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ABSTRACT 
Free-breathing external beam radiotherapy remains challenging due to the complex 
elastic or irregular motion of abdominal organs, as imaging moving organs leads to 
the creation of motion blurring artefacts. In this paper, we propose a radial-based 
MRI reconstruction method from 3D free-breathing abdominal data using spatio-60 
temporal geodesic trajectories, to quantify motion during radiotherapy. The 
prospective study was approved by the institutional review board and consent was 
obtained from all participants. A total of 25 healthy volunteers, 12 women and 13 
men (38 years ± 12 [standard deviation]), and 11 liver cancer patients underwent 
imaging using a 3.0T clinical MRI system. The radial acquisition based on golden-65 
angle sparse sampling was performed using a 3D stack-of-stars gradient-echo 
sequence and reconstructed using a discretized piecewise spatio-temporal 
trajectory defined in a low-dimensional embedding, which tracks the inhale and 
exhale phases, allowing the separation between distinct motion phases. Liver 
displacement between phases as measured with the proposed radial approach 70 
based on the deformation vector fields, were compared to a navigator-based 
approach. Images reconstructed with the proposed technique with 20 motion 
states and registered with the multiscale B-spline approach received on average 
the highest Likert scores for the overall image quality and visual SNR score 3.2 ± 
0.3 (mean ± standard deviation), with liver displacement errors varying between 0.1 75 
to 2.0 mm (mean 0.8 ± 0.6 mm). When compared to navigator-based approaches, 
the proposed method yields similar deformation vector field magnitudes and angle 
distributions, and with improved reconstruction accuracy based on mean squared 
errors. 
  80 
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I. INTRODUCTION 

During abdominal radiation treatments, organ displacement induced by the 
patient's respiratory motion may affect dose delivery to tumor targets and cause 
collateral damages to surrounding healthy organs at risk [1]. Therefore, continuous 85 
organ tracking during irradiation of target tumors is required. Radiation oncologists 
generally rely on three dimensional (3D) images of the organs obtained before 
treatment and a few intra-procedural acquisitions. While there are several methods 
to non-rigidly align these multiple images, they only provide a static intraoperative 
representation due to the time required to perform the registration step [2]. 90 
Therefore, clinicians are unable to monitor in real time the patient's anatomical 
structures with these techniques. Recently, the combination of a linear accelerator 
(linac) with a magnetic resonance imaging (MRI) scanner, also known as MR-Linac, 
has enabled continuous organ visualization while the patient is being treated [3]. 
MRI-guided radiotherapy (MRgRT) [4] enables real-time MRI tracking during 95 
treatment and allows online dose calculation and replanning [5]. Moreover, it has 
the potential to improve treatment accuracy by monitoring the continuous changes 
of the tumor position [6]. However, due to spatio-temporal constraints, continuous 
3D acquisitions do not provide an adequate temporal resolution to follow the 
respiratory motion. Instead, cine two dimensional (2D) slices are generally acquired 100 
during the course of treatment, disregarding the out-of-plane motion.  
 
Multiple studies have assessed the feasibility of using orthogonal 2D acquisitions 
to estimate the 3D target motion through deformable registration . While this 
approach might be effective for local modeling [7], it is rather limited to estimate 105 
the entire anatomy. In contrast, motion models computed from dense motion data 
can be associated with the 2D cine imaging allowing for real-time 3D image 
generation [8][9] . To construct these models, the ground truth motion data is 
measured from 4D datasets via a deformable registration. Therefore, considerable 
efforts have been made to develop reconstruction methods providing 4D-MRI 110 
datasets. Indeed, since imaging volumes over time is not a feasible option, several 
alternative strategies have been proposed. Based on recent methods proposed in 
the literature, these can be classified in two groups: (1) retrospectively sorting of 
cine-slices and (2) full 3D acquisitions [10]. 
 115 
In the first category, 2D slices over several respiratory cycles are acquired 
simultaneously with either external or internal navigator signals [12]. These 
navigators are crucial for the subsequent slice reordering according to the 
respiratory phase, i.e. they allow to construct dynamic volumes with a temporal 
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consistency. Optical tracking devices and respiratory belts are examples of 120 
external navigators. However, these are known to suffer from low correlation with 
the internal organ motion, thereby causing artifacts in the obtained volumes. In 
contrast, internal navigators provide better information about the respiratory state 
at the cost of decreasing the temporal resolution. Other techniques, known as self-
sorting or self-gating, have also been proposed to address the case where no 125 
navigator is available. Generally, they rely on deriving a motion signal using 
exclusively features contained in the images [13][14][15] or applying low-
dimensionality reduction techniques [16][17]. The second category involves 3D 
readouts. In these methods, the readout type is directly related to the image quality, 
particularly in the presence of organ motion [10].  Over the past few years, the 130 
acquisition of radial k-space and compressed sensing with sparse temporal 
transforms has gained attention to enable high accelerations in dynamic MRI 
studies [18][19][20][21]. Moreover, since a reliable respiratory signal can be 
obtained directly from the raw k-space data, the self-navigation property is one of 
its advantages.  135 
 
For certain studies, the compensation of the respiratory motion is required to 
increase image resolution. For instance, the iterative Golden-angle RAdial Sparse 
Parallel (GRASP) technique [22], and later the eXtra-Dimensional GRASP (XD-
GRASP) [20], were proposed for motion-robust DCE-MRI. However these were 140 
designed to limit the impact of free-breathing motion, rather than exploit radial 
acquisitions to preserve motion during the post-acquisition processing in order to 
yield a respiratory-correlated dataset for radiotherapy applications. The XD-GRASP 
reconstruction method was extended with self-navigation based on reordering of 
slices in ascending or descending [11]. However, these were based on the 145 
matching of similar neighboring slices, without incorporating data-driven 
knowledge to the ordering process for modeling respiratory motion.  
 
In this work, we introduce a novel image reconstruction method to obtain high-
resolution dynamic 3D MRI data based on the XD-GRASP motion correction 150 
technique developed by Feng et al. [20]. Our approach models the respiratory cycle 
using piecewise geodesic trajectories in low-dimensional space to improve the 
ordering process of the motion phases, and generating 4D sequences across a 
respiratory cycle. While previous approaches performed image denoising with 
iterative backpropagation to improve 4D-MRI quality [23], these were focused on 155 
cardiac images and were not assessed by a panel of radiologists. In this study, we 
perform averaging through deformable registration, using the Likert score to 
qualitatively assess the quality of the produced images. 
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 160 
 

II. METHODS AND MATERIALS 
 

A. Imaging datasets 
In this study, abdominal image acquisitions were performed during free breathing 165 
on 25 healthy volunteers, 12 women and 13 men (38 years ± 12 [standard 
deviation]), between September and December 2019. The study was approved by 
our institutional review board and each participant provided their written informed 
consent. The MR scans were acquired using a 3.0T clinical MRI system (Ingenia, 
Philips Healthcare). 170 
Each volunteer underwent two consecutive acquisitions, each one with different k-
space readout: 3D radial and 2D cartesian. The radial acquisition was performed 
using a 3D stack-of-stars gradient-echo with balanced steady-state free 
precession (bSSFP) sequence with T2/T1 weighting rather than traditional T1 
weighting. This contrast provides good visualization of blood vessels without 175 
contrast agent injection. This sequence offers near isotropic spatial resolution and 
a temporal resolution of approximately 200 ms. Data was acquired continuously 
during 8 minutes. 
In the Cartesian acquisition, used as basis of comparison, sagittal cine-slices 
covering the right liver lobe interleaved with a navigator frame were acquired using 180 
a 2D balanced steady-state free precession (bSSFP) sequence with T2/T1 
weighting without using any contrast agent. The navigator frame was positioned at 
the middle of the right hemi-diaphragm. Data was acquired in two consecutive 
blocks of 5 minutes each.  
In addition to the two acquisitions acquired in volunteers, we have also analyzed a 185 
previously acquired dynamic contrast-enhanced (DCE)-MRI dataset during free 
breathing in 11 liver cancer patients, 5 women and 6 men (70 years ± 11 [standard 
deviation]), diagnosed with HCC. Patients have previously provided a written 
consent for the prospective study and retrospective analysis was approved by our 
institutional review board. The recruitment process followed on this dataset can be 190 
found in [31]. This data was acquired for 3 minutes with the same aforementioned 
clinical MRI system using the same 3D radial stack-of-stars gradient-echo 
sequence between September and December 2018. Imaging parameters for all 
sequences are listed in Table I. 
 195 
B.      Free-breathing 4D-MRI reconstruction with geodesic trajectories 
XD-GRASP is a dynamic image reconstruction approach based on reconstructing 
the extra dimension of respiratory motion obtained from k-space data acquired 
during free breathing [20]. It is usually achieved by ordering the respiratory motion 
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from end-inspiration to end-expiration and then dividing it into several respiratory 200 
motion states, with the same number of spokes in each motion state. While XD-
GRASP attempts to reduce the impact of breathing motion, the proposed approach 
aims to preserve it.  
The goal of the proposed method is to locate precisely each data sample from the 
center of k-space data, within the respiratory motion trajectory from inspiration to 205 
expiration, thus avoiding a binary inhale/exhale separation. To accomplish this, 
each k-space sample point is embedded into a pre-trained latent embedding which 
captures the global motion. The sorted mapped values are then used to construct 
a respiratory navigator signal, alternating between inhale and exhale phases (Fig.1). 
 210 
The mapping process of the acquired k-space data into a latent space is based on 
a kernel embedding method [32], modeling the spatiotemporal evolution of 
breathing patterns during 4D-MRI acquisitions. The curve embedding is generated 
from a training set of Kd samples measured tN	times, where for each sample ki, it 
selects neighbors ki,j showing similar breathing patterns in the training set from pre-215 
treatment models within latent space, yielding neighborhoods ℕ(𝑘!,#) with data-
points across the breathing motion continuum. Hence, a Riemannian space from 
samples ki,t is created, with each patient model i acquired at time t (t=0 as the 
baseline, denoted ki,0). Assuming the domain manifold is well represented and the 
piecewise-geodesic curve spanning the time spectrum, a regression of the labelled 220 
samples can be obtained in ÂD, generating regular paths in the spatio-temporal 
domain Âd. A discretized regression technique is used [33] for implementation 
purposes of the piecewise trajectory. The geodesic path is obtained from the 
neighborhoods of samples obtained along 𝛾, by optimizing a loss function which 
minimizes the geodesic distance between the Kd samples and the regressed curve, 225 
as well as the L2 metric of the first and second derivatives of 𝛾: 
 
             𝐸(𝛾) = $
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 230 
where wi	weights the differences between the samples inferred from the geodesic-
inferred k-space 𝛾 and the ground-truth data. The last two terms capture the 
velocity vi (weighted with a) and acceleration ai (weighted with b) of the regressed 
path, which ensures a continuous curve with smooth transitions during changes of 
direction. This allows for a query sample kq to navigate through the respiratory 235 
motion path, capturing the average deformable transformations linked to motion, 
which are obtained from N training cases. Eq.(1) is minimized using a non-linear 
conjugant gradient descent technique. Once the piecewise geodesic trajectory is 



8 

generated, new samples can be mapped to define their order in the reparation 
cycle. 240 
 
During the acquisition phase, the noise levels of the coil elements used for signal 
reception may vary. Therefore, to eliminate the effect of the non-optimal placement 
of coil elements relative to subjects, a noise whitening step, which normalizes and 
decorrelates the noise, was applied to the k-space data.  245 
The pulse sequence used in this study represents a stack-of-stars trajectory with 
radial sampling over kx-ky, where the sampling angle is the golden angle ~111.25°, 
and Cartesian encoding over kz [24]. Since this oversampling can result in 
overweighting low frequencies, a density compensation is used, which 
accomplishes the same purpose as a ramp filter [25]: 250 
 
     𝑑(∅, 𝑟) = |𝑟| ∗ $

,
 ,                                         (2) 

where N is the number of radial samplings and r is the k-space data. 
Finally, during the pre-processing steps, the coil sensitivity is an important 
parameter to estimate. For this purpose, and to reduce noise in the images 255 
background, the Walsh approach [26] was adapted. Such an approach applies an 
adaptive matched filter for the multi-coil data. The noise and signal covariance 
matrices were determined for each image pixel, where an optimal estimation of the 
coil sensitivity was provided by the eigenvector of the matrices. The individual coil 
images used to estimate the sensitivity were extracted by computing the non-260 
uniform fast Fourier transform (NUFFT) on the radial k-space data.  
As a result, one breathing cycle was obtained from the 8-minutes acquisition 
described in the previous section. It was then divided into 20 respiratory motion 
states, i.e. 10 temporal points between extreme phases (expiration-inspiration-
expiration). Once inspiration and expiration phases were differentiated, the liver 265 
data was reconstructed by solving the optimization equation using compressed 
sensing as implemented by Feng et al. [20]. The same process was applied for the 
3-minutes acquisition performed on patients. However, in this case 10 motion 
states were reconstructed instead of 20. All the reconstructions were performed in 
MATLAB R2018a (The MathWorks, Inc., Natick, MA, USA). 270 
 
C. Non-rigid registration step 
In order to improve the image quality of the reconstructed radial images, we 
adopted the following methodology (Fig. 2). All motion states, i.e. the temporal 
volumes, were non-rigidly registered to a reference volume (3D static image), which 275 
was initially chosen as the first acquired image in the temporal sequence. Then, the 
resulting deformations were averaged. This process was repeated while varying the 
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reference to be each one of the 20 volumes obtained from the 8-minutes 
acquisition. Two registration approaches were tested and compared: 
 280 

1. Multi-scale B-splines (MSBS)  
In this approach, a transformation model based on cubic B-splines with a 
pyramidal multi-resolution strategy at three different levels was applied as 
implemented in the Elastix framework [27]. The Normalized Mutual 
Information was used as a similarity metric to quantify the alignment 285 
between target and source volumes. This deformable registration was 
initialized with a rigid body transformation, also performed in Elastix.  

 
2. Subpixel deformation maps (SPDM) 

This method is based on non-rigid motion compensation using subpixel 290 
deformation maps. It estimates a non-rigid displacement by computing an 
optical flow formula adapted to perfusion series dynamics. This application 
was able to register the MR image series with different respiratory patterns 
[28][29]. The optimal deformable registration field w is computed by 
minimizing the following cost function: 295 

 
          𝐸(𝑤) = 𝜆𝐸-./0(𝑤) + 𝐸!1#(𝑤) +   
    𝜇𝐸2344#5(𝑤) + +𝐸0627(𝑤$) + 𝜂𝐸3/#75(𝑤,𝑤$)                          (3) 
 

where Egrad represents the gradient constraint, Eint represents the pixel 300 
intensity energy term, Esmooth is the regularization term, Edesc is a continuous 
formulation for the discrete descriptor matching and Ematch is a histogram-
oriented gradient (HOG) based on landmark correspondences. Additionally, 
three parameters control this equation: l got the gradient consistency term, 
µ for the smoothness of flow fields, and h for the HOG descriptor matching 305 
term. For the deformable registration method, parameters were set as 
l=0.05, µ=0.4 and h=0.1 based on empirical evaluations. 

 
D. Evaluation methodology 

To compare the proposed 4D-MRI reconstruction approach before and after 310 
applying the registration methods, three fellowship-trained abdominal radiologists, 
blinded to any technical details on the type of images (with or without registration 
and type of registration), assessed the healthy volunteers’ images after 
randomization. A visual scoring, using a five-point Likert scale, was assigned to 
each image depending on its quality. The grading scale used a quality index: 1 315 
(extremely poor) and 2 (poor) were considered as clinically unacceptable, while 3 
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(fair), 4 (good), and 5 (excellent) were clinically acceptable [30]. The readers then 
used the same 5-point rating scale to grade the visual signal-to-noise ratio (SNR). 

A quantitative analysis was also conducted by computing the deformation between 
volumes at extreme phases. This step aimed at estimating the maximum liver 320 
displacement. The displacement vector fields (DVF) yielded by the deformable 
registration were multiplied by a liver segmentation mask.  Subsequently, the three-
dimensional Euclidean distance was calculated over the DVF as follows: 

    𝑑 = G(∆8)) + (∆9)) + (∆:))            (3) 

where x, y and z represents the voxel-wise displacements in the three-dimensional 325 
space. The distribution of magnitudes and angles over the set of displacement 
vectors was calculated. 

Finally, target registration errors based on Euclidean distances in landmarks 
identified by the experienced radiologists were calculated between the initial and 
final motion phases for the different registration approaches, and are shown for 330 
each volunteer subject.  

 

E. Comparison with 4D-MRI reconstruction methods 
The proposed 4D reconstruction method was compared to a well-established 
technique, based on 2D navigators [15]. During the imaging process explained in 335 
section A, we followed an interleaved scheme to acquire two types of slices. The 
first ones covered consecutive liver locations up to imaging the whole area of 
interest. The second one was a navigator frame, taken at a fixed anatomical 
position, which was selected at the middle of the right hemi-diaphragm. Since the 
navigator frames are common for all the data slices (regardless of their anatomical 340 
position), they act as a reference, which is the key for the slice reordering. For 
instance, two data frames acquired at different anatomical positions can be 
stacked together if their navigator frames are similar, which means that they 
correspond to the same respiratory phase.  
The first step for the reconstruction was the segmentation of a master navigator, 345 
which can be selected at any respiratory phase. Manual segmentation was 
performed by an experienced radiologist, using the MITK software (v2021.02) 
which uses an interactive tool allowing to draw curves snapping to the liver edges. 
In our case, the master navigator was selected as the middle phase (i.e. mid-exhale 
or mid-inhale). The liver segmentation was conducted manually to ensure the best 350 
results. The second step is to non-rigidly register all the navigator slices to the 
master navigator. This deformable registration was initialized with a rigid 
transformation to cope with large displacements and conducted using the multi-
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scale B-splines model and normalized mutual information similarity metric as 
implemented in the Elastix framework [14]. Then, the 2D dense displacement fields 355 
were multiplied by the segmentation mask. Finally, the resulting values were used 
to compute a cost function to guide the slice stacking, as described in [15]. The 
temporal resolution of the dynamic volumes was 450 ms. This reconstruction 
process yielded a time-resolved dataset, covering several respiratory cycles. 
In order to enable a fair comparison with the single respiratory cycle yielded by the 360 
proposed method, we computed an average cycle from the volumes of this dataset. 
Furthermore, the volumes from the healthy volunteers were cropped to the smaller 
field of view, which correspond to the one acquired by the multi-slice Cartesian 
acquisition. We also compared the proposed technique to two other reconstruction 
techniques, namely, the original XD-GRASP method based on compressed sensing 365 
for 4D k-space regularization method [20], and a self-navigation method based on 
reordering of slices, inspired by [11]. 
 
 
 370 
 
 
F. Statistical analysis 
Statistical analyses were performed by a biostatistician (23 years of experience) 
(Software Stata/IC version 14.2). Wilcoxon tests were performed for paired sample 375 
analysis. Here, p values < 0.05 were considered significant for this study. 
 
 

III. RESULTS 
A. Image quality 380 
Fig. 3 shows a comparison of the image quality and the visual SNR score achieved 
with the original XD-GRASP and our proposed method using the two different 
registration approaches. These values were obtained for each case by visual 
grading. In most cases, the integration of a deformable registration step, regardless 
of its type, yielded better results than the original approach, which does not include 385 
such step. Furthermore, it can be observed that the volumes reconstructed with 
the proposed approach and registered with the MSBS approach, obtained the best 
quality scores and higher visual SNR score values compared to the other two 
alternatives. Therefore, this type of registration is more suitable than the one based 
on subpixel deformation maps. The mean overall image quality and visual SNR 390 
score was of 3.2 ± 0.3 and 3.4 ± 0.3 [mean ± standard deviation], 2.30± 0.4 and 
2.4 ± 0.3, and 2.0 ± 0.4 and 1.9 ± 0.3 for the MSBS, SPDM and original approaches, 
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respectively. The MSBS approach yielded a statistically significant improvement in 
Likert and SNR metrics to other approaches (p < 0.05). 
A visual example of these results is illustrated for 4 cases in Fig. 4.  Compared to 395 
the original reconstruction without registration, the introduction of the MSBS 
approach demonstrates reduced imaging artefacts and improved contrast which 
enhances overall image quality. 
 
B. Liver displacement 400 
Fig. 5 (a) illustrates the liver motion between motion states and compares the 
reconstruction approaches before and after registration. The white lines indicate 
the diaphragm boundaries. The deformation vectors and their magnitudes and 
angles confirm that there is a clear motion between different states and how it 
differs between registration approaches (see Fig 5 (b)). 405 
Fig. 6 (a) compares the mean vector-wise Euclidean distance estimated between 
inhalation and exhalation for each volunteer. The distance without registration 
varies between 9 mm and 32 mm (mean 16.2 ± 7.3 mm). When applying the MSBS 
and SPDM registration approaches, the values range between 8 mm and 31 mm 
(mean 16.1 ± 7.1 mm) and between 5 mm and 24 mm (mean 10.1 ± 4.8 mm), 410 
respectively. These values, however, depend on the respiratory motion of each 
volunteer. 
To estimate the motion errors between each method and the original images 
without any registration, the difference between them was calculated as shown in 
Fig. 6 (b). The errors for the first method varies between 0.1 and 2.0 mm (mean 0.8 415 
± 0.6 mm) while for the second method, it varies between 1.8 to 20.0 mm (mean 
8.2 ± 5.5 mm). We can clearly see the similarity between the original images before 
and after registration with the first approach based on multi-scale B-splines. The 
registration should not affect the motion amplitude but this difference is due to 
registering the 20 motion states and then averaging it using a non-rigid method. 420 
The errors generated with the MSBS method were statistically significant lower to 
the SPDM approach. 
Finally, target registration errors were calculated between the initial and final motion 
phases, and are shown for each volunteer subject in Fig. 7. Overall, the results yield 
a TRE of 1.7 ± 1.5mm with the MSBS method, compared to 4.4 ± 3.4mm with the 425 
SPDM method, leading to a statistically significant improvement (p < 0.05) based 
on Wilcoxon tests. 
 
An analysis of the effect of uncertainties due to errors from the deformable 
registration process was performed, by analyzing cases which were in the 90th 430 
percentile of residual errors in the deformable registration step. This showed that 
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target registration errors were significantly higher based on a two-tailed Student t-
test (p<0.05) for that group of cases. 

 
 435 
 
C. Comparison to 4D-MRI reconstruction techniques 
The deformation fields were calculated based on the Elastix visualization toolkit to 
compare the navigator-based and proposed methods as shown in Fig. 8, as well 
as the corresponding DVF magnitude and angle distribution of all volunteers was 440 
represented in Fig. 9. The two methods show almost similar DVF magnitudes and 
angles distribution. The difference between the two methods is due to the fact that 
the data was acquired at different times and thus different respiratory movement.  
 
Table II presents a quantitative comparison of the proposed 4D-MRI reconstruction 445 
method to other benchmark methods presented in section II.E. Results show an 
improvement in the mean square error MSE measures and peak-signal-to-noise 
ratio (PSNR), which is between intensity values of the reconstructed 4D-MRI and 
original dataset. Both metrics saw a statistically significant improvement (p < 0.05) 
with the MSBS approach. We also calculate the mean structural similarity (MSSIM) 450 
index, which does not consider the intensity difference, but allows us to evaluate 
the contrast level and the anatomical structure of the 4D-MRI compared to the 
reference. 
 
 455 
D. Application to patient data 
Finally, in order to test the performance of our technique in patients treated for liver 
cancer, the proposed method was evaluated on 11 separate patients with HCC, by 
including a total of 10 motion states and followed by a registration based on the 
multi-scale B-splines approach. Fig. 10 shows images of 4 different patients at 3 460 
different motion states. The liver motion is clear where we can see the different 
position of the liver and tumors. Because of the inherent variability between 
patients which may cause tumor enhancement to appear differently in others due 
to contrast injection, this may impact the Likert scores. Therefore, to avoid this bias, 
we chose to perform image quality evaluation only on healthy cases, where no HCC 465 
enhancement was present and only the image quality of the liver anatomy can be 
objectively evaluated.  
 
 
E.  Computational time 470 
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The proposed method required 10 hours to reconstruct the 20 volumes of each 
subject when implemented on a CPU Intel® Core™ i7-8700 with 3.2 GHz and 32 
Gb RAM. Half of this total time corresponded to the actual k-space reconstruction, 
whereas the other half was related to the registration step. The manifold model 
creation is performed once, offline. It should be noted that reconstructing 20 475 
phases involves 400 deformable registrations, which is time-consuming. Thus, this 
process was parallelized.   
 
 

IV. DISCUSSION 480 
 
From the experiments performed in this study, several aspects of the method 
based on the piecewise geodesic motion trajectory were shown to be beneficial 
compared to similar free-breathing reconstruction methods. These experiments 
were performed on both volunteer and patient data, evaluated both qualitatively 485 
(from a panel of experienced radiologists) and quantitatively using landmark 
tracking errors, as well as image fidelity metrics.   
 
Firstly, the respiratory signal used for the ordering process is extracted from the 
geodesic trajectory constructed from k-space data.  This physiological signal is 490 
more reliable and robust than those acquired with external devices, such as 
respiratory belts or optical trackers. Moreover, it is less prone to artifacts during the 
imaging process. Secondly, since the proposed method uses a 3D acquisition, an 
exhaustive sampling is no longer required to capture all the potential states of the 
imaged organs used for the navigator-based approach. For instance, to ensure an 495 
accurate stacking of slices from the left liver lobe, it is important to capture most of 
the possible combinations of heart and respiratory motions. Otherwise, the 
volumes would be affected by artifacts due to misordered slices or spatiotemporal 
inconsistencies. In fact, this exhaustive sampling is one of the key assumptions 
that supports the multi-slice acquisition approach. Consequently, it requires longer 500 
acquisition sessions, which might be uncomfortable for subjects due to the noise 
and warm temperatures inside the scanner. On the other hand, during the treatment 
planning for external beam radiotherapy, 4D datasets containing an average cycle 
are generally acquired. These scans are very likely to present artifacts such as 
blurring [34], duplication, overlapping, and incompletion [35]. Also, it represents an 505 
extra burden of ionizing radiation to the patient. In contrast, our proposed method 
enables an accurate reconstruction of an average respiratory cycle from an MRI 
sequence lasting only a few minutes and providing excellent soft tissue contrast 
without ionizing radiation. This work was made towards providing a single, 
personalized 4D sequence of the entire abdominal region before radiation therapy 510 
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begins. In this type of workflow, the sequence would be generated and processed 
just before administering therapy and used to anticipate motion. Other types of 
workflows require on the other hand real-time volumetric imaging. In related efforts, 
deep learning has been explored for real-time imaging, integrating predictive 
components by learning the relationship in deformation fields between surrogate 515 
navigators such as in-plane 2D images and 3D volumes [36][37]. This allows to 
generate volumes within a 1 s horizon, respecting system latencies. 
  
Several parameters dictate the behavior of the method’s performance. For 
example, the number of temporally averaged images (n=20) is set during the 520 
acquisition phase, and is found as a compromise between temporal resolution and 
time to perform acquisitions. The cut-off frequency of the used filters was 
determined empirically based on a proper balance between image smoothness and 
vessel visibility. With regards to the weights and smoothness terms in Eq. (3), the 
impact of the gradient consistency term weight l will be seen mostly on the edges 525 
and liver boundaries, while the smoothness term µ  for the flow fields will mostly 
impact the deformation fields. Finally, the weight for the HOG descriptor matching 
term h will impact the similarity between similar samples.  
 
Spontaneous motion can be the cause of severe artifacts due to the sudden 530 
changes in appearance of the anatomy which may deviate from the learned 
trajectories. This aspect is handled from two factors. The first is the smoothness 
term controlled in Eq. (3), where the deformable registration process will ensure 
that the DVF will be regular when averaging the images together to a common 
space, thereby reducing the adverse effects of outliers. The other is the piecewise 535 
geodesic trajectory in latent space, which ensures mapped data is regular within 
the respiratory motion model. 
 
Unlike the compared 2D navigator-based method, our approach is fully automated. 
It does not require the manual selection of a master navigator slice. Another 540 
potential weakness of previous approaches is the fact they are based primarily on 
displacement vector fields computed through non-rigid registration between pairs 
of slices. This process depends on the cost function which may be sensitive to out 
of plane motion. Nevertheless, the registration is a challenging task that is not 
exempt from errors, mainly due to uncertainties during the image acquisition. 545 
Consequently, it may appear as potential errors during the stacking that are often 
reflected on morphological inaccuracies, such as irregular organ boundaries or 
truncated vessels. In contrast, since the proposed approach is reconstructs images 
directly from the k-space, we obtain smoother organ boundaries and sharp 
appearance of the vessels.  550 
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Compared to the original XD-GRASP, the proposed approach allows to 
significantly improve the image quality as assessed by radiologists, and improves 
the deformation fields with the introduction of a deformable registration method 
within the reconstruction pipeline. Currently, one of the study’s limitations is the 
time for 4D reconstruction, which can take several hours, depending on the 555 
computational resources. In the scenario where the volumes are acquired just 
before therapy, this may be more challenging. 
 
 

 560 
V. CONCLUSION 

 
In conclusion, we presented a method for dynamic volume reconstruction from 
free-breathing MRI acquisitions, which is based on the original golden angle radial 
acquisition technique [20], but tailored for quantifying abdominal motion during 565 
free-breathing acquisitions. This helps to improve target tracking for radiotherapy 
applications. We introduced a new technique for mapping the k-space data to a 
piecewise geodesic curve trajectory of the respiratory motion, thus allowing the 
reconstruction of multiple motion phases in one cycle. In addition, we integrated a 
deformable registration step to further enhance the visual quality of the volumes. 570 
The proposed method was compared to well-established free-breathing 
reconstruction techniques based on navigator frames. Results showed that the 
method can achieve similar performance while introducing important advantages. 
Moreover, these advantages prevail when compared to other reconstruction 
techniques based on the multi-slice acquisition approach, regardless of the type of 575 
navigator employed.  
Future work will consist of evaluating the framework in a radiotherapy context, 
using free-breathing acquisitions to evaluate prospectively the ability to track 
tumors during respiration compared to intermittent volumetric acquisitions. We will 
also explore possibilities to reduce the computational complexity by parallelizing 580 
all components of the reconstruction process, including the k-space 
reconstruction, thereby requiring minimal time to generate the personalized 4D 
motion model. 
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 755 
 
TABLES AND FIGURES  
TABLE I: Sequences parameters used to acquire imaging volumes of both 
healthy volunteers and liver cancer patients. Two sequences were used for each 
volunteer, one radial acquisition for the proposed method, and one Cartesian 760 
acquisition for basis of comparison. 
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Sequence Parameter  
Radial  acquisition    

Sequence type 3D radial stack-of-stars gradient-echo acquisition with 
bSSFP  

Plane Axial 
Contrast weighting T2/T1 
Flip angle  20° 
Repetition time  2.3 ms 
Echo time  1.5 ms 
Spatial resolution  2 x 2 x 2.5 mm 
Cartesian  acquisition    
Sequence type 2D bSSFP contrast 
Plane Sagittal 
Contrast weighting T2/T1 
Flip angle  50° 
Repetition time  2.86 ms 
Echo time  1.43 ms 
Spatial resolution  1.7 x 1.7 x 3.5 mm 

11
 P

at
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nt
s  

DCE-MRI sequence  

Sequence type 3D stack-of-stars gradient-echo radial acquisition with 
fat saturation 

Plane Axial 
Contrast weighting T1 
Flip angle  12° 
Repetition time 3.40 ms 
Echo time 1.40 ms 
Spatial resolution 1.5 x 1.5 x 2.5 mm 
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TABLE II: Comparison of the proposed 4D-MRI reconstruction technique with the 765 
original XD-GRASP using compressed sensing [20], a 2D-based  navigator 
approach [15] and the self-navigation method based on reordering of slices [11]. 
MSE: mean square error; PSNR: peak-signal-to-noise ratio; MSSIM: mean 
structural similarity. Bold values indicate statistically significant differences. 

 770 

 MSE (mm) PSNR score MSSIM 

XD-GRASP [23] 23.76 ± 0.20 19.44 ± 0.36 0.74 ± 0.35 

2D navigator [28] 19.62 ± 0.20 23.71 ± 0.31 0.80 ± 0.30 

Slice reordering [15] 15.57 ± 0.19 26.19 ± 0.27 0.83 ± 0.25 

Proposed 13.45 ± 0.18 30.89 ± 0.17 0.87 ± 0.18 
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Figure 1. Proposed 4D-MRI reconstruction method based on the XD-GRASP 
method and a respiration motion model from a manifold embedding. Data is 
extracted from the center of k-space and is mapped onto a low-dimensional 775 
embedding, describing the relationship between neighboring samples in the 
breathing cycle. The trained model is used to extract the respiratory motion signal 
for slice re-ordering.  
 
 780 
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 785 
Figure 2. The process of improving image quality through deformable image 
registration. Using a reference volume, the deformation vector field (DVF) of 
sequential motion states are extracted, followed by deformable registrations. Two 
different deformable registration approaches are used here: (1) Multi-scale B-
splines (MSBS) and (2) and subpixel deformation maps (SPDM). 790 
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(b) 795 

 
Figure 3. Comparison between original XD-GRASP, with the proposed manifold-
regularized radial acquisition method using multi-scale B-splines approach  
(MSBS) and subpixel deformation maps  (SPDM). (a) Average image quality score 
and (b) visual signal-to-noise ratio score of the 3 readers for 25 healthy subjects. 800 
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Figure 4. Example of reconstructed images for 4 different subjects with the 
proposed radial-based acquisition method, with and without registration. 
 805 
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 810 

Figure 5. (a) Example of reconstructed images without registration, with a Multi 
scale B-splines approach and with a subpixel deformation maps approach at 
different liver positions from a 27-year-old healthy woman. Its representative 
deformation field vector (DVF) between inhale and exhale and (b) the corresponding 
DVF magnitude and angles distribution for all slices. 815 
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(b) 

 820 
Figure 6. (a) Mean liver displacement between inhale and exhale for images without 
registration (Original), with MSBS approach and with SPDM approach measured 
from all healthy volunteers. (b) Error displacement between each method and the 
data without registration. 
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 825 
Figure 7. Target registration errors (TRE) for each subject, comparing the MSBS 
registration approach to the SPDM, which were integrated in the proposed radial 
free-breathing acquisition method. 
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 830 
Figure 8. Sample deformation vector fields (DVF) for images reconstructed from 3 
different healthy volunteers with the proposed radial acquisition method with 
manifold regularization, in comparison to a navigator based method.  
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 835 
(b) 

 
 
Figure 9. (a) Deformation vector fields (DVF) magnitudes and (b) angles 
distribution for images reconstructed with the proposed radial acquisition method 840 
for 25 healthy volunteers, in comparison to a navigator based method. 
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Figure 10. Examples of reconstructed images for 3 liver cancer patients with the 845 
proposed radial acquisition method using manifold regularization, combined with 
a multi-scale B-spline registration approach for different motion states (tumors 
identified by white arrow). 


