
Université de Montréal

Learning and Planning with Noise in Optimization and
Reinforcement Learning

par

Valentin Thomas

Département d’informatique et de recherche opérationnelle
Faculté des arts et des sciences

Thèse présentée en vue de l’obtention du grade de
Philosophiæ Doctor (Ph.D.)

en Informatique

15 Juin 2023

© Valentin Thomas, 2023

Université de Montréal
Faculté des arts et des sciences

Cette thèse intitulée

Learning and Planning with Noise in
Optimization and Reinforcement Learning

présentée par

Valentin Thomas

a été évaluée par un jury composé des personnes suivantes :

Pierre-Luc Bacon
(président-rapporteur)

Yoshua Bengio
(directeur de recherche)

Nicolas Le Roux
(codirecteur)

Glen Berseth
(membre du jury)

Philip S. Thomas
(examinateur externe)

Pierre-Luc Bacon
(représentant du doyen de la FESP)

Résumé

La plupart des algorithmes modernes d’apprentissage automatique intègrent un certain degré
d’aléatoire dans leurs processus, que nous appellerons le bruit, qui peut finalement avoir
un impact sur les prédictions du modèle. Dans cette thèse, nous examinons de plus près
l’apprentissage et la planification en présence de bruit pour les algorithmes d’apprentissage
par renforcement et d’optimisation.

Les deux premiers articles présentés dans ce document se concentrent sur l’apprentis-
sage par renforcement dans un environnement inconnu, et plus précisément sur la façon dont
nous pouvons concevoir des algorithmes qui utilisent la stochasticité de leur politique et de
l’environnement à leur avantage. Notre première contribution présentée dans ce document
se concentre sur le cadre de l’apprentissage par renforcement non supervisé. Nous mon-
trons comment un agent laissé seul dans un monde inconnu sans but précis peut apprendre
quels aspects de l’environnement il peut contrôler indépendamment les uns des autres, ainsi
qu’apprendre conjointement une représentation latente démêlée de ces aspects que nous ap-
pellerons facteurs de variation. La deuxième contribution se concentre sur la planification
dans les tâches de contrôle continu. En présentant l’apprentissage par renforcement comme
un problème d’inférence, nous empruntons des outils provenant de la littérature sur les mé-
thodes de Monte Carlo séquentiel pour concevoir un algorithme efficace et théoriquement
motivé pour la planification probabiliste en utilisant un modèle appris du monde. Nous mon-
trons comment l’agent peut tirer parti de note objectif probabiliste pour imaginer divers en-
sembles de solutions.

Les deux contributions suivantes analysent l’impact du bruit de gradient dû à l’échan-
tillonnage dans les algorithmes d’optimisation. La troisième contribution examine le rôle
du bruit de l’estimateur du gradient dans l’estimation par maximum de vraisemblance avec
descente de gradient stochastique, en explorant la relation entre la structure du bruit du
gradient et la courbure locale sur la généralisation et la vitesse de convergence du modèle.
Notre quatrième contribution revient sur le sujet de l’apprentissage par renforcement pour
analyser l’impact du bruit d’échantillonnage sur l’algorithme d’optimisation de la politique

5

par ascension du gradient. Nous constatons que le bruit d’échantillonnage peut avoir un im-
pact significatif sur la dynamique d’optimisation et les politiques découvertes en apprentis-
sage par renforcement.

Mots clés: Apprentissage de représentations, Contrôle par Inférence Probabi-
liste, Apprentisage Profond par Renforcement, Planification, Optimisation sto-
chastique, Généralisation.

6

Abstract

Most modern machine learning algorithms incorporate a degree of randomness in their pro-
cesses, which we will refer to as noise, which can ultimately impact the model’s predictions.
In this thesis, we take a closer look at learning and planning in the presence of noise for re-
inforcement learning and optimization algorithms.

The first two articles presented in this document focus on reinforcement learning in an
unknown environment, specifically how we can design algorithms that use the stochasticity
of their policy and of the environment to their advantage. Our first contribution presented
in this document focuses on the unsupervised reinforcement learning setting. We show how
an agent left alone in an unknown world without any specified goal can learn which aspects
of the environment it can control independently from each other as well as jointly learning
a disentangled latent representation of these aspects, or factors of variation. The second
contribution focuses on planning in continuous control tasks. By framing reinforcement
learning as an inference problem, we borrow tools from Sequential Monte Carlo literature
to design a theoretically grounded and efficient algorithm for probabilistic planning using
a learned model of the world. We show how the agent can leverage the uncertainty of the
model to imagine a diverse set of solutions.

The following two contributions analyze the impact of gradient noise due to sampling
in optimization algorithms. The third contribution examines the role of gradient noise in
maximum likelihood estimation with stochastic gradient descent, exploring the relationship
between the structure of the gradient noise and local curvature on the generalization and
convergence speed of the model. Our fourth contribution returns to the topic of reinforcement
learning to analyze the impact of sampling noise on the policy gradient algorithm. We
find that sampling noise can significantly impact the optimization dynamics and policies
discovered in on-policy reinforcement learning.

Keywords: Representation Learning, Control as Inference, Deep Reinforce-
ment Learning, Planning, Stochastic Optimization, Generalization.

7

Table des matières

Résumé . 5

Abstract . 7

Liste des tableaux . 17

Liste des figures . 19

Non-included works . 27

Notation and acronyms. 29

Notation. 29

Acronyms. 30

Remerciements . 31

Chapitre 1. Introduction . 33

Chapitre 2. Background. 37

2.1. Information theory . 37
2.1.1. Probability distribution and density/mass function . 37
2.1.2. Divergences . 38
2.1.3. Measures of information . 38

2.2. Fundamentals of machine learning and optimization . 40
2.2.1. Setting and maximum likelihood estimation . 40
2.2.2. Generalization . 41
2.2.3. Stochastic gradient descent. 42

2.3. Reinforcement Learning . 42
2.3.1. General setting and Markov Decision Processes. 42
2.3.2. Value functions in reinforcement learning. 44

2.3.2.1. Value and Q functions . 44

9

2.3.2.2. Bellman equations for V π and Qπ . 45
2.3.2.3. Learning parametric value functions. 46

2.3.3. Policy optimization . 47
2.3.3.1. Policy gradient and actor critic methods . 47
2.3.3.2. Policy greedification and value-based methods. 48
2.3.3.3. General conditions for improvement . 50
2.3.3.4. Exploration . 50

Chapitre 3. Independently Controllable Factors . 53

Article details . 53

Foreword . 53

Personal contribution . 54

3.1. Introduction . 55

3.2. Learning disentangled representations . 56

3.3. The selectivity objective . 56
3.3.1. Link with mutual information and causality . 58

3.4. Experiments . 59
3.4.1. Learned representations . 59
3.4.2. Towards planning and policy inference . 60
3.4.3. Multistep embedding of policies . 60

3.5. Conclusion, success and limitations. 60

Chapitre 4. Probabilistic Planning with Sequential Monte Carlo Methods 63

Article details . 63

Foreword . 63

Impact since publication . 64

Personal contribution . 64

4.1. Introduction . 65

4.2. Background . 66
4.2.1. Control as inference . 66
4.2.2. Sequential Monte Carlo methods . 67

10

4.3. Sequential Monte Carlo Planning . 68
4.3.1. Planning and Bayesian smoothing . 69
4.3.2. The Backward Message and the Value Function . 69
4.3.3. Sequential Weight Update . 70
4.3.4. Sequential Monte Carlo Planning Algorithm. 71
4.3.5. Optimism Bias and Control as Inference . 72

4.4. Experiments . 73
4.4.1. Toy example . 73
4.4.2. Continuous Control Benchmark . 74

4.5. Conclusion and Future Work . 75

Chapitre 5. On the Interplay between Noise and Curvature
and its Effect on Optimization and Generalization 77

Article details . 77

Foreword . 77

Impact since publication . 77

Personal contribution . 78

5.1. Introduction . 78

5.2. Information matrices: definitions, similarities, and differences. 80
5.2.1. Bounds between H, F and C . 81
5.2.2. C does not approximate F . 81

5.3. Information matrices in optimization . 82
5.3.1. Convergence rates. 82

5.3.1.1. General setting . 82
5.3.1.2. Centered and uncentered covariance. 83
5.3.1.3. Quadratic functions . 83

5.4. Generalization . 84
5.4.1. Takeuchi information criterion . 85
5.4.2. Limitations of flatness and sensitivity . 85

5.5. Experiments . 86
5.5.1. Discrepancies between C, H and F . 86

11

5.5.1.1. Experimental setup . 86
5.5.2. Comparing Fisher and empirical Fisher . 87
5.5.3. Comparing H, F and C . 87
5.5.4. Impact of noise on second-order methods . 88
5.5.5. The TIC and the generalization gap. 89

5.5.5.1. Efficient approximations to the TIC. 90
5.5.6. The importance of the noise in estimating the generalization gap 92

5.6. Conclusion and open questions . 92
Acknowledgments . 93

Chapitre 6. Beyond Variance Reduction: Understanding the True Impact
of Baselines on Policy Optimization . 95

Article details . 95

Foreword . 95

Impact since publication . 96

Personal contribution . 96

6.1. Introduction . 97
Contributions . 98

6.2. Baselines, learning dynamics & exploration. 99
6.2.1. Committal and non-committal behaviours . 99

6.3. Convergence to suboptimal policies with natural policy gradient (NPG) 101
6.3.1. A simple example . 101
6.3.2. Reducing variance with baselines can be detrimental . 104

6.4. Off-policy sampling . 105
6.4.1. Convergence guarantees with IS . 105
6.4.2. Importance sampling, baselines & variance . 106
6.4.3. Other mitigating strategies . 107

6.5. Extension to multi-step MDPs . 108

6.6. Conclusion . 110

Acknowledgements . 111

Chapitre 7. Conclusion. 113

12

7.1. Summary of contributions. 113

7.2. Future research . 114
Optimization and reinforcement learning. 114
High-dimensional behavior of RL algorithms . 114

Références bibliographiques . 117

Appendix A. Independently Controllable Factors . 131

A.1. Additional details . 131
A.1.1. Architecture. 131
A.1.2. First experiment . 132

A.2. Additional Figures . 132
A.2.1. Discrete simple case . 132
A.2.2. Planning and policy inference example in 1-step . 133
A.2.3. Multistep Example . 133

A.3. Variational bound and the selectivity . 134
A.3.1. Lower bound on the mutual information . 134

A.4. Additional information on the training. 135

Appendix B. Probabilistic Planning with Sequential Monte Carlo Methods 137

B.1. Abbreviation and Notation . 137

B.2. The action prior . 138

B.3. Value function: backward message . 139

B.4. Recursive weights update . 139

B.5. Experiment Details . 140

B.6. Sequential Importance Sampling Planning . 141

B.7. Significance of the results . 141

B.8. Additional experimental results . 142
B.8.1. Effective Sample Size . 142
B.8.2. Model loss. 142

13

Appendix C. On the Interplay between Noise and Curvature and its Effect
on Optimization and Generalization . 145

C.1. Proofs . 145
C.1.1. Bounds between H, F and C . 145

C.1.1.1. Bounds with backward χ2 divergence . 145
C.1.1.2. Bounds with forward χ2 divergence . 146
C.1.1.3. Proof of Proposition 5.3.1 . 146
C.1.1.4. Convergence to limit cycles in the quadratic case . 147

C.1.2. Expected suboptimality for SG and Polyak momentum on quadratic
functions . 148

C.1.2.1. Proof of proposition 5.3.3. 148
C.1.2.2. Proof of proposition 5.3.4. 149
C.1.2.3. Comparison between stochastic gradient and Polyak momentum in the

large noise regime . 150

C.2. Experimental details . 150
C.2.1. Details on the Hessian inverse . 150
C.2.2. Details on the large scale experiments . 151
C.2.3. Details on experiments of subsection 5.5.5 . 151

Appendix D. Beyond Variance Reduction: Understanding the True Impact
of Baselines on Policy Optimization . 153

Organization of the appendix . 153

D.1. Other experiments . 154
D.1.1. Three-armed bandit . 154

Natural policy gradient. 154
Vanilla policy gradient . 156
Policy gradient with direct parameterization. 157
Policy gradient with escort transform parameterization . 159
Policy gradient with mellowmax parameterization . 159

D.1.2. Simple gridworld . 160
D.1.3. Additional results on the 4 rooms environment . 161

D.2. Two-armed bandit theory. 163
D.2.1. Convergence to a suboptimal policy with a constant baseline. 165
D.2.2. Analysis of perturbed minimum-variance baseline . 167

14

D.2.3. Convergence with vanilla policy gradient . 172

D.3. Multi-armed bandit theory . 176
D.3.1. Convergence issues with the minimum-variance baseline 176
D.3.2. Convergence with gap baselines. 180
D.3.3. Convergence with off-policy sampling . 181

D.4. Other results . 183
D.4.1. Minimum-variance baselines . 183
D.4.2. Natural policy gradient for softmax policy in bandits . 185
D.4.3. Link between minimum variance baseline and value function 185
D.4.4. Variance of perturbed minimum-variance baselines . 185
D.4.5. Baseline for natural policy gradient and softmax policies 186
D.4.6. Natural policy gradient estimator for MDPs . 187
D.4.7. Connection between optimistic initialization and positive baseline

perturbations . 188

15

Liste des tableaux

5.1 Number of updates required to reach suboptimality of ϵ for various methods and
S ∝ Hβ. 89

5.2 Stepsizes achieving suboptimality ϵ in the fewest updates for various methods and
S ∝ Hβ. 89

B.1 Abbreviation . 137
B.2 Notation. 138
B.3 Hyperparameters for the experiments. 140

17

Liste des figures

2.1 Mutual information is the information shared between X and Y . From this Venn
diagram, we recover the first two definitions of the mutual information in term
of the joint and conditional entropy. For instance the red circle represents the
entropy associated to X, but as the purple intersection is the mutual information
between X and Y , the red circle minus the purple intersection represents the
uncertainy of X conditioned on us knowing Y , i.e H(X|Y). 40

3.1 The computational model of our architecture. st is the first state, from its encoding
ht and a noise distribution z, ϕ is generated. ϕ is used to compute the policy πϕ,
which is used to act in the world. The sequence ht,ht′ is used to update our model
through the selectivity loss, as well as an optional autoencoder loss on ht. 58

3.2 (a) Sampling of 1000 variations h′−h and its kernel density estimation encountered
when sampling random controllable factors ϕ. We observe that our algorithm
disentangles these representations on 4 main modes, each corresponding to the
action that was actually taken by the agent.1 (b) The disentangled structure in
the latent space. The x and y axis are disentangled such that we can recover the
x and y position of the agent in any observation s simply by looking at its latent
encoding h = f(s). The missing point on this grid is the only position the agent
cannot reach as it lies on an orange block. 59

3.3 (left) Predicting the effect of a cause on Mazebase. The leftmost image is the
visual input of the environment, where the agent is the round circle, and the
switch states are represented by shades of green. After the training, we are able
to distinguish one cluster per dh (Figure 3.2), that is to say per variation obtained
after performing an action, independently from the position h. Therefore, we
are able to move the agent just by adding the corresponding dh to our latent
representation h. The second image is just the reconstruction obtained by feeding
the resulting h′ into the decoder. (right) Given a starting state and a goal state,
we are able to decompose the difference of the two representations dh into a (non-
directed) sequence of movements. 61

19

3.4 (a) The actual 3-step trajectory done by the agent. (b) PCA view of the space
ϕ(h0, z), z ∼ N (0,1). Each arrow points to the reconstruction of the prediction
Tθ(h0, ϕ) made by different ϕ. The ϕ at the start of the green arrow is the one
used by the policy in (a). Notice how its prediction accurately predicts the actual
final state. 61

4.1 Ot is an observed optimality variable with probability p(Ot|st, at) = exp(r(st,at)).
τt = (st, at) are the state-action pair variables considered here as latent. 66

4.2 Factorization of the HMM into forward (orange) and backward (blue) messages.
Estimating the forward message is filtering, estimating the value of the latent
knowing all the observations is smoothing. 69

4.3 Schematic view of Sequential Monte Carlo planning. In each tree, the white nodes
represent states and black nodes represent actions. Each bullet point near a state
represents a particle, meaning that this particle contains the total trajectory of
the branch. The root of the tree represents the root planning state, we expand
the tree downward when planning. 72

4.4 Comparison of three methods on the toy environment. The agent (•) must go to
the goal (⋆) while avoiding the wall (|) in the center. The proposal distribution
is taken to be an isotropic gaussian. Here we plot the planning distribution
imagined at t = 0 for three different agents. A darker shade of blue indicates a
higher likelihood of the trajectory. Only the agent using Sequential Importance
Resampling was able to find good trajectories while not collapsing on a single mode. 74

4.5 Training curves on the Mujoco continuous control benchmarks. Sequential Monte
Carlo Planning both with resampling (SIR) (pink) and without (SIS) (orange)
learns faster than the Soft Actor-Critic model-free baseline (blue) and achieves
higher asymptotic performances than the planning methods (Cross Entropy
Methods and Random Shooting). The shaded area represents the standard
deviation estimated by bootstrap over 10 seeds as implemented by the Seaborn
package. 75

5.1 Squared Frobenius norm between F̄ and C̄ (computed on the training distribution).
Even for some low training losses, there can be a significant difference between
the two matrices. 87

5.2 Scale and angle similarities between information matrices. 88

20

5.3 Comparing the TIC to other estimators of the generalization gap on SVHN. The
TIC matches the generalization gap more closely than both the AIC and the
sensitivity. 90

5.4 Generalization gap as a function of the Takeuchi information criterion (left) and
the trace of the Hessian on the test set (right) for many architectures, datasets,
and hyperparameters. Correlation is perfect if all points lie on a line. We see that
the Hessian cannot by itself capture the generalization gap. 91

5.5 Generalization gap as a function of two approximations to the Takeuchi
Information Criterion: Tr(F−1C) (left) and Tr(C)/ Tr(F) (right). 91

6.1 We plot 15 different trajectories of natural policy gradient with softmax
parameterization, when using various baselines, on a 3-arm bandit problem with
rewards (1,0.7,0) and stepsize α = 0.025 and θ0 = (0, 3, 5). The black dot is the
initial policy and colors represent time, from purple to yellow. The dashed black
line is the trajectory when following the true gradient (which is unaffected by the
baseline). Different values of ϵ denote different perturbations to the minimum-
variance baseline. We see some cases of convergence to a suboptimal policy for
both ϵ = −1/2 and ϵ = 0. This does not happen for the larger baseline ϵ = 1/2 or the
value function as baseline. Figure made with Ternary (Harper & Weinstein, 2015). 99

6.2 Learning curves for 100 runs of 200 steps, on the two-arm bandit, with baseline
b = −1 for three different stepsizes α. Blue: Curves converging to the optimal
policy. Red: Curves converging to a suboptimal policy. Black: Avg. performance.
The number of runs that converged to the suboptimal solution are 5%, 14% and
22% for the three α’s. Larger α’s are more prone to getting stuck at a suboptimal
solution but settle on a deterministic policy more quickly. 103

6.3 Comparison between the variance of different methods on a 3-arm bandit. Each
plot depicts the log of the ratio between the variance of two approaches. For
example, Fig. (a) depicts log Var[gb=0]

Var[gIS] , the log of the ratio between the variance of
the gradients of PG without a baseline and PG with IS. The triangle represents
the probability simplex with each corner representing a deterministic policy on
a specific arm. The method written in blue (resp. red) in each figure has lower
variance in blue (resp. red) regions of the simplex. The sampling policy µ, used
in the PG method with IS, is a linear interpolation between π and the uniform
distribution, µ(a) = 1

2π(a) + 1
6 . Note that this is not the min. variance sampling

21

distribution and it leads to higher variance than PG without a baseline in some
parts of the simplex. 107

6.4 We plot the discounted returns, the entropy of the policy over the states visited
in each trajectory, and the entropy of the state visitation distribution, averaged
over 50 runs, for multiple baselines. The baselines are of the form b(s) = b∗(s) + ϵ,
perturbations of the minimum-variance baseline, with ϵ indicated in the legend.
The shaded regions denote one standard error. Note that the policy entropy
of lower baselines tends to decay faster than for larger baselines. Also, smaller
baselines tend to get stuck on suboptimal policies, as indicated by the returns
plot. See text for additional details. 108

A.1 In a gridworld environment with 2 objects (in this case 2 MNIST digits), we know
there are 4 underlying features, the (xi,yi) position of each digit i. Here each of
the four plots represents the evolution of the fk’s as a function of their underlying
feature, from left to right x1, y1, x2, y2. We see that for each of them, at least one
fk recovers it almost linearly, from the raw pixels only. 132

A.2 (a) Predicting the effect of a cause on Mazebase. The leftmost image is the visual
input of the environment, where the agent is the round circle, and the switch
states are represented by shades of green. After the training, we are able to
distinguish one cluster per dh (Figure 3.2), that is to say per variation obtained
after performing an action, independently from the position h. Therefore, we
are able to move the agent just by adding the corresponding dh to our latent
representation h. The second image is just the reconstruction obtained by feeding
the resulting h′ into the decoder. (b) Given a starting state and a goal state, we
are able to decompose the difference of the two representations dh into a (non-
directed) sequence of movements. 133

A.3 (a) Mazebase environment over five time-steps. Here the red dot denotes the
position of the agent. The ϕbehavior governing the agent’s policy appears to
control toggling the switch indicated by the red rounded box. (b) Visualization
of the policies instantiated by different ϕs. Each box represents the probability
distribution of the policies at that time step. Each row is generated by a different
ϕ and each column corresponds to an action (up, left, pass, right, toggle, down)
in order. The boxed column shows the ϕbehavior. The symbols below each box
represent the most-probable action for the behavioral policy, where the grey circle
indicates toggling the switch. 134

22

B.1 Effective sample size for HalfCheetah. The shaded area represents the standard
deviation over 20 seeds. 142

B.2 Negative log likelihood for the model on HalfCheetah. The shaded area represents
the standard deviation over 20 seeds.. 143

C.1 The train and test errors associated with the experiments 5.3a and 5.3b. We see
that while we use small networks, they are still able to fit the data completely
provided we use more than 20 hidden units. This behavior mirrors the one of
bigger networks. 152

D.1 We plot 40 different learning curves (in blue and red) of natural policy gradient,
when using various baselines, on a 3-arm bandit problem with rewards (1, 0.7, 0),
α = 0.025 and θ0 = (0, 3, 5). The black line is the average value over the 40 seeds
for each setting. The red curves denote the seeds that did not reach a value of at
least 0.9 at the end of training. Note that the value function baseline convergence
was slow and thus was trained for twice the number of time steps.. 155

D.2 We plot 40 different learning curves (in blue and red) of natural policy gradient,
when using various baselines, on a 3-arm bandit problem with rewards (1, 0.7, 0),
α = 0.025 and θ0 = (0, 3, 3). The black line is the average value over the 40 seeds
for each setting. The red curves denote the seeds that did not reach a value of at
least 0.9 at the end of training. 155

D.3 We plot 40 different learning curves (in blue and red) of natural policy gradient,
when using various baselines, on a 3-arm bandit problem with rewards (1, 0.7, 0),
α = 0.025 and θ0 = (0, 0, 0) i.e the initial policy is uniform. The black line is the
average value over the 40 seeds for each setting. The red curves denote the seeds
that did not reach a value of at least 0.9 at the end of training. 155

D.4 Simplex plot of 15 different learning curves for vanilla policy gradient, when using
various baselines, on a 3-arm bandit problem with rewards (1, 0.7, 0), α = 0.5 and
θ0 = (0, 0, 0). Colors, from purple to yellow represent training steps. 156

D.5 We plot 40 different learning curves (in blue and red) of vanilla policy gradient,
when using various baselines, on a 3-arm bandit problem with rewards (1, 0.7, 0),
α = 0.5 and θ0 = (0, 0, 0). The black line is the average value over the 40 seeds
for each setting. The red curves denote the seeds that did not reach a value of at
least 0.9 at the end of training. 156

23

D.6 Simplex plot of 15 different learning curves for vanilla policy gradient, when using
various baselines, on a 3-arm bandit problem with rewards (1, 0.7, 0), α = 0.5 and
θ0 = (0, 3, 3). Colors, from purple to yellow represent training steps. 157

D.7 We plot 40 different learning curves (in blue and red) of vanilla policy gradient,
when using various baselines, on a 3-arm bandit problem with rewards (1, 0.7, 0),
α = 0.5 and θ0 = (0, 3, 3). The black line is the average value over the 40 seeds
for each setting. The red curves denote the seeds that did not reach a value of at
least 0.9 at the end of training. 157

D.8 We plot 15 different learning curves of vanilla policy gradient with direct
parameterization, when using various baselines, on a 3-arm bandit problem with
rewards (1, 0.7, 0), α = 0.1 and θ0 = (1/3, 1/3, 1/3), the uniform policy on the simplex.158

D.9 We plot 40 different learning curves (in blue and red) of vanilla policy gradient with
direct parameterization, when using various baselines, on a 3-arm bandit problem
with rewards (1, 0.7, 0), α = 0.1 and θ0 = (1/3, 1/3, 1/3), the uniform policy. The
black line is the average value over the 40 seeds for each setting. The red curves
denote the seeds that did not reach a value of at least 0.9 at the end of training. 158

D.10 We plot 15 different learning curves of vanilla policy gradient with the escort
transform with parameter p = 2 (Mei et al., 2020a), when using various baselines,
on a 3-arm bandit problem with rewards (1, 0.7, 0), α = 0.25 and θ0 = (1,1,1), the
uniform policy on the simplex. 159

D.11 We plot 15 different learning curves of a policy gradient with the mellowmax
transform Asadi & Littman (2017), when using various baselines, on a 3-arm
bandit problem with rewards (1, 0.7, 0), α = 0.25 and θ0 = (0,3,5). 160

D.12 Learning curves for a 5x5 gridworld with two goal states where the further goal is
optimal. Trajectories in red do not converge to an optimal policy. 160

D.13 We plot the returns, the entropy of the policy over the states visited in each
trajectory, and the entropy of the state visitation distribution averaged over 100
runs for multiple baselines for the 5x5 gridworld. The shaded regions denote one
standard error and are close to the mean curve. Similar to the four rooms, the
policy entropy of lower baselines tends to decay faster than for larger baselines,
and smaller baselines tend to get stuck on suboptimal policies, as indicated by the
returns plot. 161

24

D.14 We plot results for vanilla policy gradient with perturbed minimum-variance
baselines of the form b∗

θ +ϵ, with ϵ denoted in the legend. The step size is 0.5 and 20
runs are done. We see smaller differences between positive and negative ϵ values. 162

D.15 We plot results for vanilla policy gradient with perturbed minimum-variance
baselines of the form b∗

θ + ϵ, where ϵ = c(maxa Qπ(si,a)− b∗
θ and c is denoted in the

legend. For a fixed c, we can observe a difference between the learning curves for
the +c and −c settings. The step size is 0.5 and 50 runs are done. As expected,
the action and state entropy for the positive settings of c are larger than for the
negative settings. In this case, this increased entropy does not translate to larger
returns though and is a detriment to performance, . 162

D.16 We plot the results for using REINFORCE with constant baselines. Once again,
the policy entropy of lower baselines tends to decay faster than for larger baselines,
and smaller baselines tend to get stuck on suboptimal policies, as indicated by the
returns plot. 163

D.17 We plot 10 different trajectories of vanilla policy gradient (REINFORCE) using
different constant on a 4 rooms MDP with goal rewards (1, 0.6, 0.3). The color
of each trajectory represents time and each point of the simplex represents the
probability that a policy reaches one of the 3 goals. 164

25

Non-included works

We present here some other works I have contributed to but which are not part of the main
body of the thesis.

(1) On the role of overparameterization in off-policy Temporal Difference
learning with linear function approximation (Valentin Thomas*). https:
//openreview.net/forum?id=g-H3oNARs2, In NeurIPS 2022.
This is a theoretical paper studying the convergence of TD methods in high dimen-
sions using tools for random graph and matrix theory.

(2) The Role of Baselines in Policy Optimization (with Jincheng Mei*, Wes-
ley Chung, Valentin Thomas, Bo Dai, Csaba Szepesvari and Dale Schuurmans).
https://arxiv.org/abs/2301.06276, In NeurIPS 2022.
This work is a follow-up on our contribution “Beyond variance reduction: Under-
standing the true impact of baselines on policy optimization”. It theoretically shows
that the true value function as a baseline can explore optimally and guarantee con-
vergence to the optimal policy for policy gradient methods.

(3) Bridging the Gap Between Target Networks and Functional Regulariza-
tion (Alexandre Piché*, Valentin Thomas*, Joseph Marino, Rafael Pardiñas, Gian
Maria Marconi, Christopher Pal, Mohammad Emtiyaz Khan), https://arxiv.org/
abs/2210.12282, In TMLR 2023.
This work studies the role Target Networks have when learning with Temporal Dif-
ference algorithms. We propose a simple variant that can alleviate some unstabilities
caused by Target Networks.

(4) Planning with Latent Simulated Trajectories (Alexandre Piché*, Valentin
Thomas, Cyril Ibrahim, Yoshua Bengio, Julien Cornebise and Chris Pal), In ICLR
2019 Workshop on Structure & Priors in Reinforcement Learning.
This work is a follow-up on “Probabilistic Planning with Sequential Monte Carlo
Methods” where we use an iterative algorithm that can smooth out the trajectories
obtained by our original paper.

(5) Independently Controllable Features (Emmanuel Bengio*, Valentin Thomas,
Joelle Pineau, Doina Precup and Yoshua Bengio), In RLDM 2017.

27

https://openreview.net/forum?id=g-H3oNARs2
https://openreview.net/forum?id=g-H3oNARs2
https://arxiv.org/abs/2301.06276
https://arxiv.org/abs/2210.12282
https://arxiv.org/abs/2210.12282

This work is the precursor to the “Independently Controllable Factors” papers and
proposes some simple toy experiments with a discrete number of factors showcasing
what policy-representation pairs we can learn.

28

Notation and acronyms

In this thesis we will use the convention of denoting matrices with capital bold letters.
Vectors and scalars will be denoted by lowercase letters and the distinction will be made
clear from context.

Notation

Information theory
X ≜ Random variable
E ≜ Expectation

H(X) ≜ Entropy of X

I(X,Y) ≜ Mutual information between X and Y

DKL ≜ Kullback-Leibler Divergence
Machine learning and reinforcement learning

θ or ϕ ≜ Learnable parameters of a model
L ≜ Loss function
J ≜ Objective function to maximize
s ≜ State (vector)
a ≜ Action (scalar or vector)
r ≜ Reward (scalar)

R ≜ Return (scalar)
τ1:T ≜ {si, ai}T

i=1 Trajectory: sequence of state-action pairs
π ≜ A policy, i.e a distrubtion over actions given a state
γ ≜ Discount factor
λ ≜ Trace-decay parameter for TD(λ)

V π ≜ Value function associated to the policy π

Qπ ≜ State-action value function associated to the policy π

Ot ≜ Optimality variable used in control as inference
penv ≜ Transition probability of the environment

P ≜ Transition matrix of the environment
pmodel ≜ Model of the environment

wt ≜ Importance sampling weight

29

Acronyms

Acronym Full name
ML Machine Learning
DL Deep Learning

MLE Maximum Likelihood Estimation
RL Reinforcement Learning

DRL Deep Reinforcement Learning
MDP Markov Decision Process

TD Temporal Difference
ICF Independently Controllable Factors

IS Importance Sampling
MPC Model Predictive Control
CEM Cross Entropy Method

HMM Hidden Markov Model
MCTS Monte Carlo Tree Search

MCMC Markov Chain Monte Carlo
SMC Sequential Monte Carlo

RS Random Shooting
SAC Soft Actor Critic

SG Stochastic Gradient
SGD Stochastic Gradient Descent

PG Policy Gradient
NPG Natural Policy Gradient

30

Remerciements

Pour mes parents Bertrand et Herveline,
pour m’avoir toujours soutenu et encouragé.

31

Chapitre 1

Introduction

Learning through interaction is a fundamental aspect of natural intelligence: humans and
animals learn from their experience in order to develop complex behaviors. For this reason,
a primary long-term goal in the field of artificial intelligence is to create machines capable of
emulating this process, able to interact with our world to perform specific tasks or achieve
general objectives. Reinforcement learning (RL) is a key paradigm for learning how to
interact; it is a subfield of machine learning in which an agent learns to act through trial and
error. This approach has demonstrated promising results in various applications, such as
games (Tesauro, 1994; Mnih et al., 2013; Silver et al., 2016) and robotics (Levine et al., 2018).

Many concepts in reinforcement learning share connections with other fields. For in-
stance, the concept of rewards and punishments in RL is closely related to the dopamine
system in the brain (Schultz et al., 1997). This analogy later inspired the Temporal Dif-
ference algorithm (Sutton, 1988), which we will explain in Section 2.3. Some researchers
explore the intersection between psychology and reinforcement learning, as there are par-
allels between animal learning through conditioning and the learning process of RL agents
(Sutton & Barto, 1981). Reinforcement learning is also strongly linked to fundamental no-
tions in optimal control, such as Bellman equations (Bellman et al., 1954; Bellman & Kal-
aba, 1959), which eventually led to the development of highly successful algorithms like Q-
Learning (Watkins & Dayan, 1992).

In optimal control, most algorithms are planning algorithms. They aim to determine
the optimal course of action by considering hypothetical situations, often without direct
interaction with the environment. Within the context of planning, an agent uses a model
of the environment, either learned or provided, to simulate potential state transitions and
rewards. The aim is to construct a new policy or refine the existing one for improved decision-
making. Planning methods hold significant importance in RL, with notable examples like
Monte Carlo Tree Search (MCTS), an algorithm that constructs a search tree of potential
state-action trajectories to determine the optimal action for the current state.

However these methods rely on a model of the world which is often unknown, and es-
timating it can be a challenging task. Learning algorithms often refer to methods that do
not need extra simulated experience but only learn from direct trial and error. Through this
process, the agent incrementally updates its knowledge about the environment, often repre-
sented as value functions (e.g., state-value or action-value functions) or policy parameters.
Over time, as the agent accumulates more experience, it can refine its policy to better navi-
gate the environment and achieve higher rewards. Some popular learning algorithms include
Q-learning, SARSA, and various policy gradient methods.

In this thesis, we are interested in learning and planning algorithms in the presence of
stochasticity. First we will present briefly some notions of information theory, optimization
and reinforcement learning useful to understand the four contributions presented in the
subsequent chapters.

Our first contribution in "learning disentangled independently controllable factors of vari-
ation" (Bengio et al., 2017; Thomas et al., 2017, 2018) addresses the issue of how an agent,
without any specified goal, can comprehend its environment by interacting with it, discover-
ing controllable elements, and constructing useful internal representations of these aspects of
the world. We propose and investigate a direct mechanism, inspired from how children learn,
that explicitly connects an agent’s control over its environment to its internal feature repre-
sentations. We then show how these jointly learned policies and independently controllable
factors lead to learning a disentangled latent representation that can be used for planning.

However, even when the agent is able to build an appropriate representation or model of
the world, how to use it to decide which action to take is another challenge. We tackle this
one with our second work “Probabilistic planning with sequential Monte Carlo Methods”
by designing a novel planning algorithm. By interpreting the set of solutions to a task
as a distribution as in control as inference (Toussaint & Storkey, 2006; Toussaint, 2009;
Levine, 2018), we show how we can use a particle filter method to estimate this distribution.
This yield a new, intuitive and theoretically grounded algorithm for planning in stochastic
continuous domains.

Our next two contributions are concerned with the process of learning itself and how it
can be affected by noise. The third paper we present examines the role that gradient noise
and local curvature can have on the optimization speed and the generalization of a model. We
show how a simple metric can measure the capacity of a model more effectively that the raw
number of parameters. In our fourth and last contribution, we investigate the role of gradient
noise for policy gradient methods in bandits and RL. More specifically we take a closer look at
baselines, an ubiquitous algorithmic choice in policy gradient methods motivated by variance
reduction purposes. In accordance with classical optimization theorems, the prevailing view
among researchers is that gradient noise leads to slower convergence in RL as well. However,
in this paper, we show that this view is flawed and that there is an important interplay

34

between the gradient noise and the propensity of the agent to try new actions, which can
ultimately lead to discovering better policies.

35

Chapitre 2

Background

In this background section, we present the key topics necessary for understanding the con-
tributions of this PhD thesis. We give brief overviews of information theory, fundamentals
of machine learning and reinforcement learning.

2.1. Information theory
How to quantify information and discrepancies between probability distributions is at the

heart of machine learning and an important prerequisite for understanding our contributions
of Chapter 3, Chapter 4 and Chapter 5.

2.1.1. Probability distribution and density/mass function

For simplicity, in this section, we will not introduce the notion of probability distribu-
tion in its most general form using measure theory, but only using probability density func-
tions. For a more complete treatment, please refer to Kolmogorov & Bharucha-Reid (2018);
Billingsley (2008).
Definition 1 (Probability Mass Function (pmf)). Let us consider a discrete random variable
X ∈ X where X is discrete and a function p : X 7→ R. We say that p is the probability mass
function of X if

(1) p(x) ≥ 0,∀x ∈ X
(2) ∑x∈X p(x) = 1
(3) P(X = x) = p(x)
In the context of continuous random variables, we can define the notion of probability

density function which has a very similar definition.
Definition 2 (Probability Density Function (pdf)). Let us consider a random variable X ∈
X and a function p : X 7→ R. We say that p is the probability density function of X if

(1) p(x) ≥ 0,∀x ∈ X
(2)

∫
X p(x)dx = 1

(3) P(X ∈ A) =
∫

x∈A p(x)dx

We will make use of this concept extensively as most machine learning methods can be
understood as trying to approximate a distribution p (for instance the data distribution)
with an approximate distribution q.

2.1.2. Divergences

While distances are the typical notion used for comparing mathematical objects, a weaker
notion called “divergences” are often used to compare probability measures.
Definition 3 (Distance). A function d on a set X between two objects x and y ∈ X must
satisfy four properties to be a distance

(1) non-negativity: d(x, y) ≥ 0
(2) identity of indiscernibles: d(x,y) = 0 if and only if x = y

(3) symmetry: d(x,y) = d(y,x)
(4) triangle inequality: ∀z ∈ X , d(x, y) ≤ d(x,z) + d(z, y)
A divergence, on the other hand, only requires the non-negativity and identity of the

indiscernibles properties and is defined for probability distributions.
Definition 4 (Divergence). A function D(·||·) between two distributions p and q must satisfy
two properties to be a divergence

(1) non-negativity: D(p||q) ≥ 0
(2) identity of indiscernibles: D(p||q) = 0 if and only if p = q

The most emblematic divergence, especially in machine learning and generally Maxi-
mum Likelihood Estimation (MLE) is certainly the Kullback-Leibler divergence (Kullback
& Leibler, 1951; Kullback, 1997).
Example 1 (Kullback-Leibler divergence). The Kullback-Leibler divergence is defined by

DKL(p||q) =
∫

x∈X
p(x) log p(x)

q(x)dx (2.1.1)

The Kullback-Leibler divergence contains the term −
∫

x∈X p(x) log q(x)dx which is the
negative log-likelihood of q under the distribution p, which is also known as the cross-entropy.
This divergence is very common in machine learning as we will see in Section 2.2.

2.1.3. Measures of information

Now that we have defined the fundamental notions of probabilities and divergences, we
can make us of them to build useful concepts from information theory such as entropy or
mutual information.

The notion of entropy is fundamental in physics where it was first introduced by Boltz-
mann. Shannon (1948) transcribed the concept to communication theory and it is now used

38

widely in statistics and machine learning. For a discrete random variable X with mass func-
tion p, the entropy H(X) of X is

H(X) = −
∑
x∈X

p(x) log p(x). (2.1.2)

Entropy should be understood as the information necessary to describe p. As such, the
entropy is always positive H(X) ≥ 0: it is equal to 0 only when p is a Dirac function;
in that case p does not contain any uncertainty. H(X) is also bounded by the number of
values X can take: H(X) ≤ log |X | which is achieved when p is the uniform distribution,
the distribution with maximal uncertainty. Note that entropy can be defined in the same
way for continuous variables, we call this the differential entropy h(X) = −

∫
X p(x) log(x)dx

but we lose the upper and lower bounds described above.
Using the notion of Kullback-Leibler divergence notion defined above and by defining the

uniform distribution whose probability mass function is u(x) = 1
|X | , ∀x ∈ X , we have

DKL(p||u) =
∑
x∈X

p(x) log p(x)
u(x) = log |X | −H(X)

Thus, entropy can also be interpreted as a measure of how close we are to the uniform
distribution.

If we consider the case where we have two random variables X and Y with joint proba-
bility mass function p(x, y) and marginals p(x) and p(y) we can write the joint entropy as

H(X,Y) = −
∑
x,y

p(x,y) log p(x,y)

= −
∑
x,y

p(x,y)
(

log p(y|x)− log p(x)
)

= −
∑

x

p(x)
∑

y

p(y|x) log p(y|x)−
∑

x

p(x) log p(x)

= H(Y |X) + H(X)

where we defined H(Y |X) = −∑x p(x)∑y p(y|x) log p(y|x), the conditional entropy.
H(Y |X) should be understood as the amount of information necessary to describe Y given
that we know everything about X.

Finally we can introduce the idea of mutual information, i.e how much information is
shared between X and Y . The mutual information I(X, Y) can be written in several different
manners

39

I(X, Y) = H(X) + H(Y)−H(X, Y)

= H(X)−H(X|Y)

=
∑
x,y

p(x,y) log p(x,y)
p(x)p(y)

= DKL
(
p(x,y)||p(x)p(y)

)
see Figure 2.1 for a schematic view.

Another useful interpretation of mutual information is to see it as the divergence between
the joint probability and the product of the marginals. When X and Y and conditional in-
dependent, the divergence, thus mutual information, is 0. The concept of mutual informa-
tion is especially relevant in reinforcement learning where it has been used (in many differ-
ent ways) as an intrinsic reward signal (Still & Precup, 2012; Mohamed & Rezende, 2015;
Gregor et al., 2016; Thomas et al., 2018; Eysenbach et al., 2018; Eslami et al., 2018).

2.2. Fundamentals of machine learning and optimiza-
tion

2.2.1. Setting and maximum likelihood estimation

At a high level, machine learning is the science concerned with learning from data. This
discipline is at the crossroads between different fields such as statistics, computer science and
optimization. Data is represented in the form of a dataset Dtrain = {xi}i=1...N where xi are
the N training examples assumed to be sampled independently and identically distributed

H(X, Y)

H(Y |X)I(X, Y)

H(X) H(Y)

H(X|Y)

Fig. 2.1. Mutual information is the information shared between X and Y . From this Venn
diagram, we recover the first two definitions of the mutual information in term of the joint and
conditional entropy. For instance the red circle represents the entropy associated to X, but as
the purple intersection is the mutual information between X and Y , the red circle minus the
purple intersection represents the uncertainy of X conditioned on us knowing Y , i.e H(X|Y).

40

(i.i.d) from a distribution p, the true data distribution. In this context learning means finding
a function or model that “fits” the data according to some loss function L.

Mathematically speaking, this is predominantly framed as a parametric optimization
problem

min
θ

1
N

N∑
i=1

Lθ(xi)

where L is our loss function and θ ∈ Rd is the parameter vector we optimize over. With
the advent of large neural networks, θ can be a very high dimensional vector, up to hundreds
of billions/ a few trillions of parameters as of late 2022 (Chowdhery et al., 2022; Fedus et al.,
2022), in opposition with classical methods for which θ was often low dimensional (compared
to the number of training examples).

Commonly, our model is a parametric function qθ (for instance a neural network) whose
goal is to approximate p. A natural objective to ensure qθ becomes closer to p is to maximize
the likelihood of the training examples xi sampled from p under qθ, i.e maximizing qθ(Dtrain) =
ΠN

i=1qθ(xi) as per the i.i.d assumption. As the logarithm is a non-decreasing function and N

is constant, we can choose to maximize instead

max
θ

1
N

N∑
i=1

log qθ(xi).

It appears clearly here that maximizing the likelihood of the data is equivalent to minimizing
the negative log-likelihood Lθ(·) = − log qθ(·) averaged over Dtrain.

Note that this maximum likelihood (or minimum negative log-likelihood) objective can
be related to a Kullback-Leibler divergence. By calling p̂(x) = 1

N

∑N
i=1 δxi

(x) the empirical
distribution over the training samples, we have that

DKL(p̂||qθ) = 1
N

N∑
i=1

log p̂(xi)− log qθ(xi)

= −H(p̂) + 1
N

N∑
i=1

Lθ(xi)

As the entropy of p̂ does not depend on θ, it appears clearly that our objective is equivalent
to minimizing a divergence between the empirical distribution of p and qθ.

2.2.2. Generalization

Even when maximizing likelihood, one may learn a model qθ which is accurate on the
training data but inaccurate on unseen data. The discrepancy between the loss on the true

41

data distribution and the training loss is called the generalization gap

G = Ex∼p[Lθ(x)]− Ex∼p̂[Lθ(x)]

The generalization gap and how to estimate it is at the core of Chapter 5: in our article we
show how one can build estimators of G from the local curvature and variance of our model.

2.2.3. Stochastic gradient descent

Now we turn back our attention to the original optimization problem minθ
1
N

∑N
i=1 Lθ(xi).

When using neural networks, we can efficiently estimate ∇θLθ, the gradient of Lθ, using the
backpropagation algorithm (Rumelhart et al., 1986). Thus, we can use the gradient descent
algorithm to minimize our loss

θt+1 = θt − η
1
N

N∑
i=1
∇θLθt(xi) (2.2.1)

where η is a positive scalar called the learning rate. Under some smoothness assumptions
on L and for a small enough η, we can show that this algorithm will converge to a local
minimum of our objective function.

This algorithm is however expensive when N is very large as is common in modern
machine learning. An alternative to regular gradient descent is to use stochastic gradient
descent (Robbins & Monro, 1951), i.e, we only use a sample, or more generally, a mini-batch
of B samples to compute a noisy estimate of the gradient. This trade-off between noise and
complexity of computing a gradient estimate is well-understood and favorable in the regime
where N is large (Bottou & Bousquet, 2007).

θt+1 = θt − ηt
1
B

B∑
i=1
∇θLθt(xi), x1, . . . xB

i.i.d∼ Dtrain (2.2.2)

Where ηt is a time-dependent learning rate usually annealed to 0 to ensure convergence. This
algorithm is the central idea behind all popular optimization algorithms used for training
deep neural networks, such as Adam (Kingma & Ba, 2014) which uses momentum and where
the gradient is preconditioned by a data-dependent “normalization” matrix.

2.3. Reinforcement Learning
2.3.1. General setting and Markov Decision Processes

Reinforcement learning (RL) is a sequential decision making problem where an agent can
take decisions or actions in a world, called environment, in order to maximize some signal
called the reward. This is formalized as a Markov Decision Process (MDP) as described
in Bellman et al. (1954) and Puterman (2014). An MDP is a tuple ⟨S,A, penv, r, µ⟩ where S is

42

the set of states, A is the set of possible actions that the agent can take, r : S×A 7→ R is the
reward function, a function that maps a state and action to a scalar and penv(s′|s, a), s′, s ∈
S×S, a ∈ A is the transition function, a probability distribution over states given the current
state and action. The assumption that the next state only depends only on the current state
and the action taken by the agent, and not on previous states or actions is referred to as the
Markov assumption.

The goal of the agent is to learn a probability distribution over actions called a policy
π(at|st) that maximizes the discounted sum of the reward

J (π) = Eat∼π(·|st),st+1∼penv(·|st,at)[
∑

t

γtr(st, at)]

where γ is called the discount factor. In the episodic case, where sequences of states and
actions ultimately reach an ending state, γ has to be positive and smaller or equal to 1. In
the continuing setting, where an agent interacts with the world indefinitely, we need γ ∈ [0, 1[
to ensure the objective remains bounded. In Deep Reinforcement Learning, the policy π is
usually obtained using a neural network. In policy gradient methods (Section 2.3.3.1) the
policy is directly parametrized by a neural network with weights θ so we will refer to this
parametrized policy network as πθ and the objective will be denoted either J (πθ) or J (θ).

In practice, the agent will interact with the environment in the following manner

Algorithm 1 Sample a trajectory
1: // Initialize starting state
2: s0 ∼ µ(·)
3: τ0:0 = {}
4: for t in {0, . . . ,∞} do
5: // Sample and execute action
6: at ∼ π(at|st)
7: st+1, rt ∼ penv(·|st, at)
8: // Update trajectory and return
9: τ0:t ← τ0:t−1 ∪ {st, at}

10: Rt ← Rt−1 + γtrt

11: If st+1 is terminal, break
12: end for

Where a trajectory τ0:t is the sequence of state-action pairs τ0:t = {(s0,a0), . . . ,(st, at)}
encountered and Rt is the empirical discounted return, i.e the sum of discounted rewards for
this trajectory. It appears clearly that this process is highly stochastic as it requires sampling
actions from our policy (which could have a high entropy) as well as sampling the next state
and reward from the environment transition dynamics penv, which is a priori unknown and
could be highly unpredictable. Therefore, even for a given policy π, the trajectory sampled
τ and its associated discounted return Rt can be vastly different every time Algorithm 1 is

43

run. This noise arising from the interaction between the agent and the environment at the
core of most contributions presented in this thesis.

Furthermore, under some conditions1 the MDP admits a unique stationary distribution
dπ. Algorithm 1, if ran with enough times, would eventually sample states and actions
according to dπ. If we are interested in the discounted return, we can adapt Algorithm 1
by adding a probability 1− γ of restarting from the initial distribution µ at every step and
never break the interaction loop. The stationary distribution of this discounted MDP will
be referred to as dπ

γ .
While in traditional optimization we assume we can evaluate our objective function im-

mediately, in reinforcement learning it needs to be evaluated through this noisy interactive
process. Thus, it is not surprising that many of the algorithms used in reinforcement learn-
ing have the following structure

Algorithm 2 Alternating policy evaluation and policy improvement
1: Choose an initial policy π0
2: for t in {0, . . . , T} do
3: // Policy evaluation
4: Estimate J (πt) though interaction (real or simulated)
5: // Policy improvement
6: Improve πt to πt+1 based on the evaluation of πt

7: end for

The next two subsections will thus respectively be concerned with the policy evaluation
and policy improvement problems.

2.3.2. Value functions in reinforcement learning

Alongside with the policy π, one of the most important concept in reinforcement learning
is the notion of value function. Intuitively, it is a measure of how “good” a current situation
is for the agent, or more precisely “how much discounted return” we can expect to gather
from a given situation.

2.3.2.1. Value and Q functions

We first define the value and Q functions. Both are expectations of the future discounted
return, but while the value is conditional on a state s, for the Q function we condition on
both a state and an action s, a.

Thus, for the value function V π

V π(st) = E
[∑

t′≥t

γt′−trt′ |at ∼ π(·|st), st+1, rt ∼ penv(·|st, at), . . .
]

(2.3.1)

1For a unique stationary distribution to exist, the MDP must be irreducible and aperiodic.

44

The Q function is the expected discounted return under the current policy conditioned
on the current state and action

Qπ(st, at) = E
[∑

t′≥t

γt′−trt′ |st+1, rt ∼ penv(·|st, at), at+1 ∼ π(·|st+1), . . .
]

(2.3.2)

These two functions can be easily related to our original objective

J (π) = Es0∼µ[V π(s0)] = Es0∼µ,a0∼π(·|s0)[Qπ(s0, a0)]

Thus the value function averaged over the initial state is the objective function we aim
at evaluating.

2.3.2.2. Bellman equations for V π and Qπ

Because of the Markov assumption, i.e that the distribution of st+1 and rt only depends
on st and at, the value of a state can be expressed in function of the value of its successor
states. Indeed, the value and Q functions verify a recursion known as the Bellman equation

V π(st) = Eat,st+1...

[∑
t′≥t

γt′−trt′ |st

]
= Eat,st+1...

[
rt + γ

∑
t′≥t+1

γt′−(t+1)rt′|st

]
= Eat,st+1

[
rt + γEat+1,st+2...[

∑
t′≥t+1

γt′−(t+1)rt′ |st, at, st+1
]

(Law of Total Expectation)

= Eat,st+1

[
rt + γEat+1,st+2...[

∑
t′≥t+1

γt′−(t+1)rt′ |st+1
]

(Markov property)

= E[rt + γV π(st+1)] (2.3.3)

In the same manner
Qπ(st, at) = E[rt + γQπ(st+1, at+1)] (2.3.4)

More generally, by unrolling the equation for n steps instead of just one, we can get

V π(s) = E[
t+n−1∑

t′=t

γt′−trt′ + γnV π(st+n)] (2.3.5)

And we will refer to Rn
t ≜

∑t+n−1
t′=t γt′−trt′ + γnV π(st+n) as the n-step return, which is a

random variable conditioned on state st. The expected 0-step return is simply the value
function of st while the ∞-step return (i.e where we unroll until the episode stops) is the
empirical discounted return Rt. This circles back to the definition of V π(st) as being the
expected empirical return from st. As all the n-step returns are unbiased estimates of the
value function, it is also possible to mix them in order to obtain new estimators such as the λ-
return which weights the n-step returns according to a geometric distribution of parameter λ

45

Rλ
t ≜ (1− λ)

∑
n≥1

λn−1
(

t+n−1∑
t′=t

γt′−trt′ + γnV π(st+n)
)

(2.3.6)

For λ = 0, we get back the 1-step return rt + γV π(st) while for λ→ 1, Rλ
t is the Monte

Carlo return, i.e the empirical discounted return until the end of the episode.

2.3.2.3. Learning parametric value functions

Now we will see how to use the properties of the true value function V π to build a
parametric estimator of it. While there are non-parametric methods, often referred to as
memory-based methods (Atkeson et al., 1997), nowadays in most settings the value function
is parametrized via a neural network. Let us call ϕ the parameters of the value (respectively
Q) function approximator Vϕ (resp Qϕ).

As the value function satisfies the Bellman equation eq. (2.3.4), we can learn a function
that satisfies the same equation

min
ϕ

1
2Es,a

[
Es′,r[

(
r(s,a) + γVϕ(s′)]− Vϕ(s)

)2]
(2.3.7)

where the expectations are taken over transitions s′, r, s, a encountered during a trajectory.
This loss is referred to as the Mean Square Bellman Error (MSBE). However, taking the
gradient of this loss directly poses some practical challenges

∇ϕMSBE(ϕ) = Es,a

[
Es′,r[

(
r(s,a) + γVϕ(s′)]− Vϕ(s)

)
·
(
Es′,r[γ∇ϕVϕ(s′)]−∇ϕVϕ(s)

)]
While we used the notation s′ in the two expectations Es′,r we need to have access to
two independent samples of s′ ∼ penv(·|s,a) for this gradient to be unbiased, and it is not
something we can do easily without access to a simulator of the environment. This is known
as the double sampling problem (Baird, 1995). In order to circumvent this issue, we can “fix”
the target r(s,a) + γVϕ(s′) and not differentiate it. This lead to the pseudo-gradient

−Es,a,s′,r

[(
r(s,a) + γVϕ(s′)− Vϕ(s)

)
· ∇ϕVϕ(s)

]
This update rule using this pseudo-gradient is known as the TD(0) algorithm, which stands
for Temporal Difference learning (Sutton, 1988) and it can be expressed as an expectation
over a transition (s, a, r, s′) is suitable for use with stochastic gradient descent and deep
neural networks. Therefore, it remains one of the most popular methods for learning value
functions to this day.

Furthermore we can extend TD(0) to TD(λ) by using a λ-return for the target, i.e Rλ
t

instead of rt + γVϕ(st).

46

2.3.3. Policy optimization

Ultimately, as mentioned previously, our goal is to improve J , given our current policy
π we aim at finding a new one π′ yielding a higher expected return, i.e J (π′) ≥ J (π). In
the next subsections, we will present Policy gradient and policy greedification, the two main
families of policy improvement methods used in modern reinforcement learning.

2.3.3.1. Policy gradient and actor critic methods

To learn a new policy via gradient ascent, we need to differentiate through the objective
J (πθ) with respect to the policy parameter θ. We have (Williams, 1992; Sutton et al., 1999)

∇θJ (θ) ∝ Es,a∼dπ
γ (s,a)[Qπθ(s,a)∇θ log πθ(a|s)] (2.3.8)

Note that this requires knowledge of the true Q-function and an expectation over all states
to be exact. In practice, we use an estimator for Qπ(s,a) and perform a stochastic gradient
update by sampling s,a ∼ dπ by rolling out trajectories in the environment2.

When we use the Monte Carlo estimate R(s, a) instead of Qπθ(s,a), we usually refer
to this method simply as “vanilla policy gradient” as we don’t necessarily need to learn a
parametric value function to improve our policy.

This stochastic gradient can be broken into two parts: the actor and the critic

Ψ(s,a)︸ ︷︷ ︸
“critic”

∇θ log πθ(a|s)︸ ︷︷ ︸
“actor”

, s,a ∼ dπ

While the “actor” is simply our policy which samples actions, the “critic” part is a scalar
quantity that appears in front the gradient of the log probabilities ∇θ log πθ(a|s) and evalu-
ates the desirability of action a in state s. As we saw previously, the true Q-function Qπθ(s,a)
leads to a valid gradient estimator, but there is a variety of choices used in practice for the
critic. As we may not have access to the true Q-function, one can use an approximation of it,
Qϕ, learned with TD methods for instance. Alternatively we might employ a bootstrapped
estimator of the value function as presented in Section 2.3.2.2 such as r(s,a) + γVϕ(s′) or a
λ-return instead of Qϕ. This class of algorithms where we learn one set of parameters for
the policy to take actions and another set of parameters for the critic to judge the value of
the action is called actor-critic algorithms.

The most popular choices for critics are called advantage functions. These critics are
centered estimates of the Q function. As Ea∼π(·|s)[Qπ(s,a)] = V π(s) advantage functions can
be of the form Aϕ(s,a) = Qϕ(s,a) − Vϕ(s), Aϕ(s,a) = r(s,a) + γVϕ(s′) − Vϕ(s) or generally
using a n-step or λ-return in lieu of the Q function estimator.

2Note here that sampling from dπ instead of dπ
γ , while theoretically incorrect is widely used in practice.

See (Nota & Thomas, 2019) for a more in-depth discussion.

47

Historically, advantage functions have been motivated by variance reduction arguments.
Indeed, for any function dependent on state only b(s) (such as the value function), which we
will refer to as a baseline, we have

Es,a∼dπ
γ (s,a)[b(s)∇θ log πθ(a|s)] = Es∼dπ

γ (s)
[
b(s)Ea∼πθ(a|s)[∇θ log πθ(a|s)]

]
= Es∼dπ

γ (s)
[
b(s)Ea∼πθ(a|s)[

∇θπθ(a|s)
πθ(a|s)]

]
= Es∼dπ

γ (s)
[
b(s)

∑
a

∇θπθ(a|s)
]

= Es∼dπ
γ (s)

[
b(s)∇θ

∑
a

πθ(a|s)︸ ︷︷ ︸
=1

]

= 0 (gradient of a constant is zero)

Thus, adding or removing any state-dependent baseline b(s) (such as the value function) to
the Q function does not bias the policy gradient. Conceptually, as the baseline does not
depend on the action a, it does not affect the relative preference of one action over another
under policy πθ(a|s). Because of the apparent link with the notion of control variates in
statistics —these are functions with zero mean that, when chosen carefully, can reduce
variance— the role of the baseline b(s) is often motivated by variance reduction arguments.
However, in Chapter 6 we will take a closer look at the role of baselines in policy gradient
methods and show that they have an important impact on the optimization process, beyond
their variance reduction property.

We now illustrate here how a simple actor-critic algorithm using a 1-step return advantage
could be implemented

2.3.3.2. Policy greedification and value-based methods

Greedification is a totally different method that allows us to derive policies directly from
Q-functions and as such we do not need to parameterize π by θ. We define the greedy policy
π′ with respect to Qπ as

π′(a|s) = 1{a=arg maxα Qπ(s,α)}(a) (2.3.9)

Thus the greedy policy is a deterministic policy which places all of its probability on the
best action according to Qπ. It can be shown (Sutton & Barto, 2018) that the greedy policy
is an improvement over π, we have V π′(s) ≥ V π(s) ∀s, in particular J (π′) ≥ J (π).

SARSA and Q-Learning (Watkins & Dayan, 1992) are examples of well-known value-
based algorithms: both learn an approximate value function using Temporal Difference learn-
ing and then perform a greedification step using the current Q function estimate. While
SARSA performs the TD step on the current policy π (i.e its 1-step return target would

48

Algorithm 3 Simple actor critic algorithm with 1-step return
1: Choose initial θ, ϕ.
2: for episode = 1 to M do
3: Initialize state s0 ∼ µ
4: for t = 0 to T do
5: // Interact with the environment
6: at ∼ πθt(·|st)
7: st+1, rt ∼ penv(·, ·|st, at)
8: At = rt + γVϕ(st+1)− Vϕ(st)
9: If st+1 is terminal then At = rt − Vϕ(st)

10: // Policy evaluation
11: ϕ← ϕ + ηϕ · At∇ϕVϕ(s)
12: // Policy improvement
13: θ ← θ + ηθ · At∇θ log πθ(a|s)
14: // Update state
15: If st+1 is terminal then break
16: end for
17: end for

be r(st, at) + γQϕ(st+1, at+1) where at+1 ∼ π(·|st+1)), on the other hand Q-Learning uses
a target with a look-ahead step as the next action is sampled from π′, thus the target is
r(st, at) + γQϕ(st+1, a′), a′ ∼ π′(·|st+1) or equivalently r(st, at) + γ maxa Qϕ(st+1, a) as π′ is
the greedy policy.

Algorithm 4 Q-learning
1: // Initialize Q network
2: Choose initial ϕ.
3: for episode = 1 to M do
4: Initialize state s0 ∼ µ
5: for t = 0 to T do
6: // Sample and execute action
7: With probability ϵ select a random action a, otherwise a← argmaxaQϕ(st, a)
8: st+1, rt ∼ penv(·|st, at)
9: δt = rt + γ maxa′ Qϕ(st+1, a′)−Qϕ(st, at)

10: If st+1 is terminal then δt = rt −Qϕ(st, at)
11: // Temporal Difference update on the greedy policy
12: ϕ← ϕ + ηϕ · δt∇ϕQϕ(st, at)
13: If st+1 is terminal then break
14: end for
15: end for

Note here that in the algorithm we sampled actions from an ϵ− greedy policy. While
we could sample greedily from Q by taking its argmax, it is common practice to use a more
random ϵ-greedy policy that has a ϵ probability of sampling other actions as well. This

49

enables us to explore actions and states we might not have encountered otherwise. We will
discuss briefly the exploration problem in Section 2.3.3.4.

This algorithm has been very successful, and Deep Q-Learning (Mnih et al., 2013), a
slightly modified version of this algorithm for deep reinforcement learning, was the first
algorithm to reach human level performance on the ALE benchmark (Bellemare et al., 2013).

2.3.3.3. General conditions for improvement

While policy gradient-based methods and greedification-based ones are conceptually dif-
ferent, it is still possible to understand them as optimizing the same objective for our policy.

We can write a more general, non-local, version of the policy gradient theorem to com-
pare more generally two policies π′ and π using a variant of the performance difference
lemma (Kakade & Langford, 2002)

J (π′)− J (π) ∝ Es∼dπ′
γ

[∑
a

(
π′(a|s)− π(a|s)

)
Qπ(s,a)

]
(2.3.10)

This equation is a generalization of the policy gradient theorem as taking the limit
limt→0

J (θ+tδθ)−J (θ)
t

would lead back to the policy gradient. Alternatively, as the discounted
stationary distribution dπ′

γ is always positive, we could look for the policy π′ that maximizes∑
a

(
π′(a|s) − π(a|s)

)
Qπ(s,a), which is achieved for the greedy policy of Equation (2.3.9).

Thus with one unified objective we can understand how the two main methods for policy im-
provement are related. While policy gradient chooses infinitesimal step to increase the return,
greedification performs more drastic updates by directly transitioning to the greedy policy.

2.3.3.4. Exploration

The drastic updates of the greedification exemplify one of the main challenges of rein-
forcement learning. Let’s say we are in a bandit setting, id est there is only one state and
we have to find the action that leads to the best reward. It may be that our initial guess
is wrong because of the stochasticity of the reward function. For instance if our action is
to choose which restaurant we would like to eat at, we may not be able to identify the best
restaurant overall by only tasting one item from the menu. Therefore to be able to identify
the best action, we need to explore enough each possibility in order to find the optimal pol-
icy. This is at odds with greedification which purely exploits based on our current guess of
what the value of each action is. This tradeoff between exploration, taking suboptimal ac-
tions in order to potentially discover better ones, and exploitation, taking the best action
we know in order accumulate reward, is at the heart of reinforcement learning. While ex-
ploration is an active research topic, we will only mention here the two simplest and most
widely used schemes for policy gradient and Q-learning.

For actor-critic and policy gradient methods, it is common to add an entropy bonus
H(a|s), which measures the randomness of the action distribution, to the reward in order to

50

encourage our policy to try out different actions. For value-based methods using a greedi-
fication step, the most common strategy for exploration is using an ϵ-greedy policy, ie, we
select the argmax with probability 1− ϵ and another action at random with probability ϵ. ϵ

is typically decayed over time so that the policy ultimately becomes the greedy policy.

51

Chapitre 3

Independently Controllable Factors

Article details
Thomas V*, Bengio E*, Fedus W*, Pondard J, Beaudoin P, Larochelle H, Pineau J, Pre-

cup D, Bengio Y. “Disentangling the independently controllable factors of variation by in-
teracting with the world”. Presented at the NeurIPS 2017 workshop on Learning Disentan-
gled Representations: from Perception to Control as an oral talk.

Previous iterations of this paper have been presented at Reinforcement Learning and
Decision Making (RLDM) 2017 and at the Montreal AI Symposium.

Foreword
This project began at first in January 2017 and led to several short papers and involved

many authors from different institutions. The first one, Bengio et al. (2017) was published
at RLDM 2017, a subsequent and longer paper, Thomas et al. (2017) was presented at the
Montreal AI Symposium 2017, and finally, a latter and more theoretically sound version,
Thomas et al. (2018) was presented as a spotlight paper in the NeurIPS 2017 workshop on
Learning Disentangled Features: from Perception to Control.

The original motivation for this project was the way young children spontaneously learn
to discover what they can do, how they can affect the world and the surrounding objects
in a totally unsupervised manner (Berlyne, 1966; Gopnik et al., 1999). To do so, they
associate aspects of the world they can control to a representation of such aspect -or object-
in their brain. In this line of work, we looked at, in particular, aspects of the world that can
be modified and represented independently from each other: we call them independently
controllable factors of variations. This combines two objectives into one: (1) the agent
has to discover without supervision a diverse set of policies it can execute, and (2) each
policy must be mapped to a representation in the latent space.

The first point has been the focus of several works where, as in our work, the objective
is similar to a mutual information criterion between the observed states and the label of
the policy (or option/skill/context used) (Still & Precup, 2012; Mohamed & Rezende, 2015;
Gregor et al., 2016; Florensa et al., 2017; Eysenbach et al., 2018; Achiam et al., 2018).

The second point, learning disentangled representation for reinforcement learning, has
been investigated by Anand et al. (2019) where they annotate by hand attributes of the world
and learn a representation that shares a high mutual information with those attributes. In a
more complex 3D world, Eslami et al. (2018) learn a representation of a scene by encoding the
information about different viewpoints at once. Works combining both the idea of exploring
and learning a good representation of the world are more rare. We can cite Kim et al.
(2019), where they use a mutual information objective to help exploration and learning of
representation (this is however not unsupervised) and Li & Mandt (2018) a follow-up work on
the contribution presented here where they propose a simple mechanism to discover factors
that cannot be controlled by the agent.

A very challenging aspect of this work was to be able to learn a diversity of meaningful
factors. In the end, we always observed what we called a factor collapse where a few inter-
esting factors would be learned but many would remain undiscovered no matter the amount
of training. While we were able to characterize and understand this problem very well, we
did not manage at the time to solve it. Recently Strouse et al. (2021) proposed a solution to
this issue by discriminating between aleatoric and epistemic uncertainties using an ensem-
ble of neural networks, thus encouraging the system to be more curious about learning new
factors rather than exploiting the ones already discovered.

Note: This article has been modified from its online version for more clarity.

Personal contribution
• Theoretical understanding of what objective ICF is optimizing. Making the link with

(causal) mutual information
• Understanding and showcasing how our structured representation can be used for

planning and inference
• Empirical validation (code + visualization) for most experiments presented in this

paper

54

Abstract

It has been postulated that a good representation is one that disentangles the
underlying explanatory factors of variation. However, it remains an open ques-
tion what kind of training framework could potentially achieve that. Whereas
most previous work focuses on the static setting (e.g., with images), we postu-
late that some of the causal factors could be discovered if the learner is allowed
to interact with its environment. The agent can experiment with different ac-
tions and observe their effects. More specifically, we hypothesize that some of
these factors correspond to aspects of the environment which are independently
controllable, i.e., that there exists a policy and a learnable feature for each such
aspect of the environment, such that this policy can yield changes in that fea-
ture with minimal changes to other features that explain the statistical varia-
tions in the observed data. We propose a specific objective function to find such
factors, and verify experimentally that it can indeed disentangle independently
controllable aspects of the environment without any extrinsic reward signal.

3.1. Introduction
When solving Reinforcement Learning problems, what separates great results from ran-

dom policies is often having the right feature representation. Even with function approxi-
mation, learning the right features can lead to faster convergence than blindly attempting
to solve given problems (Jaderberg et al., 2016).

The idea that learning good representations is vital for solving most kinds of real-world
problems is not new, both in the supervised learning literature (Bengio, 2009; Goodfellow
et al., 2016), and in the RL literature (Dayan, 1993; Precup, 2000b). An alternate idea is
that these representations do not need to be learned explicitly, and that learning can be
guided through internal mechanisms of reward, usually called intrinsic motivation (Barto
et al., 2004; Oudeyer & Kaplan, 2009; Salge et al., 2013; Gregor et al., 2017).

We build on a previously studied (Thomas et al., 2017) mechanism for representation
learning that has close ties to intrinsic motivation mechanisms and causality. This mech-
anism explicitly links the agent’s control over its environment to the representation of the
environment that is learned by the agent. More specifically, this mechanism’s hypothesis is
that most of the underlying factors of variation in the environment can be controlled by the
agent independently of one another.

We propose a general and easily computable objective for this mechanism, that can be
used in any RL algorithm that uses function approximation to learn a latent space. We show
that our mechanism can push a model to learn to disentangle its input in a meaningful way,
and learn to represent factors which take multiple actions to change and show that these

55

representations make it possible to perform model-based predictions in the learned latent
space, rather than in a low-level input space (e.g. pixels).

3.2. Learning disentangled representations
The canonical deep learning framework to learn representations is the autoencoder frame-

work (Hinton & Salakhutdinov, 2006). By denoting S the dimensionality of an input and K

the dimensionality of the representation, an encoder f : RS → RK and a decoder g : RK →
RS are trained to minimize the reconstruction error, ∥s−g(f(s))∥2

2. h = f(s) is called the la-
tent (or representation), and is usually constrained in order to push the autoencoder towards
more desirable solutions. For example, imposing that K ≪ N pushes f to learn to compress
the input; there the bottleneck often forces f to extract the principal factors of variation from
s. However, this does not necessarily imply that the learned latent space disentangles the dif-
ferent factors of variations. Such a problem motivates the approach presented in this work.

Other authors have proposed mechanisms to disentangle underlying factors of variation.
Many deep generative models, including variational autoencoders (Kingma & Welling, 2014) ,
generative adversarial networks (Goodfellow et al., 2014) or non-linear versions of ICA (Dinh
et al., 2014; Hyvarinen & Morioka, 2016) attempt to disentangle the underlying factors
of variation by assuming that their joint distribution (marginalizing out the observed s)
factorizes, i.e., that they are marginally independent.

Here we explore another direction, trying to exploit the ability of a learning agent to act
in the world in order to impose a further constraint on the representation. We hypothesize
that interactions can be the key to learning how to disentangle the various causal factors of
the stream of observations that an agent is faced with, and that such learning can be done
in an unsupervised way.

3.3. The selectivity objective
We consider the classical reinforcement learning setting but in the case where extrinsic

rewards are not available. We introduce the notion of controllable factors of variation
ϕ ∈ RK which are generated from a neural network Φ(h, z), z ∼ N (0, 1)m where h = f(s) is
the current latent state. The factor ϕ represents an embedding of a policy πϕ whose goal is
to realize the variation ϕ in the environment.

To discover meaningful factors of variation ϕ and their associated policies πϕ, we consider
the following general quantity S which we refer to as selectivity and that is used as a reward
signal for πϕ:

S(h, ϕ) = E
[
log A(h′, h, ϕ)− logEp(φ|h)[A(h′, h, φ)]

∣∣∣ s′ ∼ Pπϕ

ss′

]
(3.3.1)

56

Here, h = f(s) is the encoded initial state before executing πϕ and h′ = f(s′) is the
encoded terminal state. In this work, we keep it simple by considering policies that act for a
fixed number of steps, 1 step for experiments of Figure 3.2 and 3 steps in Section 3.4.3. As
such, Pπϕ

ss′ represents the probability over final states after executing the factor ϕ (through
πϕ) from initial state s. ϕ and φ represent controllable factors of variation in the sense that
they can be viewed as option embeddings which aim at changing the representation of the
final latent state h′ from the initial latent h by modifying one aspect of the representation.
We will explain how this mechanism works in the following paragraphs.

Let us assume we sample the factor ϕ while being in state s (with latent h = f(s)) and
end up at state s′ (with latent h′ = f(s′)) after executing πϕ.

A(h′, h, ϕ) should be understood as a score describing how close ϕ is to the variation it
caused (h′, h). While a wide range of functions are valid for A, the particular form chosen
has a strong impact on how the latent space will be disentangled. In the extreme case where
A is a large neural network, there exist minimal constraints placed directly on h and ϕ to be
meaningfully associated. We therefore prefer to choose simple functions for A. For example
in the experiments of section 3.4.1, we choose A to be a gaussian kernel between h′ − h and
ϕ: A(h′, h, ϕ) = exp(−β∥h′ − h − ϕ∥2); this encourages an association between the latents
and factors of variations so that h′ = h + ϕ. In the experiments of section 3.4.2, we choose
A(h′, h, ϕ) = max

(
0, CosineSimilarity(h′ − h, ϕ)

)
which is a weaker choice as it encourages

only the angle between ϕ and h′ − h to be small.
However, so as to discover other different factors performing different variations in latent

space, we need to encourage other factors to be associated to different variations, thus
encouraging independence within factors. Thus, our selectivity reward S is a contrastive
objective: the attraction term log A(h′, h, ϕ) ensures that ϕ is strongly associated to (h, h′)
while the repulsion term logEp(φ|h)[A(h′, h, φ)] encourages a low association between the
variation in latent (h′, h) (caused by ϕ) and other factors φ that could have been sampled
but were not.

For instance, when using the gaussian kernel of section 3.4.1

S(h, ϕ) = −Eh′|ϕ,h

[
β ∥h′ − h− ϕ∥2︸ ︷︷ ︸

Attractive

+ logEφ|h[exp(−β∥h′ − h− φ∥2)]︸ ︷︷ ︸
Repulsive

]
(3.3.2)

The attractive term encourages ϕ to be closer to h′ − h but pushes away other potential
factors φ from this variation in latent space.
High-level interpretation: Conditioned on a scene representation h, a distribution of poli-
cies are feasible. Samples from this distribution represent ways to modify the scene and thus
may trigger an internal selectivity reward signal. For instance, h might represent a room

57

with objects such as a light switch. ϕ = ϕ(h,z) can be thought of as the distributed repre-
sentation for the “name” of an underlying factor, to which is associated a policy and a value.
In this setting, the light in a room could be a factor that could be either on or off. It could
be associated with a policy to turn it on, and a binary value referring to its state, called
an attribute or a feature value.We wish to jointly learn the policy πϕ(·|s) that modifies the
scene, so as to control the corresponding value of the attribute in the scene, whose variation
is computed by a scoring function A(h′, h, ϕ) ∈ R. In order to get a distribution of such em-
beddings, we compute ϕ(h,z) as a function of h and some random noise z.

The goal of a selectivity-maximizing model is to find the density of factors p(ϕ|h), the
latent representation h, as well as the policies πϕ that maximize Ep(ϕ|h)[S(h, ϕ)].

3.3.1. Link with mutual information and causality

The selectivity objective, while intuitive, can also be related to information theoretical
quantities defined in the latent space. From (Donsker & Varadhan, 1975; Ruderman et al.,
2012) we have DKL

(
p||q

)
= supA∈L∞(q) Ep[log A] − logEq[A]. Applying this equality to the

mutual information Ip(ϕ, h′|h) = Ep(h′|h)
[
DKL

(
p(ϕ|h′, h)||p(ϕ|h)

)]
gives

Ip(ϕ, h′|h) ≥ sup
θ

Ep(ϕ|h)
[
S(h, ϕ)

]
where θ is the set of weights shared by the factor generator, the policy network and the
encoder.

Thus, our total objective along entire trajectories is a lower bound on the causal (Ziebart,
2010) or directed (Massey, 1990) information Ip(ϕ 7→ h) = ∑

t Ip(ϕ1:t, ht|ht−1) which is a
measure of the causality the process ϕ exercises on the process h. See Appendix A.3 for
details.

st

ht

ŝt

g

f

env

st′

ht′

πϕ(·|st)

ϕ

zt ∼ N A(ht′ , ht,ϕ)

at

env

Lae Lsel

Fig. 3.1. The computational model of our architecture. st is the first state, from its encoding
ht and a noise distribution z, ϕ is generated. ϕ is used to compute the policy πϕ, which
is used to act in the world. The sequence ht,ht′ is used to update our model through the
selectivity loss, as well as an optional autoencoder loss on ht.

58

3.4. Experiments
We use MazeBase (Sukhbaatar et al., 2015) to assess the performance of our approach.

We do not aim to solve the game. In this setting, the agent (a red circle) can move in a
small environment (64× 64 pixels) and perform the actions down, left, right, up. The
agent can go anywhere except on the orange blocks.

3.4.1. Learned representations

After jointly training the reconstruction and selectivity losses, our algorithm disentangles
four directed factors of variations as seen in Figure 3.2: ±x-position and ±y-position of the
agent. For visualization purposes we chose the bottleneck of the autoencoder to be of size
K = 2. To complicate the disentanglement task, we added the redundant action up as well
as the action down+left in this experiment.

The disentanglement appears clearly as the latent features corresponding to the x and y

position are orthogonal in the latent space. Moreover, we notice that our algorithm assigns
both actions up (white and pink dots in Figure 3.2.a) to the same feature. It also does not
create a significant mode for the feature corresponding to the action down+left (light blue
dots in Figure 3.2.a) as this feature is already explained by features down and left.

1pink and white for up, light blue for down+left, green for right, purple black down and night blue for left.

Fig. 3.2. (a) Sampling of 1000 variations h′−h and its kernel density estimation encountered
when sampling random controllable factors ϕ. We observe that our algorithm disentangles
these representations on 4 main modes, each corresponding to the action that was actually
taken by the agent.1 (b) The disentangled structure in the latent space. The x and y axis are
disentangled such that we can recover the x and y position of the agent in any observation
s simply by looking at its latent encoding h = f(s). The missing point on this grid is the
only position the agent cannot reach as it lies on an orange block.

59

3.4.2. Towards planning and policy inference

This disentangled structure could be used to address many challenging issues in rein-
forcement learning. We give two examples in figure A.2:

• Model-based predictions: Given an initial state, s0, and an action sequence a{0:T −1},
we want to predict the resulting state sT .

• A simplified deterministic policy inference problem: Given an initial state sstart and
a terminal state sgoal, we aim to find a suitable action sequence a{0:T −1} such that
sgoal can be reached from sstart by following it.

Because of the tanh activation on the last layer of ϕ(h, z), the different factors of variation
dh = h′−h are placed on the vertices of a hypercube of dimension K, and we can think of the
the policy inference problem as finding a path in that simpler space, where the starting point
is hstart and the goal is hgoal. We believe this could prove to be a much easier problem to solve.

However, this disentangled representation alone cannot solve completely these two issues
in an arbitrary environment. Indeed, the only factors we are able to disentangle are the
factors directly controllable by the agent, thus, we are not able to account for the ambient
dynamics or other agents’ influence.

3.4.3. Multistep embedding of policies

In this experiment, ϕ are embeddings of 3-steps policies πϕ. We add a model-based loss
LMB = ||ht+3 − Tθ(ht, ϕ)||2 defined only in the latent space, and jointly train a decoder
alongside with the encoder. Notice that we never train our model-based cost at pixel level.
While we currently suffer from mode collapsing of some factors of variations, we show that
we are successfully able to do predictions in latent space, reconstruct the latent prediction
with the decoder, and that our factor space disentangles several types of variations.

3.5. Conclusion, success and limitations
Pushing representations to model independently controllable features currently yields

some encouraging success. Visualizing our features clearly shows the different controllable
aspects of simple environments, yet, our learning algorithm is unstable. What seems to be
the strength of our approach could also be its weakness, as the independence prior forces a
very strict separation of concerns in the learned representation, and should maybe be relaxed.

Some sources of instability also seem to slow our progress: learning a conditional dis-
tribution on controllable aspects that often collapses to fewer modes than desired, learning
stochastic policies that often optimistically converge to a single action, tuning many hyper-
parameters due to the multiple parts of our model. Nonetheless, we are hopeful in the steps

60

h︸︷︷︸
(0.4, 13.1)

ĥ′︸︷︷︸
(−4.6, −1.9)

= h + dhright︸ ︷︷ ︸
(5, −5)

+ 2 · dhdown︸ ︷︷ ︸
(−10, −10)

Encoder Decoder
h1︸︷︷︸

(0.4, 13.1)

h2︸︷︷︸
(5.9, −11.6)

dh = (5.5, − 24.8) ≈ 2 · dhdown + 3 · dhright

Encoder Encoder

Fig. 3.3. (left) Predicting the effect of a cause on Mazebase. The leftmost image is the vi-
sual input of the environment, where the agent is the round circle, and the switch states are
represented by shades of green. After the training, we are able to distinguish one cluster
per dh (Figure 3.2), that is to say per variation obtained after performing an action, inde-
pendently from the position h. Therefore, we are able to move the agent just by adding the
corresponding dh to our latent representation h. The second image is just the reconstruc-
tion obtained by feeding the resulting h′ into the decoder. (right) Given a starting state and
a goal state, we are able to decompose the difference of the two representations dh into a
(non-directed) sequence of movements.

Fig. 3.4. (a) The actual 3-step trajectory done by the agent. (b) PCA view of the space
ϕ(h0, z), z ∼ N (0,1). Each arrow points to the reconstruction of the prediction Tθ(h0, ϕ)
made by different ϕ. The ϕ at the start of the green arrow is the one used by the policy in
(a). Notice how its prediction accurately predicts the actual final state.

that we are now taking. Disentangling happens, but understanding our optimization process
as well as our current objective function will be key to further progress.

61

Chapitre 4

Probabilistic Planning with Sequential Monte
Carlo Methods

Article details
Thomas, V.*, Piché, A.*, , Ibrahim, C., Bengio, Y. and Pal, C. “Probabilistic Planning

with Sequential Monte Carlo methods”. In International Conference on Learning Represen-
tations (ICLR) 2019.

This article was also presented as a contributed talk at the NeurIPS 2018 workshop on
Infer to Control.

This work was done jointly with Alexandre Piché during the summer 2018 at Mila and
ElementAI and was presented at ICLR 2019.

Foreword
The original intuition for this work was that it should be possible to have a tree search

planning algorithm where interesting (i.e might get high return) branches were reinforced
and less interesting branches cut off. Using control as inference was a natural way to associate
the return a branch might get to the probability it would have to be reinforced or cut.

To the best of our knowledge, there is only one article that framed planning as an inference
problem (Attias, 2003) and it was in a very specific setting with strong assumptions. We
realized that our idea was intimately linked with sequential Monte Carlo methods and that
our algorithm could be framed as an instance of a particle filter. In control theory, there is
a duality between estimating the current state and controlling the dynamics to the desired
goal. While particle filters are typically used for estimation, here, within the context of
control as inference, we are able to design a particle filter algorithm for control.

Impact since publication
This paper already has some citations and follow-up works using our formulation of plan-

ning as inference and our algorithm (Wang et al., 2019; Lioutas et al., 2022). An evalution
paper, (Byravan et al., 2022), found that SMCP performed favorably compared to CEM,
both on performance and computational complexity “[...] on the harder GTTP tasks
SMC slightly outperforms CEM. We use SMC throughout the paper as it makes better
use of the proposal [distribution] compared to CEM [...] CEM uses a significantly larger
computational budget than our SMC planner which is non-iterative; in spite of this
SMC is still quite competitive with CEM across all tasks [...]”

A book (Belousov et al., 2021) cites SMCP as a promising direction for planning: ”Recent
research in probabilistic dynamic models and planning with sequential Monte Carlo methods
viewing control as an inference problem demonstrate the advantages of probabilistic planning
in MPC and may be one of the most promising directions[to improve MPC in a black
box environment].”

Personal contribution
• Major contribution on the theoretical understanding of the method. Making the

link with the two-filter formula (Bresler, 1986) and smoothing/forward-backward
algorithms

• Determining the expression for the update (maximum entropy advantage) and writing
the proofs in the appendix

• Designing and performing the toy experiment Figure 4.4b and Figure 4.4a alongside
with Alexandre

• Creating Figure 4.1, Figure 4.3 and Figure 4.2
• Writing of the paper alongside with Alexandre

64

Abstract

In this work, we propose a novel formulation of planning which views it as a
probabilistic inference problem over future optimal trajectories. This enables
us to use sampling methods, and thus, tackle planning in continuous domains
using a fixed computational budget. We design a new algorithm, Sequential
Monte Carlo Planning, by leveraging classical methods in Sequential Monte
Carlo and Bayesian smoothing in the context of control as inference. Further-
more, we show that Sequential Monte Carlo Planning can capture multimodal
policies and can quickly learn continuous control tasks.

4.1. Introduction
To exhibit intelligent behaviour machine learning agents must be able to learn quickly,

predict the consequences of their actions, and explain how they will react in a given situa-
tion. These abilities are best achieved when the agent efficiently uses a model of the world to
plan future actions. To date, planning algorithms have yielded very impressive results. For
instance, Alpha Go (Silver et al., 2017) relied on Monte Carlo Tree Search (MCTS) (Kearns
et al., 2002) to achieve super human performances. Cross entropy methods (CEM) (Rubin-
stein & Kroese, 2004) have enabled robots to perform complex nonprehensile manipulations
(Finn & Levine, 2017) and algorithms to play successfully Tetris (Szita & Lörincz, 2006).
In addition, iterative linear quadratic regulator (iLQR) (Kalman et al., 1960; Kalman, 1964;
Todorov & Li, 2005) enabled humanoid robots tasks to get up from an arbitrary seated pose
(Tassa et al., 2012).

Despite these successes, these algorithms make strong underlying assumptions about
the environment. First, MCTS requires a discrete setting, limiting most of its successes to
discrete games with known dynamics. Second, CEM assumes the distribution over future
trajectories to be Gaussian, i.e. unimodal. Third, iLQR assumes that the dynamics are
locally linear-Gaussian, which is a strong assumption on the dynamics and would also assume
the distribution over future optimal trajectories to be Gaussian. For these reasons, planning
remains an open problem in environments with continuous actions and complex dynamics.
In this paper, we address the limitations of the aforementioned planning algorithms by
creating a more general view of planning that can leverage advances in deep learning (DL)
and probabilistic inference methods. This allows us to approximate arbitrary complicated
distributions over trajectories with non-linear dynamics.

We frame planning as density estimation problem over optimal future trajectories in the
context of control as inference (Dayan & Hinton, 1997; Toussaint & Storkey, 2006; Tous-
saint, 2009; Rawlik et al., 2010, 2012; Ziebart, 2010; Levine & Koltun, 2013). This perspec-
tive allows us to make use of tools from the inference research community and, as previously

65

mentioned, model any distribution over future trajectories. The planning distribution is
complex since trajectories consist of an intertwined sequence of states and actions. Sequen-
tial Monte Carlo (SMC) (Stewart & McCarty, 1992; Gordon et al., 1993; Kitagawa, 1996)
methods are flexible and efficient to model such a distribution by sequentially drawing from
a simpler proposal distribution. From the SMC perspective, the policy can be seen as the
proposal and a learned model of the world as the propagation distribution. This provides a
natural way to combine model-free and model-based RL.

Contribution. We depict the problem of planning as one of density estimation that can
be estimated using SMC methods. We introduce a novel planning strategy based on the SMC
class of algorithms, in which we treat the policy as the proposed distribution to be learned.
We investigate how our method empirically compares with existing model-based methods
and a strong model-free baseline on the standard benchmark Mujoco (Todorov et al., 2012).

4.2. Background
4.2.1. Control as inference

We consider the general case of a Markov Decision Process (MDP) {S,A, penv, r, γ, µ}
where S and A represent the state and action spaces respectively. We use the letters s and a

to denote states and actions, which we consider to be continuous vectors. Further notations
include: penv(s′|s, a) as the state transition probability of the environment, r(s, a) as the
reward function, and γ ∈ [0, 1) as the discount factor. µ denotes the probability distribution
over initial states.

This work focuses on an episodic formulation, with a fixed end-time of T . We define a
trajectory as a sequence of state-action pairs τt:T = {(st,at), . . . ,(sT , aT)}, and we use the
notation π for a policy which represents a distribution over actions conditioned on a state.
Here π is parametrized by a neural network with parameters θ. The notation qθ(τ1:T) =
µ(s1)

∏T −1
t≥1 penv(st+1|st, at)

∏T
t≥1 πθ(at|st) denotes the probability of a trajectory τ1:T under

policy πθ.

Latent a1

s1

a2

s2

a3

s3

at

st

Observed O1 O2 O3 Ot

.

Fig. 4.1. Ot is an observed optimality
variable with probability p(Ot|st, at) =
exp(r(st,at)). τt = (st, at) are the state-action
pair variables considered here as latent.

Traditionally, in reinforcement learning
(RL) problems, the goal is to find the opti-
mal policy that maximizes the expected re-
turn Eqθ

[∑T
t=1 γtrt]. However, it is useful to

frame RL as an inference problem within
a probabilistic graphical framework (Raw-
lik et al., 2012; Toussaint & Storkey, 2006;
Levine, 2018). First, we introduce an auxil-
iary binary random variable Ot denoting the

66

“optimality“ of a pair (st, at) at time t and
define its probability1 as p(Ot = 1|st, at) =
exp(r(st, at)). O is a convenience variable
only here for the sake of modeling. By considering the variables (st, at) as latent and Ot as
observed, we can construct a Hidden Markov Model (HMM) as depicted in figure 4.1. No-
tice that the link s→ a is not present in figure 4.1 as the dependency of the optimal action
on the state depends on the future observations. In this graphical model, the optimal policy
is expressed as p(at|st,Ot:T).

The posterior probability of this graphical model can be written as2:

p(τ1:T |O1:T) ∝ p(τ1:T ,O1:T) = µ(s1)
T −1∏
t=1

penv(st+1|at, st) exp
(T∑

t=1
r(st, at)+ log p(at)

)
. (4.2.1)

It appears clearly that finding optimal trajectories is equivalent to finding plausible tra-
jectories yielding a high return.

Many control as inference methods can be seen as approximating the density by optimiz-
ing its variational lower bound: log p(O1:T) ≥ Eτ1:T ∼qθ

[∑T
t=1 r(st, at) − log πθ(at|st)] (Rawlik

et al., 2012; Toussaint, 2009). Instead of directly differentiating the variational lower bound
for the whole trajectory, it is possible to take a message passing approach such as the one
used in Soft Actor-Critic (SAC) (Haarnoja et al., 2018) and directly estimate the optimal
policy p(at|st,Ot:T) using the backward message, i.e a soft Q function instead of the Monte
Carlo return.

4.2.2. Sequential Monte Carlo methods

Since distributions over trajectories are complex, it is often difficult or impossible to
directly draw samples from them. Fortunately in statistics, there are successful strategies
for drawing samples from complex sequential distributions, such as SMC methods.

For simplicity, in the remainder of this section we will overload the notation and refer
to the target distribution as p(τ) and the proposal distribution as q(τ). We wish to draw
samples from p but we only know its unnormalized density. We will use the proposal q to
draw samples and estimate p. In the next section, we will define the distributions p and q

in the context of planning.
Importance sampling (IS):. When τ can be efficiently sampled from another simpler
distribution q i.e. the proposal distribution, we can estimate the likelihood of any point
τ under p straightforwardly by computing the unnormalized importance sampling weights

1as in Levine (2018), if the rewards are bounded above, we can always remove a constant so that the
probability is well defined.
2Notice that in the rest of the paper, we will abusively remove the product of the action priors

∏T
t=1 p(at) =

exp
(∑T

t=1 log p(at)
)

from the joint as in Levine (2018). We typically consider this term either constant or
already included in the reward function. See Appendix B.2 for details.

67

w(τ) ∝ p(τ)
q(τ) and using the identity p(τ) = w̄(τ)q(τ) where w̄(τ) = w(τ)∫

w(τ)q(τ)dτ
is defined

as the normalized importance sampling weights. In practice, one draws N samples from q:
{τ (n)}N

n=1 ∼ q; these are referred to as particles. The set of particles {τ (n)}N
n=1 associated

with their weights {w(n)}N
n=1 are simulations of samples from p. That is, we approximate the

density p with a weighted sum of diracs from samples of q:

p(τ) ≈
N∑

n=1
w̄(n)δτ (n)(τ), with τ (n) sampled from q

where δτ0(τ) denotes the Dirac delta mass located as τ0.
Sequential Importance Sampling (SIS):. When our problem is sequential in nature
τ = τ1:T , sampling τ1:T at once can be a challenging or even intractable task. By exploiting
the sequential structure, the unnormalized weights can be updated iteratively in an efficient
manner: wt(τ1:t) = wt−1(τ1:t−1)p(τt|τ1:t−1)

q(τt|τ1:t−1) . We call this the update step. This enables us
to sample sequentially τt ∼ q(τt|τ1:t−1) to finally obtain the set of particles {τ (n)

1:T } and their
weights {w(n)

T } linearly in the horizon T .
Sequential Importance Resampling (SIR):. When the horizon T is long, samples from
q usually have a low likelihood under p, and thus the quality of our approximation decreases
exponentially with T . More concretely, the unnormalized weights w

(n)
t converge to 0 with

t → ∞. This usually causes the normalized weight distribution to degenerate, with one
weight having a mass of 1 and the others a mass of 0. This phenomenon is known as weight
impoverishment.

One way to address weight impoverishment is to add a resampling step where each
particle is stochastically resampled to higher likelihood regions at each time step. This can
typically reduce the variance of the estimation from growing exponentially with t to growing
linearly.

4.3. Sequential Monte Carlo Planning
In the context of control as inference, it is natural to see planning as the act of approxi-

mating a distribution of optimal future trajectories via simulation. In order to plan, an agent
must possess a model of the world that can accurately capture the consequences of its actions.
In cases where multiple trajectories have the potential of being optimal, the agent must ra-
tionally partition its computational resources to explore each possibility. Given finite time,
the agent must limit its planning to a finite horizon h. We, therefore, define planning as the
act of approximating the optimal distribution over trajectories of length h. In the control-as-
inference framework, this distribution is naturally expressed as p(a1, s2, . . . sh, ah|O1:T , s1),
where s1 represents our current state.

68

4.3.1. Planning and Bayesian smoothing

As we consider the current state s1 given, it is equivalent and convenient to focus on the
planning distribution with horizon h: p(τ1:h|O1:T). Bayesian smoothing is an approach to
the problem of estimating the distribution of a latent variable conditioned on all past and
future observations. One method to perform smoothing is to decompose the posterior with
the two-filter formula (Bresler, 1986; Kitagawa, 1994):

p(τ1:h|O1:T) ∝ p(τ1:h|O1:h) · p(Oh+1:T |τh) (4.3.1)

This corresponds to a forward-backward messages factorization in a Hidden Markov Model
as depicted in Figure 4.2. We broadly underline in orange forward variables and in blue
backward variables in the rest of this section.

τ1 τh−1 τh τh+1 τT

O1 Oh−1 Oh
Oh+1 OT

p(τ1:h|O1:h) p(Oh+1:T |τh)

Fig. 4.2. Factorization of the HMM into for-
ward (orange) and backward (blue) messages.
Estimating the forward message is filtering, es-
timating the value of the latent knowing all
the observations is smoothing.

Filtering is the task of estimating
p(τ1:t|O1:t): the probability of a latent vari-
able conditioned on all past observations. In
contrast, smoothing estimates p(τ1:t|O1:T):
the density of a latent variable conditioned
on all the past and future measurements.

In the belief propagation algorithm
for HMMs, these probabilities corre-
spond to the forward message αh(τh) =
p(τ1:h|O1:h) and backward message βh(τh) =
p(Oh+1:T |τh) , both of which are computed
recursively. While in discrete spaces these
forward and backward messages can be es-
timated using the sum-product algorithm, its complexity scales with the square of the space
dimension making it unsuitable for continuous tasks. We will now devise efficient strategies
for estimating reliably the full posterior using the SMC methods covered in section 4.2.2.

4.3.2. The Backward Message and the Value Function

The backward message p(Oh+1:T |τh) can be understood as the answer to: What is the
probability of following an optimal trajectory from the next time step on until the end of the
episode, given my current state?. Importantly, this term is closely related to the notion of
value function in RL. Indeed, in the control-as-inference framework, the state- and action-
value functions are defined as V (sh) ≜ log p(Oh:T |sh) and Q(sh, ah) ≜ log p(Oh:T |sh, ah)
respectively. They are solutions of a soft-Bellman equation that differs a little from the
traditional Bellman equation (O’Donoghue et al., 2016; Nachum et al., 2017; Schulman et al.,

69

2017a; Abdolmaleki et al., 2018). A more in depth explanation can be found in (Levine,
2018). We can show subsequently that:

p(Oh+1:T |τh) = Esh+1|τh

[
exp

(
V (sh+1)

)]
(4.3.2)

Full details can be found in Appendix B.3. Estimating the backward message is then equiv-
alent to learning a value function. This value function as defined here is the same one used
in Maximum Entropy RL (Ziebart, 2010).

4.3.3. Sequential Weight Update

Using the results of the previous subsections we can now derive the full update of the se-
quential importance sampling weights. To be consistent with the terminology of section 4.2.2,
we call p(τ1:h|O1:T) the target distribution and qθ(τ1:h) the proposal distribution. The se-
quential weight update formula is in our case:

wt = wt−1 ·
p(τt|τ1:t−1,O1:T)

qθ(τt|τ1:t−1)

∝ wt−1
1

qθ(τt|τ1:t−1)
p(τ1:t|O1:t)

p(τ1:t−1|O1:t−1)
p(Ot+1:T |τt)
p(Ot:T |τt−1)

∝ wt−1 ·
penv(st|st−1, at−1)

pmodel(st|st−1, at−1)
· Est+1|st,at [exp

(
A(st, at, st+1)

)
]

Where

A(st, at, st+1) = rt − log πθ(at|st) + V (st+1)− logEst|st−1,at−1 [exp
(
V (st)

)
] (4.3.3)

is akin to a maximum entropy advantage function. The change in weight can be interpreted
as sequentially correcting our expectation of the return of a trajectory.
The full derivation is available in Appendix B.4. Our algorithm is similar to the Auxiliary
Particle Filter (Pitt & Shephard, 1999) which uses a one look ahead simulation step to
update the weights.

Furthermore, for completeness in the case where we do not have access to a an exact
simulator of the world but an imperfect one pmodel, the ratio penv(st|st−1,at−1)

pmodel(st|st−1,at−1) appears in our
derivation. However as our method is a planning one, we will use the simplified weight
update:

wt ∝ wt−1 · Est+1|st,at [exp
(
A(st, at, st+1)

)
]

by assuming our model of the environment is perfect to obtain this slightly simplified
form.

70

This assumption is implicitly made by most planning algorithms (LQR, CEM . . .): it
entails that our plan is only as good as our model is. A typical way to mitigate this issue
and be more robust to model errors is to re-plan at each time step; this technique is called
Model Predictive Control (MPC) and is commonplace in control theory.

4.3.4. Sequential Monte Carlo Planning Algorithm

We can now use the computations of previous subsections to derive the full algorithm.
We consider the root state of the planning to be the current state st. We aim at building a
set of particles {τ (n)

t:t+h}N
n=1 and their weights {w(n)

t+h}N
n=1 representative of the planning density

p(τt:t+h|O1:T) over optimal trajectories. We use SAC (Haarnoja et al., 2018) for the policy
and value function, but any other Maximum Entropy policy can be used for the proposal
distribution. Note that we used the value function estimated by SAC as a proxy the optimal
one as it is usually done by actor critic methods.

Algorithm 5 SMC Planning using SIR
1: for t in {1, . . . ,T} do
2: {s(n)

t = st}N
n=1

3: {w(n)
t = 1}N

n=1
4: for i in {t, . . . ,t + h} do
5: // Update
6: {a(n)

i ∼ π(a(n)
i |s

(n)
i)}N

n=1
7: {s(n)

i+1, r
(n)
i ∼ pmodel(·|s(n)

i , a
(n)
i)}N

n=1
8: {w(n)

i ∝ w
(n)
i−1 · exp

(
A(s(n)

i , a
(n)
i , s

(n)
i+1)

)
}N

n=1
9: // Resampling

10: {τ (n)
1:i }N

n=1 ∼ Mult(n; w
(1)
i , . . . , w

(N)
i)

11: {w(n)
i = 1}N

n=1
12: end for
13: Sample n ∼ Uniform(1, N).
14: // Model Predictive Control
15: Select at, first action of τ

(n)
t:t+h

16: st+1, rt ∼ penv(·|st, at)
17: Add (st, at, rt, st+1) to buffer B
18: Update π, V and pmodel with B
19: end for

We summarize the proposed algorithm in Algorithm 5. At each step, we sample from
the proposal distribution or model-free agent (line 6) and use our learned model to sample
the next state and reward (line 7). We then update the weights (line 8). In practice we
only use one sample to estimate the expectations, thus we may incur a small bias. The
resampling step is then performed (line 10-11) by resampling the trajectories according
to their weight. After the planning horizon is reached, we sample one of our trajectories

71

(line 13) and execute its first action into the environment (line 15-16). The observations
(st, at, rt, st+1) are then collected and added to a buffer (line 17) used to train the model as
well as the policy and value function of the model-free agent. An alternative algorithm that
does not use the resampling step (SIS) is highlighted in Algorithm 6 in Appendix B.6.

A schematic view of the algorithm can also be found on figure 4.3.

• • • •

1

(a) Configuration at time
t− 1: we have the root white
node st−1, the actions a

(n)
t−1

are black nodes and the leaf
nodes are the s

(n)
t . We have

one particle on the leftmost
branch, two on the central
branch and one on the right-
most branch.

• • • •

1

(b) Update: New actions
and states are sampled from
the proposal distribution and
model. The particle sizes are
proportional to their impor-
tance weight wt.

• • • •

1

(c) Resampling: after sam-
pling with replacement the
particles relatively to their
weight, the less promising
branch was cut while the
most promising has now two
particles.

Fig. 4.3. Schematic view of Sequential Monte Carlo planning. In each tree, the white nodes
represent states and black nodes represent actions. Each bullet point near a state represents
a particle, meaning that this particle contains the total trajectory of the branch. The root
of the tree represents the root planning state, we expand the tree downward when planning.

4.3.5. Optimism Bias and Control as Inference

We now discuss shortcomings our approach to planning as inference may suffer from,
namely encouraging risk seeking policies.
Bias in the objective: Trajectories having a high likelihood under the posterior defined
in Equation 4.2.1 are not necessarily trajectories yielding a high mean return. Indeed, as
logEp

[
exp R(τ)

]
≥ Ep

[
R(τ)

]
we can see that the objective function we maximize is an

upper bound on the quantity of interest: the mean return. This can lead to risk-seeking
trajectories as one very good outcome in logE exp could dominate all the other potentially
very low outcomes, even if they might happen more frequently. This fact is alleviated when
the dynamics of the environment are close to deterministic (Levine, 2018). Thus, this bias

72

does not appear to be very detrimental to us in our experiments 4.4.2 as our environments
are fairly close to deterministic. The bias in the objective also appears in many control as
inference works such as Particle Value Functions (Maddison et al., 2017) and the probabilistic
version of LQR proposed in Toussaint (2009).
Bias in the model: A distinct but closely related problem arises when one trains
jointly the policy πθ and the model pmodel, i.e if q(τ1:T) is directly trained to approxi-
mate p(τ1:T |O1:T). In that case, pmodel(st+1|st, at) will not approximate penv(st+1|st, at) but
penv(st+1|st, at,Ot:T) (Levine, 2018). This means the model we learn has an optimism bias
and learns transitions that are overly optimistic and do no match the environment’s be-
havior. This issue is simply solved by training the model separately from the policy, on
transition data contained in a buffer as seen on line 18 of Algorithm 5.

4.4. Experiments
4.4.1. Toy example

In this section, we show how SMCP can deal with multimodal policies when planning.
We believe multimodality is useful for exploring since it allows us to keep a distribution over
many promising trajectories and also allows us to adapt to changes in the environment e.g.
if a path is suddenly blocked.

We applied two version of SMCP: i) with a resampling step (SIR) ii) without a resampling
step (SIS) and compare it to CEM on a simple 2D point mass environment 4.4. Here, the
agent can control the displacement on (x,y) within the square [0,1]2, a = (∆x, ∆y) with
maximum magnitude ||a|| = 0.05. The starting position (•) of the agent is (x = 0, y = 0.5),
while the goal (⋆) is at g = (x = 1, y = 0.5). The reward is the agent’s relative closeness
increment to the goal: rt = 1 − ||st+1−g||2

||st−g||2 . However, there is a partial wall at the centre of
the square leading to two optimal trajectories, one choosing the path below the wall and one
choosing the path above.

The proposal is an isotropic normal distribution for each planning algorithm, and since
the environment’s dynamics are known, there is no need for learning: the only difference
between the three methods is how they handle planning. We also set the value function to 0
for SIR and SIS as we do not wish to perform any learning. We used 1500 particles for each
method, and updated the parameters of CEM until convergence. Our experiment 4.4 shows
how having particles can deal with multimodality and how the resampling step can help to
focus on the most promising trajectories.

73

(a) Sequential Importance
Resampling (SIR): when re-
sampling the trajectories at
each time step, the agent is
able to focus on the promis-
ing trajectories and does not
collapse on a single mode.

(b) Sequential Importance
Sampling (SIS): if we do not
perform the resampling step
the agent spends most of its
computation on uninterest-
ing trajectories and was not
able to explore as well.

(c) CEM: here the agent
samples all the actions at
once from a Gaussian with
learned mean and covariance.
We needed to update the
parameters 50 times for the
agent to find one solution,
but it forgot the other one.

Fig. 4.4. Comparison of three methods on the toy environment. The agent (•) must go to
the goal (⋆) while avoiding the wall (|) in the center. The proposal distribution is taken to
be an isotropic gaussian. Here we plot the planning distribution imagined at t = 0 for three
different agents. A darker shade of blue indicates a higher likelihood of the trajectory. Only
the agent using Sequential Importance Resampling was able to find good trajectories while
not collapsing on a single mode.

4.4.2. Continuous Control Benchmark

The experiments were conducted on the Open AI Gym Mujoco benchmark suite (Brock-
man et al., 2016; Todorov et al., 2012). To understand how planning can increase the learn-
ing speed of RL agents we focus on the 250000 first time steps. The Mujoco environments
provide a complex benchmark with continuous states and actions that requires exploration
in order to achieve state-of-the-art performances.

The environment model used for our planning algorithm is the same as the probabilistic
neural network used by Chua et al. (2018), it minimizes a gaussian negative log-likelihood
model:

LGauss(θ) = 1
2

N∑
n=1

[µθ(sn, an)−(sn+1−sn)]⊤Σ−1
θ (sn, an)[µθ(sn, an)−(sn+1−sn)]+log detΣθ(sn, an),

where Σθ is diagonal and the transitions (sn, an, sn+1) are obtained from the environment.
We included two popular planning algorithms on Mujoco as baselines: CEM (Chua et al.,

2018) and Random Shooting (RS) (Nagabandi et al., 2017). Furthermore, we included SAC
(Haarnoja et al., 2018), a model free RL algorithm, since i) it has currently one of the
highest performances on Mujoco tasks, which make it a very strong baseline, and ii) it is a
component of our algorithm, as we use it as a proposal distribution in the planning phase.

74

Our results suggest that SMCP does not learn as fast as CEM and RS initially as it
heavily relies on estimating a good value function. However, SMCP quickly achieves higher
performances than CEM and RS. SMCP also learns faster than SAC because it was able
to leverage information from the model early in training. We hypothesize that the lack of
performance gain of SMCP over SAC in the Hopper environment is due to the low quality
of its model and the complexity of the task.

Note that our results differ slightly from the results usually found in the model-based
RL literature. This is because we are tackling a more difficult problem: estimating the
transitions and the reward function. We are using unmodified versions of the environments
which introduces many hurdles. For instance, the reward function is challenging to learn
from the state and very noisy.

As in Henderson et al. (2017), we assess the significance of our results by running each
algorithm with multiple seeds (10 random seeds in our case, from seed 0 to seed 9).

4.5. Conclusion and Future Work
In this work, we have introduced a connection between planning and inference and showed

how we can exploit advances in deep learning and probabilistic inference to design a new
efficient and theoretically grounded planning algorithm. We additionally proposed a natural
way to combine model-free and model-based reinforcement learning for planning based on
the SMC perspective. We empirically demonstrated that our method achieves state of the

Fig. 4.5. Training curves on the Mujoco continuous control benchmarks. Sequential Monte
Carlo Planning both with resampling (SIR) (pink) and without (SIS) (orange) learns faster
than the Soft Actor-Critic model-free baseline (blue) and achieves higher asymptotic perfor-
mances than the planning methods (Cross Entropy Methods and Random Shooting). The
shaded area represents the standard deviation estimated by bootstrap over 10 seeds as im-
plemented by the Seaborn package.

75

art results on Mujoco. Our result suggest that planning can lead to faster learning in control
tasks.

However, our particle-based inference method suffers some several shortcomings. First,
we need many particles to build a good approximation of the posterior, and this can be com-
putationally expensive since it requires to perform a forward pass of the policy, the value
function and the model for every particle. Second, resampling can also have adverse effects,
for instance all the particles could be resampled on the most likely particle, leading to a
particle degeneracy. More advanced SMC methods dealing with this issue such as backward
simulation (Lindsten et al., 2013) or Particle Gibbs with Ancestor Sampling (PGAS) (Lind-
sten et al., 2014) have been proposed and using them would certainly improve our results.

Another issue we did not tackle in our work is the use of models of the environment
learned from data. Imperfect model are known to result in compounding errors for prediction
over long sequences. We chose to re-plan at each time step (Model Predictive Control) as
it is often done in control to be more robust to model errors. More powerful models or
uncertainty modeling techniques can also be used to improve the accuracy of our planning
algorithm. While the inference and modeling techniques used here could be improved in
multiple ways, SMCP achieved impressive learning speed on complex control tasks. The
planning as inference framework proposed in this work is general and could serve as a stepping
stone for further work combining probabilistic inference and deep reinforcement learning.

76

Chapitre 5

On the Interplay between Noise and Curvature
and its Effect on Optimization and

Generalization

Article details
Thomas V, Pedregosa F, Merriënboer B, Manzagol PA, Bengio Y, Le Roux N. “On the

interplay between noise and curvature and its effect on optimization and generalization”. In
International Conference on Artificial Intelligence and Statistics (AISTATS) 2020. PMLR.

Foreword
This project started while I was thinking about the role of the stochasticity in SGD and its

influence on generalization. At the same time, Nicolas Le Roux gave a talk at Mila where he
mentioned a link between generalization, curvature and gradient noise in supervised learning.
This started a collaboration which ultimately led to this paper published at AISTATS 2020.

Impact since publication
This work has inspired others such as Naganuma et al. (2022) which validated our results

by performing experiments at a larger scale than we did, Rame et al. (2022) used our empirical
results on the similarity between the empirical and the true Fisher matrix and Schneider et al.
(2021) implemented the Takeuchi Information Criterion and approximations we developed
for it as part of their package.

Personal contribution
• Making the link between our original idea and the already existing paper Takeuchi

(1976) which introduced the estimator first, was only published in Japanese and even
reinvented later (Murata et al., 1994).

• Performing all the large-scale experiments: training hundreds of neural networks with
different parameters and architectures and datasets and recording useful statistics

• Theory and experiments for the link between the Hessian H, the Fisher matrix F
and the uncentered gradient covariance matrix C

• Optimization theory for SGD and the interplay between H and C in the quadratic
case

• Writing of the paper with Nicolas and created the figures

Abstract

The speed at which one can minimize an expected loss using stochastic meth-
ods depends on two properties: the curvature of the loss and the variance of
the gradients. While most previous works focus on one or the other of these
properties, we explore how their interaction affects optimization speed. Fur-
ther, as the ultimate goal is good generalization performance, we clarify how
both curvature and noise are relevant to properly estimate the generalization
gap. Realizing that the limitations of some existing works stems from a confu-
sion between these matrices, we also clarify the distinction between the Fisher
matrix, the Hessian, and the covariance matrix of the gradients.

5.1. Introduction
Training a machine learning model is often cast as the minimization of a smooth function

f over parameters θ in Rd. More precisely, we aim at finding a minimum of an expected loss,
i.e.

θ∗ ∈ arg min
θ

Ep[L(θ, x)] , (5.1.1)

where the expectation is under the data distribution x ∼ p. In practice, we only have access
to an empirical distribution p̂ over x and minimize the training loss

θ̂∗ ∈ arg min
θ

Ep̂[L(θ, x)] (5.1.2)

= arg min
θ

f(θ) . (5.1.3)

To minimize this function, we assume access to an oracle which, for every value of θ and x,
returns both L(θ, x) and its derivative with respect to θ, i.e., ∇θL(θ, x). Given this oracle,

78

stochastic gradient iteratively performs the following update: θt+1 = θt−αt∇L(θt, x) 1 where
{αt}t≥0 is a sequence of stepsizes.

Two questions arise: First, how quickly do we converge to θ̂∗ and how is this speed
affected by properties of L and p̂? Second, what is Ep[L(θ̂∗, x)]?

It is known that the former is influenced by two quantities: the curvature of the function,
either measured through its smoothness constant or its condition number, and the noise on
the gradients, usually measured through a bound on Ep̂[∥∇L(θ, x)∥2]. For instance, when
f is µ-strongly convex, L-smooth, and the noise is bounded, i.e. Ep̂[∥∇L(θ, x)∥2] ≤ c, then
stochastic gradient with a constant stepsize α will converge linearly to a ball (Schmidt, 2014).
Calling ∆ the suboptimality, i.e. ∆k = f(θk)− f(θ̂∗), we have

E[∆k] ≤ (1− 2αµ)k∆0 + Lαc

4µ
. (5.1.4)

This implies that as k →∞, the expected suboptimality depends on both the curvature
through µ and L, and on the noise through c. However, bounding curvature and noise using
constants rather than full matrices hides the dependencies between these two quantities. We
also observed that, because existing works replace the full noise matrix with a constant when
deriving convergence rates, that matrix is poorly understood and is often confused with a
curvature matrix. This confusion remains when discussing the generalization properties of a
model. Indeed, the generalization gap stems from a discrepancy between the empirical and
the true data distribution. An estimator of this gap must thus include an estimate of that
discrepancy in addition to an estimate of the impact of an infinitesimal discrepancy on the
loss. The former can be characterized as noise and the latter as curvature. Hence, attempts
at estimating the generalization gap using only the curvature (Keskar et al., 2017; Novak
et al., 2018) are bound to fail as do not characterize the size or geometry of the discrepancy.

In this work, we make the following contributions:
• We provide theoretical and empirical evidence of the similarities and differences sur-

rounding the curvatures matrices; the Fisher F and the Hessian H, and the noise
matrix, C;

• We briefly expand the convergence results of Schmidt (2014), theoretically and em-
pirically highlighting the importance of the relationship between noise and curvature
for strongly convex functions and quadratics;

• We make the connection with an old estimator of the generalization gap, the Takeuchi
Information Criterion, and show how its use of both curvature and noise yields a
superior estimator to other commonly used ones, such as flatness or sensitivity for
neural networks.

1We omit the subscripts when clear from context.

79

5.2. Information matrices: definitions, similarities, and
differences

Before delving into the impact of the information matrices for optimization and general-
ization, we start by recalling their definitions. We shall see that, despite having similar for-
mulations, they encode different information. We then provide insights on their similarities
and differences.

We discuss here two information matrices associated with curvature, the Fisher matrix F
and the Hessian H, and one associated with noise, the gradients’ uncentered covariance C. In
particular, while F and H are well understood, C is often misinterpreted. For instance, it is
often called “empirical Fisher” (Martens, 2014) despite bearing no relationship to F, the true
Fisher. This confusion can have dire consequences and optimizers using C as approximation
to F can have arbitrarily poor performance (Kunstner et al., 2019).

To present these matrices, we consider the case of maximum likelihood estimation (MLE).
We have access to a set of samples (x,y) ∈ X × Y where x is the input and y the target.
We define p : X × Y 7→ R as the data distribution and qθ : X × Y 7→ R such that
qθ(x,y) = p(x)qθ(y|x) as the model distribution2. For each sample (x, y) ∼ p, our loss is
the negative log-likelihood L(θ, y,x) = − log qθ(y|x). Note that all the definitions and results
in this section are valid whether we use the true data distribution p or the empirical p̂.

Matrices H, F and C are then defined as:

H(θ) = Ep

[
∂2

∂θ∂θ⊤L(θ, y,x)
]

(5.2.1)

C(θ) = Ep

[
∂

∂θ
L(θ, y,x) ∂

∂θ
L(θ, y,x)⊤

]
(5.2.2)

F(θ) = Eqθ

[
∂

∂θ
L(θ, y,x) ∂

∂θ
L(θ, y,x)⊤

]
(5.2.3)

= Eqθ

[
∂2

∂θ∂θ⊤L(θ, y,x)
]

. (5.2.4)

We observe the following: a) The definition of H and C involves the data distribution,
in contrast with the definition of F, which involves the model distribution; b) If qθ = p, all
matrices are equal. Furthermore, as noted by Martens (2014), H = F whenever the matrix
of second derivatives does not depend on y, a property shared in particular by all generalized
linear models.

As said above, H, F, and C characterize different properties of the optimization problem.
H and F are curvature matrices and describe the geometry of the space around the current

2qθ(y|x) are the softmax activations of a neural network in the classification setting.

80

point. C, on the other hand, is a “noise matrix” and represents the sensitivity of the gradient
to the particular sample.3

We now explore in more details their similarities and differences.

5.2.1. Bounds between H, F and C

The following proposition bounds the distance between the information matrices:
Proposition 5.2.1 (Distance between H, F and C). Assuming the second moments of the
Fisher are bounded above, i.e. Eqθ

[||∇2
θL(θ, x, y)||2] ≤ β1 and

Eqθ
[||∇θL(θ, x, y)∇θL(θ, x, y)⊤||2] ≤ β2, we have

||F−H||2 ≤ β1 Dχ2(p||qθ) ,

||F−C||2 ≤ β2 Dχ2(p||qθ) ,

||C−H||2 ≤
(
β1 + β2

)
Dχ2(p||qθ) .

where Dχ2(p||qθ) =
∫∫ (p(x,y)−qθ(x,y))2

qθ(x,y) dydx is the χ2 divergence and || · || is the Frobenius norm.
All the proofs are in the appendix.
In particular, when p = qθ we recover that F = H = C. At first glance, one could assume

that, as the model is trained and qθ approaches p, these matrices become more similar. The
χ2 divergence is however poorly correlated with the loss of the model. One sample where the
prediction of the model is much smaller than the true distribution can dramatically impact
the χ2 divergence and thus the distance between the information matrices. We show in
Section 5.5.3 how these distances evolve when training a deep network.

5.2.2. C does not approximate F

C is often referred to as the “empirical Fisher” matrix, implying that it is an approxima-
tion to the true Fisher matrix F (Martens, 2014). In some recent works (Liang et al., 2017;
George et al., 2018) the empirical Fisher matrix is used instead of the Fisher matrix. How-
ever, in the general case, there is no guarantee that C will approximate F, even in the limit
of infinite samples. We now give a simple example highlighting their different roles:
Example 2 (Mean regression). Let X = (xi)i=1,...,N be an i.i.d sequence of random variables.
The task is to estimate µ = E[x] by minimizing the loss L(θ) = 1

2N

∑N
n=1 ||xn − θ||2. The

minimum is attained at θMLE = 1
N

∑N
n=1 xn. This estimator is consistent and converges to µ

at rate O(1√
N

).
This problem is an MLE problem if we define qθ(x) = N (x; θ, Id). In this case, we have

H(θMLE) = F(θMLE) = Id , C(θMLE) = Σ̂x , (5.2.5)

3Technically, it is S, the centered covariance matrix, rather than C which plays that role but the two are
similar close to a stationary point.

81

where Σ̂x is the empirical covariance of the xi’s. We see that, even in the limit of infinite
data, the covariance C does not converge to the actual Fisher matrix nor the Hessian. Hence
we shall and will not refer to C as the “empirical Fisher” matrix.

In some other settings, however, one can expect a stronger correlation between C and H:
Example 3. (Ordinary Least Squares) Let us assume we have a data distribution (xn, yn)
so that

yn = x⊤
n θ∗ + ϵn, ϵn ∼ N (0, Σ) (5.2.6)

with yn ∈ Rp and xn, ϵn ∈ Rd, θ ∈ Rp×d. We train a model to minimize the sum of squares
residual

min
θ

1
2N

N∑
n=1
||yn − x⊤

n θ||2 . (5.2.7)

In that case, for θ = θ∗

H = F = Ep[xx⊤] , C = Ep[xΣx⊤] (5.2.8)

First, we observe that the Hessian and the Fisher are equal, for all θ. Second, when the
input/output covariance matrix is isotropic Σ = σ2I, then we have C ∝ H = F.

5.3. Information matrices in optimization
Now that the distinction between these matrices has been clarified, we can explain how

their interplay affects optimization. In this section, we offer theoretical results, as well as a
small empirical study, on the impact of the noise geometry on convergence rates.

5.3.1. Convergence rates

We start here by expanding the the result of Schmidt (2014) to full matrices, expliciting
how the interplay of noise and curvature affects optimization. We then build a toy experiment
to validate the results.

5.3.1.1. General setting

Proposition 5.3.1 (Function value). Let f be a twice-differentiable function. Assume f is
µ-strongly convex and there are two matrices H and S such that for all θ, θ′:

f(θ′) ≤ f(θ) +∇f(θ)⊤(θ′ − θ) + 1
2(θ′ − θ)⊤H(θ′ − θ)

Ep[∇L(θ, x)∇L(θ, x)⊤] ≼ S +∇f(θ)∇f(θ)⊤ .

Then stochastic gradient with stepsize α and positive definite preconditioning matrix M sat-
isfies

E[∆k] ≤ (1− 2αµMµ)k∆0 + α

4µMµ
Tr(HMSM) ,

82

where µM is the smallest eigenvalue of M− α
2 M⊤HM.

S is the centered covariance matrix of the stochastic gradients and, if f is quadratic, then
H is the Hessian.

5.3.1.2. Centered and uncentered covariance

Proposition 5.3.1, as well as most results on optimization, uses a bound on the uncentered
covariance of the gradients. The result is that the noise must be lower far away from the
optimum, where the gradients are high. Thus, it seems more natural to define convergence
rates as a function of the centered gradients’ covariance S, although these results are usually
weaker as a consequence of the relaxed assumption. For the remainder of this section, focused
on the quadratic case, we will use S. Note that the two matrices are equal at any first-order
stationary point.

Centered covariance matrices have been used in the past to derive convergence rates, for
instance by Bach & Moulines (2013); Flammarion & Bach (2015); Dieuleveut et al. (2016).
These works also include a dependence on the geometry of the noise since their constraint
is of the form S ≼ σ2H. In particular, if S and H are not aligned, σ2 must be larger for the
inequality to hold.

5.3.1.3. Quadratic functions

Proposition 5.3.2 (Quadratic case). Assuming we minimize a quadratic function

f(θ) = 1
2(θ − θ̂∗)⊤H(θ − θ̂∗)

only having access to a noisy estimate of the gradient g(θ) ∼ ∇f(θ) + ϵ with ϵ a zero-mean
random variable with covariance E[ϵϵ⊤] = S, then the iterates obtained using stochastic
gradient with stepsize α and preconditioning psd matrix M satisfy

E[θk − θ̂∗] = (1− αMH)k(θ0 − θ̂∗) .

Further, the covariance of the iterates Σk = E[(θk − θ̂∗)(θk − θ̂∗)⊤] satisfies

Σk+1 = (I− αMH)Σk(I− αMH)⊤ + α2MSM⊤ .

In particular, the stationary distribution of the iterates has a covariance Σ∞ which verifies
the equation

Σ∞HM + MHΣ∞ = αM
(
S + HΣ∞H

)
M .

Recently, analyzing the stationary distribution of SGD by modelling its dynamics as a
stochastic differential equation (SDE) has gained traction in the machine learning commu-
nity (Chaudhari & Soatto, 2017; Jastrzębski et al., 2017). Worthy of note, Mandt et al.
(2017); Zhu et al. (2018) do not make assumptions about the structure of the noise matrix
S. Our proposition above extends and corrects some of their results as it does not rely on

83

the continuous-time approximation of the dynamics of SGD. Indeed, as pointed out in Yaida
(2018), most of the works using the continuous-time approximation implicitly make the con-
fusion between centered S and uncentered C covariance matrices of the gradients.
Proposition 5.3.3 (Limit cycle of SG). If f is a quadratic function and H, C and M
are simultaneously diagonalizable, then stochastic gradient with symmetric positive definite
preconditioner M and stepsize α yields

E[∆t] = α
2 Tr((2I− αMH)−1MS) + O(e−t) . (5.3.1)

Rather than using a preconditioner, another popular method to reduce the impact of the
curvature is Polyak momentum, defined as

v0 = 0 , vt = γvt−1 +∇θL(θt, xt)

θt+1 = θt − αvt .

Proposition 5.3.4 (Limit cycle of momentum). If f is a quadratic function and H and C are
simultaneously diagonalizable, then Polyak momentum with parameter γ and stepsize α yields

E[∆t] = α
2

(1+γ)
(1−γ) Tr

(
(2(1 + γ)I− αH)−1S

)
+ O(e−t) . (5.3.2)

5.4. Generalization
So far, we focused on the impact of the interplay between curvature and noise in the

optimization setting. However, optimization, i.e. reaching low loss on the training set, is
generally not the ultimate goal as one would rather reach a low test loss. The difference
between training and test loss is called the generalization gap and estimating it has been the
focus of many authors (Keskar et al., 2017; Neyshabur et al., 2017; Liang et al., 2017; Novak
et al., 2018; Rangamani et al., 2019).

We believe there is a fundamental misunderstanding in several of these works, stemming
from the confusion between curvature and noise. Rather than proposing a new metric, we
empirically show how the Takeuchi information criterion (TIC: Takeuchi, 1976) addresses
these misunderstandings. It makes use of both the Hessian of the loss with respect to the
parameters, H, and the uncentered covariance of the gradients, C. While the former repre-
sents the curvature of the loss, i.e., the sensitivity of the gradient to a change in parameter
space, the latter represents the sensitivity of the gradient to a change in inputs. As the gen-
eralization gap is a direct consequence of the discrepancy between training and test sets, the
influence of C is natural. Thus, our result further reinforces the idea that the Hessian cannot
by itself be used to estimate the generalization gap, an observation already made by Dinh
et al. (2017), among others.

84

5.4.1. Takeuchi information criterion

In the simplest case of a well specified least squares regression problem, an asymptotically
unbiased estimator of the generalization gap is the AIC (Akaike, 1974), which is simply
the number of degrees of freedom divided by the number of samples: Ĝ(θ) = 1

N
d where d

is the dimensionality of θ. This estimator is valid locally around the maximum likelihood
parameters computed on the training data. However, these assumptions do not hold in
most cases, leading to the number of parameters being a poor predictor of the generalization
gap (Novak et al., 2018). When dealing with maximum likelihood estimation (MLE) in
misspecified models, a more general formula for estimating the gap is given by the Takeuchi
information criterion (TIC: Takeuchi, 1976):

Ĝ = 1
N

Tr(H(θ̂∗)−1C(θ̂∗)) , (5.4.1)

where θ̂∗ is a local optimum. Note that H and C here are the hessian and covariance of the
gradients matrices computed on the true data distribution.

This criterion is not new in the domain of machine learning. It was rediscovered by Mu-
rata et al. (1994) and similar criteria have been proposed since then (Beirami et al., 2017;
Wang et al., 2018). However, as far as we know, no experimental validation of this criterion
has been carried out for deep networks. Indeed, for deep networks, H is highly degener-
ate, most of its eigenvalues being close to 0 (Sagun et al., 2016). In this work, the Takeuchi
information criterion is computed, in the degenerate case, by only taking into account the
eigenvalues of the Hessian of significant magnitude. In practice, we cut all the eigenvalues
smaller than a constant times the biggest eigenvalue and perform the inversion on that sub-
space. Details can be found in appendix C.2.1.

Interestingly, the term Tr(H−1C) appeared in several works before, whether as an upper
bound on the suboptimality (Flammarion & Bach, 2015) or as a number of iterates required
to reach a certain suboptimality (Bottou & Bousquet, 2008). Sadly, it is hard to estimate
for large networks but we propose an efficient approximation in Section 5.5.5.1.

5.4.2. Limitations of flatness and sensitivity

We highlight here two commonly used estimators of the generalization gap as they provide
good examples of failure modes that can occur when not taking the noise into account.
This is not to mean that these estimators cannot be useful for the models that are common
nowadays, rather that they are bound to fail in some cases.

Flatness (Hochreiter & Schmidhuber, 1997) links the spectrum of the Hessian at a local
optimum with the generalization gap. This correlation, observed again by Keskar et al.
(2017), was already shown to not hold in general (Dinh et al., 2017). As we showed in

85

Section 5.2.2, the Hessian does not capture the covariance of the data, which is linked to the
generalization gap through the central-limit theorem.

Sensitivity (Novak et al., 2018) links the generalization gap to the derivative of the
loss with respect to the input. The underlying idea is that we can expect some discrepancy
between train and test data, which will induce changes in the output and a potentially higher
test loss. However, penalizing the norm of the Jacobian assumes that changes between train
and test data will be isotropic. In practice, we can expect data to vary more along some
directions, which is not reflected in the sensitivity. In the extreme case where the test data
is exactly the same as the training data, the generalization gap will be 0, which will again
not be captured by the sensitivity. In practice, whitening the data makes the sensitivity
appropriate, save for a scaling factor, as we will see in the experiments.

5.5. Experiments
We now provide experimental validation of all the results in this paper. We start by

analyzing the distance between information matrices, first showing its poor correlation with
the training loss, then showing that these matrices appear to be remarkably aligned, albeit
with different scales, when training deep networks on standard datasets.

5.5.1. Discrepancies between C, H and F

5.5.1.1. Experimental setup

For comparing the similarities and discrepencies between the information matrices, we
tested

• 5 different architectures: logistic regression, a 1-hidden layer and 2-hidden layer fully
connected network, and 2 small convolutional neural networks (CNNs, one with batch
normalization (Ioffe & Szegedy, 2015) and one without);

• 3 datasets: MNIST, CIFAR-10, SVHN;
• 3 learning rates: 10−2, 5 · 10−3, and 10−3, using SGD with momentum µ = 0.9;
• 2 batch sizes: 64, 512;
• 5 dataset sizes: 5k, 10k, 20k, 25k, and 50k.

We train for 750k steps and compute the metrics every 75k steps. To be able to compute all
the information matrices exactly, we reduced the input dimension by converting all images
to greyscale and resizing them to 7× 7 pixels. While this makes the classification task more
challenging, our neural networks still exhibit the behaviour of larger ones by their ability to
fit the training set, even with random labels. Details and additional figures can be found in
appendix C.2.2.

86

5.5.2. Comparing Fisher and empirical Fisher

Figure 5.1 shows the squared Frobenius norm between F and C (on training data) for
many architectures, datasets, at various stages of the optimization. We see that, while the
two matrices eventually coincide on the training set for some models, the convergence is very
weak as even low training errors can lead to a large discrepancy between these two matrices.
In practice, C and F might be significantly different, even when computed on the training set.

Fig. 5.1. Squared Frobenius norm between F̄ and C̄ (computed on the training distribu-
tion). Even for some low training losses, there can be a significant difference between the
two matrices.

5.5.3. Comparing H, F and C

In this subsection, we analyze the similarities and differences between the information
matrices. We will focus on the scale similarity r, defined as the ratio of traces, and the angle
similarity s, defined as the cosine between matrices. Note that having both r(A, B) = 1 and
s(A, B) = 1 implies A = B.

Figure 5.2 shows the scale (left) and angle (right) similarities between the three pairs of
matrices during the optimization of all models used in figure 5.4. We can see that H is not
aligned with C nor F at the beginning of the optimization but this changes quickly. Then,
all three matrices reach a very high cosine similarity, much higher than we would obtain for
two random low-rank matrices. For the scaling, C is “larger” than the other two while F
and H are very close to each other. Thus, as in the least squares case, we have C ∝∼ F ≈ H.

87

Fig. 5.2. Scale and angle similarities between information matrices.

5.5.4. Impact of noise on second-order methods

Section 5.3 extended existing results to take the geometry of the noise and the curvature
into account. Here, we show how the geometry of the noise, and in particular its relationship
to the Hessian, can make or break second-order methods in the stochastic setting. To be
clear, we assume here that we have access to the full Hessian and do not address the issue
of estimating it from noisy samples.

We assume a quadratic L(θ) = 1
2θ⊤Hθ with θ ∈ R20 and H ∈ R20×20 a diagonal matrix

such that Hii = i2 with a condition number d2 = 400. At each timestep, we have access to
an oracle that outputs a noisy gradient, Hθt + ϵ with ϵ drawn from a zero-mean Gaussian
with covariance S. Note here that S is the centered covariance of the gradients. We consider
three settings: a) S = α1H; b) S = I; c) S = α−1H−1 where the constants α1 and α−1 are
chosen such that Tr(S) = d. Hence, these three settings are indistinguishable from the point
of view of the rate of Schmidt (2014).

In this simplified setting, we get an analytic formula for the variance at each timestep
and we can compute the exact number of steps t such that E[∆t] falls below a suboptimality
threshold. To vary the impact of the noise, we compute the number of steps for three different
thresholds: a) ϵ = 1; b) ϵ = 0.1; c) ϵ = 0.01. For each algorithm and each noise, the stepsize
is optimized to minimize the number of steps required to reach the threshold.

The results are in Table 5.1. We see that, while Stochastic gradient and momentum are
insensitive to the geometry of the noise for small ϵ, Newton method is not and degrades
when the noise is large in low curvature directions. For ϵ = 10−2 and S ∝ H−1, Newton is
worse than SG, a phenomenon that is not captured by the bounds of Bottou & Bousquet
(2008) since they do not take the structure of the curvature and the noise into account. We
also see that the advantage of Polyak momentum over stochastic gradient disappears when
the suboptimality is small, i.e. when the noise is large compared to the signal.

88

Also worthy of notice is the fixed stepsize required to achieve suboptimality ϵ, as shown
in Table 5.2. While it hardly depends on the geometry of the noise for SG and Polyak,
Newton method requires much smaller stepsizes when S is anticorrelated with H to avoid
amplifying the noise.

5.5.5. The TIC and the generalization gap

We now empirically test the quality of the TIC as an estimator of the generalization
gap in deep networks. Following Neyshabur et al. (2017) we assess the behaviour of our
generalization gap estimator by varying (1) the number of parameters in a model and (2)
the label randomization ratio.

Experiments are performed using a fully connected feedforward network with a single
hidden layer trained on a subset of 2k samples of SVHN (Netzer et al., 2011). In Figure 5.3a
we vary the number of units in the hidden layer without label randomization while in Fig-
ure 5.3b we vary the label randomization ratio with a fixed architecture. Each point is com-
puted using 3 different random number generator seeds. The neural networks are trained

ϵ Method β = 1 β = 0 β = −1

100
SG 44 43 42

Newton 3 2 19
Polyak 36 36 34

10−1
SG 288 253 207

Newton 3 28 225
Polyak 119 111 97

10−2
SG 2090 1941 1731

Newton 29 315 2663
Polyak 1743 1727 1705

Table 5.1. Number of updates required to reach suboptimality of ϵ for various methods
and S ∝ Hβ.

ϵ Method β = 1 β = 0 β = −1

100
SG 5 · 10−3 5 · 10−3 5 · 10−3

Newton 1 · 100 1 · 100 2 · 10−1

Polyak 5 · 10−3 4 · 10−3 5 · 10−3

10−1
SG 4 · 10−3 4 · 10−3 5 · 10−3

Newton 1 · 100 2 · 100 3 · 10−2

Polyak 2 · 10−3 2 · 10−3 3 · 10−3

10−2
SG 1 · 10−3 1 · 10−3 2 · 10−3

Newton 2 · 10−1 2 · 10−2 3 · 10−3

Polyak 3 · 10−4 3 · 10−4 3 · 10−4

Table 5.2. Stepsizes achieving suboptimality ϵ in the fewest updates for various methods
and S ∝ Hβ.

89

for 750k steps. The confidence intervals are provided using bootstrapping to estimate a 95%
confidence interval. The Hessian, covariance matrices and sensitivity are computed on a sub-
set of size 5k of the test data. Details can be found in Appendix C.2.2.

(a) Varying hidden layer size. (b) Varying the label randomization level.

Fig. 5.3. Comparing the TIC to other estimators of the generalization gap on SVHN. The
TIC matches the generalization gap more closely than both the AIC and the sensitivity.

We now study the ability of the TIC across a wide variety of models, datasets, and hy-
perparameters. More specifically, we compare the TIC to the generalization gap for: The
experiments of Figure 5.4 are performed with the experimental setup presented in subsec-
tion 5.5.1.1. Figure 5.4a shows that the TIC using H and C computed over the test set is an
excellent estimator of the generalization gap. For comparison, we also show in Figure 5.4b
the generalization gap as a function of H computed over the test set. We see that, even
when using the test set, the correlation is much weaker than with the TIC.

5.5.5.1. Efficient approximations to the TIC

Although the TIC is a good estimate of the generalization gap, it can be expensive to
compute on large models. Following our theoretical and empirical analysis of the proximity
of H and F, we propose two approximations to the TIC: Tr(F−1C) and Tr(C)/ Tr(F). They
are easier to compute as the F is in general easier to compute than H and the second does
not require any matrix inversion.

Using the same experimental setting as in 5.5.5, we observe in Figure 5.5 that the re-
placing H with F leads to almost no loss in predictive performance. On the other hand, the
ratio of the traces works best when the generalization gap is high and tends to overestimate
it when it is small.

Intuition on Tr(C)/ Tr(F): it is not clear right away why the ratio of traces might
be a interesting quantity. However, as observed in figure 5.2, C and F are remarkably

90

(a) Gap vs. TIC. (b) Gap vs. flatness.

Fig. 5.4. Generalization gap as a function of the Takeuchi information criterion (left) and
the trace of the Hessian on the test set (right) for many architectures, datasets, and hyper-
parameters. Correlation is perfect if all points lie on a line. We see that the Hessian cannot
by itself capture the generalization gap.

Fig. 5.5. Generalization gap as a function of two approximations to the Takeuchi Informa-
tion Criterion: Tr(F−1C) (left) and Tr(C)/ Tr(F) (right).

aligned, but there remains a scaling factor. If we had C = αF, then Tr(F−1C) = kα where
k is the dimension of the invertible subspace of F and Tr(C)/ Tr(F) = dα where d is the
dimensionality of θ. So, up to a multiplicative constant (or an offset in log scale), we can
expect these two quantities to exhibit similarities. Notice that on figure 5.5, this offset does
appear and is different for every dataset (MNIST has the smallest one, then SVHN and
CIFAR10, just slightly bigger).

91

5.5.6. The importance of the noise in estimating the generalization
gap

For a given model, the generalization gap captures the discrepancy that exists between
the training set and the data distribution. Hence, estimating that gap involves the evaluation
of the uncertainty around the data distribution. The TIC uses C to capture that uncertainty
but other measures probably exist. However, estimators which do not estimate it are bound
to have failure modes. For instance, by using the square norm of the derivative of the loss
with respect to the input, the sensitivity implicitly assumes that the uncertainty around the
inputs is isotropic and will fail should the data be heavily concentrated in a low-dimensional
subspace. It would be interesting to adapt the sensitivity to take the covariance of the inputs
into account.

Another aspect worth mentioning is that estimators such as the margin assume that
the classifier is fixed but the data is a random variable. Then, the margin quantifies the
probability that a new datapoint would fall on the other side of the decision boundary. By
contrast, the TIC assumes that the data are fixed but that the classifier is a random variable.
It estimates the probability that a classifier trained on slightly different data would classify
a training point incorrectly. In that, it echoes the uniform stability theory (Bousquet &
Elisseeff, 2002), where a full training with a slightly different training set has been replaced
with a local search.

5.6. Conclusion and open questions
We clarified the relationship between information matrices used in optimization. While

their differences seem obvious in retrospect, the widespread confusion makes these messages
necessary. Indeed, several well-known algorithms, such as Adam (Kingma & Ba, 2014),
claiming to use second-order information about the loss to accelerate training seem instead
to be using the covariance matrix of the gradients. Equipped with this new understanding
of the difference between the curvature and noise information matrices, one might wonder if
the success of these methods is not due to variance reduction instead. If so, one should be
able to combine variance reduction and geometry adaptation, an idea attempted by Le Roux
et al. (2011).

We also showed how, in certain settings, the geometry of the noise could affect the
performance of second-order methods. While Polyak momentum is affected by the scale of
the noise, its performance is independent of the geometry, similar to stochastic gradient but
unlike Newton method. However, empirical results indicate that common loss functions are
in the regime favorable to second-order methods.

92

Finally, we investigated whether the Takeuchi information criterion is relevant for esti-
mating the generalization gap in neural networks. We provided evidence that this complexity
measures involving the information matrices is predictive of the generalization performance.

We hope this study will clarify the interplay of the noise and curvature in common
machine learning settings, potentially giving rise to new optimization algorithms as well as
new methods to estimate the generalization gap.

Acknowledgments

We would like to thank Gauthier Gidel, Reyhane Askari and Giancarlo Kerg for reviewing
an earlier version of this paper. We also thank Aristide Baratin for insightful discussions.
Valentin Thomas acknowledges funding from the Open Philantropy project.

93

Chapitre 6

Beyond Variance Reduction: Understanding
the True Impact of Baselines on Policy

Optimization

Article details
Thomas Valentin*, Chung Wesley*, Machado Marlos C., Le Roux Nicolas “Beyond vari-

ance reduction: Understanding the true impact of baselines on policy optimization”. In In-
ternational Conference on Machine Learning (ICML) 2021. PMLR.

Foreword
In the summer of 2019, I interned at Google Brain Montréal with Nicolas Le Roux

and Marlos C. Machado and my project was initially about using off-policy learning to
reduce the variance of the gradients for Policy Gradient methods in Reinforcement Learning.
However, when comparing our method to other variance reduction methods, such as the use of
baselines, I came to realise that symmetric perturbations of the variance-minimizing baseline
(e.g ±ϵ), while increasing the variance by the same amount, led to asymmetric impacts on the
regret/average reward. While we initially decided to continue exploring the first project, we
came back to this observation which Wesley had begun to work on with Nicolas. By studying
this on simple examples such as a two-arm bandits, Nicolas was first able to demonstrate
our first divergence result. During the year 2020, we worked together on extending both the
divergence and convergence results and deepened our understanding of the problem.

This paper could be described as one pointing out a surprising flaw in a widely used
algorithm and as such it inspired future work. The most relevant direct line of work inspired
by our article is the one led by Jincheng Mei who worked previously on the convergence of
policy gradient methods in the expected regime.

Impact since publication
Following our work, Mei et al. (2021) extended our observation to a vast class of algo-

rithms: those which are too greedy, or committal and may converge prematurely to a subop-
timal solution. Finally, we (Jincheng, Wesley and I) started collaborating together and this
culminated in a paper The Role of Baselines in Policy Optimization (Mei et al., 2022) pub-
lished at NeurIPS 2022 which sheds light on how baselines impact the exploration behavior
of policy gradient methods and how using the value function as a baseline guarantees policy
improvement in expectation while the variance-minimizing baseline may not. As such policy
gradient using the true value function as a baseline can converge to the optimal policy fast.

Personal contribution
• The original observation that baselines impact not only the variance but also the con-

vergence of Policy Gradient methods was done by me during my summer internship
at Google Brain with Nicolas and Marlos

• Theory (convergence proofs) and experiments for the off-policy setting with the col-
laboration of Wesley for the extension to K > 2 arms

• Collaboration with Wesley on the divergence proofs for the 3 arms setting
• Design of the simplex visualizations (Figure 6.1 and Figure 6.3)
• Writing of the paper alongside with all my co-authors

Abstract

Bandit and reinforcement learning (RL) problems can often be framed as op-
timization problems where the goal is to maximize average performance while
having access only to stochastic estimates of the true gradient. Traditionally,
stochastic optimization theory predicts that learning dynamics are governed
by the curvature of the loss function and the noise of the gradient estimates.
In this paper we demonstrate that the standard view is too limited for bandit
and RL problems. To allow our analysis to be interpreted in light of multi-
step MDPs, we focus on techniques derived from stochastic optimization prin-
ciples (e.g., natural policy gradient and EXP3) and we show that some stan-
dard assumptions from optimization theory are violated in these problems.
We present theoretical results showing that, at least for bandit problems, cur-
vature and noise are not sufficient to explain the learning dynamics and that
seemingly innocuous choices like the baseline can determine whether an algo-
rithm converges. These theoretical findings match our empirical evaluation,
which we extend to multi-state MDPs.

96

6.1. Introduction
In the standard multi-arm bandit setting Robbins (1952), an agent needs to choose, at

each timestep t, an arm at ∈ {1, ..., n} to play, receiving a potentially stochastic reward rt

with mean µat . The goal of the agent is usually to maximize the total sum of rewards, ∑T
i=1 ri,

or to maximize the average performance at time T , Ei∼πµi with π being the probability of
the agent of drawing each arm (Bubeck & Cesa-Bianchi, 2012). While the former measure
is often used in the context of bandits,1 Ei∼πµi is more common in the context of Markov
Decision Processes (MDPs), which have multi-arm bandits as a special case.

In this paper we focus on techniques derived from stochastic optimization principles,
such as EXP3 (Auer et al., 2002; Seldin et al., 2013). In particular, we study policy gradient
methods, a family of algorithms useful in the more general MDP setting which have seen
empirical success in recent times Schulman et al. (2017b).

We analyze the problem of learning to maximize the average reward, J , by gradient
ascent:

θ∗ = arg max
θ

J (θ) = arg max
θ

∑
a

πθ(a)µa , (6.1.1)

with µa being the average reward of arm a. In this case, we are mainly interested in out-
putting an effective policy at the end of the optimization process, without explicitly consid-
ering the performance of intermediary policies.

Optimization theory predicts that the convergence speed of stochastic gradient methods
will be affected by the variance of the gradient estimates and by the geometry of the function
J , represented by its curvature. Roughly speaking, the geometry dictates how effective true
gradient ascent is at optimizing J (θ) while the variance can be viewed as a penalty, capturing
how much slower the optimization process is by using noisy versions of this true gradient.
More concretely, doing one gradient step with stepsize α, using a stochastic estimate gt of
the gradient, leads to (Bottou et al., 2018):

E[J (θt+1)]− J (θt) ≥ (α− Lα2

2)∥E[gt]∥2
2 − Lα2

2 Var[gt],

when J is L-smooth, i.e. its gradients are L-Lipschitz.
As large variance has been identified as an issue for policy gradient (PG) methods, many

works have focused on reducing the noise of the updates. One common technique is the use
of control variates (Greensmith et al., 2004; Hofmann et al., 2015), referred to as baselines
in the context of RL. These baselines b are subtracted from the observed returns to obtain
shifted returns, r(ai)− b, and do not change the expectation of the gradient. In MDPs, they
are typically state-dependent. While the value function is a common choice, previous work
showed that the minimum-variance baseline for the REINFORCE (Williams, 1992) estimator

1The objective is usually presented as regret minimization.

97

is different and involves the norm of the gradient (Peters & Schaal, 2008). Reducing variance
has been the main motivation for many previous works on baselines (e.g., Gu et al., 2016; Liu
et al., 2017; Grathwohl et al., 2017; Wu et al., 2018; Cheng et al., 2020), but the influence
of baselines on other aspects of the optimization process has hardly been studied. We take
a deeper look at baselines and their effects on optimization.

Contributions

We show that baselines can impact the optimization process beyond variance reduction
and lead to qualitatively different learning curves, even when the variance of the gradients
is the same. For instance, given two baselines with the same variance, the more negative
baseline promotes committal behaviour where a policy quickly tends towards a deterministic
one, while the more positive baseline leads to non-committal behaviour, where the policy
retains higher entropy for a longer period.

Furthermore, we show that the choice of baseline can even impact the convergence
of natural policy gradient (NPG), something variance cannot explain. In particular, we
construct a three-armed bandit where using the baseline minimizing the variance can lead
to convergence to a deterministic, sub-optimal policy for any positive stepsize, while another
baseline, with larger variance, guarantees convergence to the optimal policy. As such a
behaviour is impossible under the standard assumptions in optimization, this result shows
how these assumptions may be violated in practice. It also provides a counterexample to the
convergence of NPG algorithms in general, a popular variant with much faster convergence
rates than vanilla PG when using the true gradient in tabular MDPs (Agarwal et al., 2019).

Further, we identify on-policy sampling as a key factor to these convergence
issues as it induces a vicious cycle where making bad updates can lead to worse policies, in
turn leading to worse updates. A natural solution is to break the dependency between the
sampling distribution and the updates through off-policy sampling. We show that ensuring
all actions are sampled with sufficiently large probability at each step is enough to guarantee
convergence in probability. Note that this form of convergence is stronger than convergence
of the expected iterates, a more common type of result (e.g., Mei et al., 2020b; Agarwal
et al., 2019).

We also perform an empirical evaluation on multi-step MDPs, showing that baselines
have a similar impact in that setting. We observe a significant impact on the empirical
performance of agents when using two different sets of baselines yielding the same variance,
once again suggesting that learning dynamics in MDPs are governed by more than the
curvature of the loss and the variance of the gradients.

98

(a) b−
θ = b∗

θ − 1/2 (b) bθ = b∗
θ (c) b+

θ = b∗
θ + 1/2 (d) bθ = V πθ

Fig. 6.1. We plot 15 different trajectories of natural policy gradient with softmax param-
eterization, when using various baselines, on a 3-arm bandit problem with rewards (1,0.7,0)
and stepsize α = 0.025 and θ0 = (0, 3, 5). The black dot is the initial policy and colors repre-
sent time, from purple to yellow. The dashed black line is the trajectory when following the
true gradient (which is unaffected by the baseline). Different values of ϵ denote different per-
turbations to the minimum-variance baseline. We see some cases of convergence to a subop-
timal policy for both ϵ = −1/2 and ϵ = 0. This does not happen for the larger baseline ϵ = 1/2

or the value function as baseline. Figure made with Ternary (Harper & Weinstein, 2015).

6.2. Baselines, learning dynamics & exploration
The problem defined in Eq. 6.1.1 can be solved by gradient ascent. Given access only

to samples, the true gradient cannot generally be computed and the true update is replaced
with a stochastic one, resulting in the following update:

θt+1 = θt + α

N

∑
i

r(ai)∇θ log πθ(ai) , (6.2.1)

where ai are actions drawn according to the agent’s current policy πθ, α is the stepsize, and
N , which can be 1, is the number of samples used to compute the update. To reduce the
variance of this estimate without introducing bias, we can introduce a baseline b, resulting
in the gradient estimate (r(ai)− b)∇θ log πθ(ai).

While the choice of baseline is known to affect the variance, we show that baselines can
also lead to qualitatively different behaviour of the optimization process, even when the
variance is the same. This difference cannot be explained by the expectation or variance,
quantities which govern the usual bounds for convergence rates (Bottou et al., 2018).

6.2.1. Committal and non-committal behaviours

To provide a complete picture of the optimization process, we analyze the evolution of
the policy during optimization. We start in a simple setting, a deterministic three-armed
bandit, where it is easier to produce informative visualizations.

To eliminate variance as a potential confounding factor, we consider different baselines
with the same variance. We start by computing the baseline leading to the minimum-
variance of the gradients for the algorithm we use. For vanilla policy gradient, we have

99

b∗
θ = E[r(ai)∥∇ log πθ(ai)∥2

2]
E[∥∇ log πθ(ai)∥2

2] (Peters & Schaal, 2008; Greensmith et al., 2004) (see Appendix D.4.1
for details and the NPG version). Note that this baseline depends on the current policy and
changes throughout the optimization. As the variance is a quadratic function of the baseline,
the two baselines b+

θ = b∗
θ + ϵ and b−

θ = b∗
θ − ϵ result in gradients with the same variance

(see Appendix D.4.4 for details). Thus, we use these two perturbed baselines to demonstrate
that there are phenomena in the optimization process that variance cannot explain.

Fig. 6.1 presents fifteen learning curves on the probability simplex representing the space
of possible policies for the three-arm bandit, when using NPG and a softmax parameteriza-
tion. We choose ϵ = 1/2 to obtain two baselines with the same variance: b+

θ = b∗
θ + 1/2 and

b−
θ = b∗

θ − 1/2.
Inspecting the plots, the learning curves for ϵ = −1/2 and ϵ = 1/2 are qualitatively different,

even though the gradient estimates have the same variance. For ϵ = −1/2, the policies quickly
reach a deterministic policy (i.e., a neighborhood of a corner of the probability simplex),
which can be suboptimal, as indicated by the curves ending up at the policy choosing action
2. On the other hand, for ϵ = 1/2, every learning curve ends up at the optimal policy,
although the convergence might be slower. The learning curves also do not deviate much
from the curve for the true gradient. Again, these differences cannot be explained by the
variance since the baselines result in identical variances.

Additionally, for bθ = b∗
θ, the learning curves spread out further. Compared to ϵ = 1/2,

some get closer to the top corner of the simplex, leading to convergence to a suboptimal
solution, suggesting that the minimum-variance baseline may be worse than other, larger
baselines. In the next section, we theoretically substantiate this and show that, for NPG,
it is possible to converge to a suboptimal policy with the minimum-variance baseline; but
there are larger baselines that guarantee convergence to an optimal policy.

We look at the update rules to explain these different behaviours. When using a baseline
b with NPG, sampling ai results in the update

θt+1 = θt + α[r(ai)− b]F −1
θ ∇θ log πθ(ai)

= θt + α
r(ai)− b

πθ(ai)
1ai

+ αλe

where F −1
θ = Ea∼π[∇ log πθ(a)∇ log πθ(a)⊤], 1ai

is a one-hot vector with 1 at index i, and λe

is a vector containing λ in each entry. The second line follows for the softmax policy (see
Appendix D.4.2) and λ is arbitrary since shifting θ by a constant does not change the policy.

Thus, supposing we sample action ai, if r(ai) − b is positive, which happens more often
when the baseline b is small (more negative), the update rule will increase the probability
πθ(ai). This leads to an increase in the probability of taking the actions the agent took
before, regardless of their quality (see Fig.6.1a for ϵ = −1/2). Because the agent is likely to
choose the same actions again, we call this committal behaviour.

100

While a smaller baseline leads to committal behaviour, a larger (more positive) baseline
makes the agent second-guess itself. If r(ai)− b is negative, which happens more often when
b is large, the parameter update decreases the probability πθ(ai) of the sampled action ai,
reducing the probability the agent will re-take the actions it just took, while increasing the
probability of other actions. This might slow down convergence but it also makes it harder
for the agent to get stuck. This is reflected in the ϵ = 1/2 case (Fig.6.1c), as all the learning
curves end up at the optimal policy. We call this non-committal behaviour.

While the previous experiments used perturbed variants of the minimum-variance base-
line to control for the variance, this baseline would usually be infeasible to compute in more
complex MDPs. Instead, a more typical choice of baseline would be the value function (Sut-
ton & Barto, 2018, Ch. 13), which we evaluate in Fig. 6.1d. Choosing the value function as
a baseline generated trajectories converging to the optimal policy, even though their conver-
gence may be slow, despite it not being the minimum variance baseline. The reason becomes
clearer when we write the value function as V π = b∗

θ −
Cov(r,∥∇ log π∥2)

E[∥∇ log π∥2] (see Appendix D.4.3).
The term Cov(r, ∥∇ log π∥2) typically becomes negative as the gradient becomes smaller on
actions with high rewards during the optimization process, leading to the value function be-
ing a noncommittal baseline, justifying a choice often made by practitioners.

Additional empirical results can be found in Appendix D.1.1 for natural policy gradient
and vanilla policy gradient for the softmax parameterization. Furthermore, we explore the
use of different parameterizations: First, we test projected stochastic gradient ascent and di-
rectly optimizing the policy probabilities πθ(a). Next, we try the escort transform (Mei et al.,
2020a), which was designed to improve the curvature of the objective. We find qualitatively
similar results in all cases; baselines can induce committal and non-committal behaviour.

6.3. Convergence to suboptimal policies with natural
policy gradient (NPG)

We empirically showed that PG algorithms can reach suboptimal policies and that the
choice of baseline can affect the likelihood of this occurring. In this section, we provide
theoretical results proving that it is indeed possible to converge to a suboptimal policy
when using NPG. We discuss how this finding fits with existing convergence results and why
standard assumptions are not satisfied in this setting.

6.3.1. A simple example

Standard convergence results assume access to the true gradient (e.g., Agarwal et al.,
2019) or, in the stochastic case, assume that the variance of the updates is uniformly bounded
for all parameter values (e.g., Bottou et al., 2018). These assumptions are in fact quite
strong and are violated in a simple two-arm bandit problem with fixed rewards. Pulling the

101

optimal arm gives a reward of r1 = +1, while pulling the suboptimal arm leads to a reward of
r0 = 0. We use the sigmoid parameterization and call pt = σ(θt) the probability of sampling
the optimal arm at time t.

Our stochastic estimator of the natural gradient is

gt =

1−b
pt

, with probability pt

b
1−pt

, with probability 1− pt,

where b is a baseline that does not depend on the action sampled at time t but may depend on
θt. By computing the variance of the updates, Var[gt] = (1−pt−b)2

pt(1−pt) , we notice it is unbounded
when the policy becomes deterministic, i.e. pt → 0 or pt → 1, violating the assumption of
uniformly bounded variance, unless b = 1 − pt, which is the optimal baseline. Note that
using vanilla (non-natural) PG would, on the contrary, yield a bounded variance. In fact,
we prove a convergence result in its favour in Appendix D.2 (Prop. D.2.2).

For NPG, the proposition below establishes potential convergence to a suboptimal arm
and we demonstrate this empirically in Fig. 6.2.
Proposition 6.3.1. Consider a two-arm bandit with rewards 1 and 0 for the optimal and
suboptimal arms, respectively. Suppose we use natural policy gradient starting from θ0, with
a fixed baseline b < 0, and fixed stepsize α > 0. If the policy samples the optimal action with
probability σ(θ), then the probability of picking the suboptimal action forever and having θt

go to −∞ is strictly positive. Additionally, if θ0 ≤ 0, we have

P (suboptimal action forever) ≥ (1− eθ0)(1− eθ0+αb)− 1
αb .

Proof. All the proofs may be found in the appendix. □

The updates provide some intuition as to why there is convergence to suboptimal poli-
cies. The issue is the committal nature of the baseline. Choosing an action leads to an
increase of that action’s probability, even if it is a poor choice. Choosing the subopti-
mal arm leads to a decrease in θ by αb

1−pt
, thus increasing the probability the same arm is

drawn again and further decreasing θ. By checking the probability of this occurring forever,
P (suboptimal arm forever) = ∏∞

t=1(1 − pt), we show that 1 − pt converges quickly enough
to 1 that the infinite product is nonzero, showing it is possible to get trapped choosing the
wrong arm forever (Prop. 6.3.1), and θt → −∞ as t grows.

This issue could be solved by picking a baseline with lower variance. For instance, the
minimum-variance baseline b = 1 − pt leads to 0 variance and both possible updates are
equal to +α, guaranteeing that θ → +∞, thus convergence. In fact, any baseline b ∈ (0,1)
suffices since both updates are positive and greater than α min(b, 1 − b). However, this is
not always the case, as we show in the next section.

To decouple the impact of the variance with that of the committal nature of the baseline,
Prop. 6.3.2 analyzes the learning dynamics in the two-arm bandit case for perturbations of

102

(a) α = 0.05 (b) α = 0.1 (c) α = 0.15

Fig. 6.2. Learning curves for 100 runs of 200 steps, on the two-arm bandit, with baseline
b =−1 for three different stepsizes α. Blue: Curves converging to the optimal policy. Red:
Curves converging to a suboptimal policy. Black: Avg. performance. The number of runs
that converged to the suboptimal solution are 5%, 14% and 22% for the three α’s. Larger
α’s are more prone to getting stuck at a suboptimal solution but settle on a deterministic
policy more quickly.

the optimal baseline, i.e. we study baselines of the form b = b∗ + ϵ and show how ϵ, and
particularly its sign, affects learning. Note that, because the variance is a quadratic function
with its minimum in b∗, both +ϵ and −ϵ have the same variance. Our findings can be
summarized as follows:
Proposition 6.3.2. For the two-armed bandit defined in Prop. 6.3.1, when using a perturbed
min-variance baseline b = b∗ + ϵ, the value of ϵ determines the learning dynamics as follows:

• For ϵ < −1, there is a positive probability of converging to the suboptimal arm.
• For ϵ ∈ (−1, 1), we have convergence in probability to the optimal policy.
• For ϵ ≥ 1, the supremum of the iterates goes to +∞ in probability.

While the proofs can be found in Appendix D.2.2, we provide here some intuition behind
these results.

For ϵ < −1, we reuse the same argument as for b < 0 in Prop. 6.3.1. The probability of
drawing the correct arm can decrease quickly enough to lead to convergence to the suboptimal
arm.

For ϵ ∈ (−1,1), the probability of drawing the correct arm cannot decrease too fast.
Hence, although the updates, as well as the variance of the gradient estimate, are potentially
unbounded, we still have convergence to the optimal solution in probability.

Finally, for ϵ ≥ 1, we can reuse an intermediate argument from the ϵ ∈ (0,1) case to
argue that for any threshold C, the parameter will eventually exceed that threshold. For
ϵ ∈ (0,1), once a certain threshold is crossed, the policy is guaranteed to improve at each step.
However, with a large positive perturbation, updates are larger and we lose this additional
guarantee, leading to the weaker result.

103

We want to emphasize that not only we get provably different dynamics for ϵ < −1 and
ϵ ≥ 1, showing the importance of the sign of the perturbation, but that there also is a sharp
transition around |ϵ| = 1, which cannot be captured solely by the variance.

The above analysis was specific to these updates. To predict committal vs. non-committal
behaviour more generally, it may be possible to utilize higher order moments or other dis-
tributional properties, even when the mean and variance is the same. Unfortunately, it is
difficult to utilize higher-moment information in theoretical bounds in a general manner as
Markov-type inequalities do not take into account the sign of the higher moment, which we
think is where the committal vs. non-committal distinction would appear.

6.3.2. Reducing variance with baselines can be detrimental

As we saw with the two-armed bandit, the direction of the updates is important in assess-
ing convergence. More specifically, problems can arise when the choice of baseline induces
committal behaviour. We now show a different bandit setting where committal behaviour
happens even when using the minimum-variance baseline, thus leading to convergence to a
suboptimal policy. Furthermore, we design a better baseline which ensures all updates move
the parameters towards the optimal policy. This cements the idea that the quality of param-
eter updates must not be analyzed in terms of variance but rather in terms of the probability
of going in a bad direction, since a baseline that induces higher variance leads to convergence
while the minimum-variance baseline does not. The following theorem summarizes this.
Theorem 1. There exists a three-arm bandit where using the stochastic natural gradient on
a softmax-parameterized policy with the minimum-variance baseline can lead to convergence
to a suboptimal policy with probability ρ > 0, and there is a different baseline (with larger
variance) which results in convergence to the optimal policy with probability 1.

The bandit used in this theorem is the one we used for the experiments depicted in
Fig. 6.1. The key is that the minimum-variance baseline can be lower than the second
best reward; so pulling the second arm will increase its probability and induce committal
behaviour. This can cause the agent to prematurely commit to the second arm and converge
to the wrong policy. On the other hand, using any baseline whose value is between the
optimal reward and the second best reward, which we term a gap baseline, will always
increase the probability of the optimal action at every step, no matter which arm is drawn.
Since the updates are sufficiently large at every step, this is enough to ensure convergence
with probability 1, despite the higher variance compared to the minimum variance baseline.
The key is that whether a baseline underestimates or overestimates the second best reward
can affect the algorithm convergence and this is more critical than the resulting variance of
the gradient estimates.

104

As such, more than lower variance, good baselines are those that can assign positive
effective returns to the good trajectories and negative effective returns to the others. These
results cast doubt on whether finding baselines which minimize variance is a meaningful goal
to pursue. The baseline can affect optimization in subtle ways, beyond variance, and further
study is needed to identify the true causes of some improved empirical results observed in
previous works. This importance of the sign of the returns, rather than their exact value,
echoes with the cross-entropy method (De Boer et al., 2005), which maximizes the probability
of the trajectories with the largest returns, regardless of their actual value.

6.4. Off-policy sampling
So far, we have seen that committal behaviour can be problematic as it can cause con-

vergence to a suboptimal policy. This can be especially problematic when the agent follows
a near-deterministic policy as it is unlikely to receive different samples which would move
the policy away from the closest deterministic one, regardless of the quality of that policy.

Up to this point, we assumed that actions were sampled according to the current policy,
a setting known as on-policy. This setting couples the updates and the policy and is a
root cause of the committal behaviour: the update at the current step changes the policy,
which affects the distribution of rewards obtained and hence the next updates. However, we
know from the optimization literature that bounding the variance of the updates will lead to
convergence (Bottou et al., 2018). As the variance becomes unbounded when the probability
of drawing some actions goes to 0, a natural solution to avoid these issues is to sample actions
from a behaviour policy that selects every action with sufficiently high probability. Such a
policy would make it impossible to choose the same, suboptimal action forever.

6.4.1. Convergence guarantees with IS

Because the behaviour policy changed, we introduce importance sampling (IS) corrections
to preserve the unbiased updates (Kahn & Harris, 1951; Precup, 2000a). These changes are
sufficient to guarantee convergence for any baseline:
Proposition 6.4.1. Consider a n-armed bandit with stochastic rewards with bounded support
and a unique optimal action. The behaviour policy µt selects action i with probability µt(i)
and let ϵt = mini µt(i). When using NPG with importance sampling and a bounded baseline b,
if limt→∞ t ϵ2

t = +∞ , then the target policy πt converges to the optimal policy in probability.

Proof. (Sketch) Using Azuma-Hoeffding’s inequality, we can show that for well chosen
constants ∆i, δ and C > 0 ,

P
(
θ1

t ≥ θ1
0 + αδ∆1t

)
≥ 1− exp

(
−δ2∆2

1
2C2 tϵ2

t

)

105

where θ1 is the parameter associated to the optimal arm. Thus if limt→∞ tϵ2
t = +∞, the RHS

goes to 1. In a similar manner, we can upper bound P (θi
t ≥ θi

0 + αδ∆it) for all suboptimal
arms, and applying an union bound, we get the desired result. □

The condition on µt imposes a cap on how fast the behaviour policy can become deter-
ministic: no faster than t−1/2. Intuitively, this ensures each action is sampled sufficiently of-
ten and prevents premature convergence to a suboptimal policy. The condition is satisfied
for any sequence of behaviour policies which assign at least ϵt probability to each action at
each step, such as ϵ-greedy policies. It also holds if ϵt decreases over time at a sufficiently
slow rate. By choosing as behaviour policy µ a linear interpolation between π and the uni-
form policy, µ(a) = (1 − γ)π(a) + γ

K
, γ ∈ (0,1], where K is the number of arms, we recover

the classic EXP3 algorithm (Auer et al., 2002; Seldin et al., 2012).
We can also confirm that this condition is not satisfied for the simple example we pre-

sented when discussing convergence to suboptimal policies. There, pt could decrease expo-
nentially fast since the tails of the sigmoid function decay exponentially and the param-
eters move by at least a constant at every step. In this case, ϵt = Ω(e−t), resulting in
limt→∞ te−2t = 0, so Proposition 6.4.1 does not apply.

6.4.2. Importance sampling, baselines & variance

As we have seen, using a separate behaviour policy that samples all actions sufficiently
often may lead to stronger convergence guarantees, even if it increases the variance of the
gradient estimates in most of the space, as what matters is what happens in the high variance
regions, which are usually close to the boundaries. Fig. 6.3 shows the ratios of gradient
variances between on-policy PG without baseline, on-policy PG with the minimum variance
baseline, and off-policy PG using importance sampling (IS) where the sampling distribution
is µ(a) = 1

2π(a)+ 1
6 , i.e. a mixture of the current policy π and the uniform distribution. While

using the minimum variance baseline decreases the variance on the entire space compared
to not using a baseline, IS actually increases the variance when the current policy is close to
uniform. However, IS does a much better job at reducing the variance close to the boundaries
of the simplex, where it actually matters to guarantee convergence.

This suggests that convergence of PG methods is not so much governed by the variance
of the gradient estimates in general, but by the variance in the worst regions, usually near
the boundary. While baselines can reduce the variance, they generally cannot prevent the
variance in those regions from exploding, leading to the policy getting stuck. Thus, good
baselines are not the ones reducing the variance across the space but rather those that can
prevent the learning from reaching these regions altogether. Large values of b, such that
r(ai)− b is negative for most actions, achieve precisely that. On the other hand, due to the
increased flexibility of sampling distributions, IS can limit the nefariousness of these critical
regions, offering better convergence guarantees despite not reducing variance everywhere.

106

(a) b = 0 / IS. (b) b = 0 / b∗. (c) b∗ / IS.

Fig. 6.3. Comparison between the variance of different methods on a 3-arm bandit. Each
plot depicts the log of the ratio between the variance of two approaches. For example, Fig. (a)
depicts log Var[gb=0]

Var[gIS] , the log of the ratio between the variance of the gradients of PG without
a baseline and PG with IS. The triangle represents the probability simplex with each corner
representing a deterministic policy on a specific arm. The method written in blue (resp. red)
in each figure has lower variance in blue (resp. red) regions of the simplex. The sampling
policy µ, used in the PG method with IS, is a linear interpolation between π and the uniform
distribution, µ(a) = 1

2π(a)+ 1
6 . Note that this is not the min. variance sampling distribution

and it leads to higher variance than PG without a baseline in some parts of the simplex.

Importantly, although IS is usually used in RL to correct for the distribution of past
samples (e.g., Munos et al., 2016), we advocate here for expanding the research on designing
appropriate sampling distributions as done by Hanna et al. (2017, 2018) and Parmas &
Sugiyama (2019). This line of work has a long history in statistics (c.f., Liu, 2008).

6.4.3. Other mitigating strategies

We conclude this section by discussing alternative strategies to mitigate the convergence
issues. While they might be effective, and some are indeed used in practice, they are not
without pitfalls.

First, one could consider reducing the stepsizes, with the hope that the policy would
not converge as quickly towards a suboptimal deterministic policy and would eventually
leave that bad region. Indeed, if we are to use vanilla PG in the two-arm bandit example,
instead of NPG, this effectively reduces the stepsize by a factor of σ(θ)(1−σ(θ)) (the Fisher
information). In this case, we are able to show convergence in probability to the optimal
policy. See Proposition D.2.2 in Appendix D.2.

Empirically, we find that, when using vanilla PG, the policy may still remain stuck near
a suboptimal policy when using a negative baseline, similar to Fig. 6.2. While the previous
proposition guarantees convergence eventually, the rate may be very slow, which remains
problematic in practice. There is theoretical evidence that following even the true vanilla
PG may result in slow convergence (Schaul et al., 2019), suggesting that the problem is not
necessarily due to noise.

107

An alternative solution would be to add entropy regularization to the objective. By doing
so, the policy would be prevented from getting too close to deterministic policies. While this
might prevent convergence to a suboptimal policy, it would also exclude the possibility of
fully converging to the optimal policy, though the policy may remain near it.

In bandits, EXP3 has been found not to enjoy high-probability guarantees on its regret so
variants have been developed to address this deficiency (c.f. Lattimore & Szepesvári, 2020).
For example, by introducing bias in the updates, their variance can be reduced significantly
Auer et al. (2002); Neu (2015). Finally, other works have also developed provably conver-
gent policy gradient algorithms using different mechanisms, such as exploration bonuses or
ensembles of policies (Cai et al., 2019; Efroni et al., 2020; Agarwal et al., 2020).

6.5. Extension to multi-step MDPs
We focused our theoretical analyses on multi-arm bandits so far. However, we are also

interested in more general environments where gradient-based methods are commonplace.
We now turn our attention to the Markov Decision Process (MDP) framework (Puterman,
2014). An MDP is a set {S,A, P, r, γ, ρ} where S and A are the set of states and actions,
P is the environment transition function, r is the reward function, γ ∈ [0, 1) the discount
factor, and ρ is the initial state distribution. The goal of RL algorithms is to find a policy
πθ, parameterized by θ, which maximizes the (discounted) expected return; i.e. Eq. 6.1.1
becomes

arg max
θ

J (θ) = arg max
θ

∑
s

dπθ
γ (s)

∑
a

πθ(a|s)r(s, a),

where there is now a discounted distribution over states induced by πθ. Although that
distribution depends on πθ in a potentially complex way, the parameter updates are similar

(a) MDP (b) Returns (c) Entropy (A) (d) Entropy (S)

Fig. 6.4. We plot the discounted returns, the entropy of the policy over the states visited in
each trajectory, and the entropy of the state visitation distribution, averaged over 50 runs,
for multiple baselines. The baselines are of the form b(s) = b∗(s) + ϵ, perturbations of the
minimum-variance baseline, with ϵ indicated in the legend. The shaded regions denote one
standard error. Note that the policy entropy of lower baselines tends to decay faster than
for larger baselines. Also, smaller baselines tend to get stuck on suboptimal policies, as
indicated by the returns plot. See text for additional details.

108

to Eq. 6.2.1:

θt+1 = θt + α

N

∑
i

[Q(si, ai)− b(si)]∇θ log πθ(ai|si) ,

where (ai, si) pairs are drawn according to the discounted state-visitation distribution in-
duced by πθ and Q is the state-action value function induced by πθ (c.f. Sutton & Barto,
2018). To match the bandit setting and common practice, we made the baseline state de-
pendent.

Although our theoretical analyses do not easily extend to multi-step MDPs, we empiri-
cally investigated if the similarity between these formulations leads to similar differences in
learning dynamics when changing the baseline. We consider a 10x10 gridworld consisting of
4 rooms as depicted on Fig. 6.4a. We use a discount factor γ = 0.99. The agent starts in the
upper left room and two adjacent rooms contain a goal state of value 0.6 or 0.3. The best
goal (even discounted), with a value of 1, lies in the furthest room, so that the agent must
learn to cross the sub-optimal rooms and reach the furthest one.

Similar to the bandit setting, for a state s, we can derive the minimum-variance baseline
b∗(s) assuming access to state-action values Q(s,a) for πθ and consider perturbations to it.
Again, we use baselines b(s) = b∗(s) + ϵ and b(s) = b∗(s) − ϵ, since they result in identical
variances (this would not be the case if we used standard REINFORCE). We use a natural
policy gradient estimate, which substitutes ∇ log π(ai|si) by F −1

si
∇ log π(ai|si) in the update

rule, where Fsi
is the Fisher information matrix for state si and solve for the exact Q(s,a)

values using dynamic programming for all updates (see Appendix D.4.6 for details).
In order to identify the committal vs. non-committal behaviour of the agent depending

on the baseline, we monitor the entropy of the policy and the entropy of the stationary state
distribution over time. Fig.6.4b shows the average returns over time and Fig.6.4c and 6.4d
show the entropy of the policy in two ways. The first is the average entropy of the action
distribution along the states visited in each trajectory, and the second is the entropy of the
distribution of the number of times each state is visited up to that point in training.

The action entropy for smaller baselines tends to decay faster compared to larger ones,
indicating convergence to a deterministic policy. This quick convergence is premature in
some cases since the returns are not as high for the lower baselines. In fact for ϵ = −1, we see
that the agent gets stuck on a policy that is unable to reach any goal within the time limit,
as indicated by the returns of 0. On the other hand, the larger baselines tend to achieve
larger returns with larger entropy policies, but do not fully converge to the optimal policy
as evidenced by the gap in the returns plot.

Since committal and non-committal behaviour can be directly inferred from the PG and
the sign of the effective rewards R(τ)− b, we posit that these effects extend to all MDPs. In
particular, in complex MDPs, the first trajectories explored are likely to be suboptimal and a

109

low baseline will increase their probability of being sampled again, requiring the use of tech-
niques such as entropy regularization to prevent the policy from getting stuck too quickly.
In some preliminary experiments with a deep RL policy gradient algorithm, PPO Schulman
et al. (2017b), where we perturb the baseline by a fixed constant, seem to indicate that neg-
ative perturbations perform slightly worse than positive perturbations. The results are not
conclusive though and there are many confounding factors in this setting which could affect
the outcome, including clipping due to PPO, neural network generalization, and adaptive
optimizers. It is likely that a more careful strategy to perturb the baseline is needed to gain
benefits, similar to using exploration bonuses.

6.6. Conclusion
We presented results that dispute common beliefs about baselines, variance, and policy

gradient methods in general. As opposed to the common belief that baselines only provide
benefits through variance reduction, we showed that they can significantly affect the opti-
mization process in ways that cannot be explained by the variance and that lower variance
can even sometimes be detrimental.

Different baselines can give rise to very different learning dynamics, even when they
reduce the variance of the gradients equally. They do that by either making a policy quickly
tend towards a deterministic one (committal behaviour) or by maintaining high-entropy for a
longer period of time (non-committal behaviour). We showed that committal behaviour can
be problematic and lead to convergence to a suboptimal policy. Specifically, we showed that
stochastic natural policy gradient does not always converge to the optimal solution due to the
unusual situation in which the iterates converge to the optimal policy in expectation but not
almost surely. Moreover, we showed that baselines that lead to lower-variance can sometimes
be detrimental to optimization, highlighting the limitations of using variance to analyze
the convergence properties of these methods. We also showed that standard convergence
guarantees for PG methods do not apply to some settings because the assumption of bounded
variance of the updates is violated.

The aforementioned convergence issues are also caused by the problematic coupling be-
tween the algorithm’s updates and its sampling distribution since one directly impacts the
other. As a potential solution, we showed that off-policy sampling can sidestep these dif-
ficulties by ensuring we use a sampling distribution that is different than the one induced
by the agent’s current policy. This supports the hypothesis that on-policy learning can be
problematic, as observed in previous work (Schaul et al., 2019; Hennes et al., 2020). Nev-
ertheless, importance sampling in RL is generally seen as problematic (van Hasselt et al.,

110

2018) due to instabilities it introduces to the learning process. Moving from an imposed pol-
icy, using past trajectories, to a chosen sampling policy reduces the variance of the gradi-
ents for near-deterministic policies and can lead to much better behaviour. In general, other
variance-reduction strategies may also be more effective Xu et al. (2019).

More broadly, this work suggests that treating bandit and reinforcement learning prob-
lems as a black-box optimization of a function J (θ) may be insufficient to perform well. As
we have seen, the current parameter value can affect all future parameter values by influ-
encing the data collection process and thus the updates performed. Theoretically, relying on
immediately available quantities such as the gradient variance and ignoring the sequential
nature of the optimization problem is not enough to discriminate between certain optimiza-
tion algorithms. In essence, to design highly-effective policy optimization algorithms, it may
be necessary to develop a better understanding of how the optimization process evolves over
many steps.

Acknowledgements
We would like to thank Kris de Asis, Alan Chan, Ofir Nachum, Doina Precup, Dale

Schuurmans, and Ahmed Touati for helpful discussions. We also thank Courtney Paquette,
Vincent Liu, Scott Fujimoto and Csaba Szepesvári for reviewing an earlier version of this
paper. Marlos C. Machado and Nicolas Le Roux are supported by a Canada CIFAR AI Chair.

111

Chapitre 7

Conclusion

7.1. Summary of contributions
In this thesis, we have explored the roles and challenges presented by stochasticity in

reinforcement learning and optimization algorithms. We have investigated the impact of
noise in the learning process and presented four significant contributions that address various
aspects of this issue. The main axes of our research were the following:

• Learning diverse behaviors for planning: Our first two articles focused on learn-
ing stochastic policies able to explore the environment and discover diverse behav-
iors. In our first article, Independently Controllable Factors, we learn policies, or op-
tions, indexed on a latent factor representation z. We were able to show that we both
learned disentangled representations of the world as well as policies that were able to
modify these factors. Finally, we were able to demonstrate how this representation
could be used for planning. In our second article, Sequential Monte Carlo Planning,
we designed a general purpose planning algorithm that can be used in continuous
control tasks. Our SMCP algorithm can be viewed as a maximum entropy planning
algorithm and as such can discover stochastic policies discovering diverse solutions.

• Understanding the role of noise: The next two contributions were more focused
on understanding the role of noise during the optimization process. In our third ar-
ticle, we analyse the role of the interplay between the gradient noise and the local
curvature of the loss function. Specifically, we show it can impact the optimization
speed and generalization properties of models trained via maximum likelihood. Fi-
nally, in our fourth article, we investigate the role of baselines in policy gradient
methods. Baselines are often presented as a way to reduce the variance of the gradi-
ent estimator without affecting the bias. We show that baselines have an effect be-
yond variance reduction directly impact the exploration/exploitation trade-off and
as such can impact which policies are discovered.

The work presented in this thesis provides valuable insights into the role of stochasticity
in reinforcement learning and optimization algorithms, offering a solid foundation for future
research in this area.

By further examining the interplay between noise and learning, we can continue to develop
more robust, adaptive, and efficient algorithms that can better handle the challenges of real-
world environments. Ultimately, understanding the role of stochasticity and how to make
decisions under uncertainty will bring us closer to achieving the long-term goal of creating
intelligent machines capable of interacting with the world and learning from experience.

7.2. Future research
There are several broad research directions that are of particular interest and connected

to the line of work presented in this thesis.

Optimization and reinforcement learning

While the objective of reinforcement learning is optimizing the regret or return, the
approaches taken by the RL/bandit communities and the optimization community often
diverge significantly. Indeed, most algorithms we have a theoretical understanding of are
value-based methods which often directly balance a trade-off between exploitation (acting
based on our current knowledge) and exploration (reducing the uncertainty of our beliefs).
In contrast, gradient based methods such as policy gradient empirically perform well, but
whether they find the global optimum and how fast they converge to it is an active area of
research. In our paper (Mei et al., 2022), we showed that the trade-off is implicitly balanced
by the aggressiveness of the updates of policy gradient, which become small when the policy
becomes deterministic which can allow policy gradient to converge to the optimal policy.

Better understanding policy gradient based methods and how they perform exploration
and exploitation represents an important direction for future research.

High-dimensional behavior of RL algorithms

Another promising area involves the behavior of reinforcement learning algorithms in
high dimensions. We already published a work in that direction (Thomas, 2022) using the
fact, that under some assumptions, the behavior of large models in large environments can
asymptotically become predictable. While this first work was focused on Temporal Difference
algorithms with linear function approximation, these results could be extended to 1) non-
linear function approximators such as neural networks using the neural tangent kernel (NTK)
regime. And 2) analyze the behavior of policy gradient methods with this tool. These further
investigations would allow us to better understand the typical behavior of policy evaluation
and optimization algorithms in high dimensions.

114

One of the goals of this project is to understand how various parameters -such as the dis-
count factor, learning rate, model size, behavior policy and others- influence the performance
of the final algorithm. This could be extremely useful when transferring hyperparameters
across models or tasks, which is known to be often unstable when it comes to reinforcement
learning.

115

Références bibliographiques

Abdolmaleki, Abbas, Springenberg, Jost Tobias, Tassa, Yuval, Munos, Remi, Heess, Nico-
las, and Riedmiller, Martin. Maximum a posteriori policy optimisation. arXiv preprint
arXiv:1806.06920, 2018.

Achiam, Joshua, Edwards, Harrison, Amodei, Dario, and Abbeel, Pieter. Variational option
discovery algorithms. arXiv preprint arXiv:1807.10299, 2018.

Agarwal, Alekh, Kakade, Sham M, Lee, Jason D, and Mahajan, Gaurav. Optimality and
approximation with policy gradient methods in markov decision processes. arXiv preprint
arXiv:1908.00261, 2019.

Agarwal, Alekh, Henaff, Mikael, Kakade, Sham, and Sun, Wen. Pc-pg: Policy cover directed
exploration for provable policy gradient learning. arXiv preprint arXiv:2007.08459, 2020.

Akaike, Hirotugu. A new look at the statistical model identification. IEEE transactions on
automatic control, 19(6):716–723, 1974.

Anand, Ankesh, Racah, Evan, Ozair, Sherjil, Bengio, Yoshua, Côté, Marc-Alexandre, and
Hjelm, R Devon. Unsupervised state representation learning in atari. arXiv preprint
arXiv:1906.08226, 2019.

Asadi, Kavosh and Littman, Michael L. An alternative softmax operator for reinforcement
learning. In International Conference on Machine Learning, pp. 243–252. PMLR, 2017.

Atkeson, Christopher G, Moore, Andrew W, and Schaal, Stefan. Locally weighted learning.
Lazy learning, pp. 11–73, 1997.

Attias, Hagai. Planning by probabilistic inference. In AISTATS. Citeseer, 2003.
Auer, Peter, Cesa-Bianchi, Nicolo, Freund, Yoav, and Schapire, Robert E. The nonstochastic

multiarmed bandit problem. SIAM journal on computing, 32(1):48–77, 2002.
Bach, Francis and Moulines, Eric. Non-strongly-convex smooth stochastic approximation

with convergence rate o (1/n). In Advances in Neural Information Processing Systems,
pp. 773–781, 2013.

Baird, Leemon. Residual algorithms: Reinforcement learning with function approximation.
In Machine Learning Proceedings 1995, pp. 30–37. Elsevier, 1995.

Barto, Andrew G, Singh, Satinder, and Chentanez, Nuttapong. Intrinsically motivated
learning of hierarchical collections of skills. 2004.

Beirami, Ahmad, Razaviyayn, Meisam, Shahrampour, Shahin, and Tarokh, Vahid. On opti-
mal generalizability in parametric learning. In Advances in Neural Information Processing
Systems, pp. 3455–3465, 2017.

Bellemare, Marc G, Naddaf, Yavar, Veness, Joel, and Bowling, Michael. The arcade learning
environment: An evaluation platform for general agents. Journal of Artificial Intelligence
Research, 47:253–279, 2013.

Bellman, Richard and Kalaba, Robert. On adaptive control processes. IRE Transactions on
Automatic Control, 4(2):1–9, 1959.

Bellman, Richard et al. The theory of dynamic programming. Bulletin of the American
Mathematical Society, 60(6):503–515, 1954.

Belousov, Boris, Abdulsamad, Hany, Klink, Pascal, Parisi, Simone, and Peters, Jan. Rein-
forcement learning algorithms: analysis and applications. Springer, 2021.

Bengio, Emmanuel, Thomas, Valentin, Pineau, Joelle, Precup, Doina, and Bengio, Yoshua.
Independently controllable features. arXiv preprint arXiv:1703.07718, 2017.

Bengio, Yoshua. Learning deep architectures for AI. Now Publishers, 2009.
Berlyne, Daniel E. Curiosity and exploration. Science, 153(3731):25–33, 1966.
Billingsley, Patrick. Probability and measure. John Wiley & Sons, 2008.
Bottou, Léon and Bousquet, Olivier. The tradeoffs of large scale learning. In Platt, J.,

Koller, D., Singer, Y., and Roweis, S. (eds.), Advances in Neural Information Processing
Systems, volume 20. Curran Associates, Inc., 2007. URL https://proceedings.neurips.
cc/paper/2007/file/0d3180d672e08b4c5312dcdafdf6ef36-Paper.pdf.

Bottou, Léon and Bousquet, Olivier. The tradeoffs of large scale learning. In Advances in
neural information processing systems, pp. 161–168, 2008.

Bottou, Léon, Curtis, Frank E, and Nocedal, Jorge. Optimization methods for large-scale
machine learning. Siam Review, 60(2):223–311, 2018.

Bousquet, Olivier and Elisseeff, André. Stability and generalization. Journal of machine
learning research, 2(Mar):499–526, 2002.

Bresler, Yoram. Two-filter formulae for discrete-time non-linear bayesian smoothing. Inter-
national Journal of Control, 43(2):629–641, 1986.

Brockman, Greg, Cheung, Vicki, Pettersson, Ludwig, Schneider, Jonas, Schulman, John,
Tang, Jie, and Zaremba, Wojciech. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Bubeck, Sébastien and Cesa-Bianchi, Nicolo. Regret analysis of stochastic and nonstochastic
multi-armed bandit problems. arXiv preprint arXiv:1204.5721, 2012.

Byravan, Arunkumar, Hasenclever, Leonard, Trochim, Piotr, Mirza, Mehdi, Ialongo,
Alessandro Davide, Tassa, Yuval, Springenberg, Jost Tobias, Abdolmaleki, Abbas, Heess,
Nicolas, Merel, Josh, and Riedmiller, Martin A. Evaluating model-based planning and
planner amortization for continuous control. In The Tenth International Conference

118

https://proceedings.neurips.cc/paper/2007/file/0d3180d672e08b4c5312dcdafdf6ef36-Paper.pdf
https://proceedings.neurips.cc/paper/2007/file/0d3180d672e08b4c5312dcdafdf6ef36-Paper.pdf

on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenRe-
view.net, 2022. URL https://openreview.net/forum?id=SS8F6tFX3-.

Cai, Qi, Yang, Zhuoran, Jin, Chi, and Wang, Zhaoran. Provably efficient exploration in
policy optimization. arXiv preprint arXiv:1912.05830, 2019.

Chaudhari, Pratik and Soatto, Stefano. Stochastic gradient descent performs variational
inference, converges to limit cycles for deep networks. arXiv preprint arXiv:1710.11029,
2017.

Cheng, Ching-An, Yan, Xinyan, and Boots, Byron. Trajectory-wise control variates for
variance reduction in policy gradient methods. In Conference on Robot Learning, pp.
1379–1394, 2020.

Chowdhery, Aakanksha, Narang, Sharan, Devlin, Jacob, Bosma, Maarten, Mishra, Gau-
rav, Roberts, Adam, Barham, Paul, Chung, Hyung Won, Sutton, Charles, Gehrmann,
Sebastian, et al. Palm: Scaling language modeling with pathways. arXiv preprint
arXiv:2204.02311, 2022.

Chua, Kurtland, Calandra, Roberto, McAllister, Rowan, and Levine, Sergey. Deep reinforce-
ment learning in a handful of trials using probabilistic dynamics models. arXiv preprint
arXiv:1805.12114, 2018.

Colas, Cédric, Sigaud, Olivier, and Oudeyer, Pierre-Yves. How many random seeds?
statistical power analysis in deep reinforcement learning experiments. arXiv preprint
arXiv:1806.08295, 2018.

Dayan, Peter. Improving generalization for temporal difference learning: The successor
representation. Neural Computation, 5(4):613–624, 1993.

Dayan, Peter and Hinton, Geoffrey E. Using expectation-maximization for reinforcement
learning. Neural Computation, 9(2):271–278, 1997.

De Boer, Pieter-Tjerk, Kroese, Dirk P, Mannor, Shie, and Rubinstein, Reuven Y. A tutorial
on the cross-entropy method. Annals of operations research, 134(1):19–67, 2005.

Dieuleveut, Aymeric, Bach, Francis, et al. Nonparametric stochastic approximation with
large step-sizes. The Annals of Statistics, 44(4):1363–1399, 2016.

Dinh, Laurent, Krueger, David, and Bengio, Yoshua. NICE: Non-linear Independent Com-
ponents Estimation. arXiv:1410.8516, ICLR 2015 workshop, 2014.

Dinh, Laurent, Pascanu, Razvan, Bengio, Samy, and Bengio, Yoshua. Sharp minima can
generalize for deep nets. International Conference on Machine Learning (ICML), 2017.

Donsker, Monroe D and Varadhan, SR Srinivasa. Asymptotic evaluation of certain markov
process expectations for large time, i. Communications on Pure and Applied Mathematics,
28(1):1–47, 1975.

Efroni, Yonathan, Shani, Lior, Rosenberg, Aviv, and Mannor, Shie. Optimistic policy opti-
mization with bandit feedback. arXiv preprint arXiv:2002.08243, 2020.

119

https://openreview.net/forum?id=SS8F6tFX3-

Eslami, SM Ali, Rezende, Danilo Jimenez, Besse, Frederic, Viola, Fabio, Morcos, Ari S,
Garnelo, Marta, Ruderman, Avraham, Rusu, Andrei A, Danihelka, Ivo, Gregor, Karol,
et al. Neural scene representation and rendering. Science, 360(6394):1204–1210, 2018.

Eysenbach, Benjamin, Gupta, Abhishek, Ibarz, Julian, and Levine, Sergey. Diversity is all
you need: Learning skills without a reward function. arXiv preprint arXiv:1802.06070,
2018.

Fedus, William, Zoph, Barret, and Shazeer, Noam. Switch transformers: Scaling to trillion
parameter models with simple and efficient sparsity. Journal of Machine Learning Re-
search, 23(120):1–39, 2022. URL http://jmlr.org/papers/v23/21-0998.html.

Finn, Chelsea and Levine, Sergey. Deep visual foresight for planning robot motion. In
Robotics and Automation (ICRA), 2017 IEEE International Conference on, pp. 2786–
2793. IEEE, 2017.

Flammarion, Nicolas and Bach, Francis. From averaging to acceleration, there is only a step-
size. In Conference on Learning Theory, pp. 658–695, 2015.

Florensa, Carlos, Duan, Yan, and Abbeel, Pieter. Stochastic neural networks for hierarchical
reinforcement learning. arXiv preprint arXiv:1704.03012, 2017.

George, Thomas, Laurent, César, Bouthillier, Xavier, Ballas, Nicolas, and Vincent, Pascal.
Fast approximate natural gradient descent in a kronecker factored eigenbasis. In Advances
in Neural Information Processing Systems, pp. 9550–9560, 2018.

Goodfellow, Ian, Bengio, Yoshua, and Courville, Aaron. Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

Goodfellow, Ian J., Pouget-Abadie, Jean, Mirza, Mehdi, Xu, Bing, Warde-Farley, David,
Ozair, Sherjil, Courville, Aaron, and Bengio, Yoshua. Generative Adversarial Networks.
In NIPS’2014, 2014.

Gopnik, Alison, Meltzoff, Andrew N, and Kuhl, Patricia K. The scientist in the crib: Minds,
brains, and how children learn. William Morrow & Co, 1999.

Gordon, Neil J, Salmond, David J, and Smith, Adrian FM. Novel approach to nonlinear/non-
gaussian bayesian state estimation. In IEE Proceedings F-radar and signal processing,
volume 140, pp. 107–113. IET, 1993.

Grathwohl, Will, Choi, Dami, Wu, Yuhuai, Roeder, Geoff, and Duvenaud, David. Backprop-
agation through the void: Optimizing control variates for black-box gradient estimation.
arXiv preprint arXiv:1711.00123, 2017.

Greensmith, Evan, Bartlett, Peter L, and Baxter, Jonathan. Variance reduction techniques
for gradient estimates in reinforcement learning. Journal of Machine Learning Research,
5(Nov):1471–1530, 2004.

Gregor, K., Jimenez Rezende, D., and Wierstra, D. Variational Intrinsic Control. InPro-
ceedings of the Interna-tional Conference on Learning Representations (ICLR), November
2017.

120

http://jmlr.org/papers/v23/21-0998.html
http://www.deeplearningbook.org

Gregor, Karol, Rezende, Danilo Jimenez, and Wierstra, Daan. Variational intrinsic control.
arXiv preprint arXiv:1611.07507, 2016.

Gu, Shixiang, Lillicrap, Timothy, Ghahramani, Zoubin, Turner, Richard E, and Levine,
Sergey. Q-prop: Sample-efficient policy gradient with an off-policy critic. arXiv preprint
arXiv:1611.02247, 2016.

Haarnoja, Tuomas, Zhou, Aurick, Abbeel, Pieter, and Levine, Sergey. Soft actor-critic:
Off-policy maximum entropy deep reinforcement learning with a stochastic actor. arXiv
preprint arXiv:1801.01290, 2018.

Hanna, Josiah P, Thomas, Philip S, Stone, Peter, and Niekum, Scott. Data-efficient policy
evaluation through behavior policy search. In Proceedings of the 34th International Con-
ference on Machine Learning-Volume 70, pp. 1394–1403. JMLR. org, 2017.

Hanna, Josiah P, Niekum, Scott, and Stone, Peter. Importance sampling policy evaluation
with an estimated behavior policy. arXiv preprint arXiv:1806.01347, 2018.

Harper, Marc and Weinstein, Bryan. python-ternary: Ternary plots in python. Zenodo
10.5281/zenodo.594435, 2015. doi: 10.5281/zenodo.594435. URL https://github.com/
marcharper/python-ternary.

Henderson, Peter, Islam, Riashat, Bachman, Philip, Pineau, Joelle, Precup, Doina, and
Meger, David. Deep reinforcement learning that matters. arXiv preprint arXiv:1709.06560,
2017.

Hennes, Daniel, Morrill, Dustin, Omidshafiei, Shayegan, Munos, Rémi, Perolat, Julien, Lanc-
tot, Marc, Gruslys, Audrunas, Lespiau, Jean-Baptiste, Parmas, Paavo, Duéñez-Guzmán,
Edgar, et al. Neural replicator dynamics: Multiagent learning via hedging policy gra-
dients. In Proceedings of the 19th International Conference on Autonomous Agents and
MultiAgent Systems, pp. 492–501, 2020.

Hinton, Geoffrey E and Salakhutdinov, Ruslan R. Reducing the dimensionality of data with
neural networks. Science, 313(5786):504–507, 2006.

Hochreiter, Sepp and Schmidhuber, Jürgen. Flat minima. Neural Computation, 9(1):1–42,
1997.

Hofmann, Thomas, Lucchi, Aurelien, Lacoste-Julien, Simon, and McWilliams, Brian. Vari-
ance reduced stochastic gradient descent with neighbors. In Advances in Neural Informa-
tion Processing Systems, pp. 2305–2313, 2015.

Hyvarinen, Aapo and Morioka, Hiroshi. Unsupervised Feature Extraction by Time-
Contrastive Learning and Nonlinear ICA. In NIPS, 2016.

Ioffe, Sergey and Szegedy, Christian. Batch normalization: Accelerating deep network train-
ing by reducing internal covariate shift. In International Conference on Machine Learn-
ing, pp. 448–456, 2015.

121

https://github.com/marcharper/python-ternary
https://github.com/marcharper/python-ternary

Jaderberg, Max, Mnih, Volodymyr, Czarnecki, Wojciech Marian, Schaul, Tom, Leibo, Joel Z,
Silver, David, and Kavukcuoglu, Koray. Reinforcement learning with unsupervised auxil-
iary tasks. arXiv preprint arXiv:1611.05397, 2016.

Jastrzębski, Stanisław, Kenton, Zachary, Arpit, Devansh, Ballas, Nicolas, Fischer, Asja,
Bengio, Yoshua, and Storkey, Amos. Three factors influencing minima in sgd. arXiv
preprint arXiv:1711.04623, 2017.

Kahn, Herman and Harris, Theodore E. Estimation of particle transmission by random
sampling. National Bureau of Standards applied mathematics series, 12:27–30, 1951.

Kakade, Sham and Langford, John. Approximately optimal approximate reinforcement
learning. In ICML, volume 2, pp. 267–274, 2002.

Kalman, Rudolf Emil. When is a linear control system optimal? Journal of Basic Engineer-
ing, 86(1):51–60, 1964.

Kalman, Rudolf Emil et al. Contributions to the theory of optimal control. Bol. Soc. Mat.
Mexicana, 5(2):102–119, 1960.

Kearns, Michael, Mansour, Yishay, and Ng, Andrew Y. A sparse sampling algorithm for
near-optimal planning in large markov decision processes. Machine learning, 49(2-3):193–
208, 2002.

Keskar, Nitish Shirish, Mudigere, Dheevatsa, Nocedal, Jorge, Smelyanskiy, Mikhail, and
Tang, Ping Tak Peter. On large-batch training for deep learning: Generalization gap and
sharp minima. International Conference on Learning Representations(ICLR), 2017.

Kim, Hyoungseok, Kim, Jaekyeom, Jeong, Yeonwoo, Levine, Sergey, and Song, Hyun Oh.
Emi: Exploration with mutual information. In International Conference on Machine
Learning, pp. 3360–3369, 2019.

Kingma, Diederik P and Ba, Jimmy. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

Kingma, Durk P. and Welling, Max. Auto-encoding variational Bayes. In Proceedings of the
International Conference on Learning Representations (ICLR), 2014.

Kitagawa, Genshiro. The two-filter formula for smoothing and an implementation of the
gaussian-sum smoother. Annals of the Institute of Statistical Mathematics, 46(4):605–623,
1994.

Kitagawa, Genshiro. Monte carlo filter and smoother for non-gaussian nonlinear state space
models. Journal of computational and graphical statistics, 5(1):1–25, 1996.

Kolmogorov, Andrĕı Nikolaevich and Bharucha-Reid, Albert T. Foundations of the theory
of probability: Second English Edition. Courier Dover Publications, 2018.

Kullback, Solomon. Information theory and statistics. Courier Corporation, 1997.
Kullback, Solomon and Leibler, Richard A. On information and sufficiency. The annals of

mathematical statistics, 22(1):79–86, 1951.

122

Kunstner, Frederik, Balles, Lukas, and Hennig, Philipp. Limitations of the empirical fisher
approximation. arXiv preprint arXiv:1905.12558, 2019.

Lattimore, Tor and Szepesvári, Csaba. Bandit Algorithms. Cambridge University Press,
2020. doi: 10.1017/9781108571401.

Le Roux, Nicolas, Bengio, Yoshua, and Fitzgibbon, Andrew. Improving first and second-
order methods by modeling uncertainty. Optimization for Machine Learning, pp. 403, 2011.

LeCun, Yann. The MNIST database of handwritten digits. http://yann.lecun.com/exdb/mnist/,
1998.

Levine, Sergey. Reinforcement learning and control as probabilistic inference: Tutorial and
review. arXiv preprint arXiv:1805.00909, 2018.

Levine, Sergey and Koltun, Vladlen. Variational policy search via trajectory optimization.
In Advances in Neural Information Processing Systems, pp. 207–215, 2013.

Levine, Sergey, Pastor, Peter, Krizhevsky, Alex, Ibarz, Julian, and Quillen, Deirdre. Learn-
ing hand-eye coordination for robotic grasping with deep learning and large-scale data col-
lection. The International journal of robotics research, 37(4-5):421–436, 2018.

Li, Yingzhen and Mandt, Stephan. A deep generative model for disentangled representations
of sequential data. CoRR, abs/1803.02991, 2018. URL http://arxiv.org/abs/1803.
02991.

Liang, Tengyuan, Poggio, Tomaso, Rakhlin, Alexander, and Stokes, James. Fisher-rao met-
ric, geometry, and complexity of neural networks. arXiv preprint arXiv:1711.01530, 2017.

Lindsten, Fredrik, Schön, Thomas B, et al. Backward simulation methods for monte carlo
statistical inference. Foundations and Trends® in Machine Learning, 6(1):1–143, 2013.

Lindsten, Fredrik, Jordan, Michael I, and Schön, Thomas B. Particle gibbs with ancestor
sampling. The Journal of Machine Learning Research, 15(1):2145–2184, 2014.

Lioutas, Vasileios, Lavington, Jonathan Wilder, Sefas, Justice, Niedoba, Matthew, Liu, Yun-
peng, Zwartsenberg, Berend, Dabiri, Setareh, Wood, Frank, and Scibior, Adam. Critic se-
quential monte carlo. arXiv preprint arXiv:2205.15460, 2022.

Liu, Hao, Feng, Yihao, Mao, Yi, Zhou, Dengyong, Peng, Jian, and Liu, Qiang. Action-
depedent control variates for policy optimization via stein’s identity. arXiv preprint
arXiv:1710.11198, 2017.

Liu, Jun S. Monte Carlo strategies in scientific computing. Springer Science & Business
Media, 2008.

Maddison, Chris J, Lawson, Dieterich, Tucker, George, Heess, Nicolas, Doucet, Ar-
naud, Mnih, Andriy, and Teh, Yee Whye. Particle value functions. arXiv preprint
arXiv:1703.05820, 2017.

Mandt, Stephan, Hoffman, Matthew D, and Blei, David M. Stochastic gradient descent as
approximate bayesian inference. The Journal of Machine Learning Research, 18(1):4873–
4907, 2017.

123

http://arxiv.org/abs/1803.02991
http://arxiv.org/abs/1803.02991

Martens, James. New insights and perspectives on the natural gradient method. arXiv
preprint arXiv:1412.1193, 2014.

Massey, James. Causality, feedback and directed information. In Proc. Int. Symp. Inf.
Theory Applic.(ISITA-90), pp. 303–305, 1990.

Mei, Jincheng, Xiao, Chenjun, Dai, Bo, Li, Lihong, Szepesvári, Csaba, and Schuurmans,
Dale. Escaping the gravitational pull of softmax. Advances in Neural Information Pro-
cessing Systems, 33, 2020a.

Mei, Jincheng, Xiao, Chenjun, Szepesvari, Csaba, and Schuurmans, Dale. On the global
convergence rates of softmax policy gradient methods. In International Conference on
Machine Learning, pp. 6820–6829. PMLR, 2020b.

Mei, Jincheng, Dai, Bo, Xiao, Chenjun, Szepesvari, Csaba, and Schuurmans, Dale. Under-
standing the effect of stochasticity in policy optimization. Advances in Neural Informa-
tion Processing Systems, 34:19339–19351, 2021.

Mei, Jincheng, Chung, Wesley, Thomas, Valentin, Dai, Bo, Szepesvari, Csaba, and Schuur-
mans, Dale. The role of baselines in policy gradient optimization. Advances in Neural In-
formation Processing Systems, 35:17818–17830, 2022.

Mnih, Volodymyr, Kavukcuoglu, Koray, Silver, David, Graves, Alex, Antonoglou, Ioannis,
Wierstra, Daan, and Riedmiller, Martin. Playing atari with deep reinforcement learning.
arXiv preprint arXiv:1312.5602, 2013.

Mohamed, Shakir and Rezende, Danilo Jimenez. Variational information maximisation for
intrinsically motivated reinforcement learning. In Advances in neural information process-
ing systems, pp. 2125–2133, 2015.

Munos, Rémi, Stepleton, Tom, Harutyunyan, Anna, and Bellemare, Marc G. Safe and
efficient off-policy reinforcement learning. In Advances in Neural Information Processing
Systems, pp. 1046–1054, 2016.

Murata, Noboru, Yoshizawa, Shuji, and Amari, Shun-ichi. Network information criterion-
determining the number of hidden units for an artificial neural network model. IEEE
Transactions on Neural Networks, 5(6):865–872, 1994.

Nachum, Ofir, Norouzi, Mohammad, Xu, Kelvin, and Schuurmans, Dale. Bridging the gap
between value and policy based reinforcement learning. In Advances in Neural Information
Processing Systems, pp. 2775–2785, 2017.

Nagabandi, Anusha, Kahn, Gregory, Fearing, Ronald S, and Levine, Sergey. Neural network
dynamics for model-based deep reinforcement learning with model-free fine-tuning. arXiv
preprint arXiv:1708.02596, 2017.

Naganuma, Hiroki, Suzuki, Taiji, Yokota, Rio, Nomura, Masahiro, Ishikawa, Kohta, and
Sato, Ikuro. Takeuchi’s information criteria as generalization measures for DNNs close to
NTK regime, 2022. URL https://openreview.net/forum?id=FH_mZOKFX-b.

124

https://openreview.net/forum?id=FH_mZOKFX-b

Netzer, Yuval, Wang, Tao, Coates, Adam, Bissacco, Alessandro, Wu, Bo, and Ng, Andrew Y.
Reading digits in natural images with unsupervised feature learning. Neural Information
Processing Systems (NeurIPS), 2011.

Neu, Gergely. Explore no more: Improved high-probability regret bounds for non-stochastic
bandits. arXiv preprint arXiv:1506.03271, 2015.

Neyshabur, Behnam, Bhojanapalli, Srinadh, McAllester, David, and Srebro, Nati. Exploring
generalization in deep learning. In Advances in Neural Information Processing Systems,
pp. 5947–5956, 2017.

Nota, Chris and Thomas, P. Is the policy gradient a gradient? Adaptive Agents And Multi-
agent Systems, 2019.

Novak, Roman, Bahri, Yasaman, Abolafia, Daniel A, Pennington, Jeffrey, and Sohl-
Dickstein, Jascha. Sensitivity and generalization in neural networks: an empirical study.
International Conference on Learning Representations (ICLR), 2018.

O’Donoghue, Brendan, Munos, Remi, Kavukcuoglu, Koray, and Mnih, Volodymyr. Combin-
ing policy gradient and q-learning. arXiv preprint arXiv:1611.01626, 2016.

Oudeyer, Pierre-Yves and Kaplan, Frederic. What is intrinsic motivation? a typology of
computational approaches. Frontiers in neurorobotics, 1:6, 2009.

Parmas, Paavo and Sugiyama, Masashi. A unified view of likelihood ratio and repa-
rameterization gradients and an optimal importance sampling scheme. arXiv preprint
arXiv:1910.06419, 2019.

Peters, Jan and Schaal, Stefan. Reinforcement learning of motor skills with policy gradients.
Neural networks, 21(4):682–697, 2008.

Pitt, Michael K and Shephard, Neil. Filtering via simulation: Auxiliary particle filters.
Journal of the American statistical association, 94(446):590–599, 1999.

Pong, Vitchyr. rlkit. https://github.com/vitchyr/rlkit/, 2018.
Precup, Doina. Eligibility traces for off-policy policy evaluation. Computer Science Depart-

ment Faculty Publication Series, pp. 80, 2000a.
Precup, Doina. Temporal abstraction in reinforcement learning. 2000b.
Puterman, Martin L. Markov Decision Processes.: Discrete Stochastic Dynamic Program-

ming. John Wiley & Sons, 2014.
Rame, Alexandre, Dancette, Corentin, and Cord, Matthieu. Fishr: Invariant gradient

variances for out-of-distribution generalization. In International Conference on Machine
Learning, pp. 18347–18377. PMLR, 2022.

Rangamani, Akshay, Nguyen, Nam H, Kumar, Abhishek, Phan, Dzung, Chin, Sang H, and
Tran, Trac D. A scale invariant flatness measure for deep network minima. arXiv preprint
arXiv:1902.02434, 2019.

Rawlik, Konrad, Toussaint, Marc, and Vijayakumar, Sethu. An approximate inference ap-
proach to temporal optimization in optimal control. In Advances in neural information

125

https://github.com/vitchyr/rlkit/

processing systems, pp. 2011–2019, 2010.
Rawlik, Konrad, Toussaint, Marc, and Vijayakumar, Sethu. On stochastic optimal control

and reinforcement learning by approximate inference. In Robotics: science and systems,
volume 13, pp. 3052–3056, 2012.

Robbins, Herbert. Some aspects of the sequential design of experiments. Bulletin of the
American Mathematical Society, 58(5):527–535, 1952.

Robbins, Herbert and Monro, Sutton. A stochastic approximation method. Annals of Math-
ematical Statistics, 22(3):400–407, 1951.

Rubinstein, RY and Kroese, DP. A unified approach to combinatorial optimization, monte-
carlo simulation, and machine learning. Springer-Verlag New York, LLC, 2004.

Ruderman, Avraham, Reid, Mark, García-García, Darío, and Petterson, James. Tighter
variational representations of f-divergences via restriction to probability measures. arXiv
preprint arXiv:1206.4664, 2012.

Rumelhart, David E., Hinton, Geoffrey E., and Williams, Ronald J. Learning representations
by back-propagating errors. Nature, 1986. doi: 10.1038/323533a0. URL https://doi.
org/10.1038/323533a0.

Sagun, Levent, Bottou, Léon, and LeCun, Yann. Eigenvalues of the hessian in deep learning:
Singularity and beyond. arXiv preprint arXiv:1611.07476, 2016.

Salge, Christoph, Glackin, Cornelius, and Polani, Daniel. Empowerment - an introduction.
CoRR, abs/1310.1863, 2013. URL http://arxiv.org/abs/1310.1863.

Schaul, Tom, Borsa, Diana, Modayil, Joseph, and Pascanu, Razvan. Ray interference: a
source of plateaus in deep reinforcement learning. arXiv preprint arXiv:1904.11455, 2019.

Schmidt, Mark. Convergence rate of stochastic gradient with constant step size. Technical
report, UBC, 2014.

Schneider, Frank, Dangel, Felix, and Hennig, Philipp. Cockpit: A practical debugging tool
for the training of deep neural networks. Advances in Neural Information Processing
Systems, 34:20825–20837, 2021.

Schulman, John, Chen, Xi, and Abbeel, Pieter. Equivalence between policy gradients and
soft q-learning. arXiv preprint arXiv:1704.06440, 2017a.

Schulman, John, Wolski, Filip, Dhariwal, Prafulla, Radford, Alec, and Klimov, Oleg. Prox-
imal policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017b.

Schultz, Wolfram, Dayan, Peter, and Montague, P Read. A neural substrate of prediction
and reward. Science, 275(5306):1593–1599, 1997.

Seldin, Yevgeny, Szepesvári, Csaba, Auer, Peter, and Abbasi-Yadkori, Yasin. Evaluation and
analysis of the performance of the exp3 algorithm in stochastic environments. In EWRL,
pp. 103–116, 2012.

Seldin, Yevgeny, Szepesvári, Csaba, Auer, Peter, and Abbasi-Yadkori, Yasin. Evaluation and
analysis of the performance of the exp3 algorithm in stochastic environments. In European

126

https://doi.org/10.1038/323533a0
https://doi.org/10.1038/323533a0
http://arxiv.org/abs/1310.1863

Workshop on Reinforcement Learning, pp. 103–116. PMLR, 2013.
Shannon, Claude Elwood. A mathematical theory of communication. Bell system technical

journal, 27(3):379–423, 1948.
Silver, David, Huang, Aja, Maddison, Chris J, Guez, Arthur, Sifre, Laurent, Van Den Driess-

che, George, Schrittwieser, Julian, Antonoglou, Ioannis, Panneershelvam, Veda, Lanctot,
Marc, et al. Mastering the game of go with deep neural networks and tree search. Nature,
529(7587):484, 2016.

Silver, David, Schrittwieser, Julian, Simonyan, Karen, Antonoglou, Ioannis, Huang, Aja,
Guez, Arthur, Hubert, Thomas, Baker, Lucas, Lai, Matthew, Bolton, Adrian, et al. Mas-
tering the game of go without human knowledge. Nature, 550(7676):354, 2017.

Stewart, Leland and McCarty, Perry. Use of bayesian belief networks to fuse continuous
and discrete information for target recognition, tracking, and situation assessment. In
Signal Processing, Sensor Fusion, and Target Recognition, volume 1699, pp. 177–186.
International Society for Optics and Photonics, 1992.

Still, Susanne and Precup, Doina. An information-theoretic approach to curiosity-driven
reinforcement learning. Theory in Biosciences, 131(3):139–148, 2012.

Strouse, DJ, Baumli, Kate, Warde-Farley, David, Mnih, Vlad, and Hansen, Steven. Learning
more skills through optimistic exploration. arXiv preprint arXiv:2107.14226, 2021.

Sukhbaatar, Sainbayar, Szlam, Arthur, Synnaeve, Gabriel, Chintala, Soumith, and Fergus,
Rob. MazeBase: A sandbox for learning from games. arXiv preprint arXiv:1511.07401,
2015.

Sutton, Richard S. Learning to predict by the methods of temporal differences. Machine
learning, 3(1):9–44, 1988.

Sutton, Richard S and Barto, Andrew G. Toward a modern theory of adaptive networks:
expectation and prediction. Psychological review, 88(2):135, 1981.

Sutton, Richard S. and Barto, Andrew G. Reinforcement Learning: An Introduction. MIT
Press, 2 edition, 2018.

Sutton, Richard S, McAllester, David A, Singh, Satinder P, Mansour, Yishay, et al. Policy
gradient methods for reinforcement learning with function approximation. In NIPS, vol-
ume 99, pp. 1057–1063, 1999.

Szita, István and Lörincz, András. Learning tetris using the noisy cross-entropy method.
Neural computation, 18(12):2936–2941, 2006.

Takeuchi, Kei. The distribution of information statistics and the criterion of goodness of fit
of models. Mathematical Science, 153:12–18, 1976.

Tassa, Yuval, Erez, Tom, and Todorov, Emanuel. Synthesis and stabilization of complex be-
haviors through online trajectory optimization. In Intelligent Robots and Systems (IROS),
2012 IEEE/RSJ International Conference on, pp. 4906–4913. IEEE, 2012.

127

Tesauro, Gerald. Td-gammon, a self-teaching backgammon program, achieves master-level
play. Neural computation, 6(2):215–219, 1994.

Thomas, Valentin. On the role of overparameterization in off-policy temporal difference
learning with linear function approximation. Advances in Neural Information Processing
Systems, 35:37228–37240, 2022.

Thomas, Valentin, Pondard, Jules, Bengio, Emmanuel, Sarfati, Marc, Beaudoin, Philippe,
Meurs, Marie-Jean, Pineau, Joelle, Precup, Doina, and Bengio, Yoshua. Independently
controllable features. arXiv preprint arXiv:1708.01289, 2017.

Thomas, Valentin, Bengio, Emmanuel, Fedus, William, Pondard, Jules, Beaudoin, Philippe,
Larochelle, Hugo, Pineau, Joelle, Precup, Doina, and Bengio, Yoshua. Disentangling
the independently controllable factors of variation by interacting with the world. arXiv
preprint arXiv:1802.09484, 2018.

Todorov, Emanuel and Li, Weiwei. A generalized iterative lqg method for locally-optimal
feedback control of constrained nonlinear stochastic systems. In American Control Con-
ference, 2005. Proceedings of the 2005, pp. 300–306. IEEE, 2005.

Todorov, Emanuel, Erez, Tom, and Tassa, Yuval. Mujoco: A physics engine for model-
based control. In Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International
Conference on, pp. 5026–5033. IEEE, 2012.

Toussaint, Marc. Robot trajectory optimization using approximate inference. In Proceedings
of the 26th annual international conference on machine learning, pp. 1049–1056. ACM,
2009.

Toussaint, Marc and Storkey, Amos. Probabilistic inference for solving discrete and contin-
uous state markov decision processes. In Proceedings of the 23rd international conference
on Machine learning, pp. 945–952. ACM, 2006.

van Hasselt, Hado, Doron, Yotam, Strub, Florian, Hessel, Matteo, Sonnerat, Nicolas,
and Modayil, Joseph. Deep reinforcement learning and the deadly triad. CoRR,
abs/1812.02648, 2018.

Wang, Shuaiwen, Zhou, Wenda, Lu, Haihao, Maleki, Arian, and Mirrokni, Vahab. Ap-
proximate leave-one-out for fast parameter tuning in high dimensions. arXiv preprint
arXiv:1807.02694, 2018.

Wang, Yunbo, Liu, Bo, Wu, Jiajun, Zhu, Yuke, Du, Simon S, Fei-Fei, Li, and Tenenbaum,
Joshua B. Dual sequential monte carlo: Tunneling filtering and planning in continuous
pomdps. arXiv preprint arXiv:1909.13003, 2019.

Watkins, Christopher JCH and Dayan, Peter. Q-learning. Machine learning, 8(3-4):279–292,
1992.

Williams, Ronald J. Simple statistical gradient-following algorithms for connectionist rein-
forcement learning. Machine learning, 8(3-4):229–256, 1992.

128

Wu, Cathy, Rajeswaran, Aravind, Duan, Yan, Kumar, Vikash, Bayen, Alexandre M, Kakade,
Sham, Mordatch, Igor, and Abbeel, Pieter. Variance reduction for policy gradient with
action-dependent factorized baselines. arXiv preprint arXiv:1803.07246, 2018.

Xu, Pan, Gao, Felicia, and Gu, Quanquan. Sample efficient policy gradient methods with
recursive variance reduction. arXiv preprint arXiv:1909.08610, 2019.

Yaida, Sho. Fluctuation-dissipation relations for stochastic gradient descent. arXiv preprint
arXiv:1810.00004, 2018.

Zhu, Zhanxing, Wu, Jingfeng, Yu, Bing, Wu, Lei, and Ma, Jinwen. The anisotropic noise
in stochastic gradient descent: Its behavior of escaping from minima and regularization
effects. arXiv preprint arXiv:1803.00195, 2018.

Ziebart, Brian D. Modeling purposeful adaptive behavior with the principle of maximum
causal entropy. PhD thesis, CMU, 2010.

129

Appendix A

Independently Controllable Factors

A.1. Additional details
A.1.1. Architecture

Our architecture is as follows: the encoder, mapping the raw pixel state to a latent
representation, is a 4-layer convolutional neural network with batch normalization (Ioffe &
Szegedy, 2015) and leaky ReLU activations. The decoder uses the transposed architecture
with ReLU activations. The noise z is sampled from a 2-dimensional gaussian distribution
and both the generator Φ(h,z) and the policy π(h,ϕ) are neural networks consisting of 2
fully-connected layers. In practice, a minibatch of n = 256 or 1024 vectors ϕ1, . . . , ϕn is
sampled at each step. The agent randomly choses one ϕ = ϕbehavior and samples actions from
its policy a ∼ π(h, ϕbehavior). Our model parameters are then updated using policy gradient
with the REINFORCE estimator and a state-dependent baseline and importance sampling.
For each selectivity reward, the term Eϕ′ [A(h′, h,ϕ′)] is estimated as 1

n

∑n
i=1 A(h′, h,ϕi).

In practice, we don’t use concatenation of vectors when feeding two vectors as input for a
network (like (h, z) for the factor generator or (h, ϕ) for the policy). For vectors a,b ∈ Rna×nb .
We use a bilinear operation bil(a, b) = (ai ∗ bj)i∈[[na]],j∈[[nb]] as in Florensa et al. (2017). We
observe the bilinear integrated input to more strongly enforce dependence on both vectors;
in contrast, our models often ignored one input when using a simple concatenation.

Through our research, we experiment with different outputs for our generator Φ(h,z).
We explored embedding the ϕ-vectors into a hypercube, a hypersphere, a simplex and also
a simplex multiplied by the output of a tanh(·) operation on a scalar.

A.1.2. First experiment

In the first experiment, figure 3.2, we used a gaussian similarity kernel i.e A(h′, h, ϕ) =
exp(− ||h′−(h+ϕ)||2

2σ2) with σ =
√

dim(h). In this experiment only, for clarity of the figure, we
only allowed permissible actions in the environment (no no-op action).

A.2. Additional Figures
A.2.1. Discrete simple case

Here we consider the case where we learn a latent space H of size K, with K factors
corresponding to the coordinates of h (hi, i ∈ [k]), and learn K separately parameterized
policies πi(a|h), i ∈ [k]. We train our model with the selectivity objective, but no autoencoder
loss, and find that we correctly recover independently controllable features on a simple
environment. Albeit slower than when jointly training an autoencoder, this shows that
the objective we propose is strong enough to provide a learning signal for discovering a
disentangled latent representation.

We train such a model on a gridworld MNIST environment, where there are two MNIST
digits . The two digits can be moved on the grid via 4 directional actions (so there are 8
actions total), the first digit is always odd and the second digit always even, so they are
distiguishable. In Figure A.1 we plot each latent feature hk as a curve, as a function of
each ground truth. For example we see that the black feature recovers +x1, the horizontal
position of the first digit, or that the purple feature recovers −y2, the vertical position of the
second digit.

Fig. A.1. In a gridworld environment with 2 objects (in this case 2 MNIST digits), we
know there are 4 underlying features, the (xi,yi) position of each digit i. Here each of the
four plots represents the evolution of the fk’s as a function of their underlying feature, from
left to right x1, y1, x2, y2. We see that for each of them, at least one fk recovers it almost
linearly, from the raw pixels only.

132

A.2.2. Planning and policy inference example in 1-step

This disentangled structure could be used to address many challenging issues in rein-
forcement learning. We give two examples in figure A.2:

• Model-based predictions: Given an initial state, s0, and an action sequence a{0:T −1},
we want to predict the resulting state sT .

• A simplified deterministic policy inference problem: Given an initial state sstart and
a terminal state sgoal, we aim to find a suitable action sequence a{0:T −1} such that
sgoal can be reached from sstart by following it.

Because of the tanh activation on the last layer of Φ(h, z), the different factors of variation
dh = h′−h are placed on the vertices of a hypercube of dimension K, and we can think of the
the policy inference problem as finding a path in that simpler space, where the starting point
is hstart and the goal is hgoal. We believe this could prove to be a much easier problem to solve.

h︸︷︷︸
(0.4, 13.1)

ĥ′︸︷︷︸
(−4.6, −1.9)

= h + dhright︸ ︷︷ ︸
(5, −5)

+ 2 · dhdown︸ ︷︷ ︸
(−10, −10)

Encoder Decoder

(a)

h1︸︷︷︸
(0.4, 13.1)

h2︸︷︷︸
(5.9, −11.6)

dh = (5.5, − 24.8) ≈ 2 · dhdown + 3 · dhright

Encoder Encoder

(b)

Fig. A.2. (a) Predicting the effect of a cause on Mazebase. The leftmost image is the vi-
sual input of the environment, where the agent is the round circle, and the switch states are
represented by shades of green. After the training, we are able to distinguish one cluster
per dh (Figure 3.2), that is to say per variation obtained after performing an action, inde-
pendently from the position h. Therefore, we are able to move the agent just by adding the
corresponding dh to our latent representation h. The second image is just the reconstruc-
tion obtained by feeding the resulting h′ into the decoder. (b) Given a starting state and
a goal state, we are able to decompose the difference of the two representations dh into a
(non-directed) sequence of movements.

A.2.3. Multistep Example

We demonstrate an instance of ICF operating in a 4×4 Mazebase enviroment over five
time steps in Figure A.3. We consistently witness a failure of mode collapse in our generator
Φ and therefore the generator only produces a subset of all possible ϕ-variations. In Figure
A.3, we observe the ϕ governing the agent’s policy πϕ appears to correspond to moving two
positions down and then to repeatedly toggle the switch. A random action due to ϵ-greedy

133

led to the agent moving up and off the switch at time step-4. This perturbation is corrected
by the policy πϕ by moving down in order to return to toggling the relevant switch.

(a)

(b)

Fig. A.3. (a) Mazebase environment over five time-steps. Here the red dot denotes the
position of the agent. The ϕbehavior governing the agent’s policy appears to control toggling
the switch indicated by the red rounded box. (b) Visualization of the policies instantiated
by different ϕs. Each box represents the probability distribution of the policies at that time
step. Each row is generated by a different ϕ and each column corresponds to an action (up,
left, pass, right, toggle, down) in order. The boxed column shows the ϕbehavior. The symbols
below each box represent the most-probable action for the behavioral policy, where the grey
circle indicates toggling the switch.

A.3. Variational bound and the selectivity
Let us call p(ht+1|ϕt+1, ht) = Pϕ

h′,h the probability distribution over final hidden states
starting from h and using the policy parametrized by the embedding ϕ.

p(ht+1|ϕt+1, ht) = ΠK
k=1πϕt+1(at+ k−1

K
|ht+ k−1

K
)penv(st+ k

K
|at+ k−1

K
, st+ k−1

K
). where penv is the

transition probability of the environment.
For simplicity, let’s refer to ht as h, ht+1 as h′ and ϕt+1 as ϕ.

A.3.1. Lower bound on the mutual information

The bound
Ip(ϕ, h′|h) ≥ sup

θ
Ep(ϕ|h)

[
S(h, ϕ)

]

134

can be proven by using Donsker-Varadhan variational representation of the KL divergence
(Donsker & Varadhan, 1975; Ruderman et al., 2012):

DKL
(
p||q

)
= sup

T ∈L∞(q)
Ep

[
T
]
− logEq

[
eT
]

For A = eT and using the identity Ip(X, Y) = Ep(y)
[
DKL

(
p(x|y)||p(x)

)]
with X = ϕ|h

and Y = h′|h, we have:

Ip(ϕ, h′|h) = Eh′|h sup
A

Eϕ|h,h′

[
log A(h′, h, ϕ)

]
− logEφ|h

[
A(h′, h, φ)

]
= Eh′|h sup

A
Eϕ|h,h′

[
log A(h′, h, ϕ)

Eφ|h
[
A(h′, h, φ)

]]

≥ sup
A

Eϕ|hEh′|ϕ,h

[
log A(h′, h, ϕ)

Eφ|h
[
A(h′, h, φ)

]]

≥ sup
θ

Eϕ|hEh′|ϕ,h

[
log A(h′, h, ϕ; θ)

Eφ|h
[
A(h′, h, φ; θ)

]]

for parametric A functions.
As we sample the factors ϕ uniformly, our total objective is then a lower bound on∑

t I(ϕt, ht|ht−1) which corresponds here to the directed information (Massey, 1990) Ziebart
(2010) as ϕt is sampled independently from ϕ1:t−1.

A.4. Additional information on the training
In our experiments, we use the selectivity objective, an autoencoding loss and an entropy

regularization loss H(πϕ) for each of the policies πϕ. Furthermore, in experiment 4.2 we
added the model-based cost ||h′−T (h, ϕ)||2 with T a learned two layer fully connected neural
network.

The selectivity is used to update the parameters of the encoder, factor generator and
policy networks. We use the following equation for computing the gradients

∇θEπθ

[
fθ

]
= Eπθ

[
∇θfθ + fθ∇θ log πθ

]
We also use a state dependent baseline V as a control variate to reduce the variance of the
REINFORCE estimator.

Furthermore, to be able to train the factor generator efficiently, we train all ϕ sampled in
a mini-batch (of size 1024) by importance sampling on the probability ratio of the trajectory
under each ϕ

135

Appendix B

Probabilistic Planning with Sequential Monte
Carlo Methods

B.1. Abbreviation and Notation

Table B.1. Abbreviation

SMCP: Sequential Monte Carlo Planning.
SAC: Soft Actor Critic.

CEM: Cross Entropy Method.
RS: Random Shooting.

MCTS: Monte Carlo Tree Search.
SMC: Sequential Monte Carlo.
SIR: Sequential Importance Resampling.
SIS: Sequential Importance Sampling.
IS: Importance Sampling.

MPC: Model Predictive Control

Table B.2. Notation

τ1:T ≜ {si, ai}T
i=1 the state-action pairs.

V ≜ value function.
Ot ≜ Optimality variable.

p(Ot|st, at) ≜ exp(r(st, at)) Probability of a pair state action of being
optimal.

penv ≜ Transition probability of the environment. Takes state
and action (st, at) as argument and return next state
and reward (st+1, rt).

pmodel ≜ Model of the environment. Takes state and action
(st, at) as argument and return next state and reward
(st+1, rt).

wt ≜ Importance sampling weight.
p(τ) ≜ Density of interest.
q(τ) ≜ Approximation of the density of interest.

t ∈ {1, . . . T} ≜ time steps.
n ∈ {1, . . . N} ≜ particle number.

h ≜ horizon length.

B.2. The action prior
The true joint distribution 4.2.1 in section 4.2.1 should actually be written:

p(τ1:T ,O1:T) = µ(s1)
T −1∏
t=1

penv(st+1|at, st)
T∏

t=1
p(at) exp

(T∑
t=1

r(st, at)
)

= µ(s1)
T −1∏
t=1

penv(st+1|at, st) exp
(T∑

t=1
r(st, at) + log p(at)

)

In Mujoco environments, the reward is typically written as

r(st, at) = f(st)− α||at||22

where f is a function of the state (velocity for HalfCheetah on Mujoco for example). The
part α||at||22 can be seen as the contribution from the action prior (here a gaussian prior).
One can also consider the prior to be constant (and potentially improper) so that is does
not change the posterior p(τ1:T |O1:T).

138

B.3. Value function: backward message

p(Ot+1:T |τt) =
∫

τt+1
p(Ot+1:T , τt+1|τt)dτt+1

=
∫

τt+1
p(τt+1|τt,Ot+1:T)p(Ot+1:T |τt+1)dτt+1

=
∫

st+1
penv(st+1|st, at)

[∫
at+1

p(at+1|st+1,Ot+1:T) exp Q(st+1, at+1)dat+1

]
dst+1

=
∫

st+1
penv(st+1|st, at) exp

(
V (st+1)

)
dst+1

= Est+1|st,at [exp
(
V (st+1)

)
] (B.3.1)

By definition of the optimal value function in (Levine, 2018).

B.4. Recursive weights update

wt = p(τ1:t|O1:T)
q(τ1:t)

= p(τ1:t−1|O1:T)
q(τ1:t−1)

p(τt|τ1:t−1,O1:T)
q(τt|τ1:t−1)

= wt−1 ·
p(τt|τ1:t−1,O1:T)

q(τt|τ1:t−1)

= wt−1
1

q(τt|τ1:t−1)
p(τ1:t|O1:T)

p(τ1:t−1|O1:T)
We use there the forward-backward equation 4.3.1 for the numerator and the denominator

∝ wt−1
1

q(τt|τ1:t−1)
p(τ1:t|O1:t)

p(τ1:t−1|O1:t−1)
p(Ot+1:T |τt)
p(Ot:T |τt−1)

= wt−1
p(τt|τ1:t−1)
q(τt|τ1:t−1)

p(Ot|τt)
p(Ot+1:T |τt)
p(Ot:T |τt−1)

= wt−1
penv(st|st−1, at−1)

pmodel(st|st−1, at−1)
exp(rt)

πθ(at|st)
Est+1|st,at [exp

(
V (st+1)

)
]

Est|st−1,at−1 [exp
(
V (st)

)
]

= wt−1
penv(st|st−1, at−1)

pmodel(st|st−1, at−1)
Est+1|st,at [exp

(
rt − log πθ(at|st) + V (st+1)− logEst|st−1,at−1 [exp

(
V (st)

)
]
)
]

(B.4.1)

139

B.5. Experiment Details
Random samples: 1000 transitions are initially collected by a random policy to pretrain the
model and the proposal distribution. After which the agents start following their respective
policy.
Data preprocessing: We normalize the observations to have zero mean and standard de-
viation 1.
Model Predictive Control: The model is used to predict the planning distribution for the
horizon h of N particles. We then sample a trajectory according to its weight and return the
first action of this trajectory. In our experiments, we fix the maximum number of particles
for every method to 2500. For SMCP, the temperature and horizon length are described in
Table B.3.
Soft Actor Critic: We used a custom implementation with a Gaussian policy for both
the SAC baseline and the proposal distribution used for both versions of SMCP. We used
Adam (Kingma & Ba, 2014) with a learning rate of 0.001. The reward scaling suggested
by Haarnoja et al. (2018) for all experiments and used an implementation inspired by Pong
(2018). We used a two hidden layers with 256 hidden units for the three networks: the value
function, the policy and the soft Q functions.
Model: We train the model pmodel to minimize the negative log likelihood of p(st+1|st +
∆t(st, at), σt(st, at)). The exact architectures are detailed in Table B.3. We train the model
to predict the distribution of the change in states and learn a deterministic reward function
from the current state and predict the change in state. Additionally, we manually add a
penalty on the action magnitude in the reward function to simplify the learning. At the end
of each episode we train the model for 10 epochs. Since the training is fairly short, we stored
every transitions into the buffer. The model is defined as:

∆st ∼ p(·|st, at) (B.5.1)

rt = g(st, ∆st)− α∥a∥2 (B.5.2)

where α was taken from the Mujoco gym environments. We used Adam (Kingma & Ba,
2014) with a learning rate of 0.001 and leaky ReLU activation function.

Environment Temperature Horizon length Number of Dense Layers Layer Dimension

Hopper-v2 1 10 3 256
Walker2d-v2 10 20 3 256

HalfCheetah-v2 10 20 3 256

Table B.3. Hyperparameters for the experiments.

140

B.6. Sequential Importance Sampling Planning

Algorithm 6 SMC Planning using SIS
1: for t in {1, . . . ,T} do
2: {s(n)

t = st}N
n=1

3: {w(n)
t = 1}N

n=1
4: for i in {t, . . . ,t + h} do
5: // Update
6: {a(n)

i ∼ π(a(n)
i |s

(n)
i)}N

n=1
7: {s(n)

i+1, r
(n)
i ∼ pmodel(·|s(n)

i , a
(n)
i)}N

n=1
8: {w(n)

i ∝ w
(n)
i−1 · exp

(
A(s(n)

i , a
(n)
i , s

(n)
i+1)

)
}N

n=1
9: end for

10: Sample n ∼ Categorical(w(1)
t+h, . . . , w

(N)
t+h).

11: // Model Predictive Control
12: Select at, first action of τ

(n)
t:t+h

13: st+1, rt ∼ penv(·|st, at)
14: Add (st, at, rt, st+1) to buffer B
15: Update π, V and pmodel with B
16: end for

B.7. Significance of the results
The significance of our results is done following guidelines from Colas et al. (2018). We

test the hypothesis that the mean return of our method is superior to the one of SAC. We
use 20 random seeds (from 0 to 19pro) for each method on each environment.

For this we look at the average return from steps 150k to 250k for SIR-SAC and SAC, and
conduct a Welch’s t-test with unknown variance. We report the p-value for each environment
tested on Mujoco. A pval < 0.05 usually indicates that there is strong evidence to suggest
that our method outperforms SAC.

• HalfCheetah-v2: pval = 0.003. There is very compelling evidence suggesting we
outperform SAC.

• Hopper-v2: pval = 0.09. There is no significant evidence suggesting we outperform
SAC.

• Walker2d-v2: pval = 0.03. There is compelling evidence suggesting we outperform
SAC.

141

Fig. B.1. Effective sample size for HalfCheetah. The shaded area represents the standard
deviation over 20 seeds.

B.8. Additional experimental results
B.8.1. Effective Sample Size

The values reported on Figure B.1 are the harmonic mean of the ratio of the effective
sample size by the actual number of particles.

More precisely the values are

yt =
(h∏

i=1
ESSi(t)/N

)1/h

where i is the depth of the planning, N is the number of particles and

ESSi(t) = (∑N
n=1 w

(n)
t+i)2∑N

n=1(w
(n)
t+i)2

We can see that as the proposal distribution improves the ESS also increases. The ESS
on HalfCheetah is representative of the one obtained on the other environments. While
these values are not high, we are still around 15% thus we do not suffer heavily from weight
degeneracy.

B.8.2. Model loss

We also report the negative log likelihood loss of the environment’s model during the
training on Figure B.2.

142

Fig. B.2. Negative log likelihood for the model on HalfCheetah. The shaded area represents
the standard deviation over 20 seeds.

143

Appendix C

On the Interplay between Noise and
Curvature and its Effect on Optimization and

Generalization

C.1. Proofs
C.1.1. Bounds between H, F and C

C.1.1.1. Bounds with backward χ2 divergence

|Fij −Hij|2 = |
∫

qθ(x, y)
(
∇2

θℓ(x, y)
)

ij
d(x, y)−

∫
p(x, y)

(
∇2

θℓ(x, y)
)

ij
d(x, y)|2

= |
∫ (

qθ(x, y)− p(x, y)
)(
∇2

θℓ(x, y)
)

ij
d(x, y)|2

= |
∫ (

qθ(x, y)− p(x, y)
)

√
p(x, y)

(√
p(x, y)∇2

θℓ(x, y)
)

ij
d(x, y)|2

≤
∫ (

qθ(x, y)− p(x, y)
)2

p(x, y) d(x, y)
∫

p(x, y)
(
∇2

θℓ(x, y)
)2

ij
d(x, y)

= Dχ2(qθ||p) Ep[
(
∇2

θℓ(x, y)
)2

ij
]

Where we used Cauchy-Schwarz inequality and Dχ2 denotes the χ2 divergence.

||F−H||2 ≤ Dχ2(qθ||p) Ep[||H(x, y)||22]

Where H(x, y) ≜ ∇2
θℓ(x, y) is the empirical hessian for one sample and the || · ||2 is the

Frobenius norm.

In the same way

|Fij −Cij|2 = |
∫

qθ(x, y)
(
∇θℓ(x, y)∇θℓ(x, y)⊤

)
ij

d(x, y)−
∫

p(x, y)
(
∇θℓ(x, y)∇θℓ(x, y)⊤

)
ij

d(x, y)|2

≤ Dχ2(qθ||p) Ep[
(
∇θℓ(x, y)∇θℓ(x, y)⊤

)2

ij
]

For C(x, y) ≜ ∇θℓ(x, y)∇θℓ(x, y)⊤ we have

||F−C||2 ≤ Dχ2(qθ||p) Ep[||C(x, y)||2]

Hence

||C−H||2 ≤ Dχ2(qθ||p) Ep[||C(x, y)||2 + ||H(x, y)||2]

C.1.1.2. Bounds with forward χ2 divergence

Note that in the above proof, breaking the integral in two with Cauchy-Schwarz inequality
could have been done using

|Fij −Hij|2 = |
∫ (

qθ(x, y)− p(x, y)
)

√
qθ(x, y)

(√
qθ(x, y)∇2

θℓ(x, y)
)

ij
d(x, y)|2

≤
∫ (

qθ(x, y)− p(x, y)
)2

qθ(x, y) d(x, y)
∫

qθ(x, y)
(
∇2

θℓ(x, y)
)2

ij
d(x, y)

= Dχ2(p||qθ) Eqθ
[
(
∇2

θℓ(x, y)
)2

ij
]

Similarly

|Fij −Cij|2 ≤ Dχ2(p||qθ) Eqθ
[
(
∇θℓ(x, y)∇θℓ(x, y)⊤

)2

ij
]

Thus

||C−H||2 ≤ Dχ2(p||qθ) Eqθ
[||C(x, y)||2 + ||H(x, y)||2]

C.1.1.3. Proof of Proposition 5.3.1

From the upper bound assumption we have

f(θk+1) ≤ f(θk) +∇f(θk)⊤(θk+1 − θk) + 1
2(θk+1 − θk)⊤H(θk+1 − θk)

= f(θk)− α∇f(θk)⊤M∇ℓ(θk, x) + α2

2 ∇ℓ(θk, x)⊤M⊤HM∇ℓ(θk, x) .

146

Subtracting f(θ∗) from both sides and taking conditional expectation we have

E[f(θk+1)− f(θ̂∗)] ≤ f(θk)− f(θ̂∗)− α∇f(θk)⊤ME
[
∇ℓ(θk, x)

]
+ α2

2 E
[

Tr
(
M⊤HM∇ℓ(θk, x)∇ℓ(θk, x)⊤

)]
≤ f(θk)− f(θ̂∗)− α∇f(θk)⊤M∇f(θk) + α2

2 Tr
(
M⊤HM(C +∇f(θk)∇f(θk))

)
= f(θk)− f(θ̂∗)− α∇f(θk)⊤(M− α

2 M⊤HM)∇f(θk) + α2

2 Tr
(
M⊤HMC)

)
,

where in the second inequality we have used the covariance bound.
For µMI ≼ M− α

2 M⊤HM and using the strong convexity bound 1
2µ
∥∇f(θ)∥2 ≥ f(θ)−

f(θ̂∗), we can simplify to

E[f(θk+1)− f(θ̂∗)] ≤ f(θk)− f(θ̂∗)− αµM∇f(θk)⊤∇f(θk) + α2

2 Tr
(
M⊤HMC

)
≤ f(θk)− f(θ̂∗)− 2αµMµ

(
f(θk)− f(θ̂∗)

)
+ α2

2 Tr
(
M⊤HMC

)
=

(
1− 2αµMµ

)(
f(θk)− f(θ̂∗)

)
+ α2

2 Tr
(
M⊤HMC

)

Assuming αµMµ ≤ 1
2 , we have ∑k

i=0

(
1−2αµMµ

)i
≤ ∑∞

i=0

(
1−2αµMµ

)i
= 1

2αµM µ
. Therefore

E[f(θk+1)− f(θ̂∗)] ≤ f(θk)− f(θ̂∗)− αµM∇f(θk)⊤∇f(θk) + α2

2 Tr
(
M⊤HMC

)
≤ f(θk)− f(θ̂∗)− 2αµMµ

(
f(θk)− f(θ̂∗)

)
+ α2

2 Tr
(
M⊤HMC

)
=

(
1− 2αµMµ

)(
f(θk)− f(θ̂∗)

)
+ α2

2 Tr
(
M⊤HMC

)

Assuming αµMµ ≤ 1
2 , we have ∑k

i=0

(
1 − 2αµMµ

)i
≤ ∑∞

i=0

(
1 − 2αµMµ

)i
= 1

2αµM µ
. Taking

full expectations and chaining inequalities we then have

E[f(θk)− f(θ̂∗)] ≤
(
1− 2αµMµ

)k(
f(θ0)− f(θ̂∗)

)
+ α

4µM µ
Tr
(
M⊤HMC

)
.

This concludes the proof.

C.1.1.4. Convergence to limit cycles in the quadratic case

For SGD with constant stepsize α and preconditioner M, the update equation on the
parameters is

θt+1 = θt − αM(∇f(θt) + ϵt)

In our quadratic case, ∇f(θt) = H(θt − θ∗) with E[ϵt] = 0 and E[ϵtϵ
⊤
t] = S. By defining

δt = E[θt − θ∗], we have

147

δt+1 = (I− αMH)δt

= (I− αMH)t+1δ0

This concludes the first result of proposition on the quadratic case.
By defining, Σt = E[(θt − θ∗)(θt − θ∗)⊤], we get

Σt+1 = Σt − E
[
αM

(
H(θt − θ∗) + ϵt

)
(θt − θ∗)⊤

]
(C.1.1)

− αE
[
(θt − θ∗)

(
θt − θ∗ + ϵt

)⊤
HM⊤

]
(C.1.2)

+ α2E
[
MH(θt − θ∗)(θt − θ∗)⊤HM⊤

]
(C.1.3)

+ α2E
[
Mϵtϵ

⊤
t M⊤

]
(C.1.4)

= Σt − αMHΣt − αΣtHM⊤ + α2MHΣtHM⊤ + α2MSM⊤ (C.1.5)

= (I− αMH)Σt(I− αMH)⊤ + α2MSM⊤ (C.1.6)

(C.1.7)

C.1.2. Expected suboptimality for SG and Polyak momentum on
quadratic functions

We detail here the computation of the expected suboptimality at each timestep when
optimizing a quadratic function with a diagonal Hessian when the noise is also diagonal. Note
that all these results apply if H and S are simultaneously diagonalizable by a change of basis.

We assume that f is a quadratic with Hessian H and that, at each time step, we receive
a gradient perturbed by a random variable ϵ with E[ϵ] = 0, E[ϵϵ⊤] = S. Further, we shall
assume that H and S are both diagonal. With these assumptions, the optimization occurs in
each dimension independently and we can thus focus on a single dimension. We will denote
by h and c the hessian and noise variance along that direction.

C.1.2.1. Proof of proposition 5.3.3

We can compare this result to the same setting where we use stochastic gradient with a
diagonal preconditioning matrix M. Then we get

si = (1− αMiiHii)2si + α2M2
iiSii

si = αMiiSii

2Hii − αMiiH2
ii

,

148

and

E[f(θt)− f(θ̂∗)] = 1
2
∑

i

αMiiSii

2− αMiiHii

+ O(e−t) .

Generalizing to simultaneously diagonalizable matrices, we get

E[f(θt)− f(θ̂∗)] = α

2 Tr((2I− αMH)−1MS) + O(e−t) .

C.1.2.2. Proof of proposition 5.3.4

Polyak momentum update equations are:

vt = γvt−1 +∇f(θt) + ϵ (C.1.8)

θt+1 = θt − αvt . (C.1.9)

Using the quadratic assumption, we can rewrite

vt+1 = γvt +∇f(θt+1) + ϵ

= γvt + hθt+1 + ϵ

= γvt + hθt − αhvt + ϵ ,

and the full update can be written in matrix form θt

vt

 =
 1 −α

h γ − αh

 θt−1

vt−1

+
 0

ϵ

 (C.1.10)

Denoting P =
 1 −α

h γ − αh

 and St = [
 θt

vt

 θt

vt

T

, we have

E[St|St−1] = PSt−1P
T +

 0 0
0 c

 . (C.1.11)

If there is a limit cycle for
 θt

vt

, it will satisfy

S = PSP T +
 0 0

0 c

 . (C.1.12)

Writing S =
 sθ svθ

svθ sv

, we have

sθ = sθ − 2αsvθ + α2sv

sv = h2sθ + 2h(γ − αh)svθ + (γ − αh)2sv + c

svθ = hsθ + (γ − 2αh)svθ − α(γ − αh)sv .

149

The first equation gives svθ = α
2 sv and the last one becomes

α

2 sv = hsθ + (γ − 2αh)α

2 sv − α(γ − αh)sv

sθ = α(1 + γ)
2h

sv .

Finally, the second equation gives

sv =
(

h2 α(1 + γ)
2h

+ 2h(γ − αh)α

2 + (γ − αh)2
)

sv + c

sv = c

(1− γ)
(
1 + γ − αh

2

)
and

sθ = α(1 + γ)c
h(1− γ)(2 + 2γ − αh) .

Adding all dimensions together and multiplying by the Hessian to get the value function, we
get

E[f(θt)− f(θ̂∗)] = 1
2
∑

i

α(1 + γ)Sii

(1− γ)(2 + 2γ − αHii)
+ O(e−t) .

Generalizing to simultaneously diagonalizable matrices, we get

E[f(θt)− f(θ̂∗)] = α

2
(1 + γ)
(1− γ) Tr

(
(2(1 + γ)I− αH)−1S

)
+ O(e−t) . (C.1.13)

C.1.2.3. Comparison between stochastic gradient and Polyak momentum in the
large noise regime

When the desired suboptimality is small, it requires a small α and the two suboptimality
can be approximated by

f(θt)− f(θ̂∗) ≈ 1
4
∑

i

αSii

(1− γ) + o(1) (Momentum)

f(θt)− f(θ̂∗) ≈ 1
4
∑

i

αSii + o(1) , (Stochastic gradient)

and we see that momentum needs a stepsize α that is (1−γ) times that of stochastic gradient
to achieve the same suboptimality, countering any gain. This is what we see in Table 5.2.

C.2. Experimental details
C.2.1. Details on the Hessian inverse

As H is highly degenerate in neural networks, we compute an inverse of H by cutting
all the eigenvalues smaller than 10−3 × λmax where λmax is the biggest eigenvalue of H.

150

We observed that 10−3 and 10−3 were reasonable constants for selecting the eigenvalues of
significant magnitude. Using smaller constant sometimes lead to very noisy estimates of the
TIC while using a bigger constant would lead to severe underestimation of the criterion.

C.2.2. Details on the large scale experiments

These details apply for the experiments conducted in subsection 5.5.5, figure 5.4 and all
figures in subsection 5.5.1.

We remind the reader the setup.
• 5 different architectures: logistic regression, a 1-hidden layer and 2-hidden layer fully

connected network, and 2 small convolutional neural networks (CNNs, one with batch
normalization (Ioffe & Szegedy, 2015) and one without);

• 3 datasets: MNIST, CIFAR-10, SVHN;
• 3 learning rates: 10−2, 5 · 10−3, 10−3 using vanilla SGD with momentum µ = 0.9;
• 2 batch sizes: 64, 512;
• 5 dataset sizes: 5k, 10k, 20k, 25k, 50k.

We train for 750k steps and compute our metrics every 75k steps.
Data preprocessing: We choose to greyscale, resize to 7 × 7 pixels and normalize all the
images in the 3 datasets used (CIFAR-10, MNIST and SVHN). This way, we can design
architectures with a relatively low number of parameters.
Architectures:

• mlp: This one is a one hidden layer MLP. Input size is 7× 7 = 49 and output size is
10. The default number of hidden units is 70. We use ReLU activations.

• big_mlp: The architecture is the same as above but with one additional hidden layer.
• logreg: This is simple a 49× 10 linear classifier.
• cnn: It is a small CNN with 3 layers. A first conv layer with kernel 3× 3, 0 padding

and 15 channels. The next layer has 20 channels and same parameters. The last
layer has 10 channels and directly outputs the class scores.

• cnn_bn: Same architecture as above, except for a spatial batch-norm after the second
layer.

C.2.3. Details on experiments of subsection 5.5.5

For these experiments we train one hidden layer MLPs on SVHN. Each points is com-
puted by training three times with three different random seed until convergence. In fig-
ure 5.3a, the labels are kept without corruption and we vary the hidden size layer by using
{8, 10, 16, 20, 25, 30, 40, 50, 60, 70, 80, 100} hidden units in the hidden layer.

In figure 5.3b, we fix the number of hidden units to 70 but we vary the labels corruption
percentage from 0% to 100% (included) by increments of 10%.

151

The networks are trained for 150k gradients steps with a learning rate of 5e−3 and a
batch size of 256. We used a subset of 2000 samples of SVHN to remain in the highly
overparametrized regime, our networks were able to fit random data.

(a) Varying hidden layer size. (b) Varying label randomization level.

Fig. C.1. The train and test errors associated with the experiments 5.3a and 5.3b. We see
that while we use small networks, they are still able to fit the data completely provided we
use more than 20 hidden units. This behavior mirrors the one of bigger networks.

152

Appendix D

Beyond Variance Reduction: Understanding
the True Impact of Baselines on Policy

Optimization

Organization of the appendix
We organize the appendix into several thematic sections.
The first one, section D.1 contains additional experiments and figures on bandits and

MDPs. We have further investigations into committal and non-committal behaviour with
baselines. More precisely subsection D.1.1 contains additional experiments for the 3 arm
bandits for vanilla policy gradient, natural policy gradient and policy gradient with direct
parameterization and a discussion on the effect the hyperparameters have on the results. In
all cases, we find evidence for committal and non-committal behaviours. In the rest of the
section, we investigate this in MDPs, starting with a smaller MDP with 2 different goals in
subsection D.1.2 and constant baselines. We also provide additional experiments on the 4
rooms environment in subsection D.1.3, including the vanilla policy gradient and constant
baselines with REINFORCE.

Then, section D.2 contains theory for the two-armed bandit case, namely proofs of con-
vergence to a suboptimal policy (Proposition 6.3.1 in Appendix D.2.1) and an analysis of
perturbed minimum-variance baselines (Proposition 6.3.2 in Appendix D.2.2). For the lat-
ter, depending on the perturbation, we may have possible convergence to a suboptimal pol-
icy, convergence to the optimal policy in probability, or a weaker form of convergence to the
optimal policy. Finally, we also show vanilla policy gradient converges to the optimal policy
in probability regardless of the baseline in Appendix D.2.3.

Section D.3 contains the theory for multi-armed bandit, including the proof of theorem 1.
This theorem presents a counterexample to the idea that reducing variance always improves

optimization. We show that there is baseline leading to reduced variance which may con-
verge to a suboptimal policy with positive probability (see Appendix D.3.1) while there is
another baseline with larger variance that converges to the optimal policy with probability
1 (see Appendix D.3.2). We identify on-policy sampling as being a potential source of these
convergence issues. We provide proofs of proposition 6.4.1 in Appendix D.3.3, which shows
convergence to the optimal policy in probability when using off-policy sampling with impor-
tance sampling.

Finally, in section D.4, we provide derivations of miscellaneous, smaller results such as the
calculation of the minimum-variance baseline (Appendix D.4.1), the natural policy gradient
update for the softmax parameterization (Appendix D.4.2) and the connection between the
value function and the minimum-variance baseline (Appendix D.4.3).

D.1. Other experiments
D.1.1. Three-armed bandit

In this subsection, we provide additional experiments on the three-armed bandit with
natural and vanilla policy gradients for the softmax parameterization, varying the initializa-
tions. Additionally, we present results for the direct parameterization and utilizing projected
stochastic gradient ascent.

The main takeaway is that the effect of the baselines appears more strongly when the
initialization is unfavorable (for instance with a high probability of selecting a suboptimal
action at first). The effect also are diminished when using small learning rates as in that
case the effect of the noise on the optimization process lessens.

While the simplex visualization is very appealing, we mainly show here learning curves as
we can showcase more seeds that way and show the effects are noticeable across many runs.

Natural policy gradient

Figure D.1 uses the same setting as Figure 6.1 with 40 trajectories instead of 15. We do
once again observe many cases of convergence to the wrong arm for the negative baseline and
some cases for the minimum variance baseline, while the positive baseline converges reliably.
In this case the value function also converges to the optimal solution but is much slower.

Figure D.2 shows a similar setting to Figure D.1 but where the initialization parameter
is not as extreme. We observe the same type of behavior, but not as pronounced as before;
fewer seeds converge to the wrong arm.

In Figure D.3 whose initial policy is the uniform, we observe that the minimum variance
baseline and the value function as baseline perform very well. On the other hand the com-
mittal baseline still has seeds that do not converge to the right arm. Interestingly, while all
seeds for the non-committal baseline identify the optimal arm, the variance of the return

154

(a) b = b∗ − 1/2 (b) b = b∗ (c) b = b∗ + 1/2 (d) b = V π

Fig. D.1. We plot 40 different learning curves (in blue and red) of natural policy gradient,
when using various baselines, on a 3-arm bandit problem with rewards (1, 0.7, 0), α = 0.025
and θ0 = (0, 3, 5). The black line is the average value over the 40 seeds for each setting. The
red curves denote the seeds that did not reach a value of at least 0.9 at the end of training.
Note that the value function baseline convergence was slow and thus was trained for twice
the number of time steps.

(a) b = b∗ − 1/2 (b) b = b∗ (c) b = b∗ + 1/2 (d) b = V π

Fig. D.2. We plot 40 different learning curves (in blue and red) of natural policy gradient,
when using various baselines, on a 3-arm bandit problem with rewards (1, 0.7, 0), α = 0.025
and θ0 = (0, 3, 3). The black line is the average value over the 40 seeds for each setting. The
red curves denote the seeds that did not reach a value of at least 0.9 at the end of training.

(a) b = b∗ − 1/2 (b) b = b∗ (c) b = b∗ + 1/2 (d) b = V π

Fig. D.3. We plot 40 different learning curves (in blue and red) of natural policy gradient,
when using various baselines, on a 3-arm bandit problem with rewards (1, 0.7, 0), α = 0.025
and θ0 = (0, 0, 0) i.e the initial policy is uniform. The black line is the average value over
the 40 seeds for each setting. The red curves denote the seeds that did not reach a value of
at least 0.9 at the end of training.

155

is higher than for the optimal baseline, suggesting a case similar to the result presented in
Proposition 6 where a positive baseline ensured we get close to the optimal arm but may not
remain arbitrary close to it.

Vanilla policy gradient

While we have no theory indicating that we may converge to a suboptimal arm with
vanilla policy gradient, we can still observe some effect in terms of learning speed in practice
(see Figures D.4 to D.7).

On Figures D.4 and D.5 we plot the simplex view and the learning curves for vanilla
policy gradient initialized at the uniform policy. We do observe that some trajectories did
not converge to the optimal arm in the imparted time for the committal baseline, while they
converged in all other settings. The mininum variance baseline is slower to converge than
the non-committal and the value function in this setting as can be seem both in the simplex
plot and learning curves.

(a) b = b∗ − 1/2 (b) b = b∗ (c) b = b∗ + 1/2 (d) b = V π

Fig. D.4. Simplex plot of 15 different learning curves for vanilla policy gradient, when
using various baselines, on a 3-arm bandit problem with rewards (1, 0.7, 0), α = 0.5 and
θ0 = (0, 0, 0). Colors, from purple to yellow represent training steps.

(a) b = b∗ − 1/2 (b) b = b∗ (c) b = b∗ + 1/2 (d) b = V π

Fig. D.5. We plot 40 different learning curves (in blue and red) of vanilla policy gradient,
when using various baselines, on a 3-arm bandit problem with rewards (1, 0.7, 0), α = 0.5
and θ0 = (0, 0, 0). The black line is the average value over the 40 seeds for each setting. The
red curves denote the seeds that did not reach a value of at least 0.9 at the end of training.

156

On Figures D.6 and D.7 we plot the simplex view and the learning curves for vanilla policy
gradient initialized at a policy yielding a very high probability of sampling the suboptimal
actions, 48.7% for each. We do observe a similar behavior than for the previous plots with
vanilla PG, but in this setting the minimum variance baseline is even slower to converge
and a few seeds did not identify the optimal arm. As the gradient flow leads the solutions
closer to the simplex edges, the simplex plot is not as helpful in this setting to understand
the behavior of each baseline option.

(a) b = b∗ − 1/2 (b) b = b∗ (c) b = b∗ + 1/2 (d) b = V π

Fig. D.6. Simplex plot of 15 different learning curves for vanilla policy gradient, when
using various baselines, on a 3-arm bandit problem with rewards (1, 0.7, 0), α = 0.5 and
θ0 = (0, 3, 3). Colors, from purple to yellow represent training steps.

(a) b = b∗ − 1/2 (b) b = b∗ (c) b = b∗ + 1/2 (d) b = V π

Fig. D.7. We plot 40 different learning curves (in blue and red) of vanilla policy gradient,
when using various baselines, on a 3-arm bandit problem with rewards (1, 0.7, 0), α = 0.5
and θ0 = (0, 3, 3). The black line is the average value over the 40 seeds for each setting. The
red curves denote the seeds that did not reach a value of at least 0.9 at the end of training.

Policy gradient with direct parameterization

Here we present results with the direct parameterization, i.e where θ contains directly
the probability of drawing each arm. In that case the gradient update is

θt+1 = Proj∆3

[
θt + α

r(ai)− b

θ(ai)
1ai

]

157

where ∆3 is the three dimensional simplex ∆3 = {u, v, w ≥ 0, u + v + w = 1}. In this case,
however, because the projection step is non trivial and doesn’t have an easy explicit closed
form solution (but we can express it as the output of an algorithm), we cannot explicitly
write down the optimal baseline. Again, because of the projection step, baselines of this
form are not guaranteed to preserve unbiasedness of the gradient estimate. For this reason,
we only show experiments with fixed baselines, but keep in mind that these results are not
as meaningful as the ones presented above. We present the results in Figures D.8 and D.9.

(a) b = −1/2 (b) b = 0 (c) b = 1/2

Fig. D.8. We plot 15 different learning curves of vanilla policy gradient with direct param-
eterization, when using various baselines, on a 3-arm bandit problem with rewards (1, 0.7, 0),
α = 0.1 and θ0 = (1/3, 1/3, 1/3), the uniform policy on the simplex.

(a) b = −1/2 (b) b = 0 (c) b = 1/2

Fig. D.9. We plot 40 different learning curves (in blue and red) of vanilla policy gradient
with direct parameterization, when using various baselines, on a 3-arm bandit problem with
rewards (1, 0.7, 0), α = 0.1 and θ0 = (1/3, 1/3, 1/3), the uniform policy. The black line is the
average value over the 40 seeds for each setting. The red curves denote the seeds that did
not reach a value of at least 0.9 at the end of training.

Once again in this setting we can see that negative baselines tend to encourage conver-
gence to a suboptimal arm while positive baselines help converge to the optimal arm.

158

Policy gradient with escort transform parameterization

We try the escort transform Mei et al. (2020a) which was found to lead to better curvature
properties of the objective than the softmax parameterization. We use the escort transform
parameter p = 2 as in the experiments for the original paper and find results similar to
the softmax parameterization. In fact, since this parameterization has larger updates near
deterministic policies, it may be more prone to getting stuck at suboptimal policies when a
choosing a committal baseline.

(a) b = −1/2 (b) b = 0 (c) b = 1/2

Fig. D.10. We plot 15 different learning curves of vanilla policy gradient with the escort
transform with parameter p = 2 (Mei et al., 2020a), when using various baselines, on a 3-
arm bandit problem with rewards (1, 0.7, 0), α = 0.25 and θ0 = (1,1,1), the uniform policy
on the simplex.

Policy gradient with mellowmax parameterization

As an alternate parameterization, we try the mellowmax function Asadi & Littman
(2017). Unfortunately, it is not trivial to utilize it with policy gradient methods. The mel-
lowmax algorithm was designed for SARSA as it requires Q-function estimates and the tem-
perature parameter β has to be computed using a black-box optimizer to find a maximum-
entropy policy, thus cannot be differentiated through easily. However, using a naive ver-
sion (treating β as a constant in the policy gradient, setting ω = 1 and using the parame-
ters directly in place of Q), we observe that the committal vs. non-committal behaviors are
greatly mitigated and all paths conserve a higher entropy and converge to the optimal arm.
This strategy could be viewed as adding an entropy-regularizer with biased updates. Note
that the baseline we used as the “minimum-variance” is not the true minimizer due to this
bias too. Furthermore, even though the divergence is mitigated, the complexity per itera-
tion rises significantly due to solving a black-box optimization problem at every step.

159

(a) b = −1/2 (b) b = 0 (c) b = 1/2

Fig. D.11. We plot 15 different learning curves of a policy gradient with the mellowmax
transform Asadi & Littman (2017), when using various baselines, on a 3-arm bandit problem
with rewards (1, 0.7, 0), α = 0.25 and θ0 = (0,3,5).

D.1.2. Simple gridworld

As a simple MDP with more than one state, we experiment using a 5x5 gridworld with
two goal states, the closer one giving a reward of 0.8 and the further one a reward of 1.
We ran the vanilla policy gradient with a fixed stepsize and discount factor of 0.99 multiple
times for several baselines. Fig. D.12 displays individual learning curves with the index of
the episode on the x-axis, and the fraction of episodes where the agent reached the reward
of 1 up to that point on the y-axis. To match the experiments for the four rooms domain in
the main text, Fig. D.13 shows returns and the entropy of the actions and state visitation
distributions for multiple settings of the baseline. Once again, we see a difference between
the smaller and larger baselines. In fact, the difference is more striking in this example
since some learning curves get stuck at suboptimal policies. Overall, we see two main trends
in this experiment: a) The larger the baseline, the more likely the agent converges to the
optimal policy, and b) Agents with negative baselines converge faster, albeit sometimes to
a suboptimal behaviour. We emphasize that a) is not universally true and large enough
baselines will lead to an increase in variance and a decrease in performance.

(a) MDP used (b) b = −1 (c) b = 0 (d) b = 1

Fig. D.12. Learning curves for a 5x5 gridworld with two goal states where the further goal
is optimal. Trajectories in red do not converge to an optimal policy.

160

(a) Returns (b) Action entropy (c) State visitation entropy

Fig. D.13. We plot the returns, the entropy of the policy over the states visited in each
trajectory, and the entropy of the state visitation distribution averaged over 100 runs for
multiple baselines for the 5x5 gridworld. The shaded regions denote one standard error and
are close to the mean curve. Similar to the four rooms, the policy entropy of lower baselines
tends to decay faster than for larger baselines, and smaller baselines tend to get stuck on
suboptimal policies, as indicated by the returns plot.

D.1.3. Additional results on the 4 rooms environment

For the four-rooms gridworld discussed in the main text, we extend the experiments and
provide additional details. The environment is a 10x10 gridworld consisting of 4 rooms as
depicted on Fig. 6.4a with a discount factor γ = 0.99. The agent starts in the upper left
room and two adjacent rooms contain a goal state of value 0.6 (discounted, ≈ 0.54) or 0.3
(discounted, ≈ 0.27). However, the best goal, with a value of 1 (discounted, ≈ 0.87), lies in
the furthest room, so that the agent must learn to cross the sub-optimal rooms and reach
the furthest one.

For the NPG algorithm used in the main text, we required solving for Qπ(s,a) for the
current policy π. This was done using dynamic programming on the true MDP, stopping
when the change between successive approximations of the value function didn’t differ more
than 0.001. Additionally, a more thorough derivation of the NPG estimate we use can be
found in Appendix D.4.6.

We also experiment with using the vanilla policy gradient with the tabular softmax
parameterization in the four-rooms environment. We use a similar estimator of the policy
gradient which makes updates of the form:

θ ←− θ + α(Qπθ
(si, ai)− b)∇ log πθ(ai|si)

for all observed si, ai in the sampled trajectory. As with the NPG estimator, we can find
the minimum-variance baseline b∗

θ in closed-form and thus can choose baselines of the form
b+ = b∗

θ + ϵ and b−
θ = b∗

θ − ϵ to ensure equal variance as before. Fig. D.15 plots the results.
In this case, we find that there is not a large difference between the results for +ϵ and −ϵ,
unlike the results for NPG and those for vanilla PG in the bandit setting.

161

The reason for this discrepancy may be due to the magnitudes of the perturbations ϵ

relative to the size of the unperturbed update Qπ(si, ai)−b∗
θ. The magnitude of Qπ(si, ai)−b∗

varies largely from the order of 0.001 to 0.1, even within an episode. To investigate this
further, we try another experiment using perturbations ϵ = c(maxa Qπ(si,a)− b∗

θ for various
choices of c > 0. This would ensure that the magnitude of the perturbation is similar to the
magnitude of Qπ(si, ai)− b∗, while still controlling for the variance of the gradient estimates.
In Fig. D.14, we see that there is a difference between the +ϵ and −ϵ settings. As expected,
the +ϵ baseline leads to larger action and state entropy although, in this case, this results
in a reduction of performance. Overall, the differences between vanilla PG and natural PG
are not fully understood and there may be many factors playing a role, possibly including
the size of the updates, step sizes and the properties of the MDP.

(a) Returns (b) Action entropy (c) State visitation entropy

Fig. D.14. We plot results for vanilla policy gradient with perturbed minimum-variance
baselines of the form b∗

θ + ϵ, with ϵ denoted in the legend. The step size is 0.5 and 20 runs
are done. We see smaller differences between positive and negative ϵ values.

(a) Returns (b) Action entropy (c) State visitation entropy

Fig. D.15. We plot results for vanilla policy gradient with perturbed minimum-variance
baselines of the form b∗

θ +ϵ, where ϵ = c(maxa Qπ(si,a)−b∗
θ and c is denoted in the legend. For

a fixed c, we can observe a difference between the learning curves for the +c and −c settings.
The step size is 0.5 and 50 runs are done. As expected, the action and state entropy for the
positive settings of c are larger than for the negative settings. In this case, this increased
entropy does not translate to larger returns though and is a detriment to performance,

162

Finally, we also experiment with the vanilla REINFORCE estimator with softmax pa-
rameterization where the estimated gradient for a trajectory is (R(τi) − b)∇ log π(τi) for τi

being a trajectory of state, actions and rewards for an episode. For the REINFORCE esti-
mator, it is difficult to compute the minimum-variance baseline so, instead, we utilize con-
stant baselines. Although we cannot ensure that the variance of the various baselines are
the same, we could still expect to observe committal and non-committal behaviour depend-
ing on the sign of R(τi)− b. We use a step size of 0.1.

(a) Returns (b) Action entropy (c) State visitation entropy

Fig. D.16. We plot the results for using REINFORCE with constant baselines. Once again,
the policy entropy of lower baselines tends to decay faster than for larger baselines, and
smaller baselines tend to get stuck on suboptimal policies, as indicated by the returns plot.

We consider an alternative visualization for the experiment of vanilla policy gradient
with constant baselines: Figures D.17a, D.17b and D.17c. Each point in the simplex is a
policy, and the position is an estimate, computed with 1,000 Monte-Carlo samples, of the
probability of the agent reaching each of the 3 goals. We observe that the starting point of
the curve is equidistant to the 2 sub-optimal goals but further from the best goal, which is
coherent with the geometry of the MDP. Because we have a discount factor of γ = 0.99, the
agent first learns to reach the best goal in an adjacent room to the starting one, and only
then it learns to reach the globally optimal goal fast enough for its reward to be the best one.

In these plots, we can see differences between b = −1 and b = 1. For the lower baseline,
we see that trajectories are much more noisy, with some curves going closer to the bottom-
right corner, corresponding to the worst goal. This may suggest that the policies exhibit
committal behaviour by moving further towards bad policies. On the other hand, for b = 1,
every trajectory seems to reliably move towards the top corner before converging to the
bottom-left, an optimal policy.

D.2. Two-armed bandit theory
In this section, we expand on the results for the two-armed bandit. First, we show that

there is some probability of converging to the wrong policy when using natural policy gradient
with a constant baseline. Next, we consider all cases of the perturbed minimum-variance

163

(a) b = −1 (b) b = 0 (c) b = 1

Fig. D.17. We plot 10 different trajectories of vanilla policy gradient (REINFORCE) using
different constant on a 4 rooms MDP with goal rewards (1, 0.6, 0.3). The color of each
trajectory represents time and each point of the simplex represents the probability that a
policy reaches one of the 3 goals.

baseline (b = b∗ +ϵ) and show that some cases lead to convergence to the optimal policy with
probability 1 while others do not. In particular there is a difference between ϵ < −1 and
ϵ > 1, even though these settings can result in the same variance of the gradient estimates.
Finally, we prove that the vanilla policy gradient results in convergence in probability to the
optimal policy regardless of the baseline, in contrast to the natural policy gradient.
Notations:

• Our objective is J(θ) = Eπθ
[R(τ)], the expected reward for current parameter θ.

• pt = σ(θt) is the probability of sampling the optimal arm (arm 1).
• P1 is the distribution over rewards than can be obtained from pulling arm 1. Its

expected value is µ1 = Er1∼P1 [r1]. Respectively P0, µ0 for the suboptimal arm.
• gt is a stochastic unbiased estimate of ∇θJ(θt). It will take different forms depending

on whether we use vanilla or natural policy gradient and whether we use importance
sampling or not.

• For {αt}t the sequence of stepsizes, the current parameter θt is a random variable
equal to θt = ∑t

i=1 αigi + θ0 where θ0 is the initial parameter value.
For many convergence proofs, we will use the fact that the sequence θt − E[θt] forms a

martingale. In other words, the noise around the expected value is a martingale, which we
define below.
Definition 5 (Martingale). A discrete-time martingale is a stochastic process {Xt}t∈N such
that

• E[|Xt|] < +∞
• E[Xt+1|Xt, . . . X0] = Xt

164

Example 4. For gt a stochastic estimate of ∇J(θt) we have Xt = E[θt]− θt is a martingale.
As θt = θ0+∑i αigi, Xt can also be rewritten as Xt = E[θt−θ0]−(θt−θ0) = ∑t

i=0 αi

(
E[gi|θ0]−

gi

)
.
We will also be making use of Azuma-Hoeffding’s inequality to show that the iterates stay

within a certain region with high-probability, leading to convergence to the optimal policy.
Lemma 1 (Azuma-Hoeffding’s inequality). For {Xt} a martingale, if |Xt − Xt−1| ≤ ct

almost surely, then we have ∀t, ϵ ≥ 0

P(Xt −X0 ≥ ϵ) ≤ exp
− ϵ2

2∑t
i=1 c2

i

D.2.1. Convergence to a suboptimal policy with a constant baseline

For the proofs in this subsection, we assume that the step size is constant i.e. αt = α for
all t and that the rewards are deterministic.
Proposition D.2.1. Consider a two-arm bandit with rewards 1 and 0 for the optimal and
suboptimal arms, respectively. Suppose we use natural policy gradient starting from θ0, with
a fixed baseline b < 0, and fixed stepsize α > 0. If the policy samples the optimal action with
probability σ(θ), then the probability of picking the suboptimal action forever and having θt

go to −∞ is strictly positive. Additionally, if θ0 ≤ 0, we have

P (suboptimal action forever) ≥ (1− eθ0)(1− eθ0+αb)− 1
αb .

Proof. First, we deal with the case where θ0 < 0.

1− σ(θ0 − αbt) ≥ 1− exp(θ0 − αbt)

Next, we use the bound 1− x ≥ exp(−x
1−x

). This bound can be derived as follows:

1− u ≤ e−u

1− e−u ≤ u

1− 1
y
≤ log y, substitute u = log y for y > 0

−x

1− x
≤ log(1− x), substitute y = 1− x for x ∈ [0, 1)

exp
(−x

1− x

)
≤ 1− x.

Continuing with x = exp(θ0 − αbt), the bound holds when x ∈ [0,1), which is satisfied
assuming θ0 ≤ 0.

165

1− σ(θ0 − αbt) ≥ exp
(−1

e−θ0+αbt − 1

)

For now we ignore t = 0 and we will just multiply it back in at the end.
∞∏

t=1
[1− σ(θ0 − αbt)] ≥

∞∏
t=1

exp
(−1

e−θ0+αbt − 1

)

= exp
∞∑

t=1

(−1
e−θ0+αbt − 1

)

≥ exp
(
−
∫ ∞

t=1

1
e−θ0+αbt − 1dt

)
The last line follows by considering the integrand as the right endpoints of rectangles ap-
proximating the area above the curve.

Solving this integral by substituting y = −θ0 + αbt, multiplying the numerator and
denominator by ey and substituting u = ey, we get:

= exp
(1

αb
log(1− eθ0−αb)

)
=
(
1− eθ0−αb

) 1
αb

Finally we have:

P (left forever) ≥ (1− eθ0)(1− eθ0−αb) 1
αb

If θ0 > 0, then there is a positive probability of reaching θ < 0 in a finite number of steps
since choosing action 2 makes a step of size αb in the left direction and we will reach θt < 0
after m = θ0−0

αb
steps leftwards. The probability of making m left steps in a row is positive.

So, we can simply lower bound the probability of picking left forever by the product of that
probability and the derived bound for θ0 ≤ 0. □

Corollary 1.1. The regret for the previously described two-armed bandit is linear.

Proof. Letting Rt be the reward collected at time t,

Regret(T) = E
[

T∑
t=1

(1− b−Rt)
]

≥
T∑

t=1
1× Pr(left T times)

≥
T∑

t=1
P (left forever)

= T × P (left forever).

166

The second line follows since choosing the left action at each step incurs a regret of 1 and
this is one term in the entire expectation. The third line follows since choosing left T times
is a subset of the event of choosing left forever. The last line implies linear regret since we
know Pr(left forever) > 0 by the previous theorem. □

D.2.2. Analysis of perturbed minimum-variance baseline

In this section, we look at perturbations of the minimum-variance baseline in the two-
armed bandit, i.e. baselines of the form b = 1− pt + ϵ. In summary:

• For ϵ < −1, convergence to a suboptimal policy is possible with positive probability.
• For ϵ ∈ (−1, 1), we have convergence almost surely to the optimal policy.
• For ϵ ≥ 1, the supremum of the iterates goes to ∞ (but we do not have convergence

to an optimal policy)
It is interesting to note that there is a subtle difference between the case of ϵ ∈ (−1,0)

and ϵ ∈ (0,1), even though both lead to convergence. The main difference is that when θt is
large, positive ϵ leads to both updates being positive and hence improvement is guaranteed
at every step. But, when ϵ is negative, then only one of the actions leads to improvement,
the other gives a large negative update. So, in some sense, for ϵ ∈ (−1,0), convergence is
less stable because a single bad update could be catastrophic.

Also, the case of ϵ = −1 proved to be difficult. Empirically, we found that the agent
would incur linear regret and it seemed like some learning curves also got stuck near p = 0,
but we were unable to theoretically show convergence to a suboptimal policy.

Lemma 2. For the two-armed bandit with sigmoid parameterization, natural policy gradient
and a perturbed minimum-variance baseline b = 1 − pt + ϵ, with ϵ < −1, there is a positive
probability of choosing the suboptimal arm forever and diverging.

Proof. We can reuse the result for the two-armed bandit with constant baseline b < 0.
Recall that for the proof to work, we only need θ to move by at least a constant step δ > 0
in the negative direction at every iteration.

In detail, the update after picking the worst arm is θt+1 = θt + α(1 + ϵ
1−pt

). So, if we
choose ϵ < −1− δ for some δ > 0, we get the update step magnitude is δ+p

1−p
> δ and hence

the previous result applies (replace αb by δ). □

Lemma 3. For the two-armed bandit with sigmoid parameterization, natural policy gradient
and a perturbed minimum-variance baseline b = 1 − pt + ϵ, with ϵ ∈ (−1,0), the policy
converges to the optimal policy in probability.

Proof. Recall that the possible updates when the parameter is θt are:
• θt+1 = θt + α(1− ϵ

σ(θt)) if we choose action 1, with probability σ(θt)

167

• θt+1 = θt + α(1 + ϵ
1−σ(θt)) if we choose action 2, with probability 1− σ(θt).

First, we will partition the real line into three regions (A, B, and C with a < b < c for
a ∈ A, b ∈ B, c ∈ C), depending on the values of the updates. Then, each region will be
analyzed separately.

We give an overview of the argument first. For region A (θ very negative), both updates
are positive so θt is guaranteed to increase until it reaches region B.

For region C (θ very positive), sampling action 2 leads to the update α(1 + ϵ
1−σ(θt)),

which has large magnitude and results in θt+1 being back in region A. So, once θt is in C,
the agent needs to sample action 1 forever to stay there and converge to the optimal policy.
This will have positive probability (using the same argument as the divergence proof for the
two-armed bandit with constant baseline).

For region B, the middle region, updates to θt can make it either increase or decrease
and stay in B. For this region, we will show that θt will eventually leave B with probability
1 in a finite number of steps, with some lower-bounded probability of reaching A.

Once we’ve established the behaviours in the three regions, we can argue that for any
initial θ0 there is a positive probability that θt will eventually reach region C and take action
1 forever to converge. In the event that does not occur, then θt will be sent back to A and the
agent gets another try at converging. Since we are looking at the behaviour when t −→ ∞,
the agent effectively gets infinite tries at converging. Since each attempt has some positive
probability of succeeding, convergence will eventually happen.

We now give additional details for each region.
To define region A, we check when both updates will be positive. The update from action

1 is always positive so we are only concerned with the second update.

1 + ϵ

1− p
> 0

1− p + ϵ > 0

1 + ϵ > p

σ−1(1 + ϵ) > θ

Hence, we set A = (−∞, σ−1(1 + ϵ)). Since every update in this region increases θt by at
least a constant at every iteration, θt will leave A in a finite number of steps.

For region C, we want to define it so that an update in the negative direction from any
θ ∈ C will land back in A. So C = [c,∞) for some c ≥ σ−1(1 + ϵ). By looking at the update
from action 2, α(1 + ϵ

1−σ(θ)) = α(1 + ϵ(1 + eθ)), we see that it is equal to 0 at θ = σ−1(1 + ϵ)
but it is a decreasing function of θ and it decreases at an exponential rate. So, eventually
for θt sufficiently large, adding this update will make θt+1 ∈ A.

So let c = inf{θ : θ + α
(
1− ϵ

1−σ(θ)

)
, θ ≥ σ−1(1 + ϵ)}. Note that it is possible that

c = σ−1(1 + ϵ). If this is the case, then region B does not exist.

168

When θt ∈ C, we know that there is a positive probability of choosing action 1 forever
and thus converging (using the same proof as the two-armed bandit with constant baseline).

Finally, for the middle region B = [a, c) (a = σ−1(1 + ϵ)), we know that the updates for
any θ ∈ B are uniformly bounded in magnitude by a constant u.

We define a stopping time τ = inf{t; θt ≤ a or θt ≥ c}. This gives the first time θt exits
the region B. Let “∧” denote the min operator.

Since the updates are bounded, we can apply Azuma’s inequality to the stopped martin-
gale θt∧τ − α(t ∧ τ), for λ ∈ R.

P (θt∧τ − α(t ∧ τ) < λ) ≤ exp
(
−λ2

2tu

)

P (θt∧τ − α(t− (t ∧ τ)) ≤ c) < exp
(
−(c + αt)2

2tu

)
The second line follows from substituting λ = −αt + c. Note that the RHS goes to 0 as t

goes to ∞.
Next, we continue from the LHS. Let θ∗

t = sup0≤n≤t θn

P (θt∧τ − α(t− (t ∧ τ)) < c)

≥ P (θt∧τ − α(t− (t ∧ τ)) < c, t ≤ τ)

+ P (θt∧τ − α(t− (t ∧ τ)) < c, t > τ), splitting over events

≥ P (θt∧τ < c, t < τ), dropping the second term

≥ P (θt < c, sup θt < c, inf θt < a), definition of τ

= P (sup θt < c, inf θt < a), this event is a subset of the other

= P (τ > t)

Hence the probability the stopping time exceeds t goes to 0 and it is guaranteed to be finite
almost surely.

Now, if θt exits B, there is some positive probability that it reached C. We see this by
considering that taking action 1 increases θ by at least a constant, so the sequence of only
taking action 1 until θt reaches C has positive probability. This is a lower bound on the
probability of eventually reaching C given that θt is in B.

Finally, we combine the results for all three regions to show that convergence happens
with probability 1. Without loss of generality, suppose θ0 ∈ A. If that is not the case, then
keep running the process until either θt is in A or convergence occurs.

Let Ei be the event that θt returns to A after leaving it for the i-th time. Then E∁
i is

the event that θt −→ ∞ (convergence occurs). This is the case because, when θt ∈ C, those
are the only two options and, when θt ∈ B we had shown that the process must exit B with
probability 1, either landing in A or C.

169

Next, we note that P (E∁
i) > 0 since, when θt is in B, the process has positive probability

of reaching C. Finally, when θt ∈ C, the process has positive probability of converging.
Hence, P (E∁

i) > 0.
To complete the argument, whenever Ei occurs, then θt is back in A and will eventually

leave it almost surely. Since the process is Markov and memoryless, Ei+1 is independent of
Ei. Thus, by considering a geometric distribution with a success being EC

i occurring, EC
i

will eventually occur with probability 1. In other words, θt goes to +∞.
□

Lemma 4. For the two-armed bandit with sigmoid parameterization, natural policy gradient
and a perturbed minimum-variance baseline b = 1 − pt + ϵ, with ϵ = 0, the policy converges
to the optimal policy with probability 1.

Proof. By directly writing the updates, we find that both updates are always equal to the
expected natural policy gradient, so that θt+1 = θt + α for any θt. Hence θt −→∞ as t −→∞
with probability 1. □

Lemma 5. For the two-armed bandit with sigmoid parameterization, natural policy gradient
and a perturbed minimum-variance baseline b = 1−pt +ϵ, with ϵ ∈ (0,1), the policy converges
to the optimal policy in probability.

Proof. The overall idea is to ensure that the updates are always positive for some region
A = {θ : θ > θA} then show that we reach this region with probability 1.

Recall that the possible updates when the parameter is θt are:
• θt+1 = θt + α(1− ϵ

σ(θt)) if we choose action 1, with probability σ(θt)
• θt+1 = θt + α(1 + ϵ

1−σ(θt)) if we choose action 2, with probability 1− σ(θt).
First, we observe that the update for action 2 is always positive. As for action 1, it

is positive whenever p ≥ ϵ, equivalently θ ≥ θA, where θA = σ−1(ϵ). Call this region
A = {θ : θ > θA(= σ−1(ϵ))}.
If θt ∈ A, then we can find a δ > 0 such that the update is always greater than δ in the positive
direction, no matter which action is sampled. So, using the same argument as for the ϵ = 0
case with steps of +δ, we get convergence to the optimal policy (with only constant regret).

In the next part, we show that the iterates will enter the good region A with probability
1 to complete the proof. We may assume that θ0 < θA since if that is not the case, we are
already done. The overall idea is to create a transformed process which stops once it reaches
A and then show that the stopping time is finite with probability 1. This is done using the
fact that the expected step is positive (+α) along with Markov’s inequality to bound the
probability of going too far in the negative direction.

170

We start by considering a process equal to θt except it stops when it lands in A. Defining
the stopping time τ = inf{t : θt > θA} and “∧” by a ∧ b = min(a,b) for a, b ∈ R, the process
θt∧τ has the desired property.

Due to the stopping condition, θt∧τ will be bounded above and hence we can shift it in
the negative direction to ensure that the values are all nonpositive. So we define θ̃t = θt∧τ−C

for all t, for some C to be determined.
Since we only stop the process {θt∧τ} after reaching A, then we need to compute the

largest value θt∧τ can take after making an update which brings us inside the good region.
In other words, we need to compute supθ{θ + α(1 + ϵ

1−σ(θ)) : θ ∈ A∁}. Fortunately, since
the function to maximize is an increasing function of θ, the supremum is easily obtained by
choosing the largest possible θ, that is θ = σ−1(ϵ). This gives us that C = θA + UA, where
UA = α(1 + ϵ

1−ϵ
).

All together, we have θ̃t = θt∧τ − θA − UA. By construction, θ̃t ≤ 0 for all t (note that
by assumption, θ0 < θA which is equivalent to θ̃0 < −UA so the process starts at a negative
value).

Next, we separate the expected update from the process. We form the nonpositive process
Yt = θ̃t−α(t∧ τ) = θt∧τ −UA− θA−α(t∧ τ). This is a martingale as it is a stopped version
of the martingale {θt − UA − θA − αt}.

Applying Markov’s inequality, for λ > 0 we have:

P (Yt ≤ −λ) ≤ −E[Yt]
λ

P (Yt ≤ −λ) ≤ −Y0

λ
, since {Yt} is a martingale

P (θτ∧t − α(τ ∧ t)− θA − UA ≤ −λ) ≤ θA + UA − θ0

λ

P (θτ∧t ≤ α(τ ∧ t− t) + θA) ≤ θA + UA − θ0

αt + UA

, choosing λ = αt + UA

Note that the RHS goes to 0 as t −→ ∞. We then manipulate the LHS to eventually get
an upper bound on P (t ≤ τ).

P (θτ∧t ≤ α(τ ∧ t− t) + θA)

= P (θτ∧t ≤ α(τ ∧ t− t) + θA, t ≤ τ) + P (θτ∧t ≤ α(τ ∧ t− t) + θA, t > τ), splitting over disjoint events

≥ P (θτ∧t ≤ α(τ ∧ t− t), t ≤ τ), second term is nonnegative

= P (θt ≤ θA, t ≤ τ), since t ≤ τ in this event

= P (θt ≤ θA, sup
0≤n≤t

θn ≤ θA), by definition of τ

≥ P (sup
0≤n≤t

θn ≤ θA), this event is a subset of the other

= P (t ≤ τ)

171

Since the first line goes to 0, the last line goes to 0 and hence we have that θt will enter the
good region with probability 1.

□

Note that there is no contradiction with the nonconvergence result for ϵ < −1 as we
cannot use Markov’s inequality to show that the probability that θt < c (c > 0) goes to 0.
The argument for the ϵ ∈ (0,1) case relies on being able to shift the iterates θt sufficiently
left to construct a nonpositive process θ̃t. In the case of ϵ < 0, for θ < c (c ∈ R), the right
update (1 − ϵ

σ(θ)) is unbounded hence we cannot guarantee the process will be nonpositive.
As a sidenote, if we were to additionally clip the right update so that it is max(B, 1− ϵ

σ(θ))
for some B > 0 to avoid this problem, this would still not allow this approach to be used
because then we would no longer have a submartingale. The expected update would be
negative for θ sufficiently negative.
Lemma 6. For the two-armed bandit with sigmoid parameterization, natural policy gradi-
ent and a perturbed minimum-variance baseline b = 1 − pt + ϵ, with ϵ ≥ 1, we have that
P (sup0≤n≤t θn > C) −→ 1 as t −→∞ for any C ∈ R.

Proof. We follow the same argument as in the ϵ ∈ (0,1) case with a stopping time defined
as τ = inf{t : θt > c} and using θA = c, to show that

P

(
sup

0≤n≤t
θt ≤ c

)
−→ 0

□

D.2.3. Convergence with vanilla policy gradient

In this section, we show that using vanilla PG on the two-armed bandit converges to
the optimal policy in probability. This is shown for on-policy and off-policy sampling with
importance sampling corrections. The idea to show optimality of policy gradient will be to
use Azuma’s inequality to prove that θt will concentrate around their mean E[θt], which itself
converges to the right arm.

We now proceed to prove the necessary requirements.
Lemma 7 (Bounded increments for vanilla PG). Assuming bounded rewards and a bounded
baseline, the martingale {Xt} associated with vanilla policy gradient has bounded increments

|Xt −Xt−1| ≤ Cαt

Proof. Then, the stochastic gradient estimate is

gt =
 (r1 − b)(1− pt), with probability pt, r1 ∼ P1

−(r0 − b)pt, with probability (1− pt), r0 ∼ P0

172

Furthermore, E[gt|θ0] = E[E[gt|θt]|θ0] = E[∆pt(1 − pt)|θ0]. As the rewards are bounded, for
i = 0,1, ∃Ri > 0 so that |ri| ≤ Ri

|Xt −Xt−1| = |
t∑

i=1
αi(gi − E[gi])−

t−1∑
i=1

αi(gi − E[gi])|

= αt|gt − E[∆pt(1− pt)]|

≤ αt

(
|gt|+ |E[∆pt(1− pt)]|

)
≤ αt

(
max(|r1 − b|, |r0 − b|) + |E[∆pt(1− pt)]|

)
, r1 ∼ P1, r0 ∼ P0

≤ αt

(
max(|R1|+ |b|, |R0|+ |b|) + ∆

4
)

Thus |Xt −Xt−1| ≤ Cαt

□

Lemma 8 (Bounded increments with IS). Assuming bounded rewards and a bounded base-
line, the martingale {Xt} associated with policy gradient with importance sampling distribu-
tion q such that min{q, 1− q} ≥ ϵ > 0 has bounded increments

|Xt −Xt−1| ≤ Cαt

Proof. Let us also call ϵ > 0 the lowest probability of sampling an arm under q.
Then, the stochastic gradient estimate is

gt =

(r1−b)pt(1−pt)
qt

, with probability qt, r1 ∼ P1

− (r0−b)pt(1−pt)
1−qt

, with probability (1− qt), r0 ∼ P0

As the rewards are bounded, ∃Ri > 0 such that |ri| ≤ Ri for all i

|Xt −Xt−1| = |
t∑

i=1
αi(gi − E[gi])−

t−1∑
i=1

αi(gi − E[gi])|

= αt|gt − E[∆pt(1− pt)]|

≤
αt

(
max(|R1|+ |b|, |R0|+ |b|) + ∆

)
4ϵ

as qt, 1− qt ≥ ϵ

Thus |Xt −Xt−1| ≤ Cαt

□

We call non-singular importance sampling any importance sampling distribution so that
the probability of each action is bounded below by a strictly positive constant.
Lemma 9. For vanilla policy gradient and policy gradient with nonsingular importance sam-
pling, the expected parameter θt has infinite limit. i.e. if µ1 ̸= µ0,

lim
t→+∞

E[θt − θ0] = +∞

In other words, the expected parameter value converges to the optimal arm.

173

Proof. We reason by contradiction. The contradiction stems from the fact that on one
hand we know θt will become arbitrarily large with t with high probability as this setting
satisfies the convergence conditions of stochastic optimization. On the other hand, because
of Azuma’s inequality, if the average θt were finite, we can show that θt cannot deviate
arbitrarily far from its mean with probability 1. The contradiction will stem from the fact
that the expected θt cannot have a finite limit.

We have θt − θ0 = ∑t
i=0 αigi. Thus

E[θt − θ0] = E[
t∑

i=0
αigi|θ0]

=
t∑

i=0
αiE[gi|θ0]

=
t∑

i=0
αiE[E[gi|θi]|θ0] using the law of total expectations

=
t∑

i=0
αiE[∆pi(1− pi)|θ0]

where ∆ = µ1 − µ0 > 0 the optimality gap between the value of the arms. As it is a sum of
positive terms, its limit is either positive and finite or +∞.

(1) Let us assume that limt→+∞ E[∑t
i=0 αigi] = β > 0.

As ∑∞
i=0 α2

i = γ, using Azuma-Hoeffing’s inequality

P(θt ≥M) = P(θt − θ0 − E[
t∑

i=0
αigi] ≥M − E[

t∑
i=0

αigi]− θ0)

≤ exp
(
− (M − E[∑t

i=0 αigi]− θ0)2

2∑t
i=1 c2

i

)

where ci = αiC like in the proposition above. And for M > |θ0|+ β + 2C
√

γ log 2 we
have

lim
t→+∞

M − E[
t∑

i=0
αigi]− θ0 ≥ |θ0|+ β + 2C

√
γ log 2− β − θ0

≥ 2C
√

γ log 2

As ∑∞
i=0 ci = γC2 , we have

lim
t→+∞

(M − E[∑t
i=0 αigi]− θ0)2

2∑t
i=1 c2

i

= 4C2γ log 2
2γC2 ≥ 2 log 2 = log 4

174

Therefore
lim

t→+∞
P(θt ≥M) ≤ 1

4
By a similar reasoning, we can show that

lim
t→+∞

P(θt ≤ −M) ≤ 1
4

Thus
lim

t→+∞
P(|θt| ≤M) ≥ 1

2
i.e for any M large enough, the probability that {θt} is bounded by M is bigger than
a strictly positive constant.

(2) Because policy gradient with diminishing stepsizes satisfies the convergence condi-
tions defined by Bottou et al. (2018), we have that

∀ϵ > 0,P(∥∇J(θt)∥ ≥ ϵ) ≤ E[∥∇J(θt)∥2]
ϵ2 −−−→

t→∞
0

(see proof of Corollary 4.11 by Bottou et al. (2018)). We also have ∥∇J(θt)∥ =
∥∆σ(θt)(1 − σ(θt))∥ = ∆σ(θt)(1 − σ(θt)) for ∆ = µ1 − µ0 > 0 for µ1 (resp. µ0)
the expected value of the optimal (res. suboptimal arm). Furthermore, f : θt 7→
∆σ(θt)(1− σ(θt)) is symmetric, monotonically decreasing on R+ and takes values in
[0, ∆/4]. Let’s call f−1 its inverse on R+.
We have that

∀ϵ ∈ [0, ∆/4], ∆σ(θ)(1− σ(θ)) ≥ ϵ ⇐⇒ |θ| ≤ f−1(ϵ)

Thus ∀M > 0,

P(|θt| ≤M) = P(∥∇J(θt)∥ ≥ f(M))

≤ E[∥∇J(θt)∥2]
(∆σ(M)(1− σ(M)))2

−−−→
t→∞

0

Here we show that θt cannot be bounded by any constant with non-zero probability
at t→∞. This contradicts the previous conclusion.

Therefore limt→+∞ E[θt − θ0] = +∞
□

Proposition D.2.2 (Optimality of stochastic policy gradient on the 2-arm bandit). Policy
gradient with stepsizes satisfying the Robbins-Monro conditions (∑t αt = ∞,

∑
t α2

t < ∞)
converges to the optimal arm.

Note that this convergence result addresses the stochastic version of policy gradient,
which is not covered by standard results for stochastic gradient algorithms due to the non-
convexity of the objective.

175

Proof. We prove the statement using Azuma’s inequality again. We can choose ϵ = (1 −
β)E[∑t

i=0 αigi] ≥ 0 for β ∈]0,1[.

P
(

θt > θ0 + βE[
t∑

i=0
αigi]

)
= P

(
θt − E[

t∑
i=0

αigi]− θ0 > βE[
t∑

i=0
αigi]− E[

t∑
i=0

αigi]
)

= 1− P
(

θt − θ0 − E[
t∑

i=0
αigi] ≤ −ϵ

)

= 1− P
(

θ0 + E[
t∑

i=0
αigi]− θt︸ ︷︷ ︸

Martingale Xt

≥ ϵ

)

≥ 1− exp
(
− (1− β)2 E[∑t

i=0 αigi]2
2∑t

i=1 α2
i C2

)

Thus limt→∞ P
(

θt > θ0 + βE[∑t
i=0 αigi]

)
= 1, as limt→∞ E[∑t

i=0 αigi] = +∞ and ∑∞
t=0 α2

t <

+∞. Therefore limt→∞ θt = +∞ almost surely. □

D.3. Multi-armed bandit theory
Theorem 1. There exists a three-arm bandit where using the stochastic natural gradient on
a softmax-parameterized policy with the minimum-variance baseline can lead to convergence
to a suboptimal policy with probability ρ > 0, and there is a different baseline (with larger
variance) which results in convergence to the optimal policy with probability 1.

Proof. The example of convergence to a suboptimal policy for the minimum-variance base-
line and convergence to the optimal policy for a gap baseline are outlined in the next two
subsections. □

D.3.1. Convergence issues with the minimum-variance baseline

Proposition D.3.1. Consider a three-armed bandit with rewards of 1, 0.7 and 0. Let the
policy be parameterized by a softmax (πi ∝ eθi) and optimized using natural policy gradient
paired with the mininum-variance baseline. If the policy is initialized to be uniform random,
there is a nonzero probability of choosing a suboptimal action forever and converging to a
suboptimal policy.

Proof. The policy probabilities are given by πi = eθ
i∑
j

eθ
j

for i = 1,2,3. Note that this
parameterization is invariant to shifting all θi by a constant.

The natural policy gradient estimate for

176

The gradient for sampling arm i is given by gi = ei − π, where ei is the vector of
zeros except for a 1 in entry i. The Fisher information matrix can be computed to be
F = diag(π)− ππT .
Since F is not invertible, then we can instead find the solutions to Fx = gi to obtain our
updates. Solving this system gives us x = λe + 1

πi
ei, where e is a vector of ones and λ ∈ R

is a free parameter.
Next, we compute the minimum-variance baseline. Here, we have two main options. We

can find the baseline that minimizes the variance of the sampled gradients gi, the “standard”
choice, or we can instead minimize the variance of the sampled natural gradients, F −1gi. We
analyze both cases separately.

The minimum-variance baseline for gradients is given by b∗ = E[R(τ)||∇ log π(τ)||2]
E[||∇ log π(τ)||2] . In this

case, ∇ log πi = ei − π, where ei is the i-th standard basis vector and π is a vector of policy
probabilities. Then, ||∇ log πi|| = (1− πi)2 + π2

j + π2
k, where πj and πk are the probabilities

for the other two arms. This gives us

b∗ =
∑3

i=1 riwi∑3
i=1 wi

where wi = ((1− πi)2 + π2
j + π2

k)πi.
The proof idea is similar to that of the two-armed bandit. Recall that the rewards for

the three actions are 1, 0.7 and 0. We will show that this it is possible to choose action 2
(which is suboptimal) forever.

To do so, it is enough to show that we make updates that increase θ2 by at least δ at
every step (and leave θ1 and θ3 the same). In this way, the probability of choosing action 2
increases sufficiently fast, that we can use the proof for the two-armed bandit to show that
the probability of choosing action 2 forever is nonzero.

In more detail, suppose that we have established that, at each step, θ2 increases by at
least δ. The policy starts as the uniform distribution so we can choose any initial θ as long
as three components are the same (θ1 = θ2 = θ3). Choosing the initialization θi = − log(1/2)
for all i, we see that π2 = eθ2∑3

i=1 θi
= eθ2

1+eθ2 = σ(θ2) where σ(.) is the sigmoid function. Since
at the n-th step, θ2 > θ0 + nδ, we can reuse the proof for the two-armed bandit to show
Pr(action 2 forever) > 0.

To complete the proof, we need to show that the updates are indeed lower bounded by a
constant. Every time we sample action 2, the update is θ ←− θ+α(r2−b∗)(λe+ 1

π2
e2). We can

choose any value of λ since they produce the same policy after an update due to the policy’s
invariance to a constant shift of all the parameters. We thus choose λ = 0 for simplicity. In
summary, an update does θ2 ←− θ2 +α(r2−b∗) 1

π2
and leaves the other parameters unchanged.

In the next part, we use induction to show the updates are lower bounded at every step.
For the base case, we need r2 − b∗ > δ for some δ > 0. Since we initialize the policy to be

177

uniform, we can directly compute the value of b∗ ≈ 0.57, so the condition is satisfied for, say,
δ = 0.1.

For the inductive case, we assume that r2 − b∗ > δ for δ > 0 and we will show that
r2 − b∗

+ > δ also, where b∗
+ is the baseline after an update. It suffices to show that b∗

+ ≤ b∗.
To do so, we examine the ratio w2

w1
in b∗ and show that this decreases. Let

(
w2
w1

)
+

be the
ratio after an update and let c = r2 − b∗.(

w2

w1

)
= 2(π2

1 + π2
3 + π1π3)π2

2(π2
2 + π2

3 + π2π3)π1

= (e2θ1 + e2θ3 + eθ1+θ3)eθ2

(e2θ2 + e2θ3 + eθ2+θ3)eθ1(
w2

w1

)
+

= (e2θ1 + e2θ3 + eθ1+θ3)eθ2+ c
π2

(e2θ2+2 c
π2 + e2θ3 + e

θ2+θ3+ c
π2

)
eθ1

We compare the ratio of these:(
w2
w1

)
+(

w2
w1

) = e
θ2+ c

π2

eθ2

e2θ2 + e2θ3 + eθ2+θ3

e
2θ2+2 c

π2 + e2θ3 + e
θ2+θ3+ c

π2

= e2θ2 + e2θ3 + eθ2+θ3

e
2θ2+ c

π2 + e
2θ3− c

π2 + eθ2+θ3

<
e2θ2 + e2θ3 + eθ2+θ3

e2θ2+δ + e2θ3−δ + eθ2+θ3

The last line follows by considering the function f(z) = ex−z + ey−z for a fixed x ≤ y.
f ′(z) = −ex−z + ey+z > 0 for all z, so f(z) is an increasing function. By taking x = 2θ2 and
y = 2θ3 (θ2 ≥ θ3), along with the fact that c

π2
> δ (considering these as z values), then we

we see that the denominator has increased in the last line and the inequality holds.
By the same argument, recalling that δ > 0, we have that the last ratio is less than 1.

Hence,
(

w2
w1

)
+

<
(

w2
w1

)
.

Returning to the baseline, b∗ = w1r1+w2r2+w3r3
w1+w2+w3

. We see that this is a convex combination
of the rewards. Focusing on the (normalized) weight of r2:

w2

w1 + w2 + w3
= w2

2w1 + w2

=
w2/w1

2 + w2/w1

The first line follows since w1 = w3 and the second by dividing the numerator and denom-
inator by w1. This is an increasing function of w2/w1 so decreasing the ratio will decrease
the normalized weight given to r2. This, in turn, increases the weight on the other two re-
wards equally. As such, since the value of the baseline is under r2 = 0.7 (recall it started at
b∗ ≈ 0.57) and the average of r1 and r3 is 0.5, the baseline must decrease towards 0.5.

178

Thus, we have shown that the gap between r2 and b∗ remains at least δ and this completes
the proof for the minimum-variance baseline of the gradients.

Next, we tackle the minimum-variance baseline for the updates. Recall that the natural
gradient updates are of the form xi = λe + 1

πi
ei for action i where e is a vector of ones and

ei is the i-th standard basis vector.
The minimum-variance baseline for updates is given by

b∗ = E[Ri||xi||2]
E[||xi||2]

We have that ||xi||2 = 2λ2 = (λ + 1
πi

)2. At this point, we have to choose which value of
λ to use since it will affect the baseline. The minimum-norm solution is a common choice
(corresponding to use of the Moore-Penrose pseudoinverse of the Fisher information instead
of the inverse). We also take a look at fixed values of λ, but we find that this requires an
additional assumption 3λ2 < 1/π2

1.
First, we consider the minimum-norm solution. We find that the minimum-norm solution

gives 2
3π2

i
for λ = −1

3π2
i
.

We will reuse exactly the same argument as for the minimum-variance baseline for the
gradients. The only difference is the formula for the baseline, so all we need to check is the
that the ratio of the weights of the rewards decreases after one update, which implies that
the baseline decreases after an update.

The baseline can be written as:

b∗ =
∑3

i=1 ri
2

3π2
i
πi∑3

i=1
2

3π2
i

=
∑3

i=1 ri
1
πi∑3

i=1
1
πi

So we have the weights wi = 1
πi

and the ratio is

(
w2

w1

)
= π1

π2

= eθ1

eθ2

= eθ1−θ2

So, after an update, we get (
w2

w1

)
+

= e
θ1−θ2− c

π2

for c = α(r2 − b∗), which is less than the initial ratio. This completes the case where we use
the minimum-norm update.

179

Finally, we deal with the case where λ ∈ R is a fixed constant. We don’t expect this case
to be very important as the minimum-norm solution is almost always chosen (the previous
case). Again, we only need to check the ratio of the weights.

The weights are given by wi = (2λ2 + (λ + 1
πi

)2)πi

(
w2

w1

)
=

(2λ2 + (λ + 1
π2

)2)π2

(2λ2 + (λ + 1
π1

)2)π1

=
2λ2π2 + (λ + 1

π2
)2π2

2λ2π1 + (λ + 1
π1

)2π1

We know that after an update π2 will increase and π1 will decrease. So, we check the partial
derivative of the ratio to assess its behaviour after an update.

d

dπ1

(
w2

w1

)
= −

2λ2π2 + (λ + 1
π2

)2π2

(2λ2π1 + (λ + 1
π1

)2π1
(3λ2 − 1/π2

1)

We need this to be an increasing function in π1 so that a decrease in π1 implies a decrease
in the ratio. This is true when 3λ2 < 1/π2

1. So, to ensure the ratio decreases after a step, we
need an additional assumption on λ and π1, which is that 3λ2 < 1/π2

1. This is notably always
satisfied for λ = 0.

□

D.3.2. Convergence with gap baselines

Proposition D.3.2. For a three-arm bandit with deterministic rewards, choosing the base-
line b so that r1 > b > r2 where r1 (resp. r2) is the value of the optimal (resp. second best)
arm, natural policy gradient converges to the best arm almost surely.

Proof. Let us define ∆i = ri − b which is striclty positive for i = 1, stricly negative
otherwise. Then the gradient on the parameter θi of arm i

gi
t = 1{At=i}

∆i

πt(i)
, i ∼ πt(·)

Its expectation is therefore

E[θi
t] = αt∆i + θi

0

Also note that there is a nonzero probability of sampling each arm at t = 0: θ0 ∈ R3,
π0(i) > 0. Furthermore, πt(1) ≥ π0(1) as θ1 is increasing and θi, i > 1 decreasing because of
the choice of our baseline. Indeed, the updates for arm 1 are always positive and negative
for other arms.

180

For the martingale Xt = α∆1t + θ1
0 − θ1

t , we have

|Xt −Xt−1| ≤ α
∆1

π0(1)
thus satisfying the bounded increments assumption of Azuma’s inequality. We can therefore
show

P
(
θ1

t >
α∆1

2 t + θ1
0

)
= P

(
θ1

t − α∆1t− θ1
0 > −α∆1

2 t
)

= P
(
Xt <

α∆1

2 t
)

= 1− P
(
Xt ≥

α∆1

2 t
)

≥ 1− exp
(
−

(α∆1
2 t)2π0(1)2

2tα2∆2
1

)
≥ 1− exp

(
− π0(1)2

8 t
)

This shows that θ1
t converges to +∞ almost surely while the θi

t, i > 1 remain bounded
by θi

0, hence we converge to the optimal policy almost surely.
□

D.3.3. Convergence with off-policy sampling

We show that using importance sampling with a separate behaviour policy can guarantee
convergence to the optimal policy for a three-armed bandit.

Suppose we have an n-armed bandit where the rewards for choosing action i are dis-
tributed according to Pi, which has finite support and expectation ri. Assume at the t-th
round the behaviour policy selects each action i with probability µt(i). Then, if we draw ac-
tion i, the stochastic estimator for the natural policy gradient with importance sampling is
equal to

gt = Ri − b

µt(i)
1{At=i}

with probability µt(i) and Ri drawn from Pi.
We have that E[gt] = r − be, where r is a vector containing elements ri and e is a vector

of ones. We let E[gt] = ∆ for notational convenience.
By subtracting the expected updates, we define the multivariate martingale Xt = θt −

θ0 − α∆t. Note that the i-th dimension X i
t is a martingale for all i.

Lemma 10 (Bounded increments). Suppose we have bounded rewards and a bounded baseline
and a behaviour policy selecting all actions with probability at least ϵt at round t. Then,
the martingale {Xt} associated with natural policy gradient with importance sampling has

181

bounded increments
|X i

t −X i
t−1| ≤

Cα

ϵt

for all dimensions i and some fixed constant C.

Proof. The updates and Xt are defined as above.
Furthermore E[gt|θ0] = E[E[gt|θt]|θ0] = ∆. As the rewards are bounded, ∃Rmax > 0 such

that, for all actions i, |Ri| ≤ Rmax with probability 1.
For the i-th dimension,

|X i
t −X i

t−1| = α|gi
t − |∆i||

≤ α
(
|gi

t|+ |∆i|
)

≤ α
(|Rmax − b|

ϵt

+ |∆i|
)

≤ α
Rmax + |b|+ |∆i|

ϵt

as ϵt ≤ 1

Thus |X i
t −X i

t−1| ≤ Cα
ϵt

for all i. □

Proposition D.3.3. Consider a n-armed bandit with stochastic rewards with bounded sup-
port and a unique optimal action. The behaviour policy µt selects action i with probability
µt(i) and let ϵt = mini µt(i). When using NPG with importance sampling and a bounded
baseline b, if limt→∞ t ϵ2

t = +∞ , then the target policy πt converges to the optimal policy in
probability.

Proof. Let ri = E[Ri], the expected reward for choosing action i. Without loss of generality,
we order the arms such that r1 > r2 > ... > rn. Also, let ∆i = ri − b, the expected natural
gradient for arm i.

Next, we choose δ ∈ (0,1) such that (1−δ)∆1 > (1+δ)∆j. We apply Azuma’s inequality
to X1

t , the martingale associated to the optimal action, with ϵ = αδ∆it.

P(θ1
t ≤ θ1

0 + α(1− δ)∆1t) = P(θ1
t − θ1

0 − α∆1t ≤ −αδ∆1t)

≤ exp
(
−(αδ∆1t)2ϵ2

t

2tα2C2

)

= exp
(
−δ2∆2

1
2C2 tϵ2

t

)

182

Similarly, we can apply Azuma’s inequality to actions i ̸= 1 and obtain

P(θi
t ≥ θi

0 + α(1 + δ)∆it) = P(θi
t − θi

0 − α∆it ≥ αδ∆it)

≤ exp
(
−δ2∆2

i

2C2 tϵ2
t

)

Letting A be the event θ1
t ≤ θ1

0 +α(1−δ)∆1t and Bi be the event that θi
t−θi

0 ≥ α(1+δ)∆it

for i ̸= 1, we can apply the union bound to get

P(A ∪B1 ∪ ... ∪Bn) ≤
n∑

i=1
exp

(
−δ2∆2

i

2C2 tϵ2
t

)

The RHS goes to 0 when ∑t≥0 tϵ2
t =∞.

Notice that A∁ is the event θ1
t > θ1

0 +α(1−δ)∆1t and B∁ is the event θi
t < θi

0+α(1+δ)∆it.
Then, inspecting the difference between θ1

t and θi
t, we have

θ1
t − θi

t > θ1
0 + α(1− δ)∆1t− (θi

0 + α(1 + δ)∆it)

= θ1
0 − θi

0 + α((1− δ)∆1 − (1 + δ)∆i)t

By our assumption on δ, the term within the parenthesis is positive and hence the difference
grows to infinity as t −→ ∞. Taken together with the above probability bound, we have
convergence to the optimal policy in probability.

□

D.4. Other results
D.4.1. Minimum-variance baselines

For completeness, we include a derivation of the minimum-variance baseline for the tra-
jectory policy gradient estimate (REINFORCE) and the state-action policy gradient estima-
tor (with the true state-action values).

Trajectory estimator (REINFORCE)
We have that ∇J(θ) = Eτ∼π[R(τ)∇ log π(τ)] = Eτ∼π[(R(τ)−b)∇ log π(τ)] and our estimator
is g = (R(τ)− b)∇ log π(τ) for a sampled τ for any fixed b. Then we would like to minimize
the variance:

V ar(g) = E[∥g∥2
2]− ∥E[g]∥2

2

= E[∥g∥2
2]− ∥E[(R(τ)− b)∇ log π(τ)]∥2

2

= E[∥g∥2
2]− ∥E[R(τ)∇ log π(τ)]∥2

2

The second equality follows since the baseline doesn’t affect the bias of the estimator. Thus,
since the second term does not contain b, we only need to optimize the first term.

183

Taking the derivative with respect to b, we have:
∂

∂b
E[∥g∥2

2] = ∂

∂b
E[∥R(τ)∇ log π(τ)∥2 − 2 ·R(τ)b∥∇ log π(τ)]∥2 + b2∥∇ log π(τ)]∥2]

= 2
(
b · E[∥∇ log π(τ)]∥2]− E[R(τ)∥∇ log π(τ)]∥2]

)

The minimum of the variance can then be obtained by finding the baseline b∗ for which the
gradient is 0, i.e

b∗ = E[R(τ)∥∇ log π(τ)]∥2]
E[∥∇ log π(τ)]∥2]

State-action estimator (actor-critic)
In this setting we assume access to the Q-value for each state-action pair Qπ(s,a), in
that case the update rule is ∇J(θ) = Es,a∼dπ [Qπ(s,a)∇ log π(a|s)] = Es,a∼dπ [(Qπ(s,a) −
b(s))∇ log π(a|s)] and our estimator is g = (Qπ(s,a) − b(s))∇ log π(a|s) for a sampled s,a.
We will now derive the best baseline for a given state s in the same manner as above

V ar(g|s) = Ea∼π[∥g∥2]− ∥Ea∼π[g]∥2

= Ea∼π[∥g∥2]− ∥Ea∼π[Qπ(s,a)∇ log π(a|s)]∥2

So that we only need to take into account the first term.

∂

∂b
Ea∼π[∥g∥2] = ∂

∂b
Ea∼π[∥Qπ(s,a)∇ log π(a|s))∥2 − 2 ·Qπ(s,a)b(s)∥∇ log π(a|s)]∥2 + b(s)2∥∇ log π(a|s)]∥2]

= 2
(
b(s) · E[∥∇ log π(a|s)]∥2]− E[Qπ(s,a)∥∇ log π(a|s)]∥2]

)

Therefore the baseline that minimizes the variance for each state is

b∗(s) = E[Qπ(s,a)∥∇ log π(a|s)]∥2]
E[∥∇ log π(a|s)]∥2]

)
Note that for the natural policy gradient, the exact same derivation holds and we obtain

that
b∗(s) = E[Qπ(s,a)∥F −1

s ∇ log π(a|s)]∥2]
E[∥F −1

s ∇ log π(a|s)]∥2]
)

where F −1
s = Ea∼π(·,s)[∇ log π(a|s)∇ log π(a|s)⊤]

184

D.4.2. Natural policy gradient for softmax policy in bandits

We derive the natural policy gradient estimator for the multi-armed bandit with softmax
parameterization.

The gradient for sampling arm i is given by gi = ei − π, where ei is the vector of zeros
except for a 1 in entry i. The Fisher information matrix can be computed to be F =
diag(π)− ππT , where diag(π) is a diagonal matrix containing πi as the i-th diagonal entry.
Since F is not invertible, then we can instead find the solutions to Fx = gi to obtain our
updates. Solving this system gives us x = λe + 1

πi
ei, where e is a vector of ones and λ ∈ R

is a free parameter. Since the softmax policy is invariant to the addition of a constant to all
the parameters, we can choose any value for λ.

D.4.3. Link between minimum variance baseline and value function

We show here a simple link between the minimum variance baseline and the value func-
tion. While we prove this for the REINFORCE estimator, a similar relation holds for the
state-action value estimator.

b∗ = E[R(τ)∥∇ log π(τ)]∥2]
E[∥∇ log π(τ)]∥2]

= E[R(τ)∥∇ log π(τ)]∥2]
E[∥∇ log π(τ)]∥2] − V π + V π

= E[R(τ)∥∇ log π(τ)]∥2]− E[R(τ)]E[∥∇ log π(τ)]∥2

E[∥∇ log π(τ)]∥2] + V π

=
Cov

(
R(τ

)
, ∥∇ log π(τ)]∥2)

E[∥∇ log π(τ)]∥2] + V π

D.4.4. Variance of perturbed minimum-variance baselines

Here, we show that the variance of the policy gradient estimator is equal for baselines
b+ = b∗ +ϵ and b− = b∗−ϵ, where ϵ > 0 and b∗ is the minimum-variance baseline. We will use
the trajectory estimator here but the same argument applies for the state-action estimator.

We have g = R(τ)− b)∇ log π(τ) and the variance is given by

V ar(g) = E[∥g∥2
2]− ∥E[g]∥2

2

= E[∥g∥2
2]− ∥E[(R(τ)− b)∇ log π(τ)]∥2

2

= E[∥g∥2
2]− ∥E[R(τ)∇ log π(τ)]∥2

2

where the third line follows since the baseline does not affect the bias of the policy gradient.

185

Focusing on the first term:

E[||g||22||] = E[R(τ)− b)∇ log π(τ)]

= E[(R(τ)− b)2||∇ log π(τ)||22]

=
∑

τ

(R(τ)− b)2||∇ log π(τ)||22π(τ)

Since (R(τ)− b)2 is a convex quadratic in b and ||∇ log π(τ)||22π(τ) is a positive constant for
a fixed τ , the sum of these terms is also a convex quadratic in b. Hence, it can be rewritten
in vertex form E[||g||22||] = a(b− b0)2 + k for some a > 0, b0, k ∈ R.

We see that the minimum is achieved at b∗ = b0 (in fact, b0 is equal to the previously-
derived expression for the minimum-variance baseline). Thus, choosing baselines b+ = b∗ + ϵ

or b− = b∗− ϵ result in identical expressions E[||g||22||] = aϵ2 + k and therefore yield identical
variance.

Note this derivation also applies for the natural policy gradient. The only
change would be the substitution of ∇ log π(τ) by F −1∇ log π(τ) where F =
Est∼dπ ,at∼π[∇ log π(at|st)∇ log π(at|st)⊤]

D.4.5. Baseline for natural policy gradient and softmax policies

We show that introducing a baseline does not affect the bias of the stochastic estimate
of the natural policy gradient. The estimator is given by g = (Ri − b)F −1∇ log π(ai), where
F −1 = Ea∼π[∇ log π(a)∇ log π(a)⊤].

For a softmax policy, this is: g = (Ri − b)(1
πθ(i)ei + λe), where ei is a vector containing

a 1 at position i and 0 otherwise, e is a vector of all one and λ is an arbitrary constant.
Checking the expectation, we see that

E[g] = E[(Ri − b)
(

1
πθ(ai)

ei + λe

)
]

= E[Ri

(
1

πθ(ai)
ei + λe

)
]− bE[

(
1

πθ(ai)
ei + λe

)
]

= E[Ri

(
1

πθ(ai)
ei + λe

)
]− b(e + λe)

So the baseline only causes a constant shift in all the parameters. But for the softmax
parameterization, adding a constant to all the parameters does not affect the policy, so the
updates remained unbiased. In other words, we can always add a constant vector to the
update to ensure the expected update to θ does not change, without changing the policy
obtained after an update.

186

D.4.6. Natural policy gradient estimator for MDPs

In this section, we provide a detailed derivation of the natural policy gradient with Q-
values estimate used in the MDP experiments.

Suppose we have a policy πθ. Then, the (true) natural policy gradient is given by
u = F −1(θ)∇J(θ) where F (θ) = Es∼dπθ

[Fs(θ)] and Fs(θ) = Ea∼π[∇ log π(a|s)∇ log π(a|s)⊤].
We want to approximate these quantities with trajectories gathered with the cur-
rent policy. Assuming that we have a tabular representation for the policy (one pa-
rameter for every state-action pair), our estimators for a single trajectory of experi-
ence (s0, a0, r0, ..., sT −1, aT −1, rT −1, sT) are as follows: F̂ = 1

T

∑T −1
i=0 F (si) and ∇̂J =

1
T

∑T −1
i=0 (Qπ(si,ai)− b(s))∇ log π(ai|si).
Together, our estimate of the policy gradient is

F̂ −1∇̂J =
(

1
T

T −1∑
i=0

F (si)
)−1 (1

T

T −1∑
i=0

(Qπ(si,ai)− b(s))∇ log π(ai|si)
)

=
(

T −1∑
i=0

F (si)
)−1 (T −1∑

i=0
(Qπ(si,ai)− b(s))∇ log π(ai|si)

)

Since we have a tabular representation, F (si) is a block diagonal matrix where each block
corresponds to one state and F (si) contains nonzero entries only for the block corresponding
to state si. Hence, the sum is a block diagonal matrix with nonzero entries corresponding to
the blocks of states s0, ..., sT −1 and we can invert the sum by inverting the blocks. It follows
that the inverse of the sum is the sum of the inverses.

=
(

T −1∑
i=0

F (si)−1
)(

T −1∑
i=0

(Qπ(si,ai)− b(s))∇ log π(ai|si)
)

=
T −1∑
i=0

(Qπ(si,ai)− b(s))
T −1∑

j=0
F (sj)−1

∇ log π(ai|si)

Finally, we notice that ∇ log π(ai|si) is a vector of zeros except for the entries corresponding
to state si. So, F (sj)−1∇ log π(ai|si) is nonzero only if i = j giving us our final estimator

û =
T −1∑
i=0

(Qπ(si,ai)− b(s))F (si)−1∇ log π(ai|si).

Note that this is the same as applying the natural gradient update for bandits at each
sampled state s, where the rewards for each action is given by Qπ(s,a).

187

D.4.7. Connection between optimistic initialization and positive
baseline perturbations

Using a positive perturbation to the baseline seems reminiscent of optimistic initializa-
tion for value-based methods like Q-learning, but there are some key differences. For opti-
mistic initialization, the expected Q-learning/TD-based update (averaged over all states and
actions) is actually modified since we change the value estimates. But for policy gradient
methods, the baseline has no effect on the expected update. Furthermore, for baselines, im-
proved exploration is only seen after multiple updates. Meanwhile, optimistic initialization
directly impacts the action selection to promote exploration. Although they are different,
there may be deeper links between baselines and optimistic methods.

188

	Résumé
	Abstract
	Table des matières
	Liste des tableaux
	Liste des figures
	Non-included works
	Notation and acronyms
	Notation
	Acronyms

	Remerciements
	Chapitre 1. Introduction
	Chapitre 2. Background
	2.1. Information theory
	2.1.1. Probability distribution and density/mass function
	2.1.2. Divergences
	2.1.3. Measures of information

	2.2. Fundamentals of machine learning and optimization
	2.2.1. Setting and maximum likelihood estimation
	2.2.2. Generalization
	2.2.3. Stochastic gradient descent

	2.3. Reinforcement Learning
	2.3.1. General setting and Markov Decision Processes
	2.3.2. Value functions in reinforcement learning
	2.3.2.1. Value and Q functions
	2.3.2.2. Bellman equations for V and Q
	2.3.2.3. Learning parametric value functions

	2.3.3. Policy optimization
	2.3.3.1. Policy gradient and actor critic methods
	2.3.3.2. Policy greedification and value-based methods
	2.3.3.3. General conditions for improvement
	2.3.3.4. Exploration

	Chapitre 3. Independently Controllable Factors
	Article details
	Foreword
	Personal contribution
	3.1. Introduction
	3.2. Learning disentangled representations
	3.3. The selectivity objective
	3.3.1. Link with mutual information and causality

	3.4. Experiments
	3.4.1. Learned representations
	3.4.2. Towards planning and policy inference
	3.4.3. Multistep embedding of policies

	3.5. Conclusion, success and limitations

	Chapitre 4. Probabilistic Planning with Sequential Monte Carlo Methods
	Article details
	Foreword
	Impact since publication
	Personal contribution
	4.1. Introduction
	4.2. Background
	4.2.1. Control as inference
	4.2.2. Sequential Monte Carlo methods

	4.3. Sequential Monte Carlo Planning
	4.3.1. Planning and Bayesian smoothing
	4.3.2. The Backward Message and the Value Function
	4.3.3. Sequential Weight Update
	4.3.4. Sequential Monte Carlo Planning Algorithm
	4.3.5. Optimism Bias and Control as Inference

	4.4. Experiments
	4.4.1. Toy example
	4.4.2. Continuous Control Benchmark

	4.5. Conclusion and Future Work

	Chapitre 5. On the Interplay between Noise and Curvature and its Effect on Optimization and Generalization
	Article details
	Foreword
	Impact since publication
	Personal contribution
	5.1. Introduction
	5.2. Information matrices: definitions, similarities, and differences
	5.2.1. Bounds between H, F and C
	5.2.2. C does not approximate F

	5.3. Information matrices in optimization
	5.3.1. Convergence rates
	5.3.1.1. General setting
	5.3.1.2. Centered and uncentered covariance
	5.3.1.3. Quadratic functions

	5.4. Generalization
	5.4.1. Takeuchi information criterion
	5.4.2. Limitations of flatness and sensitivity

	5.5. Experiments
	5.5.1. Discrepancies between C, H and F
	5.5.1.1. Experimental setup

	5.5.2. Comparing Fisher and empirical Fisher
	5.5.3. Comparing H, F and C
	5.5.4. Impact of noise on second-order methods
	5.5.5. The TIC and the generalization gap
	5.5.5.1. Efficient approximations to the TIC

	5.5.6. The importance of the noise in estimating the generalization gap

	5.6. Conclusion and open questions
	Acknowledgments

	Chapitre 6. Beyond Variance Reduction: Understanding the True Impact of Baselines on Policy Optimization
	Article details
	Foreword
	Impact since publication
	Personal contribution
	6.1. Introduction
	Contributions

	6.2. Baselines, learning dynamics & exploration
	6.2.1. Committal and non-committal behaviours

	6.3. Convergence to suboptimal policies with natural policy gradient (NPG)
	6.3.1. A simple example
	6.3.2. Reducing variance with baselines can be detrimental

	6.4. Off-policy sampling
	6.4.1. Convergence guarantees with IS
	6.4.2. Importance sampling, baselines & variance
	6.4.3. Other mitigating strategies

	6.5. Extension to multi-step MDPs
	6.6. Conclusion
	Acknowledgements

	Chapitre 7. Conclusion
	7.1. Summary of contributions
	7.2. Future research
	Optimization and reinforcement learning
	High-dimensional behavior of RL algorithms

	Références bibliographiques
	Appendix A. Independently Controllable Factors
	A.1. Additional details
	A.1.1. Architecture
	A.1.2. First experiment

	A.2. Additional Figures
	A.2.1. Discrete simple case
	A.2.2. Planning and policy inference example in 1-step
	A.2.3. Multistep Example

	A.3. Variational bound and the selectivity
	A.3.1. Lower bound on the mutual information

	A.4. Additional information on the training

	Appendix B. Probabilistic Planning with Sequential Monte Carlo Methods
	B.1. Abbreviation and Notation
	B.2. The action prior
	B.3. Value function: backward message
	B.4. Recursive weights update
	B.5. Experiment Details
	B.6. Sequential Importance Sampling Planning
	B.7. Significance of the results
	B.8. Additional experimental results
	B.8.1. Effective Sample Size
	B.8.2. Model loss

	Appendix C. On the Interplay between Noise and Curvature and its Effect on Optimization and Generalization
	C.1. Proofs
	C.1.1. Bounds between H, F and C
	C.1.1.1. Bounds with backward chi-2 divergence
	C.1.1.2. Bounds with forward chi-2 divergence
	C.1.1.3. Proof of Proposition 5.3.1
	C.1.1.4. Convergence to limit cycles in the quadratic case

	C.1.2. Expected suboptimality for SG and Polyak momentum on quadratic functions
	C.1.2.1. Proof of proposition 5.3.3
	C.1.2.2. Proof of proposition 5.3.4
	C.1.2.3. Comparison between stochastic gradient and Polyak momentum in the large noise regime

	C.2. Experimental details
	C.2.1. Details on the Hessian inverse
	C.2.2. Details on the large scale experiments
	C.2.3. Details on experiments of subsection 5.5.5

	Appendix D. Beyond Variance Reduction: Understanding the True Impact of Baselines on Policy Optimization
	Organization of the appendix
	D.1. Other experiments
	D.1.1. Three-armed bandit
	Natural policy gradient
	Vanilla policy gradient
	Policy gradient with direct parameterization
	Policy gradient with escort transform parameterization
	Policy gradient with mellowmax parameterization

	D.1.2. Simple gridworld
	D.1.3. Additional results on the 4 rooms environment

	D.2. Two-armed bandit theory
	D.2.1. Convergence to a suboptimal policy with a constant baseline
	D.2.2. Analysis of perturbed minimum-variance baseline
	D.2.3. Convergence with vanilla policy gradient

	D.3. Multi-armed bandit theory
	D.3.1. Convergence issues with the minimum-variance baseline
	D.3.2. Convergence with gap baselines
	D.3.3. Convergence with off-policy sampling

	D.4. Other results
	D.4.1. Minimum-variance baselines
	D.4.2. Natural policy gradient for softmax policy in bandits
	D.4.3. Link between minimum variance baseline and value function
	D.4.4. Variance of perturbed minimum-variance baselines
	D.4.5. Baseline for natural policy gradient and softmax policies
	D.4.6. Natural policy gradient estimator for MDPs
	D.4.7. Connection between optimistic initialization and positive baseline perturbations

