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Résumé

Les problèmes de localisation-routage à deux échelons (2E-LRP) sont devenus un do-
maine de recherche important dans le domaine de la logistique et de la gestion de la chaîne
d’approvisionnement. Le 2E-LRP représente un problème d’optimisation dans les systèmes
de distribution non dirigés, visant à organiser le transport de marchandises entre les plate-
formes et les clients par le biais d’installations intermédiaires appelées satellites. Ce problème
implique de prendre des décisions simultanées concernant l’emplacement d’un ou deux ni-
veaux d’installations (plateformes et/ou satellites) et de créer un ensemble limité d’itinéraires
aux deux échelons afin de répondre efficacement à toutes les demandes des clients. Récem-
ment, la communauté scientifique s’est intéressée de plus en plus à l’étude et à la résolution
de problèmes plus réalistes. Cet intérêt provient de la reconnaissance du fait que les sys-
tèmes de distribution du monde réel sont caractérisés par une multitude de complexités et
d’incertitudes qui ont un impact significatif sur l’efficacité opérationnelle, la rentabilité et la
satisfaction des clients. Les chercheurs ont reconnu la nécessité d’aborder ces complexités et
incertitudes pour développer des solutions pratiques et efficaces.

Cette thèse comprend trois études différentes, chacune correspondant à un article de re-
cherche autonome. Dans les trois articles, nous nous concentrons sur différents 2E-LRP riches
qui comprennent plusieurs attributs en interaction. Ces variantes du problème sont appelées
problèmes de localisation-routage à deux échelons et à attributs multiples (2E-MALRP).
Pour analyser l’influence des incertitudes sur les solutions optimales et les processus de prise
de décision, nous considérons à la fois les perspectives déterministes et stochastiques. Cette
approche nous permet de mieux comprendre le comportement de ces problèmes complexes.

Le premier document de recherche abordé dans cette thèse se concentre sur un problème
de localisation-routage déterministe à deux échelons et à attributs multiples avec synchroni-
sation de la flotte dans les installations intermédiaires (2E-MALRPS). Le cadre du problème
comprend divers facteurs, notamment la demande de marchandises multiples dépendant du
temps, les fenêtres temporelles, le manque de capacité de stockage dans les installations in-
termédiaires et la nécessité de synchroniser les flottes opérant à différents échelons. Dans le
2E-MALRPS, tous les paramètres, tels que les demandes des clients, les temps de trajet et les
coûts, sont connus avec certitude. Dans cet article, nous introduisons le cadre du problème,
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présentons une formulation de programmation en nombres entiers mixtes et proposons un
cadre de découverte de discrétisation dynamique comme méthode de résolution du problème.

Le deuxième article de cette thèse traite du problème de localisation-routage à deux
échelons en cas de demandes stochastiques et corrélées (2E-MLRPSCD). Contrairement au
2E-MALRPS, le 2E-MLRPSCD prend en compte les incertitudes liées aux demandes des
clients, ainsi que la corrélation entre ces demandes. Nous formulons le problème sous la
forme d’un modèle de programmation stochastique en deux étapes. Au cours de la première
étape, des décisions sont prises concernant la conception des installations satellites, tandis
qu’au cours de la deuxième étape, des décisions de recours déterminent la manière dont les
demandes observées sont servies. Nous proposons une métaheuristique de couverture progres-
sive comme méthode de résolution. Dans cette approche, nous incorporons deux structures de
population dans le cadre de la couverture progressive. Ces structures renforcent la diversité
des décisions de conception obtenues pour chaque sous-problème de scénario et fournissent
des informations pertinentes pour améliorer la qualité de la solution. En outre, nous introdui-
sons et comparons trois nouvelles stratégies différentes pour accélérer la recherche de l’espace
de solution pour le problème stochastique.

Finalement, le troisième article présenté dans cette thèse se concentre sur un problème de
localisation-routage multi-attributs à deux échelons avec des temps de trajet stochastiques
(2E-MALRPSTT). Le 2E-MALRPSTT combine un problème multi-attributs riche avec des
éléments stochastiques, en particulier en considérant des temps de trajet stochastiques. Pour
traiter le problème stochastique complet, un cadre de couverture progressive (PH) est proposé
en s’appuyant sur les lignes directrices méthodologiques définies dans notre deuxième article
pour le 2E-MLRPSCD. En outre, une heuristique basée sur la décomposition est introduite
pour accélérer le cadre PH, et deux nouvelles stratégies d’agrégation sont présentées pour
accélérer le processus de consensus concernant les décisions de la première étape.

Les contributions présentées dans cette thèse couvrent divers aspects de la modélisation et
des méthodologies de solution pour les 2E-MALRP riches, à la fois d’un point de vue détermi-
niste et d’un point de vue stochastique. Les trois articles inclus dans cette thèse démontrent
l’efficacité des approches proposées à travers des campagnes expérimentales étendues, met-
tant en évidence leur efficacité de calcul et la qualité des solutions, en particulier dans les cas
difficiles. En abordant les aspects déterministes et stochastiques de ces 2E-MALRP, cette
thèse vise à contribuer à l’ensemble des connaissances en optimisation de la logistique et de
la chaîne d’approvisionnement, à répondre aux besoins importants de la littérature actuelle
et à fournir des informations importantes pour les systèmes de distribution à deux échelons
dans divers contextes.
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Mots-clés : localisation-routage à deux échelons, transport, logistique urbaine,
synchronisation, temps de trajet stochastiques, demande stochastique, décou-
verte de la discrétisation dynamique, couverture progressive.
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Abstract

The Two-Echelon Location-Routing Problems (2E-LRPs) have emerged as a prominent
research area within the field of logistics and supply chain management. The 2E-LRP
represents an optimization problem in undirected distribution systems, aiming to stream-
line freight transportation between platforms and customers through intermediate facilities
known as satellites. This problem involves making simultaneous decisions concerning the
location of one or two levels of facilities (platforms and/or satellites) and creating a limited
set of routes at both echelons to effectively serve all customer demands. In recent years, there
has been a growing interest among the scientific community in studying and solving more re-
alistic problem settings. This interest arises from the recognition that real-world distribution
systems are characterized by a multitude of complexities and uncertainties that significantly
impact operational efficiency, cost-effectiveness, and customer satisfaction. Researchers have
acknowledged the need to address these complexities and uncertainties to develop practical
and effective solutions.

This dissertation comprises three distinct studies, each serving as a self-contained research
article. In all three articles, we focus on different rich 2E-LRPs that encompass multiple in-
teracting attributes. These problem variants are referred to as two-echelon multi-attribute
location-routing problems (2E-MALRPs). To analyze the influence of uncertainties on opti-
mal solutions and decision-making processes, we consider both deterministic and stochastic
perspectives. This approach allows us to gain insights into the behavior of these complex
problem settings.

The first research paper addressed in this thesis focuses on a deterministic two-echelon
multi-attribute location-routing problem with fleet synchronization at intermediate facilities
(2E-MALRPS). The problem setting encompasses various factors, including time-dependent
multicommodity demand, time windows, lack of storage capacity at intermediate facili-
ties, and the need for synchronization of fleets operating at different echelons. In the 2E-
MALRPS, all parameters, such as customer demands, travel times, and costs, are known
with certainty. In this paper, we introduce the problem setting, present a mixed-integer
programming formulation, and propose a dynamic discretization discovery framework as the
solution method to address the problem.
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The second paper in this thesis addresses the two-echelon multicommodity location-
routing problem with stochastic and correlated demands (2E-MLRPSCD). In contrast to
the 2E-MALRPS, the 2E-MLRPSCD takes into account uncertainties related to customer
demands, as well as the correlation among these demands. We formulate the problem as a
two-stage stochastic programming model. In the first stage, decisions are made regarding the
design of satellite facilities, while in the second stage, recourse decisions determine how the
observed demands are allocated and served. We propose a progressive hedging metaheuristic
as the solution method. In this approach, we incorporate two population structures within
the progressive hedging framework. These structures enhance the diversity of the design
decisions obtained for each scenario subproblem and provide valuable insights for improving
the solution quality. Additionally, We also introduce and compare three different novel
strategies to accelerate the search for the solution space for the stochastic problem.

Finally, the third paper presented in this thesis focuses on a multi-attribute two-
echelon location-routing problem with stochastic travel times (2E-MALRPSTT). The 2E-
MALRPSTT combines a rich multi-attribute problem setting with stochastic elements,
specifically considering stochastic travel times. To address the complete stochastic problem,
a progressive hedging metaheuristic is proposed building on the methodological guidelines
defined in our second paper for the 2E-MLRPSCD. Furthermore, a decomposition-based
heuristic is introduced to accelerate the PH framework, and two novel selection strategies
are presented to expedite the consensus process regarding the first-stage decisions.

The contributions presented in this thesis encompass various aspects of modeling and
solution methodologies for rich 2E-MALRPs from both deterministic and stochastic per-
spectives. The three articles included in this thesis demonstrate the effectiveness of the
proposed approaches through extensive experimental campaigns, highlighting their compu-
tational efficiency and solution quality, particularly in challenging instances. By addressing
the deterministic and stochastic aspects of these 2E-MALRPs, this thesis aims to contribute
to the broader body of knowledge in logistics and supply chain optimization, fill impor-
tant gaps in the present literature and provide valuable insights for two-echelon distribution
systems in diverse settings.

Keywords: two-echelon location-routing, transportation, city logistics, syn-
chronization, stochastic travel times, stochastic demand, dynamic discretization
discovery, progressive hedging.
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Chapter 1

INTRODUCTION

Freight distribution and logistics play a vital role in contemporary society, making it
one of the largest industries. However, designing and planning efficient distribution systems
remains a complex and crucial task for enabling sustainable and effective logistic operations
(Crainic et al., 2023a). At the strategic planning level, the design of these logistic networks
involves determining the optimal number, locations, and capacities of platform facilities
to meet the evolving demands of customers. Additionally, it requires establishing efficient
vehicle routes to reach and serve each customer’s demand. This has led to a growing body of
literature on location-routing problems (LRPs), which integrate these location and routing
decisions under the same modeling framework.

The increasing commodification and massification of production and consumption have
led to new approaches in customer delivery, resulting in the scale and complexity of freight
distribution. To address these challenges, the concept of two-tier logistics has been intro-
duced. This approach aims to promote efficient and sustainable freight transportation by
adopting indirect shipping alternatives. It involves using two levels of intermediate facilities,
such as satellites, to transship and consolidate freight before reaching its final destination.
The two-echelon location routing problem (2E-LRP) arises as a modeling framework capable
of integrating the location and routing decisions in planning such two-level systems (Cuda
et al., 2015).

The fundamental concept underlying two-echelon location-routing problems is to mini-
mize line-haul distances and enhance consolidation. These systems consist of two types of
facilities: large distribution centers or platforms, and intermediate transdock-type facilities
known as satellites. Freight flows from platforms to satellite facilities using high-capacity
vehicles (first echelon) to be consolidated and transferred to smaller, generally environment-
friendly vehicles for distribution to the final destinations (second echelon).

A significant number of studies have been undertaken to tackle distribution planning
challenges in freight logistics (Cattaruzza et al., 2017). However, the majority of existing



research on 2E-LRPs has primarily concentrated on the fundamental problem variant, ne-
glecting the incorporation of additional attributes. This simplification can frequently lead to
unrealistic scenarios, as real-life logistics applications often involve multiple attributes that
can potentially yield improvements (see, for instance, Prodhon and Prins 2014; Cuda et al.
2015).

In recent years, there has been a notable shift in the field towards embracing more detailed
and complex problem settings that encompass various aspects of real-world applications.
This trend has necessitated the inclusion of multiple attributes, leading to the formulation
of highly intricate problem settings (Crainic et al., 2009; Gonzalez-Feliu, 2009; Drexl, 2013;
Buijs et al., 2014). However, despite the growing interest in the field, there remains a scarcity
of literature specifically dedicated to the complexity and dimensionality of these rich 2E-
LRPs. The consideration of multiple interacting attributes in 2E-LRPs is an area that has
received limited attention, and in some cases, no formal models or solution methodologies
tailored to address these intricate problem settings have been developed thus far (Sluijk
et al., 2022).

Against this background, the primary goal of this thesis is to make a meaningful contri-
bution to the design and analysis of rich 2E-LRPs by taking into account multiple interact-
ing attributes. To accomplish this objective, the present dissertation introduces a problem
class known as the two-echelon multi-attribute location-routing problem (2E-MALRP). The
2E-MALRP encompasses various attributes explored in this study, such as time-dependent
demands, non-substitutable demands, fleet synchronization, and uncertainty. Our aim is
to address the knowledge gaps in the existing literature by providing advancements in the
modeling of such systems and decision-making processes, as well as contributing to the body
of solution methods for these problem formulations.

The remainder of the dissertation is organized as follows. In Chapter 2, we give a global
definition of the problem class named the 2E-MALRP, a discussion of the relevance and po-
tential applications of the attributes considered and literature review of the research works
related to the 2E-MALRP. The following chapters correspond to the three self-contained
studies that present the contributions made to the 2E-MALRP. In Article 1, we introduce
the two-echelon multi-attribute location-routing problem with synchronization constraints,
2E-MALRPS, and present a mixed-integer programming formulation on a hybrid time-space
network combining continuous and discrete time representations. We also present an ex-
act solution framework that iteratively refines a reduced time-space network, solving the
2E-MALRPS formulation defined on the reduced network to extract bounds and achieve
temporal granularity refinements, in order to guide the method toward to optimal solution
of the original problem. The paper generalizes the dynamic discretization discovery method
to complex problem settings involving several levels of location, routing, and synchronization
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decisions. We perform thorough analyses to assess the impact of the problem attributes and
requirements on the system behaviour and algorithm performance.

In Article 2, we introduce the stochastic the two-echelon multicommodity location-routing
problem with stochastic and correlated demands (2E-MLRPSCD). This study presents a two-
stage stochastic programming formulation to effectively model the problem. In the first stage,
we determine the locations of satellite facilities as design decisions, while in the second stage,
we make recourse decisions to distribute the observed demands effectively. To tackle this
problem, we propose a progressive-hedging metaheuristic, which incorporates two population
structures to enhance the diversity of design decisions for each scenario subproblem. Addi-
tionally, we introduce and compare three novel strategies aimed at accelerating the search for
the solution space in the context of this stochastic problem. The efficiency and effectiveness
of all proposed strategies to produce high-quality solutions under a variety of problem char-
acteristics and demand correlations are assessed through a set of extensive computational
experiments.

In Article 3, we introduce and investigate the two-echelon multi-attribute location-routing
problem with stochastic travel times (2E-MALRPSTT ). This problem is formulated using
a two-stage scenario-based stochastic programming approach, which effectively incorporates
the interactions among multiple attributes. To address the complete stochastic problem, we
propose a progressive-hedging metaheuristic, which decomposes the problem into multiple
scenario subproblems. These subproblems are iteratively solved and adjusted until a con-
sensus is reached regarding the first-stage decisions. To tackle each scenario subproblem, we
propose a decomposition-based heuristic that accelerates the solution process for the multi-
attribute problem arising from scenario decomposition. Additionally, we introduce two novel
aggregation strategies to further expedite the consensus over the first-stage decisions. The
effectiveness of the proposed approaches is assessed through extensive experimental cam-
paigns, highlighting their computational efficiency and solution quality. Finally, Chapter 3
gives the general conclusion regarding the proposed research project.
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Chapter 2

PROBLEM SETTING AND LITERATURE
REVIEW

This chapter focuses on the research related to the problem class studied in this disserta-
tion. Therefore, we first introduce the problem class named the Two-Echelon Multi-Attribute
Location-Routing Problem (2E-MALRP). Then a complete literature review is provided to
situate the 2E-MALRPS within the relevant literature on the 2E-LRP and LRP, pointing out
the gaps in knowledge with respect to time-dependent demand, origin-destination demand,
fleet synchronization and uncertainty. Section 2.1 introduces system description and the
pertinent terminology related to the 2E-MALRP, followed by the literature review related
to the 2E-MALRPS in Section 2.2.

2.1. System description
We conduct our investigation on a two-echelon location-routing problem that encom-

passes multiple interacting attributes. This novel problem class, referred to as the Two-
Echelon Multi-Attribute Location-Routing Problem (2E-MALRP), involves various sets of
entities, including suppliers (the demand origins), platforms (the primary facilities), satel-
lites (the intermediate facilities), and customers (the demand destinations). Platforms are
large-scale facilities responsible for storing, sorting, and consolidating inbound freight from
supply points, utilizing various transportation modes. On the other hand, satellites are
medium- to small-sized facilities designed as multimodal trans-docking infrastructures with
limited or no storage capacity, enabling efficient transshipment operations. They play a cru-
cial role in the final stages of transportation, facilitating the delivery of freight to customers.

Freight delivery is carried out by two homogeneous fleets of vehicles with limited load
capacities, designated for the first and second echelons, respectively, and capable of trans-
porting any demand. The first echelon is defined between each platform and a series of
satellite facilities. The second echelon is defined by the connections between each satellite



Figure 1 – Two-echelon distribution system topology

facility and the set of customers. Freight flows from platforms to customers through a set
of satellite facilities, where first-echelon vehicles consolidate and transship the demand to
smaller second-echelon vehicles before reaching their final destination. It is worth mentioning
that more than one fleet may exist for each echelon. However, the consideration of heteroge-
neous fleets increases the complexity of the underlying problem without significant changes
in the modeling and solution methods required to address them. Without loss of generality,
this thesis utilizes homogeneous fleets for each echelon.

Demand is defined between suppliers and customers. Each individual demand is char-
acterized by its origin, destination and volume. The system may include time-dependency
on the demand from the origin and the destination. This time-dependent characteristic are
usually present in terms of availability times at the origin and a due time at the destination.

As illustrated in Figure 1, the objective is to assign each origin-destination (OD) de-
mand to an open platform, where it can potentially be consolidated with other commodities.
Subsequently, a first-echelon vehicle is responsible for transporting the consolidated loads
to a sequence of designated satellites, where the demand flows are transferred. The loads
delivered at satellites are transshipped and consolidated further into second-echelon vehicles,
which ultimately carry out the final deliveries to the respective destinations.

The scope of the 2E-MALRP is primarily concerned with the design and strategic plan-
ning of transportation and logistic systems, supporting the inbound freight flow to customers,
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from suppliers, through platforms and satellite facilities. The problem entails selecting fa-
cilities at one or both levels, allocating suppliers to platforms, satellites to platforms, and
customers to satellites, as well as routing and scheduling vehicles at each echelon to deliver
freight from platforms to customers via satellite facilities. However, the problem consid-
ers a number of attributes that have not been previously considered together, including:
(i) multicommodity, origin-to-destination (OD) demands; (ii) time dependent demand; (iii)
fleet synchronization; (iv) uncertainty. We will provide a more detailed description of these
attributes in the following:

Multicommodity, origin-to-destination (OD) demands: Multicommodity charac-
teristic correspond to many representation in different applications in transportation, tele-
comnuications and logistics. Multicommodity in logistic refer to the demand differentiation,
which is often a crucial aspect of many applications (e.g. postal services, parcel delivery)
where packages have customer-specific demands with a known origin and destination, and its
differentiation can be used to tailor services to better meet the needs of customers (Crainic
and Hewitt, 2021).

Time dependent demand: Demand is typically influenced by a diverse range of time-
related factors governed by one or multiple entities. In general, the transportation of demand
can be contingent upon various temporal considerations, including production schedules,
operating hours, delivery policies, city regulations, customer availability, and more (Crainic
and Hewitt, 2021). Time dependency in this dissertation is defined to represent the temporal
components in demand, which may not necessarily capture the dynamic nature of specific
temporal attributes (e.g. cost fluctuations over time). These temporal dependencies are
often expressed as the permissible time intervals during which demand is either available at
its origin or due at its destination.

Fleet Synchronization: Modern distribution systems often require the coordination of
multiple shippers or itineraries to ensure timely and accurate deliveries in a cost-effective
manner (Sluijk et al., 2022). Synchronization constraints in logistics operations can manifest
in various forms, including precedence constraints on routing decisions (where two vehicles
are required or allowed to arrive at a specific location in a particular order) or space-time
coordination (where two or more vehicles must or can arrive at the same location simulta-
neously) (Schiffer and Walther, 2017). Operations and resources within the system can be
constrained by spatial or temporal relationships with other tasks. For instance, a vehicle
may be unable to initiate a delivery until the corresponding freight is available at its location
or until a specific time is reached upon the vehicle’s arrival. These spatial and temporal de-
pendencies impose restrictions on the sequencing and timing of operations, requiring careful
coordination to optimize the efficiency and effectiveness of the distribution system.

Uncertainty: Freight transportation activities frequently encounter situations in which
the system’s behavior is significantly influenced by unpredictable events originating from

37



various sources (Gendreau et al., 2014). Uncertainties in transportation manifest in different
ways, such as traffic disruptions that affect delivery travel times, unavailability of customers
during visits, or changes in demand that impact planned vehicle or facility capacities. Plan-
ning and designing these networks for the medium and long term often involve forecasting
these random events. However, effective management of transportation operations necessi-
tates strategies to handle such uncertainties and mitigate their adverse effects. This disser-
tation presents Article 1 with the hypothesis that uncertainty can be approximated, while
Article 2 and Article 3 explicitly consider the uncertainty in the problem setting.

The core objective of the 2E-MALRP is to minimize the total cost of the system, com-
posed of the cost of selecting/opening facilities at one or both levels and the transportation
costs, while satisfying the demand and the capacities of the system elements. However, based
on the multiples attributes that can be simultaneously considered to be optimized, either
the objective function or the type of constraints to be satisfied may change.

2.2. Literature review
This Section focuses on the research related to the Two-Echelon Multi-Attribute Location-

Routing Problem (2E-MALRP) studied in this dissertation. Therefore, to provide some
useful insights, a brief description and an extensive review of different research classes of
LRPs and 2E-LRPs are included.

2.2.1. Scope of the literature review

This section aims to situate the 2E-MALRP within the relevant literature on the multi-
attribute 2E-LRP and LRP, pointing out the gaps in knowledge with respect to time depen-
dent demand, multicommodity origin-destination demand, fleet synchronization and uncer-
tainty. This literature review emphasizes the developments of LRPs and 2E-LRPs defined
by the interplay of two or more of these attributes within the same problem setting. To
this end, we classify the family of problems defined by each of the attributes introduced in
Section 2.1. We thus define the following six classes of problems to group contribution on
both LPRs and 2E-LRPs:

— The standard LRP
— The standard 2E-LRP
— Multicommodity LRP and 2E-LRP
— LRP and 2E-LRP with temporal constraints
— Stochastic LRP and 2E-LRP
— LRP and 2E-LRP with fleet synchronization
The first two sections introduce the definitions and literature review of the standard

LRP and 2E-LRP, respectively. To facilitate the discussion, we provide the mathematical
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formulations of the standard LRP and 2E-LRP. The following four sections present the
literature review of contributions on LRPs and 2E-LRPs for the remaining classes involving
considerations of different attributes. We classify the articles with similar characteristics
into each of the six classes above. Needless to say, some articles might be included in several
classes, and so we only discuss them within the class that we believe describes the best the
problem under consideration. It is worth noting that the review of contributions in closely
related problems, such as the Vehicle Routing Problem (VRP) and the Two-Echelon Vehicle
Routing Problem (2E-VRP), which do not involve any location decision, is outside the scope
of this literature review. Hence, for an overview of the different contributions in VRPs and
2E-VRPs we refer to interest readers the recent surveys by Desaulniers et al. (2014), Archetti
et al. (2016), Schneider and Drexl (2017) and Sluijk et al. (2022).

2.2.2. The standard LRP

The LRP is a well-known class of combinatorial optimization problems used in a wide
range of applications. It combines elements of two NP-hard problems: the Facility Location-
Allocation Problem and the Vehicle Routing Problem (VRP) (Prodhon and Prins, 2014;
Cuda et al., 2015; Nagy and Salhi, 2006). One can formally define the standard LRP as a
complete, weighted graph G = (V,A), with vertices V = P ∪C divided into two disjoint sets:
platforms P and customers C. Each platform location p ∈ P is associated with a limited
storage capacity Qp and a fixed opening cost Fp. Each customer c ∈ C is associated with a
demand with volume vol(c). This demand is defined as a single commodity for all customers,
which can be delivered and handled for all vehicles and platforms in the system.

The arc-set A represents the direct links between locations, i.e., the vertices in V . A
non-negative unit cost ζij is associated with each arc (i,j) ∈ A. Demand is served by a
homogeneous fleet of vehicles H with a limited capacity cap. The standard LRP can be
defined by four sets of decision variables:

— yp ∈ {0,1}, p ∈ P : location variable, 1 if a platform is opened/selected in location p,
0 otherwise;

— fpc ∈ {0,1}, p ∈ P, c ∈ C: allocation variable, 1 if customer c is allocated to platform
p, 0 otherwise;

— xijh ∈ {0,1}, (i, j) ∈ A, h ∈ H: vehicle flow variable, 1 if arc (i, j) is used by vehicle
h, and 0 otherwise;

— uih ≥ 0, i ∈ V, h ∈ H: Accumulated demand by vehicle h at a location i;
Using this notation, one can formulate the standard LRP as a mixed-integer programming

formulation.

min
∑
p∈P

Fpyp +
∑
h∈H

∑
(i,j)∈A

ζijxijh (2.2.1)
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subject to

∑
h∈H

∑
i∈V,i ̸=j

xijh = 1 ∀j ∈ C (2.2.2)

∑
i∈V,i ̸=j

xijh =
∑

i∈V,i ̸=j

xjih ∀h ∈ H, j ∈ V (2.2.3)

∑
i∈P

∑
j∈C

xijh ≤ 1 ∀h ∈ H (2.2.4)
∑
e∈C

xieh +
∑

e∈V \j

xejh ≤ 1 + fij h ∈ H, i ∈ P, j ∈ C (2.2.5)

uih + vol(j) ≤ ujh + (1− xijh)M ∀h ∈ H, i ∈ V, j ∈ C, i ̸= j (2.2.6)∑
i∈V

∑
j∈C,i̸=j

vol(j) xijh ≤ cap ∀h ∈ H (2.2.7)

∑
j∈C

vol(j) fij ≤ Qiyi ∀i ∈ P (2.2.8)

The objective function of the standard LRP (2.2.1) is to minimize the total cost of the
system, composed of the cost of selecting/opening platform facilities and the transportation
costs. Constraints (2.2.2) guarantee that every customer is served by a single route. Con-
straints (2.2.3) and (2.2.4) ensure the continuity of each route and a return to the platform
from which it has started. Constraints (2.2.5) specify that a customer can be assigned to
a single platform if a route connecting them is used. Constraints (2.2.6) are subtour elim-
ination constraints. Constraints (2.2.7) and (2.2.8) are associated with vehicle and facility
capacity, respectively.

Because of its practical relevance, the LRP has attracted a major attention of the re-
search community resulting in a wide variety of high-quality solution approaches (Drexl and
Schneider, 2015). Nagy and Salhi (2006), make a compilation of all the early works and
surveys that appeared before and in 2005, and provide a discussion of methods and mathe-
matical models. The most recent surveys, namely those of Lopes et al. (2013) and Prodhon
and Prins (2014), cover the variants of the LRP including the standard version, following
different strategies for its categorization. Lopes et al. (2013) perform a taxonomical analysis
of LRPs including an overview of the algorithmic approaches and main objectives functions,
while Prodhon and Prins (2014) give a more detailed description of the problems and its
respective research contributions in the literature of the LRP and closely related problems
as the truck and trailer problem (TTP). Moreover, some surveys are responsible for a review
of specific aspects such as the multi-echelon LRP (Cuda et al., 2015), the standard LRP
(Schneider and Drexl, 2017), and the multiples variants of the LRP (Mara et al., 2021b),
which in particular are mutually complementary.
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There is a broad variety of solution frameworks that have been proposed for the LRP.
The most successful exact methods for the LRP are based on cut-and-column generation
relying on the decomposition of the problem into a set of multi-depot vehicle-routing prob-
lems (MDVRPs) and their exact solutions. Essentially, the works of Baldacci et al. (2011)
and Contardo et al. (2014a) arise as the most prominent contributions by exploiting the
aforementioned methodology on set-partitioning formulations to solve the large part of the
benchmark instances in the related literature. The most successful (meta)heuristic methods
use a variety of paradigms. We highlight that the wide majority of metaheuristics methods
are hybridizations of several concepts rather than one pure implementation of a classical
metaheuristic. Successful solution approaches combine efficient intensification procedures
via local searches with diversifications methods such as crossovers, shaking, restarts, or de-
composition phases (see, e.g. Hemmelmayr et al. 2012; Escobar et al. 2013; Contardo et al.
2014b). One notices that time windows are used in most cases when temporal dependen-
cies are addressed (Farham et al., 2018), while issues related to non-substitutable demand
and fleet synchronization have been scarcely addressed from an optimization point of view
(Govindan et al., 2014; Boccia et al., 2018). Contributions on rich, multi-attribute LRPs,
and the influence that the simultaneous consideration of several interacting attributes may
have on the decision-making, are still very limited (Mara et al., 2021b).

2.2.3. The standard 2E-LRP

The two-echelon location routing problem (2E-LRP) is defined as an undirected dis-
tribution system determined to optimize the freight transportation between platforms and
customers through intermediate facilities, also known as satellites. The standard 2E-LRP
can be formally defined as a weighted directed graph G = (V,A) representing the physical
network on which the problem is defined. The set of vertices V = P ∪ Z ∪ C is composed
by three disjoint sets: platforms P , satellites Z, and customers C. A fixed selection cost Fp

and a capacity Qp are defined for each possible platform location p ∈ P . A fixed selection
cost Fz and capacity Qz are also defined for each potential satellite site z ∈ Z. Each cus-
tomer c ∈ C is associated with a demand with volume vol(c). Demand is defined as a single
commodity for all customers, which can be handled and carried by all vehicles and facilities
in the system.

The arc-set A = A1 ∪ A2 represents the direct links between the vertices in V . The set
A1 includes the arcs of the first echelon, corresponding to the connections between platforms
P and satellites Z, as well as the arcs connecting pairs of satellites. The set A2 includes the
arcs of the second echelon, that is, the connections between satellites Z and customers C,
and the arcs connecting pairs of customers. A non-negative unit cost ζij is associated with
each arc (i,j) ∈ A. Two homogeneous fleets of vehicles H = H1 ∪ H2, with limited load
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capacities cap1 and cap2, are available for the first and second echelon, respectively. The
standard 2E-LRP can be defined by the following sets of decision variables:

— yi ∈ {0,1}, i ∈ (P ∪Z): location variable, 1 if a facility is opened/selected in location
i, 0 otherwise;

— fzc ∈ {0,1}, z ∈ Z, c ∈ C: allocation variable, 1 if customer c is allocated to satellite
z, 0 otherwise;

— rijh ∈ {0,1}, (i, j) ∈ A1, h ∈ H1: first-echelon vehicle flow variable, 1 if arc (i, j) is
used by first-echelon vehicle h, and 0 otherwise;

— xijh ∈ {0,1}, (i, j) ∈ A2, h ∈ H2: second-echelon vehicle flow variable, 1 if arc (i, j) is
used by second-echelon vehicle h, and 0 otherwise;

— uih ≥ 0, i ∈ (P ∪ Z), h ∈ H1: Accumulated demand by first-echelon vehicle h at a
location i;

— vih ≥ 0, i ∈ (Z ∪ C), h ∈ H2: Accumulated demand by second-echelon vehicle h at a
location i;

— wpzh ≥ 0, p ∈ P, z ∈ Z, h ∈ H1: Demand flow from platform p to satellite z with
first-echelon vehicle h;

Using this notation, one can formulate the standard 2E-LRP as a mixed-integer program-
ming formulation.

min
∑

i∈(P ∪Z)
Fiyi +

∑
h∈H1

∑
(i,j)∈A1

ζijrijh +
∑

h∈H2

∑
(i,j)∈A2

ζijxijh (2.2.9)

subject to

∑
h∈H2

∑
i∈(Z∪C),i ̸=j

xijh = 1 ∀j ∈ C (2.2.10)

∑
i∈(Z∪C),i ̸=j

xijh =
∑

i∈(Z∪C),i ̸=j

xjih ∀h ∈ H2, j ∈ (Z ∪ C) (2.2.11)

∑
i∈Z

∑
j∈C

xijh ≤ 1 ∀h ∈ H2 (2.2.12)

vih + vol(j) ≤ vjh + (1− xijh)M ∀h ∈ H2, i ∈ (Z ∪ C), j ∈ C, i ̸= j (2.2.13)∑
h∈H1

∑
i∈(P ∪Z),i ̸=j

rijh = yj ∀j ∈ Z (2.2.14)

∑
i∈(P ∪Z),i ̸=j

xijh =
∑

i∈(P ∪Z),i ̸=j

xjih ∀h ∈ H1, j ∈ (P ∪ Z) (2.2.15)

∑
i∈P

∑
j∈Z

rijh ≤ 1 ∀h ∈ H1 (2.2.16)

uih + 1 ≤ ujh + (1− rijh)M ∀h ∈ H1, i ∈ (P ∪ Z), j ∈ Z, i ̸= j (2.2.17)
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∑
j∈(Z∪C),c ̸=j

xcjh +
∑
j∈C

xzjh − fzc ≤ 1 ∀h ∈ H2, c ∈ C, z ∈ Z (2.2.18)

∑
z∈Z

fzc = 1 ∀c ∈ C (2.2.19)
∑
p∈P

∑
h∈H1

wpzh −
∑
c∈C

vol(c)fzc = 0 ∀z ∈ Z (2.2.20)
∑

h∈H1

∑
z∈Z

wpzh ≤ Qpyp ∀p ∈ P (2.2.21)
∑
c∈C

vol(c) fzc ≤ Qzyz ∀z ∈ Z (2.2.22)
∑
p∈P

∑
z∈Z

wpzh ≤ cap1 ∀h ∈ H1 (2.2.23)
∑
i∈C

∑
j∈(Z∪C),i ̸=j

vol(i) xijh ≤ cap2 ∀h ∈ H2 (2.2.24)

The objective function of the standard 2E-LRP (2.2.9) is to minimize the total system
cost, which includes the fixed cost of selecting facilities at both echelons and the variable
routing costs at each echelon. Constraints (2.2.10) ensure that each customer is visited by
a second-echelon vehicle exactly once. Constraints (2.2.11) and (2.2.12) ensure the continu-
ity of each route and a return to the platform from which it started. Constraints (2.2.13)
are subtour elimination constraints for second-echelon routes. Constraints (2.2.14), (2.2.15),
(2.2.16), and (2.2.17) are vehicle flow constraints on the first echelon, imposing the same
conditions as constraints (2.2.10), (2.2.11), (2.2.12), and (2.2.13) do on second-echelon vehi-
cles. Constraints (2.2.18) link allocation and routing variables. Constraints (2.2.19) ensure
that each customer is allocated to a satellite facility. Constraints (2.2.20) represent flow con-
servation at satellite locations. Constraints (2.2.21) and (2.2.22) pertain to facility capacity
for platform and satellite facilities, respectively. Constraints (2.2.23) and (2.2.24) guarantee
that the demand carried by first- and second-echelon vehicles does not exceed their capacity,
respectively.

The 2E-LRP has been the object of numerous studies since the work of Jacobsen and
Madsen (1980). The most recent surveys on the matter cover different perspectives con-
cerning the 2E-LRP. Prodhon and Prins (2014) and Cuda et al. (2015) provide complete
surveys of heuristics and exact methods for the 2E-LRP. Both surveys present the modelling
and algorithmic implications addressing two-echelon systems where location decisions are
considered in one or the two level of facilities.

A limited number of contributions have addressed the standard 2E-LRP in which location
decisions are restricted to a single level of facilities (see, Nguyen et al. 2012a,b). In contrast,
a considerable majority of the algorithms have been developed for the 2E-LRP with location
decisions in both echelons, most of them heuristics. (Boccia et al., 2010) present a specialized
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tabu search (TS) heuristic for the 2E-LRP, decomposing the distribution system in four sub-
problems, a capacitated facility location problem (CFLP) and a multi-depot vehicle routing
problem (MDVRP) for each echelon. The global solution for the 2E-LRP is obtained by a
bottom-up approach, where the algorithm firstly finds solution for the second echelon and
then optimize the first echelon solution based on the solution obtained for the second echelon.
Boccia et al. (2021) and Crainic et al. (2011b), later present deeper insights in the design of
two-echelon systems by extending some known VRP formulations and by proposing a diverse
set of mixed-integer programming (MIP) models.

Contardo et al. (2012) introduce a new modelling framework for the 2E-LRP that decom-
poses the problem into two LRPs and exploit the previous works of Belenguer et al. (2011)
and Contardo and Martinelli (2014) to derive a compact formulation. The work presents the
value of strengthening its exact method through the separation algorithms used at each ech-
elon and the addition of valid inequalities derived from the LRP. The authors also introduce
an adaptive large neighbourhood search (ALNS) heuristic adapted from Hemmelmayr et al.
(2012) for solving large-sized problems, which outperforms the previous solution methods in
the 2E-LRP literature.

Concerning the solution methods, it is noteworthy that due to the complexity of 2E-
LRP, exact methods have been limited to small- and medium-sized instances (Contardo
et al., 2012). The effectiveness of these methods strongly depends on the quality of the
lower bounds provided by the linear relaxation of the models. Large-scale and industrial
applications are normally handled by heuristics. Most of the existing research examines
hybridization of heuristic or metaheuristic approaches (e.g. TS, ALNS) to this problem based
on the decomposition of the 2E-LRP into sub-problems which are then solved sequentially.
Decomposition methods benefit from and exploit the multi-level structure of the system
while not ignoring their interdependence. We observe that clustering techniques as well as
granularity have not been fully exploited for the 2E-LRP although having delivered some
promising results on LRPs (Prodhon and Prins, 2014).

The growing literature on 2E-LRPs reflects the increasing importance of these types of
problems in logistics and supply chain management. Recent studies tend to propose variants
and extensions of the 2E-LRP by considering one additional attributes, including pick-up
and delivery, heterogeneous fleets, time windows, multiple products, or multiple objectives
(see, for instance, Farham et al. 2018; Ouhader and Elkyal 2016; Vidović et al. 2016; Gianessi
and Alfandari 2015; Govindan et al. 2014), or focused on the scalability to address large-scale
problems (Winkenbach et al., 2016). To the best of our knowledge, only two contributions
have addressed problem settings with at least two attributes, which are relevant for this
research: Bala et al. (2017) address a 2E-LRP with synchronized production schedules and
time windows, while Mirhedayatian et al. (2019) consider a pick-up and delivery with a fleet
synchronization setting.
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2.2.4. Multicommodity LRP and 2E-LRP

This section presents the review of the advances of LRPs class involving demand differ-
entiation, most notably the literature involving the differentiation of demand by means of
their know origin and destination. We refer to this problem class as the multicommodity
LRP, which inherits the same characteristics as those of the standard LRP. The problem
setting concerns the definition of location and routing decisions where demand needs to be
transported from (potentially multiple) supply points (origin of the demand) to multiple
delivery points (destination of the demand). Unlike the standard LRP, the routing deci-
sions (and therefore the location decisions) are completely dependent to the differentiation
of demand. This particularity is due to the fact that the facility-to-facility and customer-
to-facility assignments must be made considering either the position of the supplier and the
final destination (Boccia et al., 2018). One refers to the multicommodity 2E-LRP, when
intertwined facility-selection and vehicle-routing decisions are to be taken for systems in-
volving two sets of facilities and vehicles must be routed between the first and the second
level of facilities.

A very limited number of scientific contributions have been devoted to the consideration
of demand differentiation, with most contributions addressing 2E-LRPs. Contributions on
LRPs are yet to be addressed in the literature. Gianessi and Alfandari (2015) present a
variant of the 2E-LRP called the multicommodity-ring LRP. This problem extends a LRP
by allowing the connection between all the satellites to carry out the exchange of any type of
request. A matheuristic that decomposes the problem into several subproblems (location, al-
location, network design and routing) is presented that sequentially solves each sub-problem
and uses its output as input for the subsequent problem. Boccia et al. (2018) tackle a
multi-commodity LRP by introducing the flow-intercepting facility location-routing prob-
lem inspired by city logistic applications. The authors present a branch-and-cut algorithm
strengthened by valid inequalities and a heuristic procedure to obtain good-quality upper
bounds.

Considering demand differentiation implies an increase in the computational complexity
in different aspects, since it suggests the transition from a dedicated handling of the demands
to the inclusion of flexibility at different levels in the way in which these commodities can
be treated (Archetti et al., 2016). The existing literature lacks a standardized comparative
benchmark test set due to the distinctive characteristics exhibited by each problem setting.
Consequently, determining the effectiveness of methods employed in these studies is sub-
jective and reliant on their specific contexts. In this regard, the literature contributes to
the field of non-exact methods by emphasizing the significance of combining heuristics that
explore neighborhoods sequentially and employing decomposition strategies (Boccia et al.,
2018), as well as utilizing hybrid approaches that leverage sub-problem division strategies
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(Gianessi and Alfandari, 2015). However, exact methods can become considerably intricate
when incorporating demand differentiation based on origin-destination pairs, as this signifi-
cantly increases the number of decision variables. To overcome this complexity and mitigate
its impact on solution quality, two studies highlight the importance of incorporating special-
ized cuts adapted from related problems and linear relaxations of the model, along with the
integration of heuristics to provide effective upper bounds (Boccia et al., 2018). To the best
of our knowledge, the study of multicommodity 2E-LRPs that consider additional attributes
has yet to be addressed in the literature.

2.2.5. LRP and 2E-LRP with temporal constraints

Demand is usually sensitive to a wide variety of time regulations by one or multiple
actors. In general, demand transportation may depend on production times, opening hours,
delivery policies, city regulations, customer availability, among others (Crainic et al., 2023a).
These time dependencies are often expressed as cost changes over time or as time windows
defined as the lower and upper bounds where demand is available or due at its origin and/or
destination. This section thus presents the literature review of the LRPs and 2E-LRPs, where
time windows constraints are defined in either the origin and/or destination of demand,
pointing out the gaps in knowledge with respect to time dependencies.

The literature on the LRP involving the consideration of time constraints is very scarce.
Contributions in the field usually address time windows as the main temporal constraint. The
LRP with time windows (LRPTW) extends the standard LRP by assuming that customers
can only be serviced within certain time window. The scheduling of the services becomes
then crucial for the feasibility of a given solution. Given the complexity of the problem,
solving the LRPTW with pure exact methods is often an extremely arduous task, due the
large amount of computational effort required to address the temporal alternatives (Farham
et al., 2018). To overcome these limitations, researchers have proposed several approaches for
addressing the Location-Routing Problem with Time Windows (LRPTW). Ponboon et al.
(2016) developed a branch-and-price method to tackle the LRPTW. Building upon this
work, Farham et al. (2018) extended the method by incorporating new valid inequalities
and additional acceleration features. Furthermore, Capelle et al. (2019) introduced the
LRPTW with pick-ups and deliveries and successfully addressed it using column generation.
Overall, contributions to branch-and-price applied to the LRPTW rely on the set-partitioning
formulation of the problem. The main strategy consists in decomposing the problem in such
a way that the pricing problem aims at finding feasible vehicle routes for each candidate
depot location (platforms and satellites), whereas the master problem assures the location,
demand satisfaction, and the respect of the depot capacities. Koç et al. (2016) address
the fleet size and mix LRP with time windows. The work contributes to the structuring
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of different mathematical formulations for the problem. For this, the authors consider the
addition of valid inequalities derived from variants of the LRP to either reduce the size of the
formulation through the aggregation of variables or to tighten the linear relaxation bounds
by disaggregating some of the constraints.

Metaheuristics for the LRPTW have also been implemented with success, mainly due
to their ability to find feasible solutions and escape local optima. Burks (2006) presents a
penalization scheme in an adaptive TS for the theatre distribution problem. The algorithm
utilizes penalization for time window constraints violations in the objective function, to
gradually reduce infeasibility. Gündüz (2011) proposes a TS that decomposes the problem
into a capacitated facility location problem with time windows and a MDVRP with time
windows that are solved in an iterative manner. The comparison of solution algorithms for
the LRPTW is often hindered by variations in problem formulations across different articles
and the absence of standardized benchmark datasets. Despite advancements in this field,
the majority of research on LRPs predominantly emphasizes time windows as the primary
temporal constraint. Similarly, studies that investigate time dependency on the origin of the
demand and other time-sensitive aspects of the system remain largely unexplored.

The literature on 2E-LRP with time constraints is very limited as well. Govindan et al.
(2014) introduced a bi-objective 2E-LRP with time windows, for the simultaneous minimiza-
tion of distribution costs and greenhouses gas emissions, for perishable food supply chain
distribution. Bala et al. (2017) address the 2E-LRP with synchronized production schedules
and time windows. Wang et al. (2018) introduce a bi-objective model for the 2E-LRP with
time windows through a clustering-based algorithm hinged on locations and purchase be-
havior. Lu et al. (2019) address the 2E-LRP heightening multimodal freight consolidation.
Li et al. (2019) propose a 2E-LRP considering real-time trans-shipment capacity, varying
with transshipment and consolidation operations. Darvish et al. (2019) address the 2E-LRP
incorporating multiple periods and maximal due date on customer demands incorporating
flexible decisions in terms of location of intermediate facilities on each time period. Mirhe-
dayatian et al. (2019) propose a MIP formulation and a decomposition-based heuristic for
a 2E-LRP with fleet synchronization and pick-up and delivery. The investigation of rich,
multi-attribute 2E-LRPs that encompass multiple interacting sources of time-dependency,
such as time-dependent non-substitutable demand and fleet synchronization, has received
limited attention in the literature.

2.2.6. Stochastic LRPs and 2E-LRP

Freight transportation activities often encounter situations where the behavior of the
system is closely tied to unpredictable events. Examples of transportation issues arising
from uncertainties include traffic disruptions affecting delivery travel times, unavailability of
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customers during visits, and changes in demand impacting planned vehicle or facility capac-
ities. Stochastic optimization refers to a collection of methods for minimizing or maximizing
an objective function when uncertainty is present (King and Wallace, 2012). Uncertainty is
typically incorporated into optimization models through the cost function or the constraint
set, taking into account the randomness and variability of input data. In the context of
LRPs, where strategic and tactical decisions are crucial for designing the distribution sys-
tem, considering uncertainty is essential to achieve a more accurate and realistic modeling
of the problem and improve the flexibility or robustness of the solutions. The review of the
advances of each specific algorithmic and modelling frameworks used in stochastic optimiza-
tion is out of the scope of this dissertation. Instead, this section emphasizes the review of
the developments of LRPs and 2E-LRPs considering uncertainty, in particular those consid-
ering stochastic demand and stochastic travel times. For a comprehensive survey of LRPs
addressing different stochastic aspects not covered in this review, we refer interested readers
to recent surveys by Cuda et al. (2015), Schiffer et al. (2019), and Mara et al. (2021b).

The LRP with stochastic demands (LRPSD) involves uncertainty stemming from random
changes affecting the demands. In terms of decision-making and information processing,
the planning decisions must be defined based on an evaluation/estimation of their impact
on operations, including the available recourse actions to adapt the plan to the observed
demands. Contributions in the field build on the assumption that demand is uncertain in the
sense that all its request fluctuations are statistically independent, and thus not correlated
(Marinakis et al., 2016).

Multiple contributions have been proposed to address the LRPSD since the work of
Laporte et al. (1989). The literature is notably characterized by the extensive use of local-
search-based metaheuristic frameworks to address the underlying transportation problems,
where location, allocation, and routing decisions are treated by different heuristics (see,
Albareda-Sambola et al. 2007; Huang 2015; Marinakis 2015; Marinakis et al. 2016; Schiffer
and Walther 2018; Zhang et al. 2019). On the other hand, most recent contributions present
a different approach for the LRPSD with application of algorithms hybridizing a Monte Carlo
simulation with a iterated local search metaheuristic (Quintero-araujo et al., 2019) and multi-
objective frameworks (Rabbani et al., 2019). Despite the advances in the field, the literature
on LRPSD remains limited, particularly in the case of non-substitutable demands. The
case where stochastic demands are statistically independent remains the most predominant
setting studied in the literature. Research concerning correlation features and its impact
on the decision making process has yet to be addressed. Important contributions are also
still required to deepen the understanding of the impact of richer problem settings and their
influence on location decisions under demand uncertainty.

The literature on 2E-LRP with stochastic demands (2E-LRPSD) is very limited. To
the best of our knowledge only two studies have addressed the 2E-LRPSD. Snoeck et al.
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(2018) have presented a stochastic mixed-integer linear programming formulation to model
a 2E-LRPSD arising from a practical application. Ben Mohamed et al. (2023) propose a
logic-based Benders decomposition framework combined with a branch-and-cut-and-price
for a multi-period 2E-LRPSD. However, particular developments are required in the field,
especially in relation to explicitly consider demand correlations, non-substituable demand
considerations, and meeting the modeling and algorithmic challenges these considerations
imply.

Contributions in LRPs and 2E-LRPs involving stochastic travel times are also very scarce.
Despite its practical relevance, very few LRP studies have considered uncertain travel times.
Herazo-Padilla et al. (2015) integrated a discrete-event simulation with ant colony optimiza-
tion for the LRP with stochastic travel speed and transportation cost. Gao et al. (2016)
introduced an ant colony algorithm to solve a LRP with stochastic travel times expressed as
random and cyclic traffic factors. Heuristic frameworks in the field share a similar strategy
of decoupling location and routing decisions, where location decisions are defined by the it-
erative test of a pre-defined set of potential facility locations evaluated under the realization
of the uncertain travel times. On the other hand, research on 2E-LRP integrating uncer-
tain travel times is yet to be addressed. The literature clearly lacks research on alternative
methodologies capable of integrating stochastic travel times into rich multi-attribute LRPs
and 2E-LRPs involving different time-sensitive features, such as time-dependent demands
and fleet synchronization. Particularly, addressing the modeling and algorithmic challenges
that come with such integration.

2.2.7. LRP and 2E-LRP with synchronization constraints

This section provides an overview of the literature on LRPs and 2E-LRPs that involve
synchronization constraints. We begin by discussing the advances and impact of considering
synchronization constraints in the logistics and transportation industry. Subsequently, we
review the most recent contributions on LRPs with synchronization constraints.

Synchronization in logistics refers to the process in which two or more operations adjust
their temporal and/or spatial state of motion to achieve a common behavior. This enables
more efficient management of scarce resources such as storage capacity, product availability,
and vehicle capacity (Crainic et al., 2009). Examples of such applications in logistics include
systems that employ cross-docking principles or urban logistics applications, where freight
is typically transferred between synchronized vehicles due to limited or no storage avail-
ability. The nature of distribution systems established across multiple echelons inherently
requires strict spatial coordination (although it may not need to be explicitly addressed)
and the consideration of temporal synchronization (Andersen et al., 2009; Crainic et al.,
2009). In contrast, single-tiered systems do not exhibit such characteristics unless specific
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circumstances arise (Crainic et al., 2009; Nguyen et al., 2013; Ait Haddadene et al., 2016).
Consequently, when storage capacity or time becomes a bottleneck for the system, temporary
synchronization plays a crucial role in enabling continuous freight or service consolidation
throughout the network.

Transportation problems considering synchronization constraints have currently become
a subject undergoing intense study in a broad range of routing and scheduling variants (Sluijk
et al., 2022). Among the most influential proposals in this domain is the work of Crainic
et al. (2009), which, to the best of our knowledge, is the first work to highlight the impor-
tance of time-sensitive operations and synchronization in facilities, along with the challenges
that arise from city logistics. To the best of our knowledge, the work of Mirhedayatian
et al. (2019) is the only contribution that has addressed a 2E-LRP with fleet synchroniza-
tion and pick-up and delivery for an application in postal service. The work introduces a
decomposition-based heuristic composed by a location-allocation phase determined by the
interplay between a constructive method and an allocation model, and a routing phase where
vehicle schedules and synchronization are handled with a set-partitioning formulation. Par-
ticular developments are required for the 2E-LRP, particularly with respect to the modelling
and algorithmic challenges that arise when addressing multiple time-sensitive attributes.

2.3. Algorithmic discussion
From the review of the literature, we can highlight that LRP variants have been the

subject of numerous studies characterized by an increasing trend to adopt more than one
attribute simultaneously, in order to achieve a more accurate approximation of the reality of
industrial applications (Drexl, 2012). Location-routing variants in this domain remain sparse
due to the numerous amounts of practical constraints (see, e.g. Gianessi and Alfandari 2015;
Rahmani et al. 2016; Bala et al. 2017; Govindan et al. 2014; Hamidi et al. 2014; Crainic
and Montreuil 2016) as each specific attribute have a particular relevance in various types
of freight transport systems. However, drawbacks addressing rich LRPs still underlie in the
complexity obtained by handling multiple attributes (Sadjady and Davoudpour, 2012), either
due of the size of the resulting system or by the hard interrelation between the considered
attributes (Crainic et al., 2009).

A considerable part of the literature is characterized by a predominant use of heuristic
methods. This fact is mainly motivated by the trade-off between good quality solutions
and computational effort (compared with the exact methods) (Rahmani et al., 2016; Bala
et al., 2017; Masson et al., 2013; Grangier et al., 2016). These approaches often adopt a
decomposition strategy, breaking down the problem into a location-allocation problem and
a vehicle routing problem. In cases where multiple echelons are considered, authors often
incorporate further system decomposition based on echelons. The resulting subproblems are
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then solved sequentially (e.g., location-allocation first, routing second) or iteratively (with
feedback from one subproblem influencing the others). In some cases, both allocation and
routing decisions are made simultaneously. The most effective heuristics in the literature
are distinguished by the combination of tailored diversification and intensification phases,
which primarily rely on local search procedures integrated into well-known heuristics and
metaheuristics frameworks. The success of these heuristics hinges on their ability to lever-
age specialized neighborhoods to efficiently explore the solution space. However, designing
suitable neighborhoods for rich-LRPs presents a formidable challenge due to the intricate na-
ture, heterogeneity, and interdependence of the various components inherent in the problem
definition (Gianessi and Alfandari, 2015).

There are a few contributions in relation to exact methods, due the high complexity and
the huge number of variables necessary to carry out an efficient enumeration of the resulting
formulation. Some of the proposed methods often extend ideas from related vehicle routing
problems and combine dynamic cut and column generation with bounding procedures. De-
composition schemes happen to play a key role in the way in which problems can be expressed
as the interaction of multiple known subproblems (Gianessi and Alfandari, 2015; Aksen and
Altinkemer, 2008; Nikbakhsh and Zegordi, 2010; Crainic et al., 2009). However, maintaining
the interrelation between the resulting subproblems happens to be the most complicating as-
pect to avoid the exclusion of optimal solutions in the solution space (Gianessi and Alfandari,
2015; Drexl, 2012; Guastaroba et al., 2016). The authors in this field address decomposi-
tion schemes by means of a sequential interaction between the subproblems (Gianessi and
Alfandari, 2015); or in an integrated manner, either by solving the subproblem by using the
output of the others as inputs, or in an exact manner by exploiting Benders or Dantzing-
Wolfe decomposition schemes (Koç et al., 2016; Aksen and Altinkemer, 2008; Nikbakhsh and
Zegordi, 2010; Contardo et al., 2012). The latter have demonstrated beneficial potential in
small- and medium- sized instances, but still with a huge computational effort (in time and
memory usage).

2.4. Conclusions
Among the works in this field, there are gaps in relation to models and solution methods

for each class of problems (mentioned in their respective section) as well as transportation
issues that have not been addressed yet. Mentioning every gap in the reviewed literature,
however, is outside the scope of this document, therefore, we highlight the following gaps
that are relevant for this research and which we seek to fill throughout the research project.

Problem class: Numerous references in the literature address problem settings involving
multiple attributes, and authors have categorized them using various names and descriptions.
The lack of consensus in the literature regarding the classification of these types of problems
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makes it challenging to follow the advances and trends in this research field. Although
multiple contributions have introduced different classification schemes for various types of
VRPs, there is a clear need for a problem class to classify LRPs and 2E-LRPs involving
multiple interacting attributes. Therefore, developing a problem class with a more unified
perspective on the problem settings could be helpful.

New benchmarks and performance analysis: Literature in this field remains sparse
due to the wide variety of attributes and side constraints that each problem definition may
have. Solution methods are often compared with related LRP variants or tested under
specialized instances. Sometimes, related works differ in the size of the instances that the
methods can solve. Hence, developing a comprehensive set of benchmark instances with a
suitable range of sizes (for practical and theoretical contributions) can lead to more deeper
insights on the usefulness of algorithmic performance under different conditions.

Modeling and solution frameworks: The consideration of multiple interacting at-
tributes is both practically relevant and scientifically challenging in various logistic appli-
cations (Sluijk et al., 2022). There has been a growing interest in these complex problem
settings that take into account time-sensitive aspects, demand differentiation, and uncer-
tainty, primarily motivated by their potential impact on the logistics industry (Crainic et al.,
2023a). However, formal models and solution frameworks to address these challenges have
yet to be developed and analyzed for LRPs. Research in these directions can contribute
to the introduction of robust and efficient solution methods for dealing with these complex
mathematical models. Additionally, such research can provide the tools needed to analyze
the behavior of multiple interacting attributes in location and routing decisions.

The aim of this thesis is twofold. First, from a modeling perspective, we introduce
novel mathematical formulations that incorporate multiple interacting attributes to enhance
the representation of temporal components. Furthermore, we extend and enhance existing
models by integrating stochastic considerations with location routing decisions. In our three
papers, we analyze various vehicle-flow formulations and time-space formulations suitable
for multi-attribute problem settings, which have not been explored previously.

Another significant innovation in our work lies in the algorithmic aspect. The existing
literature on multi-attribute 2E-LRPs is limited, and the problem settings we consider in each
of the three papers are highly challenging. This is due to their combinatorial nature and the
large scale resulting from the presence and interrelation of multiple interacting attributes.
Since solving the standalone formulations is typically impractical under these conditions,
they cannot be successfully applied. To address these challenges, we introduce a diverse set
of solution frameworks for each problem setting, ensuring an effective approach to solving
them
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Résumé. Nous étudions le système de localisation-routage à deux échelons sous de fortes contraintes de
synchronisation, en plus de plusieurs autres attributs en interaction. Stimulé, en particulier, par les applica-
tions de logistique urbaine, le système que nous étudions concerne un plan de distribution à deux échelons
composé d’un ensemble d’installations de plateformes et d’un ensemble d’installations intermédiaires (ou
satellites) pour livrer le fret des zones d’approvisionnement à l’extérieur de la ville aux clients à l’intérieur
de la ville. Le problème comprend une demande multi-marchandises dépendante du temps, des fenêtres tem-
porelles, un manque de capacité de stockage dans les installations intermédiaires et la synchronisation, dans
ces installations, des flottes opérant à différents échelons. Le problème nécessite la sélection des installations
aux deux niveaux, le placement des fournisseurs sur les plateformes et des clients sur les satellites, ainsi que
le routage et la programmation des véhicules à chaque échelon, afin de livrer le fret des plateformes aux
clients, par l’intermédiaire des satellites. Le manque de capacité de stockage des installations partagées, les
satellites, exige une programmation rigoureuse des itinéraires des véhicules et de la demande, c’est-à-dire des
heures de départ des plateformes et des satellites, ainsi que la synchronisation des itinéraires des véhicules
dans les satellites pour des opérations de transbordement efficaces. Nous introduisons le cadre du problème,
présentons une formulation de programmation en nombres entiers mixtes et une méthode de solution exacte
basée sur le dynamic discretization discovery pour le problème. Nous effectuons des analyses approfondies
pour évaluer l’impact des attributs et des exigences du problème sur le comportement du système et les
performances de l’algorithme.
Mots clés : transport, localisation-routage à deux échelons dépendant du temps, synchronisation, décou-
verte de discrétisation dynamique, logistique urbaine

Abstract. We study the two-echelon location-routing system under tight synchronization constraints, in
addition to several other interacting attributes. Prompted, in particular, by city-logistics applications, the
system we address concerns a two-echelon distribution layout composed of a set of platform facilities and
a set of intermediate satellite facilities to deliver freight from supply zones outside the city to customers
within. The problem setting involves time-dependent multicommodity demand, time windows, lack of
storage capacity at intermediate facilities, and synchronization at these facilities of the fleets operating
on different echelons. The main decisions in the problem include the selection of facilities at both levels,
the allocation of suppliers to platforms and customers to satellites, as well as the routing and scheduling
of vehicles at each echelon. These decisions are made in order to facilitate the delivery of freight from
platforms to customers through the satellites. The lack of storage capacity of the shared facilities, the
satellites, requires tight scheduling of the vehicle routes and demand itineraries, i.e., departure times from
the platforms and satellites, and the synchronization of vehicle routes at satellites for efficient transshipment
operations. We introduce the problem setting, present a mixed-integer programming formulation, and
a dynamic discretization discovery-based exact solution method for the problem. We perform thorough
analyses to assess the impact of the problem attributes and requirements on the system behaviour and
algorithm performance.
Keywords: transportation, time-dependent two-echelon location-routing, synchronization, dynamic dis-
cretization discovery, city logistics

1. Introduction
Locating/selecting facilities and building vehicle routes are two of the most critical prob-

lems arising in planning and managing transportation and logistics systems. The Location
Routing Problem (LRP) class combines the two problems (under suitably defined harmoniz-
ing cost and demand values) into a single formulation providing a more accurate and refined
representation of the impact of facility selections on the functioning and performance of the
resulting system. One refers to the Two-Echelon Location Routing Problem, 2E-LRP, when
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intertwined facility-selection and vehicle-routing decisions are to be taken for systems involv-
ing two sets of facilities and vehicles must be routed between the first and the second level
of facilities, and between facilities on the second level and customers making up the “third”
level. The interest and vast application areas of LRP and 2E-LRP are emphasized by a very
large body of literature and the numerous surveys synthesizing the field (e.g., Prodhon and
Prins, 2014; Schneider and Drexl, 2017; Mara et al., 2021b).

However, the literature addressing richer problem settings characterized by several in-
teracting attributes is still very limited (Sluijk et al., 2022). Existing 2E-LRP models and
methods are unable to keep pace with the rapidly evolving planning challenges that require
more comprehensive and rich problem representations. This gap is particularly evident in ap-
plications such as Physical Internet (Crainic et al., 2023b) and City Logistics (Crainic et al.,
2021b), which involve multiple origin-to-destination commodities, time-dependent demand,
scheduled and synchronized activities, and other complex considerations. The complexity
arising from the need for specialized modelling and heuristics to handle the interactions
among these diverse attributes restricts the applicability of existing 2E-LRP models and
methods, especially when considering time-dependent aspects (e.g., Bala et al., 2017). Our
objective is to contribute towards filling these gaps in the knowledge, through contributions
to the modelling of such systems and decisions, as well as to the body of solution methods
for these formulations.

We address a 2E-LRP with multiple interacting attributes, including time-dependent
multicommodity origin-to-destination (OD) demand, time windows, limited storage capacity
at intermediate facilities, and synchronization at the intermediary facilities of the fleets
operating on different echelons. This new Two-Echelon Multi-Attribute Location-Routing
Problem with fleet Synchronization at intermediate facilities (2E-MALRPS) thus requires 1)
the selection of facilities on both levels, 2) the routing, scheduling, and synchronization of
vehicles at second-echelon (intermediate) facilities, and 3) the allocation of OD demands to
the selected facilities and their delivery using sequences of synchronized routes. The goal
of the 2E-MALRPS is to minimize the total cost of the system, composed of the facility-
selection cost at both levels and the transportation (fleet-utilization) cost, while satisfying
the demand and the capacities of the system elements.

The time dependencies of demand and scheduled operations require time to be explicitly
represented in the formulation. Time-space networks constitute a widely-known modelling
technique to efficiently capture and handle temporal information (e.g., Ford and Fulkerson,
1962; Crainic and Hewitt, 2021). Most contributions in the literature use a classic time-space
representation in which the duration of the plan to be built is discretized, according to a
given granularity, into a number of consecutive periods, and the nodes in the physical network
representing the system studied are duplicated at the points in time defining the periods.
While such a modelling provides the means to adequately represent the level of detail of
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time-dependent activities and planning, the size of the corresponding formulations grows
very rapidly with the refinement of the time discretization, making exact solution methods
impractical. We address this challenge through the model-building and algorithm-design
aspects. On the modelling front, we propose a hybrid formulation, where the nodes standing
for facilities, which can be active at any moment while the system works, are duplicated at
all periods, while customer nodes appear only at relevant periods (when they can be reached
within their time windows), while a continuous time representation is used to capture the
timing of vehicles arriving and departing to/from intermediary facilities and customers.

On the algorithmic front, we propose an exact solution method based on the Dynamic
Discretization Discovery (DDD) strategy introduced by Boland et al. (2017) for the Scheduled
Service Network Design (SSND) problem. In that context, the DDD consists in iteratively
solving a mixed-integer model formulated on a sparser version of the time-space network,
also known as the reduced time-space network, and refining this network (i.e., refining the
granularity of the time representation), until an optimal solution is found. The refinement
procedure is the core of the DDD, in which all the nodes and arcs within the reduced network
undergoing refinement must be reviewed and adjusted. Refinement generates an iterative
network growth. It is hoped, and achieved (e.g., Boland et al., 2017), that growth will be
significantly smaller than a full time-space network while adequately representing the time
attributes of the problem in hand.

The iterative refinement process inherent in the DDD enables the dynamic discretization
of relevant time moments in the network, resulting in a systematic reduction of computa-
tional complexity. This characteristic offers promising opportunities for addressing com-
plex time-dependent problems by simplifying the representation of time (Vu et al., 2020).
However, effectively tackling the two-echelon definition and the combinatorial nature of the
2E-MALRPS, which integrates location, routing, and time aspects, requires extending and
adapting the original DDD methodology. These extensions are crucial for guiding the refine-
ment process, controlling network growth, and preserving attribute interaction. To achieve
these goals, we define specific properties and procedures for computing bounds, handling
solution degeneracy, refining granularity, and controlling iterative growth of the time-space
network.

The proposed DDD solution method thus enables an efficient time-space representation of
the system, while overcoming the scalability limitations of the explicit representation of time.
The results of the computational study illustrate the behaviour and very good performance
of the proposed modelling approach and solution method, and emphasize the importance of
explicitly accounting for the time attributes of the problem elements, and of the associated
fleet synchronization requirements within time-sensitive distribution systems.

The paper is organized as follows. The problem definition is given in Section 2, and an
overview of related literature in Section 3. Section 4 is dedicated to the hybrid modelling
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Figure 2 – Two-echelon distribution system topology

of time we use and the 2E-MALRPS formulation. Section 5 describes the DDD solution
method we propose. Computational results are presented and analysed in Section 6. We
summarize our work in Section 7.

2. Problem Setting
The two-echelon system is composed of sets of suppliers (demand origins), platforms

(primary facilities), satellites (intermediate facilities), customers (demand destinations), and
two vehicle garages. Platforms are large-sized infrastructures where one performs the storage,
sorting, and consolidation of the inbound freight provided by supply points through various
modes of transportation. Satellites, on the other hand, are medium- to small-sized facilities,
located within the city limits and providing reduced or null storage capacity, where first and
second-echelon vehicles meet and freight is transshipped and consolidated for the second
part of transportation to customers. Freight transportation is performed by two fleets of
homogeneous and limited-capacity vehicles, each operating within a specific echelon and
able to transport the products making up the OD demand. Vehicles are assumed to be
available at the garage of their corresponding echelon, where they start and end their routes.

The multi-commodity, origin-to-destination (OD) demand is defined between suppliers
and customers, each individual demand being characterized by origin, destination, volume,
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availability time, which is then adjusted for each platform, and due time window at desti-
nation. As depicted in Figure 2, each OD demand has to be assigned to an open platform
and an open satellite. OD demands are consolidated at platforms, and are then moved by
first-echelon vehicles to their selected satellites for the second part of their journeys. Once
delivered at satellites, demand flows are transshipped and consolidated into second-echelon
vehicles, which perform the deliveries to the final destinations. First and second echelon
vehicle routes visit sequences of satellites and customers, respectively. To simplify the pre-
sentation of the system, garage nodes are not displayed in any of the illustrations of the
paper.

The problem requires the selection of facilities at both levels, the allocation of suppliers
to platforms and of customers to satellites, as well as the routing and scheduling of vehicles
at each echelon to deliver the freight from platforms to customers, through satellite facil-
ities. Vehicle routes and the OD-demand itineraries, determining the sites (facilities and
customers) visited and the visit schedules, i.e., arrival, waiting, and departure times, must
be determined within the time restrictions imposed by each OD demand (at platforms and
customer), as well as by the need to synchronize vehicles at satellites due to the time depen-
dency of demand and the lack of satellite storage capacity. Transportation costs are assumed
to be equal to the travel times of the corresponding inter-site movements, while, to simplify
the presentation but without loss of generality, waiting times at the various sites do not yield
additional costs. The main objective of the resulting 2E-MALRPS is to minimize the total
cost of the system, composed of the cost of selecting/opening facilities at both levels and the
transportation costs, while satisfying the demand and the capacities of the system elements.

3. Literature Review
This section aims to situate the 2E-MALRPS within the relevant literature on the multi-

attribute 2E-LRP and LRP, pointing out the gaps in knowledge with respect to time de-
pendencies, time windows, origin-destination demand, and fleet synchronization. Given the
available space, the review of the advances of each specific attribute is out of the scope of
this paper. Therefore, our focus is on multi-attribute 2E-LRP and LRP, which encompass
applications characterized by the interplay of two or more of these attributes within the
same problem setting. A brief discussion on time-space formulations is also provided, fo-
cusing on dynamic discretization schemes used as solution frameworks. For an overview of
the different problem variants in single- and two-echelon distribution systems and location
routing problems that are out of the scope of this work, we refer the interested reader to
recent surveys by Albareda-Sambola and Rodríguez-Pereira (2019); Crainic et al. (2021a);
Mara et al. (2021b), and Sluijk et al. (2022). We also refer readers to well-known surveys
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by Lopes et al. (2013) and Prodhon and Prins (2014), which provide a broad compilation of
the early works and surveys for single-echelon LRPs with less attribute considerations.

The LRP has been the object of numerous studies since Maranzana (1964), research
spanning a wide range of problem settings. Most LRPs focus on a single key attribute to
represent the time or demand requirements of the problem under consideration. One no-
tices that, time windows are used in most cases when temporal dependencies are addressed
(Farham et al., 2018), while issues related to non-substitutable demand and fleet synchro-
nization have scarcely been addressed from an optimization point of view (Boccia et al.,
2018). Contributions to rich, multi-attribute LRPs, and the influence that the simultaneous
consideration of several interacting attributes may have on the decision-making, are still very
limited (Mara et al., 2021b).

The literature on multi-attribute 2E-LRP, a more challenging problem setting due to the
inter-echelon relationships, is much more recent and rather sparse. Research in the field has
largely centred on the study of time-sensitive applications, focusing on customer time win-
dows (e.g., Wang et al., 2018) and multi-period settings only (e.g., Darvish et al., 2019). Rich,
multi-attribute 2E-LRPs incorporating multiple interacting sources of time-dependency, such
as time-dependent non-substitutable demand and fleet synchronization, have been scarcely
investigated. To the best of our knowledge, two contributions only have addressed problem
settings with at least two attributes, which are relevant for this research: Bala et al. (2017)
address a 2E-LRP with synchronized production schedules and time windows, while Mirhe-
dayatian et al. (2019) consider a pick-up and delivery with fleet synchronization setting.

Location-routing and routing problems are related. Although surveying the Two-Echelon
Vehicle Routing Problem (2E-VRP) literature (see, e.g., Crainic et al., 2021a; Sluijk et al.,
2022) is out of the scope of this paper, it is worth noticing that more 2E-VRP variants with
time-dependency and synchronization constraints were explored compared to the 2E-LRP.
Yet, similarly to the 2E-VRP, the study of rich, multi-attribute 2E-VRP settings is still
largely lacking.

From a modelling perspective, 2E-LRP contributions tend to share a compact-type struc-
ture, also known as flow formulations, to model the problem setting, with temporal and de-
mand decisions being recorded through additional variables or indexes linked with the vehicle
routing/flow variables (Contardo et al., 2012; Mara et al., 2021b). The complexity of the
2E-LRP makes exact solution methods for these formulations impractical in most cases, in
particular as the problem size or the number of attributes being considered grows, even when
combining formulation-strengthening valid inequalities and column-generation mechanisms
(Farham et al., 2018) (Albareda-Sambola and Rodríguez-Pereira, 2019). Meta-heuristics are
thus generally proposed (e.g., Mirhedayatian et al., 2019; Abbassi et al., 2020).

It is noteworthy that the scientific literature on problems with tight or complex time
considerations has widely adopted the use of time-space network representations (Crainic
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and Hewitt, 2021). Also noteworthy is the growing research effort addressing the iterative
refining of the discretization of time-space networks, in order to efficiently deal with the
trade-offs between the precision of the model, brought by refined time discretizations, and
the significant computational challenges of addressing the corresponding large formulations.
Introduced by Boland et al. (2017) for the Service Network Design Problem (SNDP), research
on the Dynamic Discretization Discovery approach focuses mostly on the design of reduced
time-space networks through a sparse discretization of time, which are iteratively refined to
derive lower and upper bounds to the problem without the use of a highly detailed time-
space representation. Very few efforts target topics outside the SNDP. Thus, Vu et al. (2020)
propose a DDD-inspired solution method for the time-dependent travelling salesman problem
with time windows, while Lagos et al. (2022) address the impact of time discretization on a
continuous-time inventory-routing problem.

The 2E-LRP requires particular developments with respect to the modelling and algo-
rithmic challenges that arise when addressing multiple interacting time-sensitive attributes,
including the interest of alternative exact solution frameworks. This research work aims
towards filling these gaps in the literature by proposing a hybrid time-space formulation and
bv adapting and enhancing the guidelines of the DDD methodology for the 2E-MALRPS.

4. 2E-MALRPS Modelling
Section 4.1 is dedicated to the formal problem definition, while Section 4.2 introduces

the time-space representation. Finally, Section 4.3 presents the 2E-MALRPS formulation.

4.1. Problem definition and notation

Let Gph = (Vph,Aph) be the weighted directed graph representing the physical network
on which the problem is defined. The set of vertices Vph = Qph ∪ Pph ∪ Zph ∪ Eph ∪ Cph is
made up of five disjoint sets standing for the physical sites (known or among which locations
are to be decided) of suppliers Qph, potential platform sites Pph, possible satellite sites Zph,
vehicle garages Eph, and customers Cph. A fixed selection (opening) cost Fp and a capacity
Θp are defined for each possible platform location p ∈ Pph. A fixed selection (opening) cost
Fz is also defined for each potential satellite site.

The arc-setAph = Aph
1 ∪A

ph
2 represents the direct links between locations, i.e., the vertices

in Vph. A non-negative unit cost ζij and a travel time τij are associated with each arc (i,j) ∈
Aph. The set Aph

1 includes the arcs of the first echelon, corresponding to the connections
between suppliers Qph and platforms Pph, between the latter and satellites Zph, as well as
the arcs connecting pairs of satellites and the first-echelon garage to platforms and satellites.
The setAph

2 includes the arcs of the second echelon, that is, the connections between satellites
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Zph and the final customers Cph, and the arcs connecting pairs of customers, and the second-
echelon garage to satellites and customers.

Due to the lack of storage capacity at satellites and the time dependency of demand,
interacting vehicles from the first and second echelons must be synchronized at satellites,
at certain points in time, where first and second echelon vehicles may wait for a maximum
time W 2

max. Moreover, it is assumed that each customer c ∈ Cph has a (hard) time window
[ac, bc] (the time interval in which service must start at the node) and a service time σc. The
distribution plan and the corresponding time-sensitive service network are built for a given
schedule length Ψ (e.g., a day or a week). The system, and the distribution plan, follow
a cyclic and repetitive logistics operation over a certain planning horizon (e.g., a month or
a season), during which demand and the temporal properties of the system do not change.
Therefore, all transportation activities take place between time 0 and the given schedule
length Ψ.

Let K denote the set of OD demands that must be transported from suppliers to cus-
tomers. For each commodity k ∈ K, let vol(k) be its volume, O(k) ∈ Qph the associated
supplier node, D(k) ∈ Cph the associated customer node, and αpk the time when commodity
k would become ready for transportation if assigned to be shipped from platform p ∈ Pph.
This parameter takes into consideration the time required for the transportation of each
commodity from the supplier to the given platform. An itinerary for a given commodity
specifies a possible scheduled journey from the moment when it becomes available at the
supplier node, until its delivery at its final destination, through a platform and a satellite,
including the specific time instances associated to each arrival and departure at each site.
More formally, an itinerary r for commodity k ∈ K is a tuple {(vi, µi, νi) : i ∈ r}, where
vi ∈ Vph is the i-th node visited, µi the arrival time to vi, and νi the departure time from
the node.

Two homogeneous fleets of vehicles H = H1 ∪H2, with limited load capacities cap1 and
cap2, are available for the first and second echelon, respectively. Vehicle capacities are fixed.
Vehicles can deliver any demand and are parked in strategically-located garages, Eph

1 for
vehicles operating in the first echelon, and Eph

2 for vehicles operating in the second echelon.
The 2E-MALRPS consists in the selection of platform and satellite facilities, the allo-

cation of demand from suppliers to platforms and of customers to satellites, as well as the
construction of a limited set of routes for the first and second echelons in such a way that:
(i) all the customer demands are satisfied on time; (ii) the load capacity of each vehicle is not
exceeded; (iii) each customer is visited by one vehicle only; (iv) the total demand assigned
to a facility (platforms and satellites) does not exceed its capacity at any time moment; and
(vi) the sum of the fixed selection costs and the variable routing costs is minimized.

Figure 3 illustrates the dynamics of the system from a physical and a temporal point of
view. Figure 3a shows a feasible solution where four OD demands are dispatched to their
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(a) (b)

Figure 3 – Example of a feasible solution for the 2E-MALRPS. (a) spatial layout of the
feasible solution for the 2E-MALRPS. (b) time-space representation of the feasible solution
for the 2E-MALRPS.

destinations by means of platform facility p1 and satellites z1 and z2, the full and dotted
lines illustrating the first- and second-echelon vehicle movements, respectively. Operations
are illustrated from a temporal point of view in Figure 3b, starting with the three OD
demands, each with its own availability time, all being assigned to platform p1 and ready
to be shipped at time t4. The fourth OD demand, available at time t4, is also assigned to
platform p1, but it is ready to be shipped at time t6. A first-echelon vehicle (single full line)
arrives at platform p1, picks-up part of the available demand, and proceeds to visit satellite
z1 at time t6 and satellite z2 at time t8. A different first-echelon vehicle (thick full line), then
picks-up the remaining demand at a later time, t6, and arrives at satellite z2 at time t8. Two
second-echelon vehicles leave their garage to arrive on time at satellites z1 and z2 to enable
the freight transfer from the first-echelon vehicles and, then, deliver on time the freight to
the appropriate customers. Multiple fleet synchronization activities take thus place at the
two satellites. A first synchronization at satellite z1, at time t6 and a second synchronization
takes places at satellite z2, at time t8. Vehicles returns to their respective garages once their
routes are completed.

4.2. Time-space network

Time is a key aspect of the system. Time-dependent OD demands constrain the timing of
operations by means of availability restrictions at platforms, the need to pass through satel-
lites of limited capacity (if any), and customer time windows, creating an interdependency
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in time throughout the whole distribution process. Excess in travelling or waiting times may
thus become prohibitive or result in operational infeasibilities. One must therefore carefully
model time.

There are two major modelling alternatives to represent these timing decisions. The
first type considers an implicit representation by focusing on the time of operations, e.g.,
when vehicles arrive and depart facilities and customers to pick up or drop freight. This
representation leads to a compact, continuous-time representation with a polynomial number
of variables (indexed by the arcs and nodes of the network). The itinerary of each commodity
can be constructed by matching the vehicle flow (visits of vehicles to sites), allocation (what
commodity is allocated to what vehicle), and time variables (the time a site is visited).

The second modelling alternative is the “classic” discretization approach according to a
∆ granularity. The schedule length Ψ is partitioned into ∆ time periods, each physical node
i ∈ Vph being duplicated at each time period. For simplicity of presentation, but without loss
of generality, we assume in the following that all time periods defined by the discretization
granularity ∆ are of equal length. This mechanism leads to a time-space network, where
every node is a pair (i, t) with i representing a physical node in Vph and 0 ≤ t ≤ Ψ a
moment in time. Physical arcs (i, j) in the original system now take the form ((i, ti),(j, tj))
meaning that travel is performed between nodes i and j departing at time ti and arriving
at time tj. In contrast to the continuous-time representation, the discrete representation is
explicit, in the sense that the nodes and arcs in the time-space network encode the timing
decisions explicitly. Synchronization and other timing actions and requirements are thus
expressed as decisions and constraints in the resulting formulation.

The proposed formulation is thus built on the 2E-MALRPS time-space network G =
(V ,A), with the sets V = Q ∪ E ∪ P ∪ Z ∪ C standing for the nodes in time and space for
suppliers Q, vehicle garages E = E1 ∪ E2, platforms P , satellites Z, and customers C.

Let T (∆) be the (ordered) set of time periods given by discretizing the schedule length
Ψ according to the granularity ∆. Let also Ti(∆) ⊆ T (∆) represent the set of time periods
at which node i ∈ Vph is relevant in G because vehicles or commodity flows may access it
at that time. Each system component has its own set of relevant periods: suppliers appear
once only, the time realizations of customers i ∈ Cph must satisfy Ti(∆) ⊆ [ai, bi], and copies
in time are made at all periods for satellites and platforms, as these must be available for
the complete schedule length.

Figure 4 illustrates this hybrid time-space network structure for two OD demands, from
the same supplier to two customers, passing through a platform and a satellite. All periods
are relevant for the platform and satellite, while two nodes only are relevant for each of the
two customers. This mechanism allows to reduce the cardinality of V by considering the
spatial and time positions (i,t) of each node i ∈ V at time periods t ∈ Ti(∆) only. Let
Vi stand for the set of time-space nodes {(i, t) : i ∈ Vph, t ∈ Ti(∆)}, and [ai,bi] be the

63



Figure 4 – Hybrid representation of time.

time interval during which node i ∈ V is relevant in G, i.e., ai = min{t : t ∈ Ti(∆)} and
bi = max{t : t ∈ Ti(∆)}.

Similar to the physical network, the set of arcs A = A1 ∪ A2 stands for connections
between time-space nodes representing the various system components. At the first echelon,
A1, one finds the connections between suppliers and platforms, platforms and satellites, pairs
of satellites, as well as from the first-echelon garage to platforms and from satellites to the
former. The second echelon arcs in A2 stand for the connections from satellites to customers,
between pairs of the latter, as well as from the second-echelon garage to satellites and from
customer to the former. An arc ((i,t),(j,t′)) ∈ A is then defined for arc (i,j) ∈ Aph with
t ∈ Ti(∆) and t′ = t + τij ∈ Tj(∆). To simplify the notation, the travel time of inbound
arcs to customer nodes are considered to embed the service time at customers. Recall that
commodities must be assigned to a single platform and satellite and the flow should not
be split. Consequently, let P0(k) = {(p,t), (j, t′) : p ∈ P , j ∈ Z, t ≥ αpk} be the set of
platform-to-satellite arcs commodity k can be assigned to if passing through platform p to
travel to a reachable satellite.

4.3. The 2E-MALRPS formulation

This section presents a mixed-integer formulation for the 2E-MALRPS that combines
continuous and discrete time modelling strategies to represent time. The formulation consists
of a standalone time-space formulation, determined by constraints ((4.2)-(4.22)), and a series
of continuous-time constraints ((4.23)-(4.29)). In this formulation, waiting times at nodes
vi ∈ V are implicitly represented by the time difference between the departure of a vehicle
and its prior arrival at the node, and enforced by the set of continuous-time constraints.
Although these continuous-time constraints may appear redundant, they serve to preserve
the precision of time-related decisions, compensating for any potential loss of accuracy caused
by coarse discretization granularity.
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Define the following decision variables on G:
yi ∈ {0,1} : 1, if facility i is open, 0 otherwise (location);
xij ∈ {0,1} : 1 if arc (i,j) is selected, 0 otherwise (vehicle routing);
fk

ijh ∈ {0,1} : 1, if commodity k goes through arc (i,j) with vehicle h, 0 otherwise;
γk

ij ∈ {0,1} : 1, if commodity k goes through arc (i,j), 0 otherwise;
µ1

ih ≥ 0 : Arrival time of first-echelon vehicle h at vertex i;
µ2

ik ≥ 0 : Arrival time of commodity k at vertex i;
ν1

ih ≥ 0 : Departure time of first-echelon vehicle h from vertex i;
ν2

ik ≥ 0 : Departure time of commodity k from vertex i .
The continuous-time variables needed to track vehicle schedules over the time-space network
in order to deliver the OD demand k1 are illustrated in Figure 4, which also shows that only
customer-to-customer connections are not handled by continuous time variables. Let M be
a large integer number. The hybrid 2E-MALRPS formulation then becomes:

min
∑

i∈Pph

Fiyi +
∑

i∈Zph

Fiyi +
∑

(i,j)∈A1

ζijxij +
∑

(i,j)∈A2

ζijxij (4.1)

subject to ∑
j∈Vc

∑
i∈((C\Vc)∪Z)

xij = 1 ∀c ∈ Cph (4.2)

∑
j∈Vc

∑
i∈((C\Vc)∪Z)

xij =
∑
j∈Vc

∑
i∈((C\Vc)∪E2)

xji ∀c ∈ Cph (4.3)

∑
i∈((C\Vc)∪Z)

xij ≥
∑
l∈Vc

∑
i∈((C\Vc)∪E2)

xli ∀j ∈ Vc, c ∈ Cph (4.4)

∑
i∈E2

xij ≤
∑
i∈C

xji ∀j ∈ Z (4.5)
∑

j∈Vz

∑
i∈E2

xij =
∑

j∈Vz

∑
i∈C

xji ∀z ∈ Zph (4.6)
∑

i∈((Z\Vz)∪P)
xij ≤ yz ∀j ∈ Vz, z ∈ Zph (4.7)

∑
i∈((Z\Vz)∪P)

xij ≤
∑

i∈((Z\Vz)∪E1)
xji ∀j ∈ Vz, z ∈ Zph (4.8)

∑
i∈E1

xij =
∑
i∈Z

xji ∀j ∈ P (4.9)
∑
i∈Vp

∑
j∈Z

xij ≤ |H1| yp ∀p ∈ Pph (4.10)

∑
h∈H1

∑
i∈P0(k)

fk
ijh = 1 ∀k ∈ K, j ∈ Z (4.11)

∑
h∈H1

∑
i∈Vp

∑
j∈Z

fk
ijh ≤ yp ∀k ∈ K, p ∈ Pph (4.12)
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∑
i∈((C\Vc)∪Z)

∑
j∈Vc

γk
ij −

∑
i∈((C\Vc)∪E2)

∑
j∈Vc

γk
ji = 0

∀c ∈ Cph, k ∈ K, D(k) ̸= c (4.13)∑
i∈((C\Vc)∪Z)

∑
j∈Vc

γk
ij −

∑
i∈((C\Vc)∪E2)

∑
j∈Vc

γk
ji ≤ 1−

∑
i∈((C\Vc)∪E2)

∑
j∈Vc

xji

∀c ∈ Cph, k ∈ K, D(k) ̸= c (4.14)∑
i∈((C\Vc)∪Z)

∑
j∈Vc

γk
ij −

∑
i∈((C\Vc)∪E2)

∑
j∈Vc

γk
ji =

∑
i∈((C\Vc)∪Z)

∑
j∈Vc

xij

∀c ∈ Cph, k ∈ K, D(k) = c (4.15)∑
h∈H1

∑
j∈Vz

∑
i∈((Z\Vz)∪P)

fk
ijh =

∑
h∈H1

∑
j∈Vz

∑
i∈((Z\Vz)∪E1)

fk
jih +

∑
j∈Vz

∑
l∈C

γk
jl

∀z ∈ Zph, k ∈ K (4.16)∑
h∈H1

∑
i∈((Z\Vz)∪P)

fk
ijh ≤

∑
h∈H1

∑
i∈((Z\Vz)∪E1)

fk
jih +

∑
l∈C

γk
jl

∀j ∈ Vz, z ∈ Zph, k ∈ K (4.17)∑
k∈K

vol(k)
∑

i∈((Z\Vz)∪P)
fk

ijh ≤ cap1 ∀j ∈ Vz, z ∈ Zph, h ∈ H1 (4.18)

∑
k∈K

vol(k)
∑
i∈Z

γk
ij ≤ cap2 ∀j ∈ C, (4.19)

∑
k∈K

vol(k)
∑

h∈H1

∑
i∈Vp

∑
j∈Z

fk
ijh ≤ Θp yp ∀p ∈ Pph (4.20)

∑
h∈H1

fk
ijh ≤ xij ∀k ∈ K, (i,j) ∈ A1 (4.21)

γk
ij ≤ xij ∀k ∈ K, (i,j) ∈ A2 (4.22)

ν1
ih ≥ αik

∑
j∈Z

fk
ijh ∀h ∈ H1, k ∈ K, i ∈ P (4.23)

ν2
jk ≥ µ1

jh − (2− γk
jD(k) −

∑
i∈(Z∪P),i ̸=j

fk
ijh)M ∀k ∈ K, h ∈ H1, j ∈ Z (4.24)

ν1
jh ≥ µ2

jk − (2− γk
jD(k) −

∑
i∈(Z∪P),i ̸=j

fk
ijh)M ∀k ∈ K, h ∈ H1, j ∈ Z (4.25)

µ1
ih + τij − µ1

jh ≤ (1− fk
ijh)M ∀k ∈ K, h ∈ H1, (i,j) ∈ A1 (4.26)

ν1
ih + τij − µ1

jh ≤ (1− fk
ijh)M ∀h ∈ H1, k ∈ K, (i,j) ∈ A1 (4.27)

µ2
ik + τij − µ2

jk ≤ (1− γk
ij)M ∀k ∈ K, (i,j) ∈ A2 (4.28)

ν2
ik + τij − µ2

jk ≤ (1− fk
ijh)M ∀k ∈ K, h ∈ H2, (i,j) ∈ A2 (4.29)

ν1
ih − µ1

ih ≤ W 2
max ∀h ∈ H1, i ∈ Z (4.30)

ν2
ik − µ2

ik ≤ W 2
max ∀k ∈ K, i ∈ Z (4.31)

aD(k) ≤ µ2
D(k)k ≤ bD(k) ∀k ∈ K (4.32)
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The objective function (4.1) minimizes the total cost of the system, which includes the
fixed cost of selecting (opening) facilities on both echelons and the variable travel costs
of the vehicles for demand transportation. Constraints (4.2) ensure that each customer
is visited by a second-echelon vehicle exactly once. Constraints (4.3) represent vehicle-
flow conservation at customer locations. Constraints (4.4) ensure that departure times of
second-echelon vehicles from customers occur after the service time at the current customer.
Constraints (4.5) enforce the requirement that for each outbound connection of a second-
echelon vehicle from a satellite to a customer, there must be an inbound connection from a
second-echelon garage to the satellite, including the waiting times at the satellite. Constraints
(4.6) represent conservation constraints on routing variables for each satellite facility in the
second echelon. Constraints (4.7) enable multiple visits to satellites in different time periods
by ensuring that each open satellite is visited at most once for each time period, while
constraints (4.8) ensure that for each outbound connection of a first-echelon vehicle from a
satellite to another satellite or garage, there is an inbound connection from a platform or
a different satellite. Constraints (4.9) and (4.10) enforce the routing conservation of first-
echelon routing variables and restrict the maximum number of outbound connections from
platform facilities in terms of the fleet size, respectively.

Constraints (4.11) and (4.12) ensure that each demand is not split and departs from the
assigned open platform after its availability time, respectively. Constraints (4.13) and (4.14)
impose flow conservation for commodities in nodes different to their destination customer.
Constraints (4.15) guarantee that each commodity flow reaches its destination customer.
Constraints (4.16) and (4.17) enforce flow conservation and spatial and temporal synchro-
nization at time-space satellites, considering waiting times. Constraints (4.18) and (4.19)
ensure that the total flow assigned to each route does not exceed the vehicle capacity for the
first and second echelons, respectively. Similarly, constraints (4.20) impose that the assigned
routes to each platform do not exceed the facility capacity. Constraints (4.21) and (4.22)
establish the relationship between flow and routing variables.

Constraints (4.23) guarantee the feasibility of the schedule with respect to demand avail-
ability. Constraints (4.24) and (4.25) relate the arrival times at satellites of first- and second-
echelon vehicles to ensure fleet synchronization at satellite facilities. Constraints (4.26) and
(4.27) handle the arrival and departure times of first-echelon vehicles, while constraints (4.28)
and (4.29) handle the arrival and departure times of second-echelon vehicles. Constraints
(4.30) and (4.31) ensure that waiting times at satellite facilities respect the maximum per-
mitted waiting time at each echelon. Constraints (4.32) ensure that second-echelon vehicles
arrive within the customer time windows.
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Preprocessing

Create the reduced time-space network G∆

Derive a lower bound z by solving HTF(G∆)

Generate a candidate solution z from HTF(G∆)

if optimality gap ≤ ϵ z∗ = z

Refine G∆

Section 5.2

Section 5.3

Section 5.4

Section 5.5
no

yes

Figure 5 – Dynamic discretization discovery for the 2E-MALRPS

5. Dynamic Discretization Discovery for the 2E-
MALRPS

The temporal dimension of the time-space 2E-MALRPS model provides a detailed and
precise representation of the problem setting (Ford and Fulkerson, 1962). On the other
hand, the pseudo-polynomial size of the integer formulation also makes head-on solution
methods less scalable as the time granularity gets finer. We therefore propose a Dynamic
Discretization Discovery (DDD) solution method for the time-space model to address this
methodological challenge, building on the method introduced by Boland et al. (2017) for
service network design problems. Notice that, demand in the 2E-MALRPS generates com-
pulsory time moments, which must be explicitly included in the time-space network. While
this appears to somehow facilitate the discretization of time, it greatly increases the difficulty
of the problem and precludes a straightforward application of the method proposed in the
service network design literature (Crainic and Hewitt, 2021).

The DDD algorithm we propose is illustrated in Figure 5. It iteratively refines a reduced
time-space network, solving at each iteration the integer program defined by the hybrid
formulation on that sparse network to extract lower and upper bounds for the 2E-MALRPS.
The process is repeated until the problem is solved to optimality, or up to a specified tolerance
ϵ. This tolerance is defined as the bound on the optimality gap percentage, which is utilized
to determine when to stop the algorithm.

This section provides first the notation and foundations of the proposed DDD (Sec-
tion 5.1), followed by the descriptions of the main algorithmic components as shown in
Figure 5. To simplify the notation, we refer to the solution of the hybrid formulation as
HTF(G∆) for a reduced time-space network G∆.
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5.1. Preliminary notation and problem analysis

Without loss of generality, let G∆̄ be the complete 2E-MALRPS time-space network. Here,
T (∆̄) denotes the full discretization of the length of the planning time span (i.e., schedule
length), with T (∆̄) = ⋃

i∈Vph Ti(∆̄i) standing for the set of the temporal time periods required
to capture the relevant time moments Ti(∆̄i) for each i ∈ Vph. Similarly, let ∆̄ and ∆̄i denote
the maximum number of time periods needed to encompass all relevant time moments across
the system and for each i ∈ Vph, respectively. The proposed DDD solution method relaxes
T (∆̄) through a granularity parameter ∆, 1 < ∆ < ∆̄, and decreasing the number of relevant
time periods for each vertex.

Let G∆ = (V∆,A∆), be the reduced time-space network defined by a reduced set of relevant
time instants Ti(∆)∩[ai,bi], for each node i ∈ Vph, where [ai,bi] stands for the original interval
of relevance of the node. Recall (Section 4.2) that, [ai,bi] is the time window of each customer
i ∈ Cph, the complete schedule length [0,Ψ] for satellites and garages i ∈ Zph ∪ Eph, and the
interval between the earliest potential commodity arrival ai = mink∈K{αik} and the schedule
length bi = Ψ for platforms i ∈ Pph.

Inbound arcs to customers no longer embed waiting times in a reduced time-space network
G∆. We rather consider a set of time-space nodes before each time window to represent
early arrivals and waiting times at customers. The reduced time-space network is thus an
aggregated network derived from G, where |G∆| ≤ |G|. Consequently, the length τij of arc
(i,j) ∈ Aph is also “aggregated” in terms of ∆, ensuring that there is a time-space arc
((i,t), (j,t′)) ∈ A∆ for each arc (i,j) ∈ Aph, with t′ ≤ t + τij. The aggregation does not
change the arc travel costs, but it does impact travel times. Arc ((i,t),(j,t′)) ∈ A∆ is then
considered to be too short when t′ < t + τij, as it might model negative (t′ < t) or zero
(t′ = t) travel times. These considerations are summarized in the following four properties:

— Property 1. A set of time-space nodes (i,t) ∈ V∆ exists for each node i ∈ Vph and
set of relevant time instants Ti(∆) ∩ [ai,bi].

— Property 2. For each node (i,t) ∈ V∆ of a reduced time-space network and for each
arc (i,j) ∈ Aph, there is a time-space arc ((i,t),(j,t′)) ∈ A∆ with t′ ≤ t + τij. If arc
((i,t),(j,t′)) ∈ A∆, there is no time-space node (j,t′′) ∈ V∆ with t′ < t′′ ≤ t+ τij.

— Property 3. A waiting-time arc exists out of each time representation of a satellite
(i,t) ∈ Z∆ towards a later node (i,t′) ∈ Z∆ with t′ ≤ t+W 2

max.
— Property 4. For each customer i ∈ Cph, at least one time-space node (i,t) with t < ai

exists in C∆ to handle early inbound connections exclusively.
Turning to the commodity flows through time and space, define itinerary r for commod-

ity k ∈ K from its origin O(k) to its destination D(k) through the network G as a path
r = (vi, ti)l

i=1 connecting the node of the initial vehicle arrival and the departure of the
commodity from a platform (i.e., v1 ∈ Pph), to the node of the arrival and departure time
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at its destination (i.e., vl = D(k)), including the times of arrival and departure at each
intermediary node in G. Let Rk

G be the set of feasible itineraries for commodity k ∈ K, and
RG = ∪k R

k
G.

The transfer between the first and second echelons of itinerary r ∈ Rk occurs at a satellite
j ∈ Zph, where vj ∈ Z, 1 < j < l − 1. The transfer timing is then framed by the four nodes
vj+w ∈ Zph with w = {0,1,2,3}, i.e., tj, tj+1 and tj+2, tj+3 represent the arrival time to and
departure time from the transfer satellite at each echelon, respectively. Hence, an itinerary
r = (vi, ti)l

i=1 in G is made up of the sequence of arcs ((vi, ti), (vi+1, ti+1)) ∈ A for every
i = 1, . . . , l, except for i = j + 1, as the arc ((vj+1, tj+1), (vj+2, tj+2)) would connect the
departure and arrival times of first and second echelon routes, respectively.

The proposed DDD solution method relies on addressing the formulation (4.1) - (4.32)
defined on a sequence of reduced time-space networks G∆ for various granularity levels 1 <
∆ < ∆̄. The following lemmas ensure that 1) the 2E-MALRPS formulated on a reduced
time-space network is a relaxation for the original problem and 2) the solutions obtained
for the hybrid formulation on a reduced time-space network represent lower bounds for the
2E-MALRPS, regardless of the granularity of the discretization. The proofs of the lemmas
may be found in the supplementary material Appendix A.1.

Lemma 1. Let G∆ be a reduced time-space network that satisfies properties 1, 2, 3,
and 4. Then, for each commodity k ∈ K and itinerary r = (vi, ti)l

i=1 ∈ Rk
G, there exists an

itinerary r′ = (vi, t
′
i)l

i=1 ∈ Rk
G∆

such that t′i ≤ ti for every i = 1 . . . l.
Lemma 2. If a reduced time-space network G∆ satisfies properties 1, 2, 3, and 4, then

the optimal solution of the 2E-MALRPS formulated on the reduced time-space network G∆

is a lower bound for the solution of the 2E-MALRPS on the complete time-space network G.
Lemma 3. The proposed DDD algorithm ends with an optimal solution for the 2E-

MALRPS.
Note that, the set of properties address fundamental aspects of the time-space repre-

sentation of the problem. Therefore, the lemmas and proofs hold not only for the hybrid
formulation (constraints (4.2) -(4.32)), but also for a “classic” time-space formulation that
can be defined by isolating constraints (4.2) -(4.21).

5.2. Initial reduced network

The first step of the DDD algorithm tries to prune arcs and tighten the possible relevance-
period sets, and then creates an initial reduced network G∆ satisfying Properties 1-4.

The time dependency of demand may imply that particular couples of locations and time
instants might not be reachable when going from the origin to the destination of a demand.
This may be used to tighten both the availability time at platforms and the customer time
window of the particular demand and, thus, the set of relevant periods. The preprocessing
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analysis is performed on the physical network (Gph), through a breadth-first search strategy.
The procedure iteratively explores the set of commodities, enumerating the possible platform-
satellite combinations that could link the corresponding origin and destination at all time
periods when the commodity could be available at the platform. The resulting set of feasible
partial paths (including garage connections at each echelon) for each commodity defines the
possible unreachable time periods for platforms and customers, which can then be excluded
from the network.

The initial reduced time-space network G∆ is then generated by duplicating each node
and arc in Gph at each relevant time period, verifying that Properties 1-4 are satisfied.

5.3. A 2E-MALRPS lower bound on G∆

The definition of good quality lower bounds is fundamental for the DDD, as it guides
the search through the solution space. The specifics of 2E-MALRPS makes this process
challenging.

As previously indicated, lower bounds are obtained by solving the integer program defined
by the hybrid formulation HTF(G∆) (Section 4.3) on the reduced time-space network G∆.
This solution may not be feasible for the original 2E-MALRPS, however. Indeed, even
though it is feasible in terms of capacity constraints and location/allocation decisions, vehicle
schedules might be infeasible when evaluated with the original travel times, due to the
“aggregation” of the arc travel times. Compounding the challenge, the routing aspect of the
problem involves a high number of interconnection between nodes of the time-space network,
as each arc in the physical network may be represented by multiple time-space arcs, the
multiplicity depending on the granularity of the time discretization. This tends to increase
the size of the reduced time-space networks one has to address. Moreover, together with the
presence of short arcs, it also results in numerous candidate solutions on the reduced time-
space network to share the same solution structure, with similar objective function values and
location/routing decisions while differing in vehicle schedules. Hence, although the reduced
network is refined multiple times, one might still derive the same solution structure and costs
with different sets of time-space arcs. This solution degeneracy increases the complexity of
the optimization problem addressed at each iteration. The issue is particularly serious for the
second tier of the system, first-echelon route degeneracy being avoided due to the presence
of additional variables and constraints to keep track of time.

We therefore propose a procedure to handle degenerate solutions (second-echelon routes)
within the reduced time-space networks, in order to mitigate the computational impact
arising from the growth of the continuous refinement of the network (Algorithm 1). The
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fundamental idea when observing a degenerate solution is to dive towards a level of gran-
ularity where the degeneracy is no longer present, without solving the HTF(G∆) for each
intermediate value of ∆.

Algorithm 1: Degeneracy(G∆, Sol)
input: G∆, Sol = (z,xG∆ ,fG∆ ,yG∆)

1 if Sol ̸= ∅ then
2 Sollocal ← HTF (G∆, Sol) ;
3 if z(Sollocal) ̸= z(Sol) then
4 Sol← HTF (G∆) ;
5 else
6 Sol← Sollocal ;
7 end
8 else
9 Sol← HTF (G∆) ;

10 end

Let us define a solution structure as the location, allocation, and routing decisions (but
not the schedules) of the solution. A solution structure is then considered degenerate when
two consecutive iterations of the DDD may identify it, even though the reduced network has
been refined at least once. The procedure searches for degeneracy at each iteration of the
DDD. It first aims to identify whether the structure of the current solution is degenerate
by comparing it to that of the previous iteration (granularity level). If the answer is yes,
the degeneracy mitigation procedure is activated by fixing the location and allocation deci-
sions (line 2 and line 6) for the following iterations (the DDD continues normally otherwise).
Thus, solving the HTF(G∆) at the next granularity refinement level with fixed nodes and
arcs focuses on routes and schedules only, which is significantly less computationally heavy
compared to addressing the complete formulation. The solution structures are compared
again and either degeneracy is still present, i.e., the same routes are found with the refined
granularity, or is no longer observed. In the latter case, the fixing of location and allocations
decisions is removed and the DDD continues normally. The diving with fixed location and al-
location decisions continues otherwise until either degeneracy is no longer observed, in which
case the current solution structure is feasible for the 2E-MALRPS, or the HTF(G∆) returns
an “infeasible solution” for the current level of granularity. The latter message indicates that
the current structure cannot generate a feasible solution for the time-space network at the
current or more refined level of granularity. Hence, the procedure has identified the granular-
ity level where, with unfrozen location and allocation decisions, a new solution structure is
found, without solving the HTF(G∆) on the full networks for all the intermediate granularity
levels.
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5.4. A 2E-MALRPS upper bound

To determine a feasible upper bound for the 2E-MALRPS, the optimal solution obtained
on the reduced time-space network G∆ must remain feasible when evaluated with the original
travel times for all arcs. As indicated above, the variables tracking the vehicle schedules
ensure the feasibility of the temporal decisions of the first-echelon routes, despite the presence
of short arcs. Hence, a feasibility-analysis procedure is employed to evaluate the routes
of the second echelon with the original travel times and verify the feasibility of customer
time windows. This procedure utilizes the vehicle schedules defined by the optimal solution
obtained from the reduced time-space network G∆ as the starting point for second-echelon
routes. The procedure then proceeds by traversing the sequence of nodes for each second-
echelon route while evaluating each connection using the original travel times. This iterative
evaluation serves to identify whether all routes are feasible for the 2E-MALRPS or if any
of the customer time windows are unreachable and, thus, infeasible for the 2E-MALRPS. It
is important to note that the evaluation of each route acts as a means to map the routes
generated by the reduced time-space network into the complete time-space formulation,
thereby producing a feasible solution for the 2E-MALRPS when the schedules of both fleets
are combined. When the feasibility of the solution obtained on G∆ is verified, then 1) the
solution is feasible for the 2E-MALRPS and its value is an upper bound on the optimal-
solution value of the original problem, and 2) if the solution value of HTF(G∆) is better
(lower) than the current best upper bound (if any), then the value of the best upper bound
is updated and the procedure terminates.

When the HTF(G∆) solution is found to be infeasible for the 2E-MALRPS, the algorithm
stops and forwards the solution structure to the refinement step of the DDD. Notice that, in
this case, the DDD procedure will iteratively refine the reduced network until the solution is
proven infeasible or a DDD stopping criteria is reached. Notice also that, the upper-bounding
procedure we propose provides the means to the DDD algorithm to identify potentially good-
quality upper bounds even when the reduced time-space network is not well-refined.

5.5. Refinement

The final step of the proposed DDD solution method refines the reduced time-space
network. Refinement is performed whenever the HTF(G∆) solution, obtained on the reduced
time-space network G∆, is found to have short arcs which violate one or more 2E-MALRPS
temporal constraints when evaluated with the original travel times. Recall, Lemma 2 and
Section 5.4, that a HTF(G∆) solution is a lower bound for the 2E-MALRPS and, thus,
insights on how to refine the reduced time-space network G∆ may be derived from the short
arcs found in that solution. Moreover, given that the hybrid time representation provides the
means to avoid refining the arcs involving platforms and satellite facilities, one may focus
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Algorithm 2: Refinement(G∆, Sol)
input: G∆, Sol = (z∗,(V∗

∆,A∗
∆))

1 for ((i,t),(j,t′)) ∈ A∗
∆ do

2 if t′ ≤ t+ τij and i,j ∈ Cph ∪ Eph then
3 if isFeasible(G∆, (i, t′ − τij)) then
4 AddNode(G∆, (i, t′ − τij));
5 Restore(G∆, (i, t′ − τij));
6 end
7 if isFeasible(G∆, (j, t+ τij)) then
8 AddNode(G∆, (j, t+ τij));
9 Restore(G∆, (j, t+ τij));

10 end
11 end
12 end

the refinement on arcs connecting customers to other customers or garages. Refining the
reduced network in terms of these short arcs, extracted from the lower bound obtained at
each iteration, strengthens the reduced time-space network and improves the precision of the
2E-MALRPS lower bounds in future iterations.

The proposed refinement procedure extends such short arcs in G∆, while ensuring that
Properties 1-4 are valid at the nodes involved in the extension (Algorithm 2). Recall that,
short arcs ((i,t),(j,t′)) within the integer solution of HTF(G∆) display short travel times
t′ < t + τij relative to the pair of nodes ((i,t),(j,t + τij)) in the original problem. The
refinement procedure aims to extend each short arc from both of its extreme points (line 3 and
line 7), thereby adding two new time-space customer nodes and arcs to the reduced network
(Algorithm 3). (Notice that, due to the presence of solution degeneracy, refining a short arc
in terms of one of its extreme points does not exclude its counterpart to potentially appear in
the following iterations of the DDD.) Subsequently, Algorithm 3 is employed to incorporate
each time-space node and its corresponding valid time-space arcs into the reduced network.
The original travel time of each arc is utilized in this process, and the waiting times are
updated accordingly (Algorithm 4), along with the arc connections of the reduced network
(Algorithm 5) for each newly added node. To uphold Property 4, Algorithm 4 ensures that
any newly introduced time-space customer node is added within the customer’s time window
and can connect with other time-space customers within and prior to (but never after) their
respective time windows. Finally, Algorithm 5 guarantees the preservation of Property 2
once a new time-space node and its corresponding time-space arcs are added to the reduced
time-space network.
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Algorithm 3: AddNode((i, t′))
input: G∆, (i,t′) with tb < t′ < tb+1

1 if (i,t′) ̸∈ G∆ then
2 G∆ ← G∆ ∪ (i,t′);
3 for ((i,tb),(j,t)) ∈ A∆ do
4 AddArc(((i,t′),(j,t)));
5 end
6 UpdateWaitingArcs((i,t′));
7 end

Algorithm 4: UpdateWaitingArcs((i, t′))
input: G∆, (i,t′) with t′ < ai

1 if i ∈ Cph then
2 for (i,t) ∈ Ti(∆) do
3 if t ≥ ai then
4 AddArc(((i,t′),(i,t)));
5 end
6 end
7 end

Algorithm 5: Restore(G∆, (i,t′))
input: G∆, (i,t′) with tb < t′ < tb+1

1 if (i,t′) ̸∈ G∆ then
2 for ((i,tb),(j,t)) ∈ A∆ do
3 t”← arg max{d ∈ Tj(∆) | d ≤ t′ + τij};
4 if t” ̸= t then
5 Delete(((i,t′),(j,t)));
6 AddArc(((i,t′),(j,t”)));
7 end
8 end
9 for ((j,t),(i,tb)) ∈ A∆ with t+ τij ≥ t′ do

10 Delete(((j,t),(i,tb)));
11 AddArc(((j,t),(i,t′)));
12 end
13 end

6. Computational results
This section presents and discusses the results of experiments conducted to asses the

performance of the proposed mathematical formulation and solution method for the 2E-
MALRPS. We first introduce the instances used in the computational study in Section 6.1.
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We then present the performance of the proposed hybrid formulation using CPLEX in Sec-
tion 6.2, followed by the performance analysis of our DDD algorithm in Section 6.3. The
results of a series of experiments illustrating the sensitivity analysis of the DDD and the
effects of problem instance characteristics are then analysed in Section 6.4.

The experiments were conducted on a single machine with Intel(R) Core(TM) i7-7800X
with 128 GB of RAM running Linux. The mathematical formulation and the proposed
solution method are implemented in C++ using IBM ILOG CPLEX concert technology
20.1. The formulation is solved to optimality or to an optimality gap tolerance of less than
or equal to 1% as the stopping criterion for instances with 50 OD demands.

The tables of this section display average results for the instance sets (detailed results in
the supplementary material Appendix A.2) used in the associated experiments, indicating the
numbers of potential platforms (|Pph|), satellites (|Zph|), OD demands (OD), and instances
in the set (NI). For the formulations considered in each experiment, the tables provide at
least the number of instances for which feasible (FUB) and optimal (OUB) solutions were
found within the given time limit, the run time in seconds (CPUsec), and the optimality
gap (OG). The lower bound values provided by the proposed solution method correspond
to, either the optimal solution of the hybrid model on the reduced network or, when the
optimally gap tolerance is not reached within the given time limit, the best linear-relaxation
value obtained throughout the optimization process.

6.1. Instances

No instances are available in the literature involving the integrated treatment of the
attributes considered in the 2E-MALRPS, time-dependent origin-destination demands, fleet
synchronization, and vehicle garages, in particular We thus define 5 new sets of instances,
extending those with 15, 30, and 50 OD-demands (ODs in the following) introduced by
Dellaert et al. (2019) for the 2E-VRPTW, while instances with 5 and 10 ODs are created by
selecting customers with the minimum distance to satellites from the 100-customer instances
of Dellaert et al. (2019).

Each set of instances consists of 60 instances, which are divided into four categories (CA,
CB, CC, and CD) to examine the behaviour of the proposed DDD solution method under
different variations of time and capacity. These categories introduce diverse distinctions
by varying the time window width and demand values, thereby capturing the influence of
the temporal component on the system and solution method. The instances represent a
circular urban area, segmented into three concentric sections for platforms, satellites, and
customers. OD demands are generated by randomly placing supplier points within the
platform section (see Figure 2), assigning a unique customer (OD) and demand to each
supply point. The availability time for each OD at each platform is determined by rounding
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up the Euclidean distance between the supply point and the platform. These availability
times are incorporated into the temporal components of the system as a global temporal
offset ρ based on the latest availability time. This offset ρ is added to each customer’s time
window to account for the additional time when the demand is available at the platforms,
resulting in the time window range [ai + ρ,bi + ρ]. The maximum waiting time at satellites
is set to 4, while the service time at customers is set to 2. Load capacities for vehicles
given in Dellaert et al. (2019) are considered to be fixed, where first-level vehicles have a
capacity of cap1 = 200 and second-echeclon vehicles have a capacity of cap2 = 50. Travel
costs are computed as the ceiling of Euclidean distances. Schedule lengths are set to Ψ =
100 for small-sized instances with 5 and 10 ODs, and Ψ = 200 for medium- and large-
sized instances with 15 ODs or more. The new 2E-MALRPS instances are available at
https://github.com/davescovar/2emalrpslib

6.2. Hybrid formulation performance

We first focus on the effectiveness of the hybrid formulation, as well as on the impact
of the granularity of the time discretization on its behaviour in terms of solution quality
and computational efficiency. The sets of small- and medium-sized instances (5, 10, and
15 ODs) are used for benchmarking and the formulations are solved directly using CPLEX.
The hybrid formulation is compared to a distinct standalone time-space formulation defined
by isolating constraints (4.2) - (4.22) and the objective function (4.1). The hybrid and
standalone time-space formulations are solved for a complete time-space network with ∆̄
time periods, as well as for different granularity values.

Tables 1 and 2 display the comparative performance results on the complete time-space
network (∆ = ∆̄) and the reduced time-space networks with granularity values ∆ = 50 and
∆ = 25. The run-time limit equals 2.5 hours. In addition to the information described earlier
on, each table provides the average root gap (RG) computed as the percentage difference
between the initial lower bound, obtained by the LP relaxation of the respective model at the
root of the branch-and-bound tree, and the best integer solution obtained for the instance.
Two additional performance measures present the average cost increment percentage (Dif
UB) and CPU time reduction percentage (Dif CPUsec) obtained by each formulation using
the reduced time-space network compared with the results of using the complete time-space
network. (Recall that, we obtain reduced time-space networks with coarse discretizations
by aggregating nodes and arcs of the complete time-space network. While this significantly
reduces computation times, it also very often yields solutions which are infeasible with respect
to the initial instance with a finer discretization. We did not consider these results when
computing the last two performance measures.)
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Instances Hybrid
∆̄ ∆ = 50 ∆ = 25

|Pph| |Zph| OD NI FUB OUB CPUsec RG(%) OG(%) Dif UB Dif CPUsec Dif UB Dif CPUsec
2 3 5 20 20 20 4561.33 16.38 0.00 0.71 49.70 1.54 83.94
3 5 5 20 20 20 3759.97 18.34 0.00 0.31 39.91 0.84 72.72
6 4 5 20 20 20 3118.99 21.99 0.00 1.38 40.05 3.19 75.45
2 3 10 20 20 15 4356.59 16.88 4.14 2.24 67.19 2.71 92.60
3 5 10 20 20 15 8586.08 17.86 9.13 2.79 64.20 3.28 87.36
6 4 10 20 20 15 8960.59 18.84 9.61 1.44 66.34 1.72 86.11
2 3 15 20 11 0 9000.00 36.43 29.30 10.41 4.31 11.78 36.83
3 5 15 20 0 0 9000.00 31.01 24.13 N.A 0.00 N.A 31.89
6 4 15 20 0 0 9000.00 37.85 31.19 N.A 0.00 N.A 33.19

Table 1 – Performance of the hybrid time-space formulation

Instances Standalone
∆̄ ∆ = 50 ∆ = 25

|Pph| |Zph| OD NI FUB OUB CPUsec RG(%) OG(%) Dif UB Dif CPUsec Dif UB Dif CPUsec
2 3 5 20 20 20 1521.48 19.79 0.00 1.17 25.81 1.95 46.96
3 5 5 20 20 20 1290.38 21.55 0.00 0.86 26.36 1.22 45.24
6 4 5 20 20 20 2306.77 30.51 0.00 2.73 25.90 3.48 54.74
2 3 10 20 20 14 3208.01 21.57 3.19 2.54 71.70 3.07 81.01
3 5 10 20 20 14 4897.51 21.25 4.32 3.10 75.26 3.78 83.08
6 4 10 20 20 15 5255.78 21.94 5.03 1.64 74.93 2.14 84.85
2 3 15 20 17 1 9000.00 37.50 27.76 3.80 41.00 5.21 76.97
3 5 15 20 17 0 8961.78 31.59 23.06 3.71 39.48 4.66 79.89
6 4 15 20 16 0 9000.00 38.94 31.15 3.92 37.83 5.05 73.88

Table 2 – Performance of the standalone time-space formulation

The results reported in Tables 1 and 2 show the expected performance similarity with
respect to the upper bounds, but remarkable differences in the lower-bound and run-time
values. When compared to the standalone formulation, the linear relaxation of the hybrid
model provides much better lower bounds (average improvement of some 14%), but is usually
slower at proving optimality. We observe that the overall lower bound improvements by the
hybrid formulation result from the combination of the vehicle index in the commodity-flow
variables and the redundant continuous-time constraints to keep track of time, which help
reduce noise in the mathematical model.

The experiments on 15-OD instances show a significant reduction in the number of feasible
and optimal solutions for both formulations. Multiple factors contribute to this behaviour.
The use of time-space representation of the system clearly influences the quality of the
solutions and makes it more challenging to tackle problems with larger numbers of ODs
or longer schedule lengths with either of the two formulations. The standalone time-space
model, despite providing good quality LP-relaxations, suffers from scalability issues provoked
by the size of the time-space representation of the network, which, in turn, leads to larger
and, thus, harder to solve, integer programs. The hybrid formulation shares a similar issue in
terms of scalability due to the nature of its time-space structure, and the greater model size
resulting from the inclusion of continuous-time constraints. The latter significantly increases
the hybrid formulation size, which, when evaluated on the complete time-space network,
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results in longer exploration times of the solution space and, as a consequence, fewer optimal
solutions being discovered for instances with 15 ODs. Nonetheless, the formulation usually
gains from the redundancy that these continuous temporal constraints add, improving the
root gap for all instance sets.

The discretization granularity plays a key role in the trade off between accuracy and
performance of time-space models. On the one hand, as seen in the results of Tables 1 and 2,
a finely discretized time-space network provides an accurate representation of the system,
but at the price of a large integer problem. On the other hand, the sizes of the time-space
representation and resulting integer problem, as well as the solution time, can be reduced by
coarsening the discretization (see also Section 5), at the price of a decrease in solution quality
or even feasibility. Thus, one observes average computing-time reductions of 77% and 50%
for the hybrid and the standalone time-space formulation, respectively, with corresponding
solution-quality losses of 1.3% and 1.9% in cost increments.

The results show the superiority of the hybrid model, even in the case a straightforward
solution approach using a commercial solver. It consistently yields less-degraded solutions
compared to the classical time-space formulation. Furthermore, it exhibits a robust be-
haviour when applied with coarser granularity values. This results from the redundancy
induced through the continuous-time constraints, which, when paired with coarser granular-
ity values, reduce model size while retaining accuracy on a significant number of arcs in the
system. This, in turn, it improves the general performance of the hybrid formulation.

6.3. Performance of the dynamic discretization discovery solution
method

We investigate the performance of the DDD solution method introduced in Section 5 for
the hybrid 2E-MALRPS model, and compare it to that of the DDD adapted to address the
standalone time-space formulation defined previously, by allowing the refinement and the
degeneracy procedures to be executed on the complete time-space network (as opposed to
being limited to the customer section, as designed when the hybrid formulation is used).

As discussed in Section 5, the use of continuous-time constraints helps the model to retain
its precision under very coarse discretizations. Therefore, computational tests are performed
using the coarsest discretization granularity (∆ = 2) possible, to decrease the size of the
underlying network and enable a further reduction in the time required to solve the integer
programme. The stopping criteria are a maximum run time of 2.5 hours for small (5 and
10 ODs) and medium-sized (15 ODs) instances, 5 hours for 30-OD instances, and 8 hours
for 50-OD instances and an optimality gap of less or equal to 1% for instances with 50 OD
demands.
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Instances H-DDD C-DDD
|Pph| |Zph| OD NI FUB OUB OG(%) CPUsec NI FUB OUB OG(%) CPUsec

2 3 5 20 20 20 0.00 1.95 20 20 20 0.00 947.99
3 5 5 20 20 20 0.00 1.64 20 20 20 0.00 1090.95
6 4 5 20 20 20 0.00 1.58 20 20 20 0.00 917.45
2 3 10 20 20 20 0.00 24.94 20 20 20 0.00 3502.23
3 5 10 20 20 20 0.00 176.99 20 20 20 0.00 3568.11
6 4 10 20 20 20 0.00 112.46 20 20 20 0.00 3948.30
2 3 15 20 20 20 0.00 238.17 20 20 4 17.86 15741.92
3 5 15 20 20 20 0.00 374.10 20 20 3 17.91 16296.16
6 4 15 20 20 20 0.00 545.73 20 20 0 27.43 18000.00
2 3 30 20 20 12 4.03 14506.63 20 20 0 36.45 18000.00
3 5 30 20 20 7 4.64 15381.70 20 20 1 33.23 17430.12
6 4 30 20 20 7 4.07 16156.92 20 20 0 39.07 18000.00
2 3 50 20 20 0 15.06 28800.00 20 20 0 47.57 28800.00
2 3 50 20 20 0 24.90 28800.00 20 0 0 N.A 28800.00
2 3 50 20 20 0 14.41 28800.00 20 0 0 N.A 28800.00

Table 3 – Performance of DDD solution method for 5, 10, 15, 30, and 50 OD demands

Table 3 summarizes the results of the experiments for the proposed DDD algorithm
using the hybrid model (H-DDD) and the DDD adapted for the standalone formulation
(C-DDD). These results show that the DDD algorithm clearly outperforms the commercial
solver (results in Section 6.2).

The H-DDD also presents a considerable general improvement in the solution quality
and run times compared to the C-DDD. H-DDD identifies the optimal solution for 60 out of
60 instances with 15 ODs, compared with only 7 for the C-DDD. Furthermore, H-DDD is
increasingly more robust as the problem size increases, providing feasible solutions for 120
out of 120 instances, as compared to only 80 for the C-DDD for the instances with 30 and
50 ODs. In terms of computational time, the H-DDD is on average 77% faster than the
C-DDD in identifying optimal solutions. This notable performance gain is attributed to the
use of continuous-time constraints along with the time-space representation of the problem.
Despite the large size of the hybrid formulation (compared with the standalone time-space
model), the additional redundancy provided by these continuous-time constraints allows the
model to prevent the degeneracy of the first-echelon and part of the second-echelon arcs and
reduce the growth of the underlying network. This in turn accelerates the convergence of
the H-DDD to optimal solutions.

Degeneracy is still present on the customer side of the problem, however, as the method
relies on the time-space representation to derive a feasible integer solution, which reduces
the lower-bound increase rate at each iteration. The proposed degeneracy procedure be-
haves as expected and considerably lowers the impact of degeneracy on the performance of
the proposed DDD, especially for instances with broad time windows (which thus provide
more scheduling-decision alternatives). Our analysis tends to show, however, that the de-
generacy procedure primarily contributes to attaining good upper bounds faster, rather than
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|Pph| |Zph| OD NI FUB OUB OG(%) CPUsec
2 3 5 20 20 20 0.00 0.77
3 5 5 20 20 20 0.00 2.71
6 4 5 20 20 20 0.00 6.52
2 3 10 20 20 20 0.00 30.13
3 5 10 20 20 20 0.00 260.04
6 4 10 20 20 20 0.00 573.43
2 3 15 20 20 20 0.00 102.23
3 5 15 20 20 20 0.00 993.43
6 4 15 20 20 20 0.00 1729.48

Table 4 – H-DDD performance on instances without availability times

|Pph| |Zph| OD NI FUB OUB OG(%) CPUsec
2 3 5 20 20 20 0.00 0.74
3 5 5 20 20 20 0.00 3.72
6 4 5 20 20 20 0.00 9.89
2 3 10 20 20 20 0.00 1015.592
3 5 10 20 20 19 0.17 1770.973
6 4 10 20 20 15 1.90 4075.948
2 3 15 20 20 20 0.00 124.01
3 5 15 20 20 17 0.50 1557.42
6 4 15 20 20 18 0.68 3931.11

Table 5 – H-DDD performance on instances without availability times and synchronization

improving the lower bound at a fast rate (see the supplementary material Appendix A.3).
Consequently, while the proposed DDD solution method yields provably high-quality upper
bounds for larger instances, the slow incremental rate of the lower bounds makes assessing
the true quality of the solution more difficult, in particular as the number of ODs increase.
This is illustrated on instances with 50 ODs, where the optimality of most solutions obtained
by the H-DDD remains unproven.

6.4. Sensitivity analysis

We performed a sensitivity analysis of two main time-related components of the 2E-
MALRPS, the availability times of demands and the synchronization at satellites, with re-
spect to the behaviour of the proposed H-DDD solution method. These two characteristics
directly determine the degree of tightness of vehicle operations on both echelons and, thus,
the performance of the system in servicing the end customers. Our goal is to study the
impact of these interacting attributes and gain insights into the system behaviour in less
time-sensitive environments. The study was performed on a subset of instances with 5, 10,
and 15 ODs that the H-DDD solves to optimality (reducing the noise due to optimality
gaps). Tables 4 and 5 summarize the results of the experiments performed with H-DDD
using the coarsest discretization granularity (∆ = 2) possible.
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The figures in Table 4 show that the H-DDD algorithm is able to provide good quality so-
lutions, even when the demand availability time is not binding or is not important/considered
in the problem setting. The H-DDD achieves optimality for all instances considered with
or without demand availability times. In terms of computational efficiency, the solution
method presents a better performance when availability times are present, finding the opti-
mal solution some 60% faster than when these temporal elements are not considered. The
lower performance in this latter case follows from the absence of precise time moments (due
the larger number of availability options) which results in larger solution spaces and more
complex integer problems at each iteration of the H-DDD. This impacts the quality of lower
bounds and increases the runtime needed to achieve optimality (see Section 6.3). It is worth
mentioning that the multi-commodity aspect limits the performance improvement when de-
mand availability time is considered. In single commodity cases, prioritizing the earliest
availability times for each platform allows for greater flexibility in synchronizing satellite
operations and customer arrivals. In the multi-commodity case with multiple availability
times for different OD demands, however, flexibility in other temporal aspects of the system
is limited (see the supplementary material Appendix A.4).

Note that, tight availability times at the origin of demand and (narrow) time windows
at destination imposes a certain de facto level of synchronization, in particular for small
instances. Hence, to better study the impact of synchronization requirements on the H-
DDD performance, we disabled both synchronization and availability times. Table 5 sums
up the results of this analysis.

The results indicate that omitting also synchronization increases significantly the com-
putation times, not only with respect to the full problem setting (by some 70% ), but also
compared to when availability times are disabled only. This follows from the fact that the
lack of significant temporal constraints delimiting the area of relevance of satellite facilities
yields a large number of second-echelon route alternatives and, thus, the generation of more
degenerate solutions. The even larger performance degradation for the 10-OD instances
comes from the additional impact of large time windows on the behaviour just explained.

In terms of cost, solutions on instances with disabled availability times with/without
disabled synchronization are cheaper than solutions on instances with all temporal aspects
enabled, with an average cost reduction of some 4% and 12%, respectively. This reduction
in operational costs can be attributed to a series of low-cost routes that can only be used at
certain times of the schedule length, but are unavailable when time limits are tight. Moreover,
disabling the availability times opens up a lot more possibilities for demand consolidation at
satellite facilities. The system fixed costs related to facility usage are reduced as a result of
the higher level of consolidation, which results in a smaller number of facilities selected. This
is even more significant for instances with late availability times and early due times (e.g.,
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the instance types CA and CB), where a larger number of adjacent platforms and satellites
must be opened and connected to satisfy demand on time.

7. Conclusions and Perspectives
This paper introduces the multi-attribute two-echelon location-routing problem with syn-

chronization constraints, 2E-MALRPS, and presents a mixed-integer programming formu-
lation on a hybrid time-space network combining continuous and discrete time representa-
tions We also present an exact solution method that iteratively refines a reduced time-space
network, solving the 2E-MALRPS formulation defined on the reduced network to extract
bounds and temporal granularity refinements, in order to guide the method towards to op-
timal solution of the original problem. The paper generalizes the dynamic discretization
discovery method to complex problem settings involving several levels of location, routing,
and synchronization decisions.

The computational study demonstrates the effectiveness of the mathematical formula-
tion and the DDD solution method. Comparative analyses reveal that the proposed hybrid
formulation outperforms a classic time-space formulation (which only considers discrete time
modelling) in all performance measures. This superiority is observed when utilizing a com-
mercial solver directly as well as when applying the DDD solution method. The results high-
light the effectiveness of the proposed DDD in handling large instances, achieved through
the degeneracy mitigation procedure and the integration of discrete and continuous-time
representations to maintain the accuracy of time-related decisions.

To conclude, it is observed that neglecting availability times and synchronization require-
ments in time-driven applications can result in an inaccurate depiction of the distribution
system. Sensitivity to time is evident, as lower distribution costs do not always guarantee
feasible operations due to the inclusion of routes that may be infeasible when availability
times or synchronization are not taken into account. The hybrid 2E-MALRPS formulation
and DDD solution method offer high-quality solutions for decision-makers and improve per-
formance for time-critical applications. Future research can focus on heuristic methods or
specialized modelling approaches to enhance the convergence of the DDD by improving up-
per and/or lower bounds in each iteration, as well as investigating the impact of variations
in the properties defining the reduced network.
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Résumé. Cette étude présente le problème stochastique de localisation-routage à deux échelons avec des
demandes multicommodité stochastiques et corrélées. Nous proposons une formulation de programmation
stochastique en deux étapes, les décisions de conception des installations du deuxième échelon définissant
la première étape, tandis que les décisions de recours, prises lors de la deuxième étape, déterminent la
manière dont les demandes observées sont distribuées. L’objectif global est d’optimiser le coût des déci-
sions de conception de la première étape plus le coût de distribution total prévu dans la deuxième étape.
Pour résoudre cette formulation, nous proposons une métaheuristique de couverture progressive avec une
série d’améliorations algorithmiques pour accélérer l’exploration de l’espace de solution. Ces améliorations
comprennent 1) des structures de population pour obtenir des solutions alternatives et diverses pour les
sous-problèmes du scénario qui doivent être résolus tout au long du processus de recherche ; 2) des stratégies
alternatives pour définir les solutions de référence qui sont utilisées pour guider et accélérer la recherche
globale ; et 3) une procédure de réinitialisation qui réduit le risque que la méthode soit piégée dans des
optimum locaux. Nous évaluons l’efficacité et l’efficience de toutes les stratégies proposées par le biais d’ex-
périences informatiques approfondies, en évaluant leur capacité à générer des solutions de haute qualité pour
différentes caractéristiques du problème et corrélations de la demande.
Mots clés : Problème de localisation-routage à deux échelons, demande stochastique, demandes multi-
marchandises avec origine-destination, couverture progressive

Abstract. This study introduces the stochastic two-echelon multicommodity location routing problem
with stochastic and correlated demands. We propose a two-stage stochastic programming formulation,
with second-echelon facilities design decisions defining the first stage, while recourse decisions, which are
made in the second stage, establish how the observed demands are distributed. The overall objective is
to optimize the cost of the first-stage design decisions plus the total expected routing cost incurred in the
second stage. To solve this formulation, we propose a progressive hedging metaheuristic with a series of
algorithmic enhancements to accelerate the exploration of the solution space. These enhancements include:
1) population structures to obtain alternative and diverse solutions for the scenario subproblems that need to
be solved throughout the search process; 2) alternative strategies to define the reference solutions which are
used to guide and accelerate the overall search; and 3) a reset procedure that reduces the risk of the method
becoming trapped in local optima. We assess the efficiency and effectiveness of all proposed strategies
through extensive computational experiments, evaluating their capability to generate high-quality solutions
across various problem characteristics and demand correlations.
Keywords: Two-echelon location-routing problem, stochastic demand, multicommodity origin-destination
demands, progressive hedging

1. Introduction
The two-echelon location-routing problem (2E-LRP) is an important class of combina-

torial optimization problems with a wide rage of applications in the freight transportation
industry. At its core, the concept is to design a two-layer freight transportation system
that enables indirect freight transportation between platforms (distribution centers) and
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customers through a set of intermediate facilities named satellites. The 2E-LRP has been
defined as the preferred methodology for efficiently capturing the simultaneous decisions
concerning the location of one or two levels of facilities (platforms and/or satellites) and
creating a limited set of routes at both echelons to effectively serve all customer demands
(Cuda et al., 2015). Despite the growing number of scientific contributions and advances in
this field, most research on 2E-LRP has focused on models and solution methods for “clas-
sic” problem variants and deterministic cases, while uncertain factors are often overlooked
(Gendreau et al., 2014).

Considering demand uncertainty and its interrelation is of great significance when plan-
ning decisions are involved. In logistics planning, which encompasses strategic and tactical
choices in distribution network design, obtaining accurate information about customer de-
mand variations is essential for long-term planning (Lium et al., 2009). Several sources of
uncertainty related to demand can be observed, such as variations in volume, inaccuracies
in forecasted values, or unexpected demand fluctuations between specific origin-destination
pairs (Crainic et al., 2011a). While studies in LRPs with stochastic demands often as-
sume statistically independent request fluctuations, variability and correlation are observed
in many logistics contexts (Verma and Campbell, 2019). Different demand values often dis-
play degrees of positive or negative correlation relative to other customer demands (Bucci
et al., 2006). Seasonal demand variations serve as an example, though they may not entail
high uncertainty due to their predictability. Correlations and more intricate covariation gain
importance during planning, especially when systematic relationships exist among customer
demands (e.g., regions, product types, time periods) (Heath and Jackson, 1994; Thapalia
et al., 2012; Verma and Campbell, 2019; Mirhedayatian et al., 2019). One can thus assume
that demand correlation exhibits a mixed nature, rather than being purely positive or un-
correlated. To the best of our knowledge, 2E-LRPs considering correlated and uncertain
demands, specifically involving non-substitutable demand with a known origin and desti-
nation, remains unexplored. This study is aimed at deepening the understanding of the
effects of the integrated treatment of uncertain and correlated non-substitutable demands
on location and routing decisions. Our goal is to provide a methodology to respond to the
modelling and algorithmic challenges and, thus, to contribute toward filling the gaps in the
literature.

This paper address a 2E-LRP with stochastic and correlated multicommodity, origin-to-
destination (OD) demands. We thus introduce the Two-Echelon Multicommodity Location-
Routing Problem with Stochastic and Correlated Demands (2E-MLRPSCD) as a unified view
of the attributes considered. The problem centers around design decisions concerning the
selection of satellite facilities and the allocation of multicommodity origin-destination (OD)
demands to these satellites, while also encompassing the definition of a limited set of routes
at both echelons to efficiently fulfill the demand. To address the uncertainty, we propose a
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stochastic programming approach oriented towards devising a singular system design capable
of maintaining cost-effectiveness in the presence of diverse demand realizations. Specifically,
we present a two-stage stochastic programming formulation, with satellite facility design
decisions defining the first stage, while recourse decisions, which are made in the second
stage, establish how the observed demands are distributed. We thus represent the demand
uncertainty through a finite set of scenarios, which must approximate the uncertainty inher-
ent in the planning context. However, employing scenario-based uncertainty modeling yield
large-scale models that may prove impractical to address using standalone exact solution
methods (King and Wallace, 2012).

The proposed work thus introduces a progressive hedging-based metaheuristic for ad-
dressing the 2E-MLRPSCD, building on the work of Crainic et al. (2011a) for the network
design problem. From a methodological standpoint, the classic progressive-hedging (PH)
algorithm iteratively solves deterministic subproblems derived from the scenario-based de-
composition of the stochastic program. The PH metaheuristic iterates by adjusting the
mathematical formulation of scenario subproblems using aggregated solutions until reach-
ing an optimal solution when a general consensus among non-scenario-dependent decisions
is observed. However, the classic structure of the PH metaheuristic and the metaheuristic
methods derived from it lack alternative aggregation methods to effectively derive key in-
sights from the subproblem solutions. To address this, we present a specialized PH-based
metaheuristic with a series of algorithmic enhancements. These enhancements include: pop-
ulation structures to obtain alternative and diverse solutions for the scenario subproblems
that need to be solved throughout the search process; 2) alternative strategies to define the
reference solutions which are used to guide and accelerate the overall search; and 3) a reset
procedure that reduces the risk of the method becoming trapped in local optima. In the
computational study, we analyze the cost sensitivity, infrastructure usage, and a comparison
between the uncertain and deterministic definition of the demand to derive insights of the
effectiveness of the proposed solution method.

The remaining parts of the paper are organized as follows. Section 2 is dedicated to
describing the problem definition. An overview of the related scientific literature is pro-
vided in Section 3. Section 4 presents the system modelling and the proposed mathematical
formulation. The solution method we developed is described in Section 5. Computational
results are then presented and analyzed in Section 6. Finally, in Section 7, we conclude and
highlight some general avenues for future research.

2. Problem definition
This section introduces the 2E-MLRPSCD, which involves addressing a 2E-LRP with

stochastic and correlated multicommodity origin-to-destination (OD) demands. The section
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is divided into two parts. Section 2.1 presents the physical problem setting of the 2E-
MLRPSCD. Section 2.2 outlines representation of stochastic and correlated demands as well
as the main lines, objective and requirements, of the problem.

2.1. The 2E-MLRPSCD setting

The two-echelon system consists of three main components: platforms (primary facili-
ties serving as demand origins), satellites (intermediate facilities), and customers (demand
destinations).

Formally, the 2E-MLRPSCD is represented as a complete weighted directed graph N =
(V,A), with vertices V = P∪Z∪C, divided into three disjoint sets: platforms P , satellites Z,
and customers C. Platforms are large-sized facilities with a potential set of commodities to
be distributed to customers. Satellites are medium- to small-sized multimodal infrastructures
that serve as intermediate facilities, allowing the consolidation and sorting of freight between
the two transportation echelons involved in distributing goods to customers. Each satellite
location z ∈ Z is associated with a limited storage capacity Qz and a fixed opening cost Fz.

Demand is defined between platforms and customers, each individual demand being
characterized by an origin, a destination and a requested volume to be delivered. Let K
denote the set of origin-destination (OD) demands. For the deterministic version of the 2E-
MLRPSCD, each OD demand k ∈ K, is thus characterized by a volume volk, an origin O(k)
associated with a platform node in P , and a destination D(k) associated with a customer
node in C. Additionally, a fixed allocation cost ∆pzk represents the cost of serving OD
demand k ∈ K through platform p ∈ P and satellite z ∈ Z.

Each arc (i,j) ∈ A = A1 ∪ A2 is associated with a non-negative cost ζij for a vehicle to
travel between i and j. Let A1 denote the set of arcs of the first echelon, corresponding to
the connections between platforms P and satellites Z and between satellites. The set A2

includes the arcs of the second echelon, that is, the connection of the satellites Z with the
final customers C and between customers.

Freight delivery is performed by two homogeneous fleets of vehicles H = H1 ∪H2 with
limited load capacities cap1 and cap2, which are respectively available for the first and second
echelon, and are able to transport any demand. Vehicles are assumed to be available at each
existing facility for each echelon, where vehicles start and end their routes.

The considered problem involves the selection of satellite facilities, the allocation of OD
demands to satellites, as well as the routing of vehicles at each echelon to deliver the freight
from platforms to customers, going through satellite facilities. As depicted in Figure 6, each
OD demand that is made available at its originating platform has to be moved by a first-
echelon vehicle to a given satellite to be then transferred to a second-echelon vehicle. Loads
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Figure 6 – Topology of the 2E-MLRPSCD.

delivered at satellites are then transshipped and consolidated into second-echelon vehicles,
which will perform the deliveries to the final destinations.

2.2. The stochastic setting

The 2E-MLRPSCD involves uncertainty in the volume of demand stemming from random
changes occurring between correlated OD pairs. We assume that probability distributions
exist to describe the variation in the random events affecting the volume of demands. More-
over, the problem setting involves correlation among OD pairs, where each OD pair can
be either positively or negatively correlated with other distinct OD pairs. The problem is
characterized by two sets of OD pairs used to represent the correlation; OD pairs within
each set are positively correlated, while all correlations between OD pairs in different sets
are strongly negative (i.e., low demands in one set result in high demands in the other).

The 2E-MLRPSCD problem setting addresses strategic and tactical planning decisions
in multiple application fields. In terms of decision-making and information processing, the
design and allocation decisions during the planning stage must be defined based on an eval-
uation/estimation of their impact on operations, including the available recourse actions to
adapt the plan to the observed demands. The recourse actions in the present case involve the
definition of the optimal routes to fulfill observed (“realized”) customer demands including,
when necessary, the use of external outsourcing services with high additional operational
costs.

The 2E-MLRPSCD then consists in the selection of the locations of the satellite facilities,
the allocation of OD demands to satellites, as well as the construction of a limited set of
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routes for the first and second echelons vehicles in such a way that: (i) the demand of each
platform is assigned to an open satellite; (ii) every route of the first echelon starts and ends
at the same platform; (iii) every route of the second echelon starts and ends at the same
satellite; (iv) all the customers’ demands are satisfied either by the system or an outsource
service; (v) the load capacity of each vehicle is not exceeded; (vi) each customer served by
the system is visited by only one vehicle; (vii) the total demand assigned to a satellite facility
must not exceed its capacity; and (viii) the sum of the fixed location and allocation costs
and the expected routing costs (the recourse action) is minimized.

3. Literature review
The 2E-MLRPSCD belongs to the Location-Routing Problem (LRP) category, which

constitutes an important problem class that contains a vast number of contributions and
ongoing works in the literature. LRPs fundamentally appear in the context of the planning
process that seeks to open one or more platforms from a given set of pre-defined locations,
define the customer assignments to them and establish a variety of routes required to meet
the demands of each customer considered. Studies dedicated to the LRPs and the 2E-LRP
are increasingly gaining attention, in particular on realistic multi-attribute problem settings
(Escobar-Vargas and Crainic, 2023). This section aims to situate the 2E-MLRPSCD within
the relevant literature on both the 2E-LRP and LRP, specially pointing out the gaps in
knowledge concerning how to deal with stochastic demands in this setting. A brief discussion
on the progressive-hedging strategy is also provided, focusing on the challenges and gaps of
the application of this method when tackling integer programming problems. Works on
2E-LRP and LRP dedicated to their deterministic versions or stochastic aspects other than
demand uncertainty are out of the scope of this study. Therefore, we refer the interested
readers to the recent surveys by Cuda et al. (2015), Schiffer et al. (2019) and Mara et al.
(2021a).

Because of its practical relevance, the LRP has attracted much attention from the re-
search community resulting in a wide variety of high-quality solution approaches for its
deterministic versions since its introduction in Maranzana (1964). While studies on demand
uncertainty are still scarce, more attention has been devoted to this variant spurred by the
desire to solve more realistic distribution planning problems (Cuda et al., 2015; Escobar-
Vargas and Crainic, 2023). Because of the complexity of considering demand uncertainty
in LRP, most studies have focused on proposing heuristics methods to solve the problem
setting considered. The literature is notably characterized by the extensive use of local-
search-based metaheuristic frameworks to address the underlying transportation problems
to guide two- or multi-stage heuristics, where location, allocation and routing decisions are
treated by different heuristics at different stages (see, Albareda-Sambola et al., 2007; Huang,
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2015; Marinakis, 2015; Marinakis et al., 2016; Zhang et al., 2019). A different approach is
proposed by Quintero-araujo et al. (2019), where a simheuristic algorithm is proposed to
deal with the LRP with stochastic demands. This simheuristic algorithm then hybridizes a
Monte Carlo simulation with an iterated local search metaheuristic. In spite of the advances
in the field, the literature in LRPs with demand uncertainty is quite limited, especially in
the case of non-substituable demands. The case where stochastic demands are statistically
independent remains the most predominant setting studied in the literature. Research con-
cerning correlation features and their impact on the decision making process has yet to be
addressed. Important contributions are also still required to deepen the understanding of the
impact of richer problem settings and their influence on location decisions under uncertainty.

The literature on 2E-LRP with uncertain demands is very limited. To the best of our
knowledge only Snoeck et al. (2018) have presented a stochastic mixed-integer linear pro-
gramming formulation to model a two-echelon capacitated location-routing problem with
uncertain demands arising from a practical application. However, particular developments
are required in the field, especially in relation to explicitly consider demand correlations, non-
substituable demand considerations, and meeting the modelling and algorithmic challenges
these considerations imply.

Aside from the modelling aspects, there is a fundamental need for more effective solution
procedures for 2E-LRP with uncertainty considerations. Concerning exact and approximate
solution frameworks, decomposition-based methods have shown very promising results for
solving two- and multi-stage stochastic optimization models (Atakan and Sen, 2018). The
effectiveness of such methods rely on how the stochastic problem can be decomposed. Two
general decomposition strategies are usually applied here. The first strategy decomposes
the model according to the scenarios used to formulate the uncertain phenomena, while the
second strategy separates the model according to the decision stages that define the optimiza-
tion model. The progressive hedging algorithm is one of the most used dual decomposition
frameworks in the field. Rockafellar and Wets (1991) developed progressive hedging to solve
convex stochastic programs. The algorithm involves decomposing the stochastic problem by
scenario, solving each of the resulting scenario subproblems independently, and then deter-
mining the stochastic problem’s solution based on the consensus (or averaging) of all scenario
subproblems solutions. However, converging to a globally optimal solution for mixed-integer
stochastic programs in a computationally-efficient manner is challenging, primarily because
of the non-convex nature of the feasible set (Atakan and Sen, 2018). To overcome such com-
putational burden several studies have proposed different heuristic frameworks following the
progressive hedging algorithm to allow the application of the method to integer program-
ming formulations (see, Løkketangen and Woodruff, 1996; Haugen et al., 2001; Crainic et al.,
2011a; Lamghari and Dimitrakopoulos, 2016; Alvarez et al., 2021). To reach a consensus for
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the complete integer stochastic problem, the standard structure of these PH-based meta-
heuristics, usually relies on obtaining the best solution possible (not necessarily optimal) for
each scenario subproblem. This strategy enables the use of the best decisions to guide the
search of the solution space. Nonetheless, considering the single best solution possible for
each scenario subproblem can also reduce the overall diversity of solutions of the complete
stochastic problem, which is crucial at each iteration of the PH. The current work seeks to
close these gaps in the literature by extending and enhancing a progressive-hedging-based
metaheuristic to the 2E-LRP, by introducing a specialised set of heuristics to allow the con-
sideration of diverse alternative solutions for each scenario subproblem, as well as a set of
novel techniques to accelerate consensus for the stochastic problem.

4. Modelling
Section 4.1 introduces the initial outline of the modelling approach, followed by the

proposed mathematical formulation in Section 4.2.

4.1. Modelling uncertainty

The 2E-MLRPSCD is formulated as a two-stage stochastic program to account for the
strategic planning decisions. The proposed two-stage model consists of a first stage, where
the location of satellite facilities and the OD demand to satellite allocation decisions are
made while facing the demand uncertainty, and a second stage, where the vehicle routes
for both echelons are determined when customer demands are observed. Additionally, the
option of resorting to ad-hoc, outsourced capacity when necessary is also part of the second
stage, where an operational cost R is associated with the percentage of the demand volume
that is served by an outsourced service.

The demand uncertainty is represented through known distributions, while correlations
are given by matrices.

We model the demand uncertainty and correlation in this system through the generation
of a set of scenarios, obtained by sampling probability distributions, each scenario represent-
ing a possible realization of the random event affecting the demands. Let S denote the set
of scenarios, where scenario s ∈ S, represents a possible realization of the random events
which sets the demand values of each customer, while reflecting the assumed correlations.
Let ρs be the probability of occurrence of scenario s, such that ∑

s∈S ρs = 1. Then for a
given s ∈ S, there is a demand volume fixed to volk(s) for all k ∈ K, such that volk(s) ≥ 0.

4.2. Two-stage formulation for the 2E-MLRPSCD

This section presents the Mixed-Integer Programming (MIP) formulation for the 2E-
MLRPSCD, as a two-stage stochastic programming problem using a three-index vehicle-flow
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formulation. Two sets of decision variables are defined. First-stage variables address the
satellite location and OD demand to satellite allocation decisions. Vehicle-routing decisions
at both echelons are made in the second stage. Following the general trend in the literature,
we save space and present the formulation directly in terms of the set of scenarios S. This
yields second-stage variables indexed by scenario, while first-stage ones are not (they are not
supposed to be modified in the second-stage). The following definitions describe the decision
variables that constitute the extensive form of the proposed two-stage formulation:

— yi ∈ {0,1}, i ∈ Z: location variable, 1 if a satellite is opened in location i, 0 otherwise;
— fpzk ∈ {0,1}, p ∈ P, z ∈ Z, k ∈ K: allocation variable, 1 if satellite z is allocated to

platform p to serve the demand k, 0 otherwise;
— us

pzkh ∈ {0,1}, p ∈ P, z ∈ Z, k ∈ K,h ∈ H1, s ∈ S: vehicle allocation variable, 1 if
vehicle h is allocated to serve satellite z from platform p with demand k for scenario
s, 0 otherwise;

— vs
zch ∈ {0,1}, z ∈ Z, c ∈ C, h ∈ H2, s ∈ S: vehicle allocation variable, 1 if vehicle h is

allocated to serve the customer c with satellite z for scenario s, 0 otherwise;
— xs

ijh ∈ {0,1}, (i, j) ∈ A, h ∈ H, s ∈ S: vehicle flow variable, 1 if arc (i, j) is used by
vehicle h for scenario s, and 0 otherwise;

— ws
zkh ≥ 0, z ∈ Z, k ∈ K,h ∈ H2, s ∈ S: percentage of demand k served by a satellite

z with a vehicle h for scenario s;
— os

k ≥ 0, k ∈ K, s ∈ S: percentage of demand k that is outsourced for scenario s;
— bs

kh ≥ 0, k ∈ K,h ∈ H1, s ∈ S: percentage of demand k dispatched with a vehicle h
for scenario s;

— Ls
zh ≥ 0, z ∈ Z, h ∈ H1, s ∈ S: integer variable used to record the position of the

satellite z in the route allocated to the first-echelon vehicle h for scenario s;
— N s

ch ≥ 0, c ∈ C, h ∈ H2, s ∈ S: integer variable used to record the position of the
customer c in the route allocated to the second-echelon vehicle h for scenario s;

The extensive two-stage formulation of the 2E-MLRPSCD then becomes:

min
∑
s∈S

ρs

(∑
h∈H

∑
(i,j)∈A

ζijx
s
ijh +

∑
k∈K

Ros
k

)
+

∑
i∈Z

Fiyi +
∑
i∈P

∑
j∈Z

∑
k∈K

∆ijkfijk (4.1)

subject to

∑
j∈(P ∪Z),i ̸=j

xs
ijh ≤ 1 ∀i ∈ (P ∪ Z), h ∈ H1, s ∈ S (4.2)

∑
i∈(P ∪Z),i ̸=j

xs
ijh −

∑
i∈(P ∪Z),i ̸=j

xs
jih = 0 ∀j ∈ (P ∪ Z), h ∈ H1, s ∈ S (4.3)

Ls
ih − Ls

jh + |Z| xs
ijh ≤ |Z| − 1 ∀i,j ∈ Z, i ̸= j, h ∈ H1, s ∈ S (4.4)
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∑
h∈H2

∑
j∈(Z∪C),i ̸=j

xs
ijh = 1 ∀i ∈ C, s ∈ S (4.5)

∑
i∈(Z∪C),i ̸=j

xs
ijh −

∑
i∈(Z∪C),i ̸=j

xs
jih = 0 ∀j ∈ (Z ∪ C), h ∈ H2, s ∈ S (4.6)

∑
h∈H2

∑
j∈C

xs
ijh ≤ |H2|yi ∀i ∈ Z, s ∈ S (4.7)

N s
ih −N s

jh + |C| xs
ijh ≤ |C| − 1 ∀i,j ∈ C, i ̸= j, h ∈ H2, s ∈ S (4.8)∑

j∈(Z∪C),i ̸=j

xs
ijh +

∑
j∈(Z∪C),l ̸=j

xs
ljh − vs

lih = 0 ∀i ∈ C, l ∈ Z, h ∈ H2, s ∈ S (4.9)

∑
h∈H2

∑
i∈Z

vs
ijh = 1 ∀j ∈ C, s ∈ S (4.10)

∑
i∈P

∑
h∈H1

us
ijkh =

∑
h∈H2

vs
jD(k)h ∀j ∈ Z, k ∈ K, s ∈ S (4.11)

∑
h∈H2

∑
i∈Z

ws
ijh + os

j = 1 ∀j ∈ K, s ∈ S (4.12)

ws
ijh ≤ vs

iD(j)h ∀i ∈ Z, j ∈ K,h ∈ H2, s ∈ S (4.13)

bs
kh ≥ ws

ikl − (2− vs
iD(k)l −

∑
p∈P

us
pikh)M

∀h ∈ H1, l ∈ H2, i ∈ Z, k ∈ K, s ∈ S (4.14)∑
k∈K

volk(s)
∑

h∈H2

ws
ikh ≤ Qi ∀i ∈ Z, s ∈ S (4.15)

∑
k∈K

volk(s)
∑
i∈Z

ws
ikh ≤ cap2 ∀h ∈ H2, s ∈ S (4.16)

∑
k∈K

bs
kh ≤ cap1 ∀h ∈ H1, s ∈ S (4.17)

∑
h∈H1

us
ijkh = fijk ∀i ∈ P, j ∈ Z, k ∈ K, s ∈ S (4.18)

∑
h∈H2

vs
zD(k)h =

∑
p∈P

fpzk ∀z ∈ Z, k ∈ K, s ∈ S (4.19)

yi ∈ {0,1} ∀i ∈ Z (4.20)

fpzk ∈ {0,1} ∀p ∈ P, z ∈ Z, k ∈ K (4.21)

us
pzkh ∈ {0,1} ∀p ∈ P, z ∈ Z, k ∈ K,h ∈ H1, s ∈ S (4.22)

vs
zch ∈ {0,1} ∀z ∈ Z, c ∈ C, h ∈ H2, s ∈ S (4.23)

xs
ijh ∈ {0,1} ∀(i, j) ∈ A, h ∈ H, s ∈ S (4.24)

ws
zkh ≥ 0 ∀z ∈ Z, k ∈ K,h ∈ H2, s ∈ S (4.25)

os
k ≥ 0 ∀k ∈ K, s ∈ S (4.26)

bs
kh ≥ 0 ∀k ∈ K,h ∈ H1, s ∈ S (4.27)

Ls
zh ≥ 0 ∀z ∈ Z, h ∈ H1, s ∈ S (4.28)

95



N s
ch ≥ 0 ∀c ∈ C, h ∈ H2, s ∈ S (4.29)

The objective function (4.1) seeks to minimize the sum of the expected total routing
and outsourced costs and the total fixed cost of opening satellites and allocating them to
the platforms. Constraints (4.2) ensure that each available vehicle is assigned to at most
one platform. Constraints (4.3) are the flow conservation constraints for platforms and
satellite facilities. Constraints (4.4) are the sub-tour elimination constraints for the first-
echelon vehicles. Constraints (4.5) ensure that every customer is served by a single second-
echelon vehicle. Constraints (4.6) are the flow conservation constraints at satellites and
at customers. Constraints (4.7) state that second echelon vehicles can only be used from
located satellites. Constraints (4.8) are sub-tour elimination constraints for the second-
echelon vehicles. Constraints (4.9) link the allocation and routing variables. Constraints
(4.10) impose that each customer has to be assigned to a satellite.

Constraints (4.11) are the flow conservation constraints for each commodity k at each
satellite z. Constraints (4.12) ensure that the portion of the customer demand served by
a satellite and the portion served by an outsourced service meet the complete demand for
each customer. Constraints (4.13) ensure that each satellite can only serve its assigned
customers. Constraints (4.14) ensure that, for each commodity k, the portion of the demand
that is serviced via the located satellite corresponds to the inbound portion that originates
from the associated platform. Constraints (4.15) impose that flow leaving an open satellite
z is less or equal than its storage capacity. Constraint (4.16) and (4.17) guarantee that
the commodity flow carried by each vehicle, in the first and second echelon, respectively,
is less than or equal to its own capacity. Constraints (4.18) and (4.19) link allocation and
vehicle allocation variables for the first echelon and second echelon vehicles, respectively.
Constraints (4.20)-(4.29) impose the integrality and non-negativity of each decision variables
in the model.

5. A progressive hedging-based metaheuristic for the
2E-MLRPSCD

This section presents a progressive hedging-based metaheuristic to address the 2E-
MLRPSCD, building on the work of Crainic et al. (2011a) for the stochastic network design
problem.

As its name implies, the methodology is derived from the progressive hedging (PH) al-
gorithm introduced by Rockafellar and Wets (1991) for multi-stage stochastic optimization
problems. From a methodological perspective, the ‘classic’ progressive-hedging algorithm,
iteratively solves the set of deterministic subproblems, which result from the scenario-based
decomposition of the extensive formulation. At each iteration, the PH metaheuristic solves
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each scenario-specific deterministic subproblem separately, thus producing a series of so-
lutions that may differ from one another. The search then proceeds by computing a ref-
erence solution (the expected value of the best scenario-specific solutions is traditionally
used), which also serves to assess the overall level of consensus among the scenario-specific
solutions. The formulations of the scenario subproblems are then adjusted to incentivize
agreement (i.e., to make subproblems move toward the same implementable solution). This
general process is repeated until either a consensus solution is found or another stopping
criterion is reached (e.g., a computation time limit).

The PH algorithm is known to converge to optimality for continuous pseudo-polynomial
convex formulations. This is not the case for mixed-integer programs, such as the 2E-
MLRPSCD (see, Atakan and Sen, 2018). A significant algorithmic challenge also arises from
the computational load of solving a series of NP-hard problems (one for each scenario) at each
iteration of the PH metaheuristic. There is a clear need of an efficient guiding strategy and
procedure to direct the algorithm toward finding a consensus solution more quickly. We thus
introduce a PH metaheuristic with a set of algorithmic and methodological enhancements
aimed at hopefully accelerating the search for an efficient implementable solution. These
enhancements encompass: (1) a set of population structures to obtain alternative and diverse
solutions for the scenario subproblems, (2) a set of novel scenario-selection strategies that
effectively derive key insights from subproblem solutions to identify potential consensus, (3)
a specialized heuristic to define a high-quality reference solution in the first PH iteration,
and (4) a reset procedure to prevent the PH metaheuristic from getting trapped in local
optima. This section presents the structure of our proposed PH metaheuristic and the novel
strategies developed to accelerate the consensus.

5.1. General structure

The proposed PH metaheuristic, illustrated in Figure 7, follows the general structure
of the method proposed by Crainic et al. (2011a). The algorithm starts with the scenario
decomposition of the extensive formulation introduced in Section 4.2. This results in a set
of subproblems that take the form of a deterministic 2E-MLRPSCD for each scenario s ∈ S.
Unlike the standard structure of Crainic et al. (2011a), the proposed PH metaheuristic is set
up to define a group of alternative solutions for each scenario subproblem, instead of using
the single best solution, aiming to broaden the design options, specifically for location and
allocation decisions.

We introduce two population structures to handle the group of alternative solutions for
each scenario subproblem: a set of local populations, one for each scenario subproblem, and
a single global population for the complete problem.
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Decompose the two-stage formulation

Address scenario subproblems and update local populations

Update the global population

Compute reference solution using the global population

Apply adjustment strategies

Update the best current solution z

stopping criteria is met

z∗ = z

Section 5.2

Section 5.3

Section 5.4

Section 5.5

yes

no

Figure 7 – Progressive Hedging-based metaheuristic for the 2E-MLRPSCD

Each local population serves to organize scenario-specific alternative solutions. These
local populations start empty and are updated at each iteration of the PH with the objective
of maintaining the best representative solutions for each scenario subproblem. To assess the
value of the solutions obtained for each scenario at each PH iteration, a ranking measure is
defined. Each scenario-specific solution is ranked based on its quality and contribution to
diversity. This ranking is performed with respect to the solutions already present in the local
population and determines whether a solution should be included in the local population at
each PH iteration. This ranking prioritizes diversity in solutions, favoring those that exhibit
the most dissimilarity with respect to the first-stage decision variables compared to other
solutions already present in the same local population.

The global population is constructed at each iteration of the PH, based on the best subset
of solutions from each local population. A general reference solution is then determined based
on a selected subset of solutions from the global population defined by one of the proposed
scenario-selection strategies. This reference solution is used to guide the search by adjusting
the costs in the objective function of each scenario subproblem, aiming to reach a consensus
on the first-stage decisions across all scenarios.

Finally, the algorithm ends when a consensus is reached on the first-stage decisions or
when external stopping criteria are met, while saving the best feasible solution obtained at
each iteration of the PH. In the following sections, we provide a more in-depth description
of each step of the proposed PH metaheuristic.
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5.2. Scenario decomposition for the 2E-MLRPSCD

The decomposition strategy applied to the extensive formulation, requires the first-stage
decisions to be reformulated (detailed reformulation in the supplementary material Appen-
dix B.1). Specifically, these decisions need to be defined as scenario-dependent and con-
straints must be added to ensure that first-stage variables are the “same” in all scenario-
subproblems. Let ys

i and f s
ijk be the reformulation of the first-stage variables for each scenario

s ∈ S, for the location and allocation decisions, respectively. In doing so, constraints (4.7),
(4.18) and (4.19) are reexpressed according to the scenario-specific location and allocation
first-stage decisions. This reformulation explicitly includes the following non-anticipativity
constraints, which prevent the first-stage decision variables to be set to different scenario-
specific values:

ys
i = ȳi ∀i ∈ Z, s ∈ S, (5.1)

f s
ijk = f̄ijk ∀i ∈ P, j ∈ Z, k ∈ K, s ∈ S, (5.2)

ȳi ∈ {0,1} ∀i ∈ Z, (5.3)

f̄ijk ∈ {0,1} ∀i ∈ P, j ∈ Z, k ∈ K. (5.4)

The non-anticipativity constraints (5.1) and (5.2) ensure that the first-stage solutions will
be the same for all the scenarios, with variables ȳi and f̄ijk serving as the reference variables
for the first-stage decisions. This ensure that a single set of facility location and allocation
decisions are made for all the scenarios (thus preventing tailored scenario-specific decisions
to be made). Then, following the decomposition scheme, originally proposed by Rockafellar
and Wets (1991), constraints (5.1) and (5.2) are relaxed using an augmented Lagrangean
method, which results in the following relaxed reformulation of the extensive model:

min
∑
s∈S

ρs

Å ∑
h∈H

∑
(i,j)∈A

ζijx
s
ijh +

∑
k∈K

Ros
k +

∑
i∈Z

Å
Fi + λs

i + 1
2γ + γȳi

ã
ys

i

+
∑
i∈P

∑
j∈Z

∑
k∈K

Å
∆ijk + µs

ijk + 1
2γ + γf̄ijk

ã
f s

ijk

ã (5.5)

subject to

(4.2)− (4.6)

(4.8)− (4.17)∑
h∈H2

∑
j∈C

xs
ijh ≤ |H2|ys

i ∀i ∈ Z, s ∈ S (5.6)
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∑
h∈H1

us
ijkh = f s

ijk ∀i ∈ P, j ∈ Z, k ∈ K, s ∈ S (5.7)
∑

h∈H2

vs
zD(k)h =

∑
p∈P

f s
pzk ∀z ∈ Z, k ∈ K, s ∈ S (5.8)

ys
i ∈ {0,1} ∀i ∈ Z, s ∈ S (5.9)

f s
ijk ∈ {0,1} ∀i ∈ P, j ∈ Z, k ∈ K, s ∈ S. (5.10)

The objective function now involves the Lagrangean multipliers λs
i and µs

ijk for the re-
laxed non-anticipativity constraints corresponding to the location and allocation decisions,
respectively, and a penalty term γ. Constraints (5.6) state that second echelon vehicles can
only be used from located satellites. Constraints (5.7) and (5.8) link the facility alloca-
tion variables with the vehicle allocation variables. Constraints (5.9) and (5.10) impose the
integrality and non-negativity of each decision variables in the model.

For a given overall design ȳi and f̄ijk, the relaxed reformulation then undergoes a scenario-
based decomposition (the initial values for the overall design are discussed in Section 5.5).
This decomposition yields individual scenario subproblems, each adopting the structure of a
deterministic scenario-specific problem with modified fixed costs. For a particular scenario
subproblem, the Lagrangean multipliers λs

i and µs
ijk, along with the term γ, penalize the

discrepancies between the values of the location and allocation decision in the local design
and those present in the current overall design. The following sections examine the proposed
strategies to extract the overall design and allocation decisions and the approach to adjust the
fixed costs of the scenario subproblem to guide the search toward consensus of the first-stage
variables.

5.3. Subproblem algorithm

This section presents the algorithm proposed to address the scenario subproblems. The
objective of the proposed subproblem algorithm is twofold, (1) generate a set of candidate
solutions to represent each scenario subproblem; (2) rank and define the set of candidate
solutions in terms of diversity and quality. In what follows, we describe the strategies that
are proposed to achieve these two objectives.

First, we solve the MIP defined for each scenario s ∈ S to identify a sufficient num-
ber of high-quality alternative solutions for each subproblem. The MIP for each scenario
subproblem consists of the objective function (5.5), the constraint set: (4.2)-(4.6), (4.8)-
(4.17), (5.6)-(5.10), as well as a complete a priori enumeration of the subtour elimination
constraints.

To handle the set of alternative solutions defined for each scenario subproblem we in-
troduce two types of solution population, a local population for each scenario subproblem,
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and a global population for the complete problem. Each local population serves to organize
the scenario-specific alternative solutions found at each iteration of the PH. It is chraracter-
ized by a total number ψT of individual alternative solutions associated with each scenario
subproblem, including a reduced number ψE of elite solutions.

At each iteration of the PH, our approach involves the individual evaluation of all the
feasible solutions found for the MIP defined by each scenario subproblem s ∈ S. This
evaluation serves to determine whether an individual solution should be retained in the local
population of its respective scenario subproblem. To evaluate each scenario-specific solution,
we define a ranking measure. This ranking is determined based on the contribution of each
individual solution in terms of both quality and diversity relative to the other solutions
present in the same local population.

The ranking of each individual solution is determined by a fitness measure. We define
this fitness measure by combining both the objective value and the diversity contribution
of a given solution Soli. In this context, the diversity contribution or Ξ(Soli) refers to the
average distance between solution Soli and the set of solutions N present in the respective
local population, as calculated according to equation (5.11), where |N | ≤ ψT . This diversity
contribution aims to favor solutions that exhibit the greatest dissimilarity with respect to
the first-stage decision variables when compared to other solutions already present in the
same local population.

To measure the dissimilarity between two distinct solutions Soli and Solj, we propose a
normalized Hamming distance σ(Soli, Solj), inspired by the work of Vidal et al. (2012). We
define σ(Soli, Solj) as a measure of the dissimilarities between: (1) the satellite allocation
decisions ξk(Soli) and (2) the negative correlation score ϕk(Soli) for each OD demand k ∈ K.
For each OD pair k ∈ K, the negative correlation score ϕk(Soli) represents the number of
different OD pairs allocated to the same satellite that share a negative correlation with k. It
is worth noting that the negative correlation score ϕk(Soli) is introduced to take advantage
of negative correlations between OD pairs, as suggested by the opportunities arising from
consolidating negatively correlated demands and their impact on system efficiency (King and
Wallace, 2012). The proposed Hamming distance is defined according to equation (5.12),
where 1 (cond) is an indicator function that returns the value 1 if condition cond is true,
and 0 otherwise.

Ξ(Soli) = 1
|N |

∑
Solj∈N

σ(Soli, Solj) (5.11)

σ(Soli, Solj) = 1
2|K|

∑
k∈K

1(ξk(Soli) ̸= ξk(Solj)) + 1(ϕk(Soli) ̸= ϕk(Solj)) (5.12)
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We then define a biased fitness function BF (Soli) computed according to equation (5.13),
where, RKQ(Soli) and RKD(Soli) define the ranks of the solution Soli with respect to
the local population, in terms of the objective function (5.5) and the diversity contribution
Ξ(Soli), respectively,

BF (Soli) = RKQ(Soli) +
Å

1 + ψE

ψT

ã
RKD(Soli). (5.13)

This ranking process is performed while solving each scenario subproblem until all local
populations have been updated. It is important to mention that the local populations are
designed to be updated rather than being built from scratch at each iteration of the PH. This
allows each local population to serve as a ‘memory’ for the PH, as it can retain well-ranked
solutions from previous iterations.

5.4. Defining the reference solution

Once the ranking process presented in Section 5.3 is completed, one can build the global
population of size ψG by including all the subset of elite solutions from all local populations.
Given that all alternative solutions for each scenario subproblem must be considered in the
global population, we have that ψG ≥ ψE|S|. This global population, defines the base that is
used to obtain the reference solution for the 2E-MLRPSCD in the subsequent steps of the
PH metaheuristic.

This section presents four scenario-selection strategies to determine the reference solution
at each iteration of the PH. These selection strategies include a classic strategy, which is an
adaptation of the original method traditionally used in PH-based methods (Crainic et al.,
2009), and three novel selection strategies. Moreover, a specialized heuristic is also introduced
to define the reference solution for the first PH iteration. In the following sections, we provide
a comprehensive description of each of these strategies.

5.4.1. Classic strategy. This approach represents the steps of the ‘classic’ selection
strategy proposed by Crainic et al. (2011a). Fundamentally, the classic strategy follows the
guidelines of the Rockafellar and Wets (1991), by defining an aggregation operator to combine
the scenario solutions into a single solution, given a weight for each scenario s ∈ S. This
classic strategy defines the reference solution using the single best solution obtained for each
scenario subproblem. We describe the classic strategy by means of the population structures
introduced in this work (see, Section 5.3) to maintain a consistent notation throughout the
paper.

To describe the classic strategy, let Λs be the set of alternative solutions present in the
global population for each scenario s ∈ S. For this scenario-selection strategy, we have that
|Λs| = 1, ∀s ∈ S, to emulate the use of the single best solution for each scenario subproblem.
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Let ν be the index of iterations performed by the proposed PH metaheuristic. Let ysν
ai and

f sν
aijk be the value of each alternative first-stage variable a ∈ Λs defined for each subproblem

associated with each scenario s ∈ S. Similarly, let ȳν
i and f̄ ν

ijk be the reference solution for
iteration ν of the PH. The values of ȳν

i and f̄ ν
ijk can then be computed by equations (5.14)

and (5.15) based on the content of the global population at iteration ν and the probability
of occurrence ρs of each scenario s ∈ S,

ȳν
i =

∑
s∈S

∑
a∈Λs

ρsy
sν
ai ∀i ∈ Z, (5.14)

f̄ ν
ijk =

∑
s∈S

∑
a∈Λs

ρsf
sν
aijk ∀i ∈ P, j ∈ Z, k ∈ K. (5.15)

Notice that when ȳν
i ∈ {0,1}, ∀i ∈ Z, and f̄ ν

ijk ∈ {0,1}, ∀i ∈ P, j ∈ Z, k ∈ K, at a given
iteration ν, this means that the method has reached consensus for the first-stage decision
values. The PH metaheuristic has found thus an implementable solution for the stochastic
problem. In most cases, however, the integrality requirements of the first-stage variables are
not enforced, i.e., with 0 < ȳν

i < 1 and 0 < f̄ ν
ijk < 1, implying that the current reference

solution is infeasible. Although these values are not feasible for the complete stochastic
problem, they can still be used to indicate a trend of facility usage and allocation over the
system. Therefore, if ȳν

i ≈ 0, then one can interpret this as a trend towards not opening the
facility i, whereas ȳν

i ≈ 1 indicates the reverse (i.e., a trend towards opening the facility).
Finally, the same observations can be made regarding the reference solution values associated
with the allocation decisions.

5.4.2. Probabilistic strategy. Similar to the classic strategy presented in Section 5.4.1,
we define an aggregation operator to combine the scenario solution into a single solution. The
reference solution is defined by means of the given weights determined by the probability of
occurrence ρs and the set of alternative solutions Λs of each scenario s ∈ S. Unlike the classic
strategy, this strategy uses more than one scenario-specific solutions to define the reference
solution, meaning that |Λs| ≥ 1, ∀s ∈ S. Let ysν

ai and f sν
aijk be the value of each alternative

first-stage variable a ∈ Λs defined for each subproblem associated with each scenario s ∈ S
for iteration ν. The values of the reference solution defined by ȳν

i and f̄ ν
ijk can then be

computed by equations (5.16) and (5.17) based on the content of the global population for
each scenario s ∈ S at iteration ν,

ȳν
i =

∑
s∈S

ρs

|Λs|
∑

a∈Λs

ysν
ai ∀i ∈ Z (5.16)

f̄ ν
ijk =

∑
s∈S

ρs

|Λs|
∑

a∈Λs

f sν
aijk ∀i ∈ P, j ∈ Z, k ∈ K. (5.17)
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The probabilistic strategy enables the consideration of a broader range of options for the
first-stage decision variables available in the global population for each scenario subproblem
s ∈ S. At the same time, the aggregation operator defined to combine the scenario solution
into a single solution is versatile enough to be used with other selection strategies and can
be adapted to behave like the classic strategy simply by setting |Λs| = 1, ∀s ∈ S. We,
therefore, use the same aggregation operator with the remaining scenario-selection strategies
in this section.

5.4.3. Social strategy. The idea behind the social strategy is to define the set of so-
lutions with the best social score among the global population. In this context, we define
π(Soli, Solj) as a normalized Hamming distance, which is computed using equation (5.18).
This metric evaluates the similarity between two distinct solutions, Soli and Solj. We thus
define χz(Soli) and κk(Soli) as the functions that return the location decision of each z ∈ Z
and allocation of each OD demand k ∈ K, respectively, of a given solution Soli,

π(Soli, Solj) = 1
|K|

∑
k∈K

1(κk(Soli) = κk(Solj)) + 1
|Z|

∑
z∈Z

1(χz(Soli) = χz(Solj)). (5.18)

The social score for a given solution Soli is defined by summing the values of equation
(5.18) between the solution Soli and all other solutions Solj in the global population, where
i ̸= j. Using these social score values, the solutions in the global population can be ranked.
It is important to note that this rank favors solutions that share the most similarities with
other solutions, meaning that solutions with the most commonalities in both location and
allocation first-stage decisions within the global population will be ranked higher.

There are two main approaches for determining the reference solution based on the rank
of each scenario subproblem. The first approach involves selecting a reduced set of elite
solutions from the complete global population to define the reference first-stage decisions.
This can be achieved by following the steps defined for the probabilistic strategy, as de-
scribed in Section 5.4.2. The second approach involves identifying a single elite solution,
whose first-stage decisions will be used as the reference solution. However, preliminary ex-
periments conducted using these two strategies have shown that using a single elite solution
as the reference solution can cause the PH metaheuristic to become trapped in local optima;
consequently, we exclusively utilize the first strategy.

5.4.4. Decision-based scenario clustering strategy. The decision-based scenario
clustering strategy is proposed to identify scenario groups that lead to mutually acceptable
solutions (i.e., solutions that remain efficient when considering all the subproblems associ-
ated with the scenarios included in the group). Fundamentally, the proposed strategy uses a
dissimilarity function inspired by the opportunity cost, originally proposed by Hewitt et al.
(2022). This opportunity cost is defined as a measure to quantify the impact of implementing
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the first-stage decisions associated with a given scenario s1 when another scenario s2 occurs.
This measure relies on the existence of a single solution for each of the scenarios involved.
This characteristic prevents the direct application of the opportunity cost defined by Hewitt
et al. (2022) for our PH metaheuristic, which uses a set of alternative solutions for each
scenario subproblem to determine the reference solution. Therefore, this section introduces
the proposed decision-based scenario clustering strategy to leverage the alternative solutions
associated with each scenario subproblem.

The proposed strategy aims to define a specialized opportunity cost measure based on the
subset of solutions in the global population associated with each scenario. Therefore, let Λs

be the set of indices of the solutions in the global population that are associated with scenario
s ∈ S. Let gν

i ((ŷν∗
n , f̂

ν∗
n ); sj) be the updated value of the objective function (5.5), evaluated

with the set of the best first-stage decision variables ŷν∗
n and f̂ ν∗

n at iteration ν, obtained
for the solution n ∈ Λsi

with scenario si, when a scenario sj occurs. The opportunity cost,
denoted by θν(si|sj), represents the value of the decision associated with scenario si under the
assumption that scenario sj actually occurs. This quantity is calculated using equation (5.19)
as the minimum value obtained by evaluating all the combinations of solutions associated
with each pair of distinct scenarios si and sj in S with i ̸= j.

θν(si|sj) = min
n∈Λsi ; m∈Λsj

{gν
i ((ŷν∗

n , f̂
ν∗
n ); sj)− gν

j ((ŷν∗
m , f̂

ν∗
m ); sj)} (5.19)

Based on the opportunity costs determined for each scenario within the global population,
one can then define an opportunity cost dissimilarity function by equation (5.20) for each
pair of scenarios si, sj ∈ S with i ̸= j, which represents the loss incurred by optimizing
under the assumption that scenario si happens, when scenario sj occurs instead, and vice
versa.

dν(si|sj) = θν(si|sj) + θν(sj|si) (5.20)

A Normalized Spectral Clustering is then used to determine which scenarios are close to
each other in terms of opportunity cost distance function building upon the approach pro-
posed by Hewitt et al. (2022). This process yields a set of clusters CL = {cl1, cl2, . . . , cl|CL|}
of the scenarios. Once the clusters are determined, we define a set of representative sce-
narios Υ, where each representative scenario corresponds to the medoid of each cluster (i.e.,
the scenario with the minimum average opportunity cost dissimilarity function to all other
scenarios within the same cluster). Subsequently, we assign the probability ηi to each repre-
sentative scenario s ∈ cli for all cli ∈ CL, computed as the sum of the probabilities ρs of all
scenarios within the same cluster, as shown in equation (5.21). Finally, the reference solution
for the location and allocation decisions can be determined by computing equations (5.22)
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and (5.23) for each representative scenario s ∈ Υ and the subset of solutions Λs associated
with each scenario.

ηi =
∑

s∈cli

ρs ∀cli ∈ CL (5.21)

ȳν
i =

∑
s∈Υ

ηs

|Λs|
∑

a∈Λs

ysν
ai ∀i ∈ Z (5.22)

f̄ ν
ijk =

∑
s∈Υ

ηs

|Λs|
∑

a∈Λs

f sν
aijk ∀i ∈ P, j ∈ Z, k ∈ K (5.23)

5.4.5. First iteration reference solution. A major goal of our PH metaheuristic is
to efficiently guide the process searching for solution consensus. An initial reference solution
ȳi and f̄ijk must be defined to enable the scenario-based decomposition of the extensive
formulation, as described in Section 5.2. These initial values are used to define the solutions
for the scenario subproblems obtained in the first iteration of the PH. However, no ‘memory’
is available in the PH to assess the quality of these solutions since the local populations are
empty at this stage. Defining a high-quality reference solution at the end of the first iteration
is crucial in this case, considering that the consensus search is performed by successively
adjusting the objective function costs of the scenario subproblems to gradually encourage
agreement. The quality of the decisions defined in the first iteration will greatly influence
the subsequent ones.

We propose an heuristic to define the reference solution to be applied in the first iteration
of the PH metaheuristic and the initial global population. Let us recall that the global
population is composed of at least one elite solution picked from the local population of each
scenario subproblem. The ‘quality’ of the initial reference solution will thus be a function
of both the quality of the solutions present in the initial global population and the specific
selection strategy that is used to obtain the point.

The proposed heuristic generates an initial global population by comparing two indepen-
dent population generation strategies. Let GP1 and GP2 be two independent populations,
each constructed using one of the proposed heuristic strategies. GP1 is populated with the
set of elite alternative solutions from the local population of each scenario subproblem, while
GP2 is populated with the single best solution found for each subproblem. Once GP1 and
GP2 are populated, we let the given selection strategy determine the reference solution of the
first-stage decisions for each population. Notice that the resulting reference solutions may
contain decision variables with continuous values. To address this, the proposed heuristic ap-
proximates each reference solution by rounding each continuous value to the nearest discrete
value. Each approximation now represents an integer solution for the first-stage decisions,
which can be evaluated in the extensive formulation. After evaluating each approximation,
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the proposed heuristic selects the reference solution leading to the best objective function to
determine which of the two populations should be defined as the first global population.

To keep the solutions used to define the best reference solution in subsequent iterations,
one must update each local population accordingly, as the global population is built from
scratch at each iteration. Note that local populations are only modified when GP2 is selected
as the best initial global population. In such case, each local population is updated to retain
only the best single scenario-specific solution, rather than the complete set of alternative
solutions.

It is worth mentioning that preliminary experiments conducted using the proposed heuris-
tic at each iteration of the PH led to the method relying on the approximation of the reference
solution as the main guiding strategy. This caused the method to become trapped in local
optima. Consequently, after the first iteration, the PH continues to work with the set of
alternative solutions for each scenario subproblem.

5.5. Consensus procedure

This section describes the heuristics to adjust the costs of the scenario subproblems
aiming to guide the PH method towards a consensus for the first-stage solutions over all
the scenario subproblems. We build on the work of Crainic et al. (2011a) and present two
adjustment heuristics to modify the location and allocation costs in the scenario subproblems,
specifically, a global adjustment designed for the overall search and a local adjustment to
influence the search for each scenario subproblem.

The proposed global adjustment begins with the reference solution defined by ȳν
i and

f̄ ν
ijk at iteration ν to identify trends among the scenario solutions. The costs are de-

fined according to the objective function (5.5). In this context, we define the costs
B̄sν

i =
(
Fi + λs

i + 1
2γ + γȳi

)
and Ēsν

ijk =
(
∆ijk + µs

ijk + 1
2γ + γf̄ijk

)
as the location and al-

location costs of the scenario subproblem, respectively.
As mentioned previously, low values of ȳν

i and f̄ ν
ijk indicate that most of the scenario

solutions share the decision to keep the given facility closed, while high values mean that
the facility is open in the majority of the scenario solutions. Therefore, we introduce a
parameter β > 1 as the adjustment rate of the costs, and threshold parameters 0 ≤ ϵy ≤ 0.5
and 0 ≤ ϵf ≤ 0.5 to determine when the values ȳν

i and f̄ ν
ijk should be considered either high

or low. Specifically, when ȳν
i and f̄ ν

ijk are lower than ϵy and ϵf , the fixed costs are increased
to incentivize the subproblems to avoid opening the corresponding facility and performing
the associated allocation. On the other hand, when ȳν

i and f̄ ν
ijk are higher than 1 − ϵy and

1 − ϵf , the fixed costs are decreased to encourage the subproblems to include the facility
in the network design and perform the allocation. We define this procedure with equations
(5.24) and (5.25):
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B̄ν
i =


βBν−1

i if ȳν−1
i < ϵy,

1
β
Bν−1

i if ȳν−1
i > 1− ϵy,

Bν−1
i otherwise;

(5.24)

Ēν
ijk =


βĒ

(ν−1)
ijk if f̄ (ν−1)

ijk < ϵf ,

1
β
Ē

(ν−1)
ijk if f̄ (ν−1)

ijk > 1− ϵf ,

Ē
(ν−1)
ijk otherwise.

(5.25)

The second adjustment strategy is performed at the level of each scenario subproblem
s ∈ S, where the costs of variables with large differences between the value of the current
reference solution at iteration ν, are further adjusted using the equations (5.26) and (5.27).
In this context, we define 0.5 < δy < 1 and 0.5 < δf < 1 as the thresholds that prescribe when
a local adjustment has to be applied for the location and allocation variables, respectively:

B̄sν
i =


βBν

i if |ys(ν−1)
i − ȳν−1

i | ≥ δy and y
s(ν−1)
i = 1,

1
β
Bν

i if |ys(ν−1)
i − ȳν−1

i | ≥ δy and y
s(ν−1)
i = 0,

Bν
i otherwise;

(5.26)

Ēsν
ijk =


βĒν

ijk if |f s(ν−1)
ijk − f̄ (ν−1)

ijk | ≥ δf and f
s(ν−1)
ijk = 1,

1
β
Ēν

ijk if |f s(ν−1)
ijk − f̄ (ν−1)

ijk | ≥ δf and f
s(ν−1)
ijk = 0,

Ēν
ijk otherwise.

(5.27)

Given that there is no reference solution in the original extensive formulation (Sec-
tion 4.2), we set the values of the initial overall design variables ȳi and f̄ijk to determine the
initial fixed costs for each scenario subproblem. We, therefore, define the initial overall design
in terms of the location costs B̄sν

i and allocation costs Ēsν
ijk at iteration ν = 0 (i.e., before the

PH starts its first iteration). The location and allocation costs of the scenario subproblems
are initialized with their original costs. Therefore, we set B̄s(0)

i = Fi, ∀i ∈ Z, s ∈ S, and
Ē

s(0)
ijk = ∆ijk, ∀i ∈ P, j ∈ Z, k ∈ K, s ∈ S. Note that the values of the initial overall design

ȳi and f̄ijk will be updated based on the reference solution obtained at the end of the first
iteration of the PH to adjust the costs for each scenario subproblem.

The proposed PH is designed to terminate once either a consensus solution is found, or
another stopping criterion is reached (e.g., a limit on computation time). A consensus solu-
tion is determined when all first-stage decisions ȳν

i and f̄ ν
ijk have reached a general consensus

at a given iteration ν. However, consensus on all first-stage decisions may not be observed

108



at the end of each iteration of the PH metaheuristic. When such a situation occurs, the
PH is designed to define a feasible solution for the 2E-MLRPSCD by using the extensive
formulation presented in Section 4.2. The approach to define a feasible solution consists of
fixing the location and allocation variables for which consensus is obtained by the PH meta-
heuristic, and then solving the restricted mixed-integer program defined by the extensive
formulation. The results of solving the proposed formulation yield a feasible solution for all
the design decisions. One can then update the best solution obtained and continue with the
PH metaheuristic.

5.6. Reset procedure

As described previously, the proposed PH algorithm relies on the global population to
determine the reference solution at each iteration. This global population is constituted by
the collection of elite solutions from the local population of each scenario subproblem. As
the search progresses, certain solutions may remain in the local population of each scenario
subproblem for several iterations of the PH. Consequently, the global population may also end
up comprising the same set of solutions over consecutive iterations of the PH. If the global
population remains unchanged over several iterations, the reference solution may become
trapped on a series of values that hinder the overall search for a consensus solution. To
mitigate such occurrences, we propose a reset procedure that partially reinitializes the overall
search process. Specifically, the reset procedure is triggered when the values of the reference
solution do not change for ι consecutive iterations. When triggered, the reset procedure
clears the contents of all local populations and repopulates them with solutions from their
corresponding scenario subproblems obtained in the ongoing iteration. It is important to note
that while this process defines a new set of alternative solutions for the global population, the
current costs corresponding to the first-stage decisions in each scenario subproblem, which
were updated over the previous PH iterations, remain unchanged.

6. Computational results
This section presents the results of the computational experiments that were conducted

to assess: (1) the stability of the scenario generation procedure, (2) the performance of
the proposed PH-based metaheuristic, (3) the effectiveness of the proposed acceleration
procedures for the 2E-MLRPSCD and (4) evaluate the need to explicitly consider stochastic
demands when solving the considered problem setting. We first introduce the instances
and the scenario generation procedure used in the computational study in Section 6.1. The
computational experiments to evaluate the stability of the scenario generation process are
presented in Section 6.2. The results of a series of experiments illustrating the performance
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category distribution mean standard deviation
CA left-skewed lognormal 2.7 0.4
CB symmetrical lognormal 2.7 0.1
CC left-skewed lognormal 3.25 0.4
CD symmetrical lognormal 3.25 0.1

Table 6 – Instance category description

of the proposed PH metaheuristic and the effects of problem instance characteristics are then
analyzed in Section 6.3, followed by the value of the stochastic solution in Section 6.4.

The experiments were conducted on a single machine with Intel(R) Core(TM) i7-7800X
processor, with 128 GB of RAM running Linux. The mathematical formulation and the
proposed solution method are implemented in C++ using IBM ILOG CPLEX concert tech-
nology 20.1. The MIPs used within the solution method were solved with an optimality
gap tolerance of 1% as the stopping criterion. Finally, the computation times reported
are in seconds. The tables of this section display the summarized results for the associ-
ated experiments, while more detailed results are provided in the supplementary material in
Appendix B.2.

6.1. Instances

We define our testbed based on the instances introduced by Dellaert et al. (2019) for
the 2E-VRPTW, since no instances were available in the literature involving the integrated
treatment of all of the attributes considered in the 2E-MLRPSCD. The instances introduced
by Dellaert et al. (2019) simulate an urban area constituted of platforms, satellites, and cus-
tomers. The original instances generated do not consider stochastic correlated OD demands,
which are explicitly included in the 2E-MLRPSCD. Furthermore, the original instances in-
cluded delivery time windows, which are not considered in the present setting. Therefore,
adjustments were made to the original instances to obtain the testbed for the present study.
These adjustments involved the introduction of stochastic and correlated OD demands and
the exclusion of the temporal components in the original instances.

Our instance set consists of 60 instances, each with 15 OD demands. We randomly
assigned to each platform facility a unique set of OD demands. The same load capacities for
vehicles set in Dellaert et al. (2019) were used. The first-level vehicles have thus a capacity
of cap1 = 200 and the second-level vehicles have a capacity of cap2 = 50. Travel costs are
computed as the ceiling of the Euclidean distances.

Scenarios are generated using the copula-based method proposed by Kaut (2014) to
adhere to the statistical properties defined for the stochastic OD demands. This procedure
requires the target marginal distribution for each OD demand (which can be specified using
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Figure 8 – Instance category distribution for scenario generation.

a set of marginal distributions available in the method), and the correlation matrix between
OD pairs as inputs.

To determine the marginal distribution for all OD demands, we considered the original
demand values in the set of instances defined by Dellaert et al. (2019). We identified the
distribution that provided the closest fit (among the marginal distributions available in the
copula-based method) to the value of the OD demands in the complete instance set. This led
us to select a lognormal distribution (with similar mean and standard deviation values) as the
best fit for the given demand values. We then defined a set of four lognormal distributions
with different mean and standard deviation values to capture the impact on the variation
of the marginal distributions representing the demand. Table 6 introduces the proposed
instance set, categorized into four groups: CA, CB, CC, and CD. As illustrated in Figure 8,
a lognormal distribution with consistent mean and standard deviation values, as defined in
Table 6, is utilized for each instance category.

To define demand correlation, two testbed instances are proposed: one considering de-
mand correlation and the other without demand correlation. In the correlated case, correla-
tion matrices are randomly generated. Correlations between OD pairs are determined using
a standard normal distribution with a range of [-0.6, 0.6] for each correlation value.

A properly defined correlation matrix must be positive semidefinite (Xu and Evers, 2003).
Before applying the scenario generation method, this condition is verified for each correlation
matrix obtained (i.e., correlation matrices that do not meet this condition are ignored by
the copula-based method). Scenarios are generated, once the positive semidefinite condition
is verified. The copula-based heuristic uses the mean and standard deviation of the distri-
butions for each instance category and the correlation matrix defined for each instance to
generate a predefined number of scenarios |S| with equal probability. This means that the
probability of occurrence ρs for scenario s ∈ S is ρs = 1/|S|.
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6.2. Scenario stability

This section presents the computational experiments conducted to assess the stability of
the chosen scenario generation procedure with and without demand correlation. Assessing
scenario stability aims to guarante that there is no significant influence by the scenario trees
utilized with respect to the results obtained when solving the considered stochastic problem
(Kaut and Wallace, 2007). In our case, we used the copula-based method introduced by Kaut
(2014) to generate the scenario set. This method, in contrast to other ones (such as sampling
methods), has a high probability of producing identical scenario trees when consecutive runs
are conducted with the same correlation and distribution inputs. Using ‘standard’ in-sample
and out-of-sample stability tests (see, Kaut and Wallace, 2007) are inappropriate, as these
stability tests could overestimate the quality of the scenario generation method (Guo et al.,
2019). Therefore, our scenario stability tests build on the work of Zhang et al. (2021) to
derive a valid variant of the ‘standard’ approach for our problem setting.

Based on the guidelines proposed by Zhang et al. (2021), stability tests require creating
and evaluating a subset of scenario trees for each problem instance, with a fixed scenario tree
size. To test the stability of a scenario tree of size |S|, it is necessary to define a set of 2m+1
scenario trees of sizes |S| −m, |S| − (m− 1),...,|S|,...,|S|+m, where m is a positive integer.
Let Z|S|+i denote the optimal (or best-known) solution for each i ∈ [−m,m] of the 2m + 1
scenario trees obtained for each problem instance. The proposed PH metaheuristic is used to
solve the 2E-MLRPSCD resulting from each of the 2m+1 scenario trees, resulting in 2m+1
solutions Z|S|+i, one for each scenario tree. These solutions are then evaluated by calculating
the objective function F (Z|S|+i) for each of the 2m + 1 scenario trees, yielding a set of
2m+ 1 objective function values for each solution Z|S|+i. Finally, for each problem instance,
the maximum (F+(Z|S|+i)), minimum (F−(Z|S|+i)), and variance (σ|S|+i) are defined based
on the objective function values of each solution Z|S|+i. Stability is then determined by
computing the relative difference (RD) between the maximum and minimum values and the
variance (V AR) of each scenario tree, as follows:

RD = max
i∈[−m,m]

{
F+(Z|S|+i)− F−(Z|S|+i)

F+(Z|S|+i)
× 100%

}
(6.1)

V AR = max
i∈[−m,m]

{σ|S|+i} (6.2)

Table 7 presents a summary of the relative difference (RD) and variance (VAR) values
obtained for the 2m + 1 scenario trees defined for each problem instance. The table shows
the number of scenarios for each scenario tree (|S|), as well as the minimum (MIN), average
(AVR), and maximum (MAX) values for the relative difference and variance. In order to
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|S| RD (%) VAR
VSR AISR MIN AVERAGE MAX MIN AVERAGE MAX

10 38 3.96 0 1.79 8.58 0 1041.89 15222.89
20 47 3.17 0 1.13 5.93 0 335.62 3351.09
30 54 2.65 0 0.82 3.55 0 190.04 1944.3
40 53 2.25 0 0.58 2.25 0 108.05 1142.38
50 53 2.01 0 0.45 2.01 0 74.62 933.34
100 60 n.a 0 0.28 1.44 0 32.52 525.93

Table 7 – Stability tests: summarized results of relative difference and variance for different
scenario sizes.

assess stability, a criterion of RD ≤ 2% is defined. Two additional performance measures
are used to present the number of instances satisfying the stability criterion (valid stability
requirement or VSR) and the average RD of the instances failing to meet the criterion
(average invalid stability requirement or AISR). Experiments are performed using multiple
scenario trees with varying numbers of scenarios (|S|) and m set to 4, based on the work of
Guo et al. (2019). To reduce noise in the results, only the best objective function obtained
for each instance by the proposed PH metaheuristic is used for the stability tests.

The results reported in Table 7 show the expected reduction of the relative difference
with respect to the increased number of scenarios considered. It is worth mentioning that
due to the randomness and heuristic nature of the scenario generation procedure, small
fluctuations exist in the relative error for some instances, which do not affect the validity of
the proposed stability tests. In general, the use of 30 scenarios represents the best balance
between solution stability and scenario size, as it provides a relative error of less than 2%
for 53 out of 60 instances, with an average relative error of 2.6% for the remaining instances.
Although larger scenario trees are desirable for achieving a smaller relative error, solving the
resulting subproblems for the entire instance set using CPLEX at each iteration of the PH
metaheuristic becomes exceedingly challenging.

Figure 9 displays the relative difference values of each instance type as a function of the
number of scenarios used for the stability testing. One can observe that the dispersion of
the demand distributions significantly affects the stability of solutions. Notably, instances
of type CA and CC, characterized by more dispersed demand distributions, exhibit more
fluctuations in the relative difference values. This behavior can be attributed to the copula-
based method generating a diverse set of scenarios, leading to increased volatility in the
objective function values and greater fluctuations regarding the recourse actions.

In conclusion, the results presented in Table 7 indicates that using |S| = 30 achieves
the best balance between solution stability and the resulting complexity of the two-stage
formulation. Additionally, Figure 9 shows that increasing the number of scenarios beyond
|S| = 30 only marginally improves the relative difference percentage in terms of stability.
This in turn indicates that using scenario trees with |S| > 30 is not favorable due to the
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Figure 9 – Stability test: Relative difference for each instance type vs scenario size.

significantly increased computational burden required to address this greater number of
scenarios at each iteration of the PH metaheuristic.

6.3. Performance of the PH metaheuristic

This section presents a performance analysis of the proposed PH metaheuristic. Compu-
tational tests were conducted to compare the performance of the PH metaheuristic to that
of CPLEX when solving the complete stochastic model. The results presented in this section
focus on the quality of the upper bound obtained and the computational time needed by
each solution method. The stopping criteria for all solution methods were set to a maximum
running time of 2 hours. Additionally, the PH metaheuristic was limited to a maximum of
60 iterations. CPLEX was used with the default parameter settings, with a thread limit of
6 imposed when solving the overall stochastic model and a thread limit of 1 specified when
solving the scenario subproblems within the PH metaheuristic.

To address the stochastic problem, computational tests were conducted by solving the
complete two-stage stochastic model with CPLEX or by employing the proposed PH meta-
heuristic. Additionally, experiments were performed using a classic strategy as the baseline
for the PH metaheuristic. This approach represents the steps of the ‘classic’ PH metaheuris-
tic proposed by Crainic et al. (2011a) (Section 5.4.1). In all tables, the results obtained using
CPLEX and the PH metaheuristic are labeled as ‘CPLEX’ and ‘PH’, respectively. Moreover,
the PH metaheuristic results are differentiated based on the specific version of the procedure
used that is: the classical approach (CL), the probabilistic strategy (PS), the social strategy
(SS), and the cluster-based strategy (CBS). Each table presents the average optimality gap
expressed as a percentage (OG), the average computational time in seconds, and the average
upper bound differences between PH and CPLEX (Diff. UB).
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Table 8 presents the results of solving instances with no demand correlation. One can
clearly observe that solving the overall stochastic problem using CPLEX is challenging.
CPLEX achieves an average optimality gap of 21% within the time limit of 2 hours. The
PH metaheuristic outperforms CPLEX. The classic approach (CL), achieves an average im-
provement of 14.5% in solution quality over CPLEX. Moreover, the classic approach is able
of reaching consensus and generating high-quality upper bounds for 53 of the 60 instances
within the 2-hour limit. One notices that the exclusive use of the best quality solutions of
each scenario subproblem to define the reference solution, is not effective enough to reach
consensus over the complete set of first-stage decisions. This general adverse effect is partic-
ularly evident when analysing the results obtained when solving the CA and CC instances.
For these instances, the demand values are sparse, which leads to scenario subproblems
which, when solved, tend to produce more diverse first-stage decisions.

Compared to the classic approach, the proposed strategies can achieve consensus for the
entire set of instances. The probabilistic strategy, which builds on the classic approach,
demonstrates significant improvements in both solution quality and runtime. Specifically,
the probabilistic strategy achieves an average improvement of 16.2% compared with CPLEX
and a 35.3% decrease of average runtime compared with the classic approach. To reach
consensus efficiently, our PH metaheuristic benefits from including alternative solutions for
each scenario subproblem. This approach increases the number of complementary first-stage
decisions that are used to define the aggregation at each iteration. Notwithstanding the
general improvements made by PH utilising the probabilistic strategy, the social and cluster
strategies are able of leveraging more efficiently the existing alternative solutions to further
improve the overall performance of the algorithm.

The social strategy consistently yields reduced runtimes, with the largest average decrease
of 68.3% compared to the classic approach. The consensus-driven approach, which ranks the
global population, is also able to help PH metaheuristic reaching consensus faster and cut
down on computation time. However, reaching general consensus faster does not necessarily
guarantee good-quality solutions. An illustration of this can be seen when comparing the
results obtained with the cluster-based strategy to those obtained with the social strategy.
Although the runs of the PH using the social strategy produces results, on average, 40%
faster, the use of the cluster-based strategy results in consensus solutions of higher quality.
On average, the optimality gap achieved by the PH metaheuristic with the cluster-based
strategy is 2.6%, compared to 6.8% when using the social strategy.

Computational tests on instances with demand correlation are reported in Table 9. Sim-
ilar to the results obtained on instances with no demand correlation, solving the complete
two-stage formulation with CPLEX leads to the worst optimality gap while reaching the
maximum time limit on all instances. On the other hand, the classic approach presents
a significant performance improvement, where consensus is reached for 40 out of the 60
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Instance
type

CPLEX PH
CL PS SS CBS

OG (%) time (s) diff. ub OG (%) time (s) diff. ub OG (%) time (s) diff. ub OG (%) time (s) diff. ub OG (%) time (s)
CA 30.91 7200 -7.02 28.24 4458.16 -13.54 23.71 1323.66 -38.65 8.09 884.99 -44.98 3.76 2295.22
CB 23.66 7200 -32.54 1.54 3568.78 -32.54 1.54 1350.34 -32.62 1.47 1081.83 -32.66 1.44 1239.97
CC 17.42 7200 -9.07 10.07 4651.69 -9.30 9.87 4243.97 -9.04 10.21 2326.02 -19.35 1.95 2442.96
CD 15.79 7200 -9.19 8.11 4520.49 -9.32 8.01 4210.59 -10.11 7.38 1151.61 -14.92 3.47 2200.99

Averages 21.94 7200 -14.46 11.99 4299.78 -16.17 10.78 2782.14 -22.61 6.79 1361.11 -27.98 2.65 2044.79

Table 8 – Summarized results on instances with no demand correlation.

Instance
type

CPLEX PH
CL PS SS CBS

OG (%) time (s) diff. ub OG (%) time (s) diff. ub OG (%) time (s) diff. ub OG (%) time (s) diff. ub OG (%) time (s)
CA 28.70 7200 1.49 29.77 7200.00 -29.94 10.14 2393.54 -38.05 4.71 2178.57 -42.06 2.35 1663.38
CB 24.35 7200 -33.52 0.86 4071.12 -33.76 0.67 1384.67 -33.76 0.67 1989.33 -33.88 0.58 1920.12
CC 13.03 7200 -11.17 3.57 4622.19 -12.50 2.47 2095.32 -12.71 2.29 2167.33 -13.64 1.48 2091.91
CD 11.77 7200 -7.76 5.10 4809.67 -10.45 2.84 1609.31 -11.35 2.02 2061.57 -11.87 1.56 1781.87

Averages 19.46 7200 -12.74 9.82 5175.74 -21.66 4.03 1870.71 -23.97 2.42 2099.20 -25.36 1.49 1864.32

Table 9 – Summarized results on instances with demand correlation.

instances within the given time limit. The probabilistic and social strategies both show
considerably improved performances in solution quality when compared to CPLEX, with an
optimality gap of 4% and 2.4%, respectively. That being said, the cluster-based strategy
outperforms all selection strategies in terms of both time and solution quality. It obtains
the best solutions for 50 out of the 60 instances with an average runtime reduction of 64%
when compared to the classic approach.

The performance of the PH metaheuristic with each proposed aggregation strategy shows
significant variations when tested on instances with and without demand correlation. Sce-
nario trees generated assuming that demands are entirely uncorrelated often result in sce-
narios with a large number of high demand values. These scenarios have more predominant
solution structures, as the first-stage decisions defined under high demand values are more
likely to fit scenarios with lower demand values. This effect is less likely to occur for instances
where negative demand correlation is considered. The likelihood of producing scenarios with
high demand values decreases as the degree of negative correlation between demands in-
creases. As a result, there is increased diversity in demand values for the complete set of
scenarios. This diversity leads to a more varied set of first-stage decisions, which, in turn,
poses challenges for the PH metaheuristic to reach consensus. This general effect explains
the improved performance of the proposed acceleration strategies when demand correlation
is considered.

6.4. Value of the stochastic solution

This section reports on the value of the stochastic solution (VSS), which is a bound to
assess the added value of using the stochastic model compared to the deterministic formula-
tion for the 2E-MLRPSCD problem. Experiments are performed using both instances with
and without demand correlation. Following the general trend in the literature, we use the
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Figure 10 – Comparison of the deterministic versus the stochastic formulation of the 2E-
MLRPSCD on instance with demand correlation.

deterministic formulation (DF) with the mean approximation of the demand, where the sto-
chastic demands are estimated as their mean values obtained from the scenario sets that are
considered. The integrated design and routing decisions are then determined based on the
average value of demands. Results for the deterministic formulation of the 2E-MLRPSCD
are obtained by solving each instance using CPLEX under a 2-hour time limit. The com-
putational tests conducted using the DF are then compared to the solutions obtained by
solving the 2E-MLRPSCD (i.e., the results reported in Section 6.3).

Feasible solutions for all instances can be obtained by using the PH metaheuristic and
the DF. Therefore, we conduct experiments by comparing the results obtained from the DF
approach against the stochastic approach with respect to the general cost increase percent-
ages. Figures 10 and 11 present the results of these experiments by illustrating the increasing
percentage of the objective function (Cost Diff.) and the use of outsourced services (Out
Diff.) for the instances with and without demand correlation, respectively. The results are
organized to depict the minimum, average, and maximum cost increase associated with the
solutions of the deterministic formulation, using the stochastic approach as the baseline.
Tables 10 and 11 present the density of location and allocation decisions on satellite facilities
for each approach and each instance type for instances with and without demand correla-
tion, respectively. Each table shows the number of satellites (|Z|) for each instance type,
and the average value of increased percentages of the objective function (Cost Diff.) of the
DF against the PH metaheuristic. Moreover, two additional measures are presented at each
table to quantify the spatial homogeneity of the distribution of located satellite facilities and
customer allocation to them. These measures correspond to: 1) the satellite location density
(SLD), which represents the average number of open satellites for each instance type, and
2) the maximum and minimum customer allocation density (CAD), which represents the
average number of customers assigned to each open satellite.
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Figure 11 – Comparison of the deterministic versus the stochastic formulation of the 2E-
MLRPSCD on instance with no demand correlation.

Instance
type |Z| cost diff.

PH DF

SLD CAD SLD CAD
max min max min

CA
3 14.43 2.60 10.40 2.00 1.60 13.40 1.60
5 47.46 2.60 5.60 3.80 1.20 12.00 3.00
4 39.34 2.60 9.00 0.20 1.00 15.00 0.00

CB
3 0.00 1.20 12.00 3.00 1.20 12.00 3.00
5 0.28 1.20 12.00 3.00 1.20 12.00 3.00
4 0.00 1.00 15.00 0.00 1.00 15.00 0.00

CC
3 0.75 3.00 6.40 3.00 3.00 5.00 5.00
5 2.07 3.60 5.40 0.40 3.20 5.00 0.40
4 4.93 3.80 6.20 1.60 4.00 5.00 2.20

CD
3 3.53 3.00 6.20 4.00 3.00 5.00 5.00
5 1.97 3.60 5.60 1.40 3.60 4.80 1.40
4 4.43 3.40 6.20 1.20 4.00 5.00 2.40

Averages 9.93 2.60 8.33 1.97 2.33 9.10 2.25

Table 10 – Location/allocation density by instance-types with demand correlation

The results presented in Figure 10 and Figure 11 indicate that the stochastic formulation
consistently outperforms the deterministic formulation in terms of overall solution quality.
The deterministic formulation incurs significantly higher design costs and outsourced ser-
vices. This discrepancy can be attributed to the fact that the deterministic formulation,
fails to capture important demand variations, resulting in higher expected costs. This is
particularly evident in design planning decisions, where the deterministic formulation pro-
duces facility configurations that are insufficient to conduct the necessary vehicle operations
during the second stage for all scenarios. This issue is evident in both instance sets, where
the deterministic formulation used on average 17% and 6% more outsourced services for
instances with and without demand correlation, respectively.
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Instance
type |Z| Dif. UB

PH DF

SLD CAD SLD CAD
MAX MIN MAX MIN

CA
3 16.64 1.20 12.40 2.00 1.60 13.40 1.60
5 37.24 1.20 13.20 1.80 1.20 12.00 3.00
4 35.09 2.60 9.60 0.20 1.00 15.00 0.00

CB
3 0.06 1.20 13.20 3.00 1.20 13.20 3.00
5 0.00 1.20 13.20 3.00 1.00 13.20 3.00
4 0.05 1.00 15.00 0.00 1.00 15.00 0.00

CC
3 7.15 3.00 7.80 3.00 3.00 5.00 5.00
5 5.42 2.8 8.60 2.20 3.20 5.00 0.40
4 9.32 2.80 6.80 2.60 4.00 5.00 2.20

CD
3 0.39 3.00 8.60 3.00 3.00 5.00 5.00
5 4.46 3.20 6.40 3.20 3.60 4.80 1.40
4 7.48 3.20 7.00 2.00 4.00 5.00 2.40

Averages 10.27 2.20 10.15 2.17 2.32 9.30 2.25

Table 11 – Location/allocation density by instance-types with no demand correlation

Distributions covering a wide range of low demand values, exemplified by instance type
CA, demonstrate a clear distinction between instances with and without demand correla-
tion. When demand correlation is considered for instance type CA, there is a tendency to
employ more satellite facilities to accommodate the greater diversity of scenarios. In con-
trast, instances without demand correlation tend to utilize fewer satellite facilities, focusing
on addressing scenarios with high demand values within the scenario set, which are typically
low when compared to other instance types. For instance types CC and CD, where distri-
butions yield higher demand values, the results usually show a high number of open satellite
facilities with a more homogeneous set of customer allocations. Regardless of demand cor-
relation, high demand values force both approaches to lean towards higher satellite usage
to handle the high-value demand variations. Interestingly, a very narrow and low-value de-
mand distribution, as in instance type CB, allowed the deterministic (based on the use of the
average demands) approach to better approximate the demand distribution, which in turn
lead to the deterministic approach to produce results comparable to those of the stochastic
approach. These observations hold even when demand correlation is not considered, with
a general increase in customer allocation density across each instance set due to reduced
demand variability within each scenario set.

One can conclude that the stochastic approach addressed by the proposed PH metaheuris-
tic is generally more cost-effective for both design and routing decisions. The deterministic
formulation approach produces solutions that lack operational efficiency, especially for the
second stage, since it does not sufficiently account for uncertainty at the design planning
stage. Unless the demand distribution is narrow and low enough, the deterministic formula-
tion approach proves unsuitable for designing distribution networks with uncertain demands,
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with or without correlation. Therefore, a stochastic approach should be used to warrant an
effective distribution system design involving location routing decisions under uncertainty.

7. Conclusions
We introduced the two-Echelon multicommodity location-routing problem with stochas-

tic and correlated Demands (2E-MLRPSCD). The problem is formulated as a two-stage
stochastic program where, the location of satellite facilities and the customer-to-satellite
allocation decisions are made in the first stage, while the vehicle routes for both echelons
are decided in the second stage, when customers demands are observed. To address the
proposed two-stage model, we present a specialized PH-based metaheuristic with a series
of novel enhancements. These include: 1) population structures of alternative and diverse
solutions for the scenario subproblems; 2) strategies to define the reference solutions, which
are used to guide the overall search; and 3) a reset procedure that reduces the risk of the
method becoming trapped in local optima.

A series of numerical experiments were performed, involving a set of instances with
varying characteristics, which computationally showed that the proposed enhancements sig-
nificantly improved the overall performance of the PH method built for the 2E-MLRPSCD,
both in terms of the quality of the solution obtained and the computation times of the al-
gorithm. Moreover, the numerical results also clearly showed the added value of explicitly
considering the uncertainty in demand and its interrelations. The solutions obtained by
solving the stochastic problem outperformed the ones obtained by applying a deterministic
approximation approach (where the average values were used for the customer demands).

Several interesting avenues for future research may be identified. There is a need to
design novel heuristic and exact methods to more efficiently address the set of scenario
subproblems that must be solved at each iteration of the PH metaheuristic. There are also
interesting extensions to the considered problem that could be studied. Specifically, solving
the problem with additional sources of uncertainty (e.g., travel times uncertainty) would
certainly be worthwhile for a wide gamut of applications.
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Résumé. Cet article présente et étudie le problème de localisation-routage à deux échelons et à attributs
multiples avec des temps de trajet stochastiques. Le problème est formulé à l’aide d’une approche de pro-
grammation stochastique en deux étapes, qui intègre efficacement les interactions entre plusieurs attributs.
Dans la première étape, les décisions de conception des plateformes et des installations satellites sont prises
en compte, tandis que la deuxième étape consiste à déterminer les décisions de routage de la demande sur
la base des temps de trajet observés. Pour traiter le problème stochastique complet, un cadre de couverture
progressive (PH) est proposé. En outre, une heuristique basée sur la décomposition est introduite pour
accélérer le cadre PH, et deux nouvelles stratégies d’agrégation sont présentées pour accélérer le processus
de consensus concernant les décisions de la première étape. Des expériences informatiques complètes sont
effectuées pour évaluer l’efficacité de la métaheuristique basée sur la décomposition dans la résolution de
problèmes déterministes multi-attributs riches. Des analyses comparatives démontrent que le cadre de PH
proposé, ainsi que les deux nouvelles stratégies d’agrégation, sont plus performants que les approches les
plus récentes lorsqu’ils prennent en compte des temps de trajet stochastiques.
Mots clés : Problème de localisation-routage à deux échelons et à attributs multiples, temps de déplacement
stochastiques, couverture progressive.

Abstract. This paper investigates the two-echelon multi-attribute location-routing problem with sto-
chastic travel times. The problem setting we address revolves around the interplay between uncertain travel
times and multiple interacting attributes. The problem is formulated as a two-stage stochastic program,
with the first stage handling design decisions for facilities, while the second stage determines routing de-
cisions based on observed travel times. A Progressive-Hedging (PH) metaheuristic is proposed to address
the stochastic formulation. To tackle the inherent complexity stemming from the multi-attribute nature of
the problem and the stochastic considerations, we introduce a decomposition-based heuristic and two novel
scenario-selection heuristic strategies to enhance the effectiveness of the proposed PH metaheuristic and ac-
celerate the exploration of the solution space. Comprehensive computational experiments are conducted to
assess the effectiveness of the metaheuristic in addressing rich multi-attribute stochastic problem settings.
Comparative analyses show that the proposed solution method, outperforms state-of-the-art approaches
when considering stochastic travel times.
Keywords: Two-Echelon Multi-Attribute Location-Routing Problem, stochastic travel times, progressive
hedging

1. Introduction
The Two-Echelon Location Routing Problem (2E-LRP) is a well-established modelling

framework in logistics and supply chain management (Sluijk et al., 2022). The problem
addresses both design and routing decisions for distribution systems encompassing two dis-
tinct hierarchical tiers: primary platform facilities (distribution centers) constituting the first
echelon, and end customers (demand points) making up the second echelon. The core con-
cept of the 2E-LRP involves using intermediary facilities called satellites to consolidate and
distribute goods rather than directly serving customers from platforms. The ‘standard’ defi-
nition of the 2E-LRP is composed of (1) design decisions, which consist of selecting/opening
a number of platform and satellite facilities; (2) the allocation of customers to the selected
facilities; and (3) routing decisions, which concern the definition of a limited set of vehicle
routes on both tiers to meet customer demands using the system design. The objective of
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this ‘standard’ 2E-LRP problem consists of minimizing the total system cost defined by the
fixed cost associated with the design and assignment decisions and the total distribution
cost, while respecting both vehicle and facility capacities.

Despite the growing research in the field, the literature largely focuses on the determinis-
tic ‘standard’ 2E-LRP. Limited attention has been given to emerging logistic challenges that
require more comprehensive multi-attribute settings (Mara et al., 2021b). The significance of
these problem settings has been underscored by Escobar-Vargas and Crainic (2023), wherein
a multi-attribute 2E-LRP with fleet synchronization is introduced, delving into the mod-
elling and algorithmic challenges inherent to the interplay of multiple interacting attributes.
As businesses adopt time-critical operations amid uncertain travel times due to various ran-
dom events (e.g., weather, traffic, etc.), understanding the interplay between multi-attribute
considerations and stochastic dynamics becomes crucial (Ben Mohamed et al., 2023). De-
veloping effective modeling and solution frameworks is a necessary step in addressing these
challenges.

To address this research gap, this study introduces the Two-Echelon Multi-Attribute
Location-Routing Problem with Stochastic Travel Times (2E-MALRPSTT ). The problem
incorporates several attributes included in the work of Escobar-Vargas and Crainic (2023),
e.g., time-dependent multicommodity, origin-to-destination (OD) demand, time windows,
and fleet synchronization at intermediate facilities. A significant difference with the ap-
proach taken by Escobar-Vargas and Crainic (2023), is that our problem formulation in-
cludes uncertain travel times. This addition necessitates a mild synchronization requirement
to mitigate the potential impact of tighter temporal constraints on the decisions related to
system design.

Stochastic programming is a widely used method for managing uncertainty involving
planning decisions (Guo et al., 2019). The goal of stochastic programming in this context
is to determine a design that remains cost-effective when different travel time realizations
are encountered. Our study then focuses on a decision and information process where an
initial design is established before travel time values are known. This design is then used
for optimizing vehicle routes when travel times are realized with the eventual use of an
outsourced service to serve the demand, when needed. The problem is structured as a
two-stage stochastic program. The first stage involves determining platform and satellite
locations, as well as customer allocations. In the second stage, vehicle routes are determined
based on observed travel times. Distribution costs are influenced by these times, aiming to
minimize the total design and expected distribution costs.

We propose a progressive-hedging (PH) metaheuristic to address the 2E-MALRPSTT,
building upon the work of Escobar-Vargas et al. (2023) for the 2E-LRP with stochastic and
correlated demands. In general, the PH metaheuristic decomposes the stochastic problem
into multiple deterministic subproblems based on the considered set of scenarios, which are
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iteratively solved to define a reference solution that is used to adjust the formulation until
non-scenario dependent decisions have reached a general consensus. The work of Escobar-
Vargas et al. (2023) introduces a set of algorithmic enhancements to the PH metaheuristic
to improve diversity for the generation of the reference solution and the scenario-selection
strategies to accelerate the search of the solution space defined by the stochastic problem.
Extending this method to the 2E-MALRPSTT is not a straightforward process, due to the
inherent complexity of the deterministic multi-attribute 2E-LRP, resulting from the scenario
decomposition of the 2E-MALRPSTT and the challenge of addressing large-scale mixed-
integer program (MIP) to model associated with it at each iteration of the PH.

To address this issue, our work introduces a decomposition-based heuristic approach for
the scenario subproblems, which corresponds to a deterministic 2E-MALRPSTT. Each sce-
nario subproblem consists of two main components: a location-routing problem with time
windows and time-dependent origin-destination demands (LRPTWTDD) and a multi-depot
vehicle routing problem with time windows (MDVRPTW). The heuristic operates on each
echelon, considering both coordinated and integrated problems to determine the location
and routing decisions for the complete deterministic 2E-MALRPSTT. The resulting opti-
mization problems from the decomposition are solved using the commercial solver CPLEX.
A computational study demonstrates the behaviour and robust performance of the proposed
heuristic for both the deterministic 2E-MALRPSTT and when paired with the PH-based
metaheuristic.

The paper is organized as follows: Section 2 provides the problem definition. An overview
of related literature is presented in Section 3. Section 4 presents the system modelling and the
proposed mathematical formulation. Section 5 describes the PH metaheuristic we propose.
Computational results are presented and analyzed in Section 6.

2. Problem definition
This section presents the 2E-MALRPSTT, a multi-attribute 2E-LRP involving time-

dependent multicommodity, origin-destination demands, fleet synchronization, time windows
and uncertain travel times. For the sake of clarity, this section is structured into two parts.
Section 2.1 presents the physical components of the 2E-MALRPSTT. Section 2.2 outlines
the representation of the stochastic travel times, along with the objectives and requirements
characterizing the problem setting.

2.1. The 2E-MALRPSTT setting

The 2E-MALRPSTT is formally defined on a complete weighted directed graph G =
(V,A). The set of vertices V = Q ∪ P ∪ Z ∪ C ∪E consists of five disjoint sets representing
different components of the network: suppliers Q (the origins of demand), potential platform
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sites P (primary facilities), potential satellite sites Z (intermediate facilities), customers
C (demand destination), and vehicle garages E. Platforms are large-scale infrastructures
responsible for receiving, sorting, and consolidating inbound freight from suppliers, while
satellites are intermediate depots of medium to small size with limited storage capacity,
where the two transportation echelons meet and freight is transshipped and consolidated.
Each potential platform location p ∈ P , is associated with a fixed selection (opening) cost Fp

and a capacity Θp. Similarly, a fixed selection cost Fz is defined for each potential satellite
location z ∈ Z.

The multi-commodity, origin-destination (OD) demand refers to the transportation re-
quirements between suppliers and customers, represented by set K. Each OD demand k ∈ K
is characterized by an origin supplier O(k) ∈ Q, a destination customer D(k) ∈ C, a volume
vol(k), and an availability time αpk, indicating when commodity k will be ready for trans-
portation if assigned to ship from platform p ∈ P . Additionally, a fixed allocation cost ∆pzk

is established to account for the design costs incurred when serving OD demand k ∈ K using
a platform p ∈ P and a satellite z ∈ Z.

Freight transportation is executed using two fleets of homogeneous vehicles, one for each
echelon, denoted as H = H1 ∪H2. The vehicles of these fleets have limited load capacities,
cap1 and cap2, respectively. Vehicles are assumed to be parked in strategically positioned
garages E = E1∪E2, for the first echelon vehicles (E1) and the second echelon vehicles (E2).

The arc set A = A1 ∪ A2 represents the direct links between the vertices in V . For
the deterministic version of the 2E-MALRPSTT, each arc (i,j) ∈ A is associated with a
non-negative unit cost ζij and a travel time τij. The set A1 consists of arcs belonging to the
first echelon, including connections between platforms P and satellites Z, arcs connecting
first-echelon garages to platforms and satellites as well as connections between satellites. On
the other hand, the set A2 comprises arcs of the second echelon, representing connections
between satellites Z to customers C, connections between pairs of customers, and connections
between second-echelon garages and satellites and customers.

The distribution plan and corresponding time-sensitive network are developed for a given
schedule length Ξ. The system, along with the distribution plan, operates cyclically and
repetitively over a planning horizon, during which demand and temporal properties remain
unchanged (Wang et al., 2019). Thus, all transportation activities occur within the interval
0 to Ξ. Platform facilities have the capability to hold demands for a maximum duration of
W 1

max without extra costs. Due to satellite storage limitations and the time-dependency of
demand, synchronization of first- and second-echelon vehicles is necessary when transporting
the same OD demand. In this context, fleet synchronization dictates that the departure time
of the second-echelon vehicle should be later than or equal to the arrival time of the first-
echelon vehicle at the satellite. Hence, each second-echelon vehicle should wait for the arrival
of all first-echelon vehicles that carry at least one of the assigned commodities. Moreover,
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Figure 12 – Two-echelon distribution system topology

each customer c ∈ C has a (hard) time window [ac, bc] representing the interval within which
service must start and end.

The problem involves multiple aspects, including the selection of platforms and satellites,
the allocation of customer-to-satellite and satellite-to-platform, and the routing of the two
vehicle fleets to meet all OD demands. As shown in Figure 12, each OD demand is linked to
an open platform. At platforms, demand consolidates with other goods and is transported
by a first-echelon vehicle to the designated satellites, where demand flows are transferred.
Subsequently, satellites transship and consolidate received loads into second-echelon vehi-
cles, delivering goods to final destinations. For the sake of clarity, the garage nodes are
intentionally omitted from all illustrations presented in this paper.

2.2. The stochastic setting

The 2E-MALRPSTT involves uncertainty in travel times. We assume the existence
of probability distributions to characterize the variability of the travel times. Given that
the 2E-MALRPSTT is inspired by long and medium-term planning of freight distribution
applications, it becomes imperative to differentiate the sequence in which decisions are to be
taken based on the point at which values of the stochastic travel times become known.

In terms of decision-making and information processing, design and allocation decisions
are made as part of the planning stage based on an evaluation/estimation of their impact on
operations, along with available actions for adapting the plan to observed travel times. These
adaptive measures, or recourse actions, involve determining the routes to fulfill customer
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demands and, if necessary, adding ad-hoc capacity. The recourse actions in the present case
involve the definition of the optimal routes to fulfill customer demands with the observed
(“realized”) travel times including, when necessary, the use of external outsourcing services
with high additional operational costs.

The 2E-MALRPSTT then consists of the selection of platform and satellite facilities, the
allocation of demand from suppliers-to-platforms, satellites-to-platforms, and customers-to-
satellites, as well as the creation of a limited set of routes for the first and second echelon
vehicles in such a way that: (i) each supplier must be assigned to an available platform and
satellite; (ii) all routes within the first echelon must start and end at the same vehicle garage
(E1); (iii) all routes within the second echelon must start and end at the same vehicle garage
(E2); (iv) every customer demand must be satisfied within the designated time window; (v)
the load capacity of each vehicle must not be exceeded; (vi) each customer must be visited
by a single vehicle or by an outsourced service; (vii) the total demand assigned to each
platform facility should not surpass its capacity at any given time; (viii) the departure time
of demand from platforms/satellites and the start time of vehicles at each echelon must be
determined; (ix) The objective is to minimize the combined sum of the fixed selection costs
and the expected routing costs (i.e., the recourse action).

3. Literature review
This work addresses a two-echelon location routing problem (2E-LRP) that considers

multiple deterministic interacting attributes and stochastic travel times. In this section, our
objective is to position the problem within the broader class of location routing problems
and provide a literature review specifically focusing on multi-attribute 2E-LRPs and LRPs.
We aim to identify the existing knowledge gaps related to time dependencies, time windows,
origin-destination demand, fleet synchronization, and stochastic travel times. It is important
to clarify that providing an exhaustive review of each individual attribute and their treatment
in the literature, as well as their incorporation into related problem classes such as the vehicle
routing problem (VRP) and the two-echelon vehicle routing problem (2E-VRP), falls beyond
the scope of this section. Therefore, our literature review primarily concentrates on 2E-LRPs
and LRPs that consider two or more of the attributes addressed in this study. Furthermore,
we explore the advancements made in the field with regard to progressive-hedging-based
methods. For a comprehensive overview of studies on 2E-LRP and LRP that integrate
attributes beyond the scope of this work, as well as contributions related to VRPs and 2E-
VRPs, we refer to recent surveys conducted by Schiffer et al. (2019), Albareda-Sambola and
Rodríguez-Pereira (2019), Crainic et al. (2021a), Mara et al. (2021b) and Sluijk et al. (2022).
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The literature on LRPs encompasses a wide range of attributes considered, varying in
number and type. Since the seminal work of Maranzana (1964), LRPs have attracted nu-
merous contributions that explore rich and complex problem settings. Despite the extensive
literature on LRPs, the integration of multiple interacting attributes is predominantly rep-
resented by studies focusing on individual considerations, such as time windows at customer
locations as the primary temporal constraint (e.g., Ponboon et al., 2016; Farham et al., 2018)
or multi-commodity demands (e.g., Govindan et al., 2014; Boccia et al., 2018). However,
there is a notable scarcity of literature on LRPs with stochastic travel times. Herazo-Padilla
et al. (2015) integrated discrete-event simulation with ant colony optimization to address
LRPs with stochastic travel times and transportation costs. Gao et al. (2016) proposed an
ant colony algorithm for solving LRPs with stochastic travel times represented as random
and cyclic traffic factors. The study of LRPs considering various time-sensitive attributes,
such as time-dependent demands or synchronization, as well as the associated modelling and
algorithmic challenges, remains largely unexplored in the field.

Research on multi-attribute 2E-LRPs is currently limited. Unlike the LRP, the 2E-
LRP represents a more recent and complex problem setting that has garnered increasing
attention from the scientific community. Most contributions in this field have primarily
focused on studying time-sensitive logistic problems, where time is typically modeled using
customer time windows (e.g., Govindan et al., 2014; Wang et al., 2018) and considering
multi-period considerations (e.g., Darvish et al., 2019). However, the investigation of rich,
multi-attribute 2E-LRPs that incorporate multiple interacting sources of time dependency
has received little attention. Only three research studies have specifically addressed a multi-
attribute 2E-LRP with two attributes relevant to this research. Bala et al. (2017) tackles
a 2E-LRP with synchronized production schedules and time windows, while Mirhedayatian
et al. (2019) considered a pick-up and delivery setting with fleet synchronization. The most
recent work by Escobar-Vargas and Crainic (2023) addresses a 2E-LRP with time-dependent
origin-destination demands, time windows and fleet synchronization. However, to the best
of our knowledge, there is currently no existing study on 2E-LRP involving stochastic travel
times.

From a methodological perspective, studies on LRPs with stochastic travel times typi-
cally employ a similar solution strategy that involves decoupling location and routing de-
cisions. This approach often relies on defining location decisions through iterative testing
of a pre-defined set of potential facility locations and routing alternatives evaluated un-
der the realization of uncertain travel times (Herazo-Padilla et al., 2015; Gao et al., 2016).
Decomposition-based methods, such as this one, have demonstrated promising potential for
solving two- and multi-stage stochastic optimization models (Atakan and Sen, 2018).

Decomposition strategies performed with respect to scenarios or time periods (stages) in
the decision model, such as the progressive-hedging strategy (Rockafellar and Wets, 1991),
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have become an important research avenue in the field. The progressive-hedging algorithm,
is one of the most widely used dual decomposition frameworks. However, the non-convex
nature of the feasible set defined by stochastic mixed integer programs and the complexity
of proving the convergence of PH for such applications (Atakan and Sen, 2018) have led to
the development of PH-based heuristics that follow the guidelines of the original algorithm
to overcome these limitations (e.g., Løkketangen and Woodruff, 1996; Haugen et al., 2001;
Crainic et al., 2011a; Lamghari and Dimitrakopoulos, 2016; Alvarez et al., 2021).

These methods typically employ heuristic solution approaches to address the determin-
istic problems resulting from scenario decomposition in the stochastic problem. They itera-
tively use the best solution defined for each subproblem to guide the search of the solution
space. A recent contribution by Escobar-Vargas et al. (2023) presents a richer extension
of the PH-based algorithm introduced by Crainic et al. (2011a), incorporating two popu-
lation structures, the use of alternative solutions for each scenario subproblem, and three
scenario-selection methods to accelerate consensus. The objective of this study is to ad-
dress the existing research gaps by extending and enhancing the PH-based metaheuristic
proposed by Escobar-Vargas et al. (2023) for the 2E-MALRPSTT. This is achieved through
the introduction of two novel scenario-selection heuristics to accelerate consensus in the sto-
chastic problem and a decomposition-based heuristic employed to tackle the deterministic
subproblems arising from scenario decomposition.

4. Modelling
Section 4.1 is dedicated to presenting the proposed modelling approach, while Section 4.2

outlines the mathematical formulation proposed for the 2E-MALRPSTT.

4.1. Modelling uncertainty

The 2E-MALRPSTT is formulated as a two-stage stochastic program. The proposed
two-stage formulation consists of a first stage where the selection of satellite and platform
facilities and the allocation of OD demands to them are made. In the second stage, routing
decisions at both echelons are determined when travel times are observed. Additionally, the
option of using outsourced capacity when necessary is also part of the second stage, where
an operational cost R is incurred for each unit of volume in vol(k).

Uncertainty in travel times is modeled with a finite set of scenarios generated by sampling
probability distributions. Let S represent the set of scenarios, where each scenario s ∈ S

signifies a specific realization of the random events that determine the travel time values
for each arc within the system. Let ρs be the probability of occurrence of scenario s, with∑

s∈S ρs = 1. Consequently, for a given scenario s ∈ S, there exists a fixed travel time value
τ s

ij for all arcs (i,j) ∈ A, with τ s
ij ≥ 0.
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4.2. Two-stage stochastic formulation for the 2E-MALRPSTT

This section introduces the Mixed-Integer Programming (MIP) formulation for the 2E-
MALRPSTT. The problem is structured as a two-stage stochastic programming problem
employing a three-index vehicle-flow formulation. To model fleet synchronization and the
multiple visits made by first-echelon vehicles to satellite facilities, a set of clone satellites
Z̃z ∈ Z̃ is introduced for each satellite z ∈ Z. Each clone satellite in Z̃z corresponds
to a physical satellite z ∈ Z, which, is replicated based on the number of visits allowed
at the facility. The total number of OD demands |K| serves as an upper limit of visits
at each satellite. Two sets of decision variables are defined: (1) the first-stage variables
to address satellite location and OD demand-to-satellite allocation decisions, and (2) the
second-stage variables pertain to vehicle-routing decisions at both echelons. Following the
prevailing convention in the literature, we adopt a concise presentation by formulating the
problem directly in terms of the set of scenarios S. This leads to second-stage variables
being indexed by scenario, while first-stage variables are not indexed as they remain fixed in
the second stage. We employ satellite facilities z ∈ Z to denote the second-stage variables
consistently throughout the paper. However, in this extensive formulation, we represent
these second-stage variables in terms of the clone satellites Z̃ to capture the behaviour of the
2E-MALRPSTT. The following definitions describe the decision variables on the extensive
form of the proposed two-stage formulation:

— yi ∈ {0,1}, i ∈ (P ∪ Z): location variable, 1 if a facility i is open, 0 otherwise;
— fpzk ∈ {0,1}, p ∈ P, z ∈ Z, k ∈ K: allocation variable, 1 if demand k is allocated to

platform p and satellite z;
— xs

ijh ∈ {0,1}, (i, j) ∈ A, h ∈ H, s ∈ S: vehicle flow variable, 1 if arc (i, j) is used by
vehicle h in scenario s, and 0 otherwise;

— ϕs
pzkh ∈ {0,1}, p ∈ P, z ∈ Z, k ∈ K,h ∈ H1, s ∈ S: vehicle allocation variable, 1 if

demand k is allocated to satellite z and platform p with a given vehicle h in scenario
s, 0 otherwise;

— ψs
zch ∈ {0,1}, z ∈ Z, c ∈ C, h ∈ H2, s ∈ S: vehicle allocation variable, 1 if costumer c

is allocated to satellite z with a given vehicle h at scenario s, 0 otherwise;
— µ1

ihs ≥ 0, i ∈ (P ∪Z), h ∈ H1, s ∈ S: arrival time of vehicle h at vertex i in scenario s;
— µ2

ihs ≥ 0, i ∈ (Z ∪C), h ∈ H2, s ∈ S: arrival time of vehicle h at vertex i in scenario s;
— ν1

ihs ≥ 0, i ∈ (P ∪Z), h ∈ H1, s ∈ S: departure time of vehicle h at vertex i in scenario
s;

— ν2
ihs ≥ 0, i ∈ (Z∪C), h ∈ H2, s ∈ S: departure time of vehicle h at vertex i in scenario
s;

— os
k ≥ 0, k ∈ K, s ∈ S: outsourced demand k in scenario s;

— M : large integer number;
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The extensive two-stage formulation of the 2E-MALRPSTT then becomes:

min
∑

i∈(Z∪P )
Fiyi +

∑
i∈P

∑
j∈Z

∑
k∈K

∆ijkfijk +
∑
s∈S

ρs

Å ∑
h∈H

∑
(i,j)∈A

ζs
ijx

s
ijh +R

∑
k∈K

os
k

ã
(4.1)

subject to ∑
h∈H1

∑
i∈Z̃z

∑
j∈(E1∪Z̃\Z̃z)

xs
ijh ≤ |H1|yz ∀z ∈ Z, s ∈ S (4.2)

∑
j∈Z̃

xs
ijh −

∑
j∈E1

xs
jih = 0 ∀i ∈ P, h ∈ H1, s ∈ S (4.3)

∑
j∈(E1∪Z̃),i ̸=j

xs
ijh −

∑
j∈(P ∪Z̃),i ̸=j

xs
jih = 0 ∀i ∈ Z̃, h ∈ H1, s ∈ S (4.4)

∑
j∈P

xs
ijh −

∑
j∈Z̃

xs
jih = 0 ∀i ∈ E1, h ∈ H1, s ∈ S (4.5)

∑
i∈E1

∑
j∈P

xs
ijh ≤ 1 ∀h ∈ H1, s ∈ S (4.6)

∑
h∈H2

∑
j∈(E2∪C),D(k)̸=j

xs
D(k)jh + os

k = 1 ∀k ∈ K, s ∈ S (4.7)

∑
j∈E2

xs
jih −

∑
j∈C

xs
ijh = 0 ∀i ∈ Z̃, h ∈ H2, s ∈ S (4.8)

∑
j∈(Z̃∪C),i ̸=j

xs
jih −

∑
j∈(C∪E2),i ̸=j

xs
ijh = 0 ∀i ∈ C, h ∈ H2, s ∈ S (4.9)

∑
j∈Z̃

xs
ijh −

∑
j∈C

xs
jih = 0 ∀i ∈ E2, h ∈ H2, s ∈ S (4.10)

∑
i∈E2

∑
j∈Z̃

xs
ijh ≤ 1 ∀h ∈ H2, s ∈ S (4.11)

µ1
ihs ≥ αik

∑
j∈Z̃

ϕs
ijkh ∀i ∈ P, h ∈ H1, k ∈ K, s ∈ S (4.12)

ν1
ihs ≤ (αik +W 1

max) + (1−
∑
j∈Z̃

ϕs
ijkh)M ∀i ∈ P, h ∈ H1, k ∈ K, s ∈ S (4.13)

µ1
ihs + τ s

ij − µ1
jhs ≤ (1− xs

ijh)M ∀h ∈ H1, (i,j) ∈ A1, s ∈ S (4.14)

ν1
ihs + τ s

ij − ν1
jhs ≤ (1− xs

ijh)M ∀h ∈ H1, (i,j) ∈ A1, s ∈ S (4.15)

µ2
ihs + τ s

ij − µ2
jhs ≤ (1− xs

ijh)M ∀h ∈ H2, (i,j) ∈ A2, s ∈ S (4.16)

ν2
ihs + τ s

ij − ν2
jhs ≤ (1− xs

ijh)M ∀h ∈ H2, (i,j) ∈ A2, s ∈ S (4.17)

ν2
jbs ≥ µ1

jhs − (2− ψs
jD(k)b −

∑
i∈P

ϕs
ijkh)M

∀h ∈ H1, b ∈ H2, k ∈ K, j ∈ Z̃, s ∈ S (4.18)

ai ≤ µ2
ihs ≤ bi ∀i ∈ C, h ∈ H2, s ∈ S (4.19)
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∑
j∈(C∪E2),i ̸=j

xs
ijh +

∑
j∈C

xs
zjh − ψs

zih ≤ 1

∀i ∈ C, z ∈ Z̃, h ∈ H2, s ∈ S (4.20)

cap1 x
s
ijh −

∑
k∈K

vol(k) ϕs
ijkh ≥ 0

∀h ∈ H1, i ∈ P, j ∈ Z̃, s ∈ S (4.21)∑
h∈H1

∑
i∈P

ϕs
ijkh =

∑
l∈H2

ψs
jD(k)l

∀j ∈ Z̃, k ∈ K, s ∈ S (4.22)∑
h∈H1

∑
i∈P

∑
j∈Z̃

ϕs
ijkh + os

k = 1 ∀k ∈ K, s ∈ S (4.23)

∑
h∈H1

∑
k∈K

∑
j∈Z̃

vol(k) ϕs
ijkh ≤ Θi yi ∀i ∈ P, s ∈ S (4.24)

∑
k∈K

∑
i∈P

∑
j∈Z̃

vol(k) ϕs
ijkh ≤ cap1 ∀h ∈ H1, s ∈ S (4.25)

∑
k∈K

vol(k)
∑

j∈(E2∪C),D(k) ̸=j

xs
D(k)jh ≤ cap2 ∀h ∈ H2, s ∈ S (4.26)

∑
h∈H1

ϕs
ijkh ≤ fizk ∀i ∈ P, j ∈ Z̃z, k ∈ K, z ∈ Z, s ∈ S (4.27)

∑
h∈H2

ψs
iD(k)h ≤

∑
p∈P

fpzk ∀i ∈ Z̃z, k ∈ K, z ∈ Z, s ∈ S. (4.28)

The objective function (4.1) minimizes the total transportation costs of the distribution
network computed as the sum of the fixed cost of the selected facilities and the expected
routing costs (the recourse action) of the demand flows through the resulting network. Con-
straints (4.2) impose that outbound arcs from every open satellite must respect the total
number of first-echelon vehicles. Constraints (4.3)-(4.5) are the flow conservation constraints
for platforms, satellites, and first-echelon garages, respectively. Constraints (4.6) ensure that
each active vehicle is assigned to one platform only. Constraints (4.7) ensure that every cus-
tomer is served either by the distribution system with a single second-echelon vehicle or
by an outsourced service. Constraints (4.8)-(4.10) are the flow conservation constraints for
satellites, customers, and second-echelon garages, respectively. Constraints (4.11) ensure
that each active vehicle is assigned to one satellite only. Constraints (4.14)-(4.15) handle the
arrival and departure times of first-echelon vehicles.

Constraints (4.12) and (4.13) guarantee schedule feasibility with respect to demand avail-
ability and maximum holding time at platform facilities. Constraints (4.16)-(4.17) handle the
arrival and departure times of second-echelon vehicles. Constraints (4.18) relate the depar-
ture time and the arrival time of first- and second-echelon vehicles, respectively, to guarantee
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fleet synchronization at satellite facilities. Constraints (4.19) ensure that second-echelon ve-
hicles arrive within the customer time windows. Constraints (4.20) and (4.21) link allocation
and routing variables. Constraints (4.22) are the flow conservation constraints at satellites.
Constraints (4.23) ensure that each origin supplier is allocated either to an open platform
or to an outsourced service. Constraints (4.24) ensure that the multicommodity flow going
out from platforms is less than or equal to the platform capacity. Constraints (4.25) and
(4.26) impose that the multicommodity flow carried by each vehicle, in the first and second
echelon, respectively, is less than its capacity. Constraints (4.27) and (4.28), respectively link
allocation and vehicle allocation variables for the first-echelon and second-echelon vehicles.

5. A progressive-hedging-based metaheuristic for the
2E-MALRPSTT

This section presents a progressive-hedging-based metaheuristic to address the 2E-
MALRPSTT, building upon the work of Escobar-Vargas et al. (2023). The algorithm, as
depicted in Figure 13, begins with the scenario-based decomposition of the extensive formu-
lation. This approach yields a collection of scenario subproblems with modified fixed costs
associated with the first-stage decision variables. At each iteration of the PH metaheuristic,
each scenario-specific subproblem is individually addressed. For each scenario subproblem,
there is a local population of size ξL (including a reduced number ξE of elite solutions) re-
sponsible for storing the set of alternative solutions that are obtained when addressing it. To
populate the local population, each alternative solution is ranked in terms of its quality (i.e.,
objective function value) and contribution to diversity (i.e., dissimilarity with respect to the
first-stage decision variables) over the set of solutions that are already included in the local
population. Local populations are maintained from one iteration to the next. The best (elite)
selected solutions of each local population are then gathered at each iteration into a global
population of solutions for the complete problem, of size ξG. This global population is then
used to define a general reference solution using a decision-based scenario clustering strategy
(see, Escobar-Vargas et al., 2023). This reference solution is used to guide the search by
adjusting the costs in the objective function of each scenario subproblem, aiming to reach
a consensus on the first-stage decisions over all the scenarios. The algorithm ends when a
consensus is reached on the first-stage decisions or when external stopping criteria are met
while saving the best feasible solution obtained on each iteration.

There are multiple algorithmic challenges that arise when tackling the 2E-MALRPSTT
using a PH method. On the one hand, the scenario subproblems defined by the decomposition
of the extensive formulation are significantly complex to be addressed by a standalone com-
mercial solver (Escobar-Vargas and Crainic, 2023). On the other hand, the decision-based
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Figure 13 – Progressive Hedging-based metaheuristic for the 2E-MALRPSTT

scenario clustering strategy proposed by Escobar-Vargas et al. (2023) appears to be insuffi-
cient to account for the large dimension of the stochastic parameters in the 2E-MALRPSTT.
We thus propose two algorithmic enhancements for the PH metaheuristic to address these
challenges. These enhancements include: (1) a decomposition-based heuristic to address
the scenario subproblems defined at each iteration of the PH, and (2) two novel scenario-
selection heuristics to further enhance the capabilities of the decision-based strategy for the
2E-MALRPSTT. This section provides a comprehensive, step-by-step, description of the
algorithmic structure of the proposed PH metaheuristic.

5.1. Scenario decomposition for the 2E-MALRPSTT

This section introduces the decomposition methodology applied to the extensive two-
stage formulation (Section 4.2). The decomposition approach requires a reformulation of the
first-stage decisions (detailed reformulation in the supplementary material Appendix C.1).
Specifically, these decisions need to be redefined as scenario-dependent, and constraints en-
forcing consistency in the first-stage variables across all scenarios must be included. Let
ys

i and f s
ijk be the reformulation of the location and allocation decisions, respectively, for

each scenario s ∈ S. This also reformulates constraints (4.2), (4.24), (4.27), and (4.28),
tailoring them to the scenario-specific location and allocation first-stage decisions. A set
of non-anticipativity constraints is added to the model to prevent the first-stage decision
variables from taking distinct scenario-specific values:
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ys
i = ȳi ∀i ∈ (P ∪ Z), s ∈ S, (5.1)

f s
ijk = f̄ijk ∀i ∈ P, j ∈ Z, k ∈ K, s ∈ S, (5.2)

ȳi ∈ {0,1} ∀i ∈ (P ∪ Z), (5.3)

f̄ijk ∈ {0,1} ∀i ∈ P, j ∈ Z, k ∈ K. (5.4)

Let ȳi and f̄ijk be the reference variables for the first-stage decisions preventing the
adoption of distinct scenario-specific decisions. Then, following the decomposition scheme,
originally proposed by Rockafellar and Wets (1991), constraints (5.1) and (5.2) are relaxed
using an augmented Lagrangian method, which results in the following relaxed reformulation
of the extensive model:

min
∑
s∈S

ρs

Å ∑
(i,j)∈A

∑
h∈H

ζijx
s
ijh +

∑
k∈K
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i

+
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∑
j∈Z
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Å
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ã
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subject to

(4.3)− (4.23)

(4.25)− (4.26)∑
h∈H1

∑
i∈Z̃z

∑
j∈(E1∪Z̃\Z̃z)

xs
ijh ≤ |H1|ys

z ∀z ∈ Z, s ∈ S (5.6)

∑
h∈H1

∑
k∈K

∑
j∈Z̃

vol(k) ϕs
ijkh ≤ Θi y

s
i ∀i ∈ P, s ∈ S (5.7)

∑
h∈H1

ϕs
ijkh ≤ f s

izk ∀i ∈ P, j ∈ Z̃z, k ∈ K, z ∈ Z, s ∈ S (5.8)
∑

h∈H2

ψs
iD(k)h ≤

∑
p∈P

f s
pzk ∀i ∈ Z̃z, k ∈ K, z ∈ Z, s ∈ S (5.9)

ys
i ∈ {0,1} ∀i ∈ (P ∪ Z), s ∈ S (5.10)

f s
ijk ∈ {0,1} ∀i ∈ P, j ∈ Z, k ∈ K, s ∈ S. (5.11)

The objective function now involves the Lagrangian multipliers λs
i and πs

ijk for the relaxed
non-anticipativity constraints corresponding to the location and allocation decisions, respec-
tively, and a penalty term γ. Constraints (5.6) impose that outbound arcs from every open
satellite must respect the total number of first-echelon vehicles. Constraints (5.7) ensure
that the multicommodity flow going out from platforms is less than or equal to the platform
capacity. Constraints (5.8) and (5.9) link the facility allocation variables with the vehicle
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allocation variables. Constraints (5.10) and (5.11) impose the integrality and non-negativity
of each decision variable in the model.

The relaxed reformulation can be then decomposed by scenario for a given reference
design ȳi and f̄ijk (the initial values for the reference design are discussed in Section 5.4),
resulting in a set of deterministic and scenario-specific subproblems with modified fixed
costs. In this context, the Lagrangian multipliers λs

i and πs
ijk and the parameter γ, penalize

the discrepancies between the values of the location and allocation decision in the local
design of a single scenario subproblem and those present in the current overall design. In
the following sections, we explore the proposed methods for deriving the overall design and
allocation decisions, as well as the approach for adjusting the fixed costs of each scenario
subproblem. These strategies aim to guide the search process toward achieving consensus
among the first-stage variables.

5.2. Subproblem algorithm

This section presents the proposed heuristic method to address the individual scenario
subproblems resulting from the scenario decomposition of the extensive formulation. It
should be noted that each scenario s ∈ S is associated with a deterministic scenario subprob-
lem (DSS), which corresponds to a deterministic 2E-MALRPSTT. Each DSS is a NP-hard
problem of very large dimensions (Escobar-Vargas and Crainic, 2023). Therefore, addressing
each DSS independently using a standalone commercial solver is impractical. To overcome
this limitation, we introduce a decomposition-based heuristic to address each DSS.

The proposed solution method focuses on decomposing the deterministic 2E-MALRPSTT
defined by each DSS into two separate optimization subproblems. The first step in the
decomposition process involves defining a relaxed DSS, obtained by ignoring the fleet syn-
chronization requirements imposed on the satellite facilities, which create a strong interde-
pendency between the scheduling of vehicles in the first and second echelons. Once these
synchronization constraints are ignored, the relaxed DSS can be decomposed into two main
components: (1) a Location-Routing Problem with Time Windows and Time-Dependent OD
demands (LRPTWTDD) to model the second-echelon problem, and (2) a Multi-Depot Vehi-
cle Routing Problem with Time Windows (MDVRPTW) to model the first-echelon problem.
The heuristic employs a bottom-up approach, where the first-echelon solution is built and
optimized based on the second-echelon solution. The proposed heuristic operates on each
echelon separately and addresses two coordinated and integrated problems to determine the
location and routing decisions for the entire DSS.

The proposed decomposition heuristic, illustrated in Figure 14, begins with a prepro-
cessing procedure aimed at structuring the available data for the 2E-MALRPSTT. This
organization ensures that each subproblem resulting from the decomposition of the DSS can
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Figure 14 – Decomposition-based heuristic for the DSS

be independently addressed. To further reduce the complexity of each subproblem, our ap-
proach employs distinct and reduced subsets of platform facilities, which define the set of
subproblems (for both the first and second echelons) to be addressed in each iteration of the
algorithm. Hence, the decomposition-based heuristic first defines a set comprising all the
possible combinations of platforms, based on the complete set of platforms in P . At each
iteration of the decomposition heuristic, the methodology selects and fixes a single reduced
subset of platforms from this comprehensive set. The first-echelon subproblem, correspond-
ing to a LRPTWTDD and defined by this reduced platform subset, is then addressed. This
LRPTWTDD is iteratively solved and ‘refined’ in terms of fleet synchronization require-
ments until a feasible solution that satisfies the fleet synchronization constraints defined by
the 2E-MALRPSTT is obtained. Once this feasible solution is achieved, the second sub-
problem, defined by the MDVRPTW, is addressed to determine the scheduling decisions for
the first-echelon vehicles based on the solution obtained from the LRPTWTDD. During each
iteration of the algorithm, the best solution is updated if improvements are made, continuing
until all possible combinations of platforms have been explored or another stopping criterion
is reached (e.g., a limit on the computation time).

5.2.1. Preprocessing. The objective of the proposed preprocessing procedure is
twofold: extend the availability time of all OD demands to satellite facilities and reduce the
complexity of each scenario subproblem. Two strategies are introduced for each objective.
The first strategy consists of the extension of availability times from platforms to satellite
facilities. This extension allows the LRPTWTDD to have a feasible set of availability times
for each OD demand directly for second-echelon routes, without the explicit consideration of
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the scheduling decisions of the first-echelon vehicles. The procedure consists of calculating
the availability time of each OD demand k ∈ K at each satellite z ∈ Z based on their
minimum ‘departure’ time (i.e., either when the demand is available or when a first-echelon
vehicle can pick it) from each platform p ∈ P , and the travel time between each platform and
the satellite under consideration in a given scenario s ∈ S. One can define αpzks ≥ 0 as the
extended availability time of demand k ∈ K at each satellite z ∈ Z from a platform p ∈ P
in scenario s ∈ S. Notice that while availability times are not originally scenario-dependent,
it extension to satellites must be indexed by scenario to incorporate the realization of the
travel times defined by each scenario.

The second strategy involves generating multiple reduced subsets of platform facilities to
reduce the complexity associated with each LRPTWTDD. Handling the complete platform
set P for the LRPTWTDD becomes demanding as the set size increases. We thus introduce
the subset P ′ ⊆ P , comprising a limited number of platform facilities. To do so, one must
first define the set P that encompasses all feasible platform combinations iC|P |, where i

ranges from 1 to |P | as a fixed facility count, and |P | indicates the total number of platforms
in P . This comprehensive set P is structured in such a way that, at each iteration of the
decomposition heuristic, a single subset P ′ is selected from P to define the set of subproblems
(for both the first and second echelons) to be addressed. This process of selecting a subset
P ′ is repeated iteratively until all subsets of platform combinations within P have been
explored.

5.2.2. Mathematical formulation for the LRPTWTDD. We reformulate the ex-
tensive formulation to address the LRPTWTDD. This new formulation results from ignoring
the fleet synchronization constraints and the vehicle routing decision on the first echelon. The
LRPTWTDD consists of the definition of the location decisions of platforms and satellite fa-
cilities as well as the routing decisions of second-echelon vehicles to meet customer demands
(either by the system or with an outsourced service). Instead of the explicit consideration
of first-echelon routes, this formulation only uses direct connections between platforms and
satellite facilities as a means to represent the capacity allocation decisions from first-echelon
vehicles that are required to meet the routing decisions on second-echelon vehicles. For this,
we assume that each direct connection between platforms and satellites represents an aggre-
gated travel time composed of the travel times between a given platform and satellite, as
well as its connection to and from the vehicle garages.

The proposed formulation is composed of the variables and constants presented in Sec-
tion 4.2 and Section 5.2.1. Three main changes are introduced to reformulate the extensive
model (Section 4.2). First, the set of satellite copies Z̃ defined in Section 4.2 is replaced by
the original satellite set Z, due to the lack of synchronization constraints in the problem.
Second, a new vehicle allocation variable ψs

pzkh is introduced, whose value is equal to one if
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the OD demand k ∈ K is served by a vehicle h ∈ H2 from a satellite z ∈ Z and a platform
p ∈ P ′ . Third, vehicle variables xs

ijh, originally defined for first-echelon routing decision, are
used to model the capacity allocation decisions from first-echelon vehicles, to represent the
amount of capacity (provided by first-echelon vehicles) required to meet the routes defined
by second-echelon vehicles. We also define a constant ζ ′

pzs as the aggregated costs associated
with each direct connection xs

pzh for first-echelon vehicles. Each aggregated cost ζ ′
pzs is com-

posed of the sum of the travel time between a single platform p ∈ P ′ and a single satellite
z ∈ Z for each scenario s ∈ S, and the travel cost associated to the connection between
each facility and its corresponding vehicle garage. It is worth mentioning that although the
variables in the formulation are indexed by scenario, the LRPTWTDD is addressed individ-
ually for each scenario subproblem. The formulation for the LRPTWTDD is then defined
as follows:

min
∑

h∈H1

∑
i∈P ′

∑
j∈Z

ζ
′

ijsx
s
ijh +

∑
h∈H2

∑
(i,j)∈A2

ζs
ijx

s
ijh +

∑
k∈K

Ros
k

+
∑

i∈(P ′ ∪Z)

Å
Fi + λs

i + 1
2γ + γȳi

ã
ys

i +
∑
i∈P ′

∑
j∈Z

∑
k∈K

Å
∆ijk + πs

ijk + 1
2γ + γf̄ijk

ã
f s

ijk

(5.12)

subject to ∑
h∈H1

∑
j∈Z

xs
ijh ≤ |H1| ys

i ∀i ∈ P ′ (5.13)

∑
h∈H1

xs
ijh cap1 ≥

∑
k∈K

∑
h∈H2

vol(k) ψs
ijkh ∀j ∈ Z, i ∈ P ′ (5.14)

∑
h∈H2

∑
k∈K

∑
j∈Z

vol(k) ψs
ijkh ≤ Θi y

s
i ∀i ∈ P ′ (5.15)

∑
h∈H2

∑
j∈C

xs
ijh ≤ |H2|ys

i ∀i ∈ Z (5.16)
∑

h∈H2

∑
j∈(E2∪C),D(k)̸=j

xs
D(k)jh + os

k = 1 ∀k ∈ K (5.17)

∑
j∈E2

xs
jih −

∑
j∈C

xs
ijh = 0 ∀i ∈ Z, h ∈ H2 (5.18)

∑
j∈(Z∪C),i ̸=j

xs
jih −

∑
j∈(C∪E2),i ̸=j

xs
ijh = 0 ∀i ∈ C, h ∈ H2 (5.19)

∑
j∈Z

xs
ijh −

∑
j∈C

xs
jih = 0 ∀i ∈ E2, h ∈ H2 (5.20)

µ2
zhs ≥ αpzksψs

pzkh ∀p ∈ P ′
, z ∈ Z, h ∈ H2, k ∈ K (5.21)

µ2
ihs + τ s

ij − µ2
jhs ≤ (1− xs

ijh)M ∀h ∈ H2, (i,j) ∈ A2 (5.22)

ai ≤ µ2
ihs ≤ bi ∀i ∈ C, h ∈ H2 (5.23)
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∑
j∈(C∪E2),D(k)̸=j

xs
D(k)jh +

∑
j∈C

xs
zjh −

∑
p∈P ′

ψs
pzkh ≤ 1 ∀k ∈ K, z ∈ Z, h ∈ H2 (5.24)

∑
k∈K

vol(k)
∑

j∈(E2∪C),D(k)̸=j

xs
D(k)jh ≤ cap2 ∀h ∈ H2 (5.25)

∑
h∈H2

ψs
pzkh ≤ f s

pzk ∀p ∈ P ′
, z ∈ Z, k ∈ K. (5.26)

The objective function (5.12) minimizes the design and routing costs associated with
each scenario subproblem. Constraints (5.13) impose that outbound arcs from every open
platform must respect the total number of first-echelon vehicles. Constraints (5.14) ensure
that the capacity of each active first-echelon vehicle is not exceeded by the demand allocated
to each satellite facility. Constraints (5.15) ensure that the multicommodity flow going out
from platforms is less than the platform capacity. Constraints (5.16) impose that outbound
arcs from every open satellite must respect the total number of second-echelon vehicles.
Constraints (5.17) ensure that every customer is served either by the distribution system
with a single second-echelon vehicle or by an outsourced service. Constraints (5.18) - (5.20)
are the flow conservation constraints for satellites, customers, and second-echelon garages,
respectively.

Constraints (5.21) impose a schedule of second-echelon vehicles based on demand avail-
ability at each satellite facility. Constraints (5.22) handle the arrival times of second-echelon
vehicles. Constraints (5.23) ensure that second-echelon vehicles arrive within the customer
time windows. Constraints (5.24) link allocation and routing variables for second-echelon
vehicles. Constraints (5.25) ensure that demand carried by each second-echelon vehicle is
less than or equal to its capacity. Constraints (5.26) link allocation and vehicle allocation
variables for the second-echelon vehicles.

5.2.3. Evaluation and refinement. The proposed mathematical formulation for
the LRPTWTDD lacks the presence of synchronization constraints for first-echelon vehi-
cles. This implies that an optimal solution obtained by the formulation defined for the
LRPTWTDD might not be feasible for the 2E-MALRPSTT when evaluated with the
complete constraint sets. Hence, a refinement of the mathematical formulation is proposed,
where valid inequalities are included in the LRPTWTDD formulation when synchronization
constraints are found infeasible. The objective of our procedure is to iteratively identify vio-
lations of the synchronization constraints and the posterior refinement of the LRPTWTDD
model with valid inequalities until a feasible solution for the 2E-MALRPSTT can be
obtained.

To evaluate the feasibility of synchronization constraints, one must define a set of route
time windows representing the temporal lower and upper bounds where fleet synchronization
can take place for first-echelon vehicles at each satellite facility. The objective of the proposed
procedure, Algorithm 6, is to define these route time windows for each second-echelon route
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for a given solution for the LRPTWTDD, and evaluate the feasibility of the routes in terms
of the fleet synchronization requirements. Let Γz be the set of all second-echelon routes
using satellite z ∈ Z and serving a subset of at least one customer using a vehicle h ∈ H2,
with Γ = ⋃

z∈Z Γz being the set of all possible second-echelon routes serving at least one
customer. Then, let [lbtl, ubtl] be the route time windows for each second-echelon route
l ∈ Γ. To compute these route time windows for each route l ∈ Γ, the proposed procedure
first defines the departure time depl of each route at its respective satellite facility, based on
the arrival time of the vehicle on the first customer visited in the route. For each route l ∈ Γ,
the algorithm proceeds by traversing the sequence of customer nodes in l = c0, c1, . . . , c|l|−1,
to compute the temporal slack allowed for each customer within the route. This temporal
slack is defined by the difference between the lower/upper bound of each customer time
window and the actual arrival time of the second-echelon vehicle. The upper bound ubtl of
each route l ∈ Γ can be defined by the departure time recorded at the satellite facility plus
the minimum temporal slack defined by the upper bound of the customer time windows.
Similarly, the lower bound lbtl of each route l ∈ Γ can be defined by the departure time at
the satellite minus the minimum temporal slack allowed by the lower bound of the customer
time windows.

Algorithm 6: Evaluation(Γz, s ∈ S)
1 for l ∈ Γz do
2 h = getVehicle(l, H2) ;
3 lbtl = 0 ;
4 ubtl = Ξ ;
5 depl = µc0 hs − τ s

z c0 ;
6 lwSlack = ∅ ;
7 upSlack = ∅ ;
8 for c ∈ l do
9 lwSlack ← µchs − ac ;

10 lwSlack ← bc − µchs ;
11 end
12 lbtl = arg min(lwSlack) ;
13 ubtl = arg min(uwSlack) ;
14 end

After the definition of the route time windows for each second-echelon route l ∈ Γ, one can
identify scheduling conflicts between them. We refer to scheduling conflicts as the presence
of two non-overlapping route time windows sharing the same satellite facility, and served by
the same single first-echelon vehicle h ∈ H1. Two route time windows are then considered in
conflict when neither of its bounds overlaps. The presence of these scheduling conflicts thus
implies that fleet synchronization is not feasible for a single first-echelon vehicle.
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A heuristic method is introduced to avoid scheduling conflicts for the LRPTWTDD. The
objective of the proposed procedure is then to find scheduling conflicts and add a set of valid
inequalities to the LRPTWTDD formulation, such that these scheduling conflicts can be
avoided. The proposed procedure starts by evaluating pairs of route time windows for each
open satellite facility to store both the routes involved and the pairs of customers with the
minimum temporal slack. We assume that the presence of customers with very low temporal
slack is most likely to provoke scheduling conflicts in route time windows. Hence, for each
satellite z ∈ Z, we define the constant value κl to represent the OD demand associated with
the customer with the minimum temporal slack in each route l ∈ Γz:

∑
h∈H1

xs
pzh ≥ ω − (2−

∑
h∈H2

ψs
pzκih

−
∑

h∈H2

ψs
pzκjh)M

∀p ∈ P ′
, i,j ∈ Γz, z ∈ Z, i ̸= j.

(5.27)

The valid inequality (5.27) then imposes that for each pair of routes allocated to the same
satellite z ∈ Z with scheduling conflicts, there must be at least ω first-echelon vehicles active
to serve the routes under consideration. By the definition of scheduling conflicts, the value
of ω is usually set to 2. However, there may be particular cases when scheduling conflicts are
found in a given satellite z ∈ Z, such that the capacity of all first-echelon vehicles assigned
to it is insufficient to accommodate at least one of the two demands κl of either of the two
routes in conflict. In such a case, the value ω must be greater than the total number of
first-echelon vehicles active in the given solution.

The valid inequalities (5.27), which are defined to address all the scheduling conflicts for
a given solution, can be included in the LRPTWTDD formulation. This refined formulation
can then be used to derive a new integer solution. The process of evaluating and refining
the LRPTWTDD formulation is repeated iteratively until no scheduling conflicts are found
in the solution. Once the solution derived by the LRPTWTDD formulation is proven to
be feasible for the 2E-MALRPSTT, one can use the best integer solution obtained as the
input for the MDVRPTW formulation to determine the routing decisions for the first-echelon
routes.

5.2.4. Mathematical formulation for the MDVRPTW. This section describes a
three-index flow formulation for the MDVRPTW, representing the subproblem defined by
the first echelon of the 2E-MALRPSTT. The proposed formulation relies on the solution
of the LRPTWTDD to determine the set of open platform locations and the feasible route
time windows for each open satellite facility, where fleet synchronization can take place for
first-echelon vehicles. It is important to note that each satellite z ∈ Z can be associated
with more than one route time window, as they are defined by each second-echelon route
l ∈ Γz allocated to the satellite. Therefore, we assume that each route l ∈ Γz represents
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the final destination of each first-echelon route, where [lbtl,ubtl] represents the time windows
for each route. In this representation, each l ∈ Γz is considered as a physical point at the
same location as the satellite z ∈ Z to which it is allocated. Similarly, we assume that the
demand for each route l ∈ Γ is characterized by a total volume dem(l), which is composed
of the demand volumes of the set of OD demands k ∈ K assigned to the route. The problem
setting involves selecting the routing and scheduling decisions for first-echelon vehicles to
fulfill the demand of all second-echelon routes l ∈ Γ within their associated time windows.
For simplicity, we define the following sets to model the system layout, as well as the sets of
values derived from the solution of the LRPTWTDD.

— P̄
′ : set of open platforms defined by the solution of the LRPTWTDD;

— K
′ : set of demands served by the system based on the solution of the LRPTWTDD;

— A
′
1: first echelon arcs composed by connections between platforms and routes l ∈ Γ

as well as connections between different routes l ∈ Γ;
The formulation can then be defined as follows:

min
∑

h∈H1

∑
(i,j)∈A

′
1

ζs
ijx

s
ijh (5.28)

subject to ∑
h∈H1

∑
j∈Γ

xs
ijh ≤ |H1| ∀i ∈ P̄ ′ (5.29)

∑
h∈H1

∑
j∈(Γ∪E1),i ̸=j

xs
ijh = 1 ∀i ∈ Γ (5.30)

∑
j∈E1

xs
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∑
j∈Γ

xs
ijh = 0 ∀h ∈ H1, i ∈ P̄ ′ (5.31)

∑
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xs
ijh −

∑
j∈(P̄ ′ ∪Γ),i ̸=j

xs
jih = 0 ∀h ∈ H1, i ∈ Γ (5.32)

∑
i∈Γ

∑
j∈(E1∪Γ),i ̸=j

dem(i) xs
ijh ≤ cap1 ∀h ∈ H1 (5.33)

µ1
ihs + τ s

ij − µ1
jhs ≤ (1− xs

ijh)M ∀h ∈ H1, (i,j) ∈ A′

1 (5.34)

ν1
ihs + τ s

ij − ν1
jhs ≤ (1− xs

ijh)M ∀h ∈ H1, (i,j) ∈ A′

1 (5.35)

µ1
ihs ≥ αik

∑
j∈Γ

ϕs
ijkh ∀i ∈ P̄ ′

, h ∈ H1, k ∈ K ′ (5.36)

ν1
ihs ≤ (αik +W 1

max) + (1−
∑
j∈Γ

ϕs
ijkh)M ∀i ∈ P̄ ′

, h ∈ H1, k ∈ K ′ (5.37)

lbti ≤ µ1
ihs ≤ ubti ∀i ∈ Γ, h ∈ H1 (5.38)

cap1x
s
ijh −
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vol(k) ϕs
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The objective function (5.28) minimizes the total routing cost of first-echelon routes.
Constraints (5.29) ensure that the total number of active outbound connections does not
exceed the total fleet size. Constraints (5.30) impose that each route l ∈ Γ is visited once by
a single vehicle. Constraints (5.31) and (5.32) are flow conservation constraints for platforms
and routes l ∈ Γ, respectively. Constraints (5.33) ensure that the capacity of each first-
echelon vehicle is not exceeded. Constraints (5.34) and (5.35) are responsible for recording
the arrival and departure time of each first-echelon vehicle, respectively. Constraints (5.36)
assures that the availability times for each commodity are respected, while constraints (5.37)
assures that each vehicle departs before the maximum waiting at each platform is reached.
Constraints (5.38) ensure that each fisrt-echelon vehicle visits each route l ∈ Γ within their
time window. Constraints (5.39) are responsible to link flow and routing variables.

5.3. Defining the reference solution

This section introduces a decision-based scenario clustering method used to determine
the reference solution at each iteration of the PH metaheuristic. The proposed strategy aims
to quantify the proximity of scenario solutions using an opportunity cost measure, introduced
by Escobar-Vargas et al. (2023). This opportunity cost is defined as a measure to assess the
impact of implementing the first-stage decisions associated with a given scenario s1 when
another scenario s2 occurs (Hewitt et al., 2022).

It is worth noting that the global population built to define the reference solution at
each iteration of the PH contains more than one solution associated with each scenario
subproblem. Therefore, let Λs be the set of indices of the solutions in the global population
that are associated with a scenario s ∈ S. Let gι

i((ŷι∗
n , f̂

ι∗
n ); sj) be the updated value of the

objective function (5.5), evaluated with the set of the best first-stage decision variables ŷι∗
n

and f̂ ι∗
n at iteration ι, obtained for the solution n ∈ Λsi

with scenario si, assuming that
scenario sj actually occurs. The opportunity cost is then denoted by θι(si|sj) and calculated
according to equation (5.40) for each pair of scenarios si and sj in S with i ̸= j.

θι(si|sj) = min
n∈Λsi ; m∈Λsj

{gι
i((ŷι∗

n , f̂
ι∗
n ); sj)− gι

j((ŷι∗
m, f̂

ι∗
m ); sj)} (5.40)

Using the opportunity costs calculated for each scenario within the global population, an
opportunity cost dissimilarity function can be defined by equation (5.41) for each pair of
scenarios si and sj in the set S, where i ̸= j. This dissimilarity function quantifies the loss
incurred when optimizing under the assumption that scenario si occurs, given that scenario
sj actually occurs.

dι(si|sj) = θι(si|sj) + θι(sj|si) (5.41)
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A Normalized Spectral Clustering method, based on the methodology proposed by Hewitt
et al. (2022), is used to identify scenarios that are similar according to the opportunity cost
dissimilarity function. This clustering approach facilitates the formation of a distinct set of
clusters CL, denoted as CL = {cl1, cl2, . . . , cl|CL|}, where each cluster cli ∈ CL represents
a group of closely related scenarios. With the clusters identified, we proceed to establish a
set of representative scenarios, denoted as Υ, that will define the reference solution. The
‘classic’ approach outlined by Escobar-Vargas et al. (2023) uses the medoid (i.e., the scenario
whose average opportunity cost dissimilarity function to all other scenarios within the cluster
is minimum) of each cluster to define the set of representative scenarios. In addition to this
method, we introduce two alternative heuristic strategies for determining the representative
scenario within each cluster:

(1) The longest-distance strategy: Select one scenario from each cluster whose average
opportunity-cost dissimilarity function to all other scenarios within the cluster is
maximum. This strategy is designed to establish a reference solution derived from
scenarios that exhibit the least similarity within their respective clusters.

(2) The diversity-based strategy: Builds upon the work of (Escobar-Vargas et al., 2023)
by selecting the medoids of each cluster. In addition, this strategy includes two
additional scenarios to improve the diversity of design decisions considered for defining
the reference solution. This approach incorporates the most central scenario from
the entire scenario set (i.e., the scenario with the minimum average opportunity-
cost dissimilarity function from all scenarios in the global population). Similarly, we
also include the scenario with the maximum average opportunity-cost dissimilarity
function from all scenarios in the global population, representing the scenario with the
least similarities.

Once the set of representative scenarios Υ is established, a probability of occurrence ηs

can be assigned to each representative scenario s ∈ Υ, such that ∑
s∈Υ ηs = 1. Finally, the

reference solution for the location and allocation decisions can be determined by computing
equations (5.42) and (5.43) accounting for each representative scenario s ∈ Υ and the subset
of solutions Λs associated with each scenario. Here, ysι

ai and f sι
aijk represent the first-stage

variables of the alternative solution a ∈ Λs for a specific scenario s ∈ Υ.

ȳι
i =

∑
s∈Υ

ηs

|Λs|
∑

a∈Λs

ysι
ai ∀i ∈ Z (5.42)

f̄ ι
ijk =

∑
s∈Υ

ηs

|Λs|
∑

a∈Λs

f sι
aijk ∀i ∈ P, j ∈ Z, k ∈ K (5.43)
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5.4. Consensus procedure

This section describes the heuristics employed to adapt the fixed costs of the design
decisions in accordance with the reference solution specified in Section 5.3. The primary
objective of these heuristics is to facilitate the exploration for consensus among all scenario
subproblems. Two adjustment heuristics are implemented to modify the location and allo-
cation costs of the scenarios. Specifically, a global adjustment is utilized to guide the overall
search process, while a local adjustment is employed to influence the search within each
individual scenario subproblem.

The global adjustment starts from the reference solution defined by ȳι
i and f̄ ι

ijk, at itera-
tion ι to identify trends among the scenario solutions and set the cost defined by the objective
function in Section 5.1. A low value of either ȳι

i or f̄ ι
ijk indicates that both design decisions

are taken by a very few number of scenario subproblems, while a high value implies that a
great majority of scenario subproblems agree on the same design decision. Therefore, one
can define a parameter β > 1 as the adjustment rate of the costs and threshold parameters
0 ≤ ϵy ≤ 0.5 and 0 ≤ ϵf ≤ 0.5 to determine when the values ȳι

i and f̄ ι
ijk are either high or

low, respectively. The costs are defined according to the objective function (5.5). We thus
define the costs B̄sι

i =
(
Fi + λs

i + 1
2γ + γȳi

)
and Ēsι

ijk =
(
∆ijk + πs

ijk + 1
2γ + γf̄ijk

)
as the

location and allocation costs of the scenario subproblem, respectively. Then, when ȳι
i and

f̄ ι
ijk, are lower than ϵy and ϵf , the fixed costs are increased to guide the subproblems to avoid

opening the given facility. On the other hand, when ȳι
i and f̄ ι

ijk are higher than 1 − ϵy and
1 − ϵf , the fixed costs are decreased to encourage the scenario subproblems to include the
facility within the network design. We define this procedure by equations (5.44) and (5.45):

B̄ι
i =


βBι−1

i if ȳι−1
i < ϵy,

1
β
Bι−1

i if ȳι−1
i > 1− ϵy,

Bι−1
i otherwise;

(5.44)

Ēι
ijk =


βĒ

(ι−1)
ijk if f̄ (ι−1)

ijk < ϵf ,

1
β
Ē

(ι−1)
ijk if f̄ (ι−1)

ijk > 1− ϵf ,

Ē
(ι−1)
ijk otherwise.

(5.45)

The second adjustment strategy is performed at the level of each scenario s ∈ S, where
the costs of variables with large differences relative to the value of the current reference
solution at iteration ι, are adjusted using equations (5.46) and (5.47). In this context, we
define 0.5 < δy < 1 and 0.5 < δf < 1 as the thresholds defining when a local adjustment has
to be applied for the location and allocation variables, respectively:
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B̄sι
i =


βBι

i if |ys(ι−1)
i − ȳι−1

i | ≥ δy and y
s(ι−1)
i = 1,

1
β
Bι

i if |ys(ι−1)
i − ȳι−1

i | ≥ δy and y
s(ι−1)
i = 0,

Bι
i otherwise;

(5.46)

Ēsι
ijk =


βĒι

ijk if |f s(ι−1)
ijk − f̄ (ι−1)

ijk | ≥ δf and f
s(ι−1)
ijk = 1,

1
β
Ēι

ijk if |f s(ι−1)
ijk − f̄ (ι−1)

ijk | ≥ δf and f
s(ι−1)
ijk = 0,

Ēι
ijk otherwise.

(5.47)

One needs to establish the values of the initial reference design ȳi and f̄ijk. We define
the initial reference design in terms of the location costs B̄sι

i and allocation costs Ēsι
ijk at

iteration ι = 0. The location and allocation costs of the scenario subproblems are initialized
with their original costs. Therefore, we set B̄s(0)

i = Fi, ∀i ∈ (P ∪ Z), s ∈ S, and Ē
s(0)
ijk =

∆ijk, ∀i ∈ P, j ∈ Z, k ∈ K, s ∈ S.
The proposed PH metaheuristic is designed to terminate either upon reaching a consensus

solution or upon satisfying another stopping criterion, such as a computation time limit.
A consensus solution is achieved when all first-stage decisions ȳι

i and f̄ ι
ijk reach a general

consensus at a particular iteration ι. However, achieving consensus on all first-stage decisions
might not occur at the end of each iteration of the PH metaheuristic. In such cases, the PH
metaheuristic is configured to establish a feasible solution for the 2E-MALRPSTT by means
of the extended formulation outlined in Section 4.2. The approach to defining a feasible
solution consists of fixing the location and allocation variables for which consensus is obtained
by the PH metaheuristic, and then addressing the resulting problem with the subproblem
algorithm. The solution obtained provides a feasible solution for all design decisions. One
can then update the best solution obtained and continue with the PH metaheuristic.

6. Computational results
This section presents and discusses the results of experiments conducted to assess several

aspects, including the stability of the scenario generation procedure, the performance of
the proposed PH metaheuristic for the 2E-MALRPSTT, the effectiveness of the heuristics
used for the selection strategy, and the significance of explicitly considering stochastic travel
times. We begin by introducing the instances utilized in the computational study, which
are described in Section 6.1. The performance of the decomposition-based heuristic for the
2E-MALRPSTT is presented in Section 6.2. The stability of the scenarios is investigated and
discussed in Section 6.3. Furthermore, the performance analysis of our PH metaheuristic is
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presented in Section 6.4, followed by the analysis of the value of the stochastic solution in
Section 6.5.

The experiments were conducted on a single machine with an Intel(R) Core(TM) i7-
7800X processor with 128 GB of RAM running Linux. The mathematical formulation and
the proposed solution frameworks are implemented in C++ using IBM ILOG CPLEX concert
technology 20.1. The tables in this section display the summarized results for the associated
experiments, while more detailed results are provided in the supplementary material in C.2
and C.3.

6.1. Instances

This section presents the set of instances defined for the 2E-MALRPSTT. To the best of
our knowledge, no instances are available in the literature considering the set of attributes
addressed in this work. Hence, we define our testbed based on the instances introduced
by Escobar-Vargas and Crainic (2023) for the 2E-MALRPS. The instances introduced by
Escobar-Vargas and Crainic (2023), simulate an urban area constituted by platforms, satel-
lites, and customers. In spite of the similarities in the problem settings, the original instances
proposed by Escobar-Vargas and Crainic (2023) are designed for a deterministic problem and
thus lack any uncertain aspect. We thus adapt these instances to accommodate the consid-
eration of stochastic travel times.

We introduce two instance sets composed of 20 instances with 10 and 15 OD demands
with stochastic travel times. Temporal aspects such as time-dependent OD demands, cus-
tomer time windows and service times are fixed as the values given by Escobar-Vargas and
Crainic (2023). Load capacities for vehicles are considered to be fixed, where first-level ve-
hicles have a capacity of cap1 = 200 and second-level vehicles have a capacity of cap2 = 50.
The instance set is divided into four categories CA, CB, CC, and CD, differing in the time
window width and customer-demand values (Dellaert et al., 2019).

Scenarios are created using the copula-based approach introduced by Kaut (2014) to
ensure adherence to the statistical characteristics specified for the stochastic travel times.
This process necessitates identifying the appropriate marginal distribution for each travel
time, which can be selected from a range of marginal distribution options available within
the method. We adopt the strategy outlined by Escobar-Vargas et al. (2023) for the 2E-LRP
with stochastic and correlated demands to determine the marginal distributions for all travel
times within each instance.

We use the four categories, CA, CB, CC, and CD, to test a unique probability distribu-
tion for all travel times within each category. The aim is to capture four distinct events that
influence travel time values. Following the guidelines of Escobar-Vargas et al. (2023), we em-
ploy the lognormal distribution to model stochastic travel times. As illustrated in Figure 15,
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category distribution mean standard deviation
CA left-skewed lognormal 2.76 0.92
CB left-skewed lognormal 3.37 0.26
CC symmetrical lognormal 3.10 0.20
CD symmetrical lognormal 2.90 0.32

Table 12 – Instance category description

Figure 15 – Probability distribution

each instance category is associated with a distinct probability distribution characterized by
different parameter settings. The details of the proposed distributions for categories CA,
CB, CC, and CD, which vary in terms of travel time values, as well as the distribution used
to generate random scenarios for each instance, are presented in Table 12.

6.2. Performance of heuristic method for the scenario subproblems

We initially assess the effectiveness of the proposed decomposition-based heuristic for the
DSS. To the best of our knowledge, only the work of Escobar-Vargas and Crainic (2023) has
introduced an exact solution method for addressing a multi-attribute 2E-LRP, which shares
most of the attributes of the deterministic 2E-MALRPSTT but imposes stricter synchroniza-
tion requirements. Similarly, the work of Dellaert et al. (2019) deals with a closely related
problem setting, involving a 2E-VRP with multi-commodity demands and time windows.
This problem setting provides a suitable benchmark to evaluate our heuristic method. We
thus compare the performance of the decomposition-based heuristic against the results ob-
tained by Escobar-Vargas and Crainic (2023) and Dellaert et al. (2019) in terms of solution
quality and computational efficiency. To perform the experiments on instances provided by
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Dellaert et al. (2019), our decomposition-based heuristic is adapted to enable each vehicle
to start and finish its route at facilities, instead of vehicle garages. Similarly, a set of broad
availability times is defined for each OD demand to adapt it to the work of Dellaert et al.
(2019), where no availability times are being considered.

Table 13 displays the comparative performance results. It provides the number of OD
demands (OD) for each instance set, the source of each instance, the instance type (INT),
the average optimality gap percentage (GAP) between the upper bound obtained by the
decomposition-based heuristic and the lower bound provided by Escobar-Vargas and Crainic
(2023) and Dellaert et al. (2019) for each instance. Additionally, it provides the average
difference percentage between the upper bounds (UB Diff) and the runtime in seconds (CPU
Diff) of the solution methods involved. We use the results obtained by the decomposition-
based heuristic as the reference for comparing with the solution methods of Escobar-Vargas
and Crainic (2023) and Dellaert et al. (2019). Hence, a negative value in the UB Diff or the
CPU Diff column indicates an improvement by the proposed decomposition-based heuristic
when compared to the works of Escobar-Vargas and Crainic (2023) or Dellaert et al. (2019).

The results reported in Table 13 present a general improvement in both solution quality
and run-time for both instance sets. Compared to the results of Escobar-Vargas and Crainic
(2023), the decomposition-based heuristic can obtain the optimal solutions in 60 out of 60
instances with up to 15 OD demands. For instances with 30 OD demands, the proposed
heuristic is capable of improving the best-known upper bounds of six instances from the
results reported by Escobar-Vargas and Crainic (2023), while matching the best-known solu-
tions of 40 out of the 60 instances. In terms of run-time, the decomposition heuristic presents
an expected improvement in the computational time required to obtain the optimal solution
of instances with up to 30 OD demands. We observe that the decomposition of the determin-
istic multi-attribute 2E-LRP into two reduced problem, enables a more efficient exploration
of the solution space, by allowing a faster convergence to optimality for each one of the
mathematical formulations, which in turn leads to a significant reduction of computational
time required to address the deterministic multi-attribute 2E-LRP.

A similar behaviour was obtained for the decomposition-based heuristic when compared
to the results reported by Dellaert et al. (2019). The proposed method can obtain the op-
timal solution for all instances with up to 30 OD demands. Nonetheless, experiments on
instances with 30 OD demands are not able to match the run-time of the branch-and-price
method proposed by Dellaert et al. (2019). Multiple factors contribute to this behaviour.
On the one hand, our heuristic needs to explore the complete solution space defined by
the combination of platform facilities, even when a good quality solution is found at early
iterations of the method. On the other hand, the lack of an explicit consideration of avail-
ability times yields a larger integer problem to cover all the potential outbound connections
of each OD demand. The latter, in combination with the weak LP relaxation of the compact
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Instance INT
OD

5 10 15 30
GAP UB DIFF CPU DIFF GAP UB DIFF CPU DIFF GAP UB DIFF CPU DIFF GAP UB DIFF CPU DIFF

Escobar&Crainic

CA 0.00 0.00 -25.37 0.00 0.00 -275.65 0.00 0.00 -417.59 1.42 0.43 -1606.69
CB 0.00 0.00 -11.67 0.00 0.00 -2516.36 0.00 0.00 -3.56 5.39 -0.07 -1848.43
CC 0.00 0.00 33.50 0.00 0.00 -209.92 0.00 0.00 23.91 8.62 0.55 -2061.53
CD 0.00 0.00 -24.77 0.00 0.00 -78.09 0.00 0.00 62.43 2.65 0.20 -1823.24

Dellaert

CA N.A N.A N.A N.A N.A N.A 14.54 -22.30 -59570.96 1.59 -11.73 91.77
CB N.A N.A N.A N.A N.A N.A 18.91 -15.19 -22791.08 2.11 -14.10 93.70
CC N.A N.A N.A N.A N.A N.A 14.44 -20.39 -11390.61 3.70 -8.55 -153.92
CD N.A N.A N.A N.A N.A N.A 18.23 -17.58 -43054.35 5.40 -18.92 97.64

Table 13 – Decomposition based heuristic: Summary results on Escobar and Dellaert
instances.

formulation, leads to greater run times to converge to an optimal solution on each of the
mathematical formulations.

Overall, it is evident that the proposed solution method is able to generate high-quality
upper bounds within reasonable computation times. The heuristic also exhibits robust be-
haviour, demonstrating its ability to handle various instance types and delivering significant
enhancements in both performance and solution quality when compared to the exact ap-
proaches presented by Escobar-Vargas and Crainic (2023) and Dellaert et al. (2019). The
computational experiments further indicate that the proposed heuristic consistently performs
well across complex problem settings characterized by multiple interacting attributes. This
characteristic is particularly advantageous for decomposition-based methods, such as the PH
metaheuristic, where multiple complex scenario subproblems must be iteratively solved.

6.3. Scenario stability

This section presents the computational experiments conducted to evaluate the stability
of the selected scenario generation procedure. To ensure meaningful results within reason-
able computation times, we examine the number and quality of scenarios that should be
considered when using the copula-based scenario generation method (Kaut, 2014), which
is employed in this study. In this context, we apply the ‘standard’ concept of in-sample
and out-of-sample stability evaluation proposed by Kaut and Wallace (2007) to assess the
performance of the scenario generation approach, which involves generating and comparing
multiple sets of scenarios. Notice that, due to the characteristics of the copula-based scenario
generation method, which produces identical or similar scenario sets with identical inputs
in different runs, the conventional in-sample stability test is not applicable in this context
(Guo et al., 2019).

This study adopts a modified version of the ‘standard’ approach proposed by Zhang et al.
(2021) to assess the stability and quality of the scenario set. The modified approach utilizes
two measures, namely the relative difference (RD) and variance (VAR). To represent a case
with |S| scenarios of travel times, a set of 2m + 1 scenario trees is constructed, each with
sizes |S|−m, |S|− (m−1),...,|S|,...,|S|+m, where m is a positive integer. The proposed PH
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S RD (%) VAR
VSR AISR MIN AVERAGE MAX MIN AVERAGE MAX

5 1 4.30 1.94 4.18 8.92 20.89 35.66 61.26
10 4 2.90 1.55 2.69 3.92 6.52 28.62 53.90
20 15 2.36 0.61 1.68 2.52 9.85 20.82 44.82
30 17 2.05 0.00 1.11 2.11 7.66 20.54 43.60
50 20 n.a. 0.31 1.06 1.84 8.05 18.95 35.22
100 20 n.a. 0.06 0.24 0.50 8.21 14.56 29.50

Table 14 – Stability tests: summarized results of relative difference and variance for different
scenario sizes.

metaheuristic is employed to address the 2E-MALRPSTT for each of the 2m + 1 scenario
trees, resulting in 2m + 1 solutions denoted as Z|S|+i, representing one solution for each
scenario tree. These solutions are evaluated by computing the objective function value
F (Z|S|+i) for each of the 2m+1 scenario trees, resulting in a set of 2m+1 objective function
values for each solution Z|S|+i. Finally, for each problem instance, the maximum (F+(Z|S|+i)),
minimum (F−(Z|S|+i)), and variance (σ|S|+i) of the objective function values are determined
for each solution Z|S|+i. The calculations for the relative difference and variance are defined
by Equations (6.1) and (6.2), respectively.

RD = max
i∈[−m,m]

{
F+(Z|S|+i)− F−(Z|S|+i)

F+(Z|S|+i)
× 100%

}
(6.1)

V AR = max
i∈[−m,m]

{σ|S|+i} (6.2)

Table 14 presents a summary of the relative difference (RD) and variance (VAR) values
obtained for the 2m + 1 scenario trees constructed for each problem instance. The table
provides information on the number of scenarios in each scenario tree (|S|), as well as the
minimum (MIN), average (AVG), and maximum (MAX) values of RD and VAR. For stability
assessment, a criterion of RD ≤ 2% is defined. Two additional performance measures are
used: the number of instances that satisfy the stability criterion (Valid Stability Requirement
or VSR) and the average RD of instances that fail to meet the criterion (Average Invalid
Stability Requirement or AISR). The experiments are conducted for instances with 15 OD
demands using multiple scenario trees with varying numbers of scenarios (|S|), and the value
of m is set to 4 based on the studies by Guo et al. (2019) and Zhang et al. (2021). To ensure
reliable results, only the best objective function obtained for each instance using the proposed
PH metaheuristic is used for the stability tests.

The results presented in Table 14 validate the expected improvement in approximation
quality with an increased number of scenarios. However, this improvement comes at the
cost of increased computational effort. While larger scenario trees are desirable to achieve
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Figure 16 – Stability test: Relative difference for each instance type vs scenario size.

smaller relative errors, solving the resulting subproblems for the entire set of instances at each
iteration of the PH metaheuristic becomes progressively more challenging. In the instances
examined in this study, using a minimum of 20 scenarios yields sufficiently accurate solutions.
Specifically, it results in a relative error of less than 2% for 15 out of the 20 instances, with
the remaining instances having an average relative error of 2.4%. Alternatively, instances
encompassing 30 scenarios can be solved with reasonable computational effort while ensuring
adequately precise solutions. The outcomes demonstrate a relative error of less than 2% for
17 out of the 20 instances, while reducing the average relative error to 2% for the remaining
instances. Based on these findings, we conclude that stability is achieved, enabling the
consideration of instances with |S| = 30 in the subsequent computational study.

Figure 16 illustrates the correlation between the number of scenarios employed for stabil-
ity assessment and the associated relative difference values for each instance category. The
results clearly indicate that the stability of solutions is significantly affected by the dispersion
of travel time distributions. Notably, instances classified as CA and CB, characterized by a
higher degree of dispersion in their travel time distributions, exhibit much more fluctuations
in the relative difference values compared to instance type CC and CD. This behaviour can
be attributed to the copula-based method utilized, which generates a diverse array of sce-
narios, leading to heightened volatility in objective function values and increased variability
in the recourse actions.

6.4. Performance of the PH metaheuristic

Computational experiments were conducted to assess the performance of the PH meta-
heuristic using various heuristic strategies to define the reference solution. Moreover, a
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INSTANCE
TYPE

PH CPLEXCS DBS LDS
OG(%) ITER. TIME (seg.) OG(%) ITER TIME (seg.) OG(%) ITER. TIME (seg.) OG(%) TIME (seg.)

CA 3.66 6.80 237.08 0.49 9.40 600.09 1.42 7.40 332.49 19.30 28800.00
CB 2.78 7.00 187.59 0.58 9.80 598.84 0.96 8.80 594.81 18.85 28800.00
CC 1.96 6.20 195.76 0.41 7.00 415.79 0.56 5.20 328.43 16.74 28800.00
CD 2.19 7.40 366.10 0.18 7.20 491.84 0.56 7.40 411.55 18.47 28800.00

Averages 2.65 6.85 246.63 0.41 8.35 526.64 0.87 7.20 416.82 18.34 28800.00

Table 15 – Summarized results on instances with 10 OD demands

INSTANCE
TYPE

PH CPLEXCS DBS LDS
OG(%) ITER TIME (seg.) OG(%) ITER TIME (seg.) OG(%) ITER TIME (seg.) OG(%) TIME (seg.)

CA 2.97 6.40 2081.61 1.06 10.80 2894.03 1.40 8.20 2441.52 39.29 57600.00
CB 1.57 9.00 2158.48 0.49 10.80 2938.00 0.78 9.20 2511.86 30.06 57600.00
CC 2.42 8.60 2285.84 1.04 9.40 3088.12 1.27 7.40 2442.64 33.93 57600.00
CD 2.83 8.20 2417.04 1.71 8.20 2964.89 2.07 8.00 2406.67 38.29 57600.00

Averages 2.45 8.05 2235.74 1.08 9.80 2971.26 1.38 8.20 2450.67 35.39 57600.00

Table 16 – Summarized results on instances with 15 OD demands

comparison was made between the results obtained by the PH metaheuristic and those ob-
tained by CPLEX when solving the complete extensive model. A comprehensive set of
experiments was performed, incorporating diverse stopping criteria. In the experiments in-
volving the PH metaheuristic, a maximum time limit of 2 hours was imposed. Conversely,
for the experiments with the complete extensive model using CPLEX, time limits of 8 hours
and 16 hours were set for instances with 10 OD demands and 15 OD demands, respectively.
CPLEX was employed with default parameter settings, using a thread limit of 6 for solving
the extensive model and a thread limit of 1 for solving the scenario subproblems within the
PH metaheuristic.

The tables in this section are structured to present the results obtained using CPLEX
and the PH metaheuristic, labeled as ‘CPLEX’ and ‘PH’ respectively. Additionally, within
the PH results, distinctions are made based on the specific selection strategy employed: the
classical clustering strategy (CS) proposed by Escobar-Vargas et al. (2023), the diversity-
based strategy (DBS), and the longest-distance strategy (LDS). Each table provides the
average optimality gap expressed as a percentage (OG), the average computational time in
seconds, and the average number of iterations (ITER) for the PH metaheuristic.

Tables 15 and 16 provide the summarized results obtained from instances with 10 and
15 OD demands respectively. Addressing the complete stochastic problems which involve a
diverse range of travel time values and multiple interacting time-sensitive attributes poses a
significant challenge. This challenge becomes apparent when solving the complete stochastic
problem with 10 and 15 OD demands, where CPLEX achieved average optimality gaps of 18%
and 35% respectively, while consistently reaching the maximum time limit. In contrast, all
configurations of the proposed PH metaheuristic outperformed CPLEX in all computational
measures.
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The proposed PH metaheuristic demonstrates significant improvements in both solution
quality and run times. When considering instances with 10 and 15 OD demands, all three
configurations of the PH metaheuristic achieve consensus for all first-stage decisions, resulting
in an average time reduction of 95% and an average upper bound improvement of 25%
compared to CPLEX. This notable performance enhancement is attributed to the use of the
decomposition-based heuristic to accelerate the resolution of each scenario subproblem and
the use of specialized strategies to define the reference solution at each iteration of the PH
metaheuristic to accelerate the search for consensus.

It is noteworthy that the behaviour of the PH metaheuristic varies depending on the
selected selection strategy. Interestingly, the diversity-based strategy demonstrates a higher
level of robustness compared to the classical clustering strategy and the longest-distance
strategy. In terms of upper bounds, the diversity-based strategy exhibits the most notable
improvement, with an average optimality gap of 0.4% and 1.08% for instances featuring 10
and 15 OD demands, respectively.

Regarding the number of iterations, the diversity-based strategy, on average, requires
16% more iterations than the other two strategies to reach a consensus on the complete set
of first-stage decisions. This is primarily due to the increased diversity of scenarios considered
when determining the reference solution at each iteration of the PH metaheuristic, which
allows for a wider range of first-stage solutions to be considered in subsequent iterations. This
reduces the presence of strong trends in the first-stage decisions during the early iterations of
the PH. These slight variations tend to increase the number of iterations needed to achieve
consensus over the complete set of first-stage decisions. This phenomenon becomes apparent
in experiments conducted on instance types CA and CB, where the travel time values for
each scenario are set to display a broader range. In these instances, the diversity-based
strategy achieves an optimality gap of less than 1% for 8 out of the 10 instances with 10 OD
demands and 9 out of the 10 instances with 15 OD demands. However, it requires a higher
number of iterations compared to instances of type CC and CD to achieve consensus over
the complete set of first-stage decisions.

It is important to emphasize that both the classic clustering strategy and the longest-
distance strategy offer significant benefits when compared to the diversity-based strategy.
First, the classic clustering strategy demonstrates the lowest runtime for instances with both
10 and 15 OD demands, resulting in an average reduction of 32% in comparison to the
other strategies. Second, the longest-distance strategy achieves good-quality upper bounds
while requiring, on average, 19% less runtime than the diversity-based strategy. It is worth
noting that the longest-distance strategy exhibits greater robustness in instances where the
travel time values are more evenly distributed, such as instance types CC and CD. This is
attributed to the use of a significantly different set of scenarios for defining the reference
solution at each iteration of the PH metaheuristic. This reduces the number of alternative
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scenario solutions that can be used to define the reference solutions in subsequent iterations
of the PH metaheuristic, thereby accelerating the search for consensus. However, this effect
also reduces the strategy’s effectiveness in avoiding local optima when the travel time values
are sparse, as observed in instance types CA and CB. In these instances, the reset procedure
proposed by Escobar-Vargas et al. (2023) is extensively used, which in turn increases the
runtime necessary to reach consensus.

6.5. Value of the stochastic problem

This section aims to evaluate the value of the stochastic solution (VSS) for the 2E-
MALRPSTT. The evaluation involves comparing the solutions obtained from the stochastic
program with those derived from a deterministic approximation problem. The deterministic
approximation problem represents a simplified version of the complete stochastic formulation,
where a single scenario is used, and the random variables are set to their corresponding
expected values. To calculate the expected cost of the deterministic approximation problem,
each scenario tree defined for each instance is evaluated while keeping the first-stage decisions
from the deterministic approximation problem fixed. The VSS is then determined as the
difference between the optimal value of the deterministic approximation problem and the
solution obtained from the stochastic model using the proposed PH metaheuristic.

The deterministic approximation is obtained using two different approaches: the Mean
Deterministic Approximation (ADA) and the Maximum Deterministic Approximation
(MDA). In the ADA approach, the stochastic travel times are estimated as the mean
value across all considered scenarios, while in the MDA approach, the stochastic travel
times are estimated as the maximum value among all considered scenarios. Results for the
deterministic approximation of the 2E-MALRPSTT are obtained by solving each instance
with the complete stochastic model using CPLEX under a 2-hour time limit. Subsequently,
the computational tests performed using the ADA and MDA approaches are compared to
the solutions obtained by the proposed PH metaheuristic, as reported in Section 6.4.

Tables 17 and 18 present a comparison between the results of the stochastic problem and
the two deterministic approximation approaches for instances with 10 and 15 OD demands,
respectively. The tables are structured to highlight the cost differences associated with the
deterministic approximation solutions, using the stochastic approach as the baseline. Each
table includes information about the instance names and the best-known solutions (BKS)
obtained using the proposed PH metaheuristic. Additionally, the tables provide the optimal
solution (UB), the outsourced cost difference (out. diff.), and the percentage increase in
the complete operational cost (cost diff.) of the deterministic approximation approaches
compared to the PH metaheuristic.
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INSTANCE BKS ADA MDA
UB Cost diff. Out diff. TIME (seg.) UB Cost diff. TIME (seg.) Out diff.

Ca1-2,3,10 342.17 393.00 12.93 7.76 1.65 387.50 11.70 12.62 3.47
Ca2-2,3,10 249.67 294.00 15.08 20.99 5.24 308.33 19.03 12.44 3.83
Ca3-2,3,10 329.30 370.17 11.04 17.32 2.40 386.67 14.84 15.52 4.52
Ca4-2,3,10 307.50 345.67 11.04 15.06 5.76 364.83 15.71 14.49 1.31
Ca5-2,3,10 304.00 342.50 11.24 20.81 1.99 348.67 12.81 10.67 5.34
Cb1-2,3,10 356.70 393.33 9.31 6.86 1.64 410.83 13.18 11.32 4.12
Cb2-2,3,10 281.67 320.83 12.21 5.03 2.62 343.33 17.96 15.07 3.89
Cb3-2,3,10 370.83 409.17 9.37 18.22 3.24 421.17 11.95 8.02 1.18
Cb4-2,3,10 327.50 367.00 10.76 11.59 2.00 384.17 14.75 8.32 4.14
Cb5-2,3,10 319.00 358.83 11.10 18.20 4.16 342.33 6.82 11.38 4.25
Cc1-2,3,10 361.80 399.50 9.44 14.24 3.15 384.00 5.78 4.96 4.39
Cc2-2,3,10 279.17 316.33 11.75 17.08 1.10 301.33 7.36 2.35 5.16
Cc3-2,3,10 351.33 387.33 9.29 10.81 1.94 371.83 5.51 7.77 2.11
Cc4-2,3,10 331.00 371.50 10.90 8.41 3.12 356.50 7.15 9.62 2.66
Cc5-2,3,10 307.67 347.33 11.42 20.96 1.31 331.33 7.14 5.25 2.66
Cd1-2,3,10 343.50 383.33 10.39 9.50 3.24 367.67 6.57 2.94 4.42
Cd2-2,3,10 266.50 306.67 13.10 18.95 3.15 290.33 8.21 3.74 2.59
Cd3-2,3,10 330.67 374.50 11.70 18.28 2.95 353.83 6.55 6.47 3.18
Cd4-2,3,10 317.67 356.17 10.81 8.20 3.67 340.50 6.71 4.58 2.28
Cd5-2,3,10 295.17 335.00 11.89 11.34 3.04 319.00 7.47 3.63 2.52
Averages 11.24 13.98 2.87 10.36 8.56 3.40

Table 17 – Value of the stochastic solutions for instances with 10 OD demands

INSTANCE BKS ADA MDA
UB Cost diff. Out diff. TIME (seg.) UB Cost diff. TIME (seg.) Out diff.

Ca1-2,3,15 778.00 906.25 14.15 14.74 5.99 900.17 13.57 9.76 6.85
Ca2-2,3,15 699.40 879.25 20.45 8.37 4.44 848.33 17.56 15.07 7.83
Ca3-2,3,15 724.40 819.41 11.60 10.12 5.00 803.33 9.83 9.97 8.29
Ca4-2,3,15 646.30 797.41 18.95 14.49 8.31 789.00 18.09 15.33 6.90
Ca5-2,3,15 686.40 864.25 20.58 16.36 8.25 860.50 20.23 14.51 6.15
Cb1-2,3,15 1043.00 1208.41 13.69 17.23 7.48 1188.50 12.24 9.24 7.83
Cb2-2,3,15 1636.40 1864.25 12.22 12.12 6.23 1883.67 13.13 9.03 5.99
Cb3-2,3,15 1225.00 1272.75 3.75 13.20 4.13 1287.67 4.87 16.43 6.00
Cb4-2,3,15 960.80 1131.25 15.07 16.28 4.35 1134.17 15.29 11.51 8.85
Cb5-2,3,15 931.10 1063.41 12.44 11.85 5.94 1038.67 10.36 6.85 5.55
Cc1-2,3,15 855.00 1008.75 15.24 12.62 4.94 936.17 8.67 6.03 5.28
Cc2-2,3,15 831.20 962.50 13.64 10.59 7.50 926.17 10.25 14.88 8.69
Cc3-2,3,15 876.50 1007.67 13.02 12.40 8.06 972.33 9.86 5.35 8.67
Cc4-2,3,15 793.60 904.33 12.24 12.78 6.81 881.00 9.92 5.39 4.14
Cc5-2,3,15 733.33 866.00 15.32 12.76 6.63 822.50 10.84 10.12 6.62
Cd1-2,3,15 769.90 884.17 12.92 19.96 5.60 854.50 9.90 5.24 6.18
Cd2-2,3,15 655.90 777.83 15.68 20.40 5.51 708.17 7.38 3.76 7.18
Cd3-2,3,15 658.90 784.67 16.03 14.36 7.49 748.67 11.99 11.47 7.62
Cd4-2,3,15 693.30 851.83 18.61 13.80 8.09 765.00 9.37 17.85 5.88
Cd5-2,3,15 802.90 929.83 13.65 10.82 6.28 888.17 9.60 6.05 8.76
Averages 14.46 13.76 6.35 11.65 10.19 6.96

Table 18 – Value of the stochastic solutions for instances with 15 OD demands

The results reveal important cost increases when uncertainty is not accounted for in the
problem setting. Overall, the stochastic approach consistently outperformes both determin-
istic approximation approaches, demonstrating an average upper bound improvement of 9%
across all instances. However, among the two deterministic approximation approaches, the
MDA approach exhibited the best overall performance, by achieving an average cost increase
of 11% and an average increase in outsourced services of 9% for instances with 10 and 15 OD
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demands. This can be attributed to the robust design decisions made by the MDA approach,
which are based on the scenario with the highest travel time values for each scenario tree.
This led to a reduced number of outsourced services but also less effective design decisions,
resulting in suboptimal vehicle operation during the recourse stage for the complete set of
scenarios. In contrast, the ADA approach demonstrated less variation in the cost difference
throughout the complete instance set but required, on average, 4% more outsourced services
compared to the MDA approach. It is evident that the definition of design decisions based
on the mean approximation of travel times often resulted in insufficient first-stage decisions
to accommodate scenarios with generally higher travel time values. As a consequence, this
increased the overall cost of outsourced services required to serve customers that could not
be served by a vehicle route within the system during the recourse stage due to violations of
customer time windows or fleet synchronization constraints.

It can be concluded that the deterministic approximation used to address the 2E-
MALRPSTT lacks the necessary contextual information to incorporate the diverse variations
present in the scenario sets defined for each instance. This limitation becomes apparent when
considering the complete instance set, where multiple time-sensitive attributes interact, pos-
ing challenges in defining flexible design decisions when only a single scenario is considered.
In contrast, the stochastic approach proves to be more cost-effective for both design and
routing decisions, clearly outperforming the deterministic approximation in terms of solution
quality. These observations provide strong justification for utilizing the stochastic approach,
to ensure a cost-effective system design that incorporates location routing decisions under
uncertainty, particularly in complex multi-attribute problem settings.

7. Conclusions
This paper introduces and investigates the two-echelon multi-attribute location-routing

problem with stochastic travel times. The problem is formulated using a two-stage stochas-
tic programming approach, which effectively incorporates multiple interacting attributes. In
the first stage, the design phase involves making location and allocation decisions for both
platform and satellite facilities. The recourse (second) stage, includes routing and schedul-
ing decisions in a rich multi-attribute distribution system after the realization of uncertain
travel times. To address the complete stochastic problem, an enhanced PH metaheuristic is
proposed. We also propose a decomposition-based heuristic to address each scenario-specific
subproblem, which accelerates the solution process for the multi-attribute problem arising
from scenario decomposition. Additionally, two novel scenario-selection strategies are in-
troduced in computing the reference solution to further accelerate the consensus over the
first-stage decisions.
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Comprehensive computational experiments show the effectiveness of the decomposition-
based heuristic in addressing rich multi-attribute deterministic problem settings. Compara-
tive analyses reveal that the proposed PH metaheuristic, along with the two novel selection
strategies, outperforms state-of-the-art approaches when stochastic travel times are taken
into account. The results underscore the effectiveness of the decomposition-based heuristic
and the PH metaheuristic in handling diverse sets of scenario sets with different problem
characteristics.

For future research, when targeting larger instances in terms of network size or the
number of scenarios, it would be beneficial to develop or adapt efficient solution methods
to further accelerate the solution of each scenario-specific subproblem at each iteration of
the PH metaheuristic. Additionally, exploring alternative selection strategies to enhance the
search for consensus could prove valuable. The modelling approach and solution frameworks
proposed in this paper for the specific problem setting may also find applications in other
settings that share one or more of the considered attributes.
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Chapter 3

CONCLUSIONS

This thesis addresses a significant class of the two-echelon location-routing problem
known as two-echelon multi-attribute location-routing problems (2E-MALRPs). This prob-
lem class provides a unified perspective on a wide range of transportation issues, drawing
inspiration from city logistics principles. Each problem addressed in this thesis aims to en-
compass crucial attributes, including time-dependent multicommodity, origin-to-destination
(OD) demand, time windows, fleet synchronization at intermediate facilities, correlated un-
certain demands, and uncertain travel times. Motivated by the growing interest in more
realistic problem settings and recognizing the lack of efficient modeling and solution frame-
works for the general versions of these problems, we have embraced the challenge of this
research endeavor.

In Chapter 2, a comprehensive literature review is given, focused on the related works on
the MA-2ELRP. The classification and scope of the considered contributions are structured to
present the advances of different LRPs and 2E-LRPs considering multiple attributes and the
VRPs with synchronization constraints on facilities. The classification presents a generalized
perspective of each problem variant and highlights the most prominent contributions followed
by an algorithmic discussion of the whole considered literature body. A narrowed list of gaps
in the literature is then presented, focusing on the most relevant aspects that this research
project can contribute to fill.

In Article 1 we introduce the two-echelon multi-attribute location-routing problem with
synchronization constraints, 2E-MALRPS, and present a mixed-integer programming for-
mulation on a hybrid time-space network combining continuous and discrete time repre-
sentations. We also present an exact solution framework that iteratively refines a reduced
time-space network, solving the 2E-MALRPS formulation defined on the reduced network to
extract bounds and achieve temporal granularity refinements, in order to guide the method



toward to optimal solution of the original problem. The paper generalizes the dynamic dis-
cretization discovery method to complex problem settings involving several levels of location,
routing, and synchronization decisions.

In Article 2, we address the two-echelon multicommodity location-routing problem with
stochastic and correlated Demands (2E-MLRPSCD). This study presents a two-stage sto-
chastic programming formulation to effectively model the problem. In the first stage, we
determine the locations of satellite facilities as design decisions, while in the second stage,
we make recourse decisions to distribute the observed demands effectively. To tackle this
problem, we propose a PH metaheuristic framework, which incorporates two population
structures to enhance the diversity of design decisions for each scenario subproblem. Addi-
tionally, we introduce and compare three novel strategies aimed at accelerating the search
for the solution space in the context of this stochastic problem.

In Article 3, we introduce and investigate the two-echelon multi-attribute location-routing
problem with stochastic travel times (2E-MALRPSTT). This problem is formulated using
a two-stage scenario-based stochastic programming approach, which effectively incorporates
the interactions among multiple attributes. In the first stage, the design phase involves mak-
ing location and allocation decisions for both platform and satellite facilities. These design
decisions are then fixed in the recourse (second) stage, where routing and scheduling decisions
are made in a rich multi-attribute distribution system after the realization of uncertain travel
times. To address the complete stochastic problem, we propose a Progressive Hedging (PH)
metaheuristic, which decomposes the problem into scenario-specific subproblems. These
subproblems are iteratively solved and adjusted until a consensus is reached regarding the
first-stage decisions. To tackle each scenario subproblem, we propose a decomposition-based
heuristic that accelerates the solution process for the multi-attribute problem arising from
scenario decomposition. Additionally, we introduce two novel scenario-selection strategies to
further expedite the consensus over the first-stage decisions.

The contributions presented in this thesis encompass various aspects of modeling and
solution methodologies for rich two-echelon multi-attribute location-routing problems (2E-
MALRPs) from both deterministic and stochastic perspectives. The three articles included in
this thesis show the effectiveness of the proposed approaches through extensive experimental
campaigns, highlighting their computational efficiency and solution quality, particularly in
challenging instances. We believe that decomposition-based algorithms deserve significant
consideration in the field, and we have explored this idea in our papers. The proposed models
are flexible and can accommodate numerous real-life attributes. Moreover, the solution
frameworks proposed in each paper are general enough to be extended to related problem
settings.

Although this area of research is gaining considerable attention, we believe that there are
several topics that have yet to be studied. Exploring more general and challenging versions
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of the problems to assess the limits of the proposed methods is an important research avenue.
Additionally, numerous variants of the fundamental two-echelon location-routing problems
(2E-LRPs) have been studied from both applications and theoretical perspectives. Most of
these versions could be extended to incorporate the multi-attribute aspect to further study
the influence of a broad set of attributes on location and routing decisions.

Another important step towards a more systematic growth of the field is targeting larger
problem instances in terms of network size or the number/type of scenarios or both. To
achieve this, it would be advantageous to develop or adapt efficient solution frameworks
(whether exact, metaheuristic, or hybrid) to further accelerate the resolution of each scenario
subproblem at each iteration of the PH metaheuristic. Moreover, delving into more intricate
forms of correlation among stochastic variables, such as temporal and spatial correlations,
could yield valuable managerial insights and offer an opportunity to assess the impact of
these considerations on the solution methodologies introduced in this thesis.
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Chapter A

SUPPLEMENTARY MATERIAL FIRST
ARTICLE

A.1. Mathematical Proofs of Lemmas of Section 5.1
Lemma 1. Let G∆ be a reduced time-space network that satisfies properties 1, 2, 3,

and 4. Then, for each commodity k ∈ K and itinerary r = (vi, ti)l
i=1 ∈ Rk

G, there exists an
itinerary r′ = (vi, t

′
i)l

i=1 ∈ Rk
G∆

such that t′i ≤ ti for every i = 1 . . . l.
Proof Lemma 1. We conduct the proof by induction on i for the itinerary r = (vi, ti)l

i=1

in Rk
G. For i = 1, let t′1 = av1 be the temporal lower bound of v1. By Property 1, we

have that the time-space node (v1, t
′
1) with t′1 = av1 yields to t′1 ≤ t1, as there is no

(v1, t
′′

1) ∈ G∆ with t′′1 < av1 . From the time-space node (v1, t
′
1), we can map the remainder

of the itinerary r = (vi, ti)l
i=1 ∈ Rk

G by defining an equivalent time-space node (vi,t
′
i) in G∆,

for each (vi,ti) ∈ Rk
G with t′i = argmax{d ∈ Ti(∆) | d ≤ ti}. By Property 2, there is an

arc ((vi, t
′
i),(vi+1, t

′
i+1)) ∈ A∆ with t′i+1 ≤ t′i + τvivi+1 ≤ ti + τvivi+1 , while Property 3 and 4,

enables early waiting times at satellites as well early arrival at customers, respectively.
Assuming that i = w is true, we can prove that our condition holds for i = w+1. Hence,

by the inductive assumption, there is an itinerary r = [(v1,t
′
1), (v2,t

′
2),..., (vw,t

′
w)] with

(vw,t
′
w) ∈ G∆ and t′w ≤ tw. By Property 1, the set of integer time points Tvi(∆) representing

the time moments at which node i = w+ 1 becomes relevant must exist in V∆. By Property
2, 3 and 4, arc ((vw, t

′
w),(vw+1, t

′
w+1)) ∈ A∆ with t′w+1 ≤ t′w + τvwvw+1 ≤ tw + τvwvw+1 . By

Property 3, there must exist a waiting time at satellites with a lesser of equal value to the
original waiting time, while Property 4, ensures that there is an early arrival point in time
for customers. Consequently, we can ensure that the defined conditions can be verified for
each connection within r = (vi, ti)l

i=1 ∈ Rk
G, and thus for each itinerary in RG. □

Lemma 2. If a reduced time-space network G∆ satisfies properties 1, 2, 3, and 4, then
the optimal solution of the 2E-MALRPS formulated on the reduced time-space network G∆

is a lower bound for the solution of the 2E-MALRPS on the complete time-space network G.



Proof Lemma 2. To prove this lemma, we will show that each time-space arc repre-
senting the optimal solution for the 2E-MALRPS in a complete time-space network, can be
mapped onto a reduced time-space network, with an equal or lesser operational cost.

Consider Z∗
G = (x∗

G,f
∗
G ,y

∗
G) an optimal integer solution of the 2E-MALRPS in a complete

time-space network (G), with A∗
G = {((vi,ti),(vj,tj)) ∈ AG | x(vi,ti),(vj ,tj) = 1}. Let RG be

the set of itineraries r ∈ RG dispatching each commodity k ∈ K from its origin O(k) to its
destination D(k) throughout the system with the arcs in A∗

G. In what follows, we will show
that each arc in A∗

G can be mapped to a unique set of arcs AG∆ of a reduced time-space
network (G∆), so we can construct ZG∆ = (xG∆ ,fG∆ ,yG∆) in respect to each arc in AG∆ .

By Lemma 1, for each arc ((vi,ti)(vj,tj)) ∈ A∗
G in RG (excluding garages connections),

there exists (vi, t
′
i) ∈ G∆ with t′i ≤ ti and a t′j such that ((vi,t

′
i)(vj,t

′
j)) ∈ AG∆ . Hence, for

each itinerary r = (vi, ti)l
i=1 ∈ RG, there is an equivalent itinerary r′ = (vi, t

′
i)l

i=1 ∈ RG∆ such
that t′i ≤ ti. Because the number of both platform and satellite facilities must hold for each
r ∈ RG mapped to G∆, we have that yG∆ = y∗

G. Now we can track each commodity flow from
its origin to its destination in RG∆ to derive both routing and flow decisions to xG∆ and fG∆ .
Notice that by Lemma 1 and Property 3, fleet synchronization within each r ∈ RG∆ holds,
but takes place at the same or earlier point in time on the same satellite.

Recall that every route in the first and second echelon must start and end at a vehicle
garage. We have that for each path r ∈ RG, every origin, satellite serving as the transfer
point and destination of each commodity k ∈ K are known. Notice that, for some of these
time-space nodes, there exists an unique time-space arc in A∗

G that represents the leg used
for each route as the start point after a vehicle leaves the garage or the end point before the
vehicle returns to the garage. By Lemma 1 and Properties 1 and 2, there must exist a time-
space node (e1,t

′
e1) ∈ E1

∆ and (e2,u
′
e2) ∈ E2

∆, such that ((z, t′z),(e1,t
′
e1)) and ((c, t′c),(e2,t

′
e2))

exists in AG∆ for each end point at the first and second echelon, with (z, t′z) and (c, t′c)
in RG∆ , z ∈ Zph and c ∈ Cph. Similarly, there are time-space nodes (e′

1,t
′
e′1) ∈ E1

∆ and
(e′

2,u
′
e′2) ∈ E2

∆, such that ((e′
1,t

′
e′1),(p,t′p)) and ((e′

2,t
′
e′2),(z′, t′′z′)) exists in AG∆ for each

start point at the first and second echelon, with (p,t′p) and (z′, t′′z′) in RG∆ , p ∈ Pph and
z′ ∈ Zph. Thus, we can then derive the routing decisions to xG∆ for the resulting inbound
and outbound for each garage.

Observe that, for a given reduced network G∆, there is a unique set of time-space arcs that
satisfy properties 1 and 2. This implies that first-echelon routes mapped from the complete
time-space network would have the same cost but reach each destination in the reduced time-
space network at the same or an earlier time moment. By property 3, we know that waiting
times follow a similar behavior, wherein vehicles can wait until the same or a lesser time
moment than the one defined in the complete time-space network. Furthermore, property
2 guarantees that there are no time-space arcs ((i,t),(j,t′)) and ((i,t),(j,t”)) where t′ < t”.
Consequently, for each time-space node (i,t) ∈ V∆ and each (i,j) ∈ Aph, there can be at
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most one time-space arc of the form ((i,t),(j,t′)) that satisfies properties 1 and 2. Combining
properties 2 and 3, it follows that t′ = argmax{d | d ≤ t + τij, (i,j) ∈ Aph, (j,d) ∈ V∆}.
Therefore, for each time moment in which fleet synchronization takes place in the complete
time-space network, there exists a time moment with an equal or lesser time value in the
reduced network.

Now, the solution ZG∆ = (xG∆ ,fG∆ ,yG∆) constructed in this way is feasible for the 2E-
MALRPS onto the reduced time-space network (G∆) while routing and location costs holds.
Therefore, we have that ZG∆ is identical to Z∗

G with arrival and departure times taking
earlier or equal values than the ones on the complete time-space network, but with the same
operational cost. Consequently, the optimal solution for the 2E-MALRPS on a reduced
time-space network (G∆) is a lower bound of the optimal solution obtained in a complete
time-space network (G). □

Lemma 3. The proposed DDD algorithm terminates with an optimal solution for the
2E-MALRPS.

Proof Lemma 3. The DDD algorithm terminates when the optimal integer solution of
the hybrid formulation HTF(G∆) on a reduced time-space network G∆ can be mapped onto
a complete time-space network with the same cost. By Lemma 2, the solutions derived from
HTF(G∆) is as lower bounds for the 2E-MALRPS on the complete time-space network G.
Therefore, the solution obtained from HTF(G∆), which remains feasible when mapped to
the complete time-space network, is the optimal solution for the 2E-MALRPS.

During each iteration of the DDD algorithm, there may be situations where the solution
obtained by HTF(G∆) is not feasible for the 2E-MALRPS when evaluated using the original
travel times, due to the presence of at least one short arc in the solution. When such a
situation occurs, a refinement procedure is applied, which extends these short arcs found in
the solution while ensuring that Properties 1-4 remain valid at the nodes involved in the
extension. Given that the system comprises a finite number of time points and arcs, the
DDD algorithm can eventually reach an iteration where all arcs in the reduced network have
travel times corresponding to the actual travel time of the system. In this specific scenario,
the solution obtained from HTF(G∆) effectively satisfies the temporal requirements of the
2E-MALRPS and leads to the optimal solution, ultimately resulting in the termination of
the algorithm.
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A.2. Complete Result Tables
Tables 1 - 6 showcase the results of the proposed formulations under different granularity

values. Each table display the comparative performance results on the complete time-space
network (∆ = ∆̄) and the reduced time-space networks with granularity values ∆ = 50 and
∆ = 25 with a time limit of 2.5 hours. Table 1, Table 3 and Table 5 presents experiments
of the hybrid formulation with different granularity values on instances with 5, 10 and 15
OD, respectively. Results presented in Table 2, Table 4 and Table 6 extend the same experi-
ments using the standalone time-space formulation. The tables display the instance ID, the
schedule length (Ψ), the best upper bound (UB), the run-time (CPUsec), the lower bound
(LB), the root gap (RG(%)), and cost increment percentage (Dif UB).

Tables 7 - 12 display the detailed results of the set of experiments focusing on the per-
formance of the dynamic discretization discovery (DDD) solution framework for the 2E-
MALRPS. Test results are shown for the instances with 5, 10 and 15 OD demands in Table
7. Results for the same instances with disabled availability times in Table 11 as well as
disabled availability times and synchronization in Table 12. The experiments are performed
using a coarse discretization granularity ∆ = 2. The stopping criteria are an optimality gap
of less or equal to 1% and a maximum run time of 2.5 hours for small-sized instances (5
and 10 OD demands), 5 hours for instances with 30 OD demands and 8 hours for instances
with 50 OD demands. The tables display the instance ID, the schedule length (Ψ), the best
upper bound (UB), the run-time (CPUsec), the lower bound (LB), and the optimality gap
(OG(%)).

180



H
yb

ri
d

fo
rm

ul
at

io
n

(∆
=

∆̄
)

H
yb

ri
d

fo
rm

ul
at

io
n

(∆
=

50
)

H
yb

ri
d

fo
rm

ul
at

io
n

(∆
=

25
)

ID
Ψ

U
B

C
P

U
(s

ec
)

LB
R

G
(%

)
U

B
C

P
U

(s
ec

)
D

if.
U

b
(%

)
U

B
C

P
U

(s
ec

)
D

if.
U

b
(%

)
C

a1
-2

,3
,5

10
0

28
0

1.
73

19
1.

38
31

.6
5

28
0

1.
05

0.
00

28
5

0.
75

1.
61

C
a1

-3
,5

,5
10

0
22

2
82

.5
3

19
9.

00
10

.3
6

22
2

32
.5

5
0.

00
22

3
22

.5
2

0.
54

C
a1

-6
,4

,5
10

0
27

1
32

8.
45

21
3.

03
21

.3
9

28
2

73
.0

3
3.

87
28

2
70

.7
5

3.
87

C
a2

-2
,3

,5
10

0
15

2
7.

81
13

2.
86

12
.5

9
15

2
5.

53
0.

00
15

2
3.

29
0.

13
C

a2
-3

,5
,5

10
0

28
4

9.
16

21
6.

74
23

.6
8

28
4

6.
70

0.
00

29
3

3.
68

3.
10

C
a2

-6
,4

,5
10

0
15

0
87

.3
6

11
2.

00
25

.3
3

15
6

67
.3

9
4.

00
15

6
24

.6
1

4.
13

C
a3

-2
,3

,5
10

0
28

7
8.

47
23

8.
33

16
.9

6
29

9
1.

64
4.

14
29

9
1.

48
4.

15
C

a3
-3

,5
,5

10
0

22
0

72
.4

3
17

3.
73

21
.0

3
22

4
29

.9
9

2.
00

22
4

29
.5

4
2.

00
C

a3
-6

,4
,5

10
0

17
1

42
.3

0
16

4.
50

3.
80

17
3

39
.6

6
1.

29
17

3
38

.7
2

1.
29

C
a4

-2
,3

,5
10

0
35

8
6.

66
25

2.
23

29
.5

5
35

8
6.

32
0.

00
37

4
0.

84
4.

27
C

a4
-3

,5
,5

10
0

16
8

9.
36

12
8.

78
23

.3
5

17
0

5.
06

1.
19

17
0

0.
44

1.
37

C
a4

-6
,4

,5
10

0
16

1
99

.8
2

12
5.

28
22

.1
9

16
4

43
.6

5
1.

98
16

4
25

.3
1

1.
99

C
a5

-2
,3

,5
10

0
19

9
39

.1
1

18
9.

30
4.

87
20

0
19

.6
9

0.
25

20
2

1.
46

1.
31

C
a5

-3
,5

,5
10

0
18

6
13

4.
80

16
1.

93
12

.9
4

18
6

10
4.

69
0.

00
18

6
96

.6
0

0.
22

C
a5

-6
,4

,5
10

0
15

9
26

20
.2

7
15

2.
67

3.
98

16
5

17
65

.5
9

3.
65

16
7

25
.9

2
4.

84
C

b1
-2

,3
,5

10
0

15
2

2.
49

14
0.

00
7.

89
15

3
1.

83
0.

39
15

3
1.

20
0.

53
C

b1
-3

,5
,5

10
0

16
4

64
5.

87
11

7.
74

28
.2

1
16

4
62

9.
06

0.
00

16
5

1.
63

0.
30

C
b1

-6
,4

,5
10

0
30

5
58

1.
10

18
6.

03
39

.0
1

30
5

41
2.

05
0.

00
31

1
5.

93
1.

87
C

b2
-2

,3
,5

10
0

12
9

1.
75

11
7.

95
8.

57
13

1
1.

61
1.

86
13

1
0.

44
1.

86
C

b2
-3

,5
,5

10
0

15
4

4.
12

13
4.

00
12

.9
9

15
4

2.
04

0.
00

15
5

1.
46

0.
84

C
b2

-6
,4

,5
10

0
14

3
45

4.
68

11
7.

53
17

.8
1

14
3

25
.3

7
0.

00
14

9
14

.5
5

4.
27

C
b3

-2
,3

,5
10

0
33

2
0.

38
24

8.
84

25
.0

5
34

3
0.

37
3.

10
34

3
0.

37
3.

10
C

b3
-3

,5
,5

10
0

16
0

52
.5

7
12

9.
00

19
.3

7
16

0
40

.0
4

0.
00

16
1

6.
86

0.
62

C
b3

-6
,4

,5
10

0
19

8
15

8.
15

14
1.

85
28

.3
6

20
1

54
.5

6
1.

46
20

4
8.

71
2.

78
C

b4
-2

,3
,5

10
0

28
0

90
00

.0
0

17
1.

05
38

.9
1

28
0

20
47

.8
3

0.
00

28
6

4.
73

2.
21

C
b4

-3
,5

,5
10

0
14

2
27

.9
1

12
2.

00
14

.0
8

14
2

20
.6

9
0.

28
14

4
13

.4
8

1.
34

C
b4

-6
,4

,5
10

0
18

8
19

3.
07

13
6.

05
27

.6
3

19
2

17
3.

47
1.

97
19

5
22

.6
9

3.
56

C
b5

-2
,3

,5
10

0
12

9
17

.9
7

11
5.

31
10

.6
1

13
0

12
.3

1
0.

78
13

1
1.

82
1.

32
C

b5
-3

,5
,5

10
0

17
9

42
9.

57
13

9.
65

21
.9

8
17

9
13

1.
93

0.
00

18
0

16
.6

5
0.

50
C

b5
-6

,4
,5

10
0

19
9

44
.9

1
13

7.
67

30
.8

2
20

6
41

.1
5

3.
37

20
7

35
.1

1
3.

82
C

c1
-2

,3
,5

10
0

12
9

90
00

.0
0

11
4.

69
11

.1
0

12
9

39
34

.4
1

0.
00

13
1

16
3.

17
1.

24
C

c1
-3

,5
,5

10
0

13
5

90
00

.0
0

10
9.

99
18

.5
3

13
6

51
53

.7
5

0.
89

13
6

26
1.

11
0.

89
C

c1
-6

,4
,5

10
0

15
0

90
00

.0
0

10
8.

20
27

.8
6

15
0

51
15

.2
9

0.
00

15
5

46
0.

03
3.

40
C

c2
-2

,3
,5

10
0

12
2

90
00

.0
0

99
.6

2
18

.3
4

12
2

87
64

.6
5

0.
00

12
2

21
.6

4
0.

00
C

c2
-3

,5
,5

10
0

17
5

90
00

.0
0

12
0.

46
31

.1
7

17
5

36
60

.5
9

0.
23

17
6

33
55

.9
2

0.
29

C
c2

-6
,4

,5
10

0
14

0
90

00
.0

0
11

4.
84

17
.9

7
14

0
79

60
.7

6
0.

00
14

4
40

19
.3

7
2.

86
C

c3
-2

,3
,5

10
0

13
6

90
00

.0
0

11
6.

66
14

.2
2

13
6

20
30

.2
8

0.
00

13
7

51
3.

69
0.

37
C

c3
-3

,5
,5

10
0

14
2

90
00

.0
0

12
8.

80
9.

30
14

2
71

02
.5

7
0.

00
14

4
32

3.
32

1.
06

C
c3

-6
,4

,5
10

0
15

7
90

00
.0

0
11

0.
13

29
.8

6
15

7
59

63
.7

2
0.

00
16

1
13

71
.7

7
2.

48
C

c4
-2

,3
,5

10
0

17
1

90
00

.0
0

12
0.

69
29

.4
2

17
1

22
34

.2
4

0.
00

17
1

54
6.

19
0.

23
C

c4
-3

,5
,5

10
0

15
4

90
00

.0
0

11
4.

87
25

.4
1

15
4

74
94

.6
1

0.
19

15
4

22
55

.4
8

0.
26

C
c4

-6
,4

,5
10

0
13

8
90

00
.0

0
12

2.
31

11
.3

7
13

8
70

90
.7

2
0.

00
14

2
22

01
.8

6
3.

04
C

c5
-2

,3
,5

10
0

12
3

90
00

.0
0

11
4.

54
6.

88
12

4
15

68
.9

7
0.

81
12

4
15

1.
12

0.
89

C
c5

-3
,5

,5
10

0
12

4
90

00
.0

0
10

4.
60

15
.6

4
12

4
45

68
.9

5
0.

00
12

4
38

32
.1

2
0.

00
C

c5
-6

,4
,5

10
0

13
8

90
00

.0
0

11
9.

21
13

.6
1

13
8

69
78

.9
9

0.
00

14
4

26
00

.0
4

3.
84

C
d1

-2
,3

,5
10

0
15

5
11

40
.2

2
13

6.
21

12
.1

3
15

5
23

9.
64

0.
00

15
6

29
.0

6
0.

90
C

d1
-3

,5
,5

10
0

17
0

24
.1

3
14

0.
45

17
.3

8
17

0
23

.1
7

0.
18

17
1

12
.6

5
0.

53
C

d1
-6

,4
,5

10
0

18
8

87
0.

99
12

7.
01

32
.4

4
18

8
40

7.
19

0.
00

19
1

19
8.

22
1.

70
C

d2
-2

,3
,5

10
0

14
0

90
00

.0
0

12
7.

24
9.

11
14

2
26

19
.4

1
1.

21
14

5
30

.9
2

3.
29

C
d2

-3
,5

,5
10

0
15

8
17

07
.0

2
14

1.
04

10
.7

3
15

8
85

7.
78

0.
00

15
9

12
04

.8
9

0.
57

C
d2

-6
,4

,5
10

0
14

2
69

2.
04

10
0.

52
29

.2
1

14
2

47
8.

78
0.

34
14

8
15

2.
25

3.
73

C
d3

-2
,3

,5
10

0
14

2
90

00
.0

0
11

9.
98

15
.5

1
14

2
13

12
.7

4
0.

28
14

5
89

.6
5

1.
83

C
d3

-3
,5

,5
10

0
14

7
90

00
.0

0
11

8.
75

19
.2

2
14

8
29

94
.4

3
0.

95
14

9
13

24
.9

2
1.

09
C

d3
-6

,4
,5

10
0

15
7

13
3.

33
12

5.
88

19
.8

2
16

0
47

.8
4

1.
72

16
2

47
.0

6
3.

31
C

d4
-2

,3
,5

10
0

20
2

90
00

.0
0

17
2.

63
14

.5
4

20
4

49
54

.8
9

0.
84

20
4

10
2.

22
1.

04
C

d4
-3

,5
,5

10
0

16
2

90
00

.0
0

13
8.

26
14

.6
5

16
3

39
16

.4
5

0.
31

16
4

55
2.

18
1.

11
C

d4
-6

,4
,5

10
0

14
7

20
73

.2
3

10
9.

56
25

.4
7

14
7

11
49

.2
1

0.
00

15
1

39
7.

82
2.

38
C

d5
-2

,3
,5

10
0

17
8

90
00

.0
0

16
0.

73
9.

70
17

9
26

81
.8

5
0.

50
17

9
56

.0
7

0.
56

C
d5

-3
,5

,5
10

0
17

8
90

00
.0

0
14

8.
29

16
.6

9
17

8
48

78
.7

2
0.

00
17

8
44

2.
24

0.
22

C
d5

-6
,4

,5
10

0
15

7
90

00
.0

0
13

8.
29

11
.9

2
16

3
24

45
.9

7
3.

95
16

5
54

9.
26

4.
65

A
ve

ra
ge

s
38

13
.4

3
18

.9
0

19
07

.1
2

0.
80

46
2.

46
1.

86

T
ab

le
1

–
D

ire
ct

so
lv

in
g

th
e

hy
br

id
fo

rm
ul

at
io

n
on

in
st

an
ce

s
w

ith
5

O
D

de
m

an
ds

an
d

m
ul

tip
le

∆
tim

e
pe

rio
ds

181



T
im

e-
Sp

ac
e

fo
rm

ul
at

io
n

(∆
=

∆̄
)

T
im

e-
Sp

ac
e

fo
rm

ul
at

io
n

(∆
=

50
)

T
im

e-
Sp

ac
e

fo
rm

ul
at

io
n

(∆
=

25
)

ID
Ψ

U
B

C
P

U
(s

ec
)

LB
R

G
(%

)
U

B
C

P
U

(s
ec

)
D

if.
U

b
(%

)
U

B
C

P
U

(s
ec

)
D

if.
U

b
(%

)
C

a1
-2

,3
,5

10
0

28
0

0.
14

16
8.

08
39

.9
7

28
7

0.
06

2.
50

28
6

0.
01

2.
10

C
a1

-3
,5

,5
10

0
22

2
0.

88
19

0.
89

14
.0

1
22

5
0.

48
1.

35
22

4
0.

47
0.

89
C

a1
-6

,4
,5

10
0

27
1

0.
37

20
9.

51
22

.6
9

28
1

0.
32

3.
69

28
2

0.
22

3.
90

C
a2

-2
,3

,5
10

0
15

2
0.

27
12

0.
73

20
.5

7
15

2
0.

27
0.

00
15

3
0.

26
0.

65
C

a2
-3

,5
,5

10
0

28
4

0.
15

17
3.

40
38

.9
5

29
4

0.
14

3.
52

29
5

0.
14

3.
73

C
a2

-6
,4

,5
10

0
15

0
1.

26
90

.8
2

39
.4

5
15

6
1.

23
4.

00
15

7
0.

71
4.

46
C

a3
-2

,3
,5

10
0

28
7

0.
05

23
5.

01
18

.1
2

29
9

0.
05

4.
18

30
1

0.
05

4.
65

C
a3

-3
,5

,5
10

0
22

0
0.

46
16

0.
73

26
.9

4
22

4
0.

28
1.

82
22

5
0.

27
2.

22
C

a3
-6

,4
,5

10
0

17
1

0.
64

12
0.

30
29

.6
5

17
3

0.
56

1.
17

17
4

0.
33

1.
72

C
a4

-2
,3

,5
10

0
35

8
0.

07
18

9.
88

46
.9

6
37

3
0.

09
4.

19
37

6
0.

09
4.

79
C

a4
-3

,5
,5

10
0

16
8

0.
42

12
8.

26
23

.6
6

17
0

0.
30

1.
19

17
1

0.
28

1.
75

C
a4

-6
,4

,5
10

0
16

1
1.

55
12

3.
71

23
.1

6
16

4
1.

48
1.

86
16

5
1.

45
2.

42
C

a5
-2

,3
,5

10
0

19
9

0.
48

17
5.

45
11

.8
4

19
9

0.
36

0.
00

20
2

0.
18

1.
49

C
a5

-3
,5

,5
10

0
18

6
0.

32
12

0.
45

35
.2

4
18

9
0.

27
1.

61
18

7
0.

19
0.

53
C

a5
-6

,4
,5

10
0

15
9

54
.7

9
91

.3
6

42
.5

4
16

5
54

.6
5

3.
77

16
8

54
.5

9
5.

36
C

b1
-2

,3
,5

10
0

15
2

0.
23

13
1.

27
13

.6
4

15
2

0.
12

0.
00

15
3

0.
16

0.
65

C
b1

-3
,5

,5
10

0
16

4
1.

98
11

6.
89

28
.7

2
16

7
1.

62
1.

83
16

5
1.

51
0.

61
C

b1
-6

,4
,5

10
0

30
5

0.
31

17
8.

02
41

.6
3

31
4

0.
24

2.
95

31
2

0.
14

2.
24

C
b2

-2
,3

,5
10

0
12

9
0.

14
11

7.
44

8.
96

13
1

0.
12

1.
55

13
2

0.
14

2.
27

C
b2

-3
,5

,5
10

0
15

4
0.

22
13

3.
35

13
.4

1
15

5
0.

17
0.

65
15

6
0.

11
1.

28
C

b2
-6

,4
,5

10
0

14
3

1.
04

10
5.

47
26

.2
5

14
9

0.
86

4.
20

15
0

0.
78

4.
67

C
b3

-2
,3

,5
10

0
33

2
0.

06
23

6.
65

28
.7

2
34

2
0.

04
3.

01
34

4
0.

00
3.

49
C

b3
-3

,5
,5

10
0

16
0

0.
52

12
8.

32
19

.8
0

16
1

0.
23

0.
63

16
2

0.
19

1.
23

C
b3

-6
,4

,5
10

0
19

8
0.

35
13

6.
20

31
.2

1
20

1
0.

23
1.

52
20

4
0.

16
2.

94
C

b4
-2

,3
,5

10
0

28
0

90
00

16
1.

05
42

.4
8

29
0

16
42

.2
8

3.
57

28
8

19
.9

1
2.

78
C

b4
-3

,5
,5

10
0

14
2

0.
82

11
8.

46
16

.5
8

14
2

0.
61

0.
00

14
4

0.
47

1.
39

C
b4

-6
,4

,5
10

0
18

8
0.

64
12

9.
68

31
.0

2
19

1
0.

62
1.

60
19

6
0.

30
4.

08
C

b5
-2

,3
,5

10
0

12
9

0.
47

11
1.

73
13

.3
8

13
0

0.
43

0.
78

13
1

0.
07

1.
53

C
b5

-3
,5

,5
10

0
17

9
0.

71
13

1.
95

26
.2

8
18

1
0.

57
1.

12
18

0
0.

46
0.

56
C

b5
-6

,4
,5

10
0

19
9

0.
43

13
6.

02
31

.6
5

20
5

0.
41

3.
02

20
8

0.
35

4.
33

C
c1

-2
,3

,5
10

0
12

9
90

00
11

2.
13

13
.0

8
13

0
48

54
.2

7
0.

78
13

1
35

.4
7

1.
53

C
c1

-3
,5

,5
10

0
13

5
36

22
.1

10
9.

11
19

.1
8

13
6

25
44

.3
8

0.
74

13
7

22
.8

2
1.

46
C

c1
-6

,4
,5

10
0

15
0

90
00

81
.6

9
45

.5
4

15
5

38
38

.3
9

3.
33

15
6

19
.6

1
3.

85
C

c2
-2

,3
,5

10
0

12
2

51
99

.0
8

18
.7

9
12

3
50

.9
1

0.
82

12
3

50
.7

5
0.

81
C

c2
-3

,5
,5

10
0

17
5

90
00

11
9.

59
31

.6
6

17
5

48
16

.2
6

0.
00

17
6

9.
56

0.
57

C
c2

-6
,4

,5
10

0
14

0
90

00
10

7.
85

22
.9

6
14

4
24

01
.1

7
2.

86
14

5
84

.6
8

3.
45

C
c3

-2
,3

,5
10

0
13

6
20

8.
75

11
5.

10
15

.3
7

13
6

18
6.

73
0.

00
13

7
25

.3
7

0.
73

C
c3

-3
,5

,5
10

0
14

2
39

06
.7

8
12

7.
89

9.
94

14
4

82
3.

62
1.

41
14

4
30

.2
5

1.
39

C
c3

-6
,4

,5
10

0
15

7
90

00
10

9.
02

30
.5

6
16

0
39

07
.4

8
1.

91
16

1
9.

49
2.

48
C

c4
-2

,3
,5

10
0

17
1

31
60

.1
2

12
0.

89
29

.3
1

17
1

12
91

.0
9

0.
00

17
2

14
.5

3
0.

58
C

c4
-3

,5
,5

10
0

15
4

90
00

11
4.

98
25

.3
4

15
4

47
62

.0
4

0.
00

15
5

25
9.

42
0.

65
C

c4
-6

,4
,5

10
0

13
8

90
00

88
.3

6
35

.9
7

14
2

33
5.

82
2.

90
14

2
5.

56
2.

82
C

c5
-2

,3
,5

10
0

12
3

90
00

11
4.

32
7.

06
12

4
26

41
.2

0
0.

81
12

5
75

.8
3

1.
60

C
c5

-3
,5

,5
10

0
12

4
24

6.
22

10
3.

09
16

.8
6

12
4

14
2.

84
0.

00
12

4
20

.0
3

0.
00

C
c5

-6
,4

,5
10

0
13

8
90

00
10

4.
58

24
.2

2
14

3
78

28
.4

8
3.

62
14

4
89

.9
6

4.
17

C
d1

-2
,3

,5
10

0
15

5
1.

31
13

4.
59

13
.1

7
15

5
1.

27
0.

00
15

7
1.

25
1.

27
C

d1
-3

,5
,5

10
0

17
0

0.
75

13
9.

12
18

.1
6

17
0

0.
74

0.
00

17
2

0.
56

1.
16

C
d1

-6
,4

,5
10

0
18

8
99

.9
1

12
1.

25
35

.5
0

19
1

99
.4

1
1.

60
19

1
99

.3
8

1.
57

C
d2

-2
,3

,5
10

0
14

0
1.

72
12

6.
35

9.
75

14
1

1.
24

0.
71

14
5

1.
19

3.
45

C
d2

-3
,5

,5
10

0
15

8
6.

96
13

6.
47

13
.6

2
15

8
6.

84
0.

00
16

0
6.

83
1.

25
C

d2
-6

,4
,5

10
0

14
2

25
.3

8
94

.7
6

33
.2

7
14

7
25

.2
1

3.
52

14
8

25
.1

2
4.

05
C

d3
-2

,3
,5

10
0

14
2

3.
05

11
7.

30
17

.4
0

14
2

3.
01

0.
00

14
5

2.
93

2.
07

C
d3

-3
,5

,5
10

0
14

7
11

.4
5

11
8.

29
19

.5
3

14
8

11
.2

8
0.

68
14

9
11

.2
7

1.
34

C
d3

-6
,4

,5
10

0
15

7
60

0.
47

12
1.

23
22

.7
8

15
9

28
2.

06
1.

27
16

3
20

.4
5

3.
68

C
d4

-2
,3

,5
10

0
20

2
0.

58
16

8.
87

16
.4

0
20

3
0.

53
0.

50
20

5
0.

41
1.

46
C

d4
-3

,5
,5

10
0

16
2

1.
7

13
7.

76
14

.9
6

16
2

1.
70

0.
00

16
5

1.
69

1.
82

C
d4

-6
,4

,5
10

0
14

7
15

6.
39

10
8.

88
25

.9
3

15
0

11
3.

33
2.

04
15

1
4.

87
2.

65
C

d5
-2

,3
,5

10
0

17
8

1.
13

15
8.

80
10

.7
9

17
8

0.
84

0.
00

18
0

0.
72

1.
11

C
d5

-3
,5

,5
10

0
17

8
5.

14
14

5.
71

18
.1

4
17

9
5.

07
0.

56
17

9
4.

95
0.

56
C

d5
-6

,4
,5

10
0

15
7

19
1.

79
13

4.
67

14
.2

2
16

3
14

6.
44

3.
82

16
5

84
.2

9
4.

85
A

ve
ra

ge
s

17
06

.2
1

23
.9

5
71

3.
89

1.
59

18
.4

0
2.

22

T
ab

le
2

–
D

ire
ct

so
lv

in
g

th
e

cl
as

sic
tim

e-
sp

ac
e

fo
rm

ul
at

io
n

on
in

st
an

ce
s

w
ith

5
O

D
de

m
an

ds
an

d
m

ul
tip

le
∆

tim
e

pe
rio

ds

182



ID
Ψ

H
yb

ri
d

Fo
rm

ul
at

io
n

(∆
=

∆̄
)

H
yb

ri
d

Fo
rm

ul
at

io
n

(∆
=

50
)

H
yb

ri
d

Fo
rm

ul
at

io
n

(∆
=

25
)

U
B

C
P

U
(s

ec
)

LB
R

G
(%

)
U

B
C

P
U

(s
ec

)
D

if.
U

b
(%

)
U

B
C

P
U

(s
ec

)
D

if.
U

b
(%

)
C

a1
-2

,3
,1

0
10

0
25

6
16

83
.7

1
22

5.
71

11
.8

3
25

8
73

2.
01

0.
78

26
1

17
.5

3
1.

92
C

a1
-3

,5
,1

0
10

0
21

5
90

00
18

1.
20

15
.7

2
21

6
36

40
.0

5
0.

46
21

7
25

2.
25

0.
92

C
a1

-6
,4

,1
0

10
0

30
5

90
00

26
6.

85
12

.5
1

32
0

16
05

.6
0

4.
69

32
0

70
7.

46
4.

69
C

a2
-2

,3
,1

0
10

0
16

1
19

04
.2

3
12

6.
71

21
.3

0
16

2
12

78
.8

3
0.

62
16

2
32

.9
2

0.
62

C
a2

-3
,5

,1
0

10
0

34
0

66
01

.6
28

9.
82

14
.7

6
35

5
36

00
.0

4
4.

23
35

6
76

8.
02

4.
49

C
a2

-6
,4

,1
0

10
0

17
9

82
11

.9
7

14
9.

64
16

.4
0

18
2

42
60

.0
6

1.
65

18
2

46
0.

61
1.

65
C

a3
-2

,3
,1

0
10

0
34

4
7.

26
30

3.
32

11
.8

2
36

3
3.

56
5.

23
36

3
1.

81
5.

23
C

a3
-3

,5
,1

0
10

0
31

8
90

00
27

4.
63

13
.6

4
33

3
43

91
.8

1
4.

50
33

3
29

5.
38

4.
50

C
a3

-6
,4

,1
0

10
0

23
6

90
00

18
4.

54
21

.8
0

24
0

30
18

.7
3

1.
67

24
0

78
7.

23
1.

67
C

a4
-2

,3
,1

0
10

0
43

7
48

.5
1

40
8.

79
6.

46
46

2
27

.3
9

5.
41

46
2

8.
35

5.
41

C
a4

-3
,5

,1
0

10
0

21
3

90
00

16
6.

95
21

.6
2

22
0

39
08

.6
1

3.
18

22
0

99
4.

43
3.

18
C

a4
-6

,4
,1

0
10

0
23

8
90

00
20

4.
74

13
.9

7
24

3
45

60
.3

7
2.

06
24

3
15

30
.7

6
2.

06
C

a5
-2

,3
,1

0
10

0
27

7
90

00
24

5.
16

11
.4

9
28

2
81

9.
25

1.
77

28
4

14
.5

8
2.

46
C

a5
-3

,5
,1

0
10

0
26

4
90

00
24

0.
84

8.
77

27
2

38
29

.6
5

2.
94

27
5

96
5.

99
4.

00
C

a5
-6

,4
,1

0
10

0
18

7
90

00
13

5.
19

27
.7

1
19

0
34

27
.8

9
1.

58
19

2
59

2.
42

2.
60

C
b1

-2
,3

,1
0

10
0

18
1

41
9.

36
15

5.
28

14
.2

1
18

3
19

5.
68

1.
09

18
3

41
.9

6
1.

09
C

b1
-3

,5
,1

0
10

0
21

1
90

00
17

9.
52

14
.9

2
21

5
14

29
.4

7
1.

86
21

9
10

62
.8

7
3.

65
C

b1
-6

,4
,1

0
10

0
26

1
90

00
22

7.
46

12
.8

5
26

2
29

25
.7

1
0.

38
26

7
15

93
.2

8
2.

25
C

b2
-2

,3
,1

0
10

0
19

9
11

84
.1

16
3.

46
17

.8
6

20
4

61
8.

57
2.

45
20

4
14

.3
9

2.
45

C
b2

-3
,5

,1
0

10
0

26
8

31
20

.0
3

21
5.

18
19

.7
1

27
8

19
80

.9
0

3.
60

28
2

54
4.

55
4.

96
C

b2
-6

,4
,1

0
10

0
18

5
90

00
14

5.
09

21
.5

8
18

7
44

63
.3

3
1.

07
18

7
14

85
.4

7
1.

07
C

b3
-2

,3
,1

0
10

0
33

7
8.

02
30

4.
17

9.
74

34
8

3.
47

3.
16

34
8

1.
37

3.
16

C
b3

-3
,5

,1
0

10
0

20
2

90
00

17
3.

86
13

.9
3

20
7

35
57

.8
7

2.
42

20
7

36
8.

58
2.

42
C

b3
-6

,4
,1

0
10

0
28

3
90

00
25

7.
07

9.
16

28
6

28
36

.4
6

1.
05

28
9

87
0.

77
2.

08
C

b4
-2

,3
,1

0
10

0
25

1
37

.2
4

21
3.

21
15

.0
6

25
4

13
.1

0
1.

18
25

8
7.

34
2.

71
C

b4
-3

,5
,1

0
10

0
24

5
90

00
19

0.
39

22
.2

9
25

4
35

25
.4

2
3.

54
25

6
13

48
.3

3
4.

30
C

b4
-6

,4
,1

0
10

0
28

8
90

00
23

8.
55

17
.1

7
29

1
29

28
.6

7
1.

03
29

4
12

68
.6

6
2.

04
C

b5
-2

,3
,1

0
10

0
19

7
70

56
.2

2
16

8.
90

14
.2

6
20

2
14

4.
08

2.
48

20
3

18
.1

6
2.

96
C

b5
-3

,5
,1

0
10

0
23

2
90

00
20

5.
91

11
.2

4
23

6
35

97
.1

5
1.

69
24

0
16

6.
47

3.
33

C
b5

-6
,4

,1
0

10
0

33
7

90
00

30
6.

20
9.

14
34

3
26

00
.0

4
1.

75
34

4
15

11
.2

7
2.

03
C

c1
-2

,3
,1

0
10

0
20

0
90

00
15

9.
41

20
.3

0
20

6
35

59
.4

4
2.

91
20

6
16

3.
17

2.
91

C
c1

-3
,5

,1
0

10
0

19
9

90
00

12
9.

07
35

.1
4

20
4

31
84

.5
3

2.
45

20
4

16
01

.1
1

2.
45

C
c1

-6
,4

,1
0

10
0

25
5

90
00

21
2.

97
16

.4
8

26
1

25
23

.5
0

2.
30

26
1

14
00

.0
3

2.
30

C
c2

-2
,3

,1
0

10
0

20
1

90
00

14
1.

67
29

.5
2

20
9

34
86

.5
2

3.
83

20
9

21
.6

4
3.

83
C

c2
-3

,5
,1

0
10

0
24

4
90

00
20

0.
18

17
.9

6
25

2
26

11
.1

2
3.

17
25

2
13

55
.9

2
3.

17
C

c2
-6

,4
,1

0
10

0
18

8
90

00
12

0.
23

36
.0

5
18

9
24

89
.6

6
0.

53
18

9
10

19
.3

7
0.

53
C

c3
-2

,3
,1

0
10

0
21

1
90

00
14

7.
37

30
.1

5
21

8
22

44
.1

3
3.

21
21

8
51

3.
69

3.
21

C
c3

-3
,5

,1
0

10
0

24
1

90
00

19
8.

54
17

.6
2

24
9

29
51

.1
0

3.
21

24
9

22
03

.3
2

3.
21

C
c3

-6
,4

,1
0

10
0

21
5

90
00

16
4.

31
23

.5
8

21
7

25
54

.7
8

0.
92

21
7

23
71

.7
7

0.
92

C
c4

-2
,3

,1
0

10
0

23
5

90
00

18
8.

90
19

.6
2

24
1

26
84

.6
8

2.
49

24
1

54
6.

19
2.

49
C

c4
-3

,5
,1

0
10

0
23

6
90

00
19

0.
70

19
.2

0
24

5
31

83
.9

5
3.

67
24

5
22

55
.4

8
3.

67
C

c4
-6

,4
,1

0
10

0
24

6
90

00
19

5.
04

20
.7

2
25

3
34

43
.3

2
2.

77
25

3
20

01
.8

6
2.

77
C

c5
-2

,3
,1

0
10

0
19

4
90

00
13

7.
50

29
.1

2
20

0
26

10
.2

5
3.

00
20

0
15

1.
12

3.
00

C
c5

-3
,5

,1
0

10
0

18
2

90
00

13
5.

97
25

.2
9

18
8

31
10

.3
6

3.
19

18
8

23
32

.1
2

3.
19

C
c5

-6
,4

,1
0

10
0

18
7

90
00

15
1.

80
18

.8
2

18
7

27
75

.9
7

0.
00

18
7

13
00

.0
4

0.
00

C
d1

-2
,3

,1
0

10
0

19
7

18
9.

76
17

3.
95

11
.7

0
20

0
87

.3
2

1.
50

20
1

29
.0

6
1.

99
C

d1
-3

,5
,1

0
10

0
21

5
90

00
17

2.
93

19
.5

7
21

9
21

00
.1

8
1.

83
22

0
71

2.
65

2.
27

C
d1

-6
,4

,1
0

10
0

24
8

90
00

21
8.

19
12

.0
2

25
1

35
32

.7
7

1.
20

25
1

12
98

.2
2

1.
20

C
d2

-2
,3

,1
0

10
0

19
3

90
00

14
2.

18
26

.3
3

19
4

95
1.

20
0.

52
19

7
30

.9
2

2.
03

C
d2

-3
,5

,1
0

10
0

23
6

90
00

19
9.

03
15

.6
6

24
3

14
66

.7
2

2.
88

24
4

12
04

.8
9

3.
28

C
d2

-6
,4

,1
0

10
0

21
3

90
00

16
1.

68
24

.0
9

21
5

35
05

.3
8

0.
93

21
5

12
52

.2
5

0.
93

C
d3

-2
,3

,1
0

10
0

18
6

84
23

.6
5

15
8.

57
14

.7
5

18
8

45
8.

37
1.

06
19

0
89

.6
5

2.
11

C
d3

-3
,5

,1
0

10
0

22
4

90
00

18
0.

00
19

.6
4

23
0

30
73

.1
6

2.
61

23
0

13
24

.9
2

2.
61

C
d3

-6
,4

,1
0

10
0

19
6

90
00

16
1.

72
17

.4
9

19
7

85
6.

91
0.

51
19

7
75

7.
06

0.
51

C
d4

-2
,3

,1
0

10
0

25
7

18
9.

76
24

9.
57

2.
89

26
0

51
.3

6
1.

15
26

4
42

.2
2

2.
65

C
d4

-3
,5

,1
0

10
0

24
1

90
00

22
0.

19
8.

63
24

7
20

01
.1

5
2.

43
25

0
12

52
.1

8
3.

60
C

d4
-6

,4
,1

0
10

0
18

9
90

00
13

4.
55

28
.8

1
19

0
23

00
.0

1
0.

53
19

0
11

97
.8

2
0.

53
C

d5
-2

,3
,1

0
10

0
20

7
29

80
16

7.
13

19
.2

6
20

9
12

.2
1

0.
96

21
1

6.
07

1.
90

C
d5

-3
,5

,1
0

10
0

21
3

90
00

16
6.

35
21

.9
0

21
7

22
55

.8
5

1.
84

21
8

44
2.

24
2.

29
C

d5
-6

,4
,1

0
10

0
18

4
90

00
15

3.
48

16
.5

9
18

8
35

68
.3

7
2.

13
18

9
15

49
.2

6
2.

65
A

ve
ra

ge
s

73
01

.0
9

17
.8

6
23

25
.9

7
2.

15
80

2.
66

2.
57

T
ab

le
3

–
D

ire
ct

so
lv

in
g

th
e

hy
br

id
fo

rm
ul

at
io

n
on

in
st

an
ce

s
w

ith
10

O
D

de
m

an
ds

an
d

m
ul

tip
le

∆
tim

e
pe

rio
ds

183



ID
Ψ

T
im

e-
Sp

ac
e

fo
rm

ul
at

io
n

(∆
=

∆̄
)

T
im

e-
Sp

ac
e

fo
rm

ul
at

io
n

(∆
=

50
)

T
im

e-
Sp

ac
e

fo
rm

ul
at

io
n

(∆
=

25
)

U
B

C
P

U
(s

ec
)

LB
R

G
(%

)
U

B
C

P
U

(s
ec

)
D

if.
U

b
(%

)
U

B
C

P
U

(s
ec

)
D

if.
U

b
(%

)
C

a1
-2

,3
,1

0
10

0
25

6
2.

81
19

8.
06

22
.6

3
26

0
1.

39
1.

54
26

1
0.

87
1.

92
C

a1
-3

,5
,1

0
10

0
21

5
84

.2
4

16
3.

75
23

.8
4

21
7

46
.1

3
0.

92
21

9
25

.3
5

1.
83

C
a1

-6
,4

,1
0

10
0

30
5

7.
62

26
6.

12
12

.7
5

32
0

2.
71

4.
69

32
0

2.
62

4.
69

C
a2

-2
,3

,1
0

10
0

16
1

22
10

.6
12

0.
84

24
.9

4
16

2
10

44
.2

5
0.

62
16

3
46

6.
77

1.
23

C
a2

-3
,5

,1
0

10
0

34
0

1.
21

28
9.

54
14

.8
4

35
5

0.
68

4.
23

35
9

0.
42

5.
29

C
a2

-6
,4

,1
0

10
0

17
9

25
37

.1
3

14
7.

69
17

.4
9

18
2

10
74

.9
3

1.
65

18
3

69
2.

36
2.

19
C

a3
-2

,3
,1

0
10

0
34

4
0.

3
30

3.
28

11
.8

4
36

3
0.

13
5.

23
36

5
0.

08
5.

75
C

a3
-3

,5
,1

0
10

0
31

8
4.

29
27

2.
62

14
.2

7
33

3
2.

24
4.

50
33

3
1.

00
4.

50
C

a3
-6

,4
,1

0
10

0
23

6
4.

15
17

5.
41

25
.6

7
24

0
2.

38
1.

67
24

1
1.

18
2.

07
C

a4
-2

,3
,1

0
10

0
43

7
0.

96
39

5.
44

9.
51

46
2

0.
34

5.
41

46
5

0.
39

6.
02

C
a4

-3
,5

,1
0

10
0

21
3

48
5.

53
16

2.
78

23
.5

8
22

0
21

9.
65

3.
18

22
0

17
1.

13
3.

18
C

a4
-6

,4
,1

0
10

0
23

8
9.

32
18

7.
07

21
.4

0
24

3
5.

17
2.

06
24

4
2.

62
2.

46
C

a5
-2

,3
,1

0
10

0
27

7
8.

18
24

1.
47

12
.8

3
28

4
4.

74
2.

46
28

7
1.

86
3.

48
C

a5
-3

,5
,1

0
10

0
26

4
13

.2
1

23
4.

69
11

.1
0

27
4

4.
94

3.
65

27
6

4.
50

4.
35

C
a5

-6
,4

,1
0

10
0

18
7

90
00

11
6.

30
37

.8
1

19
2

45
39

.1
7

2.
60

19
2

23
56

.6
0

2.
60

C
b1

-2
,3

,1
0

10
0

18
1

3.
35

11
8.

59
34

.4
8

18
3

1.
67

1.
09

18
4

1.
26

1.
63

C
b1

-3
,5

,1
0

10
0

21
1

39
13

.7
1

16
3.

51
22

.5
1

21
8

18
06

.9
8

3.
21

22
1

10
20

.8
0

4.
52

C
b1

-6
,4

,1
0

10
0

26
1

4.
71

22
3.

75
14

.2
7

26
6

2.
17

1.
88

26
9

1.
94

2.
97

C
b2

-2
,3

,1
0

10
0

19
9

0.
99

14
9.

31
24

.9
7

20
4

0.
56

2.
45

20
4

0.
41

2.
45

C
b2

-3
,5

,1
0

10
0

26
8

2.
54

21
5.

04
19

.7
6

28
0

1.
26

4.
29

28
4

1.
01

5.
63

C
b2

-6
,4

,1
0

10
0

18
5

10
17

14
4.

74
21

.7
6

18
7

48
4.

26
1.

07
18

8
15

8.
54

1.
60

C
b3

-2
,3

,1
0

10
0

33
7

0.
7

30
2.

22
10

.3
2

34
8

0.
31

3.
16

34
9

0.
16

3.
44

C
b3

-3
,5

,1
0

10
0

20
2

10
61

.8
3

17
0.

30
15

.6
9

20
7

56
2.

08
2.

42
20

9
43

0.
68

3.
35

C
b3

-6
,4

,1
0

10
0

28
3

11
.7

4
25

0.
45

11
.5

0
28

8
5.

72
1.

74
29

0
4.

30
2.

41
C

b4
-2

,3
,1

0
10

0
25

1
1.

04
21

2.
99

15
.1

4
25

8
0.

59
2.

71
25

9
0.

36
3.

09
C

b4
-3

,5
,1

0
10

0
24

5
80

6.
72

18
5.

77
24

.1
8

25
5

30
0.

39
3.

92
25

8
20

2.
18

5.
04

C
b4

-6
,4

,1
0

10
0

28
8

25
19

.2
9

23
4.

85
18

.4
5

29
3

10
67

.5
2

1.
71

29
6

54
9.

69
2.

70
C

b5
-2

,3
,1

0
10

0
19

7
30

.0
8

15
9.

27
19

.1
5

20
3

12
.4

1
2.

96
20

3
11

.6
2

2.
96

C
b5

-3
,5

,1
0

10
0

23
2

15
79

.0
1

19
4.

55
16

.1
4

23
7

55
4.

47
2.

11
24

1
54

0.
96

3.
73

C
b5

-6
,4

,1
0

10
0

33
7

4.
77

30
4.

82
9.

55
34

4
2.

18
2.

03
34

7
1.

35
2.

88
C

c1
-2

,3
,1

0
10

0
19

7
90

00
15

3.
53

23
.2

3
20

3
28

2.
33

2.
96

20
3

17
9.

71
2.

96
C

c1
-3

,5
,1

0
10

0
18

9
90

00
11

8.
86

40
.2

7
19

4
28

5.
40

2.
58

19
4

18
6.

83
2.

58
C

c1
-6

,4
,1

0
10

0
24

6
90

00
21

0.
99

17
.2

6
25

1
32

9.
03

1.
99

25
3

15
3.

20
2.

77
C

c2
-2

,3
,1

0
10

0
19

1
90

00
14

0.
21

30
.2

5
19

9
32

5.
79

4.
02

19
9

18
2.

08
4.

02
C

c2
-3

,5
,1

0
10

0
23

2
90

00
18

4.
16

24
.5

2
23

9
21

3.
75

2.
93

24
1

91
.9

2
3.

73
C

c2
-6

,4
,1

0
10

0
17

3
90

00
11

7.
67

37
.4

1
17

4
32

1.
26

0.
57

17
4

17
0.

18
0.

57
C

c3
-2

,3
,1

0
10

0
19

6
90

00
14

3.
42

32
.0

3
20

3
27

1.
74

3.
45

20
4

15
9.

23
3.

92
C

c3
-3

,5
,1

0
10

0
23

7
90

00
19

8.
00

17
.8

4
24

6
26

1.
09

3.
66

24
6

11
5.

71
3.

66
C

c3
-6

,4
,1

0
10

0
20

7
90

00
15

7.
89

26
.5

6
20

9
23

3.
51

0.
96

21
0

99
.0

0
1.

43
C

c4
-2

,3
,1

0
10

0
23

1
90

00
17

9.
82

23
.4

8
23

7
26

7.
75

2.
53

23
8

20
6.

18
2.

94
C

c4
-3

,5
,1

0
10

0
22

8
90

00
17

5.
35

25
.7

0
23

7
24

8.
87

3.
80

23
7

10
0.

82
3.

80
C

c4
-6

,4
,1

0
10

0
23

2
90

00
18

9.
96

22
.7

8
23

8
27

6.
99

2.
52

24
0

12
7.

53
3.

33
C

c5
-2

,3
,1

0
10

0
18

3
90

00
12

7.
46

34
.3

0
18

9
32

6.
35

3.
17

19
0

13
4.

12
3.

68
C

c5
-3

,5
,1

0
10

0
17

4
90

00
12

0.
60

33
.7

4
18

0
23

9.
61

3.
33

18
1

17
0.

28
3.

87
C

c5
-6

,4
,1

0
10

0
17

9
90

00
14

7.
09

21
.3

4
17

9
23

5.
01

0.
00

18
0

18
1.

83
0.

56
C

d1
-2

,3
,1

0
10

0
19

9
90

00
16

7.
26

15
.0

9
20

2
20

9.
24

1.
49

20
3

10
6.

09
1.

97
C

d1
-3

,5
,1

0
10

0
21

9
90

00
17

0.
03

20
.9

2
22

4
21

2.
45

2.
23

22
5

14
9.

05
2.

67
C

d1
-6

,4
,1

0
10

0
26

0
90

00
21

4.
67

13
.4

4
26

3
23

7.
26

1.
14

26
5

12
3.

12
1.

89
C

d2
-2

,3
,1

0
10

0
19

3
31

45
.0

9
14

0.
47

27
.2

2
19

4
88

.0
4

0.
52

19
7

23
.9

9
2.

03
C

d2
-3

,5
,1

0
10

0
23

6
90

00
19

1.
03

19
.0

5
24

4
21

4.
38

3.
28

24
6

86
.3

4
4.

07
C

d2
-6

,4
,1

0
10

0
21

3
90

00
15

6.
23

26
.6

5
21

5
30

3.
55

0.
93

21
6

13
9.

53
1.

39
C

d3
-2

,3
,1

0
10

0
18

6
47

09
.4

15
2.

16
18

.1
9

19
0

14
3.

60
2.

11
19

1
81

.3
8

2.
62

C
d3

-3
,5

,1
0

10
0

22
4

90
00

17
8.

49
20

.3
2

23
0

25
7.

46
2.

61
23

1
14

2.
98

3.
03

C
d3

-6
,4

,1
0

10
0

19
6

90
00

13
8.

59
29

.2
9

19
7

22
9.

62
0.

51
19

7
89

.9
7

0.
51

C
d4

-2
,3

,1
0

10
0

25
7

5.
25

21
2.

23
17

.4
2

26
1

1.
73

1.
53

26
6

1.
68

3.
38

C
d4

-3
,5

,1
0

10
0

24
1

90
00

21
0.

43
12

.6
8

24
8

25
3.

67
2.

82
25

1
18

4.
33

3.
98

C
d4

-6
,4

,1
0

10
0

18
9

90
00

13
2.

67
29

.8
1

19
0

25
6.

44
0.

53
19

1
12

8.
71

1.
05

C
d5

-2
,3

,1
0

10
0

20
7

41
.3

9
15

6.
58

24
.3

6
21

0
10

.4
3

1.
43

21
1

7.
01

1.
90

C
d5

-3
,5

,1
0

10
0

21
3

90
00

16
1.

67
24

.1
0

21
8

32
9.

92
2.

29
21

9
12

8.
80

2.
74

C
d5

-6
,4

,1
0

10
0

18
4

90
00

14
0.

24
23

.7
8

18
9

22
2.

80
2.

65
18

9
15

4.
58

2.
65

A
ve

ra
ge

s
44

53
.8

0
21

.5
9

31
4.

01
2.

43
17

4.
32

2.
99

T
ab

le
4

–
D

ire
ct

so
lv

in
g

th
e

cl
as

sic
tim

e-
sp

ac
e

fo
rm

ul
at

io
n

on
in

st
an

ce
s

w
ith

10
O

D
de

m
an

ds
an

d
m

ul
tip

le
∆

tim
e

pe
rio

ds

184



ID
Ψ

H
yb

ri
d

fo
rm

ul
at

io
n

(∆
=

∆̄
)

H
yb

ri
d

fo
rm

ul
at

io
n

(∆
=

50
)

H
yb

ri
d

fo
rm

ul
at

io
n

(∆
=

25
)

U
B

C
P

U
(s

ec
)

LB
R

G
(%

)
U

B
C

P
U

(s
ec

)
D

if.
U

b
(%

)
U

B
C

P
U

(s
ec

)
D

if.
U

b
(%

)
C

a1
-2

,3
,1

5
20

0
33

8
90

00
.0

0
17

7.
75

35
.3

6
44

1
90

00
.0

0
23

.3
6

43
2

41
30

.2
0

21
.7

6
C

a1
-3

,5
,1

5
20

0
N

.A
90

00
.0

0
23

6.
04

28
.0

4
N

.A
90

00
.0

0
N

.A
34

2
14

38
.4

7
N

.A
C

a1
-6

,4
,1

5
20

0
N

.A
90

00
.0

0
18

5.
08

37
.0

5
N

.A
90

00
.0

0
N

.A
30

0
43

79
.1

8
N

.A
C

a2
-2

,3
,1

5
20

0
33

0
90

00
.0

0
18

8.
28

41
.7

1
41

7
90

00
.0

0
20

.8
6

41
9

32
61

.5
5

21
.2

4
C

a2
-3

,5
,1

5
20

0
N

.A
90

00
.0

0
22

3.
03

36
.2

8
53

2
90

00
.0

0
N

.A
35

0
90

00
.0

0
N

.A
C

a2
-6

,4
,1

5
20

0
N

.A
90

00
.0

0
16

9.
65

40
.6

8
N

.A
90

00
.0

0
N

.A
38

4
90

00
.0

0
N

.A
C

a3
-2

,3
,1

5
20

0
36

6
90

00
.0

0
23

9.
38

26
.3

4
40

1
90

00
.0

0
8.

73
40

1
42

82
.4

1
8.

73
C

a3
-3

,5
,1

5
20

0
N

.A
90

00
.0

0
1.

21
0.

00
44

1
90

00
.0

0
N

.A
44

1
13

66
.5

7
N

.A
C

a3
-6

,4
,1

5
20

0
N

.A
90

00
.0

0
15

3.
30

44
.2

5
N

.A
90

00
.0

0
N

.A
38

3
90

00
.0

0
N

.A
C

a4
-2

,3
,1

5
20

0
42

0
90

00
.0

0
22

4.
95

30
.7

8
51

7
90

00
.0

0
18

.7
6

44
7

90
00

.0
0

6.
04

C
a4

-3
,5

,1
5

20
0

N
.A

90
00

.0
0

23
4.

36
18

.3
4

N
.A

90
00

.0
0

N
.A

41
8

90
00

.0
0

N
.A

C
a4

-6
,4

,1
5

20
0

N
.A

90
00

.0
0

18
8.

65
33

.8
1

N
.A

90
00

.0
0

N
.A

56
8

48
28

.4
9

N
.A

C
a5

-2
,3

,1
5

20
0

N
.A

90
00

.0
0

3.
72

0.
00

51
8

90
00

.0
0

N
.A

54
7

90
00

.0
0

N
.A

C
a5

-3
,5

,1
5

20
0

N
.A

90
00

.0
0

22
6.

55
17

.9
2

N
.A

90
00

.0
0

N
.A

38
4

48
23

.1
7

N
.A

C
a5

-6
,4

,1
5

20
0

N
.A

90
00

.0
0

13
2.

55
45

.4
5

68
4

90
00

.0
0

N
.A

68
7

90
00

.0
0

N
.A

C
b1

-2
,3

,1
5

20
0

N
.A

90
00

.0
0

2.
70

0.
00

38
7

90
00

.0
0

N
.A

42
2

90
00

.0
0

N
.A

C
b1

-3
,5

,1
5

20
0

N
.A

90
00

.0
0

23
6.

76
24

.8
4

N
.A

90
00

.0
0

N
.A

40
6

67
3.

45
N

.A
C

b1
-6

,4
,1

5
20

0
N

.A
90

00
.0

0
17

1.
47

44
.8

6
N

.A
90

00
.0

0
N

.A
42

4
90

00
.0

0
N

.A
C

b2
-2

,3
,1

5
20

0
N

.A
90

00
.0

0
2.

20
0.

00
48

7
12

40
.0

3
N

.A
53

0
52

3.
20

N
.A

C
b2

-3
,5

,1
5

20
0

N
.A

90
00

.0
0

19
6.

89
44

.3
8

N
.A

90
00

.0
0

N
.A

35
9

90
00

.0
0

N
.A

C
b2

-6
,4

,1
5

20
0

N
.A

90
00

.0
0

18
7.

48
39

.5
2

N
.A

90
00

.0
0

N
.A

41
5

42
39

.0
2

N
.A

C
b3

-2
,3

,1
5

20
0

40
2

90
00

.0
0

24
2.

17
30

.8
1

50
1

90
00

.0
0

19
.7

6
55

0
90

00
.0

0
26

.9
1

C
b3

-3
,5

,1
5

20
0

N
.A

90
00

.0
0

24
0.

51
35

.5
2

N
.A

90
00

.0
0

N
.A

66
5

90
00

.0
0

N
.A

C
b3

-6
,4

,1
5

20
0

N
.A

90
00

.0
0

13
5.

31
50

.2
5

N
.A

90
00

.0
0

N
.A

54
6

56
20

.2
5

N
.A

C
b4

-2
,3

,1
5

20
0

38
0

90
00

.0
0

18
6.

06
40

.5
5

38
7

90
00

.0
0

1.
81

59
3

60
00

.6
5

35
.9

2
C

b4
-3

,5
,1

5
20

0
N

.A
90

00
.0

0
21

0.
87

22
.4

8
N

.A
90

00
.0

0
N

.A
56

2
76

43
.4

9
N

.A
C

b4
-6

,4
,1

5
20

0
N

.A
90

00
.0

0
16

5.
94

52
.8

6
N

.A
90

00
.0

0
N

.A
44

3
56

11
.2

6
N

.A
C

b5
-2

,3
,1

5
20

0
N

.A
90

00
.0

0
17

5.
07

35
.1

6
N

.A
90

00
.0

0
N

.A
68

8
67

80
.8

6
N

.A
C

b5
-3

,5
,1

5
20

0
N

.A
90

00
.0

0
16

0.
85

36
.9

2
N

.A
90

00
.0

0
N

.A
55

8
54

67
.5

5
N

.A
C

b5
-6

,4
,1

5
20

0
N

.A
90

00
.0

0
97

.1
9

58
.4

6
N

.A
90

00
.0

0
N

.A
61

1
59

34
.9

9
N

.A
C

c1
-2

,3
,1

5
20

0
N

.A
90

00
.0

0
14

3.
35

48
.8

0
N

.A
90

00
.0

0
N

.A
72

8
73

22
.7

5
N

.A
C

c1
-3

,5
,1

5
20

0
N

.A
90

00
.0

0
15

4.
43

37
.4

8
N

.A
90

00
.0

0
N

.A
54

9
79

38
.7

3
N

.A
C

c1
-6

,4
,1

5
20

0
N

.A
90

00
.0

0
2.

85
0.

00
N

.A
90

00
.0

0
N

.A
63

7
62

95
.6

0
N

.A
C

c2
-2

,3
,1

5
20

0
N

.A
90

00
.0

0
14

6.
36

50
.0

5
N

.A
90

00
.0

0
N

.A
70

2
52

76
.3

2
N

.A
C

c2
-3

,5
,1

5
20

0
N

.A
90

00
.0

0
4.

58
0.

00
N

.A
90

00
.0

0
N

.A
61

7
71

92
.0

3
N

.A
C

c2
-6

,4
,1

5
20

0
N

.A
90

00
.0

0
19

.0
2

93
.6

2
N

.A
90

00
.0

0
N

.A
60

8
63

48
.1

5
N

.A
C

c3
-2

,3
,1

5
20

0
N

.A
90

00
.0

0
97

.5
8

64
.7

7
N

.A
90

00
.0

0
N

.A
69

9
52

84
.9

5
N

.A
C

c3
-3

,5
,1

5
20

0
N

.A
90

00
.0

0
15

4.
90

32
.3

6
N

.A
90

00
.0

0
N

.A
64

4
67

50
.5

0
N

.A
C

c3
-6

,4
,1

5
20

0
N

.A
90

00
.0

0
3.

24
0.

00
N

.A
90

00
.0

0
N

.A
57

5
52

47
.1

8
N

.A
C

c4
-2

,3
,1

5
20

0
N

.A
90

00
.0

0
12

6.
74

61
.5

9
N

.A
90

00
.0

0
N

.A
43

6
57

29
.7

5
N

.A
C

c4
-3

,5
,1

5
20

0
N

.A
90

00
.0

0
57

.4
5

78
.4

8
N

.A
90

00
.0

0
N

.A
45

8
51

67
.6

2
N

.A
C

c4
-6

,4
,1

5
20

0
N

.A
90

00
.0

0
3.

43
0.

00
N

.A
90

00
.0

0
N

.A
57

0
65

17
.1

6
N

.A
C

c5
-2

,3
,1

5
20

0
N

.A
90

00
.0

0
14

8.
45

43
.1

2
N

.A
90

00
.0

0
N

.A
58

1
54

96
.0

1
N

.A
C

c5
-3

,5
,1

5
20

0
N

.A
90

00
.0

0
5.

22
0.

00
N

.A
90

00
.0

0
N

.A
61

7
63

22
.8

3
N

.A
C

c5
-6

,4
,1

5
20

0
N

.A
90

00
.0

0
3.

94
0.

00
N

.A
90

00
.0

0
N

.A
60

1
61

69
.1

2
N

.A
C

d1
-2

,3
,1

5
20

0
33

0
90

00
.0

0
19

0.
60

39
.4

9
44

5
90

00
.0

0
25

.8
4

44
5

57
02

.4
3

25
.8

4
C

d1
-3

,5
,1

5
20

0
N

.A
90

00
.0

0
19

4.
57

40
.1

3
30

3
90

00
.0

0
N

.A
30

3
56

57
.1

2
N

.A
C

d1
-6

,4
,1

5
20

0
N

.A
90

00
.0

0
17

1.
62

43
.1

7
54

4
90

00
.0

0
N

.A
54

4
18

64
.6

4
N

.A
C

d2
-2

,3
,1

5
20

0
30

3
90

00
.0

0
14

3.
88

44
.4

5
42

9
90

00
.0

0
29

.3
7

42
9

53
86

.7
6

29
.3

7
C

d2
-3

,5
,1

5
20

0
N

.A
90

00
.0

0
22

5.
45

34
.2

7
41

7
90

00
.0

0
N

.A
41

7
60

77
.7

0
N

.A
C

d2
-6

,4
,1

5
20

0
N

.A
90

00
.0

0
18

3.
72

37
.7

2
40

9
90

00
.0

0
N

.A
40

8
28

94
.3

0
N

.A
C

d3
-2

,3
,1

5
20

0
30

5
90

00
.0

0
13

8.
14

48
.8

4
50

4
90

00
.0

0
39

.4
8

50
4

24
17

.3
7

39
.4

8
C

d3
-3

,5
,1

5
20

0
N

.A
90

00
.0

0
13

6.
41

44
.5

5
33

3
90

00
.0

0
N

.A
33

3
61

24
.0

6
N

.A
C

d3
-6

,4
,1

5
20

0
N

.A
90

00
.0

0
17

5.
03

40
.2

6
41

3
90

00
.0

0
N

.A
43

0
69

59
.7

3
N

.A
C

d4
-2

,3
,1

5
20

0
40

0
90

00
.0

0
17

9.
28

46
.6

4
50

2
90

00
.0

0
20

.3
2

50
2

57
36

.1
3

20
.3

2
C

d4
-3

,5
,1

5
20

0
N

.A
90

00
.0

0
16

9.
17

44
.1

7
N

.A
90

00
.0

0
N

.A
46

5
64

74
.8

1
N

.A
C

d4
-6

,4
,1

5
20

0
N

.A
90

00
.0

0
15

5.
54

44
.8

4
N

.A
90

00
.0

0
N

.A
58

6
44

54
.6

5
N

.A
C

d5
-2

,3
,1

5
20

0
38

8
90

00
.0

0
16

9.
24

40
.2

0
38

8
90

00
.0

0
0.

00
38

8
43

75
.9

3
0.

00
C

d5
-3

,5
,1

5
20

0
N

.A
90

00
.0

0
15

0.
00

43
.8

2
N

.A
90

00
.0

0
N

.A
58

6
74

74
.0

7
N

.A
C

d5
-6

,4
,1

5
20

0
N

.A
90

00
.0

0
11

1.
93

50
.2

5
46

6
90

00
.0

0
N

.A
62

5
69

01
.6

0
N

.A
A

ve
ra

ge
s

90
00

.0
0

35
.1

0
N

.A
88

70
.6

7
18

.9
4

59
42

.7
5

21
.4

2

T
ab

le
5

–
D

ire
ct

so
lv

in
g

th
e

hy
br

id
fo

rm
ul

at
io

n
on

in
st

an
ce

s
w

ith
15

O
D

de
m

an
ds

an
d

m
ul

tip
le

∆
tim

e
pe

rio
ds

185



ID
Ψ

T
im

e-
Sp

ac
e

fo
rm

ul
at

io
n

(∆
=

∆̄
)

T
im

e-
Sp

ac
e

fo
rm

ul
at

io
n

(∆
=

50
)

T
im

e-
Sp

ac
e

fo
rm

ul
at

io
n

(∆
=

25
)

U
B

C
P

U
(s

ec
)

LB
R

G
(%

)
U

B
C

P
U

(s
ec

)
D

if.
U

b
(%

)
U

B
C

P
U

(s
ec

)
D

if.
U

b
(%

)
C

a1
-2

,3
,1

5
20

0
27

5
90

00
17

5.
58

36
.1

5
28

5
55

45
.5

1
3.

51
29

0
27

43
.7

1
5.

17
C

a1
-3

,5
,1

5
20

0
32

8
90

00
22

9.
32

30
.0

9
34

7
58

17
.7

9
5.

48
35

1
71

6.
29

6.
55

C
a1

-6
,4

,1
5

20
0

29
4

90
00

17
9.

08
39

.0
9

30
7

42
60

.0
8

4.
23

31
2

34
98

.3
3

5.
77

C
a2

-2
,3

,1
5

20
0

32
3

90
00

18
0.

22
44

.2
0

33
0

55
22

.4
3

2.
12

34
6

34
21

.6
8

6.
65

C
a2

-3
,5

,1
5

20
0

35
0

90
00

21
9.

94
37

.1
6

37
4

51
97

.2
8

6.
42

37
4

22
61

.6
0

6.
42

C
a2

-6
,4

,1
5

20
0

28
6

90
00

16
1.

71
43

.4
6

29
8

42
06

.7
5

4.
03

29
8

29
36

.0
0

4.
03

C
a3

-2
,3

,1
5

20
0

32
5

90
00

23
4.

42
27

.8
7

36
1

41
41

.4
1

9.
97

36
1

30
81

.8
5

9.
97

C
a3

-3
,5

,1
5

20
0

N
.A

90
00

N
.A

N
.A

37
0

52
98

.9
7

N
.A

37
0

10
33

.7
4

N
.A

C
a3

-6
,4

,1
5

20
0

27
5

90
00

14
8.

21
46

.1
0

29
2

50
12

.4
2

5.
82

29
5

74
3.

37
6.

78
C

a4
-2

,3
,1

5
20

0
32

5
90

00
21

8.
81

32
.6

7
33

5
63

56
.9

3
2.

99
35

4
19

07
.5

4
8.

19
C

a4
-3

,5
,1

5
20

0
28

7
82

35
.5

7
23

4.
09

18
.4

3
29

9
25

49
.6

8
4.

01
30

9
96

7.
52

7.
12

C
a4

-6
,4

,1
5

20
0

28
5

90
00

18
6.

46
34

.5
8

29
9

61
52

.5
1

4.
68

30
3

10
79

.6
8

5.
94

C
a5

-2
,3

,1
5

20
0

N
.A

90
00

N
.A

N
.A

28
2

59
85

.8
4

N
.A

30
0

28
29

.3
4

N
.A

C
a5

-3
,5

,1
5

20
0

27
6

90
00

22
3.

43
19

.0
5

29
1

44
15

.1
8

5.
15

29
2

21
61

.3
0

5.
48

C
a5

-6
,4

,1
5

20
0

24
3

90
00

12
4.

65
48

.7
0

25
4

50
47

.9
0

4.
33

25
4

28
77

.6
2

4.
33

C
b1

-2
,3

,1
5

20
0

N
.A

90
00

N
.A

N
.A

33
0

42
16

.9
2

N
.A

33
5

10
66

.8
5

N
.A

C
b1

-3
,5

,1
5

20
0

31
5

90
00

23
2.

01
26

.3
5

32
2

36
19

.1
8

2.
17

33
1

10
55

.9
6

4.
83

C
b1

-6
,4

,1
5

20
0

31
1

90
00

16
2.

25
47

.8
3

33
0

44
37

.3
0

5.
76

33
2

14
33

.3
1

6.
33

C
b2

-2
,3

,1
5

20
0

N
.A

90
00

N
.A

N
.A

40
0

49
24

.7
6

N
.A

40
0

79
7.

08
N

.A
C

b2
-3

,5
,1

5
20

0
35

4
90

00
18

8.
23

46
.8

3
36

3
43

41
.3

1
2.

48
36

5
27

86
.8

8
3.

01
C

b2
-6

,4
,1

5
20

0
31

0
90

00
18

9.
34

38
.9

2
32

4
57

81
.3

5
4.

32
33

2
27

63
.4

5
6.

63
C

b3
-2

,3
,1

5
20

0
35

0
90

00
25

0.
12

28
.5

4
36

4
43

53
.1

7
3.

85
36

8
16

46
.8

0
4.

89
C

b3
-3

,5
,1

5
20

0
37

3
90

00
23

5.
42

36
.8

8
39

4
45

03
.8

1
5.

33
39

4
30

81
.2

3
5.

33
C

b3
-6

,4
,1

5
20

0
27

2
90

00
13

1.
81

51
.5

4
28

7
38

74
.0

9
5.

23
28

9
25

29
.1

1
5.

88
C

b4
-2

,3
,1

5
20

0
31

3
90

00
18

5.
83

40
.6

3
33

3
63

98
.4

5
6.

01
33

3
21

43
.7

5
6.

01
C

b4
-3

,5
,1

5
20

0
27

2
90

00
21

1.
23

22
.3

4
28

7
64

19
.7

4
5.

23
28

9
29

35
.7

2
5.

88
C

b4
-6

,4
,1

5
20

0
35

2
90

00
16

7.
40

52
.4

4
36

8
38

16
.8

0
4.

35
38

3
18

80
.4

0
8.

09
C

b5
-2

,3
,1

5
20

0
27

0
90

00
18

0.
19

33
.2

6
28

0
35

21
.0

3
3.

57
28

3
24

64
.0

0
4.

59
C

b5
-3

,5
,1

5
20

0
25

5
90

00
15

4.
02

39
.6

0
26

6
90

00
.0

0
4.

14
26

6
79

9.
29

4.
14

C
b5

-6
,4

,1
5

20
0

23
4

90
00

95
.3

6
59

.2
5

24
6

55
72

.1
8

4.
88

24
6

85
2.

20
4.

88
C

c1
-2

,3
,1

5
20

0
28

0
90

00
13

0.
72

53
.3

2
28

6
44

87
.2

2
2.

10
29

4
15

00
.3

8
4.

76
C

c1
-3

,5
,1

5
20

0
24

7
90

00
15

7.
25

36
.3

3
26

1
53

03
.1

9
5.

36
26

4
27

36
.4

1
6.

44
C

c1
-6

,4
,1

5
20

0
N

.A
90

00
N

.A
N

.A
31

5
43

40
.1

1
N

.A
38

5
29

60
.9

3
N

.A
C

c2
-2

,3
,1

5
20

0
29

3
90

00
14

6.
72

49
.9

2
29

9
63

45
.3

2
2.

01
30

1
13

43
.0

4
2.

66
C

c2
-3

,5
,1

5
20

0
N

.A
90

00
N

.A
N

.A
30

0
56

51
.2

3
N

.A
31

0
12

29
.2

2
N

.A
C

c2
-6

,4
,1

5
20

0
29

8
90

00
13

.1
0

95
.6

0
31

7
55

51
.6

8
5.

99
32

0
20

28
.2

8
6.

88
C

c3
-2

,3
,1

5
20

0
27

7
90

00
94

.1
6

66
.0

1
29

2
56

78
.3

6
5.

14
29

4
15

74
.9

1
5.

78
C

c3
-3

,5
,1

5
20

0
22

9
90

00
15

1.
77

33
.7

3
23

4
59

64
.9

8
2.

14
24

9
22

64
.9

2
8.

03
C

c3
-6

,4
,1

5
20

0
N

.A
90

00
N

.A
N

.A
33

3
47

92
.3

6
N

.A
40

1
19

03
.9

9
N

.A
C

c4
-2

,3
,1

5
20

0
33

0
90

00
11

7.
27

64
.4

6
34

3
35

23
.2

3
3.

79
35

2
23

30
.3

0
6.

25
C

c4
-3

,5
,1

5
20

0
26

7
90

00
N

.A
80

.1
4

27
8

57
26

.7
3

3.
96

28
1

10
41

.8
9

4.
98

C
c4

-6
,4

,1
5

20
0

N
.A

90
00

N
.A

0.
00

N
.A

90
00

.0
0

N
.A

31
2

31
69

.7
5

N
.A

C
c5

-2
,3

,1
5

20
0

26
1

90
00

14
5.

64
44

.2
0

27
5

57
11

.1
4

5.
09

28
3

31
14

.2
5

7.
77

C
c5

-3
,5

,1
5

20
0

N
.A

90
00

N
.A

N
.A

N
.A

90
00

.0
0

N
.A

22
2

11
25

.2
0

N
.A

C
c5

-6
,4

,1
5

20
0

N
.A

90
00

N
.A

N
.A

N
.A

90
00

.0
0

N
.A

32
0

30
94

.4
0

N
.A

C
d1

-2
,3

,1
5

20
0

31
5

90
00

18
8.

39
40

.1
9

33
5

54
58

.0
8

5.
97

33
5

11
73

.8
6

5.
97

C
d1

-3
,5

,1
5

20
0

32
5

90
00

19
6.

65
39

.4
9

34
6

57
21

.1
4

6.
07

34
7

22
21

.9
3

6.
34

C
d1

-6
,4

,1
5

20
0

30
2

90
00

17
0.

41
43

.5
7

32
0

59
98

.5
7

5.
63

32
5

33
51

.0
1

7.
08

C
d2

-2
,3

,1
5

20
0

25
9

90
00

13
5.

81
47

.5
7

26
9

90
00

.0
0

3.
72

27
5

17
28

.6
3

5.
82

C
d2

-3
,5

,1
5

20
0

34
3

90
00

22
1.

52
35

.4
2

35
0

59
18

.9
4

2.
00

35
1

14
25

.6
2

2.
28

C
d2

-6
,4

,1
5

20
0

29
5

90
00

18
1.

65
38

.4
2

31
1

47
37

.8
0

5.
14

32
0

29
21

.1
1

7.
81

C
d3

-2
,3

,1
5

20
0

27
0

90
00

13
1.

55
51

.2
8

28
8

42
25

.0
3

6.
25

28
9

17
34

.9
0

6.
57

C
d3

-3
,5

,1
5

20
0

24
6

90
00

13
7.

15
44

.2
5

25
7

36
14

.8
6

4.
28

25
8

30
76

.5
2

4.
65

C
d3

-6
,4

,1
5

20
0

29
3

90
00

17
1.

98
41

.3
0

30
1

59
91

.2
5

2.
66

31
9

27
32

.0
1

8.
15

C
d4

-2
,3

,1
5

20
0

33
6

90
00

18
4.

15
45

.1
9

35
3

45
18

.3
0

4.
82

35
8

26
14

.9
5

6.
15

C
d4

-3
,5

,1
5

20
0

30
3

90
00

17
2.

97
42

.9
1

31
8

45
34

.9
8

4.
72

32
4

11
45

.4
3

6.
48

C
d4

-6
,4

,1
5

20
0

28
2

90
00

15
8.

66
43

.7
4

30
2

90
00

.0
0

6.
62

30
3

12
70

.9
7

6.
93

C
d5

-2
,3

,1
5

20
0

28
3

90
00

15
7.

03
44

.5
1

29
8

62
78

.1
8

5.
03

30
4

22
44

.6
0

6.
91

C
d5

-3
,5

,1
5

20
0

26
7

90
00

15
2.

71
42

.8
0

28
2

60
93

.6
8

5.
32

28
2

20
49

.2
8

5.
32

C
d5

-6
,4

,1
5

20
0

22
5

90
00

10
3.

12
54

.1
7

23
6

53
37

.9
4

4.
66

23
8

29
91

.6
1

5.
46

A
ve

ra
ge

s
89

87
.2

6
42

.3
6

54
46

.5
8

4.
57

20
76

.6
0

5.
97

T
ab

le
6

–
D

ire
ct

so
lv

in
g

th
e

cl
as

sic
tim

e-
sp

ac
e

fo
rm

ul
at

io
n

on
in

st
an

ce
s

w
ith

15
O

D
de

m
an

ds
an

d
m

ul
tip

le
∆

tim
e

pe
rio

ds

186



ID
Ψ

U
B

C
P

U
(s

ec
)

LB
O

G
(%

)
ID

Ψ
U

B
C

P
U

(s
ec

)
LB

O
G

(%
)

ID
Ψ

U
B

C
P

U
(s

ec
)

LB
O

G
(%

)
C

a1
-2

,3
,5

10
0

28
0

2.
55

28
0

0
C

a1
-2

,3
,1

0
10

0
25

6
36

.3
6

25
6

0
C

a1
-2

,3
,1

5
20

0
27

5
25

7.
86

27
5

0
C

a1
-3

,5
,5

10
0

22
2

0.
48

22
2

0
C

a1
-3

,5
,1

0
10

0
21

5
21

.3
8

21
5

0
C

a1
-3

,5
,1

5
20

0
30

9
28

8.
40

30
9

0
C

a1
-6

,4
,5

10
0

27
1

2.
72

27
1

0
C

a1
-6

,4
,1

0
10

0
30

5
24

.1
4

30
5

0
C

a1
-6

,4
,1

5
20

0
27

4
14

27
.1

8
27

4
0

C
a2

-2
,3

,5
10

0
15

2
1.

86
15

2
0

C
a2

-2
,3

,1
0

10
0

16
1

14
.0

7
16

1
0

C
a2

-2
,3

,1
5

20
0

30
6

29
.5

3
30

6
0

C
a2

-3
,5

,5
10

0
28

4
2.

30
28

4
0

C
a2

-3
,5

,1
0

10
0

34
0

5.
56

34
0

0
C

a2
-3

,5
,1

5
20

0
33

5
44

2.
19

33
5

0
C

a2
-6

,4
,5

10
0

15
0

1.
56

15
0

0
C

a2
-6

,4
,1

0
10

0
17

9
14

.4
2

17
9

0
C

a2
-6

,4
,1

5
20

0
27

2
94

4.
95

27
2

0
C

a3
-2

,3
,5

10
0

28
7

2.
05

28
7

0
C

a3
-2

,3
,1

0
10

0
34

4
3.

08
34

4
0

C
a3

-2
,3

,1
5

20
0

31
9

36
.8

6
31

9
0

C
a3

-3
,5

,5
10

0
22

0
2.

89
22

0
0

C
a3

-3
,5

,1
0

10
0

31
8

20
.2

6
31

8
0

C
a3

-3
,5

,1
5

20
0

30
7

54
.4

3
30

7
0

C
a3

-6
,4

,5
10

0
17

1
1.

61
17

1
0

C
a3

-6
,4

,1
0

10
0

23
6

41
.8

3
23

6
0

C
a3

-6
,4

,1
5

20
0

26
7

55
26

.4
3

26
7

0
C

a4
-2

,3
,5

10
0

35
8

1.
24

35
8

0
C

a4
-2

,3
,1

0
10

0
43

7
16

.1
4

43
7

0
C

a4
-2

,3
,1

5
20

0
30

9
31

.3
4

30
9

0
C

a4
-3

,5
,5

10
0

16
8

2.
35

16
8

0
C

a4
-3

,5
,1

0
10

0
21

3
46

2.
45

21
3

0
C

a4
-3

,5
,1

5
20

0
28

7
35

85
.0

6
28

7
0

C
a4

-6
,4

,5
10

0
16

1
0.

83
16

1
0

C
a4

-6
,4

,1
0

10
0

23
8

31
.8

23
8

0
C

a4
-6

,4
,1

5
20

0
26

2
11

47
.6

6
26

2
0

C
a5

-2
,3

,5
10

0
19

9
2.

20
19

9
0

C
a5

-2
,3

,1
0

10
0

27
7

27
.6

4
27

7
0

C
a5

-2
,3

,1
5

20
0

26
5

32
.8

7
26

5
0

C
a5

-3
,5

,5
10

0
18

6
2.

16
18

6
0

C
a5

-3
,5

,1
0

10
0

26
4

26
.4

26
4

0
C

a5
-3

,5
,1

5
20

0
26

2
25

.9
9

26
2

0
C

a5
-6

,4
,5

10
0

15
9

1.
01

15
9

0
C

a5
-6

,4
,1

0
10

0
18

7
18

.0
9

18
7

0
C

a5
-6

,4
,1

5
20

0
21

8
11

.9
5

21
8

0
C

b1
-2

,3
,5

10
0

15
2

1.
03

15
2

0
C

b1
-2

,3
,1

0
10

0
18

1
13

.0
8

18
1

0
C

b1
-2

,3
,1

5
20

0
30

5
28

0.
14

30
5

0
C

b1
-3

,5
,5

10
0

16
4

0.
59

16
4

0
C

b1
-3

,5
,1

0
10

0
21

1
20

.3
21

1
0

C
b1

-3
,5

,1
5

20
0

29
1

12
6.

13
29

1
0

C
b1

-6
,4

,5
10

0
30

5
1.

57
30

5
0

C
b1

-6
,4

,1
0

10
0

26
1

18
.9

9
26

1
0

C
b1

-6
,4

,1
5

20
0

29
5

98
.3

9
29

5
0

C
b2

-2
,3

,5
10

0
12

9
2.

09
12

9
0

C
b2

-2
,3

,1
0

10
0

19
9

13
.4

2
19

9
0

C
b2

-2
,3

,1
5

20
0

33
7

20
7.

52
33

7
0

C
b2

-3
,5

,5
10

0
15

4
1.

07
15

4
0

C
b2

-3
,5

,1
0

10
0

26
8

41
.2

5
26

8
0

C
b2

-3
,5

,1
5

20
0

29
2

53
.3

1
29

2
0

C
b2

-6
,4

,5
10

0
14

3
2.

47
14

3
0

C
b2

-6
,4

,1
0

10
0

18
5

23
4.

99
18

5
0

C
b2

-6
,4

,1
5

20
0

33
0

14
5.

68
33

0
0

C
b3

-2
,3

,5
10

0
33

2
2.

85
33

2
0

C
b3

-2
,3

,1
0

10
0

33
7

6.
28

33
7

0
C

b3
-2

,3
,1

5
20

0
35

4
16

55
.7

5
35

4
0

C
b3

-3
,5

,5
10

0
16

0
1.

22
16

0
0

C
b3

-3
,5

,1
0

10
0

20
2

14
4.

99
20

2
0

C
b3

-3
,5

,1
5

20
0

26
6

74
.1

3
26

6
0

C
b3

-6
,4

,5
10

0
19

8
2.

13
19

8
0

C
b3

-6
,4

,1
0

10
0

28
3

14
56

.5
9

28
3

0
C

b3
-6

,4
,1

5
20

0
29

8
44

.4
6

29
8

0
C

b4
-2

,3
,5

10
0

28
0

1.
84

28
0

0
C

b4
-2

,3
,1

0
10

0
25

1
10

6.
53

25
1

0
C

b4
-2

,3
,1

5
20

0
25

5
38

4.
53

25
5

0
C

b4
-3

,5
,5

10
0

14
2

0.
96

14
2

0
C

b4
-3

,5
,1

0
10

0
24

5
23

55
.7

3
24

5
0

C
b4

-3
,5

,1
5

20
0

33
4

31
1.

41
33

4
0

C
b4

-6
,4

,5
10

0
18

8
1.

97
18

8
0

C
b4

-6
,4

,1
0

10
0

28
8

7.
43

28
8

0
C

b4
-6

,4
,1

5
20

0
25

2
51

.7
4

25
2

0
C

b5
-2

,3
,5

10
0

12
9

2.
35

12
9

0
C

b5
-2

,3
,1

0
10

0
19

7
42

.3
9

19
7

0
C

b5
-2

,3
,1

5
20

0
24

3
64

.1
4

24
3

0
C

b5
-3

,5
,5

10
0

17
9

1.
90

17
9

0
C

b5
-3

,5
,1

0
10

0
23

2
12

8.
22

23
2

0
C

b5
-3

,5
,1

5
20

0
22

3
69

9.
52

22
3

0
C

b5
-6

,4
,5

10
0

19
9

1.
56

19
9

0
C

b5
-6

,4
,1

0
10

0
33

7
50

.7
5

33
7

0
C

b5
-6

,4
,1

5
20

0
26

5
11

9.
31

26
5

0
C

c1
-2

,3
,5

10
0

12
9

2.
03

12
9

0
C

c1
-2

,3
,1

0
10

0
18

9
64

.6
3

18
9

0
C

c1
-2

,3
,1

5
20

0
23

3
59

4.
93

23
3

0
C

c1
-3

,5
,5

10
0

13
5

2.
30

13
5

0
C

c1
-3

,5
,1

0
10

0
18

0
41

.6
7

18
0

0
C

c1
-3

,5
,1

5
20

0
28

0
17

5.
81

28
0

0
C

c1
-6

,4
,5

10
0

15
0

2.
40

15
0

0
C

c1
-6

,4
,1

0
10

0
23

8
45

.6
7

23
8

0
C

c1
-6

,4
,1

5
20

0
28

4
13

1.
55

28
4

0
C

c2
-2

,3
,5

10
0

12
2

1.
04

12
2

0
C

c2
-2

,3
,1

0
10

0
18

7
29

.3
5

18
7

0
C

c2
-2

,3
,1

5
20

0
29

9
64

.0
6

29
9

0
C

c2
-3

,5
,5

10
0

17
5

0.
94

17
5

0
C

c2
-3

,5
,1

0
10

0
23

1
27

.7
23

1
0

C
c2

-3
,5

,1
5

20
0

27
3

37
8.

17
27

3
0

C
c2

-6
,4

,5
10

0
12

2
1.

77
12

2
0

C
c2

-6
,4

,1
0

10
0

16
3

18
.8

16
3

0
C

c2
-6

,4
,1

5
20

0
27

1
38

0.
97

27
1

0
C

c3
-2

,3
,5

10
0

13
6

2.
11

13
6

0
C

c3
-2

,3
,1

0
10

0
18

4
12

.7
18

4
0

C
c3

-2
,3

,1
5

20
0

22
3

67
0.

41
22

3
0

C
c3

-3
,5

,5
10

0
14

2
2.

59
14

2
0

C
c3

-3
,5

,1
0

10
0

22
5

79
.8

1
22

5
0

C
c3

-3
,5

,1
5

20
0

25
9

66
8.

33
25

9
0

C
c3

-6
,4

,5
10

0
15

7
0.

90
15

7
0

C
c3

-6
,4

,1
0

10
0

19
3

21
.9

5
19

3
0

C
c3

-6
,4

,1
5

20
0

30
7

90
.6

3
30

7
0

C
c4

-2
,3

,5
10

0
17

1
1.

27
17

1
0

C
c4

-2
,3

,1
0

10
0

22
5

24
.1

1
22

5
0

C
c4

-2
,3

,1
5

20
0

25
0

24
0.

03
25

0
0

C
c4

-3
,5

,5
10

0
15

4
1.

25
15

4
0

C
c4

-3
,5

,1
0

10
0

22
3

28
.0

5
22

3
0

C
c4

-3
,5

,1
5

20
0

26
8

69
.5

2
26

8
0

C
c4

-6
,4

,5
10

0
13

8
1.

16
13

8
0

C
c4

-6
,4

,1
0

10
0

23
0

25
.0

4
23

0
0

C
c4

-6
,4

,1
5

20
0

23
6

14
.5

4
23

6
0

C
c5

-2
,3

,5
10

0
12

3
1.

66
12

3
0

C
c5

-2
,3

,1
0

10
0

18
2

12
.5

2
18

2
0

C
c5

-2
,3

,1
5

20
0

24
7

69
.9

1
24

7
0

C
c5

-3
,5

,5
10

0
12

4
2.

65
12

4
0

C
c5

-3
,5

,1
0

10
0

16
8

27
.7

2
16

8
0

C
c5

-3
,5

,1
5

20
0

20
8

73
.7

3
20

8
0

C
c5

-6
,4

,5
10

0
13

8
1.

41
13

8
0

C
c5

-6
,4

,1
0

10
0

17
9

51
.2

6
17

9
0

C
c5

-6
,4

,1
5

20
0

29
3

12
.4

8
29

3
0

C
d1

-2
,3

,5
10

0
15

5
2.

84
15

5
0

C
d1

-2
,3

,1
0

10
0

19
7

13
.2

9
19

7
0

C
d1

-2
,3

,1
5

20
0

30
4

43
.7

8
30

4
0

C
d1

-3
,5

,5
10

0
17

0
1.

68
17

0
0

C
d1

-3
,5

,1
0

10
0

21
5

12
.1

1
21

5
0

C
d1

-3
,5

,1
5

20
0

27
7

47
.9

7
27

7
0

C
d1

-6
,4

,5
10

0
18

8
2.

20
18

8
0

C
d1

-6
,4

,1
0

10
0

24
8

44
.0

6
24

8
0

C
d1

-6
,4

,1
5

20
0

24
9

3.
62

24
9

0
C

d2
-2

,3
,5

10
0

14
0

1.
21

14
0

0
C

d2
-2

,3
,1

0
10

0
19

3
11

.3
1

19
3

0
C

d2
-2

,3
,1

5
20

0
31

9
4.

06
31

9
0

C
d2

-3
,5

,5
10

0
15

8
1.

09
15

8
0

C
d2

-3
,5

,1
0

10
0

23
6

12
.8

5
23

6
0

C
d2

-3
,5

,1
5

20
0

27
4

28
.5

0
27

4
0

C
d2

-6
,4

,5
10

0
14

2
0.

97
14

2
0

C
d2

-6
,4

,1
0

10
0

21
3

44
.5

21
3

0
C

d2
-6

,4
,1

5
20

0
25

7
2.

57
25

7
0

C
d3

-2
,3

,5
10

0
14

2
2.

64
14

2
0

C
d3

-2
,3

,1
0

10
0

18
6

20
.1

4
18

6
0

C
d3

-2
,3

,1
5

20
0

22
2

45
.3

3
22

2
0

C
d3

-3
,5

,5
10

0
14

7
2.

16
14

7
0

C
d3

-3
,5

,1
0

10
0

22
4

32
.5

2
22

4
0

C
d3

-3
,5

,1
5

20
0

26
8

10
0.

99
26

8
0

C
d3

-6
,4

,5
10

0
15

7
1.

03
15

7
0

C
d3

-6
,4

,1
0

10
0

19
6

25
.1

7
19

6
0

C
d3

-6
,4

,1
5

20
0

32
4

25
.1

4
32

4
0

C
d4

-2
,3

,5
10

0
20

2
2.

73
20

2
0

C
d4

-2
,3

,1
0

10
0

25
7

11
.3

25
7

0
C

d4
-2

,3
,1

5
20

0
28

9
31

.0
8

28
9

0
C

d4
-3

,5
,5

10
0

16
2

1.
35

16
2

0
C

d4
-3

,5
,1

0
10

0
24

1
20

.3
7

24
1

0
C

d4
-3

,5
,1

5
20

0
26

3
25

.4
8

26
3

0
C

d4
-6

,4
,5

10
0

14
7

1.
11

14
7

0
C

d4
-6

,4
,1

0
10

0
18

9
30

.4
8

18
9

0
C

d4
-6

,4
,1

5
20

0
27

1
10

.0
9

27
1

0
C

d5
-2

,3
,5

10
0

17
8

1.
35

17
8

0
C

d5
-2

,3
,1

0
10

0
20

7
20

.5
4

20
7

0
C

d5
-2

,3
,1

5
20

0
24

7
19

.3
6

24
7

0
C

d5
-3

,5
,5

10
0

17
8

0.
82

17
8

0
C

d5
-3

,5
,1

0
10

0
21

3
30

.5
4

21
3

0
C

d5
-3

,5
,1

5
20

0
20

8
25

2.
93

20
8

0
C

d5
-6

,4
,5

10
0

15
7

1.
19

15
7

0
C

d5
-6

,4
,1

0
10

0
18

4
43

.2
3

18
4

0
C

d5
-6

,4
,1

5
20

0
27

2
72

5.
23

27
2

0
A

ve
ra

ge
s

1.
72

0
A

ve
ra

ge
s

10
4.

80
0

A
ve

ra
ge

s
38

6.
00

0

T
ab

le
7

–
D

D
D

re
su

lts
on

in
st

an
ce

s
w

ith
5,

10
an

d
15

O
D

de
m

an
ds

187



ID
Ψ

U
B

C
P

U
(s

ec
)

LB
O

G
(%

)
ID

Ψ
U

B
C

P
U

(s
ec

)
LB

O
G

(%
)

ID
Ψ

U
B

C
P

U
(s

ec
)

LB
O

G
(%

)
C

a1
-2

,3
,5

10
0

28
0

78
.1

4
28

0
0

C
a1

-2
,3

,1
0

10
0

25
6

59
7.

03
25

6
0

C
a1

-2
,3

,1
5

20
0

27
7

18
00

0.
00

23
6.

03
14

.7
9

C
a1

-3
,5

,5
10

0
22

2
92

.8
5

22
2

0
C

a1
-3

,5
,1

0
10

0
21

5
40

68
.7

6
21

5
0

C
a1

-3
,5

,1
5

20
0

31
1

18
00

0.
00

28
3.

20
8.

94
C

a1
-6

,4
,5

10
0

27
1

30
2.

53
27

1
0

C
a1

-6
,4

,1
0

10
0

30
5

29
16

.3
6

30
5

0
C

a1
-6

,4
,1

5
20

0
28

9
18

00
0.

00
22

1.
95

23
.2

0
C

a2
-2

,3
,5

10
0

15
2

19
1.

19
15

2
0

C
a2

-2
,3

,1
0

10
0

16
1

36
20

.4
8

16
1

0
C

a2
-2

,3
,1

5
20

0
30

6
81

60
.2

77
30

6.
00

0.
00

C
a2

-3
,5

,5
10

0
28

4
36

8.
60

28
4

0
C

a2
-3

,5
,1

0
10

0
34

0
40

42
.2

3
34

0
0

C
a2

-3
,5

,1
5

20
0

33
9

18
00

0.
00

26
7.

23
21

.1
7

C
a2

-6
,4

,5
10

0
15

0
43

9.
69

15
0

0
C

a2
-6

,4
,1

0
10

0
17

9
36

85
.7

4
17

9
0

C
a2

-6
,4

,1
5

20
0

28
3

18
00

0.
00

21
0.

13
25

.7
5

C
a3

-2
,3

,5
10

0
28

7
29

3.
68

28
7

0
C

a3
-2

,3
,1

0
10

0
34

4
11

72
.0

1
34

4
0

C
a3

-2
,3

,1
5

20
0

31
9

40
97

.5
3

31
9.

00
0.

00
C

a3
-3

,5
,5

10
0

22
0

13
4.

13
22

0
0

C
a3

-3
,5

,1
0

10
0

31
8

16
78

.5
2

31
8

0
C

a3
-3

,5
,1

5
20

0
31

5
18

00
0.

00
29

8.
27

5.
31

C
a3

-6
,4

,5
10

0
17

1
11

3.
06

17
1

0
C

a3
-6

,4
,1

0
10

0
23

6
28

72
.0

9
23

6
0

C
a3

-6
,4

,1
5

20
0

28
6

18
00

0.
00

20
6.

43
27

.8
2

C
a4

-2
,3

,5
10

0
35

8
13

6.
83

35
8

0
C

a4
-2

,3
,1

0
10

0
43

7
10

76
.8

1
43

7
0

C
a4

-2
,3

,1
5

20
0

32
1

18
00

0.
00

27
5.

13
14

.2
9

C
a4

-3
,5

,5
10

0
16

8
26

9.
84

16
8

0
C

a4
-3

,5
,1

0
10

0
21

3
96

9.
23

21
3

0
C

a4
-3

,5
,1

5
20

0
28

7
59

99
.6

4
28

7.
00

0.
00

C
a4

-6
,4

,5
10

0
16

1
10

4.
24

16
1

0
C

a4
-6

,4
,1

0
10

0
23

8
39

98
.1

1
23

8
0

C
a4

-6
,4

,1
5

20
0

27
2

18
00

0.
00

22
9.

60
15

.5
9

C
a5

-2
,3

,5
10

0
19

9
40

6.
72

19
9

0
C

a5
-2

,3
,1

0
10

0
27

7
30

44
.7

0
27

7
0

C
a5

-2
,3

,1
5

20
0

27
0

18
00

0.
00

26
6.

46
1.

31
C

a5
-3

,5
,5

10
0

18
6

20
2.

17
18

6
0

C
a5

-3
,5

,1
0

10
0

26
4

94
8.

10
26

4
0

C
a5

-3
,5

,1
5

20
0

28
0

71
66

.9
5

28
0.

00
0.

00
C

a5
-6

,4
,5

10
0

15
9

41
0.

28
15

9
0

C
a5

-6
,4

,1
0

10
0

18
7

76
8.

66
18

7
0

C
a5

-6
,4

,1
5

20
0

22
0

18
00

0.
00

17
0.

64
22

.4
4

C
b1

-2
,3

,5
10

0
15

2
34

1.
33

15
2

0
C

b1
-2

,3
,1

0
10

0
18

1
26

66
.7

2
18

1
0

C
b1

-2
,3

,1
5

20
0

30
5

89
58

.3
5

30
5.

00
0.

00
C

b1
-3

,5
,5

10
0

16
4

38
1.

53
16

4
0

C
b1

-3
,5

,1
0

10
0

21
1

27
02

.8
4

21
1

0
C

b1
-3

,5
,1

5
20

0
29

8
18

00
0.

00
26

4.
82

11
.1

4
C

b1
-6

,4
,5

10
0

30
5

37
0.

46
30

5
0

C
b1

-6
,4

,1
0

10
0

26
1

27
46

.7
8

26
1

0
C

b1
-6

,4
,1

5
20

0
30

1
18

00
0.

00
20

0.
44

33
.4

1
C

b2
-2

,3
,5

10
0

12
9

28
3.

59
12

9
0

C
b2

-2
,3

,1
0

10
0

19
9

37
59

.8
9

19
9

0
C

b2
-2

,3
,1

5
20

0
27

5
56

21
.6

8
27

5.
00

0.
00

C
b2

-3
,5

,5
10

0
15

4
17

3.
17

15
4

0
C

b2
-3

,5
,1

0
10

0
26

8
21

91
.6

8
26

8
0

C
b2

-3
,5

,1
5

20
0

34
8

18
00

0.
00

24
8.

03
28

.7
3

C
b2

-6
,4

,5
10

0
14

3
16

2.
15

14
3

0
C

b2
-6

,4
,1

0
10

0
18

5
38

13
.4

3
18

5
0

C
b2

-6
,4

,1
5

20
0

31
1

18
00

0.
00

23
7.

86
23

.5
2

C
b3

-2
,3

,5
10

0
33

2
13

2.
18

33
2

0
C

b3
-2

,3
,1

0
10

0
33

7
31

15
.6

0
33

7
0

C
b3

-2
,3

,1
5

20
0

33
7

18
00

0.
00

30
0.

20
10

.9
2

C
b3

-3
,5

,5
10

0
16

0
35

5.
92

16
0

0
C

b3
-3

,5
,1

0
10

0
20

2
25

10
.8

1
20

2
0

C
b3

-3
,5

,1
5

20
0

35
4

67
56

.6
4

35
4.

00
0.

00
C

b3
-6

,4
,5

10
0

19
8

27
0.

45
19

8
0

C
b3

-6
,4

,1
0

10
0

28
3

42
04

.8
7

28
3

0
C

b3
-6

,4
,1

5
20

0
27

8
18

00
0.

00
18

0.
21

35
.1

8
C

b4
-2

,3
,5

10
0

28
0

39
9.

33
28

0
0

C
b4

-2
,3

,1
0

10
0

25
1

32
11

.5
6

25
1

0
C

b4
-2

,3
,1

5
20

0
30

6
18

00
0.

00
24

9.
17

18
.5

7
C

b4
-3

,5
,5

10
0

14
2

78
.8

2
14

2
0

C
b4

-3
,5

,1
0

10
0

24
5

41
97

.4
1

24
5

0
C

b4
-3

,5
,1

5
20

0
27

0
18

00
0.

00
24

8.
00

8.
15

C
b4

-6
,4

,5
10

0
18

8
29

4.
48

18
8

0
C

b4
-6

,4
,1

0
10

0
28

8
35

70
.4

9
28

8
0

C
b4

-6
,4

,1
5

20
0

34
0

18
00

0.
00

23
1.

25
31

.9
8

C
b5

-2
,3

,5
10

0
12

9
31

4.
79

12
9

0
C

b5
-2

,3
,1

0
10

0
19

7
40

20
.5

2
19

7
0

C
b5

-2
,3

,1
5

20
0

26
5

18
00

0.
00

22
9.

01
13

.5
8

C
b5

-3
,5

,5
10

0
17

9
31

4.
78

17
9

0
C

b5
-3

,5
,1

0
10

0
23

2
33

27
.2

4
23

2
0

C
b5

-3
,5

,1
5

20
0

24
7

18
00

0.
00

19
7.

69
19

.9
6

C
b5

-6
,4

,5
10

0
19

9
16

6.
44

19
9

0
C

b5
-6

,4
,1

0
10

0
33

7
37

33
.0

3
33

7
0

C
b5

-6
,4

,1
5

20
0

23
8

18
00

0.
00

14
6.

17
38

.5
9

C
c1

-2
,3

,5
10

0
12

9
36

41
.9

6
12

9
0

C
c1

-2
,3

,1
0

10
0

18
9

64
62

.9
8

18
9

0
C

c1
-2

,3
,1

5
20

0
27

1
18

00
0.

00
17

3.
28

36
.0

6
C

c1
-3

,5
,5

10
0

13
5

50
94

.1
5

13
5

0
C

c1
-3

,5
,1

0
10

0
18

0
71

63
.1

1
18

0
0

C
c1

-3
,5

,1
5

20
0

24
5

18
00

0.
00

20
1.

21
17

.8
8

C
c1

-6
,4

,5
10

0
15

0
13

47
.7

9
15

0
0

C
c1

-6
,4

,1
0

10
0

23
8

61
39

.9
2

23
8

0
C

c1
-6

,4
,1

5
20

0
30

2
18

00
0.

00
22

7.
77

24
.5

8
C

c2
-2

,3
,5

10
0

12
2

29
60

.5
5

12
2

0
C

c2
-2

,3
,1

0
10

0
18

7
68

32
.7

7
18

7
0

C
c2

-2
,3

,1
5

20
0

29
6

18
00

0.
00

20
9.

84
29

.1
1

C
c2

-3
,5

,5
10

0
17

5
14

91
.5

0
17

5
0

C
c2

-3
,5

,1
0

10
0

23
1

64
96

.1
9

23
1

0
C

c2
-3

,5
,1

5
20

0
31

5
18

00
0.

00
21

5.
18

31
.6

9
C

c2
-6

,4
,5

10
0

12
2

51
75

.6
9

12
2

0
C

c2
-6

,4
,1

0
10

0
16

3
61

95
.3

4
16

3
0

C
c2

-6
,4

,1
5

20
0

30
1

18
00

0.
00

18
8.

30
37

.4
4

C
c3

-2
,3

,5
10

0
13

6
12

53
.4

7
13

6
0

C
c3

-2
,3

,1
0

10
0

18
4

68
43

.5
7

18
4

0
C

c3
-2

,3
,1

5
20

0
29

0
18

00
0.

00
19

9.
05

31
.3

6
C

c3
-3

,5
,5

10
0

14
2

31
75

.8
3

14
2

0
C

c3
-3

,5
,1

0
10

0
22

5
65

56
.9

2
22

5
0

C
c3

-3
,5

,1
5

20
0

23
0

18
00

0.
00

18
6.

84
18

.7
7

C
c3

-6
,4

,5
10

0
15

7
26

02
.3

6
15

7
0

C
c3

-6
,4

,1
0

10
0

19
3

57
90

.6
1

19
3

0
C

c3
-6

,4
,1

5
20

0
28

4
18

00
0.

00
22

4.
51

20
.9

5
C

c4
-2

,3
,5

10
0

17
1

56
93

.1
2

17
1

0
C

c4
-2

,3
,1

0
10

0
22

5
59

37
.4

0
22

5
0

C
c4

-2
,3

,1
5

20
0

32
6

18
00

0.
00

22
9.

35
29

.6
5

C
c4

-3
,5

,5
10

0
15

4
26

77
.8

8
15

4
0

C
c4

-3
,5

,1
0

10
0

22
3

59
37

.8
7

22
3

0
C

c4
-3

,5
,1

5
20

0
26

9
18

00
0.

00
16

5.
09

38
.6

3
C

c4
-6

,4
,5

10
0

13
8

28
36

.5
0

13
8

0
C

c4
-6

,4
,1

0
10

0
23

0
51

52
.3

9
23

0
0

C
c4

-6
,4

,1
5

20
0

27
6

18
00

0.
00

19
5.

97
29

.0
0

C
c5

-2
,3

,5
10

0
12

3
15

25
.6

1
12

3
0

C
c5

-2
,3

,1
0

10
0

18
2

65
76

.4
5

18
2

0
C

c5
-2

,3
,1

5
20

0
24

3
18

00
0.

00
17

9.
41

26
.1

7
C

c5
-3

,5
,5

10
0

12
4

54
26

.5
2

12
4

0
C

c5
-3

,5
,1

0
10

0
16

8
70

08
.7

4
16

8
0

C
c5

-3
,5

,1
5

20
0

26
1

18
00

0.
00

18
9.

47
27

.4
0

C
c5

-6
,4

,5
10

0
13

8
23

12
.3

0
13

8
0

C
c5

-6
,4

,1
0

10
0

17
9

57
91

.8
2

17
9

0
C

c5
-6

,4
,1

5
20

0
22

6
18

00
0.

00
18

3.
83

18
.6

6
C

d1
-2

,3
,5

10
0

15
5

12
6.

76
15

5
0

C
d1

-2
,3

,1
0

10
0

19
7

79
4.

44
19

7
0

C
d1

-2
,3

,1
5

20
0

30
1

18
00

0.
00

22
5.

56
25

.0
6

C
d1

-3
,5

,5
10

0
17

0
22

1.
75

17
0

0
C

d1
-3

,5
,1

0
10

0
21

5
94

3.
94

21
5

0
C

d1
-3

,5
,1

5
20

0
31

1
18

00
0.

00
24

3.
56

21
.6

9
C

d1
-6

,4
,5

10
0

18
8

28
9.

63
18

8
0

C
d1

-6
,4

,1
0

10
0

24
8

10
27

.9
8

24
8

0
C

d1
-6

,4
,1

5
20

0
27

9
18

00
0.

00
21

9.
46

21
.3

4
C

d2
-2

,3
,5

10
0

14
0

40
0.

20
14

0
0

C
d2

-2
,3

,1
0

10
0

19
3

15
94

.6
3

19
3

0
C

d2
-2

,3
,1

5
20

0
25

9
18

00
0.

00
19

1.
34

26
.1

2
C

d2
-3

,5
,5

10
0

15
8

43
1.

44
15

8
0

C
d2

-3
,5

,1
0

10
0

23
6

22
02

.0
1

23
6

0
C

d2
-3

,5
,1

5
20

0
32

5
18

00
0.

00
28

5.
64

12
.1

1
C

d2
-6

,4
,5

10
0

14
2

35
8.

49
14

2
0

C
d2

-6
,4

,1
0

10
0

21
3

35
07

.3
1

21
3

0
C

d2
-6

,4
,1

5
20

0
28

0
18

00
0.

00
21

3.
54

23
.7

4
C

d3
-2

,3
,5

10
0

14
2

91
.0

5
14

2
0

C
d3

-2
,3

,1
0

10
0

18
6

33
33

.8
3

18
6

0
C

d3
-2

,3
,1

5
20

0
27

2
18

00
0.

00
19

5.
50

28
.1

2
C

d3
-3

,5
,5

10
0

14
7

16
5.

73
14

7
0

C
d3

-3
,5

,1
0

10
0

22
4

39
78

.5
9

22
4

0
C

d3
-3

,5
,1

5
20

0
22

7
18

00
0.

00
15

2.
09

33
.0

0
C

d3
-6

,4
,5

10
0

15
7

43
5.

13
15

7
0

C
d3

-6
,4

,1
0

10
0

19
6

43
41

.9
2

19
6

0
C

d3
-6

,4
,1

5
20

0
28

1
18

00
0.

00
21

2.
89

24
.2

4
C

d4
-2

,3
,5

10
0

20
2

33
7.

53
20

2
0

C
d4

-2
,3

,1
0

10
0

25
7

18
45

.5
5

25
7

0
C

d4
-2

,3
,1

5
20

0
33

8
18

00
0.

00
25

4.
39

24
.7

4
C

d4
-3

,5
,5

10
0

16
2

32
5.

12
16

2
0

C
d4

-3
,5

,1
0

10
0

24
1

35
45

.7
8

24
1

0
C

d4
-3

,5
,1

5
20

0
29

5
18

00
0.

00
20

6.
79

29
.9

0
C

d4
-6

,4
,5

10
0

14
7

20
4.

10
14

7
0

C
d4

-6
,4

,1
0

10
0

18
9

42
54

.6
6

18
9

0
C

d4
-6

,4
,1

5
20

0
26

6
18

00
0.

00
18

4.
60

30
.6

0
C

d5
-2

,3
,5

10
0

17
8

35
1.

91
17

8
0

C
d5

-2
,3

,1
0

10
0

20
7

35
37

.6
2

20
7

0
C

d5
-2

,3
,1

5
20

0
27

4
18

00
0.

00
19

8.
78

27
.4

5
C

d5
-3

,5
,5

10
0

17
8

43
7.

20
17

8
0

C
d5

-3
,5

,1
0

10
0

21
3

89
2.

31
21

3
0

C
d5

-3
,5

,1
5

20
0

25
4

18
00

0.
00

19
3.

76
23

.7
2

C
d5

-6
,4

,5
10

0
15

7
15

3.
18

15
7

0
C

d5
-6

,4
,1

0
10

0
18

4
44

54
.4

3
18

4
0

C
d5

-6
,4

,1
5

20
0

21
4

18
00

0.
00

12
6.

97
40

.6
7

A
ve

ra
ge

s
98

5.
46

3
0

A
ve

ra
ge

s
36

72
.8

8
0

A
ve

ra
ge

s
16

67
9.

36
21

.0
7

T
ab

le
8

–
D

D
D

re
su

lts
on

in
st

an
ce

s
w

ith
5,

10
an

d
15

O
D

de
m

an
ds

us
in

g
th

e
tim

e-
sp

ac
e

fo
rm

ul
at

io
n

188



ID Ψ UB CPU (sec) LB OG (%) ID Ψ UB CPU (sec) LB OG (%)
Ca1-2,3,30 200 530 2006.52 530 0.00 Ca1-2,3,50 200 808 28800 742.50 8.11
Ca1-3,5,30 200 490 12877.17 490 0.00 Ca1-3,5,50 200 649 28800 585.80 9.74
Ca1-6,4,30 200 417 18000 398.1389 4.52 Ca1-6,4,50 200 710 28800 606.11 14.63
Ca2-2,3,30 200 441 9001.31 441 0.00 Ca2-2,3,50 200 713 28800 410.33 42.45
Ca2-3,5,30 200 439 1214.24 439 0.00 Ca2-3,5,50 200 817 28800 510.96 37.46
Ca2-6,4,30 200 448 18000 436.5814 2.55 Ca2-6,4,50 200 784 28800 707.58 9.75
Ca3-2,3,30 200 570 15555.90 570 0.00 Ca3-2,3,50 200 770 28800 664.91 13.65
Ca3-3,5,30 200 428 12028.32 428 0.00 Ca3-3,5,50 200 573 28800 405.81 29.18
Ca3-6,4,30 200 445 12407.91 445 0.00 Ca3-6,4,50 200 745 28800 662.60 11.06
Ca4-2,3,30 200 508 15297.08 508 0.00 Ca4-2,3,50 200 685 28800 632.00 7.74
Ca4-3,5,30 200 423 18000 399.735 5.50 Ca4-3,5,50 200 650 28800 554.98 14.62
Ca4-6,4,30 200 392 10124.80 392 0.00 Ca4-6,4,50 200 793 28800 608.65 23.25
Ca5-2,3,30 200 429 11249.56 429 0.00 Ca5-2,3,50 200 812 28800 771.54 4.98
Ca5-3,5,30 200 499 18000 487.4232 2.32 Ca5-3,5,50 200 734 28800 488.00 33.51
Ca5-6,4,30 200 406 13173.54 406 0.00 Ca5-6,4,50 200 820 28800 710.29 13.38
Cb1-2,3,30 200 492 10787.85 492 0.00 Cb1-2,3,50 200 790 28800 683.60 13.47
Cb1-3,5,30 200 510 18000 454.869 10.81 Cb1-3,5,50 200 729 28800 578.56 20.64
Cb1-6,4,30 200 421 18000 389.26 7.54 Cb1-6,4,50 200 745 28800 597.25 19.83
Cb2-2,3,30 200 402 12971.62 402 0.00 Cb2-2,3,50 200 680 28800 440.46 35.23
Cb2-3,5,30 200 436 18000 421.65 3.29 Cb2-3,5,50 200 835 28800 518.71 37.88
Cb2-6,4,30 200 437 10177.10 437 0.00 Cb2-6,4,50 200 837 28800 742.92 11.24
Cb3-2,3,30 200 553 18000 494.76 10.53 Cb3-2,3,50 200 780 28800 588.23 24.59
Cb3-3,5,30 200 432 18000 409.66 5.17 Cb3-3,5,50 200 656 28800 535.00 18.45
Cb3-6,4,30 200 473 18000 453.13 4.20 Cb3-6,4,50 200 683 28800 614.19 10.07
Cb4-2,3,30 200 505 18000 433.44 14.17 Cb4-2,3,50 200 798 28800 432.00 45.86
Cb4-3,5,30 200 437 18000 410.73 6.01 Cb4-3,5,50 200 675 28800 522.44 22.60
Cb4-6,4,30 200 395 18000 378.37 4.21 Cb4-6,4,50 200 788 28800 670.66 14.89
Cb5-2,3,30 200 396 14560.44 396 0.00 Cb5-2,3,50 200 726 28800 639.87 11.86
Cb5-3,5,30 200 527 18000 505.02 4.17 Cb5-3,5,50 200 654 28800 514.33 21.36
Cb5-6,4,30 200 418 18000 370.18 11.44 Cb5-6,4,50 200 797 28800 717.83 9.93
Cc1-2,3,30 200 411 18000 411 0.00 Cc1-2,3,50 200 767 28800 663.57 13.49
Cc1-3,5,30 200 536 18000 485.83 9.36 Cc1-3,5,50 200 691 28800 629.23 8.94
Cc1-6,4,30 200 393 18000 361.20 8.09 Cc1-6,4,50 200 632 28800 562.32 11.03
Cc2-2,3,30 200 423 18000 374.56 11.45 Cc2-2,3,50 200 700 28800 547.60 21.77
Cc2-3,5,30 200 418 18000 375.69 10.12 Cc2-3,5,50 200 726 28800 543.50 25.14
Cc2-6,4,30 200 445 18000 411.58 7.51 Cc2-6,4,50 200 680 28800 573.80 15.62
Cc3-2,3,30 200 552 18000 506.62 8.22 Cc3-2,3,50 200 663 28800 521.80 21.30
Cc3-3,5,30 200 450 18000 409.81 8.93 Cc3-3,5,50 200 618 28800 458.83 25.75
Cc3-6,4,30 200 443 18000 404.85 8.61 Cc3-6,4,50 200 652 28800 493.58 24.30
Cc4-2,3,30 200 501 18000 454.30 9.32 Cc4-2,3,50 200 593 28800 498.80 15.89
Cc4-3,5,30 200 418 18000 370.64 11.33 Cc4-3,5,50 200 705 28800 544.39 22.78
Cc4-6,4,30 200 378 18000 341.14 9.75 Cc4-6,4,50 200 637 28800 371.41 41.69
Cc5-2,3,30 200 423 18000 402.61 4.82 Cc5-2,3,50 200 735 28800 472.97 35.65
Cc5-3,5,30 200 429 18000 396.69 7.53 Cc5-3,5,50 200 619 28800 461.00 25.53
Cc5-6,4,30 200 390 18000 364.45 6.55 Cc5-6,4,50 200 774 28800 689.63 10.9
Cd1-2,3,30 200 445 13823.36 445 0.00 Cd1-2,3,50 200 640 28800 560.32 12.45
Cd1-3,5,30 200 533 13043.42 533 0.00 Cd1-3,5,50 200 664 28800 554.97 16.42
Cd1-6,4,30 200 412 12720.21 412 0.00 Cd1-6,4,50 200 688 28800 604.82 12.09
Cd2-2,3,30 200 429 18000 388.24 9.50 Cd2-2,3,50 200 741 28800 606.21 18.19
Cd2-3,5,30 200 435 15479.58 435 0.00 Cd2-3,5,50 200 769 28800 562.75 26.82
Cd2-6,4,30 200 434 16873.03 434 0.00 Cd2-6,4,50 200 680 28800 607.92 10.6
Cd3-2,3,30 200 550 18000 481.25 12.50 Cd3-2,3,50 200 625 28800 542.50 13.2
Cd3-3,5,30 200 440 8435.23 440 0.00 Cd3-3,5,50 200 771 28800 651.42 15.51
Cd3-6,4,30 200 437 18000 420.65 3.74 Cd3-6,4,50 200 712 28800 603.70 15.21
Cd4-2,3,30 200 510 12095.64 510 0.00 Cd4-2,3,50 200 614 28800 438.82 28.53
Cd4-3,5,30 200 424 18000 389.02 8.25 Cd4-3,5,50 200 678 28800 605.38 10.71
Cd4-6,4,30 200 395 18000 384.57 2.64 Cd4-6,4,50 200 648 28800 583.91 9.89
Cd5-2,3,30 200 425 10783.34 425 0.00 Cd5-2,3,50 200 764 28800 697.99 8.64
Cd5-3,5,30 200 501 10556.08 501 0.00 Cd5-3,5,50 200 641 28800 556.51 13.18
Cd5-6,4,30 200 432 13661.84 432 0.00 Cd5-6,4,50 200 857 28800 767.53 10.44
Averages 15348.42 4.24 Averages 28800 18.88

Table 9 – DDD results on instances with 30 and 50 OD demands
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ID Ψ UB CPU (sec) LB OG (%) ID Ψ UB CPU (sec) LB OG (%)
Ca1-2,3,30 200 542 18000 418.42 22.80 Ca1-2,3,50 200 1018 28800 607.13 40.36
Ca1-3,5,30 200 548 18000 409.38 25.29 Ca1-3,5,50 200 N.A 28800 N.A N.A
Ca1-6,4,30 200 616 18000 336.00 45.45 Ca1-6,4,50 200 N.A 28800 N.A N.A
Ca2-2,3,30 200 481 18000 353.93 26.42 Ca2-2,3,50 200 819 28800 409.14 50.04
Ca2-3,5,30 200 439 6602.54 439.00 0.00 Ca2-3,5,50 200 N.A 28800 N.A N.A
Ca2-6,4,30 200 583 18000 433.39 25.66 Ca2-6,4,50 200 N.A 28800 N.A N.A
Ca3-2,3,30 200 713 18000 354.52 50.28 Ca3-2,3,50 200 1010 28800 491.68 51.32
Ca3-3,5,30 200 557 18000 284.06 49.00 Ca3-3,5,50 200 N.A 28800 N.A N.A
Ca3-6,4,30 200 594 18000 335.30 43.55 Ca3-6,4,50 200 N.A 28800 N.A N.A
Ca4-2,3,30 200 573 18000 429.24 25.09 Ca4-2,3,50 200 890 28800 486.17 45.37
Ca4-3,5,30 200 488 18000 351.20 28.03 Ca4-3,5,50 200 N.A 28800 N.A N.A
Ca4-6,4,30 200 520 18000 290.77 44.08 Ca4-6,4,50 200 N.A 28800 N.A N.A
Ca5-2,3,30 200 518 18000 274.52 47.00 Ca5-2,3,50 200 1049 28800 577.54 44.94
Ca5-3,5,30 200 516 18000 375.33 27.26 Ca5-3,5,50 200 N.A 28800 N.A N.A
Ca5-6,4,30 200 549 18000 375.75 31.56 Ca5-6,4,50 200 N.A 28800 N.A N.A
Cb1-2,3,30 200 561 18000 345.97 38.33 Cb1-2,3,50 200 1050 28800 508.18 51.60
Cb1-3,5,30 200 702 18000 480.47 31.56 Cb1-3,5,50 200 N.A 28800 N.A N.A
Cb1-6,4,30 200 528 18000 265.76 49.67 Cb1-6,4,50 200 N.A 28800 N.A N.A
Cb2-2,3,30 200 582 18000 286.90 50.70 Cb2-2,3,50 200 849 28800 429.67 49.39
Cb2-3,5,30 200 553 18000 301.47 45.49 Cb2-3,5,50 200 N.A 28800 N.A N.A
Cb2-6,4,30 200 576 18000 315.15 45.29 Cb2-6,4,50 200 N.A 28800 N.A N.A
Cb3-2,3,30 200 616 18000 393.11 36.18 Cb3-2,3,50 200 1020 28800 508.25 50.17
Cb3-3,5,30 200 549 18000 387.74 29.37 Cb3-3,5,50 200 N.A 28800 N.A N.A
Cb3-6,4,30 200 586 18000 373.50 36.26 Cb3-6,4,50 200 N.A 28800 N.A N.A
Cb4-2,3,30 200 575 18000 428.42 25.49 Cb4-2,3,50 200 952 28800 423.85 55.48
Cb4-3,5,30 200 614 18000 434.47 29.24 Cb4-3,5,50 200 N.A 28800 N.A N.A
Cb4-6,4,30 200 511 18000 342.67 32.94 Cb4-6,4,50 200 N.A 28800 N.A N.A
Cb5-2,3,30 200 456 18000 241.95 46.94 Cb5-2,3,50 200 997 28800 554.78 44.36
Cb5-3,5,30 200 649 18000 433.26 33.24 Cb5-3,5,50 200 N.A 28800 N.A N.A
Cb5-6,4,30 200 512 18000 297.06 41.98 Cb5-6,4,50 200 N.A 28800 N.A N.A
Cc1-2,3,30 200 536 18000 330.78 38.29 Cc1-2,3,50 200 984 28800 592.02 39.84
Cc1-3,5,30 200 873 18000 517.15 40.76 Cc1-3,5,50 200 N.A 28800 N.A N.A
Cc1-6,4,30 200 696 18000 380.85 45.28 Cc1-6,4,50 200 N.A 28800 N.A N.A
Cc2-2,3,30 200 634 18000 400.56 36.82 Cc2-2,3,50 200 913 28800 500.54 45.18
Cc2-3,5,30 200 652 18000 417.32 35.99 Cc2-3,5,50 200 N.A 28800 N.A N.A
Cc2-6,4,30 200 697 18000 360.73 48.24 Cc2-6,4,50 200 N.A 28800 N.A N.A
Cc3-2,3,30 200 809 18000 455.79 43.66 Cc3-2,3,50 200 1097 28800 504.77 53.99
Cc3-3,5,30 200 669 18000 383.55 42.67 Cc3-3,5,50 200 N.A 28800 N.A N.A
Cc3-6,4,30 200 681 18000 404.33 40.63 Cc3-6,4,50 200 N.A 28800 N.A N.A
Cc4-2,3,30 200 832 18000 410.83 50.62 Cc4-2,3,50 200 806 28800 466.72 42.09
Cc4-3,5,30 200 574 18000 379.32 33.92 Cc4-3,5,50 200 N.A 28800 N.A N.A
Cc4-6,4,30 200 521 18000 333.55 35.98 Cc4-6,4,50 200 N.A 28800 N.A N.A
Cc5-2,3,30 200 516 18000 380.26 26.31 Cc5-2,3,50 200 908 28800 458.25 49.53
Cc5-3,5,30 200 576 18000 417.31 27.55 Cc5-3,5,50 200 N.A 28800 N.A N.A
Cc5-6,4,30 200 644 18000 357.40 44.50 Cc5-6,4,50 200 N.A 28800 N.A N.A
Cd1-2,3,30 200 588 18000 363.64 38.16 Cd1-2,3,50 200 902 28800 540.51 40.08
Cd1-3,5,30 200 655 18000 410.98 37.25 Cd1-3,5,50 200 N.A 28800 N.A N.A
Cd1-6,4,30 200 544 18000 277.67 48.96 Cd1-6,4,50 200 N.A 28800 N.A N.A
Cd2-2,3,30 200 637 18000 389.28 38.89 Cd2-2,3,50 200 1002 28800 606.04 39.52
Cd2-3,5,30 200 559 18000 348.86 37.59 Cd2-3,5,50 200 N.A 28800 N.A N.A
Cd2-6,4,30 200 450 18000 393.57 12.54 Cd2-6,4,50 200 N.A 28800 N.A N.A
Cd3-2,3,30 200 647 18000 468.87 27.53 Cd3-2,3,50 200 843 28800 376.43 55.35
Cd3-3,5,30 200 534 18000 348.58 34.72 Cd3-3,5,50 200 N.A 28800 N.A N.A
Cd3-6,4,30 200 653 18000 403.99 38.13 Cd3-6,4,50 200 N.A 28800 N.A N.A
Cd4-2,3,30 200 687 18000 497.36 27.60 Cd4-2,3,50 200 754 28800 405.51 46.22
Cd4-3,5,30 200 530 18000 352.39 33.51 Cd4-3,5,50 200 N.A 28800 N.A N.A
Cd4-6,4,30 200 527 18000 303.49 42.41 Cd4-6,4,50 200 N.A 28800 N.A N.A
Cd5-2,3,30 200 536 18000 365.00 31.90 Cd5-2,3,50 200 1044 28800 452.35 56.67
Cd5-3,5,30 200 646 18000 374.14 42.08 Cd5-3,5,50 200 N.A 28800 N.A N.A
Cd5-6,4,30 200 565 18000 404.74 28.37 Cd5-6,4,50 200 N.A 28800 N.A N.A
Averages 18000 36.25 Averages 28800 47.57

Table 10 – DDD results on instances with 30 and 50 OD demands using the time-space
formulation
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A.3. Degeneracy
Figure 1 illustrates the impact of the degeneracy procedure using a coarse granularity

(∆ = 2). The performance of the DDD is illustrated by contrasting the average optimality
gap obtained by the DDD using the degeneracy procedure, for each instance type CA, CB,
CC, and CD, to that of the DDD without the degeneracy procedure, identified as NCA,
NCB, NCC, and NCD. The experimental results show that, using the degeneracy procedure
leads to a general improvement of the optimality gap over the entire instance set. One
also observes that, wider customer time windows, reduce the temporal preciseness of the
reduced time-space network and provide broader refining options for short arcs, which, in
turn drives degeneracy on the integer problem. Instances with broader and sparse time
windows, most notably, instances of CC and CD types, tend to benefit from the degeneracy
procedure, displaying optimality-gap improvements of 78% and 84%, respectively, compared
to the results on same instances types without the degeneracy procedure. On the other
hand, instances with tighter time windows, e.g., instances of CA and CB types, display
improvements of 58% and 77%, respectively. The latter reflects the efficiency of the proposed
degeneracy procedure in supporting the DDD to avoid being trapped on lower bounds values
for several iterations and enabling tightening the general lower-bound values obtained by the
DDD.

Figure 1 – Degeneracy: Average Optimality gap (%) versus run time and instance type.

A.4. Sensitivity analysis OD demands
We conducted a sensitivity analysis on the number of OD demands in the 2E-MALRPS

to evaluate the performance of the proposed H-DDD solution framework. Our objective is
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to assess the impact of the number of OD demands on the problem and gain insights into
system behavior. To conduct these experiments, we adapted a subset of instances originally
defined with 5, 10, and 15 ODs to a single-commodity problem. This adaptation preserved
the original number of destinations while assuming that all demands consist of the same
commodity. Consequently, availability times are not differentiated by demand, implying
that the single commodity is available on all platforms at the original availability times
defined for each instance set.

Each instance set was solved to optimality using the H-DDD to compare the effects of the
number of OD demands on solution quality and runtime. Table 13 summarizes the complete
results (see Table 14) obtained using the H-DDD with the coarsest discretization granularity
(∆ = 2).

The results presented in Table 13 demonstrate a general decrease in solution quality as
the average runtime of the H-DDD increases. Removing the multi-commodity aspect of
the problem setting leads to an average cost reduction of 5% for the complete instance set.
Despite the unchanged number of availability times, the larger number of departure options
from platforms allows for solutions with earlier departure times. This enables the utilization
of more cost-effective routes that are otherwise restricted in the original problem, where ODs
have specific availability times. However, the runtime has an average increase of 16% due
to the increased flexibility introduced by considering a single commodity. By allowing for
more homogeneous departure times at platform facilities, more synchronization options are
available. This, in turn, increases the number of possible synchronization alternatives and
expands the feasible region defined by the integer problem.

The single-commodity case demonstrates a robust behavior of the H-DDD by obtaining
the optimal solution for all instances considered. However, it is important to note that not
considering the multi-commodity aspect may yield cheaper solutions that are not realistic
or achievable when demand items are not substitutable.

|Pph| |Zph| OD NI FUB OUB OG(%) CPUsec
2 3 5 20 20 20 0.00 1.65
3 5 5 20 20 20 0.00 1.35
6 4 5 20 20 20 0.00 1.50
2 3 10 20 20 20 0.00 17.24
3 5 10 20 20 20 0.00 39.06
6 4 10 20 20 20 0.00 28.80
2 3 15 20 20 20 0.00 187.62
3 5 15 20 20 20 0.00 257.26
6 4 15 20 20 20 0.00 497.48

Table 13 – H-DDD performance on instances with a single OD demand
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Chapter B

SUPPLEMENTARY MATERIAL SECOND
ARTICLE

B.1. Decomposition strategy for the two-stage stochas-
tic formulation

This section presents the complete steps used to perform the decomposition approach
that is applied to the stochastic 2E-MLRPSCD formulation introduced in Section 4.2. This
decomposition approach utilizes an augmented Lagrangean strategy.

The decomposition strategy applied on the scenario-based formulation, along the scenar-
ios included in S, requires the first-stage decisions to be reformulated. Specifically, these
decisions need to be defined as scenario-dependent. In doing so, constraints (4.7), (4.18)
and (4.19) are then reexpressed according to the scenario-specific location and allocation
first-stage decisions. Therefore, one starts with the following alternative, but equivalent,
formulation:

min
∑
s∈S

ρs

(∑
h∈H

∑
(i,j)∈A

ζijx
s
ijh +

∑
k∈K

Ros
k +

∑
i∈Z

Fiy
s
i +

∑
i∈P

∑
j∈Z

∑
k∈K

∆ijkf
s
ijk

)
(B.1.1)

Subject to

(4.2)− (4.6)

(4.8)− (4.17)

∑
h∈H2

∑
j∈C

xs
ijh ≤ |H2|ys

i ∀i ∈ Z, s ∈ S (B.1.2)
∑

h∈H1

us
ijkh = f s

ijk ∀i ∈ P, j ∈ Z, k ∈ K, s ∈ S (B.1.3)



∑
h∈H2

vs
zD(k)h =

∑
p∈P

f s
pzk ∀z ∈ Z, k ∈ K, s ∈ S (B.1.4)

ys
i = ȳi ∀i ∈ Z, s ∈ S (B.1.5)

f s
ijk = f̄ijk ∀i ∈ P, j ∈ Z, k ∈ K, s ∈ S (B.1.6)

ys
i ∈ {0,1} ∀i ∈ Z, s ∈ S (B.1.7)

f s
ijk ∈ {0,1} ∀i ∈ P, j ∈ Z, k ∈ K, s ∈ S (B.1.8)

ȳi ∈ {0,1} ∀i ∈ Z (B.1.9)

f̄ijk ∈ {0,1} ∀i ∈ P, j ∈ Z, k ∈ K (B.1.10)

This reformulation now explicitly includes the set of non-anticipativity constraints which
prevent the first-stage decision variables to be set to different scenario-specific values (i.e.,
the first-stage decisions must be implementable). Constraints (B.1.2)-(B.1.4) link the facility
allocation variables with the vehicle allocation variables. Constraints (B.1.5) and (B.1.6)
ensure that the first-stage solutions will be the same for all the scenarios (also known as the
non-anticipativity constraints), where variables ȳi and f̄ijk serve as the reference first-stage
variables. The latter ensure that a single set of facility location and allocation decisions are
made for all the scenarios (thus preventing tailored scenario-specific decisions to be made).
Then, following the decomposition scheme, originally proposed by Rockafellar and Wets
(1991), constraints (B.1.5) and (B.1.6) are relaxed using an augmented Lagrangean method,
which results in the following objective function:

min
∑
s∈S

ρs

Å ∑
h∈H1

∑
(i,j)∈A1

ζijx
s
ijh +

∑
h∈H2

∑
(i,j)∈A2

ζijx
s
ijh +

∑
k∈K

Ros
k +

∑
i∈Z

Fiy
s
i

+
∑
i∈Z

λs
i (ys

i − ȳi) + 1
2

∑
i∈Z

γ(ys
i − ȳi)2 +

∑
i∈P

∑
j∈Z

∑
k∈K

∆ijkf
s
ijk

+
∑
i∈P

∑
j∈Z

∑
k∈K

µs
ijk(f s

ijk − f̄ijk) + 1
2

∑
i∈P

∑
j∈Z

∑
k∈K

γ(f s
ijk − f̄ijk)2

ã (B.1.11)

The objective function now involves the lagrangean multipliers λs
i and µs

ijk for the re-
laxed constraints (B.1.5) and (B.1.6), respectively, and a penalty term γ. Given the binary
requirements of the location and allocation variables, the objective function can be reduced
as follows:
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min
∑
s∈S

ρs

Å∑
h∈H

∑
(i,j)∈A

ζijx
s
ijh +

∑
k∈K

Ros
k +

∑
i∈Z

Å
Fi + λs

i + 1
2γ + γȳi

ã
ys

i

+
∑
i∈P

∑
j∈Z

∑
k∈K

Å
∆ijk + µs

ijk + 1
2γ + γf̄ijk

ã
f s

ijk + 1
2

∑
i∈Z

γȳi −
∑
i∈Z

λs
i ȳi

+1
2

∑
i∈P

∑
j∈Z

∑
k∈K

γf̄ijk +
∑
i∈P

∑
j∈Z

∑
k∈K

µs
ijkf̄ijk

ã (B.1.12)

Given the objective (B.1.12) and the constraint set: (4.2)-(4.6), (4.8)-(4.17), (B.1.2)-
(B.1.4) and (B.1.7)-(B.1.10), if the reference point (or solution) ȳi and f̄ijk is fixed, then the
relaxed formulation is decomposed by scenario. Specifically, for each s ∈ S, a deterministic
2E-MLRPSCD subproblem with modified fixed costs is obtained:

min
∑
s∈S

ρs

Å∑
h∈H

∑
(i,j)∈A

ζijx
s
ijh +

∑
k∈K

Ros
k +

∑
i∈Z

Å
Fi + λs

i + 1
2γ + γȳi

ã
ys

i

+
∑
i∈P

∑
j∈Z

∑
k∈K

Å
∆ijk + µs

ijk + 1
2γ + γf̄ijk

ã
f s

ijk

ã (B.1.13)

Subject to

(4.2)− (4.6), (4.8)− (4.17), (B.1.2)− (B.1.4) and (B.1.7)− (B.1.10) .

As previously stated, the proposed PH algorithm then proceeds by solving the previous
scenario subproblems separately, thus obtaining scenario-specific first-stage solutions. These
scenario-specific solutions are then used to compute the reference point. Using the reference
point, the objective functions (B.1.13), for all s ∈ S, are modified to incentivise decision
agreement among the subproblems (i.e., consensus). This general process in then repeated
until consensus first-stage solution can be found.

199



B.2. Complete Result Tables

Instance
|S| = 10 |S| = 20 |S| = 30

RD VAR RD VAR RD VAR
Ca1-2,3,15 1.52 121.57 0.85 35.95 0.70 24.46
Ca1-3,5,15 2.39 297.35 1.40 101.77 0.94 42.26
Ca1-6,4,15 2.38 216.61 1.02 38.49 0.87 29.87
Ca2-2,3,15 1.04 68.28 0.61 27.66 0.78 30.22
Ca2-3,5,15 1.12 41.96 0.75 20.36 0.61 14.39
Ca2-6,4,15 2.97 466.96 1.11 68.72 0.81 37.49
Ca3-2,3,15 4.37 1447.25 2.05 303.71 1.60 144.58
Ca3-3,5,15 5.37 1406.21 5.93 3351.09 3.55 993.23
Ca3-6,4,15 1.61 200.43 0.67 41.05 0.48 20.11
Ca4-2,3,15 0.62 20.00 2.43 9.75 1.50 17.16
Ca4-3,5,15 0.88 37.02 1.42 120.58 2.22 252.29
Ca4-6,4,15 3.22 547.49 1.59 142.76 0.94 44.33
Ca5-2,3,15 0.62 23.44 0.84 44.53 0.60 23.96
Ca5-3,5,15 4.35 1008.95 3.47 735.45 2.06 243.41
Ca5-6,4,15 2.03 236.19 1.22 89.12 0.73 26.19
Cb1-2,3,15 0.40 15.57 0.20 4.39 0.13 2.05
Cb1-3,5,15 0.09 0.37 0.06 0.15 0.08 0.25
Cb1-6,4,15 0.14 1.16 0.10 0.53 0.03 0.05
Cb2-2,3,15 0.41 10.15 0.22 3.21 0.17 1.83
Cb2-3,5,15 0.00 0.00 0.00 0.00 0.00 0.00
Cb2-6,4,15 0.64 12.51 0.28 2.92 0.16 0.81
Cb3-2,3,15 0.08 0.58 0.04 0.10 0.03 0.04
Cb3-3,5,15 0.18 1.12 0.12 0.47 0.05 0.09
Cb3-6,4,15 0.58 17.82 0.36 7.65 0.11 0.46
Cb4-2,3,15 0.78 28.85 0.48 12.22 0.34 6.38
Cb4-3,5,15 0.00 0.00 0.02 0.01 0.01 0.00
Cb4-6,4,15 0.11 0.54 0.02 0.03 0.01 0.01
Cb5-2,3,15 1.17 95.45 0.64 40.17 0.43 16.60
Cb5-3,5,15 0.00 0.00 0.18 1.73 0.08 0.33
Cb5-6,4,15 0.00 0.00 0.19 2.65 0.08 0.49
Cc1-2,3,15 4.45 3469.30 2.66 1206.38 1.65 467.20
Cc1-3,5,15 1.43 244.96 1.41 317.74 1.01 180.20
Cc1-6,4,15 4.38 4084.98 2.15 1037.43 1.71 657.59
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Instance
|S| = 10 |S| = 20 |S| = 30

RD VAR RD VAR RD VAR
Cc2-2,3,15 2.12 776.30 1.33 372.10 1.95 755.08
Cc2-3,5,15 4.22 2998.10 4.83 2131.22 2.09 869.33
Cc2-6,4,15 4.92 6358.39 1.94 833.12 1.28 362.06
Cc3-2,3,15 4.84 5836.54 2.64 1756.38 1.36 472.44
Cc3-3,5,15 7.12 5331.21 3.62 1524.46 1.82 394.82
Cc3-6,4,15 2.54 944.92 2.35 255.76 1.75 85.37
Cc4-2,3,15 3.48 2034.46 1.50 380.47 2.00 604.30
Cc4-3,5,15 8.58 15222.89 3.14 1245.38 1.90 393.44
Cc4-6,4,15 3.73 2509.57 1.41 327.63 1.40 573.11
Cc5-2,3,15 3.24 2604.01 2.75 1834.62 2.48 1944.30
Cc5-3,5,15 1.89 752.12 0.84 166.96 0.83 97.15
Cc5-6,4,15 4.24 2797.43 3.15 1473.54 3.52 1547.38
Cd1-2,3,15 0.90 57.21 0.00 8.58 0.38 12.02
Cd1-3,5,15 0.41 7.93 0.08 0.27 0.12 0.83
Cd1-6,4,15 2.22 3.04 1.58 13.41 0.75 0.42
Cd2-2,3,15 0.00 0.00 0.03 0.04 0.09 0.31
Cd2-3,5,15 0.00 0.00 0.00 0.00 0.00 0.00
Cd2-6,4,15 0.46 13.54 0.15 0.91 0.13 0.64
Cd3-2,3,15 0.00 0.00 0.00 0.00 0.00 0.00
Cd3-3,5,15 0.13 0.72 0.21 2.23 0.04 0.05
Cd3-6,4,15 0.31 4.59 0.36 5.77 0.01 0.00
Cd4-2,3,15 0.94 47.77 0.01 0.01 0.35 5.79
Cd4-3,5,15 0.01 0.00 0.06 0.24 0.01 0.00
Cd4-6,4,15 0.54 13.37 0.00 0.00 0.15 1.16
Cd5-2,3,15 0.50 22.22 0.32 7.09 0.19 3.02
Cd5-3,5,15 0.01 0.00 0.30 7.66 0.03 0.06
Cd5-6,4,15 0.82 53.81 0.46 20.86 0.11 0.78

Max. 8.58 15222.89 5.93 3351.09 3.55 5457.38
Averages 1.79 1041.89 1.13 335.62 0.82 265.20

Table 1 – Stability tests. Relative difference and variance for each instance and scenario
set with 10, 20 and 30 scenarios.
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Instance
|S| = 40 |S| = 50 |S| = 100

RD VAR RD VAR RD VAR
Ca1-2,3,15 0.69 37.87 0.98 77.01 0.59 23.07
Ca1-3,5,15 0.22 2.13 0.12 0.70 0.08 0.35
Ca1-6,4,15 0.95 41.30 0.97 34.73 0.66 19.61
Ca2-2,3,15 0.23 5.28 0.09 0.71 0.07 0.33
Ca2-3,5,15 0.25 3.19 0.26 2.62 0.15 1.47
Ca2-6,4,15 1.04 58.61 0.49 18.64 0.32 5.33
Ca3-2,3,15 0.76 35.98 1.08 82.10 0.80 59.33
Ca3-3,5,15 1.75 127.10 1.07 45.46 0.88 33.46
Ca3-6,4,15 0.10 0.73 0.16 2.07 0.06 0.22
Ca4-2,3,15 1.1 50.22 0.82 10.88 0.4 9.54
Ca4-3,5,15 1.86 120.55 1.3 95.5 0.78 80.12
Ca4-6,4,15 0.7 78.45 0.35 35.44 0.11 22.1
Ca5-2,3,15 0.47 12.99 0.22 8.31 0.09 5.5
Ca5-3,5,15 1.95 122.28 1.05 99.75 0.83 70.47
Ca5-6,4,15 0.66 11.96 0.44 20.56 0.21 5.1
Cb1-2,3,15 0.27 6.17 0.22 4.07 0.12 1.23
Cb1-3,5,15 0.08 0.38 0.07 0.24 0.03 0.06
Cb1-6,4,15 0.05 0.18 0.03 0.06 0.02 0.02
Cb2-2,3,15 0.05 0.10 0.04 0.06 0.03 0.03
Cb2-3,5,15 0.00 0.00 0.00 0.00 0.00 0.00
Cb2-6,4,15 0.10 0.44 0.08 0.33 0.04 0.07
Cb3-2,3,15 0.00 0.00 0.00 0.00 0.00 0.00
Cb3-3,5,15 0.02 0.02 0.02 0.02 0.02 0.01
Cb3-6,4,15 0.05 0.12 0.05 0.09 0.03 0.05
Cb4-2,3,15 0.23 2.82 0.19 1.82 0.12 0.65
Cb4-3,5,15 0.05 0.12 0.04 0.05 0.01 0.00
Cb4-6,4,15 0.12 0.72 0.09 0.49 0.05 0.13
Cb5-2,3,15 0.15 1.87 0.12 1.27 0.06 0.32
Cb5-3,5,15 0.02 0.02 0.03 0.05 0.02 0.02
Cb5-6,4,15 0.07 0.35 0.05 0.17 0.02 0.04
Cc1-2,3,15 0.85 137.51 0.92 163.63 0.56 59.25
Cc1-3,5,15 1.88 575.19 1.28 252.90 0.79 96.69
Cc1-6,4,15 1.11 258.47 0.94 192.33 0.5 55.07
Cc2-2,3,15 1.31 345.14 1.07 228.73 0.58 65.14
Cc2-3,5,15 1.58 510.21 1.17 281.18 0.69 98.23
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Instance
|S| = 40 |S| = 50 |S| = 100

RD VAR RD VAR RD VAR
Cc2-6,4,15 2.25 1142.38 2.01 933.34 1.44 525.93
Cc3-2,3,15 1.39 346.35 1.15 236.46 0.74 94.22
Cc3-3,5,15 1.77 428.80 1.42 269.09 0.9 121.36
Cc3-6,4,15 1.37 500.51 1.07 319.98 0.6 102.52
Cc4-2,3,15 1.54 579.72 1.12 355.86 0.76 140.25
Cc4-3,5,15 0.83 81.46 0.90 172.08 0.23 11.19
Cc4-6,4,15 0.87 173.46 0.35 30.19 0.20 10.51
Cc5-2,3,15 1.18 417.88 0.49 90.28 0.47 88.57
Cc5-3,5,15 0.88 155.78 0.96 272.79 0.58 76.07
Cc5-6,4,15 0.63 95.11 0.83 126.08 0.61 64.69
Cd1-2,3,15 0.27 6.17 0.22 4.07 0.12 1.23
Cd1-3,5,15 0.08 0.38 0.07 0.24 0.03 0.06
Cd1-6,4,15 0.05 0.18 0.03 0.06 0.02 0.02
Cd2-2,3,15 0.05 0.10 0.04 0.06 0.03 0.03
Cd2-3,5,15 0.00 0.00 0.00 0.00 0.00 0.00
Cd2-6,4,15 0.10 0.44 0.08 0.33 0.04 0.07
Cd3-2,3,15 0.00 0.00 0.00 0.00 0.00 0.00
Cd3-3,5,15 0.02 0.02 0.02 0.02 0.02 0.01
Cd3-6,4,15 0.05 0.12 0.05 0.09 0.03 0.05
Cd4-2,3,15 0.23 2.82 0.19 1.82 0.12 0.65
Cd4-3,5,15 0.05 0.12 0.04 0.05 0.01 0.00
Cd4-6,4,15 0.12 0.72 0.09 0.49 0.05 0.13
Cd5-2,3,15 0.15 1.87 0.12 1.27 0.06 0.32
Cd5-3,5,15 0.02 0.02 0.03 0.05 0.02 0.02
Cd5-6,4,15 0.07 0.35 0.05 0.17 0.02 0.04

Max. 2.25 1142.38 2.01 933.34 1.44 525.93
Averages 0.58 108.05 0.45 74.61 0.28 32.56

Table 2 – Stability tests. Relative difference and variance for each instance and scenario
set with 40, 50 and 100 scenarios.
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Instance
CPLEX PH

ub time (s) OSU best ub dif. ub OSU
Ca1-2,3,15 2445.13 7.90 0 2424.70 0.84 0
Ca1-3,5,15 3081.47 30.41 144 2062.03 33.08 0
Ca1-6,4,15 3246.93 25.16 124 2034.00 37.36 0
Ca2-2,3,15 2287.67 9.71 0 2110.00 7.77 0
Ca2-3,5,15 3435.97 9.32 171 1870.10 45.57 0
Ca2-6,4,15 3657.30 1.01 151 2388.40 34.69 0
Ca3-2,3,15 3506.63 1.41 133 2485.50 29.12 0
Ca3-3,5,15 5027.43 12.93 372 1629.00 67.60 0
Ca3-6,4,15 5165.10 5.13 334 2546.53 50.70 0
Ca4-2,3,15 2456.93 7.64 0 2377.38 3.24 0
Ca4-3,5,15 3314.70 21.64 169 2133.22 35.64 0
Ca4-6,4,15 2900.53 6.92 116 2108.10 27.32 0
Ca5-2,3,15 3214.30 7.99 110 2212.03 31.18 0
Ca5-3,5,15 4952.87 11.26 224 2209.03 55.40 0
Ca5-6,4,15 3767.30 8.77 195 2011.00 46.62 0
Cb1-2,3,15 2214.00 11.46 0 2214.00 0.00 0
Cb1-3,5,15 1914.40 15.62 0 1914.40 0.00 0
Cb1-6,4,15 2107.73 8.33 0 2107.73 0.00 0
Cb2-2,3,15 1834.70 50.00 0 1834.70 0.00 0
Cb2-3,5,15 1871.00 14.76 0 1871.00 0.00 0
Cb2-6,4,15 1922.37 3.92 0 1922.37 0.00 0
Cb3-2,3,15 2176.20 35.62 0 2176.20 0.00 0
Cb3-3,5,15 1741.23 26.19 0 1717.23 1.38 0
Cb3-6,4,15 1958.00 6.72 0 1958.00 0.00 0
Cb4-2,3,15 2297.60 16.06 0 2297.60 0.00 0
Cb4-3,5,15 1848.53 25.20 0 1848.53 0.00 0
Cb4-6,4,15 2043.77 8.72 0 2043.77 0.00 0
Cb5-2,3,15 2229.60 3.60 0 2229.60 0.00 0
Cb5-3,5,15 2166.17 27.23 0 2166.17 0.00 0
Cb5-6,4,15 2488.53 9.18 0 2488.53 0.00 0
Cc1-2,3,15 4989.93 6.14 161 4852.63 2.75 140
Cc1-3,5,15 4102.73 2.15 54 4062.17 0.99 50
Cc1-6,4,15 5278.93 12.45 128 4771.87 9.61 138
Cc2-2,3,15 4939.33 7.90 115 4939.33 0.00 115
Cc2-3,5,15 4627.83 1.40 120 4394.47 5.04 119
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Table 5 continued from previous page
Cc2-6,4,15 5468.07 6.05 123 4790.83 12.39 161
Cc3-2,3,15 5335.10 11.25 114 5311.03 0.45 114
Cc3-3,5,15 4663.03 4.46 147 4510.87 3.26 201
Cc3-6,4,15 5532.70 3.85 232 5457.60 1.36 232
Cc4-2,3,15 4640.63 5.04 129 4616.20 0.53 202
Cc4-3,5,15 5554.83 2.36 306 5554.13 0.01 313
Cc4-6,4,15 6168.00 2.28 175 6109.70 0.95 272
Cc5-2,3,15 5755.40 17.99 127 5753.67 0.03 127
Cc5-3,5,15 5238.67 6.54 151 5184.57 1.03 178
Cc5-6,4,15 5548.50 6.55 253 5530.21 0.33 263
Cd1-2,3,15 4641.17 7.76 171 4640.20 0.02 171
Cd1-3,5,15 5048.30 4.73 171 5019.83 0.56 196
Cd1-6,4,15 5356.30 6.10 215 4985.60 6.92 218
Cd2-2,3,15 4127.40 3.96 136 4126.57 0.02 135
Cd2-3,5,15 4048.03 3.77 172 3982.87 1.61 180
Cd2-6,4,15 5205.17 3.37 174 5100.00 2.02 181
Cd3-2,3,15 5962.50 2.60 262 4962.37 16.77 173
Cd3-3,5,15 3777.47 7.15 108 3509.07 7.11 116
Cd3-6,4,15 4879.17 3.45 204 4605.23 5.61 215
Cd4-2,3,15 5152.50 2.67 315 5135.57 0.33 313
Cd4-3,5,15 4446.83 1.89 189 4423.23 0.53 181
Cd4-6,4,15 5941.80 10.41 231 5489.63 7.61 229
Cd5-2,3,15 4467.23 2.29 151 4444.10 0.52 147
Cd5-3,5,15 5203.53 5.15 184 5201.83 0.03 180
Cd5-6,4,15 5173.13 6.50 173 5172.83 0.01 173
Averages 9.97 123.90 9.93 90.55

Table 5 – Complete results stochastic vs deterministic problem on instances with demand
correlation

Instance
CPLEX PH

ub time (s) outsourced Best UB dif. Ub outsourPH
Ca1-2,3,15 2450.9 15.34 0 2450.03 0.04 0
Ca1-3,5,15 3239.7 86.33 159 2081.47 35.75 0
Ca1-6,4,15 3883.57 85.67 266 2362.37 39.17 0
Ca2-2,3,15 2288.97 18.03 0 2288.97 0.00 0
Ca2-3,5,15 3731.47 17.23 201 1937.6 48.07 0
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Table 6 continued from previous page
Ca2-6,4,15 3532.57 2.58 172 2398.77 32.10 0
Ca3-2,3,15 3378.13 9.1 124 2568.27 23.97 0
Ca3-3,5,15 2768.27 29.68 132 1703.87 38.45 0
Ca3-6,4,15 3311.83 12.78 122 2535.1 23.45 0
Ca4-2,3,15 2451.23 11.01 0 2395.37 2.28 0
Ca4-3,5,15 2066.7 85.67 0 1911.3 7.52 0
Ca4-6,4,15 3569.27 12.84 236 2061.13 42.25 0
Ca5-2,3,15 5149.63 41.29 402 2220.2 56.89 0
Ca5-3,5,15 5368.9 13.69 401 2341.2 56.39 0
Ca5-6,4,15 3428.33 15.95 198 2108.87 38.49 0
Cb1-2,3,15 2220.17 27.38 0 2214 0.28 0
Cb1-3,5,15 1911.77 85.62 0 1911.77 0.00 0
Cb1-6,4,15 2104.97 21.01 0 2104.97 0.00 0
Cb2-2,3,15 1838.9 36.11 0 1838.9 0.00 0
Cb2-3,5,15 1875.53 85.63 0 1875.53 0.00 0
Cb2-6,4,15 1918.8 10.2 0 1918.8 0.00 0
Cb3-2,3,15 2176.73 85.62 0 2176.73 0.00 0
Cb3-3,5,15 1743.07 63.37 0 1743.07 0.00 0
Cb3-6,4,15 1948.83 24.48 0 1948.83 0.00 0
Cb4-2,3,15 2305 32.37 0 2305 0.00 0
Cb4-3,5,15 1852.5 85.63 0 1852.5 0.00 0
Cb4-6,4,15 2048.6 17.1 0 2043.77 0.24 0
Cb5-2,3,15 2224.17 8.27 0 2224.17 0.00 0
Cb5-3,5,15 2165 51.73 0 2165 0.00 0
Cb5-6,4,15 2491.7 16.19 0 2491.7 0.00 0
Cc1-2,3,15 5861.53 28.63 375 4853.07 17.20 350
Cc1-3,5,15 4329.97 4.44 199 4197.03 3.07 227
Cc1-6,4,15 6052.33 31.72 298 4844.63 19.95 375
Cc2-2,3,15 5380.2 25.48 326 5021.93 6.66 296
Cc2-3,5,15 4958.03 7.9 260 4394.47 11.37 200
Cc2-6,4,15 5737.77 8.97 210 4790.83 16.50 190
Cc3-2,3,15 4897.57 25.42 205 4888.47 0.19 170
Cc3-3,5,15 4347.07 11.99 122 4178.3 3.88 172
Cc3-6,4,15 4923.67 9.05 131 4763.67 3.25 176
Cc4-2,3,15 4359.77 9.35 128 4358.07 0.04 118
Cc4-3,5,15 4531.3 4.88 209 4516.53 0.33 129
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Table 6 continued from previous page
Cc4-6,4,15 6085.07 5.88 193 5819.23 4.37 256
Cc5-2,3,15 6514.1 34.44 315 5753.67 11.67 288
Cc5-3,5,15 5672.73 11.12 284 5193.97 8.44 236
Cc5-6,4,15 5185.87 13.11 207 5055.53 2.51 222
Cd1-2,3,15 4434.77 16.01 245 4430.83 0.09 224
Cd1-3,5,15 4893.4 14.17 165 4861.43 0.65 162
Cd1-6,4,15 4877.63 13.84 222 4538.73 6.95 200
Cd2-2,3,15 4152.9 9.18 165 4128.23 0.59 223
Cd2-3,5,15 3741.43 5.23 132 3677.03 1.72 147
Cd2-6,4,15 4892.3 6.69 291 4777.1 2.35 147
Cd3-2,3,15 5022.37 8.3 238 4962.37 1.19 342
Cd3-3,5,15 4389.13 9.91 256 3758.07 14.38 260
Cd3-6,4,15 4636.83 7.91 239 4325.8 6.71 234
Cd4-2,3,15 4722.3 5.71 273 4720.3 0.04 234
Cd4-3,5,15 4682.87 4.59 85 4467.63 4.60 239
Cd4-6,4,15 5017.27 26.39 145 4638.17 7.56 230
Cd5-2,3,15 3972 5.92 193 3970.97 0.03 228
Cd5-3,5,15 4754.73 18 285 4708.97 0.96 141
Cd5-6,4,15 6002.07 13.2 51 5172.83 13.82 300
Averages 25.09 147.67 10.27 111.93

Table 6 – Complete results stochastic vs deterministic problem on instances with no demand
correlation
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Chapter C

SUPPLEMENTARY MATERIAL THIRD
ARTICLE

C.1. Decomposition strategy for the two-stage stochas-
tic formulation

This section presents the decomposition approach applied to the stochastic formulation
of the 2E-MALRPSTT introduced in Section 4.2. The decomposition approach adopts an
augmented Lagrangean strategy. A key prerequisite for implementing decomposition strate-
gies is to establish a block-diagonal structure within the stochastic formulation of the 2E-
MALRPSTT. To accomplish this, we propose a reformulation of the stochastic formulation
by replicating the first-stage variables, namely the location and allocation variables, for each
scenario s ∈ S. Consequently, we reformulate the sets of constraints (4.2), (4.24), (4.27),
and (4.28), which involve first-stage decision variables, resulting in an equivalent scenario-
separable formulation.

min
∑
s∈S

ρs

(∑
h∈H

∑
(i,j)∈A

ζijx
s
ijh +

∑
k∈K

Ros
k +

∑
i∈(Z∪P )

Fiy
s
i +

∑
i∈P

∑
j∈Z

∑
k∈K

∆ijkf
s
ijk

)
(C.1.1)

Subject to

(4.3)− (4.23)

(4.25)− (4.26)

∑
h∈H1

∑
i∈Z̃z

∑
j∈(E1∪Z̃\Z̃z)

xs
ijh ≤ |H1|ys

z ∀z ∈ Z, s ∈ S (C.1.2)



∑
h∈H1

∑
k∈K

∑
j∈Z̃

vol(k) ϕs
ijkh ≤ Θi y

s
i ∀i ∈ P, s ∈ S (C.1.3)

∑
h∈H1

ϕs
ijkh ≤ f s

izk ∀i ∈ P, j ∈ Z̃z, k ∈ K, z ∈ Z, s ∈ S (C.1.4)
∑

h∈H2

ψs
iD(k)h ≤

∑
p∈P

f s
pzk ∀i ∈ Z̃z, k ∈ K, z ∈ Z, s ∈ S (C.1.5)

ys
i = ȳi ∀i ∈ (P ∪ Z), s ∈ S (C.1.6)

f s
ijk = f̄ijk ∀i ∈ P, j ∈ Z, k ∈ K, s ∈ S (C.1.7)

ys
i ∈ {0,1} ∀i ∈ (P ∪ Z), s ∈ S (C.1.8)

f s
ijk ∈ {0,1} ∀i ∈ P, j ∈ Z, k ∈ K, s ∈ S (C.1.9)

ȳi ∈ {0,1} ∀i ∈ (P ∪ Z) (C.1.10)

f̄ijk ∈ {0,1} ∀i ∈ P, j ∈ Z, k ∈ K (C.1.11)

The alternative reformulation includes a set of additional constraints (C.1.2)-(C.1.5) to
ensure the incorporation of first-stage variables for each scenario. To prevent the first-stage
decisions from being dependent on specific scenarios, a set of non-anticipativity constraints
(C.1.6) and (C.1.7) is introduced. These constraints utilize reference first-stage variables,
namely ȳi and f̄ijk. Following the separation scheme proposed by Rockafellar and Wets
(1991), constraints (C.1.6) and (C.1.7) are relaxed using an augmented Lagrangean strategy.
This relaxation leads to the formulation of the following objective function:

min
∑
s∈S

ρs

Å ∑
h∈H

∑
(i,j)∈A

ζs
ijx

s
ijh +

∑
k∈K

Ros
k +

∑
i∈(Z∪P )

Fiy
s
i +

∑
i∈P

∑
j∈Z

∑
k∈K

∆ijkf
s
ijk

+
∑

i∈(Z∪P )
λs

i (ys
i − ȳi) + 1

2
∑

i∈(Z∪P )
γ(ys

i − ȳi)2 +
∑
i∈P

∑
j∈Z

∑
k∈K

πs
ijk(f s

ijk − f̄ijk)

+1
2

∑
i∈P

∑
j∈Z

∑
k∈K

γ(f s
ijk − f̄ijk)2

ã (C.1.12)

The objective function involves the Lagrangean multipliers λs
i and πs

ijk associated with the
relaxed constraints (C.1.6) and (C.1.7), respectively, as well as a penalty term γ. Considering
the binary nature of the location and allocation variables, the objective function can be
simplified as follows:
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ã (C.1.13)

Based on a given value for the general location and allocation variables ȳi and f̄ijk, the
relaxed formulation decomposes by scenario. Then, for each scenario s ∈ S, there is a
deterministic 2E-MALRPSTT subproblem with the following modified fixed costs:
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ã (C.1.14)

Subject to

(4.3)− (4.23), (4.25)− (4.26), (C.1.2)− (C.1.5) and (C.1.8)− (C.1.11) (C.1.15)

The proposed PH framework follows by solving the complete set of scenario subproblems
to define a reference solution for ȳi and f̄ijk to guide the method to reach a consensus for
the general first-stage variables.
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C.2. Complete Result Tables for the decomposition-
based heuristic

Tables 1 - 4 presents the results of the proposed decomposition-based heuristic for the
deterministic 2E-MALRPSTT. Each table display the comparative performance results the
proposed heuristic against the solution frameworks presented by Escobar-Vargas and Crainic
(2023) and Dellaert et al. (2019) with a time limit of 30 minutes. Table 1 and Table 2
presents the experiments of the proposed heuristic against the a dynamic discretization
discovery framework proposed by Escobar-Vargas and Crainic (2023) with 5, 10, 15 and 30
OD, respectively. Results presented in Table 3 and 4 extend the same experiments using
the solution frameworks presented by Dellaert et al. (2019), with 15 and 30 OD demands.
The tables display the instance ID, the best upper bound (UB), the run-time (CPUsec),
the lower bound (LB), the optimality gap (OG(%)), cost difference percentage (UB Diff.)
and run-time difference percentage (Time Diff.).

C.3. Complete Result Tables for the PH-based meta-
heuristic

Table 5 and Table 6 showcase the results of the proposed progresive-hedging-based frame-
work on instances with 10 and 15 OD demands, respectively. Each table display the com-
parative performance results obtained using CPLEX and the PH framework, labeled as
‘CPLEX’ and ‘PH’ respectively. Additionally, within the PH framework results, distinctions
are made based on the specific aggregation strategy employed: the classical strategy (CS),
the diversity-based strategy (DBS), and the longest-distance strategy (LDS). Each table pro-
vides the average optimality gap expressed as a percentage (OG), the average computational
time in seconds, and the average number of iterations (ITER.) for the PH framework. In the
experiments involving the PH framework, a maximum time limit of 2 hours was imposed.
Conversely, for the experiments with the complete stochastic model using CPLEX, time lim-
its of 8 hours and 16 hours were set for instances with 10 OD demands and 15 OD demands,
respectively. CPLEX was employed with default parameter settings, using a thread limit
of 6 for solving the overall stochastic model and a thread limit of 1 for solving the scenario
subproblems within the PH framework.
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ID Escobar-Vargas and Crainic (2023) DBH ID Escobar-Vargas and Crainic (2023) DBH
UB LB CPU (sec) UB CPU (sec) OG (%) UB Diff. Time Diff. UB LB CPU (sec) UB CPU (sec) OG (%) UB Diff. Time Diff.

Ca1-2,3,5 280 280 2.55 280 1.96 0.00 0.00 -30.34 Ca1-2,3,10 256 256 36.36 256 10.15 0.00 0.00 -258.24
Ca1-3,5,5 222 222 0.48 222 2.71 0.00 0.00 82.27 Ca1-3,5,10 215 215 21.38 215 12.70 0.00 0.00 -68.35
Ca1-6,4,5 271 271 2.72 271 0.89 0.00 0.00 -203.92 Ca1-6,4,10 305 305 24.14 305 12.57 0.00 0.00 -92.10
Ca2-2,3,5 152 152 1.86 152 3.49 0.00 0.00 46.71 Ca2-2,3,10 161 161 14.07 161 8.38 0.00 0.00 -67.82
Ca2-3,5,5 284 284 2.3 284 2.32 0.00 0.00 0.80 Ca2-3,5,10 340 340 5.56 340 8.29 0.00 0.00 32.94
Ca2-6,4,5 150 150 1.56 150 1.20 0.00 0.00 -30.01 Ca2-6,4,10 179 179 14.42 179 14.84 0.00 0.00 2.81
Ca3-2,3,5 287 287 2.05 287 2.16 0.00 0.00 5.19 Ca3-2,3,10 344 344 3.08 344 13.01 0.00 0.00 76.32
Ca3-3,5,5 220 220 2.89 220 0.97 0.00 0.00 -197.76 Ca3-3,5,10 318 318 20.26 318 9.45 0.00 0.00 -114.46
Ca3-6,4,5 171 171 1.61 171 2.03 0.00 0.00 20.71 Ca3-6,4,10 236 236 41.83 236 9.64 0.00 0.00 -333.89
Ca4-2,3,5 358 358 1.24 358 2.25 0.00 0.00 44.94 Ca4-2,3,10 437 437 16.14 437 22.52 0.00 0.00 28.33
Ca4-3,5,5 168 168 2.35 168 2.22 0.00 0.00 -5.95 Ca4-3,5,10 213 213 462.45 213 15.67 0.00 0.00 -2850.42
Ca4-6,4,5 161 161 0.83 161 3.00 0.00 0.00 72.35 Ca4-6,4,10 238 238 31.8 238 17.56 0.00 0.00 -81.09
Ca5-2,3,5 199 199 2.2 199 0.56 0.00 0.00 -295.19 Ca5-2,3,10 277 277 27.64 277 6.02 0.00 0.00 -359.06
Ca5-3,5,5 186 186 2.16 186 3.34 0.00 0.00 35.40 Ca5-3,5,10 264 264 26.4 264 18.88 0.00 0.00 -39.85
Ca5-6,4,5 159 159 1.01 159 3.92 0.00 0.00 74.26 Ca5-6,4,10 187 187 18.09 187 16.46 0.00 0.00 -9.89
Cb1-2,3,5 152 152 1.03 152 0.68 0.00 0.00 -51.71 Cb1-2,3,10 181 181 13.08 181 20.06 0.00 0.00 34.80
Cb1-3,5,5 164 164 0.59 164 0.75 0.00 0.00 21.23 Cb1-3,5,10 211 211 20.3 211 21.80 0.00 0.00 6.89
Cb1-6,4,5 305 305 1.57 305 1.70 0.00 0.00 7.51 Cb1-6,4,10 261 261 18.99 261 8.95 0.00 0.00 -112.09
Cb2-2,3,5 129 129 2.09 129 3.93 0.00 0.00 46.82 Cb2-2,3,10 199 199 13.42 199 11.58 0.00 0.00 -15.86
Cb2-3,5,5 154 154 1.07 154 3.79 0.00 0.00 71.79 Cb2-3,5,10 268 268 41.25 268 19.91 0.00 0.00 -107.17
Cb2-6,4,5 143 143 2.47 143 2.70 0.00 0.00 8.39 Cb2-6,4,10 185 185 234.99 185 12.40 0.00 0.00 -1794.41
Cb3-2,3,5 332 332 2.85 332 1.68 0.00 0.00 -69.68 Cb3-2,3,10 337 337 6.28 337 19.17 0.00 0.00 67.24
Cb3-3,5,5 160 160 1.22 160 1.57 0.00 0.00 22.47 Cb3-3,5,10 202 202 144.99 202 16.97 0.00 0.00 -754.24
Cb3-6,4,5 198 198 2.13 198 2.83 0.00 0.00 24.70 Cb3-6,4,10 283 283 1456.59 283 10.10 0.00 0.00 -14317.47
Cb4-2,3,5 280 280 1.84 280 2.71 0.00 0.00 32.03 Cb4-2,3,10 251 251 106.53 251 11.33 0.00 0.00 -840.21
Cb4-3,5,5 142 142 0.96 142 1.86 0.00 0.00 48.47 Cb4-3,5,10 245 245 2355.73 245 12.39 0.00 0.00 -18911.97
Cb4-6,4,5 188 188 1.97 188 3.58 0.00 0.00 44.93 Cb4-6,4,10 288 288 7.43 288 22.49 0.00 0.00 66.96
Cb5-2,3,5 129 129 2.35 129 0.42 0.00 0.00 -453.11 Cb5-2,3,10 197 197 42.39 197 20.68 0.00 0.00 -105.02
Cb5-3,5,5 179 179 1.9 179 3.27 0.00 0.00 41.89 Cb5-3,5,10 232 232 128.22 232 15.79 0.00 0.00 -712.12
Cb5-6,4,5 199 199 1.56 199 2.21 0.00 0.00 29.26 Cb5-6,4,10 337 337 50.75 337 14.47 0.00 0.00 -250.72
Cc1-2,3,5 129 129 2.03 129 1.71 0.00 0.00 -18.86 Cc1-2,3,10 189 189 64.63 189 18.50 0.00 0.00 -249.30
Cc1-3,5,5 135 135 2.3 135 2.96 0.00 0.00 22.41 Cc1-3,5,10 180 180 41.67 180 17.18 0.00 0.00 -142.50
Cc1-6,4,5 150 150 2.4 150 3.25 0.00 0.00 26.25 Cc1-6,4,10 238 238 45.67 238 7.84 0.00 0.00 -482.42
Cc2-2,3,5 122 122 1.04 122 1.40 0.00 0.00 25.77 Cc2-2,3,10 187 187 29.35 187 6.32 0.00 0.00 -364.36
Cc2-3,5,5 175 175 0.94 175 3.72 0.00 0.00 74.71 Cc2-3,5,10 231 231 27.7 231 6.11 0.00 0.00 -353.26
Cc2-6,4,5 122 122 1.77 122 2.05 0.00 0.00 13.71 Cc2-6,4,10 163 163 18.8 163 8.06 0.00 0.00 -133.26
Cc3-2,3,5 136 136 2.11 136 3.88 0.00 0.00 45.61 Cc3-2,3,10 184 184 12.7 184 9.36 0.00 0.00 -35.67
Cc3-3,5,5 142 142 2.59 142 3.75 0.00 0.00 30.87 Cc3-3,5,10 225 225 79.81 225 15.37 0.00 0.00 -419.41
Cc3-6,4,5 157 157 0.9 157 2.00 0.00 0.00 55.02 Cc3-6,4,10 193 193 21.95 193 13.16 0.00 0.00 -66.82
Cc4-2,3,5 171 171 1.27 171 2.97 0.00 0.00 57.24 Cc4-2,3,10 225 225 24.11 225 7.23 0.00 0.00 -233.50
Cc4-3,5,5 154 154 1.25 154 1.92 0.00 0.00 34.76 Cc4-3,5,10 223 223 28.05 223 20.04 0.00 0.00 -39.95
Cc4-6,4,5 138 138 1.16 138 2.29 0.00 0.00 49.33 Cc4-6,4,10 230 230 25.04 230 12.17 0.00 0.00 -105.70
Cc5-2,3,5 123 123 1.66 123 2.27 0.00 0.00 26.98 Cc5-2,3,10 182 182 12.52 182 8.38 0.00 0.00 -49.35
Cc5-3,5,5 124 124 2.65 124 2.50 0.00 0.00 -6.10 Cc5-3,5,10 168 168 27.72 168 6.20 0.00 0.00 -347.46
Cc5-6,4,5 138 138 1.41 138 4.00 0.00 0.00 64.75 Cc5-6,4,10 179 179 51.26 179 22.70 0.00 0.00 -125.86
Cd1-2,3,5 155 155 2.84 155 4.12 0.00 0.00 31.10 Cd1-2,3,10 197 197 13.29 197 17.30 0.00 0.00 23.17
Cd1-3,5,5 170 170 1.68 170 0.61 0.00 0.00 -174.77 Cd1-3,5,10 215 215 12.11 215 18.66 0.00 0.00 35.11
Cd1-6,4,5 188 188 2.2 188 0.61 0.00 0.00 -259.45 Cd1-6,4,10 248 248 44.06 248 13.57 0.00 0.00 -224.66
Cd2-2,3,5 140 140 1.21 140 2.60 0.00 0.00 53.41 Cd2-2,3,10 193 193 11.31 193 12.57 0.00 0.00 10.06
Cd2-3,5,5 158 158 1.09 158 1.75 0.00 0.00 37.56 Cd2-3,5,10 236 236 12.85 236 10.98 0.00 0.00 -17.06
Cd2-6,4,5 142 142 0.97 142 1.59 0.00 0.00 38.98 Cd2-6,4,10 213 213 44.5 213 13.59 0.00 0.00 -227.48
Cd3-2,3,5 142 142 2.64 142 4.02 0.00 0.00 34.31 Cd3-2,3,10 186 186 20.14 186 7.97 0.00 0.00 -152.54
Cd3-3,5,5 147 147 2.16 147 2.31 0.00 0.00 6.50 Cd3-3,5,10 224 224 32.52 224 10.60 0.00 0.00 -206.92
Cd3-6,4,5 157 157 1.03 157 2.19 0.00 0.00 53.03 Cd3-6,4,10 196 196 25.17 196 21.73 0.00 0.00 -15.83
Cd4-2,3,5 202 202 2.73 202 1.30 0.00 0.00 -110.68 Cd4-2,3,10 257 257 11.3 257 14.88 0.00 0.00 24.04
Cd4-3,5,5 162 162 1.35 162 0.45 0.00 0.00 -199.82 Cd4-3,5,10 241 241 20.37 241 9.83 0.00 0.00 -107.31
Cd4-6,4,5 147 147 1.11 147 0.61 0.00 0.00 -82.84 Cd4-6,4,10 189 189 30.48 189 17.13 0.00 0.00 -77.93
Cd5-2,3,5 178 178 1.35 178 3.84 0.00 0.00 64.84 Cd5-2,3,10 207 207 20.54 207 22.05 0.00 0.00 6.85
Cd5-3,5,5 178 178 0.82 178 4.16 0.00 0.00 80.28 Cd5-3,5,10 213 213 30.54 213 12.84 0.00 0.00 -137.88
Cd5-6,4,5 157 157 1.19 157 2.70 0.00 0.00 55.96 Cd5-6,4,10 184 184 43.23 184 21.30 0.00 0.00 -102.96
Averages 2.34 0.00 0.00 -7.08 13.96 0.00 0.00 -770.01

Table 1 – Decomposition-based heuristic : results on Escobar-Vargas and Crainic (2023)
instances with 5 and 10 OD demands.
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ID Escobar-Vargas and Crainic (2023) DBH ID Escobar-Vargas and Crainic (2023) DBH
UB LB CPU (sec) UB CPU (sec) OG (%) UB DIFF Time Diff. UB LB CPU (sec) DBH CPU (sec) OG (%) UB DIFF Time Diff.

Ca1-2,3,15 275 275 257.86 275 425.84 0 0 39.45 Ca1-2,3,30 530 530 530 530 600.61 0.00 0.00 11.75692
Ca1-3,5,15 309 309 288.4 309 151.35 0 0 -90.55 Ca1-3,5,30 490 490 12877.17 490 667.84 0.00 0.00 -1828.19
Ca1-6,4,15 274 274 1427.18 274 248.23 0 0 -474.95 Ca1-6,4,30 417 398.1389 18000 417 1132.47 4.52 0.00 -1489.45
Ca2-2,3,15 306 306 29.53 306 131.89 0 0 77.61 Ca2-2,3,30 441 441 9001.31 441 726.44 0.00 0.00 -1139.09
Ca2-3,5,15 335 335 442.19 335 286.09 0 0 -54.56 Ca2-3,5,30 439 439 1214.24 449 956.59 2.23 2.23 -26.9339
Ca2-6,4,15 272 272 944.95 272 342.24 0 0 -176.11 Ca2-6,4,30 448 436.5814 18000 446 681.63 2.11 -0.45 -2540.72
Ca3-2,3,15 319 319 36.86 319 234.73 0 0 84.30 Ca3-2,3,30 570 570 15555.9 570 569.63 0.00 0.00 -2630.9
Ca3-3,5,15 307 307 54.43 307 361.99 0 0 84.96 Ca3-3,5,30 428 428 12028.32 428 1173.78 0.00 0.00 -924.752
Ca3-6,4,15 267 267 5526.43 267 209.27 0 0 -2540.77 Ca3-6,4,30 445 445 12407.91 448 782.91 0.67 0.67 -1484.85
Ca4-2,3,15 309 309 31.34 309 168.52 0 0 81.40 Ca4-2,3,30 508 508 15297.08 508 618.38 0.00 0.00 -2373.73
Ca4-3,5,15 287 287 3585.06 287 107.18 0 0 -3244.94 Ca4-3,5,30 423 399.735 18000 432 578.93 7.47 2.08 -3009.16
Ca4-6,4,15 262 262 1147.66 262 279.52 0 0 -310.59 Ca4-6,4,30 392 392 10124.8 392 747.36 0.00 0.00 -1254.74
Ca5-2,3,15 265 265 32.87 265 115.25 0 0 71.48 Ca5-2,3,30 429 429 11249.56 429 570.18 0.00 0.00 -1873
Ca5-3,5,15 262 262 25.99 262 339.60 0 0 92.35 Ca5-3,5,30 499 487.4232 18000 509 928.39 4.24 1.96 -1838.83
Ca5-6,4,15 218 218 11.95 218 406.27 0 0 97.06 Ca5-6,4,30 406 406 13173.54 406 732.74 0.00 0.00 -1697.84
Cb1-2,3,15 305 305 280.14 305 209.80 0 0 -33.52 Cb1-2,3,30 492 492 10787.85 492 822.42 0.00 0.00 -1211.72
Cb1-3,5,15 291 291 126.13 291 287.39 0 0 56.11 Cb1-3,5,30 510 454.869 18000 510 531.09 10.81 0.00 -3289.23
Cb1-6,4,15 295 295 98.39 295 292.19 0 0 66.33 Cb1-6,4,30 421 389.26 18000 421 1074.97 7.54 0.00 -1574.47
Cb2-2,3,15 337 337 207.52 337 230.32 0 0 9.90 Cb2-2,3,30 402 402 12971.62 402 908.26 0.00 0.00 -1328.19
Cb2-3,5,15 292 292 53.31 292 141.50 0 0 62.33 Cb2-3,5,30 436 421.65 18000 436 711.98 3.29 0.00 -2428.15
Cb2-6,4,15 330 330 145.68 330 187.29 0 0 22.21 Cb2-6,4,30 437 437 10177.1 437 1111.77 0.00 0.00 -815.393
Cb3-2,3,15 354 354 1655.75 354 324.52 0 0 -410.22 Cb3-2,3,30 553 494.76 18000 550 563.12 10.04 -0.55 -3096.49
Cb3-3,5,15 266 266 74.13 266 258.31 0 0 71.30 Cb3-3,5,30 432 409.66 18000 430 1035.61 4.73 -0.47 -1638.11
Cb3-6,4,15 298 298 44.46 298 38.27 0 0 -16.18 Cb3-6,4,30 473 453.13 18000 474 845.58 4.40 0.21 -2028.71
Cb4-2,3,15 255 255 384.53 255 324.84 0 0 -18.38 Cb4-2,3,30 505 433.44 18000 490 732.59 11.54 -3.06 -2357.05
Cb4-3,5,15 334 334 311.41 334 309.02 0 0 -0.77 Cb4-3,5,30 437 410.73 18000 444 948.92 7.49 1.58 -1796.9
Cb4-6,4,15 252 252 51.74 252 293.37 0 0 82.36 Cb4-6,4,30 395 378.37 18000 402 1096.99 5.88 1.74 -1540.86
Cb5-2,3,15 243 243 64.14 243 178.59 0 0 64.08 Cb5-2,3,30 396 396 14560.44 396 1070.36 0.00 0.00 -1260.33
Cb5-3,5,15 223 223 699.52 223 416.17 0 0 -68.09 Cb5-3,5,30 527 505.02 18000 527 942.86 4.17 0.00 -1809.08
Cb5-6,4,15 265 265 119.31 265 291.91 0 0 59.13 Cb5-6,4,30 418 370.18 18000 416 1089.72 11.01 -0.48 -1551.8
Cc1-2,3,15 233 233 594.93 233 378.71 0 0 -57.10 Cc1-2,3,30 411 411 18000 411 1174.17 0.00 0.00 -1433
Cc1-3,5,15 280 280 175.81 280 283.71 0 0 38.03 Cc1-3,5,30 536 485.83 18000 546 844.07 11.02 1.83 -2032.53
Cc1-6,4,15 284 284 131.55 284 247.54 0 0 46.86 Cc1-6,4,30 393 361.2 18000 400 656.68 9.70 1.75 -2641.04
Cc2-2,3,15 299 299 64.06 299 345.75 0 0 81.47 Cc2-2,3,30 423 374.56 18000 423 986.40 11.45 0.00 -1724.81
Cc2-3,5,15 273 273 378.17 273 225.30 0 0 -67.85 Cc2-3,5,30 418 375.69 18000 418 954.96 10.12 0.00 -1784.9
Cc2-6,4,15 271 271 380.97 271 387.99 0 0 1.81 Cc2-6,4,30 445 411.58 18000 442 618.59 6.88 -0.68 -2809.86
Cc3-2,3,15 223 223 670.41 223 348.90 0 0 -92.15 Cc3-2,3,30 552 506.62 18000 552 740.03 8.22 0.00 -2332.35
Cc3-3,5,15 259 259 668.33 259 304.49 0 0 -119.49 Cc3-3,5,30 450 409.81 18000 457 1057.85 10.33 1.53 -1601.56
Cc3-6,4,15 307 307 90.63 307 339.69 0 0 73.32 Cc3-6,4,30 443 404.85 18000 452 954.12 10.43 1.99 -1786.56
Cc4-2,3,15 250 250 240.03 250 404.29 0 0 40.63 Cc4-2,3,30 501 454.3 18000 501 1124.27 9.32 0.00 -1501.04
Cc4-3,5,15 268 268 69.52 268 311.49 0 0 77.68 Cc4-3,5,30 418 370.64 18000 418 1079.64 11.33 0.00 -1567.23
Cc4-6,4,15 236 236 14.54 236 399.92 0 0 96.36 Cc4-6,4,30 378 341.14 18000 378 513.44 9.75 0.00 -3405.79
Cc5-2,3,15 247 247 69.91 247 281.24 0 0 75.14 Cc5-2,3,30 423 402.61 18000 431 920.81 6.59 1.86 -1854.81
Cc5-3,5,15 208 208 73.73 208 239.15 0 0 69.17 Cc5-3,5,30 429 396.69 18000 429 635.36 7.53 0.00 -2733.06
Cc5-6,4,15 293 293 12.48 293 236.30 0 0 94.72 Cc5-6,4,30 390 364.45 18000 390 992.04 6.55 0.00 -1714.44
Cd1-2,3,15 304 304 43.78 304 397.61 0 0 88.99 Cd1-2,3,30 445 445 13823.36 445 665.86 0.00 0.00 -1976.02
Cd1-3,5,15 277 277 47.97 277 287.92 0 0 83.34 Cd1-3,5,30 533 533 13043.42 533 878.03 0.00 0.00 -1385.53
Cd1-6,4,15 249 249 3.62 249 247.94 0 0 98.54 Cd1-6,4,30 412 412 12720.21 412 654.48 0.00 0.00 -1843.55
Cd2-2,3,15 319 319 4.06 319 224.50 0 0 98.19 Cd2-2,3,30 429 388.24 18000 426 815.65 8.86 -0.70 -2106.82
Cd2-3,5,15 274 274 28.5 274 203.54 0 0 86.00 Cd2-3,5,30 435 435 15479.58 435 561.26 0.00 0.00 -2657.98
Cd2-6,4,15 257 257 2.57 257 404.89 0 0 99.37 Cd2-6,4,30 434 434 16873.03 434 566.37 0.00 0.00 -2879.16
Cd3-2,3,15 222 222 45.33 222 250.12 0 0 81.88 Cd3-2,3,30 550 481.25 18000 550 962.47 12.50 0.00 -1770.19
Cd3-3,5,15 268 268 100.99 268 114.49 0 0 11.79 Cd3-3,5,30 440 440 8435.23 440 879.11 0.00 0.00 -859.523
Cd3-6,4,15 324 324 25.14 324 429.27 0 0 94.14 Cd3-6,4,30 437 420.65 18000 445 910.57 5.47 1.80 -1876.78
Cd4-2,3,15 289 289 31.08 289 375.73 0 0 91.73 Cd4-2,3,30 510 510 12095.64 510 551.74 0.00 0.00 -2092.28
Cd4-3,5,15 263 263 25.48 263 333.59 0 0 92.36 Cd4-3,5,30 424 389.02 18000 424 948.69 8.25 0.00 -1797.35
Cd4-6,4,15 271 271 10.09 271 351.26 0 0 97.13 Cd4-6,4,30 395 384.57 18000 395 811.52 2.64 0.00 -2118.06
Cd5-2,3,15 247 247 19.36 247 330.30 0 0 94.14 Cd5-2,3,30 425 425 10783.34 425 997.80 0.00 0.00 -980.716
Cd5-3,5,15 208 208 252.93 208 372.02 0 0 32.01 Cd5-3,5,30 501 501 10556.08 511 921.29 1.96 1.96 -1045.79
Cd5-6,4,15 272 272 725.23 272 231.60 0 0 -213.13 Cd5-6,4,30 432 432 13661.84 432 663.57 0.00 0.00 -1958.84
Averages 281.34 0 0 -83.70 833.25 4.52 0.28 -1834.97

Table 2 – Decomposition-based heuristic: results on Escobar-Vargas and Crainic (2023)
instances with 15 and 30 OD demands.
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ID Dellaert et al. (2019) DBH
UB LB CPU (sec) UB CPU (sec) OG (%) UB Diff. Time Diff.

Ce1-2,3,15 661.669 497.701 1846.9 553 10.3 10.00 -19.65 -17831.07
Ce2-2,3,15 642.485 447.528 1384.2 508 1.91 11.90 -26.47 -72371.20
Ce3-2,3,15 659.692 442.433 3217.1 536 1.64 17.46 -23.08 -196064.63
Ce4-2,3,15 681.745 429.047 542.9 568 6.69 24.46 -20.03 -8015.10
Ce5-2,3,15 600.304 447.307 399.6 491 10.88 8.90 -22.26 -3572.79
Cf1-2,3,15 716.019 494.759 2832.6 621 19.28 20.33 -15.30 -14591.91
Cf2-2,3,15 556.624 403.037 1408.3 475 20.88 15.15 -17.18 -6644.73
Cf3-2,3,15 616.333 474.07 177.6 610 7.72 22.28 -1.04 -2200.52
Cf4-2,3,15 615.837 407.561 786.9 515 1.50 20.86 -19.58 -78590.00
Cf5-2,3,15 578.521 396.025 553.3 471 4.6 15.92 -22.83 -11928.26
Cg1-2,3,15 631.036 466.829 1559.1 558 15.3 16.34 -13.09 -10090.20
Cg2-2,3,15 576.754 403.907 405 480 25.38 15.85 -20.16 -1495.74
Cg3-2,3,15 651.089 450.34 1284.5 524 28.19 14.06 -24.25 -4456.58
Cg4-2,3,15 659.014 411.939 2467.7 540 91.67 23.72 -22.04 -2591.94
Cg5-2,3,15 483.593 386.194 1982.4 395 5.16 2.23 -22.43 -38318.60
Ci1-2,3,15 638.939 499.34 421.2 545 2.33 8.38 -17.24 -17977.25
Ci2-2,3,15 574.943 389.781 1711.8 504 1.9 22.66 -14.08 -89994.74
Ci3-2,3,15 664.019 439.991 3328.4 606 4.3 27.39 -9.57 -77304.65
Ci4-2,3,15 642.778 430.357 938.8 519 9.76 17.08 -23.85 -9518.85
Ci5-2,3,15 612.198 419.241 728.4 497 3.54 15.65 -23.18 -20476.27
Averages 13.62 16.53 -18.87 -34201.75

Table 3 – Decomposition-based heuristic : results on Dellaert et al. (2019) instances with
15 OD demands.
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ID Dellaert et al. (2019) DBH
UB LB CPU (sec) UB CPU (sec) OG (%) UB Diff. Time Diff.

Ce1-2,3,30 1257.82 1038.63 76.5 1088 247.19 4.54 -15.61 69.05
Ce2-2,3,30 1189.67 1084.74 4.6 1120 106.12 3.15 -6.22 95.67
Ce3-2,3,30 1207.82 1179.87 0.8 1095 81.50 -7.75 -10.30 99.02
Ce4-2,3,30 1101.32 925.87 2.3 938 380.26 1.29 -17.41 99.40
Ce5-2,3,30 1210.97 1035.38 2.0 1110 46.62 6.72 -9.10 95.71
Cf1-2,3,30 1261.87 1091.47 59.9 1104 253.02 1.13 -14.30 76.33
Cf2-2,3,30 1082.73 1023.06 1.2 905 230.82 -13.05 -19.64 99.48
Cf3-2,3,30 1136.04 1018.91 2.4 931 302.73 -9.44 -22.02 99.21
Cf4-2,3,30 1172.14 1025.35 1.8 1120 30.28 8.45 -4.66 94.06
Cf5-2,3,30 1033.77 918.96 2.9 941 501.45 2.34 -9.86 99.42
Cg1-2,3,30 990.03 832.09 15.9 883 301.90 5.77 -12.12 94.73
Cg2-2,3,30 1170.76 943.96 1108.1 997 100.02 5.32 -17.43 -1007.88
Cg3-2,3,30 1038.19 1003.81 211.7 1010 153.64 0.61 -2.79 -37.79
Cg4-2,3,30 1103.88 988.41 68.3 1025 402.39 3.57 -7.70 83.03
Cg5-2,3,30 1052.60 991.62 1.7 1025 101.72 3.26 -2.69 98.33
Ci1-2,3,30 1036.89 854.03 1.0 863 112.50 1.04 -20.15 99.11
Ci2-2,3,30 1090.12 981.90 11.3 951 201.22 -3.25 -14.63 94.38
Ci3-2,3,30 1094.12 1055.48 2.1 904 402.06 -16.76 -21.03 99.48
Ci4-2,3,30 1076.57 948.46 15.1 895 344.36 -5.97 -20.29 95.62
Ci5-2,3,30 1093.93 942.05 2.0 923 522.76 -2.06 -18.52 99.62
Averages 241.128 -0.55 -13.32 32.30

Table 4 – Decomposition-based heuristic : results on Dellaert et al. (2019) instances with
30 OD demands.
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