
Université de Montréal

Deep Learning on Signals: Discretization Invariance,
Lossless Compression and Nonuniform Compression

par

Léa Demeule

Département d’informatique et de recherche opérationnelle
Faculté des arts et des sciences

Mémoire présenté en vue de l’obtention du grade de
Maître ès sciences (M.Sc.)

en Informatique

July 28, 2023

© Léa Demeule, 2023

Université de Montréal
Faculté des arts et des sciences

Ce mémoire intitulé

Deep Learning on Signals: Discretization Invariance,
Lossless Compression and Nonuniform Compression

présenté par

Léa Demeule

a été évalué par un jury composé des personnes suivantes :

Liam Paull
(président-rapporteur)

Glen Berseth
(directeur de recherche)

Christopher Pal
(membre du jury)

Résumé

Une grande variété d’information se prête bien à être interprétée comme signal; à peu près
toute quantité fluctuant continuellement dans l’espace se trouve inclue. La vie quotidienne
abonde d’exemples; les images peuvent être vues comme une variation de couleur à travers
l’espace bidimensionnel; le son, la pression à travers le temps; les environnements physiques,
la matière à travers l’espace tridimensionnel.

Les calculs sur ce type d’information requièrent nécessairement une transformation de la
forme continue vers la forme discrète, ce qui est accompli par le processus de discrétisation,
où seules quelques valeurs du signal continu sous-jacent sont observées et compilées en un
signal discret.

Sous certaines conditions, à l’aide seulement d’un nombre fini de valeurs observées, le
signal discret capture la totalité de l’information comprise dans le signal continu, et permet
de le reconstruire parfaitement. Les divers systèmes de senseurs permettant d’acquérir des
signaux effectuent tous ce processus jusqu’à un certain niveau de fidélité, qu’il s’agisse d’une
caméra, d’un enregistreur audio, ou d’un système de capture tridimensionnelle.

Le processus de discrétisation n’est pas unique par contre. Pour un seul signal continu, il
existe une infinité de signaux discrets qui lui sont équivalents, et entre lesquels les différences
sont contingentes. Ces différences correspondent étroitement aux différences entre systèmes
de senseurs, qui ont chacun leur niveau de fidélité et leurs particularités techniques.

Les réseaux de neurones profonds sont fréquemment spécialisés pour le type de données
spécifiques sur lesquels ils opèrent. Cette spécialisation se traduit souvent par des biais
inductifs qui supportent des symétries intrinsèques au type de donnée. Quand le comporte-
ment d’une architecture neuronale reste inchangé par une certaine opération, l’architecture
est dite invariante sous cette opération. Quand le comportement est affecté d’une manière
identique, l’architecture est dite équivariante sous cette opération.

Nous explorons en détail l’idée que les architectures neuronales puissent être formulées
de façon plus générale si nous abstrayions les spécificités contingentes des signaux discrets,
qui dépendent généralement de particularités de systèmes de senseurs, et considérions plutôt
l’unique signal continu représenté, qui est la réelle information d’importance. Cette idée

5

correspond au biais inductif de l’invariance à la discrétisation, qui reconnaît que les signaux
ont une forme de symétrie à la discrétisation.

Nous formulons une architecture très générale qui respecte ce biais inductif. Du fait
même, l’architecture gagne la capacité d’être évaluée sur des discrétisations de taille arbitraire
avec une grande robustesse, à l’entraînement et à l’inférence. Cela permet d’accéder à de
plus grands corpus de données pour l’entraînement, qui peuvent être formés à partir de
discrétisations hétérogènes. Cela permet aussi de déployer l’architecture dans un plus grand
nombre de contextes où des systèmes de senseurs produisent des discrétisations variées.

Nous formulons aussi cette architecture de façon à se généraliser à n’importe quel nombre
de dimensions, ce qui la rend idéale pour une grande variété de signaux.

Nous notons aussi que son coût d’évaluation diminue avec la taille de la discrétisation,
ce qui est peu commun d’architectures conçues pour les signaux, qui ont généralement une
discrétisation fixe.

Nous remarquons qu’il existe un lien entre l’invariance à la discrétisation, et la distinction
séparant l’équivariance à la translation discrète et l’équivariance à la translation continue.
Ces deux propriétés reflètent la même symétrie à la translation, mais l’une est plus diluée
que l’autre. Nous notons que la plus grande part de la littérature entourant les architectures
motivées par l’algèbre générale omettent cette distinction, ce qui affaiblit la force des biais
inductifs implémentés.

Nous incorporons aussi dans notre méthode la capacité d’implémenter d’autres inva-
riances and equivariances plus générales à l’aide de couches formulées à partir de l’opérateur
de dérivée partielle. La symétrie à la translation, la rotation, la réflexion, et la mise à l’échelle
peuvent être adoptées, et l’expressivité et l’efficacité en paramètres de la couche résultante
sont excellentes.

Nous introduisons aussi un nouveau bloc résiduel Laplacien, qui permet de compresser
l’architecture sans perte en fonction de la densité de la discrétisation. À mesure que le nombre
d’échantillons de la discrétisation réduit, le nombre de couches requises pour l’évaluation
diminue aussi. Le coût de calcul de l’architecture diminue ainsi à mesure que certaines de
ses couches sont retirées, mais elle se comporte de façon virtuellement identique; c’est ainsi
une forme de compression sans perte qui est appliquée. La validité de cette compression sans
perte est prouvée théoriquement, et démontrée empiriquement. Cette capacité est absente
de la littérature antérieure, au meilleur de notre savoir.

Nous greffons à ce mécanisme une forme de décrochage Laplacien, qui applique effecti-
vement une augmentation spectrale aux données pendant l’entraînement. Cela mène à une
grande augmentation de la robustesse de l’architecture à des dégradations de qualité de la

6

discrétisation, sans toutefois compromettre sa capacité à performer optimalement sur des
discrétisations de haute qualité. Nous n’observons pas cette capacité dans les méthodes
comparées.

Nous introduisons aussi un algorithme d’initialisation des poids qui ne dépend pas de
dérivations analytiques, ce qui permet un prototypage rapide de couches plus exotiques.

Nous introduisons finalement une méthode qui généralise notre architecture de l’applica-
tion à des signaux échantillonnés uniformément vers des signaux échantillonnés non unifor-
mément. Les garanties théoriques que nous fournissons sur son efficacité d’échantillonnage
sont positives, mais la complexité ajoutée par la méthode limite malheureusement sa viabi-
lité.

Mots-clés: intelligence artificielle, apprentissage profond, traitement de si-
gnal, traitement de signal multidimensionnel, traitement de signal non uniforme,
invariance à la discrétisation, équivariance à la translation, équivariance à la ro-
tation, équivariance à la réflexion, équivariance à la mise à l’échelle, opérateur
de dérivée partielle, opérateur neural, normalizing flows

7

Abstract

Signals are a useful representation for many types of information that consist of continuously
changing quantities. Examples from everyday life are abundant: images are fluctuations of
colour over two-dimensional space; sounds are fluctuations of air pressure over time; physical
environments are fluctuations of material qualities over three-dimensional space.

Computation over this information requires that we reduce its continuous form to some
discrete form. This is done through the process of discretization, where only a few values of
the underlying continuous signal are observed and compiled into a discrete signal.

This process incurs no loss of information and is reversible under some conditions. Sen-
sor systems, such as cameras, sound recorders, and laser scanners all effectively perform
discretization when they capture signals, and they preserve them up to a certain degree.

This process is not unique, however. Given a single continuous signal, there are countless
discrete signals that correspond to it, and the specific choice of discrete signal is generally
contingent. Sensor systems all have different technical characteristics that lead to different
discretizations.

Deep neural network architectures are often tailored to respect the fundamental proper-
ties of the specific data type they operate on. Their behaviour often implements inductive
biases that respect some fundamental symmetry of the data. When behaviour is unchanged
by some operation, the architecture is invariant under it. When behaviour transparently
reproduces some operation, the architecture is equivariant under it.

We explore in great detail the idea that neural network architectures can be formulated
in a more general way if we abstract away the contingent details of the discrete signal, which
generally depend on the implementation details of a sensor system, and only consider the
underlying continuous signal, which is the true information of interest. This is the intuitive
idea behind discretization invariance.

We formulate a very general architecture that implements this inductive bias. This allows
handling discretizations of various sizes with much greater robustness, both during training
and inference. We find that training can leverage more data by allowing heterogeneous
discretizations, and that inference can apply to discretizations produced by a broader range
of sensor systems. The architecture is agnostic to dimensionality, which makes it widely

9

applicable to different types of signals. The architecture also lowers its computational cost
proportionally to the sample count, which is unusual and highly desirable.

We find that discretization invariance is also key to the distinction between discrete shift
equivariance and continuous shift equivariance. We underline the fact that the majority of
previous work on architecture design motivated by abstract algebra fails to consider this dis-
tinction. This nuance impacts the robustness of convolutional neural network architectures
to translations on signals, weakening their inductive biases if unaddressed.

We also incorporate the ability to implement more general invariances and equivariances
by formulating steerable layers based on the partial derivative operator, and a set of other
compatible architectural blocks. The framework we propose supports shift, rotation, reflec-
tion, and scale. We find that this results in excellent expressivity and parameter efficiency.

We further improve computational efficiency with a novel Laplacian residual structure
that allows lossless compression of the whole network depending on the sample density of
the discretization. As the number of samples reduces, the number of layers required for
evaluation also reduces. Pruning these layers reduces computational cost and has virtually
no effect on the behaviour of the architecture. This is proven theoretically and demonstrated
empirically. This capability is absent from any prior work to our knowledge.

We also incorporate a novel form of Laplacian dropout within this structure, which per-
forms a spectral augmentation to the data during training. This leads to greatly improved
robustness to changes in spectral volume, meaning the architecture has a much greater tol-
erance to low-quality discretizations without compromising its performance on high-quality
discretization. We do not observe this phenomenon in competing methods.

We also provide a simple data-driven weight initialization scheme that allows quickly
prototyping exotic layer types without analytically deriving weight initialization.

We finally provide a method that generalizes our architecture from uniformly sampled
signals to nonuniformly sampled signals. While the best-case theoretical guarantees it pro-
vides for sample efficiency are excellent, we find it is not viable in practice because of the
complications it brings to the discretization of the architecture.

Keywords: artificial intelligence, deep learning, signal processing, multidi-
mensional signal processing, nonuniform signal processing, discretization in-
variance, shift equivariance, rotation equivariance, reflection equivariance, scale
equivariance, partial derivative operator, neural operator, normalizing flows

10

Contents

Résumé . 5

Abstract . 9

List of tables . 15

List of figures . 17

List of abbreviations. 19

Remerciements . 21

Introduction . 23

Chapter 1. Related work . 27

1.1. Architectures motivated by classical computer vision . 27
1.1.1. Standard convolutional neural networks . 27
1.1.2. Residual convolutional neural networks. 28
1.1.3. Multiscale convolutional neural networks . 28
1.1.4. Spectrally disentangled convolutional neural networks . 28
1.1.5. Dynamic convolutional neural networks . 28

1.2. Architectures motivated by abstract algebra . 29
1.2.1. Shift equivariant neural networks. 29
1.2.2. Rotation and reflection equivariant neural networks . 30
1.2.3. Scale equivariant neural networks . 31
1.2.4. Discretization invariant neural networks . 31

1.3. Initialization strategies for Deep Networks. 32
1.3.1. Analytically driven. 32
1.3.2. Data driven . 32

Chapter 2. Background . 33

2.1. Deep Learning . 33

11

2.1.1. Task settings. 33
2.1.2. Architecture design, inductive biases, and abstract algebra 34

2.2. Signals . 36
2.2.1. From finite to infinite linear algebra . 36
2.2.2. Fundamentals . 37
2.2.3. The shift operator . 39
2.2.4. The mirror operator . 39
2.2.5. The spectral basis. 39
2.2.6. The Fourier transform and inverse Fourier transform . 41
2.2.7. The convolution operator . 42
2.2.8. The partial derivative operator . 46
2.2.9. The sampling operator . 47
2.2.10. The repeating operator . 48
2.2.11. The duality of sampling and repeating . 48
2.2.12. Discretization . 50
2.2.13. The sampling theorem . 51
2.2.14. Aliasing . 52
2.2.15. The spatial basis . 53
2.2.16. Interpolation . 56
2.2.17. Rediscretization . 58
2.2.18. Discretization invariance . 61
2.2.19. Discretization of linear shift equivariant operators . 62
2.2.20. Discretization of the convolution operator . 63
2.2.21. Discretization of the partial derivative operator . 64
2.2.22. Discretization of the shift operator . 64
2.2.23. Discretization of operators with shift equivariance . 65
2.2.24. Discretization of pointwise nonlinear operators . 66
2.2.25. The Laplacian pyramid . 68

2.3. Normalizing flows . 68

Chapter 3. Method . 73

3.1. Continuous shift equivariant layers . 74

3.2. Steerable equivariant layers . 74

3.3. Activations . 75

12

3.4. Local pooling . 76

3.5. Global pooling . 77

3.6. Laplacian residual blocks for compression through spectral disentanglement . . 78

3.7. Laplacian dropout for robustness through spectral augmentation 80

3.8. Weight initialization . 81

3.9. Adapting to nonuniform sampling patterns . 84
3.9.1. Formalizing density matching . 85
3.9.2. Rediscretization. 88
3.9.3. Local coordinate frames . 89
3.9.4. Adapting the partial derivative operator. 90
3.9.5. Adapting Gaussian filtering . 92
3.9.6. Adapting global pooling. 94
3.9.7. Learning to uniformize without breaking the loss . 95
3.9.8. Good learning dynamics with weight initialization search 96
3.9.9. Good learning dynamics with normalizing layers . 96
3.9.10. Expressivity and smoothness with continuous flows. 96
3.9.11. Local spectral volume heuristic for nonuniform compression 98

Chapter 4. Experiments. 101

4.1. Testing the core of the method . 101
4.1.1. Discretization invariance . 104
4.1.2. Bandwidth robustness . 104
4.1.3. Pruning correctness . 107

4.2. Adapting the method to nonuniform bandwidth signals. 110
4.2.1. Nonuniform adaptation . 113
4.2.2. Ablation of weight initialization . 113
4.2.3. Ablation of normalization . 114
4.2.4. Nonuniform compression . 115

Chapter 5. Discussion . 117

References . 119

13

List of tables

4.1 Architecture parameter counts including Laplacian residual pruning at inference. 102
4.2 Evaluation of our method on synthetic sparse bandwidth signal classification

dataset. 112

15

List of figures

2.1 Graph of the spectral basis function. 40

2.2 Graph showing convolution as a shifted mirrored inner product. 43

2.3 Images before filtering, taken from the CIFAR10 dataset. 45

2.4 Images under lowpass filtering. 45

2.5 Images under highpass filtering. 45

2.6 Images under bandpass filtering. 45

2.7 Images under zero blocking filtering. 46

2.8 Graph of the spatial basis function. 53

2.9 Graph showing interpolation as the inverse of discretization. 57

2.10 Graph of rediscretization with increased or decreased density. 59

2.11 Graph of operators with and without discretization invariance. 61

2.12 Graph of an operator without continuous shift equivariance. 65

3.1 Laplacian residual block diagram. 78

3.2 Rediscretizing a nonuniformly sampled signal to a lattice directly. 84

3.3 Rediscretizing a nonuniformly sampled signal to a lattice through normalizing
flows. 86

3.4 Equivalent views of Gaussian filtering in the latent domain used in rediscretization. 89

3.5 Equivalent views of partial derivatives in the observed domain. 91

3.6 Equivalent views of Gaussian filtering in the observed domain. 92

3.7 Surrogate latent space mapping diagrams.. 97

4.1 Network diagram.. 103

4.2 Evaluation of our method and prior work on the Fashion CIFAR10 dataset. 105

4.3 Evaluation of our method and prior work on the Fashion MNIST dataset. 106

4.4 Evaluation of our method with and without pruning on the CIFAR10 dataset. . . 108

17

4.5 Network pruning diagram. 109
4.6 Synthetic dataset rendered at high resolution. 110
4.7 Rediscretized signal with the uniform method. 113
4.8 Rediscretized signal with the nonuniform method. 113
4.9 Rediscretized signal when ablating flow weight initialization. 114
4.10 Rediscretized signal when ablating flow weight initialization and normalization. . 115
4.11 Evaluation of our method with and without nonuniform compression on the

CIFAR10 dataset. 116

18

List of abbreviations

a Real scalar.

v Real vector.

s Signal represented in the spatial domain.

ŝ Signal represented in the spectral domain.

ϕ Filter kernel represented in the spatial domain.

ϕ̂ Filter kernel represented in the spectral domain.

x ∈ X Point in the d-dimensional Euclidean observed spatial domain.

z ∈ Z Point in the d-dimensional Euclidean latent spatial domain.

ω ∈ Ω Point in the d-dimensional Euclidean observed spectral domain.

ξ ∈ ζ Point in the d-dimensional Euclidean latent spectral domain.

19

∗ Convolution operator.

F Fourier transform.

F−1 Inverse Fourier transform.

T Shift operator.

M Mirror operator.

D Partial derivative operator.

V Volume operator.

d Density operator.

S Sampling operator.

R Reapeating operator.

I Interpolation operator.

1 { · } Indicator function.

δ(·) Dirac delta.

20

Remerciements

Merci à Glen Berseth pour la liberté, la richesse de savoir, la confiance et le respect que tu
m’as offert dans ce merveilleux jeu d’exploration. Ta contribution a un impact immesurable
sur ma capacité à poursuivre cette passion que j’ai à créer, questionner, jouer avec des idées,
ma capacité à faire quelque chose de valable pour autrui, et ma capacité à en faire quelque
chose de balancé en soi. Elle a ouvert tant de portes, tant de discussions, tant d’introspection,
tant d’espace pour évoluer. J’en suis extrêmement reconnaissante.

Merci à Mahtab Sandhu pour tous les efforts et les idées que tu as lancés avec vigueur
dans ce projet qui aurait été impossible sans toi.

Merci au Mila et à l’Université de Montréal pour le financement que vous avez octroyé à
ma recherche, et pour l’accueil chaleureux que j’ai reçu de votre communauté académique.

Merci à Pauline Palma pour toute ta bienveillance, ta douceur, ta vivacité d’esprit. Tu
m’as soutenue dans certains des moments les plus marquants de ma vie, tout court, et dans
cette aventure folle en contrées académiques. Je t’adore.

Merci à Isabelle Collin, André Beaudoin, Andrée Parent, Guy Collin, François Demeule,
Éric Demeule, Roger Demeule, Pierre Collin, Christine Allen, Étienne Collin et Renaud
Collin pour votre support inconditionnel et pour votre ouverture d’esprit. Je me compte si
chanceuse d’être si bien entourée. Je vous aime tous.

Merci à Louis Parent pour ton support, ton humour, ta complicité. J’ai une affection
profonde pour l’amitié que nous avons formée.

Merci à Jack Richter-Powell pour toutes les conversations qui se tissent sans arrêt entre
nous, qui sont tantôt follement joyeuses et légertes, tantôt follement à propos et technique-
ment précises.

21

Introduction

Many forms of information that consist of continuously changing quantities can be con-
ceptualized as signals (section 2.2). Examples from everyday life are abundant: images
are fluctuations of colour over two-dimensional space; sounds are fluctuations of air pressure
over time; physical environments are fluctuations of material qualities over three-dimensional
space.

Computation over this information requires that we reduce its continuous form to some
discrete form. This is done through the process of discretization (subsection 2.2.12), where
only a few values of the underlying continuous signal are observed and compiled into a
discrete signal.

A very important result in the theory of signals is that discretization can always be
formulated in a way that captures all information present in a signal under some mild
assumptions (subsection 2.2.13). Sensors that observe real physical signals and translate
them to data that can be interpreted by computers all effectively perform discretization.

A consequence of this important result is that there are countless ways of formulating
discretization for the same underlying signal. Sensors concretely embody the idea that there
exists a great variety in discretization: images can be captured by countless different optical
systems and cameras; sounds can be recorded with distinct microphones, amplifiers and
capture devices; physical environments can be acquired by technologies that have entirely
different modes of operation, such as multi-view reconstruction or laser ranging.

Computation on this data can be formulated in a more general way if we abstract away
the contingent details of the discrete signal, which depend on the implementation details
of the sensor system, and only consider the underlying continuous signal, which is the true
information of interest. This is the intuitive idea behind discretization invariance (subsec-
tion 2.2.18).

Deep learning (section 2.1) architectures are typically tailored to the specific data type
they operate on. Their behaviour often implements inductive biases that respect some fun-
damental symmetry of the data (subsection 2.1.2). When behaviour is unchanged by some
operation, the architecture is invariant under it. When behaviour transparently reproduces
some operation, the architecture is equivariant under it.

The most typical example of this is the shift invariance that all convolutional neural
network architectures implement in classification tasks. This inductive bias enforces the idea
that meaningful information in signals is independent of absolute position. If the task is to
recognize animals in images, a cat is a cat, whether it is on the left or right of an image.

We find that discretization invariance is extremely useful to approaches tailored to sig-
nals. We highlight that this idea has not been thoroughly exploited by previous work.

We formulate a very general architecture that implements discretization invariance (chap-
ter 3). This allows handling discretizations of various sizes with much greater robustness,
both during training and inference. We find that training can leverage more data by allowing
heterogeneous discretizations, and that inference can apply to discretizations produced by a
broader range of sensor systems (subsection 4.1.1). The architecture is agnostic to dimen-
sionality, which makes it widely applicable to different types of signals. The architecture
also lowers its computational cost proportionally to the sample count, which is unusual and
highly desirable.

We underline the fact that the majority of previous work on architecture design motivated
by abstract algebra fails to consider the distinction between continuous shift equivariance and
discrete shift equivariance, which weakens the strength of the inductive bias they guarantee.

The basic idea behind this can be shown pragmatically with images. When a camera
captures an image, its exact position in space and its exact sensor alignment define what
part of the image map to what exact pixel. Minute displacements can shift part of the image
between pixels. If an architecture only has discrete shift equivariance, the original image and
the minutely displaced image are treated as fundamentally different. If an architecture has
continuous shift equivariance, the two images are treated identically, which is more desir-
able. Because there are finite displacements that result in discrete pixel shifts, but infinite
displacements that result in continuous pixel shifts, this scenario is extremely common.

We provide this inductive bias in its full strength in our work (section 3.1).
We also incorporate the ability to implement more general invariances and equivariances

by formulating steerable layers (section 3.2) based on the partial derivative operator, and a
set of other compatible architectural blocks. The framework we propose supports shift, rota-
tion, reflection, and scale. We find that this results in excellent expressivity and parameter
efficiency (section 4.1).

We further improve computational efficiency with a novel Laplacian residual structure
(section 3.6) that allows lossless compression of the whole network depending on the sam-
ple density of the discretization. As the number of samples reduces, the number of layers
required for evaluation also reduces. Pruning these layers reduces computational cost and
has virtually no effect on the behaviour of the architecture. This is proven theoretically and
demonstrated empirically (subsection 4.1.3). This capability is absent from any prior work
to our knowledge.

24

We also incorporate a novel form of Laplacian dropout (section 3.7) within this struc-
ture, which performs a spectral augmentation to the data during training. This leads to
greatly improved robustness to spectral degradation, meaning the architecture has a much
greater tolerance to low-quality discretizations without compromising its performance on
high-quality discretization. We do not observe this phenomenon in competing methods
(subsection 4.1.2).

We provide a simple data-driven weight initialization scheme (section 3.8) that allows
quickly prototyping exotic layer types without analytically deriving weight initialization. Its
formulation avoids the issue of vanishing or exploding gradients within the search process
and converges very quickly even with initial weight initializations that are incorrect by orders
of magnitude.

We finally provide a method that generalizes our architecture from uniformly sampled
signals to nonuniformly sampled signals (section 3.9). We realize this by adapting sampling
patterns through normalizing flows (section 2.3), and adapting the discretization of the
operators that constitute our layers to the new local coordinate frame this creates. This
overcomes the extremely low sample efficiency of other architectures based on lattice sampling
patterns, and instead provides optimal sample efficiency in ideal conditions. This also allows
a form of lossy architecture compression that is analogous to compressed sensing techniques.
We find this is effective in simple situations (subsection 4.2.1), but less useful in practical
scenarios (subsection 4.2.4).

25

Chapter 1

Related work

We provide an overview of neural network architectures (section 1.1, section 1.2) and weight
initialization strategies (section 1.3) that are most relevant to our method.

1.1. Architectures motivated by classical computer vi-
sion

Most convolutional network architectures have been formulated from a pragmatic engi-
neering standpoint, with the aim of solving computer vision tasks. They do not address,
or only incompletely address the issues of signal discretization. We compare against these
methods in section 4.1 and use them as a starting point for our method, so it is useful to
overview them quickly.

1.1.1. Standard convolutional neural networks

Standard convolutional neural networks provide a basic implementation of the principle
that underlies all convolutional neural networks. Their layers are built on a simple discretiza-
tion of the convolution operator (subsection 2.2.7, subsection 2.2.20).

A large body of work has led to the formulation of standard convolutional networks that
have great computational complexity, that thrive at exploiting parametrization sparsity,
that can solve impressively complex tasks by leveraging depth, and that have well-behaved
training dynamics (section 1.3) (Fukushima, 1980; LeCun et al., 2002; Glorot and Bengio,
2010; He et al., 2015; Ioffe and Szegedy, 2015; He et al., 2016a,b; Krizhevsky et al., 2017).

Standard convolutional neural networks do not address the challenges of dealing with
various discretizations. They are rooted in a single, native discretization, and evaluation
of these architectures under other discretizations is either impossible or results in severe
performance degradation. We return to this fact when comparing these methods with ours
in section 4.1.

1.1.2. Residual convolutional neural networks

Residual convolutional neural networks are often included within standard convolutional
neural networks, as they are used ubiquitously (He et al., 2016a,b; Krizhevsky et al., 2017).
They expand on the basic formulation of convolutional neural networks by introducing resid-
ual connections, which allow information to directly jump from an early layer to a later layer
through an additive connection. This makes it trivial for networks to express simple map-
pings which are close to the identity mapping. This also makes it easier for information to
propagate efficiently within deep networks. Both of these effects have a very positive impact
on training dynamics.

Residual convolutional neural networks are closely related to the Laplacian residual blocks
we propose in section 3.6, which also possess additive skip connections but also include a
form of filtering.

1.1.3. Multiscale convolutional neural networks

Multiscale convolutional neural networks (Elizar et al., 2022) expand on the framework
of standard convolutional networks by introducing dilations, expansion, contractions, and
parallel paths among layers that can encourage variety in feature scale, and that provide
some robustness to disturbances in the discretization process. They bear some resemblance
to the scale equivariant neural networks discussed in subsection 1.2.3.

Multiscale convolutional neural networks do not explicitly deal with the issue of dis-
cretization, however, and generally cannot be rediscretized arbitrarily.

1.1.4. Spectrally disentangled convolutional neural networks

Spectrally disentangled convolutional neural networks establish a form of spectral struc-
ture or partitioning between layers. Some filtering schemes have been explored for spec-
trally disentangled residual connections (Singh et al., 2021), and Laplacian pyramids (sub-
section 2.2.25) have been used in super-resolution methods successfully (Lai et al., 2017).

Spectrally disentangled convolutional neural networks also do not address the challenge
of discretization, but partition the signal spectrum similarly to the Laplacian residual blocks
we propose in section 3.6.

1.1.5. Dynamic convolutional neural networks

Dynamic convolutional neural networks (Han et al., 2021) designate architectures that
perform dynamic adaptation of the network structure. This sometimes takes the form of a
scaling or resampling operation on the signal they process.

28

Recasens et al. (2018) is specifically relevant to our method. It allows bending the input
signal to magnify salient areas, like the compression method proposed in subsection 3.9.11.
However, the operations performed on the discretized signal in its bent coordinate frame (Z)
are not brought back to its original coordinate frame (X), unlike we do in subsection 3.9.3
(Equation 3.9.17).

1.2. Architectures motivated by abstract algebra
The design decisions that underlie many neural architectures can be understood through

the lens of abstract algebra, which allows describing how functions respect or break symme-
tries of certain mathematical objects in terms of invariances and equivariances (Bronstein
et al., 2017; Kondor and Trivedi, 2018; Cohen et al., 2019; Finzi et al., 2020; Lang and
Weiler, 2020; Bronstein et al., 2021). We return to this in more depth in subsection 2.1.2,
but provide a quick overview for now.

The information involved in a machine learning task often possesses some form of fun-
damental symmetry that we expect an effective solution to respect. By enforcing these
symmetries in the design of the architecture, we guarantee these symmetries hold, which can
make solutions easier to learn and more robust.

The most typical example in the context of deep learning are convolutional neural net-
works, which respect the translation symmetry of signals, meaning translations to their input
result in no change at all if the output is some form of vector (invariance, Equation 2.1.1),
or in identical translations to their output if the output is a signal (equivariance, Equa-
tion 2.1.2). This relationship enforces the idea that the meaningful content of the signal
does not depend on its absolute position.

This framework allows describing precisely a wide range of useful symmetries. The most
relevant architectures that explicitly make use of this framework are covered here.

1.2.1. Shift equivariant neural networks

We first cover methods that explicitly leverage translation, also called shift, the most
common symmetry on signals.

Methods that guarantee this property almost always formulate their layers through some
form of convolution operator.

Methods sometimes specifically build on the partial derivative operator (Ruthotto and
Haber, 2020; Shen et al., 2020; Jenner and Weiler, 2021), as our method does with its
steerable layers (section 3.2). We later show in subsection 2.2.21 that the application of
the partial derivative operator on a restricted class of signals can be conceptualized as a
convolution operator.

29

We note that shift equivariance can hold in nuanced ways. We formalize the concept
of this symmetry later in subsection 2.2.3, and show in subsection 2.2.22 that a distinction
exists between continuous shift equivariance and discrete shift equivariance. They represent
different strengths of the same symmetry and come with different requirements, which we
develop in subsection 2.2.23. We argue in section 3.1 that continuous shift equivariance is
very desirable for neural network architectures, and implement this throughout our method.

The analysis we present on this topic is common in the field of signal processing, but
we have not seen it in the context of architecture design motivated by abstract algebraic
concepts. The vast majority of prior work around shift equivariant neural networks tend to
not consider the distinction between continuous shift equivariance and discrete shift equiv-
ariance, and only satisfy the conditions necessary for the latter (Ruthotto and Haber, 2020;
Shen et al., 2020; Jenner and Weiler, 2021; Worrall et al., 2017; Weiler et al., 2018b,a; Esteves
et al., 2018; Cohen and Welling, 2016; Weiler and Cesa, 2019; Xu et al., 2014; Marcos et al.,
2018; Worrall and Welling, 2019; Sosnovik et al., 2019; Wang et al., 2019). This includes
every publication we present on the topic of section 1.2, with one exception, which we re-
view in the next paragraph. This body of work argues that pointwise nonlinearities have
discrete shift equivariance because they have permutation invariance, which is true, but is
insufficient to guarantee they have continuous shift equivariance. All classical convolutional
neural network architectures (section 1.1) also effectively follow this pattern.

The outlier to this trend subscribes to the perspective of neural operators, which consid-
ers neural architectures that map from continuous functions to other continuous functions,
which are discretized in some way that maintains the information present in the underlying
functions. We return to this in subsection 1.2.4. Fanaskov and Oseledets (2022) notably
implements continuous shift equivariance through phase invariant activation functions in the
spectral domain. Karras et al. (2021) can also be conceptualized in this framework, as it
implements continuous shift equivariance through correct antialiasing in the spatial domain,
but it is instead motivated by a signal processing perspective.

1.2.2. Rotation and reflection equivariant neural networks

We discuss architectures that guarantee equivariance to rotations and reflections on sig-
nals, which is also commonly desirable, and which our method can implement through the
steerable layers we introduce in section 3.2.

Some architectures implement rotation and reflection invariance instead by interpreting
the signal as a vector field, or by observing its partial derivatives, and by then constructing a
weighted sum of operators that are rotation and reflection invariant on these mathematical
objects (Shen et al., 2020; Jenner and Weiler, 2021). The Laplacian or the divergence are

30

common examples. This is also how our method can implement this equivariance through
its steerable layers (section 3.2).

Some architectures implement rotation equivariance by decomposing convolutional ker-
nels in terms of weighted sums of spherical harmonic kernels (Worrall et al., 2017; Weiler
et al., 2018b,a; Esteves et al., 2018). Each spherical harmonic kernel corresponds to an
oscillating wave that possesses both phase and frequency information. By designing the
convolutional kernel such that the phase information of spherical harmonic kernels is lost,
information about the absolute rotation of the signal is masked, rendering the whole opera-
tion equivariant to rotation.

Some architectures perform other decompositions of kernels to guarantee these invari-
ances from a group theoretic perspective (Cohen and Welling, 2016; Weiler and Cesa, 2019).

1.2.3. Scale equivariant neural networks

We discuss architectures that guarantee equivariance to scale on signals, which is relevant
to our method as the Laplacian residual blocks we formulate in section 3.6 lend themselves
very well to the construction of scale equivariant networks.

The vast majority of methods that provide scale equivariance effectively evaluate scaled
copies of a single network in parallel, and combine their results to form a single output that
preserves scale equivariance for the specific copies chosen (Xu et al., 2014; Marcos et al., 2018;
Worrall and Welling, 2019; Sosnovik et al., 2019; Wang et al., 2019). This is either done
explicitly through the process just described, or implicitly by formulating a weight-sharing
scheme that implements the same general idea.

1.2.4. Discretization invariant neural networks

We finally discuss architectures that enforce discretization invariance. Note that we
provide an intuitive explanation of discretization invariance earlier in chapter , and define
discretization invariance formally later in subsection 2.2.18. Our architecture implements
full discretization invariance in all of its components. This is a central aspect of our work.

The most relevant line of work related to discretization invariance is that of neural opera-
tors (Kovachki et al., 2021), which study neural architectures that take continuous functions
as inputs, and produce continuous functions as outputs. This is done through some form of
representation that corresponds to discretization.

Architectures based on Fourier neural operators have been applied to image-based tasks,
with some claiming full discretization invariance (Li et al., 2020; Kabri et al., 2023; Poli
et al., 2022). This is not exactly true because of flawed assumptions on shift invariance
outlined earlier in subsection 1.2.1, and analyzed in detail later in subsection 2.2.22 and
subsection 2.2.23.

31

Architectures based on subtly different spectral neural operators have been applied to
similar tasks, and in fact, possess full discretization invariance (Fanaskov and Oseledets,
2022). Their principle of operation was quickly discussed in subsection 1.2.1.

1.3. Initialization strategies for Deep Networks
A common trait of all neural architectures is that learning requires some choice of initial

parameters. With deep neural networks, this choice of weight initialization becomes very
important (LeCun et al., 2002; Glorot and Bengio, 2010; He et al., 2015; Mishkin and Matas,
2015). The learning process operates through gradients that propagate through each suc-
cessive layer of the network, so the tendency of each layer to slightly increase or decrease
the magnitude of gradients compounds exponentially over the many layers. This leads to
the phenomenon of exploding and vanishing gradients, which collapses the learning process.
Weight initialization strategies that control the magnitude of gradients at the start of the
learning process are therefore necessary. We quickly review the two most common types.

1.3.1. Analytically driven

Weight initialization strategies are nearly always based on a statistical analysis of the
gradient properties of weight initializations. They are crafted such that from one layer of the
architecture to another, the variance of the gradients stays around one, rather than exploding
and vanishing progressively LeCun et al. (2002); Glorot and Bengio (2010); He et al. (2015).
Ideal weight initialization depends on the properties of each layer, so the exploration of novel
layers generally requires some analytic derivations.

1.3.2. Data driven

Weight initialization strategies sometimes rely on learning methods instead of analytic
derivations to find weight initializations that provide good statistical properties (Bengio
et al., 2006; Krähenbühl et al., 2015; Mishkin and Matas, 2015). Instead of formulating
analytic derivations by hand, a very simple learning program adjusts the weight initialization
until it is satisfactory.

32

Chapter 2

Background

2.1. Deep Learning
Our work belongs to the field of deep learning, which broadly includes algorithms that

leverage data to automatically learn solutions to tasks, and that base these solutions on deep
neural network architectures (LeCun et al., 2015; Goodfellow et al., 2016). Each of these
elements is tightly woven together to allow automatic learning.

Tasks define the general form that the solution must take and usually come with a sort
of solution quality metric. Tasks also come with data that implicitly contains the desirable
behaviour we wish to impart on the solution, and that allows evaluating the solution quality
metric in a way that echoes this desirable behaviour.

Architectures parametrize solutions in a way that allows computing how each individual
parameter can be incrementally changed to improve the quality metric. Architectures also
introduce a form of bias to solutions by restricting the space of possible solutions to ones
that conform to known, fundamental properties of the data.

In the two short subsections that follow, we provide an overview of typical task settings for
deep learning, and we develop the notion of inductive biases in architecture design through
the abstract algebraic concepts of invariance and equivariance.

2.1.1. Task settings

Tasks broadly refer to a problem setting for deep learning (Goodfellow et al., 2016).
They define what a solution should do, the form of information it consumes, and the form of
information it produces. The interest of machine learning lies in being able to find solutions
to tasks that cannot be easily specified through formal or mathematical statements, but
rather through examples. Tasks are specified by datasets, which provide example informa-
tion to the solution that enables learning. Tasks can very broadly be partitioned into two

categories in terms of the way they provide example information: supervised learning tasks,
and unsupervised learning tasks.

Tasks that fit the supervised learning paradigm explicitly specify a distribution of pairings
between input domain and output domain Xin×Xout which the solution is expected to learn.
The dataset consists of pairings that allow direct evaluation of some quality metric on the
solution, which enables learning. Typical examples of this type of task are classification and
regression.

Tasks that fit the unsupervised learning paradigm implicitly specify a useful property or a
desirable trait present in a distribution on an input domain Xin that the solution is expected
to reproduce or extract. The dataset consists only of points in the input domain. The
definition of the quality metric and its evaluation on the solution is much more open-ended.
Typical examples of this type of task include distribution modeling and compression.

2.1.2. Architecture design, inductive biases, and abstract algebra

Architectures can be conceptualized as solutions to tasks that are implemented as func-
tions fθ : Xin → Xout, which map from some input domain Xin to some output domain
Xout, whose behaviour is parameterized by θ (Goodfellow et al., 2016). Architecture design
consists in establishing exactly how θ defines the behaviour of the function fθ.

Deep learning architectures construct this function using a large set of interconnected
neural layers, which each perform simple mathematical operations whose behaviour is con-
trolled by some part of θ. Given sufficiently many simple neural layers consisting of linear
interconnections and nonlinear functions, it is possible to approximate arbitrary functions
to any degree of precision (Hornik et al., 1989).

While this extreme expressivity makes them very powerful, being able to formulate ex-
cessively complex solutions is often counterproductive to the learning process. Therefore,
it is common to restrict the class of functions that can be expressed by an architecture to
functions that echo the fundamental properties of the data. This is known as introducing
inductive biases.

Abstract algebra can be useful in specifying these inductive biases. Abstract algebra
studies how structures can be formed on mathematical objects, and how the properties of
these structures are preserved or lost under certain operations. For instance, a vector space
is a structure that involves mathematical objects that are vectors, and that possesses two
operations, vector addition and scalar multiplication. These operations induce interesting
properties that are the structure of vector spaces: associativity of vector addition, commuta-
tivity of vector addition, the existence of an identity and inverse element of vector addition,
and so on. Abstract algebra studies how these properties can exist together as a structure,

34

independently of the specific mathematical object they are implemented on. This is use-
ful because the same structures are commonly shared between many distinct mathematical
objects.

Abstract algebra also studies how certain mathematical objects possess symmetries,
which have the property of making the object identical to the same object transformed
by specific operations g. For example, a pattern that repeats itself endlessly is indistinguish-
able from the same pattern shifted by exactly one element; it has a symmetry that can be
specified in terms of the shift operation.

Abstract algebra gives us precise language to express how other operations f respect the
symmetry of a mathematical object. If f applies independently of the application of g, f is
invariant under g (Equation 2.1.1). If f commutes with the application of g, f is equivariant
under g (Equation 2.1.2).

f ◦ g = f ⇐⇒ f is invariant under g (2.1.1)

f ◦ g = g ◦ f ⇐⇒ f is equivariant under g (2.1.2)

Coming back to a more pragmatic example, when formulating architectures for signals, it is
useful to consider that the meaningful content of signals has a form of shift symmetry, since
the absolute position of information a signal generally does not change its meaning. If the
task we are trying to solve is animal classification on images, a cat is a cat, no matter where
it is in the image. Crafting fθ with an inductive bias that forces all solutions reachable by θ

to be shift invariant or shift equivariant is very desirable, as it frees us from establishing by
example that the countless possible translations of every image do not fundamentally alter
the relevant properties of the image. This both facilitates the learning process and renders
learnt solutions more general.

The implementation of inductive biases in deep neural architectures has been key to the
success of deep learning. The typical taxonomy of neural architectures more or less corre-
sponds to a categorization based on the inductive biases that each architecture implements.
For instance, the most widely shared characteristic of convolutional neural networks is their
shift symmetry.

More recently, the study of exotic symmetries and data types through the lens of abstract
algebra has allowed the development of novel architectures that tackle challenging problems,
and has also allowed a better interpretation of previously formulated architectures (Bronstein
et al., 2017; Kondor and Trivedi, 2018; Cohen et al., 2019; Finzi et al., 2020; Lang and Weiler,
2020; Bronstein et al., 2021).

35

2.2. Signals
Our method heavily builds on the mathematics of functional analysis and signal process-

ing. This subsection provides an introduction to signals for readers unfamiliar with their
principles, and a discussion of the advanced topics that are required to correctly formalize
our method. The intuition it builds only requires calculus, linear algebra, and knowledge of
complex numbers, and should allow grasping the contributions presented in this thesis.

2.2.1. From finite to infinite linear algebra

The central intuition that underpins all theory of signals is that linear algebra allows
change of basis not only for vectors of finite dimensionality, but for functions, which behave
as vectors of infinite dimensionality. To illustrate this clearly, we outline the parallel between
the change of basis in these two different regimes, which involves a short discussion of the
inner product, and of orthonormal bases.

For a real vector space of finite dimensionality d, the inner product between vectors v
and v′ is defined as a sum over an elementwise product:

⟨v, v′⟩ def=
d∑

j=1
vjv′

j (2.2.1)

In this vector space, a set of d vectors bj forms an orthonormal basis when the following
condition is satisfied:

⟨bj, bj′⟩ = 1 {j = j′} (2.2.2)

Given an orthonormal basis, any vector v that belongs to the vector space can be rep-
resented as a sum of orthonormal bases bj weighted by coefficients cj. This is also true of
orthogonal bases, however, orthonormal bases are normalized to allow recovering the coeffi-
cients cj very conveniently using the inner product:

v =
d∑

j=1
cjbj where cj = ⟨v, bj⟩ (2.2.3)

For an imaginary vector space of infinite dimensionality, or a vector space of functions,
all of these operations have an analogous definition. Setting aside some details, the inner
product between well-behaved functions or signals s : R → C and s′ : R → C is defined as
an integral over a conjugate product:

⟨s, s′⟩ =
∫ ∞

−∞
s(x)s′(x)dx (2.2.4)

In this vector space, a finite or infinite set of functions bj can form an orthonormal basis
when the same condition is satisfied:

⟨bj, bj′⟩ = 1 {j = j′} (2.2.5)

36

Given an orthonormal basis, any function s that belongs to the span of the basis can
be represented as a sum of orthonormal bases bj weighted by coefficients cj. We will derive
the two most relevant bases to signals in subsection 2.2.5 and subsection 2.2.15. Generally,
the span and size of a basis will depend on the breadth of functions we wish to be able to
represent with it. This is left out for now, but subsection 2.2.2 will address this in more
detail. The change of basis for functions is conceptually identical to the change of basis for
vectors:

s =
∫

cjbjdj where cj = ⟨s, bj⟩ (2.2.6)

In effect, this means we can re-express functions as sums of other functions, which is a very
powerful analytical tool in many situations.

By definition, the inner product (Equation 2.2.1, Equation 2.2.4) has commutativity
(Equation 2.2.7), associativity (Equation 2.2.8), bilinearity (Equation 2.2.9), and distribu-
tivity (Equation 2.2.10):

⟨s, s′⟩ = ⟨s′, s⟩ (2.2.7)

⟨s, ⟨s′, s′′⟩⟩ = ⟨⟨s, s′⟩ , s′′⟩ (2.2.8)

a ⟨s, s′⟩ = ⟨as, s′⟩ (2.2.9)

⟨s, s′ + s′′⟩ = ⟨s, s′⟩+ ⟨s, s′′⟩ (2.2.10)

By definition, the change of basis (Equation 2.2.3, Equation 2.2.6), has the same prop-
erties.

The functional analysis tools introduced above also generalize to higher dimensions,
meaning the input of the decomposed functions can have multiple dimensions. The sub-
sections that follow study signals in this multidimensional setting.

This brief introduction assumes that changes of basis are defined between functions whose
L2 norm is finite. Functional analysis can be broadened to include generalized functions such
as the Dirac delta (Fourier, 1888; Dirac, 1927; Schwartz, 1957, 1958; Strichartz, 2003), which
we will heavily rely on later. We do not cover this in depth.

2.2.2. Fundamentals

With the foundational building blocks of functional analysis out of the way, we can define
the basic vocabulary that underlies the discussion of signals: signals themselves, the spatial
domain, the spectral domain, and signal classes (Fourier, 1888; Shannon, 1949; Petersen and
Middleton, 1962).

We use signal to refer to any function s that is sufficiently well-behaved to be analyzed
with the algebraic tools we have introduced in subsection 2.2.1 using some orthonormal basis.

The spatial domain of a signal hosts its representation in its original form. This is the
starting point for our analysis. We later formalize the implicit spatial basis on which this

37

relies in subsection 2.2.15. The spatial domain X is the domain of the spatial coefficients of
the signal s : X → C. Points in this domain are notated x ∈ X. Every spatial coefficient
s(x) is effectively a weight of a component of some spatial basis bx.

The spectral domain of a signal hosts its representation in an alternate form that is
obtained through a change of basis. This is something we later build towards by explicitly
formulating the spectral basis in subsection 2.2.5, and by deriving the equations for the change
of basis in subsection 2.2.6, with the Fourier transform and the inverse Fourier transform.
The spectral domain Ω is the domain of the spectral coefficients of the signal ŝ : Ω → C.
Points in this domain are notated ω ∈ Ω. Every spectral coefficient ŝ(ω) is effectively a
weight of a component of some spectral basis bω.

Both domains allow us to define a signal class as a set of signals that are within the
span of a spatial basis and spectral basis. This is essentially the set of all signals that can
appropriately be manipulated by the functional analysis tools of subsection 2.2.1, given a
specific subset of spatial basis functions and spectral basis functions. This is often also called
a set of bandlimited functions in Shannon (1949); Petersen and Middleton (1962).

A common way to specify classes of signals is to let X and Ω specify which spatial
coefficients s(x) and spectral coefficients ŝ(ω) are allowed to be nonzero. Necessarily, signals
that respect these conditions can disregard complementary spatial basis functions {bx|x /∈
X} and complementary spectral basis functions {bω|ω /∈ Ω} because they will always be
associated with zero coefficients. A more refined way of specifying classes of signals considers
the role of periodicity in both the spatial domain and spectral domain. We will come back
to this in subsection 2.2.11 and in subsection 2.2.12.

Our discussion of signals will assume X = Rd and Ω = Rd as a continuous starting point,
which we will reduce to something discrete in subsection 2.2.12.

Limitations and purpose. Note that assuming X = Rd and Ω = Rd without any other
assumptions breaks our simple analysis tools in various ways. The inner product can become
ill-defined, and pathological functions such as the Weierstrass function (Weierstrass, 1895)
can be constructed. The many necessary conditions for the correct treatment of this setting
are not explored in depth, as it would require a detour into the theory of distributions
(Schwartz, 1957, 1958; Strichartz, 2003).

The purpose of this summary is not to propose a completely general theory of signals,
but to discuss a perspective of discretized signals that allows their manipulation as contin-
uous signals. This approach greatly simplifies the discussion of the discretization of signals
(subsection 2.2.11, subsection 2.2.12, subsection 2.2.13), the discretization of operators that
act on signals (subsection 2.2.18), and the formalization of discretization invariance (sub-
section 2.2.18), which are central to this work.

38

2.2.3. The shift operator

The shift operator allows us to express function translation with very compact notation
(Shannon, 1949; Petersen and Middleton, 1962; Schwartz, 1957, 1958; Strichartz, 2003). It
allows us to define exactly what we mean by shift invariance and shift equivariance, which
are the fundamental symmetries of many important mathematical objects in the theory of
signals, and which underlie all convolutional neural architectures.

We write the shift operator as Tx′ . Given a function s, it translates it by x′:

Tx′{s}(x) def= s(x− x′) (2.2.11)

We can apply the definitions of Equation 2.1.1 and Equation 2.1.2 to write down the con-
ditions under which some function f is invariant under shift (Equation 2.2.12) or equivariant
under shift (Equation 2.2.13):

f ◦ Tx′ = f ∀x′ ∈ X′ ⇐⇒ f is invariant under Tx′ ∀x′ ∈ X′ (2.2.12)

f ◦ Tx′ = Tx′ ◦ f ∀x′ ∈ X′ ⇐⇒ f is equivariant under Tx′ ∀x′ ∈ X′ (2.2.13)

Here, we explicitly write down a set X′ that specifies the set of shift operators {Tx′ |x′ ∈ X′}
under which this symmetry holds. We will see in subsection 2.2.22 that the structure of this
set can greatly influence the strength of this symmetry and the difficulty of satisfying its
requirements; discrete shift and continuous shift are two different beasts.

2.2.4. The mirror operator

The mirror operator applies another very simple transformation on functions that is
useful to in the theory of signals (Shannon, 1949; Petersen and Middleton, 1962; Schwartz,
1957, 1958; Strichartz, 2003). We will later see that both the spectral basis (subsection 2.2.5)
and spatial basis (subsection 2.2.15) relate to this operator in a way that is fundamental to
our discussion of discretization.

We write the mirror operator as M. given a function s, it simply performs a reflection
along the origin:

M{s}(x) def= s(−x) (2.2.14)

2.2.5. The spectral basis

For us to define alternate representations of signals through the inner product (Equa-
tion 2.2.4) and the change of basis (Equation 2.2.6), we need an orthonormal basis. This
subsection introduces the most commonly used basis in the theory of signals, the spectral
basis bω, often called the complex exponential basis or Fourier basis (Fourier, 1888; Shannon,
1949; Petersen and Middleton, 1962).

39

Re(b)wIm(b)w

Fig. 2.1. Graph of the spectral basis function.

This shows the spectral basis function in a simple 1-dimensional case. The real part is a
cosine, while the imaginary part is a sine.

We define the spectral basis function bω as a function that oscillates over the spatial
domain (points x ∈ X) at a frequency specified over the spectral domain (points ω ∈ Ω).
We construct it using the complex exponential, as it is very convenient for the representation
of rotations and oscillations:

bω(x) def= ei2π⟨ω,x⟩ (2.2.15)

Because of the symmetries of the trigonometric functions that compose the complex
exponential, the mirrored (subsection 2.2.4, Equation 2.2.14) conjugate M{bω} of a spectral
basis is equal to the spectral basis bω itself:

M{bω}(x) = M{cos(2π ⟨ω, x⟩) + i sin(2π ⟨ω, x⟩)} (2.2.16)

= cos(−2π ⟨ω, x⟩)− i sin(−2π ⟨ω, x⟩) (2.2.17)

= cos(2π ⟨ω, x⟩) + i sin(2π ⟨ω, x⟩) (2.2.18)

= bω(x) (2.2.19)

This property holds for the spectral basis, but we will later see that it also holds for the spatial
basis (subsection 2.2.15). This will be very important to the way we discuss discretization.

Because the spectral basis is built from complex exponentiation, the usual rules of expo-
nents apply:

bω(x)bω′(x) = ei2π⟨ω,x⟩ei2π⟨ω′,x⟩ (2.2.20)

= ei2π⟨ω+ω′,x⟩ (2.2.21)

= bω+ω′(x) (2.2.22)

bω(x)bω(x′) = ei2π⟨ω,x⟩ei2π⟨ω,x′⟩ (2.2.23)

= ei2π⟨ω,x+x′⟩ (2.2.24)

= bω(x + x′) (2.2.25)

40

The set of spectral bases {bω|ω ∈ Ω} can be made orthonormal (Equation 2.2.5) for
signal classes defined over certain spectral domains Ω and spatial domains X. This is al-
ways true when constructing spectral sampling sets Ωspl using the process outlined later in
subsection 2.2.12.

2.2.6. The Fourier transform and inverse Fourier transform

In this subsection, we formulate a bridge between the original domain of the signal,
the spatial domain X, and a new spectral domain Ω, which derives from the spectral basis
(subsection 2.2.5). This bridge can be traversed in either direction through the Fourier
transform or the inverse Fourier transform.

These two operators are important in the theory of signals and in many other areas of
mathematics because they can often provide analytic solutions to otherwise impenetrable
theoretical problems (Fourier, 1888), or computationally efficient solutions to asymptotically
hard problems (Shannon, 1949; Petersen and Middleton, 1962; Cooley and Tukey, 1965;
Schönhage and Strassen, 1971).

The Fourier transform F : (X → C) → (Ω → C) performs a change of basis from
the spatial domain to the spectral domain. This projects from spatial coefficients s(x) to
spectral coefficients ŝ(ω). The Fourier transform is constructed by applying the inner product
(Equation 2.2.4) using the spectral basis bω (Equation 2.2.15):

F { s } (ω) = ŝ(ω) def= ⟨s, bω⟩ =
∫
Rd

s(x)e−i2π⟨ω,x⟩dx (2.2.26)

The inverse Fourier transform F−1 : (Ω → C) → (X → C) performs a change of basis
from the spectral domain to the spatial domain. This projects from spectral coefficients
ŝ(ω) to spatial coefficients s(x). The inverse Fourier transform is conversely constructed by
applying the change of basis (Equation 2.2.6) using the spectral basis bω (Equation 2.2.15):

F−1 { ŝ } (x) = s(x) def=
∫
Rd

ŝ(ω) bω(x)dω =
∫
Rd

ŝ(ω)ei2π⟨ω,x⟩dω (2.2.27)

By definition, the Fourier transform performs an inner product (subsection 2.2.1), and
therefore inherits associativity with scalar multiplication (Equation 2.2.28) and distributivity
(Equation 2.2.29):

aF{s} = F{as} (2.2.28)

F{s + s′} = F{s}+ F{s′} (2.2.29)

By definition, the inverse Fourier transform performs a change of basis (subsection 2.2.1),
and therefore also inherits associativity with scalar multiplication (Equation 2.2.30) and

41

distributivity (Equation 2.2.31):

aF−1{ŝ} = F−1{aŝ} (2.2.30)

F−1{ŝ + ŝ′} = F−1{ŝ}+ F−1{ŝ′} (2.2.31)

2.2.7. The convolution operator

The convolution operator is central to the theory of signals, highly important to vari-
ous other areas of mathematics, and specifically relevant to computer vision and convolu-
tional neural architectures (Fourier, 1888; Shannon, 1949; Petersen and Middleton, 1962;
Fukushima, 1980; He et al., 2016a,b; Krizhevsky et al., 2017). We present the convolution
operator in this subsection and highlight its key properties.

The convolution operator ∗ takes two signals s and s′, and combines them to form a new
signal as defined below.

(s ∗ s′) (x) def=
∫
Rd

s(x− x′)s′(x′)dx′ (2.2.32)

=
∫
Rd

s(x′)s′(x− x′)dx′ (2.2.33)

Equation 2.2.33 follows from a change of variables, and implies convolution is commutative:

(s ∗ s′) = (s′ ∗ s) . (2.2.34)

Using the shift operator (Equation 2.2.11) and the mirror operator (Equation 2.2.14), we
can rewrite convolution as an inner product, which leads to an interpretation based on the
intuition of linear algebra:

(s ∗ s′) (x) =
∫
Rd

s(x′)s′(x− x′)dx′ (2.2.35)

=
∫
Rd

s(x′)M{s′}(x′ − x)dx′ (2.2.36)

=
∫
Rd

s(x′)Tx{M{s′}}(x′)dx′ (2.2.37)

=
∫
Rd

s(x′)Tx{M{s′}}(x′)dx′ (2.2.38)

=
〈
s,Tx{M{s′}}

〉
(2.2.39)

Convolution effectively creates a continuum of inner products between s and M{s′} that is
navigated by x. Each slice x corresponds to applying a shift Tx to M{s′} before taking the
inner product with s. This is given a visual intuition in Figure 2.2. The result of Equa-
tion 2.2.39 is also important because it allows conceptualizing inner products as convolutions.
This is central to our discussion of discretization.

42

s’

st{m{s’}}

s

t{m{s’}}s

Ƞst{m{s’}}s * s’

m
t

Fig. 2.2. Graph showing convolution as a shifted mirrored inner product.

This shows a convolution between two simple strictly real functions decomposed into the
steps of Equation 2.2.39. Here, s is a simple rectangle pulse in red, and s′ is a truncated
exponential in blue. We take s′, mirror and shift it to obtain Tx{M{s′}}, and compute its
product with s, shown in green. The area under the curve of this product is equal to the
value of the convolution at the corresponding shift (s ∗ s′) (x). This is effectively the inner
product

〈
s,Tx{M{s′}}

〉
.

If we fix x in Equation 2.2.39, the properties of the inner product seen in subsection 2.2.1
suggest commutativity (Equation 2.2.40 as already shown in Equation 2.2.34), associativity
(Equation 2.2.41), bilinearity (Equation 2.2.42), and distributivity (Equation 2.2.43). We
can verify these properties do hold true as we change x by manipulating the integral of the

43

convolution, but we spare the details here:

s ∗ s′ = s′ ∗ s (2.2.40)

s ∗ (s′ ∗ s′′) = (s ∗ s′) ∗ s′′ (2.2.41)

a (s ∗ s′) = (as) ∗ s′ (2.2.42)

s ∗ (s′ + s′′) = (s ∗ s′) + (s ∗ s′′) (2.2.43)

Equation 2.2.39 implies convolution is shift equivariant. This property is crucial. To-
gether with linearity, it is the defining characteristic of convolution:

(Tx′{s} ∗ s′) (x) =
〈
Tx′{s},Tx{M{s′}}

〉
(2.2.44)

=
〈
s,Tx−x′{M{s′}}

〉
(2.2.45)

= Tx′{s ∗ s′}(x) (2.2.46)

We now introduce the convolution theorem, which relates the application of convolution
in one domain to the application of multiplication in the other domain:

F {s ∗ s′} = F {s}F {s′} (2.2.47)

F {s} ∗ F {s′} = F {ss′} (2.2.48)

This is especially useful as it allows transforming many computationally hard problems into
much simpler equivalent ones (Cooley and Tukey, 1965; Schönhage and Strassen, 1971).

The convolution theorem (Equation 2.2.47)also implies that the application of the con-
volution operator is closed under signal classes that restrict the spectral domain:

F{s}(ω) = 0∀ω /∈ Ω (2.2.49)

F{s′}(ω) = 0∀ω /∈ Ω′ (2.2.50)

=⇒ F{s ∗ s′}(ω) = 0∀ω /∈ Ω ∩Ω′ (2.2.51)

The convolution theorem (Equation 2.2.47) provides another intuition for what convo-
lution performs. When two signals are convolved together in the spatial domain, they are
multiplied together in the spectral domain, meaning that the spectrum of one signal selec-
tively masks the spectrum of the other.

The idea of using convolution as a masking operation is ubiquitous in signal processing.
It will reemerge when we start investigating discretization.

We show pragmatic examples of convolutions applied to images below in Figure 2.3,
Figure 2.4, Figure 2.5, Figure 2.6, and Figure 2.7.

44

Fig. 2.3. Images before filtering, taken from the CIFAR10 dataset.
Because filtering positive valued signals can produce negative values, all images are
normalized to fit the RGB colour range. In the case of the highpass and bandpass filtered
images, grey should be interpreted as 0. Note that the visualizations are produced using
Gaussian kernels, which do not act like perfectly sharp binary masks.

Fig. 2.4. Images under lowpass filtering.
Lowpass filters ϕlow allow low frequencies but block high frequencies:

ϕ̂low(ω) ≈ 1 {ω > ω′} (2.2.52)

Fig. 2.5. Images under highpass filtering.
Highpass filters ϕhigh allow high frequencies but block low frequencies:

ϕ̂high(ω) ≈ 1 {ω < ω′} (2.2.53)

Fig. 2.6. Images under bandpass filtering.
Bandpass filters ϕband only allow a narrow band of frequencies Ω′, and reject the others:

ϕ̂band(ω) ≈ 1 {ω ∈ Ω′} (2.2.54)

45

Fig. 2.7. Images under zero blocking filtering.
Zero blocking filters ϕzero remove the zero frequency component of the signal, leaving
the other frequencies intact. This has the effect of subtracting the mean from the signal:

ϕ̂zero(ω) ≈ 1 {ω ̸= 0} (2.2.55)

2.2.8. The partial derivative operator

The partial derivative operator is often associated with the study of partial differential
equations, but it is also very relevant to the study of signals, and to applications in computer
vision (Sobel, 1968; Canny, 1986). We introduce it here and show its properties of interest.

We use multi-index notation α = (α1, . . . , αd) ∈ Nd
0 to designate higher-order multidimen-

sional partial derivatives, where ∂α = ∂α1 . . . ∂αd . We shorten the notation to an operator to
facilitate readability:

Dα
x{s}

def= ∂αs

∂xα
= ∂α1

∂xα1
1

{
· · · ∂αd

∂xαd
d

{
s

}}
(2.2.56)

Just like convolution, given sufficiently many times differentiable functions, the partial
derivative operator is commutative (Equation 2.2.57), bilinear (Equation 2.2.58), and dis-
tributive (Equation 2.2.59):

Dα
x{Dα′

x {s}} = Dα′

x {Dα
x{s}} (2.2.57)

aDα
x{s} = Dα

x{as} (2.2.58)

Dα
x{s + s′} = Dα

x{s}+ Dα
x{s′} (2.2.59)

Just like convolution, again, the partial derivative operator is shift equivariant:

Tx′{Dα
x{s}} = Dα

x{Tx′{s}} (2.2.60)

Multi-indices are summed over the composition of the partial derivative operator, as
given by the chain rule:

Dα
x{Dα′

x {s}} = Dα+α′

x {s} (2.2.61)

This implies we can construct any higher-order partial derivative operator using first-order
partial derivative operators that span all d dimensions.

As with convolution, we can show the partial derivative operator is in some sense closed
on certain classes of signals. Applying any first-order partial derivative operator Dα

x on
any spectral basis bω with ω ∈ Ω yields a spectral basis proportional to ibα⟨ω,α⟩, which is

46

effectively projected over the direction of α and phase shifted:

Dα
x{bω} = i2π ⟨ω, α⟩ bα⟨ω,α⟩ assuming α ∈ {0, 1}d and

d∑
j

αj = 1 (2.2.62)

We can leverage the linearity of the Fourier transform (subsection 2.2.6) to construct the
first-order partial derivatives of signals through this property.

We can observe that if a signal class is specified with a spectral domain Ω such that
α ⟨ω, α⟩ ∈ Ω ∀ω ∈ Ω for any α designating a first-order partial derivative, the signal class
is closed under any first-order partial derivative operator. We can generalize this to any
higher-order partial derivative operator through Equation 2.2.61 by repeated application of
first-order partial derivative operators. This will be useful when approximately discretizing
higher-order partial derivative operators in subsection 2.2.21.

We note that the argument above requires some technical caveats that disallow certain
pathological functions, such as the Weierstrass function (Weierstrass, 1895). This is never
encountered when discussing discretized signals, however.

2.2.9. The sampling operator

The foundation we have introduced for the analysis of signals only considers signals whose
representations span an infinite spatial domain X and an infinite spectral domain Ω. This
does not allow computation without some form of discretization, which reduces both of these
domains to a finite size. The sampling operator can help us formalize this notion.

We first review the notion of the Dirac delta (Fourier, 1888; Dirac, 1927; Schwartz, 1957,
1958; Strichartz, 2003), which underlies the way we express discretization in this work. The
Dirac delta is a generalized function that can informally be defined as being zero everywhere
except at the origin, and as integrating to one:

δ(x) def=

+∞ if x = 0
0 if x ̸= 0

such that
∫
Rd

δ(x)dx = 1 (2.2.63)

Evaluating the Dirac delta directly at its origin does not provide us with meaningful infor-
mation. We must integrate over it.

The sampling operator (Schwartz, 1957, 1958; Strichartz, 2003; Shannon, 1949; Petersen
and Middleton, 1962; Landau, 1967) takes a signal s, and returns a sampled signal SXspl{s},
which only allows through the values of the signal at points xspl of the sampling set Xspl.
The value of the signal at those points is let through by taking a product with a set of shifted
(Equation 2.2.11) Dirac delta functions δ:

SXspl{s}(x) def=
∑

xspl∈Xspl

Txspl{δ}(x)s(x) (2.2.64)

47

Evaluating the sampling operator directly at points of the sampling set is not meaningful,
because it amounts to evaluating a Dirac delta directly. We must integrate over it.

This definition is not equivalent to simply transforming the continuous signal into a
discretized signal that we can index into, like in Shannon (1949); Petersen and Middle-
ton (1962). The representation it provides is useful when we wish to adapt operators on
continuous signals to operators on discretized signals, specifically when these operators work
through integration, specifically when we wish to remain in the continuous setting to perform
analysis. This is the approach we take to discretization.

2.2.10. The repeating operator

The sampling operator shares a very special relationship with the repeating operator,
which we will formalize in subsection 2.2.11. But first, we introduce the operator in question.

The repeating operator (Schwartz, 1957, 1958; Strichartz, 2003; Shannon, 1949; Petersen
and Middleton, 1962; Landau, 1967) takes a signal s, and returns a repeated signal RXrep{s},
which sums a set of copies of the signal each offset by some vector xrep if the repeating set
Xrep:

RXrep{s}(x) def=
∑

xrep∈Xrep

Txrep{s}(x) (2.2.65)

2.2.11. The duality of sampling and repeating

The sampling operator and the repeating operator interact with the Fourier transform in
a dual way that is fundamental to the theory of signals (Schwartz, 1957, 1958; Shannon, 1949;
Petersen and Middleton, 1962; Strichartz, 2003). We later use this duality to formulate a
framework that allows discretizing the Fourier transform in a way that treats discrete signals
as continuous signals, which greatly simplifies our analysis (subsection 2.2.12). We then see
that this duality directly leads to the sampling theorem (subsection 2.2.13), and provides a
simple interpretation for aliasing (subsection 2.2.14).

Under some conditions on the spatial repeating lattice Λrep and spectral sampling lattice
Γspl, repeating in space then applying the Fourier transform is identical to applying the
Fourier transform then sampling in spectrum:

F

{
RΛrep{s}

}
(ω) =

∫
Rd

s(x)RΛrep

{
e−i2π⟨ω, · ⟩

}
(x)dx (2.2.66)

=
∫
Rd

s(x)SΓspl

{
e−i2π⟨ · ,x⟩

}
(ω)dx (2.2.67)

= SΓspl

{
F{s}

}
(ω) (2.2.68)

48

The conditions on the lattices are dictated by the equality of Equation 2.2.66 to Equa-
tion 2.2.67, which is satisfied if and only if they are reciprocal:

Λrep
def=

d∑

j=1
λjij

∣∣∣∣∣∣i ∈ Zd

where {λj|j ∈ [1, d]} is some basis of Rd (2.2.69)

Γspl
def=

d∑

j=1
γjij

∣∣∣∣∣∣i ∈ Zd

where

{
γj

∣∣∣j ∈ [1, d]
}

is chosen such that
〈
γj, λj′

〉
= 1 {j = j′} (2.2.70)

Note that the basis {λj|j ∈ [1, d]} is not required to be orthonormal, neither orthogonal.
The lattices are thus not required to be cubic.

The fact that repeating the spatial domain samples the spectral domain is reasonable if
we consider which spectral coefficients can be nonzero for such a signal. Because the signal
is made spatially periodic, we expect spectral coefficients to integrate to zero if the spectral
basis is not periodic over the same period, and to otherwise concentrate its mass in a single
point if the spectral basis is periodic over the same period. This is exactly what is implied
by spectral sampling, and by the fact that its lattice is reciprocal.

The relationship we have just outlined holds identically with permuted domains. In what
follows, we provide a way of relating the lattices that unites both relationships.

Under some conditions on the spatial sampling lattice Λspl and spectral repeating lattice
Γrep, sampling in space then applying the Fourier transform is identical to applying the
Fourier transform then repeating in spectrum:

F

{
SΛspl{s}

}
(ω) =

∫
Rd

s(x)SΛspl

{
e−i2π⟨ω, · ⟩

}
(x)dx (2.2.71)

=
∫
Rd

s(x)RΓrep

{
e−i2π⟨ · ,x⟩

}
(ω)dx (2.2.72)

= RΓrep

{
F{s}

}
(ω) (2.2.73)

The conditions on the lattices are dictated by the equality of Equation 2.2.71 to Equa-
tion 2.2.72, which is satisfied if and only if the two lattices are reciprocal.

We generally define these two lattices in relationship to the lattices we have defined
earlier. If we wish to apply both the sampling operator and the repeating operator in one
domain, then it is natural to let one repeating increment be equal to a finite number of

49

sampling increments. We parameterize this relationship with an integer vector n ∈ Nd:

Λspl
def=

d∑

j=1
λjn−1

j ij

∣∣∣∣∣∣i ∈ Zd

 (2.2.74)

Γrep
def=

d∑

j=1
γjnjij

∣∣∣∣∣∣i ∈ Zd

 (2.2.75)

In the equations above, the inverse applies componentwise. Both expressions can be reduced
to a simple interpretation.

In Equation 2.2.74, every component of n−1 expresses the number of spatial sampling
increments that sum to one spatial repeating increment along some axis of the lattice.

In Equation 2.2.75, every component of n expresses the number of spectral sampling
increments that sum to one spectral repeating increment along some axis of the lattice.

The fact that sampling the spatial domain repeats the spectral domain is the converse
of the intuition we developed for the opposite case. The periodic nature of spectral bases is
essentially identical for conjugated spectral bases and a change of variables, and the inverse
Fourier transform can be thought of as a Fourier transform with conjugated spectral bases
and a change of variables. The intuition should also hold in the opposite direction.

2.2.12. Discretization

The results of subsection 2.2.11 provide a useful intuition for the discretization of signals
in both the spatial domain X and the spectral domain Ω. If we assume we can apply our
analysis tools to the signal class with unrestricted domains X = Rd and Ω = Rd (which
is not really correct by Schwartz (1957, 1958); Strichartz (2003), but is reasonable for the
sake of the intuition it provides), we can add the assumption of periodicity in one domain
to reduce the nonzero parts of the other domain. This allows deriving variants of our signal
analysis tools that can discretize one or both domains.

Discretizing only the spatial domain yields the discrete time Fourier transform (Shannon,
1949; Petersen and Middleton, 1962):

• If we apply periodicity in the spectral domain, we can assume any spectral coefficients
ŝ can be reexpressed as RΓrep{ŝ′}, and necessarily, the spatial coefficients s are then
sampled as SΛspl{s′}.
• The set of spatial bases {bx|x ∈ Λspl} that correspond to this sampling are always

orthonormal.
• If we narrow the spatial domain X to a bounded region, then we can define a sampled

spatial domain Xspl = X ∩Λspl which has a finite number of samples.
The subset of spatial bases {bx|x ∈ Xspl} is also always orthonormal.

50

Discretizing only the spectral domain yields the Fourier series (Fourier, 1888):
• If we apply periodicity in the spatial domain, we can assume any spatial coefficients

s can be reexpressed as RΛrep{s′}, and necessarily, the spectral coefficients ŝ are then
sampled as SΓspl{ŝ′}.
• The set of spectral bases {bω|ω ∈ Γspl} that correspond to this sampling are always

orthonormal.
• If we narrow the spectral domain Ω to a bounded region, then we can define a sampled

spectral domain Ωspl = Ω ∩ Γspl which has a finite number of samples.
The subset of spectral bases {bω|ω ∈ Ωspl} is also always orthonormal.

Discretizing both domains yields the discrete Fourier transform (Shannon, 1949; Petersen
and Middleton, 1962). This is the setting we are most interested in. Then, the bounded
regions of X and Ω must be contained by some unit cell of the corresponding repeating
lattices Λrep and Γrep.

Whenever we wish to evaluate a convolution between a kernel ϕ and a signal s made
periodic, or assumed to be periodic, the repeating operator can be moved over to kernel in
the convolution, which makes computation feasible in many cases:

s ∗ ϕ = RΓrep{s′} ∗ ϕ = s′ ∗RΓrep{ϕ} (2.2.76)

In principle, this would be used whenever we apply convolutions on discretized signals in
the next sections. This includes interpolation (subsection 2.2.16), rediscretization (subsec-
tion 2.2.17), and discretizations of linear shift equivariant operators (subsection 2.2.19).

Convolution is sometimes evaluated without periodicity in practice. Correct discretiza-
tions of signals that do not rely on periodicity can be constructed by simply defining finite
orthonormal sets of spatial basis functions, and by defining the signal class through the span
of that basis.

However, defining corresponding finite orthonormal sets of spectral basis functions is
impossible. There, convolution involves finite quantities of information, but the convolution
theorem implies infinite quantities of information. Computing convolutions is therefore only
possible in the spatial domain. This may be a better compromise in some scenarios. The
derivations we present next are compatible with this setting.

2.2.13. The sampling theorem

By explicitly formulating the duality between sampling and repeating in subsec-
tion 2.2.11, and by formulating discretization in subsection 2.2.12, we have implicitly
formulated the sampling theorem, which specifies the necessary conditions for discretizing
signals without loss or incorrect capture of information (Shannon, 1949; Petersen and

51

Middleton, 1962; Landau, 1967; Marvasti, 2012). We formulate this theorem in a more
convenient form here, which follows directly from the relationship between the size of the
previously derived lattices.

We formalize the criteria for correct discretization using the notion of the volume V

(Equation 2.2.77) of the spectral domain, and the sampling density d (Equation 2.2.78) of
the spatial domain:

V(Ω) def=
∫
Rd
1 {ω ∈ Ω} dω (2.2.77)

d(Xspl, X) def= |Xspl|
V(X) (2.2.78)

Formulating the sampling theorem based on this is not a common approach, but it leads
to a result that is easier to apply to our multidimensional analysis, and that is equivalent
to the sampling theorem of Shannon (1949); Petersen and Middleton (1962) if the sampling
patterns are correctly defined following the process outlined in subsection 2.2.12. It also
seamlessly generalizes to a wider class of sampling patterns, as we see next.

Given the spectral and spatial domain of a class of signals (subsection 2.2.2, subsec-
tion 2.2.12), it is possible to express the sampling theorem in terms of spatial density and
spectral volume (Equation 2.2.79). When this expression is satisfied and the sampling pat-
terns are suitably constructed using lattices, correct sampling is guaranteed:

d(Xspl, X) ≥ V(Ω) (2.2.79)

This criteria can be extended to apply not only to signals sampled on patterns that are
lattices, but to signals sampled on patterns that are randomly formed with a density that
is nonuniform (Landau, 1967; Marvasti, 2012). In this case, the criteria applies not on a
global sampling pattern density, but on a local sampling pattern density tied to a location
x ∈ X that is evaluated in expectation. This also implies the volume of the spectral domain
is defined locally. The expression below intuitively captures this relationship, but we do not
cover every detail of this complex topic that is better presented by Marvasti (2012):

d(Xspl, X|x) ≥ V(Ω|x) (2.2.80)

2.2.14. Aliasing

Aliasing is an error in discretization that occurs when the sampling theorem (subsec-
tion 2.2.13) is violated. It follows as a direct consequence of the duality between sampling
in the spatial domain and repeating in the spectral domain (subsection 2.2.11). It occurs
precisely through Equation 2.2.73 when we use a spatial sampling lattice Λspl that gives a
corresponding spectral repeating lattice Γrep on a signal whose spectral domain Ω cannot be
contained by any unit cell of the spectral repeating lattice Γrep.

52

2.2.15. The spatial basis

While we have explicitly introduced a basis for the spectral domain, we have not explicitly
introduced one for the spatial domain. Doing so is desirable as it provides a way to bridge
continuous signals and discretized signals in a very useful way. We therefore introduce the
spatial basis, also called the sine cardinal function, or sinc function (Whittaker, 1915, 1927;
Shannon, 1949; Woodward and Davies, 1952; Petersen and Middleton, 1962; Strichartz,
2003).

bx

Fig. 2.8. Graph of the spatial basis function.

This shows the spatial basis function in a simple 1-dimensional case. The function
evaluates to one at the origin, and to zero at regular intervals, which is important to the
orthonormality of sets of spatial basis functions. The function also decays slowly towards
zero as we move away from the origin, which prevents exact computation of certain
operations that involve it, as we see later. In the illustration, the spatial basis is scaled
identically to the spectral basis in Figure 2.8, and the two are compatible with each other,
in the sense that sums of one can represent the other.

We can work towards the spatial basis by scrutinizing the process of sampling a signal s

at some point x′. What we want is an expression that is identical to evaluating s(x′), but
that operates by performing an inner product with a basis function ⟨s, bx′⟩. In the case of
the class of unrestricted signals, for which X and Ω cover all of Rd, this can be done with a
shifted Dirac delta:

⟨s,Tx′{δ}⟩ =
∫
Rd

s(x)Tx′{δ}(x)dx = s(x′) (2.2.81)

This is not an admissible solution as is, because the Dirac delta is not in the span of any
signal class that restricts its spectral domain. This also disregards some finer details of
functional analysis (Schwartz, 1957, 1958; Strichartz, 2003).

However, if we project the Dirac delta from its spatial coefficients to its spectral coeffi-
cients through F, reject any part of it that does not belong to the spectral domain Ω specific
to the signal class, and project back to the spatial coefficients through F−1, we will obtain
the part of the Dirac delta that can be captured by the signal class. We also normalize by the
inverse volume (Equation 2.2.77) of the spectral domain V(Ω)−1 to satisfy orthonormality.

53

This is all expressed in the definition below, which leverages some properties of the spectral
basis to simplify the result (the conjugate of the spectral basis as in Equation 2.2.19 and the
multiplication of the same spectral basis at different points in space as in Equation 2.2.25):

bx′(x) def= F−1
{
F{Tx′{δ}}1 { · ∈ Ω}

V(Ω)

}
(x) (2.2.82)

=
∫
Rd

1 { · ∈ Ω}
V(Ω)

(∫
Rd

Tx′{δ}(x′′)bω(x′′)dx′′
)

bω(x)dω (2.2.83)

= 1
V(Ω)

∫
Ω

bω(x′)bω(x)dω (2.2.84)

= 1
V(Ω)

∫
Ω

bω(x− x′)dω (2.2.85)

= 1
V(Ω)

∫
Ω
Tx′{bω}(x)dω (2.2.86)

By design, we recover the Dirac delta as Ω tends to Rd. This is not exactly formally
correct in the sense of Schwartz (1957, 1958); Strichartz (2003), but for our limited analysis,
this is sufficiently accurate:

lim
Ω→Rd

F−1
{
F{Tx′{δ}}1 { · ∈ Ω}

V(Ω)

}
(x) = Tx′{δ} (2.2.87)

We can leverage Equation 2.2.86 to show that the spatial basis is shift equivariant, in
the sense that it only considers the position of its evaluation x relative to the position of its
anchor x′:

bx′(x) = 1
V(Ω)

∫
Ω
Tx′{bω}(x)dω (2.2.88)

= Tx′

{
1

V(Ω)

∫
Ω
T0{bω}(·)dω

}
(x) (2.2.89)

= Tx′{b0}(x) (2.2.90)

= b0(x− x′) (2.2.91)

Because the spatial basis is constructed as a sum of spectral bases (Equation 2.2.86)
that satisfy the mirrored conjugate equality M{bω} = bω (Equation 2.2.19), the spatial basis
necessarily also satisfies the mirrored conjugate equality M{b0} = b0, independently of the

54

spectral domain Ω it is constructed on:

b0(x) = 1
V(Ω)

∫
Ω

bω(x)dω (2.2.92)

= 1
V(Ω)

∫
Ω
M{bω}(x)dω (2.2.93)

= M

{
1

V(Ω)

∫
Ω

bω(·)dω

}
(x) (2.2.94)

= M{b0}(x) (2.2.95)

This property can be used to show that the spatial basis is strictly real if the spectral domain
has mirror symmetry, meaning ω ∈ Ω ⇐⇒ −ω ∈ Ω. Our analysis assumes this scenario
without loss of generality.

Because the spatial basis respects the mirrored conjugate equality (Equation 2.2.95), and
because it is shift equivariant (Equation 2.2.90), we can reuse the alternate expression of con-
volution as an inner product against a shifted, mirrored, conjugated signal (Equation 2.2.39)
to write the inner product with some spatial basis ⟨s, bx′⟩ as the result of a convolution
(s ∗ b0) (x′):

⟨s, bx′⟩ =
〈
s,Tx′{M{b0}}

〉
(2.2.96)

= (s ∗ b0) (x′) (2.2.97)

This reexpression as a convolution will be useful when defining interpolation in subsec-
tion 2.2.16 and rediscretization in subsection 2.2.17. Note that because the Dirac delta
fulfills the same mirrored conjugate equality δ = M{δ}, the relationship that ties the in-
ner product with the Dirac delta to sampling in Equation 2.2.81 can also be written as a
convolution using Equation 2.2.39:

⟨s,Tx′{δ}⟩ =
〈
s,Tx′{M{δ}}

〉
(2.2.98)

= (s ∗ δ) (x′) (2.2.99)

Again, we have explicitly designed the spatial basis so that taking an inner product ⟨s, bx′⟩
of some signal s is equivalent to sampling the signal s(x′). We can show that equivalence to
sampling indeed holds with our spectrally limited Dirac delta workaround. Since the spatial
basis leaves no spectral coefficients unaccounted for, the second term in Equation 2.2.102 is
zero. Since the sum of the right sides of the two F{s} terms is equal to the Fourier transform
of the limiting result of Equation 2.2.87, the whole expression is a convolution with the Dirac
delta. This convolution is identical to the inner product with the Dirac delta by equation

55

Equation 2.2.99, which in turn is identical to sampling the signal by Equation 2.2.81:

⟨s, bx′⟩ = (s ∗ b0) (x′) (2.2.100)

=F−1
{
F{s}F{δ}1 { · ∈ Ω}

V(Ω)

}
(x′) (2.2.101)

=F−1
{
F{s}F{δ}1 { · ∈ Ω}

V(Ω)

}
(x′) +

F−1

F{s}F{δ}1
{
· ∈ Ω

}
V(Ω)

 (x′) (2.2.102)

= (s ∗ δ) (x′) (2.2.103)

= ⟨s,Tx′{δ}⟩ (2.2.104)

=s(x′) (2.2.105)

The sampling property of Equation 2.2.105 holds for any signals whose nonzero spectral
coefficients are spanned by the spectral domain Ω used to construct the spatial basis. Neces-
sarily, the spatial basis itself fulfills that constraint, meaning it can sample itself through its
inner product. This provides a trivial expression for the inner product of two spatial bases
bx and bx′ :

⟨bx, bx′⟩ = bx(x′) (2.2.106)

The set of spatial bases {bx′|x′ ∈ X} can be made orthonormal (Equation 2.2.5) for signal
classes defined over certain spectral domains Ω and spatial domains X. This is always true
when constructing spatial sampling sets Xspl using the process outlined in subsection 2.2.12.

2.2.16. Interpolation

We have introduced the sampling operator in subsection 2.2.9 and the principle of dis-
cretization in subsection 2.2.12, which provides us a way to reduce a continuous signal s to
a discretized signal SXspl{s}. This gives us access to s at points x ∈ Xspl, but in many
scenarios we may want to evaluate s any point x /∈ Xspl. For this, we must somehow re-
construct s from SXspl{s}. This process is interpolation (Whittaker, 1915, 1927; Shannon,
1949; Petersen and Middleton, 1962).

56

Discretize Interpolate

Fig. 2.9. Graph showing interpolation as the inverse of discretization.

This intuitively shows how discretization and interpolation are inverse processes that
convert between continuous signals and discrete signals. This visual convention is reused in
later figures that show interpolation, rediscretization, and discretized operators. The
impulses of the discretization are not represented directly. Instead, the coordinates of the
sample position and sample value are shown with points, and the continuous signal that
would be reconstructed through interpolation is drawn with dashed lines.

We can derive interpolation by leveraging the spatial basis (subsection 2.2.15). Since the
inner product against the spatial basis represents sampling by definition (Equation 2.2.105),
s(x) is equal to ⟨s, bx⟩. Since SXspl{s} provides us with the full set of coefficients of an
orthonormal set of spatial bases {bx′|x′ ∈ Xspl}, and since we effectively wish to recover the
coefficient of a single spatial basis bx, we can do so by projecting from the spatial coefficients
{s(x′)|x′ ∈ Xspl} to the spatial coefficient s(x) (Equation 2.2.3). We use the self-sampling
property of the spatial basis (Equation 2.2.106) and the shift equivariance of the spatial basis
(Equation 2.2.90) to simplify, and apply the definition of the convolution (Equation 2.2.32)
to arrive at an expression for interpolation:

s(x) = ⟨s, bx⟩ (2.2.107)

=
∑

x′∈Xspl

⟨s, bx′⟩ ⟨bx′ , bx⟩ (2.2.108)

=
∫
Rd

SXspl{s}(x′) ⟨bx′ , bx⟩ dx′ (2.2.109)

=
∫
Rd

SXspl{s}(x′)b0(x− x′)dx′ (2.2.110)

I{SXspl{s}}(x) def=
(
SXspl{s} ∗ b0

)
(x) (2.2.111)

The form that the interpolation process takes is convenient; it simply consists in convolving
the sampled signal with the spatial basis.

57

When X and Ω are bounded and sampled (subsection 2.2.12), evaluation of the convo-
lution requires summing over a finite number of terms. We can therefore compute it.

When interpolating values x /∈ Xspl, the values at which the spatial basis is evaluated
decay very slowly as a function of the distance from the origin. This means it is difficult to
reduce computational cost by truncating small values of the kernel. This motivates approx-
imate interpolation, where a better-behaved kernel is chosen instead. This kernel is picked
to perform a conceptually similar operation to the spatial basis. It is often formulated the
same way we constructed the spatial basis in Equation 2.2.82, except the indicator function
is replaced by a soft approximation. We apply this in our method in section 3.4.

2.2.17. Rediscretization

We have introduced interpolation in subsection 2.2.16 with the goal of taking a signal
s in its discretized form SXspl{s} and evaluating individual points x /∈ Xspl which are not
directly part of the discretization. The interpolation process effectively allows reversing
discretization. The rediscretization process is very closely related; it instead translates from
one discretization to another. It evaluates not individual points x /∈ Xspl, but sets of points
x ∈ X′

spl /∈ Xspl that belong to a different discretization (Whittaker, 1915, 1927; Shannon,
1949; Petersen and Middleton, 1962; Strichartz, 2003).

This process essentially involves interpolating a discretized signal to a continuous signal
and then sampling the continuous signal to form a new discretized signal. This sampling
step is subject to the sampling theorem (subsection 2.2.13), meaning interpolation cannot
be applied blindly. The density of the new discretization must be taken into account.

In the derivations that follow, we assume are already working with a discretization whose
sampling patterns are correctly formed (subsection 2.2.12), and whose sampling density
is optimally tight given the spectral volume of the signal, meaning d(Xspl, X) = V(Ω)
(subsection 2.2.13).

58

Rediscretize- Ȗ

InterpolateInterpolate

=Rediscretize+

Fig. 2.10. Graph of rediscretization with increased or decreased density.

This shows a signal being rediscretized with either doubled or halved sample density. With
increased density, information is preserved, but with decreased density, information can be
lost.

If d(X′
spl, X′) ≥ d(Xspl, X), the sampling theorem (Equation 2.2.79) trivially holds. We

can simply use Equation 2.2.111 to recover the values on this new discretization. If X is also
unchanged, this is also true if and only if |X′

spl| ≥ |Xspl|.
If d(X′

spl, X′) < d(Xspl, X), the sampling theorem (Equation 2.2.79) is violated. It is
impossible to fully capture the information contained in the signal, but it is possible to
prevent aliasing (subsection 2.2.14). For this, we must reduce the signal’s original spectral
domain Ω to the new, restricted spectral domain Ω′.

This can be achieved easily through convolution with a filter kernel that only allows
through spectral coefficients that belong to the new required spectral domain Ω′. This
kernel is necessarily equal to the spatial basis b′

0 of the new discretization by definition
(Equation 2.2.86):

b′
0(x) def= F−1

{
F{δ}1 { · ∈ Ω′}

V(Ω′)

}
(x) (2.2.112)

This allows writing down an equation for the process of rediscretization. Because of the
associativity and distributivity of convolution (Equation 2.2.41, Equation 2.2.43), the whole
rediscretization process can be expressed as convolution with a single filter kernel b0 ∗b′

0 from
points on Xspl to X′

spl:

SX′
spl
{I{SXspl{s}} ∗ b′

0}(x) = SX′
spl
{
(
SXspl{s} ∗ b0

)
∗ b′

0}(x) (2.2.113)

= SX′
spl
{SXspl{s} ∗ (b′

0 ∗ b0)}(x) (2.2.114)

59

We can further simplify the expression for the kernel. We expand the convolution using
the definition of the spatial basis (Equation 2.2.97), and the convolution theorem (Equa-
tion 2.2.47). We then separate the spectral basis b0, which spans the larger spectral domain
Ω ⊃ Ω′ into two parts, which respectively occupy Ω′, the new spectral domain, and Ω−Ω′,
the part of the original spectral domain that is lost. We discard the second convolution as
it evaluates to zero:

(b′
0 ∗ b0) (x′) (2.2.115)

= F−1
{(

F{δ}1 { · ∈ Ω′}
V(Ω′)

)(
F{δ}1 { · ∈ Ω}

V(Ω)

)}
(x′) (2.2.116)

= F−1
{(

F{δ}1 { · ∈ Ω′}
V(Ω′)

)(
F{δ}1 { · ∈ Ω′}

V(Ω)

)}
(x′) +

F−1
{(

F{δ}1 { · ∈ Ω′}
V(Ω′)

)(
F{δ}1 { · ∈ Ω−Ω′}

V(Ω)

)}
(x′) (2.2.117)

= F−1
{(

F{δ}1 { · ∈ Ω′}
V(Ω′)

)(
F{δ}1 { · ∈ Ω′}

V(Ω)

)}
(x′) (2.2.118)

We then extract a factor V(Ω′)/V(Ω) to the left of the convolution which reveals we have
a scaled self-convolution of the new spatial basis b′

0 ∗ b′
0. We add a second convolution

whose value is zero, which covers Ω′, the complement of the new spectral domain. The
sum of the right sides of the convolutions is then identical to the limiting case of the Dirac
delta of Equation 2.2.87. This is equal to direct evaluation of the spatial basis because of
Equation 2.2.97 and Equation 2.2.105:

(b′
0 ∗ b0) (x′) (2.2.119)

= V(Ω′)
V(Ω) F

−1
{(

F{δ}1 { · ∈ Ω′}
V(Ω′)

)(
F{δ}1 { · ∈ Ω′}

V(Ω′)

)}
(x′) (2.2.120)

= V(Ω′)
V(Ω) F

−1
{(

F{δ}1 { · ∈ Ω′}
V(Ω′)

)(
F{δ}1 { · ∈ Ω′}

V(Ω′)

)}
(x′) +

V(Ω′)
V(Ω) F

−1

(
F{δ}1 { · ∈ Ω′}

V(Ω′)

)F{δ}1
{
· ∈ Ω′

}
V(Ω′)

 (x′) (2.2.121)

= V(Ω′)
V(Ω) (b′

0 ∗ δ) (x′) (2.2.122)

= V(Ω′)
V(Ω) b′

0(x′) (2.2.123)

60

This finally gives a simple expression for rediscretization with lowered density d(X′
spl, X) <

d(X′
spl, X):

SX′
spl
{I{SXspl{s}} ∗ b′

0}(x) = SX′
spl

{
SXspl{s} ∗

V(Ω′)
V(Ω) b′

0

}
(x) (2.2.124)

When X and Ω are bounded and sampled (subsection 2.2.12), evaluation of the convo-
lution requires summing over a finite number of terms. We can therefore compute it.

As with exact interpolation in subsection 2.2.16, computational concerns arise, which
leads to the implementation of similar approximate rediscretization methods. We implement
this in our method in section 3.4.

2.2.18. Discretization invariance

The adaptation of operators that apply on continuous signals to operators that identically
apply on discretized signals is central to our work. This notion of an identical operator is
formalized by discretization invariance, which we now introduce.

Good Op

=Discretize

Bad Op

ȖDiscretize

High frequency
content

Fig. 2.11. Graph of operators with and without discretization invariance.

This shows the application of an operator with discretization invariance (a simple scaling)
and of another operator without discretization invariance (the pointwise ReLU activation
function). Intuitively, discretization invariance means that applying the operator on the
continuous signal yields the same result as applying the operator on the discrete signal.

An operator on continuous signals g has an adapted operator h on discretized signals
that is discretization invariant if and only if both operators express the same mapping in the
space of continuous signals belonging to some specific signal class (subsection 2.2.2) (where
S is the sampling operator as defined in subsection 2.2.9, and I is the interpolation operator
as defined in subsection 2.2.16):

g(s) = I

{
h

(
SXspl{s}

)}
(2.2.125)

61

Here, it is understood that h can either manipulate the weighted sum of Dirac deltas ex-
pressed through SXspl{s}, or manipulate the pairs of sample positions and sample values
{(xspl, s(xspl))|xspl ∈ Xspl} that compose it. We generally require that h be adaptable to
arbitrary discretizations Xspl. We however allow h to require us to respect certain constraints
on the sampling density d(Xspl, X) according to the spectral volume V(Ω).

We can give a condition under which discretization invariance is impossible using the
sampling theorem. Given a signal s that belongs to a signal class such that ŝ(ω) = 0 is
satisfied for all ω /∈ Ω for all s, and given a sampling pattern such that V(Ω) = d(Xspl, X),
if the signal s′ = g(s) resulting from applying the operator exits the domain of the signal
class such that ŝ′(ω) ̸= 0 for at least one ω /∈ Ω for at least one s, it is impossible to create
an operator on discretized signals that could perform the same mapping because its output
would violate the sampling theorem its discretization is subject to (subsection 2.2.13).

2.2.19. Discretization of linear shift equivariant operators

We introduce a method for adaptation of operators on continuous signals that are lin-
ear and shift equivariant to operators on discretized signals which satisfies discretization
invariance (subsection 2.2.18).

We follow the same general process used to derive interpolation in subsection 2.2.16. We
apply the operator O on some continuous signal, rewrite that signal as an inner product
with a spatial basis, and perform a change of basis from the orthonormal set of spatial
bases {bx′ |x′ ∈ Xspl} to a spatial basis bx, effectively projecting from the spatial coefficients
{s(x′)|x′ ∈ Xspl} to the spatial coefficient s(x) (Equation 2.2.3). We use the self-sampling
property of the spatial basis (Equation 2.2.106) and the shift equivariance of the spatial
basis (Equation 2.2.90) to simplify. We then leverage the fact that the operator only applies
to the right side of the equation, is linear, and is shift equivariant to bring it inside the
sum. We rewrite as an integral over a sampling operator that corresponds to a convolution
(Equation 2.2.32), which gives a very convenient way to express the operator on discretized

62

signals:

O{s}(x) = O{⟨s, b · ⟩}(x) (2.2.126)

= O

 ∑
x′∈Xspl

⟨s, bx′⟩ ⟨bx′ , b · ⟩

 (x) (2.2.127)

= O

 ∑
x′∈Xspl

s(x′)b0(· − x′)

 (x) (2.2.128)

=
∑

x′∈Xspl

s(x′)O{b0}(x− x′) (2.2.129)

=
∫
Rd

SXspl{s}(x′)O{b0}(x− x′)dx′ (2.2.130)

=
(
SXspl{s} ∗ O{b0}

)
(x) (2.2.131)

=⇒ SXspl

{
O{s}

}
(x) def= SXspl

{
SXspl{s} ∗O{b0}

}
(x) (2.2.132)

Because Equation 2.2.126 expresses a continuous signal that is equal to Equation 2.2.131,
and because Equation 2.2.132 is a correct discretization of the resulting signal, the discretized
operator is necessarily discretization invariant (subsection 2.2.18).

The discretization of a linear shift equivariant operator can be expressed in terms of the
transformation it applies to the spatial basis of the discretization. This forms a kernel O{b0}
which represents the operator.

If the kernel O{b0} that represents the operator is nonzero for only a few values of Xspl,
few values need to be considered in Equation 2.2.132, meaning its discretization can be
implemented exactly with good computational efficiency. Otherwise, approximate methods
may be preferred in practice.

2.2.20. Discretization of the convolution operator

We apply our previous results (subsection 2.2.19) to discretize convolution (subsec-
tion 2.2.7). We also provide an interpretation of two distinct cases that occur when dis-
cretizing convolutions. Note that the discretization of convolution is in many ways similar
to the process of rediscretization (subsection 2.2.17); only the kernel changes.

Because the convolution operator (subsection 2.2.7) is linear and shift equivariant, the
result of Equation 2.2.132 applies:

SXspl

{
s ∗ s′

}
(x) def= SXspl

{
SXspl{s} ∗ (s′ ∗ b0)

}
(x) (2.2.133)

63

If s′ has a spectral domain contained within that of s′ such that Ω′ ⊆ Ω, and given the
discretization respects the sampling theorem (Equation 2.2.79) based on Ω, then (s′∗b0) = s′

by the definition of the spatial basis (Equation 2.2.105).
If s′ has a spectral domain exceeding that of s′ such that Ω′ ⊃ Ω, and given the same

assumption on discretization, then (s′ ∗ b0) has the effect of truncating away spectral content
from s′ that cannot be captured by the discretization, and that does not exist in s ∗ s′ either
because it does not exist in s, as implied by the convolution theorem (Equation 2.2.47).

2.2.21. Discretization of the partial derivative operator

We apply our previous results (subsection 2.2.19) once more to discretize the partial
derivative operator (subsection 2.2.8), which holds an important place in our work. We
additionally provide a short discussion of exact and approximate methods for its implemen-
tation.

Because the partial derivative operator (subsection 2.2.21) is linear and shift equivariant,
the result of Equation 2.2.132 applies:

SXspl

{
Dα

x{s}
}

(x) def= SXspl

{
SXspl{s} ∗Dα

x{b0}
}

(x) (2.2.134)

Equation 2.2.134 provides an exact discretization for any partial derivative operator. As
with interpolation and rediscretization, convolution against a non sparse kernel (Dα

x{b0})
is required for exact computation. Approximation schemes that substitute b0 for a better
numerically behaved kernel are often used for this reason.

2.2.22. Discretization of the shift operator

We apply our previous results (subsection 2.2.19) a final time to discretize the shift
operator (subsection 2.2.3). The goal of this derivation is not to arrive at a practical im-
plementation, but to underline a critical distinction between the discretization of the shift
operator with discrete shifts and continuous shifts. This is central to the discussion of discrete
shift equivariance and continuous shift equivariance we later provide in subsection 2.2.23.

Because the shift operator (subsection 2.2.3) is linear and shift equivariant, the result of
Equation 2.2.132 applies:

SXspl

{
Tx′{s}

}
(x) def= SXspl

{
SXspl{s} ∗ Tx′{b0}

}
(x) (2.2.135)

= SXspl

{
SXspl{s} ∗ bx′

}
(x) (2.2.136)

We can use this discretization to provide an interpretation of both discrete shifts and con-
tinuous shifts.

64

With discrete shifts, because evaluation of the spatial basis is identical to an inner prod-
uct with the spatial basis (Equation 2.2.106), the term that is convolved against in Equa-
tion 2.2.136 is identical to the inner product below. Because Xspl forms an orthonormal
basis, the inner products between basis functions of Xspl respect the orthonormality con-
straint (Equation 2.2.5). Because we only consider discrete shifts that correspond to points
of this discretization, the basis function is only ever evaluated at these points for which
the kernel of the operator discretization evaluates to zero for all points except one, which
evaluates to one. This means the discrete shift operator only applies a permutation between
sample values:

bx′(x) = ⟨bx, bx′⟩ (2.2.137)

= 1 {x = x′} ∀ x, x′ ∈ Xspl (2.2.138)

With continuous shifts, Equation 2.2.138 does not hold, and the shift operator effec-
tively evaluates the spatial basis at intermediate points that are never zero. This means the
continuous shift operator does not merely apply a permutation between sample values.

2.2.23. Discretization of operators with shift equivariance

With the intuition for the distinction between discrete shifts and continuous shifts we
have introduced in subsection 2.2.22, we can now study how shift equivariance applies to
discretizations of operators in two separate scenarios: discrete shift equivariance and contin-
uous shift equivariance. These two flavours of shift equivariance are not equally strong and
come with different requirements that define the implementation of every component of our
method (section 3.1).

Bad Op

Bad Op

Discretize

DiscretizeShift

Shift

Ȗ

Interpolate

Interpolate

Fig. 2.12. Graph of an operator without continuous shift equivariance.

This shows the application of an operator (the pointwise ReLU activation function) that is
not continuous shift equivariant. The discretized operator does not commute with the
continuous shift operator.

65

Discretizations of pointwise operators are discrete shift equivariant. The discrete shift
operator is effectively a permutation between sample values (subsection 2.2.22, Equa-
tion 2.2.138). Any discretized pointwise operator is equivariant to permutation, and therefore
any discretized pointwise operator is equivariant to discrete shift.

Discretizations of pointwise operators are continuous shift equivariant if and only if they
are discretization invariant. The continuous shift operator is not equivalent to a permutation
between sample values (subsection 2.2.22). Any discretized pointwise operator is therefore
not necessarily equivariant to continuous shift.

When a continuous pointwise operator is adapted into a discretized pointwise operator
while respecting discretization invariance (subsection 2.2.18), the two variants of the operator
must express the same map on continuous signals. In this case, since the continuous pointwise
operator is continuous shift equivariant by definition, the discretized pointwise operator is
also necessarily continuous shift equivariant.

When a continuous pointwise operator is adapted into a discretized pointwise operator
while violating discretization invariance (subsection 2.2.18), then application of the contin-
uous pointwise operator can yield signals which violate the sampling theorem. In this case,
aliasing artifacts are introduced (subsection 2.2.14). These aliasing artifacts are sensitive
to continuous shifts, which violates continuous shift equivariance. This scenario can occur
specifically with nonlinear pointwise operators, as we later discuss in subsection 2.2.24.

Discretizations of linear shift equivariant operators are continuous shift equivariant. Any
continuous linear shift equivariant operator can be adapted into a discrete linear shift equi-
variant operator trivially while respecting discretization invariance (subsection 2.2.19). Any
such discrete operator is continuous shift equivariant by a similar argument.

2.2.24. Discretization of pointwise nonlinear operators

As we have discussed in subsection 2.2.23, pointwise operators are not trivially continuous
shift equivariant. Pointwise nonlinear operators are central to convolutional architectures,
so the study of the conditions for correct implementation of this equivariance is crucial to
our work.

Pointwise nonlinear operators tend to widen the spectral domain, which can lead to
violation of the sampling theorem (subsection 2.2.13) and cause aliasing (subsection 2.2.14),
which violates discretization invariance (subsection 2.2.18), and thus violates continuous
shift equivariance (subsection 2.2.23). We provide an analysis of the error this introduces
and propose two mitigation strategies to provide approximate discretization invariance and
continuous shift equivariance.

The degree to which a pointwise nonlinearity broadens the spectral domain of a signal
can be studied through polynomial decomposition of the pointwise nonlinearity, and through

66

the convolution theorem. The analysis that follows is applied in a single dimension to lighten
notation, but it generalizes to higher dimensions. We base our analysis on some nonlinearity
a : R→ R with polynomial expansion coefficients pn:

a(x) =
∞∑

n=0
pnxn (2.2.139)

We leverage the convolution theorem (Equation 2.2.48) to express s using the polynomial
expansion coefficients of s and repeated convolution:

=⇒ a(s(x)) =
∞∑

n=0
pns(x)n (2.2.140)

=⇒ F{a(s(·))}(ω) = F

{ ∞∑
n=0

pns(·)n

}
(ω) (2.2.141)

=
∞∑

n=0
pn(F{s} ∗ n· · · ∗ F{s})(ω) (2.2.142)

This result becomes meaningful when we remark that repeated convolution in the spectral
domain multiplies the span of the spectral domain by n. This is evident when we consider
how convolution behaves with respect to zero and non-zero regions of its operands. Without
loss of generality, we suppose a simple zero-centered spectral domain Ω = [−ω′′, ω′′], meaning
F{s}(ω) = 0 ∀ω /∈ [−ω′′, ω′′]:

(F{s} ∗ n· · · ∗ F{s})(ω) =
∫
R
F{s}(ω − ω′)(F{s} ∗ n−1· · · ∗ F{s})(ω′)dω′ (2.2.143)

= 0 ∀ω /∈ [−ω′′
n, ω′′

n] (2.2.144)

where ω′′
1 = ω′′ (2.2.145)

ω′′
n = ω′′

n−1 + ω′′ (2.2.146)

=⇒ ω′′
n = nω′′ (2.2.147)

This provides an intuition for Equation 2.2.142: when the polynomial coefficients of the
pointwise nonlinearity are zero above order n, the resulting signal has a spectral domain at
most n times widened. For approximate discretization invariance, we want to minimize the
spectral coefficients outside Ω. Given the analysis we have performed, we can see this can
be encouraged in two ways.

The first strategy is to pick a pointwise nonlinearity whose polynomial coefficients decay
faster. This is generally the case for smoother pointwise nonlinearities.

The second strategy is to perform antialiasing, which consists in temporarily rediscretiz-
ing from the original spatial sampling domain Xspl to a denser spatial sampling domain
X′

spl that corresponds to a wider spectral domain V(Ω′) > V(Ω′), applying the pointwise
nonlinearity, and then rediscretizing back to the original spatial sampling domain Xspl while

67

filtering excess spectral content appropriately. Given sufficient headroom to avoid significant
aliasing, this is approximately discretization invariant.

2.2.25. The Laplacian pyramid

The Laplacian pyramid is a signal processing construction (Burt and Adelson, 1987;
Adelson et al., 1984) that allows decomposing signals s into a sum of signals pn according to
the bands of the spectral domain they occupy. This decomposition is useful because it creates
a sparse decomposition that localizes its information both spatially and spectrally. Our work
leverages the Laplacian pyramid heavily for these properties (section 3.6, section 3.7). The
Laplacian pyramid is constructed through the following recurrence relation:

plow
0 =s (2.2.148)

plow
n =

(
plow

n−1 ∗ ϕlow
n

)
(2.2.149)

pband
n =plow

n−1 − plow
n (2.2.150)

The base case simply takes the original signal s as the starting point for recurrence plow
0 .

The recursive case takes the preceding signal pn−1, and splits it into a low frequency
part plow

n , and a high frequency part pband
n . Both parts contain spectral content that is

complementary to each other.
We can see that each high-frequency part provides us with a focused slice of the spectral

content of the signal. As we dive deeper into the layers of the pyramid, the frequency of this
slice gets progressively lower.

We can also see by linearity of convolution, and by the fact that recursion always takes
a difference from the original signal, that the sum of all high-frequency parts and the final
low-frequency part must be equal to the original signal. The Laplacian pyramid is therefore
a linear decomposition of the original signal:

s = plow
m +

m∑
n

pband
n (2.2.151)

We also see that as we advance, the volume V(Ωlow
n) of the spectral domain of the low

frequency part Ωlow
n ≈ {ω|ϕ̂low

n (ω) ̸= 0} decreases. The great advantage of this is that it
allows reducing the sampling density d(Xn

spl, X) while correctly representing each pyramid
level, which reduces computational cost.

2.3. Normalizing flows
As surveyed in section 2.1, a large set of deep learning tasks consist in learning some form

of mapping from inputs to outputs. In many cases, the specific pairings between inputs and

68

outputs are of interest. But in some cases, the specific pairings generated by the mapping
are not the focus — it is rather the structure of the mapping itself that is of interest.

Normalizing flows (Rezende and Mohamed, 2015; Kobyzev et al., 2020) are models that
fit this second paradigm. They do not construct a mapping that respects input-to-output
pairings explicitly — they rather translate inputs spread according to one distribution to out-
puts spread according to another distribution. The input-to-output pairings are contingent
— they are implicitly learnt under this constraint on distributions.

The general idea behind this form of distribution modelling is that if we are successful in
bridging a complex distribution to a simple one, we can benefit from the ease of manipulation
of the simple distribution by translating to it from the complex distribution. This includes
the ability to sample and evaluate.

We introduce notation to precisely designate the two distributions at play (Rezende and
Mohamed, 2015; Kobyzev et al., 2020):

p : Z→ R, called the latent distribution. It is the simple distribution.
• It has a known expression for sample probability that is easy to evaluate.
• It can be sampled infinitely many times through random number generation.

q : X → R, called the observed distribution. It is the complex distribution. We
refer specifically to q as the true distribution, and to qϕ as the modelled distribution,
parameterized by ϕ.

• It (q) does not have a known expression for sample probability.
• It (q) can be sampled finitely many times through a dataset of observations.

We also introduce notation for the maps that translate from one distribution to the other
(Rezende and Mohamed, 2015; Kobyzev et al., 2020):

nϕ : X→ Z, called the normalizing map, parameterized by ϕ.
• It brings samples from the observed distribution to the latent distribution:

nϕ(xspl) with xspl ∼ qϕ ≈ q is distributed as zspl with zspl ∼ p (2.3.1)

• It enables approximately evaluating the probability of samples in the observed
distribution:

q(x) ≈ qϕ(x) = p(nϕ(x))
∣∣∣∣∣det ∂nϕ

∂x
(x)

∣∣∣∣∣ (2.3.2)

69

gϕ : Z→ X, called the generative map, parameterized by ϕ.
• It brings samples from the latent distribution to the observed distribution:

gϕ(zspl) with zspl ∼ p is distributed as xspl with xspl ∼ qϕ ≈ q (2.3.3)

This enables approximately generating infinitely many samples in the observed
distribution.

For the structure between the two maps to be feasible, the maps must be inverses of
each other. This imposes strict restrictions on the way normalizing flow architectures are
designed.

The ability to translate, generate, and evaluate the probability of samples explained
above is always consistent with itself (meaning Equation 2.3.2 and Equation 2.3.3 always
hold with regards to qϕ), but the modelled distribution is not necessarily consistent with the
true distribution unless the model is optimal (meaning Equation 2.3.2 and Equation 2.3.3
only hold with regards to q if qϕ = q).

This naturally brings us to the process of training and architecture design. A simple strat-
egy is to maximize the log-likelihood of the observed dataset using Equation 2.3.2 (Rezende
and Mohamed, 2015; Kobyzev et al., 2020):

Lϕ(x) = log qϕ(x) = log p(nϕ(x)) + log
∣∣∣∣∣det ∂nϕ

∂x
(x)

∣∣∣∣∣ (2.3.4)

This learning objective is generally summed over a set of samples drawn from the dataset and
optimized using gradient descent on ϕ. Flow architectures usually compose multiple layers
together. Like the whole architecture, each layer has both a normalizing and generative map
that are inverses of each other.

We use the following notation to designate intermediate latent spaces (Rezende and
Mohamed, 2015; Kobyzev et al., 2020):

z0 = x is the first intermediate latent space. It is the observed space.

zm = z is the last intermediate latent space. It is the latent space.

We use the following notation to designate intermediate normalizing and generative maps
(Rezende and Mohamed, 2015; Kobyzev et al., 2020):

70

nn
ϕ(zn−1) = zn is the n-th normalizing layer.

Chaining all normalizing layers forms the full normalizing map:

nϕ(x) = nm
ϕ (nm−1

ϕ (. . . n2
ϕ(n1

ϕ(x)) . . .)) (2.3.5)

gn
ϕ(zn) = zn−1 is the n-th generative layer.

Chaining all generative layers forms the full generative map:

gϕ(z) = g1
ϕ(g2

ϕ(. . . gm−1
ϕ (gm

ϕ (z)) . . .)) (2.3.6)

For an architecture designed as a chain of flow layers, the training objective (Equa-
tion 2.3.4) can be expressed in a way that uses properties of the determinant and the loga-
rithm to avoid matrix multiplication, which is both more computationally efficient and more
numerically stable (Rezende and Mohamed, 2015; Kobyzev et al., 2020):

Lϕ(x) = log p(nϕ(x)) + log
∣∣∣∣∣det ∂nϕ

∂x
(x)

∣∣∣∣∣ (2.3.7)

= log p(nϕ(x)) + log
∣∣∣∣∣det

(
m∏

n=1

∂nn
ϕ

∂zn−1 (zn−1)
)∣∣∣∣∣ (2.3.8)

= log p(nϕ(x)) +
m∑

n=1
log

∣∣∣∣∣det
(

∂nn
ϕ

∂zn−1 (zn−1)
)∣∣∣∣∣ (2.3.9)

71

Chapter 3

Method

The main goal of this method is to address the difficulties that come with applying convo-
lutional neural network architectures to tasks that involve signals whose discretization and
signal bandwidth vary widely, both during training and inference. Our aim is to create an
architecture that can seamlessly be adapted across signal discretization and signal bandwidth
while maintaining great expressivity, parameter efficiency, ability to enforce desirable equiv-
ariances, computational cost, robustness, and training dynamics. The next few paragraphs
provide an overview of the way we tackle this problem.

We allow our architecture to adapt to any signal discretization by requiring that every
layer satisfy discretization invariance (subsection 2.2.18). This effectively consists in specify-
ing our architecture in terms of operators that apply on continuous signals, which can later
be implemented on discretized signals, according to the discretization given by the data.
This means the model has no fixed discretization. In practice, this means a model trained
for 32× 32 images can be used directly with 16× 16 images without needing to rediscretize
the images to the architecture; it is the architecture that rediscretizes to the images. This
also means reductions in discretization size lead to reductions in computational cost.

We address a blind spot in the literature of equivariant convolutional architectures, where
the distinction between discrete shift equivariance and continuous shift equivariance tend to
be disregarded (section 3.1).

We formulate a very generic layer based on the partial derivative operator that enables
the implementation of desirable equivariances (section 3.2). For instance, invariance or
equivariance to shift, rotation, and scale are all achievable within the framework we pro-
pose. We find that this approach leads to computationally efficient, expressive, and highly
parameter-efficient layers.

We go beyond a simple formulation of a discretization invariant architecture and allow
aggressively reducing computational cost when operating on low spectral volume signals.
We propose a Laplacian residual structure that spectrally disentangles its layers in a way

that allows lossless architecture compression. With this structure, a reduction in the size of
the discretization implies a reduction in the number of layers required for evaluation. This
comes without compromise on evaluation quality. (section 3.6)

We formulate a training augmentation that leverages the spectral disentanglement of
Laplacian residuals by applying what we call Laplacian dropout. This has the effect of
letting the architecture perceive signals whose spectrum is augmented. This has a profound
impact on the robustness of the architecture to variations in signal bandwidth. (section 3.7)

We propose a simple data-driven weight initialization method that provides great learning
dynamics for arbitrary network architectures. This allows rapid exploration of more exotic
layer types without requiring symbolically derived initializations. (section 3.8)

We develop an extension to our method that allows dynamically allocating signal band-
width over signals with nonuniform bandwidth using normalizing flows. This allows our
model to adapt to signals such as point clouds. This also allows a form of lossy compression
that is adjacent to compressed sensing. (section 3.9)

3.1. Continuous shift equivariant layers
We provide theoretical analysis that formalizes the distinction between continuous shift

equivariance and discrete shift equivariance (subsection 2.2.22). We highlight the fact that
continuous shift equivariance is a stronger symmetry than discrete shift equivariance, and
that it comes with the requirement of discretization invariance (subsection 2.2.18), which is
not trivial for pointwise operators.

We argue that the signals relevant to machine learning tasks are discretization invariant
by nature, and that necessarily, there should not be a distinction in importance between a
single continuous shift and a single discrete shift. While the set of all discrete shifts is finite,
the set of all continuous shifts is infinite, so in fact, we should be very concerned with the
correct implementation of continuous shift equivariance in our neural architecture.

The analysis we provide in subsection 2.2.23 exposes the necessary conditions for the
creation of continuous shift equivariant discretized operators. We consider these constraints
in the realization of every component of our method.

3.2. Steerable equivariant layers
Our architecture comprises steerable equivariant layers similar to Ruthotto and Haber

(2020), Shen et al. (2020), and Jenner and Weiler (2021), in that they are defined as functions
of the partial derivative operator. However, we always require that discretization invariance
be satisfied, and we allow not only the application of a linear combination of a set of partial
derivatives {Dα1

x (s), · · · ,Dαp

x (s)}, but the application of an arbitrary inner function h to a

74

set of partial derivatives:

c(s) = h
(
Dα1

x {s}, · · · ,Dαp

x {s}, θ
)

(3.2.1)

The discretization of the partial derivative operator is discussed in depth in subsec-
tion 2.2.21. This can be recovered exactly through Equation 2.2.134. This process is com-
putationally expensive, so it can be approximately recovered by substituting b0 for a kernel
that effectively softens the indicator function of Equation 2.2.82, with Gaussian kernels, as
in Jenner and Weiler (2021), or with an even simpler kernel that implements the finite differ-
ence approximation, as in Shen et al. (2020). We chose this latter approach for its simplicity.
Since first-order partial derivative operators can be repeatedly applied to yield higher-order
partial derivative operators (Equation 2.2.61), and are closed on the signal class we consider
(Equation 2.2.62), this first-order discretization is sufficient.

The discretization of the inner function varies with its nature. With linear inner functions,
discretization is trivial, as discussed in subsection 2.2.19. With nonlinear inner functions,
discretization is nontrivial. The method outlined to deal with nonlinear activation functions
in section 3.3 applies identically here.

For our initial exploration, we simply restrict ourselves to layers defined as linear combi-
nations of the zeroth and first-order partial derivatives, as explored by Ruthotto and Haber
(2020); Shen et al. (2020); Jenner and Weiler (2021). This choice is guided by their simplicity,
excellent expressivity and parameter efficiency, as claimed by Shen et al. (2020).

For discretization invariance to hold strictly, the padding should itself be discretization
invariant. Padding with a repeated or mirrored version of the lattice allows this, however, it
can be argued that this is not a reasonable inductive bias for most natural signals. Padding
signals with an edge prolongation is a solution that leads to vanishing derivatives at the
edges, which can be more desirable, although the vanishing rate is discretization dependent.
Padding with zeros is also a possible solution, although it is more likely to lead to errors
when pruning the Laplacian residual blocks we introduce in section 3.6. We chose the latter
two in our initial exploration. We follow the same pattern in section 3.4.

3.3. Activations
As with all neural network architectures, nonlinearities are necessary for expressivity

(Hornik et al., 1989). However, their usual implementation tends to violate the intended
equivariances of the architectures they are a part of.

Activations generally violate discretization invariance and continuous shift equivariance.
In section 3.1, we highlighted that this is a nontrivial consideration that is generally ignored in
the formulation of convolutional architectures. In subsection 2.2.22, we provided an analysis
showing that pointwise operators are neither necessarily continuous shift equivariant nor

75

discretization invariant. In subsection 2.2.24, we showed that this is specifically the case for
nonlinearities, which tend to induce discretization errors that can be approximately mitigated
through two strategies.

The first strategy is to use smoother activation functions with polynomial expansions that
decay faster tend to generate less of the offending spectral content that leads to discretization
error through aliasing (subsection 2.2.14, Equation 2.2.142, Equation 2.2.144). For this
reason, we favour the GELU (Hendrycks and Gimpel, 2016) activation function.

The second strategy is to apply antialiasing. By temporarily rediscretizing the signal to a
higher density, we can provide sufficient spectral headroom to avoid significant aliasing. The
amount of overhead provided can be expressed as a ratio between the original discretization
density d(Xspl, X) and the antialiased discretization density d(X′

spl, X′). Greater ratios re-
duce this error but come at a computational cost. The antialiasing ratio should therefore be
picked based on an empirical study that aims to strike a balance between these factors.

3.4. Local pooling
Convolutional network architectures generally use a form of local pooling to reduce the

size of the discretization between layers. Again, we find that the most common implemen-
tations of local pooling are unsuitable for discretization invariance.

Local maximum pooling violates discretization invariance and continuous shift equivari-
ance. The maximum over a window of a discretized signal generally does not match the true
maximum of the continuous signal that is represented, because the point x where lies the
true maximum over a spatial window W is not necessarily part of the corresponding sampled
spatial window Wspl, meaning it can be in disagreement with the point xspl where lies the
maximum over the sampled spatial window:

argmax
x∈W

s(x) = argmax
xspl∈Wspl

s(xspl) ⇐⇒ argmax
x∈W

s(x) ∈Wspl (3.4.1)

This implies that local maximum pooling is not discretization invariant, nor continuous shift
invariant. However, it discrete shift invariant to some degree. Because the windows span
an integer number of samples, equivariance can only occur for integer shifts that are integer
multiples of the window size, since integer shifts that are fractional multiples of the window
size lead to applying the maximum over different windows.

Local average pooling violates discretization invariance and continuous shift equivariance.
Local average pooling corresponds to an incorrect implementation of rediscretization that
lowers sample density without properly truncating the spectrum of the original discretization,
as outlined in Equation 2.2.124. This is because b′

0 is substituted for the box averaging filter,
which leads to aliasing. This violates discretization invariance, which consequently violates
continuous shift equivariance.

76

Correctly filtered rediscretization solves these issues. By instead applying Equa-
tion 2.2.124 with a correct or approximately correct filter kernel, we can retain discretization
invariance and continuous shift equivariance.

For rediscretization, we choose an approximation that relies on truncated Gaussian ker-
nels as they offer a good compromise between discretization error and computational ef-
ficiency. They are notably advantageous as they are separable, which can greatly reduce
their computational footprint. Gaussian kernels take the same general form as multivariate
Normal distributions:

ϕgauss(x) = (2π)−d/2 det(Σ)−1/2 exp
(
−1

2x⊤Σ−1x
)

(3.4.2)

An arbitrary choice is needed to tie sigma to a cutoff frequency. We parameterize this in
the case where the density is one and let Σ = Iσ2 with σ = (2π)−1/2. This choice of sigma
is motivated by the fact it provides good filtering in practice while minimally altering the
signal when density is unchanged on regular lattice sampling patterns, with ϕgauss(0) = 1
and ϕgauss(x) ≈ 0 ∀x ∈ Rd with ||x|| ≥ 1. For other densities, we uniformly scale the
filter. Intuitively, in the single-dimensional case, halving the sample density will double the
filter radius; this scales the cutoff frequency as desired, and generalizes correctly in higher
dimensions:

σ = (2π)−1/2
(
d(Xspl, X)
d(X′

spl, X)

)1/d

(3.4.3)

Because Gaussian kernels never completely decay to zero, computation requires some
form of truncation. We only consider the values of the kernel up to a radius 3σ.

Because we later (section 3.9) consider cases where the convolution does not take place
on a lattice sampling pattern, but on a nonuniform sampling pattern, it is desirable to apply
normalization on each discretized kernel so it retains unity gain at zero frequency. This
avoids numerical stability issues.

Because it is sometimes possible for individual kernels to lead to near-zero values every-
where, an epsilon parameter ϵ = 10−9 is added to the normalization dividend to avoid the
possibility of a division by zero.

3.5. Global pooling
For architectures that take a signal as an input, and yield a vector as an output, some

form of global pooling is required, because flattening the discretization to a vector directly is
not an option; its dimensionality would be variable. Necessarily, the form of global pooling
used must also be discretization invariant. We see again that some typical solutions are
unsuitable for discretization invariance.

Global maximum pooling violates discretization invariance and continuous shift invari-
ance. The maximum of a discretized signal generally does not match the true maximum of

77

the continuous signal that is represented, because the point x where lies the true maximum
over the spatial domain X is not necessarily part of the sampled spatial domain Xspl, mean-
ing it can be in disagreement with the point xspl where lies the maximum over the sampled
spatial domain:

argmax
x∈X

s(x) = argmax
xspl∈Xspl

s(xspl) ⇐⇒ argmax
x∈X

s(x) ∈ Xspl (3.5.1)

This implies that global maximum pooling is not discretization invariant, nor continuous
shift invariant. This can be approximately remedied by antialiasing, but this is needlessly
computationally expensive.

Global average pooling solves these issues. The average of a discretized signal is necessarily
ŝ(0), which is trivially always part of the spectral domain we consider. It is also very
inexpensive to compute, as its discretization is simply the average on the sample set. We
therefore choose this form of pooling throughout our method.

3.6. Laplacian residual blocks for compression through
spectral disentanglement

Our architecture partitions the spectrum of the signal between layers using a novel Lapla-
cian residual structure that exploits the strengths of both residual blocks (subsection 1.1.2,
He et al. (2016a,b)) and Laplacian pyramids (subsection 2.2.25, Burt and Adelson (1987);
Adelson et al. (1984)). This architectural block is illustrated in Figure 3.1.

Laplacian Residual Block (Pruned)

Linear

× +

+

-1

×

~Bernoulli(1 - Dropout)

+Convolutional Block
0 Blocking ResampleLowpassLowpass

Laplacian Residual Block

Linear

Convolutional Block

GELUConvolution
Lowpass

GELUConvolution

×N-1

Fig. 3.1. Laplacian residual block diagram.

Laplacian residual blocks rn : (X → Rfn) → (X → Rfn+1) are composed together in a
chain, and each contain a convolutional block bn : (X→ Rfn)→ (X→ Rfn) that can contain

78

multiple convolutions and activation functions. Like in residual blocks, each convolutional
block has an additive skip connection. However, filtering operations are involved in the
formulation of the connections. Laplacian residual blocks are formulated together recursively,
very similarly to Laplacian pyramids:

r0 = A0s (3.6.1)

rlow
n =

(
rn−1 ∗ ϕlow

n

)
(3.6.2)

rband
n = rn−1 − rlow

n (3.6.3)

rn = An

((
bn(rband

n) ∗ ϕlow
n ∗ ϕzero

)
+ rlow

n

)
(3.6.4)

The base case of Laplacian residuals and Laplacian pyramids (r0 in Equation 3.6.1 and p0

in Equation 2.2.148) both set the 0-th level to be the source signal s : (X→ Rf0), optionally
through a linear projection A0 ∈ Rf0×f1 .

Their recursive case both take the preceding signal and split it into a low-frequency part
(rlow

n in Equation 3.6.2 and plow
n in Equation 2.2.149) and a high-frequency part (rband

n in
Equation 3.6.3 and pband

n in Equation 2.2.150). The main distinction between the two pro-
cesses is that the Laplacian residual applies a convolutional block bn to each high-frequency
part rband

n before passing it to the next Laplacian residual block rn.
The output of the convolutional block is lowpass filtered by ϕlow

n to respect the structure
of the Laplacian pyramid, which always restricts the spectral domain according to ϕ̂low

n .
Analogously to pooling operations in standard convolutional networks, this coarsens the
feature scale available to the next layers of the network. The output of the convolutional
block is then offset-blocked by ϕzero to ensure (bn(0) ∗ ϕlow

n ∗ ϕzero) = 0, which can otherwise
occur because of bias parameters. The padding mode applied within the convolutional block
also needs to be considered for this to hold. The sum of the output of the convolutional block
and the residual low frequencies are added, and the resulting signal is projected through a
matrix An ∈ Rfn×fn+1 which allows changing dimensionality between blocks.

Rediscretization is performed just before the linear projection if applicable, as the spectral
volume of rn or pn is now smaller than that of rn−1 or pn−1, which allows reducing the
sampling density to reduce computational cost.

Assuming filters that behave as binary masks, whenever the spectrum of a signal ŝ does
not extend outside the spectrum of the lowpass filters ϕ̂low

n′ of the first consecutive layers
n′ ∈ [1, n− 1], the residual blocks rn′ act strictly as linear projections given by An′ because
their convolutional block bn′ receive no input, and therefore contribute no output. This
means rn−1 is entirely determined by a linear projection of the input signal An−1 · · ·A0s,
and thus evaluating rn does not require evaluating any of the previous residual blocks:

ŝ (1− ϕ̂low
n′) = 0 ∀1 ≤ n′ < n (3.6.5)

79

=⇒ rlow
1 =

(
A0s ∗ ϕlow

1

)
= A0s (3.6.6)

=⇒ rband
1 = A0s−A0s = 0 (3.6.7)

=⇒ r1 = A1
((

b1(0) ∗ ϕlow
1 ∗ ϕzero

)
+ A0s

)
= A1A0s (3.6.8)

...

=⇒ rlow
n−1 =

(
An−2 · · ·A0s ∗ ϕlow

n−1

)
= An−2 · · ·A0s (3.6.9)

=⇒ rband
n−1 = An−2 · · ·A0s−An−2 · · ·A0s = 0 (3.6.10)

=⇒ rn−1 = An−1
((

bn−1(0) ∗ ϕlow
n−1 ∗ ϕzero

)
+ An−2 · · ·A0s

)
= An−1 · · ·A0s (3.6.11)

This means that at inference time, all consecutive residual blocks that target a region
of the spectrum which is absent in the signal can be pruned without affecting the output
of the network. Only the matrix product An−1 · · ·A0 must be handled; this can simply
be precomputed once. In effect, this pruning scheme performs lossless compression on the
network itself, which reduces computational cost. While this proof assumes perfectly sharp
filters, we find its result is empirically accurate with softer filters in subsection 4.1.3.

This also offers the ability to perform lossy compression at inference to gain computational
efficiency by effectively reducing the bandwidth of the signal perceived by the network. This
even allows dynamic bandwidth changes in real-time, which can be useful to applications
where a variable computation time budget is given, such as in robotics.

We note that discretization invariance is not a requirement for Laplacian residuals. They
can be leveraged in standard architectures to create quasi-discretization invariant networks,
which can be evaluated at any of their intermediate pooling resolutions while skipping un-
necessary residual blocks.

If a series of Laplacian residual blocks are carefully designed to have filters whose spectral
contours are shifted copies of each other placed at regular intervals on an exponential scale,
scale equivariant networks can be implemented very computationally efficiently following
the method outlined earlier (subsection 1.2.3, Worrall and Welling (2019); Sosnovik et al.
(2019)). This notably allows for non-integer scale divisions, which is not feasible with Worrall
and Welling (2019).

3.7. Laplacian dropout for robustness through spectral
augmentation

Similarly to how Laplacian residual blocks allow suiting signals of varying bandwidth in
a computationally efficient way, Laplacian dropout can emulate signals of varying bandwidth
during training to encourage robustness. We show how this emerges from the structure of

80

the Laplacian residual, which allows a unique interpretation of dropout (Srivastava et al.,
2014).

Another conclusion that comes from Equation 3.6.11 is that zeroing out consecutive
high-frequency parts n′ ∈ [1, n− 1] of the residuals rband

n′ is equivalent to letting the network
perceive a signal with a spectrum filtered by ∏0<n′≤n(1 − ϕ̂low

n′). Laplacian dropout simply
consists in randomly zeroing out blocks in this way. Figure 3.1 illustrates the network struc-
ture that allows this. The consecutiveness constrained is enforced by sampling independent
masks dindep

n from a Bernoulli random process with probability pn of zeroing out, and chain-
ing them from dchain

n−1 to dchain
n using the logical or operator. rband

n is then redefined to be
multiplied by the chained mask:

dindep
n ∼ B(1− pn) (3.7.1)

dchain
n = dindep

n ⊕ dchain
n−1 (3.7.2)

rband
n = dchain

n (rn−1 − rlow
n) (3.7.3)

We find that this structure is highly efficient in improving the robustness of the network
to signals of more restricted spectral domains, all without damaging the performance of the
network on signals of wider spectral domains. We do not observe this behaviour on classical
convolutional networks that are given equivalently augmented signals (subsection 4.1.2),
which suggests that the success of this approach lies in the structure of Laplacian residual
blocks. We hypothesize that it reduces the issue of vanishing gradients in the early layers of
standard convolutional networks when given low bandwidth signals.

3.8. Weight initialization
Rather than using a classical weight initialization analytically derived from the variance

properties of layers (subsection 1.3.1, LeCun et al. (2002); He et al. (2015); Glorot and Bengio
(2010)), we use a simple data-driven initialization scheme (subsection 1.3.2, Bengio et al.
(2006); Krähenbühl et al. (2015); Mishkin and Matas (2015)).

For every layer fn(s, θ1
n . . . θk

n), each parameter tensor θp
n is initialized from an isotropic

Normal distribution with variance exponentially parameterized by ϑp
n:

θp
n ∼ N (exp(ϑp

n)) (3.8.1)

Starting at n = 1, the initialization log variances ϑp
n are optimized for all p until the variance

of the output of the layer Var(fn(s, θ1
n . . . θk

n)) is sufficiently close to one. This is defined
by thresholding. Optimization then continues for layer n + 1. All weights are reinitialized
at every optimization step. AdamW (Kingma and Ba, 2014; Loshchilov and Hutter, 2017)
is used for this process, where signals s are drawn together in batches, and optimized by

81

summing the signal-wise loss function:

Lϑ = (log Var(fn(s, θ1
n . . . θk

n)))2 (3.8.2)

For clarity, we provide pseudocode for our weight initialization algorithm in Algorithm 1.
Because weight initializations are specifically tuned to the data that is provided to the

architecture, no assumptions are made on the statistical properties of the data.
Because this process removes the need for hand-derived weight initializations, layers

that explore more exotic formulations can be prototyped easily, and layers whose weight
initializations cannot be derived symbolically can be used, which is crucial to the adaptation
of our method to nonuniform signals (section 3.9, subsection 3.9.8).

Because the weight initializations are optimized in logarithmic space, very large numerical
ranges can be covered, and convergence tends to be fast. Because only one layer is introduced
at a time, the compounding effects of exploding or vanishing variance are avoided, meaning
the a priori values for ϑp

n can specify initialization magnitudes that are vastly incorrect
without crashing the optimization process. This means very little needs to be known about
the architecture to find weight initializations that yield good training dynamics.

82

Algorithm 1 Weight initialization
1:

▽ iterate through targeted layers until all layers have
satisfactory initializations.

2: n← 1
3: while true do

▽ reset the optimizer and link it to the initialization ranges of
the targeted layer.

4: optimizer.reset()
5: optimizer.parameters← [ϑ1

n, . . . , ϑk
n]

▽ iterate through batches of signals and optimize the
initialization parameterization of the targeted layer until it is

satisfactory.
6: while true do
7: [s1

0, . . . , sb
0] ∼ dataset

▽ run a forward pass only up to the targeted layer while
reinitializing all parameters θ1:n according to ϑ1:n.

8: for n′ from 1 to n do
9: for p from 1 to k do

10: θp
n′ ∼ N (exp(ϑp

n′))
11: end for
12: [s1

n′ , . . . , sb
n′] = [fn′(s1

n′−1, θn′), . . . , fn′(sb
n′−1, θn′)]

13: end for
▽ compute the mean log variance and check if it is satisfactory
by thresholding; if so, go to the next layer, otherwise, continue

iterating through batches on the same layer.
14: variance_log = 1

b

∑
i log var(s1

n)
15: if |variance_log| < variance_log_threshold then
16: break
17: end if
18: optimizer.zero()
19: optimizer.objective← variance_log2

20: optimizer.step()
21: end while
22: n← n + 1
23: if n = m then
24: break
25: end if
26: end while

83

3.9. Adapting to nonuniform sampling patterns
The architecture we have formulated up to now addresses many of the challenges of ma-

chine learning tasks involving variety in signal discretization and signal bandwidth. However,
it makes the common assumption that signal discretization follows lattice sampling patterns,
and that signal bandwidth is uniform over the spatial domain. This is true of a wide range of
signals, but not of all signals. A common example is the point clouds produced by 3D sens-
ing and reconstruction systems. They can be conceptualized as signals if we consider that
the signal discretization follows an irregular sampling pattern, and that signal bandwidth is
locally defined according to point density.

Nonuniform signals are impractical to rediscretize on lattices. Applying architectures
meant for uniform signals onto nonuniform signals is unwieldy because nonuniform signals
are often very sparse. A capture of a 3D scene clusters its samples densely around the
geometry of the objects in the scene, but samples are simply absent in empty space. Because
the bounding box that contains the samples is mainly empty space, rediscretizing onto a
lattice generally means allocating most of the lattice to empty space. This is illustrated in
Figure 3.2

Fig. 3.2. Rediscretizing a nonuniformly sampled signal to a lattice directly.

This shows that rediscretizing a sparse nonuniform sampling pattern Xspl (in red) to a
lattice sampling pattern Xlat (in black) directly has very poor sample efficiency. Most
samples are wasted to empty space.

More formally, because the nonuniform sampling theorem (subsection 2.2.13, Equa-
tion 3.9.1) requires a minimal local sampling density based on the local spectral volume,
and because a lattice sampling set Xlat necessarily has a global sampling density identical to

84

its local sampling density everywhere, it must satisfy the local spectral volume everywhere
with its global sampling density, leading to the worst case everywhere. This greatly inflates
the number of required samples relative to an ideal nonuniform sampling set Xspl, which is
very computationally disadvantageous:

d(Xspl, X|x) ≥ V(Ω|x) (3.9.1)

d(Xlat, X) = d(Xlat, X|x) ∀ x ∈ X (3.9.2)

=⇒ d(Xlat, X) ≥ V(Ω|x) ∀ x ∈ X (3.9.3)

=⇒ d(Xlat, X) ≥ max
x∈X

V(Ω|x) (3.9.4)

=⇒ |Xlat| ≫ |Xspl| (3.9.5)

Nonuniform signals can be transformed into uniform signals for lattices. The novel so-
lution we propose leverages normalizing flows (section 2.3) to transform nonuniform signals
into uniform signals that can efficiently be rediscretized onto lattices. This is illustrated
more intuitively in Figure 3.3a and Figure 3.3b.

We treat the nonuniform sampling set Xspl as coming from an observed distribution q,
which can be mapped to a uniform sampling set Zspl on a latent distribution p. We use
the normalizing flows as a bridge that can be learnt between the two distributions. This
solution allows for better sample efficiency in principle, because if the uniform sampling set
Zspl is close to truly uniform, rediscretizing to a lattice sampling set Zlat can be done while
respecting the sampling theorem with ideal sample count:

|Zlat| = |Xspl| (3.9.6)

3.9.1. Formalizing density matching

While the solution we propose may seem intuitively valid, we wish to back it up more
formally. This subsection provides a short proof of the correctness and sample efficiency of
our method. This explicitly lays out the assumptions we make.

85

(a) View of the observed domain X.
The nonuniform sampling pattern Xspl is
defined here and shown in red. It lies on a
distribution q modelled by the normalizing
flows.

The inverse lattice sampling pattern Xlat is
formed by the generative map and is shown
in black. Its purpose is only to show how
the normalizing flows bend space to match
distributions.

(b) View of the latent domain Z.
The uniform sampling pattern Zspl is formed
by the normalizing map and is shown in red.
It lies on a uniform distribution p which is
fixed by the normalizing flows.

The lattice sampling pattern Zlat is de-
fined here and is shown in black. Its purpose
is to allow easy computation on the signal,
as it can be rediscretized to the lattice while
using fewer samples than needed otherwise.
This is immediately apparent when compar-
ing to Figure 3.2, which shares the same
nonuniform sampling pattern, but uses far
more samples to cover it.

Fig. 3.3. Rediscretizing a nonuniformly sampled signal to a lattice through normalizing
flows.

Assumption 1. We assume that the flow converges to an optimal solution which matches
the true density of the sampling pattern:

d(Xspl, X|x) ∝ q(x) = qϕ(x) =
∣∣∣∣∣det ∂nϕ

∂x
(x)

∣∣∣∣∣ (3.9.7)

This can be reexpressed as a function of a point in the latent domain (because Jacobians
of the normalizing and generative maps are necessarily inverses of one another):

d(Xspl, X|gϕ(z)) ∝ q(gϕ(z)) = qϕ(gϕ(z)) =
∣∣∣∣∣det ∂gϕ

∂z
(z)
∣∣∣∣∣
−1

(3.9.8)

86

Assumption 2. We assume that the provided sampling pattern allocates its local sample
density proportionally to the local spectral volume for all points in the observed domain:

d(Xspl, X|x) ∝ V(Ω|x) (3.9.9)

This means the discretization in the observed domain is not biased towards any specific
region of the signal. This can be reexpressed for points in the latent domain:

d(Xspl, X|gϕ(z)) ∝ V(Ω|gϕ(z)) (3.9.10)

Assumption 3. We assume that the provided sampling pattern fulfils the local sample
density criteria of Equation 2.2.78:

d(Xspl, X|x) ≥ V(Ω|x) (3.9.11)

This means the discretization in the observed domain correctly captures the signal.

Assumption 4. We assume that the local spectral domain is isotropic and that any
anisotropy introduced by the flow and the lattice rediscretization contributes negligible
discretization error.

This assumption allows us to establish a simple relationship between the local spectral
volume of the latent domain and the local spectral volume of the observed domain by
considering the local effect of the flow as a linear transformation that projects the spectral
basis functions, which leads to an expression based on the Jacobian of the generative
map:

V(ζ|z) = V(Ω|gϕ(z))
∣∣∣∣∣det ∂gϕ

∂z
(z)
∣∣∣∣∣ (3.9.12)

Assumption 5. We assume that the size of the sampling set in the latent space |Zspl| is
greater or equal to the size of the sampling set in the observed space |Xspl|.

This is a trivial assumption we can always satisfy by picking a sufficiently large
discretization in the latent domain.

Assumption 1 and Assumption 2 imply that the normalizing flows assign probability
density proportionally to the local spectral volume in the observed domain. It is therefore

87

proportional to a function of the generative map:

V(Ω|gϕ(z)) ∝
∣∣∣∣∣det ∂gϕ

∂z
(z)
∣∣∣∣∣
−1

(3.9.13)

Assumption 4 provides a relationship between the spectral volume in the latent domain
and the spectral volume in the observed domain that can be rewritten by substituting in the
previous result. The spectral volume in the latent domain appears proportional to two terms
that are inverses of one another, meaning the local spectral volume in the latent domain is
globally constant:

V(ζ|z) ∝
∣∣∣∣∣det ∂gϕ

∂z
(z)
∣∣∣∣∣
−1 ∣∣∣∣∣det ∂gϕ

∂z
(z)
∣∣∣∣∣ (3.9.14)

=⇒ V(ζ|z) is constant (3.9.15)

Assumption 5 implies the discretization in the observed domain has at most as many degrees
of freedom as the discretization in the latent domain, meaning it necessarily satisfies the
sampling criteria:

d(Zspl, Z|z) ≥ V(ζ|z) (3.9.16)

Assumption 4 implies the sampling criteria proved above is sufficient to declare the dis-
cretization in the latent domain is valid if the discretization in the observed domain is also
valid, which is given by Assumption 3. Thus, the discretization of the signal in the latent
domain, whose local spectral volume is uniform, correctly captures the signal in the observed
domain, whose local spectral volume is nonuniform. While Zspl is not a lattice, it is uniform,
meaning it can efficiently be rediscretized onto a lattice Zlat with |Zlat| = |Zspl|.

Interpretation of the result. We have successfully transformed a nonuniform signal
processing problem into a uniform signal processing problem. We have improved upon the
result of Equation 3.9.5, where instead of requiring a drastically higher sample count on
the lattice discretization than on the ideal nonuniform discretization, |Xlat| ≫ |Xspl|, we
match it exactly with |Zlat| = |Xspl|. This is an optimal result that cannot be improved
further, because it would violate the sampling theorem. This means using lattices in this
framework does not inflate computational cost through sample count, although it does come
with additional complexity.

3.9.2. Rediscretization

We also have not yet established the specifics of rediscretization from Zspl to Zlat. We
address this in this subsection.

Rediscretization between a signal sampled on a set of uniform density Zspl that is not a
lattice to a signal sampled on a set Zlat that is a lattice can be approximately implemented

88

(a) View of the observed domain X.
The Gaussian filter kernels are applied in this
domain indirectly through the generative map.

(b) View of the latent domain Z.
The Gaussian filter kernels are applied in this
domain directly.

Fig. 3.4. Equivalent views of Gaussian filtering in the latent domain used in rediscretization.

In both figures, the envelope of the Gaussian filter kernels that correspond to each sample
is illustrated. Because convolution applies in the latent domain, the kernels are effectively
bent in the observed domain, becoming more compact as density increases. This is
conceptually similar to the form of filtering we apply in uniform density interpolation (as
seen in subsection 2.2.16), where the kernels globally become more compact with density.
Instead, with nonuniform density interpolation, the kernels locally become more compact
with density

by following the method outlined in subsection 2.2.17 and section 3.4. The nonuniform
interpolation and rediscretization formulas are much more complex in truth (Landau, 1967;
Marvasti, 2012), but the Gaussian approximation we propose is sufficient in practice. In
effect, we perform a normalized convolution with the Gaussian kernel SZlat{SZspl{s}∗ϕgauss}.
This is illustrated in Figure 3.4a and Figure 3.4b.

3.9.3. Local coordinate frames

We have examined the implicit structure learnt by flows. This is the way the normalizing
and generative map expand and contract space to connect distributions, in this case, a
nonuniform distribution on X and a uniform distribution on Z.

We have not examined the explicit structure learnt by flows, however. This comprises
the specific way in which the flows map exact values between X and Z, and the ways this
affects the discretization of the continuous operators on signals we use to build our method.

89

We address this through the concept of local coordinate frames, which we also define in this
subsection.

Taking operators on continuous signals and adapting them as operators on discretized
signals (subsection 2.2.18) requires that we take into account the way flows bend X into Z.
The map that the flows learn is only implicitly constrained to match densities, but the way
the map explicitly connects points of the distributions is arbitrary. Because the learning
process is stochastic, X and Z may be bridged in countless ways. Basic properties such as
the orientation of the signal are not guaranteed to stay invariant, so we must somehow invert
the effect of this arbitrary transformation.

Because the operators we consider have a compact footprint, and because the maps
expressed by the flows are invertible and can be designed to be generally well-behaved (as
we later discuss in subsection 3.9.10), we can approximate the effect of this distortion by
only considering the local change of frame of reference that is performed by the flows in
linear terms.

The notion of this local frame of reference is encapsulated in the Jacobian ∂gϕ/∂z of the
generative map. This expresses the link between partial derivatives in the latent domain ∂z
to partial derivatives in the observed domain ∂x. This contains the same information as the
first-order Taylor expansion of gϕ(z) at z:

gϕ

(
z + ∂z

)
≈ gϕ(z) + ∂gϕ

∂z
(z)∂z (3.9.17)

3.9.4. Adapting the partial derivative operator

In order to implement our steerable equivariant layers (section 3.2), we must adapt the
discretization of the partial derivative operator to apply in Z while preserving the local frame
of reference of X. We do this by applying the concept of local coordinate frames introduced
in subsection 3.9.3. This is illustrated in Figure 3.5a and Figure 3.5b.

90

(a) View of the observed domain X.
The first-order partial derivatives are defined
in this domain.

(b) View of the latent domain Z.
The first-order partial derivatives are bent by
the normalizing map.

Fig. 3.5. Equivalent views of partial derivatives in the observed domain.

Both figures illustrate pairs of partial derivatives whose original frame of reference is the
observed domain. Because the latent domain is formed by bending the observed domain
through the normalizing map, the derivatives are bent in the frame of reference of the
latent domain. When we operate on the lattice in the latent domain Zlat, we must be
mindful to invert this transformation.

We can derive an expression for the first-order partial derivatives Dx{s} in the original
observed domain given the first-order partial derivatives Dz{s} in the bent latent domain
by using the chain rule (Equation 3.9.17):

∂s(gϕ(·))
∂z

(z) = ∂s

∂x
(gϕ(z))∂gϕ

∂z
(z) (3.9.18)

=⇒ ∂s

∂x
(gϕ(z)) = ∂s(gϕ(·))

∂z
(z)

(
∂gϕ

∂z
(z)
)−1

(3.9.19)

We can then discretize this process. Once the signal has been bent from Xspl to Zspl, and
rediscretized onto a lattice Zlat, we can follow the method outlined in section 3.2 to obtain
Dz{s}, and apply Equation 3.9.19 to obtain Dx{s}.

This process is only discretization invariant if the inverse Jacobian term of Equation 3.9.19
does not introduce spectral content that cannot be captured appropriately, which depends
on the smoothness of the flows. The inverse is always well-defined because the flows are
invertible.

91

3.9.5. Adapting Gaussian filtering

In order to implement local pooling (section 3.4) and Laplacian residuals (section 3.6), we
need a way to compute convolutions against a Gaussian kernel ϕgauss in Z while respecting
its definition in X. We do this by applying again the concept of local coordinate frames
introduced in subsection 3.9.3. This is illustrated in Figure 3.6a and Figure 3.6b.

(a) View of the observed domain X.
The Gaussian kernels are defined in this do-
main.

(b) View of the latent domain Z.
The Gaussian kernels are bent by the normal-
izing map.

Fig. 3.6. Equivalent views of Gaussian filtering in the observed domain.

Both figures illustrate Gaussian filter kernels whose original frame of reference is the
observed domain. Because the latent domain is formed by bending the observed domain
through the normalizing map, the kernels are bent in the frame of reference of the latent
domain. When we operate on the lattice in the latent domain Zlat, we must be mindful to
invert this transformation.

We can derive an expression for this operation on continuous signals by performing a
change of variables in the integral that defines convolution (Equation 2.2.32). This requires
approximating the argument to the Gaussian using the change of coordinate frame laid out in
Equation 3.9.17. This is a reasonable approximation because the mass of the kernel is mostly
clustered around its origin, and because the flows act approximately as linear transformations
on a sufficiently small scale:

(s ∗ ϕgauss)(x) =
∫

X
s(x′)ϕgauss(x− x′)dx′ (3.9.20)

92

x′ = gϕ(z′) (3.9.21)

x− x′ ≈ gϕ(z)− gϕ(z′) (3.9.22)

≈ (z− z′)∂gϕ

∂z
(z) (3.9.23)

(s ∗ ϕgauss)(gϕ(z′)) ≈
∫

Z
s(gϕ(z′))ϕgauss

(
(z− z′)∂gϕ

∂z
(z)
) ∣∣∣∣∣det ∂gϕ

∂z
(z)
∣∣∣∣∣ dz′ (3.9.24)

We can rewrite this expression to be directly rooted in the latent domain by formulating it
as a somewhat unusual convolution. By manipulating the definition of the Gaussian kernel
(Equation 3.4.2) and Equation 3.9.24, we can see that convolving in the observed domain
with the spatially fixed Gaussian kernel ϕgauss with covariance matrix Σ is approximately
equal to convolving in the latent domain with a spatially varying Gaussian kernel ϕgauss

z with
covariance matrix Σ(z):

(s ∗ ϕgauss)(gϕ(z′)) ≈ (s(gϕ(·)) ∗ ϕgauss
z)(z) (3.9.25)

Σ(z) =
∂gϕ

∂z
(z)
⊤∂gϕ

∂z
(z)
−1

Σ (3.9.26)

We can then discretize this process. Once the signal has been bent from Xspl to Zspl, and
rediscretized onto a lattice Zlat, we discretize the convolution against the Gaussian kernel
using the scheme outlined in subsection 2.2.17 and section 3.4 adapted to implement the
local covariance matrix (Equation 3.9.26).

This process is only discretization invariant if the absolute Jacobian determinant term of
Equation 3.9.24 does not introduce spectral content that cannot be captured appropriately,
which depends on the smoothness of the flows. The absolute value is not problematic because
the Jacobian determinant cannot have a zero crossing. The generative map would otherwise
not be invertible. The degree of discretization invariance also depends on the importance
of the error in the approximate changes of variable of Equation 3.9.22 and Equation 3.9.23,
which also depend on the smoothness of the flows.

Limitations. Because every Gaussian kernel has a unique covariance matrix, the trunca-
tion radius of every kernel is unique. The radius can be obtained through the singular value
decomposition of Σ(z), but the details are spared here. The radius is unbounded, meaning
improperly trained flows can produce an excessive radius requiring enormous kernel neigh-
bourhood sizes.

Because vectorization on GPU hardware requires that memory allocation and computa-
tion be carried out according to the worst-case neighbourhood size over the spatial domain

93

of every signal, and across every signal of the batch, this leads to severely inflated com-
putational cost in most practical cases, and to memory allocation crashes with improperly
trained flows, if a hard limit on the neighbourhood size is not implemented.

Because filtering occurs nonuniformly over the signal in the latent domain Z according to
Σ(z), even given that the local spectral volume in the latent domain V(ζn|z) is uniform at
some layer n, the local spectral volume in the filtered latent domain V(ζn+1|z) is necessarily
nonuniform at the next layer n+1. This has the counterintuitive consequence of invalidating
the guarantee that we can rediscretize Zn

lat to Zn+1
lat while reducing the sample count by a

static ratio a such that d(Zn+1
lat , Z) = a d(Zn

lat, Z) after every filtering operation. We can only
reduce the sample count uniformly such that the worst case is covered, meaning d(Zn+1

lat , Z) =
maxz V(ζn+1|z), which is again vulnerable to improperly trained flows. Unlike a classical
convolutional neural network, local pooling does not always reduce the discretization size.
This is extremely computationally disadvantageous and makes the implementation of deep
networks mostly infeasible.

These shortcomings were only recognized late in the development of this method. They
severely compromise its viability, but we nonetheless choose to document it. We believe
it may be possible to overcome these limitations by instead applying convolutions sparsely
in the spectral domain, effectively combining spectral neural operators (subsection 1.2.4,
Fanaskov and Oseledets (2022)) and compressed sensing (Donoho, 2006).

3.9.6. Adapting global pooling

In order to correctly implement all components of our model, we must also consider how
global pooling is influenced by the change of coordinate frame from Z to X. We apply again
the concept of local coordinate frames introduced in subsection 3.9.3, this time conceptualized
as a change of density.

We can adapt global pooling by following the change of variables used in subsection 3.9.5.
As discussed in section 3.5, we can define global pooling on continuous signals as ŝ(0), which
we can write out as a very simple inner product on X. We then reexpress this on Z. Note
that b0 denotes the 0 frequency spectral basis rather than the 0 offset spatial basis:

ŝ(0) = ⟨s, b0⟩ (3.9.27)

=
∫

X
s(x)dx (3.9.28)

=
∫

Z
s(gϕ(z))

∣∣∣∣∣det ∂gϕ

∂z
(z)
∣∣∣∣∣ dz (3.9.29)

We discretize this by performing a weighted average over Zlat governed by the determinant
term.

94

This process is only discretization invariant if the absolute Jacobian determinant term of
Equation 3.9.29 does not introduce spectral content that cannot be captured appropriately,
which depends on the smoothness of the flows. The absolute value is not problematic because
the Jacobian determinant cannot have a zero crossing. The generative map would otherwise
not be invertible.

3.9.7. Learning to uniformize without breaking the loss

We have now defined how we may operate on nonuniform signals that have been bent
into uniform signals by normalizing flows. We have not defined how we train the normalizing
flows yet, however.

Since our goal is to transform the signal sampling distribution Xspl ∼ q to a uniform
distribution Zspl ∼ p, we may think we can simply use the uniform distribution as our latent
space and learn using the standard loss, but we would be mistaken: this causes the learning
process to collapse.

We discuss why this is the case, and propose two solutions that avoid this situation. The
first substitutes direct optimization of a uniform latent space for indirect optimization of a
uniform latent space with the classic loss. The second uses a different loss altogether.

Learning on the standard loss (Equation 2.3.9) collapses with uniform latent spaces be-
cause of the step-like nature of the distribution. If we let the latent domain host a uniform
distribution over Z, the evaluation of the likelihood of the latent distribution for a point
x ∈ X can lead to one of two cases:

p(nϕ(x)) =

V(Z)−1 if nϕ(x) ∈ Z

0 otherwise
(3.9.30)

This is problematic for the evaluation of the gradient ∂ log qϕ/∂ϕ of the training loss (Equa-
tion 2.3.9) relative to flow parameters, because an intermediate step involves computing the
gradient ∂ log p/∂z of the log-likelihood of the latent distribution (Equation 3.9.30) relative
to the point in latent space

∂ log p

∂z
(nϕ(x)) =

0 if nϕ(x) ∈ Z

undefined otherwise
(3.9.31)

The first case neither pushes nor pulls points towards the latent space when the points
already land in Z. The second case completely destroys the loss if the points land outside Z.

Optimizing using a uniform latent distribution is not directly possible, but it is indirectly
possible. We can achieve our goal if we instead optimize on a surrogate distribution that
is well-behaved. After the fact, we can use the quantile function of the distribution to
bring back the samples to a uniform distribution. This is the same process used in inverse

95

transform sampling (Neumann, 1951; Devroye, 1986). In this work, we explore two surrogate
latent distributions for optimization: a normal distribution, illustrated in Figure 3.7a, and a
uniform distribution with Gaussian edges, illustrated in Figure 3.7b. Their derivations are
conceptually simple but tedious, so they are spared here.

Another solution to this problem is to use another loss altogether. The sliced Wasserstein
loss can be used for training normalizing flows without evaluating the likelihood of the latent
distribution (Coeurdoux et al., 2022). We do not cover it in detail here.

3.9.8. Good learning dynamics with weight initialization search

Weight initialization of the flow model. Because a normalizing flow has to be learnt for
every individual signal processed by the convolutional model, both at training and inference,
good training dynamics are absolutely essential in order to reach a feasible computational
cost. We tackle this in part by applying our weight initialization algorithm (section 3.8) to
the normalizing flow model. The search algorithm is applied once before starting to train the
convolutional model, and the weight initialization range parameters ϑ are reused to generate
all subsequent reinitializations of the flow parameters ϕ when fitting a new sampling pattern.

Weight initialization of the convolutional model. Because the statistical properties of the
input to the convolutional model depends on the learning process of the flow model, data-
driven weight initialization is necessary for deeper networks, because weight initializations
are difficult or impossible to derive symbolically in this setting.

3.9.9. Good learning dynamics with normalizing layers

The need for impeccable learning dynamics motivates the use of batch normalization at
the first layer of the flow model. This restricts the variance at the start of the training
process to a consistent range, which plays well with the weight initialization algorithm.

This normalization does not correspond to the form of batch normalization found in most
neural networks. The key difference is that it is treated as a layer that deterministically learns
once at the start of the flow learning process, and that operates independently for every batch
element. We specifically use Gaussian normalization with an arbitrary covariance matrix. We
also compare against a baseline using strictly a bounding box normalizer in our experiments
(subsection 4.2.1).

3.9.10. Expressivity and smoothness with continuous flows

For our method to be effective, the flow architecture we use must satisfy a few condi-
tions. Because point clouds and other types of nonuniformly sampled signals often contain
separated clumps of points (section 3.9), the flow architecture must be able to effectively

96

(a) Gaussian. Parameters are σ = 0.5 for the Gaussian.

(b) Gaussian plateau. Parameters are σ = 0.25 for the Gaussian tail
and [−1, 1] for the span of the uniform plateau.

Fig. 3.7. Surrogate latent space mapping diagrams.

The diagrams above illustrate the mapping between the uniform domain (at the top) that
is used to perform operations on the signal, and the surrogate domain (at the bottom) that
is used during flow training. Each curved segment illustrates how regularly spaced points
in the surrogate domain map to points in the uniform domain. This conveys at a glance
how the mapping expands or contracts space. Both domains are drawn at identical scales,
with the uniform domain spanning [−1, 1].

model complex distributions with multiple modes. We demonstrate an extreme case of this
in subsection 4.2.1.

Because training the flows becomes quickly computationally expensive, high parameter
efficiency and good training dynamics are required.

97

Because of the conditions for discretization invariance of the partial derivative opera-
tor (subsection 3.9.4), of Gaussian filtering (subsection 3.9.5), of global pooling (subsec-
tion 3.9.6), and for correctness of the sampling scheme (subsection 3.9.1), the flow archi-
tecture must have a tendency to express well behaved, smooth mappings. Undifferentiable
activation functions are therefore inadmissible.

For all of these reasons, we choose continuous flows (Weinan, 2017; Chen et al., 2018)
using the GELU (Hendrycks and Gimpel, 2016) activation function.

3.9.11. Local spectral volume heuristic for nonuniform compression

The method we have formulated so far enables us to work on signals with nonuniform
local spectral volume, but makes some assumptions on sampling patterns which restricts its
usefulness.

Signals can have a nonuniform sampling pattern whose local sampling density corresponds
to the local spectral volume. This is what enables us to train the flows.

Signals can also have a lattice sampling pattern while still having a nonuniform local
spectral volume, however. In fact, most natural signals tend to have a sparse local spectral
volume, meaning they can often be represented with a nonuniform sampling pattern whose
size is smaller than that of the original lattice sampling pattern (Donoho, 2006). This can be
leveraged by our method if we can formulate a way to train the flows without direct access
to a nonuniform sampling pattern.

We next discuss the notion of sparsity more formally, and introduce a heuristic that
roughly estimates the local spectral volume, and that allows forming a nonuniform sampling
pattern that can train the flows.

Sparsity exists in the local spectral volume. Given a lattice discretization with global
sampling density d(Xlat, X), any signal that it can represent necessarily has a local spectral
volume V(Ω|x) ∈ [0, d(Xlat, X)] ∀ x ∈ X (Equation 2.2.79), meaning that a nonuniform
discretization with a tightly fitted local sampling density d(Xspl, X|x) = d(Xlat, X) will
always require fewer samples |Xspl| < |Xlat| unless the local spectral volume is maximal
everywhere, which is extremely rare in natural signals (Donoho, 2006).

Sparsity can be leveraged for compression. If we can somehow rediscretize Xlat to Xspl

such that d(Xspl, X|x) = V(Ω|x), we should be able to compress the signal to use fewer sam-
ples, and we should then be able to use our method to adapt our convolutional architecture
to the nonuniformly compressed signal.

We would ideally like to exactly compute the local spectral volume at every point of Xlat,
and use this as a distribution to form Xspl.

We have not exactly developed the notion of local spectral volume in subsection 2.2.13,
but we note that we can think of it as a measure of the span of a signal decomposition that

98

is localized both in space and spectrum. We can construct it using wavelets or tuned banks
of filters, as in Knutsson et al. (1994), or as in the Laplacian pyramid (subsection 2.2.25,
Burt and Adelson (1987); Adelson et al. (1984)).

We instead go for a much simpler heuristic H{s}(x) to facilitate implementation. We
use L2 norm of the Hessians of the signal s, where we also take the L2 norm over feature
channels k ∈ [1, f].

H{s}(x) =

∑

α∈{0,2}d∑d

j
αj=2

f∑
k=1

Dα
x{sk}2(x)

1/2

(3.9.32)

The intuition behind this choice of heuristic is that it produces high values when the spatial
rate of change of the spatial rate of change of the signal is high. This tends to occur neither
on constantly sloped areas, nor at the center of edges, but at either extremities of edges.
Knowledge of this information tends to allow reconstructing the edge itself and the area
that surrounds it. Similar heuristics have been very commonly used for edge and keypoint
detectors in signal processing and computer vision (Torre and Poggio, 1986; Ziou et al.,
1998).

We rediscretize by leveraging the structure we have constructed with normalizing flows
(subsection 3.9.2) to allow nonuniform antialiasing at a lower computational cost.

We form a reduced nonuniformly distributed sample set in observed space Xspl by sam-
pling points from a multinomial distribution without replacement that assigns a probability
proportional to the heuristic H{s}(xlat) to every point of the lattice sample set in observed
space xlat ∈ Xlat. We lower the number of samples through this operation: |Xspl| ≪ |Xlat|.

We pay no attention to rediscretization of the new set at this stage, as it only is in-
strumental to training the flows. We train the flows to to map the reduced nonuniformly
distributed sample set in observed space Xspl to the reduced uniformly distributed sample set
in latent space Zspl. We only then consider rediscretization.

Pushing only the reduced nonuniformly distributed sample set in observed space Xspl

through the trained normalizing map and rediscretizing onto the lattice sample set in latent
space Zlat would result in aliasing unless the conditions for lossless compression are met, be-
cause no antialiasing is performed. Samples have simply been removed by sampling through
the heuristic.

Pushing instead the lattice sample set in observed space Xlat through the trained nor-
malizing map and rediscretizing onto the lattice sample set in latent space Zlat allows for
antialiasing.

99

Whereas applying antialiasing in the observed domain would have required bending the
filter kernels (subsection 3.9.5), applying antialiasing in the latent domain through this strat-
egy does not involve bending the filter kernels, which is more computationally efficient.

Lossless compression is only guaranteed if the whole process results in satisfying the
local sampling theorem through the flow (subsection 3.9.1). This depends on the quality of
the heuristic H{s}(xlat) as a surrogate for the true local spectral volume V(Ω|xlat), on the
number of samples of |Xlat| and |Zlat|, on the sparsity of s, on the convergence of the flow
training process, and on the accuracies of the various approximations used in rediscretization.
Lossless compression is therefore generally hard to guarantee.

Lossy compression is admissible in principle. Because the rediscretization technique we
implement by leveraging normalizing flows provides a reasonable degree of antialiasing, harsh
artifacts are mitigated. Because the compression adapts to the local information density on
the signal, it can be more effective than fixing a global information density on the signal.

100

Chapter 4

Experiments

We perform a set of experiments to assess the success of our method at handling the chal-
lenges of discretization in deep learning tasks on signals. We cover most main components
of our method and provide comparisons against prior work in this field. We first cover the
central aspects of our method in section 4.1, then cover its adaptation form uniform signals
to nonuniform signals in section 4.2.

4.1. Testing the core of the method
We verify the adaptability of our model to different discretizations with Laplacian resid-

uals in subsection 4.1.1. We measure robustness to spectral degradation with Laplacian
dropout in subsection 4.1.2. We finally empirically validate the correctness of Laplacian
residual pruning in subsection 4.1.3.

Datasets. In all experiments within section 4.1, we perform a signal classification task
on the CIFAR10 (Krizhevsky et al., 2009) and FashionMNIST (Xiao et al., 2017) image
classification datasets. CIFAR10 consists of 60K 32× 32 colour images split evenly between
10 classes, while FashionMNIST contains 70K 28×28 monochrome images divided identically.

Architectures. We compare our model against the popular ResNet18 (11M parameter)
and ResNet101 (44M parameter) residual convolutional network architectures, along with
the larger ViT-B/16 (87M parameter) (Dosovitskiy et al., 2020) vision transformer. We also
compare a Fourier Neural Operator (18M parameter) network that is partially discretization
invariant (Li et al., 2020).

Figure 4.1 shows the architecture used on CIFAR10 without pruning. The configuration
used for FashionMNIST omits the first Laplacian residual block, and its first linear layer
maps from R1 → R32 rather than R3 → R32.

Laplacian residual pruning is always performed except when we explicitly test the effect
it has in subsection 4.1.3.

Laplacian dropout is enabled when we test it in subsection 4.1.2, and the probability of
each independent dropout connection is set to 0.5. This effectively creates an exponentially
shaped distribution of spectral augmentations. The equivalent augments that are used for
comparison on other methods follow this same distribution.

We note that we have not performed hyperparameter search because of time constraints,
which puts us at a severe disadvantage, as the architectures we compare to have been refined
through years of research. We also note that the architectures we compare to have vastly
higher parameter counts; this ranges from a factor of 14 to 140. Parameter counts that
account for Laplacian residual pruning at inference are shown in table Table 4.1.

Table 4.1. Architecture parameter counts including Laplacian residual pruning at inference.

Model Discretization CIFAR10 FashionMNIST
ResNet18 - 11M 11M
ResNet101 - 44M 44M
ViT-B/16 - 87M 87M
FNO - 18M 18M
Ours 32× 32 0.75M -

28× 28 0.75M 0.74M
24× 24 0.74M 0.74M
20× 20 0.74M 0.73M
16× 16 0.71M 0.71M
12× 12 0.69M 0.68M
8× 8 0.59M 0.59M

Training. All models are trained for 100 epochs on CIFAR10, and 30 epochs on Fashion-
MNIST. Our model was optimized using AdamW (Kingma and Ba, 2014; Loshchilov and
Hutter, 2017), a learning rate of 10−3, a batch size of 128, betas β1 = 0.9 and β2 = 0.999,
weight decay of 10−2, and cosine annealing to zero learning rate in 100 epochs. Gradient
skipping on NaNs and infinities along with 2-norm clipping thresholded at 10 were active,
but all of these measures were monitored and never took effect during training. Competing
models were optimized using SGD, a learning rate of 0.1, a batch size of 128, and identical
cosine annealing.

For our weight initialization algorithm, the absolute log variance threshold was set to
10−1. Training used AdamW (Kingma and Ba, 2014; Loshchilov and Hutter, 2017) with a
learning rate of 10−1, identical batch size and betas, no weight decay, and no annealing.
Gradient skipping on NaNs and infinities (but not clipping) were active, but were monitored
and never took effect during weight initialization. This applies to all experiments across
chapter 4.

102

Linear: 3→32

Standard Residual Block

Global Average Pooling

Linear: 256→128

Linear: 128→10

GELU

Discretization: 32×32 (no AA)

Convolutional Block

GELUConvolution
Lowpass

GELUConvolution

Frequency band: [28×28, 32×32]

Discretization: 32×32 (8/7 AA) Discretization: 32×32 (no AA)
× +

+

-1

Convolutional Block

Resample 0 Blocking Lowpass

Lowpass

Laplacian Residual Block

Linear: 32→32

Frequency band: [24×24, 28×28)
× +

+

-1

Convolutional Block

Resample 0 Blocking Lowpass

Lowpass

Laplacian Residual Block

Linear: 32→64

Discretization: 32×32 (8/7 AA)Discretization: 32×32 (4/3 AA)

× +

+

-1

Convolutional Block

Resample 0 Blocking Lowpass

Lowpass

Laplacian Residual Block

Linear: 64→64

Frequency band: [20×20, 24×24)

Discretization: 32×32 (4/3 AA)Discretization: 30×30 (3/2 AA)

× +

+

-1

Convolutional Block

Resample 0 Blocking Lowpass

Lowpass

Laplacian Residual Block

Linear: 64→128

Frequency band: [16×16, 20×20)

Discretization: 30×30 (3/2 AA)Discretization: 24×24 (3/2 AA)

× +

+

-1

Convolutional Block

Resample 0 Blocking Lowpass

Lowpass

Laplacian Residual Block

Linear: 128→128

Frequency band: [12×12, 16×16)

Discretization: 24×24 (3/2 AA)Discretization: 18×18 (3/2 AA)

Lowpass

× +

+

-1

Convolutional Block

Resample 0 Blocking Lowpass

Lowpass

Laplacian Residual Block

Linear: 128→256

Frequency band: [8×8, 12×12)

Discretization: 18×18 (3/2 AA)Discretization: 12×12 (3/2 AA)

Convolutional Block

Discretization: 12×12 (3/2 AA)

Fig. 4.1. Network diagram.

103

Training was hardware accelerated using individual NVIDIA A100, A6000, A5000, A4000
and RTX8000 GPUs. Experiments shown in section 4.1 were completed in roughly 24 hours.

4.1.1. Discretization invariance

This experiment evaluates the ability of different architectures to handle inference dis-
cretizations that do not match their training discretization. Models are trained at the native
dataset discretization (32 × 32 or 28 × 28 depending on the dataset), then, at inference,
images are downsampled to a smaller discretization (28× 28 if applicable, 24× 24, 20× 20,
16× 16, 12× 12, 12× 12). The models are forced to accept this discretization. No training
augmentations nor Laplacian dropout is used.

Interpretation of the results. As expected, Figure 4.2a and Figure 4.3a show that
standard convolutional perform very poorly as they are not discretization invariant. Vision
transformers are simply excluded as they cannot be rediscretized. Since our model can be
rediscretized seamlessly, it outperforms both residual networks. It also notably outperforms
Fourier neural operators, which only display discretization invariance with weak robustness.
Our model dominates this experiment while undercutting every other method in parameter
count by a factor of 14 to 140, which is consistent with the parameter efficiency claimed by
Shen et al. (2020).

4.1.2. Bandwidth robustness

This experiment evaluates the ability of architectures to develop robustness to reduced
bandwidth signals. This includes signal spectrum degradation both during training and
inference. Like the previous setup, at inference time, reduced bandwidth signals are given
to the models (with spectral content equivalent to what can be represented by 28 × 28 if
applicable, 24×24, 20×20, 16×16, 12×12, or 8×8 discretizations). However, the competing
models are allowed to run inference at their training discretization (32× 32 or 28× 28); the
images are only filtered, not rediscretized. This represents a more practical scenario that
benefits these methods, as this overcomes their lack of discretization invariance. Our method
uses Laplacian dropout in this setup, and other methods perform a data augmentation that
reproduces the effect of Laplacian dropout by randomly filtering the images according to
the same distribution. This is done by randomly downsampling to a lower resolution, and
upsampling back to the original resolution using bilinear interpolation. This allows a fair
comparison for training and inference sets that vary in bandwidth.

Interpretation of the results. With the simpler FashionMNIST dataset, (Figure 4.3b) all
architectures are generally able to develop robustness to the variation in signal bandwidth,

104

ResNet101
ResNet18
FNO
Ours (without Laplacian dropout)

8×8

1.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

32×3228×2824×2420×20

Discretization

Ac
cu
ra
cy

16×1612×12

(a) CIFAR10 trained on 32× 32 only, evaluated with various discretizations.

ResNet101
ResNet18
FNO
ViT-B/16
Ours (with Laplacian dropout)

8×8

1.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

32×3228×2824×2420×20

Equivalent Bandwidth

Ac
cu

ra
cy

16×1612×12

(b) CIFAR10 trained on a wide range of signal bandwidths, evaluated at the
native discretization.

Fig. 4.2. Evaluation of our method and prior work on the Fashion CIFAR10 dataset.

105

1.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Discretization

Ac
cu
ra
cy

ResNet101
ResNet18
FNO
Ours (without Laplacian dropout)

8×8 28×2824×2420×2016×1612×12

(a) FMNIST trained on 28× 28 only, evaluated with various discretizations.

1.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Equivalent Bandwidth

Ac
cu

ra
cy

ResNet101
ResNet18
FNO
Ours (with Laplacian dropout)

8×8 28×2824×2420×2016×1612×12

(b) FMNIST trained on a wide range of signal bandwidths, evaluated at the
native discretization.

Fig. 4.3. Evaluation of our method and prior work on the Fashion MNIST dataset.

106

however, our model displays slightly weaker performance for low bandwidth signals. With the
more complex CIFAR10 dataset (Figure 4.2b), however, other models display a poor accuracy
that plateaus at very low bandwidth, meaning they are unable to leverage the information
present in high-bandwidth signals. In contrast, our method achieves significantly higher
performance at higher resolutions and progressively degrades as information is removed from
the signal, meaning it is able to learn effectively with signals of various bandwidths while
maintaining robustness.

Overall, all architectures significantly improve. This means Laplacian dropout is effec-
tive, whether implemented in an architecture that possesses Laplacian residuals, or whether
implemented as an equivalent data augmentation and applied to other architectures. How-
ever, the results suggest Laplacian dropout has a stronger affinity for networks that have
Laplacian residuals.

4.1.3. Pruning correctness

In section 3.6, we showed theoretically that a network architecture built from Laplacian
residual blocks can be pruned without affecting its output. This requires that the spectrum
of the input signal does not overlap with the spectrum associated with the pruned residual
blocks. Equation 3.6.11 is derived from the assumption that filters are perfectly sharp, which
is not true with our implementation, which relies on Gaussian kernels (section 3.4).

However, if one block less is pruned relative to the prescription of the theoretical result,
its conclusion applies: the output of a pruned network is nearly identical to the output of
a network that was not pruned. Figure 4.5 illustrates the pruning process in detail for the
network trained in subsection 4.1.2, then pruned for two different discretizations. Starting
at the first block, all consecutive blocks that have no overlap with the frequency range
captured by the discretization are pruned, except the last non-overlapping block, which is
kept to account for signal leakage caused by soft filters. This is shown in the 20×20 example.
For signal discretizations that fall at or below the middle of block frequency ranges, setting
aside small discretization sizes, pruning can be performed more aggressively, as shown with
the 14× 14 example.

Interpretation of the results. Figure 4.4 shows that the performance degradation caused
by pruning is negligible; this is illustrated by evaluating the model trained in subsection 4.1.2
both with pruning (full line) and without pruning (dashed line). Excluding the smallest dis-
cretization size, the largest performance degradation observed is 0.25%. At the smallest
size, this climbs up to 3.85%. This variation in fidelity is somewhat expected, as the fre-
quency ratios between successive layers are not constant, meaning they each produce varying
amounts of frequency bleed-through. All experimental results discussed in subsection 4.1.1
and subsection 4.1.2 use this form of pruning during evaluation.

107

8×8

1.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

32×3228×2824×2420×20

Discretization

Ac
cu
ra
cy

16×1612×12

Ours (with Laplacian dropout, unpruned)
Ours (with Laplacian dropout, pruned)

Fig. 4.4. Evaluation of our method with and without pruning on the CIFAR10 dataset.

108

Linear: 3→32

Laplacian Residual Block

Frequency band: [28×28, 32×32]

Linear: 32→32

Discretization: 32×32 (8/7 AA)
Resample

Laplacian Residual Block

Linear: 32→64

Frequency band: [24×24, 28×28)

Resample
Discretization: 32×32 (4/3 AA)

Laplacian Residual Block

Linear: 64→64

Frequency band: [20×20, 24×24)

Resample
Discretization: 30×30 (3/2 AA)

Laplacian Residual Block

Linear: 64→128

Frequency band: [16×16, 20×20)

Resample
Discretization: 24×24 (3/2 AA)

Laplacian Residual Block

Linear: 128→128

Frequency band: [12×12, 16×16)

Resample
Discretization: 18×18 (3/2 AA)

Laplacian Residual Block

Linear: 128→256

Frequency band: [8×8, 12×12)

Resample
Discretization: 12×12 (3/2 AA)

Discretization: 32×32 (no AA)

Standard Residual Block

Global Average Pooling

Linear: 256→128

Linear: 128→10

GELU

Frequency band: [0, 8×8)

Laplacian Residual Block

Linear: 128→128

Frequency band: [12×12, 16×16)

Resample
Discretization: 18×18 (3/2 AA)

Laplacian Residual Block

Linear: 128→256

Frequency band: [8×8, 12×12)

Resample
Discretization: 12×12 (3/2 AA)

Resample
Discretization: 24×24 (3/2 AA)

Discretization: 14×14 (no AA)

Standard Residual Block

Global Average Pooling

Linear: 256→128

Linear: 128→10

GELU

Frequency band: [0, 8×8)

Linear: 3→128 (precomputed)

Pruned Laplacian Residual Blocks

Laplacian Residual Block

Linear: 64→64

Frequency band: [20×20, 24×24)

Resample
Discretization: 30×30 (3/2 AA)

Laplacian Residual Block

Linear: 64→128

Frequency band: [16×16, 20×20)

Resample
Discretization: 24×24 (3/2 AA)

Laplacian Residual Block

Linear: 128→128

Frequency band: [12×12, 16×16)

Resample
Discretization: 18×18 (3/2 AA)

Laplacian Residual Block

Linear: 128→256

Frequency band: [8×8, 12×12)

Resample
Discretization: 12×12 (3/2 AA)

Discretization: 20×20 (no AA)

Standard Residual Block

Global Average Pooling

Linear: 256→128

Linear: 128→10

GELU

Frequency band: [0, 8×8)

Pruned Laplacian Residual Blocks

Resample
Discretization: 32×32 (4/3 AA)

Linear: 3→64 (precomputed)

Fig. 4.5. Network pruning diagram.
Crossed-out connections inside Laplacian residual blocks stand for the filters and
convolutional blocks that are omitted in the drawing. The diagram follows the same
conventions as Figure 4.1. Left: the full network used, shown on the native 32× 32
discretization. Center: an example showing the network pruned for a 20× 20
discretization. Right: an example showing the network pruned for a 14× 14 discretization.

109

4.2. Adapting the method to nonuniform bandwidth
signals

We provide a proof of concept that demonstrates the capability of our adaptation scheme
based on normalizing flows (section 3.9) in subsection 4.2.1. We perform ablations to show
the importance of weight initialization in subsection 4.2.2. We perform similar ablations
on flow normalization in subsection 4.2.3. We highlight that the combination of both flow
normalization and weight initialization is crucial. We finally test our compressed inference
method (subsection 3.9.11) in subsection 4.2.4 by evaluating a model trained in subsec-
tion 4.1.2.

Datasets. In all experiments aside from the last, we use a very simple synthetic dataset
for signal classification, which is designed to present a best-case scenario comparison for our
method, where the nonuniform sampling pattern is extremely sparse. Figure 4.6 provides an
illustration of a few samples from the synthetic dataset.

Fig. 4.6. Synthetic dataset rendered at high resolution.

This image shows eight dataset examples, which each occupy a square area. The four in
the top half belong to the high-frequency class, and the four in the lower half belong to the
low-frequency class. For the purpose of visualization, the discretization used here is based
on a lattice sampling pattern and has a very high sampling density. For the experiments,
the discretization is a nonuniform sampling pattern whose density is concentrated on the
wavelets. Notice how the wavelets are always aligned between pairs. This attenuates
anisotropy issues in our method.

110

The signals in the synthetic dataset are pairs of one-dimensional spatial basis functions
(Equation 2.2.86) projected to two-dimensional space, which belongs to one of two classes
that are constructed on subtly different spectral domains. The task consists in identifying
these two classes. The spatial basis functions are each centered randomly according to
a Gaussian with a large variance. The signals are sampled nonuniformly with a density
that corresponds to a combination of two Gaussians with small variance each centered on
a spatial basis function. This makes the sampling pattern extremely sparse, relative to a
uniform sampling pattern which matches the peak density of the distribution everywhere,
which is precisely the property that can be leveraged by our method (subsection 3.9.1).

To make the exploitation of sparsity not just an efficiency advantage, but a critical
requirement for solving the task, we design the content of the signals to have challenging
bandwidth requirements. In all experiments, the size of the first lattice discretization is fixed
to 24× 24. This very tight sample budget requires efficient bandwidth allocation to satisfy
the sampling theorem (Equation 2.2.79). With a good bandwidth allocation, as with our
adapted method, it is possible to correctly discretize the signal with a good margin of error.
With a classical method which allocates bandwidth uniformly, the task is impossible to solve
if the entire signal is to be discretized because severe aliasing occurs (subsection 2.2.14).

We eliminate other confounding factors in the task by constraining the dataset to a very
small size (16384 signals).

We also design the dataset in a way that reduces the anisotropy issues that are not
perfectly covered by our method (Assumption 4). This is done by making the frequency
of the spatial basis functions aligned between pairs. This is illustrated more clearly in
Figure 4.6.

Architectures. The convolutional architecture has sufficient but extremely limited capacity
for the task, with only 394 parameters. It consists of a linear projection to 8 feature channels,
a filtering layer, a convolutional layer and activation, another filtering layer for antialiasing,
a global average pooling layer, a linear layer mapping to 16 feature channels, and another
linear layer mapping to two feature channels.

The flow architecture relies on continuous flows (subsection 3.9.10), with two hidden
layers each with 32 feature channels, for a total of 1250 parameters. We Euler integrate
it over 16 steps. In the case where normalization is not ablated, this is preceded by a
deterministic arbitrary covariance Gaussian normalizer (subsection 3.9.9). We optimize it
with AdamW (Kingma and Ba, 2014; Loshchilov and Hutter, 2017) in only 16 steps, with a
learning rate of 10−3, with both betas at 0.9, and no weight decay.

With the standard loss (section 2.3, Equation 2.3.9), the latent space is a surrogate
Gaussian plateau (subsection 3.9.7) with σ = 0.125, a uniform domain [−1, 1]2, and a redis-
cretization cropped to contain only the uniform part of the distribution.

111

With the sliced Wasserstein loss (subsection 3.9.7), the loss is computed with 64 uni-
formly distributed slices using the L2 norm computed in the latent domain, where a uniform
distribution is optimized directly.

With the baseline case using a standard uniform bandwidth approach without flows, the
rediscretization of each signal is set to fit the bounding box of each signal’s sampling pattern.

Training. Training is only performed over a single epoch, as the task is extremely simple,
and the architecture is small.

We optimize using AdamW (Kingma and Ba, 2014; Loshchilov and Hutter, 2017), a
learning rate of 10−2, a batch size of 16, betas β1 = 0.9 and β2 = 0.999, weight decay of
10−3. Otherwise, all other parameters are identical to those used in section 4.1.

Table 4.2 shows the test accuracies achieved with the different configurations. The tables
interpretation is discussed next.

Table 4.2. Evaluation of our method on synthetic sparse bandwidth signal classification
dataset.

Method Loss Ablation Test Accuracy
Uniform 50.07%
Uniform WI (C) 50.07%
Adaptive Standard 99.76%
Adaptive Standard WI (C) 99.65%
Adaptive Standard WI (F) 72.50%
Adaptive Standard WI (F+C) 73.85%
Adaptive Standard N WI (F) Convergence Fail
Adaptive Standard N + WI (C) WI (F) Convergence Fail
Adaptive Standard N + WI (F) 50.70%
Adaptive Standard N + WI (F+C) 50.07%
Adaptive Wasserstein 86.15%
Adaptive Wasserstein WI (C) 97.94%
Adaptive Wasserstein WI (F) 75.85%
Adaptive Wasserstein WI (F+C) 75.52%
Adaptive Wasserstein N WI (F) Convergence Fail
Adaptive Wasserstein N + WI (C) WI (F) Convergence Fail
Adaptive Wasserstein N + WI (F) 50.63%
Adaptive Wasserstein N + WI (F+C) 50.07%

112

4.2.1. Nonuniform adaptation

We validate the effectiveness of our adaptive bandwidth method by comparing it against
a uniform bandwidth method in the task setting which heavily stresses this ability. The
results are shown in Table 4.2.

Interpretation of the results. Uniform bandwidth methods have practically random
classifier accuracy, while our adaptive bandwidth method attains nearly perfect accuracy
with the standard loss, and slightly lower accuracy with the Wasserstein loss. This clearly
shows a case where our adaptive bandwidth method is successful, since the task is designed
to isolate the ability of a model to allocate its bandwidth effectively, and since the gap in
accuracy is effectively at its theoretical maximum.

The visualization in Figure 4.7 shows that the uniform method is unable to discretize the
signal without severe aliasing except for outliers, while the visualization in Figure 4.8 shows
our uniform method discretizes it appropriately in all cases even given the small number of
samples on the lattice. Note that all visualizations correspond to the flows trained with the
standard loss, and show eight elements of a batch, concatenated side by side.

Fig. 4.7. Rediscretized signal with the uniform method.

Fig. 4.8. Rediscretized signal with the nonuniform method.

4.2.2. Ablation of weight initialization

We investigate the usefulness of weight initialization (section 3.8, subsection 3.9.8) in our
adaptive bandwidth method by performing ablations on weight initialization. A few permu-
tations of this are possible, because weight initialization applies both to the convolutional
architecture and the flow architecture. We notate the results in Table 4.2 with WI (C) for
ablation of the convolutional initialization only; WI (F) for ablation of the flow initialization
only; WI (F+C) for ablations of both.

113

Ablation: WI (C). Ablating weight initialization of the convolutional architecture (sec-
tion 3.8) seems to have a negligible impact in this scenario. This cannot be interpreted as an
indication that it is ineffective, however, since the network is so shallow that the effects of
vanishing or exploding gradients are unlikely to be important. It is well understood that deep
neural networks cannot be trained without sensible weight initialization (subsection 1.3.1,
subsection 1.3.2).

Ablation: WI (F). Ablating weight initialization of the flow architecture (subsection 3.9.8)
appears to have a great impact on the effectiveness of our method, as the ablations show
significantly worse performance.

The visualizations in Figure 4.9 show how this ablation results in the adaptive bandwidth
mapping learnt by the flow architecture converging poorly, which strains the ability of the
convolutional architecture to solve the classification task effectively, as it is given heavily
distorted or incomplete information.

Fig. 4.9. Rediscretized signal when ablating flow weight initialization.

Ablation: WI (C+F). When both ablations are performed simultaneously, the penalty
incurred by the flow weight initialization seems to dominate, which is consistent with the
hypothesized mechanism causing performance degradation.

4.2.3. Ablation of normalization

We similarly investigate the effectiveness of flow normalization (subsection 3.9.9) in our
adaptive bandwidth by performing ablations on normalization, notated with N in Table 4.2

Ablation: N / N + WI (C). Ablating normalization while also ablating flow weight
initialization causes our adaptive method regresses to random classifier accuracy.

The visualizations in Figure 4.10 show how the flow architecture fails to converge to a
usable mapping, destroying useful information before the convolutional architecture begins
operating on the signal.

114

Fig. 4.10. Rediscretized signal when ablating flow weight initialization and normalization.

Ablation: N + WI (F) / N + WI (C + F). Ablating normalization without ablating
flow weight initialization causes the weight initialization of the flow architecture fails to
converge, which makes training impossible. This is reasonable given that the magnitude of
the weight initialization of a continuous flow does not directly translate to the magnitude of a
linear transformation it expresses, meaning that deriving a weight initialization which raises
or lowers variance is nontrivial. This shows that unless we restrict our choice of normalizing
flow layers, the union of both normalization and weight initialization of the flow architecture
is necessary for our adaptive method to succeed.

4.2.4. Nonuniform compression

We study a more realistic scenario for the application of our adaptive bandwidth method
by applying the compression technique introduced in subsection 3.9.11 to run inference on
the CIFAR10 network trained in subsection 4.1.2.

We simply reuse the architecture used in section 4.1, with weights obtained in subsec-
tion 4.1.2. However, we limit the Gaussian kernel neighbourhood radius to 8 samples, to
avoid the memory allocation crashes described in subsection 3.9.5. This possibly introduces
discretization errors.

The flow architecture again relies on continuous flows (subsection 3.9.10), with two hidden
layers each with 64 feature channels, for a total of 4546 parameters. We Euler integrate it
over 16 steps. This is preceded by deterministic arbitrary covariance Gaussian normalizer
(subsection 3.9.9. We choose to optimize the standard loss on a surrogate Gaussian plateau
(subsection 3.9.7) with σ = 0.125, a uniform domain [−1, 1]2, and a rediscretization cropped
to contain only the uniform part of the distribution. We optimize the flow architecture with
AdamW (Kingma and Ba, 2014; Loshchilov and Hutter, 2017) in 64 steps, with a learning
rate of 10−2.5, with both betas at 0.9, and no weight decay.

Interpretation of the results. Figure 4.11 shows how the accuracy of the trained model
varies as it is evaluated with various discretizations. The compression technique performs
poorly except at the lowest resolutions. This is likely due to a combination of errors coming
from the approximations that are made in the compression heuristic and in the adaptation
of the many components of our method to the nonuniform setting.

115

8×8

1.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

32×3228×2824×2420×20

Equivalent Bandwidth

Ac
cu

ra
cy

16×1612×12

Ours (with Laplacian dropout, uniform bandwidth)
Ours (with Laplacian dropout, nonuniform bandwidth)

Fig. 4.11. Evaluation of our method with and without nonuniform compression on the
CIFAR10 dataset.

The computational performance is also notably awful. Evaluation times on the nonuni-
form method are 15 to 70 times higher than that of the uniform method, and the 32 × 32
variant requires up to 70GB of memory at a batch size of 128, which is absurd for a model
using less than a million parameters. This stems mostly from the flaws outlined in subsec-
tion 3.9.5.

The benefits of the better sample efficiency provided by compression are far outweighed
by poor performance and by the computational burden incurred by the adaptation method.

116

Chapter 5

Discussion

We lead this work with the central of formulating deep learning architectures for signals that
are adaptable, robust, and computationally efficient. We observe there is great variety in
the way sensor systems translate continuous signals to discretized signals, yet there is little
work which studies how architectures can deal with this constraint gracefully.

We set out to examine this question from a theoretical perspective. In subsection 2.1.2,
we introduce the notions of invariances and equivariances in the context of architecture design
as inductive biases. These two notions allow distinguishing what part of some information
constitutes its quality of interest, and what part is contingent, and they can be enforced
as mathematical constraints in architecture design to enforce this selectivity to information.
In section 2.2, we then build towards a perspective of signals that allows treating contin-
uous signals and discretized signals interchangeably, and that critically enables operators,
invariances and equivariances defined on continuous signals to be adapted on discretized
signals. We aim for generality by allowing extension to multiple dimensions, discretization
of either or both the spatial domain and spectral domain, support for arbitrary lattices, and
nonuniform distributions. In subsection 2.2.25, we introduce the Laplacian pyramid, which
provides a way of decomposing a signal into a sum of signals that each correspond to a
spectral partition. In section 2.3, we finally discuss normalizing flows, which enable the cre-
ation of models that allow matching distributions, which we find useful when manipulating
nonuniform signals.

With this set of tools in mind, we identify many paths for improvement left unexplored
by prior work: we recognize that architectures can be made freely adaptable to any dis-
cretization by formulating them through discretization invariant operators; that robustness
may be improved by implementing continuous shift equivariance, which is stronger than dis-
crete shift equivariance; that computational cost and memory footprint can be improved by
lossless compression through Laplacian residuals, which combine features of both Laplacian
pyramids and residual connections to allow the removal of inactive high-bandwidth layers

when operating on low-bandwidth signals; that robustness can be improved by a form of
Laplacian dropout that is simple to implement, which simulates low-bandwidth signals dur-
ing training; that sample efficiency can be improved by nonuniform compression through
deformation of the receptive field using normalizing flows.

We formulate an architecture that exploits these opportunities and show that many of
these improvements are effective. In subsection 4.1.1, we show that unlike prior architec-
tures, our architecture is able to adapt to arbitrary discretizations very gracefully, and also
possesses excellent parameter efficiency and training dynamics. In subsection 4.1.2, also
unlike prior architectures, we show that Laplacian residuals and Laplacian dropout are very
effective at promoting robustness to low-bandwidth signals; we also find that our archi-
tecture thrives when training on heterogeneous-bandwidth signals. In subsection 4.1.3, we
empirically validate our theoretical guarantee for lossless compression using Laplacian resid-
uals; we can in fact discard high-bandwidth layers when operating on low-bandwidth signals
without disturbance and without any form of re-training. In subsection 4.2.1, we find that
our nonuniform compression scheme is effective at promoting sample efficiency in a sim-
ple synthetic task designed for extreme sensitivity to sample efficiency. In subsection 4.2.2
and subsection 4.2.3, we show that the design decisions behind our nonuniform compression
scheme are effective through a set of ablation studies. In subsection 4.2.4, however, we find
that nonuniform compression performs very poorly on more realistic tasks, likely due to the
many approximations involved in the formulation of the method; its computational cost also
disqualifies it as a viable method.

In summary, we believe that this theoretical approach to deep learning for signals is still
underused; many of the theoretical flaws of current architectures are not well characterized,
and many avenues for improved architectures exist. While the mathematics that underlie
continuous signals and discretized signals are well established, the bridge between the two
is often ineffective or obscured. We therefore wish to make the perspective of signals we
have developed more easily accessible to the community. We also wish to improve on the
limitations of this work: the modifications we implement into our architecture can be difficult
to translate to other architectures; the code that implements our architecture is needlessly
inefficient, simply because the code evolved organically over months without a clearly defined
specification; the experiments we perform rely on relatively low-bandwidth signals, which
prevents us from peering into the capabilities of our architecture on high-bandwidth signals,
where our theoretical advantages may be especially useful. We specifically want to streamline
the idea of Laplacian residuals and Laplacian dropout, simplify their integration within state-
of-the-art architectures, provide code that is very computationally efficient, and provide a set
of larger-scale experiments so that our contribution can be more useful to the community.

118

References

Adelson, E. H., Anderson, C. H., Bergen, J. R., Burt, P. J., and Ogden, J. M. (1984).
Pyramid methods in image processing. RCA engineer, 29(6):33–41.

Bengio, Y., Lamblin, P., Popovici, D., and Larochelle, H. (2006). Greedy layer-wise training
of deep networks. Advances in neural information processing systems, 19.

Bronstein, M. M., Bruna, J., Cohen, T., and Veličković, P. (2021). Geometric deep learning:
Grids, groups, graphs, geodesics, and gauges. arXiv preprint arXiv:2104.13478.

Bronstein, M. M., Bruna, J., LeCun, Y., Szlam, A., and Vandergheynst, P. (2017). Geometric
deep learning: going beyond euclidean data. IEEE Signal Processing Magazine, 34(4):18–
42.

Burt, P. J. and Adelson, E. H. (1987). The laplacian pyramid as a compact image code. In
Readings in computer vision, pages 671–679. Elsevier.

Canny, J. (1986). A computational approach to edge detection. IEEE Transactions on
pattern analysis and machine intelligence, (6):679–698.

Chen, R. T., Rubanova, Y., Bettencourt, J., and Duvenaud, D. K. (2018). Neural ordinary
differential equations. Advances in neural information processing systems, 31.

Coeurdoux, F., Dobigeon, N., and Chainais, P. (2022). Sliced-wasserstein normalizing flows:
beyond maximum likelihood training. arXiv preprint arXiv:2207.05468.

Cohen, T. and Welling, M. (2016). Group equivariant convolutional networks. In Interna-
tional conference on machine learning, pages 2990–2999. PMLR.

Cohen, T. S., Geiger, M., and Weiler, M. (2019). A general theory of equivariant cnns on
homogeneous spaces. Advances in neural information processing systems, 32.

Cooley, J. W. and Tukey, J. W. (1965). An algorithm for the machine calculation of complex
fourier series. Mathematics of computation, 19(90):297–301.

Devroye, L. (1986). Non-uniform random variate generation. New York: Springer-Verlag.
ISBN: 0-387-96305-7.

Dirac, P. A. M. (1927). The physical interpretation of the quantum dynamics. Proceedings of
the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical
Character, 113(765):621–641.

Donoho, D. L. (2006). Compressed sensing. IEEE Transactions on information theory,
52(4):1289–1306.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., De-
hghani, M., Minderer, M., Heigold, G., Gelly, S., et al. (2020). An image is worth 16x16
words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929.

Elizar, E., Zulkifley, M. A., Muharar, R., Zaman, M. H. M., and Mustaza, S. M. (2022). A
review on multiscale-deep-learning applications. Sensors, 22(19):7384.

Esteves, C., Allen-Blanchette, C., Makadia, A., and Daniilidis, K. (2018). Learning so (3)
equivariant representations with spherical cnns. In Proceedings of the European Conference
on Computer Vision (ECCV), pages 52–68.

Fanaskov, V. and Oseledets, I. (2022). Spectral neural operators. arXiv preprint
arXiv:2205.10573.

Finzi, M., Stanton, S., Izmailov, P., and Wilson, A. G. (2020). Generalizing convolutional
neural networks for equivariance to lie groups on arbitrary continuous data. In Interna-
tional Conference on Machine Learning, pages 3165–3176. PMLR.

Fourier, J. B. J. (1888). Théorie analytique de la chaleur. Gauthier-Villars et fils.
Fukushima, K. (1980). Neocognitron: A self-organizing neural network model for a mech-

anism of pattern recognition unaffected by shift in position. Biological cybernetics,
36(4):193–202.

Glorot, X. and Bengio, Y. (2010). Understanding the difficulty of training deep feedforward
neural networks. In Proceedings of the thirteenth international conference on artificial
intelligence and statistics, pages 249–256. JMLR Workshop and Conference Proceedings.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press. http:
//www.deeplearningbook.org.

Han, Y., Huang, G., Song, S., Yang, L., Wang, H., and Wang, Y. (2021). Dynamic neural
networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence,
44(11):7436–7456.

He, K., Zhang, X., Ren, S., and Sun, J. (2015). Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE interna-
tional conference on computer vision, pages 1026–1034.

He, K., Zhang, X., Ren, S., and Sun, J. (2016a). Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages
770–778.

He, K., Zhang, X., Ren, S., and Sun, J. (2016b). Identity mappings in deep residual net-
works. In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The
Netherlands, October 11–14, 2016, Proceedings, Part IV 14, pages 630–645. Springer.

Hendrycks, D. and Gimpel, K. (2016). Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415.

120

http://www.deeplearningbook.org
http://www.deeplearningbook.org

Hornik, K., Stinchcombe, M., and White, H. (1989). Multilayer feedforward networks are
universal approximators. Neural networks, 2(5):359–366.

Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In Bach, F. and Blei, D., editors, Proceedings of the
32nd International Conference on Machine Learning, volume 37 of Proceedings of Machine
Learning Research, pages 448–456, Lille, France. PMLR.

Jenner, E. and Weiler, M. (2021). Steerable partial differential operators for equivariant
neural networks. arXiv preprint arXiv:2106.10163.

Kabri, S., Roith, T., Tenbrinck, D., and Burger, M. (2023). Resolution-invariant image
classification based on fourier neural operators.

Karras, T., Aittala, M., Laine, S., Härkönen, E., Hellsten, J., Lehtinen, J., and Aila, T.
(2021). Alias-free generative adversarial networks. Advances in Neural Information Pro-
cessing Systems, 34:852–863.

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980.

Knutsson, H., Westin, C.-F., and Granlund, G. (1994). Local multiscale frequency and
bandwidth estimation. In Proceedings of 1st International Conference on Image Processing,
volume 1, pages 36–40 vol.1.

Kobyzev, I., Prince, S. J., and Brubaker, M. A. (2020). Normalizing flows: An introduc-
tion and review of current methods. IEEE transactions on pattern analysis and machine
intelligence, 43(11):3964–3979.

Kondor, R. and Trivedi, S. (2018). On the generalization of equivariance and convolution in
neural networks to the action of compact groups. In International Conference on Machine
Learning, pages 2747–2755. PMLR.

Kovachki, N., Li, Z., Liu, B., Azizzadenesheli, K., Bhattacharya, K., Stuart, A., and Anand-
kumar, A. (2021). Neural operator: Learning maps between function spaces. arXiv preprint
arXiv:2108.08481.

Krähenbühl, P., Doersch, C., Donahue, J., and Darrell, T. (2015). Data-dependent initial-
izations of convolutional neural networks. arXiv preprint arXiv:1511.06856.

Krizhevsky, A., Hinton, G., et al. (2009). Learning multiple layers of features from tiny
images.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2017). Imagenet classification with deep
convolutional neural networks. Communications of the ACM, 60(6):84–90.

Lai, W.-S., Huang, J.-B., Ahuja, N., and Yang, M.-H. (2017). Deep laplacian pyramid
networks for fast and accurate super-resolution. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 624–632.

Landau, H. (1967). Necessary density conditions for sampling and interpolation of certain
entire functions.

121

Lang, L. and Weiler, M. (2020). A wigner-eckart theorem for group equivariant convolution
kernels. arXiv preprint arXiv:2010.10952.

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. nature, 521(7553):436–444.
LeCun, Y., Bottou, L., Orr, G. B., and Müller, K.-R. (2002). Efficient backprop. In Neural

networks: Tricks of the trade, pages 9–50. Springer.
Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhattacharya, K., Stuart, A., and Anand-

kumar, A. (2020). Fourier neural operator for parametric partial differential equations.
arXiv preprint arXiv:2010.08895.

Loshchilov, I. and Hutter, F. (2017). Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101.

Marcos, D., Kellenberger, B., Lobry, S., and Tuia, D. (2018). Scale equivariance in cnns with
vector fields. arXiv preprint arXiv:1807.11783.

Marvasti, F. (2012). Nonuniform sampling: theory and practice. Springer Science & Business
Media.

Mishkin, D. and Matas, J. (2015). All you need is a good init. arXiv preprint
arXiv:1511.06422.

Neumann, V. (1951). Various techniques used in connection with random digits. Notes by
GE Forsythe, pages 36–38.

Petersen, D. P. and Middleton, D. (1962). Sampling and reconstruction of wave-number-
limited functions in n-dimensional euclidean spaces. Information and Control, 5(4):279–
323.

Poli, M., Massaroli, S., Berto, F., Park, J., Dao, T., Ré, C., and Ermon, S. (2022). Transform
once: Efficient operator learning in frequency domain. Advances in Neural Information
Processing Systems, 35:7947–7959.

Recasens, A., Kellnhofer, P., Stent, S., Matusik, W., and Torralba, A. (2018). Learning to
zoom: a saliency-based sampling layer for neural networks. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 51–66.

Rezende, D. and Mohamed, S. (2015). Variational inference with normalizing flows. In
International conference on machine learning, pages 1530–1538. PMLR.

Ruthotto, L. and Haber, E. (2020). Deep neural networks motivated by partial differential
equations. Journal of Mathematical Imaging and Vision, 62:352–364.

Schönhage, A. and Strassen, V. (1971). Fast multiplication of large numbers. Computing,
7:281–292.

Schwartz, L. (1957). Théorie des distributions à valeurs vectorielles. i. In Annales de l’institut
Fourier, volume 7, pages 1–141.

Schwartz, L. (1958). Théorie des distributions à valeurs vectorielles. ii. In Annales de l’institut
Fourier, volume 8, pages 1–209.

122

Shannon, C. E. (1949). Communication in the presence of noise. Proceedings of the IRE,
37(1):10–21.

Shen, Z., He, L., Lin, Z., and Ma, J. (2020). Pdo-econvs: Partial differential operator
based equivariant convolutions. In International Conference on Machine Learning, pages
8697–8706. PMLR.

Singh, S. R., Yedla, R. R., Dubey, S. R., Sanodiya, R., and Chu, W.-T. (2021). Frequency
disentangled residual network. arXiv preprint arXiv:2109.12556.

Sobel, I. (1968). An isotropic 3x3 image gradient operator. Presentation at Stanford A.I.
Project 1968.

Sosnovik, I., Szmaja, M., and Smeulders, A. (2019). Scale-equivariant steerable networks.
arXiv preprint arXiv:1910.11093.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2014).
Dropout: a simple way to prevent neural networks from overfitting. The journal of machine
learning research, 15(1):1929–1958.

Strichartz, R. S. (2003). A guide to distribution theory and Fourier transforms. World
Scientific Publishing Company.

Torre, V. and Poggio, T. A. (1986). On edge detection. IEEE Transactions on Pattern
Analysis and Machine Intelligence, PAMI-8(2):147–163.

Wang, D., Shelhamer, E., Olshausen, B., and Darrell, T. (2019). Dynamic scale inference by
entropy minimization. arXiv preprint arXiv:1908.03182.

Weierstrass, K. (1895). On continuous functions of a real argument which possess a defi-
nite derivative for no value of the argument. Koniglich Preussichen Akademie der Wis-
senschaften, Mathematische Werke von Karl Weierstrass, pages 71–74.

Weiler, M. and Cesa, G. (2019). General e (2)-equivariant steerable cnns. Advances in neural
information processing systems, 32.

Weiler, M., Geiger, M., Welling, M., Boomsma, W., and Cohen, T. S. (2018a). 3d steerable
cnns: Learning rotationally equivariant features in volumetric data. Advances in Neural
Information Processing Systems, 31.

Weiler, M., Hamprecht, F. A., and Storath, M. (2018b). Learning steerable filters for rotation
equivariant cnns. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 849–858.

Weinan, E. (2017). A proposal on machine learning via dynamical systems. Communications
in Mathematics and Statistics, 1(5):1–11.

Whittaker, E. (1915). On the functions which are represented by the expansion of interpo-
lating theory. In Proc. Roy. Soc. Edinburgh, volume 35, pages 181–194.

Whittaker, J. M. (1927). On the cardinal function of interpolation theory. Proceedings of
the Edinburgh Mathematical Society, 1(1):41–46.

123

Woodward, P. M. and Davies, I. L. (1952). Information theory and inverse probability in
telecommunication. Proceedings of the IEE-Part III: Radio and Communication Engineer-
ing, 99(58):37–44.

Worrall, D. and Welling, M. (2019). Deep scale-spaces: Equivariance over scale. Advances
in Neural Information Processing Systems, 32.

Worrall, D. E., Garbin, S. J., Turmukhambetov, D., and Brostow, G. J. (2017). Harmonic
networks: Deep translation and rotation equivariance. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, pages 5028–5037.

Xiao, H., Rasul, K., and Vollgraf, R. (2017). Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747.

Xu, Y., Xiao, T., Zhang, J., Yang, K., and Zhang, Z. (2014). Scale-invariant convolutional
neural networks. arXiv preprint arXiv:1411.6369.

Ziou, D., Tabbone, S., et al. (1998). Edge detection techniques-an overview. Pattern Recogni-
tion and Image Analysis C/C of Raspoznavaniye Obrazov I Analiz Izobrazhenii, 8:537–559.

124

	Résumé
	Abstract
	Contents
	List of tables
	List of figures
	List of abbreviations
	Remerciements
	Introduction
	Chapter 1. Related work
	1.1. Architectures motivated by classical computer vision
	1.1.1. Standard convolutional neural networks
	1.1.2. Residual convolutional neural networks
	1.1.3. Multiscale convolutional neural networks
	1.1.4. Spectrally disentangled convolutional neural networks
	1.1.5. Dynamic convolutional neural networks

	1.2. Architectures motivated by abstract algebra
	1.2.1. Shift equivariant neural networks
	1.2.2. Rotation and reflection equivariant neural networks
	1.2.3. Scale equivariant neural networks
	1.2.4. Discretization invariant neural networks

	1.3. Initialization strategies for Deep Networks
	1.3.1. Analytically driven
	1.3.2. Data driven

	Chapter 2. Background
	2.1. Deep Learning
	2.1.1. Task settings
	2.1.2. Architecture design, inductive biases, and abstract algebra

	2.2. Signals
	2.2.1. From finite to infinite linear algebra
	2.2.2. Fundamentals
	2.2.3. The shift operator
	2.2.4. The mirror operator
	2.2.5. The spectral basis
	2.2.6. The Fourier transform and inverse Fourier transform
	2.2.7. The convolution operator
	2.2.8. The partial derivative operator
	2.2.9. The sampling operator
	2.2.10. The repeating operator
	2.2.11. The duality of sampling and repeating
	2.2.12. Discretization
	2.2.13. The sampling theorem
	2.2.14. Aliasing
	2.2.15. The spatial basis
	2.2.16. Interpolation
	2.2.17. Rediscretization
	2.2.18. Discretization invariance
	2.2.19. Discretization of linear shift equivariant operators
	2.2.20. Discretization of the convolution operator
	2.2.21. Discretization of the partial derivative operator
	2.2.22. Discretization of the shift operator
	2.2.23. Discretization of operators with shift equivariance
	2.2.24. Discretization of pointwise nonlinear operators
	2.2.25. The Laplacian pyramid

	2.3. Normalizing flows

	Chapter 3. Method
	3.1. Continuous shift equivariant layers
	3.2. Steerable equivariant layers
	3.3. Activations
	3.4. Local pooling
	3.5. Global pooling
	3.6. Laplacian residual blocks for compression through spectral disentanglement
	3.7. Laplacian dropout for robustness through spectral augmentation
	3.8. Weight initialization
	3.9. Adapting to nonuniform sampling patterns
	3.9.1. Formalizing density matching
	3.9.2. Rediscretization
	3.9.3. Local coordinate frames
	3.9.4. Adapting the partial derivative operator
	3.9.5. Adapting Gaussian filtering
	3.9.6. Adapting global pooling
	3.9.7. Learning to uniformize without breaking the loss
	3.9.8. Good learning dynamics with weight initialization search
	3.9.9. Good learning dynamics with normalizing layers
	3.9.10. Expressivity and smoothness with continuous flows
	3.9.11. Local spectral volume heuristic for nonuniform compression

	Chapter 4. Experiments
	4.1. Testing the core of the method
	4.1.1. Discretization invariance
	4.1.2. Bandwidth robustness
	4.1.3. Pruning correctness

	4.2. Adapting the method to nonuniform bandwidth signals
	4.2.1. Nonuniform adaptation
	4.2.2. Ablation of weight initialization
	4.2.3. Ablation of normalization
	4.2.4. Nonuniform compression

	Chapter 5. Discussion
	References

