanisms.

C.4.2. Discussion on the Action Planning task in PHYRE

We encountered difficulties in reproducing the action planning results of SlotFormer, even
when using their provided checkpoints. In Table 4.3, we report the iid result of 76.4 for Slot-
Former, which is 5.6 points lower than the officially reported value. To investigate this issue,
we explored potential reasons and identified the following possible factors: (1) Instability of
results: The official GitHub page of SlotFormer® acknowledges that the results in this specific
task may exhibit instability. This suggests that achieving consistent and reproducible results
with SlotFormer can be challenging, and (2) Data discrepancies: The PHYRE dataset, be-
ing regenerated rather than downloaded from a common source, introduces variations in the
computing configuration. These data collection and processing differences may contribute

to the disparities observed between our results and the official reports,
C.4.3. Finetuning Results in RSM

In Figure C.4.3, we present the results of hyperparameter fine-tuning on CLEVRER
and Physion datasets. This section explores the impact of the number of mechanisms, the
expansion of ©(-) parameters, and the structure of the mechanism models. The term number
of layers in this analysis refers to the hidden layers within the MLP structure that maps the
input dimension to the output dimension in the respective models.

In terms of the number of mechanisms, we have observed that having either a large or
a small value for M significantly worsens the results and leads to high variance. However,
we have also discovered that the tasks can be solved with relatively few mechanisms, even

when dealing with diverse object movements. To validate the design principle stated in

8github.com/pairlab/Slot Former
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(b) Physion. The higher score indicates better performance.

Fig. C.5. The finetuning results in CLEVRER and Physion. The first box of each
subplot is the configuration that achieves the best performance, whereas other boxes are
performance that has a different number of mechanisms, layers of the ¢» model, or lavers
of each mechanism from the best setting. The plotted values are the mean and standard

deviation over 5 different runs corresponding to each configuration. See text for more details.

Appendix C.3.2.2, which proposes an inverse relationship between the number of the mech-
anism’s parameters and the number of mechanisms, we conducted experiments with named
10%*, which replicates mechanisms to achieve a total of 10 mechanisms without reducing the
number of parameters, as compared to the best configuration (the first boxes). Our findings
indicate that the replicated configuration (10*) achieves a slightly lower score than the best
configuration, and the additional mechanisms are not selected by the ¢(-) models.

In terms of the number of layers in (), the challenge is to map a 2 x d, vector to
a compact vector of size M. Our findings suggest that using 1 or 2 hidden layers yields
favorable results in terms of achieving a high score. However, we find a complication in
identifying consistent patterns for fine-tuning ¢(-) across different datasets.

Lastly, when considering the mechanism structure, we have noticed that increasing the

number of parameters allows a single mechanism to achieve a moderately decent score,
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although not a high score. Consequently, the ¢(:) model has a tendency to choose only

one mechanism for all cases, resulting in a lower score when assigning 5 or 7 layers to the
mechanism.

C.4.4. Ablation Studies

Fig. C.1 provides the visualization that supports the ablation studies in Sec. 4.4.5 in the

main text.

C.5. Experiments on End-to-end Training Pipeline

We propose an additional experiment to verify the methods’ ability to model objects’
dynamics from scratch, additionally, in action-conditioned environments. We establish an
end-to-end training pipeline that comprehensively assesses the models’ effectiveness in the
entire process of extracting slots from frames, handling the objects’ action-conditioned dy-
namics, and finally decoding slots back into frames.

RSM generally demonstrates the dominant ability to model objects’ dynamics and pro-

duce meaningful slots compared to the baselines.
C.5.1. Experiments Setup

Environment: This dataset consists of objects arranged in a 5 x 5 grid. At each time
step, a single frame and an action are provided. The action specifies one object and one
manipulation from the set of UP, RIGHT, DOWN, and LEFT. The challenge of this task is to
determine the feasibility of the given action and predict the resulting frame. For example,
an action of moving an object to the LEFT is executable if no objects are obstructing the
left side of the target object. Otherwise, the frame remains unchanged.

Encoder and Decoder architecture In this experiment, we follow the encoder pro-
posed by Kipf et al. (2020) that contains a simple CNN-base Object Extractor to extract
input frame to N feature maps and MLP-base Object Encoder to encode feature maps to vee-
tor space, i.e. the object slots. Afterward, we propose a Decoder architecture for slot-based
visual prediction, consisting of N Slot Decoders with separate weights. Each slot is decoded
into an RGB reconstruction, and the final frame reconstruction is obtained by summing the
reconstructions of all slots.

Training Objective This experiment follows the Contrastive loss setup as Kipf et al.
(2020) that uses the prediction result of the transition model to form the positive hypothesis,
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whereas, sampling random input states in the same batch to form the opposing hypothesis.
The target slots, si:Y, are obtained by passing the target next frame through the Encoder,
whereas, s} represent the predicted slots, and 3" indicates the random slots in the training
batch. ~ _

H =MSE(g: 880 ), H =MSEE™ 01

s (C.5.1)

Contrastive Loss : L= H + max(0,1 — H)
We consider the sum of two BCE loss terms in training Decoder, £; and £,. £, is applied on
z,, obtained by passing s}V through Decoder, which is expected to close to the input frame
xy. Lo is applied on -;t::, .1, obtained by passing s;7) through Decoder to achieve the prediction

of next frames reconstruction, which is desired to close to the target next frame x;.

) = Decoder(s; "), ;) = Decoder(s;}{)
L= BCE(x}, mt), L= BCE{w} 5, ou1) (C.5.2)

BCE Loss : £D(ar:ndr:r == E] T JCQ
C.5.2. Experimental and Analytical Results
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Fig. C.6. Observation of mechanisms assignment and performance in 5 rollout steps in 2D

Shapes. In the last three rows, we present the reconstruction by only changing 1 slot with 1

mechanism applied to that slot over 5 steps, while all other slots are untouched.

Disentangling objects’ transition to mechanisms In Figure C.6, we study the role
of each mechanism in RSM. The analysis shows that RSM produces a reasonable reconstruc-

tion compared to the ground-truth frame and encourages the mechanisms to distinguish
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Fig. C.7. Comparison of extracted feature maps from a scene and reconstructions in 3D

Cubes. RSM deals with object slots better than baseline in both slots extracting and slots

decoding phases.

themselves in their roles. In this sample, we can infer the 5 slots corresponding to: 1: red
round, 2: blue triangle, 3: green square, 4: purple round, and 5: yellow triangle. Likewise,
we observe from the mechanism assignment in each step and list the role of each mecha-
nism (5 mechanisms in this experiment) specialize as in the following actions: Mechanism
1: RIGHT. Mechanism 2: UP, Mechanism 3: LEFT. Mechanism 4: DO NOT MOVE. and
Mechanism 5: DOWN.

Looking deeper into the reconstruction result, RSM takes advantage of the CCI to assign
a suitable mechanism for each slot in all scenarios, considers the particular situation, and
reacts differently to the same action. For instance, we observe that with the same action
UP given in step 1 on the green rectangle and step 3 on the red round, RSM recognizes the
situations that the object is allowed to move and blocked by the upper wall. respectively,
then applies the movement at step 1 while not modifying objects at step 3 and generating the
correct reconstruction in both cases. We can see a similar example in the row of mechanisin
2 at step 3 — 4 when the green object does not move UP and remains at the same position
since the red object blocks it.

The ability to decompose frame into slots We analyze RSM’s slot-centric represen-
tation ability. In Figure C.7, we illustrate a comparison of the extracted feature maps with
a size of 10 x 10. which are constructed by the Encoder model and the reconstructed slots
and frame with a size of 3 x 50 x 50. acquired by the SlotDecoder models that receive the
input as the predicted next state. We find that RSM decomposes in the input frame into
separated slots and keeps each object in the same slot until the decoding phase. In contrast,

the baselines do not capture all objects but produce noised feature maps (SlotFormer and
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Fig. C.8. Reconstruction comparison on 3D Cubes dataset

SwitchFormer), or put the same object in two slots and identify two objects in another slot
(NPS).

We observe that combining the CCI with the sequential updates that encourage slots
to observe the modification of each other benefits from recognizing the overlap of objects.
More specifically, RSM only generates a part of the object in case that object is covered by
another one (e.g. the green and blue cubes in slot 2 and slot 4 are partially covered by the
yellow cube). On the other hand, the baselines overlook the condition of executability of
action and generate overlapped objects in some cases (e.g. the green, blue, and yellow cubes
in SlotFotmer overlapped with each other). Lastly, SwitchFormer produces blurry objects
and incorrectly predicts objects’ dynamics.

Reconstruction in 3D Cubes One of the challenges to generating reconstructions in
3D Cubes is to recognize the visibility order of objects. Figure C.8 exposes RSM'’s strength
in communication among slots to obtain the order information, as well as generate the proper
movement of slots and achieve an accurate reconstruction compared to the ground truth. In
contrast, SlotFotmer misses that kind of information from the beginning steps and renders
the blue and green objects inside each other. Besides, other methods lose the information
about some objects and produce a not completed reconstruction at the end, witnessing a

huge gap from the following steps to step 10.

C.6. Limitations and Future Works

While RSM has demonstrated its robustness for modeling objects’ dynamics in various

tasks in both iid and OOD settings, there is room to expand this work due to the following

limitations:
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(1) Sensitivity to Hyperparameters: RSM requires tuning the number and size of mech-
anisms. Future research could explore automated methods for determining optimal
values, and enhancing RSM’s adaptability across tasks and scenarios.

(2) Environments in this study are all observable. Future work should explore a larger

range of observable and unobservable environments for more insights.
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