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Résumé

La conception de réseaux est un riche sous-domaine de l’optimisation combinatoire ayant de
nombreuses applications pratiques. Du point de vue méthodologique, la plupart des prob-
lèmes de cette classe sont notoirement difficiles en raison de leur nature combinatoire et de
l’interdépendance des décisions qu’ils impliquent. Ce mémoire aborde deux problèmes de
conception de réseaux dont les structures respectives posent des défis bien distincts. Tout
d’abord, nous examinons un problème déterministe dans lequel un client doit acquérir au
prix minimum un certain nombre d’unités d’un produit auprès d’un ensemble de fournisseurs
proposant différents coûts fixes et unitaires, et dont les stocks sont limités. Ensuite, nous
étudions un problème probabiliste dans lequel une entreprise entrant sur un marché ex-
istant cherche, en ouvrant un certain nombre d’installations parmi un ensemble de sites
disponibles, à maximiser sa part espérée d’un marché composé de clients maximisant une
fonction d’utilité aléatoire. Ces deux problèmes, soit le problème de transport à coût fixe à un
puits et le problème d’emplacement d’installations compétitif basé sur les choix, sont étroite-
ment liés au problème du sac à dos et au problème de couverture maximale, respectivement.
Nous introduisons de nouvelles reformulations prenant avantage de ces connexions avec des
problèmes classiques d’optimisation combinatoire. Dans les deux cas, nous exploitons ces re-
formulations pour démontrer de nouvelles propriétés théoriques et développer des méthodes
de résolution efficaces. Notre nouvel algorithme pour le problème de transport à coûts fixes
à un puits domine les meilleurs algorithmes de la littérature, réduisant le temps de résolution
des instances de grande taille jusqu’à quatre ordres de grandeur. Une autre contribution no-
table de ce mémoire est la démonstration que la fonction objectif du problème d’emplacement
d’installations compétitif basé sur les choix est sous-modulaire sous n’importe quel modèle
de maximisation d’utilité aléatoire. Notre méthode de résolution basée sur la simulation
exploite cette propriété et améliore l’état de l’art pour plusieurs groupes d’instances.
Mots clés : Conception de réseaux, Optimisation combinatoire, Optimisation basée sur les
choix, Emplacement d’installations, Problème de transport à coûts fixes, Problème du sac à
dos, Relaxation lagrangienne, Simulation, Sous-modularité, Entropie.
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Abstract

Network design is a rich subfield of combinatorial optimization with wide-ranging real-life
applications. From a methodological standpoint, most problems in this class are notoriously
difficult due to their combinatorial nature and the interdependence of the decisions they
involve. This thesis addresses two network design problems whose respective structures pose
very distinct challenges. First, we consider a deterministic problem in which a customer
must acquire at the minimum price a number of units of a product from a set of vendors
offering different fixed and unit costs and whose supply is limited. Second, we study a
probabilistic problem in which a firm entering an existing market seeks, by opening a number
of facilities from a set of available locations, to maximize its expected share in a market
composed of random utility-maximizing customers. These two problems, namely the single-
sink fixed-charge-transportation problem and the choice-based competitive facility location
problem, are closely related to the knapsack problem and the maximum covering problem,
respectively. We introduce novel model reformulations that leverage these connections to
classical combinatorial optimization problems. In both cases, we exploit these reformulations
to prove new theoretical properties and to develop efficient solution methods. Our novel
algorithm for the single-sink fixed-charge-transportation problem dominates the state-of-the-
art methods from the literature, reducing the solving time of large instances by up to four
orders of magnitude. Another notable contribution of this thesis is the demonstration that
the objective function of the choice-based competitive facility location problem is submodular
under any random utility maximization model. Our simulation-based method exploits this
property and achieves state-of-the-art results for several groups of instances.
Keywords : Network design, Combinatorial optimization, Choice-based optimization, Fa-
cility location, Fixed-charge transportation problem, Knapsack problem, Lagrangian relax-
ation, Simulation, Submodularity, Entropy.
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Introduction

The core of this thesis is composed of two articles that respectively address a deterministic
transportation problem and a probabilistic facility location problem, both belonging to the
broader class of network design problems. This introduction provides a brief overview of the
history of network design, the motivation behind the choice of problems under study, and a
summary of our main contributions.

Network design is defined as the class of optimization problems in which the decisions
can be represented as the selection of a subset of edges in a graph (Crainic et al., 2021,
Magnanti and Wong, 1984, Minoux, 1989). This characterization encompasses a wide vari-
ety of important applications in several areas, including transportation (e.g., Crainic, 2000,
Farahani et al., 2013, Wieberneit, 2008), logistics (e.g., Chanintrakul et al., 2009, Cordeau
et al., 2021, Nourbakhsh et al., 2016), and telecommunication (e.g., Kershenbaum, 1993,
Mateus et al., 2000, Resende and Pardalos, 2008). Depending on the topology of the graph,
the nature of the constraints, and the complexity of the objective function, network design
problems can take on completely different structures. The variety and inherent difficulty of
these combinatorial problems have made the area of network design fertile ground for the
development of novel model reformulations (e.g., Crainic and Gendron, 2020, Frangioni and
Gendron, 2009, Gendron, 2019) and mathematical decomposition methods (Gendron, 2011).

Starting from the early 1960s, within the foundational literature on network design,
considerable focus has been directed toward fixed-charge problems. Notable contributions
in this realm include the works of Balinski (1961) and Hirsch and Dantzig (1968). Fixed-
charge problems involve binary decision variables, each corresponding to selecting an edge
in the graph and associated with a fixed cost in the objective function. A prime example of
a fixed-charge network design problem is the fixed-charge transportation problem (FCTP).
Introduced by Balinski (1961), this problem is defined on a bipartite graph where the nodes
are divided into sources and sinks. In addition to its fixed cost, each activated arc incurs
a variable cost proportional to the number of units of a product sent from its source to its
sink. The problem is to minimize the total cost while respecting the arcs’ capacities and
the integer supplies and demands of the nodes. The special case of the FCTP in which



the bipartite graph includes either a single source or a single sink is called the single-sink
fixed-charge transportation problem (SSFCTP).

One reason for the prominent place of the FCTP in the network design literature is that
the more general single-commodity capacitated fixed-charge network design problem, which
does not require the graph to be bipartite, can be reformulated as a FCTP through network
flow transformations (Malek-Zavarei and Frisch, 1972). Recent works on the FCTP include
branch-and-price methods by Roberti et al. (2015) and Mingozzi and Roberti (2018). These
exact algorithms exploit integer programming formulations with exponentially many decision
variables corresponding to flow patterns from sources to sinks, and from sinks to sources.
Zhao et al. (2018) proposed a convexified formulation of the FCTP based on Lagrangian
decomposition and column generation. The column generation problems that have to be
solved in this approach are separable by source node and can be formulated as instances of
the SSFCTP. A similar structure is found in Lagrangian relaxations of the FCTP (Görtz
and Klose, 2007). An efficient exact method for solving the SSFCTP is thus an essential
component of different solution methods for the FCTP.

The first specialized method proposed in the literature for solving the SSFCTP was a
branch-and-bound algorithm by Haberl (1991). This work was motivated by an application in
sawn timber production (Haberl et al., 1991). At that time, the denomination SSFCTP had
not yet appeared. Haberl (1991) instead referred to the problem as a continuous knapsack
problem with fixed charges. The name SSFCTP was introduced by Herer et al. (1996), who
developed an enumeration algorithm based on dominance rules and lower bounds. A dynamic
programming algorithm for the SSFCTP was then developed by Alidaee and Kochenberger
(2005). Klose (2008) proposed exploiting dual information to reduce the problem size and
revisited both the enumeration algorithm of Herer et al. (1996) and the dynamic program-
ming algorithm of Alidaee and Kochenberger (2005). To obtain their improved enumerative
algorithm, Klose (2008) directly adapted an algorithm of Martello and Toth (1977) for the
binary knapsack problem (KP) to the SSFCTP. This approach was the first to substantially
leverage the close connection to the KP that had initially been underscored in the original
name of the SSFCTP.

The first paper of this thesis follows the same line and seeks to fully exploit the common
structure of the SSFCTP and the KP to fill the gap between the state of the art on these
problems. Whereas the best algorithms for the KP are the result of an extremely rich and
dense body of literature that has been developed for decades (e.g., Martello and Toth, 1987,
1990, Martello et al., 1999), only a few methods for solving the SSFCTP have been proposed
in the literature, leaving room for significant improvement. We introduce a novel binary
nonlinear formulation of the SSFCTP and present an array of upper and lower bounds that
can be computed based on the solutions of KPs derived from this reformulation. We also
show that the SSFCTP can be solved exactly through a number of KPs equal to the number
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of source nodes in the graph. We develop a sequence of tests to eliminate the vast majority of
these subproblems. The resulting exact method, which we call the knapsack transformation
algorithm (KTA), can solve most instances of the SSFCTP to proven optimality by solving
only one or two KPs. Our algorithm dominates existing methods from the literature across
all our benchmark instances and requires up to four orders of magnitude less computing time
than the previous state-of-the-art methods on large instances.

The process of reformulating a challenging network design problem into a simpler com-
binatorial problem is also at the core of the second part of this thesis, where we turn our
attention to facility location. This class of problems concerns the selection of an optimal
subset of locations from a set of possible sites for warehouses, plants, sensors, or other types
of equipment. With roots going back to a geometric problem generally attributed to the
French mathematician Pierre de Fermat (1601-1665), facility location is one of the oldest
and most extensively studied topics in the operations research literature (see, for example,
the reviews by Laporte et al., 2019, Owen and Daskin, 1998, Snyder, 2006). Although facility
location problems are usually not presented as network design problems, they involve the
selection of a subset of nodes in a graph. This graph can be slightly modified, for instance
by adding a loop to each node, to cast these decisions as the selection of edges. As pointed
out by Crainic et al. (2021), facility location thus falls within the scope of network design.

Most of the location models in the literature do not account for competition or differences
among facilities and make simple assumptions about the structure of the demand. For ex-
ample, it is common to allocate customers to facilities deterministically based on proximity
(Drezner, 2014). However, several real-world applications, such as retail location (Brown,
1989), occur in competitive environments where the demand is captured by different nonco-
operative organizations. Furthermore, the attractiveness of each available location generally
varies across individuals and depends on a combination of factors, as discussed by Aros-Vera
et al. (2013) and Holguin-Veras et al. (2012) in the context of park-and-ride facility location.

The choice-based competitive facility location problem (CBCFLP) integrates these con-
siderations on competition and customer preferences heterogeneity. In this problem, a firm
entering an existing market occupied by competitors seeks to select a subset of facilities from
a set of available locations to maximize its expected market share while respecting linear
business constraints, such as a fixed number of facilities to open or a limited budget. It is
assumed that the customers behave according to the random utility maximization (RUM)
principle, meaning that they evaluate each available alternative and patronize the one that
maximizes a random utility function (Manski, 1977, McFadden and Train, 2000b). Signifi-
cant attention has been devoted to this problem over the last two decades (e.g., Aros-Vera
et al., 2013, Benati and Hansen, 2002, Freire et al., 2016, Ljubić and Moreno, 2018, Mai and
Lodi, 2020, Zhang et al., 2012). However, most of the literature focuses on specific families
of RUM models that make restrictive assumptions about the structure of the demand.
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The second paper of this thesis addresses the CBCFLP from a model-free perspective.
This work shows that, without relying on any restrictive assumption about the utility func-
tions of the customers, we can reformulate the problem as a maximum covering problem
(MCP) (Church and ReVelle, 1974) with a number of demand points that can be expo-
nential in the number of available locations. Through this novel deterministic equivalent
reformulation, we show that the objective function of the CBCFLP is submodular under any
RUM model. This result extends earlier findings by Benati (1997) and Dam et al. (2022),
who established the submodularity of the objective function under specific RUM models.
We propose a simulation approach to approximate the deterministic equivalent reformula-
tion via a MCP of manageable size, which we solve by a branch-and-cut algorithm based on
submodular cuts. We develop an information-theoretic analysis of our solution method and
draw formal connections between its performance and the entropy level of the customers’
preferences in the population. Our computational results indicate that our method achieves
state-of-the-art results on large instances defined under a fully flexible RUM model.

To summarize, this thesis explores novel reformulations and proposes new solution meth-
ods for two important network design problems. In the first paper, we reformulate the
SSFCTP into a number of KPs that is linear in the size of the original problem and develop
a sequence of procedures to eliminate most of them based on a small set of initial solutions.
In the second paper, we reformulate the CBCFLP into a large-scale maximum covering
problem and develop a solution method based on submodularity to solve a sample average
approximation of this new model. These contributions lead to significant improvements to
the state of the art for both problems. In the remainder of the thesis, the two papers are
presented sequentially and are followed by a conclusion.
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résumé. Le problème de transport à coûts fixes à un puits a des applications naturelles dans
les domaines manufacturiers et des transports et constitue un sous-problème important du
problème de transport à coûts fixes. Cependant, les algorithmes spécialisés de la littérature
n’exploitent pas pleinement la structure de ce problème, au point d’être surpassés par les
solveurs commerciaux pour les instances de grande taille. Nous introduisons une nouvelle
reformulation du problème et étudions ses propriétés théoriques. Cette reformulation conduit
à une gamme de nouvelles bornes supérieures et inférieures, des relations de dominance,
des relaxations linéaires et des procédures de filtrage. L’algorithme qui en résulte comprend
une phase heuristique et une phase exacte, dont l’étape principale consiste à résoudre un
petit nombre de sous-problèmes de sac-à-dos. Des expériences computationnelles basées
sur des instances existantes et nouvelles sont présentées. Ces tests indiquent que notre
algorithme divise systématiquement le temps de résolution par plusieurs ordres de grandeur
comparativement à l’état de l’art.
Mots clés : Optimisation combinatoire, Problème de transport à coûts fixes, Relaxation
lagrangienne, Problème du sac à dos.

abstract. The single-sink fixed-charge transportation problem has natural applications in
the area of manufacturing and transportation and is an important subproblem of the fixed-
charge transportation problem. However, even the best algorithms from the literature do not
fully leverage the structure of this problem, to the point of being outperformed by modern
general-purpose mixed-integer programming solvers for large instances. We introduce a novel
reformulation of the problem and study its theoretical properties. This reformulation leads to
a range of new upper and lower bounds, dominance relations, linear relaxations, and filtering
procedures. The resulting algorithm includes a heuristic phase and an exact phase, the main step
of which is to solve a small number of knapsack subproblems. Computational experiments are
presented for existing and new types of instances. These tests indicate that the new algorithm
systematically reduces the solving time of the state-of-the-art exact methods by several orders
of magnitude.
Keywords : Combinatorial optimization, Fixed-charge transportation problem, Lagrangian
relaxation, Knapsack problem.
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1. Introduction
The single-sink fixed-charge transportation problem (SSFCTP) can be stated as a dis-

tribution problem in which a single customer acting as a sink node and having access to a
set of n supplier nodes j = 1, . . . ,n must acquire D units of the same product. Each node j

can ship up to bj units to the sink at a fixed-charge fj and a cost cj per unit. The problem
is to minimize the total cost while respecting the demand of the sink. The following model,
which we call P1, is the classical formulation of the SSFCTP. It was first studied by Herer
et al. (1996).

[P1] Z1 = min
n∑

j=1
(cjxj + fjyj) (1.1)

s.t.
n∑

j=1
xj = D, (1.2)

0 ≤ xj ≤ bjyj for j = 1, . . . ,n, (1.3)

yj ∈ {0,1} for j = 1, . . . ,n. (1.4)

The binary decision variable yj equals 1 if the fixed cost of node j is paid. In this case, as
specified in constraint (1.3), variable xj, which specifies the number of units ordered from
this supplier, can take any positive value less than or equal to bj. The demand constraint is
given by equation (1.2).

It is assumed that each supplier offers at least one unit and that the total offer suffices to
satisfy the demand, i.e., 1≤bj≤D and ∑n

j=1 bj≥D. Furthermore, the demand D, the number
of units xj ordered from each supplier, and the capacities bj are assumed to be integer-
valued. Without loss of generality, it is also assumed that all the unit and fixed costs are
nonnegative, i.e., cj≥0 and fj≥0 for each supplier j ∈ {1, . . . ,n}. An instance that contains
negative unit costs can be transformed to respect this assumption by redefining the unit costs
as ĉj=cj−mini∈{1,...,n}{ci} without affecting the optimal solution. Similarly, the restricted
problem that is obtained after fixing yj=1 for each node j such that fj<0 shares the same
optimal solution as the original problem.

As shown by Klose (2008), the SSFCTP is NP-hard. This problem first gained attention
in the literature due to its natural applications in manufacturing and transportation (Haberl,
1991, Herer et al., 1996). Furthermore, staircase transportation cost functions can be in-
troduced to the SSFCTP to obtain the so-called single-sink, fixed-charge, multiple-choice
transportation problem, which arises as a relaxation of more general minimum-cost network
flow problems (Christensen et al., 2013). Most importantly, the SSFCTP arises as a subprob-
lem in Lagrangian relaxation (Görtz and Klose, 2007) and column generation (Zhao et al.,
2018) methods for solving the fixed-charge transportation problem (FCTP). The SSFCTP
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is also a special case of a relaxation of the multicommodity capacitated fixed-charge network
design problem (Akhavan Kazemzadeh et al., 2022).

Two main approaches have been used for solving the SSFCTP in the literature. The first
is an implicit enumeration algorithm proposed by Herer et al. (1996) that refines an algorithm
from Haberl (1991). The second is a dynamic programming method introduced by Alidaee
and Kochenberger (2005). Both methods were revisited and significantly improved by Klose
(2008). In particular, some of these improvements over the original algorithms exploit the
similarities between the SSFCTP and the binary knapsack problem (KP) to take advantage
of ideas first developed by Martello and Toth (1977).

This paper takes a step further in this direction by introducing a new mathematical
formulation of the problem that allows us to express both a relaxation and subproblems
of the SSFCTP as KPs. The algorithm we introduce is thus referred to as the knapsack
transformation algorithm (KTA). It is composed of a heuristic phase, a filtering phase and
an exact phase that are executed sequentially.

The different models developed in this article aim to reduce the search space as much as
possible while ensuring that at least one optimal solution to the original problem remains
accessible. Doing so, the fast algorithms that have been proposed over time for solving the
KP (e.g., Martello and Toth, 1997, Pisinger, 1997, 2000) can be fully mobilized to solve the
SSFCTP efficiently.

Our paper offers five main contributions that are detailed in Sections 2, 3, 4, 5, and 7,
respectively.
Section 2: We introduce model P2, a binary nonlinear reformulation of the problem. This

new mathematical formulation takes advantage of important properties from the
literature to exploit the strong similarity that links the SSFCTP to the KP.

Section 3: A new heuristic method is proposed. Its main step is to solve knapsack subprob-
lems, noted P3, that are obtained through a relaxation of P2.

Section 4: Two filtering techniques based on a new strict total order on the suppliers are
introduced. Together, they drastically reduce the size of the subproblems that
need to be solved in the exact phase of KTA.

Section 5: We present a transformation of the subproblem that arises after allowing a single
node to supply a positive number of units that is less than its capacity. This
reformulation, which is at the core of the exact phase of the algorithm, is also
expressed as a KP.

Section 7: We introduce new instances, with the aim of providing an in-depth analysis of the
performance of KTA against existing techniques from the literature.

The remainder of the paper is structured as follows. Section 6 contains a detailed sum-
mary of KTA. In addition to new generation methods, Section 7 presents the results of
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our numerical experiments, including an analysis of the performance of each step of our
algorithm. Section 8 concludes the article.

2. Novel reformulation
First, let us introduce some definitions that are used throughout the paper. In a solution

(x, y) to P1, a node j ∈ {1, . . . ,n} is said to be:
• unused if xj = 0,
• partial if 1 ≤ xj ≤ bj − 1,
• complete if xj = bj.

The following propositions recall well-known properties of the SSFCTP, which are proven
in Rosenblatt et al. (1998).
Proposition 1. There exists an optimal solution to P1 that contains at most one partial
node.
Proposition 2. If an optimal solution contains a partial node p ∈ {1, . . . ,n}, then yj = 0
for each node j ∈ {1, . . . ,n} such that cj > cp.

We now introduce a new binary nonlinear formulation of the SSFCTP that is based on
Proposition 1. In this model, the integer-valued decision variables of P1 are replaced by
binary variables representing the selection of each node in the solution, among which only
one can be partial.

[P2] Z2 = min
n∑

j=1
(cjbj + fj)yj −

( n∑
j=1

bjyj −D
) n∑

j=1
cjzj (2.1)

s.t.
n∑

j=1
bjyj ≥ D, (2.2)

n∑
j=1

bjyj −D ≤
n∑

j=1
bjzj − 1, (2.3)

n∑
j=1

zj = 1, (2.4)

zj ≤ yj for j = 1, . . . ,n, (2.5)

yj, zj ∈ {0,1} for j = 1, . . . ,n. (2.6)

In this formulation, a node j ∈ {1, . . . ,n} is by default considered to be complete if yj=1,
leading to a cost of cjbj+fj. The node p ∈ {1, . . . ,n} such that zp=1 then becomes partial
if constraint (2.2) does not hold with equality. This leads to a reimbursement of cp for each
of the ∑n

j=1 bjyj−D excess units that were initially paid. The node p that can be partial is
unique and is selected among the nodes that are used in the solution, by constraints (2.4)
and (2.5). Constraint (2.3) prevents it from supplying a negative number of units.

29



Model P2 significantly reduces the search space compared to P1 by excluding all the
solutions containing more than one partial node from the feasible set. Proposition 2 can
also be exploited to strengthen this reformulation of the problem. The following strict total
order on the nodes serves this purpose.
Definition 3. The strict total order ≺ on the set of nodes {1, . . . ,n} is defined as follows:
i ≺ j ⇐⇒

(
(ci<cj) or (ci=cj and bi<bj) or (ci=cj and bi=bj and i<j)

)
. We denote by ≻

its inverse relation.
Definition 4. Given a vector ȳ ∈ {0,1}n, we define the critical node p(ȳ) as the maximal
element of the strictly totally ordered set (N(ȳ),≺), where N(ȳ)=

{
j∈{1, . . . ,n} : ȳj=1

}
is

the set of nodes that are used in this solution.
Proposition 5. There exists an optimal solution to P2 that respects the following nonlinear
constraint:

zj = 1(j=p(y)) for j = 1, . . . ,n. (2.7)

Proof. Let (y2, z2) be an optimal solution to P2 and let i be the node such that z2
i =1.

The proof proceeds by construction of an optimal solution (y2, z∗), where z∗
j = 1(j=p(y2))

∀j. First, if ∑n
j=1 b2

jy
2
j−D = 0, then the objective value does not depend on the variables

zj and constraint (2.3) is trivially respected by solution (y2, z∗), since bp(y2)≥1. Otherwise,
node i is partial in the optimal solution (y2, z2). In this case, it follows from Proposition
2 and the definition of the critical node p(y2) that ci=cp(y2) and bi≤bp(y2). Since ci=cp(y2),
the objective value of both solutions (y2, z2) and (y2, z∗) is the same. Furthermore, as
bi≤bp(y2), the right-hand side of constraint (2.3) is not smaller for solution (y2, z∗) than for
solution (y2, z2). In both cases, (y2, z∗), which respects constraint (2.7) by construction, is
thus feasible and optimal. □

Neither P2 nor P2 with (2.7) are intended to be solved directly. However, Proposition 5
offers a direct rule that can be applied for the selection of a partial node given a vector y

that specifies the set of suppliers to be used in a solution. Using it, the SSFCTP reduces to
identifying the optimal subset of nodes that must provide a positive number of units. This
idea motivates the introduction, in the next section, of a transformation of P2 that can be
efficiently solved to identify such subsets.

3. Lower and upper bounds
This section presents the four main steps of the heuristic phase in their order of execu-

tion. First, the classical linear relaxation of the SSFCTP and a simple greedy upper bound
are briefly presented in Section 3.1. The rest of the section consists of new contributions.
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Section 3.2 develops model P3, a KP derived from a relaxation of P2, and studies its prop-
erties. Section 3.3 presents several bounds obtained through P3. Section 3.4 presents a new
dominance relation between partial nodes. Finally, Section 3.5 introduces a strong linear
relaxation method that can be applied after fixing a supplier p as the partial node. Both the
dominance relation and the strong linear relaxation use the results of Section 3.2 to eliminate
as many potential partial nodes as possible.

Different types of bounds are extracted from each step. These include bounds on the
objective value, on the conditional objective value and on the number of units xp ordered
from node p given that it is partial, and on the partial node’s unit cost.

3.1. Elementary bounds

We start by considering a pair of simple lower and upper bounds. Although generally
weak, they can in some cases reduce the computing time required by the more expensive
steps of the algorithm.

3.1.1. Classical linear relaxation

A classical lower bound on the objective value of P1 is obtained by solving its linear
relaxation.

[P1LP] ZLP
LB = min

n∑
j=1

ejxj (3.1)

s.t. (1.2),

0 ≤ xj ≤ bj for j = 1, . . . ,n, (3.2)

where ej=cj+fj/bj denotes the linearized cost of node j ∈ {1, . . . ,n}.
Assuming that the nodes are sorted in non-decreasing order of linearized cost, the optimal

solution to the LP relaxation can be calculated in O(n) and is given by

xj =


bj for j = 1, . . . ,s− 1,

D −∑s−1
j=1 bj for j = s,

0 for j = s + 1, . . . ,n,

where the so-called split node s ∈ {1, . . . ,n} is such that
s−1∑
j=1

bj < D ≤
s∑

j=1
bj.

The optimality of this solution can be demonstrated by considering the dual of the linear
program P1LP, as it is done by Klose (2008). Throughout the article, it is assumed that
e1 ≤ e2 ≤ · · · ≤ en. This ordering is required by various steps of our algorithm. Even if
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the nodes were not initially sorted, computing ZLP
LB could still be done in O(n) using the

algorithm of Balas and Zemel (1980) to determine the split node in linear time.

3.1.2. Greedy upper bound

Görtz and Klose (2009) analyzed a range of popular greedy algorithms for the SSFCTP
and showed that the upper bounds they offer can be arbitrarily bad. Nevertheless, it can
be useful to derive a simple upper bound from the optimal solution x∗ to P1LP in O(n).
Our slightly modified version of the greedy algorithm for the SSFCTP uses Definition 4
to improve this classical method from the literature. Let p be the maximal element of
the set of nodes {1, . . . ,s} with respect to the strict total order ≺. Also, let us denote
by k= min{∑s

i=1 bi−D, bp} the number of additional units that can be supplied by node s

instead of node p without violating constraint (1.3). A feasible solution to P1 is given by
(x, y), where

yj =

1 for j = 1, . . . ,s,

0 for j = s + 1, . . . ,n,

xj =


x∗

j − k · 1(j = p) for j = 1, . . . ,s− 1,

x∗
j + k · 1(j ̸= p) for j = s,

0 for j = s + 1, . . . ,n.

The objective value of this solution is ZG
UB=ZLP

LB+fs−(es−cs)x∗
s−k(cp−cs). Increasing the

number of units used on the split node by k to reduce the number of units ordered from node
p lowers the objective value by k(cp−cs) compared to the classical greedy upper bound, in
which nodes j = 1, . . . ,s−1 are completely used and node s provides the remaining demand.

3.2. Knapsack relaxation

We now introduce a transformation of P2, noted P3, in which constraint (2.3) is relaxed,
and the decision variables zj are removed. Furthermore, the reimbursement rate ∑n

j=1 cjzj

per excess unit is replaced by a multiplier λ≥0, which can be interpreted as an approximation
of the unit cost of the partial node, if it exists. This relaxation of P2 corresponds to a min-
KP, with weight bj and cost (cj−λ)bj+fj on item j ∈ {1, . . . ,n}, and demand D. The
following problem can be transformed into a standard KP using the procedure provided in
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Martello and Toth (1990).

[P3] Z3(λ) = min
n∑

j=1
(cjbj + fj)yj −

( n∑
j=1

bjyj −D
)

λ (3.3)

= λD + min
n∑

j=1

(
(cj − λ)bj + fj

)
yj (3.4)

s.t. (1.4),(2.2).

Let S1 ⊆ Nn×{0,1}n, S2 ⊆ {0,1}n×{0,1}n and S3 ⊆ {0,1}n denote the feasible sets
of problems P1, P2 and P3, respectively. Important subsets of solutions for each of these
models are now introduced. We note:

• S̃1 ⊆ S1 the set of feasible solutions (x1,y1) to P1 in which only the critical node
p(y1) can be partial and no fixed cost is unnecessarily paid (i.e. y1

j ≤ x1
j ∀j).

• S̃2 ⊆ S2 the set of feasible solutions (y2, z2) to P2 such that z2
p(y2) = 1.

• S̃3 ⊆ S3 the set of feasible solutions y3 to P3 that respect the following inequality:
n∑

j=1
bjy

3
j−D ≤ bp(y3)−1. (3.5)

In a solution y3 ∈ S̃3, the nodes j such that y3
j =1 are used and, among them, the critical

node p(y3) is the only one that can be partial. The number of units supplied by the critical
node is given by the difference between the demand D and the total offer of the nodes of
set N(y3) \ {p(y3)}. This difference ranges between 1 and bp(y3), by inequalities (2.2) and
(3.5). Consequently, y3 is associated with the solution of S̃2 in which the same nodes are
used. Formally, S̃1, S̃2 and S̃3 are linked through the following bijections.

• f̃3,2 : S̃3 → S̃2, f̃3,2(y3) = (y3,z2), where z2
j = 1(j=p(y3)), ∀ j∈{1, . . . ,n}.

• f̃2,1 : S̃2 → S̃1, f̃2,1(y2, z2) = (x1,y2), where x1
j = bjy

2
j−(∑n

i=1 biy
2
i−D)z2

j , ∀
j ∈ {1, . . . ,n}.
• f̃3,1 : S̃3 → S̃1, f̃3,1(y3) = f̃2,1

(
f̃3,2(y3)

)
.

Let (x1,y1), (y2,z2) and y3 be feasible solutions to P1, P2 and P3, respectively. Their
objective values are denoted by Z1(x1,y1), Z2(y2,z2) and Z3(λ, y3), where λ≥0 is a given
multiplier. The bijections defined above can be used to identify the feasible solutions to P2
and P1 associated with a solution y3 ∈ S̃3. Their objective value is obtained from Z3(λ, y3)
by replacing the anticipated reimbursement rate λ by the unit cost of the critical node p(y3).
This leads to the following equalities.

Z1
(
f̃3,1(y3)

)
= Z2

(
f̃3,2(y3)

)
= Z3(λ, y3) +

( n∑
j=1

bjy
3
j −D

)
(λ− cp(y3)) (3.6)

By construction, S̃2 is composed of the feasible solutions to P2 that respect constraint
(2.7). By Proposition 5, at least one of them is thus optimal. Therefore, there exists a
feasible solution to P3 to which the bijections f̃3,2 and f̃3,1 can be applied to produce an
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optimal solution to both formulations P2 and P1 of the SSFCTP. The next propositions
state other essential properties of P3 that are exploited throughout the algorithm.
Proposition 6. Z3(λ) is a lower bound on the objective value of any solution to the SSFCTP
that does not contain a partial node or contains a partial node whose unit cost is less than
or equal to λ.

Proof. Such a solution corresponds to an element (y2, z2) of S2 respecting either∑n
j=1 bjz

2
j−D = 0 (if the solution does not contain a partial node) or ∑n

j=1 cjz
2
j ≤ λ (if

the solution contains a partial node whose unit cost is inferior or equal to λ). Furthermore,
since (y2, z2) ∈ S2, the vector y2 is also a feasible solution to P3 and provides an upper
bound on the optimal value Z3(λ) of P3 for multiplier λ. The expected inequality follows:

Z3(λ) ≤ Z3(λ, y2)

=
n∑

j=1
(cjbj + fj)y2

j −
( n∑

j=1
bjy

2
j −D

)
λ

≤
n∑

j=1
(cjbj + fj)y2

j −
( n∑

j=1
bjy

2
j −D

) n∑
j=1

cjz
2
j

= Z2(y2, z2)

If the solution does not contain a partial node, the second inequality holds with equality.
Otherwise, it follows from the demand constraint (2.2) and the fact that ∑n

j=1 cjz
2
j ≤ λ. □

Proposition 7. The function Z3(λ) is non-increasing and concave for λ ≥ 0.
Proof. For any solution y3 ∈ S3, ∂Z3(λ,y3)

∂λ
= −(∑n

j=1 bjy
3
j −D) ≤ 0. Since the multiplier

λ does not affect the feasible domain of P3, Z3(λ) is non-increasing.
Let g(λ) be the equation of the line joining two points

(
λ0, Z3(λ0)

)
and

(
λ1, Z3(λ1)

)
in

the plane, where 0≤λ0<λ1. This equation is given by

g(λ) = Z3(λ0)− (λ− λ0)
Z3(λ0)− Z3(λ1)

λ1 − λ0
.

To prove the concavity, we show that inequality g(λ)≤Z3(λ) holds for any λ ∈ [λ0, λ1]. As
g(λ0)=Z3(λ0) and g(λ1)=Z3(λ1), the result is trivial at the limits of the interval [λ0, λ1].
Now, let us consider the case λ0<λ<λ1. Let yλ be an optimal solution to P3 for multiplier
λ. For multiplier λ0, the objective value Z3(λ0, yλ) of this solution, which can be obtained
from Z3(λ) by replacing the reimbursement rate λ by λ0, is an upper bound on the optimal
value Z3(λ0). Furthermore, the demand constraint (2.2) implies that (∑n

j=1 bjy
λ
j−D)≥0.
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Hence, we have:

Z3(λ0) ≤ Z3(λ0, yλ)

⇐⇒ Z3(λ0) ≤ Z3(λ)−
( n∑

j=1
bjy

λ
j −D

)
(λ0 − λ)

⇐⇒ Z3(λ0)− Z3(λ)
(λ− λ0)

≤
( n∑

j=1
bjy

λ
j −D

)

Similarly, since Z3(λ1) is the optimal value of P3 for multiplier λ1, the objective value
Z3(λ1, yλ) is greater than or equal to Z3(λ1). By applying the same steps as above, we
obtain the following inequality.

Z3(λ)− Z3(λ1)
(λ1 − λ) ≥

( n∑
j=1

bjy
λ
j −D

)

The two previous inequalities lead to the expected lower bound on Z3(λ).

Z3(λ0)− Z3(λ)
(λ− λ0)

≤ Z3(λ)− Z3(λ1)
(λ1 − λ)

⇐⇒ Z3(λ) ≥
(

λ− λ1

λ0 − λ1

)
Z3(λ0)−

(
λ− λ0

λ0 − λ1

)
Z3(λ1)

⇐⇒ Z3(λ) ≥ Z3(λ0)− (λ− λ0)
Z3(λ0)− Z3(λ1)

λ1 − λ0

⇐⇒ Z3(λ) ≥ g(λ)

□

3.3. Heuristic search

This section presents P3Search, the algorithm we use to select the set L of multipliers λ

for which model P3 is solved in the heuristic phase of KTA. Given an optimal solution yλ to
P3 for each multiplier λ ∈ L, we propose new lower and upper bounds, which are detailed
in Sections 3.3.1 to 3.3.4.

Adding multipliers to L generally improves these bounds, but solving a high number of
KPs is computationally cumbersome. In order to optimize the overall performance of KTA,
the goal of P3Search is thus to select a small set of multipliers L that nevertheless makes
the bounds relatively tight.

The algorithm starts by solving P3 for λ= min
{
es, maxj∈{1,...,n}{cj}

}
. In the subsequent

steps, λ is set to the highest unit cost among the nodes that are selected in the previous
solution. This process is repeated until a multiplier is visited twice, λ exceeds the linearized
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Algorithm 1 P3Search
1: L← ∅
2: λ← min

{
es, maxj∈{1,...,n}{cj}

}
3: do
4: yλ ← arg miny∈S3

{
Z3(λ, y)

}
5: L← L ∪ {λ}
6: λ← maxj∈{1,...,n}{yλ

j cj}
7: while (λ /∈ L and λ ≤ es and ∑n

j=1 bjy
λ
j > D)

cost of the split node, or a solution without a partial node is found. Additional comments
are given in Section 3.3.5 on the choice of the initial multiplier value.

3.3.1. Upper bound ZP3
UB on the optimal value

An upper bound on the optimal value Z1=Z2 of the SSFCTP is obtained from the
solutions yλ computed in the heuristic search. It is given by ZP3

UB = minλ∈L{ZP3
UB(λ)}, where

ZP3
UB(λ) =

Z1(f̃3,1(yλ)) if yλ ∈ S̃3,∑n
j=1(cjbj + fj)yλ

j − (cp(yλ)bp(yλ) + fp(yλ)) otherwise.

If yλ∈S̃3, then f̃3,1(yλ) is a feasible solution to P1 and its objective value Z1(f̃3,1(yλ)) is
therefore an upper bound on Z1. Otherwise, inequality (3.5) is not respected, which implies
that the total offer of the nodes of set N(yλ) \ {p(yλ)} is greater than or equal to D. Their
total cost is thus a valid upper bound on Z1, since all the costs cj and fj are assumed to be
nonnegative.

3.3.2. Lower bounds CP3
min on the partial node’s unit cost

Two lower bounds CP31
min and CP32

min on the variable cost of the partial node of any solution
of S̃1 that may improve the incumbent value ZP3

UB are now introduced. By excluding potential
partial nodes, they contribute to reducing the number of knapsack subproblems that need
to be solved during the exact phase of KTA.

Let yλ be the optimal solution to P3 for a given multiplier λ ∈ L. If yλ ∈ S̃3 and λ=cp(yλ),
then ZP3

UB(λ)=Z3(λ). In this case, by Proposition 6, the objective value of a solution of S̃1

that includes a partial node p with a unit cost cp≤λ cannot be less than ZP3
UB(λ). A first

lower bound is thus given by CP31
min= max M , where M={λ∈L : yλ∈S̃3 and λ=cp(yλ)}. In the

case where M is empty, this bound cannot be computed and CP31
min=0.

If max L>CP31
min , then another bound may improve CP31

min . Consider the multipliers
λ0= max

{
λ∈L : Z3(λ)>ZUB

}
and λ1= min

{
λ∈L : Z3(λ)<ZUB

}
, where ZUB is the best

known upper bound on Z1. Let g(λ) be the equation of the line joining points (λ0, Z3(λ0))
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and (λ1, Z3(λ1)), and let λ∗ ∈ (λ0, λ1) be the multiplier such that g(λ∗)=ZUB. By the con-
cavity of Z3(λ), this multiplier respects Z3(λ∗)≥g(λ∗). Therefore, it follows from Proposition
6 that the objective value of a solution in which the unit cost of the partial node is less than
or equal to λ∗ cannot be less than ZUB. The resulting bound is given by

CP32
min =

λ∗ = λ0 + (λ1 − λ0) Z3(λ0)−ZUB
Z3(λ0)−Z3(λ1) if max L > CP31

min ,

0 otherwise.

We denote the best lower bound on the partial node’s unit cost that is extracted from
the solutions collected in P3Search by CP3

min= max{CP31
min , CP32

min}.

3.3.3. Lower bound ZP3
LB(p) given that node p is partial

A lower bound on the objective value of any solution of S̃1 in which a specific node
p ∈ {1, . . . ,n} is partial can also be obtained. This bound is defined as:

ZP3
LB(p) =

Z3(cp) if cp ∈ L,

Z3(λ0)− (cp − λ0)Z3(λ0)−Z3(λ1)
λ1−λ0

otherwise,

where λ0= max {λ∈L : λ<cp} and λ1= min{λ∈L : λ>cp}.
The validity of the lower bound Z3(cp) is directly given by Proposition 6. If cp /∈ L, using

the concavity of function Z3(λ), then Z3(cp) is approximated from below by interpolating
points (λ0, Z3(λ0)) and (λ1, Z3(λ1)).

3.3.4. Lower and upper bounds LBP3
xp

and UBP3
xp

on xp given that p is partial

The last bounds that are computed in this step of KTA are on the number of units that
can be ordered from node p given that it is partial.

Let (x1, y1) ∈ S̃1 be a solution whose critical node is given by p(y1)=p. It follows from
the definition of S̃1 that y1 is also an element of S̃3. Hence, by equation (3.6), the inequality
Z1(x1, y1)<ZUB can be written as

Z3(λ, y1) +
( n∑

j=1
bjy

1
j −D

)
(λ− cp) < ZUB

for any multiplier λ≥0. Since Z3(λ, y1) is an upper bound on Z3(λ) by construction, the
inequality

Z3(λ) +
( n∑

j=1
bjy

1
j −D

)
(λ− cp) < ZUB
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must hold for each λ ∈ L for (x1, y1) to improve the incumbent solution to P1. This is
equivalent to the following conditions.

n∑
j=1

bjy
1
j −D >

Z3(λ)− ZUB

cp − λ
∀λ ∈ L : λ < cp,

n∑
j=1

bjy
1
j −D <

Z3(λ)− ZUB

cp − λ
∀λ ∈ L : λ > cp.

As any solution of S̃1 includes at most one partial node, the number of units taken from
p is directly given by xp = bp− (∑n

j=1 bjy
1
j −D). Also, the excess supply is always an integer.

This leads to the following bounds.

LBP3
xp

= bp − min
{λ∈L:λ>cp}

{⌈
Z3(λ)− ZUB

cp − λ
− 1

⌉}
,

UBP3
xp

= bp − max
{λ∈L:λ<cp}

{⌊
Z3(λ)− ZUB

cp − λ
+ 1

⌋}
.

When considering solutions where node p is partial, we can therefore narrow down our
search to solutions in which LBP3

xp
≤ xp ≤ UBP3

xp
.

3.3.5. Choice of initial multiplier λ in P3Search

Initial experiments have shown that taking λ= min
{
es, maxj∈{1,...,n}{cj}

}
as the initial

multiplier generally minimizes the overall execution time of KTA. This is due to the fact
that it is frequent for the equality ∑n

j=1 bjy
λ
j =D to hold although this value of λ tends

to overestimate the unit cost cp(yλ) of the critical node and therefore favors solutions with
excess offer. If the total offer of the nodes of set N(yλ) is equal to D for this multiplier,
and if maxj∈{1,...,n}{cj}≤es, then CP3

min= maxj∈{1,...,n}{cj}. This means that any solution that
includes a partial node can be ignored and f̃3,1(yλ) is therefore optimal. This case is frequent
enough and the execution time reduction associated with this early proof of optimality
sufficiently large to justify this choice of initial multiplier.

Another reasonable choice would be λ= maxj∈{1,...,s}{cj}. This initial multiplier gen-
erally leads to identifying the best reachable upper bound ZP3

UB in fewer iterations, since
maxj∈{1,...,s}{cj} is usually a better approximation of the maximum unit cost among the
nodes that are used in an optimal solution than min

{
es, maxj∈{1,...,n}{cj}

}
. However, this

advantage generally does not compensate for the weaker bound CP3
min in the overall perfor-

mance of the algorithm.

3.4. Dominance relation

Some of the most expensive calculations of KTA are performed after selecting a specific
partial node and must be repeated for each node that may still be partial in an optimal
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solution. Consequently, the efficiency of the algorithm relies in good part on our ability to
exclude a significant proportion of candidates before performing these calculations. For the
remaining nodes p ∈ {1, . . . ,n}, restricting the number of units xp they can supply given
that they are partial to a narrow interval [LBxp , UBxp ] can still reduce the computing time.
The following dominance relation, by seeking to improve the bounds of Section 3.3.4, serves
both of these purposes.
Definition 8. If q is a node such that q ≻ p and fq ≤ fp, then p is said to be dominated by
q as a partial node when supplying any number of units xp ≤ LBDom

xp
(q), where

LBDom
xp

(q) =


bq if cq = cp,

min
{

fp−fq

cq−cp
, bq

}
otherwise.

Indeed, for any solution (x1,y1) ∈ S̃1 in which the partial node p supplies no more than
LBDom

xp
(q) units, p can be replaced by the unused node q to obtain a feasible solution with an

objective value of at most Z1(x1,y1). This leads to the following lower bound on xp given
that p is partial.
Proposition 9. Let LBDom

xp
be defined as follows.

LBDom
xp

= max{
q∈{1,...,n}:q≻p and fq≤fp

}{⌊LBDom
xp

(q) + 1⌋
}

(3.7)

There exists an optimal solution in S̃1 in which p is not partial or xp ≥ LBDom
xp

.
Proof. Let (x1, y1) ∈ S̃1 be a solution that contains a partial node p supplying

x1
p≤LBDom

xp
(q) units, where q≻p respects fq≤fp. Since node p is partial and q≻p, the defini-

tion of S̃1 implies that x1
q=y1

q=0. From there, a modified solution (x′, y′) can be built from
(x1, y1) by setting x′

p=y′
p=0, y′

q=1, and x′
q=x1

p. This modification corresponds to using x1
p

units from node q instead of node p, which becomes unused. Since bq≥LBDom
xp

(q) by definition
of the dominance relation, and since LBDom

xp
(q)≥x1

p by hypothesis, (x′, y′) remains a feasible
solution to P1. It also respects the definition of S̃1, as q is by construction the critical node
associated with y′.

From there, it suffices to show that Z1(x′, y′)≤Z1(x1, y1) to conclude that (x1, y1) does
not need to be considered to identify an optimal solution. Since the changes made to (x1, y1)
modify the objective value by fq−fp+x1

p(cq−cp), this is done by proving that this value is
nonpositive.

First, if cq=cp, then fq−fp+x1
p(cq−cp) = fq−fp. Since fq≤fp by hypothesis, this value is

indeed nonpositive.
Since q≻p, the other possibility is that cq>cp. In this case, it follows from the def-

inition of the dominance relation that LBDom
xp

(q)≤fp−fq

cq−cp
. Furthermore, x1

p≤LBDom
xp

(q) by
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hypothesis. Therefore, replacing xp by its upper bound fp−fq

cq−cp
allows us to conclude that

fq−fp+x1
p(cq−cp) ≤ fq−fp+fp−fq

cq−cp
(cq−cp) = 0.

The lower bound LBDom
xp

corresponds to the smallest number of units xp for which the
previous construction does not prove the existence of a solution (x′, y′) ∈ S̃1 with critical
node q≻p such that Z1(x′, y′)≤Z1(x1, y1). □

3.5. Strong linear relaxation

By taking advantage of the theory developed in Section 3.2, the classical linear relax-
ation of the SSFCTP can be adapted to pursue the same objective as the previous section.
We propose a stronger linear relaxation that is computationally more demanding than the
dominance relation but leads to a better lower bound on xp given that node p is partial. It
also offers an upper bound on this same variable, as well as a lower bound ZLP

LB(p) that aims
to improve the one described in Section 3.3.3.

3.5.1. Lower bound ZLP
LB(p) given that node p is partial

Given a partial node p and previously computed bounds LBxp≤xp≤UBxp , the fixed cost fp

and the cost cpLBxp of the minimal number of units it has to supply must first be paid. Then,
each node i≻p must be fixed as unused for the solution to be an element of S̃1. Finally, the
remaining demand must be satisfied using the set of nodes {i1, . . . ,iñ} = {i∈{1, . . . ,n} : i≺p}
and the UBxp−LBxp units that can still be supplied by p. The resulting problem corresponds
to a SSFCTP with demand D̃=D−LBxp defined on the set of suppliers {i1, . . . ,iñ,iñ+1},
where biñ+1=UBxp−LBxp , fiñ+1=0 and ciñ+1=cp. If ∑ñ+1

j=1 bij
<D̃, then the demand constraint

cannot be respected. This means that fixing node p as partial and imposing constraint
LBxp≤xp≤UBxp cannot lead to a solution in S̃1. Otherwise, a lower bound Z̃LP

LB on the
optimal value Z̃1 of the SSFCTP subproblem can be obtained by solving its LP relaxation.

The following value is therefore a valid lower bound on the objective value of any solution
(x1, y1) ∈ S̃1 respecting LBxp≤xp≤UBxp .

ZLP
LB(p) =

fp + cpLBxp + Z̃LP
LB if ∑ñ+1

j=1 bij
≥ D̃,

+∞ otherwise.

It follows that node p no longer needs to be considered as a potential partial node if
ZLP

LB(p)≥ZUB, where ZUB is the incumbent objective value.

3.5.2. Lower and upper bounds LBLP
xp

and UBLP
xp

on xp given that p is partial

When ZLP
LB(p)<ZUB, the number of units node p can supply given that it is partial can

be bounded based on the optimal solution x̃ of the strong linear relaxation. The lower
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and upper bounds LBLP
xp

and UBLP
xp

are the lowest and highest number of units that can be
ordered from node p without the optimal value of the subproblem to reach ZUB.

Without lost of generality, it is assumed that nodes i1, . . . ,iñ are sorted in non-decreasing
order of linearized cost. The split node of the strong linear relaxation is then denoted by
s̃= max

{
j∈{1, . . . ,ñ} : x̃ij

≥1
}
.

The lower bound LBLP
xp

is obtained by taking the cheapest remaining units from nodes
is̃, is̃+1, . . . ,iñ to reduce the number of units LBxp+x̃iñ+1 that are ordered from the partial
node. Each time a unit is supplied by a node i ∈ {is̃, is̃+1, . . . ,iñ} instead of iñ+1, the objective
value increases by (ei−cp). This process is repeated until the objective value of the solution
reaches ZUB, all the nodes except iñ+1 are used to capacity, or xiñ+1=0. The resulting lower
bound is LBLP

xp
=LBxp+xiñ+1 , where xiñ+1 is the smallest number of units for which the value

of the solution remains less than ZUB.
Similarly, UBLP

xp
is computed by removing from the solution the most expensive units

supplied by nodes is̃, is̃−1, . . . ,i1 while increasing xiñ+1 to x̃iñ+1+1, x̃iñ+1+2, and so on. In
this case, each time a unit is supplied by the partial instead of node i ∈ {is̃, is̃−1, . . . ,i1},
the objective value increases by (cp−ei). This process is repeated until the objective value
reaches ZUB, all the nodes but iñ+1 are unused, or xiñ+1=biñ+1 . The resulting upper bound is
UBLP

xp
=LBxp+xiñ+1 , where xiñ+1 is the largest number of units for which the objective value

is less than ZUB.
It is worth noticing that LBLP

xp
and UBLP

xp
can only improve the previous lower and upper

bounds LBxp and UBxp if x̃iñ+1>0 and x̃iñ+1<biñ+1 , respectively.

4. Filtering
The various bounds described in the previous section generally restrict the set of nodes

that can be partially used to a very small subset of suppliers P ⊆ {1, . . . ,n}. From there, a
knapsack subproblem will need to be solved for each of the remaining candidates p ∈ P . To
reduce as much as possible the number of items in each of these subproblems, a filtering of
the non-partial nodes is carried out beforehand.

4.1. Linear filtering

As mentioned by Klose (2008), not using a node j<s increases the LP bound by at
least bj(es−ej), since bj units must then be taken from suppliers i≥s instead of supplier
j. Hence, if ZLP

LB+bj(es − ej)>ZUB, then node j cannot be unused in an optimal solution.
Similarly, ZLP

LB increases by at least bj(ej−es) when node j>s is complete. Therefore, if
ZLP

LB+bj(ej−es)>ZUB, then j cannot be complete in an optimal solution.
After designating a specific partial node, these rules allow us to fix non-partial nodes j<s

as complete and non-partial nodes j>s as unused.
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4.2. Restricted filtering

The solutions that can be obtained during the exact phase of KTA always contain a
partial node p ∈ P . Denoting by q the maximal element of the strictly totally ordered set
(P,≺), it follows from the definition of S̃1 that any node j≻q must be unused in the solution
of each remaining subproblem. This leads to the following reformulation of the LP relaxation
P1LP.

[P1LP(q)] ZLP
LB(q) = min

n∑
j=1

ejxj (4.1)

s.t. (1.2),

0 ≤ xj ≤
(
1− 1(j ≻ q)

)
bj for j = 1, . . . ,n. (4.2)

This problem corresponds to the linear program P1LP defined on the subset of suppliers
Q=

{
j∈{1, . . . ,n} : j≺q or j=q

}
. Consequently, its optimal solution is obtained as explained

in Section 3.1.1. Applying the linear filtering of Section 4.1 to this restricted LP relaxation
leads to the so-called restricted filtering.

4.3. Strong restricted filtering

Let x∗ be the optimal solution to P1LP(q) and sq ∈ Q its split node, defined as follows:
sq−1∑
i=1
i∈Q

bi < D ≤
sq∑

i=1
i∈Q

bi.

The linear filtering of Section 4.1 is already strengthened in Section 4.2 by forcing all
the nodes that are not part of set Q to be unused. However, an even stronger bound can
be calculated for each node j ∈ Q when the remaining offer bsq−x∗

sq on the split node or
the number x∗

sq of units it supplies is insufficient for bj more units to be taken (if j<sq) or
unused (if j>sq) from sq. In the case where j<sq, fixing xj to 0 increases the bound ZLP(q)
by

k0
j = −bjej + (bsq − x∗

sq)esq +
tj−1∑

i=sq+1
i∈Q

biei +
(

bj − (bsq − x∗
sq)−

tj−1∑
i=sq+1

i∈Q

bi

)
etj .

After removing the bj units that were supplied by node j from the solution, the bsq−x∗
sq

remaining units of the split node sq are used, after what the residual demand is fulfilled
using nodes sq+1, . . . ,tj ∈ Q. The last node that is added to the solution, denoted by tj,
corresponds to the split node of model P1LP(q) given that xj = 0. If the total offer of the
nodes of set Q \ {j} is less than D, then this problem is infeasible, and k0

j is fixed to +∞.
Analogously, for a node j>sq such that bj>x∗

sq , reducing the number of units that are
supplied by nodes sq,sq−1, . . . rj ∈ Q by bj in order to use node j completely increases the
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lower bound ZLP(q) by

k1
j = bjej − x∗

sqesq −
sq−1∑

i=rj+1
i∈Q

biei −
(

bj − x∗
sq −

sq−1∑
i=rj+1

i∈Q

bi

)
erj ,

where rj, which is the last node to supply a reduced number of units, respects
sq−1∑

i=rj+1
i∈Q

bj < bj − x∗
sq ≤

sq−1∑
i=rj

i∈Q

bj.

In summary, ZLP(q)+k0
j corresponds to the optimal value of model P1LP(q) when supplier

j<sq is unused whereas ZLP(q)+k1
j is the optimal value of this same problem when supplier

j>sq is complete. Let us define the two following sets of nodes:

R =
{
j ∈ {1, . . . ,sq − 1} ∩Q : ZLP(q) + k0

j > ZUB
}
,

T =
{
j ∈ {sq + 1, . . . ,n} ∩Q : ZLP(q) + k1

j > ZUB
}
.

After fixing a partial node p ∈ P , the problem can thus be reduced by fixing each node
j ∈ R \ {p} as complete and each node j ∈ T \ {p} as unused. As will be seen in Section 7,
this method filters the vast majority of suppliers for all the classes of problems we consider.

5. Exact method
After solving P3 for each multiplier λ ∈ L as described in Section 3.2, if the incumbent

value ZUB is such that ZUB≤Z3(λ) for at least one value λ≥0, then it follows from Proposition
6 that any solution that can improve the current upper bound must contain a partial node.
The exact phase of KTA thus consists in solving P1 given that node p is partial for each
remaining candidate p ∈ P concludes the algorithm. This approach owes its efficiency to the
very small cardinality of P at this point and to the fact that the filtering methods of Section
4 fix the vast majority of the decision variables for each subproblem.

5.1. Knapsack transformation

Model P1 can be reduced to a min-KP when it is given that a specific node p ∈ P is
partial. After paying for the fixed cost of the partial node and the minimal number of units
LBxp it must supply, the problem reduces to selecting which nodes j ∈ {1, . . . ,p−1,p+1,n} to
use completely and how many additional units to take from p in order to fulfill the residual
demand D−LBxp at the lowest possible cost. In the following min-KP, each item j ∈
{1, . . . ,p−1,p+1, . . . ,n} costs uj=cjbj+fj and weighs bj. The residual offer b̂p=UBxp−LBxp

of the partial node is decomposed into dp=⌊log2(b̂p)⌋+1 items j ∈ {n+1, . . . ,n+dp} whose
weights bj are respectively 20,21, . . . ,2dp−2 and b̂p−(2dp−1 − 1), and whose costs are given
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by uj=cpbj. This decomposition method, which has been introduced by Martello and Toth
(1990) to transform the bounded knapsack problem into a standard KP, makes it possible
to use any number of additional units {0,1, . . . ,b̂p} from the partial node by selecting one of
the 2dp possible subsets of the items {n+1, . . . ,n+dp}.

[P1(p)] Z1(p) = (cpLBxp + fp) + min
n+dp∑
j=1
j ̸=p

ujyj (5.1)

s.t.
n+dp∑
j=1
j ̸=p

bjyj = D − LBxp , (5.2)

yj ∈ {0,1} for j = 1, . . . ,p−1,p+1, . . . ,n + dp. (5.3)

Solving P1(p) for each node p ∈ P constitutes the exact phase of KTA and marks the
end of the algorithm. Note that restricting our search to solutions of set S̃1 allows us to fix
yj=0 for each node j ∈ {1, . . . ,p−1,p+1, . . . ,n} such that j≻p.

6. Outline of KTA
This section summarizes the overall steps performed by our algorithm. Knapsack sub-

problems are solved in both the heuristic and exact phases. To do so, COMBO, the state-
of-the-art algorithm presented in Martello et al. (1999), is used with its default parameters.

6.1. Heuristic phase

The execution of the algorithm begins with the heuristic phase, which essentially consists
of calculating the bounds given in Section 3.
Step H1).

(1) Calculate the lower and upper bounds ZLP
LB and ZG

UB. Set the global lower and upper
bounds ZLB and ZUB to ZLP

LB and ZG
UB, respectively.

(2) If ZLB=ZUB, then the greedy solution is optimal. Terminate the algorithm.
The time complexity of this step is O(n).
Step H2).

(1) Apply P3Search. Terminate the execution after five iterations if the halting condi-
tions have not been met earlier.

(2) Compute the upper bound ZP3
UB. Update ZUB and the incumbent solution. If

ZUB≤Z3(λ0), where λ0= min L, then proceed to point 3. Otherwise, solve P3 for
λ=0 and update the incumbent solution accordingly. Since ZP3

UB(0)≤Z3(0) by con-
struction, it follows from Proposition 6 that solutions without a partial node can now
be ignored.
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(3) Calculate the lower bound CP3
min on the partial node’s unit cost.

(4) Let P=
{
j∈{1, . . . ,n} : cj>CP3

min

}
be the set of nodes that could strictly improve the

incumbent solution when fixed as partial. For each node p ∈ P , calculate the lower
bound ZP3

LB(p) and initialize ZLB(p) to this value. Remove p from P if ZLB(p)≥ZUB.
Otherwise, set the bounds LBxp and UBxp to LBP3

xp
and UBP3

xp
, respectively.

(5) If P=∅, then an optimal solution has been found. Terminate the algorithm.
The dominant operation of this step is the execution of the P3Search algorithm. Since P3 is
solved for at most a constant number of multipliers λ, the time complexity of this step is the
same as solving a KP with n items and capacity ∑n

j=1 bj−D. It is given by O(2t−s+1) in the
worst case, where s and t correspond to the bounds of the decision core built in COMBO.
Step H3).

(1) For each node p ∈ P , update the current bound LBxp by computing LBDom
xp

. For com-
putational efficiency concerns, only consider suppliers q ∈ P as potential dominant
nodes in (3.7). Remove p from P if LBxp>UBxp .

Denoting the remaining number of candidate partial nodes at the beginning of a given step
S by |P (S)|, the time complexity of H3 is bounded by O(|P (H3)|2).
Step H4).

(1) For each node p ∈ P , calculate ZLP
LB(p) and update ZLB(p) accordingly. If ZLB(p)≥ZUB,

remove p from P . Otherwise, calculate LBLP
xp

and UBLP
xp

to improve the bounds LBxp

and UBxp .

(2) If P=∅, then an optimal solution has been found. Terminate algorithm.

(3) If the optimal solution does not have a partial node, it has necessarily already been
found during step H2. Setting the global lower bound ZLB to minp∈P{ZLB(p)} is
therefore valid and terminates the heuristic phase.

Using a naive implementation, the time complexity of H4 is O(|P (H4)| · n). However,
respecting the strict total order ≺ on the nodes of set P when computing the values
ZLP

LB(p) makes it possible to efficiently adjust the solution to the strong linear relaxation
when updating the partial node p. Doing so, the complexity of this step is reduced to
O
(
n log(n) + |P (H4)| ·min{n, max{bj}

min{bj} }
)
.

6.2. Filtering phase

The filtering phase is applied prior to the exact phase in order the reduce the size of the
subproblems P1(p) associated with the remaining nodes p ∈ P .
Step F).
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(1) Execute the restricted filtering of Section 4.2 to identify nodes j ∈ {i∈Q : i<sq} that
cannot be unused and nodes j ∈ {i∈Q : i>sq} that cannot be complete in an optimal
solution (x1, y1) ∈ S̃1.

(2) Apply the strong restricted filtering of Section 4.3 to the nodes that have not been
fixed by the restricted filtering. The resulting sets R and T contain lists of nodes
j ∈ Q that must be complete and unused in a solution (x1, y1) ∈ S̃1 to P1(p) for any
node p ∈ P such that p ̸=j.

The time complexity of this step is O
(
n ·min{n, max{bj}

min{bj} }
)

in the worst case.

6.3. Exact phase

The algorithm terminates by solving P1(p) for each remaining candidate p ∈ P .
Step E).

(1) For each element p ∈ P , set yj=1 for each node j ̸=p such that j ∈ R and yj=0 for
each node j ̸=p such that j ∈ T or j≻p, then solve the reduced problem P1(p). If
Z1(p)<ZUB, update the incumbent solution. At the end of this step, the incumbent
solution (x∗,y∗) ∈ S̃1 is optimal.

The exact phase has a complexity of O(|P (E)| · 2t−s+1), where s and t correspond to the
bounds of the decision core built in COMBO.

In summary, a total of O(1+|P (E)|) KPs need to be solved during steps H2 and E.
The time complexity of the other steps of KTA is bounded by O

(
n log(n) + |P (H3)|2 + n ·

min{n, max{bj}
min{bj} }

)
⊆ O(n2).

7. Computational experiments
There are two main objectives guiding our computational experiments. The first is to

compare the performance of our algorithm with that of the state-of-the-art algorithms from
the SSFCTP literature and a recent MIP solver on a range of original and existing classes of
instances. The second is to provide an in-depth analysis of the performance of KTA and its
constituent steps.

To do so, our algorithm, which has been coded in C, is compared with the original C
implementation of the enumerative algorithm (EA) and the dynamic programming algorithm
(DPA) proposed by Klose (2008), and to Gurobi’s MIP solver (version 9.1.1).

All experiments were conducted on a machine with an Intel(R) i7-10875H CPU
@ 2.30GHz along with 32 GB of RAM operated with Windows 10 Pro using the
Gnu C compiler (version 10.2.0). The instances and detailed results are available at
https://github.com/robinlegault/SSFCTP.
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7.1. Classes of problems

Four classes of problems are considered. The first two groups of instances are inspired
by the uncorrelated and almost strongly correlated instances proposed by Pisinger (2005) for
the KP, while the other two are obtained using the generation methods described by Klose
(2008).

Different numbers of suppliers n are considered for each group. In Group 2, a corre-
lation parameter β also links the linearized cost of the nodes to their capacity. In Group
3, the b-ratio Br=100 · D/

∑n
j=1 bj controls the percentage of the total offer that is used in

a feasible solution, while the f -ratio Fr=f̄/(c̄b̄) is the ratio between the average fixed cost
f̄=(1/n)∑n

j=1 fj and the product of the average unit cost c̄=(1/n)∑n
j=1 cj with the average

capacity b̄=(1/n)∑n
j=1 bj of the suppliers. When generating instances of Group 3, the capac-

ities bj and the fixed costs fj are rescaled to meet the desired b-ratio and f -ratio and are then
rounded to the nearest integer. The experiments are based on the following configurations
of each instance generation method.

• Group 1: n ∈ {500, 1000, 5000, 10000, 25000}
• Group 2: (n,β) ∈ {500, 1000, 5000, 10000, 25000} × {5,10,100,1000}
• Group 3: (n,Br,Fr) ∈ {500, 1000, 5000, 10000} × {5, 10, 25, 50} × {0.3, 0.6, 1}
• Group 4: n ∈ {500, 1000, 5000, 10000}

For each configuration of each class of problems, a group of N=10 instances i ∈
{1, . . . , N} with n suppliers j ∈ {1, . . . , n} has been generated as described in Table 1,
for a total of 770 instances. The uniform random variables used in the generation process
are independently distributed.

Table 1. Instance generation methods

Group 1:
Uncorrelated

Group 2:
Correlated

Group 3:
Uncorrelated,
fixed demand

Group 4:
Correlated,

small capacities
bj unif{0.5n, n} unif{5000, 10000} unif(3, 5) unif{10,100}

uj cjbj + fj
bj + αj · 10000/β,

where αj ∼ unif(−1,1) cjbj + fj unif{bj,2bj}

fj unif{5n, 10n} unif{0.3uj, 0.5uj} unif(3, 5) ϕjuj,
where ϕj ∼ unif(0.75,1)

cj unif(8, 12) (uj − fj)/bj unif(8, 12) (uj − fj)/bj

Di
i

N+1
∑n

j=1 bj
i

N+1
∑n

j=1 bj 100,000 1
2
∑n

j=1 bj

7.2. Computational results

This section presents the average computation time required by KTA, the DPA and EA
of Klose (2008), and Gurobi to solve the instances of each group. We applied a time limit
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of 5 minutes (300,000 ms) per instance for each method. Since the relative optimality gap
given by elementary bounds is generally small for instances with a large number of suppliers,
the optimality tolerance has been set to 0 in order to properly compare the performance of
the algorithms. The other default parameters of the Gurobi MIP solver were left unchanged.

Table 2. Average CPU times (ms), Groups 1, 2, and 4

Group n β KTA DPA EA Gurobi
1 500 - 0.1 28.7 6.6 137.8

1,000 - 0.3 163.4 48.8 192.6
5,000 - 1.1 6,892.7 838.1 1,361.2
10,000 - 2.2 39,541.4 1,943.6 2,665.6
25,000 - 6.0 66,384.5(7) 20,879.1 10,612.9

2 500 5 0.3 1,226.9 2.5 104.7
10 0.3 892.2 4.3 143.0
100 0.5 5,484.6 117.6 1,045.7

1,000 1.6 17,942.9 1,658.4 3,538.3
2 1,000 5 0.4 1,103.9 7.1 124.7

10 0.4 1,446.7 16.9 194.3
100 0.9 10,770.8 766.0 1,623.8

1,000 1.4 56,891.8 7,708.3 5,814.7
2 5,000 5 1.7 7,530.5 367.5 829.6

10 1.7 9,136.5 1,709.7 693.7
100 1.9 79,393.8 31,709.9 13,121.3

1,000 1.7 24,092.2(9) 139,554.8(5) 17,871.7
2 10,000 5 3.2 10,215.4 977.6 2,274.1

10 3.4 8,389.9 3,393.3 3,238.0
100 2.4 84,854.4(6) 107,727.6 26,031.2

1,000 3.4 44,854.4(8) 215,663.3(8) 54,575.1
2 25,000 5 9.0 22,975.6(1) 13,533.5 13,558.3

10 6.2 39,935.5 30,926.3 22,579.6
100 6.7 66,884.5(7) 84,229.2(9) 67,885.7

1,000 6.0 * * 96,583.9
4 500 - 0.1 1.6 5.5 52.2

1,000 - 0.1 3.2 149.6 118.3
5,000 - 0.5 15.0 20,429.4(5) 371.1
10,000 - 0.9 24.5 115.5(8) 760.2

(·) Number of instances, out of 10, that were not solved to optimality within the time limit of 5
minutes (300,000 ms) or could not be solved due to a memory error. The reported average is only
based on the instances that were solved within the time limit.
∗ None of the 10 instances has been solved to optimality within the time limit.

The results of Tables 2 and 3 show that our algorithm significantly outperforms the other
methods for all classes of problems. For Group 1, the running time of KTA grows linearly
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Table 3. Average CPU times (ms), Group 3

n Br KTA, Fr DPA, Fr EA, Fr Gurobi, Fr

0.3 0.6 1 0.3 0.6 1 0.3 0.6 1 0.3 0.6 1
500 5 0.3 0.3 0.3 570.4 1,271.4 1,568.0 0.6 8.5 7.5 77.9 92.3 66.5

10 0.3 0.2 0.3 268.2 335.7 553.5 1.0 3.9 26.4 95.7 120.9 88.1
25 0.3 0.2 0.2 73.8 111.9 112.3 5.1 4.2 14.0 96.5 83.8 108.9
50 0.2 0.1 0.1 24.8 41.6 48.5 4.6 8.3 16.1 90.8 108.8 127.1

1,000 5 0.5 0.5 0.5 348.8 390.1 855.5 3.9 20.0 42.4 85.9 106.8 214.5
10 0.5 0.4 0.4 84.5 240.1 361.9 10.1 44.4 42.1 86.1 149.9 165.7
25 0.4 0.3 0.2 50.2 60.9 73.4 9.5 20.2 31.0 135.2 145.2 171.5
50 0.3 0.1 0.2 19.5 17.3 45.5 6.0 35.8 37.0 178.6 123.6 226.3

5,000 5 2.0 1.1 1.2 84.8 166.4 312.6 157.6 256.6 19,856.7 240.2 325.5 397.0
10 1.7 0.5 0.4 73.5 116.2 116.7 101.8 660.5 337.0 257.1 355.2 324.1
25 1.3 0.4 0.4 34.8 44.0 64.4 62.8 89.3 106.5 355.8 387.1 380.7
50 0.4 0.4 0.4 20.1 30.8 62.9 40.5 83.4 167.1 301.7 398.9 612.8

10,000 5 3.7 1.3 0.9 80.9 155.6 324.3 524.2 3,432.2 13,799.1 433.1 515.4 675.7
10 3.1 0.8 0.8 75.3 167.9 114.8 218.9 414.3 3,123.2 491.2 421.4 736.0
25 2.1 0.8 0.9 21.5 75.9 53.7 72.3 239.0 297.6 424.9 716.0 723.6
50 0.8 0.8 0.7 18.2 35.7 40.1 85.0 229.9 198.0 568.2 826.0 663.7

with n, while the empirical time complexity of DPA and EA shows exponential growth. In
particular, 7 of the 10 instances of size n=25,000 could not be solved by DPA within the
time limit. Interestingly, as the size of the problems increases, the general-purpose Gurobi
MIP solver starts to outperform the state-of-the-art algorithms of Klose (2008).

The same trends emerge even more clearly on the instances of Group 2. Furthermore,
while the computing time required by DPA, EA and Gurobi drastically increases with the
correlation parameter β, the performance of KTA remains essentially unchanged by β for a
given number of suppliers. Moreover, for n=25,000 and β=1,000, where both DPA and EA
were unable to solve a single instance in less than 300,000 ms, KTA only required 6.0 ms on
average, which is less than the 9.0 ms required for the weakly correlated instances obtained
for n=25,000 and β=5. In comparison, the time required by Gurobi was multiplied by more
than 7, from 13,558.3 ms to 96,583.9 ms, for the same pair of configurations. The structure
of the instances of Group 2 can be analyzed to better interpret these results. As β increases,
the linearized cost ej of each node converges to 1, making it more difficult to reduce the size
of the problem using dominance relations and filtering procedures. Consequently, one should
expect the problem to be challenging when both β and n are set to a high value. On the other
hand, as the value of the correlation parameter increases, the problem eventually reduces
to finding a feasible solution in which the excess offer that remains unused on the partial
node is minimized. In particular, for β=∞, the objective value of any feasible solution that
does not include a partial node would reach the linear relaxation lower bound ZLP

LB=D and
its optimality could thus be trivially proven. In this case, the SSFCTP would thus be very
similar to a subset sum problem. Since the capacities bj take their value in a fixed interval
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in the instances of Group 2, finding a subset of nodes whose total capacity is exactly D

becomes easier as the number of nodes increases. Problems with very large values of both
β and n may thus become easy to solve using appropriate approaches. The results confirm
that KTA effectively exploits this structure, which is not the case for DPA, EA, and Gurobi.

The experiments carried out on Groups 3 and 4 also confirm the superiority of our
algorithm over the existing methods. Regarding the instances of Group 3, as noticed by
Klose (2008), the execution time of both DPA and EA increases as the f -ratio approaches 1.
While this same behavior is also observable for Gurobi, KTA shows the opposite tendency.
These results can be interpreted in a similar way to those obtained for the large instances
of Group 2. In the case of Group 3, as Fr increases, the structure of the instances becomes
closer to that of a min-KP, since the contribution to the objective of the fixed costs becomes
proportionally more important. Our approximation of the SSFCTP by a KP thus becomes
more precise, which strengthens the bounds of step H2. This is especially the case for the
largest instances of Group 3. Since the demand D does not depend on n in this generation
method, the largest instances have small capacities bj, which leads to optimal solutions that
generally do not have a partial node or have a partial node that is practically used at capacity.
This also improves the quality of the bounds we obtain by solving P3.

7.3. Frequency of optimal solutions with a partial node

This section presents the proportion of instances of each group for which the optimal
solution contains a partial node. Each entry in Table 4, except for Group 3, has been
calculated on a set of N=100 new instances. We used common random numbers to minimize
the variance in results due to the generation process in order to better isolate the influence
of the parameters on the problem structure. For Group 3, the same set of 120 instances that
were used in the previous section for each value of n has been preserved to cover the range
of f -ratios and b-ratios that were considered by Herer et al. (1996) and Klose (2008).

Table 4. Percentage of instances whose optimal solution includes a partial node

n Group 1 Group 2,
β = 5

Group 2,
β = 10

Group 2,
β = 100

Group 2,
β = 1,000 Group 3 Group 4

500 60 100 97 80 19 90 0
1,000 68 96 92 67 7 58 0
5,000 69 84 76 19 0 9 0
10,000 77 80 66 1 0 1 0
25,000 71 63 47 0 0 - -

This measure is an important indicator of the structure of the SSFCTP. Indeed, for
some groups of instances, the optimal solution never includes a partial node. For such
problems, the distinction between the fixed cost fj and the transportation cost cjbj of a

50



supplier completely disappears, since the total cost uj=cjbj+fj is systematically paid on
each selected node. More importantly, this means that solving a single min-KP, which is
given by model P3 with λ=0, always suffices to find the optimal solution for these instances.
Notably, the optimal solution of the instances of Group 4 never contained a partial node.
Furthermore, when using KTA, P3Search required solving a single KP per instance, and
the bounds of step H2 sufficed in each case to prove the optimality of the resulting solution.
This means that no computations were performed during steps H3, H4, F, and E for the
instances of Group 4. As a consequence, the correlated instances of Klose (2008) can now
essentially be regarded as relatively simple instances of the min-KP.

Also, as opposed to the uncorrelated instances of Group 3, those of Group 1 preserve
the same structure for every problem size, with approximately 70% of the optimal solutions
containing a partial node. This property makes it possible to test the influence of problem
size on the performance of algorithms without introducing a bias in the analysis that would
be due to an underlying transformation of the optimal solution properties.

In this sense, the generation method of Group 2 is complementary to that of Group
1. Its parameters jointly transform the problem structure from a pure SSFCTP for which
the optimal solution always requires a partial node and is therefore quite distinct from
a KP, to a problem that closely resembles the KP or the subset sum problem as n and β

increase. Together, these two classes of problems permit a robust analysis of the performance
of algorithms on a range of SSFCTPs that aims to cover most of the important problem
structures that are likely to emerge from future application contexts.

7.4. Performance analysis of KTA

This section presents detailed results on the computational efficiency of each step of KTA
and their ability to reduce the problem size by filtering candidate partial nodes and reducing
the number of items in the knapsack subproblems solved in the exact phase of the algorithm.

Table 5 reports the average computation time required by each step of the algorithm to
solve the instances of Groups 1 and 2 from Section 7.2. The majority of the execution time,
respectively 65% for Group 1 and 72% for Group 2, has been spent in H2, the knapsack
relaxation step. Overall, H4, the strong linear relaxation step, was the second most time-
consuming, followed by H3, the dominance relation step, and H1, the elementary bounds
phase. The filtering and exact phases together required less than 1% of the total computing
time for both groups.

These computation times reflect the relative contribution of each step to the entire solving
process. A notable fact is that, for each of the 3,670 instances we considered, the optimal
solution was identified during step H2. This means that the equality ZP3

UB=Z1 held for each
problem. Although it is easy to build small instances in which the exact phase improves the
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Table 5. Percentage of the total CPU time spent in each step of KTA, Groups 1 and 2

Group n β H1 H2 H3 H4 F E
1 500 - 5.9 82.5 1.0 10.7 0.0 0.0

1,000 - 6.3 73.8 2.8 17.1 0.0 0.0
5,000 - 8.2 63.0 2.7 26.0 0.0 0.0
10,000 - 7.9 61.4 3.2 26.2 0.8 0.5
25,000 - 8.1 66.2 2.8 22.9 0.0 0.0

2 500 5 3.3 56.5 12.4 16.3 1.9 9.6
10 3.0 57.8 7.6 14.7 2.7 14.1
100 1.6 83.3 1.0 5.8 0.8 7.5

1,000 0.5 98.3 0.1 0.5 0.1 0.5
2 1,000 5 4.9 50.5 15.1 23.5 2.4 3.5

10 4.6 61.7 10.9 22.8 0.0 0.0
100 2.0 92.2 0.5 4.8 0.3 0.3

1,000 1.5 98.5 0.0 0.0 0.0 0.0
2 5,000 5 5.7 50.1 20.0 22.0 1.2 1.0

10 5.5 57.7 14.2 21.6 0.6 0.3
100 4.6 91.6 0.1 2.3 0.6 0.7

1,000 5.0 95.0 0.0 0.0 0.0 0.0
2 10,000 5 6.5 45.4 24.3 21.0 1.9 0.9

10 6.0 54.8 14.5 22.3 1.2 1.2
100 7.3 92.7 0.0 0.0 0.0 0.0

1,000 5.3 94.7 0.0 0.0 0.0 0.0
2 25,000 5 5.5 43.4 26.4 22.3 1.7 0.7

10 9.3 56.3 12.9 21.5 0.0 0.0
100 8.0 92.0 0.0 0.0 0.0 0.0

1,000 8.6 91.4 0.0 0.0 0.0 0.0
Average 5.4 72.4 3.1 13.0 0.7 0.5

incumbent solution of step H2, this never happened in our test instances. In practice, the
only purpose of the subsequent steps, including the exact phase, is therefore to prove the
optimality of the best feasible solution identified in P3Search.

Table 6 shows the percentage of nodes that could still be partial after steps H2, H3, and
H4. For Group 1, the observed percentages after each step are relatively stable from one size
of problem to another. The knapsack relaxation step filters approximately 97.5% of the nodes
on average. From there, the dominance step divides the cardinality of P by approximately 10
and the strong linear relaxation eliminates virtually all the remaining candidates. Therefore,
the exact phase is almost never necessary for the instances of Group 1. In Group 2, as the
correlation parameter increases, the average percentage of candidates remaining after H2
goes from more than 25% for β=5 to less than 0.1% for β=1,000. Fortunately, for small
values of β, the bounds from H3 and H4 compensate for the weakness of those of H2. The
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Table 6. Percentage of nodes that can be partial after each filtering step, Groups 1 and 2

Group n β H2 H3 H4
1 500 - 0.64 0.32 0.00

1,000 - 3.86 0.66 0.00
5,000 - 2.70 0.16 0.00
10,000 - 3.09 0.10 0.00
25,000 - 2.48 0.06 0.00

2 500 5 29.08 10.84 0.16
10 17.40 7.94 0.24
100 2.62 2.38 0.08

1,000 0.34 0.32 0.04
2 1,000 5 27.86 8.55 0.05

10 15.94 6.49 0.00
100 0.59 0.57 0.01

1,000 0.00 0.00 0.00
2 5,000 5 25.60 4.79 0.00

10 13.27 3.55 0.00
100 0.05 0.05 0.00

1,000 0.00 0.00 0.00
2 10,000 5 24.95 3.67 0.00

10 14.42 3.04 0.00
100 0.00 0.00 0.00

1,000 0.00 0.00 0.00
2 25,000 5 26.00 2.93 0.00

10 7.44 1.26 0.00
100 0.00 0.00 0.00

1,000 0.00 0.00 0.00
Average 8.73 2.31 0.02

average number of subproblems P1(p) that need to be solved during the exact phase is
consequently extremely small in all configurations.

Table 7 gives further details about the knapsack subproblems that are solved in both the
heuristic and exact phases. The KPs that are considered in the heuristic phase are solved
within P3Search during step H2 and correspond to model P3 for different reimbursement
rates λ. They are quite different in structure from the ones of the exact phase, which
are solved during step E to obtain the optimal solutions to the subproblems P1(p) for the
remaining candidates p ∈ P . In the latter case, the filtering procedure described in step F
significantly reduces the size of the KPs. Indeed, for both Groups 1 and 2 and for every
problem size, the average number of items to be considered per knapsack subproblem was
approximately 40. This corresponds to 8% of the suppliers when n=500 and less than 0.002%
of them when n=25,000. Furthermore, the exact phase was required for only 1 of the 40
instances of the first group of problems and for 35 of the 200 instances of the second group,
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Table 7. KPs solved, Groups 1 and 2

Avg. number of KPs/instance Properties of exact phase’s KPs

Group n β
Heuristic

phase
Exact
phase Total

Instances
requiring the
exact phase

Avg. number of
items per KP in
the exact phase

1 500 - 1.4 0.0 1.4 0 -
1,000 - 1.7 0.0 1.7 0 -
5,000 - 1.6 0.0 1.6 0 -
10,000 - 1.7 0.1 1.8 1 40.0
25,000 - 1.7 0.0 1.7 0 -

2 500 5 2.4 0.8 3.2 5 27.9
10 2.1 1.3 3.4 7 27.4
100 1.8 0.4 2.2 4 44.0

1,000 1.2 0.2 1.4 1 70.0
2 1,000 5 2.0 0.5 2.5 5 21.6

10 2.0 0.0 2.0 0 -
100 1.5 0.1 1.6 1 56.0

1,000 1.0 0.0 1.0 0 -
2 5,000 5 2.0 0.2 2.2 2 37.5

10 1.9 0.1 2.0 1 29.0
100 1.1 0.1 1.2 1 56.0

1,000 1.0 0.0 1.0 0 -
2 10,000 5 1.8 0.3 2.1 3 37.7

10 1.9 0.3 2.2 2 36.3
100 1.0 0.0 1.0 0 -

1,000 1.0 0.0 1.0 0 -
2 25,000 5 1.9 0.3 2.2 3 39.3

10 1.6 0.0 1.6 0 -
100 1.0 0.0 1.0 0 -

1,000 1.0 0.0 1.0 0 -
Average 1.6 0.2 1.8 1.4 34.6∗

∗ Weighted by the number of KPs solved in the exact phase for each type of instance

for an average of less than 0.2 KP solved per instance. During the heuristic phase, 1.6 KP
was required per instance for both groups on average.

In total, KTA required solving less than two KPs per instance on average for both groups.
Since solving these subproblems represents most of the computation time of KTA, we can
conclude that our new method, at least for the types of instances that were considered in
this article, fills the gap between the state of the art on the KP and the SSFCTP.
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8. Conclusion
We introduced a binary nonlinear programming reformulation of the single-sink fixed-

charge transportation problem. Using the knapsack problem that is obtained by a relaxation
of this new model, we developed several bounds, some of which are subsequently improved
by a dominance relation between potential partial nodes and a strong linear relaxation to
produce an efficient and robust heuristic method. A new filtering procedure allows us to
complete the exact algorithm by iteratively fixing a partial node and solving a reduced-
size knapsack problem. As shown on a large set of instances, the knapsack transformation
algorithm completely outperforms the existing algorithms from the literature. In particular,
a reduction of several orders of magnitude in the solving time of the state-of-the-art methods
occurs for large and highly structured instances of the SSFCTP.
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résumé. Cet article considère un problème de localisation d’installations dans lequel une
firme s’implantant sur un marché cherche à ouvrir un ensemble d’emplacements dans le but de
maximiser sa part de marché espérée, en supposant que les clients choisissent l’alternative qui
maximise une fonction d’utilité aléatoire. Nous introduisons une nouvel équivalent déterministe
de ce modèle probabiliste et généralisons les résultats d’études antérieures en montrant
que sa fonction objectif est sous-modulaire sous n’importe quel modèle de maximisation
d’utilité aléatoire. Cette reformulation caractérise la demande sur la base d’un ensemble
fini de profils de préférence. L’estimation de leur prévalence par simulation généralise une
méthode d’approximation de la moyenne de l’échantillon (sample average approximation) de la
littérature et résulte en un problème de couverture maximale pour lequel nous développons un
nouvel algorithme de séparation et d’élagage (branch-and-cut). La méthode proposée exploite
la sous-modularité de la fonction objectif pour remplacer les profils de préférence les moins
influents par une variable auxiliaire bornée par des coupes sous-modulaires. Cet ensemble de
profils est sélectionné par une méthode du genou (knee method). Nous fournissons une analyse
théorique de notre approche et montrons que sa performance computationnelle, la qualité des
solutions qu’elle fournit et l’efficacité de la méthode du genou qu’elle exploite sont directement
liées à l’entropie des profils de préférence dans la population. Des expériences réalisées sur des
instances de la littérature et de nouvelles instances indiquent que notre approche domine la
méthode classique d’approximation de la moyenne de l’échantillon sur les instances de grande
taille, qu’elle peut surpasser la meilleure méthode heuristique de la littérature sous le modèle
logit multinomial et qu’elle améliore l’état de l’art sous le modèle logit multinomial mixte.
Mots clés : Emplacement d’installations, Optimisation basée sur les choix, Simulation,
Sous-modularité, Entropie.

abstract. This paper considers facility location problems in which a firm entering a market
seeks to open a set of available locations so as to maximize its expected market share, assuming
that customers choose the alternative that maximizes a random utility function. We introduce
a novel deterministic equivalent reformulation of this probabilistic model and, extending the
results of previous studies, show that its objective function is submodular under any random
utility maximization model. This reformulation characterizes the demand based on a finite
set of preference profiles. Estimating their prevalence through simulation generalizes a sample
average approximation method from the literature and results in a maximum covering problem
for which we develop a new branch-and-cut algorithm. The proposed method takes advantage
of the submodularity of the objective value to replace the least influential preference profiles
by an auxiliary variable that is bounded by submodular cuts. This set of profiles is selected
by a knee detection method. We provide a theoretical analysis of our approach and show that
its computational performance, the solution quality it provides, and the efficiency of the knee
detection method it exploits are directly connected to the entropy of the preference profiles in
the population. Computational experiments on existing and new benchmark sets indicate that
our approach dominates the classical sample average approximation method on large instances,
can outperform the best heuristic method from the literature under the multinomial logit model,
and achieves state-of-the-art results under the mixed multinomial logit model.
Keywords : Facility location, Choice-based optimization, Simulation, Submodularity, Entropy.
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1. Introduction
In a wide array of real-world management applications, the impact of a firm’s decisions on

the level of demand for its products or services depends on the preferences of a population of
heterogeneous customers. The core assumption of utility maximization theory is that agents
evaluate each available alternative and select the one that maximizes their utility function.
Embedding random utility maximization (RUM) models into optimization problems leads
to so-called choice-based optimization problems, prime examples of which include pricing
(e.g., Davis et al., 2017, Gallego and Wang, 2014, Li et al., 2019, Paneque et al., 2022) and
assortment optimization problems (e.g., Liu et al., 2020, Rusmevichientong et al., 2010).

The competitive facility location problem is another important problem that requires
modeling customer demand at a disaggregate level. In the last two decades, a growing body
of literature has proposed exact methods for solving choice-based competitive facility location
problems under the multinomial logit (MNL) model (Aros-Vera et al., 2013, Benati and
Hansen, 2002, Freire et al., 2016, Ljubić and Moreno, 2018, Mai and Lodi, 2020, Zhang et al.,
2012). A limitation of the MNL model is that it implies proportional substitution patterns,
meaning that introducing a new alternative divides by the same factor the probability for
each existing alternative to be selected by any given customer. This property leads to
unrealistic demand representation in many cases. Although empirical studies underscore
the need to capture unobserved taste variations and spatial correlation to faithfully model
location-related behavior (Bhat and Guo, 2004, Miyamoto et al., 2004, Müller et al., 2012),
relatively little attention has been devoted to the study of the competitive facility location
problem under less restrictive modeling assumptions. Notable exceptions include an exact
branch-and-cut (B&C) method for the nested logit choice rule (Méndez-Vogel et al., 2023)
and a heuristic local search approach that can be applied under any generalized extreme
value (GEV) models (Dam et al., 2022). In addition to the MNL and nested logit models
(Williams, 1977), prominent members of the GEV family include the paired combinatorial
logit model (Chu, 1989) and the cross-nested logit model (Vovsha, 1997).

The most widely studied RUM model outside of the GEV family is the mixed multinomial
logit (MMNL) model, which can approximate any RUM model with arbitrary precision
(McFadden and Train, 2000a). Some facility location studies (e.g., Dam et al., 2022, Haase
et al., 2016, Mai and Lodi, 2020) have highlighted that this fully flexible model can be
approximated by a MNL model through simulation. Unfortunately, obtaining near-optimal
solutions for MMNL instances with this approach requires solving very large MNL instances
in some cases, which can be computationally intractable even for state-of-the-art methods.

Another approach that can accommodate flexible RUM models is the sample average ap-
proximation framework introduced by Haase (2009). Initially developed for the MNL model
and later extended to the MMNL model (Haase et al., 2016, Haase and Müller, 2013), this
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method approximates the utility function of each customer by sampling realizations of its
random terms. The resulting model can be formulated as a deterministic maximum covering
problem (Church and ReVelle, 1974) by describing each simulated customer by the subset
of available locations that would capture their demand. This method has been applied in
school location planning (Haase et al., 2019) and to optimize electric vehicle charging sta-
tion placement (Lamontagne et al., 2023). More generally, sample average approximation is
receiving increasing attention in choice-based optimization as it makes it relatively straight-
forward to integrate advanced RUM models into mixed-integer linear programming (MILP)
models (Paneque et al., 2021).

In this paper, we propose a B&C algorithm that exploits the submodularity property
of the choice-based competitive facility location problem, which we show holds under any
RUM model. Our approach approximates a novel deterministic equivalent reformulation of
the problem by aggregating simulated customers by preference profile, leading to a smaller
yet equivalent reformulation of the sample average approximation method of Haase et al.
(2016). These preference profiles are partitioned in what we refer to as a hybrid submodular
reformulation using a knee detection method. As opposed to model-specific methods that
exploit the structure of a given family of RUM models, our approach does not make any
restrictive assumption on the utility functions of the customers and is thus said to be model-
free. We develop an information-theoretic analysis of the hybrid submodular method and
provide insights regarding the impact of the concentration of the demand, measured by the
entropy of the preference profiles, on its computational performance and the solution quality
it provides. We compare our approach with the sample average approximation of Haase
et al. (2016) and state-of-the-art model-specific exact (Mai and Lodi, 2020) and heuristic
(Dam et al., 2022) methods on existing MNL instances and new MMNL instances. Our
computational study shows that our algorithm performs better than the classical sample
average approximation method and the state-of-the-art heuristic method in terms of CPU
time and solution quality for MNL instances with low to moderate entropy. Furthermore, it
achieves state-of-the-art results under the MMNL model.

The paper is structured as follows. Section 2 presents the choice-based competitive
facility location problem and introduces our notation. Section 3 discusses existing methods
from the literature. Section 4 presents the simulation-based hybrid submodular method,
which is studied from an information-theoretic perspective in Section 5. The computational
experiments are reported in Section 6. Section 7 concludes the paper.

2. Choice-based competitive facility location
We consider a probabilistic facility location problem in a competitive market with utility-

maximizing customers. Given a set D of available locations on which a firm can install new
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facilities and a set E of locations that competing facilities already occupy, the goal is to
identify a feasible configuration x ∈ X that maximizes the expected market share captured
by the new facilities. A binary variable xd indicates whether the company decides to open a
facility at location d ∈ D. The feasible domain X ⊆ {0,1}|D| is specified by linear business
constraints, such as the number of facilities that can be opened or the firm’s budget. We
denote by C = D ∪ E the set of both candidate and existing locations.

Customers select the open facility that maximizes their utility function. The attributes
of the customers among the population, such as their location and personal preferences, are
modeled by a random vector θ with support Θ. The impact of these attributes on the utility
of each location is modulated by coefficients β ∈ B. The specification of these coefficients
depends on the model, and they are possibly random. In real applications, the corresponding
values are estimated on data. Finally, a random term εc affects the utility of each alternative
c ∈ C. For a solution x̄ ∈ X, the open alternatives are given by the set Cx̄ = Dx̄ ∪ E,
where Dx̄ = {d ∈ D : x̄d = 1}. The utility of each available alternative c ∈ C is denoted by
uc(θ, β, ε). In the case of RUM models with additive error terms, this value decomposes as
uc(θ,β,ε) = vc(θ,β) + εc. In general, the random vectors θ,β and ε can be dependent, and
vc : Θ×B → R can be any real-valued function for each location c ∈ C.

In most of the literature, it is assumed that the population is composed of a finite number
of customers n ∈ N , each described by observed attributes θn. In this context, the distribu-
tion of θ is given by the empirical distribution of the observations θn. In machine learning
terminology, this interpretation underlies a conditional, or discriminative perspective on the
attributes of the customers. In other words, the observed set of customers is considered fixed
instead of being seen as a random sample drawn from an underlying probability distribution.
For the sake of generality, the notation adopted in this paper instead proposes a generative
perspective, in which all of the customers’ attributes are modeled as random variables. The
problem can then be stated as maximizing the expected market share F : 2D → [0,1] based
on the joint distribution of the random vectors θ, β, and ε. Assuming continuous probability
distributions, it can be expressed as follows:

max
x∈X

F (Dx) = max
x∈X

Pθ,β,ε

[
arg max

c∈Cx

{uc(θ,β,ε)} ∈ Dx

]
, (2.1)

= max
x∈X

∫
θ∈Θ

Pβ,ε|θ
[

arg max
c∈Cx

{uc(θ,β,ε)} ∈ Dx

]
p(θ)dθ, (2.2)

= max
x∈X

∫
θ∈Θ

∑
d∈Dx

Pβ,ε|θ
[
ud(θ,β,ε) ≥ uc(θ,β,ε), ∀c ∈ Cx

]
p(θ)dθ, (2.3)

which, for RUM models with additive error terms, can be rewritten as:

max
x∈X

∫
θ∈Θ

∑
d∈Dx

Pβ,ε|θ
[
εc − εd ≤ vd(θ,β)− vc(θ,β), ∀c ∈ Cx

]
p(θ)dθ. (2.4)
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For the choice probability in (2.4) to be directly embedded in an optimization problem,
the cumulative distribution function of the difference εc− εd must admit an analytical form.
This has motivated the development of increasingly flexible models belonging to the GEV
family, which all result in closed-form expressions (Fosgerau et al., 2013). In particular,
a large part of the RUM literature assumes the coefficients β to be independent of the
customers’ attributes θ and is based on additive error terms εc defined as independent and
identically distributed (IID) type I extreme value (or Gumbel) random variables. These
assumptions result in the MMNL model, in which the probability of capturing the demand
of a customer with attributes θ is given by the following expression:

Pβ,ε|θ
[
εc − εd ≤ vd(θ,β)− vc(θ,β), ∀c ∈ Cx

]
=
∫

β∈B

∑
d∈Dx

evd(θ,β)∑
c∈Cx

evc(θ,β) p(β)dβ. (2.5)

Under the MMNL model and a generative perspective, model (2.1) can be formulated as:

max
x∈X

∫
θ∈Θ

∫
β∈B

∑
d∈Dx

evd(θ,β)∑
c∈Cx

evc(θ,β) p(β)p(θ)dβdθ. (2.6)

In turn, under the conditional perspective, it becomes:

max
x∈X

∑
n∈N

qn

∫
β∈B

∑
d∈Dx

evd(θ,β)∑
c∈Cx

evc(θ,β) p(β)dβ, (2.7)

where qn = p(θn) denotes the weight of each customer n ∈ N .
The MNL model is a specific case where the coefficients β are deterministic, which

simplifies the generative MMNL model (2.6) to:

max
x∈X

∫
θ∈Θ

∑
d∈Dx

evd(θ,β)∑
c∈Cx

evc(θ,β) p(θ)dθ. (2.8)

Similarily, under the conditional perspective, (2.7) simplifies to:

max
x∈X

∑
n∈N

qn

∑
d∈Dx

evn
d∑

c∈Cx
evn

c
, (2.9)

where the perceived utility of an available alternative c ∈ C for customer n ∈ N is given by
vn

c := vc(θn, β). In this case, and more generally if the support Θ is discrete and finite, the
problem be solved exactly by mixed-integer nonlinear programming (MINLP) solvers or by
model-specific algorithms (Ljubić and Moreno, 2018, Mai and Lodi, 2020). In order to solve
MMNL or generative MNL instances approximately using these methods, the distribution of
the random variables θ and/or β can be approximated by the empirical distribution provided
by a set of their realizations, resulting in a conditional MNL problem.
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3. Methods from the literature
This section discusses the most recent state-of-the-art exact and heuristic methods for

the competitive facility location problem under the MNL and MMNL models, as well as the
sample average approximation method our approach builds on.

3.1. State-of-the-art exact method

The multicut outer-approximation (MOA) algorithm (Mai and Lodi, 2020) uses an outer-
approximation scheme (Duran and Grossmann, 1986) to solve the MNL model exactly under
a conditional perspective. To do so, model (2.9) is first reformulated as a minimization

problem, with objective function G(x) = −∑n∈N qn

∑
d∈Dx

e
vn

d∑
c∈Cx

evn
c

. The main idea of the MOA
algorithm is to partition the set N of customers into T subsets so that G(x) can be expressed
as a sum of T convex and continuously differentiable functions gt(x). At each iteration
of the algorithm, the master problem minx∈X{

∑T
t=1 ϕt|ϕt ≥ Lt, Πtx − 1ϕt ≤ π0t ∀t} is

solved, where the value of each component gt(x) is replaced by the decision variable ϕt,
Πtx − 1ϕt ≤ π0t is the set of subgradient cuts corresponding to gt(x), and Lt is a lower
bound on gt(x). Its optimal solution x∗ is then used to add up to T new subgradient cuts
ϕt ≥ ∇gt(x∗)(x − x∗) + gt(x∗), t = 1, . . . ,T to the master problem, where ∇gt(x∗) is the
gradient of gt evaluated at x∗.

This multicut approach generalizes an earlier single-cut algorithm by Bonami et al.
(2008). The single-cut version is obtained by using only T = 1 objective function
g1(x) = G(x), while taking T ∈ {2, . . . ,|N | − 1} leads to what is sometimes referred to
as a hybrid approach (Birge and Louveaux, 1988) in the stochastic programming literature.
Selecting a large value of T tends to limit the number of iterations of MOA, but adding too
many cuts at each iteration makes the master problem more challenging to solve. Mai and
Lodi (2020) report that neither the single-cut nor the pure multicut version with T = |N |
usually results in the most efficient version of the MOA. Furthermore, the best value of T

varies significantly across instances. Unfortunately, no efficient rule for automatically se-
lecting T is known, making the performance of MOA heavily dependent on a user-defined
parameter.

3.2. State-of-the-art heuristic method

An efficient heuristic algorithm that can be applied under any GEV model has been
proposed by Dam et al. (2022). This algorithm, called GGX (for Greedy heuristic, Gradient-
based local search, and eXchanging), has been shown to identify an optimal solution to most
MNL and MMNL instances from classical benchmark sets in a fraction of the time required
by MOA to solve the problem to proven optimality. Encouraging computational results
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have also been observed on nested logit instances, although the performance of GGX on
these instances is difficult to evaluate properly due to the lack of comparison with an exact
method in this study.

GGX consists of three phases. First, starting from the trivial set Dx = ∅, a greedy
solution is constructed by repeatedly opening the location d ∈ D \ Dx that leads to the
largest increases in the objective value. In the second phase, a local search within a region
of increasing size based on a linear approximation of the objective function at the current
solution is iteratively performed. The last phase is a greedy local search in which sets of
closed and open locations are iteratively exchanged until a local maximum is found. Dam
et al. (2022) allow for at most two pairs of locations to be exchanged at each iteration.

Due to the monotonicity and submodularity of the competitive facility location problem
under GEV models (Dam et al., 2022), it follows from Nemhauser et al. (1978) that the
greedy heuristic performed in the first phase of GGX is a (1−1/e) approximation algorithm.
In other words, the objective value of the solution returned by GGX is guaranteed to be
at least ≈ 0.632 times the optimal value. However, like most local search algorithms, GGX
provides no stronger theoretical guarantee and can lead to severely suboptimal solutions,
even for small instances. We provide such an example next.

Fig. 1. Optimal solution (left, expected market share of 65.61%) and solution obtained
with GGX (right, expected market share of 58.66%). The shade of a customer indicates the
probability that they select a facility of the firm.

Figure 1 illustrates the behavior of GGX on a conditional MNL instance with |D| = 8
candidate locations, a budget of 4 facilities, and |E| = 1 existing location that provides the
same deterministic utility to each customer. The instance comprises |N | = 5,000 customers
generated according to a censored spherical normal centered at the origin. In this example,
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the central location is the first to be included in the greedy solution, followed by the three
corner locations. This local maximum cannot be improved by the gradient-based local search
of the second phase of GGX. Similarly, it cannot be improved by the greedy exchanging phase
unless up to four pairs of locations can be exchanged at each iteration, which corresponds to
performing an exhaustive search on the feasible domain X. The solution returned by GGX
thus corresponds to opening all the locations that are closed in the optimal solution, and
vice versa.

3.3. Sample average approximation method

In the sample average approximation approach introduced by Haase (2009) and studied
by Haase and Müller (2013) and Haase et al. (2016) in the context of the MMNL model under
a conditional perspective, a set S of scenarios {βs}s∈S is sampled from the distribution of
the random coefficients β. For each scenario s ∈ S and each customer n ∈ N , a realization
εns of a vector of |C| IID standard Gumbel variables is drawn. The problem associated with
the empirical distribution {θn}n∈N , {βs}s∈S, {εns}n∈N,s∈S is given by:

max
x∈X

1
|S|

∑
n∈N

qn

∑
s∈S

1
[

arg max
c∈Cx

{uc(θn,βs,εns)} ∈ Dx

]
. (3.1)

Model (3.1) can be rewritten as the following 0-1 linear program:

[SAA(N,S)] max
x∈X

y∈{0,1}|N|×|S|

1
|S|

∑
n∈N

qn

∑
s∈S

yns, (3.2)

s.t. yns ≤
∑
d∈D

ans
d xd, ∀n ∈ N,∀s ∈ S, (3.3)

where the binary decision variable yns indicates whether the simulated customer (n,s) ∈ N×S

selects one of the new facilities of the firm. Binary coefficients ans
d = ad(θn, βs, εns) :=

1[ud(θn, βs, εns) ≥ ue(θn, βs, εns) ∀e ∈ E] specify the candidate locations d ∈ D that would
be preferred by customer n ∈ N to all the competing facilities e ∈ E under scenario s ∈ S.
Constraints (3.3) require the firm to open at least one such facility d ∈ D to capture the
demand of simulated customer (n,s).

Since the coefficients ans
c are computed outside of the optimization problem,

SAA(N,S) (3.2)-(3.3) is a 0-1 linear programming problem on a set of |D| + |N | · |S|
decision variables. This formulation corresponds to a deterministic maximum covering
problem and can be solved directly using a MILP solver.

As |S| → ∞, model (3.1) approximates the conditional MMNL model (2.7) with an
arbitrarily high precision. The asymptotic convergence property of sample average approx-
imation provides probabilistic guarantees (Kim et al., 2015) that can make this approach
preferable to greedy heuristics to avoid severely suboptimal solutions such as the one il-
lustrated in Figure 1. However, since the number of decision variables and constraints of
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model SAA(N,S) grow linearly with |S|, the quality of the optimal solution’s sample average
estimate that can be obtained with a reasonable computational budget is often limited.

4. Simulation-based hybrid submodular method
This section presents our model-free approach for solving the choice-based competitive

facility location problem. Section 4.1 introduces a deterministic equivalent reformulation of
the problem and describes how it can be approximated by simulation. In Section 4.2, we
present our simulation-based hybrid submodular method and demonstrate that the submod-
ularity property of the competitive facility location problem is preserved under any RUM
model.

4.1. Deterministic equivalent reformulation

Our approach relies on a deterministic equivalent reformulation of model (2.1):

[DEQ] max
x∈X

y∈{0,1}|P |

∑
p∈P

ωpyp, (4.1)

s.t. yp ≤
∑
d∈D

ap
dxd, ∀p ∈ P. (4.2)

Preference profiles, defined by subsets of candidate locations customers would patronize
over the competing facilities, are the basic unit of demand in this maximum covering
problem. A binary decision variable yp represents the capture of each possible prefer-
ence profile p ∈ P by the configuration x ∈ X. The binary vectors a1, a2, . . . , a2|D|−1 =
[0, . . . ,0,1], [0, . . . ,1,0], . . . , [1, . . . ,1,1] cover the 2|D| − 1 non-trivial preference profiles cus-
tomers may have. We define P as the set of profiles that can occur with a positive probabil-
ity. The weight ωp is the probability Pθ,β,ε [ad(θ, β, ε) = ap

d ∀d ∈ D] for a randomly selected
customer to exhibit preference profile ap. Normalizing these weights lead to the unit vector
ω, whose element p ∈ P is given by ωp = Pθ,β,ε [ad(θ, β, ε) = ap

d ∀d ∈ D|ad(θ, β, ε) ̸= 0] =
ωp/

∑
p′∈P ωp′ . The following proposition shows the validity of this reformulation.

Proposition 1. DEQ is a valid reformulation of model (2.1).
Proof. The set X of feasible configurations is the same for both models. Therefore, it

suffices to show that the optimal value of DEQ given that the decision vector x is fixed to
a feasible configuration x̄ ∈ X is equal to the objective value F (Dx̄) of the original model:

max
y∈{0,1}|P |

∑
p∈P

ωpyp

∣∣∣∣∣∣yp ≤
∑
d∈D

ap
dx̄d, ∀p ∈ P

 , (4.3)

=
∑
p∈P

ωp1

∑
d∈D

ap
dx̄d ≥ 1

 , (4.4)
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=
∑
p∈P

Pθ,β,ε [ad(θ, β, ε) = ap
d ∀d ∈ D]1

∑
d∈D

ap
dx̄d ≥ 1

 , (4.5)

=Pθ,β,ε

[ ∑
d∈D

ad(θ, β, ϵ)x̄d ≥ 1
]
, (4.6)

=Pθ,β,ε

[ ∑
d∈Dx̄

ad(θ, β, ϵ) ≥ 1
]
, (4.7)

=Pθ,β,ε

[
arg max

c∈Cx̄

{uc(θ,β,ε)} ∈ Dx̄

]
, (4.8)

=F (Dx̄). (4.9)

The restricted model DEQ with x = x̄ is given by (4.3) and is maximized by setting each
decision variable yp to its maximum feasible value, hence equation (4.4). We obtain (4.5)
by replacing the weights ωp with their definition. Expression (4.5) can be derived from
(4.6) by applying the law of total probability. The last three equations are obtained by
subsequently applying the definition of set Dx̄, coefficients ad(θ, β, ϵ) and function F (Dx̄). □

In general, computing exactly the vector of weights ω is not possible, as it requires to
evaluate the following expression for each profile p ∈ P :

ωp =
∫

θ∈Θ

∫
β∈B

∫
ε∈R|C|

1 [ad(θ, β, ε) = ap
d ∀d ∈ D] p(θ, β, ε)dεdβdθ. (4.10)

However, as long as it is possible to draw samples from the joint distribution of the random
variables (θ, β, ε), ω can be estimated by simulation. Let us consider a set R of realizations
{(θr, βr, εr)}r∈R of these random variables. The estimated coefficients ωp, p ∈ P , are then
given by:

ω̂p = 1
|R|

∑
r∈R

1 [ad(θr, βr, εr) = ap
d ∀d ∈ D] , (4.11)

which leads to the following approximation of DEQ:

[D̂EQ] max
x∈X

y∈{0,1}|P̂ |

∑
p∈P̂

ω̂pyp, (4.12)

s.t. yp ≤
∑
d∈D

ap
dxd, ∀p ∈ P̂ . (4.13)

Here, P̂ ⊆ P is the set of profiles that have been observed at least once over the sample of
simulated customers R, i.e., such that ω̂p > 0.

This simulation framework generalizes the classical sample average approximation ap-
proach. Indeed, the simulation method of Haase et al. (2016) corresponds to building the
set of realizations R = N × S, with {(θr, βr, εr)}r∈R = {(θn, βs, εns)}(n,s)∈N×S. Model
SAA(N,S) can then be reformulated as D̂EQ by computing the weight of each profile

67



p ∈ P̂ = {p ∈ P : ∃(n,s) ∈ N × S such that ap = ans} as:

ω̂p =
∑

(n,s)∈N×S
ans=ap

qn

|S|
. (4.14)

The following proposition shows that model D̂EQ generalizes SAA(N,S).
Proposition 2. The optimal value and the optimal configuration x∗ ∈ X of model D̂EQ,
where the weights ω̂p are given by (4.14), are identical to those of SAA(N,S).

Proof. The set X of feasible configurations is the same for both models. Therefore,
it suffices to show that the restricted models D̂EQ and SAA(N,S) obtained by fixing the
decision vector x to a feasible configuration x̄ ∈ X share the same optimal value:

max
y∈{0,1}|P̂ |

∑
p∈P̂

ω̂pyp

∣∣∣∣∣∣yp ≤
∑
d∈D

ap
dx̄d, ∀p ∈ P̂

 , (4.15)

=
∑
p∈P̂

ω̂p1

∑
d∈D

ap
dx̄d ≥ 1

 , (4.16)

=
∑
p∈P̂

 ∑
(n,s)∈N×S

ans=ap

qn

|S|

1
∑

d∈D

ap
dx̄d ≥ 1

 , (4.17)

=
∑

(n,s)∈N×S

qn

|S|
1

∑
d∈D

ans
d x̄d ≥ 1

 (4.18)

= max
y∈{0,1}|N|×|S|

 ∑
(n,s)∈N×S

qn

|S|
yns

∣∣∣∣∣∣yns ≤
∑
d∈D

ans
d x̄d, ∀(n,s) ∈ N × S

 . (4.19)

The restricted models D̂EQ and SAA(N,S) with x = x̄ are respectively given by (4.15)
and (4.19). We obtain (4.17) by replacing the weights ω̂p with their definition. □

The resulting D̂EQ model contains fewer decision variables and constraints than
SAA(N,S) as it aggregates under a single profile p ∈ P all the simulated customers
(n,s) ∈ N × S sharing the same preferences ans = ap. We thus call SAAA (for Sample
Average Approximation with Aggregation) the method that consists in solving D̂EQ directly
using a solver. In contrast, SAA denotes the sample average approximation method of
Haase et al. (2016).

4.2. Hybrid submodular reformulation

Since the number of possible preference profiles grows exponentially with the number of
candidate locations, solving D̂EQ directly can be expected to become inefficient when |D|
is large and a high number of realizations |R| is observed. In particular, for RUM models
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that include independent unbounded additive error terms, such as the MNL model, each
of the 2|D| − 1 non-trivial preference profiles can occur with positive probability, even in a
conditional setting with only one customer. Most profiles p ∈ P̂ , however, typically have a
negligible weight ω̂p and thus only a small impact on the objective function.

The motivation behind the hybrid submodular reformulation is to reduce the computa-
tional sensitivity of our method to the number of observed preference profiles by aggregating
the least important ones into a single composite customer. To do so, we exploit the submod-
ularity of the objective function and its separability by preference profile:

[D̂EQ(P̂1)] max
x∈X

y∈{0,1}|P̂1|

∑
p∈P̂1

ω̂pyp + ν (4.20)

s.t. yp ≤
∑
d∈D

ap
dxd, ∀p ∈ P̂1, (4.21)

ν ≤ f (Dx̄) +
∑

d/∈Dx̄

ρd (Dx̄) xd −
∑

d∈Dx̄

ρd(D \ {d})(1− xd), ∀x̄ ∈ X. (4.22)

In this model, only a subset P̂1 of the preference profiles p ∈ P̂ are explicitly represented in
the objective function. The captured market share on the remaining profiles p ∈ P̂2 = P̂ \ P̂1

is represented by an auxiliary decision variable ν, which is bounded by an exponential number
of submodular cuts.

For a set of open locations D′ ⊆ D, the contribution to the objective value of the
set of profiles P̂2 is given by f (D′) = ∑

p∈P̂2
ω̂p1 [∑d∈D′ ap

d ≥ 1]. We denote by ρd(D′) =
f (D′ ∪ {d})− f (D′) the marginal gain of opening a new location d ∈ D \D′.

Assuming that the set function f is submodular, the equivalence of models D̂EQ and
D̂EQ(P̂1) is a direct extension of the works of Nemhauser and Wolsey (1981) and Ljubić and
Moreno (2018). The submodularity property of f is shown in the next proposition.
Proposition 3. The set function f : 2D → R, where 2D denotes the power set of D, is
submodular.

Proof. We show that, for a pair of subsets D1, D2 ⊆ D such that D1 ⊆ D2 and a
location d ∈ D \D2, the marginal gain ρd(D1) is larger than, or equal to, ρd(D2).

ρd(D1) = f(D1 ∪ {d})− f(D1) (4.23)

=
∑

p∈P̂2

ω̂p1

 ∑
d′∈D1∪{d}

ap
d′ ≥ 1

− ∑
p∈P̂2

ω̂p1

 ∑
d′∈D1

ap
d′ ≥ 1

 (4.24)

=
∑

p∈P̂2

ω̂p

1
 ∑

d′∈D1∪{d}
ap

d′ ≥ 1
− 1

 ∑
d′∈D1

ap
d′ ≥ 1

 (4.25)

=
∑

p∈P̂2

ω̂p1 [ap
d = 1 and ap

d′ = 0 ∀d′ ∈ D1] (4.26)

69



≥
∑

p∈P̂2

ω̂p1 [ap
d = 1 and ap

d′ = 0 ∀d′ ∈ D2] (4.27)

=
∑

p∈P̂2

ω̂p

1
 ∑

d′∈D2∪{d}
ap

d′ ≥ 1
− 1

 ∑
d′∈D2

ap
d′ ≥ 1

 (4.28)

=
∑

p∈P̂2

ω̂p1

 ∑
d′∈D2∪{d}

ap
d′ ≥ 1

− ∑
p∈P̂2

ω̂p1

 ∑
d′∈D2

ap
d′ ≥ 1

 (4.29)

= f(D2 ∪ {d})− f(D2) (4.30)

= ρd(D2) (4.31)

Since D1 ⊆ D2, condition ap
d′ = 0 ∀d′ ∈ D2 implies condition ap

d′ = 0 ∀d′ ∈ D1, which
leads to inequality (4.27). □

A direct corollary of this result is that the objective function of the choice-based com-
petitive facility location is submodular under any RUM model. This finding generalizes
the results of Benati (1997) and Dam et al. (2022), who proved the submodularity of the
competitive facility location problem’s objective function under the MNL model and GEV
models, respectively.
Corollary 4. The set function F : 2D → R is submodular.

Proof. Let D′ ⊆ D be an arbitrary set of locations. By setting P̂ = P , P̂1 = ∅, and
ω̂ = ω, we obtain:

F (D′) =
∑
p∈P

ωp1

∑
d∈D′

ap
d ≥ 1

 , (4.32)

=
∑

p∈P̂2

ω̂p1

∑
d∈D′

ap
d ≥ 1

 , (4.33)

= f(D′). (4.34)

The first equation can be derived as in the proof of Proposition 1. We then apply the
equalities P̂2 = P̂ \ P̂1 = P \ ∅ = P and ω = ω̂. This result indicates that the objective
function F : 2D → R of model (2.1) can be expressed as a special case of function
f : 2D → R, and it thus submodular by Proposition 3. □

As shown by Nemhauser and Wolsey (1981), the submodular cuts (4.22) can equivalently
be replaced by the following ones:

ν ≤ f (Dx̄) +
∑

d/∈Dx̄

ρd (∅) xd −
∑

d∈Dx̄

ρd(Dx̄ \ {d})(1− xd), ∀x̄ ∈ X. (4.35)
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Both cuts (4.22) and (4.35) are implemented using the lazy-cut callback routine of
CPLEX and are applied globally in the branch-and-bound tree each time an integer so-
lution violating them is found. Constraint ν ≤ ∑

p∈P̂2
ω̂p is added to the model to provide

an initial valid upper bound on ν. The pure submodular method obtained by setting P̂1 = ∅
can be regarded as a single-cut variant of the submodular method proposed by Ljubić and
Moreno (2018) for the conditional MNL model, in which an auxiliary variable νn bounds the
contribution of each customer n ∈ N to the objective function.

4.2.1. Set partitioning parameter

The hybrid submodular approach is agnostic to the partition of P̂ regarding solution
quality, as solving D̂EQ(P̂1) yields an optimal solution to D̂EQ for any P̂1 ⊆ P . However,
its computational efficiency is highly dependent on this choice. Whereas a large part of the
observed preference profiles must be included in P̂2 to significantly reduce the number of
decision variables, a high number of submodular cuts may have to be generated in the B&C
tree if the auxiliary variable ν aggregates an excessively large fraction of the demand. This
motivates the inclusion in P̂1 of the profiles that contribute the most to the objective function.
Indexing the observed preference profiles by p1, . . . , p|P̂ |, where ω̂p1 ≥ ω̂p2 ≥ · · · ≥ ω̂p|P̂ |

, we
set P̂1 = {p1, . . . , pi∗} for a given number of profiles i∗ ∈ {0, . . . ,|P̂ |}.

As i∗ increases, including additional profiles in P̂1 provides a decreasing marginal gain
in the ratio Ω = ∑

p∈P̂1
ω̂p/

∑
p∈P̂ ω̂p of the demand that is explicitly represented in the

objective function (4.20). Selecting an adequate cardinality for P̂1 thus corresponds to fixing
an appropriate cutoff point in an increasing function with diminishing returns. A prime
example of this type of problem arises in clustering tasks, where the marginal increase in
the explained variation of the data decreases with the number of clusters. In this area, the
number of clusters is usually determined based on a variant of the knee detection method,
where the knee of a function is defined as the maximizer of a curvature measure (Salvador
and Chan, 2004).

Curvature is only well-defined for continuous functions. However, a simple approach for
approximating the point of maximum curvature for discrete data sets has been proposed
by Satopaa et al. (2011). After normalizing the points in the unit square, the so-called
Kneedle method defines the knee as the point whose distance between the y-axis and x-
axis coordinates is maximal. Formally, for a set of points {(i, ji), i ∈ {0, . . . ,n}} respecting
ji < ji+1 ∀i ∈ {0, . . . ,n−1} and (ji+2− ji+1) ≤ (ji+1− ji) ∀i ∈ {0, . . . ,n−2}, Kneedle selects
a point (i∗, ji∗) such that:

i∗ ∈ I∗ = arg max
i∈{0,...,n}

ji − j0

jn − j0
− i

n
. (4.36)

This approach can be applied directly to our parameter selection problem by considering
the points {(i, Ωi), i ∈ {0, . . . ,|P̂ |}}, where Ωi = ∑i

k=1 ω̂pk
. It leads to selecting a point that
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maximizes the difference δi = Ωi− i/|P̂ |. When |I∗| > 1, we select i∗ = max I∗. Henceforth,
we denote the optimal value of the knee detection problem and the resulting relative weight
of P̂1 by δ∗ := δi∗ and Ω∗ := Ωi∗ , respectively.

Our preliminary computational experiments have shown that selecting the number i∗ of
profiles to be included in P̂1 by this knee method consistently provides a good approximation
of the optimal cardinality of P̂1 for instances that can benefit from the hybrid submodular
reformulation. The characterization of such instances is discussed in Section 5. We call
the version of the hybrid submodular approach that integrates the knee detection method
the SHS (for Simulation-based Hybrid Submodular) method. It has the practical advan-
tage of being independent of any user-defined parameter, which also makes its performance
comparison with other methods more objective.

4.2.2. Illustrative example

In this section, we illustrate the knee detection method and provide computational in-
sights on the impact of the set partitioning parameter on the performance of the hybrid
submodular reformulation. We consider randomly generated instances based on the condi-
tional MNL NYC dataset (Aros-Vera et al., 2013) with parameters α = 1, β = 0.1, and
|S| = 1 scenario (see Section 6.1 for a detailed presentation of this family of instances).

Figure 2 compares the points (i, Ωi) and the difference δi = Ωi − i/|P̂ | ob-
tained via the knee detection method and using predetermined weights Ωi ∈
{0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1}. The knee is reached at point (i∗, Ω∗) = (3611, 0.54)
and achieves a difference δ∗ = 0.44. In this instance, approximately 10% of the observed
preference profiles thus account for 54% of the demand.

Fig. 2. Relative weight of P̂1 and value of δi by fraction of profiles in P̂1
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Figure 3 depicts the average cardinality of P̂1 and the average number of submodular
cuts generated in the B&C tree when solving model D̂EQ(P̂1) based on the knee detection
method and for predetermined weights Ωi. The average CPU times over 100 instances with
a budget of 10 facilities are reported in Figure 4.

Fig. 3. Number of submodular cuts and |P̂1| by relative weight of P̂1

Fig. 4. CPU time by relative weight of P̂1

It appears that the knee method achieves a good trade-off between the size of the model
and the number of generated cuts, with an average of |P̂1| = 3,651 explicitly represented
preference profiles and 10 submodular cuts. The pure submodular approach (Ωi = 0, P̂1 = ∅)
requires generating 242 cuts on average for these instances. SAAA, which is the other extreme
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case (Ωi = 1, P̂1 = P̂ ), leads to a fairly large 0-1 linear program with |P̂1| = 33,817 demand
decision variables on average. These differences in the problem size and the number of
generated submodular cuts directly translate into performance differences. Solving D̂EQ
with SHS required 0.25 second on average, compared to 1.72 and 2.74 seconds SAAA and
the pure submodular method, respectively.

5. Information-theoretic analysis
In this section, we adopt an information-theoretic perspective to characterize the level of

concentration of the demand across preference profiles, a key attribute of the problem that
impacts the expected solution quality and computational performance of SHS. This analysis
is motivated by two main considerations.

First, if the customers’ behavior is mostly random and all the possible preference profiles
are nearly equiprobable, then the coefficients of model D̂EQ should converge relatively slowly
to those of DEQ. In this case, we can expect simulation-based methods to produce suboptimal
solutions for the original problem unless a large sample of preferences profiles is observed.

Second, solving D̂EQ to proven optimality should be easier if there exists a small set of
profiles that cover a large proportion of the observed demand, as this allows pruning early
in the solving process the solutions that do not capture the most important profiles. SHS
explicitly exploits this structure through the knee detection method by retaining the most
influential profiles in P̂1 and correcting the objective function for the remaining profiles P̂ \P̂1

using submodular cuts. SHS is thus expected to offer the most significant computational
gain over SAAA when the demand is sufficiently concentrated.

The distribution of the preference profiles defines a categorical random variable W with
support P and probability mass function (PMF) ω. We consider the entropy of W to
measure the stochasticity of the customers’ behavior and characterize the resulting level of
concentration of the preference profiles:

H(W ) = −
∑
p∈P

ωp log(ωp). (5.1)

The lowest concentration is achieved when all the preference profiles p ∈ P share the same
normalized weight ωp = 1

|P | . In this case, W follows the discrete uniform distribution over
P , and H(W ) = log(|P |) reaches the theoretical upper bound on the entropy of a discrete
random variable defined on a finite support of cardinality |P |. On the contrary, if a unique
profile p′ ∈ P concentrates practically all the demand, say ωp′ = 1− ϵ, then H(W ) ϵ→0−−→ 0.

5.1. Impact of entropy on solution quality

The implicit assumption underlying any simulation approach in choice-based optimiza-
tion is that the stochastic model describing the population’s choices can be approximated
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efficiently from a sample of observed or reported preferences. In the case of model (2.1), it
means that it should be possible to faithfully approximate the coefficients ωp, p ∈ P of the de-
terministic equivalent formulation DEQ based on a finite set of realizations {(θr, βr, εr)}r∈R

of the random variables (θ, β, ε). Indeed, solving model D̂EQ based on estimated weights ω̂p

that largely deviate from the ground truth ωp could lead to a severely suboptimal solution
to the original choice-based competitive facility location problem and a poor approximation
of its optimal value.

A natural measure for evaluating the discrepancy between the objective functions of mod-
els D̂EQ and DEQ is the expected L1 distance Φ(ω) := E [||ω̂ − ω||1]. This measure corre-
sponds to twice the expected total variation distance δ(Ŵ , W ) between the random variables
Ŵ and W with PMFs ω̂ and ω. We consider the normalized vector ω̂ obtained through Equa-
tion (4.11), with distribution ω̂ ∼ Mult(|R′|,ω), where |R′| = |R| −∑r∈R 1[ad(θr,βr,εr) =
0, ∀d ∈ D] is the number of non-trivial preferences profiles in the sample. The L1 distance
Φ(ω) can be approximated as follows:

Φ(ω) = E [||ω̂ − ω||1] , (5.2)

= E

∑
p∈P

|ω̂p − ωp|

 , (5.3)

=
∑
p∈P

E [|ω̂p − ωp|] , (5.4)

|R′|→∞−−−−→
∑
p∈P

√
2
π

√√√√ωp(1− ωp)
|R′|

, (5.5)

=
√

2
π|R′|

∑
p∈P

√
ωp(1− ωp), (5.6)

=: Φ̃(ω). (5.7)

Equation (5.5) is obtained by applying the approximation of the expected absolute error
of the estimator of the binomial parameter presented in Blyth (1980) to each term in the
summation.

The following result allows us to draw a formal connection between the entropy of W

and the expected discrepancy between models D̂EQ and DEQ.
Proposition 5. For any parameter η ∈ [0,1], the optimal solution of the following maxi-
mization problem:

max
ω∈[0,η]|P |

∑
p∈P

√
ωp(1− ωp) (5.8)

s.t.
∑
p∈P

ωp = η, (5.9)
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is ω∗ = (η/|P |, . . . ,η/|P |), with objective value
√

η(|P | − η).
Proof. The proof is by induction on |P |. The base case |P | = 1 trivially holds, as

ω∗ = (η) is the only feasible solution. Its objective value is∑p∈P

√
ω∗

p(1− ω∗
p) =

√
η(1− η) =√

η(|P | − η).
Assuming that the result holds for a set of cardinality |P | = k, we demonstrate the case

|P | = k + 1. To do so, we consider an element p̄ ∈ P and the set P̃ = P \ {p̄}, with |P̃ | = k.

max
ω∈[0,η]|P |

∑
p∈P

√
ωp(1− ωp)

∣∣∣∣∣∣
∑
p∈P

ωp = η

 (5.10)

= max
ω∈[0,η]|P |

√ωp̄(1− ωp̄) +
∑
p∈P̃

√
ωp(1− ωp)

∣∣∣∣∣∣ωp̄ +
∑
p∈P̃

ωp = η

 (5.11)

= max
ωp̄∈[0,η]

√ωp̄(1− ωp̄) + max
ω∈[0,η−ωp̄]k

∑
p∈P̃

√
ωp(1− ωp)

∣∣∣∣∣∣
∑
p∈P̃

ωp = η − ωp̄


 (5.12)

= max
ωp̄∈[0,η]

{√
ωp̄(1− ωp̄) +

√
(η − ωp̄)(k − (η − ωp̄))

}
(5.13)

=: max
ωp̄∈[0,η]

g(ωp̄) (5.14)

Equation (5.13) is obtained by applying the inductive hypothesis to set P̃ with parameter
η − ωp̄. The inductive hypothesis also stipulates that the optimal solution to this inner
problem is given by ω∗

p = (η − ωp̄)/|P̃ | = (η − ωp̄)/k, ∀p ∈ P̃ . We now seek the maximizer
ω∗

p̄ ∈ [0, η] of function g(ωp̄).

∂g(ωp̄)
∂ωp̄

= 0 ⇐⇒ 1− 2ωp̄

2
√

ωp̄(1− ωp̄)
+ −k + 2η − 2ωp̄

2
√

(η − ωp̄)(k − (η − ωp̄))
= 0 (5.15)

⇐⇒ ωp̄ = η

k + 1 (5.16)

Equation (5.16) is obtained through simple operations by developing expression (5.15)
and isolating ωp̄. The only critical point ω∗

p̄ = η/(k + 1) lies in the feasible interval [0,η].
The second derivative of function g(ωp̄) is given by:

∂2g(ωp̄)
∂ω2

p̄

= −
k2
√

(η − ωp̄)(k − η + ωp̄)
4(η − ωp̄)2(k − η + ωp̄)2 −

√
ωp̄(1− ωp̄)

4ω2
p̄(1− ωp̄)2 < 0. (5.17)

The maximizer of g(ωp̄) is thus ωp̄ = η/(k + 1). It follows that ω∗
p = (η − ωp̄)/k =

(η− η/(k + 1))/k = η/(k + 1) = η/|P |, ∀p ∈ P̃ . The optimal solution to problem (5.8)-(5.9)
in the inductive case is thus, as expected, ω∗ = (η/|P |, . . . ,η/|P |).
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The optimal value, in accordance with the expected result, is given by:∑
p∈P

√
ω∗

p(1− ω∗
p) =

∑
p∈P

√
η

|P |
(1− η

|P |
), (5.18)

=
√

η(|P | − η). (5.19)

□

A direct consequence of Proposition 5 is that the maximum entropy distribution is also
the maximizer of Φ̃(ω). This is shown in the following corollary.
Corollary 6. The estimated expected L1 distance Φ̃(ω) is maximized by the maximum en-
tropy distribution ω∗ = (1/|P |, 1/|P |, . . . , 1/|P |).

Proof. We consider the following maximization problem.

arg max
ω∈[0,1]|P |

Φ̃(ω)

∣∣∣∣∣∣
∑
p∈P

ωp = 1

 (5.20)

= arg max
ω∈[0,1]|P |


√

2
π|R′|

∑
p∈P

√
ωp(1− ωp)

∣∣∣∣∣∣
∑
p∈P

ωp = 1

 (5.21)

= arg max
ω∈[0,1]|P |

∑
p∈P

√
ωp(1− ωp)

∣∣∣∣∣∣
∑
p∈P

ωp = 1

 (5.22)

=
(

1
|P |

,
1
|P |

, . . . ,
1
|P |

)
(5.23)

The optimal solution ω∗ = (1/|P |, 1/|P |, . . . , 1/|P |) to problem (5.22) is given by Proposi-
tion 5, with η = 1. The maximum estimated expected L1 distance between ω̂ and ω is also
given by Proposition 5:

Φ̃(ω∗) =
√

2
π|R′|

√
1(|P | − 1) =

√√√√2(|P | − 1)
π|R′|

. (5.24)

□

Conversely, in the least entropy setting where ωp′ = 1 − ϵ for a profile p′ ∈ P , each
term ωp(1 − ω) converges to zero as ϵ → 0. The measure of discrepancy Φ̃(ω) between the
original problem and its simulation-based approximation D̂EQ thus supports the idea that
simulation-based methods should generally yield solutions of lower quality when the entropy
of the preference profiles is high.
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5.2. Impact of entropy on computational performance

We expect SHS to offer a significant advantage over SAAA when the optimal value δ∗

to the distance maximization problem (4.36) is large. Indeed, this value corresponds to
the difference between the proportion of the demand explicitly represented in the objective
function used in SHS and the proportion of the decision variables yp, p ∈ P̂ , included in the
model. A large value of δ∗ thus means that most of the demand can be taken into account
from the root node in SHS. This tends to limit the number of submodular cuts that have
to be generated in the B&C while significantly decreasing the number of decision variables
compared to SAAA.

Once again, a formal connection between the entropy of the preference profiles and SHS’s
computational properties can be established. The following proposition serves this purpose.
It shows that δ∗ corresponds to the total variation distance between the empirical distribution
of the observed preference profiles and the uniform discrete distribution U defined on the
same support P̂1.
Proposition 7. The maximum value δ∗ = maxi∈{1,...,|P̂ |} Ωi − i/|P̂ | is given by δ∗ =
δ(Ŵ , U) = 1/2||ω̂ − ω̄||1, where ω̄ = {1/|P̂ |, . . . ,1/|P̂ |} is the PMF of the uniform dis-
crete distribution U over P̂ .

Proof. The difference between two subsequent values of δi is given by:

δi − δi−1 = Ωi −
i

|P̂ |
−
(

Ωi−1 −
i− 1
|P̂ |

)
, (5.25)

= Ωi − Ωi−1 −
1
|P̂ |

, (5.26)

=
i∑

k=1
ω̂pk
−

i−1∑
k=1

ω̂pk
− 1
|P̂ |

, (5.27)

= ω̂pi
− 1
|P̂ |

. (5.28)

Since {ω̂pi
}|P̂ |

i=1 is an increasing sequence, it follows from the definition of the knee index i∗

that ω̂pi
≥ 1

|P̂ | ∀i ≤ i∗ and that ω̂pi
≤ 1

|P̂ | ∀i > i∗. The total variation distance δ(Ŵ , U) can
thus be developed as:

δ(Ŵ , U) = 1
2 ||ω̂ − ω̄||1, (5.29)

= 1
2

|P̂ |∑
k=1

∣∣∣∣∣ω̂pk
− 1
|P̂ |

∣∣∣∣∣ , (5.30)

= 1
2

 i∗∑
k=1

(
ω̂pk
− 1
|P̂ |

)
+

|P̂ |∑
k=i∗+1

(
1
|P̂ |
− ω̂pk

) , (5.31)
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= 1
2

 i∗∑
k=1

ω̂pk
− i∗

|P̂ |
+ |P̂ | − i∗

|P̂ |
−

|P̂ |∑
k=i∗+1

ω̂pk

 , (5.32)

= 1
2

(
Ω∗ − i∗

|P̂ |
+ |P̂ | − i∗

|P̂ |
− (1− Ω∗)

)
, (5.33)

= Ω∗ − i∗

|P̂ |
, (5.34)

= δ∗. (5.35)

□

The total variation distance δ∗ = δ(Ŵ , U) is linked to the entropy of Ŵ through the
Kullback–Leibler divergence from Ŵ to U . From Pinsker’s inequality (Pinsker, 1964) and
by Proposition 7:

δ∗ ≤
√

1
2DKL(Ŵ ||U) =

√
1
2
(
log |P̂ | −H(Ŵ )

)
. (5.36)

Other theoretical results, such as Bretagnolle–Huber inequality (Bretagnolle and Huber,
1978),

δ∗ ≤
√

1− e−DKL(Ŵ ||U) =
√

1− eH(Ŵ )−log |P̂ |, (5.37)

also provide a bound on the total variation distance based on the entropy of Ŵ . The optimal
value δ∗ of the knee detection method used in SHS is thus bounded by monotonically decreas-
ing functions of the entropy of Ŵ . This result suggests that exploiting the submodularity
property of model D̂EQ could be of limited interest in the context of observed preference
profiles with high entropy.

5.3. Illustrative example

Figure 5 compares the computational performance of SHS (Ω = Ω∗) with that of SAAA
(Ω = 1) and the pure submodular method (Ω = 0) on instances of different entropy levels.
The experimental setup is the same as in Section 4.2.2, except that we consider different
values of the parameter β, which controls the problem’s stochasticity level. We solve 10
randomly generated instances with each method for each value of β between 0.05 and 0.15,
in steps of 0.005. As β gets smaller, so does the sensitivity of the customers to distances,
which makes their behavior more uncertain (i.e., the relative importance of ε increases).

In the lowest entropy setting, SHS is the most efficient method, with an average CPU time
of 0.05 seconds. The pure submodular method and SAAA take 0.17 and 0.46 seconds per
instance on average, respectively. The problem becomes more challenging for all the methods
as the entropy increases because so does the number of observed preference profiles, which
goes from 19,866 to 60,143 on average between the lowest and highest entropy instances.
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Fig. 5. Average CPU time for NYC instances of different levels of entropy

As expected, the submodularity-based methods are more sensitive to entropy than SAAA.
SHS ceases to be the most efficient method when β exceeds 0.06, and SAAA then provides
the best performance. This switch only occurs when the demand is extremely scattered
across preference profiles and the empirical distribution of observed preferences approaches
the uniform distribution. For β = 0.06, |P̂ | = 54,269 different nontrivial preference profiles
were observed on average, and the resulting empirical distribution ω̂ was associated with an
entropy of H(Ŵ ) = 10.15. In comparison, the entropy of the discrete uniform distribution
on the same support is 10.90. SHS dominates the pure submodular method for every entropy
level.

The impact of the entropy on the solution quality is only partly visible in this set of
instances, as the average relative optimality gap of the solution obtained through model
D̂EQ for the original MNL model is less than 0.05% for each entropy level. The conclusions
of the theoretical analysis developed in Section 5.1 are instead illustrated and discussed
throughout the computational experiments of the next section.

6. Computational experiments
The purpose of this computational study is twofold. The first objective is to assess

the potential of simulation-based methods for efficiently solving competitive facility location
problems under RUM models for which model-specific algorithms have already been exten-
sively studied. To do so, SHS, SAAA, and SAA are compared to GGX and MOA on MNL
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benchmark instances from the literature. The second objective is to compare the compu-
tational performance and solution quality provided by these methods under less restrictive
modeling assumptions, which is done based on a new set of generative MMNL instances.

The experiments are conducted on a PC with processor Intel(R) i7-10875H CPU @
2.30GHz along with 32 GB of RAM operated with Windows 10 Pro. The simulation-based
methods SHS, SAAA and SAA are implemented in Julia and are linked to IBM-ILOG
CPLEX 20.1.0 optimization routines under default settings. The solver is warm-started
with a simple greedy solution. The code and detailed computational results are available at
https://github.com/robinlegault/CBCFLP. We use the original MATLAB implementation
of MOA and GGX.

6.1. Conditional MNL instances

The experiments of this section are carried out on two datasets on which the most recent
methods for the MNL competitive facility location problem have been benchmarked (Dam
et al., 2022, Freire et al., 2016, Ljubić and Moreno, 2018, Mai and Lodi, 2020):

• HM14: This dataset has been proposed by Haase and Müller (2014). To produce
these problems, the location of the facilities and the customers have been uniformly
generated on the square [0,30] × [0,30]. This dataset includes instances with |D| ∈
{25,50,100} available locations and |N | ∈ {50,100,200,400,800} customers. In our
experiments, we only consider the largest set of customers |N | = 800.
• NYC: This dataset is based on a real-life park-and-ride location problem in New

York City. It includes |D| = 59 available locations and |N | = 82,341 customers with
weights ranging from 1 to 19. These are generally regarded as the most challenging
MNL instances in the literature (Dam et al., 2022, Mai and Lodi, 2020). Holguin-
Veras et al. (2012) provide a more detailed presentation of the NYC instances.

For both datasets, the deterministic utility of an open facility for customer n ∈ N is
given by vn

c = −βθn
c for the new locations c ∈ D and by vn

c = −αβθn
c for the competing

locations c ∈ E. The attribute θn
c of customer n ∈ N denotes its distance from facility

c ∈ C in HM14, and aggregates several factors (including travel time, tolls, auto costs, and
waiting time) in NYC. The coefficient β controls the importance of the deterministic term in
the total utility and, thus, the entropy level of the preference profiles. The competitiveness
of the existing facilities is controlled by α. Smaller values of this coefficient lead to more
attractive competitors.

Like most previous studies, we consider a unique business constraint, namely that the
firm can open at most b facilities. Hence, the set of feasible configurations is given by
X = {x ∈ {0,1}|D| : ∑d∈D xd ≤ b}. As pointed out by Mai and Lodi (2020) for the MNL
model, opening additional locations cannot reduce the market share captured by the firm.
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This result trivially holds under any RUM model, as the effect of opening new facilities is to
relax constraints (4.2) in the deterministic equivalent model DEQ, or analogously constraints
(4.13) in model D̂EQ. An equality constraint can thus equivalently replace the inequality
constraint in the definition of X.

For each number of available locations |D| ∈ {25, 50, 100} in the HM14 dataset, we solve
an instance for each configuration (β, α, b) ∈ {1,2,5,10}×{0.05, 0.1, 0.2}×{2,3,4,5,6,7,8,9,10}.
These parameters cover those used by Ljubić and Moreno (2018) and Mai and Lodi (2020),
except for α. This parameter was taken in a wider interval in both studies, leading to degen-
erate instances in which more than 99.99% of the market can be captured by a single location.
The parameters we consider lead to more reasonable instances for which the optimal value
ranges from 2% to 90% of the total market share. Similarly, each configuration (β, α, b) ∈
{0.1, 0.15, 0.2, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2} × {0.75,1,1.25} × {2,3,4,5,6,7,8,9,10} is con-
sidered for the NYC dataset.

The simulation-based methods are applied with three different numbers of scenarios
|S1| = 10, |S2| = 100 and |S3| = 1,000 for the HM14 instances and |S1| = 1, |S2| = 5
and |S3| = 10 for NYC. We use the code provided by the authors of the MOA algorithm,
which sets T = min{1000, |N |} groups for the HM14 instances and T = 20 for the NYC
dataset.

The instances are grouped by number of candidate locations and value of β to illustrate
the impact of entropy on the performance of each method. The average CPU times are
reported in Table 8. Table 9 presents the relative size of the models solved by SAAA and
SAA (see columns |P̂ |/|R|) and by SHS and SAAA (see columns |P̂1|/|P̂ |), as well as the
optimal value δ∗ of the knee detection problem. The last columns of Table 9 report the
optimality gap for the simulation-based methods and GGX. For a feasible solution x ∈ X,
it is defined as:

Gap = ZN(x∗
N)− ZN(x)

ZN(x∗
N) , (6.1)

where ZN(·) and x∗
N respectively denote the objective function and the optimal solution of the

conditional MNL model (2.9). The number of B&C nodes explored by the simulation-based
methods and the number of submodular cuts generated by SHS are reported in Table 10.

The results in Table 8 indicate that SHS is almost always the fastest among the
simulation-based methods. An exception is the highest entropy instances of the HM14
dataset, for which all the simulation-based methods, especially SHS, have relatively large
computing times. SAAA consistently dominates SAA, most noticeably for instances with
low entropy and a high number of simulated customers, for which the aggregation of simu-
lated customers with identical preference profiles produces the most drastic reduction in the
problem size, as reported in Table 9.
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Table 8. Average CPU times (seconds) for conditional MNL instances, by entropy level (27
instances per row)

Set Entropy SHS SAAA SAA GGX MOA
β H(Ŵ ) |S1| |S2| |S3| |S1| |S2| |S3| |S1| |S2| |S3|

HM14
|D| = 25

10 3.40 0.00 0.01 0.05 0.01 0.01 0.06 0.02 0.16 2.05 0.15 20.69
5 3.50 0.00 0.01 0.05 0.01 0.01 0.06 0.02 0.16 2.06 0.15 22.98
2 3.87 0.01 0.01 0.05 0.01 0.02 0.07 0.02 0.18 2.26 0.19 30.58
1 4.54 0.01 0.02 0.06 0.02 0.05 0.19 0.04 0.23 2.59 0.17 40.92

HM14
|D| = 50

10 4.40 0.01 0.01 0.07 0.01 0.02 0.08 0.03 0.23 2.34 0.22 22.71
5 4.52 0.01 0.01 0.08 0.01 0.02 0.09 0.03 0.23 2.39 0.21 33.87
2 4.97 0.02 0.02 0.09 0.02 0.06 0.17 0.03 0.26 3.28 0.22 51.74
1 5.86 0.13 0.10 0.27 0.09 0.25 1.29 0.11 0.50 4.29 0.20 82.31

HM14
|D| = 100

10 5.44 0.06 0.03 0.14 0.03 0.06 0.17 0.06 0.38 3.90 0.46 31.35
5 5.76 0.20 0.05 0.15 0.06 0.14 0.79 0.09 0.45 4.16 0.46 52.42
2 6.72 6.56 1.93 2.44 0.17 0.77 8.23 0.23 1.14 13.21 0.45 122.30
1 8.12 18.96(8) 44.16(8) 47.36(9) 1.21 34.53 78.53(8) 1.20 38.95 81.43(8) 0.48 942.47

NYC

2.00 3.88 0.02 0.06 0.10 0.07 0.27 0.44 0.30 1.63 3.33 5.95 22.44
1.75 3.91 0.02 0.06 0.10 0.07 0.29 0.46 0.30 1.57 3.33 6.01 17.12
1.50 3.96 0.02 0.06 0.10 0.08 0.31 0.49 0.30 1.59 3.43 5.93 11.95
1.25 4.04 0.02 0.06 0.11 0.09 0.37 0.61 0.31 1.65 3.53 5.95 7.25
1.00 4.17 0.02 0.07 0.12 0.10 0.43 0.77 0.32 1.80 3.79 5.94 4.49
0.75 4.42 0.02 0.09 0.15 0.19 0.66 1.14 0.42 2.10 4.48 5.93 2.70
0.50 4.99 0.03 0.12 0.21 0.32 1.32 2.59 0.50 2.94 6.49 5.95 1.54
0.25 6.62 0.06 0.32 0.68 1.11 6.09 12.00 1.42 8.85 20.42 5.95 0.75
0.20 7.25 0.09 0.64 0.82 1.73 9.75 24.89 2.07 11.70 32.23 6.01 0.69
0.15 8.10 0.14 1.02 2.79 3.44 19.95 41.21 3.32 21.12 57.15 5.92 0.60
0.10 9.37 0.88 10.55 33.67 5.64 42.25 104.13 5.62 47.17 143.90 5.98 0.53

(·) Number of instances that were not solved to optimality within the time limit of 10 minutes applied to simulation-based methods

As expected, the computing time of SHS is less sensitive to the number of scenarios
than SAAA and SAA. In some cases, the CPU time of SHS even decreases with the number
of scenarios. This happens for the largest instances of the HM14 dataset with β = 2,
where SHS requires 6.55 seconds on average for 10 scenarios and only 2.44 seconds for
1,000 scenarios. For the same group of instances, multiplying the number of scenarios by
100 (comparing |S1| and |S3|) increases the CPU time of SAAA and SAA by a factor of
48 and 58, respectively. Supporting the theoretical analysis of Section 5.2, the progressive
improvement in the relative performance of SHS compared to SAAA and SAA that comes
with more scenarios is accompanied by an increase in the optimal value δ∗ of the knee
detection problem (see Table 9). In the previously discussed group with 10 scenarios, P̂1

comprises 18.2% of the observed preference profiles accounting for 65.1% of the demand,
for a difference of δ∗ = 46.6%. In comparison, with 1,000 scenarios, δ∗ = 78.5% and the
10.3% most important profiles account for 88.8% of the demand. Furthermore, across both
datasets, SHS requires exploring fewer nodes and generating fewer submodular cuts in the
B&C tree as the number of scenarios increases. SAAA and SAA solve almost all the instances
to optimality at the root node (see Table 10).

Since GGX only relies on local search procedures, its execution time is mostly unaffected
by the entropy level, whereas the instances with high entropy are generally more challenging
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Table 9. Attributes of model D̂EQ(P̂1) and solution quality compared to GGX for condi-
tional MNL instances, by entropy level (27 instances per row)

Set Entropy |P̂ |/|R|, (%) |P̂1|/|P̂ |, (%) δ∗, (%) Gap, (%)

β H(Ŵ ) |S1| |S2| |S3| |S1| |S2| |S3| |S1| |S2| |S3| |S1| |S2| |S3| GGX

HM14
|D| = 25

10 3.40 0.9 0.1 0.0 31.6 27.0 24.0 46.3 52.9 56.0 .04 .01 .00 .10
5 3.50 1.1 0.2 0.0 27.2 21.1 18.5 49.4 56.4 60.4 .12 .02 .00 .00
2 3.87 2.0 0.4 0.1 22.0 16.9 12.2 52.1 64.9 74.5 .18 .03 .00 .00
1 4.54 4.7 1.3 0.3 19.0 11.5 7.8 61.9 76.5 85.2 .31 .11 .00 .00

HM14
|D| = 50

10 4.40 2.1 0.3 0.0 32.9 31.2 28.5 40.9 47.0 52.5 .09 .00 .00 .00
5 4.52 2.7 0.4 0.1 30.7 25.4 20.8 45.0 55.1 62.7 .44 .00 .01 .01
2 4.97 5.5 1.2 0.2 25.6 17.2 11.8 51.9 66.9 77.3 1.01 .03 .00 .02
1 5.86 12.9 4.3 1.3 20.6 13.2 8.6 55.6 72.5 83.1 1.11 .08 .01 .00

HM14
|D| = 100

10 5.44 6.8 1.2 0.2 29.2 23.9 18.7 45.6 57.0 64.9 .28 .02 .00 .40
5 5.76 10.4 2.3 0.5 24.3 18.7 13.7 48.5 62.5 72.0 .20 .11 .00 .16
2 6.72 22.0 8.6 2.9 18.2 15.4 10.3 46.6 65.6 78.5 1.11 .15 .01 .08
1 8.12 41.7 25.6 14.3 13.6 16.2 9.0 37.1 55.1 69.3 .62 .11 .02∗ .06

NYC

2.00 3.88 3.2 1.3 0.9 12.9 10.2 9.4 70.5 76.3 78.0 .00 .00 .00 .00
1.75 3.91 3.3 1.4 1.0 12.3 10.1 9.0 70.6 76.7 78.4 .00 .00 .00 .00
1.50 3.96 3.6 1.6 1.1 12.5 9.7 8.9 70.7 76.9 78.3 .01 .00 .00 .00
1.25 4.04 3.9 1.8 1.3 11.3 9.2 8.8 71.0 77.3 79.1 .00 .00 .00 .00
1.00 4.17 4.5 2.2 1.6 10.9 9.0 8.3 71.5 77.0 79.9 .00 .00 .00 .00
0.75 4.42 5.4 3.0 2.3 10.0 9.1 8.3 70.2 77.9 80.6 .00 .00 .00 .00
0.50 4.99 7.8 4.9 3.9 10.2 9.0 7.7 70.9 77.7 80.2 .02 .01 .01 .00
0.25 6.62 15.4 11.6 10.2 13.0 8.9 9.2 63.4 71.4 74.3 .03 .00 .00 .00
0.20 7.25 19.6 15.3 13.8 11.3 11.7 7.8 60.2 67.8 70.6 .00 .00 .00 .00
0.15 8.10 26.7 21.9 20.1 9.8 9.8 10.1 54.7 61.8 64.6 .01 .00 .00 .00
0.10 9.37 40.9 35.4 33.3 16.4 17.3 17.5 45.5 51.5 53.8 .01 .03 .00 .00

∗ Based on the instances that were solved to optimality within the time limit

for the other methods. The only exception occurs in the NYC dataset, where the CPU
time of MOA decreases significantly with the entropy. A possible explanation is the large
number of customers (4117 on average for T = 20) aggregated in each component gt of the
objective function. When the entropy is low, the customer’s choice probabilities are mainly
determined by their attributes instead of the random error term. As β increases, so does the
heterogeneity of the customers’ preferences in each group, which we conjecture makes the
aggregated subgradient cuts weaker and negatively affects the performance of this version of
MOA. This behavior is not observed on the HM14 dataset, as this set of instances is solved
using the multicut version of MOA.

The results of Table 9 support the analysis of Section 5.1, as they illustrate the negative
impact of entropy on the solution quality obtained by sample average approximation. This
is especially visible for the smallest number of scenarios on the HM14 dataset, where the
optimality gap is, on average, five times larger with β = 1 than with β = 10. Fortunately,
closing the optimality gap does not require an unmanageable number of scenarios, even for
high entropy instances. For the largest number of scenarios, SHS remains significantly faster
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Table 10. Number of submodular cuts generated and B&C nodes explored by the
simulation-based methods for conditional MNL instances, by entropy level (27 instances per
row)

Set Entropy # submodular cuts # B&C nodes
SHS SHS SAAA SAA

β H(Ŵ ) |S1| |S2| |S3| |S1| |S2| |S3| |S1| |S2| |S3| |S1| |S2| |S3|

HM14
|D| = 25

10 3.40 8.7 6.1 7.0 4.4 3.8 4.1 0.0 0.0 0.0 0.0 0.0 0.0
5 3.50 6.9 12.7 8.7 2.8 5.0 1.8 0.0 0.0 0.0 0.0 0.0 0.0
2 3.87 7.2 5.5 4.1 5.2 1.5 0.4 0.0 0.0 0.0 0.0 0.0 0.0
1 4.54 20.7 11.9 7.5 37.9 11.3 5.2 0.0 0.0 0.0 0.0 0.0 0.1

HM14
|D| = 50

10 4.40 8.3 7.0 11.7 10.1 5.5 3.7 0.0 0.0 0.0 0.0 0.0 0.0
5 4.52 11.1 6.7 7.0 9.5 2.6 1.2 0.0 0.0 0.0 0.0 0.0 0.0
2 4.97 14.1 11.1 8.1 29.1 12.3 6.4 0.0 0.0 0.0 0.0 0.0 0.0
1 5.86 66.1 35.0 32.0 360.0 99.7 47.6 0.0 0.0 1.8 0.0 0.0 2.6

HM14
|D| = 100

10 5.44 29.3 7.2 15.0 96.6 7.8 7.9 0.0 0.0 0.0 0.0 0.0 0.0
5 5.76 40.1 14.4 6.9 309.9 20.6 3.6 0.0 0.0 0.0 0.0 0.0 0.0
2 6.72 249.3 93.1 64.3 7229.4 747.1 223.7 0.0 0.0 0.0 0.0 0.0 0.0
1 8.12 2990.4 1253.6 391.0 18317.2 11281.8 3429.6 11.8 43.5 20.1 11.3 42.8 21.1

NYC

2.00 3.88 2.1 2.0 2.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1.75 3.91 2.1 2.2 2.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1.50 3.96 1.9 2.1 2.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1.25 4.04 2.1 2.1 2.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1.00 4.17 2.1 2.1 2.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.75 4.42 2.2 2.1 2.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.50 4.99 2.1 2.1 2.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.25 6.62 2.5 2.5 2.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.20 7.25 3.6 2.7 2.7 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.15 8.10 5.6 4.2 3.9 2.7 1.5 1.2 0.0 0.0 0.0 0.0 0.0 0.0
0.10 9.37 12.3 10.1 7.0 13.9 8.0 5.8 0.0 0.0 0.1 0.0 0.0 0.0

than MOA and even GGX in most cases and provides near-optimal solutions for all the
instances, with an average optimality gap that does not exceed 0.02%. In comparison, the
optimality gap of GGX reaches 0.40% for the HM14 dataset with |D| = 100 and β = 10.
For the same group of instances, SHS with 1,000 scenarios requires 229 times less CPU time
than MOA and three times less than GGX and leads to a negligible optimality gap.

These results demonstrate that SHS, despite being a model-free approach, can provide
better solution quality and computational performance than the state-of-the-art heuristic
method for conditional MNL instances. In addition, its asymptotic optimality property
makes it a sound alternative to exact methods for challenging large-scale instances.

6.2. Generative MMNL instances

This section presents experiments based on a new set of generative MMNL instances,
which we call the MIX dataset. We assume that there are three types of locations l ∈ L

and three types of customers k ∈ K. We consider a fixed set of 10 competing facili-
ties (resulting in |E| = 3 · 10 = 30) and 25 available locations of each type (resulting in
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|D| = 3 · 25 = 75), which were generated uniformly on the square [−15,15]× [−15,15]. The
customers’ attributes is given by the random vector θ = (θ1, θ2, K), where (θ1, θ2) denotes
a position in the plane, and the categorical random variable K indicates the type of cus-
tomer. Fixed parameters {δk}k∈K and {γkl}k∈K,l∈L respectively control the level of aversion
of each customer type to travel distances, and to each type of location. Those are set to
δ = [3, 1, 2], γ1 = [20, 60, 30], γ2 = [40, 20, 60] and γ3 = [60, 40, 20]. A random multiplier
β ∼ U [β−, β+] controls the weight of the perceived utility in the function uc(θ, ε) = vc(θ)+εc.
For a facility c of type l, the perceived utility is defined as vc(θ) = −β(δKMc(θ1, θ2) + γKl),
where Mc(θ1, θ2) denotes the Manhattan distance separating position (θ1, θ2) from loca-
tion c. As illustrated in Figure 6, the population is distributed across four neighborhoods
j ∈ {1,2,3,4}. The part of the customers that reside in neighborhood j and the proportion of
customers of type k in neighborhood j are specified by two parameters πj and ρjk. The spa-
tial distribution of the population in neighborhood j follows a bivariate normal variable with
mean µj and covariance matrix Σj. The following parameters are used in our experiments:

π = [0.4, 0.3, 0.2, 0.1],

[ρ1, ρ2, ρ3, ρ4] =
[
[0.2, 0.7, 0.1], [0.3, 0.4, 0.3], [0.3, 0.4, 0.3], [0.0, 0.2, 0.8]

]
,

[µ1, µ2, µ3, µ4] =
[
[2,−2], [−10,−10], [−4, 10], [12,−5]

]
,

[Σ1, Σ2, Σ3, Σ4] =


9 1
1 9

 ,

 9 −6
−6 9

 ,

16 1
1 4

 ,

2 0
0 21


 .

Fig. 6. Visualization of the MIX dataset based on a sample of 10,000 customers.
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To solve the generative MMNL model with MOA and GGX, we sample a set N of real-
izations {(θn, βn)}n∈N of the customers’ random attributes θ and of the random coefficient
β. For SHS, SAAA and SAA, the resulting conditional MNL model is then approximated
as in the previous section through a set S of realizations {ε}s∈S of the error component for
each customer n ∈ N .

For the same number of realizations, solving the MNL model exactly with MOA pro-
vides the best solution on average but is more expensive than solving it heuristically with
GGX, which in turn is more expensive than solving the simulation-based model with SHS.
To account for the different computational performance and solution quality of each ap-
proach, different numbers of customers are considered for each of them. We generate
|N | ∈ {125, 250, 500, 1000, 2000} customers for MOA, |N | ∈ {250, 1000, 4000, 16000, 64000}
for GGX, and |N | ∈ {16000, 32000, 64000, 128000, 256000} with |S| = 5 scenarios for SHS,
SAAA and SAA. We study the model with four different pairs of bounds (β−, β+) ∈
{(0.125,0.25), (0.25,0.5), (0.5,1), (1,2)}. The average entropy of the observed preference pro-
files for the simulation-based instances generated with these parameters ranges from 5.11 to
8.14. For each entropy level and each sample size, five instances are generated and solved
with five different budgets b ∈ {5, 10, 15, 20, 25}.

Table 11 reports the CPU times for each method and the relative size of the different
simulation-based models. For a sample of customers N and a set of scenarios S, let us
respectively denote by x∗

NS, xG
N and x∗

N the optimal solution of the simulation-based model
D̂EQ, the heuristic solution returned by GGX, and the optimal solution of the conditional
MNL model. Also, let ZNS(·), ZN(·) and Z(·) be the objective functions of the simulation-
based, conditional MNL, and generative MMNL models. Table 12 presents the average
values of solutions x∗

NS, xG
N and x∗

N for each objective function. Z(·) is evaluated based on
an independent sample of |N | = 1,000,000 customers.

The results presented in Table 11 indicate that SHS is consistently the most efficient
simulation-based method for the MIX dataset. In the lowest entropy settings, the advan-
tage of SHS over SAAA is only marginal, as the number of observed preference profiles
remains limited even for a very large number of simulated customers. For example, for
(β−, β+) = (1,2) with |N | = 256,000 customers and |S| = 5 scenarios, aggregating the
simulated customers by preference profile reduces the model’s size from |R| = 1,280,000
to |P̂ | = 2,840 (i.e., |P̂ |/|R| ≈ 0.2%). However, for parameters (β−, β+) = (0.125, 0.25)
and the same number of simulated customers, the average number of observed preference
profiles reaches |P̂ | = 145,175 (i.e., |P̂ |/|R| ≈ 11.3%). This makes solving model D̂EQ
with CPLEX computationally demanding. In this setting, P̂ contains a very high number
of preference profiles with negligible weight, and aggregating their contribution to the ob-
jective value becomes increasingly profitable computationally. The subset P̂1 of preference
profiles that are explicitly represented in model D̂EQ(P̂1) has an average cardinality of 8,998

87



Table 11. Average CPU times (seconds) and attributes of model D̂EQ(P̂1) for the MIX
dataset, by entropy level and sample size (25 instances per row)

Entropy |N |, (thousands) Model D̂EQ(P̂1), (%) Time

β− β+ H(Ŵ ) SHS GGX MOA |P̂ |/|R| |P̂1|/|P̂ | δ∗ SHS SAAA SAA GGX MOA

1 2 5.11

16 0.25 0.125 1.6 13.6 74.2 0.02 0.03 0.33 0.73 0.43
32 1 0.25 1.0 12.6 77.1 0.03 0.05 0.65 1.20 1.27
64 4 0.5 0.6 11.5 79.4 0.05 0.07 1.76 7.40 7.50
128 16 1 0.4 10.3 81.7 0.10 0.12 3.81 24.26 56.59
256 64 2 0.2 9.6 83.4 0.18 0.19 7.27 47.17 126.83

0.5 1 5.64

16 0.25 0.125 3.4 11.2 75.7 0.03 0.06 0.36 0.73 0.47
32 1 0.25 2.4 9.7 79.0 0.04 0.08 0.73 1.20 1.78
64 4 0.5 1.6 8.6 81.7 0.06 0.12 1.75 7.69 9.82
128 16 1 1.1 7.6 84.1 0.10 0.19 3.71 24.44 69.35
256 64 2 0.7 6.9 86.0 0.20 0.30 8.06 47.29 135.05

0.25 0.5 6.73

16 0.25 0.125 9.5 10.0 71.2 0.07 0.28 0.63 0.71 1.02
32 1 0.25 7.3 8.1 74.8 0.12 0.61 1.39 1.25 3.06
64 4 0.5 5.6 7.4 77.9 0.16 1.02 3.07 7.45 14.76
128 16 1 4.2 6.8 80.8 0.21 1.23 7.42 24.16 95.18
256 64 2 3.1 6.1 83.2 0.34 7.15 18.59 47.25 182.12

0.125 0.25 8.14

16 0.25 0.125 21.9 8.7 59.5 0.49 1.64 1.87 0.73 1.74
32 1 0.25 18.5 9.2 63.7 0.66 5.68 7.28 1.26 6.06
64 4 0.5 15.9 7.7 67.4 0.78 6.87 11.66 7.17 20.70
128 16 1 13.4 6.7 70.7 1.31 52.98 59.88 23.75 115.48
256 64 2 11.3 6.2 73.7 2.44 134.20 218.34 48.03 206.64

(6.2% of the observed preference profiles) and accounts for approximately 80% of the demand
(Ω∗ = |P̂1|/|P̂ |+ δ∗ ≈ 79.9%). Although P̂2 regroups 136,177 preference profiles on average,
SHS terminates after generating only 23.6 submodular cuts on average (see Table 13). As a
result, the average CPU time of SHS for this group of instances is 2.44 seconds compared to
134.20 seconds and 218.34 seconds for SAAA and SAA.

The objective value of solution x∗
NS for the generative MMNL model stabilizes at a near-

optimal level between |N | = 64,000 and |N | = 256,000 (see figures highlighted in bold in
Table 12). SHS generally solves these instances in less than one second. Similar quality
solutions can be obtained in approximately 47 seconds using GGX with |N | = 64,000.
MOA is the worst-performing method for the MIX dataset. Indeed, solving the conditional
MNL model to optimality for |N | = 2,000 customers is three to four orders of magnitude
longer than solving the simulation-based model with SHS for |N | = 16,000 and |S| = 5 and
consistently provides solutions of lower quality for the generative MMNL model.

The results of this section demonstrate the clear advantage of our simulation-based
method over model-specific algorithms and classical sample average approximation for prob-
lems based on flexible RUM models and a generative perspective.
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Table 12. Average objective value evaluated on an independent sample of 1,000,000 cus-
tomers (expected market share, in %) under the simulation-based, conditional MNL and
generative MMNL models for the MIX dataset, by entropy level and sample size (25 in-
stances per row)

Entropy |N |, (thousands) SHS GGX MOA

β− β+ H(Ŵ ) SHS GGX MOA ZNS(x∗
NS) ZN(x∗

NS) Z(x∗
NS) ZN(xG

N) Z(xG
N) ZN(x∗

N) Z(x∗
N)

1 2 5.11

16 0.25 0.125 62.59 62.54 62.62 63.38 61.02 65.59 60.29
32 1 0.25 62.71 62.70 62.62 62.84 62.35 63.38 61.02
64 4 0.5 62.49 62.50 62.63 62.78 62.51 63.55 61.32
128 16 1 62.52 62.53 62.62 62.55 62.62 62.84 62.35
256 64 2 62.59 62.59 62.63 62.50 62.63 63.02 62.44

0.5 1 5.64

16 0.25 0.125 60.63 60.58 60.70 60.98 59.28 63.68 58.71
32 1 0.25 60.64 60.67 60.70 61.09 60.44 60.98 59.28
64 4 0.5 60.65 60.68 60.70 60.81 60.68 61.25 60.16
128 16 1 60.66 60.67 60.71 60.58 60.70 61.09 60.44
256 64 2 60.72 60.74 60.71 60.68 60.71 61.35 60.61

0.25 0.5 6.73

16 0.25 0.125 56.96 56.88 56.87 58.37 55.90 58.69 55.04
32 1 0.25 56.90 56.95 56.87 56.41 56.70 58.37 55.90
64 4 0.5 56.86 56.84 56.88 56.87 56.86 57.17 56.33
128 16 1 56.89 56.92 56.88 56.88 56.87 56.41 56.70
256 64 2 56.92 56.92 56.88 56.84 56.88 57.52 56.81

0.125 0.25 8.14

16 0.25 0.125 51.43 51.29 51.23 53.05 50.57 52.24 49.89
32 1 0.25 51.04 51.07 51.24 50.85 51.09 53.05 50.57
64 4 0.5 51.24 51.27 51.25 51.28 51.21 52.23 50.94
128 16 1 51.18 51.20 51.25 51.31 51.25 50.85 51.09
256 64 2 51.25 51.24 51.25 51.28 51.25 51.16 51.18

Table 13. Number of submodular cuts and B&C nodes generated by the simulation-based
methods for the MIX dataset, by entropy level and sample size (25 instances per row)

Entropy |N |
(thousands)

# submodular cuts # B&C nodes

β− β+ H(Ŵ ) SHS SHS SAAA SAA

1 2 5.11

16 15.1 3.2 0.0 0.0
32 8.8 1.6 0.0 0.0
64 3.7 0.0 0.0 0.0
128 10.3 3.0 0.0 0.0
256 15.8 3.2 0.0 0.0

0.5 1 5.64

16 10.2 7.2 0.0 0.0
32 8.0 3.4 0.0 0.0
64 4.9 1.2 0.0 0.0
128 3.8 0.4 0.0 0.0
256 10.1 1.5 0.0 0.0

0.25 0.5 6.73

16 13.3 12.5 0.0 0.0
32 11.2 11.6 0.0 0.0
64 8.7 7.6 0.0 0.0
128 6.5 3.7 0.0 0.0
256 5.7 2.6 0.0 0.0

0.125 0.25 8.14

16 47.5 166.0 0.0 0.0
32 40.2 94.9 0.3 0.0
64 22.9 48.9 0.2 1.8
128 23.8 33.7 1.0 1.4
256 23.6 26.9 0.0 0.0
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7. Conclusion
This paper presents a model-free approach for solving probabilistic competitive facility

location problems with utility-maximizing customers. The proposed methodology is based
on a new deterministic equivalent reformulation of the problem. Approximating this model
by simulation leads to a generalization of the classical sample average approximation model
in which preference profiles replace simulated customers as the basic unit of demand.

We show that the objective function of the competitive facility location problem is
submodular under any RUM model. We exploit this property, which is preserved by our
simulation-based model, in the so-called hybrid submodular reformulation. The idea of this
reformulation is to partition the preference profiles into two sets that are respectively ex-
plicitly represented in the model and aggregated into a unique composite customer whose
contribution to the objective is bounded by submodular cuts.

We propose constructing this partition using a knee detection method, resulting in an al-
gorithm that does not rely on user-defined parameters. We develop an information-theoretic
analysis of the problem and draw connections between the entropy of the preference pro-
files and the computational performance of our approach. Computational experiments on
conditional MNL and generative MMNL instances show that our method can significantly
outperform state-of-the-art model-specific algorithms in terms of computing time and solu-
tion quality. A key takeaway from the experiments is that our branch-and-cut methodology
scales significantly better than the classical sample average approximation method with
respect to the number of simulated customers. Combined with the absence of restrictive
modeling assumptions of our approach, this opens the way to integrating larger and more
complex populations in choice-based competitive facility location problems.

Regarding future research directions, the proposed methodology could be generalized to
a multicut version that would include multiple auxiliary variables bounded by independent
submodular cuts. This approach would require a different set partitioning approach than
the knee detection method we use in our single-cut version. Relevant modeling extensions of
this work for real-life applications include adding capacity constraints on the facilities and
accounting for the anticipated reaction of the competitors to the firm’s decisions.
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Conclusion

In this thesis, we tackled two distinct network design problems: the single-sink fixed-charge
transportation problem (SSFCTP) and the choice-based competitive facility location prob-
lem (CBCFLP). As previously noticed in the literature, these problems are directly related to
the binary knapsack problem (KP) and the maximum covering problem (MCP), respectively.
However, these structural similarities to classical combinatorial optimization problems were
only superficially leveraged by existing algorithms. By further exploring and formalizing
these connections, we proposed novel model reformulations, proved theoretical properties,
and devised efficient solution methods for both problems.

In the case of the SSFCTP, we developed the knapsack transformation algorithm (KTA),
an exact method constituted of three phases. First, in the heuristic phase, we consider
a Lagrangian-inspired relaxation of a binary nonlinear reformulation of the SSFCTP. This
relaxation, which can be expressed as a KP, is iteratively solved for different multiplier values.
This yields a set of optimal solutions to KPs from which we extract several bounds, which
are then improved based on a new dominance relation and a strengthened linear relaxation
of the SSFCTP. Second, we execute a filtering phase in which the number of units sent to
the sink can be fixed to either zero or the source node’s capacity on several arcs. Finally, the
exact phase consists in solving a residual set of KPs from an original pool that was reduced
throughout the heuristic phase of KTA. This residual set is usually empty or contains a
very small number of problems whose size is also very small due to the preceding filtering
phase. For each group of instances in our experiments, KTA required solving less than two
KPs with a size equal to or inferior to that of the original SSFCTP. As solving these KPs
represents most of the computation time of KTA, we conclude that the SSFCTP should now
be regarded, like the KP (Pisinger, 2005), as one of the easiest NP-hard problems.

The solution approach we developed for the CBCFLP is called the simulation-based
hybrid submodular (SHS) method. This algorithm applies to a sample average estimate of a
deterministic equivalent reformulation of the CBCFLP as a large-scale MCP. Starting from
a set of simulated customers, the first step of SHS is to aggregate the customers sharing the
same preference profile, defined as the set of available locations they would patronize over
the competition. The weight of each preference profile in the resulting MCP approximates



a coefficient of our deterministic equivalent reformulation. The second step of SHS is to
partition these preference profiles into two groups. The first one, constituted of the preference
profiles with the largest weight, is kept as is in the model. The least prevalent profiles
are aggregated and their contribution to the objective, represented by a single auxiliary
variable, is bounded by submodular cuts. The resulting model, which we describe as an hybrid
submodular reformulation of the MCP, is then solved using a branch-and-cut methodology.
Our empirical results indicate that SHS generally performs better than the state of the
art on large instances, except in cases where customer behavior is nearly entirely random.
Furthermore, SHS scales significantly better than classical sample average approximation
with respect to the number of simulated customers. These conclusions are supported by a
theoretical analysis relating the level of entropy of the preference profiles in the population
to the structure of the problem and the performance of simulation-based methods.

The two articles in this thesis open very different, but equally promising perspectives for
future research. First, the huge leap in computational efficiency achieved by KTA compared
with the previous state-of-the-art methods for the SSFCTP (instances previously requiring
minutes of computation can now be solved in a few milliseconds) significantly increases the
potential of methodologies necessitating to solve SSFCTPs repeatedly. Known examples
of such solution frameworks for more challenging problems include Lagrangian relaxation
(Görtz and Klose, 2007) and column generation (Zhao et al., 2018) approaches to the FCTP.
Our results could also motivate the investigation of further connections between the SSFCTP
and other network design problems of interest.

Regarding the second article, we believe that the most promising lines of research stem-
ming from our work concern modeling and methodological extensions of the SHS method.
Developing a multi-cut variant of SHS and studying the properties of the CBCFLP (espe-
cially submodularity) when adding capacity constraints to the model constitute two poten-
tially fruitful research directions. Furthermore, we only considered static competition in this
thesis. Although this modeling framework is the most widespread in the competitive facility
location literature (Plastria, 2001), it is also quite unrealistic for several applications. It
would thus be interesting to investigate the potential of simulation-based methods in the
more general context of sequential competitive facility location (Qi et al., 2022).
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