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Résumé 

 

La drépanocytose est une maladie causée par une seule mutation dans le gène de la bêta-globine. 

Les complications liées à la maladie se manifestent sur le plan génétique, épigénique, 

transcriptionnel, et métabolique. Les approches intégratives des technologies de séquençage à 

haut-débit permettent de comprendre le mécanisme pathologique et de découvrir des thérapies 

en lien avec la maladie. Dans cette thèse, j’intègre divers jeux de données omiques et j’applique 

des méthodes statistiques pour élaborer de nouvelles hypothèses et analyser les données.  

 

Dans les deux premières études, je combine les résultats des études d'association pangénomique 

d'hémoglobine fœtale (HbF) et des globules rouges denses déshydratés (DRBC) avec l'expression 

génique, l'interaction chromatinienne, les bases de données relatives aux maladies et les cibles 

médicamenteuses sélectionnées par des experts. Cette approche intégrative a révélé trois 

nouveaux loci sur le chromosome 10 (BICC1), le chromosome 19 (KLF1) et le chromosome 22 

(CECR2) comme régulateurs de l'HbF. Pour l’étude sur la densité de globules rouges, quatre 

cibles médicamenteuses (BCL6, LRRC32, KNCJ14 et LETM1) ont été identifiées comme des 

modulateurs potentiels de la sévérité. 

 

Dans la troisième étude, j’intégre la métabolomique à la génomique pour établir une relation 

causale entre la L-glutamine et les crises douleurs en utilisant la randomisation mendélienne. En 

outre, nous avons identifié 66 biomarqueurs pour 6 complications liées à la drépanocytose et le 

débit de filtration glomérulaire estimé (DFGe). Enfin, dans la dernière étude j’ai appliqué une 

approche de clustering aux métabolites que j’ai ensuite combiné aux données de génotype. J’ai 

découvert des changements métabolomiques mettant en évidence des familles de métabolites 

impliqués dans les dysfonctionnements rénaux et hépatiques, en plus de confirmer le rôle d'une 

classe d'acides gras dans la formation en faucille des globules rouges. Ce travail met en évidence 

l'importance des approches multi-omiques pour découvrir de nouveaux mécanismes biologiques 

et étudier les maladies humaines.  

 

Mots clés : Drépanocytose, hémoglobine fœtale, études d'association pangénomique, études 

d'association à l'échelle de l'exome, clustering de métabolites. 
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 Abstract 

Sickle cell disease is a monogenic disorder caused by a point mutation in the beta-globin gene. 

The complications related to the disease are characterized by a broad spectrum of distinct genetic, 

epigenetic, transcriptional, and metabolomic states. Integrative high-throughput technologies 

approaches to sickle cell disease pathophysiology are crucial to understanding complications 

mechanisms and uncovering therapeutic interventions. In this thesis, I integrate various omics 

datasets and apply statistical methods to derive new hypotheses and analyze data. 

I combine genome-wide association studies results of fetal hemoglobin (HbF) and dehydrated 

dense red blood cells (DRBC) with gene expression, chromatin interaction, disease-relevant 

databases, and expert-curated drug targets. This integrative approach revealed three novel loci 

on chromosome 10 (BICC1), chromosome 19 (KLF1) and chromosome 22 (CECR2) as key 

modulators of HbF. For DRBC, four drug targets (BCL6, LRRC32, KNCJ14, and LETM1) were 

identified as potential severity modifiers. 

Using mendelian randomization, I integrated metabolomics with genomics in the third study to 

establish a potential causal relationship between L-glutamine and painful crisis. Additionally, we 

identified 66 biomarkers for 6 SCD-related complications and estimated glomerular filtration rate 

(eGFR). Finally, the last study applied a clustering framework to metabolites which I then 

combined with genotypes. I found specific metabolomics changes highlighting families of 

metabolites involved in renal and liver dysfunction and confirming the role of a class of fatty 

acids in red blood cell sickling. This work highlights the importance of multi-omics approaches 

to unearth new biology and study human diseases.  

Keywords: Sickle cell disease, fetal hemoglobin, genome-wide association studies, exome-

wide association studies, metabolite clustering 
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Chapter 1: Introduction 

 

The ensuing chapter offers a comprehensive overview of sickle cell disease, including its 

symptoms, the underlying pathophysiological abnormalities, existing treatments, landmark 

discoveries since its initial identification, and an exploration of the disease modifiers examined 

in this thesis. 
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SCD historical background 

 

Sickle cell disease (SCD) was first described in Western literature in 1910 by a cardiologist 

named James B Herrick while tending to a medical student complaining about chest pain1. 

However, records dating from the 1870s describe the disease in African literature as “children 

who come and go” due to the high infant mortality2. Herrick is the originator of the term “sickled-

shaped” to report the odd appearance of red blood cells in patients (Figure 1). Seventeen years 

later, Han and Gillespie proved that anoxia resulted in red blood cell (RBC) sickling3. A couple 

of years later, Scriver and Waugh demonstrated in vivo that hypoxia leads to RBC sickling. This 

body of evidence led Linus Pauling, Nobel laureate scientist, to intimate that altered hemoglobin 

might be at the origin of the sickling phenomena4.  

In 1949, a gel electrophoresis experiment distinguished between hemoglobin in sickle cell 

disease and normal hemoglobin in healthy individuals4,5. The next year James V. Neel discovered 

the autosomal recessive model of inheritance6. Around the same time, Janet B Watson 

hypothesized that fetal hemoglobin (HbF)7 could be protective against SCD complications since 

newborns didn’t display any symptoms until six months of age. In 1956, a pioneering study 

showed the protective effect of carrying the sickle cell trait against malaria8. Two years later, 

Vernon Ingram and his team confirmed that the difference between sickled hemoglobin (HbS) 

and the healthy adult hemoglobin (HbA) is a consequence of a single amino acid which replaces 

a glutamic acid by valine at the 6th position of the beta globin subunit in hemoglobin molecule9. 

Finally, another landmark discovery of the 20th century in sickle cell disease by Ferrone and 

colleagues10 showed that under hypoxic conditions HbS forms polymers which distort normal bi-

concave erythrocytes and turn them into rigid crescent erythrocytes. This body of evidence 

enhanced our appreciation of the molecular basis of sickle cell disease and propelled further 

discoveries in the 21st century.  
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SCD Burden 

Sickle cell disease and thalassemia are the two most common hemoglobinopathies. Thalassemia 

is characterized by a change in the ratio of -globin to -globin chain production due to a genetic 

mutation in either alpha or beta globin genes. This imbalance in the two globin proportions will 

cause the precipitation of the -globin subsequently leading to ineffective erythropoiesis, and 

hemolysis11. Sickle cell disease (SCD) is caused by a point mutation in the 6th position of the -

chain replacing a glutamic amino acid for a valine amino acid. This single amino acid change 

predisposes hemoglobin to polymerize under hypoxic conditions. Once the hemoglobin 

polymerizes, red blood cells become rigid, crescent-shaped (Figure 1), they damage endothelial 

walls, cause anemia, pain, and stroke. Individuals with sickle cell trait show no severe symptoms. 

Carriers of the trait present with one mutant allele of the -globin gene and one normal resulting 

in HbAS. However, when both -globin carry the sickle mutation, we then call the condition 

sickle cell anemia.  

 

Figure 1 Sickle Erythrocytes. Peripheral blood smear from a patient with SCD obtained during a 

routine clinic visit. The smear shows classical sickle-shaped (arrows) and various other misshaped 

erythrocytes (arrowheads). The image was obtained from an air-dried smear using differential 

interference contrast (DIC) microscopy with an Olympus BX61WI work station equipped with a 

LUMPlanFI ×60 numerical aperture 0.90 ∞ objective (Olympus) and a CoolSnap HQ camera (6.6 

μm2 pixel, 1,392 × 1,040 pixel format) (Roper Scientific). Scale bar: 10 μm. 
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The gene burden is spread out throughout the world, with an elevated rate in sub-Saharan Africa, 

the Mediterranean (mostly Greece), parts of India, and the Middle East. The incidence rate seems 

to correlate with regions of the world where malaria is endemic since the sickle mutation is 

protective against severe forms of malaria. Global burden account for at least 7% of African 

American population12,13, one-third of Sub-Saharan Africa14, at most 6% of the Latino 

population12,15, up to 13% in India16,17, between 0.2% to 27%  of the Middle East18,19, at most 

10%  of Greeks20,21 and 4 to 10% of Caribbean countries22,23. A 17-year prospective study by the 

University of Michigan published in 2019 identified that 80% of newborns with the sickle cell 

trait were from African ancestry, 7.4% from Arab ancestry (7.4%) and 7% from white ancestry 

(7%)24.  

 

Although the protective pathophysiology acquired from the mutation remains uncertain25, the 

‘malaria hypothesis’ formulated by Anthony Allison and Haldane is a perfect model for natural 

selection and balanced polymorphism26. There is an estimated 300,000 newborn each year 

globally affected by sickle cell anemia27. Countries such as Nigeria, India and the Democratic 

Republic of the Congo see the highest birth rate. Finally, while improvements in areas such as 

prophylactic treatment, and newborn screening improved life expectancy, challenges related to 

poverty, malnutrition, malaria, and routine vaccination show a 90% mortality rate amongst 

children younger than 5 years of age28.  

 

 

Figure 2. Number of newborns with sickle cell Anemia in each country in 2015. As seen in Piel et al. (2017).  
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SCD and Malaria 

Historical perspective  

Malaria is a deadly disease transmitted via a bite of a female Anopheles spp. An additional 

mechanism of transmission includes blood transfusions, sharing of contaminated needles, and 

organ transplantation29,30. The first accounts of the disease can be found more than four 

millenniums ago, in Chinese scrolls, European memoires31. Potent anti-malarial drugs such as 

artemisinin and quinine have been present within different civilisations32. The discovery of the 

parasite Plasmodium Falciparum resulted in a Nobel prize for Charles Louis Alphonse 

Laveran31. To date, we count 5 species of Plasmodium parasite (P. vivax, P. falciparum, P. 

malariae, P. ovale, and P. knowlesi.) which can infect humans33. There are however over 150 

species which could infect and cause malaria in other vertebrates34-38. 

Pathophysiology 

Severe forms of malaria, its pathogenicity, the role of the parasite, and its host interactions are 

described in detail elsewhere39-41. Consequences of infection by P.falciparrum can be divided 

into three clinical outcomes groups: triumvirate of cerebral malaria (CM), respiratory distress, 

and severe malarial anemia42.  

Burden and protection 

Malaria is an endemic disease which spreads throughout most of the tropics. The world health 

organization (WHO) documented a quarter billion cases and more than half a million deaths from 

malaria in 202043. The 2019 coronavirus pandemic is the culprit for the rise of malaria-related 

death44. The global disease burden of malaria is 8% according to recent WHO reports. Africa 

alone accounts for 95% of the global burden, with Southeast Asia, and the Eastern Mediterranean 

regions accounting for 2% each. The main determinants of malaria include the lifespan, the 

number of human bites, and the number of female anopheline vectors. In fact, an equation can 

predict the rate of transmission of malaria45,46 

The life cycle of the deadly form of malaria, the Plasmodium falciparum malaria, includes several 

stages. A stage in which the parasite resides within the female (Anopheles) mosquito, and the 

human stage includes stages within the liver, and the red blood cells. 47,48 The genetic protection 

in sickle cell disease originates from the red blood cell stage. Indeed, studies found that the sickle 

cell trait is protective at 90% against severe forms (cerebral and anemic) and complications of 

the disease, and at 60% against hospitalization-related malaria infection47,49. The 

pathophysiology of sickle cell trait protection against malaria is not fully understood. Three main 
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hypotheses exist: increased sickling of red blood cells50, weakened parasite growth during 

vascular sequestration51, and the parasite’s genotype52. Several additional hemoglobin mutations 

are protective against malaria including C, SC, E, - and -thalassemia53-57 (Figure 3). Beyond 

the hemoglobinopathies listed before, erythrocyte membrane defects (e.i., elliptocytosis, and 

ovalocytosis), Dantu blood group, enzymatic deficiencies (e.i., glucose-6-phosphate 

dehydrogenase (G6PD), and glycophorins have been associated with resistance to infection58-61.  
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Figure 3. Genetic alterations in HBB. Copied from Kato et al 2018 

Normal haemoglobin A (HbA) is formed by two α-globin subunits and two β-globin subunits, the latter of which 

are encoded by HBB. The sickle Hb (HbS) allele, βS, is an HBB allele in which an adenine-to-thymine substitution 

results in the replacement of glutamic acid with valine at position 6 in the mature β-globin chain. Sickle cell disease 

(SCD) occurs when both HBB alleles are mutated and at least one of them is the βS allele. Deoxygenated (not 

bound to oxygen) HbS can polymerize, and HbS polymers can stiffen the erythrocyte. Individuals with one 

βS allele have the sickle cell trait (HbAS) but not SCD; individuals with sickle cell anaemia (SCA), the most 

common SCD genotype, have two βS alleles (βS/βS). Other relatively common SCD genotypes are possible. 

Individuals with the HbSC genotype have one βS allele and one HBB allele with a different nucleotide substitution 

(HBB Glu6Lys, or βC allele) that generates another structural variant of Hb, HbC. The βC allele is mostly prevalent 

in West Africa or in individuals with ancestry from this region HbSC disease is a condition with generally milder 

haemolytic anaemia and less frequent acute and chronic complications than SCA, although retinopathy and 

osteonecrosis (also known as bone infarction, in which bone tissue is lost owing to interruption of the blood flow) 

are common occurrences. The βS allele combined with a null HBB allele (Hbβ0) that results in no protein 

translation causes HbSβ0-thalassaemia, a clinical syndrome indistinguishable from SCA except for the presence 

of microcytosis (a condition in which erythrocytes are abnormally small). The βS allele combined with a 

hypomorphic HBB allele (Hbβ+; with a decreased amount of normal β-globin protein) results in HbSβ+-

thalassaemia, a clinical syndrome generally milder than SCA owing to low-level expression of normal HbA. 

Severe and moderate forms of HbSβ-thalassaemia are most prevalent in the eastern Mediterranean region and parts 

of India, whereas mild forms are common in populations of African ancestry. Rarely seen compound heterozygous 

SCD genotypes include HbS combined with HbD, HbE, HbOArab or Hb Lepore (not shown). 
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Pathophysiology 

 

Intraerythrocytic hemoglobin S (HbS) deoxygenation in tissues with elevated oxygen request 

produces a hydrophobic motif in the deoxygenated HbS tetramer62. As a result, HbS chains on 

different tetramer bind to each other to hide the hydrophobic motifs. This in turn, will cause the 

formation of long polymers, which will distort red blood cells (RBC) into sickle cell shape63 

(Figure 4A). Erythrocytes then become more rigid and sticky to endothelial walls. Repeated 

cycles of sickling and hemolysis, together with inflammation, result in severe and persistent 

organ damage (Figure 4B). Tissue ischemia combined with vaso-occlusion is responsible for 

acute chest syndrome, acute pain, and avascular necrosis64. Whereas hemolysis-related 

endothelial dysfunction leads to complications such as leg ulcers, priapism, stroke, and 

pulmonary hypertension65. While homozygote experience more severe symptoms at an early age 

compared to heterozygotes (i.e., HbSC), painful episodes and splenic infarction are common 

across genotypes66. Added characteristics linking these complications include concomitance of 

other globin genetic variants such as -thalassemia and fetal hemoglobin expression66. All 

documented sickle cell disease genotypes and their features were catalogued by Rees et al 

(2010)62. 
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Complications of SCD 

 

Sickle cell disease is a multisystem illness. The disorder affects practically every organ in the 

body (Figure 5). SCD-related complications can be classified as chronic or acute.  

Acute complications include:  

Acute pain episode: painful crises are a hallmark of the disease. They are described as acute and 

continuous bone pain67. Often requiring emergency care, these painful crises are the consequence 

of blood vessel occlusion. The vaso-occlusive crises implicate tissue ischemia and inflammation. 

Many individuals can be triggered by cold, dehydration, wind, low humidity, alcohol, and stress. 

Figure 4. Pathophysiology and complications of sickle cell disease. Copied from Kavanagh et al 2022 

A, HbS polymerizes when deoxygenated, inducing recurrent red blood cell (RBC) sickling and hemolysis. The 

sickled RBCs interact with white blood cells and platelets on vascular endothelium via adhesion molecules 

which leads to vaso-occlusion. The free Hb and heme released from RBC hemolysis trigger endothelial 

dysfunction due to depletion of nitric oxide and resultant vasoconstriction. The dual processes of vaso-occlusion 

and endothelial dysfunction activate inflammatory responses, via increased cytokines and reactive oxygen 

species, which perpetuates further vaso-occlusion. 

B, The morbidity of SCD is progressive throughout the life span. Early on, most complications occur in acute 

recurrent episodes. Additionally, growth and puberty are delayed due to the increased metabolic demands 

secondary to ongoing hemolytic anemia. In adulthood, organ damage is prominent in addition to acute 

complications. Acute pain episodes, acute chest syndrome, and ischemic stroke can occur at any life stage. 
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Experiencing pain can start as early as six months of age and will stay throughout life. The site 

of pain can include the back, extremities, and abdomen. In young children, dactylitis (acute pain 

in the hands or feet) may be the most common location of the pain.   

Acute chest syndrome (ACS) is established as the presence of liquid in the chest combined with 

pleuritic chest pain, fever, hypoxemia, or tachypnea68. ACS may result from pneumonia, fat 

embolism, or thromboembolism69. 

Fever is life-threatening in children as it may be a sign of sepsis since splenic removal is a 

common procedure for SCD patients, which makes them susceptible to infection. In fact, prior 

to penicillin prophylaxis and vaccines, one in two SCD children died from infections related to 

S pneumoniae and H influenza70. 

Children with SCD experience strokes at an alarming rate. In fact, about 10% of children with 

sickle cell anemia and -thalassemia experience strokes71. Generally treated by RBC exchange 

transfusion, acute ischemic stroke in children is a consequence of vaso-occlusive events in major 

cerebral arteries72. 

A decrease in hemoglobin from baseline by 2g/dL or greater is considered acute anemia. Key 

features of this complication include upper body pain, enlarged spleen, thrombocytopenia (< 150 

000/microL), increased reticulocyte count, and decreased hemoglobin73. The principal culprit of 

acute anemia is splenic sequestration, followed by aplastic crisis74. The incidence rate of acute 

anemia varies between 7% to 30% 68. 

Pigmented stones will form in the gallbladder of sickle cell disease patients due to RBC 

hemolysis. About three out of four adult SCD individuals will experience this condition75. 

Among young adults, it is estimated that 43% will suffer from gallstone disease. Removal of the 

gallbladder (cholecystectomy) or laparoscopic is recommended for individuals presenting 

symptoms. 

Priapism, characterized by an erection lasting over 4 hours, affects 40% of males in 

childhood76,77. Irregular levels of nitric oxide combined with RBC hemolysis prevent smooth 

muscle relaxation (Figure 4), leading to congestion of blood in the penis. Intermittent priapism 

(lasting less than three hours) and priapism can lead to scarring and erectile impotence76.  

 

Chronic complications include:  

Chronic pain occurs between 30% to 40% of adolescents and adults. Research shows that the 

pain is neuropathic (results in nerve damage) and nociceptive (caused by damage to tissue, the 
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pain is sharp, throbbing, and aching)78. This pain is experienced even in the absence of vaso-

occlusive events.  

Avascular necrosis, also called aseptic necrosis or osteonecrosis, can result from bone ischemia 

of the shoulders, spine, or hips. The complication affects 10 to 32% of SCD patients79. Bone 

fractures are linked to avascular necrosis. Bone marrow infarction results in the death of 

hematopoietic cells, lower RBC production, and brings about anemia. Bone marrow infarction 

can lead to life-threatening pulmonary fat embolism. 

Sickle cell disease can cause retinopathy which manifests as retinal artery occlusion, retinal 

detachment, and vitreal hemorrhage80-82. Interestingly, in contrast to other complications, SCD 

retinopathy is more severe for hemoglobin SC individuals compared to individuals carrying other 

genotypes80,81,83. It’s noteworthy that eye disorders can be observed in nearly all adults. 

Kidney trauma in sickle cell disease is referred to as nephropathy. Kidney injury is multifactorial 

and is often diagnosed when serum creatinine levels exceed standard threshold84-86. 

Hyperfiltration, defined as an eGFR greater than 180 mL/min/1.73m2 is widespread and is seen 

early in children with SCD87. Microalbuminuria, albuminuria, and red blood sickling can lead to 

glomerular, and tubular damage. 

Leg ulcers result from vaso-occlusion of the skin. While the pathophysiology of the 

complications is not well characterized, we know that blood flow, inflammation, endothelial 

dysfunction, slow rate of healing, and thrombosis play a role in the complications. Although the 

incidence in the US population is around 10%, it can be higher than 70%, as seen in Jamaica88. 

Highlighting the fact that individuals living in tropical regions are more affected. 

Additional complications include pulmonary hypertension65,89,90, cardiomyopathy91-93, heart 

failure, asthma93 and pregnancy-related94, and infection-relations95-98 complications which are 

beyond the scope of this review and are documented elsewhere63,99.  
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Therapies in SCD 

 

SCD is a century-old disease, yet, the lack of cost-effective therapies is jarring. Inadequate 

research funding thwarts high-quality randomized control trials (RCTs), and stifles the generation 

of substantial evidence. In an open letter published in the JAMA network, Farooq et al. (2020) 

conducted a comparative analysis of research productivity between cystic fibrosis and sickle cell 

disease studies. The authors confirmed that the 10-fold disparity in funding for cystic fibrosis 

compared to sickle cell disease contributed to the development of effective therapeutics for cystic 

Figure 5. Common complications of sickle cell disease. Data are from Rees et al. 2010 and 

Serjeant. et al 1996 Acute complications are shown in boldface type. Image copied from Piel et 

al. 2017 
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fibrosis patients72. For sickle cell disease, only three well-established therapies are recognized: 

hydroxycarbamide, blood transfusion, and hematopoietic stem cell transplantation100. 

 

Hydroxycarbamide, also known as hydroxyurea is a ribonucleotide reductase inhibitor, that leads 

to several physiological consequences including an increase in HbF levels and a decrease in 

leucocyte count101. The drug was approved by the FDA in 1998 and by the European Medicines 

Agency in 2007 for the treatment of adult SCD patients. The benefits of the compound included 

a reduction in vaso-occlusive crises, hospitalization, and mortality. In addition to confirming its 

safety102, claims of reduced fertility, and risk of carcinogenicity were disproved in prospective 

studies101,103. While usage of hydroxyurea is elevated in high-income countries, upwards of 60% 

in certain cohorts, usage in low-income countries is close to inexistent104,105. 

 

Blood transfusion improves blood circulation in capillaries by reducing the number of circulating 

sickled red blood cells. Therefore, inflammatory damage and endothelial injury are significantly 

decreased. Additionally, in individuals at risk for stroke, frequent transfusion prevents vaso-

occlusive crises and strokes. Several adverse events exist, including iron overload, immune 

response to a foreign antigen (alloimmunization), and hemolytic transfusion reaction.  

 

Hematopoietic stem cell transplantation in SCD is curative. However, it requires a human-

leucocyte antigen (HLA)-matched family donor. Given that the procedure is costly it is estimated 

that just 2,000 individuals have undergone the procedure, and more than 90% of the patients 

survived106,107. While hematopoietic stem cell transplantation from the bone marrow (Figure 6) 

cures SCD, the short supply of HLA-match donor 108 limits the impact of the therapy. 

 

Since 2017 several new drug treatments have become available to SCD patients. Indeed the FDA 

approved L-glutamine109, crizanlizumab104, and voxelotor110 to treat SCD. L-glutamine is an oral 

amino acid with the ability to reduce oxidative stress on RBC, therefore reducing sickling and 

RBC stickiness to the endothelial walls. Results from the clinical trial showed that L-glutamine 

reduces pain crises by 25%, and hospitalization by 33%. Crizanlizumab is a monoclonal antibody 

which prevents P-selectin, an adhesion molecule implicated in vaso-occlusion. The P-selectin 

inhibitor reduced pain crises from about 3 per year to 1.63. Voxelotor is a compound which 



 
14 

decreases hemoglobin polymerization rate and hemolysis by promoting HbS binding to oxygen. 

The RCT of Voxelotor increased hemoglobin level by 1.0g/dL (51%) compared to placebo110. 

 

Experimental therapies (Figure 6), such as gene therapy, revolve around two strategies. One 

strategy employs HbAT87Q (a synthetic hemoglobin with antisickling properties) injected into 

a patient’s stem cell and infused back into the patient after chemotherapy. While this therapy 

yielded a significant increase in hemoglobin and a reduction of pain crisis and vaso-occlusive 

events, 2 out of the 35 patients developed dysplastic features along with anemia. Another strategy 

is to increase HbF expression by decreasing the expression of BCL11A (a γ-globin repressor 

which regulates HbF levels)111. Patients who received this therapy saw their fetal hemoglobin 

level increase by 2-fold in 18 months and experienced no pain crisis112. Other gene modifying 

therapies such as CRISPR/Cas9 aim to correct the mutated hemoglobin gene113. Finally, pyruvate 

kinase, proinflammatory cytokine inhibitor114, and blockers of cellular adhesion115 are 

experimental approaches to treat the disease.  

 

 

 

 

 

 

 



 
15  

 

Fetal hemoglobin in SCD 

 

To understand the role of fetal hemoglobin in SCD, one must first understand the role of 

hemoglobin in humans. As the oxygen-carrying molecule, hemoglobin plays a vital role in 

humans. The tetramer most predominant in humans is adult hemoglobin (HbA), composed of 

two alpha chains and -globin chains (Figure 7). A gene cluster on chromosome 16 contains 

from 5’ to 3’ the embryonic ζ-globin gene, and the two adults (α- globin) genes. On chromosome 

11, we find the β-globin cluster with the embryonic gene (also known as ε-gene), two fetal γ-

globin genes, and the adult genes, δ, and β genes. Different combination of these genes results in 

different hemoglobin tetramer that are expressed at various stages of human development 

(embryonic (ζ2 ε2), fetal (α2 γ2), and adult life (α2 β2; α2 δ2)) through the locus control region 

(LCR) (Figure 7). Fetal hemoglobin is the predominant form of hemoglobin during the last two 

trimesters of pregnancy. 

In SCD, the polymerization of abnormal hemoglobin has some drastic consequences in 

patients. Red blood cells become dehydrated; they stick to the vasculature and ultimately lead to 

organ damage. X-ray crystallography studies have shown how fetal hemoglobin inhibits 

sickling116. Fetal hemoglobin’s antisickling properties stem from a mutation replacing Gln for a 

Figure 6. Current and future treatments for sickle cell anemia. Copied from Tisdale et al 2020. 
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Thr at position 87 causing the lessening of the hydrophobic reaction. Resulting in a reduce co-

polymerations.  

The work conducted by Tom Maniatis and George Stamatoyannopoulos has shaped our 

current understanding of the globin switch. After birth, BCL11A, and ZBTB7A initiate the switch 

by blocking LCR γ-globin transcription. This causes fetal hemoglobin expression to be repressed, 

and adult hemoglobin becomes the main form of hemoglobin. While some levels of HbF in 

healthy humans exist, they are minute (< 1% of total hemoglobin). HbA represents 97% of the 

total hemoglobin, with the remaining contribution from the minor form of hemoglobin 

(HbA2)117. In 1949, scientist Janet Watson uncovered the link between the protective effect of 

HbF and SCD complications. She observed that newborn didn’t show any complications until 6 

months of life. In 1994, epidemiological advancements brought to life a large prospective study 

on the role of fetal hemoglobin in sickle cell disease. The study followed 3,764 SCD individuals 

for close to seven decades from their date of birth118. The key result showed that higher levels of 

fetal hemoglobin confer greater survival rate. In addition to extending life expectancy, fetal 

hemoglobin was found to decrease painful crises, other co-morbidities (i.e., acute chest 

syndrome, and osteonecrosis).  

The advent of genetics, and genomics propelled our understanding of HbF in modern 

days. Common variation in twin studies revealed that HbF levels are hereditary ranging between 

60 to 90% of heritability. When genome-wide association studies (GWAS) came onto the scene, 

they completely transform the field. They showed that alleles at BCL11A, HBSL1-MYB, and HBB 

were causally associated with higher concentration of fetal hemoglobin119,120. Together they 

explain about 50% of the heritability of fetal hemoglobin (HbF). Several functional studies have 

cemented BCL11A as the key regulator of fetal hemoglobin levels. However, mouse knockout 

study and CRISPR-Cas9 mutagenesis also showed that ZBTB7A and ZNF410 are implicated in 

γ-globin gene repression11. To date, the largest GWAS of fetal hemoglobin across three ancestries 

adds up to 28,279 individuals with 3,963 SCD individuals121. A new locus on chromosome 2, 

BACH2, was identified as a regulator of HbF switching. BCL11A has become the main target for 

gene therapy in SCD. Whether it’s targeting BCL11A mRNA, BCL11A erythroid enhancer, or 

BCL11A binding site in γ-globin gene promoters, through CRISPR-Cas9 or a base editing 

approach the outcome is to raise HbF level by repressing BCL11A or mimic HPFH mutation. In 

fact, an ongoing clinical trial for SCD and -thalassemia by CRISPR and VERTEX therapeutics 

(CTX001), which targets the enhancer of BCL11A is showing promising results11. While 
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identifying new loci associated with fetal hemoglobin can uncover patient-to-patient variability, 

studying the mechanisms of red cell hydration can also provide additional insights.  

 

 

Red blood cell hydration in SCD 

 

The rate of hemoglobin polymerization and the sickling phenomena are important to red cell 

hydration. Eaton et colleagues, showed that while increasing Hb S concentration promotes 

sickling, red cell hydration reduces hemoglobin concentration. Although therapeutic intervention 

targeting the swelling of sickle red blood cell showed a reduction in polymerisation in vivo, this 

approach was not explored further in a clinical setting122.  

Dehydrated, dense red blood cells (DRBC) are defined as cells with increased mean corpuscular 

hemoglobin (MCHC) levels and decreased mean cell volume (MCV). DRBC are a distinctive 

feature of SCD patients and can explain the patient-to-patient heterogeneity. In fact, a study of 

~500 patients found that higher levels of DRBC raises the risk of renal dysfunction, leg ulcer and 

priapism123. Additionally, increased DRBC levels are protective against the malaria parasite 

Plasmodium falciparum 124,125. Limited information about the genetic of red cell density exists. 

A candidate gene approach and a genome-wide scan in 374 SCD patients failed to identify strong 

association due to the lack of power126. However, a nominal association with a SNP mapping to 

Figure 7 Globin switch in humans. A) Expression of human globins throughout development: 

hemoglobin switching occurs two times in human; one around the 6th week of gestation, when embryonic 

globins silence and HbE is replaced by HbF. The second switching occurs after birth, when HbF is almost 

entirely replaced by HbA. (B) Schematic representation of human globin loci and hemoglobins.  

Copied from Maria Mikropoulou, An shRNA Screen for the Discovery of Suppressors of Fetal 

Hemoglobin, 2016 
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an ATP2B4 enhancer, the main calcium channel pump in red blood cell was uncovered. Prior 

functional experiments found this enhancer to be causally implicated in modulating red cell 

volume and protecting against malaria infection127. 

To date, three key pathways are believed to be implicated in regulating red blood cell hydration 

in SCD patients. One of these pathways involves the potassium-chloride co-transporter also 

known as the KCC pathway. This transporter intermittently collaborates with the Gardos 

channel128-130 to move solutes (potassium, water, and chloride) in or outside of red blood cells. 

KCC has four isoforms SLC12A4/KCC1, SLC12A5/KCC2, SLC12A6/KCC3, and 

SLC12A7/KCC4, which are all present in human erythrocytes. Knockout models and molecular 

characterization of all its isoforms (KCC1, KCC2, KCC3, KCC4) shed light on its role. Of 

interest, knockout mouse KCC3 (-/-) 131 results in dysfunctional cell volume regulation in neurons 

and kidney tubular cells, which is accompanied by a loss of hearing acuity, and neurological 

disorders. Additionally, knockout KCC4 (-/-) 132 lead to deafness and tubular acidosis, and KCC2 

(-/-) 133 is lethal just after birth due to respiratory failures. 

The second pathway is the Gardos channel. The gene encodes the potassium calcium-activated 

channel subfamily N member 4 (KCNN4). In hypoxia, the red blood cell membrane allows 

extracellular calcium in and chloride out. This displacement of solutes has been linked to 

exacerbating the sickling process and thus the vaso-occlusive pathology129,134. Finally, a phase 

III clinical trial of 144 people targeting the Gardos channel with Senicapoc (ICA-17043) 135 

proved beneficial to SCD patients. Several blood parameters, namely, reticulocyte counts, 

hematocrit levels, DRBC, and hemoglobin levels, were improved. Unfortunately, since the trial 

aimed at reducing the number of painful crises, the drug didn’t move to the next phase of 

development. Finally, studies performed in mice and humans showed the promise and drugability 

of sickled cells.  

Lastly, and still a topic of ongoing debate, the deoxygenation-induced fluxes (P vsickle , Piezo-

1) pathway. Permeable to Na+, K+, Rb+, Ca2+ and Mg2+, and not to Zn2+ or Mn2+, the pathway 

is qualified as a monovalent, non-selective, and divalent cation conductance. The mechano-

sensitive ion channel, PIEZO1, appears to be the main channel for this pathway. Although some 

research shows that PIEZO1 is an important key to red cell volume homeostasis, knockout studies 

in the mouse and zebrafish showed a mild effect on MCHC. 

Metabolites in SCD 
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Metabolites represent the integration of gene expression, protein interaction, other regulatory 

processes, and the environment. They are, therefore, ideal for understanding and tracking by-

products of the physiological progression of diseases. Measuring metabolites in SCD patients 

can uncover the heterogeneity of sickle cell disease.  

In SCD, a handful of studies have leveraged metabolomic methodologies to tackle the patients’ 

clinical heterogeneity. Zhang et al. discovered elevated adenosine levels in the blood of both 

SCD patients and transgenic mice. Their study showed that higher adenosine levels exacerbated 

sickling, hemolysis, and organ damage136. Furthermore, the same research group discovered that 

sphingosine-1-phosphate (S1P) and 2,3-bisphosphoglycerate (2,3-BPG) blood concentrations are 

elevated in SCD patients and mice. This elevation leads to the re-programming of glycolysis and 

exacerbates the severity of the disease137,138 . Finally, Darghouth et al. conducted a 

comprehensive profiling of the metabolome in red blood cells (RBCs) from both healthy 

individuals and SCD patients. They identified a range of metabolites that underscore distinctions 

between the two groups, particularly in glycolysis, membrane turnover, as well as glutathione 

and nitric oxide metabolism139. Although exciting, these pioneering metabolomic studies were 

performed in a limited number of SCD patients (N = 14–30) and did not take advantage of MR 

methodology to address causality. 

More recently, L-glutamine received FDA approval. RBC from SCD patients have high oxidative 

stress and a compromised ability to counteract free radicals due to a low ratio of the reduction-

oxidation (redox) co-factor nicotinamide adenine dinucleotide (NAD) and its reduced form 

([NADH]:[NAD++NADH]) 140. L-glutamine is one of the most abundant amino acids in the 

human body, and its role in protein synthesis is required to synthesize NAD. Treatment with L-

glutamine increases the NAD redox ratio and reduces adhesion of sickle RBC to endothelial cells, 

a hallmark of vaso-occlusive painful crises109,141. Finally, the Lands' cycle is a significant 

biochemical pathway regulating the composition of erythrocyte membranes by utilizing two 

enzymes: lysophospholipid acyltransferases and phospholipase A2 (PLA2). In sickle cell disease, 

an excessive amount of PLA2 activity can modify the composition of erythrocyte membranes, 

increasing their lysophospholipid content and leading to sickling and inflammation142.  
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Methods for high dimensional molecular data analysis. 

Recent advancements in high-throughput technologies have revolutionized medicine. They 

enhanced our comprehension of biology (i.e., interpretation of GWAS results from variant to 

function), and enabled better disease risk stratification and biomarker discovery in Type 2 

diabetes and osteoarthritis143,144. The integration of various omics technologies, such as 

genomics, transcriptomics, and metabolomics, among others, can provide a more comprehensive 

understanding of disease processes. However, all forms of omics data require computational 

preprocessing before any meaningful biological insights can be derived. Typically, this 

preprocessing and the requisite quality control measures precede any form of statistical analysis. 

Pre-processing 

 

Next-generation sequencing (NGS) and mass spectrometry (MS) technology tend to 

introduce random variability in the data. If this variability is not properly accounted for, it can 

distort genuine biological signals, leading to potential issues in downstream analysis. 

Preprocessing and quality assurance are, therefore, crucial steps for data analysis. The origin of 

these errors depends on the bioassay and its biochemical properties. In DNA sequencing, for 

example, most errors arise from inaccurate base calls sequencing. Different companies have 

different biases; Illumina sequencers seem to have a bias for substitutions, while long-range 

sequencers like PacBio have a bias for insertions and deletions at the homopolymeric regions. 

Therefore, scoring quality bases and discarding poorer ones is an important first step in DNA 

sequencing analysis. Other sources of errors include adaptor contamination, duplicated reads, 

overrepresented sequence, and more. Many algorithms (FASTQC, Trimmomatic, CutAdapt, 

TrimGalore)145 exist to perform quality assessments and correct these errors.  

The quantification step transforms the quality-assessed raw data into quantitative values 

describing the abundance of the genetic variants, transcripts, or proteins. The purpose of this step 

is to ascertain the relative abundance of genetic variants, transcripts, or metabolites. For 

sequencing data, a typical procedure at this stage is to align and map reads to a reference genome 

with tools such as BWA or bowtie2146,147. 

This last step of preprocessing is a normalization step. For this thesis, we had access only 

to the raw data the metabolomics dataset. Therefore, our example for normalization is more 

applicable to the metabolomics datasets. To compare samples with each other and account for 

unwanted variability, the data needs to be normalized. For example, metabolites from different 
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families (fatty acids vs amino acids vs carbohydrates) are profiled using different ionization 

techniques. This will yield metabolite values with vastly different ranges. By normalizing, using 

inverse rank normal transformation, we can make the data more uniform and thus easier to 

contrast. 

 

Statistical genetics approaches  

 

Genome-wide association studies (GWAS) 

 

Genetic recombination and linkage disequilibrium 

 

The transmission of genes to the subsequent generation is determined by tightly wound DNA 

segments referred to as chromosomes. A healthy human possesses a total of 46 chromosomes, 

with each parent contributing half. During the formation of gametes, a phenomenon known as 

homologous recombination can occur, causing segments of DNA to be interchanged between 

each pair of chromosomes.148.  

Because of genetic recombination, alleles located within physical proximity on a chromosome 

have a higher likelihood of being inherited together. Thus, on a population scale, two alleles are 

more correlated to each other the closer they are to one another. This idea often confounds 

GWAS, as it can be challenging to know if a variant is causally associated with a phenotype or 

if it is located nearby the causal variant which is often inherited together. Figure 8 exemplifies 

the difficulty in distinguishing which among the highly correlated variants is the actual causal 

variant. Methods for fine-mapping and LD clumping are discussed in other sections. 
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Regression models 

 

GWAS are a powerful tool for dissecting the genetic architecture of a trait. Genetic associations 

refer to the association test between a SNP and a trait. The traits can be categorical (i.e., having 

or not having multiple sclerosis) or quantitative (i.e., height, weight, high-density lipoprotein 

cholesterol). For a given trait, the association will be significant if the disease frequency varies 

according to the genotype. This type of analysis highlights the region of the genome which 

influences the trait under consideration. For a quantitative trait, linear regression is employed to 

generate a test statistic, while for categorical traits, logistic regression is employed. SNP are 

tested individually with adjustment for covariates which can include age, weight, ancestry related 

Figure 8. Challenges in interpreting GWAS associations. Copied from Cano-Gamez et al 

(2020) From the top: Manhattan plot illustrates the association between genetic variants and a trait 

(e.g., a disease) at a genome-wide level (left panel) and within an example locus (right panel). 

Variants above the dotted line represent genome-wide significant associations. The panels below 

illustrate the main challenges in interpreting GWAS associations: high LD between variants 

(encoded in shades of red), variable levels of regulatory activity of the genomic regions across cell 

types (peaks of different heights represent different levels of activity of chromatin marks) and 

multiple genes within the associated locus. 
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principal components which could be confound the phenotype of interest. The equation for a 

quantitative association is as follows:  

 

E[y]=α+xcβc +xβ        (1.1) 

 

y ∼ N(μ, σ2)         (1.2) 

 

y is a vector of phenotype values, xc represents a matrix of covariate values across individuals, 

x is the genotypes of a given individual encoded as 0 for homozygous reference allele, 1 for 

heterozygous alternate allele, or 2 homozygous alternate allele. The intercept, the effect sizes of 

the genotype and covariates to be estimated are represented by α, β, βc respectively. For 

categorical association (binary traits) the equation is as follows: 

 

E[y] = 
1

1+𝑒
−

(𝛼+𝑥𝑐𝛽𝑐 +𝑥𝛽+𝜀)
      (1.3) 

 

    y ∼B(p)        (1.4) 

 

y is a vector of 0s, and 1s. with equation 1.1 being modified to fit a sigmoid function for logistic 

regression. A linear mixed model must be utilized, taking into account adjustments for sample 

relatedness using a genetic relatedness matrix (GRM). Since the GRM varies among samples - 

given that some are more related than others - a random effect model can sufficiently account for 

this variance. 

 

Homoscedascity and heteroscedasticity 

The homoscedasticity is a statistical concept that refers to the assumption that the variability of 

error terms, or residuals, is the same across all levels of an independent variable. This means that 

the spread or dispersion of your data is consistent across your dataset. In contrast, 

heteroscedasticity occurs when the size or spread of the residuals varies at different levels of the 
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independent variables. This can violate the assumptions of linear regression and may result in 

inefficient or biased parameter estimates. To ensure accurate results, it's important to check for 

homoscedasticity when performing regression analysis. If the assumption is violated, other 

methods, such as transforming the dependent variable or using a heteroscedasticity-consistent 

standard error estimate, might be more appropriate. 

 

Normal distribution of residuals 

 

The residuals of the model are assumed to be normally distributed, in the context of my analysis 

the dependent variable (phenotype to be tested) is transformed to be normally distributed by an 

inverse-normal quantile transformation. This assists in maintaining a normal distribution of 

residuals, assuming there isn't a significant departure from the homoscedasticity assumption. As 

previously discussed, this is improbable since the variance explained by any single variant being 

tested is low. 

 

Representation of GWAS results 

 

The standard presentation of GWAS results includes two types of p-value plots: Manhattan plots 

and quantile-quantile (QQ) plots. Manhattan plots depict the p-values of the entire GWAS on a 

genomic scale (Figure 9b). The p-values are arranged in genomic order by chromosome and 

position on the chromosome along the x-axis. The value on the y-axis displays the -log10 of the 

p-value (which is equal to the number of zeros after the decimal point plus one). Since genetic 

variants are locally correlated due to infrequent genetic recombination, significant p-values tend 

to form high spikes on the Manhattan plot (red dots on chromosome 2 of Figure 9b), giving the 

graph the appearance of a Manhattan skyline. 

 

The QQ plot is a visual representation of the divergence between observed p-values and the null 

hypothesis. It works by arranging the observed p-values for each SNP in descending order and 

plotting them against the expected values derived from a theoretical χ2-distribution. If the 

observed values match the expected values, then all data points would lie near the middle line 

between the x-axis and the y-axis, which is the null hypothesis (as shown in the light gray line in 

Figure 9a). However, if some observed p-values are much more significant than expected under 

the null hypothesis, the data points will shift towards the y-axis, as depicted in Figure 9a. If there 
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is an early deviation of the observed from the expected (as seen in Figure 9a), it implies that 

many moderately significant p-values are more significant than expected under the null 

hypothesis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Multiple testing 

 

In the frequentist approach, statistical tests of a null hypothesis are considered significant if the 

p-value of association is below a pre-set threshold, typically 5%. If the statistical model's 

assumptions are correct, this method would wrongly reject the null hypothesis (yield a false 

positive result) in 5% of cases. In a GWAS analysis, each SNP is tested independently for an 

association, resulting in many simultaneous tests, and increasing the total number of false 

positives if the 5% p-value threshold is maintained. To minimize false positive results, I adjusted 

Figure 9. GWAS of proportion of F-cells in SIT Trial cohort (a sickle cell disease 

cohort). Copied from Bhatnagar et al (2011). Summary of the genome-wide association 

results of the proportion of F-cells in the SIT Trial cohort. (a) Q–Q plot of the observed 

versus the expected P-values from an additive genetic model for the entire set of 660 740 

SNPs (red), and after removing genome-wide significant and their neighboring±100 kb 

region SNPs (yellow). (b) Manhattan plot for F-cells association results plotted against the 

position on each chromosome. The red color peak on chromosome 2 corresponds to the 

BCL11A region (±100 kb SNPs from rs6706648) and the red horizontal line represents a 

permutation-based genome-wide significant threshold (P-value <1.27 × 10−7). 
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the 5% p-value threshold by dividing it by the number of effective independent tests, which is 

also known as the Bonferroni correction. In a GWAS analysis, testing a high number of imputed 

variants means that many of these variants are highly correlated. Thus, the number of effective 

independent tests is less than the total number of variants tested for association, and the number 

of effective independent tests varies considerably depending on the MAF threshold. Studies that 

include many rare variants will carry out more independent tests since rare variants are less likely 

to be in LD with nearby variants. Alternative approaches have been proposed to estimate 

genome-wide significance threshold.  

 

Conditional analysis 

 

Conditional analysis allows to identify how many GWAS signals are present at a given locus and 

which variants are representative of the signal. Conditional analyses are not able to confirm the 

causal nature of a variant, only with follow-up experiment can this be done. We are, however, 

able to identify a credible set of variant with methods such as FINEMAP149, CAVIAR150, 

PAINTOR151 and SuSIE152 which give us a list of variants likely to contain the causal variant. 

We can group conditional analysis into two categories, those with summary statistics GWAS like 

GTCA153 and those with participant level genotypic information. Methods like GTCA rely on 

reference populations to perform the conditional analysis, whereas with conditional analyses 

without summary statistics rely on the LD pattern from the participant genotyped. This approach 

adjusts for regional association signal based on a set of variants in the locus by including the lead 

variant as a covariate in the regression model. In situations where several association signals are 

present, forward stepwise selection is performed until no associations remain154.  

 

History of GWAS in SCD 

 

The first GWAS of sickle cell disease dates back to the discovery of BCL11A and its contribution 

to HbF levels in 2007155,156, and pain crises in 2008119. We reviewed the important association 

studies in fetal hemoglobin, in metabolites, and red blood cell hydration in previous sections. In 

this section, we considered GWAS studies in SCD patients with replication. Since then, many 

mutations have been successfully identified including with bilirubin (UGT1A) which increases 

the risk of gallbladder disease in SCD157,158. SNPs in four genes were retained as modifier of the 

risk of stroke (TGFBR3, TEK, ANXA2, ADCY9) were identified as risk factors for strokes159. Two 

genes APOL1, and HMOX1 have been confirmed as major regulator of kidney disease160,161. 
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Further analyses should investigate rare variants or common variants with weaker effect size to 

find new associations with SCD complications, but also integrate the GWAS results with 

additional omics to gather a more complete picture of the role of these variants. A detailed review 

of known sickle cell disease genetic modifier replicated or not examining multiple SCD relevant 

phenotypes was recently published by Pincez et al (2022)162. 

 

Interpretation of GWAS 

 

With the advent of cost-effective massively parallel genotyping arrays able to genotype millions 

of SNPs, cataloguing of human genetic variation in projects such as TOPMed163, and robust 

statistical framework164-166, we have witnessed a considerable increase in the number of 

association studies (Figure 10)167. As the number of samples increases, there is a greater need to 

interpret the results to create new scientific discoveries. We can group the main challenges of 

GWAS interpretation into three categories; (1) understanding the biological mechanism of the 

SNP and the tissue specificity, (2) confidently linking a SNP of interest to a gene through which 

it is acting, (3) estimating causal link between a risk factor and the disease risk. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10.  Average sample size and average number of genome-wide significant (GWS) loci per 

publication for each year during the 15 years history of GWAS discoveries. The data were extracted 

from 5,771 GWAS publications that used a genome-wide genotyping array and shared their summary 

statistics on GWAS Catalog before November 8, 2022. Copied from Abdellaouiet al (2023). 
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(1) Understanding genetic associations with colocalization analysis. Genetic colocalization 

analysis is a method used to investigate whether the same underlying causal variant influences 

different phenotypes that share a genetic association in the same location. In my research, I aim 

to gain a better understanding of the genetic associations related to various SCD-related 

haematological phenotypes. In this thesis, I don’t employ colocalization, and more detailed 

review of how such method works can be found by Zuber et al (2022)168.  

 

(2) Although GWAS can provide important information about genes that contribute to a specific 

phenotype, it can be difficult to determine which gene is specifically responsible for the effect of 

an associated variant. This is because the variant may be located close to or overlapping multiple 

genes, or it may be located far away from the nearest gene. This presents a challenge in 

identifying the biological mechanism that is responsible for the associations identified by GWAS, 

particularly since it may not be clear which tissues are affected by the mechanism and how it 

leads to changes in the phenotype. To fully understand the biological mechanism behind genetic 

associations, it is important to identify the gene that is being modulated. There are two primary 

approaches to identifying the probable mediating gene(s) for a genetic variant. 

 

• Mapping a variant within proximal distance from a gene can be done using an annotation 

software such as variant effect predictor (VEP)169 : 

 

• Integrating GWAS loci with additional omics datasets, gene expression, protein 

expression, open chromatin regions. Since a variant can overlap with multiple genes, 

some of which may not be expressed in a relevant tissue, it is advisable to combine genetic 

mapping with integrative analyses. 

 

(3) Mendelian randomization (MR) 

 

Mendelian randomization is a statistical epidemiology method that allows the estimation of a 

causal relationship between an exposure (i.e., HDL cholesterol) and an outcome (cardiovascular 

disease) using genetic variants across populations. Mendelian randomization relies on the natural, 

random assortment of genetic variants during meiosis. This is such that some individuals are 

naturally assigned alleles at birth that affect disease risks while others are not. MR mimics 

randomized clinical trials as it harnesses the random allocation of parental alleles when passed 
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on to their offspring (Figure 11). Therefore, alleles are randomly and independently distributed 

in the population and free from potential confounders. One of the success stories of MR is that 

of LDL-cholesterol and the risk of a heart attack170. Several R packages implementing MR exist 

and allow the sensitivity analysis to be performed 171-173. 

 

 

(3.1) Instrumental variables 

Instrumental variables (IVs) are independent genetic variants associated with the exposure of 

interest. Inverse variance weighted (IVW) MR model is used to assess the causal association 

between the exposure and outcome of interest. The following three assumptions must hold for a 

genetic variant to be a valid IV174 (Figure 12):  

 

1. The variant must be strongly associated with the exposure. 

 

Figure 11 An overview of MR studies. Copied from Sanderson et al 2022.  This overview compares and 

contrasts the parallels between Mendelian randomization (MR) and randomized controlled trials (RCTs). In MR, 

randomization is due to the random allocation of alleles. This conceptualization was originally based on between-

sibling variation, where allocation of alleles is random and not dependent on population-level variation (see also 

BOX 1). Inference from MR in this way relies on the assumption of gene–environment equivalence — that a 

change in the exposure caused by genetic variation has the same effect on the outcome as a change in that 

exposure caused by environmental factors. 
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2. The variant must be independent of any measured or unmeasured confounding factors which 

influence both the exposure and outcome.  

 

3. The variant must not influence the outcome through any pathway other than the chosen 

exposure, often termed the ‘exclusion restriction criterion’.  

Assumption 1) can be verified by looking at SNPs’ p-value. However, assumptions 2) and 3) are 

more difficult to ascertain because they rely on factors which may not be measured. If, for 

instance, a genetic variant affects another unknown factor that also influences the outcome, 

assumption 2) would be violated. Likewise, if the genetic variant is linked with modifications in 

an unmeasured confounding factor that affects both the outcome and exposure, it could create an 

apparent causal link between the exposure and the outcome. Since we are analyzing complex 

traits assumption 3) is hardly ever valid; variants usually have pleiotropic effects, which implies 

they affect various traits and phenotypes. In the context of IVW analysis assumption 3) is relaxed 

to assume ‘balanced pleiotropy’ between all instrumental variables. Balanced pleiotropy implies 

that the total amount of pleiotropy among all instrumental variables should equal zero. One way 

to test this is to use a funnel plot for qualitative assessment or MR-Egger, an extended version of 

the IVW model, for quantitative analysis, which allows the regression line intercept to vary. 

(3.2) Mendelian randomization models  

Overall, many MR models exist, each of which differed slightly in estimating the causal effect 

between the exposure and outcome. In this thesis I employed IVW, median based, mode based 

and MR egger regression: 

Inverse variance weighted  

 

IVW MR begins by calculating a Wald ratio between exposure and outcome for each 

instrumental variable:  

𝜃𝑗 =
𝛽̂𝑌𝑗

𝛽̂𝑋𝑗

      (1.5) 

Where j is an index over all instrumental variables, 𝛽̂𝑌𝑗 is the estimated effect size of variant j on 

the outcome, and 𝛽̂𝑋𝑗 is the estimated effect size of that variant on the exposure. As part of a 
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GWAS analysis, the determination of the effect sizes of variants on a phenotype (whether 

exposure or outcome) is conducted. These ratio of association estimates are meta-analyzed for 

each variant to estimate the overall causal association as IVW follows:  

 

  

     𝜃𝐼𝑉𝑊 =
Σ𝑗𝛽̂𝑋𝑗

2 𝑠𝑒(𝛽̂𝑌𝑗
)−2𝜃̂𝑗

Σ𝑗𝛽̂𝑋𝑗
2 𝑠𝑒(𝛽̂𝑌𝑗

)−2      (1.6) 

The individual ratios are weighted by their associated uncertainty 𝛽̂𝑋𝑗

2 𝑠𝑒(𝛽̂𝑌𝑗
)−2. This is such that a 

variant with a small effect on the exposure and highly uncertain influence on the outcome is a 

down-weighted in the overall causal estimate. 

 

Other models of MR exist and can be grouped into four categories: weak instrument robust 

methods (i.e., MR RAPS, NOME adjustments), outlier selection and removal (i.e., weighted 

mode, MR LASSO, Steiger), outlier adjustment (MR PRESSO, MR Robust, MRMix), estimation 

adjustment (i.e., MR Egger, multivariable MR, Bayes MR) and environmental control adjustment 

(i.e., MR GxE, MR GENIUS)174. 
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Association-based approaches  

Data-driven clustering 

Multiple data driven approaches exist for clustering gene expression data. We can categorize 

clustering algorithms into four distinct groups: graph-based clustering, representative-based 

clustering, hierarchical clustering, and density-based clustering. Clustering algorithms based on 

graphs utilize structures reminiscent of graphs, such as K-nearest-neighbor graphs or affinity 

graphs, to assemble genes that exhibit strong connections within this graph-like framework. 

Techniques rooted in representation iterate the process of enhancing both cluster assignments 

and a representative entity (like the centroid) for each cluster. Hierarchical clustering strategies 

craft a hierarchical structure for all genes in the expression matrix. Meanwhile, density-based 

methodologies identify modules by scrutinizing areas with concentrated high density. It's 

important to recognize that certain clustering methods integrate elements from multiple 

categories, showcasing a blend of approaches. A team of researcher in Belgium, Saelens et al. 

2018, has found that all clustering approaches except for the density-based clustering perform 

Figure 12. The three principles of instrumental variable analysis: the instrumental variable 

(in this case a genetic variant either in isolation or in combination with other variants) must 

associate with the exposure; the instrumental variable must not associate with confounders that 

are either known or unknown (U); and there is no pathway from the single nucleotide 

polymorphism (SNP) to disease that does not include the exposure of interest. This figure is a 

schematic representation and should not be interpreted as a formal directed acyclic graph. 
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the similarly. In our metabolomics experiment, we wanted to ask which metabolites cluster 

together based on their profiles and how these clusters can inform us about SCD 

pathophysiology. Graph-based methods such as weighted gene co-expression network analysis 

(WGCNA), multiscale embedded gene co-expression network analysis (MEGENA), and 

bipartite clustering represent a few data-driven methods that can generate insights into molecular 

data generated on populations of individuals175-179. The objective of these methods is to identify 

clusters or networks of molecular features, such as metabolites, that are more similarly related to 

each other than to any other features under consideration. For computational efficiency, most of 

these methods assume that a given gene can only be represented in one cluster across all the 

samples. WGNCA, with over 9,000 citations as of August 2021 according to Google Scholar, 

and ranked in the top 1% in the academic field of computer science, is an extensively utilized 

clustering method. WGCNA offers a versatile toolkit for investigating network module 

structures, quantifying the associations between genes and modules through module membership 

details, probing the interconnections among different modules using eigengene networks, and 

arranging genes or modules in a prioritized order, such as based on their relevance to a specific 

sample trait. Additionally, WGCNA can facilitate the formulation of hypotheses that are 

amenable to empirical validation using external datasets. As an illustrative instance, WGCNA 

might propose a potential correlation between a module, potentially representing a hypothetical 

pathway, and the outcome of a particular disease, thereby presenting opportunities for further 

substantiation. This approach starts with computing the correlation between all metabolite pairs 

accounting for the correlation of metabolites with one another. Then to magnify and improve the 

signal-to-noise ratio, the correlation matrix is raised to a given power (Beta). The Beta is selected 

in such a way that the adjacency matrix (correlation matrix raised to the power of Beta) follows 

a scale-free topology. With a few metabolites having a high number of connections. Then, the 

adjacency matrix is transformed into a topological overlap map (TOM), which captures both 

direct and indirect interactions. Hierarchical clustering is then applied to the TOM to organize 

the metabolites into modules. Generally, as part of the module identification procedure applied 

to the hierarchical cluster tree, random colors are assigned to signify each cluster. Metabolites 

that do not fit into any module (indicating the gene is not expressed or does not co-vary well 

enough with any other metabolite) are assigned to a “grey module” (metabolites that did not meet 

the module inclusion threshold). Figure 13 recapitulates the steps. 
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Figure 13. Overview of WGCNA methodology. Copied from Langfelder, 

P. et al (2008). This flowchart presents a brief overview of the main steps of 

Weighted Gene Co-expression Network Analysis. 
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Leveraging multi-omics approaches 

Array-based genotyping 

 

Genotyping array technologies are based on probes which target known single-nucleotide 

polymorphism180. Even though different technologies employ different assays, they all hybridize 

probes to select a SNP. Different colors enable the detection of A/T or G/C or of probe mismatch. 

A larger number of arrays are being commercialized each year, each looking at specific regions 

of the genome. Even though these SNP array target between 0.001% to 0.1% of the genome181, 

their utility is of high value. This is because they rely on linkage disequilibrium (LD). LD 

describes the role of meiotic recombination events on inherited haplotypes. As humans evolved 

and recombination events occurred, regions with fewer recombination events led to structure 

between parts of the genome that correlated more with each other than it expected by chance182. 

This concept can be leveraged to strategically genotype SNPs that tag LD blocks.  These blocks 

can then be used to impute other bases, although they were not directly typed183. Detailed 

genotype quality control steps have been reviewed elsewhere184. 

 

Imputation of genetic variants 

 

Imputation allows the prediction of genotypes which were not directly typed. Imputation 

leverages the LD pattern amongst variants from a reference population to infer the genotypes. To 

ensure the imputation is performed correctly, the reference population and the imputed 

population must have similar ancestry. The first step of imputation is phasing (Figure 14), which 

estimates the contiguous regions of DNA with little evidence of recombination along the genome 

in the reference population. Once those regions are estimated, haplotypes from the reference 

population are used to impute missing genotypes in the sample population. The information 

(INFO) score metric, which ranges between 0 and 1 (with 0 meaning there is a lot of complete 

uncertainty about the genotype while 1 mean no uncertainty about the genotype imputation), is 

used to estimate the accuracy of the imputed genotypes. Using a variant’s info score we can 

determine the power of association test185. Examples of reference panels including African 

ancestry populations include 1000G, TOPMed, HAPMAP, and CAAPA.  
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Figure 14. Schematic of steps for imputation of genotype data to estimate missing variants. Copied from 

Marchini et al 2010. a) Genotype data from the sample population with missing genotypes represented by question 

marks. b) Testing for an association signal using genotype data alone results in no association peak. c) Using a set 

of reference haplotypes from d) genotype data is phased to determine haplotypes present at each position along the 

genome. Three phased individuals are represented in the figure, each genome is a mosaic of haplotypes from the 

reference population. d) Reference haplotypes are defined from whole genome sequencing of a population with 

similar ancestry to the sample population. e) Missing variants in the genotyped sample population are estimated 

using the imputation procedure, with imputed variants highlighted in orange. f) In this example, testing for 

association of genotyped and imputed SNPs results in an association signal which was not identified before.  

 

RNA-sequencing 

 

RNA sequencing is considered a breakthrough for studying RNA. In 1965, Robert Holley et al 

were the first to publish a sequence of 77 alanine transfer RNA186 which required 7 years to 

characterize. While we had to wait more than 20 years for the first automatic DNA sequencer to 

be commercially available, the advent of methods such as polymerase chain reaction (PCR), 

inverse transcriptase, and Taq polymerase allowed the first study using cDNA to sequence 397 

nucleotides known as expressed sequence tags to be published187. The process involves 

converting RNA into cDNA and then sequencing the cDNA using short read sequencing RNA-

seq allows for a direct estimation of the number of RNA molecules for a given gene. This process 

quantifies the expression levels of transcripts and generates tens of millions of reads which are 
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then assembled and aligned to a reference genome. Several pros and cons exist for the method188. 

One advantage is the fact we can easily detect different isoforms, ascertain circular RNA, long 

non-coding RNA, and bacterial genes189. Various tools are available for assessing differential 

expression, as well as visualizing and interpreting RNA-seq data190,191. The first step, mapping 

of reads, is often performed with Bowtie, HISAT2, STAR, TopHat192-196. The second step counts 

the number of raw reads aligned using featureCounts197 or HTseq198. Given that the raw number 

of reads can be biased by the size of the transcript, the reads number are normalized, Fragment 

per kilobase of exon per million mapped reads (FPKM) or transcripts per million (TPM)197. 

Software tools such as Cufflinks, DeSEQ2 or RSEM are employed to normalize counts to FPKM 

or TPM and compute differential expression. 

 

Metabolomics 

 

Metabolomics is the study of metabolites, the intermediary products of metabolism. Metabolites 

are usually measured after multiple steps of quenching and extractions199, using either nuclear 

magnetic resonance (NMR) based approaches or mass spectrometry methods in tandem with 

liquid chromatography (LC) or gas chromatography (GC)200. Metabolites are small molecules 

which reflect an individual’s physiological processes. Samples can originate from feces, saliva, 

tissue, urine, blood, and breath. Data collection can be performed using a targeted approach, 

where metabolites are compared to internal standards, or belong to a pre-selected family of 

metabolites (amino acids, bile acids, or lipids). Gathering data can also be performed through an 

untargeted approach. Depending on whether the analysis requires hypothesis generation or 

specific hypotheses are being tested, supervised or unsupervised analyses can be performed. 

Tools such as MetaboAnalyst, WGCNA, and databases such as KEGG, and HMDB available for 

metabolomics analyses are reviewed in great details here201,202.  
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Research questions and outline of the thesis 

 

Sickle cell disease (SCD) is a genetic disorder caused by a point mutation in the -globin gene. It 

affects more than 300,000 newborns each year, with half of them tragically succumbing before 

reaching the age of five years. The complications related to the disease are systemic as they affect 

multiple organ systems. While some treatments exist to cure the disease, the clinical 

heterogeneity remains a puzzle. We decided to look at the genetics of fetal hemoglobin (HbF), 

red cell density (DRBC), and metabolites to unravel the heterogeneity in SCD. 

 

Hypothesis: (1) The remaining variation in fetal hemoglobin could explain the remaining 

heterogeneity in sickle cell disease. 

(2) Identifying red blood cell density loci will inform on therapeutic agents complementary to 

HbF's. 

(3) In 2017, the FDA approved L-glutamine, which became the first metabolite approved for 

treating sickle cell disease. We hypothesize that metabolomics combined with genomics can aid 

in identifying drug targets for SCD patients. 

 

General objective: Identify new genes and molecules that influence SCD heterogeneity. 

 

Specific objectives: First, I applied stepwise conditioning on the three-main HbF loci (BCL11A, 

HBSL1-MYB, HBB) (Chapter 2) to discover new FH regulatory loci. Then, I evaluate drug targets 

controlling RBC hydration (Chapter 3) prioritizing GWAS and ExWAS genetic variation. Then, 

I estimate the causal role of L-glutamine in painful crises in SCD using Mendelian randomization 

(Chapter 4). Moreover, I used weighted gene co-expression network analysis (WGCNA) to 

identify metabolite clusters influencing RBC traits (Chapter 5). Finally, I explored the role of 

rare coding in hereditary spherocytosis (Annex E), and I characterized the effect of a common 

gain of function mutation on red blood cell density (Annex F). 

 

Expected impact:  

-Provide insights into the genetic complexity of SCD disease modifiers. 

-Estimate the causal relationship between metabolites and the SCD-related diseases. 

-Inform on the therapeutic interventions to treat SCD-related complications. 
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Chapter 2: Multi-ancestry meta-analysis identifies three novel 

loci associated with fetal hemoglobin levels 

 

The following article is intended to be submitted in the journal, American Journal of Human 

Genetics. In this article, to identify novel genetic regulators of HbF levels, we combined 

association results at 24,272,278 variants (“combined” minor allele frequency (MAF) ≥1%) from 

5,903 European-ancestry individuals from the SardiNIA Study203 and 3,740 SCD participants, 

mostly of African descent. Because of the genetic heterogeneity in these populations, we used 

PCs as covariates and opted to analyze each study individually. For the meta-analysis, we used 

MR-MEGA, which was developed to account for ancestry differences to maximize discovery 

power in GWAS 204.  Additionally, we performed whole exome sequencing (WES) association 

testing in 1,354 SCD patients. In this study, the GWAS section involved conducting genotype 

quality control, phenotype harmonization and normalization, imputation, performing the 

conditioning analysis on each SCD cohort, running the cohort-specific GWAS and finally the 

meta-analysis. I performed all the previously described steps, except for the meta-analysis which 

was performed by Ken Sin Lo (co-author). He also generated the plots for the meta-analysis, and 

the UMAP. In the WES section, I conducted the quality control of the exome sequences, the 

exome-wide association analysis, the phenotype normalization, and plotted all the results. 
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ABSTRACT 

Sickle cell disease (SCD) affects millions of individuals worldwide. It affects more than 300,000 

newborns each year, half of whom will die before five. The complications related to the disease 

are systemic as they affect multiple organ systems. SCD patients with elevated fetal hemoglobin 

(HbF) levels present better clinical course and survival, therefore understanding the genetics of 

HbF could offer curative therapies. Genome-wide association studies yielded the first insights 

into humans' genic modulation of HbF. In fact, across different ancestries, loci at BCL11A, 

HBSL1-MYB, and HBB account for at least 50% of the variability of fetal hemoglobin levels. 

Leveraging the power of genome-wide association studies, we investigated the role of rare and 

common genetic variants regulating HbF levels in 9,643 imputed individuals of African and 

European ancestry and in 1,354 exomes from SCD patients. To identify novel genetic regulators 

of HbF levels, we combined association results at 24,272,278 variants from 5,903 European-

ancestry individuals from the SardiNIA Study and 3,740 SCD participants, mostly of African 

descent. Because of the genetic heterogeneity in these populations, we used PCs as covariates 

and opted to analyze each study individually. For the meta-analysis, we used MR-MEGA, which 

was developed to account for ancestry differences to maximize discovery power in GWAS. We 

also focused our downstream analyses on association results conditioned on genotypes at the 

known HbF loci (BCL11A, HBS1L-MYB, β-globin). This strategy identified three loci that 

reached genome-wide significance (P≤5x10-8): chromosome 10 in BICC1, chromosome 19 near 

KLF1 and chromosome 22 between CECR2 and SLC25A18. The SardiNIA study previously 

reported an association between a rare intronic variant in NFIX on chromosome 19 

(rs183437571) and HbF levels. This variant is not associated with HbF levels in SCD patients 

(MAF=0.0052, P=0.66), and is also not in linkage disequilibrium with the sentinel variant 

(rs4804210) that we identified in our multi-ancestry HbF meta-analysis (r2 in European- ancestry 

populations = 0.027; r2 in African-ancestry populations = 0). For the whole-exome association 

study, no variants identified reached exome-wide significance levels. However, our qualitative 

analysis highlighted a variant in DMNT1, which could be considered a hereditary persistence of 

fetal hemoglobin (HPFH) mutation. This GWAS represents the second to the largest meta-

analysis of HbF (N=9,643) and the largest for SCD patients (N=3,704). It is also the largest 

whole-exome study in SCD patients. The highlighted loci could lead to therapeutic drug targets 

and therapies to lessen the severity of SCD.  
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INTRODUCTION 

 

β-hemoglobinopathies are established anemias caused by single mutations or short deletions205 

in the adult β-globin gene. β-thalassemia and sickle cell disease (SCD) are the most common 

hemoglobinopathies. SCD results from a structural alteration (glutamine-valine substitution at 

codon 6) in the β-globin protein. Individuals affected by SCD suffer chronic and acute 

complications, leading to organ damage and death. Worldwide it is estimated that over a quarter 

billion individuals carry the mutation, and upwards of 300,000 new babies are born every year206. 

The clinical heterogeneity of the disease remains a puzzle as some individuals are asymptomatic 

while others experience severe and devasting forms of the disease. Observational studies showed 

the benefits of fetal γ-globin gene expression in ameliorating clinical manifestation in both 

disorders118. Therefore, understanding how the γ-globin gene is silenced can enable the 

development of new therapeutic interventions.  

In 2007 and 2008, genome-wide association studies unearthed the first loci of fetal 

hemoglobin119,155,156. These reports pointed to three regions of the human genome: BCL11A on 

2p, the intergenic region HBSL1-MYB on 6q, and HBB on 11p. These three loci account for at 

least 50% of the genetic variation of fetal hemoglobin across populations11. Since then, 

association analyses in healthy Europeans unearthed proteins encoding nuclear factor I X, 

NFIX207 and glutathione-specific gamma-glutamylcyclotransferase 2, CHAC2208. Additionally, 

DNA methyltransferase 1 (DNMT1), previously reported to epigenetically silence -globin 

through methyltransferease maintenance209,210, was recently identified in an exome-wide 

association study of Chinese β-thalassemia patients211.  

Outside of association studies, functional studies in erythroid progenitors or mice identified novel 

HbF regulators. These include Kruppel-like factor (KLF1), Pokemon ZBTB7A, RNA-binding 

protein LIN28B, heme-regulated inhibitor HRI (also known as EIF2AK1), and zinc-finger protein 

(ZNF) 410, ZNF410 212-216.  

Although the prevalence of SCD is elevated in African patients, the population continues to be 

underrepresented. The genetic diversity in African-ancestry individuals could provide unique 

insights into the therapeutic target and better predictive tools for clinical outcomes. We, therefore, 

decided to pursue a meta-analysis of fetal hemoglobin in African SCD (N=3,740) patients and 

healthy Sardinian patients.  
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METHODS 

 

Study Participants 

 

The study aimed to identify and characterize common and rare DNA polymorphisms associated 

with fetal hemoglobin (HbF) levels. This meta-analysis comprised 9,338 participants: a detailed 

description of the participating cohorts is provided in Supplementary Table 1. The whole-

exome sequence analysis contained 1,354 participants. Sample collections and procedures were 

in accordance with the committees' institutional and national ethical standards, and proper 

informed consent was obtained. The project was approved by the Montreal Heart Institute Ethics 

Committee (project #09-1137).  

 

DNA genotyping and quality-control steps 

 

Participants from the studies were genotyped on different genotyping arrays and at other 

locations. The Cooperative Study of Sickle Cell Disease (CSSCD), the Tanzania cohort and the 

SardiNIA study were described elsewhere 203,217. In addition, DNA samples of participants from 

GEN-MOD, Mondor/Lyon, the Multicenter Study of Hydroxyurea in Sickle Cell Anemia 

(MSH), the Adult Sickle Cell Center at Georgia Health Sciences University (GHSU), and the 

Jamaica Sickle Cell Cohort Study (JSCCS) were genotyped on the Illumina Infinium 

HumanOmni2.5Exome-8v1.1 array at the Montreal Heart Institute Pharmacogenomics Center. 

We performed quality control using PLINK218, removing SNPs with Hardy-Weinberg P<1×10−7 

and genotyping rate <90%. After quality control, we imputed genotyped using reference AFR 

haplotypes from TOPMed Freeze5 GRCh38/hg38 and Minimac4 (v1.2.4) as implemented on the 

TOPMed imputation server163. For downstream analyses, we only considered variants with 

imputation quality Rsq >0.3. 

 

Whole-exome DNA sequencing and quality-control steps 

 

Study samples  
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We combined five cohorts (GEN-MOD, the Duke University Outcome Modifying Genes 

(OMG), the CSSCD, Differential Response to Hydroxyurea and Incidence of Stroke in Sickle 

Cell Disease (CIP, dbGaP Study Accession: phs000691.v2.p1), and Mondor/Lyon sickle cohort) 

sequenced at different time points and using different sequencing captures. We modelled our 

quality control steps after the Exome Aggregation Consortium (ExaC)219. 

 

Alignment and BAM processing, base quality recalibration, variant calling, and variant-quality 

score recalibration (VQSR) were performed using GATK best practices pipeline.  

Sample quality control and selection utilized a common set of SNPs to ascertain ancestry 

concordance onto the 1000 Genomes dataset. Sample relatedness was calculated through kinship 

matrices in KING220. Variants were annotated with Variant Effect Predictor version 101. VEP's 

plugin (LOFTEE, SpliceAI, SIFT, Polyphen2, and MaxEnt)169 were then used to predict 

deleteriousness. Finally, we retained high-quality variants as defined in EXAc's pipeline219. Any 

downstream analyses considered 985,119 high-quality variants.  

 

Genetic association analyses (GWAS) 

 

Within each cohort, we corrected fetal hemoglobin (HbF) levels for age, sex and β-globin 

genotypes (if appropriate in sickle cell disease (SCD) patients). We then normalized the residuals 

using inverse normal transformation to create HbF z-scores. HbF was measured in SCD patients 

not taking hydroxyurea. To condition the known HbF regulators (genetic variants at chr2-

BCL11A, chr6-HBS1L-MYB and chr11-β-globin), we regressed out genotypes from HbF-

associated variants at these loci from the HbF z-scores (using a stepwise approach with variants 

within a 1-Mb window centered on the strongest association signal). We calculated association 

statistics using linear regression (imputation dose, additive model) implemented in rvtests166 and 

the first ten principal components as covariates. We used MR-MEGA to perform multi-ancestry 

meta-analyses204. To fine-map association results to calculate posterior inclusion probabilities 

(PIP) and create 95% credible sets, we used the approximate Bayes factor method as described 

previously221. 

 

Exome-wide association analyses (ExWAS) 
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Study population and phenotypes 

 

The downstream analysis focused on SNPs with minor allele frequency (MAF) <1% (as 

calculated based on SCD individuals in this whole exome sequencing study) and excluded 

variants and samples with low genotyping rate (<95%). Additionally, SNPs deviating from 

Hardy-Weinberg equilibrium (P<1x10-7) were not kept. Fetal hemoglobin percentage (% HbF) 

was measured using high-performance liquid chromatography across all cohorts. For the 

association test, %HbF levels were quantile normalized.  

 

Single-variant association analysis 

 

A total of 1,354 individuals of recent African ancestry and admixed African were included in 

association testing. We performed single-variant associations correcting for age, sex, the first ten 

principal components, the kinship matrix and the different sequencing captures. All analyses 

were performed using RVtests (v.20171009) 166 

 

Gene-level analysis 

 

We employed three strategies to aggregate variants for gene-level association testing. First, for a 

given SNP, if at least one out of the seven algorithms (PolyPhen2 HumDiv and HumVar, LRT, 

MutationTaster, LOFTEE, SpliceAI, SIFT, and MaxEnt) predicted a variant as 'deleterious', we 

labelled the mask as broad. If all seven algorithms predicted the variant as 'deleterious,' we 

labelled the mask as 'strict'. The last strategy considered just loss-of-function variants as predicted 

by LOFTEE. Two statistical tests were considered for each mask: an adaptive burden test, which 

aggregates rare variants based on optimal frequency cut-off (VT), and SKAT, a bidirectional 

approach that includes SNPs with variable effect size and direction. Gene-level associations were 

conducted using rareMETALS_7.1222. rareMETALS outputs gene-level summary statistics 

including number of sites considered, top variant, p-value and the combined estimated effect size, 

more details are available on the tutorial website223.  Only variants (MAF < 1%; allelic frequency 

is based on SCD individuals sequenced in this project) annotated as missense, nonsense, essential 

splice site, and frameshift indel were kept for gene-based analysis. 
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RESULTS 

 

Genetic diversity among SCD participants 

 

The SCD participants originated from seven studies based in the USA, Jamaica, France and 

Tanzania (Supplementary Table 1). To characterize the genetic diversity of these individuals, 

we combined their genotype information at 98,176 common SNPs with data from the 1000 

Genomes Project. We performed dimension reduction analyses using principal component (PC) 

and uniform manifold approximation and projection (UMAP) analyses. As expected, the PC 

analysis revealed that most SCD participants in our experiment are aligned along an African-

European axis of genetic variation on PC1 (Fig. 1A). The UMAP representation, generated using 

the first five PCs, provided more resolution and allowed us to identify participants from the East-

African Tanzania SCD cohort, who overlap with the Luhya in Webuye (Kenya) population from 

the 1000 Genomes Project (Fig. 1B-C)224. We also identified a small number of SCD participants 

that cluster with South Asians or admixed Americans from the 1000 Genomes Project (Fig. 1 B-

C).  

 

Multi-ancestry meta-analysis for HbF levels 

 

To identify novel genetic regulators of HbF levels, we combined association results at 24,271,278 

variants ("averaged" minor allele frequency (MAF) ≥1%) from 5,903 European-ancestry 

individuals from the SardiNIA Study203 and 3,740 SCD participants, mostly of African descent 

(Supplementary Table 1). Because of the genetic heterogeneity described above, we used PCs 

as covariates and opted to analyze each study individually. For the meta-analysis, we used MR-

MEGA, which was developed to account for ancestry differences to maximize discovery power 

in GWAS204. We also focused our downstream analyses on association results conditioned on 

genotypes at the known HbF loci (BCL11A, HBS1L-MYB, β-globin; Methods) (Figure 2). This 

strategy identified three loci that reached genome-wide significance (P≤5x10-8): chromosome 10 

in BICC1, on chromosome 19 near KLF1 and chromosome 22 between CECR2 and SLC25A18 

(Table 1). The SardiNIA study previously reported an association between a rare intronic variant 

in NFIX on chromosome 19 (rs183437571) and HbF levels203. This variant is not associated with 

HbF levels in SCD patients (MAF=0.0052, P=0.66), and is also not in linkage disequilibrium 
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with the sentinel variant (rs4804210) that we identified in our trans-ethnic HbF meta-analysis (r2 

in European-ancestry populations = 0.027; r2 in African-ancestry populations = 0). 

 

To characterize these three loci, we calculated posterior inclusion probabilities and generated 

95% credible sets, thus fine-mapping the BICC1, KLF1 and CECR2/SLC25A18 loci to six, 29 

and three variants, respectively (Supplementary Table 2). We annotated these variants using 

whole-blood expression quantitative trait loci (eQTL) results, open chromatin data and previous 

results from blood-cell traits GWAS (Supplementary Table 2). On chromosome 10, three of the 

BICC1 variants were eQTL for TFAM, a gene located ~115-kb upstream, whereas a variant found 

in the intergenic sequence between CECR2 and SLC25A18 on chromosome 22 was an eQTL for 

ATP6V1E1 and BCL2L13. The variants on chromosome 19 were whole-blood eQTLs for at least 

ten genes, including DNASE2 and FARSA, but notably not the erythroid transcriptional regulator 

KLF1 (Supplementary Table 2). None of the 38 fine-mapped variants overlapped DNAse1 

hypersensitive sites previously characterized in fetal and adult human erythroblasts225. The 

variants near BICC1 and CECR2/SLC25A18 have not previously been implicated in GWAS for 

hematological traits. However, the HbF-associated variant at the KLF1 locus was previously 

identified in trans-ethnic meta-analyses of several RBC traits (mean cell volume, mean cell 

hemoglobin, mean cell hemoglobin concentration, RBC count, RBC distribution width)221.  

 

Whole-exome DNA sequencing (WES) in SCD participants 

 

To determine if rare coding variants modulate HbF levels, we analyzed available WES data from 

1,354 SCD participants (Methods). We focused on variants with a MAF ≤1% and performed 

gene-based testing using two methods (VT and SKAT) and three variant selection strategies 

(broad, strict, and loss-of-function (LoF) as defined in Methods). Across these analyses, we 

found no genes that reached statistical significance after accounting for the number of genes 

tested (α=3.1x10-6, Bonferroni correction for 15,913 genes) (Supplementary Figure 2 and 

Supplementary Table 4). Based on transcriptomic or proteomic experiments, we restricted our 

analyses to genes expressed in human erythroblasts or mature erythrocytes. However, we did not 

detect any of statistical signal's enrichment (Supplementary Figure 3-5)127,226,227. This negative 

result suggested limited statistical power, given our sample size. 
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Rare mutations can cause the hereditary persistence of fetal hemoglobin (HPFH) condition and 

have been identified at the β-globin locus as well as in the KLF1 and DNMT1 genes211,228,229. 

Therefore, we inspected rare (MAF ≤1%) coding variants in 83 genes that have been implicated 

in the γ- to β-globin gene switch during development (Figure 3 and Supplementary Table 3) 

210,230 We found 22 variants in 16 genes that are carried by SCD patients with mean HbF levels 

that are at least two standard deviations away from the mean HbF after correction for age, sex 

and β-globin genotypes (Supplementary Table 3).  

 

Given the recent report of HPFH mutations in DNMT1211 , we were particularly intrigued by the 

discovery of a novel missense variant in this gene (p.Gly95Ser) in an SCD participant with 

baseline HbF levels of 28.9% (2.36 standard deviations above the mean). Our review of the 

patient's medical records indicated that the high HbF levels were stable (additional HbF values 

of 27.7% and 28.8% taken three years apart), that the patient was not treated with hydroxyurea 

and that the patient was largely clinically asymptomatic. Furthermore, the high HbF levels 

phenotype was not explained by the inheritance of common alleles at BCL11A, HBS1L-MYB and 

β-globin associated with HbF levels (the patient's normalized HbF polygenic score was 0.65 

standard deviation below the mean). These observations are consistent with the clinical benefits 

associated with the inheritance of a rare HPFH mutation. 
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 DISCUSSION 

 

This genome-wide association analysis identified three novel genetic loci associated with fetal 

hemoglobin levels. While not confirmed through replication, to our knowledge, this is the second 

largest genome-wide association study of HbF. Our findings confirm the genetic association of 

BCL11A, HBSL1-MYB, and HBB as primary loci of fetal hemoglobin across populations. Our 

discovery of the new loci rs4433524 in BICC1, rs4804210 in KLF1, and rs116175381 in CECR2 

remains to be replicated. While the transcription factor, Krüppel-like factor 1, is a well-

established gene in the sickle cell disease literature214,229, this is the first report of the gene in a 

GWAS. 

 

We identified a missense singleton in DNMT1 (G95S) predicted to be deleterious by both SIFT 

and Polyphen in an otherwise healthy individual with high baseline levels of fetal hemoglobin. 

However, little is known about this association between the DNMT1 variant and sickle cell 

disease traits (pain crises, stroke). Further functional characterization in CD34+ from patients and 

engineered HuDEP-2 mutant cells is required to demonstrate its role in γ-globin expression and 

thus an intracellular increase in HbF.   

 

While the high presence of SCD individuals was an important strength of this study, our sample 

size for both GWAS and exome-wide study considerably limits our ability to identify new loci 

associated with HbF. Second, the lack of an independent cohort with fetal hemoglobin levels and 

matching ancestry backgrounds leads to caution when interpreting associations in this study. 

Third, the added diversity leads to ancestry-specific associations, thus making it difficult to 

pinpoint the causal variants. Finally, although our conditional analysis aimed at eliminating the 

association signal from the BCL11A, HBSL1-MYB and HBB to boost the signal from other 

regions of the genome, we observed residual associations after conditioning on HBB.  

 

We present three novel loci associated with fetal hemoglobin and show that a rare missense 

mutation in DNMT1 could result in an HPFH mutation. These results highlight the need for larger 

datasets with more SCD individuals. Furthermore, therapeutic intervention in those genes could 

increase the amount of fetal hemoglobin while simultaneously reducing the amount of sickle 

hemoglobin in their blood and potentially alleviating the condition.  
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Table 1. Novel genome-wide significant association results for fetal hemoglobin (HbF) levels. We combined HbF association results across seven sickle cell 

disease (SCD) studies (African-ancestry) and the SardiNIA study (European-ancestry) using MR-MEGA. We also provide the conditional fixed-effect HbF association 

results per ancestral group. Association results are conditional on genotypes at the known HbF loci (BCL11A, HBS1L-MYB, β-globin) (Methods). The variants' 

coordinates are on build GRCh38. N, sample size; EA, effect allele; Beta (SE), effect size and standard error in standard deviation units; NA, not available; 

1000G_Eur, European-ancestry individuals from the 1000 Genomes Project. 

 

Variant 

Trans-ethnic 

meta-analysis 

(N=9,643) 

SCD-only (N=3,740) SardiNIA (N=5,903)  

 

Note 

Conditional P-

value 

EA frequency 

(EA) 
Beta (SE) 

Conditional P-

value 

EA frequency 

(EA) 
Beta (SE) 

Conditional P-

value 

10_58728559_G_

A 
6.17x10-9 0.38 (A) 0.0805 (0.0193) 3.05x10-5 0.86 (A) 0.09189 (0.0204) 6.77x10-6 rs4433524, BICC1 

19_12879166_A_

G 
4.50x10-8 0.54 (A) -0.0627 (0.019) 9.89x10-4 0.77 (A) -0.08175 (0.01703) 1.63x10-6 

rs4804210, 

DNASE2, KLF1 

22_17559810_C_

T 
3.98x10-8 0.054 (T) -0.2192 (0.0416) 1.36x10-7 NA  

rs116175381, 

CECR2, 

SLC25A18 

(monomorphic in 

1000G_Eur) 
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Figure 15. Study design GWAS. (A) Map of principal component (PC) analysis of 98,176 common variants in a merged 

dataset that includes all individuals from the 1000 Genomes Project and 3,740 SCD participants. (B-C) We applied 

uniform manifold approximation and projection (UMAP) on the first five PCs calculated on the merged dataset. To 

simplify visualization and interpretation, we present individuals from the 1000 Genomes Project in (B) and SCD 

participants in C. AFR, African ancestry; AMR, admixed American; EAS, East-Asian ancestry; EUR, European 

ancestry; SAS, South-Asian ancestry; BEB, Bengali from Bangladesh; PEL, Peruvians from Lima; LWK, Luhya in 

Webuye (Kenya). 



 
53  

 

 

 

 

 

 

Figure 16. Trans-ethnic genome-wide association studies (GWAS) for fetal hemoglobin levels (HbF) in 5,903 Sardinians and 3,740 African-

ancestry sickle cell disease (SCD) patients. (A) Manhattan and (B) QQ plots for the non-conditional HbF trans-ethnic meta-analysis highlight the 

known associations at the BCL11A, HBS1L-MYB and HBB loci. (C) Manhattan and (D) QQ plots for the HbF trans-ethnic meta-analysis conditioned 

on associated variants at BCL11A, HBS1L-MYB and HBB. We found genome-wide association results (P<5x10-8, minor allele frequency (MAF) 

≥0.01) on chromosomes 10 (BICC1), 19 (KLF1) and 22 (CECR2). Our conditional analyses did not remove all association signals at the HBB locus 

on chromosome 11.  Further, we also found rare variants (MAF <0.01) with P <5x10-8 (horizontal red line in C), but we did not investigate them 

further because of lower imputation quality. N is the number of tested variants in B and D, and GC is the genomic inflation factor. 
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Figure 17. Rare coding variants identified in 1,354 sickle cell disease (SCD) patients by whole-exome sequencing in genes 

implicated in the γ-to-β globin switch. We only consider missense, nonsense, frameshift and essential splice site variants with a 

minor allele frequency <1% (corresponding to a minor allele count ≤32 (x-axis)). Average fetal hemoglobin (HbF) levels per variant 

are on the y-axis (in standard deviation units after correction for sex, age and β-globin genotypes). For each variant found in SCD 

patients with available genome-wide genotyping data, we averaged the normalized HbF polygenic score (in standard deviation units) 

calculated using known HbF common variants at BCL11A, HBS1L-MYB and β-globin (grey indicates missing genotyping data as 

not all sequenced individuals were also genotyped). 
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Chapter 3. Exome- and genome-wide association studies of red blood 

cell density in sickle cell disease patients 

 

The following article is intended to be submitted to the journal, British Journal of Hematology. 

In this article to identify novel genetic regulators of dense red blood levels (DRBC). I performed 

the association tests of imputed genotypes of DRBC in 581 SCD patients. I then annotated the 

results and identified which ones were the most promising and needed to be replicated. Then I 

used whole-exome sequencing to identify rare coding variants regulating DRBC. I performed all 

the quality control procedures, the gene-based analysis with sequence kernel association test 

(SKAT) and variable threshold (VT) to detect associations of coding variants combined together. 
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ABSTRACT 

 

Sickle cell disease (SCD) patients with a large fraction of dense and dehydrated red blood cells 

(DRBC) tend to have a severe clinical course. Previous genome-wide association studies and 

whole-exome sequencing in SCD patients highlighted two susceptibility loci (PIEZO1 and 

ATP2B4) for DRBC. Yet, a large proportion of missing heritability remains to be investigated. 

This study sought to identify genetic variation associated with DRBC in SCD patients. We 

proposed a novel strategy for generating candidate genes susceptible to control red blood cell 

hydration and increase our statistical power. Exome-wide association analysis and a genome-

wide association study was performed for upwards of 581 SCD patients. Likely causal variants 

were prioritized for replication. Additionally, we performed gene-based analyses to investigate 

the aggregate effect of multiple variants within the same genes or pathways. Although no signal 

reached the Bonferroni correction threshold, rs1228690182 in SPTB and rs372784283 in SEC23B 

showed the potential to modulate DRBC. The gene-based analysis pinpointed four drug targets, 

BCL6, LRRC32, KNCJ14, and LETM1, as potential regulators of DRBC. Our study identified 

several candidate genes and drug targets associated with DRBC, which has a role in erythrocyte 

osmotic regulation. Future studies are needed to validate these findings further and explore these 

genes and pathways as potential therapeutic targets in SCD. 
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INTRODUCTION 

 

Sickle cell disease (SCD) describes a set of inherited disorders caused by a point mutation at the 

-globin locus1,2. The disease touches millions of individuals, mainly in sub-Saharan Africa and 

southern Asia3,4 where malaria is still endemic. Sickle cell anemia (SCA) is the most prevalent 

form of the disease, making up to about 3 in 4 cases of individuals of African ancestry. SCA 

originated from homozygosity of βS allele (rs334), which replaces a hydrophilic glutamic amino 

acid for a hydrophobic valine at the 6th position of the β-globin chain5,6. Co-inheritance of βS and 

other mutations result in other forms of SCD (e.g., SC, SβThal0, SβThal+)1. 

The disease is named after the 'sickle' shape the red blood cell assumes after deoxygenation. This 

is because the intracellular hemoglobin polymers become rigid and form rod-like structures 

which contort erythrocytes. Red cell dehydration exacerbates the rate of polymerization, which 

in turn increases intracellular hemoglobin concentration7. The polymerization rate negatively 

correlates to fetal hemoglobin level (HbF), which acts as an inhibitor and substitute to HbS8,9. 

One of the critical attributes of sickle cell disease is the existence of dense, dehydrated red blood 

cell density (DRBC). Previous studies linked a higher percentage of red blood cell density with 

end of organ complications and vaso-occlusive events10.  

Water, positively and negatively charged solutes are constantly tuned by the activity and interplay 

of erythrocyte transporters and channel systems11,12. This is illustrated by the sheer number of 

diseases associated with dysregulation of erythrocyte ion transport. In sickle cell disease, a major 

focus is applied on K-Cl cotransport (KCC1, KCC2, KCC3, KCC4) and the calcium-activated 

(Gardos) potassium channel (KCNN4). While no drugs reached the final phases of the clinical 

trial process, Gardos channel blockers such as charybdotoxin, clotrimazole, and senicapoc 

showed promising results.13-15 Although identifying commercially viable drugs to block the K-

Cl channel failed, magnesium ion and antioxidant N-acetylcysteine were identified as an inhibitor 

of the potassium chloride co-transport and dehydration.16,17 

This study employed human genetics in more than 500 SCD patients to identify promising 

variants and drug targets associated with dense dehydrated red blood cells (DRBC). The 

objectives of the current study were: (i) to examine rare coding variants associated with DRBC 

identified in African ancestry individuals; (ii) to investigate the aggregate effect of multiple 

variants within the same genes; (iii) to explore the role of DRBC-scored rare coding DNA 
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sequences in SCD patients; and (iv) to integrate multiple omics datasets to prioritize common 

SNP associated with DRBC. 
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METHODS 

 

Ethics statement 

 

Informed consent was obtained for all participants in accordance with the Declaration of 

Helsinki. This project was also reviewed and approved by the Montreal Heart Institute Ethics 

Committee and the different recruiting centers.  

 

Samples and DNA genotyping  

 

The GEN-MOD study, a cohort of sickle cell disease (SCD) patients recruited in Paris, France, 

has been described elsewhere10. 408 GEN-MOD participants, for whom red blood cell density 

(DRBC) was measured at baseline using the phthalate density-distribution technique, were 

available for our genetic investigation. The DNA of the GEN-MOD participants was genotyped 

on the Illumina Infinium HumanOmni2.5Exome-8v1.1 array at the Montreal Heart Institute 

Pharmacogenomics Center. We used PLINK18 and other custom scripts to control the quality of 

the genotyping dataset: we excluded samples and markers with genotyping success rate <95%, 

markers out of Hardy-Weinberg Equilibrium (P<1x10-7), and markers with extreme (high or low) 

heterozygosity. We performed multidimensional scaling (MDS) in PLINK, anchoring these 

results on projections obtained using reference populations from the 1000 Genomes Project to 

detect and remove (after visual inspection) population outliers. The Cooperative Study of Sickle 

Cell Disease (CSSCD) has been described extensively elsewhere19-21. Briefly, the CSSCD is a 

multi-center research study conducted in the United States between 1978 and 1988 to investigate 

factors contributing to SCD complications. In total, enroll over 3,000 participants including 

children and adults who were followed for a 10-year window while receiving regular clinical 

tests, and laboratory tests. Genome-wide genotype data generated with the Illumina Human610-

Quad array was available for 1,279 CSSCD participants. After quality control, we imputed 

genotyped using reference AFR haplotypes from TOPMed Freeze5 GRCh38/hg38 and 

Minimac4 (v1.2.4) as implemented on the TOPMed imputation server22. We restricted 

association testing to markers with an imputation r2  >0.3. 
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Whole-exome summary statistics 
 

The present study uses summary statistics data from the UK Biobank analysis of rare coding 

variants to hematological traits using gene collapsing data (https://app.genebass.org/). 

Karczewski and colleagues conducted a study involving 394,841 exomes from the UK Biobank 

to determine gene-based associations231. In their analysis, they performed a total of 75,767 group 

tests across 4,529 phenotypes. These tests included gene-based burden (mean), SKAT (variance), 

and SKAT-O (hybrid variance/mean) tests for various types of variants such as predicted loss of 

function (pLoF) variants, missense variants (including low-confidence pLoF variants and in-

frame insertions or deletions [indels]), synonymous variants, and a combination of pLoF or 

missense variants (not displayed in https://app.genebass.org)231. More detailed information about 

the databases used can be found in the publications. 

 

Whole-exome DNA sequencing and quality-control steps 

 

GEN-MOD and Mondor/Lyon sickle cohorts were the two cohorts out of 5 SCD cohorts with 

DRBC values. Red blood cell density measures were performed using the phthalate distribution 

technique10. For both cohorts, we used Nimblegen SeqCap EZ Exome Capture and Nimblegen 

SeqCap Nimblegen MedExome kits to capture exons, and we sequenced DNA using the Illumina 

HiSeq4000 and the Illumina NovaSeq 6000 instruments with a paired-ends 2x100 base pairs 

protocol. We modeled our quality control steps after the Exome Aggregation Consortium (ExaC) 

using GATK (v4)23. 

 

Alignment and BAM processing 

 

The paired-end sequence reads from exomes were aligned to the human genome reference 

(GRCh37p13/hg19) using bwa (v0.7.17) (BWA MEM)24. The default parameters were employed 

to generate alignment in the SAM format given paired-end reads. Examples of the commands are 

below: 

bwa aln ref.fa short_read.fq > aln_sa.sai 

bwa samse ref.fa aln_sa.sai short_read.fq > aln-se.sam 

https://app.genebass.org/
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Base quality recalibration 

 

The base quality scores were then recalibrated using GATK BaseRecalibrator and a list of known 

variant sites from dbSNP. The sequenced interval came from GENCODE. The new base quality 

scores were then applied using GATK ApplyBQSR but retaining the original base quality scores 

within the BAM.  

 

Variant calling  

 

Using GATK HaplotypeCaller, the recalibrated BAM file from the previous step was used to 

perform variant calling per sample. In addition, the output is in GVCF mode, which can be used 

for joint genotyping with multiple samples. 

 

Variant-quality score recalibration (VQSR) 

 

VQSR (GATK ApplyVQSR ) is then applied, and the raw VCFs from the previous step are 

filtered to achieve a high degree of sensitivity and reduce false positives. The SNP VQSR model 

is trained using HapMap3.3 and 1KG Omni 2.5 SNP sites, and a 99.6% sensitivity threshold was 

applied to filter variants. Recalibration of insertions/deletions sites used Mills et al. 1KG gold 

standard and Axiom Exome Plus sites with a 95.0 % sensitivity threshold25. 

 

Sample quality control and selection 

 

A common set of 7,000 SNPs were selected for principal component analysis. Samples with 

outlier heterozygosity were removed before principal component analysis (PCA). Individuals 

were clustered based on their ancestry’s population groups as defined on 1000 Genomes dataset. 

They are color-coded based on their ancestry’s populations. SCD sample relatedness was 

calculated using kinship matrices implemented in KING 26. 

 

Variant annotation 
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We employed Variant Effect Predictor version 101 to annotate variants. We retrieved several 

protein prediction consequences info using VEP's plugin (LOFTEE, SpliceAI, SIFT, Polyphen2, 

and MaxEnt)27 We queried Ensembl/GENCODE and RefSeq transcripts databases and restricted 

results to produce the most severe consequence per variant. Variants mapping to coding regions 

were kept for downstream analysis. 

 

High Quality (HQ) variants 

 

Variant sites were labeled as high-quality if they met the following criteria: (1) they were given 

a PASS filter status by VQSR, (2) at least 80% of the individuals in the dataset had a depth (DP) 

≥10, and genotype quality (GQ) ≥20, (3) at least one individual was carrying the alternate allele 

with depth ≥10, and GQ≥20, and (4) the variant was not located in the ten 1-kb regions of the 

genome with the highest levels of multi-allelic variation. Once we applied the variant filtering 

criteria, 985,119 variants were left.   

 

Statistical analyses 

 

Single variant analysis 

 

We performed a single-variant test by using linear regression as implemented in RVTESTS28. 

Continuous DRBC values were inverse normal transformed and corrected for age, sex, cohorts, 

sequencing batches, and the first ten principal components. We then identified the most 

promising variants (P < 1 x 10-4) and defined the statistical significance using Bonferroni 

correction and the set of exome-wide association significance threshold 1.6 x 10-7 (0.05/315,128) 

for single-variant analysis. Quantile–quantile and Manhattan plots were generated using R 

(V4.5.1, R Development Core Team). 

 

Gene-based analysis 

 

We used sequence kernel association test (SKAT)29 and variable threshold (VT)30 for our gene-

based testing using rareMETALS(v.6.3)31. We focused our analysis on variants with minor allele 

frequency (MAF) <1% for gene-based testing. We ran three sets of gene-based analyses based 

on deleteriousness prediction. The broad set included variants predicted to be damaging by at 
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least one of the predictions PolyPhen2 HumDiv32 and HumVar, LRT33, MutationTaster34, 

LOFTEE35, SpliceAI36, SIFT37, and MaxEnt38. The strict set included variants predicted to be 

deleterious by all of the above algorithms. Finally, we focused on the predicted loss of function 

(pLoF). All genetic association analyses presented in this study were adjusted for the ten first 

principal components. We included all genes for which one or more variants were present. 

Bonferroni correction was employed to define the significance threshold for gene-based analysis 

[Pbroad = 1.7 x 10–6, 0.05/(14,949 genes x 2 tests); Pstrict=9.3 x 10-6,0.05/(2,684 genes x 2 tests)].  

 

Genome-wide association and functional prioritization of genetic variants 

 

DRBC values were inverse normal transformed and adjusted for age, sex, and the first ten 

principal components when performing the linear regression using RVTESTS28 in each cohort 

(Descriptive cohort demographic Table1). We then employed METAL39 with the sample size 

scheme (the scheme uses p-value and direction of effect, weighted according to sample size) to 

combine summary statistics across cohorts.  

Given the lack of genome-wide significant results, we sought to identify variants with relevant 

regulatory effects. We, therefore, explore annotations of variants with epigenomics features, gene 

expression, and proxy phenotypes to identify potential causal loci we would like to use for 

replication.  

 

We also prioritized variants that map to enhancers validated via CRISPRi-FlowFISH42 in K562 

cells keeping the enhancer-gene pair with an ABC score >= 0.022. Finally, we queried the 

eQTLGen database43 and GTEx44 whole blood datasets to retrieve 339,493 cis-eQTL in 1,694 

candidate genes. These genes were pre-selected based on seminal studies and supposed roles in 

erythrocyte hydration. Supplementary Table 1 provides the inclusion criteria for these candidate 

genes, while the data table (URLs) lists the genes. 

 

Qualitative analysis 

 

Variant Scoring and correlation (WESvsc) to DRBC. 

 

We used qualitative analysis to link the variants to DRBC. We queried all protein-truncating 

variants from 2,333 candidate genes, thus resulting in 23,189 variants. We calculated the average 
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raw DRBC and the inverse normal transformed DRBC across individuals carrying a given 

mutation for each variant. Finally, we kept all annotation information provided by the 

deleteriousness prediction software (i.e. Sift, polyphen, etc..), frequency across ancestry in 

ExAC, gnomAD, 1000 Genomes (1000G), position and type of the amino acid substitutions, and 

information of previously known phenotypes or PubMed publication (Supplementary Table 3). 

We then leveraged Crosstalk45, an interactive graphics application, to dynamically interact and 

filter the scatter plot and the table on the variant scoring (Figure 2.2). This framework also 

allowed us to generate a browser-based interaction that can be shared in a typical HTML R 

Markdown output (See URLs : Candidate gene Crosstalk HTML visualisation). Our WESvsc 

allows for dynamical filtering on raw and normalized DBRC values. Additionally, the variant 

consequence (frameshift_variant, 

missense_variant, protein_altering_variant, splice_acceptor_variant, splice_donor_variant, 

start_lost) as provided from the VEP annotation can be selected. The user can select a specific 

gene or a set of genes to look at and the variant annotation (e.i., variant annotated as being 

involved in spherocytosis, MCHC GWAS, or malaria). Finally, the interactive visualization 

provides a table with anonymized sample ID, deleteriousness prediction provided by SIFT and 

Polyphen, and the variant’s allelic frequency. R packages, Plotly46 and d3scatter47 generated the 

dynamic scatter plot, while DT48 generated the dynamic table.  
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RESULTS 

 

Whole-exome sequencing 

 

Single variant analysis 

 

In the single variant analysis, no SNP reached exome-wide significance levels. The quantile-

quantile plots did not reveal a deviation from null when comparing the observed and expected P-

values distribution. By annotating the 36 most significant variants with variants associated with 

MCHC in Chen, M. H. et al. (2020), an intronic variant rs201639174 at ITFG3 stood out from 

the list since it’s nominally significant (P=0.005) only in African ancestry individuals. ITFG3, 

also known as FAM234A, encodes the family with sequence similarity 234 member A is 

promising since variants within the gene were associated with various RBC traits phenotype, 

namely MCH, MCV, RBC count, Hemoglobin levels in healthy Africans49,50, Europeans51. 

Additionally, the inframe deletion, rs775700353 at PRDM2, the intronic variants rs256412, 

rs371180559, and rs138514497 at TRIO, KATNA1, and ACACB, respectively, are expressed in 

the erythroid lineage227, and erythroblast127 and represent enzymatic drug targets originating from 

expert-curated pharmacological and medicinal chemistry literature, IUPHAR232 

(Supplementary Table 3.2).  

 

Insights from gene-level analyses 

 

We performed three sets of gene-based tests aggregating deleterious missense or splicing variants 

with MAF < 0.01. Unfortunately, no genes reached exome-wide significant results for any of the 

tested schemes. In Table 3, the most significant genes across all collapsing schemes using a 

lenient significance threshold of P < 1 x 10-3. Additionally, we cataloged all nominally significant 

associations (P < 0.05) in Supplementary Table 3.3.  

All 11 of the 14 most associated genes are expressed in either erythroblast, erythroid lineage, red 

blood cell proteome, or a combination. The quantile-quantile plots from Figure 3.1, C (SKAT 

test) show an enrichment of drug target families labeled by IUPHAR as “other proteins”. These 

enriched genes include BCL6 (PSKAT = 3.3 x 10-3; PVT=0.051), LRRC32 (PSKAT = 4.7 x 10-3), 

encoding the B-cell lymphoma 6, and the Leucine-Rich Repeat Containing 32 respectively. In 

Figure 1, D (VT test) we four genes departing from the null: LRRC32 (PVT= 5.8 x 10-4), KNCJ14 
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(PSKAT=0.02; PVT=2.3 x 10-3), LETM1 (PSKAT =4.5 x 10-3;PVT=9,7x10-4). KNCJ14, which encodes 

a potassium inwardly-rectifying channel subfamily J member 14, is a voltage-gated ion channel. 

LETM1 is a mitochondrial calcium ion transmembrane transporter that encodes the leucine 

zipper and EF-hand containing transmembrane protein 1. 

 

Qualitative analysis 

 

Variant Scoring and correlation (WESvsc) to DRBC 

 

Our variant scoring approach prioritized 23,189 nonsynonymous variants. Using the interactive 

visualization, we restricted variants with DRBC z-score > 2, we prioritized 227 variants in 203 

genes (Supplementary Table 3.4). We also looked at variants with DRBC z-score < -1.5, we 

prioritized 1,769 variants in 1,018 genes. Since most of these variants are singleton, we queried 

top pLoF gene-based association results (P < 2.5 x 10-6) from the UKBiobank exome association 

statistics with mean cell hemoglobin concentration (MCHC), mean cell volume (MCV), 

hemoglobin concentration, red cell distribution width, and mean sphered cell volume (MSCV) 

published on AstraZeneca PheWAS Portal52, and GeneBass53.  

We found a missense variant (rs372784283) carried by two individuals. The SNP maps to the 

SEC23 Homolog B (SEC23B) and is annotated as a spherocytic gene in OMIM. In the UK 

Biobank, the pLOF (PSKAT -O= 1.73 x 10-11 ; PBurden= 7.9 x 10-11) is associated with mean sphered 

cell volume, and PDRBC = 5.3 x 10-3.  Additionally, we found a missense in spectrin B (SPTB) 

rs1228690182; while not much is known about the variant, it is predicted to be deleterious by 

both SIFT and Polyphen. It is carried by one individual, lookup in the UK Biobank found that 

pLOF (PSKAT -O= 1.04 x 10-12; PBurden=1.48 x 10-13) is associated with mean sphered cell volume 

and PDRBC = 0.042. SPTB is a gene linked to several diseases related to red blood cell hydration 

(pyropoikilocytosis, elliptocytosis, and spherocytosis). Another missense variant (rs144259338) 

carried by a single individual with a DRBC value of 50 (the largest DRBC value in the cohort) 

maps to the gene encoding ATP Binding Cassette Subfamily A Member 7 (ABCA7). The variant 

is associated with DRBC (P-value = 2.4 x 10-3). The pLOF (PSKAT-O= 5.81 x 10-7 ; PBurden=2.4 x 

10-6) is associated with mean sphered cell volume; the gene is annotated by the expert database, 

IUPHAR232, as a pharmacological classified as a transporter. Finally, a missense variant 

(rs767272040) mapping to the erythrocyte membrane protein band 4.1, EPB41I, is carried by an 

individual with a DRBC value of 32. The gene is a drug target belonging to the transporter family, 
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is well documented in the literature on red blood hydration, and is involved in Mendelian 

disorders such as pyropoikilocytosis, and elliptocytosis, spherocytosis. pLOF (PSKAT-O= 9.18 x 

10-15; PBurden=4.45 x 10-15) is also associated with mean sphered cell volume and the PDRBC = 

0.01.  

Looking at variant in individuals with low, dense red blood cells (z-score DRBC < -1.5), we 

found a missense variant (rs142161945) predicted to be deleterious by SIFT and Polyphen in the 

solute carrier family 4, anion exchanger, member 1 (Erythrocyte Membrane Protein Band 3, 

Diego Blood Group). SLC4A1 is a well-characterized protein with roles in malaria, 

stomatocytosis, spherocytosis, pseudohyperkalemia, and xerocytosis and is a drug target 

annotated as a transporter. The pLOF (PSKAT-O= 4.0 x 10-16; PBurden= 4.26 x 10-16) is associated 

with MCHC and mean sphered cell volume. Another interesting finding is a variant mapping to 

the regulator of G protein signaling 11 (RSG11). The gene is found to be associated with a large 

MCHC GWAS41 and annotated as a drug target in IUPHAR. The pLOF (PSKAT-O= 2.66 x 10-11; 

PBurden4.35x 10-12) is associated with MCHC, the DRBC GWAS is nominally associated with the 

variant. The individual carrying the mutation has a raw DRBC value of 0. Additionally, we found 

singletons in well-known erythrocyte hydration and morphology genes such as PIEZO1, CD36, 

and EPB42, with pLOF strongly associated with mean cell hemoglobin concentration and red 

blood cell width, mean sphered cell volume, respectively (Supplementary Table 4). 

Additionally, lesser-known genes implicated in erythrocyte volume regulation or morphology 

with pLOF < 2.5 x 10-6 included MOK, SLC25A37, PTPRH, MTOR, CHEK2, and ACVRL1 

associated with red blood cell width, mean cell volume, Mean sphered cell volume, mean cell 

volume, mean cell volume, and hemoglobin concentration respectively.  

 

Insight from rs59446030-PIEZO1 inframe deletion 

 

PIEZO1 is a mechanosensitive ion channel that functions as an undiscriminating cation channel 

in many tissues. Empirical evidence demonstrated the protein’s role in sensing blood flow 

through vasculature54 and red blood cell volume control55. Previous publications showed that rare 

gain-of-function (GOF) mutations56 are involved in hereditary xerocytosis. In contrast, the 

common GOF-rs5944603057-59 did not associate with hematological parameters or weakly 

influenced red cell hydration. We revisited the association of the GOF with DRBC in this cohort 
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of 581 individuals. We found no association between the allele and red blood cell density (P-

value = 0.17). 

 

Genetic association analysis of red blood cell density 

 

After quality-control and genotype imputation, we performed a genome-wide association study 

(GWAS) between 34,766,316 million DNA sequence variants and red blood cell density (DRBC) 

in 374 sickle cell disease (SCD) patients from the GEN-MOD cohort and 199 SCD patients from 

Mondor-Lyon cohort (Table 1). Table 5 presents results for loci and associated variants with 

PDRBC < 5 x 10-7. 

 

As part of the GWAS workflow, performing external replication with an independent cohort 

with matched ancestry and the same phenotype is crucial in validating the results. However, to 

our knowledge, no other SCD cohort fits the criteria previously described. Therefore, we 

decided to combine additional data points for a given SNP to ascertain its causal role in a given 

gene. 

 

We implemented three strategies to increase the probability of finding robust genetic associations 

with DRBC. First, we considered variants mapping to erythroleukemia enhancers, defined by 

activity by contact (ABC) of enhancer-promoter42. Among the 36,346 cis-regulatory elements 

(CRE) tested, one variant mapping to four CREs (NPM3, MGEA5, KCNIP2, and HPS6) was 

more strongly associated (P = 1.47 x10-6) with DRBC than would be expected by chance (Figure 

3). Second, we retrieved 339,493 cis expression quantitative trait loci (eQTL) from 1,694 

candidate genes selected because they encode proteins with direct or indirect effects on red blood 

cell hydration (Supplementary Table 3.1). 13 eQTL variants were associated with DRBC after 

Bonferroni correction P=2.1 x 10-5 (0.05/2,333 candidate genes) (Table 5). Additionally, while 

below the significance threshold, three eQTL SNPs from GTEx departed from the null hypothesis 

(Figure 2.3). rs16889330 in a mitochondrial transporter, MTCH1 (P= 3.1 x 10-5), rs11772895 

maps to a gene encoding the erythropoietin-producing hepatoma (Eph) receptor 1 (EPHA1) P= 

4.0 x 10-5), and rs12153855 in the immunophilin FKBPL (P= 4.1 x 10-4) (Supplementary Table 

4 ). While promising because of the role in various pathophysiology of SCD (rheumatoid arthritis, 
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basophil count, or blood proteins)51,60, these variants remained to be replicated in an independent 

SCD GWAS with matched ethnicity. 

 

Our final strategy to prioritize variants was to exploit the physiological link between DRBC and 

MCHC. Mean cell hemoglobin concentration, MCHC in GEN-MOD (Pearson’s r=0.62, 

P=9.4x10-41), in Mondor-Lyon (Pearson’s r=0.44, P=2.6 x 10-11), in combined cohort (Pearson’s 

r=0.57, P=3.7 x 10-51) (Supplementary Figure 5) is correlated with DRBC. While the Pearson's 

r coefficient shows that we don't have a perfect positive linear relationship between MCHC and 

DRBC, we expect variants associated with RBC dehydration to increase MCHC. Additionally, 

hemoglobin concentration is a well-established factor influencing sickle hemoglobin (HbS) 

polymerization40.  

 

DISCUSSION 

 

Analyzing DRBC potential drug targets highlights the auspicious opportunity and obstacles of 

putting exome-sequencing datasets in translational research. We confirmed the relationship 

between DRBC and MCHC (Supplementary Figure 5). We report the first exome-wide 

association analysis of DRBC in SCD patients. While rare single variants, gene-level 

associations, candidate genes didn't yield statistically significant results (Figure 2.1), we provide 

evidence that analyzing singletons, and nominally significant variant (P < 0.05) is a clinically 

relevant approach. Our analysis enhances the results of the published DRBC GWAS study. 

Finally, we highlight the interconnection between genetically associated SNPs with DRBC and 

those with MCHC in African individuals.  

Phenotypic correlation accounting for age and sex for DRBC showed that the strongest positive 

correlation amongst blood parameters analyzed is with MCHC (Pearson rHenri-Mondor=0.44, 

Pearson rHenri-Mondor=0.62, Pearson rCombined=0.57). We also note a negative and weak correlation 

between DRBC and fetal hemoglobin level (HbF) (Pearson rHenri-Mondor=-0.21, Pearson rHenri-

Mondor=-0.16, Pearson rCombined=-0.12). This shows the shared etiology between DRBC and 

MCHC and supports the rationale that therapeutic intervention for both DRBC and HbF could be 

complementary and synergistic for SCD patients. One limitation of using MCHC in SCD patients 

is that because of their anemic state, their MCHC value can be artificially elevated due to red 
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blood cell agglutination or opacification of the plasma or the presence of concomitance of alpha-

thalassemia.  

Because no marker reached the significance threshold for the exome study or the genome-wide 

association study, and we don't have replication samples, we employed candidate gene, enhancer, 

expression quantitative loci, MCHC proxy, qualitative analysis to prioritize further which SNPs 

warrant downstream or functional analysis. We highlight promising variants and gene-level 

associations for replication. Our qualitative research highlighted singletons that exacerbate 

DRBC levels. The first one is a missense mutation in SEC23 Homolog B (SEC23B), a mendelian 

disease gene known to impact red blood cell morphology. Predicted loss-of-function in large 

exomic datasets is strongly associated with mean sphered volume. The other missense DNA 

sequence, maps to a well characterize and known gene, spectrin B (SPTB) rs1228690182. The 

gene is thought to be a severity modifier in SCD63, it responsible for the erythrocyte cytoskeletal 

stability, several mutation in the gene have been linked to spherocytosis, hereditary elliptocytosis, 

and neonatal hemolytic anemia64.  The patient carrying this mutation has the largest DRBC value 

(50) recorded in the cohort. We found additional singleton in PIEZO1, CD36, and EPB42 with 

strong pLoF associations thus providing strong grounds for functional studies follow-up. Finally, 

we showed that the gain-of-function mutation in PIEZO1 did not association with DRBC (P< 

0.05). We suspect that the association we found was overestimated due to the winner’s curse. 

Because the original discovery came from a smaller sample size, the effect of the association was 

overestimated, thus any attempt to replicate the results in a larger cohort failed to find the 

significant effect. While one major limitation for our study is our sample size, adding more 

sample correct the estimation. 

A recent meta-analysis carried out on 15,171 participants of African ancestry identified 952 DNA 

sequence variants significantly associated with MCHC41. This query showed the presence of 

enrichment of MCHC variants, this is highlighted by an inflation of the test statistics and a 

departure from the null of all the SNPs (λGC=2.2, Figure 3). In fact, amongst these MCHC 

variants, we found an eQTL variant in eQTLGen for the post-glycosylphosphatidylinositol 

attachment to proteins 6 (TMEM8A/ PGAP6), PDRBC=1.6 x 10-5, the same variant also associates 

with self-reported pleurisy in the UKBB. Finally, although all these associations require 

replication to be validated, one association seems likely causal as orthogonal data offer potential 

mechanistic insights. rs7634650 (PDRBC=1.3 x 10-3) maps to the downstream gene of the long 

intergenic non-protein coding RNA 885 (LINC00885). The DNA sequence variant maps to a cis-
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regulatory (CRE) region as identified by Fulco et al.233 which regulates LINC00885. The CRE, 

chr3:196,138,394-196,139,414 (hg38), that interacts with LINC00885 (ABC score: 0.0441). 

Additionally, previous studies identified rs7634650 to be associated with MCHC61, and with 

MCV, MCH, and RBC62 in non-anemic Europeans.  

 

Consistent with our previous GWAS65 on DRBC, 14 out of 25 SNPs previously identified 

remained significant. The direction of effect was different for 4 out of the 25 SNPs, and 7 could 

neither be genotyped nor imputed (they were considered missing). Surprisingly the intronic 

variant at ATP2B4 (rs10751450) did not remain significant although it is strongly associated with 

MCHC in non-anemic Europeans (P=5 x 10-59)62. Exome-wide and genome-wide association 

studies exploring the role of MCHC include well over 100,000 individuals221,231. Therefore, our 

analysis with a little less than 600 samples is limited. Systematic collection of DRBC 

measurements during a regular patient visit or a hospital stay would enable much larger studies 

in SCD patients to be performed. Our results highlight the phenotypic and genetic overlap 

between DRBC and MCHC. We find genes associated with the structure of RBC cytoskeleton, 

with the osmotic regulation of intracellular ion and water content and with the cell surface-to-

volume ratio. We extend previous reports on the role of red cell hydration and sickle cell disease 

as a therapeutic avenue to ameliorate SCD complications. Future studies should dissect on a 

functional level the associations between DRBC, and the variants highlighted in this study. Such 

functional studies could involve a pooled CRISPR-based perturbation, followed by single-cell 

RNA sequencing and cellular phenotyping of DRBC levels, or proxy phenotype such as MCHC.  

 

URLs 
 

- Expressed candidate genes 

- Candidate gene Crosstalk HTML visualisation 

-DRBC GWAS summary statistics 
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Table 1. Descriptive statistics of the GEN-MOD and Mondor-Lyon sickle cell disease 

participants analyzed in this study. For continuous variables, we provide the median ± 

standard deviation and the number of participants with available data. NA, not available 

Phenotype GEN-MOD (N=379) Mondor-Lyon (N=202) 

Males/females 185 / 223 74 / 128 

Age, years  30 ± 9  36 ± 11 

DRBC, % 12 ± 8.6 9 ± 8.4 
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Table 2. Top single variant association results with red blood cell density (DRBC) in 581 participants from GEN-MOD+Mondor-

Lyon. We included in this table variants with PDRBC <1x10-4 (Methods). Chr:Pos, genomic coordinates on build hg38; REF/ALT, reference 

and alternate alleles; AF, frequency of the alternate allele; BETA/SE, effect size (for the alternate allele) and standard error in standard 

deviation units. GWAS results for MCHC association for individuals from African ancestry and all ancestry were retrieved from Chen, M. 

H., et al. (2020).41 

 

 

rsID 

CHROM: 

POS (hg38) 

CHROM: 

POS:REF/ALT AF Beta(SE) PVALUE Consequence SYMBOL 

MCHC association(Chen et 

al_AfrAncestry)  

MCHC association(Chen et 

al._AllAncestry)  

- chr16:20769977 chr16:20781299:C/T 0.006 1.99(0.411) 1.28E-06 intron_variant ACSM3 NA NA 

- chr16:20769975 chr16:20781297:G/T 0.006 1.982(0.411) 1.45E-06 intron_variant ACSM3 NA NA 

rs9872688 chr3:169793568 chr3:169511356:G/C 0.19 1.107(0.241) 4.45E-06  LRRC34   

rs1042503 chr12:102852922 chr12:103246700:C/T 0.039 0.813(0.178) 4.76E-06 

synonymous_varian

t PAH 

REF/ALT_AF=C/T_0.96; 

Beta(SE)=0.035 (0.033) ;Pval=0.285 

REF/ALT_AF=C/T_0.626; Beta(SE)=0.012 

(0.0163) ;Pval=0.465 

rs151149890 chr17:64858810 chr17:62854928:G/A 0.057 0.549(0.122) 6.60E-06 missense_variant LRRC37A3 

REF/ALT_AF=G/A_0.952; 

Beta(SE)=-0.026 (0.033) 

;Pval=0.442 NA 

- chr16:20769972 chr16:20781294:C/T 0.005 2.026(0.459) 1.01E-05 intron_variant ACSM3 NA NA 

rs752049651 chr15:61967465 chr15:62259664:G/A 0.008 1.544(0.35) 1.05E-05 intron_variant VPS13C 

REF/ALT_AF=I/D_0.028; 

Beta(SE)=0.038 (0.056) ;Pval=0.498 NA 

- chr16:20769971 chr16:20781293:G/T 0.005 2.022(0.459) 1.06E-05 intron_variant ACSM3 NA NA 

rs146746669 chr16:259446 chr16:309445:TG/T 0.123 -0.387(0.088) 1.09E-05 intron_variant ITFG3 

REF/ALT_AF=D/I_0.09; 

Beta(SE)=-0.04 (0.032) ;Pval=0.208 NA 

rs34885736 chr4:173318553 chr4:174239704:C/T 0.024 0.768(0.175) 1.18E-05 

synonymous_varian

t GALNT7 

REF/ALT_AF=C/T_0.975; 

Beta(SE)=0.001 (0.041) ;Pval=0.985 

REF/ALT_AF=C/T_0.932; Beta(SE)=-0.0200 

(0.0309) ;Pval=0.517 

rs775700353 chr1:13778599 chr1:14105094:AGAG/A 0.004 1.989(0.459) 1.49E-05 inframe_deletion PRDM2 NA NA 

rs148452011 chr1:208038505 chr1:208211850:G/A 0.011 1.334(0.31) 1.68E-05 intron_variant PLXNA2 

REF/ALT_AF=G/A_0.982; 

Beta(SE)=0.063 (0.052) ;Pval=0.222 

REF/ALT_AF=A/G_0.0333; Beta(SE)=0.0152 

(0.0447) ;Pval=0.733 

rs34594998 chr17:5361621 chr17:5264916:C/T 0.238 0.275(0.064) 1.69E-05 

synonymous_varian

t RABEP1 

REF/ALT_AF=C/T_0.771; 

Beta(SE)=-0.015 (0.015) 

;Pval=0.306 

REF/ALT_AF=T/C_0.0540; Beta(SE)=-

0.00967 (0.0347) ;Pval=0.780 

rs114826587 chr17:2041888 Chr17:1945182:G/A 0.184 0.292(0.068) 1.76E-05 intron_variant DPH1 

REF/ALT_AF=A/G_0.806; 

Beta(SE)= 0.010 (0.17);Pval=0.530 

REF/ALT_AF=G/A_0 0.035; Beta(SE)= -

0.0984 (0.045);Pval= 0.0292 



 
75  

rs201639174 chr16:259448 chr16:309447:G/C 0.124 -0.372(0.088) 2.18E-05 intron_variant ITFG3 

REF/ALT_AF=G/C_0.912; 

Beta(SE)=0.069 (0.025) ;Pval=0.005 

REF/ALT_AF=C/G_0.000514; Beta(SE)=-

0.106 (0.423) ;Pval=0.802 

rs1277048565 chr4:68478849 chr4:69344567:G/T 0.01 -1.511(0.356) 2.19E-05 missense_variant TMPRSS11E NA NA 

rs1436127 chr12:95898506 chr12:96292284:C/A 0.121 0.357(0.084) 2.29E-05 intron_variant CCDC38 

REF/ALT_AF=C/A_0.893; 

Beta(SE)=-0.038 (0.021) 

;Pval=0.063 

REF/ALT_AF=C/A_0.957; Beta(SE)=0.0399 

(0.0384) ;Pval=0.299 

rs1218671775 chr4:68478848 chr4:69344566:G/T 0.01 -1.506(0.356) 2.32E-05 

splice_acceptor_var

iant TMPRSS11E NA NA 

rs774787329 chr6:21595985 chr6:21596216:CG/C 0.008 1.178(0.279) 2.49E-05 3_prime_UTR SOX4   

rs11868032 chr17:5380322 chr17:5283617:A/T 0.503 -0.228(0.054) 2.53E-05 intron_variant RABEP1 

REF/ALT_AF=A/T_0.506; 

Beta(SE)=-0.002 (0.013) 

;Pval=0.847 

REF/ALT_AF=A/T_0.375; Beta(SE)=0.00312 

(0.0160) ;Pval=0.845 

rs1272660186 chr4:68478842 chr4:69344560:C/T 0.01 -1.498(0.356) 2.58E-05 intron_variant TMPRSS11E NA NA 

rs764040709 chr12:40924544 chr12:41318346:C/T 0.002 2.231(0.531) 2.68E-05 intron_variant CNTN1 NA NA 

rs752035515 chr4:68478847 chr4:69344565:A/T 0.01 -1.493(0.356) 2.73E-05 

splice_acceptor_var

iant TMPRSS11E NA NA 

rs34489008 chr1:168183911 chr1:168153149:T/C 0.009 -1.28(0.309) 3.44E-05 

synonymous_varian

t TIPRL 

REF/ALT_AF=T/C_0.995; 

Beta(SE)=-0.01 (0.104) ;Pval=0.921 NA 

rs146436884 chr4:143528067 chr4:144449220:G/A 0.044 0.656(0.159) 3.60E-05 intron_variant SMARCA5 

REF/ALT_AF=G/A_0.959; 

Beta(SE)=0.017 (0.033) ;Pval=0.602 

REF/ALT_AF=A/G_0.000470; 

Beta(SE)=0.0349 (0.562) ;Pval=0.950 

rs371180559 chr6:149638574 chr6:149959710:G/A 0.003 1.858(0.457) 4.70E-05 intron_variant KATNA1 NA NA 

rs61400567 chr10:29481553 chr10:29770482:C/T 0.014 0.955(0.235) 4.78E-05 intron_variant SVIL 

REF/ALT_AF=C/T_0.989; 

Beta(SE)=0.104 (0.064) ;Pval=0.108 NA 

rs376602370 chr13:38850079 chr13:39424216:G/A 0.001 2.153(0.532) 5.14E-05 missense_variant FREM2 NA NA 

rs200434209 chr1:168066489 chr1:168035727:A/C 0.012 -1.129(0.28) 5.43E-05 intron_variant DCAF6 

REF/ALT_AF=A/C_0.994; 

Beta(SE)=0.001 (0.088) ;Pval=0.989 NA 

rs467960 chr21:41440964 chr21:42812891:C/T 0.363 -0.246(0.061) 5.63E-05 

synonymous_varian

t MX1 

REF/ALT_AF=C/T_0.662; 

Beta(SE)=0.005 (0.013) ;Pval=0.684 

REF/ALT_AF=C/T_0.627077; 

Beta(SE)=0.00073318 (0.0163065) 

;Pval=0.964 

rs17304212 chr2:178461008 chr2:179325735:C/G 0.038 0.61(0.152) 5.94E-05 missense_variant DFNB59 

REF/ALT_AF=C/G_0.962; 

Beta(SE)=0.053 (0.065) ;Pval=0.416 

REF/ALT_AF=C/G_0.945; Beta(SE)=-0.0195 

(0.0341) ;Pval=0.568 

rs115309023 chr2:37049612 chr2:37276755:T/C 0.016 0.892(0.222) 6.15E-05 intron_variant HEATR5B 

REF/ALT_AF=T/C_0.987; 

Beta(SE)=-0.026 (0.058) 

;Pval=0.655 NA 

rs138514497 chr12:109264395 chr12:109702200:C/T 0.011 0.96(0.24) 6.22E-05 intron_variant ACACB 

REF/ALT_AF=C/T_0.989; 

Beta(SE)=0.01 (0.072) ;Pval=0.888 NA 

rs11761299 chr7:122304473 chr7:121944527:T/C 0.616 0.219(0.056) 8.00E-05 

5_prime_UTR_vari

ant FEZF1 

REF/ALT_AF=T/C_0.405; 

Beta(SE)=-0.025 (0.014) 

;Pval=0.071 

REF/ALT_AF=T/C_0.391; Beta(SE)=-

0.00678 (0.0168) ;Pval=0.686 
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rs1806265 chr17:5416724 chr17:5320044:T/A 0.515 -0.227(0.058) 8.02E-05 intron_variant NUP88 

REF/ALT_AF=T/A_0.504; 

Beta(SE)=-0.003 (0.013) 

;Pval=0.791 

REF/ALT_AF=T/A_0.373; 

Beta(SE)=0.000212 (0.0160856) ;Pval=0.989 

rs116224881 chr1:58473955 chr1:58939627:T/G 0.011 1.012(0.257) 8.45E-05 missense_variant OMA1 

REF/ALT_AF=T/G_0.981; 

Beta(SE)=0.0004 (0.046) 

;Pval=0.992 NA 

rs62000369 chr9:88544477 chr9:91159392:G/A 0.066 -0.42(0.107) 9.05E-05 missense_variant NXNL2 

REF/ALT_AF=G/A_0.926; 

Beta(SE)=-0.014 (0.026) 

;Pval=0.595 NA 

rs74427615 chr11:102205880 chr11:102076611:C/T 0.011 -1.374(0.352) 9.60E-05 intron_variant YAP1 NA NA 

rs256412 chr5:14394174 chr5:14394283:G/A 0.413 0.244(0.063) 9.74E-05 intron_variant TRIO 

REF/ALT_AF=G/A_0.575; 

Beta(SE)=0.006 (0.013) ;Pval=0.623 

REF/ALT_AF=G/A_0.709; Beta(SE)=-

0.00874 (0.0173) ;Pval=0.613 
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Table 3. 14 promising genes implicated by gene-based testing. These genes meet our criteria for statistical significance: (1) gene-

based P<1×10-3 (a sub exome-wide threshold). For each gene, we provide P-values for the four different gene-based tests applied. 

Abbreviations: Strict: mask for which all prediction algorithms agree on variant deleteriousness. Broad: mask for which at one of the 

prediction algorithm predicts the variant to be deleterious. N. var SKAT/VT: Number of variants included in the gene-based test when 

performing SKAT test/VT test. Pvalue SKAT/VT: P-value for SKAT/VT test. Top SNP pval: P-value for the most significant variant within 

the gene. Top_SNP_hg38: chromosome, base pair (build hg38), reference allele, effect allele, and allele frequency for the most significant 

SNP in the gene-based test. Notes: additional information about the gene.  

 

 Strict Broad  

Symbol N. var SKAT/VT Pvalue SKAT/VT Top_SNP_hg38 Top_SNP_pval N. var SKAT/VT Pvalue SKAT/VT Top_SNP_pval Top_SNP_hg38 Notes 

CTNNAL1 2/2 0.16/0.16 9:108972757_T/G_0.00250713 0.05 10/10 7.7 x 10-4/8.5 x 10-4 5.0 x 10-4 9:106210476_G/T_0.00507176 Expressed in erythroid lineage66 

and erythroblast67 

NCAPG2 1/1 0.017/0.017 7:158680085_C/T_0.00187807 0.02 12/12 0.020/6.8 x 10-5 0.017 7:158887394_C/T_0.00187807 Expressed in erythroid lineage66, 

erythroblast67, and red blood 

cell68 

APP 11/ 3.5 x 10 -4/3.5 x 10-4 21:26090072_C/T_0.00172732 3.4 x 10-4 6/5 0.030/5.4 x 10-4 3.4 x 10-4 21:24717758_C/T_0.00172732 Expressed in erythroid lineage66, 

erythroblast67, and red blood 

cell68 

TMPRSS2 1/1 0.012/0.012 21:41479275_A/C_0.000870913 0.012 5/3 0.22/6.7 x 10-4 0.012 21:40107348_A/C_0.000870913  

SDR39U1 2/2 3.02 x 10 -3/4.8 x 10 -4 14:24440870_A/T_0.000860585 2.6 x 10-3 10/9 0.016/1.8 x 10-4 2.6 x 10-3 14:23971661_A/T_0.000860585 Expressed in erythroid lineage66, 

erythroblast67, and red blood 

cell68 

TLR10 1/1 7.6 x 10-4/7.6 x 10-4 4:38773384_T/C_0.00349402 7.5 x 10-4 12/5 0.14/0.71 7.5 x 10-4 4:38771763_T/C_0.00349402 Gene expressed in erythroid 

lineage66 and is a catalytic drug 

receptor69 

IKBKAP 1/1 0.87/0.87 9:108874894_C/A_0.000823381 0.087 18/16 7.3 x 10-4/0.28 5.1x 10-4 9:108929786_T/C_0.00505629 Expressed in erythroid lineage66, 

erythroblast67, and red blood 

cell68 

CEP89 NA NA NA NA 6/4 0.064/8.3x10-4 2.4 x 10-3 19:32933522_T/C_0.000862088 Expressed in erythroid lineage66 

and erythroblast67 

AP5S1 NA NA NA NA 8/6 0.027/9.3x 10-4 5.6 x 10-3 20:3823925_G/T_0.00172419 Expressed in erythroid lineage66 

and erythroblast67 

RSPO3 NA NA NA NA 1/1 5.5 x 10-4/5.5 x 10-4 5.5 x 10-4 6:127155351_C/T_0.00181695  
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C6orf58 NA NA NA NA 2/1 5.1 x 10-4/0.041 9.6 x 10-4 6:127590263_C/G_0.00127644  

NRXN2 NA NA NA NA 6/4 0.03/2.8 x 10-4 2.7 x 10-3 11:64667255_C/T_0.000860585 Expressed in erythroid lineage66 

LETM1 NA NA NA NA 2/2 4.5 x 10-3/9.8 x 10-4 0.013 4:1849198_C/A_0.00270105 Expressed in erythroid lineage66, 

erythroblast67, red blood cell68, 

and drug transporter69 

LRRC32 NA NA NA NA 7/7 4.7 x 10-3/5.8 x 10-4 8.1 x 10-3 11:76659650_C/G_0.00281724 Expressed in erythroid lineage66, 

erythroblast67 and other drug 

protein69 
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Table 4. Association between the common PIEZO1 deletion allele and red blood cell 

density in sickle cell disease patients. Association was corrected for age, sex, and the first ten 

principal components. The direction of the effect is given for the functional PIEZO1 deletion 

allele (rs572934641; E756del): BETA and SE (SE) for RBC density.  

CHROM POS REF ALT AF ALT_EFFSIZE P-VALUE 

16 88800372 GTCC G 0.215927 0.106 0.17 
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Table 5. Top genome-wide association results of red blood cell density in 573 sickle cell disease individuals. Meta-analysis results were 

generated with METAL; cohort-level summary statistics came from RVTEST. Inverse-normal transformed DRBC was regressed for age, 

sex, and each cohort's first ten principal components. The table includes variants with PDRBC < 5 x 10-7, in addition to PDRBC_eQTL_candidate_gene 

< 2.1 x 10-5.Abbreviations: CHR_BP_A1_A2; chromosome_basepair_allele1_allele2, AF; allele frequency for A1, Zscore: the magnitude 

and the direction of effect, P; pvalue, Beta; effect size, HM; Henri-Mondor cohort. Coordinates on build hg38.  

 

 Meta-analysis HM GENMOD   

CHR_BP_A1_A2 AF Zscore P AF Beta P AF Beta P Consequences SYMBOL rsID Notes 

chr5_124385732_A_T 0.58 5.3 1.5 x 10-7 0.6 0.26 0.011 0.57 0.35 3.3 x10-6 intron_variant,non_coding_transcript_var

iant 

LINC01170 rs11241738  

chr17_73362505_T_A 0.99 -5.2 1.7 x 10-7 0.01 1.32 0.0033 0.01 1.30 1.51 x 10-5 intron_variant_intron_variant,non_coding

_transcript_variant 

SDK2 rs13951698

0 

 

chr5_124383129_T_A 0.42 -5.2 2.0 x 10-7 0.6 0.26 0.010 0.57 0.35 4.6 x 10-6 intron_variant,non_coding_transcript_var

iant 

LINC01170 rs7737676  

chr5_124383128_C_T 0.42 -5.2 2.0 x 10-7 0.6 0.26 0.010 0.57 0.35 4.6 x 10-6 intron_variant,non_coding_transcript_var

iant 

LINC01170 rs67407299  

chr10_101655396_T_G 0.11 -5.2 2.3 x 10-7 0.12 -0.62 4.4 x 10-5 0.10 -0.42 6.3 x 10-4 intron_variant_intron_variant,non_coding

_transcript_variant 

FBXW4 rs73351221  

chr18_66306564_T_G 0.44 5.1 3.0 x 10-7 0.48 0.25 0.014 0.42 0.35 5.4 x 10-6 intergenic_variant NA rs7245198  

chr10_101659949_C_A 0.89 5.1 3.1 x 10-7 0.12 -0.63 3.4 x 10-5 0.10 -0.42 9.4 x 10-4 intron_variant_intron_variant,non_coding

_transcript_variant 

FBXW4 rs28565478  

chr10_101664450_G_A 0.89 5.1 3.1 x 10-7 0.12 -0.63 3.4 x 10-5 0.10 -0.42 9.4 x 10-4 intron_variant_intron_variant,non_coding

_transcript_variant 

FBXW4 rs56970368  

chr10_101693207_T_A 0.89 5.1 3.1 x 10-7 0.12 -0.63 3.4 x 10-5 0.10 -0.42 9.4 x 10-4 intron_variant_intron_variant,non_coding

_transcript_variant_upstream_gene_varia

nt 

FBXW4_NA rs12240593  

chr10_101672663_G_C 0.89 5.1 3.1 x 10-7 0.12 -0.63 3.4 x 10-5 0.10 -0.42 9.4 x 10-4 intron_variant_intron_variant,non_coding

_transcript_variant_downstream_gene_va

riant 

FBXW4 rs7095907  
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chr10_101691139_G_A 0.89 5.1 3.1 x 10-7 0.12 -0.63 3.4 x 10-5 0.10 -0.42 9.4 x 10-4 intron_variant_intron_variant,non_coding

_transcript_variant_upstream_gene_varia

nt 

FBXW4_NA rs12249989  

chr10_101683534_G_A 0.89 5.1 3.1 x 10-7 0.12 -0.63 3.4 x 10-5 0.10 -0.42 9.4 x 10-4 intron_variant_intron_variant,non_coding

_transcript_variant 

FBXW4 rs12263004  

chr10_101686330_T_C 0.11 -5.1 3.1 x 10-7 0.12 -0.63 3.4 x 10-5 0.10 -0.42 9.4 x 10-4 intron_variant_intron_variant,non_coding

_transcript_variant 

FBXW4 rs73351280  

chr10_101682838_GA_G 0.89 5.1 3.1 x 10-7 0.12 -0.63 3.4 x 10-5 0.10 -0.42 9.4 x 10-4 intron_variant_intron_variant,non_coding

_transcript_variant 

FBXW4 NA  

chr10_101692238_A_G 0.11 -5.1 3.1 x 10-7 0.12 -0.63 3.4 x 10-5 0.10 -0.42 9.4 x 10-4 intron_variant_intron_variant,non_coding

_transcript_variant_upstream_gene_varia

nt 

FBXW4_NA rs60239868  

chr10_101666740_A_T 0.11 -5.1 3.1 x 10-7 0.12 -0.63 3.4 x 10-5 0.10 -0.42 9.4 x 10-4 intron_variant_intron_variant,non_coding

_transcript_variant 

FBXW4 rs73351242  

chr1_29541498_G_T 0.99 -5.2 3.4 x 10-7 0.01 2.29 0.00095 0.01 1.58 9.6 x 10-5 intergenic_variant NA rs19101320

3 

 

chr10_101766483_G_T 0.91 5.2 3.5 x 10-7 0.11 -0.56 0.00040 0.09 -0.48 2.0 x 10-4 upstream_gene_variant_intron_variant,no

n_coding_transcript_variant_downstream

_gene_variant 

LOC1053784

58_LOC1053

78457_FGF8 

rs73338885  

chr2_217896096_G_A 0.94 5.1 3.6 x 10-7 0.05 -0.96 7.5 x 10-5 0.06 -0.53 6.5 x 10-4 intron_variant_upstream_gene_variant_d

ownstream_gene_variant 

MIR6809_TN

S1 

rs11566534

9 

 

chr10_101653726_C_T 0.89 5.1 3.7 x 10-7 0.12 -0.62 4.4 x 10-5 0.10 -0.42 9.4 x 10-4 intron_variant_intron_variant,non_coding

_transcript_variant 

FBXW4 rs73351217  

chr10_101657095_C_T 0.89 5.1 3.7 x 10-7 0.12 -0.62 4.4 x 10-5 0.10 -0.42 9.4 x 10-4 intron_variant_intron_variant,non_coding

_transcript_variant 

FBXW4 rs12241580  

chr6_36957882_C_T 0.89 5.1 3.9 x 10-7 0.12 -0.47 0.0023 0.10 -0.50 5 x 10-5 intron_variant PI16 rs76367788  

chr10_101764560_G_T 0.90 5.05 4.3 x 10-7 0.11 -0.56 0.00040 0.09 -0.46 2.4 x 10-4 upstream_gene_variant_intron_variant,no

n_coding_transcript_variant_downstream

_gene_variant 

LOC1053784

58_LOC1053

78457 

rs12244840  

chr10_101937533_A_G 0.086 -5.0 4.6 x 10-7 0.09 -0.52 0.0010 0.08 -0.52 1.2 x 10-4 intron_variant_intron_variant,non_coding

_transcript_variant 

ARMH3 rs11737598

00 

 

chr10_101678011_A_G 0.11 -5.0 4.9 x 10-7 0.12 -0.6 4.4 x 10-5 0.10 -0.40 1.2 x 10-3 intron_variant_intron_variant,non_coding

_transcript_variant_upstream_gene_varia

nt 

FBXW4 rs73351268  

chr10_101682560_T_C 0.11 -5.0 4.9 x 10-7 0.12 -0.6 4.4 x 10-5 0.10 -0.40 1.2 x 10-3 intron_variant_intron_variant,non_coding

_transcript_variant 

FBXW4 rs7068187  

chr10_101678587_A_G 0.11 -5.0 5.0 x 10-7 0.12 -0.6 4.4 x 10-5 0.10 -0.40 1.2 x 10-3 intron_variant_intron_variant,non_coding

_transcript_variant_upstream_gene_varia

nt 

FBXW4 rs38674708

0 
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chr10_101677839_A_G 0.11 -5.0 5.0 x 10-7 0.12 -0.6 4.4 x 10-5 0.10 -0.40 1.2 x 10-3 intron_variant_intron_variant,non_coding

_transcript_variant_upstream_gene_varia

nt 

FBXW4 rs73351267  

chr10_101678545_T_C 0.11 -5.0 5.0 x 10-7 0.12 -0.6 4.4 x 10-5 0.10 -0.40 0.0012 intron_variant_intron_variant,non_coding

_transcript_variant_upstream_gene_varia

nt 

FBXW4 rs73351271  

chr10_101688442_G_A 0.89 5.0 5.0 x 10-7 0.12 -0.6 4.4 x 10-5 0.10 -0.40 0.0011 intron_variant_intron_variant,non_coding

_transcript_variant 

FBXW4 rs73351283  

chr10_101678929_TATAG

A_T 

0.89 5.0 5.0 x 10-7 0.12 -0.6 4.4 x 10-5 0.10 -0.40 0.0011 intron_variant_intron_variant,non_coding

_transcript_variant_upstream_gene_varia

nt 

FBXW4 NA  

chr10_101693147_G_A 0.89 5.0 5.0 x 10-7 0.12 -0.6 4.4 x 10-5 0.10 -0.40 0.0011 intron_variant_intron_variant,non_coding

_transcript_variant_upstream_gene_varia

nt 

FBXW4_NA rs12262279  

chr10_101674286_A_G 0.11 -5.0 5.0 x 10-7 0.12 -0.6 4.4 x 10-5 0.10 -0.40 0.0011 intron_variant_intron_variant,non_coding

_transcript_variant 

FBXW4 rs11237220

6 

 

eQTL Genes  

chr17_74193463_C_A 0.99 4.58 4.7 x 10-6 0.01 -1.15 0.05 0.01 -1.65 2.3 x 10-5 intergenic_variant NA rs12603773 GPRC5C_eQTL_Gen 

chr1_85342012_A_G 0.35 4.38 1.2 x 10-5 0.4 0.22 0.03 0.33 0.3 1.5 x 10-4 intron_variant_intron_variant,non_coding

_transcript_variant 

DDAH1_NA rs233072 DDAH1_eQTL_Gen 

chr1_85339672_G_A 0.65 -4.38 1.2 x 10-5 0.4 0.22 0.03 0.33 0.3 1.5 x 10-4 intron_variant_intron_variant,non_coding

_transcript_variant 

DDAH1_NA rs233068 DDAH1_eQTL_Gen 

chr1_85330874_G_T 0.65 -4.38 1.2 x 10-5 0.4 0.22 0.03 0.33 0.3 1.4 x 10-4 intron_variant_intron_variant,non_coding

_transcript_variant 

DDAH1_NA rs233133 DDAH1_eQTL_Gen 

chr1_85333599_G_A 0.65 -4.38 1.2 x 10-5 0.4 0.22 0.03 0.33 0.3 1.4 x 10-4 intron_variant_intron_variant,non_coding

_transcript_variant 

DDAH1_NA rs233061 DDAH1_eQTL_Gen 

chr1_85359790_G_C 0.65 -4.35 1.4 x 10-5 0.4 0.22 0.03 0.33 0.29 1.7 x 10-4 intron_variant_intron_variant,non_coding

_transcript_variant 

DDAH1_NA rs233097 DDAH1_eQTL_Gen 

chr1_85340322_C_T 0.66 -4.33 1.5 x 10-5 0.39 0.21 0.04 0.32 0.3 1.3  x 10-4 intron_variant_intron_variant,non_coding

_transcript_variant 

DDAH1_NA rs233071 DDAH1_eQTL_Gen 

chr8_141287645_G_A 0.93 -4.31 1.6 x 10-5 0.08 0.35 0.06 0.07 0.56 7.0  x 10-5 intron_variant_intron_variant,non_coding

_transcript_variant 

SLC45A4_N

A 

rs11781174 SLC45A4_eQTL_Gen 

chr6_13749344_A_T 0.02 4.31 1.7 x 10-5 0.02 0.84 0.02 0.01 1.16 2.9  x 10-4 intergenic_variant NA rs14109192

79 

SIRT5_eQTL_Gen 

chr6_13748210_T_C 0.02 4.31 1.7 x 10-5 0.02 0.84 0.02 0.01 1.16 2.9  x 10-4 intergenic_variant NA rs474233 SIRT5_eQTL_Gen 
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chr1_85357361_G_C 0.65 -4.29 1.8 x 10-5 0.39 0.21 0.04 0.32 0.3 1.5  x 10-4 intron_variant_intron_variant,non_coding

_transcript_variant 

DDAH1_NA rs233091 DDAH1_eQTL_Gen 

chr10_102678808_C_T 0.6 -4.29 1.8 x 10-5 0.4 0.29 0.0039 0.4 0.26 1.4  x 10-4 intron_variant ARL3 rs7077678 SFXN2_eQTL_Gen 

chr16_386808_G_A 0.8 4.31 1.6 x 10-5 0.19 -0.49 1.6 x 10-4 0.2 -0.24 9.8 x 10-3 intron_variant_upstream_gene_variant_in

tron_variant,non_coding_transcript_varia

nt_non_coding_transcript_exon_variant 

LOC1001343

68_PGAP6_L

OC105371036

_NA 

rs78030025

1 

TMEM8A_eQTL_Ge

n &  

MCHC_GWAS_AFR 
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Figure 18. DRBC GWAS and exome associations. a) Manhattan plot of single variant association results with red blood cell density (DRBC) 

in 581 sickle cell disease patients. Bonferroni threshold line at 8.6 x 10-8 (0.05/ 580,149). b) Manhattan plot of gene-based results with red cell 

density in sickle cell patients. Bonferroni threshold line at 1.7 x 10-6 (0.05/ (14,949 x 2)) c) QQplot of gene-based results prioritized according 

to drug targets as identified by IUPHAR, and genes expressed in erythroid lineage or erythrocytes for SKAT test. d) QQplot of gene-based 

results prioritized according to drug targets identified by IUPHAR and genes expressed in erythroid lineage or erythrocytes for VT test. For 

both c and d, black dots represent all the markers together, blue dots represent markers ligand-gated ion channel, orange dots represent catalytic 

receptors, purple-colored dots represent enzymes, cyan-colored dots represent G protein-coupled receptors, maroon dots represent nuclear 

hormone receptors, green dots represent other ion channels, red dots represent other protein targets, burgundy dots represent transporters, and 

magenta dots represent voltage-gated ion channels. The grey area corresponds to the 95% confidence interval. λGC, genomic inflation factor. 
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Figure 19. WES variant scoring interface. a. Users can select eight types of variant consequences from top to 

bottom. Sliders are provided to filter variants scores for both raw and normalized DRBC values. Users can directly 

specify gene(s) of interest (Gene Symbol). Lastly, different annotations (malaria, spherocytosis, MCHC GWAS, 

etc..…) can be selected. b Correlation between the carrier frequency of the coding variant in 2,333 RBC volume 

candidate genes and mean normalized DRBC in 581 patients. (c), dynamic table with variants position, number of 

carriers, raw and normalized DRBC, rsID, SIFT and Polyphen deleteriousness prediction, SampleID of individual 

carrying the mutation, Allele frequency, GWAS p-value, annotation, and gene symbol. 
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Figure 20 Quantile-quantile plot of red blood cell density in 573 sickle cell disease patients. All variants (black), variants 

mapping to erythroid enhancers (orange), expression quantitative trait loci variant (eQTL) for 2,333 candidate genes implicated 

in red blood cell hydration from GTEx (purple) from eQTLGen (light blue), and markers associated with mean corpuscular 

hemoglobin concentration (MCHC) from previous genome-wide association studies (navy blue). The grey area corresponds to 

the 95% confidence interval. λGC, genomic inflation factor. 
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Figure 1. Mendelian 

randomization (MR) analysis of 

plasma L-glutamine with sickle cell 

disease (SCD) painful crises. Forest 

plot of MR evaluating the causal 

relationship between plasma L-

glutamine levels and painful crises in 

SCD patients. Effect sizes and 

standard errors of 51 variants 

associated with plasma L-glutamine 

were retrieved from large European 

mGWAS. Associations statistics 

between these 51 variants and SCD 

complications were calculated in the 

large prospective and well-

characterized CSSCD. In model 1, 

we considered all 51 SNPs as 

instruments, whereas model 2 only 

included 27 variants not associated 

with other metabolites (Methods). 

The MR effect size estimates and 

95% confidence intervals were 

calculated using the inverse variance-

weighted (IVW) random effect 

method.rs73342824 
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Chapter 4. Potential causal role of l-glutamine in sickle cell disease 

painful crises: A Mendelian randomization analysis 
 

 

The presented article has been published in the journal, Blood Cells, Molecules, and Diseases. In 

this study, I employed MR (Mendelian randomization) to investigate the causal relationship 

between l-glutamine levels and painful crises in patients with sickle cell disease (SCD). 

Furthermore, I successfully identified 66 metabolites that exhibit associations with various SCD 

complications, such as gall bladder disease and renal dysfunction. This approach exemplifies the 

efficacy of integrating genetics and metabolomics to gain insights into the pathophysiology of 

SCD. 
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ABSTRACT 

 

In a recent clinical trial, the metabolite L-glutamine was shown to reduce painful crises in sickle 

cell disease (SCD) patients. To support this observation and identify other metabolites implicated 

in SCD clinical heterogeneity, we profiled 129 metabolites in the plasma of 705 SCD patients. 

We tested correlations between metabolite levels and six SCD-related complications (painful 

crises, cholecystectomy, retinopathy, leg ulcer, priapism, aseptic necrosis) or estimated 

glomerular filtration rate (eGFR), and used Mendelian randomization (MR) to assess causality. 

We found a potential causal relationship between L-glutamine levels and painful crises (N = 

1278, odds ratio (OR) [95% confidence interval] = 0.68 [0.52–0.89], P = 0.0048). In two smaller 

SCD cohorts (N = 299 and 406), the protective effect of L-glutamine was observed (OR = 0.82 

[0.50–1.34]), although the MR result was not significant (P = 0.44). We identified 66 significant 

correlations between the levels of other metabolites and SCD-related complications or eGFR. 

We tested these correlations for causality using MR analyses and found no significant causal 

relationship. The baseline levels of quinolinic acid were associated with prospectively 

ascertained survival in SCD patients, and this effect was dependent on eGFR. Metabolomics 

provide a promising approach to prioritize small molecules that may serve as biomarkers or drug 

targets in SCD. 

  



 
92 

INTRODUCTION 

 

Sickle cell disease (SCD) is one of the most common Mendelian diseases in the world, 

affecting millions of patients living in Sub-Saharan Africa and the Indian sub-continent26. In the 

United States, > 100,000 individuals, mostly of African descent, live with SCD, and healthcare 

costs associated with SCD management and treatment are substantial234. Although fundamentally 

a disease of the blood – caused by mutations in the β-globin gene HBB – SCD is characterized 

by systemic and debilitating complications, such as painful crises, stroke, pulmonary 

hypertension and kidney failure. Unfortunately, there are no robust prognostic biomarkers to 

predict who will develop which complications, and when. SCD treatment still relies primarily on 

chronic blood transfusions and hydroxyurea (HU), a drug that acts partly by raising the 

concentration of anti-sickling fetal hemoglobin (HbF)235. 

 Progress in gene therapies and genome editing technologies now offer realistic hope of 

developing a cure for SCD236. However, these complex clinical interventions are unlikely to 

benefit most SCD patients worldwide in the short term. Therefore, we need to continue searching 

for novel biomarkers and drug targets for SCD. Recently, the US Food and Drug Administration 

approved three new molecules to treat SCD (L-glutamine, crizanlizumab-tmca and voxelotor). 

In a double-blind phase 3 clinical trial, L-glutamine was shown to reduce the number of painful 

crises over a 48-week period109. The emergence of L-glutamine as a therapy was based on 

decades of work investigating the role of oxidative stress in SCD pathophysiology 237. Red blood 

cells (RBC) from SCD patients have high oxidative stress and a compromised ability to 

counteract free radicals due to a low ratio of the reduction-oxidation (redox) co-factor 

nicotinamide adenine dinucleotide (NAD) and its reduced form ([NADH]:[NAD++NADH])140. 

L-glutamine is one of the most abundant amino acids in the human body and in addition to its 

role in protein synthesis, is required to synthesize NAD. Treatment with L-glutamine increases 

the NAD redox ratio and reduces adhesion of sickle RBC to endothelial cells, a hallmark of vaso-

occlusive painful crises141,238.  

Metabolites, like L-glutamine, are small molecules that result from the activities of 

endogenous enzymes239. The development of high throughput mass spectrometry-based 

methodologies makes it possible to profile 100–1000s of metabolites in human biospecimens. 

Such metabolomic studies have been used to identify metabolite signatures of diseases, but also 

to pinpoint specific metabolites that may have prognostic and/or therapeutic values240. Metabolite 
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levels are variable between individuals (in disease, but also in health) and large genetic studies – 

termed metabolite genome-wide association studies (mGWAS) – have identified 1000s of 

genetic variants that control them. Besides providing an opportunity to characterize the biological 

pathways that control metabolite levels, these genetic discoveries become powerful instruments 

for Mendelian randomization (MR) studies. MR uses genetic variants to determine the effect of 

genetically modulated phenotypes on disease outcome241. MR mimics randomized clinical trial 

as it harnesses the random allocation of parental alleles when they are passed on to their offspring. 

As a consequence, the alleles are independently distributed in the population and free from 

potential confounders242,243. For instance, it has been possible to show using MR that tobacco 

smoking, as opposed to other confounders such as socioeconomic status, causes lung cancer by 

demonstrating that a genetic variant associated with smoking heaviness and located in the 

nicotinic acetylcholine receptor subunit genes is also associated with lung cancer only through 

its effect on smoking habits244. Other MR studies have validated many drug targets for various 

human diseases (e.g. statins that lower LDL-cholesterol levels to reduce coronary artery disease 

(CAD) risk), but have also been useful to rule out many biomarkers as potential causal factors 

(e.g. HDL-cholesterol or C-reactive protein for CAD) 170,245,246. 

 In SCD, only a limited number of studies have used metabolomic approaches to tackle 

clinical heterogeneity. Zhang et al. discovered increased adenosine levels in blood from SCD 

patients and transgenic mice: they showed that higher adenosine levels exacerbated sickling, 

hemolysis and organ damage136. Additionally, the same group found that sphingosine-1-

phosphate (S1P) and 2,3-bisphosphoglycerate (2,3-BPG) blood concentrations are elevated in 

SCD patients and mice, which results in the re-programming of the glycolysis program and 

enhanced disease severity 137,138. Finally, Darghouth et al. profiled the metabolome of RBC from 

healthy individuals and SCD patients and identified several metabolites that highlight differences 

between the two groups in glycolysis, membrane turnover, and glutathione and nitric oxide 

metabolism139. Although exciting, these pioneering metabolomic studies were performed in a 

limited number of SCD patients (N = 14–30) and did not take advantage of MR methodology to 

address causality. 

To prioritize metabolites that may be important biomarkers or drug targets for SCD, we 

profiled 129 known metabolites, including L-glutamine, in the plasma of 705 SCD patients. First, 

we used MR to test the causal relationship between plasma L-glutamine levels and painful crises. 

Second, we tested the association between all measured metabolites and SCD-related 
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complications and combined these results with previous mGWAS findings to perform MR 

studies. Finally, we tested if baseline plasma metabolite levels were associated with survival in 

our SCD cohorts. Our results highlight the value of combining genetic and metabolomic 

strategies to disentangle the complex pathophysiology of SCD.  
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2. SUBJECTS AND METHODS 

 

2.1. Study participants 

 

Sample collections and procedures were in accordance with the institutional and national ethical 

standards of the responsible committees and proper informed written consent was obtained. The 

Genetic Modifier (GEN-MOD), the Cooperative Study of Sickle Cell Disease (CSSCD), and the 

Duke University Outcome Modifying Genes (OMG) cohorts have been described elsewhere 

126,247,248. Plasma samples were collected during steady state in outpatient visit over 3 weeks from 

treatment for vaso-occlusive crisis in OMG, and over 4 weeks for GEN MOD. In particular for 

GEN-MOD, a dedicated research assistant validated all clinical information. Demographic and 

clinical information for each SCD cohort is available in Table 1. For both GEN-MOD and OMG, 

patients were not fasting when plasma was collected, and diet information is not available.  

 

2.2. Metabolomics profiling 

 

Plasma metabolites were profiled using two complimentary liquid chromatography tandem mass 

spectrometry (LC-MS) methods. Amino acids, amino acid metabolites, acylcarnitines, and other 

cationic polar metabolites were measured using a Nexera X2 U-HPLC (Shimadzu Corp.) coupled 

to a Q Exactive Hybrid Quadrupole Orbitrap Mass Spectrometer (Thermo Fisher Scientific). 

Plasma samples (10 μL) were prepared via protein precipitation, with the addition of 9 volumes 

of acetonitrile/methanol/formic acid (74.9:24.9:0.2; v/v/v) containing stable isotope-labeled, 

quality control internal standards (valine-d8, Sigma-Aldrich; St. Louis, MO; and phenylalanine-

d8, Cambridge Isotope Laboratories; Andover, MA). The samples were centrifuged (10 min, 

9000×g, 4 °C), and the supernatants were injected directly onto a 150 × 2 mm, 3 μm Atlantis 

HILIC column (Waters). The column was eluted isocratically at a flow rate of 250 μL/min with 

5% mobile phase A (10 mM ammonium formate and 0.1% formic acid in water) for 0.5 min 

followed by a linear gradient to 40% mobile phase B (acetonitrile with 0.1% formic acid) over 

10 min. MS analyses were carried out using electrospray ionization in the positive ion mode 

using full scan analysis over 70–800 m/z at 70,000 resolution and 3 Hz data acquisition rate. 

Other MS settings were: sheath gas 40, sweep gas 2, spray voltage 3.5 kV, capillary temperature 
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350 °C, S-lens RF 40, heater temperature 300 °C, microscans 1, automatic gain control target 

1e6, and maximum ion time 250 ms. Raw data were processed using TraceFinder software 

(Thermo Fisher Scientific; Waltham, MA) for supervised, targeted extraction of data from a 

subset of lipids and Progenesis QI (Nonlinear Dynamics; Newcastle upon Tyne, UK). Organic 

acids, sugars, purines, pyrimidines, and other anionic polar metabolites were measured using an 

ACQUITY UPLC (Waters Corp, Milford MA) coupled to a 5500 QTRAP triple quadrupole mass 

spectrometer (AB SCIEX, Framingham MA). Plasma samples (30 μL) were extracted using 120 

μL of 80% methanol containing 0.05 ng/μL inosine15 N4, 0.05 ng/μL thymine-d4, and 0.1 ng/μL 

glycocholate-d4 as quality control internal standards (Cambridge Isotope Laboratories, Inc., 

Tewksbury MA). The samples were centrifuged (10 min, 9000×g, 4 °C) and the supernatants (10 

μL) were injected directly onto a 150 × 2.0 mm Luna NH2 column (Phenomenex, Torrance CA). 

The column was eluted at a flow rate of 400 μL/min with initial conditions of 10% mobile phase 

A (20 mM ammonium acetate and 20 mM ammonium hydroxide (Sigma-Aldrich) in water 

(VWR)) and 90% mobile phase B (10 mM ammonium hydroxide in 75:25 v/v 

acetonitrile/methanol (VWR)) followed by a 10 min linear gradient to 100% mobile phase A. 

The ion spray voltage was −4.5 kV, the source temperature was 500 °C, and multiple reaction 

monitoring (MRM) settings for each metabolite were determined using authentic reference 

standards. Raw data were processed and visually reviewed using MultiQuant software (AB 

SCIEX, Framingham MA). 

 

2.3. Metabolomics pre-processing 

 

We removed metabolites with > 20% missing values. We imputed missing metabolite values 

using the k-nearest neighbors algorithm249 as implemented in the R package impute. We log10-

transformed metabolite values, and applied batch effect correction based on metabolites' dates of 

extraction, the types of ionization, and whether they were obtained from targeted or untargeted 

approaches. Finally, we applied batch effect correction based on the year of profiling, since 

sample collection occurred within a 3 years span (2015–2017). We conducted all batch effect 

correction using combat250. Using a linear model, we then derived residuals correcting for age, 

sex, SCD genotypes, HU usage, and cohort affiliation. Supplementary Fig. 1 summarizes the 

design of our metabolomic experiment. Although we captured many unknown metabolites, 

which we used as part of the quality-control steps, this study focuses on the 129 known 
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metabolites that were available in both GEN-MOD and OMG. All metabolite levels that we 

measured in this study are in arbitrary units as we did not perform absolute quantification. 

 

2.4. Metabolite levels association with SCD complications, eGFR, or survival in GEN-MOD 

and OMG 

 

All statistical tests performed in this study, including models and covariates, are thoroughly 

described in Supplementary Table 1. We implemented a permutation procedure that considers 

the correlation between metabolite levels to test the association between metabolite levels and 

SCD complications (painful crises, aseptic necrosis, cholecystectomy (gall bladder removal), 

retinopathy, priapism, leg ulcer, survival), estimated glomerular filtration rate (eGFR, calculated 

using the chronic kidney disease epidemiology collaboration (CKD-EPI) equation251) or to 

predict the risk of prospectively ascertained death (survival). For eGFR, we chose the CKD-EPI 

rather than MDRD equation in order to properly assess high GFR values; this approach allows 

for the ascertainment of hyperfiltration, which is often observed in SCD patients247,252. We did 

not measure cystatin C levels, and are not aware of any data on SCD cohorts with concomitant 

measures of GFR and cystatin C. We randomly permuted the phenotype of interest and computed 

100,000 P-values (for each metabolite) in a linear or a logistic model. We then stored the smallest 

P-value out of the 100,000, and obtained the adjusted/permutated P-value (Pperm) by comparing 

the number of times the permutated P-values are smaller than the observed P-values: 

𝑃𝑝𝑒𝑟𝑚 =  
(𝑏 + 1)

(𝑚 + 1)
 

 

where b is the number of times Pperm is greater or equal than Pobs, and m the number of 

permutations. The procedure was implemented in the R statistical package. 

 

Genetic association study in the CSSCD DNA genotyping and genotype imputation in the 

CSSCD have been described in detail elsewhere126. We restricted our analysis to markers with 

imputation quality r2 > 0.3 and minor allele frequency (MAF) > 1%. We removed the effect of 

sex and age on batch effect corrected metabolites levels, and used inverse normal transformation 

to normalize the residuals. We used RvTests (v20171009)166 to test the association between 

genotype dosage and the various phenotypes: we used logistic regression models for painful 
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crises or cholecystectomy, and linear regression models for bilirubin and eGFR. All statistical 

models are defined in Supplementary Table 1. For eGFR, we did not correct for age and sex 

because the eGFR-EPI equation takes them both into account. 

 

2.5. Genetic association study in the CSSCD 

 

DNA genotyping and genotype imputation in the CSSCD have been described in detail elsewhere 

[25]. We restricted our analysis to markers with imputation quality r2 > 0.3 and minor allele 

frequency (MAF) > 1%. We removed the effect of sex and age on batch effect corrected 

metabolites levels, and used inverse normal transformation to normalize the residuals. We used 

RvTests (v20171009)166 to test the association between genotype dosage and the various 

phenotypes: we used logistic regression models for painful crises or cholecystectomy, and linear 

regression models for bilirubin and eGFR. All statistical models are defined in Supplementary 

Table 1. For eGFR, we did not correct for age and sex because the eGFR-EPI equation takes 

them both into account. 

 

2.6 Mendelian randomization  

 

2.6.1. Instrument identification  

 

Because of our reduced sample size, we selected instruments for MR analyses from large 

published mGWAS carried out in healthy individual of European ancestry. We identified 

metabolite-associated variants from the published meta-analysis of KORA and TwinsUK (N = 

6056 + 1768, 529 metabolites), as well as the whole-genome sequence metabolite association 

study in TwinsUK (N = 1960, 644 metabolites) 253,254. We focused on these publications because 

they are the two largest published mGWAS to date. We selected sub-genome wide significant 

mGWAS SNPs (P < 1 × 10−5) in order to maximize the phenotypic variance explained, and 

tested two MR models. The first MR model included all sub-genome wide significant SNPs as 

valid instruments. For the second MR model, we removed pleiotropic SNPs from the first model 

if they were associated with other metabolites at a Bonferroni corrected P < 0.05 threshold when 

considering the number of SNPs in model 1. Pleiotropic SNPs were identified by querying 

Phenoscanner255.  



 
99  

 

2.6.2 Instrument pruning  

 

We employed PLINK1.9v5.2218 to identify independent SNP within 5-Mb window and linkage 

disequilibrium (LD) r 2 < 0.01 in the CSSCD. This provided us with a list of pseudo-independent 

variants.  

 

2.6.3. Analysis  

 

We used a two-sample MR approach to test the causal link between metabolites and SCD-related 

phenotypes. We retrieved association results (effect sizes, standard errors) between instruments 

and SCD-related phenotypes from the large and clinically well characterized CSSCD. All MR 

analyses were performed in R version 3.5.1 with the TwoSampleMR package (v0.4.22)171. We 

used a multiplicative random effect inverse variance-weighted (IVW) method in each MR 

analysis. For the analysis of plasma L-glutamine levels and painful crises, we tested 2 models 

and defined statistical significance using a Bonferroni corrected threshold of α ≤ 0.025. All other 

analyses were exploratory and statistical significance was set at nominal α ≤ 0.05. Additionally, 

we computed the weighted median256, which selects the median MR estimate as the causal 

estimate, and MR-Egger257, which allows the intercept to vary freely and therefore estimates the 

amount of horizontal pleiotropy, for all the analyses. Moreover, we utilized MR-PRESSO 

(Pleiotropy Residual Sum and Outlier)258 to estimate the presence of horizontal pleiotropic bias 

and to calculate causal estimate adjusted for outliers for all reported results. Finally, we assess 

the validity of our significant results by conducting additional tests for horizontal pleiotropy, 

including Cochran's Q statistic, MREgger intercept test of deviation from the null, and I2 

heterogeneity statistic241.  

 

2.7. Genetic risk scores (GRS) 

 

Using PLINK1.9v5.2218, we calculated the genetic risk scores for L-glutamine and 3-

ureidopropionate in CSSCD, GEN-MOD and OMG. Effect size estimates from the two large 

mGWAS referenced in the MR analysis served as weights. Detailed description of the logistic 

and linear models employed for CSSCD, GEN-MOD, and OMG for inverse normal transformed 
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GRS association with painful crisis, eGFR, L-glutamine, and 3-ureidopropionate is available in 

Supplementary Table 1. We performed principal component analysis in PLINK using 1000 

Genomes Project populations as reference. 

 

 2.8. Data sharing statement  

 

The CSSCD genetic dataset is available on the database of Genotypes and Phenotypes (dbGaP: 

https://www.ncbi.nlm.nih.gov/gap/ )The GEN-MOD and OMG data are available upon requests 

to the authors.  

 

3. RESULTS 

 

3.1. Plasma metabolites in SCD patients  

 

To identify metabolites that may be useful to predict or treat SCD complications, we measured 

plasma values of 129 known metabolites in 705 patients from the GEN-MOD and OMG cohorts 

(Supplementary Fig. 1 and Table 1). Although our metabolomic experiment was performed at 

the same center, it was run in three batches so we applied stringent quality-control and batch 

effect correction filters to avoid confounding (Methods and Supplementary Fig. 2). The two 

main classes of metabolites that we measured were amino acids (33%) and lipids (30%) 

(Supplementary Fig. 3 and Supplementary Table 2).  

 

3.2. Mendelian randomization supports a potential causal link between L-glutamine and SCD 

painful crises  

 

L-glutamine therapy in SCD was previously shown to improve the NAD redox ratio, although 

this effect was not detected in a recent clinical trial109,259. Because we measured plasma L-

glutamine levels as part of our metabolomic experiment, we were interested to test association 

between its plasma levels and SCD-related complications or other clinically relevant parameters. 

In GEN-MOD and OMG, we found no evidence of association between plasma L-glutamine 

levels and SCD complications, including painful crises (Table 2). However, plasma L-glutamine 

levels were nominally associated with several hematological traits measured at baseline, 

https://www.ncbi.nlm.nih.gov/gap/


 
101  

including reduced hemoglobin concentration and RBC count (Table 2). For SCD complications, 

interpretation of these results is challenging because clinical events occurred before plasma L-

glutamine was measured, and this one time metabolomic measure may not reflect life-long 

endogenous exposure to L-glutamine. For these reasons, we sought to further test the relationship 

between L-glutamine and SCD painful crises using MR.  

Instrument strength plays a critical role in the validity of MR analyses. Although we measured 

plasma L-glutamine levels in 705 SCD patients, we wanted to take advantage of existing and 

well-powered mGWAS for the selection of the best metabolite associated SNPs to use as MR 

instruments253,254. However, these mGWAS were carried out in Europeans, whereas SCD patients 

in our cohorts are of African-descent (Supplementary Fig. 4), raising the question whether we 

could use SNPs found in Europeans as MR instruments for phenotypes observed in African 

ancestry SCD patients. To validate this strategy, we tested the well known causal link between 

bilirubin levels in serum and gallstones leading to surgical removal of the gallbladder 

(cholecystectomy), a complication often observed in SCD patients260,261. From a GWAS of serum 

bilirubin levels in 9464 individuals of European ancestry, we selected 10 SNPs as MR 

instruments262. In the large and well characterized CSSCD (Table 1), we tested the association 

between these SNPs and bilirubin levels or cholecystectomy, and replicated the strong 

association between these phenotypes and the UGT1A1 locus (Supplementary Table 3). The 

two-sample inverse variance-weighted (IVW) MR analysis confirmed that high bilirubin levels 

causes gallbladder disease in SCD: a one standard deviation increase in genetically-controlled 

bilirubin levels was associated with a 6-fold increase in the risk of cholecystectomy in the CSSCD 

(odds ratio (OR) [95% confidence interval] = 6.0 [2.8–17.0], PIVW = 1.9 × 10−6) 

(Supplementary Table 4).  

From the available mGWAS results253,254, we identified 51 SNPs associated with plasma L-

glutamine levels at P < 5 × 10−5 that were available in the CSSCD genetic dataset. Single variant 

and polygenic trait score association results are available in Supplementary Table 5126. Using 

these 51 SNPs as instruments in a two-sample IVW MR analysis, we did not detect a causal 

association between L-glutamine and painful crises (Model 1: OR = 0.81 [0.63–1.00], PIVW = 

0.086) (Fig. 1). When we excluded 24 pleiotropic SNPs (Methods) and repeated the analysis with 

the remaining 27 SNPs, the MR association with painful crises was significant: a one standard 

deviation increase in genetically-controlled L-glutamine levels was associated with a 32% 

reduction in the risk of painful crises in the CSSCD (Model 2: OR = 0.68 [0.52–0.89], PIVW = 
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0.0048) (Fig. 1). MR analyses using the sensitivity tests MR-Egger and weighted-median did not 

yield significant associations for Model 2, suggesting insufficient statistical power for these 

tests241 or potential residual horizontal pleiotropy (Supplementary Table 6). We repeated the 

MR analysis in the GEN-MOD and OMG cohorts: although the direction of the effect of the 

GEN-MOD+OMG meta-analysis indicated a protective effect of L-glutamine on painful crises 

(OR = 0.82 [0.54–1.34]), the result was not significant (PIVW = 0.54), presumably due to limited 

power given the smaller sample size (Supplementary Table 6). In secondary MR analyses, we 

found no evidence of causal associations between L-glutamine SNPs and several other SCD 

complications (Supplementary Table 6).  

To determine if the 27 SNPs in model 2 capture the known L-glutamine biology, we annotated 

the nearby genes using ProGeM263 (Supplementary Table 7). Although genes at many loci 

remain to be characterized, ProGeM highlighted strong candidate genes: (1) DBT (rs524219) 

encodes an enzyme involved in the synthesis of glutamate, a precursor to L-glutamine [44], (2) 

NADSYN1 (rs10431159), which encodes glutamine-dependent NAD(+) synthetase-1, has been 

implicated in L-glutamine synthesis through a reaction with nitrogen264,265, (3) SLC38A8 

(rs12447776) is a sodium-coupled neutral amino acid transporter with a preference for glutamine 

266,267, (4) PPA2 (rs4699183) plays a role in the detection of glutamine levels268, and (5) AADAT 

(rs138354882) is involved in the conversion of glutamine to glutamate through the production of 

α-ketoglutarate269.  

 

3.3. Potential causal link between 3-ureidopropionate and kidney function in SCD  

 

We tested 6 SCD-related complications as well as eGFR against the levels of the 129 known 

metabolites measured in GEN-MOD and OMG. In total, we found 66 metabolites with Pperm ≤ 

0.05, including 62 metabolites associated with eGFR, two metabolites associated with painful 

crises and two metabolites associated with cholecystectomy (Fig. 2 and Supplementary Table 

8). There was a strong association between eGFR and creatinine levels, which serves as an 

internal control given that we use this metabolite to calculate eGFR. Most of these metabolites 

have never been linked to SCD and future work could therefore test if they represent potential 

novel biomarkers of disease severity. Previous metabolomic studies had found high levels of 

adenosine, S1P and 2,3-BPG in the blood of SCD patients136-138. Unfortunately, we did not 

measure S1P and 2,3-BPG in our experiment. We could retrieve adenosine levels in a subset of 
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patients (N = 404), but we are cautious with interpretation since plasma adenosine has a short 

half-life and can be generated during blood extraction. Within the limitations of our experimental 

design, we observed higher adenosine levels in SCD patients with painful crises and 

cholecystectomy, although the results were not significant (Supplementary Table 9).  

Using the same strategy as for L-glutamine, we derived MR instruments for 48 of the 66 

metabolites identified in the pairwise analyses with SCD phenotypes; there were no significant 

mGWAS variants for the remaining 18 metabolites. Across these 48 tests, we identified a single 

nominally significant association in our two-sample MR analyses involving eGFR and 3-

ureidoproprionate levels (see URL for all available MR results, including sensitivity tests). In a 

European mGWAS254, we retrieved 22 SNPs associated with 3-ureidoproprionate levels, 

including 16 that were not pleiotropic (Supplementary Table 10). Our results indicate that a one 

standard deviation increase in genetically controlled 3-ureidopropionate levels was associated 

with improved eGFR of 0.07 mL/min per 1.172 m2 (PIVW-model1 = 8.7 × 10−4; PIVWmodel2 = 9.7 × 

10−4) (Fig. 3 and Supplementary Table 11). The sensitivity analyses did not allow us to exclude 

the possibility of confounding due to horizontal pleiotropy (Fig. 3 and Supplementary Table 11). 

Furthermore, we could not replicate the MR result in GENMOD and OMG, indicating that larger 

SCD cohorts are needed to confirm the potential causal link between 3-ureidoproprionate and 

eGFR (Supplementary Table 11).  

Again, we used ProGeM to annotate the genes located near the 16 non-pleiotropic SNPs 

used in the 3-ureidoproprionate MR analyses263 (Supplementary Table 12). This metabolite has 

been less studied, but we found that one of the variants, rs11704820, maps to an intron of the 

beta-ureidopropionase (UPB1) gene. Otherwise, we retrieved few genes that have been 

implicated in kidney functions and renal disease: (1) WDR72 (rs555045773) has been associated 

with eGFR variation270 and (2) LPIN1 (rs78734409 and rs71394795) is linked to myoglobinuria, 

which leads to renal failure due to the accumulation of creatine kinase in the kidneys271-273. 

 

3.4. Predicting survival status using baseline metabolite levels 

 

Given the clinical heterogeneity that characterizes this disease, being able to predict which SCD 

patients will follow a severe clinical course could be extremely useful. This is particularly true 

for more invasive therapeutic options (e.g. gene therapy) or in settings where resources to treat 

SCD are limited, such as Sub-Saharan Africa. Thus, we decided to explore the prognostic value 
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of plasma metabolites in SCD. As discussed above, the data currently available in GEN-MOD 

and OMG are largely retrospective. However, we could prospectively ascertain SCD severity 

using a simple definition based on survival status during the follow-up period (Table 1 and 

Methods). We identified 10 metabolites that were nominally associated with survival status, but 

only quinolinic acid remained significant after permutations to account for the number of tests 

performed (Table 2). For all 10 metabolites, increased levels were associated with increased risk 

of death, and for all but cytosine levels, the effect on survival was mediated by an association 

with eGFR. Quinolinic acid is a product of the kynurenine pathway, which also metabolizes the 

amino acid tryptophan.  

 

4. DISCUSSION 

 

While the cause of SCD has been known for over a century, treatment options are limited and it 

is extremely difficult to predict which patients will have a more severe presentation of the disease. 

To continue to address these challenges, we performed the largest using a targeted approach in 

705 participants. We also measured 1985 unknown metabolites as part of our experiment, but 

they were not considered in our analyses except during the pre-processing quality-control steps. 

Our effort was motivated by recent successes using this metabolomic approach to find new 

prognostic biomarkers and potential drug targets for human diseases274. In fact, a recent study 

showed using MR the causal impact of L-glutamine on RBC, mean corpuscular hemoglobin 

(MCH), and mean corpuscular hemoglobin concentration (MCHC) in healthy Europeans275. 

 

Among the 62 eGFR associated metabolites, we noted 11 acylcarnitines that were inversely 

correlated with eGFR. It is known that acylcarnitines accumulate in the plasma of patients with 

renal disease due to reduced clearance of esterified carnitine moieties, probably mediated by the 

renal tubular carnitine transporter OCTN2276. Our eGFR analyses also identified metabolites 

from the tryptophan metabolism (kynurenic acid, kynurenine) and the choline derivatives 

tubulointerstitial dysfunction and have been associated with incident chronic kidney disease277. 

We found two metabolites from secondary bile acid metabolism – deoxycholic acid glycine 

conjugate and taurodeoxycholic acid – that were associated with cholecystectomy. This 

observation is consistent with the fact that bile salts contribute to gallstones and gallbladder 

disease. Finally, we identified phosphocreatine and pyroglutamic acid as two metabolites 
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associated with SCD painful crises. Little is known about a role for phosphocreatine in pain 

biology, although its levels are increased in skeletal muscles of fibromyalgia patients278. 

Pyroglutamic acid belongs to the glutathione metabolism pathway and its levels were elevated in 

SCD patients with painful crises. Because high pyroglutamic acid levels are sometimes observed 

in individuals who chronically use acetaminophen279, this association might therefore reflect pain 

management as opposed to a causal link between pyroglutamic acid and pain in SCD patients. 

This conclusion is supported by the fact that our MR analyses did not causally implicate 

pyroglutamic acid in painful crises. 

 

By combining metabolite profiles with mGWAS results, we could use MR methods to test 

causality between metabolites and SCD-related complications. Using this strategy, we identified 

in the large CSSCD a promising causal relationship between plasma L-glutamine levels and 

painful crises, which provides independent evidence consistent with recent results from a phase 

3 clinical trial109. Given that the CSSCD was initiated in the ~1980s and that L-glutamine was 

only recently approved, it supports the idea that new drugs targeting known pathophysiological 

mechanisms (e.g. increased oxidative stress) could yield effective SCD therapeutic options. Our 

analyses also highlighted 3-ureidoproprionate, an intermediate in the metabolism of uracil, as a 

potential positive modulator of eGFR. Interpretation of this result is difficult because little is 

known about this metabolite and the result was not replicated in additional SCD patients. 

Mutations in the gene UPB1, which encodes the enzyme that transforms 3-ureidopropionate into 

beta-alanine, cause beta-ureidopropionase deficiency, a rare monogenic disease characterized by 

high plasma levels of 3-ureidoproprionate 280. Only a few patients with this disease have so far 

been described and they presented mostly with neurologic development issues. However, there 

is no report of abnormal glomerular filtration rate or other kidney defects in these patients. We 

propose that future MR replication in independent SCD cohorts and animal studies could be 

extremely useful to investigate the possible role of 3-ureidoproprionate in regulating kidney 

functions, and in particular whether raising 3-ureidopropionate levels could improve glomerular 

filtration rate in SCD patients.  

Our study presents with a few limitations, especially as it relates to some of the MR 

assumptions and the ability to detect a causal effect between L-glutamine and SCD painful crises. 

First, our statistical power to detect heterogeneity due to confounding in our MR analyses and to 

replicate our main findings was limited because there are few large, well-characterized and 
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genotyped SCD cohorts available. Second, some of the SNPs used as MR instruments may be 

pleiotropic beyond the filtering that we applied (i.e. have an effect on multiple unknown 

metabolites and other phenotypes) so that it is not possible to rule out an effect on SCD 

complications that is independent from the tested metabolites. For these two reasons, it will be 

important to replicate the L-glutamine painful crises MR analyses in independent large SCD 

cohorts when they become available. Third, we used MR instruments derived from mGWAS 

performed in Europeans to test for causality in African ancestry SCD patients. There have been 

many reports on the transferability (or lack thereof) of GWAS findings across ancestries281. We 

used the well-known relationship between bilirubin levels and gallbladder disease to show that 

our approach can work. However, it is likely that having access to large mGWAS results in 

African ancestry populations would provide better instruments, and may lead to the identification 

of additional causal links between metabolites and SCD phenotypes by MR. Finally, we 

measured metabolite levels in plasma, but their levels in RBC could have provided 

complementary information (in particular for L-glutamine). 

 

One characteristic of our study is that we measured metabolites in SCD cohorts that have mostly 

collected retrospective clinical data. One exception is information on the survival status of the 

participants. Using a simple linear model, we found a significant association between 

prospectively ascertained survival status and baseline quinolinic acid levels. This association was 

mediated by eGFR, consistent with our previous observation that quinolinic acid levels correlate 

with rapid renal function decline in SCD patients247. In the future, it will be interesting and 

important to test whether metabolites predict other complications in prospective SCD cohorts. In 

conclusion, our results motivate future experiments to integrate metabolite profiles and other 

orthogonal omics datasets (e.g. genetics) to build better predictors of SCD-related complications 

and overall severity.  

 

Supplementary data to this article can be found online at https:// 

doi.org/10.1016/j.bcmd.2020.102504. 
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Table1. Demographics and clinical information. Sickle cell disease patients from three 

cohorts were included in this study. For the CSSCD, all data are prospective and we only 

considered patients with genome-wide genotyping data available. For GEN-MOD and OMG, all 

data were collected at baseline and are retrospective, except survival which is prospective. 1 

Painful crises in GEN-MOD and OMG are defined as crises requiring hospitalization which was 

dichotomized (individuals with ≥1 painful crises in the last 12 months are assigned as cases, 

while individuals with no painful crisis are assigned as controls). In the CSSCD, painful crises 

are defined as painful episodes requiring emergency room visits, and we dichotomized the data 

as no crisis (control) or at least one crisis (case) during the follow-up period. For all quantitative 

variable, we provide mean ± standard deviation. LDH, lactate dehydrogenase; RBC, red blood 

cell; MCH: mean corpuscular hemoglobin; MCV: mean corpuscular volume; eGFR, estimated 

glomerular filtration rate.  
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Characteristic GEN-MOD OMG CSSCD 

Sex (male/female) 222/184 163/136 616/662 

Age (year) 31  9 35  14 14  12 

-globin genotypes (HbSS/ 

HbS 0-thal/ HbSS -thal/ HbSC/ HbS +) 

406/0/0/0/0 255/12/0/23/9 883/0/395/0/0 

Painful crises (cases/controls)1 150/180 161/128 194/907 

Leg ulcer (cases/controls) 30/300 79/214 185/970 

Cholecystectomy (cases/controls) 200/206 173/72 152/932 

Aseptic necrosis (cases/controls) 94/236 93/194 164/991 

Priapism (cases/controls) 41/116 55/236 96/460 

SCD retinopathy (cases/controls) 182/67 65/210 274/292 

SCD survival (cases/controls) 19/384 35/91 44/1235 

Bilirubin (mg/dL) 3.5 2.1  2.9  2.4 3.3  2.2 

eGFR (mL/min 

per 1.172 m2) 

143.6 22.8 126.0  40.3 165.3  47.0 

Hemoglobin (g/dL) 8.8  1.3 8.2  1.8 8.4  1.3 

Hematocrit (%) 25.8  4.5 25.3  5.7 24.8  4.03 

Lactate dehydrogenase (units/L) 400.4  144.7 326.8  240.2 451.6  244.7 

MCH (pg) 29.3  4.1 32.0  4.8 29.8  3.1 

MCV (fL) 87.0  10.2 92.2  12.7 89.2  8.5 

RBC count (x106 cells/L) 3.0  0.80 2.9  0.80 2.8  0.57 
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Table 2. Associations between L-glutamine plasma levels and sickle cell disease (SCD)-

related complications and other clinically relevant phenotypes. In participants from the GEN-

MOD and OMG cohorts, we tested the association between L-glutamine levels measured in 

plasma and SCD-related complications or clinically relevant blood-based biomarkers. 

Dichotomous phenotypes were analyzed using logistic regression while correcting for age, sex, 

hydroxyurea (HU) usage, SCD genotypes and cohort affiliation. Quantitative phenotypes were 

corrected for age, sex, HU usage, SCD genotypes and cohort affiliation. They were inverse 

normal-transformed before being tested for association using linear regression. Odds ratio and 

effect sizes (Beta) are given per standard deviation change in plasma L-glutamine levels. LDH, 

lactate dehydrogenase; RBC, red blood cell; MCV, mean corpuscular volume; MCH, mean 

corpuscular hemoglobin; eGFR, estimated glomerular filtration rate; LDH, lactate 

dehydrogenase; CI, confidence interval; SE, standard error.  
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Complications N Odds ratio 95% CI P-value 

Painful crises 619 1.06 (0.90-1.24) 0.52 

Survival 529 1.01 (0.75-1.35) 0.79 

Aseptic necrosis 617 0.97 (0.97-1.16) 0.76 

Cholecystectomy 651 1.06 (0.90-1.25) 0.45 

Leg ulcer 623 1.09 (0.88-1.35) 0.44 

Priapism 448 1.11 (0.88-1.4) 0.39 

Retinopathy 524 0.99 (0.82-1.18) 0.88 

     

Renal Parameter N Beta SE P-value 

eGFR 702 -0.067 0.036 0.067 

     

Blood Parameter N Beta SE P-value 

Bilirubin 585 0.10 0.041 0.010 

Hematocrit 697 -0.08 0.035 0.019 

Hemoglobin 685 -0.098 0.035 0.0048 

LDH 579 0.078 0.039 0.044 

MCH 626 0.067 0.035 0.053   

MCV 697 0.07 0.032 0.03 

RBC 698 -0.11 0.033 7.1x10-4 
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Figure 21. Mendelian randomization (MR) analysis of plasma L-glutamine with sickle cell disease (SCD) painful crises. Forest plot 

of MR evaluating the causal relationship between plasma L-glutamine levels and painful crises in SCD patients. Effect sizes and standard 

errors of 51 variants associated with plasma L-glutamine were retrieved from large European mGWAS. Associations statistics between 

these 51 variants and SCD complications were calculated in the large prospective and well-characterized CSSCD. In model 1, we 

considered all 51 SNPs as instruments, whereas model 2 only included 27 variants not associated with other metabolites (Methods). The 

MR effect size estimates and 95% confidence 
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Figure 22 Known metabolites associated with SCD complications and estimated glomerular filtration rate (eGFR) in GEN-MOD and OMG. 

We tested 129 metabolites against clinical complications by logistic regression (linear regression for quantitative eGFR). On the x-axis, we report odd 

ratios (effect sizes for eGFR) in metabolite standard deviation units, whereas the y-axis presents the observed analytical P-values. Red circles highlight 

metabolites with Pperm < 0.05 calculated using 100,000 permutations. In total, we found 2 metabolites for painful crises, 2 metabolites with 

cholecystectomy, and 62 metabolites for eGFR. (For interpretation of the references to color in this figure legend, the reader is referred to the web 

version of this article.) 
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Figure 23. 3-Ureidopropionate causally influences estimated glomerular filtration rate (eGFR) in sickle cell disease (SCD) patients. (A) Mendelian 

randomization (MR) plot comparing the effects of SNPs on 3-ureidopropionate in Europeans (retrieved from large European mGWAS) (x-axis) and eGFR in SCD 

patients (CSSCD) (y-axis). The slope of each line corresponds to the MR effect for each method (inverse variance-weighted (IVW), MR-Egger or weighted median). 

Data are expressed as effect sizes with 95% confidence intervals. SNPs in red are pleiotropic. (B) Same as A, except that we removed pleiotropic variants. (For 

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article. 
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Chapter 5: Integrating metabolomics with GWAS reveals novel 

insights into the liver and kidney dysfunction in sickle cell disease 

patients 

 

 

The article presented is intended to be published to the journal, Scientific Reports. In this article, 

employing both targeted and untargeted approaches we profiled the plasma of 706 SCD patients 

using liquid chromatography tandem mass spectrometry. The cohort included 406 French 

patients (GEN-MOD cohort) of recent African descent and 300 African Americans (OMG 

cohort) from southeastern US.  In total, we measured the levels of 233 known and 1,880 unknown 

metabolites. I constructed 66 modules containing at least 7 metabolites per module using the 

clustering framework weighted correlation network analysis (WGCNA). I found a module 

strongly associated with increased risks of gall bladder removal. Additionally, I retrieved another 

module of metabolites strongly correlated with a measure of kidney function, namely estimated 

glomerular filtration rate (eGFR). Finally, I performed a GWAS for each of the 39 most robust 

modules, which resulted in two modules strongly associated with SNPs (FDR < 0.05). I obtained 

one module with multiple SNPs significantly associated (P < 8.0 x 10-10) near the gene encoding 

for hepatic triglyceride lipase (LIPC). 
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ABSTRACT 

 

Sickle cell disease (SCD) is a monogenic disease caused by a mutation in the β-globin gene. The 

complications related to the disease are systemic as they impact multiple organ systems. Our goal 

in this study was to identify metabolome changes contributing to SCD-related severity. 

Employing both targeted and untargeted approaches, we profiled the plasma of 706 SCD patients 

using liquid chromatography-tandem mass spectrometry. The cohort included 406 French 

patients of recent African descent and 300 African Americans from the southeastern US. We 

applied weighted gene correlation network analysis (WGCNA) algorithms to account for 

correlations among metabolites and identify specific metabolomic clusters associated with SCD-

related complications, blood indices and renal function. Finally, we incorporated genetic data 

from 15 million SNPs into the clusters to identify the biological pathways implicated by the 

unknown metabolites. We constructed 66 networks containing at least seven metabolites per 

network. We found a group of metabolites strongly associated with increased risks of gall bladder 

removal. That module contained four known metabolites involved in bile acid metabolism, 

including glycocholate, glycodeoxycholate, taurocholate, and taurodeoxycholate. Additionally, 

we found another group of metabolites strongly correlated with estimated globular filtration rate 

(eGFR). The cluster implicated molecules in the carboxylic acid metabolic process and the purine 

pyrimidine metabolism. We performed a GWAS for each of the 39 most robust modules, which 

resulted in two modules strongly associated with SNPs at genome-wide level (FDR < 0.05). We 

found that one of these two modules was significantly associated (P < 8.0 x 10-10) with multiple 

SNPs near the gene encoding for the hepatic triglyceride lipase (LIPC). This association reiterates 

findings on SCD severity and the impaired Land's cycle. Functional or computational 

experiments to identify the unknown metabolites could yield a better understanding of how these 

metabolic pathways play a role in organ dysfunction and then can be exploited in therapeutic 

intervention. 
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INTRODUCTION 

Sickle cell disease is a debilitating genetic disorder caused by a single mutation at the beta-globin 

gene (Glu6Val). The mutation induces the formation of long polymers under hypoxic conditions. 

A build-up of these rod-like polymers leads to the deformation of red blood cells leading to vaso-

occlusion, anemia, and eventually organ damage. This inherited blood disorder is one of the most 

widespread monogenic diseases in humans. Most cases impact individuals of African, Indian, 

and Arab descent1-3. The disease is predominantly present in West Africa, where at least 25% of 

the population carries the mutation. Countries such as Nigeria and the Democratic Republic of 

Congo4 have the most considerable burden. Metabolites represent the integration of gene 

expression, protein interaction, other regulatory processes, and the environment. Therefore, they 

are ideal for understanding and tracking by-products of the physiological progression of diseases. 

Also, metabolomics can yield insights into ground-breaking therapies targeting specific pathways 

or enzymes5,6. Therefore, measuring metabolites in SCD patients can help us uncover the 

pathophysiological mechanisms and treatments for sickle cell disease. 

Metabolomics studies in transgenic knockout mice with human sickle hemoglobin and sickle cell 

disease7 implicated two metabolic pathways and six families of metabolites. The studies showed 

a pronounced increase in lipids, amino acids, nucleotides, fatty acids, carbohydrates, xenobiotics, 

glycolysis-related molecules (2,3-bisphosphoglycerate), and the pentose phosphate pathway8-10. 

Subsequent studies by Darghouth et al. confirmed the mouse study results11. By comparing the 

metabolome of 24 healthy individuals with that of 28 SCD patients, they found that higher levels 

of 2,3-bisphosphoglycerate (2,3-BPG)) and a reduction of glutathione are characteristics of SCD 

progression. Moreover, the discovery of two independent pathways modulating sickle severity 

further improved our understanding of the disease. On the one hand, the damaged Land's cycle10, 

responsible for the plasma membrane's stability, can be a therapeutic target since inhibiting the 

phospholipase A2 (PLA2) enzyme through a small interfering RNA reduces the sickling 

phenomena12.  

On the other hand, targeting the CD73–ADORA2B and SphK1–S1P–S1PR1–IL-6 signaling 

cascades will reduce adenosine levels which will, in turn, reduce inflammation, sickling, and 

painful crises events. An FDA-approved compound targeting this signaling pathway proved 

beneficial in SCD mice as it reduced morbidity rate, lowered systemic inflammation, and 
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lessened tissue damage13. While more recent studies linked metabolites such as asymmetric 

dimethylarginine, quinolinic acid, and L-glutamine to estimated globular filtration rate (eGFR)14 

and painful crises15,16, other analyses consistently implicate the role of Land's cycle, S1P17, and 

the arginine and glycolysis pathways18,19. Finally, Mitapivat20, a red blood cell-specific pyruvate 

kinase targeting the 2,3-BPG and glutathione pathway, is currently under phase 3 clinical trial as 

a potential therapeutic for SCD. 

In this study, we want to inquire how groups of metabolites contribute to SCD pathophysiology. 

First, employing weighted gene co-expression network analysis (WGCNA)21, we constructed 

networks of metabolites by calculating the dissimilarity coefficients and subsequently 

performing by hierarchical clustering. Second, we calculated the correlation between these 

networks and SCD-relevant complications. Finally, we integrated the genotypic information into 

the metabolite clusters by performing genome-wide association analyses on robust modules. 
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MATERIALS AND METHODS 

 

Ethics statement 

 

Informed consent was obtained for all participants per the Declaration of Helsinki. This project 

was also reviewed and approved by the Montreal Heart Institute Ethics Committee and the 

different recruiting centers.  

 

Samples and DNA genotyping 

 

The Genetic Modifier (GEN-MOD) and the Duke University Outcome Modifying Genes (OMG) 

were recruited in France and the southeastern USA, respectively. Both cohorts' genotyping, 

imputation, and plasma collection were described elsewhere14,15,22. 

 

Metabolite profiling, pre-processing, and quality control 

 

Metabolomic profiling employed tandem liquid chromatography with mass spectrometry. 

Sample preparation, data acquisition, metabolite identification, bath effect correction, metabolite 

imputation, and normalization are described elsewhere15. Employing both targeted and 

untargeted approaches, we profiled the plasma of 706 SCD patients; the cohort included 406 

French patients (GEN-MOD) of recent African descent and 300 African Americans (OMG) from 

the southeastern US. We measured the levels of 233 known and 1,880 unknown metabolites. We 

considered metabolites as unknown when they could not be reliably measured and quantified and 

whose identity could not be determined or is absent from profiling libraries. Additionally, we 

developed an R package VIQCing (visualization, imputation, quality control, wgcna functions) 

implemented in the R language. Finally, we documented all the functions and methods employed 

(see URLs).  

 

Weighted gene co-expression network analysis 

 

We analyzed both targeted and untargeted metabolites for the weighted gene co-expression 

analysis (WGCNA). The smallest soft threshold with an adjusted R2 > 0.85 was 7 

(Supplementary Figure 2). We, therefore, chose to calculate the adjacency score between any 
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seven metabolites within a sample set. We then computed the topological overlap matrix (TOM), 

which we converted to a distance matrix (adjacency matrix) by subtracting the matrix values 

from 1. Finally, we identified the modules by applying hierarchical clustering to the adjacency 

matrix. We set minModuleSize 7, mergeCutHeight 0.25, deepSplit 2, networkType “signed”for 

the WGCNA analysis. We, therefore, generated 66 modules. We employed the WGCNA 

(v1.12.0)21, implemented in R, to perform all the previously mentioned analyses. 

 

Identification of modules associated with clinical phenotypes  

Module-clinical associations were determined using logistical and linear regression for six 

categorical (leg ulcers, retinopathy, cholecystectomy, priapism, aseptic necrosis, survival) and 

twelve continuous variables (mean cell volume, mean corpuscular hemoglobin concentration, 

mean corpuscular hemoglobin, hematocrit, platelets, reticulocyte count, fetal hemoglobin, red 

blood cell count, white blood cell count, lactate dehydrogenase, bilirubin, and estimated globular 

filtration rate). Continuous traits were ranked inverse normal transformed. We tested the 

association of the clinical phenotypes with the module eigengene - the first principal component 

- of metabolites within a module. All associations were adjusted for age, sex, SCD genotypes, 

and hydroxyurea usage. We considered significant all modules with a P-value < 4.5 x 10-5 

(Bonneferoni 0.05/ (66 x 18 (number of modules times the number clinical phenotypes)). 

 

Robustness analysis, genome-wide association, and phenome-wide association study 

To assess the reproducibility of the networks, we performed a robustness analysis in which we 

randomly sampled half of the individuals in the cohort. We then generated modules and 

calculated their preservation statistics (module interconnections, separability, and Z statistic). We 

repeated this analysis eight times and kept all modules with a Z-score statistic greater than 10 

(the threshold by which modules are considered reproducible, distinct, tightly connected, and 

robust). As a result, we kept 39 robust modules.  

 

In terms of genotypes, we restricted our analysis to markers with imputation quality r2 >0.3 and 

minor allele frequency (MAF) >1%. Upon performing the association test, we removed the effect 

of age, sex, ancestry (first ten principal components), SCD genotype, and hydroxyurea usage on 

inverse normal transformed principal component 1 (PC1) of each 39 modules. We used RvTests 

(v20171009)23 to test the association between genotype dosage and PC1 in GEN-MOD. Next, 
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we used SNPTESTv224 to test the association between genotype dosage and PC1 in OMG. We 

employed METAL25 to then meta-analyze the summary statistics from each cohort. Over 15 

million variants resulted from the final step. Finally, we performed the PheWAS analysis for 

blood indices employing the variant level approach implemented in the variant annotation 

method pointing to interesting regulatory effects (VAMPIRE)26 and the gwasATLAS27 website.  

 

RESULTS 

 

Gene co-expression modules associated with blood traits and SCD complications  

 

After quality control, we generated 2,113 metabolites from 688 SCD patients. Quality control 

steps were performed as described in15. By employing WGCNA on 2,113 metabolites, we 

constructed 66 modules, among which the number of metabolites ranged from 7 to 304 

(Supplementary Table2) (Figure 1 A). We then tested the association of modules with eleven 

blood traits, one renal parameter, and six SCD-related complications. We found 43 modules with 

P < 4.2 x 10-5 (0.05/(number of module times the traits tested)). One module, Lightcyan1, was 

significantly (OR = 2, P = 1.5 x 10-6) and specifically associated with cholecystectomy. Upon 

further inspection, we found that the module includes four known metabolites (glycocholate, 

glycodeoxycholate, taurocholate, and taurodeoxycholate), all involved in bile acid metabolism, 

and 20 unknown metabolites (Supplementary Table 2, Figure 2 A). Plus, we noticed a strong 

association between the magenta module and eGFR levels (beta = -0.6, P-value = 1.5 x 10-61). 

The magenta cluster contains 33 known metabolites and 114 unknown metabolites 

(Supplementary Table 3). Among the known metabolites, we find well-documented 

compounds such as citrulline, creatinine, and dimethylarginine28,29. We also found novel 

metabolites such as quinolinic acid14 and N2,N2-Dimethylguanosine30. Additionally, close to the 

significance threshold, Coral1 associated with leg ulcers (OR = 0.6, P = 7.4 x 10-5). No other 

module significantly associated with SCD-complications.  

 

We noticed that the same module could be associated with several continuous traits (i.e., the 

Lightcyan module is associated with, among others, MCV, hematocrit, and eGFR). In contrast, 

some modules are more precise (i.e., the magenta and the brown modules are specific to eGFR) 

(Figure 1 B & C). Due to the specificity and significance of association of the magenta module 
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with eGFR, we explored whether the module associated with renal decline in a subset of the 

OMG cohort. We found an inverse relationship, although not significant, between the metabolites 

within the magenta and renal decline in OMG cohort (Figure 3). 

We found several modules containing unknown metabolites. For example, the lightcyan module 

contains 78 metabolites, 3 of which are known (Supplementary Tables 2 and 3). We further 

prioritized the associations of modules with blood traits by looking at the relationship between 

module membership and metabolite significance. We considered as strong an association when 

the correlation coefficient is above 0.7 and the significance P-value < 0.05/(number of 

metabolites in the module times 18 (the number of traits)). The robustness analysis based on 

connectivity strength confirmed the association between cholecystectomy and lightcyan1 and the 

association between eGFR and the magenta module (Figure 2). Furthermore, while the grey 

module (the module that receives metabolites that could not be confidently assigned to any 

clusters) was associated with eGFR, the module strength connectivity showed weak correlation 

and significance (r=0.18, p-value=0.0039) (Supplementary Figure 10). 

 

Genome-wide association study identifies lipid-related a pathway linked to hematocrit and red 

blood cell count 

 

Several of the modules constructed contain both known and unknown metabolites. Since 

combining high-throughput genotyping data with metabolomics can reveal the functional genetic 

loci linked to unknown metabolites31,32, we performed a GWAS for PC1 for each of the 39 most 

robust modules (Supplementary Figure 14). As shown in Figure 4, we found that the 

darkorange and darkred modules were significantly associated (P < 8.0 x 10-10) with multiple 

SNPs near the genes encoding for hepatic triglyceride lipase (LIPC) and the embryonic ectoderm 

development (EED), respectively (Table 1). The darkorange module contains six known 

metabolites and fifteen unknown metabolites. The known metabolites are all 

phosphatidylethanolamines (PE(16:0/18:2(9Z,12Z)), 

PE(16:0/20:4(5Z,8Z,11Z,14Z)),PE(16:0/20:4(5Z,8Z,11Z,14Z)),PE(18:2(9Z,12Z)/20:4(5Z,8Z,1

1Z,14Z)),PE(18:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z))), belonging to the class of 

glycerophospholipids. The darkred module, on the other hand, contains 22 metabolites, all 

unknowns. The SNPs for both modules are in strong linkage disequilibrium (R2 > 0.9) in the 

African ancestry population. 
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Phenome-wide association analysis (PheWAS) for LIPC and EED SNPs 

 

We performed a PheWAS for the top SNP identified in Table 1. Given they are all in LD, we 

queried the most significant SNPs associated with both modules. For the darkorange module we 

queried rs1800588, and for the darkred cluster we queried rs12277271. We focused our query on 

seven red blood cell indices (HCT-Hematocrit; HGB-Hemoglobin Concentration; MCH-Mean 

Corpuscular Hemoglobin; MCHC- Mean Corpuscular Hemoglobin Concentration; MCV-Mean 

Corpuscular Volume; RBC-Red Blood Cell Count; RDW-Red Blood Cell Distribution Width) 

from three recent articles on the GWAS of hematological traits across ancestry33-35. We also 

queried SNPs across 3302 human phenotypes (https://atlas.ctglab.nl/)27 with P-value < 5 x 10-5. 

We found four significant eQTL associations for rs1800588 implicating LIPC with hematocrit 

levels, red blood cell counts, and no other blood indices (Supplementary Data Table1). We also 

found an enrichment of associations with lipid-related metabolic traits (HDL-related traits, LDL-

related traits, and cholesterol-related traits) (Supplementary Data Table 1 & 2). For 

rs12277271, we found no association with any of the blood indices. However, two associations 

were related to asthma (Supplementary Data Table 3).  

 

DISCUSSION 

 

To the best of our knowledge, this is the first study to explore the interplay between the genetic, 

blood traits, and complications by integrating GWAS data into metabolomics in SCD. We 

applied the WGCNA framework, a network approach, to identify and integrate genotypes and 

modules of coregulated metabolites that correlate with SCD-related clinical endpoints. 

Specifically, this includes metabolites such as glycocholate, glycodeoxycholate, taurocholate, 

and taurodeoxycholate, which associate with cholecystectomy and have been shown to increase 

post-surgery36,37. Additionally, metabolites associated with eGFR in the magenta module seem 

to correlate with renal decline in a subset of SCD patients. While the p-value is not significant, 

most likely due to sample size (N=82), the correlation coefficient (beta=-0.87) suggests a link 

between this metabolite cluster and kidney function. Several other modules are strongly 

associated with blood traits and eGFR; they, however, encapsulated primarily unknown 

metabolites (e.i, the brown cluster association with eGFR, the bisque4 cluster association with 

white blood cell count, and the lightyellow association with reticulocyte count). Thus, rendering 
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their interpretation more difficult. Further investigation is warranted to identify these metabolites 

employing in silico38 or in vivo39 approaches.  

Plus, combining metabolomics with GWAS data allowed the exploration of red blood cell 

mechanisms in sickle cell disease. Our findings support the evidence for the role of 

glycerophospholipids SNP that influences LIPC expression, rs1800588 (Supplementary Data 

Table1). Plus, this finding echoes the contribution of phospholipase A2 (PLA2) and 

lysophospholipid acyltransferases (LPLATs) to the impaired Lands' cycle in mice and cultured 

human erythrocytes12. In fact, our HMDB annotation of the known darkorange metabolites 

showed that they are all associated with several phospholipases A2 (i.e., PLA2G5; PLA2G2F; 

PLA2G4A) (Supplementary Table 3). Other studies on cholesterol and lipoproteins in SCD 

showed an association between increased triglyceride/HDL-C ratio and endothelial 

dysfunction40. Moreover, triglycerides were lower in SCD patients compared to healthier 

individuals41,42.  

This study reveals the power of clustering approaches in combining omics datasets in a 

biologically relevant fashion. It also shows that network-based methods are helpful in generating 

hypotheses to pinpoint the most relevant component of highly dimensional datasets. Another 

advantage of the network approach is performing GWAS on principal components (PC). PCs 

enable us to summarize information from multiple highly correlated traits (like metabolites). 

Furthermore, GWAS on PC scores can decrease type 1 error rate by avoiding multiple testing43,44. 

Finally, combining traits through PC scores could discover regions missed by individual 

phenotypes. 

There are some limitations to this study. While our sample size is large (N=688) within the 

context of sickle cell disease and African ancestry individuals, it is far from the large metabolite 

analysis performed in European ancestry individuals (N > 7,000)45. Also, only 11% of the 

metabolite profiled could be considered as known. This limited the interpretability and 

identification of novel pathways. Plus, including only known metabolites in our WGCNA 

analysis would prevent us from generating multiple clusters, thus limiting our scope. Finally, our 

clustering results require replication in an independent SCD cohort. The absence of a well-

powered metabolomics study in another SCD cohort makes replication difficult, if not 

impossible. Accordingly, the present results should be interpreted with caution. 

This study correlated metabolites clusters to SCD complications, blood traits, and renal function, 

in addition to integrating      these clusters with genotypes to detect underlying pathways/genes. 
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Our results suggest a possible contribution of phospholipase A1 to Land's impaired cycle and 

highlight the potential of integrative omics analyses to resolve the complexity of disease biology.  
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URLs 

R package for running QC and WGCNA analysis: https://github.com/yilboudo/VIQCing 

R markdown WGCNA analysis: WGCNA Rmarkdown SCD 

 

SUPPLEMENTARY TABLE 

-S1.SCD_WGCNA_module_membership 

-S2.metabolite complication association results 

-S3.metabolite blood trait association results 

 

Supplementary data table: Supplementary_Table_1-3 
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Table 1. Genome-wide significant hits. Association results of modules and genotype data were performed for GENMOD and OMG (P-

value < 5 x 10-8). We tested each 39 robust modules against genotypes accounting for sex, hemoglobin genotype, and hydroxyurea status 

within the OMG cohort. Within GENMOD, we also tested each 39nrobust module against genotype accounting for age and sex. We then 

meta-analyzed results from both cohorts using METAL. Abbreviations: rsID: SNPs ID, CHR: chromosome; POS: base pair position; REF: 

reference allele; ALT: alternate allele; Z-score: effect size resulting from meta-analysis; PVAL: P-value for association of SNP; FDR PVAL: 

false discovery rate of P-value of SNP.  

 

Nearest gene symbol rsID CHR POS(hg37) 

POS(hg38) REF/AL

T N Z-score PVAL FDR PVAL 

Module 

ALDH1A2, LIPC rs1800588 15 58723675 58431476 T/C 637 -6.28 3.48 x 10-10 0.0025 Darkorange 

ALDH1A2,LIPC rs2070895 15 58723939 58431740 A/G 637 -6.27 3.70 x 10-10 0.0025 Darkorange 

ALDH1A2,LIPC rs1077835 15 58723426 58431227 A/G 637 6.18 6.61 x 10-10 0.0025 Darkorange 

ALDH1A2,LIPC rs1077834 15 58723479 58431280 T/C 637 6.18 6.61 x 10-10 0.0025 Darkorange 

EED rs12277271 11 85881955 86170913 T/C 637 -6.0 1.99 x 10-09 0.015 Darkred 

EED rs12271958 11 85882691 86171649 A/C 637 6.0 1.99 x 10-09 0.015 Darkred 
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Figure 24 The weighted gene correlation network analysis (WGCNA) for 688 SCD patients. (A) Dendrogram of all metabolites clustered based on dissimilarity 

measurement (1-TOM). The color band shows the results obtained from the automatic single-block analysis. In total, 66 metabolite modules were constructed. (B) top module 

trait association with blood traits. (C) top module trait association with complications. Each row corresponds to a module eigenmetabolite, column to a blood 

trait/complication. Each cell contains the corresponding beta/odds ratio and p-value. The table is color-coded by correlation according to the color legend. 
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Figure 25 Identification of modules related to the clinical red blood cell traits and SCD complications. (A-B) Scatter plots of metabolite significance 

(MS) for the risk of cholecystectomy and eGFR levels vs. lightcyan1and magenta module membership (MM). (C-D) Visualization of the 30 most highly 

connected metabolites network connections the lightcyan1 and magenta modules whose topological overlap is above the thresholds of 0.02. 
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Figure 3. Scatter plot of the rapid decline of kidney function and PC1 of the magenta module in 82 OMG patients. The association between 

rapid decline in kidney function and with magenta module highlights that the higher the values of the magenta module, the steeper the renal 

decline.  

 

 

Figure 4. Module GWAS manhattan and QQplot. A & B Manhattan and QQ plot for darkorange module GWAS. C & D Manhattan and 

QQ plot for darkred module GWAS. The significant cut-off is P-value <5 x 10-8 (red line in Manhattan plot), the sub genome-wide cut off 

is P-value < 5 x 10-6 (blue line in Manhattan plot). Associations for each module PC1 were performed within each cohort (GENMOD and 

OMG). GWAS in GENMOD employed a linear regression implemented in RVTEST adjusting for age and sex. GWAS in OMG used a linear 

regression implemented in SNPTEST adjusting for age, sex, hemoglobin genotype, and hydroxyurea usage status. Meta-analysis of summary 

statistics combined over 15 million SNPs with MAF > 1% and employed METAL. 
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Figure 26 Scatter plot of the rapid decline of kidney function and PC1 of the magenta module in 82 OMG patients. The association between rapid decline in 

kidney function and with magenta module highlights that the higher the values of the magenta module, the steeper the renal decline.  
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Figure 27 Module GWAS manhattan and QQplot. A & B Manhattan and QQ plot for darkorange module GWAS. C & D Manhattan and QQ plot for darkred 

module GWAS. The significant cut-off is P-value <5 x 10-8 (red line in Manhattan plot), the sub genome-wide cut off is P-value < 5 x 10-6 (blue line in Manhattan 

plot). Associations for each module PC1 were performed within each cohort (GENMOD and OMG). GWAS in GENMOD employed a linear regression implemented 

in RVTEST adjusting for age and sex. GWAS in OMG used a linear regression implemented in SNPTEST adjusting for age, sex, hemoglobin genotype, and 

hydroxyurea usage status. Meta-analysis of summary statistics combined over 15 million SNPs with MAF > 1% and employed METAL. 
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Chapter 6. Discussion 
 

Summary of thesis 
 

With three new FDA-approved drugs in a three-year span99, 210 actively recruiting 

clinical trials in sickle cell diseases as of October 2022 on clinicaltrials.gov, optimism 

surrounding gene therapy282, and recent drug repurposing research283,284, sickle cell disease 

research has garnered a lot of keen interest. However, more integrative studies combining 

multiple omics in large samples with causal frameworks can uncover novel disease mechanisms. 

In this thesis, I performed the largest GWAS both for imputed genotypes and exome 

sequencing on fetal hemoglobin (Chapter 2). My analysis includes a conditional meta-analysis 

of 9 SCD cohorts and one healthy Europeans cohort (SardiNIA), and an exome-wide association 

study (ExWAS) of recent African ancestry and admixed African SCD individuals. I demonstrated 

how melding disease-relevant transcriptomics, chromatin interactions and human genetics data 

can aid to identify likely causal variant in association studies.  

In relation to the density of red blood cells (Chapter 3), I conducted an ExWAS, and an 

analysis of rare variants. These results were then collated with gene expression, established drug 

target genes, and association analysis from the UK BioBank to prioritize association signals 

relevant to traits related red blood cells density. 

In Chapter 4, through integrating metabolomics with genomics, I contribute the largest 

Mendelian randomization study on metabolites and SCD complications to dated. This study on 

the causal relationship of metabolite in SCD, proposes the effector role of l-glutamine in painful 

crises and underscores 2 biomarkers of painful crises, 2 biomarkers of gallbladder dysfunction, 

and 62 biomarkers of kidney functions.  

Finally, in Chapter 5, I developed an R package to perform quality control on 

metabolomics datasets and include wrapper functions for leveraging the clustering framework, 

WGCNA. This allowed me to uncover a liver-specific and a kidney-specific metabolite network 

with key drivers involved in bile acid regulation and in rapid kidney function decline. 

Additionally, this clustering approach implicated a family of lipids previously documented to 

exacerbate the sickling process. 
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Limitations of the thesis 
 

Sample size and replication 
 

While sickle cell disease is a monogenic disorder, the patient-to-patient heterogeneity 

remains a puzzle. Factors such as fetal hemoglobin, DRBC, and metabolites which impact this 

heterogeneity are complex traits. As a result, multiple noncoding variants modulate these factors 

making the biological implications of these associations are often unclear, and requiring 

functional follow-up. Another limitation of this study is the lack for reproducibility. While 

Chapters 2, 3, and 5 represent the most extensive studies of their kind to date, they lack the 

replication which is deemed as the gold standard in a well-executed GWAS study. Moreover, the 

maximum sample size across all my studies involving SCD patients is 3,704, which is relatively 

modest when compared to the larger GWAS studies conducted in 2022, encompassing millions 

of samples. Greater sample sizes offer increased statistical power, enabling the detection of 

smaller effect sizes. To compensate for this shortage of replication and samples, I consulted 

results from proxy phenotypes and performed a conditional analysis to reduce the variance of 

known loci, thereby enhancing the association signal from other loci. One recommendation for 

future studies would be to create of large consortia to sequence individuals at scale. Such an 

approach has been successful in the past for other disorders221,285. 

 

Identification of the causal mechanism 

 

Progress in lowering the cost of sequencing, and computation enabled a rapid increase in 

the amount of biological data that can be generated. As a results GWAS have been used to 

generate hypothesis for various phenotypes. Yet, identifying the causal signal require sifting 

through hundreds of variants which could be responsible for the association. As a results, data 

intensive, and intricate multi-omics functional perturbation follow-up are often necessary to 

establish causality and gain novel biological insights127,286,287. To improve our understanding of 

complex phenotypes and especially in sickle cell disease research we need to collect higher 

resolution, multi-omic, multi-time point, multi-tissue, multi-state data set. While Mendelian 

randomization can also be used to establish causality between an exposure and an outcome, MR 

relies on several assumptions, including the validity of instrumental variables and the absence of 

pleiotropy, which may affect the validity of the results. Finally, MR results are not generalizable 

to other populations or ethnic groups.  
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Computational considerations 

 

The field of biomedical and life sciences research is confronted with a significant challenge, 

namely the lack of reproducibility. One of the underlying issues is the inadequate sharing of 

protocols, code, and data, which hampers exact replication288. However, efforts are being made 

to address these challenges, and there is a growing demand for more open-source research 

practices. Platforms like bitbucket and GitHub have made it easier for programmers to share and 

track changes in real time. To facilitate faster dissemination of research, platforms such as arXiv 

and bioRxiv were established in 1991 and 2013, respectively, enabling researchers to share their 

work before formal acceptance in peer-reviewed journals289. Data sharing, on the other hand, 

presents more complex considerations, as generating a dataset can take years, and relinquishing 

it for public access before publication requires careful consideration290. Initiatives like the GWAS 

Catalog, PGS Catalog, and the GTEx291-293 consortium have allowed data to be downloaded, but 

an embargo on publication remained until the group had the opportunity to analyze and publish 

the data294. However, even data sharing has limitations, as complete datasets are often not shared, 

which can hinder the ability to address specific research questions.  

 

Future omics studies in SCD 
 

As more and more investment is being poured into sickle cell disease research, new drug 

targets and improved understanding of the disease will come to light. 

 

Improved reference genome and structural variations 
 

 Employing the new reference genome295, or the pangenome296 or exploring the missing 

heritability in copy number variants297 in SCD could bring about new fascinating biology. 

Increased variant coverage, improved representation of population diversity, and annotation of 

variants can results in ameliorated fine-mapping of genomic loci. Therefore, facilitating new 

discoveries, and personalized approaches for treatments.  

With the same line of thinking, copy number variation (CNV), variable Number of 

tandem repeats (VNTRs), and transposable elements are genomic variations that can be utilized 

to gain insights into the genetic architecture and mechanisms underlying SCD. Any of these 

structural variations can impact the expression, protein function, and regulatory mechanisms 

related to SCD pathology.  



 
140 

Multiplexed functional assays  
 

Multiplexed functional assays offer the opportunity to integrate diverse omics 

technologies, enabling a comprehensive assessment of how genetic variants impact protein 

function, cellular processes, and disease-related pathways in sickle cell disease (SCD)298. By 

targeting genes involved in erythropoiesis and red blood cell hydration (such as BCL11A, KLF1, 

and SPTB) simultaneously, we can gain valuable insights into their collective influence on SCD 

pathology. Conducting assays that examine enzymes identified through metabolomics 

experiments or utilizing protein-protein interaction assays to investigate proteins affecting red 

blood cell sickling propensity can lead to the discovery of novel therapeutic agents and shed light 

on previously unknown mechanisms. 

In a recent study, a combination of single-cell perturbation in primary hematopoietic stem 

and progenitor cells (HSPCs) and chromosome conformation capture (3C) was employed to 

explore the role of specific mutations controlling fetal hemoglobin (HbF) levels286. This 

innovative functional assay highlighted the collaborative impact of multiple functional elements 

carrying these mutations on HbF expression. Furthermore, another perturbation screen, utilizing 

base editors in HSPCs, was conducted to identify non-coding variants that modulate HbF 

expression299. 

 

Predictive models 
 

So far most of the omics integration available in the literature combine two or three 

complementary layers of omics data with each. However, several machine learning approaches 

exist to integrate more layers and therefore enable new discoveries300. In SCD a drug repurposing 

assay employed a automate image machine learning algorithm to characterize the red blood cell 

morphology301. Around 21 of the identified compounds exhibit potential as drug candidates based 

on their inhibitory concentrations and comparison with free concentrations of oral drugs in 

human serum. Furthermore, the therapeutic potential of each compound can be predicted based 

on measurements of sickling times in individuals with varying severity of sickle syndromes.  

Additionally, another study developed a deep learning system for detecting sea fan 

neovascularization, a sign of proliferative sickle cell retinopathy, from ultra-widefield color 

fundus photographs. The research highlights the limited adherence to screening for vision-

threatening retinopathy in patients with sickle cell hemoglobinopathy. The deep learning system 
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achieved high sensitivity (97.4%) and specificity (97.0%) for detecting sea fan 

neovascularization, demonstrating its potential to expand access to rapid retinal evaluations and 

identify patients at risk of vision loss from this condition302. 

 

Conclusion 
 

Therapeutic approaches involving gene editing, such as CRISPR or base editing, require 

substantial additional time to ensure their safety in human applications. Moreover, the 

accessibility of these advanced therapies to low-income countries, where the burden of sickle cell 

disease (SCD) is highest, may take decades or longer to achieve. Considering the prevalence of 

organ damage in SCD patients later in life, the ideal proposition would be the development of 

safe small molecule solutions that can synergistically work with other drugs. Disease research, 

including the study of biology, is intricate and multifaceted. Focusing on individual components 

within a complex system may yield partial insights into the problem at hand. Therefore, it is 

crucial for future studies to encompass the various components and their interactions, thereby 

advancing our understanding of biology and diseases as a whole. 
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Annex A: Supplementary Information for Multi-ancestry meta-analysis 

identifies 3 novel loci associated with fetal hemoglobin levels 

 

The article presented is in preparation to be submitted to the American Journal of Human 

Genetics. In this article, to identify novel genetic regulators of HbF levels, we combined 

association results at 24,272,278 variants (“combined” minor allele frequency (MAF) ≥1%) from 

5,903 European-ancestry individuals from the SardiNIA Study 203 and 3,740 SCD participants, 

mostly of African descent. Because of the genetic heterogeneity from these populations, we used 

PCs as covariates and opted to analyze each study individually. For the meta-analysis, we used 

MR-MEGA, which was developed to account for ancestry differences to maximize discovery 

power in GWAS 204. Additionally, we performed whole exome sequencing association testing in 

1,354 SCD patients. The annex includes cohort description, all the variants prioritization, and 

annotations I performed. 
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Supplementary Table 1. Descriptive statistics of each cohort included in the study. N, sample 

size; SD, standard deviation; NA, not available. 

Cohort 
NGWAS 

(male/female) 

NWES 

(male/female) 
Age (mean±SD) 

%HbF 

(mean±SD) 
Reference 

Cooperative Study 

of Sickle Cell 

Disease (CSSCD) 

1,132 (593/539) 116/128 14.6±12.8 6.5±4.4 248 

Multicenter Study 

of Hydroxyurea 

(MSH) 

57 (34/23) NA 

 

28.5 ± 6.8 
 303  

Jamaica Sickle 

Cell Cohort Study 

(JSCCS) 

89 (41/48) NA NA 5.5±4.2 304 

GEN-MOD 406 (184/222) 183/223 25.1±13.2 6.8±5.0 126 

Mondor/Lyon 324 (120/202) 120/201 34.6±11.8 7.8±6.3 305 

Georgia Health 

Sciences 

University 

(GHSU) 

186 (95/91) NA 31.4±10.6 NA  

Tanzania 1,213 (575/638) NA 13.3 ± 7.4 5.6±4.3 224 

SardiNIA 5,903 (2512/3391) NA 43.5 ±17.6  203 

Duke University 

Outcome 

Modifying Genes 

(OMG) 

299 (136/163) 3/10 36.0±12.3 8.3±8.9 163 

CIP: Differential 

response to 

hydroxyurea and 

incidence of 

stroke in sickle 

cell disease 

NA 371 (224/147) 8.8±4.4 10.2±6.1 306 
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Supplementary Table 2. Functional annotations of 95% credible set variants.  

 

Locus Variant 

MAF 

(CSSCD?

) 

MAF 

(SardiNIA) 

Conditional P-

value (N=9643) PIP 

Non-conditional 

P-value 

(N=10,045) rsID 

VEP functional 

annotation (most 

severe) eQTLgen 

GTEx (whole 

blood) GWAS catalog 

BICC1 10_58728559_G_A 0.39 0.39 6.16697E-09 0.6171 3.73057E-06 rs4433524 intron TFAM   

 10_58715963_C_T 0.40 0.86 2.36271E-08 0.1611 7.26799E-06 rs3816114 

non-coding transcript 

exon variant 

(FAM133CP)    

 10_58727996_T_C 0.33 0.86 5.5759E-08 0.0683 1.32839E-05 rs2393491 intron (BICC1)    

 10_58745172_A_G 0.34 0.86 9.14764E-08 0.0416 1.03888E-05 rs10826229 intron (BICC1) TFAM   

 10_58745524_C_G 0.34 0.86 9.76649E-08 0.039 8.42413E-06 rs12764407 intron (BICC1) TFAM   

 10_58744436_T_A 0.35 0.86 1.05544E-07 0.0361 1.88484E-05 rs11006248 intron (BICC1)    

KLF1 19_12879166_A_G 0.42 0.23 4.50221E-08 0.1128 6.3249E-07 rs4804210 intron (DNASE2)    

 19_12877067_A_G 0.45 0.23 5.5158E-08 0.0921 1.12642E-06 rs2418568 intron (DNASE2) 

DNASE2, 

FARSA, 

WDR830S, 

RAD23A, 

HOOK2, JUNB, 

RNASEH2A DNASE2 IFR 

 19_12876791_T_C 0.41 0.23 8.02442E-08 0.0633 1.06843E-06 rs10404876 intron (DNASE2) 

DNASE2, 

FARSA, 

WDR830S, 

RAD23A, 

HOOK2, JUNB, 

RNASEH2A DNASE2 MCH 

 19_12877614_T_C 0.62 0.23 8.31126E-08 0.0611 3.77894E-06 rs2085466 intron (DNASE2) DNASE2, DNASE2,  
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FARSA, 

WDR830S, 

RAD23A, 

HOOK2, JUNB, 

RNASEH2A 

FARSA 

 19_12864182_T_C 0.62 0.22 9.04784E-08 0.0561 1.35175E-05 rs1985646 intron (MAST1) 

DNASE2, 

FARSA, 

WDR830S, 

RAD23A, 

HOOK2, JUNB, 

RNASEH2A 

DNASE2, 

FARSA  

 19_12871461_G_T 0.40 0.23 1.02115E-07 0.0497 1.21746E-06 rs2242513 intron (MAST1) 

DNASE2, 

FARSA, 

WDR830S, 

RAD23A, 

HOOK2, JUNB, 

RNASEH2A DNASE2  

 19_12874762_A_G 0.49 0.23 1.03488E-07 0.0491 1.26619E-06 rs11085822 synonymous (MAST1) 

DNASE2, 

FARSA, 

WDR830S, 

RAD23A, 

HOOK2, JUNB, 

RNASEH2A DNASE2  

 19_12871984_A_G 0.42 0.23 1.14794E-07 0.0442 1.04088E-06 rs2242514 intron (MAST1) 

DNASE2, 

FARSA, 

WDR830S, 

RAD23A, 

HOOK2, JUNB, 

RNASEH2A DNASE2  

 19_12872658_C_T 0.40 0.23 1.23931E-07 0.041 1.28344E-06 rs2242516 intron (MAST1) DNASE2, DNASE2  



 
147  

FARSA, 

WDR830S, 

RAD23A, 

HOOK2, JUNB, 

RNASEH2A 

 19_12849889_T_C 0.62 0.23 1.29422E-07 0.0392 4.18725E-06 rs8099965 intron (MAST1) 

DNASE2, 

FARSA, 

WDR830S, 

RAD23A, 

HOOK2, JUNB, 

RNASEH2A DNASE2  

 19_12851458_G_A 0.44 0.23 1.39211E-07 0.0365 1.50003E-06 rs10407116 intron (MAST1) 

DNASE2, 

FARSA, 

WDR830S, 

RAD23A, 

HOOK2, JUNB, 

RNASEH2A DNASE2  

 19_12851834_A_G 0.44 0.23 1.44096E-07 0.0352 1.48636E-06 rs7250751 intron (MAST1) 

DNASE2, 

FARSA, 

WDR830S, 

RAD23A, 

HOOK2, JUNB, 

RNASEH2A DNASE2  

 19_12837124_T_C 0.62 0.21 1.47647E-07 0.0344 5.1723E-06 rs4804737 intron (MAST1) 

DNASE2, 

FARSA, 

WDR830S, 

RAD23A, 

HOOK2, JUNB, 

RNASEH2A DNASE2  

 19_12852329_T_C 0.45 0.23 1.5187E-07 0.0334 1.25491E-06 rs1078264 splice region variant DNASE2, DNASE2  
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(MAST1) FARSA, 

WDR830S, 

RAD23A, CRYZ, 

PIGK, DNAJB4 

 19_12844730_A_C 0.62 0.23 2.04335E-07 0.0249 1.13174E-05 rs6511843 intron (MAST1) 

DNASE2, 

FARSA, 

WDR830S, 

RAD23A, 

HOOK2, JUNB, 

RNASEH2A DNASE2  

 19_12847883_T_C 0.62 0.23 2.12423E-07 0.0239 6.95395E-06 rs2290688 synonymous (MAST1) 

DNASE2, 

FARSA, 

WDR830S, 

RAD23A, 

HOOK2, JUNB, 

RNASEH2A DNASE2  

 19_12847036_A_G 0.62 0.23 0.000000219 0.0232 5.42175E-06 rs10426080 intron (MAST1) 

DNASE2, 

FARSA, 

WDR830S, 

RAD23A, 

HOOK2, JUNB, 

RNASEH2A DNASE2  

 19_12847546_T_C 0.62 0.23 2.26306E-07 0.0224 6.94976E-06 rs2290689 intron (MAST1) 

DNASE2, 

FARSA, 

WDR830S, 

RAD23A, 

HOOK2, JUNB, 

RNASEH2A DNASE2  

 19_12838050_G_T 0.62 0.21 2.50966E-07 0.0202 9.00915E-06 rs8111370 intron (MAST1) 

DNASE2, 

FARSA, DNASE2  
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WDR830S, 

RAD23A, 

HOOK2, JUNB, 

RNASEH2A 

 19_12848817_G_C 0.44 0.23 3.97718E-07 0.0128 0.000001563 rs8105643 

non-coding transcript 

exon variant (MAST1) 

DNASE2, 

FARSA, 

WDR830S, 

RAD23A, 

HOOK2, JUNB, 

RNASEH2A DNASE2  

 19_12837648_A_G 0.57 0.21 4.04527E-07 0.0126 1.35282E-05 rs10424001 intron (MAST1) 

DNASE2, 

FARSA, 

WDR830S, 

RAD23A, 

HOOK2, JUNB, 

RNASEH2A DNASE2  

 19_12846728_A_G 0.40 0.23 4.24607E-07 0.012 4.64234E-06 rs7259590 intron (MAST1) 

DNASE2, 

FARSA, 

WDR830S, 

RAD23A, 

HOOK2, JUNB, 

RNASEH2A DNASE2  

 19_12846300_G_A 0.40 0.23 4.38568E-07 0.0116 4.71454E-06 rs1124820 intron (MAST1) 

LRRC14, 

PPP1R16A, 

DNASE2, CPSF1, 

VPS28, CTD-

2517M22.14, 

RPL8, RP11-

457M11.5, 

ARHGAP39, 

TONSL DNASE2  
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 19_12853349_A_G 0.39 0.23 6.25379E-07 0.0081 6.08336E-06 rs4570988 intron (MAST1) 

DNASE2, 

FARSA, 

WDR830S, 

RAD23A, JUNB DNASE2  

 19_12863822_G_T 0.36 0.23 6.84184E-07 0.0074 7.89099E-06 rs4614850 intron (MAST1) 

DNASE2, 

FARSA, 

WDR830S, 

RAD23A, 

HOOK2, JUNB, 

RNASEH2A DNASE2  

 19_12864785_G_A 0.35 0.23 7.00371E-07 0.0073 9.12888E-06 rs2242512 intron (MAST1) 

DNASE2, 

FARSA, 

WDR830S, 

RAD23A, 

HOOK2, JUNB, 

RNASEH2A DNASE2  

 

19_12865667_AAAC_

A 0.39 0.02 7.12322E-07 0.0071 0.0836445 

rs14636117

1 intron (MAST1)    

 19_12868306_T_A 0.39 0.23 7.39002E-07 0.0069 6.81825E-06 rs1810363 intron (MAST1) 

DNASE2, 

ATP6V1D, MPP5, 

FARSA, 

WDR830S, 

RAD23A, PLEK2, 

HOOK2, JUNB, 

RNASEH2A DNASE2  

 19_12852771_T_C 0.39 0.23 8.02752E-07 0.0063 5.85434E-06 rs10423124 intron (MAST1) 

DNASE2, 

FARSA, 

WDR830S, 

RAD23A, 

HOOK2, JUNB, DNASE2  
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RNASEH2A 

CECR2, 

SLC25A18 22_17559810_C_T 0.06 NA 3.98E-08 0.7411 2.06E-06 

rs11617538

1 intergenic    

 22_17559209_A_G 0.09 0.11 1.75E-07 0.1347 0.000137029 rs885971 intergenic 

ATP6V1E1, 

BCL2L13   

 22_17557429_G_A 0.06 NA 2.92E-07 0.1011 9.30E-06 

rs11500054

1 3'UTR variant (CECR2)    
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Supplementary Figure 1. Single variant association whole exome variants of fetal hemoglobin in SCD. A) QQplot 

of fetal hemoglobin stratified by allelic frequency. Blue points are common variants (MAF < 5%), red points are rare 

variants (MAF < 1%) and black points are all the points. B) Manhattan plot of HbF, we found the exome-wide 

threshold at P < 3.0x10-7. 
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Supplementary Figure 2. Gene-based QQplot of fetal hemoglobin 

in SCD patients employing three burden test approaches: Broad, strict 

and LOF selecting variants with MAF < 1%. 

 

Supplementary Figure 2. Gene-based QQplot of fetal hemoglobin 
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Supplementary Figure 3. Gene-based QQplot of fetal hemoglobin in 

SCD employing broad mask, and filtered according to three different 

expression dataset MAF < 1%. Ludwig, Gautier and Lessard represent the 

expression datasets. Lessard, S et al (2017), Gautier, E. F. et al. (2016), 

Ludwig, L. S. et al. (2019). 
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Supplementary Figure 4. Gene-based QQplot of fetal hemoglobin in 

SCD employing strict mask, and filtered according to three different 

expression dataset MAF < 1%. Ludwig, Gautier and Lessard represent the 

expression datasets. Lessard, S et al (2017), Gautier, E. F. et al. (2016), 

Ludwig, L. S. et al. (2019). 
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Supplementary Figure 5. Gene-based QQplot of fetal hemoglobin in SCD patients 

employing strict LoF, and filtered according to three different expression dataset MAF 

< 1%. Ludwig, Gautier and Lessard represent the expression datasets. Lessard, S et al 

(2017), Gautier, E. F. et al. (2016), Ludwig, L. S. et al. (2019). 
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Annex B. Supplementary Information for Exome- and genome-wide 

association studies of red blood cell density in sickle cell disease 

patients 

 

The following article is intended to be submitted to the journal, British Journal of Hematology. 

In this article to identify novel genetic regulators of dense red blood levels (DRBC). I performed 

association tests of imputed genotypes of DRBC in 581 SCD patients. I then annotated the results, 

and identified which ones are the most promising and need to be replicated. Then I used whole-

exome sequencing to identify rare coding variants regulating DRBC. I performed gene-based 

analysis with sequence kernel association test (SKAT) and variable threshold (VT) to detect 

associations of coding variants put together. The annex includes a table describing where to find 

the large supplementary tables (URL links), the description of their content. It also includes 

supplementary figures I generated for various variant prioritization approaches.  
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Tables of content for supplementary tables: 

  

Sup. Table 

number 

Sup. Table name Sup. Table link Sup. Table description 

page 

Supplementary 

Table 1 

Data source for candidate 

genes 

NA 142 

Supplementary 

Table 2 

Single-variants association 

nominally significant 
WES_SVA_nm 143 

Supplementary 

Table 3 

Gene-based association 

nominally significant 
WES_GB_nm 143 

Supplementary 

Table 4 

Nominally significant 

genome wide association 

of DRBC 

GWAS_nm 143-144 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://docs.google.com/spreadsheets/d/e/2PACX-1vRDrFREEtv_VPtMrDabqHeGw5TLCfBOwU5GUm_oH1rHKilY-29dWg8crt7MytH98Q/pubhtml
https://docs.google.com/spreadsheets/d/e/2PACX-1vTvhGlRKJO5dc0HsvpH98R-MUJr50zSeWuPqZ0uFu0gBUAvZh1W2NXO_sDBYZwb9w/pubhtml
https://docs.google.com/spreadsheets/d/10lY-U4qWsDvlY2sXq1qpVFki-2kZiGOj/edit?usp=sharing&ouid=110022795824160993397&rtpof=true&sd=true
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List N N* Reference/Criteria of inclusion 

MCHC GWAS 29 23 All coding variants associated (pval < 5x10-8) with 

MCHC in both trans-ancestry and african population. 

Chen et al (2020) 

OMIM 133 108 OMIM (acc. Feb 23 2022) searched terms 

‘cryohydrocytosis’, ‘elliptocytosis’,’ ‘malaria’, 

‘pseudohyperkalemia’, ‘pyropoikilocytosis’, 

‘spherocytosis’, ‘stomatocytosis’,’ xerocytosis’. 

Downloaded as gene-map tables. Rasmussen, S. A.et al 

(2020) 

RBC enzymopathies 16 14 All gene identified in Luzzatto, L. (2021) 

IUPHAR 3,089 2,233 Download complete target and family list (tsv). Harding, 

S. D. et al.(2022) 
 

Supplementary Table 1 Data source for candidate genes1 For the candidate gene approach, we selected 

protein-coding genes with unambiguous mapping to current approved gene symbols. N; total numbers 

of protein coding genes according to the inclusion criteria. N* column represents the subset of genes 

expressed in erythrocyte and erythroblast according to the following references Lessard, S et al 

(2017), Gautier, E. F. et al. (2016), Ludwig, L. S. et al. (2019). 
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Supplementary Table 2 Single-variants association nominally significant 1 For the candidate 

gene approach, we selected protein-coding genes with unambiguous mapping to current 

approved gene symbols. N; total numbers of protein coding genes according to the inclusion 

criteria. N* column represents the subset of genes expressed in erythrocyte and erythroblast 

according to the following references2-4.  

Supplementary Table 3 Gene-based association nominally significant 1 For the candidate gene 

approach, we selected protein-coding genes with unambiguous mapping to current approved 

gene symbols. N; total numbers of protein coding genes according to the inclusion criteria. N* 

column represents the subset of genes expressed in erythrocyte and erythroblast according to 

the following references2-4.  

Supplementary Table 4 Nominally significant genome wide association of DRBC (PDRBC Meta-

analysis < 0.01). Meta-analysis, and cohort specific (GENMOD & Henri-Mondor) association 

results of DRBC in 573 SCD patients. All base pair position are provided on hg38 build. 

Abbreviations:  

SNP: chromosome_basepair_allele1,allele2; REF: reference allele; ALT: alternate allele;  

N_INFORMATIVE_HM: sample size for GWAS in Henri-Mondor cohort; AF_HM: Allele 

frequency for A1 for GWAS in Henri-Mondor; ALT_EFFSIZE_HM: Effect size for A1 allele 

for GWAS in Henri-Mondor; PVALUE_HM: P-value for GWAS in Henri-Mondor cohort.  

 

SNP: chromosome_basepair_allele1,allele2; REF: reference allele; ALT: alternate allele; 

N_INFORMATIVE_GENMOD: sample size for GWAS in GENMOD cohort; AF_HM: Allele 

frequency for A1 for GWAS in GENMOD; ALT_EFFSIZE_ GENMOD: Effect size for A1 

allele for GWAS in GENMOD; PVALUE_ GENMOD: P-value for GWAS in GENMOD 

cohort.  

 

CHR_BP_A1_A2: chromosome_basepair_allele1,allele2; CHR: chromosome; BP: base pair; 

A1: allele 1; A2: Allele2; Freq1: weighted average frequency allele 1 in meta-analysis; 

FreqSE: frequency corresponding standard error for allele frequency estimate; MinFreq: min 

frequency; MaxFreq: max frequency; Weight: the sum of the individual study weights 

(typically, N) for this marker; Zscore : the combined z-statistic for this marker; P-value : meta-

analysis p-value; Direction: summary of effect direction for each study, with one '+' or '-' per 

study; HetISq: heterogeneity I^square; HetChiSq: chi-squared statistic in simple test of 

heterogeneity; HetDf; heterogeneity degrees of freedom; HetPVal: heterogeneity p-value; P-
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value for heterogeneity statistic; Tracks: Prioritization annotation; -Consequence: VEP 

calculated variant consequences (all possible consequences per transcript were retrieved); 

Genes: VEP gene symbol (all possible gene symbol per transcript were retrieved); rsID: 

Existing rsID; Disease: Disease associated with SNP according to DisGeNET (v7.0)8; pmid: 

pubmed ID for disease associated with SNP according to DisGeNET (v7.0)8 
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Supplementary Figure 1. Single-variants association genes expressed in erythrocyte (A) and 

erythroblast (B & C) according to the following references Lessard, S et al (2017), Gautier, E. 

F. et al. (2016), Ludwig, L. S. et al. (2019).  
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Supplementary Figure 2. QQplot and manhatan plot for gene-based test for different mask. A & B for broad 

collapsing scheme (at least one prediction algorithm considers the variant to be deleterious) Psignificance level=1.7 x 

10-6. B & C for strict collapsing scheme (all prediction algorithms consider the variant to be deleterious) Psignificance 

level=9.3 x 10-6. D & E for variant predicted to be loss of function (pLoF) 3.3 x 10-5. For all the plots, MAF < 1%. 

Two tests were employed for each analyses: sequence kernel association test (SKAT) & variable threshold (VT). 
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Supplementary Figure 3. Gene-based associations genes filtered based on expression profile in in erythrocyte (A) and erythroblast (B & 

C) according to the following references Lessard, S et al (2017), Gautier, E. F. et al. (2016), Ludwig, L. S. et al. (2019).,and based two 

variant collapsing schemes (BROAD & STRICT). Blues point represent association with variable threshold (VT), while red points are 

sequence kernel association test (SKAT). 

Figure  SEQ Figure \* ARABIC 3 QQplot for gene-based test results for SKAT (Sequence Kernel 

Assocision Test) and VT (Variable Threshold). Filtering genes known to be expressed in 

erythroblast(Lessard) ADDIN EN.CITE  ADDIN EN.CITE.DATA 2, erythroid lineage(Ludwig) 

ADDIN EN.CITE  ADDIN EN.CITE.DATA 3, or red blood cel(Gautier)l ADDIN EN.CITE  ADDIN 

EN.CITE.DATA 4. Gene-base test considered two collapsing schemes : broad (at least one prediction 

algorithm considers the variant to be deleterious) and strict (all prediction algorithms consider the variant 

to be deleterious). Variant selected for these analayses had MAF < 1% 
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Supplementary Figure 4. Candidate gene approach looking at different IUPHAR genes families 

including variants in which all predictions algorithms agreed on deleteriousness (strict mask). A 

is for SKAT, B for VT. Blue dots represent markers ligand-gated ion channel (l), orange dots 

represent catalytic receptors, purple-colored dots represent enzymes, cyan dots represent G 

protein-coupled receptors, maroon dots represent nuclear hormone receptor, green represent 

other ion channels, red dots represent other protein targets, burgundy dots represent transporters, 

and magenta dots represent voltage gated ion channels. Abbreviations: lgic_IUPHAR: ligand-

gated ion channel, gpcr_IUPHAR: G protein coupled receptor, nhr_IUPHAR: nuclear hormone 

receptor, other_ic_IUPHAR: other ion channel, vgic_IUPHAR: voltage gated ion channel. 
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Supplementary Figure 5. Correlation matrices for DRBC and other hematological traits. A) 

correlation matrix in the Mondor-Lyon cohort. B) correlation matrix in GEN-MOD. C) 

correlation matrix in both Mondor-Lyon and GEN-MOD Positive correlations are displayed in 

blue, while negative correlation are in red. Color intensity are proportional to the correlation 

coefficients. The correlations coefficients are Pearsons’ r coefficient. X symbol on a given cell 

means that the correlation is not significant (Pval > 0.05). Abbreviations: DRBC; dense 

dehydrated red blood cell. MCV; mean cell volume. MCH; mean cell hemoglobin. MCHC; mean 

cell hemoglobin concentration. HemoglobinF; fetal hemoglobin. RBC; red blood cell count. All 

blood traits were normalized and corrected for age and sex.  
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Supplementary Table 5. Comparing association results identified in previous DRBC GWAS of 374 SCD 

patients9 with current GWAS of 573 SCD patients. Column names, and abbreviations are the same as 

those described in Supp.Table 4. Out of 25 SNPs identified in the previous DRBC GWAS Ilboudo, Y. 

et al. (2017).  7 were missing (not genotyped or imputed), and 14 remained significant, of which 10 were 

both significant and had the same direction of effect as in the published study. Surprisingly the intronic 

variant at ATP2B4 (rs10751450) did not stay significant although is strongly associates with MCHC in 

non-anemic Europeans ( P=5 x 10-59) Astle, W. J. et al (2016). Abbreviations. Consequences: VEP 

calculated variant consequences (all possible consequences per transcript were retrieved); Genes: VEP 

gene symbol (all possible gene symbol per transcript were retrieved); rsID: Existing rsID. Beta(SE); 

regression effect size (standard error); HM: Henri-Mondor.  
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  Published Meta-analysis HM GENMOD 

rsID Consequence Genes Beta(SE) Pvalue SYMBOL Consequence Zscore P-value Beta ; Pvalue Beta ; Pvalue 

rs4234795 intron_variant SORCS2 -0.84(0.15) 2.0 x 10-7 SORCS2 Intron -4.435 9.2 x 10-6 -0.051 ; P=0.81 -0.79 ; P=1.1 x 10-7 

rs77141833 

upstream_gene_variant_intron_va

riant,non_coding_transcript_varia

nt_downstream_gene_variant_int

ron_variant_intron_variant,NMD

_transcript_variant 

VSIG8_LOC1079852

16_SNHG28_NA −1.12(0.22) 1.8 x 10-6 VSIG8 Intron -3.4 0.00077 -0.089 ; P=0.68 -0.71 ; P= 1.1 x 10-4 

rs146977005 intron_variant SPTB −0.33(0.09) 5.5 x 10-4 SPTB 

Intron_eQTL

_for_SPTB -1.5 0.13 0.20 ; P=0.079 -0.28 ; P=1.6 x 10-3 

rs5875087 intron_variant H2BC4 −0.27(0.13) 0.045 HIST1H2BC Intron -0.36 0.73 0.37 ; P=0.017 -0.27 ; P=0.029 

rs147900370 intergenic_variant NA −0.92(0.18) 2.4 x 10-6 – Intergenic -2.6 0.0094 0.33 ; P=0.15 -0.76 ; P=2.0 x 10-5 

rs114402357 intergenic_variant NA 2.03(0.4) 1.8 x 10−6 – Intergenic -3.6 0.00028 -0.057 ; P=0.93 1.6 ; P = 5.2 x 10-6 

rs7216169 

intron_variant_intron_variant,non

_coding_transcript_variant RABEP1 0.45(0.09) 1.4 x 107 RABEP1 Intron -4.4 1.2 x 10-5 0.12 ; P=0.29 0.40 ; P = 3.2 x 10-6 

rs1203972 

upstream_gene_variant_downstre

am_gene_variant 

LUC7L_FAM234A_N

A −0.22(0.08) 0.0082 LUC7L Upstream -2.2 0.027 0.0025 ;P=0.98 -0.21 ; P=6.1 x 10-3 

rs146893001 

intron_variant_upstream_gene_va

riant PTPN3 -2.04(0.4) 1.3 x 10-6 PTPN3 Intron -4.2 2.9 x 10-5 -0.83 ;P=0.15 -1.5 ; P=3.8 x 10-5 

rs148303943 

intron_variant_intron_variant,non

_coding_transcript_variant_non_

coding_transcript_exon_variant_

upstream_gene_variant GMPR_NA −0.32(0.11) 0.0057 GMPR Intron -2.0 0.042 0.12 ;P=0.49 -0.32 ; P=0.0026 

rs76513454 intergenic_variant NA -2.17(0.43) 2.0 x 10-5 – Intergenic 2.9 0.0033 -0.051 ;P=0.95 -1.8 ; P=3.3 x 10-4 

rs10751450 

intron_variant_upstream_gene_va

riant ATP2B4 −0.25(0.08) 0.0031 ATP2B4 Intron 1.6 0.11 0.15 ;P=0.20 -0.23 ; P=3.3 x 10-3 

rs62015549 intron_variant THSD4 −2.44(0.49) 1.9 x 10−6 THSD4 Intron 2.0 0.040 -0.27 ; P=0.46 -1.3 ; P=0.045 

rs74989317 

intron_variant_upstream_gene_va

riant_intron_variant,non_coding_

transcript_variant_downstream_g

ene_variant 

LINC00649_RN7SL7

40P_NA −0.99(0.2) 1.5 x 10−6 LINC00649 Intron 2.2 0.026 0.43 ;P=0.032 -0.78 ; P=1.5 x 10-5 

rs34514965 upstream_gene_variant 

GADD45GIP1_DAN

D5 0.21(0.1) 0.043 

GADD45GIP

1 Upstream 1.5 0.13 -0.012 ; P=0.92 0.18 ; P = 0.05 
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rs11421513 intergenic_variant NA −0.23(0.08) 0.0074 – Intergenic -1.6 0.1004 0.074 ;P=0.50 -0.21 ; P=0.012 

rs8048714 

intron_variant_downstream_gene

_variant_non_coding_transcript_

exon_variant 

NA_LOC100289580_

LOC339059_PIEZO1 −0.3(0.08) 0.00073 PIEZO1 

Intron_eQTL

_for_PIEZO1 2.4 0.016 0.048 ; P0.67 -0.27 ; P=9.9 x 10-4 

rs73108077 

upstream_gene_variant_downstre

am_gene_variant DEFB121_DEFB122 −0.83(0.17) 1.8 x 10−6 DEFB122 Downstream -3.7 2.6 x 10-3 -0.041 ; P=0.82 -0.73 ; P=1.3 x 10-5 

rs144995469 upstream_gene_variant NA -1.15(0.23) 1.5 x 10-6 - Intergenic 3.8 1.2 x 10-3 0.12 ; P=0.69 -1.1 ; P=4.4 x 10-7 

rs9714060 NA NA −0.39(0.08) 7.4 x 10-7 MUC4 Intron NA NA NA NA 

rs543023132 NA NA −1.54(0.3) 1.4 x 10-6 – Intergenic NA NA NA NA 

rs139628543 NA NA 0.75(0.15) 2.0 x 10−6 KLHL30 Intron NA NA NA NA 

rs62270871 NA NA 0.33(0.07) 2.6 x 10−5 ALG1L 

Intron_eQTL

_for_SLC41A

3 NA NA NA NA 

rs144514173 NA NA 0.37(0.12) 0.0029 TMCC2 Downstream NA NA NA NA 

rs201794926 NA NA 0.18(0.07) 0.021 PPP1R16A Intron NA NA NA NA 
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Annex C: Supplementary Information for Integrating metabolomics with 

GWAS reveals novel insights into the liver and kidney dysfunction in 

sickle cell disease patients. 

 

The article presented is intended to be published in the journal, Frontiers in Genetics. In this 

article, employing both targeted and untargeted approaches we profiled the plasma of 706 SCD 

patients using liquid chromatography tandem mass spectrometry. The cohort included 406 French 

patients (GEN-MOD cohort) of recent African descent and 300 African Americans (OMG cohort) 

from the southeastern US.  In total, we measured the levels of 233 known and 1,880 unknown 

metabolites. I constructed 66 modules containing at least 7 metabolites per module using clustering 

framework weighted correlation network analysis (WGCNA). I found a module strongly 

associated with increased risks of gallbladder removal. Additionally, I retrieved another module 

of metabolites strongly correlated with a measure of kidney function, namely estimated glomerular 

filtration rate (eGFR). Finally, I performed a GWAS for each of the 39 most robust modules, which 

resulted in two modules strongly associated with SNPs (FDR < 0.05). I obtained one module with 

multiple SNPs significantly associated (P < 8.0 x 10-10) near the gene encoding for hepatic 

triglyceride lipase (LIPC). The supplementary material includes analysis on data preprocessing; 

namely network construction, network topology for various soft-thresholding powers, 

visualization of networks associated SCD complications and traits, intramodular association for 

SCD complications, and traits, and finally QQplots of the associations between robust networks 

of metabolites and genotypes. 
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Supplementary Data Table 1. Phenome-wide analysis results for rs1800588 using VAMPIRE307.  

Abbreviations: Pheno: phenotype; BIOS_ceQTL_AA: eQTL allele from BIOS308;   

BIOS_ceQTL_pvalue : eQTL pvalue from BIOS308; eQTLGen_ceQTL_AA: eQTL allele from 

eQTLGen309;  eQTLGen_ceQTL_FDR: eQTL false discovery rate from eQTLGen309; 

NESDA_ceQTL_AA: eQTL allele from NESDA310; NESDA_ceQTL_Beta: eQTL effect size 

from NESDA310; NESDA_ceQTL_FDR: eQTL false discovery rate from NESDA310; DGN 

bulk_ceQTL_beta:  eQTL effect size from  DGN311; DGN bulk_ceQTL_tstat: eQTL tstat from 

DNG bulk311; DGN bulk_ceQTL_pvalue: eQTL pvalue from DNG bulk311; DGN 

bulk_ceQTL_FDR: eQTL false discovery rate fron DNG bulk311; Westra_teQTL_AA: eQTL 

allele from Westra312; Westra_teQTL_FDR: eQTL false discovery rate from Westra312; 

Westra_teQTL_zscore: eQTL zscore from Westra312; Anno_cat: Annotation category 

 

 

Supplementary Data Table 2. Phenome-wide analysis results for rs1800588 using 

gwasATLAS313.  Abbreviations: ID: identification; PMID: PubMed identification; N: sample size; 

EA: effect allele; NEA: non-effect allele. 

 

 

Supplementary Data Table 3. Phenome-wide analysis results for rs12277271 

 using gwasATLAS313. Abbreviations: ID: identification; PMID: PubMed identification; N: 

sample size; EA: effect allele; NEA: non-effect allele. 

 

 

  



 176 

Supplementary Figure 1. Clustering dendrogram of 688 samples and heat map. A) Clustering 

samples based on their Euclidean distance with a heatmap of blood traits. B) Clustering samples 

based on their Euclidean distance with a heatmap of complications. White and red indicate “NO” 

and “YES,” respectively. Missing data are represented in grey. 
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Supplementary Figure 2. Analysis of metabolomic network topology for various soft-

thresholding powers. The scale-free fit index (y-axis) as a function of the soft-thresholding power 

(x-axis) and (B) the mean connectivity (degree, y-axis) as a function of the soft-thresholding power 

(x-axis). 
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Supplementary Figure 3. Module association with blood traits. The weighted gene correlation 

network analysis (WGCNA) for 688 SCD patients. Dendrogram of all metabolites clustered based 

on the measurement of dissimilarity (1-TOM). The color band shows the results obtained from the 

automatic single-block analysis. In total, 66 metabolite modules were constructed. Each row 

corresponds to a module eigenmetabolite, column to a blood trait. Each cell contains the 

corresponding beta and p-value. The table is color-coded by correlation according to the color 

legend. 
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Supplementary Figure 4. Module metabolites association with complications. The weighted 

gene correlation network analysis (WGCNA) for 688 SCD patients. Dendrogram of all metabolites 

clustered based on the measurement of dissimilarity (1-TOM). The color band shows the results 

obtained from the automatic single-block analysis. In total, 66 metabolite modules were 

constructed. Each row corresponds to a module eigenmetabolite, column to complications. Each 

cell contains the corresponding beta and p-value. The table is color-coded by correlation according 

to the color legend. 
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Supplementary Figure 5. Intramodular strength analysis of cholecystectomy and leg ulcer. 

The scatter plot of metabolite significance (MS) for cholecystectomy, leg ulcer, and lightcyan1 

and coral1 module membership (MM).  
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Supplementary Figure 6. Intramodular strength analysis of hematocrit. The scatter plot of 

metabolite significance (MS) for hematocrit levels and darkorange, yellow4, lightcyan, 

mediumorchid, firebrick4, maroon, darkslateblue, skyblue1, lightcoral, and sienna3 module 

membership (MM).  
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Supplementary Figure 7. Intramodular strength analysis of fetal hemoglobin. The scatter 

plot of metabolite significance (MS) for fetal hemoglobin levels, and yellow4, mediumorchid, 

darkslateblue, module membership (MM).  
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Supplementary Figure 8. Intramodular strength analysis of reticulocyte count. The scatter 

plot of metabolite significance (MS) for reticulocyte count levels and yellow4, darkslateblue, and 

lightyellow module membership (MM). 
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Supplementary Figure 9. Intramodular strength analysis of red blood cell count. The scatter plot of metabolite significance (MS) for 

red blood cell count, and darkorange, yellow4, lightcyan, mediumorchid, firebrick4, darkolivegreen4, maroon, darkslateblue, skyblue, 

darkgrey, lightcoral, sienna3 module membership (MM). 
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Supplementary Figure 10. Intramodular strength analysis of eGFR. The scatter plot of metabolite significance (MS) for eGFR, and 

plum, greenyellow, honeydew1, skyblue3, darkorange, royalblue, lightcyan, grey60, cyan, darkolivegreen4, maroon, darkgreen, 

darkslateblue, magenta, coral1, darkmagenta blue, coral2, brown, plum2, grey module membership(MM). 
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Supplementary Figure 11. Intramodular strength analysis of white blood cell count. The scatter plot of metabolite significance (MS) 

for white blood cell count, and bisque4, royalblue, lightpink4, lightcyan, darkorange2, skyblue1, darkslateblue, skyblue1, darkviolet, 

lightcoral, skyblue, lightcoral module membership (MM). 
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Supplementary Figure 12. Intramodular strength analysis of platelets. The scatter plot of metabolite significance (MS) for platelet, and 

darkorange2, skyblue, brown module membership (MM). 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure 13. Intramodular strength analysis of MCV & MCH. The scatter plot of metabolite significance (MS) for MCV 

& MCH and lightcyan module membership (MM). 
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Supplementary Figure 14. Quantile-quantile plots of genotype module associations. Associations for each module PC1 were performed 

within each cohort (GENMOD and OMG). GWAS in GENMOD employed a linear regression implemented in RVTEST adjusting for age 

and sex. GWAS in OMG used a linear regression implemented in SNPTEST adjusting for age, sex, hemoglobin genotype, and 

hydroxyurea usage status. Meta-analysis of summary statistics combined over 15 million SNPs with MAF > 1% and employed METAL. 

Abbreviations: FDR; false discovery rate. 
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FDR p<0.2

λ=1.026 λ=1.005 λ=1.005 λ=1.013 λ=0.998

λ=1.004 λ=0.997 λ=1.008 λ=1.013 λ=1.024
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FDR p<0.2

FDR p<0.05 FDR p<0.05

λ=1.013 λ=1.001 λ=1.013 λ=1.005 λ=1.016

λ=1.006 λ=1.012 λ=1.003 λ=1.011 λ=1.007
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λ=1.001 λ=0.992 λ=1.003 λ=1.007 λ=1.002

λ=1.006 λ=1.016 λ=1.010 λ=1.025 λ=1.010

FDR p<0.2
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FDR p<0.1 FDR p<0.1

FDR p<0.2

λ=1.006 λ=0.999 λ=1.017 λ=0.992 λ=1.005

λ=0.995 λ=0.997 λ=0.982 λ=1.011

FDR p<0.1
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Annex D Supplementary Information for “Potential causal role of l-

glutamine in sickle cell disease painful crises: A Mendelian 

randomization analysis 

 

 

The article presented is published in the journal, Blood Cells, Molecules, and Diseases. In this 

article, we used MR to test the causal relationship between l-glutamine levels and painful crises 

in SCD patients. We identified 66 metabolites that are associated with SCD complications (e.g. 

gall bladder disease, renal dysfunction). Our approach illustrates the power to combine genetics 

and metabolomics to understand SCD pathophysiology. 
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Supplementary Table 3. Genetic associations for bilirubin levels and cholecystectomy. SNPs (effect alleles) are the lead 

variants in each gene region identified in a GWAS for bilirubin levels in European-ancestry individuals (Johnson, A. D. et al. 

(2009)). Association effect sizes with bilirubin levels in the CSSCD are in standard deviation units, and association effect sizes 

with bilirubin levels in Johnson et al. are in log-transformed bilirubin units. Association effect size with cholecystectomy in the 

CSSCD are log odds ratios from logistic regression analyses. These variants were selected because of their strong association 

(P<2.0 × 10−5) with bilirubin levels in Johnson et al. *These variants were identified in the Johnson et al. study, but because 

their minor allele frequency (MAF) <1% they were excluded from the Mendelian randomization analysis. 

 

  Association result with bilirubin-associated variants 

(effect allele frequency, effect size (), P-value, sample size) 

SNP Gene region Bilirubin (Johnson et al) Bilirubin (CSSCD) Cholecystectomy Risk (CSSCD) 

rs6742078(T) UGT1A1 (0.31, 0.23, P = 5e-324, N = 8988) (0.44, 0.43, P = 9.7e-21, N = 930) (0.43, 0.44, P = 0.00091, N = 1084) 

rs12714207(T) KRCC1 (0.33, -0.033, P = 5.3e-07, N = 8988) (0.52, 0.047, P = 0.31, N = 930) (0.53 -0.065, P = 0.63, N = 1084) 

rs1986655(A) intergenic (0.15, -0.035, P = 2e-06, N = 8988) (.96, 0.026, P = 0.82, N = 930) (0.96, 0.33, P = 0.33, N = 1084) 

rs12206204(T)/ 

rs113892814(A)* 

histone cluster (0.015, 0.15, P = 7.5e-07, N = 8988) (0.0022, -0.27, P = 0.59, N = 930) (0.00046/0.0028*, 1.8, P = 0.28, N = 1084) 

rs9380833(T) KCNK5 (0.027, 0.079, P = 1.6e-05, N = 8988) (0.11, -0.022, P = 0.76, N = 930) (0.11, 0.12, P = 0.55, N = 1084) 

rs4236644(A) SEMA3C (0.27, -0.031, P = 2.1e-06, N = 8988) (0.52, -0.065, P = 0.15, N = 930) (0.51, 0.039, P = 0.77, N = 1084) 

rs12337836(A)* PRG-3, BAAT (0.076, 0.053, P = 1.3e-05, N = 8988) (0.0054, -0.14, P = 0.66, N = 930) (0.0055, 0.03, P = 0.98, N = 1084) 

rs16928809(A)* SLC22A18 (0.096, 0.051, P = 1.1e-07, N = 8988) (0.0038, 0.11, P = 0.77, N = 930) (0.0037, 0.99, P = 0.35, N = 1084) 

rs4149056(T) SLCO1B1 (0.15, -0.053, P = 6.7e-13, N = 8988) (0.978, -0.26, P = 0.11, N = 930) (0.98, -0.23, P = 0.63, N = 1084) 

rs4773330(A) ARHGEF7 (0.12, -0.036, P = 7.7e-06, N = 8988) (0.17, 0.03, P = 0.63, N = 930) (0.17, 0.15, P = 0.41, N = 1084) 

rs7173819(A) intergenic (0.12, 0.035, P = 1.2e-05, N = 8988) (0.79, -0.021, P = 0.71, N = 930) (0.79, 0.19, P = 0.26, N = 1084) 

rs12923103(A) intergenic (0.32, 0.027, P = 1.4e-05, N = 8988) (0.17, 0.037, P = 0.55, N = 930) (0.17, 0.12, P = 0.49, N = 1084) 

rs4410172 (C) BC051727 (0.24, 0.026, P = 1.9e-05, N = 8988) (0.097, -0.11, P = 0.16, N = 930) (0.098, 0.21, P = 0.37, N = 1084) 
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Supplementary Table 4. Mendelian randomization (MR) results of bilirubin levels with 

cholecystectomy. As instruments for our MR analyses, we used SNPs identified by Johnson et al. 

in a genome-wide association study (GWAS) for bilirubin levels in 9,464 individuals of European 

ancestry(Johnson, A. D. et al. (2009)).. From the list of 15 bilirubin-associated variants from the 

GWAS, we kept 10 SNPs that were in linkage equilibrium (rs6742078, rs12714207, rs1986655, 

rs9380833, rs4236644, rs4149056, rs4773330, rs7173819, rs12923103, rs4410172). We analyzed 

cholecystectomy in 1,294 participants from the CSSCD. We performed a two-sample MR analysis 

using exposure effect sizes from the bilirubin GWAS of Johnson et al. (GWAS_beta). For the two-

sample MR analysis, effect sizes of the MR are odds to develop cholecystectomy per 27% increase 

in bilirubin levels.  

 

Method Number of variants 
Odds ratio (95% confidence interval)  

and P-value 

Inverse variance-weighted (IVW) 10 
6.0 (2.8-17) 

P=1.9 x 10-6 

MR-Egger 10 
7.0 (1.7-29) 

P=0.027 

Weighted median 10 
6.4 (2.1-20) 

P=1.2 x 10-3 
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Supplementary Table 5. Genetic associations between 51 L-glutamine-associated SNPs and painful crises. SNPs (effect 

alleles) are the lead variants in each gene region identified in mGWAS for L-glutamine levels in Europeans (P <5.0x10−5)253,254 

Shin, S. Y. et al. 2014, Long, T. et al. 2017. Association effect sizes with painful crises in the CSSCD and GEN-MOD are log 

odds ratios from logistic regression. *These variants were identified to be pleiotropic by Phenoscanner queries and were 

excluded from model 2 (Methods). At the bottom of the table, we also provide association results between polygenic trait 

scores (PTS) calculated using 51 L-glutamine-associated SNPs (PTS51SNPs) or after excluding pleiotropic variants (PTS27SNPs). 

For the PTS, the effect size is per PTS standard deviation units. 

 

  Association result with L-glutamine-associated variants 

(effect allele frequency, effect size (beta or OR), P-value, sample size 

SNP (hg19) Gene 

region 

L-glutamine (Shin et al/Long et al) L-glutamine (Meta-analysis 

GEN-MOD-OMG) 

Painful crises (CSSCD) Painful crises  

(Meta-analysis GEN-MOD-

OMG) 

rs524219(G)/1:100821493 CDC14A (0.93, -0.28, P = 4.7e-06, N = 1958) (0.02, -0.21, P= 0.33, N = 651) (0.99 ,0.59, P = 0.24, N = 1101) (0.98, -0.91, P = 0.22, N = 575) 

rs11166473(T)/1:101010015* GPR88 (0.92, -0.36, P = 9.3e-08, N = 1958) (0.48, 0.01, P= 0.85, N = 651) (0.47 ,-0.12, P = 0.31, N = 1101) (0.49, -0.11, P = 0.56, N = 575) 

rs2811981(A)/1:23950147* MDS2 (0.89, -0.12, P = 3.8e-06, N = 1958) (0.87, 0.09, P= 0.28, N = 651) (0.88 ,-0.12, P = 0.49, N = 1101) (0.87, -0.11, P = 0.69, N = 575) 

rs3127550(A)/1:49431909* AGBL4 (0.49, 0.19, P = 5.7e-06, N = 1958) (0.18, -0.02, P= 0.77, N = 651) (0.17 ,-0.021, P = 0.89, N = 1101) (0.19, -0.52, P = 0.03, N = 575) 

rs7394051(T)/10:122008026* intergenic (0.7, 0.0055, P = 2.2e-06, N = 7372) (0.72, 0.06, P= 0.39, N = 651) (0.76 ,-0.052, P = 0.7, N = 1101) (0.72, 0.14, P = 0.51, N = 575) 

rs10762121(T)/10:68708291 CTNNA3 (0.18, -0.0094, P = 3.1e-05, N = 1768) (0.44, 0.04, P= 0.45, N = 651) (0.4 ,-0.018, P = 0.88, N = 1101) (0.44, 0.04, P = 0.84, N = 575) 

rs11596604(A)/10:87141944* intergenic (0.024, 0.032, P = 2.5e-06, N = 1768) (0, -0.43, P= 0.46, N = 401) (0.01 ,0.16, P = 0.78, N = 1101) (0, -2.5, P = 0.07, N = 325) 

rs7078003(T)/10:99359412* HOGA1 (0.17, 0.0087, P = 1.8e-06, N = 7372) (0.11, -0.01, P= 0.93, N = 651) (0.12 ,-0.12, P = 0.5, N = 1101) (0.12, -0.21, P = 0.48, N = 575) 

rs7131407(T)/11:128431418 ETS1 (0.13, 0.0082, P = 3.2e-05, N = 7372) (0.16, 0.02, P= 0.82, N = 651) (0.16 ,0.29, P = 0.074, N = 1101) (0.16, 0.19, P = 0.46, N = 575) 

rs10431159(A)/11:70967219 SHANK2 (0.65, -0.0047, P = 4.8e-05, N = 7372) (0.1, 0.09, P= 0.29, N = 651) (0.15 ,-0.061, P = 0.71, N = 1101) (0.1, -0.06, P = 0.86, N = 575) 

rs17666239(A)/12:47194757* SLC38A4 (0.078, 0.0092, P = 1.7e-05, N = 7372) (0.03, 0.1, P= 0.53, N = 651) (0.035 ,0.24, P = 0.45, N = 1101) (0.03, -0.69, P = 0.22, N = 575) 

rs735246(A)/12:52547743 intergenic (0.83, 0.0083, P = 4.8e-05, N = 7372) (0.82, -0.05, P= 0.49, N = 651) (0.81 ,-0.11, P = 0.42, N = 1101) (0.82, -0.08, P = 0.74, N = 575) 
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rs774044(T)/12:56837979* TIMELESS (0.055, -0.015, P = 5.6e-07, N = 7372) (0.05, -0.11, P= 0.4, N = 651) (0.045 ,0.093, P = 0.74, N = 1101) (0.05, -0.17, P = 0.7, N = 575) 

rs7313455(A)/12:56853231* MIP (0.44, 0.0062, P = 2.1e-08, N = 7372) (0.1, 0.11, P= 0.29, N = 651) (0.13 ,-0.026, P = 0.88, N = 1101) (0.06, 0.2, P = 0.63, N = 575) 

rs2657879(A)/12:56865338* GLS2 (0.82, 0.015, P = 6.1e-18, N = 7372) (0.96, 0.19, P= 0.15, N = 651) (0.94 ,0.25, P = 0.32, N = 1101) (0.96, -0.4, P = 0.41, N = 575) 

rs12232026(A)/12:56960766* RBMS2 (0.12, -0.0097, P = 4.4e-06, N = 7372) (0.17, 0.12, P= 0.1, N = 651) (0.14 ,-0.32, P = 0.049, N = 1101) (0.16, 0.12, P = 0.64, N = 575) 

rs941893(T)/14:100542061* EVL (0.74, -0.0049, P = 4.1e-05, N = 7372) (0.26, -0.01, P= 0.86, N = 651) (0.27 ,0.013, P = 0.92, N = 1101) (0.25, -0.08, P = 0.72, N = 575) 

rs144325715(A)/14:95948631 intergenic (0.021, -0.74, P = 5.3e-06, N = 1958) (0.04, -0.12, P= 0.46, N = 651) (0.044 ,0.25, P = 0.4, N = 1101) (0.04, 0.42, P = 0.38, N = 575) 

rs11636988(A)/15:26822814* GABRB3 (0.57, -0.16, P = 6.5e-06, N = 1958) (0.08, 0.14, P= 0.18, N = 651) (0.13 ,-0.0023, P = 0.99, N = 1101) (0.07, -0.25, P = 0.53, N = 575) 

rs1910151(A)/15:38158699* NA (0.64, 0.0048, P = 2.2e-05, N = 7372) (0.64, -0.05, P= 0.42, N = 651) (0.64 ,0.11, P = 0.36, N = 1101) (0.64, 0.34, P = 0.08, N = 575) 

rs35150605(TAAC)/15:88047

276 

RP11-

648K4.2 

(0.25, -0.15, P = 6.3e-06, N = 1958) (0.7, -0.03, P= 0.58, N = 651) (0.3 ,0.037, P = 0.77, N = 1101) 

(0.28, 0.09, P = 0.66, N = 575) 

rs2560409(C)/16:24099496 PRKCB (0.51, 0.26, P = 1.4e-06, N = 1958) (0.84, 0.19, P= 0.01, N = 651) (0.18 ,-0.12, P = 0.43, N = 1101) (0.14, -0.41, P = 0.13, N = 575) 

rs16977047(T)/16:27924612* GSG1L (0.7, -0.0056, P = 1.1e-06, N = 7372) (0.78, -0.01, P= 0.84, N = 651) (0.77 ,-0.11, P = 0.43, N = 1101) (0.8, -0.12, P = 0.61, N = 575) 

rs12447776(T)/16:84053027 SLC38A8 (0.019, 0.029, P = 4.1e-05, N = 1768) (0.05, -0.09, P= 0.49, N = 651) (0.042 ,0.057, P = 0.85, N = 1101) (0.06, -0.19, P = 0.65, N = 575) 

rs9912445(A)/17:37202603 LRRC37A1

1P 

(0.79, 0.0052, P = 1.7e-05, N = 7372) (0.71, 0.08, P= 0.17, N = 651) (0.72 ,-0.17, P = 0.17, N = 1101) 

(0.7, 0.3, P = 0.12, N = 575) 

rs8069305(A)/17:53638670 CTD-

2033D24.2 

(0.68, -0.0047, P = 4.9e-05, N = 7372) (0.14, 0.1, P= 0.18, N = 651) (0.19 ,0.031, P = 0.84, N = 1101) 

(0.16, 0.17, P = 0.49, N = 575) 

rs4798682(G)/18:8738265 SOGA2 (0.74, 0.15, P = 5e-06, N = 1958) (0.11, -0.15, P= 0.1, N = 651) (0.87 ,-0.17, P = 0.33, N = 1101) (0.89, 0.2, P = 0.52, N = 575) 

rs73971292(C)/2:161821810 intergenic (0.023, -0.65, P = 5.1e-06, N = 1958) (0.97, 0.13, P= 0.43, N = 651) (0.025 ,0.15, P = 0.69, N = 1101) (0.02, -0.68, P = 0.3, N = 575) 

rs780093(T)/2:27742603* GCKR (0.4, -0.0058, P = 1.9e-07, N = 7372) (0.12, -0.07, P= 0.42, N = 651) (0.14 ,0.15, P = 0.37, N = 1101) (0.12, 0.03, P = 0.93, N = 575) 

rs2199619(T)/2:28854958* PLB1 (0.28, 0.0054, P = 5.2e-06, N = 7372) (0.21, -0.11, P= 0.12, N = 651) (0.22 ,-0.11, P = 0.45, N = 1101) (0.19, -0.01, P = 0.97, N = 575) 

rs992580(C)/20:15246472* MACROD2 (0.44, 0.15, P = 6.2e-06, N = 1958) (0.53, 0.0036, P= 0.95, N = 651) (0.47 ,-0.0083, P = 0.94, N = 1101) (0.47, -0.12, P = 0.52, N = 575) 

rs6137021(A)/20:20375560* RALGAPA

2 

(0.67, -0.0083, P = 4.5e-05, N = 1768) (0.2, 0.17, P= 0.01, N = 651) (0.23 ,-0.32, P = 0.023, N = 1101) 

(0.18, 0.45, P = 0.05, N = 575) 

rs2425059(C)/20:33912371* UQCC1 (0.38, 0.15, P = 5.6e-06, N = 1958) (0.4, -0.01, P= 0.91, N = 651) (0.56 ,-0.12, P = 0.31, N = 1101) (0.63, -0.35, P = 0.08, N = 575) 

rs2948828(A)/3:124811942 SLC12A8 (0.56, 0.0053, P = 2.2e-05, N = 7372) (0.75, -0.0033, P= 0.96, N = 651) (0.75 ,0.056, P = 0.67, N = 1101) (0.76, -0.19, P = 0.39, N = 575) 

rs73168973(T)/3:151691599 intergenic (0.21, -0.23, P = 4e-07, N = 1958) (0.06, 0.03, P= 0.81, N = 651) (0.079 ,-0.18, P = 0.42, N = 1101) (0.06, -0.46, P = 0.28, N = 575) 
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rs4699183(A)/4:106444435 AC004066.

2 

(0.9, -0.27, P = 6.2e-06, N = 1958) (0.93, 0.29, P= 0.0086, N = 651) (0.92 ,0.082, P = 0.71, N = 1101) 

(0.93, 0.51, P = 0.16, N = 575) 

rs138354882(A)/4:171429817 intergenic (0.028, -0.36, P = 4.5e-06, N = 1958) (0.1, -0.06, P= 0.52, N = 651) (0.09 ,0.24, P = 0.25, N = 1101) (0.1, 0.04, P = 0.91, N = 575) 

rs7667615(C)/4:182921992* AC108142.

1 

(0.26, -0.17, P = 6.1e-06, N = 1958) (0.81, -0.0035, P= 0.96, N = 651) (0.17 ,-0.031, P = 0.84, N = 1101) 

(0.18, 0.16, P = 0.52, N = 575) 

rs542300(A)/6:12252237 intergenic (0.51, -0.13, P = 7.2e-06, N = 1958) (0.54, 0.07, P= 0.22, N = 651) (0.54 ,-0.064, P = 0.59, N = 1101) (0.54, 0.32, P = 0.07, N = 575) 

rs9478369(A)/6:153269698* intergenic (0.25, 0.0049, P = 4.1e-05, N = 7372) (0.56, 0.0019, P= 0.97, N = 651) (0.51 ,0.052, P = 0.66, N = 1101) (0.57, -0.14, P = 0.44, N = 575) 

rs71569656(C)/6:22903627 RP1-

209A6.1 

(0.28, -0.14, P = 8.9e-06, N = 1958) (0.92, -0.01, P= 0.91, N = 651) (0.095 ,0.42, P = 0.04, N = 1101) 

(0.07, -0.46, P = 0.23, N = 575) 

rs2748991(T)/6:52596516 intergenic (0.45, -0.007, P = 2.3e-06, N = 5604) (0.33, 0.16, P= 0.0096, N = 651) (0.34 ,-0.091, P = 0.45, N = 1101) (0.33, -0.2, P = 0.34, N = 575) 

rs1582256(C)/7:126634804 GRM8 (0.51, -0.18, P = 8.5e-06, N = 1958) (0.5, -0.07, P= 0.19, N = 651) (0.49 ,0.092, P = 0.42, N = 1101) (0.5, 0.23, P = 0.21, N = 575) 

rs767772939(CT)/7:1283507

44 

FAM71F1 (0.096, 0.26, P = 4.1e-06, N = 1958) (0.79, 0.01, P= 0.93, N = 651) (0.82 ,-0.16, P = 0.29, N = 1101) 

(0.8, 0.11, P = 0.66, N = 575) 

rs17837468(A)/7:138309274 SVOPL (0.88, 0.0088, P = 3.8e-05, N = 7372) (0.74, 0.03, P= 0.58, N = 651) (0.76 ,-0.14, P = 0.3, N = 1101) (0.74, 0.17, P = 0.43, N = 575) 

rs17152416(T)/7:25765238 AC003090.

1 

(0.76, 0.0049, P = 3.9e-05, N = 7372) (0.7, 0.03, P= 0.64, N = 651) (0.71 ,-0.18, P = 0.17, N = 1101) 

(0.69, 0.24, P = 0.25, N = 575) 

rs4722699(T)/7:27456500* intergenic (0.27, -0.0048, P = 3.8e-05, N = 7372) (0.23, -0.05, P= 0.49, N = 651) (0.2 ,-0.0076, P = 0.96, N = 1101) (0.22, 0.07, P = 0.73, N = 575) 

rs1799211(T)/7:76240677 UPK3B (0.41, -0.0082, P = 4.2e-06, N = 1768) (0.18, 0.04, P= 0.7, N = 401) (0.24 ,0.037, P = 0.79, N = 1101) (0.18, 0.31, P = 0.21, N = 325) 

rs9314463(A)/8:2525166 RP11-

134O21.1 

(0.19, 0.27, P = 9.1e-07, N = 1958) (0.45, -0.01, P= 0.83, N = 651) (0.43 ,-0.073, P = 0.54, N = 1101) 

(0.48, -0.05, P = 0.78, N = 575) 

rs112508772(A)/9:140016354 snoU13 (0.025, 0.48, P = 7e-07, N = 1958) (0.11, 0.14, P= 0.12, N = 651) (0.056 ,-0.11, P = 0.67, N = 1101) (0.13, 0.15, P = 0.58, N = 575) 

rs7848854(C)/9:7766733* intergenic (0.11, 0.0083, P = 2.4e-05, N = 7372) (0.02, -0.04, P= 0.85, N = 651) (0.027 ,0.68, P = 0.06, N = 1101) (0.02, -0.39, P = 0.58, N = 575) 

PTS51SNPs NA NA (NA, 0.021, P=0.60, N=651) (NA, -0.056, P=0.12, N=1101) (NA,  

-0.022, P=0.80, N=575) 

PTS27SNPs NA NA (NA, 0.025, P=0.53, N=651) (NA, -0.081, P=0.021, N=1101) (NA, 0.0036, P=0.97, N=575) 
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Supplementary Table 6. Mendelian randomization results for L-glutamine with sickle cell disease (SCD)-complications 

and estimated glomerular filtration rate (eGFR). For complications, estimates are odds ratios (95% confidence intervals) 

for the effect of a 1 standard deviation increase in L-glutamine. For eGFR (0.07 mL/min per 1.172 m2), estimates are effect size 

(standard error) for the effect of a 1 standard deviation increase in L-glutamine. All 51 genetic variants that are associated with 

L-glutamine at P<5x10-5 are included in Model 1 analyses (29 SNPs from Shin et al., 22 SNPs from Long et al.). In Model 2, 

we only kept 27 variants that were not pleiotropic (12 from Shin et al., 15 from Long et al.). IVW: inverse variance-weighted. 

In light grey, we present MR replication results for L-glutamine and painful crises in the smaller GEN-MOD and OMG cohorts. 

 

Metabolite Method 
Painful crises 

(CSSCD) 

Painful crises 

(GEN-MOD+OMG) 
Cholecystectomy 

(CSSCD) 

Retinopathy 

(CSSCD) 

Leg ulcer 

(CSSCD) 

Priapism 

(CSSCD) 

Aseptic 

necrosis 

(CSSCD) 

eGFR 

(CSSCD) 

L-glutamine 

– Model 1 

IVW 
0.81 (0.63-1) 

P=0.086 

0.77 (0.51- 1.16) 

P=0.21 

0.94 (0.68-1.3) 

P=0.72 

0.93 (0.67-1.3) 

P=0.66 

1.1 (0.82-1.5) 

P=0.53 

1 (0.78-1.4) 

P=0.81 

0.88 (0.65-

1.2) P=0.44 

0.027 (0.057) 

P=0.64 

MR-Egger 
0.76 (0.54-1.1) 

P=0.12 

0.84 (0.5- 1.4) 

P=0.50 

1.1 (0.76-1.7) 

P=0.52 

0.85 (0.57-1.3) 

P=0.45 

1.1 (0.75-1.6) 

P=0.66 

1.1 (0.67-

1.8) P=0.73 

0.97 (0.65-

1.4) P=0.88 

0.061 (0.072) 

P=0.4 

Weighted 

median 

0.77 (0.53-1.1) 

P=0.17 

0.93 (0.55- 1.58) 

P=0.8 

0.91 (0.58-1.4) 

P=0.67 

0.82 (0.52-1.3) 

P=0.4 

0.97 (0.62-

1.5) P=0.88 

1.1 (0.66-2) 

P=0.65 

0.91 (0.59-

1.4) P=0.67 

0.015 (0.084) 

P=0.85 

L-glutamine 

– Model 2 

IVW 
0.68 (0.52-0.89) 

P=0.0048 

0.82 (0.5- 1.34) 

P=0.44 

0.84 (0.57-1.2) 

P=0.39 

1.2 (0.78-1.7) 

P=0.46 

1.2 (0.88-1.6) 

P=0.26 

1.1 (0.78-

1.5) P=0.6 

0.85 (0.61-

1.2) P=0.37 

-0.026 (0.079) 

P=0.74 

MR-Egger 
0.74 (0.48-1.1) 

P=0.16 

0.80 (0.42- 1.53) 

P=0.50 

0.97 (0.59-1.6) 

P=0.92 

1.1 (0.66-1.9) 

P=0.71 

1.2 (0.75-1.9) 

P=0.46 

1.2 (0.66-

2.2) P=0.54 

1 (0.64-1.6) 

P=0.96 

0.012 (0.1) 

P=0.91 

Weighted 

median 

0.73 (0.49-1.1) 

P=0.12 

0.85 (0.44- 1.61) 

P=0.61 

0.78 (0.46-1.3) 

P=0.36 

1.2 (0.73-2.1) 

P=0.43 

1.1 (0.66-1.8) 

P=0.72 

1.2 (0.64-

2.4) P=0.53 

0.78 (0.46-

1.3) P=0.37 

-0.0049 

(0.099) 

P=0.96 
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Supplementary Table 9. Associations between adenosine plasma levels and sickle cell disease 

(SCD)-related complications and eGFR. In participants from the GEN-MOD and OMG cohorts, 

we tested the association between adenosine levels measured in plasma and SCD-related 

complications and eGFR. Association results were tested per cohort and then meta-analyzed. 

Dichotomous phenotypes were analyzed using logistic regression while correcting for age, sex, 

hydroxyurea (HU) usage, SCD genotypes and cohort affiliation. Quantitative phenotypes were 

corrected for age, sex, HU usage, SCD genotypes. They were inverse normal-transformed before 

being tested for association using linear regression. Odds ratio and effect sizes (Beta) are given 

per standard deviation change in plasma L-glutamine plasma levels. eGFR, estimated glomerular 

filtration rate; CI, confidence interval; SE, standard error. 

 

 

Complications N Odds ratio 95% CI P-value 

Painful crises 367 1.16 (0.94 -1.44) 0.17 

Survival 267 1.08 (0.7 -1.67) 0.73 

Aseptic necrosis 365 0.86 (0.68 -1.09) 0.21 

Cholecystectomy 362 1.22 (0.97 -1.54) 0.09 

Leg ulcer 370 0.86 (0.65 -1.13) 0.28 

Priapism 289 1.10 (0.83 -1.48) 0.50 

Retinopathy 384 1.2 (0.87 -1.65) 0.26 

     

Renal Parameter N Beta SE P-value 

eGFR 404 -0.01 0.05 0.85 
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Supplementary Table 10. Genetic associations between SNPs associated with 3-ureidopropionate and eGFR. SNPs 

(effect alleles) are the lead variants in each gene region identified in a GWAS for 3-ureidopropionate levels in Europeans (P 

<5.0x10−5) (ref. Long, T. et al. 2017). Association effect size with eGFR in the CSSCD and GENMOD are beta-coefficient 

from linear regression in 0.07 mL/min per 1.172 m2. *These variants were identified to be pleiotropic by Phenoscanner queries 

and were excluded from model 2 (Methods). At the bottom of the table, we also provide association results between polygenic 

trait scores (PTS) calculated using 22 3-ureidopropionate-associated SNPs (PTS22SNPs) or after excluding pleiotropic variants 

(PTS16SNPs). For the PTS, the effect size is per PTS standard deviation units. 

 

  Association result with 3-ureidopropionate -associated variants 

(effect allele frequency, effect size (beta), P-value, sample size 

SNP (hg19) Gene region 3-ureidopropionate (Long et al) 3-ureidopropionate 

(Meta-analysis GEN-

MOD+OMG) 

eGFR (CSSCD) 

 

eGFR (Meta-analysis GEN-

MOD-OMG) 

rs75277555(T)/1:92235001 TGFBR3 (0.072, 0.16, P = 4e-06, N = 1956) (0.057, -0.093, P = 0.43, N = 651) (0.047 ,-0.008, P = 0.94, N = 859) (0.06, -0.24, P = 0.15, N = 640) 

rs8013355(C)/14:52871418 intergenic (0.32, 0.16, P = 1.7e-06, N = 1956) (0.51, 0.012, P = 0.83, N = 651) (0.48 ,-0.013, P = 0.78, N = 859) (0.51, -0.05, P = 0.46, N = 640) 

rs555045773(GA)/15:54319379 UNC13C (0.15, -1.1, P = 6.2e-06, N = 1956) (0.23, -0.040, P = 0.58, N = 651) (0.26 ,-0.069, P = 0.2, N = 859) (0.23, 0.15, P = 0.09, N = 640) 

rs59930743(C)/17:3393604 ASPA (0.22, 0.18, P = 2.8e-06, N = 1956) (0.33, 0.030, P = 0.62, N = 651) (0.29 ,0.013, P = 0.81, N = 859) (0.33, 0.01, P = 0.87, N = 640) 

rs56104151(T)/18:61129481 intergenic (0.17, 0.15, P = 8.1e-06, N = 1956) (0.35, 0.064, P = 0.27, N = 651) (0.35 ,0.031, P = 0.53, N = 859) (0.34, 0.08, P = 0.32, N = 640) 

rs78734409(A)/2:12335302 AC096559.1 (0.038, 0.51, P = 3e-06, N = 1956) (0.026, 0.080, P = 0.63, N = 651) (0.025 ,0.14, P = 0.37, N = 859) (0.03, -0.36, P = 0.1, N = 640) 

rs71394795(GTTTA)/2:12355843 AC096559.1 (0.034, 0.19, P = 4.9e-07, N = 1956) (0.71, -0.024, P = 0.70, N = 651) (0.66 ,0.016, P = 0.76, N = 859) (0.71, 0.06, P = 0.49, N = 640) 

rs13427576(T)/2:56523619 CCDC85A (0.12, 0.16, P = 9e-06, N = 1956) (0.21, 0.036, P = 0.61, N = 651) (0.22 ,0.0034, P = 0.95, N = 859) (0.22, -0.1, P = 0.31, N = 640) 

rs11704820(G)/22:24912248 UPB1 (0.43, 0.16, P = 4.3e-07, N = 1956) (0.30, -0.14, P = 0.017, N = 651) (0.32 ,0.0044, P = 0.93, N = 859) (0.29, -0.01, P = 0.93, N = 640) 

rs77020847(G)/3:150016629 intergenic (0.013, 0.24, P = 2.1e-06, N = 1956) (0.015, -0.13, P = 0.60, N = 651) (0.014 ,0.074, P = 0.71, N = 859) (0.01, 0.65, P = 0.05, N = 640) 

rs6788347(C)/3:37754694* ITGA9 (0.5, 0.19, P = 4e-06, N = 1956) (0.53, 0.066, P = 0.25, N = 651) (0.52 ,0.081, P = 0.1, N = 859) (0.53, 0.06, P = 0.42, N = 640) 
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rs4698029(G)/4:10312798* intergenic (0.19, -0.39, P = 3.5e-17, N = 1956) (0.23, -0.096, P = 0.17, N = 651) (0.21 ,-0.033, P = 0.56, N = 859) (0.22, 0.05, P = 0.56, N = 640) 

rs13135526(A)/4:128932595* C4orf29 (0.51, -0.08, P = 9.1e-06, N = 1956) (0.60, -0.088, P = 0.12, N = 651) (0.61 ,0.057, P = 0.25, N = 859) (0.6, 0.01, P = 0.92, N = 640) 

rs2725772(T)/4:140438033* SETD7 (0.84, 0.21, P = 8.9e-08, N = 1956) (0.50, -0.016, P = 0.78, N = 651) (0.54 ,0.08, P = 0.093, N = 859) (0.51, -0.05, P = 0.52, N = 640) 

rs11735831(A)/4:9951591* SLC2A9 (0.22, -0.43, P = 1.4e-23, N = 1956) (0.46, 0.054, P = 0.343, N = 651) (0.45 ,-0.029, P = 0.54, N = 859) (0.46, 0.06, P = 0.45, N = 640) 

rs33379(C)/5:171099634* intergenic (0.44, 0.16, P = 4e-06, N = 1956) (0.83, -0.011, P = 0.88, N = 651) (0.77 ,-0.033, P = 0.58, N = 859) (0.83, -0.1, P = 0.33, N = 640) 

rs76129636(G)/6:130978833 intergenic (0.12, -0.41, P = 9.6e-06, N = 1956) (0.24, -0.014, P = 0.83, N = 651) (0.26 ,-0.0077, P = 0.89, N = 859) (0.24, -0.13, P = 0.16, N = 640) 

rs113133874(T)/6:33379903 PHF1 (0.11, -0.42, P = 7e-06, N = 1956) (0.017, -0.062, P = 0.78, N = 651) (0.021 ,-0.051, P = 0.76, N = 859) (0.02, 0.15, P = 0.61, N = 640) 

rs56286439(C)/7:14307105 DGKB (0.2, -0.13, P = 4.8e-06, N = 1956) (0.83, -0.005, P = 0.95, N = 651) (0.82 ,-0.0045, P = 0.94, N = 859) (0.83, -0.03, P = 0.79, N = 640) 

rs2352451(G)/8:112781984 intergenic (0.74, 0.18, P = 5.3e-06, N = 1956) (0.75, 0.034, P = 0.59, N = 651) (0.78 ,-0.073, P = 0.21, N = 859) (0.75, -0.04, P = 0.67, N = 640) 

rs7006208(A)/8:124157948 TBC1D31 (0.17, -0.96, P = 8e-06, N = 1956) (0.25, 0.033, P = 0.61, N = 651) (0.26 ,-0.087, P = 0.11, N = 859) (0.25, 0.05, P = 0.56, N = 640) 

rs74795659(A)/8:73633099 KCNB2 (0.068, 0.15, P = 9e-06, N = 1956) (0.031, 0.13, P = 0.43, N = 651) (0.023 ,0.24, P = 0.12, N = 859) (0.03, -0.24, P = 0.28, N = 640) 

PTS22SNPs NA NA (NA, 0.013, P=0.73, N=651) (NA, 0.069, P=0.044, N=859) (NA, -0.017, P=0.065, N=649) 

PTS16SNPs NA NA (NA, 0.012, P=0.74, N=651) (NA, 0.082, P=0.016, N=859) (NA, -0.022, P=0.55, N=649) 
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Supplementary Table 11. Mendelian randomization results for 3-ureidopropionate with 

estimated glomerular filtration rate (eGFR) in sickle cell disease (SCD) patients. Estimates 

are effect size (standard error) in eGFR units (0.07 mL/min per 1.172 m2) for the effect of a one 

standard deviation increase in genetically-controlled 3-ureidopropionate. All 22 genetic variants 

that are associated with 3-ureidopropionate at P<5x10-5 are included in Model 1. In Model 2, we 

only kept 16 variants that were not pleiotropic. IVW: inverse variance-weighted. In light grey, we 

present MR replication results for 3-ureidopropionate and eGFR in the smaller GEN-MOD and 

OMG cohorts. 

 

Metabolite Method 
eGFR  

(CSSCD) 

eGFR  

(GEN-MOD) 

eGFR 

(OMG) 

3-

ureidopropionate 

– Model 1 

IVW 
0.078 (0.023) 

P=0.00087 

-0.093 (0.059) 

P=0.12 

-0.076 (0.059) 

P=0.19 

MR-Egger 
0.089 (0.048) 

P=0.077 

-0.16 (0.089) 

P=0.082 

-0.024 (0.090) 

P=0.79 

Weighted 

median 

0.068 (0.045) 

P=0.13 

-0.13 (0.076) 

P=0.65 

0.027 (0.096) 

P=0.77 

3-

ureidopropionate 

– Model 2 

IVW 
0.07 (0.021) 

P=0.00097 

-0.082 (0.068) 

P=0.22 

-0.074 (0.068) 

P=0.28 

MR-Egger 
0.088 (0.05) 

P=0.1 

-0.14 (0.099) 

P=0.17 

-0.057 (0.01) 

P=0.58 

Weighted 

median 

0.068 (0.049) 

P=0.16 

-0.12 (0.081) 

P=0.15 

0.077 (0.11) 

P=0.49 
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Supplementary Figure 1. Study design of the metabolomic study in sickle cell disease (SCD) 

patients. 250 GEN-MOD samples and 50 OMG samples were profiled in 2015, 250 OMG samples 

were profiled in 2016, and 156 GEN-MOD samples were profiled in 2017. Known/targeted and 

unknow/untargeted metabolites were measured using liquid-chromatography in tandem with mass 

spectrometry (LC-MS). Data preprocessing involved standard quality-control procedures, 

imputation of missing values, batch-effect correction and data scaling. Data analysis included 

association testing of known metabolites with SCD-related complications, Mendelian 

randomization, and SCD survival prediction using statistical modelling. n, number of patients 

included in the study; y, year during which metabolites were measured; m, number of 

targeted/untargeted metabolites measured in each year. 
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Supplementary Figure 2. Principal component analysis (PCA) of the metabolomic data before 

(A) and after (B) batch-effect correction using comBAT. Although the 3 different batches are 

clearly distinguishable before correction, comBAT pre-processing removes this effect. In each 

plot, the x- and y-axis represent the first and second principal components. The legend is the same 

for both plots. 
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Supplementary Figure 3. 129 known metabolites grouped in super-pathways (A) and pathways 

(B) based on criteria from the human metabolome database (HMDB).  
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Supplementary Figure 4. Principal component analyses in the 3 sickle cell disease (SCD) 

cohorts analyzed in this study. We used reference populations from the 1000 Genomes Project to 

anchor these analyses. For all 3 SCD cohorts, most participants map to the European-African 

axis of variation, reflecting variable levels of admixture 
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Annex E A Grammastola spatulata mechanotoxin-4 (GsMTx4)-sensitive 

cation channel mediates increased cation permeability in human 

hereditary spherocytosis of multiple genetic etiologies 

 

 

The article presented is published in the journal, Hematologica. In this article, whole-exome 

sequencing in SCD patients was employed to identify potential genetic variants responsible for the 

hereditary spherocytosis. I performed the quality control, variant calling, and the annotation of 

variants.  
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Hereditary spherocytosis (HS) is the most common inherited hemolytic anemia among people of 

Northern European descent. HS is caused by mutations in genes encoding the erythroid 

cytoskeleton proteins ankyrin-1 (ANK1), b-spectrin (SPTB), and α-spectrin (SPTA1), the major 

intrinsic erythroid membrane protein and chloridebicarbonate exchanger, SLC4A1/band 3, and 

rarely EPB42/protein 4.2. These mutations lead to destabilization and progressive loss of red cell 

membrane lipids and surface area, and in some cases to destabilization of cytoskeletal-membrane 

attachment. The resulting red cells often exhibit normochromic or hyperchromic, mildmoderate 

microcytosis with increased incubated osmotic fragility and reduced deformability. Anemia and 

chronic hemolysis can be accompanied by hyperbilirubinemia and painful splenic enlargement. 

Splenectomy often provides symptomatic relief and attenuates anemia and hemolysis314.  

 

Increased erythroid cation permeability in HS was first reported by Harris and Prankerd (1953) 

and Bertles (1957), as subsequently cited by Zarkowsky et al.315 Later reports of increased red cell 

cation permeability appeared in the setting of Southeast Asian ovalocytosis and cyrohydrocytosis 

in association with SLC4A1 mutations, in the setting of overhydrated stomatocytosis in association 

with mutations in RHAG, SLC2A1, and SLC4A1, and in the setting of familial pseudohyperkalemia 

associated with ABCB6 mutations316. Spherocytic mouse red cells genetically lacking EBP41 or 

EBP42, or haploinsufficient for SLC4A1 exhibited enhanced Gardos channel activity and 

increased hemolysis in the presence of the Gardos inhibitor, clotrimazole317, consistent with 

enhanced nonspecific cation permeability associated with these mouse HS models. Human HS red 

cells of diverse genotype were uniformly characterized by increased steady-state concentrations 

of fluorometrically measured intracellular [Ca2+]318. However, Petkova-Kirova et al.319 recently 

reported that HS red cells of the same individuals had a spectrum of decreased, increased, or 

unchanged cation channel activities as measured by an automated whole cell patch clamp 

technique. 
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These studies led us to investigate whether HS red cells might be characterized by increased cation 

channel activity as detected by on-cell patch clamp analysis. We isolated DNA and RNA from 

whole blood of 13 patients with a clinical diagnoses of HS under protocols approved by 

Investigational Review Boards of Boston Children’s Hospital and Beth Israel Deaconess Medical 

Center. The hematologic indices of the patients’ red cells are presented in Online Supplementary 

Table S1. From the isolated total RNA, we generated complementary DNA (cDNA) for Sanger 

sequencing of SLC4A1. cDNA and/or genomic DNA (gDNA) from those patients lacking an 

evident SLC4A1 mutation in blood cDNA was subjected to Sanger sequencing 

of ANK1 and SPTB. Whole exome sequencing was reserved for gDNA from the six of 13 patients’ 

samples that remained uninformative. Mutations detected by whole exome sequencing were 

subsequently confirmed by Sanger sequencing (Table 1). We found seven novel pathogenic 

mutations and one novel missense variant of very high predicted pathogenicity in previously 

identified HS genes among these patients with clinical diagnoses of HS. A subset of HS mutant 

red cells was subjected to on-cell patch clamp analysis (Figure 1). All cells in which stable gigohm 

seals were achieved exhibited substantial cation channel activity as compared to non-HS red cells. 

Mean cation channel unitary conductance among HS red cells was 26±2.1 pS (n=6 genotypes 

encompassing 16 cells; see Table 1). This increased activity, in the cases tested, was nearly 

completely inhibited by the mechanosensitive cation channel inhibitor, Grammastola 

spatulata mechanotoxin-4 (GsMTx4) at a concentration of 1 mM in the recording pipette (Table 

1, Figure 1C). Non-HS red cells from healthy donors exhibited minimal channel activity (Figure 

1C), as we had previously reported320.  

 

In this collection of HS patients, we found mutations in SLC4A1, ANK1, SPTA1, and SPTB (Table 

1). Several patients exhibited mutations in SLC4A1 previously reported in HS. HS2 was 

heterozygous for both HS mutant Band 3 Lyon (SLC4A1 R150X) and Band 3 Montefiore 

(SLC4A1 E40K). Each mutation was undetected in cDNA but confirmed in gDNA, strongly 

suggesting that the mutant transcript carrying both mutations was a substrate of nonsense-mediated 

mRNA decay. Siblings HS3 and HS4 were each heterozygous for Band 3 

Bicetre (SLC4A1 R490C). HS5 was heterozygous for Band 3 Osnabruck (SLC4A1 del663). HS6 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8485688/table/table001/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8485688/figure/fig001/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8485688/table/table001/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8485688/table/table001/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8485688/table/table001/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8485688/figure/fig001/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8485688/figure/fig001/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8485688/figure/fig001/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8485688/table/table001/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8485688/table/table001/
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was heterozygous for Band 3 Prague III (SLC4A1 R870W), accompanied by the nonpathogenic 

Band 3 Memphis I (SLC4A1 E56K). 

 

Our HS patients also revealed a novel mutation in SLC4A1 and several novel mutations 

in ANK1 and SPTB, including a novel SPTB missense variant strongly predicted to be pathogenic 

(Table 1). The novel SLC4A1 E68X mutation in HS1 was associated with nonsense-mediated 

decay, whereas the known rare SLC4A1 R180H variant found on the other allele was detectable in 

both cDNA and gDNA. Four HS patients exhibited novel, heterozygous ANK1 loss-of-function 

mutations, including ANK1 E883Gfs32X in HS7 (accompanied by the known, 

rare SPTA1 R1074H variant of uncertain significance), ANK1 A1110del2 in HS8 (mutating a 

splice acceptor site), ANK1 K1140Gfs86X in HS9 (accompanied by the SLC4A1/Band 3 Memphis 

II polymorphism) and ANK1 E1289Gfs86X in HS10. Combined cDNA and gDNA sequencing 

indicated that mRNA encoding both ANK1 mutations E883Gfs32X and E1289Gfs76X were 

substrates of nonsense-mediated decay, whereas the other two ANK1 mutations underwent partial 

nonsense-mediated decay (Table 1). 

 

Two HS patients were found to have novel heterozygous loss-of-function mutations in 

the SPTB gene encoding b-spectrin, SPTB G1450Rfs41X in HS12 and SPTB E1815Pfs90X in 

HS13 (Table 1). Both of these frameshift termination mutations encoded substrates of 

nonsensemediated decay. Patient HS11 exhibited compound heterozygosity for the novel, 

“probably damaging” missense variant SPTB R1255G (Polyphen-2 score 0.999) and the known 

non-pathogenic ANK1 R619H variant. The likely pathogenic SPTB R1255G substitution is 

located in the ninth of b-spectrin’s 17 repeat domains, portions of which comprise a dimerization 

domain, a tetramerization domain, and the ankyrin-binding domain. Remarkably, the purified 

recombinant ninth b-spectrin repeat generated in E. coli was found to be more unstable (with a 

melting temperature of 20°C) than any other recombinant b-spectrin repeat polypeptide, each of 

which had melting temperatures ≥37°C,321 demonstrating increased mutation-associated 

susceptibility to dysfunctional conformational change. 

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8485688/table/table001/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8485688/table/table001/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8485688/table/table001/
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Table 1. Hereditary Spherocytosis (HS) accompanied by increased cation currents 
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We assessed some of the HS mutants shown in Table 1 for cation channel activity in on-cell 

patches, preserving any regulatory components of the red cell cytosol and membrane cytoskeleton. 

Red cells from patients carrying the known SLC4 HS mutants R150X, R490C, and M663del each 

exhibited channel activity. Red cells from the patients carrying the novel HS-associated mutations 

ANK1 A1110del2 and ANK1 K1140Gfs86X also exhibited channel activity. In addition, red cells 

from the patient carrying the novel, predicted pathogenic VUS SPTB R1255G exhibited channel 

activity. The representative current trace from patient HS4 in Figure 1A with reversal potential of 

~0 mV and unitary conductance of 21 pS (Figure 1B) is consistent with cation channel activity. 

Oncell patch recordings of red cells from patients HS2, HS4, HS5, HS8, HS9 and HS11, 

representing mutations in SLC4A1, ANK1, and SPTB, exhibited a mean unitary conductance of 

26±2.1 pS. 

 

In on-cell patch recordings of red cells from patients with the previously known SLC4A1 HS 

mutation R150X (HS2), the novel ANK1 mutation delA1110Q1111 (HS8), and the novel, rare 

predicted pathogenic SPTB variant R1255G (HS11), channel activity was also monitored under 

conditions in which the micropipette fluid included the mechanosensitive cation channel blocker, 

GsMTx4 (1 mM). Mean NPo of channel activity was 1.44±0.44 as measured in 16 cells 

representing six genotypes (Figure 1C, Table 1). The presence of 1 μM GsMTx4 in the recording 

pipette was associated with ~95% inhibition of channel activity, reducing mean NPo to 0.08±0.03 

as measured in six cells representing three genotypes (Figure 1C, Table 1). The unitary 

conductance, reversal potential, and sensitivity of the current to inhibition by GsMTx-4 are each 

consistent with PIEZO1 mediation of, or contribution to, the measured cation channel activity in 

HS red cells. The increased membrane tension of the gigaseal inside the pipette322 may unmask 

increased cation current in on-cell patches which might be less readily detected in whole cell patch 

recordings318. Interestingly, however, small increases in whole cell current were detected in some, 

if not all HS patients’ red cells haploinsufficient for SPTB or for SPTA1318.  

Cation channel activity in the presence of pathogenic stomatocytosis mutations in transmembrane 

transporters such as SLC4A1, RHAG, GLUT1, and ABCB6 has been attributed either to direct 

cation permeation through the dysfunctional mutant membrane protein itself, or to direct or 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8485688/table/table001/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8485688/figure/fig001/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8485688/figure/fig001/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8485688/figure/fig001/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8485688/table/table001/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8485688/figure/fig001/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8485688/table/table001/
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indirect modulation of PIEZO1 activity323. However, the similar properties of the increased cation 

channel activities measured in the presence of pathogenic HS mutants of the cytoskeletal proteins 

b-spectrin and ankyrin very likely arise from direct or indirect modulation of PIEZO1 (and/or 

another unidentified cation channel), possibly by perturbations transmitted through one of the 

SLC4A1/Band3-nucleated macro-complexes324. This modulation might reflect PIEZO1 properties 

such as the lower hydrostatic pressure threshold for PIEZO1 activation in on-cell patches of actin 

cytoskeleton-depleted cellular blebs than in on-cell patches with intact cell cortex, and/or the 

inhibition by cytochalasin D of pressureactivated PIEZO1 in on-cell patches of normal cultured 

cells, and by glass probe-mediated cell indentation as measured by whole cell currents322.  

Our data suggest that PIEZO1 likely mediates or contributes a major fraction of the incremental 

cation permeability of HS red cells. Clarification of the relationships between apparent cytoskeletal 

modulation of erythroid PIEZO1 and PIEZO1 modulation by flow325 and by modulation of lateral 

membrane tension via the ceramidesphingomyelin balance of the red cell membrane326 will require 

further study. 
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Figure 1. Electrophysiological properties of cation channels in hereditary spherocytosis red 

cells. (A) A representative current trace recorded at -Vp = -25mV from an on-cell patch 

recording from a red cell of patient HS11 with hereditary spherocytosis (HS) carrying the novel 

heterozygous SPTB missense variant R1255G (Polyphen-2 score 0.999). Identical bath and 

pipette fluid composition included (in mM) 140 NaCl, 4 KCl, 1 CaCl2, 1 MgCl2, 10 NaHEPES 

at a final pH of 7.40. On-cell patch currents were recorded by an Axopatch 200b amplifier and 

digitized by a Digidata 1440A A-D converter (Molecular Devices, Sunnyvale, CA, USA). Seal 

resistances were 6.0±1.0 GΩ (n=7) in non-HS cells, 5.0±0.8 GΩ (n=14) in HS cells without 

GsMTx4 in the pipette solution, and 4.8±1.0 GΩ (n=6) in HS cells with GsMTx4 in the pipette 

solution. Seal duration for recordings on HS cells unexposed to GsMTx4 was 18±11 min. Data 

were filtered at 500 Hz, digitized at 2 kHz by PClamp and analyzed offline by Clampfit 

(PCLAMP11, Molecular Devices). (B) Current-voltage relationship of HS11 red cell current 

measured in a representative on-cell patch, with unitary slope conductance of 21 pS. The current-

voltage (I-V) relationship was generated in Clampex (PCLAMP 11, Axon Instruments) with the 

real-time control window in gap-free mode to record current traces of 10–30 s duration. Test 

potentials were selected in 25-50 mV increments ranging between a minimum of -100 mV to a 

maximum of +100 mV. (C) Summary data for NPo calculated from on-cell patch current traces 

of 5-10 s duration recorded in 16 cells from six HS mutant genotypes and in six cells from three 

mutant HS genotypes in the additional presence of GsMTx4 (1 μM) in the pipette fluid. NPo 

values recorded in seven non-HS red cells from four normal individuals (AA) are also shown. 

*P<0.05 for the t-test comparing normal to HS cells, and for the Mann-Whitney test comparing 

HS cells in the presence versus absence of GsMTx4. 

 



 220 

 

 

 

 



 221 

 



 222 

 

Supplemental Table 1 Legend. 
 
Hematologic indices were measured by automated analysis on the ADVIA 2120 (Siemens).  
Bilirubin and LDH were measured by automated analysis on the COBAS (Roche). 
For candidate gene sequencing, < 1 mg total RNA prepared from whole blood of each patient 
(Rneasy Kit,  Qiagen) was used for first strand cDNA synthesis (Retroscript, Ambion). Genomic 
DNA (gDNA) was also isolated from whole blood of each patient (Dneasy Blood and Tissue Kit, 
Qiagen). RT-PCR products (36-38 cycles) and/or genomic PCR products of the SLC4A1, SPTB and 
ANK1 genes (36 cycles) were analyzed in 1% agarose gel. Fragments of expected size were 
excised, purifed (QIAquick Gel Extraction Kit, Qiagen) and subjected to Sanger sequencing.  
Pathogenic variants were discovered in samples of patients HS3-HS6, HS8, HS9, and HS11 (Table 
1). 

For whole exome sequencing, gDNA (1 µg) from whole blood of patient HS1 was fragmented by 
mechanical shearing (Covaris) to obtain fragments of length ~250 nt.  DNA fragments were 
adenylated, adapter-ligated, and hybrid-captured, then processed for library preparation and 
paired-end sequencing using Novaseq 6000 at 100X coverage. Sequencing data was processed 
using a workflow including raw reads quality assessment by FastQC, adapter- and quality-
trimming by Trimmomatic, alignment using BWA-MEM with hg19, post-alignment quality and 
removal of PCR duplicates by SAMtools and Picard-Tools (http://picard.sourceforge.net). 
Variants and indels were detected by GATK and annotated by ANNOVAR. 

Exonic DNA fragments from 100 ng sheared gDNA from HS10 and HS12 were captured 
using the Illumina WES Nextera Kit.  Exonic DNA fragments from HS2, HS7 and HS13 were 
captured using the Nimblegen SeqCap EZ Exome Capture Kit.  Next-generation sequencing was 
conducted with an Illumina HiSeq4000 instrument using a paired-ends 2x100 base-pair 
protocol. Best practices pipeline recommendations for quality control and variant calling of 
reads were followed using the Genome Analysis Toolkit (GATK version 3.4-46) [1]. Sequenced 
reads were aligned to hg19 and analyzed. Varian calling was by GATK Haplotype Caller, and 
variant annotation was by Variant Effect Predictor (VEP)[2]. Mean target coverage was  >91%, 
and >85% of bases were read at 10x coverage. Of 415,187 detected variants, 109,188 remained 
after selecting nonsynonymous variants with consequences matching the following terms: 
splice_acceptor, splice_donor_variant, stop_gained, frameshit_variant, stop_lost, start_lost, 
protein_altering_variant, missense_variant, coding_sequence_variant. Each pathogenic variant 
discovered by whole exome sequencing from patients HS1, HS2, HS7, HS10, HS12 and HS13 
(Table 1) was subsequently validated by Sanger sequencing. 
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Supplemental Table 1. Hemolytic indices of patients. 
 
Subject # Genetic Dx  RBC Hb Hct MCV MCH MCHC HDW RDW Retic Retic      Bili (T/D)    LDH  
     (x 106)   (g/dL)     (%)  (fL)         (pg)        (g/dL)   (g/dL)       (%)        (%)    (x106/mL)   (mg/dL)    (U/L) 
 
HS1  SLC4A1 E68X  n.a. n.a.  n.a.  n.a.  n.a.  n.a. n.a.  n.a.  n.a.  n.a.   n.a.      n.a.  
  SLC4A1 R180H 
 
HS2   SLC4A1 R150X/E40K 3.75 12.5 34.7 92.7 33.5 36.1 3.38 15.2  5.0 0.189      1.1/0.2      294  
  Band 3 Lyon in tandem    
  w Band 3 Montefiore    
 
HS3, HS4 SLC4A1 R490C        sib1 3.88 11.8 32.3 83.2 30.4 36.5 3.83 20.1 7.5 0.365      2.1/0.3      287  
    (sibs)  Band 3 Bicetre       sib2 3.00 10.0 27.3 81.4 29.8 36.6 3.83 19.6 9.7 0.326      1.5/0.2      398   
 
HS5  SLC4A1 M663del n.a. n.a. n.a. n.a. n.a.  n.a.  n.a.  n.a. n.a.   n.a.   n.a.      n.a.  
  Band 3 Osnabruck   
  
HS6   SLC4A1 R870W/K56E 4.35 12.0 34.9 80.2 27.5 34.3 2.79 13.8 1.5 0.067    <0.1/<0.1    305 
  Band 3 Prague 3 
 
HS7  ANK1 E924X  4.47 12.9 34.3 76.7 28.8 37.5 4.37 18.5 2.3 0.105      0.8/0.2      208  
  SPTA1 R1074H          
 
HS8   ANK1 A1110-G1111del    5.03 12.8 34.8 69.3 25.5 36.8 4.44 18.3 3.0 0.151      0.6/0.1      240 
 
HS9   ANK1 K1140Gfs.X87 3.4 8.8 24.6 72.4 25.9 35.8 4.0 17.7 5.6 0.190      0.8/0.2      294  
  
  SLC4A1 P854L/K56E  
 
HS10  ANK1 E1289Gfs86X 3.69 11.6 30.2 81.9 31.4 38.4 4.68 19.5 10.0 0.369  2.4/0.2       370 
 
HS11  SPTB R1255G  3.42 11.1 31.0 90.4 32.4 35.9 3.48 13.9 4.8 0.140  1.2/0.2      197 
  ANK1 R619H 
 
HS12  SPTB G1450Rfs41X 4.20 12.5 33.1 78.9 29.7 37.7 4.41 18.6 10.8 0.454  2.2/0.2      384  
  
 
HS13   SPTB E1815AfsX  4.29 12.1 32.5 75.8 28.3 37.3 4.19 17.5 10.0 0.429  2.0/0.3      361 
 
Normal range     3.92- 11.0- 31.5- 76.8- 26.8- 34.2- 2.75- 13.2- 0.8- 0.029-  0.3-0.0 -    110- 
     4.72 12.8 36.8 83.3 29.4 35.7 3.21 14.5 2.0 0.080  1.2-0.4      295  
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Annex F. A common functional PIEZO1 deletion allele associates with 

red blood cell density in sickle cell disease patients 

 

The article presented is published in the journal, American Journal of Hematology. In this article, 

I characterized the role of an inframe deletion in the gene PIEZO1 in SCD patients. I performed 

the quality control, variant calling, and annotation for the whole-exome sequence data. I 

additionally performed the association tests between the deletion and red blood cell density.  
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To the Editor: 

 

PIEZO1 encodes a large mechanosensitive cation channel expressed in multiple cell types, 

including red blood cells (RBCs). In humans, rare gain-of-function mutations in PIEZO1 cause 

hereditary xerocytosis (HX), characterized by RBC dehydration and anemia. Recently, Ma et al. 

identified an in-frame PIEZO1 deletion allele (rs572934641) that is common in individuals of 

African ancestry124. In vitro, the deletion increased PIEZO1 inactivation time, mimicking other 

gain-of-function mutations found in HX patients. RBCs from nine healthy African Americans 

heterozygotes for rs572934641 were dehydrated when compared to erythrocytes from 

noncarriers124.  

 

RBC dehydration has been implicated in the clinical variability observed in patients with sickle 

cell disease (SCD), a multiorgan disorder caused by mutations in the β-globin gene. Increased 

RBC density, a hallmark of SCD, is independently correlated with hemolysis, priapism, leg ulcer, 

and renal dysfunction in patients123. Here, we investigated the association between the common 

functional PIEZO1 deletion allele and RBC density, hemolytic parameters, estimated glomerular 

filtration rate (eGFR), and clinical complications in three large SCD cohorts. Our results indicate 

that common genetic variation in PIEZO1 regulates RBC density in SCD patients, and thus 

represents one of many factors that influence clinical severity in this heterogenous blood disorder. 

 

This project was reviewed and approved by the Montreal Heart Institute Ethics Committee and 

the different recruiting centers. Informed consent was obtained for all participants in accordance 

with the Declaration of Helsinki. The GEN-MOD cohort, the Cooperative Study of Sickle Cell 

Disease (CSSCD), and the Duke University Outcome Modifying Genes (OMG) cohort have been 

described elsewhere126,248. RBC density was measured using the phthalate density distribution 

technique in GEN-MOD participants123. DNA genotyping, quality-control, and genotype 

imputation using haplotypes from phase 3 of the 1000 Genomes Project were described 

previously126,248. We used Nimblegen SeqCap EZ Exome Capture kit to capture exons and we 

sequenced DNA using the Illumina HiSeq4000 instrument and a paired-ends 2x100 base pairs 

protocol. Whole-exome sequencing (WES) analysis was performed using the Genome Analysis 

Toolkit (GATK version 3.4-46). We followed best practices pipeline recommendations for reads 
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quality control and variant calling. All statistical analyses are described in the Supporting 

Information Methods. 

 

rs572934641 maps to a complex DNA sequence region in PIEZO1 with multiple TCC 

trinucleotide repeats. We inspected high-coverage WES data for 247 SCD patients from GEN-

MOD (80% of targeted sequences covered at ≥80X) and identified at least four in-frame alleles. 

The most frequent allele has two TCC repeats and a frequency of 74.9%. The allele with one TCC 

repeat, which corresponds to the deletion allele (E756del) characterized recently124, has a 

frequency of 22.9%. We also found two rarer alleles with zero (allele frequency = 0.6%) or three 

(allele frequency = 1.6%) repeats. In 226 SCD patients from GEN-MOD with phenotype and 

WES-derived genotypes available, the one repeat allele (E756del) was associated with increased 

RBC density (P = .043, Table 1). To increase our sample size, we imputed this 

common PIEZO1 deletion allele in 375 GEN-MOD participants (including 149 additional SCD 

patients without WES data available) using reference haplotypes from phase 3 of the 1000 

Genomes Project. The imputation quality metric was excellent (rsq_hat = 0.94) and concordance 

with genotypes from WES data was high (Supporting Information Figure 1). In this data set of 

374 SCD patients, the association between RBC density and imputation-derived genotypes for 

the PIEZO1 E756del allele was stronger and explained ~2.5% of the phenotypic variation 

(P = .0039, Table 1). Thus, we provide in vivo evidence that RBCs from SCD patients that carry 

the PIEZO1-E756del allele are dehydrated124. 

 

We previously reported an association between RBC density in SCD patients and a regulatory 

DNA variant (rs10751450) within an erythroid enhancer at the ATP2B4 locus126,127. 

ATP2B4 encodes the main RBC calcium pump and erythroid cells with a deletion of the enhancer 

have increased intracellular Ca2+ concentration127. Increased intracellular calcium can activate the 

Gardos channel, leading to potassium efflux and dehydration. Because a gain-of-function mutation 

in PIEZO1 could similarly result in excess calcium entry into RBCs, we tested if genotypes 

at ATP2B4-rs10751450 and PIEZO1-rs572934641 interacted to control RBC density in SCD 

patients. Both variants were independently associated with RBC density (P ATP2B4 = .0016 

and P PIEZO1 = .0034 in a multivariate model), but we detected no evidence of interaction on RBC 

density (Pinteraction = .53). We calculate a polygenic RBC density score by combining alleles 

from PIEZO1-rs572934641, ATP2B4-rs10751450, as well as rare missense variants 

https://onlinelibrary.wiley.com/doi/10.1002/ajh.25245#ajh25245-tbl-0001
https://onlinelibrary.wiley.com/doi/10.1002/ajh.25245#support-information-section
https://onlinelibrary.wiley.com/doi/10.1002/ajh.25245#ajh25245-tbl-0001
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in PIEZO1, ATP2B4, and the Gardos channel gene KCNN4 (Supporting Information Table 1). 

This polygenic score was strongly associated with RBC density (P = 2.4 × 10−4, 6.3% of variance 

explained, N = 226 SCD patients) (Figure 1). 

 

Finally, we asked if the PIEZO1 deletion allele was associated with SCD-related clinical 

phenotypes that are correlated with RBC density327. To maximize our sample size, we analyzed 

phenotype-genotype associations from 402 GEN-MOD participants, as well as 1081 and 552 SCD 

patients from the CSSCD and OMG study, respectively. Imputation quality for the 

common PIEZO1 deletion allele in the CSSCD (rsq_hat = 0.90) and OMG study (rsq_hat = 0.93) 

was sufficiently high for association testing. Given the sample size of our study design, we saw 

no evidence of association between the PIEZO1 E756del allele and tested SCD clinical 

phenotypes (Table 1). 

 

In conclusion, we provide in vivo evidence that a common PIEZO1 deletion allele is associated 

with RBC dehydration in SCD patients. Further, a simple polygenic score considering genetic 

variants at key RBC hydration genes (PIEZO1, ATP2B4, KCNN4) improves the association with 

RBC density. As for fetal hemoglobin328, we anticipate that larger studies of RBC density 

genetics will provide new insights into SCD clinical heterogeneity. 
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Table 1. Association between the common PIEZO1 deletion allele and clinical phenotypes in 

sickle cell disease patients. For each phenotype, the direction of the effect is given for the 

functional PIEZO1 deletion allele (rs572934641; E756del): BETA and SE (SE) for RBC density, 

estimated glomerular filtration rate (eGFR) and hemolytic parameters are in SD units; odds ratio 

and 95% confidence interval for priapism and leg ulcer. The frequency of the 

imputed PIEZO1 E756del allele is 18% in GENMOD (N = 402), 16% in CSSCD (N = 1081), and 

16% in OMG (N = 552) 

 

Phenotype Sample size Effect size P-value 

WES-derived genotypes 

RBC density 226 0.302 (0.15) 0.043 

    

Imputation doses 

RBC density 374 0.289 (0.010) 0.0039 

Bilirubin 1769 -0.0072 (0.042) 0.86 

Lactate 

dehydrogenase 

1657 0.0035 (0.048) 0.94 

eGFR 865 0.045 (0.009) 0.49 

Leg ulcer 294 cases / 1006 

controls 

1.01 (0.77 – 1.3) 0.96 

Priapism 195 cases / 391 

controls 

0.803 (0.56 – 1.2) 0.22 
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Figure1. Polygenic score and dense red blood cell (RBC) density in 226 sickle cell disease patients 

from GEN-MOD. To generate the polygenic score, we counted the number of RBC density-

increasing allele at PIEZO1-rs572934641 and ATP2B4-rs10751450, as well as the number of rare 

damaging nonsynonymous alleles in PIEZO1, ATP2B4, and KCNN4. The violin plots show the 

probability density of RBC density per polygenic score group. For the boxplots, the horizontal 

lines show the median, the boxes show the interquartile ranges (IQR), and the whiskers represent 

1.5 times the IQR. We grouped together patients with 3 or 4 DRBC-increasing alleles (group 3+) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 232 

 

 

SUPPLEMENTAL MATERIALS 

 

A common functional PIEZO1 deletion allele associates with red blood cell density in sickle 

cell disease patients 

 

Yann Ilboudo,1,2 Pablo Bartolucci,3 Melanie E. Garrett,4,5 Allison Ashley-Koch,4,5 Marilyn 

Telen,4,5 Carlo Brugnara,6 Frédéric Galactéros,3 Guillaume Lettre1,2 

 

Affiliations 

1Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada 

2Montreal Heart Institute, Montreal, Quebec, Canada 

3Red Cell Genetic Disease Unit, Hôpital Henri-Mondor, Assistance Publique–Hôpitaux de Paris 

(AP-HP), Université Paris Est IMRB - U955 - Equipe n°2, Créteil, France 

4Center for Human Disease Modeling, Duke University Medical Center, Durham, North 

Carolina, United States of America  

5Department of Medicine, Division of Hematology, Duke University Medical Center, Durham, 

North Carolina, United States of America 

6Department of Laboratory Medicine, Boston Children's Hospital, Boston, Massachusetts, USA 

 

Correspondence 

Guillaume Lettre 

Montreal Heart Institute 

5000 Bélanger St 

Montreal, Quebec, Canada, H1T 1C8 

514-376-3330 ext. 2660 

guillaume.lettre@umontreal.ca 

 

  

mailto:guillaume.lettre@umontreal.ca


 233 

Supplemental Method 

 

Statistical analyses 

RBC density was available only in GEN-MOD, whereas all other baseline phenotypes (bilirubin, 

lactate dehydrogenase, estimated glomerular filtration rate (eGFR), leg ulcer, priapism) were 

available in all three SCD cohorts. RBC density, bilirubin, and lactate dehydrogenase levels were 

adjusted for age and sex, and the residuals were normalized using inverse normal transformation. 

eGFR, calculated via the CKD-EPI equation,251 was normalized using inverse normal 

transformation. For leg ulcer and priapism, we focused on participants 18 years of age or older. 

Due to disease etiology, the association with priapism was restricted to men and was adjusted for 

age, while the association with leg ulcer was adjusted for age and sex. We used linear or logistic 

regression implemented in RVTESTS (GEN-MOD and CSSCD)166 or SNPTEST (OMG)329 to test 

the association between the PIEZO1 deletion allele (additive model: testing the number of the 

functional allele described by Ma et al.124 vs. all other PIEZO1 alleles at this genomic position) 

and quantitative or dichotomous phenotypes, respectively. All analyses were adjusted for the first 

10 (GEN-MOD and CSSCD) or two (OMG) principal components. Association results were 

combined with rareMETALS.330 We used the R statistical package for all other analyses. For the 

polygenic score, we counted the number of RBC density-increasing alleles (no weights) at 

PIEZO1-rs572934641 and ATP2B4-rs10751450, and the number of rare damaging non-

synonymous variants in PIEZO1, ATP2B4, and KCNN4. We tested the association between the 

polygenic score and RBC density by linear regression. P-values <0.05 were considered significant.  
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Supplemental Table 1. Rare non-synonymous variants identified in PIEZO1, ATP2B4, and 

KCNN4 identified by whole-exome DNA sequencing in 226 sickle cell disease patients. Genomic 

positions are on build 37/hg19 of the human genome. REF and ALT are the reference and alternate 

allele; MAF is the minor allele frequency; DRBC_Avg_zScore are the normalized levels of dense 

red blood cells (in standard deviation units) in carriers of each rare variant. 

 

  

VariantID rsID Chr Pos #Carriers 
DRBC_Avg 

zScore 

REF/ 

ALT 
MAF Annotation Gene 

16:88804653 - 16 88804653 1 -1.395 G/A 0.002024 missense PIEZO1 

16:88803073 rs759627248 16 88803073 2 -0.167 A/G 0.004049 missense PIEZO1 

16:88786920 rs761049480 16 88786920 1 0.033 G/A 0.002024 missense PIEZO1 

16:88782153 rs144035770 16 88782153 5 0.830 G/A 0.01 missense PIEZO1 

16:88786879 rs547409918 16 88786879 1 0.888 G/A 0.002024 missense PIEZO1 

16:88802710 - 16 88802710 1 1.456 G/T 0.002024 missense PIEZO1 

1:203691752 rs767342392 1 203691752 1 -0.956 G/A 0.002024 missense ATP2B4 

1:203680051 rs143539533 1 203680051 1 -0.577 A/C 0.002024 missense ATP2B4 

1:203696548 rs148156799 1 203696548 1 -0.532 C/T 0.004049 missense ATP2B4 

1:203652443 - 1 203652443 1 1.489 C/T 0.002024 missense ATP2B4 

1:203693073 - 1 203693073 1 1.838 T/A 0.002024 missense ATP2B4 

19:44273140 - 19 44273140 1 -0.044 A/G 0.002024 missense KCNN4 

19:44280719 rs78552213 19 44280719 4 0.679 C/T 0.008097 missense KCNN4 
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Supplemental Figure 1. Concordance of genotypes at PIEZO1 rs572934641 in 226 sickle cell 

disease patients from GEN-MOD. On the x-axis, we present the number of the common PIEZO1 

functional deletion allele (E756del) as determined by high-coverage whole-exome sequencing 

(WES). On the y-axis, we plot the dose of the same PIEZO1 allele following imputation using 

phase 3 haplotypes from the 1000 Genomes Project. The imputation quality metric is high 

(rsq_hat=0.94) and WES-derived genotypes and imputation doses are highly correlated (Pearson’s 

r=0.75, P<2.2x10-16). 
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