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Résumé

L’émergence du langage est considérée comme l’une des marques distinctives de l’intelligence
humaine. Par conséquent, nous émettons l’hypothèse que l’émergence de latents ou de
représentations similaires au langage dans un système d’apprentissage profond pourrait aider
les modèles à atteindre une meilleure généralisation compositionnelle et hors distribution.
Dans cette thèse, nous présentons une série de travaux qui explorent cette hypothèse dans
différents domaines, notamment l’apprentissage interactif du langage, l’apprentissage par
imitation et la vision par ordinateur.

Nous commençons par nous concentrer sur le maintien de la langue naturelle en tant que
latents dans un système de réseau neuronal profond. Pendant l’apprentissage interactif du
langage, les agents du réseau neuronal profond utilisent la communication pour collaborer, et
les communications linguistiques entre eux peuvent être considérées comme des représentations
latentes dans le système. Inspirés par la recherche en communication émergente, nous
proposons l’Apprentissage Itératif Semé (AIS) pour maintenir la structure linguistique de
cette communication lors de l’entraînement interactif. Les agents résultants obtiennent un
meilleur score de généralisation lorsque les “latents linguistiques” qui sont communiqués ne
dérivent pas.

Nous enquêtons ensuite sur l’ajout d’un biais inductif pour encourager l’émergence de
structures similaires à la langue dans l’apprentissage par imitation. Nous nous concentrons
sur la découverte de structures compositionnelles à partir de démonstrations non structurées
lors de l’apprentissage par imitation. Nous proposons le Réseau de Politique de Mémoire
Ordre (OMPN), qui favorise l’émergence d’une hiérarchie de sous-tâches dans ses mises en
mémoire. Nous constatons que notre modèle peut segmenter les trajectoires en sous-tâches
significatives et surpasser les références en termes d’achèvement des tâches.

Nous analysons enfin les propriétés ressemblant à un langage émergentes dans les méthodes
de pointe existantes. Nous nous concentrons sur l’analyse des représentations dans l’appren-
tissage auto-supervisé. En établissant le lien entre l’apprentissage de représentations non
supervisé et l’émergence du langage, nous identifions l’expressivité et l’apprentissage comme
deux propriétés clés. Nous proposons un cadre d’évaluation pour les méthodes d’apprentissage
auto-supervisé sans accès aux étiquettes en aval. Notre étude empirique à grande échelle
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montre que les méthodes ayant une meilleure généralisation hors distribution produisent
également des représentations à la fois apprenables et expressives.

Mots-clés: Apprentissage Profond, Émergence du Langage, Compositionnalité, Appren-
tissage par Imitation, Apprentissage Auto-supervisé
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Abstract

The emergence of language is regarded as one of the hallmarks of human intelligence.
Therefore, we hypothesize that the emergence of language-like latents or representations in a
deep learning system could help models achieve better compositional and out-of-distribution
generalization. In this thesis, we present a series of papers that explores this hypothesis
in different fields including interactive language learning, imitation learning and computer
vision.

We first focus on maintaining natural language as latents in a deep neural network system.
During interactive language learning, deep neural network agents use communication to
collaborate, and the language communications among them can be thought of as latent
representations in the system. Inspired by research in emerging communication, we propose
Seeded Iterated Learning (SIL) to maintain the linguistic structure of this communication
during interactive training. The resulting agents achieve a better generalization score when
the “language latents” being communicated do not drift.

We then investigate adding inductive bias to encourage the emergence of language-like
structures in imitation learning. We focus on discovering compositional structures from
unstructured demonstrations during imitation learning. We propose the Ordered Memory
Policy Network (OMPN), which encourages the emergence of a subtask hierarchy in its
memory layouts. We find that our model can segment the trajectories into meaningful
subtasks and outperform baselines in terms of task completion

We finally analyze the emerging language-like properties in existing state-of-the-art meth-
ods. We focus on analyzing representations in self-supervised learning. By drawing the
connection between unsupervised representation learning and language emergence, we identify
expressiveness and learnability as two key properties. We propose an evaluation framework
for self-supervised learning methods without access to downstream labels. Our large-scale em-
pirical study shows that methods with better out-of-distribution generalization also produce
representations that both are learnable and expressive.

Keywords: Deep Learning, Language Emergence, Compositionality, Imitation Learning,
Self-Supervised Learning
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Chapter 1

Introduction

1.1. A Brief History of Deep Learning
Deep learning is a subset of machine learning that has emerged as a popular approach

to artificial intelligence in recent years. It involves training artificial neural networks, which
are designed to simulate the behavior of the human brain, to recognize patterns and make
predictions. The origins of neural networks can be traced back to the 1940s, when Warren
McCulloch and Walter Pitts created the perceptron, a mathematical model of a single
neuron (Rosenblatt, 1958). However, it was criticized that such an approach to neural networks
could not be well translated into multiple layers (Minsky and Papert, 2017). Nevertheless,
it doesn’t stop deep learning pioneers from the 1980s and 1990s from implementing these
models on various applications. The seminal work of LeCun et al. (1998) proposes to use
back-propagation to train a hand written digit classifier with multiple layers of neural network.

Over the years, deep learning has undergone a remarkable transformation due to the
increased dataset sizes and advancements in computational power. As a result, it has
revolutionized the field of artificial intelligence, offering state-of-the-art performance in
various tasks such as image recognition, natural language processing, and speech recognition.
Deep learning models can extract abstract information from massive datasets and store
them into layers of representations, as demonstrated by (LeCun et al., 2015). The success of
deep learning and neural networks is evident from their remarkable performance on various
benchmark datasets. For instance, the ImageNet challenge, which is a popular competition
for image recognition, was won by a deep neural network called AlexNet (Krizhevsky et al.,
2012), with a significant margin over the previous state-of-the-art methods. Similarly, the
language model GPT-3 (Brown et al., 2020) has shown impressive performance on various
natural language processing tasks. It seems that stacking more layers along with proper
training techniques and smart engineering tricks can lead to tremendous empirical success.

In the modern context, researchers are further pushing this trend and we are now squarely
in the era of Large Language Models (Devlin et al., 2018; Raffel et al., 2020). These models,



which are trained with massive amounts of data, are demonstrating emergent abilities (Wei
et al., 2022), such as few-shot in-context learning (Brown et al., 2020). The discovery of
these abilities within deep neural networks has opened up exciting possibilities for industrial
applications.

1.2. Motivation: The Lack of Systematicity
While deep neural networks have achieved astonishing results, there are still some problems

that prevent these models from being mpre widely deployed in practical applications.
For example, in computer vision, a tiny change to a fraction of the image pixels (Goodfellow

et al., 2014) can lead to a total failure in super-human image classification neural networks.
In the Question Answering domain, Jia and Liang (2017) discovered that state-of-the-art
models can be fooled by adding an additional distracting sentence to the end of the context
paragraph. Even in those seemingly omniscient large language models, recent work shows
that these models can surprisingly perform well with irrelevant prompts (Webson and Pavlick,
2022) or demonstrations with random labels (Min et al., 2022), which begs the question
whether these models truly understand the text. Additionally, Razeghi et al. (2022) observe
that large language models generalize poorly when it comes to rare numbers in the training
data, raising the question of the extent of their generalization beyond the pretraining dataset.
Although these failures of deep neural network models are sometimes referred to differently
under different contexts (e.g., adversarial attack, spurious features, dataset bias, etc.), Geirhos
et al. (2020) provide a good summary of these failures called "shortcut learning". By following
an unintended "shortcut" solution, the model can behave well on standard benchmarks but fail
to generalize systematically to real-world scenarios. In this thesis, we refer these symptoms
of deep neural networks as the lack of systematicity (Fodor and Pylyshyn, 1988).

While this concept of lack of systematicity is commonly used to describe the generalization
failure of seq2seq models (Lake and Baroni, 2018; Bastings et al., 2018), we argue that this
notion can be extended to the problems discussed in this work. Specifically, even when our
current models have learned solutions to particular tasks, they may fail to generalize to
semantically related scenarios. Systematicity is a fundamental property of human cognition
and natural language, and addressing this issue could potentially bring our models one step
closer to achieving human-level intelligence.

1.3. Previous Work on Achieving Systematicity
The issue of achieving systematicity within neural networks has been previously addressed

in the literature.
Tai et al. (2015) proposed integrating tree structures into a seq2seq model and demon-

strated improvements in semantic related tasks. Andreas and colleagues Andreas et al.
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(2016) introduced Neural Module Networks (NMN) to solve the problem of Visual Question
Answering, where the computational flow or layout of the neural network can reflect the
underlying linguistic structure of the problem description. Subsequent work explored similar
ideas in reinforcement learning (Andreas et al., 2017), text reasoning (Gupta et al., 2020),
few-shot classification (Andreas et al., 2018), among others. It has also been demonstrated
that systematicity can potentially be achieved when ground-truth layouts (or programs)
are given (Bahdanau et al., 2018), although annotating such layouts from text descriptions
is a tedious task. With the emergence of large pretrained language models (Brown et al.,
2020; Raffel et al., 2020), recent works suggest that simply scaling the model can help with
achieving systematicity. Warstadt and colleagues Warstadt et al. (2020) argue that larger
models would prefer linguistic features over surface features. However, some work also points
out that scaling alone might have limited benefits in reducing the compositional generalization
gap (Qiu et al., 2022), unless accompanied by clever prompting (Press et al., 2022). Therefore,
the lack of systematicity remains a fundamental problem for deep learning, even in the context
of large language models.

1.4. Emerging Language-like Latents in Neural Networks
We propose the hypothesis that the emergence of language-like latents can facilitate

systematic generalization in deep neural networks.
Firstly, we define latents as anything situated between the inputs and outputs of a

deep learning system. This can refer to a single neuron, the representation from the last
convolutional layers, or even an intermediate natural language sequence, depending on the
context. Secondly, "language-like" is an umbrella term for any linguistic properties that these
latents may exhibit. Depending on the type of latents being studied, we may use existing
metrics such as BLEU scores for natural language sentences, or develop our own metric based
on abstract concepts such as learnability and expressiveness derived from the emergence of
language (Kirby, 2002). Lastly, the systematic generalization in which we are interested,
pertains to compositional or out-of-distributional generalization, which can be identified in
various benchmark tasks.

While it is interesting to examine the emergence of language-like latents in the existing
approaches, we are also interested in identifying the inductive bias that can enforce them.
Inductive bias refers to the set of assumptions that a learner employs when presented with
novel inputs (Mitchell, 1980). All machine learning methods require some degree of inductive
bias or constraints to be effective. However, we believe that overly relying on hard-coded
constraints may hinder the scalability of neural networks, which is one of their major strengths.
This distinguishes our work from previous approaches such as neural symbolic methods and
trivial neural module networks (Yi et al., 2018; Amizadeh et al., 2020), where a pre-defined set
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of modules or vocabulary is necessary, thereby limiting their scalability. Instead, we construct
our inductive bias by taking inspiration from emerging communication methods (Lazaridou
et al., 2018; Kharitonov et al., 2020; Harding Graesser et al., 2019), which are less rigid.
However, since these studies typically focus on small-scale toy experiments, it remains a
challenge to apply their insights to larger models and datasets.

1.5. Relation to the Language of Thought Hypothesis
Our hypothesis is centered around the vital role that language plays in human cognitive

development. Initially, it may seem closely linked to the Language of Thought Hypothesis
(LOTH), which proposes that cognitive functions, such as productivity and systematicity,
necessitate the existence of a linguistically-structured mental representation (Fodor, 1975).
LOTH is commonly summarized as the idea that "thoughts are sentences in the head." However,
classical LOTH considers mental representations as symbolic systems with combinatorial
syntax and compositional semantics (Fodor and Pylyshyn, 1988), and is thus frequently
used to challenge connectionist models like neural networks. In this thesis, our goal is to
demonstrate the potential for neural networks to create latent representations with certain
linguistic traits, such as compositionality. While these latent representations may lack the
strictest forms of constituency or symbolic structure found in human language, their emergence
could still enhance models in terms of generalization and systematicity.

1.6. Thesis Development
In the following thesis we are going to first introduce some preliminary concepts (Chapter 2)

to help readers understand our papers. Now we summary the content of the papers and
discuss how they are related to our central hypothesis.

Firstly, we show that preserving language-like latent representations can result in superior
generalization. We focus on the problem of Language Drift (Chapter 3 and Chapter 4), which
is the phenomenon where a goal-oriented dialogue agent (e.g., for ticket booking) that has been
fine-tuned using self-play produces language that deviates from the pretraining corpus. We
propose to study this problem in a translation game setting, where the agents collaboratively
translate French to German, with English as the intermediate language. we propose an
iterated learning algorithm inspired by emerging communication to counter language drift.
Our approach not only addresses language drift but also improves generalization to novel
inputs. In these works, the goal-oriented dialogue agents is a holistic system, and the natural
language sentences exchanged among neural networks can be viewed as the system’s "latent
representations." Therefore, these papers demonstrate that maintaining language-like latents
could result in improved generalization.
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Secondly, we demonstrate that incorporating suitable neural architectural inductive bias
can facilitate the emergence of language-like latents, resulting in improved compositional
generalization. Our investigation focuses on the problem of unsupervised task decomposition
through imitation learning, as discussed in Chapter 5. Specifically, given a lengthy sequence
of demonstrations, we seek to develop a neural network agent that can effectively comprehend
and parse the input into meaningful subtasks that can be applied in a range of contexts.
The capacity to accomplish this objective is connected to the notion of compositionality.
We propose leveraging an architectural inductive bias referred to as Ordered Memory to
achieve the task. We demonstrate that by employing standard backpropagation in behavior
cloning, the subtask structures emerge in the model’s memory. While the degree to which
these subtask structures resemble natural language is an area requiring further inquiry, our
findings highlight the potential for designing neural architectural inductive bias to enable the
emergence of language-like latents.

Thirdly, we assert that language-like representations may arise in existing scalable deep
learning methods without any alteration of algorithms or architecture. In Chapter 6, we
examine the relationship between the performance of state-of-the-art self-supervised methods
and their representation properties through the lens of language emergence literature. We
identify two crucial properties, namely expressiveness and learnability, and measure them
respectively by Cluster Learnability (CL) and Intrinsic Dimension (ID). Our extensive
empirical investigation of state-of-the-art models demonstrates that if the model is proficient
at generalization, the resulting representations exhibit language-like characteristics in that
they are both expressive and learnable. Through the integration of CL and ID into a single
predictor, we empirically demonstrate that it can forecast the out-of-domain generalization
of self-supervised models on various visual classification tasks, yielding improvements with
respect to the competing baselines.

Finally, we conclude our thesis and propose potential future research directions on finding
language-like latents in the current context of large-scale pretrained models.

1.7. Contributions
The contributions of this thesis are summarized as follows:

• I argue that the emergence of language-like latents in neural networks can enable
better systematic generalization. I study the hypothesis across a wide spectrum
of deep learning applications, including language learning, imitation learning and
self-supervised learning.

• I propose to use algorithmic inductive bias to counter the problem of language drift.
I was among the first to adapt techniques from emergent communications into large
scale machine learning applications beyond toy datasets.
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• I design network architectural inductive bias so that the compositional subtask
structure emerges, enabling the model to perform unsupervised task decomposition.

• I empirically investigate the existence of language-like representations in the state-of-
art self-supervised methods.
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Chapter 2

Preliminaries

2.1. Reinforcement Learning
2.1.1. Markov Decision Process

Reinforcement learning focuses on how an agent can learn to make decisions through
trial-and-error interactions with an environment. At the heart of reinforcement learning
lies the Markov Decision Process (MDP), Markov Decision Processes (MDPs) are a popular
framework for modeling decision-making problems in stochastic environments. An MDP
is a tuple (S, A, P , R, γ), where S is the state space, A is the action space, P is the state
transition probability function, R is the reward function, and γ ∈ [0, 1] is the discount factor.
At each time step t, the agent observes the current state st ∈ S, selects an action at ∈ A,
receives a reward rt = R(st, at), and transitions to the next state st+1 according to the
probability distribution P(st+1 | st, at). The goal of an agent in an MDP is to find a policy
π : S → A that maximizes the expected cumulative discounted reward:

J(π) = Eπ

[ ∞∑
t=0

γtrt

]
(2.1.1)

where Eπ denotes the expectation with respect to the state-action distribution induced by
the policy π.

2.1.2. Policy Gradient Method

One popular method for learning a policy in the MDP is the policy gradient method.
It involves computing the gradient of the expected cumulative reward with respect to the
parameters of the policy, and using this gradient to update the policy parameters in the
direction of increasing reward. The policy gradient theorem is derived from the likelihood
ratio method, and it provides a principled way to optimize policies in both discrete and
continuous action spaces. Let θ be the parameter vector of the policy πθ(a | s), which is a



probability distribution over actions given the current state. By taking the gradient of the
objective function J(πθ), we have

∇θJ(πθ) = Eπθ
[∇θ log πθ(at | st)Qπθ(st, at)] (2.1.2)

where Qπθ(st, at) is the state-action value function under policy πθ. Different realizations of
the state-action value could lead to different variants of the algorithms. A common approach
is to use the Bellman equation (Sutton and Barto, 2018) to re-write the state-action value as:

Qπθ(st, at) = Eπθ

[ ∞∑
k=t

γk−trk | st, at

]
(2.1.3)

which is the expected cumulative discounted reward starting from state st and taking
action at under policy πθ. Using this realization, we can now derive the REINFORCE
algorithm (Williams, 1992) as follows:

∇θJ(πθ) = Eπθ

[
∇θ log πθ(at | st)

∞∑
k=t

γk−trk

]
(2.1.4)

Nevertheless, vanilla REINFORCE can have high variance, which can lead to slow conver-
gence and unstable training. This high variance arises because the gradient is estimated from
samples that can be noisy or biased, especially when dealing with high-dimensional and con-
tinuous action spaces. These limitations have led to the development of advanced techniques
such as Advantage Actor Critic (A2C) (Mnih et al., 2016), Trust Region Policy Optimization
(TRPO) (Schulman et al., 2015b), Proximal Policy Optimization (PPO) (Schulman et al.,
2017) etc.

To encourage exploration, entropy regularization can be added to the objective function
to encourage agents to take a diverse set of actions. The resulting gradient becomes:

∇θJ(πθ) = Eπθ

[
∇θ log πθ(at | st)

∞∑
k=t

γk−trk + β∇θH(πθ(·|st))
]

(2.1.5)

where H(πθ(·|st)) is the entropy of the policy distribution, and β is a hyper-parameter that
controls the strength of the entropy regularization term.

2.1.3. Behavior Cloning

Behavior cloning is another popular approach for learning policies in reinforcement
learning, which involves training a policy to mimic an expert policy using a supervised learning
method. Specifically, behavior cloning involves collecting a dataset of expert trajectories
D = { τ1, τ2,...,τN} where N is the total number of trajectories. Each trajectory is comprised
of a sequence of state-action pairs τi = (si,1, ai,1, ..., si,Ti

, ai,Ti
) where Ti is the length of
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trajectory. We then train a neural network to predict the expert action given the current
state. The objective function of behavior cloning is the cross-entropy loss:

L(θ) = − 1
N

N∑
i=1

Ti∑
t=1

log πθ(ai,t | si,t) (2.1.6)

where N is the number of state-action pairs in the dataset, and πθ(a | s) is the policy
parameterized by the neural network with weights θ. The neural network is trained using
stochastic gradient descent to minimize the cross-entropy loss.

Behavior cloning has the advantage of being fast and easy to implement, since it only
requires a dataset of state-action pairs and a neural network. However, it is prone to the
problem of distributional shift, where the training data may not cover the full range of
states and actions encountered during execution of the policy, leading to poor generalization
performance. Nevertheless, behavior cloning is a good choice when demonstrations are ready
and can be used as good initialization for the policy network.

2.1.4. Partially Observable MDP and Recurrent Neural Networks

Partially Observable Markov Decision Processes (POMDPs) have become a more prevalent
framework for modeling decision-making problems in uncertain environments. These processes
are an extension of Markov Decision Processes (MDPs) that allow for incomplete observations
of the state. Within a POMDP, the agent receives an observation that is dependent on
the underlying system state, which is not directly observable. The agent must utilize this
observation to make a decision that optimizes the expected cumulative reward over time. At
each time step, denoted by t, the agent only has access to an observation, ot, that is a partial
representation of the true environment state, st. Subsequently, the agent selects an action, at,
based on its current belief state, ht−1, receives a reward, rt, and transitions to a new belief
state, ht, based on the belief update function.

Recurrent neural networks (RNNs) have been shown to be effective as policy networks in
POMDPs due to their ability to capture temporal dependencies in the observations. To be
specific, an RNN is used to model πθ(at|ot, ht−1), and the underlying recurrent states update
is ht = fθ(xt; ht−1), where xt = (ot, at). For example, the vanilla RNN update is

ht = tanh(Whhht−1 + Whxxt + b), (2.1.7)

where Whh, Whx, b are the parameters to be learned.
In the literature, there are other commonly used variants of RNNs, including long short-

term memory networks (LSTMs) (Hochreiter and Schmidhuber, 1997) and gated recurrent
units (GRUs) (Cho et al., 2014). With the use of recurrent neural networks, policy gradient
methods and behavior cloning techniques can be directly applied. Recent studies have also
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demonstrated the effectiveness of more advanced sequence modelling network architectures,
such as memory networks (Chapter 5) and transformers (Chen et al., 2021a).

2.2. Emergent Communication
2.2.1. Referential Game

The referential game (Lewis, 1969) is a typical setting among emergent communication
research in deep learning (Chaabouni et al., 2019, 2020; Kottur et al., 2017). It is an object
selection game between two agents, a sender and a receiver, or sometimes referred to as Alice
and Bob. During each round, the sender sees a object x from the object space X , and send
a discrete message of length l, m = (m1, m2, ...,ml) to the receiver, where each word comes
from a fixed vocabulary V. We then show the receiver a set of k objects (or candidates)
C = {c1, c2, ..., ck} where x ∈ C. Based on the message m and the candidates, the receiver
makes a selection ĉ. After the selection is made, a reward r is generated, which could be as
simple as r(ĉ, x) = [ĉ == x], where [·] is the Iverson bracket. The objects are shuffled and
candidates are randomly selected in each round.

To be specific, the policies of the sender and the receiver are πS and πR, which are usually
implemented with some off-the-shelf sequence modelling neural networks, e.g., a single-layer
LSTM (Hochreiter and Schmidhuber, 1997). The sender models pπS

(mi|x, m<i), which is the
conditional distribution of generating next message token mi, based on the history m<i and
the object x. We also denote the message probability as pπS

(m|x) = Πl
i=1pπS

(mi|x, m<i),
sampling the message autoregressively. Meanwhile, the receiver models pπR

(ĉ|m, C), the
conditional distribution of the selection, given the message and the candidates. Then the
objective to be maximized is the expected reward under the policies:

J(πS, πR) = EπS ,πR
[r] (2.2.1)

To optimize this objective function, one applies REINFORCE algorithm (Williams, 1992).
That is

∇JπR
= EπS ,πR

[r∇ log pπR
(ĉ|m, C) + λ∇H(pπR

)] (2.2.2)

∇JπS
= EπS ,πR

[r∇ log pπS
(m|x) + λ∇H(pπS

)] (2.2.3)

where H(·) is the entropy function to encourage the policy exploration, and λ is a hyper-
parameter.

While the above case describe the policy gradient algorithm, in some cases the reward
function r(ĉ, x) is differentiable. Then a hybrid method (Schulman et al., 2015a) can be used
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by directly applying backpropagation w.r.t. the receiver.

∇JπR
= EπS ,πR

[∇r + λ∇H(pπR
)] (2.2.4)

For the sender, one can still use policy gradient above, or back-propogation with Gumbel
Softmax (Jang et al., 2017a) as is shown in Chapter 3. Through the optimization, a specific
communication protocol or language is emerged that can help agents successfully complete
the task.

2.2.2. Compositionality in the Emergent Language

To investigate the presence of compositionality in an emergent protocol, a straightforward
approach is to evaluate whether agents can utilize it to express novel composite meanings.
For instance, can they refer to a blue square when encountering it for the first time, given
that they have been exposed to other blue and square objects during training? To accomplish
this, a compositional split of objects is typically generated for testing purposes.

However, in addition to task performance, it is also important to evaluate the underlying
compositionality of the emergent language. Several commonly employed metrics for this
purpose are detailed below:

• Topological Similarity Lazaridou et al. (2018) is firsly proposed by Brighton and
Kirby (2006) in the context of language emergence. The fundamental concept is
that objects that are semantically similar should possess comparable messages. To
calculate this measure, two sets of numbers are computed: (i) the Levenshtein distances
(minimum edit distance) between every pair of messages for the objects, and (ii) the
cosine similarity between every pair of representation vectors for the objects. Then
the topographic similarity can be defined as the negative Spearman ρ correlation,
since we are correlating distances with similarities. As a result, if similar objects
have a substantial amount of shared message structure, such as common prefixes or
suffixes, and dissimilar objects have little common message structure, the topographic
similarity should be high.

• Positional Disentanglement (posdis) is an entropy-based measure introduced
by Chaabouni et al. (2020). The idea is that for a language to be compositional
given our inputs, each position of the message should only be informative about
a single attribute of the object. Formally, if we assume that an object can be
described by m attributes, and each of which can take on k values, then we can
represent the object as a vector x = (a1,a2,..., am), where ai ∈ 1,2, ..., k. The mutual
information between attribute i and word j can then be defined as: I(ai,mj) =∑

ai

∑
mj

P (ai, mj) log
(

P (ai,mj)
P (ai)P (mj)

)
, where P (ai, mj), P (ai), and P (mj) are the joint

and marginal distributions estimated by counting in the toy referential games. Denote
b1

j = arg max I(·, mj) as the attribute variable with the largest mutual information
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with respect to mj, and b2
j as the one with the second largest mutual information.

The positional disentanglement score is then calculated as:

posdis = 1
l

l∑
i=1

I(b1
i , mi) − I(b2

i , mi)
H(mi)

(2.2.5)

where H(mi) is the entropy of word i in the message and l is the length of the message.
• Tree Reconstruction Error (TRE) was introduced by Andreas (2019a) as a means

of evaluating the degree of compositionality in the representation space. Notably,
this measure is not limited to evaluating the compositionality of the representation
space alone; it can also be applied to the emergent language space. Unlike previous
measures, TRE prespecifies the underlying compositional structure and build a
TRE approximator function that has a computation graph reflecting the underlying
structure. The approximation error obtained from this process can be used to test
whether the language conforms to a pre-specified compositional grammar. Nevertheless,
the prerequisite of knowing the grammar beforehand limits its practical usage.

Despite their widespread use, current metrics for evaluating the compositionality of
emergent languages are still significantly flawed. Chaabouni et al. (2020) have demonstrated
that while these models can develop a language that generalizes successfully to a held-out test
set, they score low on the existing compositionality measures presented above, thereby leading
some to posit that compositionality is not necessary for robust generalization (Andreas, 2019b;
Kharitonov and Baroni, 2020).

However, this interpretation presents a significant puzzle: if the languages emerging from
these models lack compositionality, how do they still exhibit the generalization capabilities
that enable successful communication about unseen and novel examples? One potential
explanation, as argued by Conklin and Smith (2023), is that the languages that emerge
between networks are indeed compositional, but with a degree of variation that can obscure
their compositionality from existing measures, which only assess surface-level regularity.

Therefore, more investigation are still needed to establish a proper measure for the
compositionality for emergent languages.

2.2.3. Neural Iterated Learning (NIL)

In addition to devising metrics for measuring compositionality, researchers have also
focused on developing priors that facilitate the emergence of compositional languages, such
as input representations (Lazaridou et al., 2018) and channel capacity (Kottur et al., 2017).
Among them, a strong result is discovered under the framework of neural iterated learning
(NIL) (Ren et al., 2020), claiming that the ease of generational transmission encourages
compositionality..
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NIL is a deep learning extension to the Iterated Learning Model (ILM), which is a
cultural evolutionary account of the origins of compositionality (Kirby, 2001, 2002). Figure 1
provides an overview of the model. The ILM assumes the existence of two forms of language:
I-language and E-language. The former refers to the internal language knowledge, such as
grammar, while the latter represents the external language, such as utterances in daily usage.
In this process, parents generate the E-language from their I-language, which in turn, infants
acquire as their own I-language via learning. This process of learning and transmission
continues across generations, resulting in the evolution of language through observations of
the utterances of other agents who learn the language in a similar way (Kirby et al., 2014).

Fig. 1. Language transmission over time Kirby (2002). I-language is the internal language
knowledge, while E-language is the external language like utterances.

One of the distinguishing characteristics of ILM is the presence of the “Learning Bottleneck".
This phenomenon describes the challenge faced by language learners who must acquire a
language system with infinite expressiveness, despite having access to only a limited amount
of linguistic data. For instance, the vast number of possible sentences in a language cannot
be explicitly enumerated by a parent or caregiver. As a result, linguistic structures, such
as compositionality, is an adaptation to this selective pressure imposed by the Learning
Bottleneck. Consequently, the languages that emerge from this process has great generalization
capacity. Previous research has established the effectiveness of the Iterated Learning Model
(ILM) as demonstrated by Kirby et al. (2014). However, these studies were primarily
conducted with human participants, who tend to favor compositional languages due to the
preference of the human brain for structured languages. As a result, it is unclear how the
ILM can be applied to deep neural networks.

Recently, Ren et al. (2020) demonstrate that, like humans, neural networks also exhibit
a preference for compositional languages. The authors found that neural networks can
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acquire emergent languages with higher topological similarity scores faster, which they refer
to as the “learning speed advantage". These observations were also made in other studies.
For instance, Li and Bowling (2019) find that more structured emergent languages can be
taught to the next generation more quickly. Similarly, Chaabouni et al. (2020) observe a
strong positive correlation between the learning speed of new receivers and the degree of
compositionality as well as generalization accuracy. These findings form the basis for the
development of NIL. Therefore, to further leverage this learning speed advantage, Ren et al.
(2020) propose a three-phase algorithm to simulate the ILM. The algorithm consists of the
following phases:

• The first phase, referred to as the Interaction Phase, involves the standard training
of both the sender and receiver to maximize the reward.

• The second phase, known as the Transmitting Phase, is characterized by generating
a dataset D of object-message pairs through feeding all objects to the sender.

• In the third phase, the Learning Phase, both agents are reinitialized. A new sender
is trained using supervised learning on the dataset D, while the new receiver is trained
with policy gradient, with the new sender fixed.

• Repeat the above phases.
The experiments results show that although the utilization of NIL exhibits negligible

influence on game performance, it exhibit a distinct impact on the topological similarity score
within the emergent language, provided with an adequate number of generations.

2.3. Self-Supervised Learning (SSL)
As our thesis revolves around learning language-like latent representations, we have

explored our hypothesis within the realm of self-supervised learning (Chapter 6), which also
involves unsupervised learning of latent representations. In the following sections, we present
a literature review for the field.

2.3.1. The Dream of Unsupervised Representation Learning

Representation learning is about learning representations of the data that make it easier
to extract useful information when building classifiers or other predictors (Bengio et al., 2013).
While it is shown that with proper network architecture (e.g., convolutional neural networks)
and large labeled dataset, we can achieve useful representations that can transfer well in the
downstream tasks. It remains unclear how to obtain this useful representation without any
labels. As a result, unsupervised representation learning is still a holy grail of deep learning.

Previous work on unsupervised representation learning mainly focus on generative models
like Variational Autoencoders (VAE) (Kingma and Welling, 2013) and Generative Adversarial
Networks (GAN) (Goodfellow et al., 2020). Generative models are a type of algorithm that
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aims to model the data distribution P(X), which is derived from the traditional unsupervised
learning perspective. However, despite improved image generation quality, the representations
generated by these models are still less effective than their supervised counterparts.

To understand this limitation, it is crucial to recognize that obtaining representations that
can be useful for downstream tasks like classification requires high-level semantic concepts
that exhibit proper invariance and equivariance. Unfortunately, the representations obtained
from generative models tend to focus on low-level details such as textures. Although these
features may be desirable for generating accurate image pixels, they are not sufficiently
high-level to support downstream tasks.

In contrast to generative models, self-supervised learning shifts its focus on auxiliary
tasks that demand a deeper understanding of the data. By doing so, it moves beyond
pixel space. Moreover, these techniques harness the vast amount of unlabeled data to
construct annotations for their auxiliary tasks, rendering them the cutting-edge approach in
unsupervised representation learning.

2.3.2. Pretext Tasks

In the early days, due to the lack of a principled method, researchers design ad-hoc
pretext tasks for self-supervised learning. Solving these pretext tasks would require models
to understand the underlying semantic concept within the data.

One such pretext task proposed by Gidaris et al. (2018) involves predicting the rotation
angle of an image. The model is trained to classify images that have been rotated by 0, 90,
180, or 270 degrees, providing a 4-way classification task (Figure 2). By learning to recognize

Fig. 2. Sample images rotated by random multiples of 90 degrees taken from Gidaris et al.
(2018). The pretext task is to predict the orientation of the image.

the orientation of an image, the model is encouraged to learn features that are invariant to
rotation, which can be useful for a wide range of downstream tasks. Noroozi and Favaro
(2016) proposed a different pretext task, where the model is required to solve a jigsaw puzzle.
The goal of this task is to encourage the model to learn and recognize the spatial relationships
between image patches. By learning to reconstruct an image from shuffled patches, the
model is forced to learn features that capture spatial information. Similarly, Doersch et al.
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(2015) proposed a pretext task where the model is trained to predict the spatial configuration
between two patches of an image. By learning to predict the relative position of image
patches, the model is encouraged to learn features that capture spatial relationships between
objects in an image. Misra and Maaten (2020) argued that semantic representations should be
invariant to various pretext transformations and developed a technique called pretext-invariant
representation learning (PIRL). Colorization (Larsson et al., 2017, 2016) is another powerful
pretext task that has been proposed. Since a large number of colored images are already
available, the model can be trained to predict the colors from grayscale images. Noroozi et al.
(2017) introduced counting as a pretext task, which enforces constraints that the network
should be able to recognize the number of visual primitives in an image. Other pretext tasks
that have been investigated include in-painting (Pathak et al., 2016), video prediction (Wang
and Gupta, 2015), and predicting the residual part of the image (Zhang et al., 2017). All of
these pretext tasks provide different types of objectives that encourage the model to learn
useful features that can be transferred to downstream tasks.

2.3.3. Contrastive Learning

Contrastive Learning is a family of SSL algorithms based on the principle of instance
discrimination: Representations of different views of the same image should be closer than
those of different images. To achieve this, contrastive approaches are constructed based on
the idea of negative examples.

• MoCo (He et al., 2020b) is proposed to train a visual representation encoder. The
core idea is to match an encoded query q with a set of encoded samples K. It is
assumed that there exists a single key k+ ∈ K that matches with q. The contrastive
loss function used in MoCo is based on the InfoNCE approach (Oord et al., 2018),
and is given by:

L = − log exp(q · k+/τ)∑K
k∈K exp(q · k/τ)

(2.3.1)

Where τ is a temperature hyper-parameter that scales the logits to control the softmax
sharpness. This loss function aims to maximize the similarity between q and k+, while
minimizing the similarity between q and the other samples in K. Recent work also
builds upon MoCo by using more data augmentation (Chen et al., 2020c) and using
vision transformers architecture (Chen et al., 2021b).

• SimCLR, introduced by Chen et al. (2020a), presents a straightforward framework for
contrastive learning that does not require special architecture or a memory bank. The
approach involves randomly sampling N images and their corresponding augmented
instances, resulting in a set of 2N images. Let sim(u,v) = uT v/||u||||v|| be the
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cosine similarity. For each positive pair i,j, the loss is defined as follows:

li,j = − log exp(sim(zi, zj)/τ)∑2N
k=1 1k �=i exp(sim(zi, zk)/τ)

(2.3.2)

where 1k �=i ∈ {0, 1} is an indicator function equals to 1 if and only if k �= i. The final
loss is computed over all positive pairs. Recent work also builds upon it by exploring
deeper ResNet architectures and increasing the capacity of the projection head (Chen
et al., 2020b).

Both the MoCo and SimCLR methods rely heavily on advanced data augmentation techniques,
including cropping, resizing, and color distortion, to enhance the quality of their learned
representations. This reliance on sophisticated data augmentation techniques becomes the
main theme of self-supervised learning.

2.3.4. Beyond Contrastive Learning

Recent work has also shown that eliminating negative samples in contrastive learning is
achievable. These frameworks place greater emphasis on the consistency between positive
examples.

• BYOL (Grill et al., 2020) maintains an online network denoted as fθ and a target
network denoted as fφ. In this framework, when an image is sampled, two views
denoted as x and x′ are obtained from the data augmentations. The representations
of these views are obtained using the online network and target network, respectively
z = fθ(x) and z′ = fφ(x′). In addition, the online network includes a predictor
network q, which renders the architecture asymmetric between the online and target
pipelines. This asymmetry has been argued to be a crucial factor contributing to the
success of BYOL (Tian et al., 2021) Finally the loss is defined as mean squared error
as follows:

L = 2 − 2 · < q(z), z′ >

||q(z)||||z′|| (2.3.3)

During the optimization process, the stop-gradient operator is applied on the target
network, and only the online network fθ is updated with back-propagation. As with the
MoCo framework, BYOL updates the target network fφ with a slow-moving average
of the online networks. Future work, e.g., DINO (Caron et al., 2021), further builds
on this idea of self-distillation with a momentum target network by incorporating
vision transformers.

• SimSiam further simplifying the above procedure by removing the momentum target
network. Let the two views of the same image denoted as x1 and x2. An encoder f

and a projection head h are used to process the two views. Let p1 = h(f(x1)) and
z2 = f(x2). The negative cosine similarity is then computed as D(p1, z2) = − p1

||p1||
z2

||z2|| .
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Finally, a symmetric loss is defined as

L = 1
2(D(p1, sg(z2)) + D(p2, sg(z1))) (2.3.4)

where sg is a stop-gradient operator, and it is shown to prevent the representation
from collapsing.

• SwAV (Caron et al., 2020) is among the series work on clustering-based SSL meth-
ods (Caron et al., 2018; Asano et al., 2019) that leverage clustering to facilitate
representation learning. Unlike traditional SSL methods that compare image features,
SwAV compares the cluster assignments or codes obtained from image views. Given
two image features zt and zs from two different augmentations of the same image, the
codes qt and qs are computed by matching these features to a set of K prototypes
C = {c1,..., cK} with Sinkhorn-Knopp algorithm (Cuturi, 2013). Then the loss is
computed as

L(zt,zs) = l(zt, qs) + l(zs, qt) (2.3.5)

where l(zt, qs) = −∑
k qk

s log pk
t is the cross-entropy loss between the code qs and the

probability pt, which is computed by taking a softmax on the dot-product between zt

and all the prototypes in c. In the implementation, a multi-crop data augmentation
strategy is leveraged to further increase the performance.

• Barlow twins (Zbontar et al., 2021) introduces a new loss function that aims to
improve the similarity between the embeddings of positive examples, while reducing
redundancy between the components of these vectors. Denote ZA and ZB as the
batches of embeddings from two different views. A cross correlation matrix is computed
along the batch dimension:

Cij =
∑

b ZA
b,iZ

B
b,j√∑

b(ZA
b,i)2

√∑
b(ZB

b,j)2
(2.3.6)

The network is trained by making C closer to identity matrix. As a result, the loss
function is

L =
∑

i

(1 − Cii)2 + λ
∑

i

∑
j �=i

C2
ij (2.3.7)

where λ is a hyper-parameter trading off the importance between maintaining in-
variance (first term) and removing redundancy (second terms). Future work, e.g.,
VICReg (Bardes et al., 2021), builds upon Barlow twins by incorporating a weighted
sum of the variance, invariance, and covariance.
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2.3.5. Mask and Predict

Following the success of BERT (Devlin et al., 2018) and masked language modelling
pretraining, recent work also try to adapt the idea of masked auto-encoders into computer
vision along with the introduction of vision transformers (Dosovitskiy et al., 2020).

• BEIT (Bao et al., 2022) presents a self-supervised learning approach using a masked
image modeling task. The authors tokenize the initial image by utilizing a pretrained
dVAE(Ramesh et al., 2021) to produce visual tokens. Following this, they randomly
mask certain patches of the image and input them into the backbone Transformer.
The goal of pretraining is to recover the original visual tokens using the corrupted
image patches. The authors demonstrate that the BEIT pretraining method can
be interpreted as maximizing the evidence lower bound. They also show that the
self-attention mechanism of self-supervised BEIT learns to distinguish semantic regions
and object boundaries.

• MAE is a recent approach proposed by He et al. (2022) that simplifies the masked
image modelling procedure by eliminating the need for a pretrained visual tokenizer.
This is achieved by employing an asymmetric encoder-decoder architecture. Specifi-
cally, the encoder only processes the unmasked subset of patches and generates latent
representations for each patch. In contrast, the decoder is a lightweight network that
reconstructs the image patch from its corresponding latent representation and the
masked tokens. The reconstruction is accomplished by predicting the mean pixel
values of the patch. The authors also demonstrate that a higher masking rate, e.g.,
80%, is beneficial which also makes the training significantly faster. The transfer per-
formance in downstream also shows promising scaling behavior to larger transformer
architectures.
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Chapter 3

First Article: Countering Language Drift with
Seeded Iterated Learning

Prologue

Article Details. Countering Language Drift with Seeded Iterated Learning.
Yuchen Lu, Soumye Singhal, Florian Strub, Olivier Pietquin, Aaron Courville. This paper
was published at ICML 2020.

Personal contributions. Aaron Courville proposed the problem of language drift, while
I conceived the idea of applying iterated learning and conducted most of the experiments.
Souyme Singhal helped run the experiment of the small scale toy dataset. I also drafted the
most parts of the paper, with the assistance from all the other co-authors.

Discussion and Recent Developments. This project is inspired by the successful application
of iterated learning for deep emergent communication (Ren et al., 2020). This can be viewed
as one of the first attempt of bringing the techniques from emergent communications field to
a more large-scale problem, beyond the toy signalling game.

Since its publication, several works have extended the proposed technique. Notably, Vani
et al. (2021) propose to apply iterated learning to Visual Question Answering, and find that
the iterated learning method can recover the ground truth layout in neural module networks.
Rajeswar et al. (2022) propose to use iterated learning to resolve label ambiguity and to
improve multi-label classification. Our successful application also inspired theoretical work
on analyzing iterated learning (Jarvis et al., 2022).



Abstract

Pretraining on human corpus and then finetuning in a simulator has become a standard
pipeline for training a goal-oriented dialogue agent. Nevertheless, as soon as the agents
are finetuned to maximize task completion, they suffer from the so-called language drift
phenomenon: they slowly lose syntactic and semantic properties of language as they only
focus on solving the task. In this paper, we propose a generic approach to counter language
drift called Seeded iterated learning (SIL). We periodically refine a pretrained student agent
by imitating data sampled from a newly generated teacher agent. At each time step, the
teacher is created by copying the student agent, before being finetuned to maximize task
completion. SIL does not require external syntactic constraint nor semantic knowledge,
making it a valuable task-agnostic finetuning protocol. We evaluate SIL in a toy-setting
Lewis Game, and then scale it up to the translation game with natural language. In both
settings, SIL helps counter language drift as well as it improves the task completion compared
to baselines.

3.1. Introduction

Recently, neural language modeling methods have achieved a high level of performance
on standard natural language processing tasks (Radford et al., 2019). Those agents are
trained to capture the statistical properties of language by applying supervised learning
techniques over large datasets (Bengio et al., 2003; Collobert et al., 2011). While such
approaches correctly capture the syntax and semantic components of language, they give rise
to inconsistent behaviors in goal-oriented language settings, such as question answering and
other dialogue-based tasks (Gao et al., 2019). Conversational agents trained via traditional
supervised methods tend to output uninformative utterances such as, for example, recommend
generic locations while booking for a restaurant (Bordes et al., 2017). As models are optimized
towards generating grammatically-valid sentences, they fail to correctly ground utterances to
task goals (Strub et al., 2017; Lewis et al., 2017).

A natural follow-up consists in rewarding the agent to solve the actual language task,
rather than solely training it to generate grammatically valid sentences. Ideally, such training
would incorporate human interaction (Skantze and Hjalmarsson, 2010; Li et al., 2016a),
but doing so quickly faces sample-complexity and reproducibility issues. As a consequence,
agents are often trained by interacting with a second model to simulate the goal-oriented
scenarios (Levin et al., 2000; Schatzmann et al., 2006; Lemon and Pietquin, 2012). In the
recent literature, a common setting is to pretrain two neural models with supervised learning
to acquire the language structure; then, at least one of the agents is finetuned to maximize
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task-completion with either reinforcement learning, e.g., policy gradient (Williams, 1992), or
Gumbel softmax straight-through estimator (Jang et al., 2017a; Maddison et al., 2017). This
finetuning step has shown consistent improvement in dialogue games (Li et al., 2016b; Strub
et al., 2017; Das et al., 2017), referential games (Havrylov and Titov, 2017; Yu et al., 2017)
or instruction following (Fried et al., 2018).

Pretrained
Agent

Data

initialize

Teacher Teacher

Interaction
Data

Generation

Imitation

duplicate

Studentt

duplicate

Studentt+1

Fig. 3.3. Sketch of Seeded Iterated Learning. A student agent is iteratively refined using
newly generated data from a teacher agent. At each iteration, a teacher agent is created on
top of the student before being finetuned by interaction, e.g. maximizing a task completion-
score. The teacher then generates a dataset with greedy sampling, which is then used to refine
the student through supervised learning. Note that the interaction step involves interaction
with another language agent.

Unfortunately, interactive learning gives rise to the language drift phenomenon. As the
agents are solely optimizing for task completion, they have no incentive to preserve the
initial language structure. They start drifting away from the pretrained language output
by shaping a task-specific communication protocol. We thus observe a co-adaptation and
overspecialization of the agent toward the task, resulting in significant changes to the agent’s
language distribution.

In practice, there are different forms of language drift (Lazaridou et al., 2020) including (i)
structural drift: removing grammar redundancy (e.g. "is it a cat?" becomes "is cat?" (Strub
et al., 2017)), (ii) semantic drift: altering word meaning (e.g. "an old teaching" means "an old
man" (Lee et al., 2019)) or (iii) functional drift: the language results in unexpected actions
(e.g. after agreeing on a deal, the agent performs another trade (Li et al., 2016b)). Thus,
these agents perform poorly when paired with humans (Chattopadhyay et al., 2017; Zhu
et al., 2017; Lazaridou et al., 2020).

In this paper, we introduce the Seeded Iterated Learning (SIL) protocol to counter
language drift. This process is directly inspired by the iterated learning procedure to model
the emergence and evolution of language structure (Kirby, 2001; Kirby et al., 2014). SIL
does not require human knowledge intervention, it is task-agnostic, and it preserves natural
language properties while improving task objectives.
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As illustrated in Figure 3.3, SIL starts from a pretrained agent that instantiates a first
generation of student agent. The teacher agent starts as a duplicate of the student agent and
then goes through a short period of interactive training. Then the teacher generates a training
dataset by performing the task over multiple scenarios. Finally, the student is finetuned – via
supervised learning – to imitate the teacher data, producing the student for next generation,
and this process repeats. As further detailed in Section 3.3, the imitation learning step
induces a bias toward preserving the well-structured language, while discarding the emergence
of specialized and inconsistent language structure (Kirby, 2001). Finally, SIL successfully
interleaves interactive and supervised learning agents to improves task completions while
preserving language properties.

Our contribution In this work, we propose Seeded Iterated Learning and empirically
demonstrate its effectiveness in countering language drift. More precisely,

(1) We study core Seeded Iterated Learning properties on the one-turn Sender-Receiver
version of the Lewis Game.

(2) We demonstrate the practical viability of Seeded Iterated Learning on the French-
German translation game that was specifically designed to assess natural language
drift (Lee et al., 2019). We observe that our method preserves both the semantic
and syntactic structure of language, successfully countering language drift while
outperforming strong baseline methods.

(3) We provide empirical evidence towards understanding the algorithm mechanisms1.

3.2. Related Works

3.2.1. Countering Langauge Drift

The recent literature on countering language drift includes a few distinct groups of methods.
The first group requires an external labeled dataset, that can be used for visual grounding
(i.e. aligning language with visual cues (Lee et al., 2019)), reward shaping (i.e. incorporating
a language metric in the task success score (Li et al., 2016b)) or KL minimization (Havrylov
and Titov, 2017). Yet, these methods depends on the existence of an extra supervision
signal and ad-hoc reward engineering, making them less suitable for general tasks. The
second group are the population-based methods, which enforces social grounding through
a population of agents, preventing them to stray away from the common language. The
third group of methods involve an alternation between an interactive training phase and a
supervised training phase on a pretraining dataset (Wei et al., 2018; Lazaridou et al., 2016).
This approach has been formalized in Gupta et al. (2019a) as Supervised-2-selfPlay (S2P).
1Code for Lewis game and translation game
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Empirically, the S2P approach has shown impressive resistance to language drift and, being
relatively task-agnostic, it can be considered a strong baseline for SIL. However, the success
of S2P is highly dependent on the quality of the fixed training dataset, which in practice
may be noisy, small, and only tangentially related to the task. In comparison, SIL is less
dependent on an initial training dataset since we keep generating new training samples from
the teacher throughout training.

3.2.2. Iterated Learning in Emergent Communication

Iterated learning was initially proposed in the field of cognitive science to explore the
fundamental mechanisms of language evolution and the persistence of language structure
across human generations (Kirby, 2001, 2002). In particular, Kirby et al. (2014) showed that
iterated learning consistently turns unstructured proto-language into stable compositional
communication protocols in both mathematical modelling and human experiments. Recent
works (Guo et al., 2019; Li and Bowling, 2019; Ren et al., 2020; Cogswell et al., 2019; Dagan
et al., 2020) have extended iterated learning into deep neural networks. They show that the
inductive learning bottleneck during the imitation learning phase encourages compositionality
in the emerged language. Our contribution differs from previous work in this area as we
seek to preserve the structure of an existing language rather than emerge a new structured
language.

3.2.3. Lifelong Learning

One of the key problem for neural networks is the problem of catastrophic forgetting (Mc-
Closkey and Cohen, 1989). We argue that the problem of language drift can also be viewed
as a problem of lifelong learning, since the agent needs to keep the knowledge about language
while acquiring new knowledge on using language to solve the task. From this perspective,
S2P can be viewed as a method of task rehearsal strategy (Silver and Mercer, 2002) for lifelong
learning. The success of iterated learning for language drift could motivate the development
of similar methods in countering catastrophic forgetting.

3.2.4. Self-training

Self-training augments the original labeled dataset with unlabeled data paired with
the model’s own prediction (He et al., 2020a). After noisy self-training, the student may
out-perform the teacher in fields like conditional text generation (He et al., 2020a), image
classification (Xie et al., 2019) and unsupervised machine translation (Lample et al., 2018).
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This process is similar to the imitation learning phase of SIL except that we only use the self
labeled data.

3.3. Method

3.3.1. Learning Bottleneck in Iterated Learning

The core component of iterated learning is the existence of the learning bottleneck (Kirby,
2001): a newly initialized student only acquires the language from a limited number of
examples generated by the teacher. This bottleneck implicitly favors any structural property
of the language that can be exploited by the learner to generalize, such as compositionality.

Yet, Kirby (2001) assumes that the student to be a perfect inductive learner that can
achieve systematic generalization (Bahdanau et al., 2018). Neural networks are still far from
achieving such goal. Instead of using a limited amount of data as suggested, we propose
to use a regularization technique, like limiting the number of imitation steps, to reduce the
ability of the student network to memorize the teacher’s data, effectively simulating the
learning bottleneck.

3.3.2. Seeded Iterated Learning

As previously mentioned, Seeded Iterated Learning (SIL) is an extension of Iterated
Learning that aims at preserving an initial language distribution while finetuning the agent
to maximize task-score. SIL iteratively refines a pretrained agent, namely the student. The
teacher agent is initially a duplicate of the student agent, and it undergoes an interactive
training phase to maximize task score. Then the teacher generates a new training dataset by
providing pseudo-labels, and the student performs imitation learning via supervised learning
on this synthetic dataset. The final result of the imitation learning will be next student. We
repeat the process until the task score converges. The full pipeline is illustrated in Figure 3.3.
Methodologically, the key modification of SIL from the original iterated learning framework
is the use of the student agent to seed the imitation learning rather than using a randomly
initialized model or a pretrained model. Our motivation is to ensure a smooth transition
during the imitation learning and to retain the task progress.

Although this paper focuses on countering language drift, we emphasize that SIL is
task-agnostic and can be extended to other machine learning settings.
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Fr  -> En

En -> De

Bonjour le monde!

Hello World!

Hallo Welt!

Fr  -> En

En -> De

Bonjour le monde!

Hello World!

Hallo Hund!

No Language Drift

Fr  -> En

En -> De

Bonjour le monde!

Hello Dog!

Hallo Welt!

Fr  -> En

En -> De

Bonjour le monde!

Hello Dog!

Hallo Hund!

High Accuracy

No Language Drift

Low Accuracy

Language Drift

High Accuracy

Language Drift

Low Accuracy

Fig. 3.4. In the translation game, the sentence is translated into English then into German.
The second and fourth cases are regular failures, while the third case reveals a form of agent
co-adaptation.

3.4. The Sender-Receiver Framework

We here introduce the experimental framework we use to study the impact of SIL on
language drift. We first introduce the Sender-Receiver (S/R) Game to assess language learning
and then detail the instantiation of SIL for this setting.

3.4.1. Sender-Receiver Games

S/R Games are cooperative two-player language games in which the first player, the sender,
must communicate its knowledge to the second player, the receiver, to solve an arbitrary given
task. The game can be multi-turn with feedback messages, or single-turn where the sender
outputs a single utterance. In this paper, we focus on the single-turn scenario as it eases the
language analysis. Yet, our approach may be generalized to multi-turn scenarios. Figures 3.4
and 3.5 show two instances of the S/R games studied here: the Translation game (Lee et al.,
2019) and the Lewis game (Kottur et al., 2017).

Formally, a single-turn S/R game is defined as a 4-tuple G = (O, M, A, R). At the
beginning of each episode, an observation (or scenario) o ∈ O is sampled. Then, the sender s

emits a message m = s(o) ∈ M, where the message can be a sequence of words m = [w]Tt=1

from a vocabulary V . The receiver r gets the message and performs an action a = r(m) ∈ A.
Finally, both agents receive the same reward R(o, a) which they aim to maximize.
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Algorithm 1 Seeded Iterate Learning for S/R Games
Require: Pretrained parameters of sender θ and receiver φ.
Require: Training scenarios Otrain {or scenario generator}
1: Copy θ,φ to θS , φS {Prepare Iterated Learning}
2: repeat
3: Copy θS ,φS to θT , φT {Initialize Teacher}
4: for i = 1 to k1 do
5: Sample a batch o ∈ Otrain

6: Get m = s(o; θT ) and a = r(m; φT ) to have R(o,a)
7: Update θT and φT to maximize R
8: end for {Finish Interactive Learning}
9: for i = 1 to k2 do

10: Sample a batch of o ∈ Otrain

11: Sample m = s(o; θT )
12: Update θS with supervised learning on (o, m)
13: end for {Finish Sender Imitation}
14: for i = 1 to k′

2 do
15: Sample a batch of o ∈ Otrain

16: Get m = s(o; θS) and a = r(m; φS) to have R(o,a)
17: Update φS to maximize R
18: end for {Finish Receiver Finetuning}
19: until Convergence or maximum steps reached

3.4.2. SIL For S/R Game

We consider two parametric models, the sender s(.; θ) and the receiver r(.; φ). Following
the SIL pipeline, we use the uppercase script S and T to respectively denote the parameters
of the student and teacher. For instance, r(.; φT ) refers to the teacher receiver. We also
assume that we have a set of scenarios Otrain that are fixed or generated on the fly. We detail
the SIL protocol for single-turn S/R games in Algorithm 1.

In one-turn S/R games, the language is only emitted by the sender while the receiver’s
role is to interpret the sender’s message and use it to perform the remaining task. With
this in mind, we train the sender through the SIL pipeline as defined in Section 3.3.2 (i.e.,
interaction, generation, imitation), while we train the receiver to quickly adapt to the new
sender’s language distribution with a goal of stabilizing training (Ren et al., 2020). First,
we jointly train s(.; φT ) and r(.; φT ) during the SIL interactive learning phase. Second, the
sender student imitates the labels generated by s(.; φT ) through greedy sampling. Third, the
receiver student is trained by maximizing the task score R(r(m; φS), o) where m = s(o; θS)
and o ∈ Otrain. In other words, we finetune the receiver with interactive learning while
freezing the new sender parameters. SIL has three training hyperparameters: (i) k1, the
number of interactive learning steps that are performed to obtain the teacher agents, (ii)
k2, the number of sender imitation steps, (iii) k′

2, the number of interactive steps that are
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performed to finetune the receiver with the new sender. Unless stated otherwise, we define
k2 = k′

2.

a
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2
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c2y: s3x:

message

Sender

Receiver

a1x:

Fig. 3.5. Lewis game. Given the input object, the sender emits a compositional message
that is parsed by the receiver to retrieve object properties. In the language drift setting, both
models are trained toward identity map while solving the reconstruction task.

3.4.3. Gumbel Straight-Through Estimator

In the one-turn S/R game, the task success can generally be described as a differentiable
loss such as cross-entropy to update the receiver parameters. Therefore, we here assume
that the receiver r can maximize task-completion by minimizing classification or regression
errors. To estimate the task loss gradient with respect to the sender s parameters, the receiver
gradient can be further backpropagated using the Gumbel softmax straight-through estimator
(GSTE) (Jang et al., 2017a; Maddison et al., 2017). Hence, the sender parameters are directly
optimized toward task loss. Given a sequential message m = [w]Tt=1, we define yt as follows:

yt = softmax
(
(log s(w|o, wt−1, · · · , w0; θ) + gt)/τ

)
(3.4.1)

where s(w|o,wt−1, · · · , w0) is the categorical probability of next word given the sender obser-
vation o and previously generated tokens, gt ∼ Gumbel(0,1) and τ is the Gumbel temperature
that levels exploration. When not stated otherwise, we set τ = 1. Finally, we sample the
next word by taking wt = arg max yt before using the straight-through gradient estimator to
approximate the sender gradient:

∂R

∂θ
= ∂R

∂wt

∂wt

∂yt

∂yt

∂θ
≈ ∂R

∂wt

∂yt

∂θ
. (3.4.2)
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(a) Task Score (b) Sender Language Score

Fig. 3.6. Task Score and Language Score for SIL(τ = 10) vs baselines (τ = 1). SIL clearly
outperforms the baselines. For SIL: k1 = 1000, k2 = k′

2 = 400. The emergent language score
is close to zero. All results are averaged over four seeds.

SIL can be applied with RL methods when dealing with non-differential reward metrics (Lee
et al., 2019), however RL has high gradient variance and we want to GSTE as a start. Since
GSTE only optimizes for task completion, language drift will also appear.

3.5. Building Intuition: The Lewis Game

In this section, we explore a toy-referential game based on the Lewis Game (Lewis, 1969)
to have a fine-grained analysis of language drift while exploring the impact of SIL.

3.5.1. Experimental Setting

We summarize the Lewis game instantiation described in Gupta et al. (2019a) to study
language drift, and we illustrate it in Figure 3.5. First, the sender observes an object o with p

properties and each property has t possible values: o[i] ∈ [1 . . . t] for i ∈ [1 . . . p]. The sender
then sends a message m of length p from the vocabulary of size p × t, equal to the number of
property values. Our predefined language L uniquely map each property value to each word,
and the message is defined as L(o) = [o1, t + o2,..., (p − 1)t + op].

We study whether this language mapping is preserved during S/R training.

The sender and receiver are modeled by two-layer feed-forward networks. In our task,
we use p = t = 5 with a total of 3125 unique objects. We split this set of objects into three
parts: the first split(pre-train) is labeled with correct messages to pre-train the initial agents.
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(a) SIL (b) Emergent (c) Gumbel

Fig. 3.7. Comparison of sender’s map, where the columns are words and rows are property
values. Emergent communication uses the same word to refer to multiple property values. A
perfect mapped language would be the identity matrix.

The second split is used for the training scenarios. The third split is held out (HO) for final
evaluation. The dataset split and hyper-parameters can be found in the Appendix A.2.1.

We use two main metrics to monitor our training: Sender Language Score (LS) and Task
Score (TS). For the sender language score, we enumerate the held-out objects and compare the
generated messages with the ground-truth language on a per token basis. For task accuracy,
we compare the reconstructed object vs. the ground-truth object for each property. Formally,
we have:

LS = 1
|OHO|p

∑
o∈OHO

p∑
l=1

[L(o)[l] == s(o)[l]], (3.5.1)

TS = 1
|OHO|p

∑
o∈OHO

p∑
l=1

[o[l] == r(s(o))[l]]. (3.5.2)

where [·] is the Iverson bracket.

In our experiments, we compare SIL with different baselines. All methods are initialized
with the same pretrained model unless stated otherwise. The Gumbel baselines are finetuned
with GSTE during interaction. These correspond to naive application of interactive training
and are expected to exhibit language drift.

Emergent is a random initializion trained with GSTE. S2P indicates that the agents
are trained with Supervised-2-selfPlay. Our S2P is realized by using a weighted sum of the
losses at each step: LS2P = LGumbel + αLsupervised where Lsupervised is the loss on the pre-train
dataset and α is a hyperparameter with a default value of 1 as detailed in (Lazaridou et al.,
2016, 2020).

We present the main results for the Lewis game in Figure 3.6. For each method we used
optimal hyperparameters namely τ = 10 for SIL and τ = 1 for rest. We also observed that
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SIL outperforms the baselines for any τ . Additional results in Appendix A.2 (Figures A.26
& A.27).

The pretrained agent has an initial task score and language score of around 65%, showing
an imperfect language mapping while allowing room for task improvement. Both Gumbel
and S2P are able to increase the task and language score on the held-out dataset. For both
baselines, the final task score is higher than the language score. This means that some objects
are reconstructed successfully with incorrect messages, suggesting language drift has occurred.

Note that, for S2P, there is some instability of the language score at the end of training.
We hypothesize that it could be because our pretrained dataset in this toy setting is too
small, and as a result, S2P overfits that small dataset. Emergent communication has a
sender language score close to zero, which is expected. However, it is interesting to find that
emergent communication has slightly lower held-out task score than Gumbel, suggesting that
starting from pretrained model provides some prior for the model to generalize better. Finally,
we observe that SIL achieves a significantly higher task score and sender language score,
outperforming the other baselines. A high language score also shows that the sender leverages
the initial language structure rather than merely re-inventing a new language, countering
language drift in this synthetic experiment.

To better visualize the underlying language drift in this settings, we display the sender’s
map from property values to words in Figure 3.7. We observe that the freely emerged language
results in re-using the same words for different property values. If the method has a higher
language score, the resulting map is closer to the identity matrix.

We perform a hyper-parameter sweep for the Lewis Game in Figure 3.8 over the core
SIL parameters, k1 and k2, which are, respectively, the length of interactive and imitation
training phase. We simply set k′

2 = k2 since in a toy setting the receiver can always adjust to
the sender quickly. We find that for each k2, the best k1 is in the middle. This is expected
since a small k1 would let the imitation phase constantly disrupt the normal interactive
learning, while a large k1 would entail an already drifted teacher. We see that k2 must be
high enough to successfully transfer teacher distributions to the student. However, when
a extremely large k2 is set, we do not observe the expected performance drop predicted by
the learning bottleneck: The overfitting of the student to the teacher should reduce SIL’s
resistance to language drift. To resolve this dilemma, we slightly modify our imitation learning
process. Instead of doing supervised learning on the samples from teachers, we explicitly let
student imitate the complete teacher distribution by minimizing KL(s(; θT )||s(; θS)). The
result is in Figure 3.9, and we can see that increasing k2 now leads to a loss of performance,
which confirms our hypotheses. In conclusion, SIL has good performance in a (large) valley
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(a) Task Score (b) Language Score

Fig. 3.8. Sweep over length of interactive learning phase k1 and length of imitation phase
k2 on the Lewis game (darker is higher). Low or high k1 result in poor task and language
score. Similarly, low k2 induces poor results while high k2 do not reduce performance as one
would expect.

of parameters, and a proper imitation learning process is also crucial for constructing the
learning bottleneck.

3.6. Experiments: The Translation Game

Although being insightful, the Lewis game is missing some core language properties, e.g.,
word ambiguity or unrealistic word distribution etc. As it relies on a basic finite language, it
would be premature to draw too many conclusions from this simple setting (Hayes, 1988).
In this section, we present a larger scale application of SIL in a natural language setting by
exploring the translation game (Lee et al., 2019).

3.6.1. Experimental Setting

The translation game is a S/R game where two agents translate a text from a source
language, French (FR), to a target language, German (De), through a pivot language, English
(En). This framework allows the evaluation of the English language evolution through
translation metrics while optimizing for the Fr→De translation task, making it a perfect fit
for our language drift study.

The translation agents are sequence-to-sequence models with gated recurrent units (Cho
et al., 2014) and attention (Bahdanau et al., 2015). First, they are independently pretrained
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(a) argmax (b) KL Minimization

Fig. 3.9. Language score for different k2 by imitating greedy sampling with cross-entropy
(Left) vs distilling the teacher distribution with KL minimization (Right). As distillation
relaxes the learning bottleneck, we observe a drop in language score with overfitting when
the student imitation learning length increases.

(a) BLEU De (b) BLEU En (c) R1 (d) NLL

Fig. 3.10. The task score and the language score of NIL, S2P, and Gumbel baselines.
Fix Sender indicates the maximum performance the sender may achieve without agent co-
adaptation. We observe that Gumbel language start drifting when the task score increase.
Gumbel Ref Len artificially limits the English message length, which caps the drift. Finally,
SIL manages to both increase language and task score

on the IWSLT dataset (Cettolo et al., 2012) to learn the initial language distribution. The
agents are then finetuned with interactive learning by sampling new translation scenarios
from the Multi30k dataset (Elliott et al., 2016), which contains 30k images with the same
caption translated in French, English, and German. Generally, we follow the experimental
setting of Lee et al. (2019) for model architecture, dataset, and pre-processing, which we
describe in Appendix A.3.2 for completeness. However, in our experiment, we use GSTE to
optimize the sender, whereas Lee et al. (2019) rely on policy gradient methods to directly
maximize the task score.
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(a) BLEU De (Task Score) (b) BLEU En

Fig. 3.11. S2P sweep over imitation loss weight vs. interactive loss. S2P displays a trade-off
between a high task score, which requires a low imitation weight, and high language score,
which requires high imitation weight. SIL appears less susceptible to a tradeoff between these
metrics

3.6.2. Evaluation metrics

We monitor our task score with BLEU(De) (Papineni et al., 2002), it estimates the quality
of the Fr→De translation by comparing the translated German sentences to the ground truth
German. We then measure the sender language score with three metrics. First, we evaluate
the overall language drift with the BLEU(En) score from the ground truth English captions.
As the BLEU score controls the alignment between intermediate English messages and the
French input texts, it captures basic syntactic and semantic language variations. Second, we
evaluate the structural drift with the negative log-likelihood (NLL) of the generated English
under a pretrained language model. Third, we evaluate the semantic drift by computing the
image retrieval accuracy (R1) with a pretrained image ranker; the model fetches the ground
truth image given 19 distractors and generated English. The language and image ranker
models are further detailed in Appendix A.3.3.

3.6.3. Results

We show our main results in Figure 3.10, and a full summary in Table A.7 in Appendix A.3.
Runs are averaged over five seeds and shaded areas are one standard deviation. The x-axis
shows the number of interactive learning steps.
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After pretraining our language agents on the IWSLT corpus, we obtain the single-agent
BLEU score of 29.39 for Fr→En and 20.12 for En→De on the Multi30k captions. When
combining the two agents, the Fr→De task score drops to 15.7, showing a compounding error
in the translation pipeline. We thus aim to overcome this misalignment between translation
agents through interactive learning while preserving an intermediate fluent English language.

As a first step, we freeze the sender to evaluate the maximum task score without agent
co-adaptation. The Fix Sender then improves the task score by 5.3 BLEU(De) while artificially
maintaining the language score constant. As we latter achieve a higher task score with Gumbel,
it shows that merely fixing the sender would greatly hurt the overall task performance.

We observe that the Gumbel agent improves the task score by 11.32 BLEU(De) points
but the language score collapse by 10.2 BLEU(En) points, clearly showing language drift
while the two agents co-adapt to solve the translation game. Lee et al. (2019) also constrain
the English message length to not exceed the French input caption length, as they observe
that language drift often entails long messages. Yet, this strong inductive bias only slows
down language drift, and the language score still falls by 6.0 BLEU(En) points. Finally,
SIL improves the task score by 12.6 BLEU(De) while preserving the language score of the
pretrained model. Thus, SIL successfully counters language drift in the translation game
while optimizing for task-completion.

3.6.4. S2P vs SIL

We compare the S2P and SIL learning dynamics in Figure 3.11 and Figure A.29 in
Appendix A.3. S2P balances the supervised and interactive losses by setting a weight α for
the imitation loss (Lazaridou et al., 2016). First, we observe that a low α value, i.e, 0.1,
improves the task score by 11.8 BLEU(De), matching SIL performances, but the language
score diverges. We thus respectively increase α to 1, and 5, which stops the language drift,
and even outperforms SIL language score by 1.2 BLEU(En) points. However, this language
stabilization also respectively lowers the task score by 0.9 BLEU(De) and 3.6 BLEU(De)
compared to SIL. In other words, S2P has an inherent trade-off between task score (with
low α), and language score (with high α), whereas SIL consistently excels on both task and
language scores. We assume that S2P is inherently constrained by the initial training dataset.

3.6.5. Syntactic and Semantic Drifts

As described in Section 3.6.1, we attempt to decompose the Language Drift into syntactic
drifts, by computing language likelihood (NLL), and semantic drifts, by aligning images
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SIL successfully prevent language drift SIL can remain close to the valid pretrained models
Human two men, one in blue and one in red, compete in a

boxing match.
there are construction workers working hard on a
project

Pretrain two men, one in blue and the other in red, fight in a
headaching game

there are workers working hard work on a project.

Gumbel two men one of one in blue and the other in red cfighting
in a acacgame.........

there are construction working hard on a project ...........

S2P two men, one in blue and the other in red, fighting in a
kind of a kind.

there are workers working hard working on a project ..

SIL two men, one in blue and the other in red, fighting in a
game.

there are workers working hard on a project .

SIL partially recovers the sentence without drifting SIL/S2P still drift when facing rare word occurrences
(shaped lollipop)

Human a group of friends lay sprawled out on the floor
enjoying their time together.

a closeup of a child’s face eating a blue , heart
shaped lollipop.

Pretrain a group of friends on the floor of fun together. a big one ’s face plan a blue box.
Gumbel a group of defriends comadeof on the floor together of of

of of of together...............
a big face of a child eating a blue th-acof of of of chearts.......

S2P a group of friends of their commodities on the floor of fun
together.

a big face plan of eating a blue of the kind of hearts.

SIL a group of friends that are going on the floor together. a big plan of a child eating a blue datadof the datadof the
datadof the data@@

Table 3.1. Selected generated English captions. Vanilla Gumbel drifts by losing grammatical
structure, repeating patches of words, and inject noisy words. Both S2P and SIL counter
language drift by generating approximately correct and understandable sentences. However,
they become unstable when dealing with rare word occurrences.

and generated captions (R1). In Figure 3.10, we observe a clear correlation between those
two metrics and a drop in the language BLEU(En) score. For instance, Vanilla-Gumbel
simultaneously diverges on these three scores, while the sequence length constraint caps the
drifts. We observe that SIL does not improve language semantics, i.e., R1 remains constant
during training, whereas it produces more likely sentences as the NLL is improved by 11%.
Yet, S2P preserves slightly better semantic drift, but its language likelihood does not improve
as the agent stays close to the initial distribution.

3.6.6. SIL Mechanisms

We here verify the initial motivations behind SIL by examining the impact of the learning
bottleneck in Figure 3.12 and the structure-preserving abilities of SIL in Figure 3.13.

As motivated in Section 3.3.2, each imitation phase in the SIL aims to filtering-out
emergent unstructured language by generating an intermediate dataset to train the student.
To verify this hypothesis, we examine the change of negative language likelihood (NLL)
from the teacher to the student after imitation. We observe that after imitation, the student
consistently improves the language likelihood of its teacher, indicating a more regular language
production induced by the imitation step. In another experiment, we stop the iterated learning
loop after 20k, 40k and 60k steps and continue with standard interactive training. We observe
that the agent’s language score starts dropping dramatically as soon as we stop SIL while
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Fig. 3.12. NLL of the teacher and the student after imitation learning phase. In the
majority of iterations, the student after imitation obtains a lower NLL than the teacher, after
supervised training on the teacher’s generated data.

the task score keep improving. This finding supports the view that SIL persists in preventing
language drift throughout training, and that the language drift phenomenon itself appear to
be robust and not a result of some unstable initialization point.

3.6.7. Qualitative Analysis

In Table 3.1, we show some hand-selected examples of English messages from the trans-
lation game. As expected, we observe that the vanilla Gumbel agent diverges from the
pretrained language models into unstructured sentences, repeating final dots or words. It
also introduce unrecognizable words such as "cfighting" or "acacgame" by randomly pairing
up sub-words whenever it faces rare word tokens. S2P and SIL successfully counter the
language drift, producing syntactically valid language. However, they can still produce
semantically inconsistent captions, which may be due to the poor pretrained model, and the
lack of grounding (Lee et al., 2019). Finally, we still observe language drift when dealing with
rare word occurrences. Additional global language statistics can be found in Appendix that
supports that SIL preserves language statistical properties.

3.7. Conclusion

In this paper we proposed a method to counter language drift in task-oriented language
settings. The method, named Seeded Iterated Learning is based on the broader principle of
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(a) BLEU De (b) BLEU En

Fig. 3.13. Effect of stopping SIL earlier in the training process. SIL maximum steps set
at 20k, 40k and 60k. SIL appears to be important in preventing language drift through-out
training.

iterated learning. It alternates imitation learning and task optimisation steps. We modified
the iterated learning principle so that it starts from a seed model trained on actual human
data, and preserve the language properties during training. Our extensive experimental study
revealed that this method outperforms standard baselines both in terms of keeping a syntactic
language structure and of solving the task. As future work, we plan to test this method on
complex dialog tasks involving stronger cooperation between agents.
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Chapter 4

Second Article: Supervised Seeded Iterated
Learning for Interactive Language Learning

Prologue

Article Details. Supervised Seeded Iterated Learning for Interactive Langauge
Learning. Yuchen Lu, Soumye Singhal, Florian Strub, Olivier Pietquin, Aaron Courville.
This paper was published at EMNLP 2020 as a short paper.

Personal contributions. I conducted all the experiments and wrote the first draft of the
paper. All the co-authors helped provide feedback during the weekly meetings and polished
the paper.

Discussion and Recent Developments. This is a follow up work to the first article, and it
provides a more thorough analysis between the proposed Seeded Iterated Learning and the
Supervised Selfplay. The paper presents an interesting failure case of Supervised Selfplay
called late-stage collapse, and how gradient conflicting could be a potential explanation.

Abstract

Language drift has been one of the major obstacles to train language models through
interaction. When word-based conversational agents are trained towards completing a task,
they tend to invent their language rather than leveraging natural language. In recent literature,
two general methods partially counter this phenomenon: Supervised Selfplay (S2P) and
Seeded Iterated Learning (SIL). While S2P jointly trains interactive and supervised losses to
counter the drift, SIL changes the training dynamics to prevent language drift from occurring.
In this paper, we first highlight their respective weaknesses, i.e., late-stage training collapses
and higher negative likelihood when evaluated on human corpus. Given these observations, we



introduce Supervised Seeded Iterated Learning (SSIL) to combine both methods to minimize
their respective weaknesses. We then show the effectiveness of SSIL in the language-drift
translation game.

4.1. Introduction

Since the early days of NLP (Winograd, 1971), conversational agents have been designed
to interact with humans through language to solve diverse tasks, e.g., remote instruc-
tions (Thomason et al., 2015) or booking assistants (Bordes et al., 2017; El Asri et al., 2017).
In this goal-oriented dialogue setting, the conversational agents are often designed to compose
with predefined language utterances (Lemon and Pietquin, 2007; Williams et al., 2014). Even
if such approaches are efficient, they also tend to narrow down the agent’s language diversity.

To remove this restriction, recent work has been exploring interactive word-based training.
In this setting, the agents are generally trained through a two-stage process (Wei et al., 2018;
De Vries et al., 2017; Shah et al., 2018; Li et al., 2016a; Das et al., 2017): Firstly, the agent is
pretrained on a human-labeled corpus through supervised learning to generate grammatically
reasonable sentences. Secondly, the agent is finetuned to maximize the task-completion
score by interacting with a user. Due to sample-complexity and reproducibility issues, the
user is generally replaced by a game simulator that may evolve with the conversational
agent. Unfortunately, this pairing may lead to the language drift phenomenon, where the
conversational agents gradually co-adapt, and drift away from the pretrained natural language.
The model thus becomes unfit to interact with humans (Chattopadhyay et al., 2017; Zhu
et al., 2017; Lazaridou et al., 2020).

While domain-specific methods exist to counter language drift (Lee et al., 2019; Li et al.,
2016b), a simple task-agnostic method consists of combining interactive and supervised
training losses on a pretraining corpus (Wei et al., 2018; Lazaridou et al., 2016), which was
later formalized as Supervised SelfPlay (S2P) (Lowe et al., 2020).

Inspired by language evolution and cultural transmission (Kirby, 2001; Kirby et al., 2014),
recent work proposes Seeded Iterated Learning (SIL) (Lu et al., 2020) as another task-agnostic
method to counter language drift. SIL modifies the training dynamics by iteratively refining
a pretrained student agent by imitating interactive agents, as illustrated in Figure 4.14. At
each iteration, a teacher agent is created by duplicating the student agent, which is then
finetuned towards task completion. A new dataset is then generated by greedily sampling the
teacher, and those samples are used to refine the student through supervised learning. The
authors empirically show that this iterated learning procedure induces an inductive learning
bias that successfully maintains the language grounding while improving task-completion.
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Fig. 4.14. SIL (Lu et al., 2020). A student agent is iteratively refined using newly generated
data from a teacher agent. At each iteration, a teacher agent is created on top of the student
before being finetuned by interaction, e.g. maximizing a task completion-score. Teacher
generates a dataset with greedy sampling and students imitate those samples. The interaction
step involves interaction with another language agent.

As a first contribution, we further examine the performance of these two methods in the
setting of a translation game (Lee et al., 2019). We show that S2P is unable to maintain a
high grounding score and experiences a late-stage collapse, while SIL has a higher negative
likelihood when evaluated on human corpus.

We propose to combine SIL with S2P by applying an S2P loss in the interactive stage
of SIL. We show that the resulting Supervised Seeded Iterated Learning (SSIL) algorithm
manages to get the best of both algorithms in the translation game. Finally, we observe that
the late-stage collapse of S2P is correlated with conflicting gradients before showing that
SSIL empirically reduces this gradient discrepancy.

4.2. Preventing Language Drift

We describe here our interactive training setup before introducing different approaches to
prevent language drift. In this setting, we have a set of collaborative agents that interact
through language to solve a task. To begin, we train the agents to generate natural language
in a word-by-word fashion. Then we finetune the agents to optimize a task completion score
through interaction, i.e., learning to perform the task better. Our goal is to prevent the
language drift in this second stage.

4.2.1. Initializing the Conversational Agents

For a language agent f parameterized by θ, and a sequence of generated words w1:i =
[wj]ij=1 and an arbitrary context c, the probability of the next word wi is p(wi+1|w1:i, c) =
fθ(w1:i, c) We pretrain the language model to generate meaningful sentences by minimizing
the cross-entropy loss LCE

pretrain where the word sequences are sampled from a language corpus
Dpretrain. Note that this language corpus may either be task-related or generic. Its role is to
get our conversational agents a reasonable initialization.

69



4.2.2. Supervised Selfplay (S2P)

A common way to finetune the language agents while preventing language drift is to
replay the pretraining data during the interaction stage. In S2P the training loss encourages
both maximizing task-completion while remaining close to the initial language distribution.
Formally,

LS2P = LINT + αLCE
pretrain (4.2.1)

where LINT is a differentiable interactive loss maximizing task completion, e.g. reinforcement
learning with policy gradients (Sutton et al., 2000), Gumbel Straight-through Estimator
(STE) (Jang et al., 2017b) etc., LCE

pretrain is a cross-entropy loss over the pretraining samples.
α is a positive scalar which balances the two losses.

4.2.3. Seeded Iterated Learning (SIL)

Seeded Iterated Learning (SIL) iteratively refines a pretrained student model by using data
generated from newly trained teacher agents (Lu et al., 2020). As illustrated in Figure 4.14,
the student agent is initialized with the pretrained model. At each iteration, a new teacher
agent is generated by duplicating the student parameters. It is tuned to maximize the
task-completion score by optimizing the interactive loss LTEACHER = LINT In a second step,
we sample from the teacher to generate new training data Dteacher, and we refine the student
by minimizing the cross-entropy loss LSTUDENT = LCE

teacher where sequence of words are
sampled from Dteacher. This imitation learning stage can induce an information bottleneck,
encouraging the student to learn a well-formatted language rather than drifted components.

4.2.4. SSIL: Combining SIL and S2P

S2P and SIL have two core differences: first, SIL never re-uses human pretraining data.
As observed in Section 4.4.1, this design choice reduces the language modeling ability of SIL-
trained agents, with a higher negative likelihood when evaluated on human corpus. Second,
S2P agents merge interactive and supervised losses, whereas SIL’s student never experiences
an interactive loss. As analyzed in Section 4.4.3, the S2P multi-task loss induces conflicting
gradients, which may trigger language drift. In this paper, we propose to combine these
two approaches and demonstrate that the combination effectively minimizes their respective
weaknesses. To be specific, we apply the S2P loss over the SIL teacher agent, which entails
LTEACHER = LINT + αLCE

pretrain. We call the resulting algorithm, Supervised Seeded Iterated
Learning (SSIL). In SSIL, teachers can generate data that is close to the human distribution
due to the S2P loss, while students are updated with a consistent supervised loss to avoid the
potential weakness of multi-task optimization. In addition, SSIL still maintains the inductive

70



Finetuning Methods Training Losses
Gumbel LINT

S2P LINT + αLCE
pretrain

SIL (teacher) LINT

SIL (student) LCE
teacher

SSIL (teacher) LINT + αLCE
pretrain

SSIL (student) LCE
teacher

Table 4.2. Finetuning with respective training objective.

learning bias of SIL. We list all these methods in Table 4.2 for easy comparison. We also
experiment with other ways of combining SIL and S2P by mixing the pretraining data with
teacher data during the imitation learning stage. We call this method MixData. We show
the results of this approach in Appendix 4.4.2. We find that this approach is very sensitive
to the mixing ratio of these two kinds of data, and the best configuration is still not as good
as SSIL.

4.3. Experimental Setting

4.3.1. Translation Game

We replicate the translation game setting from (Lee et al., 2019) as it was designed to
study language drift. First, a sender agent translates French to English (Fr-En), while a
receiver agent translates English to German (En-De). The sender and receiver are then
trained together to translate French to German with English as a pivot language. For each
French sentence, we sample English from the sender, send it to the receiver, and sample
German from the receiver.

The task score is defined as the BLEU score between generated German translation and
the ground truth (BLEU De) (Papineni et al., 2002). The goal is to improve the task score
without losing the language structure of the intermediate English language.

4.3.2. Training Details

The sender and the receiver are pretrained on the IWSLT dataset (Cettolo et al., 2012)
which contains (Fr, En) and (En, De) translation pairs. We then use the Multi30k dataset (El-
liott et al., 2016) to build the finetuning dataset with (Fr, De) pairs. As IWSLT is a generic
translation dataset and Multi30k only contains visually grounded translated captions, we
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also call IWSLT task-agnostic while Multi30K task-related. We use the cross-entropy loss
of German as the interactive training objective, which is differentiable w.r.t. the receiver.
For the sender, we use Gumbel Softmax straight-through estimator to make the training
objective also differentiable w.r.t. the sender, as in Lu et al. (2020).

Implementation details are in Appendix B.2

4.3.3. Metrics for Grounding Scores

In practice, there are different kinds of language drift (Lazaridou et al., 2020) (e.g.
syntactic drift and semantic drift). We thus have multiple metrics to consider when evaluating
language drift. We first compute English BLEU score (BLEU En) comparing the generated
English translation with the ground truth human translation. We include the negative
log-likelihood (NLL) of the generated En translation under a pretrained language model as a
measure of syntactic correctness. In line with (Lu et al., 2020) , we also report results using
another language metric: the negative log-likelihood of human translations (RealNLL) given
a finetuned Fr-En model. We feed the finetuned sender with human task-data to estimate
the model’s log likelihood. The lower is this score, the more likely the model would generate
such human-like language.

4.4. Experiments

4.4.1. S2P and SIL Weaknesses

We report the task and grounding scores of vanilla Gumbel, S2P, SIL, and SSIL in
Figure 4.15. The respective best hyper-parameters can be found in the appendix. As reported
by Lu et al. (2020), vanilla Gumbel successfully improves the task score BLEU De, but the
BLEU En score as well as other grounding metric collapses, indicating a language drift during
the training. Both S2P and SIL manage to increase BLEU De while maintaining a higher
BLEU En score, countering language drift. However, S2P has a sudden (and reproducible)
late-stage collapse, unable to maintain the grounding score beyond 150k steps. On the other
hand, SIL has a much higher RealNLL than S2P, suggesting that SIL has a worse ability to
model human data.

SSIL seems to get the best of the two worlds. It has a similar task score BLEU De as S2P
and SIL, while it avoids the late-stage collapse. It ends up with the highest BLEU En, and
it improves the RealNLL over SIL, though still not as good as S2P. Also, it achieves even
better NLL, suggesting that its outputs are favoured by the pretrained language model.
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(a) BLEU De (Task Score) (b) BLEU En

(c) NLL (d) RealNLL

Fig. 4.15. Task and language metrics for Vanilla Gumbel, SIL, S2P, and SSIL in the
translation game average over 5 seeds. We also show the results of mixing pretraining data
in the teacher dataset (Section 4.4.2). The plots are averaged over 5 seeds with shaded area
as standard deviation. Although SIL and S2P both counter language drift, S2P suffers from
late collapse, and SIL has a high RealNLL, suggesting that its output may not correlate well
with human sentences.

4.4.2. Mixing Teacher and Human Data

We also explore whether injecting pretraining data into the teacher dataset may be a valid
substitute for the S2P loss. We add a subset of the pretraining data in the teacher dataset
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(a) Bleu En (b) Cosine Similarity

Fig. 4.16. Cosine similarity between the gradients issued from LINT and LCE
pretrain. The

collapse of the BLEU En matches the negative cosine similarity.We here set α = 0.5 but
similar values yield identical behavior as shown in Figure B.31 in Appendix.

before refining the student, and we report the results in Figure 4.15 and B.33. Unfortunately,
such an approach was quite unstable, and it requires heavy hyper-parameters tuning to
match SSIL scores. As explained in (Kirby, 2001), iterated learning rely on inductive learning
to remove language irregularities during the imitation step. Thus, mixing two language
distributions may disrupt this imitation stage.

4.4.3. Why S2P collapses?

We investigate the potential cause of S2P late-stage collapse and how SSIL may resolve it.
We firstly hope to solve this by increasing the supervised loss weight α. However, we find
that a larger α only delays the eventual collapse as well as decreases the task score, as shown
in Figure B.32 in Appendix B.4.

We further hypothesize that this late-stage collapse can be caused by the distribution
mismatch between the pretraining data (IWSLT) and the task-related data (Multi30K),
exemplified by their word frequencies difference. A mismatch between the two losses could
lead to conflicting gradients, which could, in turn, make training unstable. In Figure 4.16, we
display the cosine similarity of the sender gradients issued by the interactive and supervised
losses cos(∇senderLINT, ∇senderLCE

pretrain) for both S2P and SSIL for α = 0.5 during training.
Early in S2P training, we observe that the two gradients remain orthogonal on average, with
the cosine oscillating around zero. Then, at the same point where the S2P Bleu En collapses,
the cosine of the gradients starts trending negative, indicating that the gradients are pointing
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in opposite directions. However, SSIL does not have this trend, and the BLEU En does not
collapse. Although the exact mechanism of how conflicting gradients trigger the language
drift is unclear, current results favor our hypothesis and suggest that language drift could
result from standard multi-task optimization issues (Yu et al., 2020a; Parisotto et al., 2016;
Sener and Koltun, 2018) for S2P-like methods.

Conclusion. We investigate two general methods to counter language drift: S2P and SIL. S2P
experiences a late-stage collapse on the grounding score, whereas SIL has a higher negative
likelihood on human corpus. We introduce SSIL to combine these two methods effectively.
We further show the correlation between S2P late-stage collapse and conflicting gradients.
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computational resources. We thank Miruna Pislar and Angeliki Lazaridou for their helpful
discussions.
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Chapter 5

Third Article: Learning Task Decomposition
with Ordered Memory Policy Network

Prologue

Article Details. Learning Task Decomposition with Ordered Memory Policy
Network. Yuchen Lu, Yikang Shen, Siyuan Zhou, Aaron Courville, Joshua B. Tenenbaum,
Chuang Gan. This paper was published at ICLR 2021.

Personal contributions. I conceived the idea of adopting the inductive bias of ordered
memory into the task of unsupervised decomposition. Yikang Shen and I jointly design the
model architecture. Siyuan Zhou helped run the experiments for the robotics experiments.
Chuang Gan, Aaron Courville, and Josh Tenenbaum helped polished the paper, which I
drafted the most of.

Discussion and Recent Developments. While unsupervised task decomposition is widely
studied under probabilistic graphic models with the seminal work of CompILE (Kipf et al.,
2019), our work present the first solution to this problem that relies purely on network
inductive bias. Compared with previous work, our method has less ad-hoc constraints.

Since publication, we adapt the proposed network architecture so that the model can
leverage the learned subtask in the downstream hierarchical reinforcement learning (Zhou
et al., 2022). Inspired by our approach, Inspired by our work, Gopalakrishnan et al. (2021)
introduces slot-based transformers as another architectural inductive bias, which are originally
used for unsupervised object discovery.



Abstract

Many complex real-world tasks are composed of several levels of sub-tasks. Humans
leverage these hierarchical structures to accelerate the learning process and achieve better
generalization. In this work, we study the inductive bias and propose Ordered Memory
Policy Network (OMPN) to discover subtask hierarchy by learning from demonstration.
The discovered subtask hierarchy could be used to perform task decomposition, recovering
the subtask boundaries in an unstructured demonstration. Experiments on Craft and Dial
demonstrate that our model can achieve higher task decomposition performance under both
unsupervised and weakly supervised settings, comparing with strong baselines. OMPN can
also be directly applied to partially observable environments and still achieve higher task
decomposition performance. Our visualization further confirms that the subtask hierarchy
can emerge in our model 1.

5.1. Introduction

Learning from Demonstration (LfD) is a popular paradigm for policy learning and has
served as a warm-up stage in many successful reinforcement learning applications (Vinyals
et al., 2019; Silver et al., 2016). However, beyond simply imitating the experts’ behaviors, an
intelligent agent’s crucial capability is to decompose an expert’s behavior into a set of useful
skills and discover sub-tasks. The discovered structure from expert demonstrations could be
leveraged to re-use previously learned skills in the face of new environments (Sutton et al.,
1999; Gupta et al., 2019b; Andreas et al., 2017). Since manually labeling sub-task boundaries
for each demonstration video is extremely expensive and difficult to scale up, it is essential to
learn task decomposition unsupervisedly, where the only supervision signal comes from the
demonstration itself.

This question of discovering a meaningful segmentation of the demonstration trajectory
is the key focus of Hierarchical Imitation Learning (Kipf et al., 2019; Shiarlis et al., 2018;
Fox et al., 2017; Achiam et al., 2018) These works can be summarized as finding the optimal
behavior hierarchy so that the behavior can be better predicted (Solway et al., 2014). They
usually model the sub-task structure as latent variables, and the subtask identifications are
extracted from a learnt posterior. In this paper, we propose a novel perspective to solve
this challenge: could we design a smarter neural network architecture, so that the sub-task
structure can emerge during imitation learning? To be specific, we want to design a recurrent
policy network such that examining the memory trace at each time step could reveal the
underlying subtask structure.

1Project page: https://ordered-memory-rl.github.io/
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Drawing inspiration from the Hierarchical Abstract Machine (Parr and Russell, 1998),
we propose that each subtask can be considered as a finite state machine. A hierarchy of
sub-tasks can be represented as different slots inside the memory bank. At each time step,
a subtask can be internally updated with the new information, call the next-level subtask,
or return the control to the previous level subtask. If our designed architecture maintains a
hierarchy of sub-tasks operating in the described manner, then subtask identification can be
as easy as monitoring when the low-level subtask returns control to the higher-level subtask,
or when the high-level subtask expands to the new lower-level subtask.

We give an illustrative grid-world example in Figure 5.17. In this example, there are
different ingredients like grass for the agent to pickup. There is also a factory where the
agent can use the ingredients. Suppose the agent wants to complete the task of building a
bridge. This task can be decomposed into a tree-like, multi-level structure, where the root
task is divided into GetMaterial and BuildBridge. GetMaterial can be further divided
into GetGrass and GetWood. We provide a sketch on how this subtask structure should
be represented inside the agent’s memory during each time step. The memory would be
divided into different levels, corresponding to the subtask structure. When t = 1, the model
just starts with the root task, MakeBridge, and vertically expands into GetMaterial, which
further vertically expands into GetWood. The vertical expansion corresponds to planning
or calling the next level subtasks. The action is produced from the lowest-level memory.
The intermediate GetMaterial is copied for t < 3, but horizontally updated at t = 3,
when GetWood is finished. The horizontal update can be thought of as an internal update
for each subtask, and the updated GetMaterial vertically expands into a different child
GetGrass. The root task is always copied until GetMaterial is finished at t = 4. As a result,
MakeBridge goes through one horizontal update at t = 5 and then expands into BuildBridge

and GoFactory. We can identify the subtask boundaries from this representation by looking
at the change of expansion position, which is defined to be the memory slot where vertical
expansion happens. E.g., from t = 2 to t = 3, the expansion position goes from the lowest
level to the middle level, suggesting the completion of the low-level subtask. From t = 4 to
t = 5, the expansion position goes from the lowest level to the highest level, suggesting the
completion of both low-level and mid-level subtasks.

Driven by this intuition, we propose the Ordered Memory Policy Network (OMPN) to
support the subtask hierarchy described in Figure 5.17. We propose to use a bottom-up
recurrence and a top-down recurrence to implement horizontal update and vertical expansion
respectively. Our proposed memory-update rule further maintains a hierarchy among memories
such that the higher-level memory can store longer-term information. At each time step, the
model would softly decide the expansion position from which to perform vertical expansion
based on a differentiable stick-breaking process, so that our model can be trained end-to-end.
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Fig. 5.17. (a) A simple grid world with the task “make bridge”, which can be decomposed
into multi-level subtask structure. (b) The representation of subtask structure within the
agent memory with horizontal update and vertical expansion at each time step. The black
arrow indicates a copy operation. The expansion position is the memory slot where the
vertical expansion starts and is marked blue.

We demonstrate the effectiveness of our approach with multi-task behavior cloning. We
perform experiments on both grid-world as well as more challenging robotic tasks. We show
that OMPN is able to perform task decomposition in both an unsupervised and weakly
supervised manner, comparing favorably with strong baselines. Meanwhile, OMPN still
maintains the similar, if not better, performance on behavior cloning in terms of sample
complexity and returns. Our ablation study shows the contribution of each component in our
architecture. Our visualization further confirms that the subtask hierarchy emerges in our
model’s expanding positions.

5.2. Ordered Memory Policy Network

We describe our policy architecture given the intuition described above. Our model is
a recurrent policy network p(at|st, M t) where M ∈ Rn×m is a block of n memory while
each memory has dimension m. We use Mi to refer to the ith slot of the memory, so
M = [M1, M2, ..., Mn]. The highest-level memory is Mn while the lowest-level memory is M1.
Each memory can be thought of as the representation of a subtask. We use the superscript
to denote the time step t.

At each time step, our model will first transform the observation st ∈ S to xt ∈ Rm. This
can be achieved by a domain-specific observation encoder. Then we have an ordered-memory
module M t, Ot = OM(xt, M t−1) to generate the next memory and the output. The output
Ot is sent into a feed-forward neural net to generate the action distribution.
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Fig. 5.18. Dataflow of how M t−1 will be updated in M t for three memory slots when the
expansion position is at a (a) low, (b) middle, or (c) high position. Blue arrows and red
arrows corresponding to the vertical expansions and horizontal updates. (d) is a snapshot of
t = 5 from the grid-world example Figure 5.17b. The subtask-update behavior corresponds
to the memory-update when the expansion position is at the high position.

5.2.1. Ordered Memory Module

The ordered memory module first goes through a bottom-up recurrence. This operation
implements the horizontal update and updates each memory with the new observation. We
define Ct to be the updated memory:

Ct
i = F(Ct

i−1, xt, M t−1
i )

for i = 1,...,n where Ct
0 = xt and F is a cell function. Different from our mental diagram, we

make it an recurrent process since the high-level memory might be able to get information
from the updated lower-level memory in addition to the observation. In our experiment we
find that such recurrence will help model perform better than in task decomposition. For
each memory, we also generate a score f t

i from 0 to 1 with f t
i = G(xt, Ct

i , M t
i ) for i = 1,...,n.

The score f t
i can be interpreted as the probability that subtask i is completed at time t.

In order to properly generate the final expansion position, we would like to insert the
inductive bias that the higher-level subtask is expanded only if the higher-level subtask is not
completed while all the lower-level subtasks are completed, as is shown in Figure 5.17b. As a
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result we use a stick-breaking process as follows:

π̂t
i =

⎧⎨
⎩

(1 − f t
i )
∏i−1

j=1 f t
j 1 < i ≤ n

1 − f t
1 i = 1

Finally we have the expansion position πt
i = π̂t

i/
∑

π̂t as a properly normalized distribution
over n memories. We can also define the ending probability as the probability that every
subtask is finished.

πt
end =

n∏
i=1

f t
i (5.2.1)

Then we use a top-down recurrence on the memory to implement the vertical expansion.
Starting from M̂ t

n = 0, we have

M̂ t
i = h(←−π t

i+1C
t
i+1 + (1 − ←−π t

i+1)M̂ t
i+1, xt),

where −→π t
i =

∑
j≥i πt

j, ←−π t
i =

∑
j≤i πt

j, and h can be any cell function. Then we update the
memory in the following way:

M t = M t−1(1 − −→π t) + Ctπt + M̂ t(1 − ←−π t) (5.2.2)

where the output is read from the lowest-level memory Ot = M t
1. For better understanding

purpose, we show in Figure 5.18 how M t−1 will be updated into M t with n = 3, when the
expansion position is at a high, middle and low position respectively. The memory higher
than the expansion position will be preserved, while the memory at and lower than the
expansion position will be over-written. We also take the snapshot of t = 5 from our the
early example in Figure 5.17b and show that the subtask-update behavior corresponds to our
memory-update when the expansion position is at the high position.

Although we show only the discrete case for illustration, the vector πt is actually continuous.
As a result, the whole process is fully differentiable and can be trained end-to-end. More
details can be found in the appendix C.1.

The memory depths n is a hyper-parameter here. If n is too small, we might not have
enough capacity to cover the underlying structure in the data, If n is too large, we might
impose some extra optimization difficulty. In our experiments we investigate the effect of
using different n.

5.2.2. Unsupervised Task Decomposition with Behavior Cloning

We assume the following setting. We firstly have a training phase to perform behavior
cloning on an unstructured demonstration dataset with state-action pairs. Then during the
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detection phase, the user would specify the number of subtasks K for the model to produce
the task boundaries.

We firstly describe our training phase. We develop a unique regularization technique
which can help our model learning the underlying hierarchy structure. Suppose we have an
action space A. We first augment this action space with A′ = A ∪ {done}, where done is a
special action. Then we can modify the action distribution accordingly:

p′(at|st) =

⎧⎨
⎩

p(at|st)(1 − πt
end) at ∈ A

πt
end at = done

Then for each demonstration trajectory τ = {st, at}T
t=1, we transformed it into τ ′ = τ ∪

{sT +1, aT +1 = done}, which is essentially telling the model to output done only after the
end of the trajectory. This process can be achieved on both discrete and continuous action
space without heavy human involvement described in Appendix C.1. Then we will maximize∑T +1

t=1 log p′(at|st) on τ ′. We find that including πt
end into the loss is crucial to prevent our

model degenerating into only using the lowest-level memory, since it provides the signal to
raise the expansion position at the end of the trajectory, benefiting the task decomposition
performance. We also justify this in our ablation study.

Since the expansion position should be high if the low-level subtasks are completed, we
can achieve unsupervised task decomposition by monitoring the behavior of πt. To be specific,
we define πt

avg =
∑n

i=1 iπt
i as the expected expansion position. Given πavg, we consider the

following methods to recover the subtask boundaries.

Top-K. In this method we choose the time steps of K largest πavg to detect the boundary,
where K is the desired number of sub-tasks given by the user during the detection phase.
We find that this method is suitable for the discrete action space, where there is a very clear
boundary between subtasks.

Thresholding. In this method we standardize the πavg into π̂avg from 0 to 1, and then we
compute a Boolean array 1(πavg > thres), where thres is from 0 to 1. We retrieve the
subtask boundaries from the ending time step of each True segments. We find this method
is suitable for continuous control settings, where the subtask boundaries are more ambiguous
and smoothed out across time steps.

5.3. Related Work

Our work is related to option discovery and hierarchical imitation learning. The existing
option discovery works have focused on building a probabilistic graphical model on the
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trajectory, with options as latent variables. DDO (Fox et al., 2017) proposes an iterative EM-
like algorithm to discover multiple level of options from the demonstration. DDO was later
applied in the continuous action space (Krishnan et al., 2017) and program modelling (Fox
et al., 2018). Recent works like compILE (Kipf et al., 2019) and VALOR (Achiam et al., 2018)
also extend this idea by incorporating more powerful inference methods like VAE (Kingma
and Welling, 2013). Lee (2020) also explore unsupervise task decompostion via imitation,
but their method is not fully end-to-end, requires an auxiliary self-supervision loss, and does
not support multi-level structure. Our work focuses on the role of neural network inductive
bias in discovering re-usable options or subtasks from demonstration. We do not have an
explicit “inference" stage in our training algorithm to infer the option/task ID from the
observations. Instead, this inference "stage" is implicitly designed into our model architecture
via the stick-breaking process and expansion position. Based on these considerations, we
choose compILE as the representative baseline for this field of work.

Our work is also related to Hierarchical RL (Vezhnevets et al., 2017; Nachum et al.,
2018; Bacon et al., 2017). These works usually propose an architecture that has a high-level
controller to output a goal, while the low-level architecture takes the goal and outputs the
primitive actions. However, these works mainly deal with the control problem, and do not
focus on learning task decomposition from the demonstration. Recent works (Gupta et al.,
2019b; Lynch et al., 2020) also include hierarchical imitation learning stage as a way to
pretraining low-level policies before apply Hierarchical RL for finetuning, however they do
not produce the task boundaries and therefore are not comparable to our works. Moreover,
their hierarchical IL algorithm exploits the fact that the goal can be described as a point
in the state space, so that they are able to re-label the ending state of an unstructured
demonstrations as a fake goal to train the goal-conditioned policy. Meanwhile our approach
is designed to be general. In addition to the option framework, our work is closely related to
Hierarchical Abstract Machine (HAM) (El Hihi and Bengio, 1996). Our concept of subtask is
similar to the finite state machine (FSM). The horizontal update corresponds to the internal
update of the FSM, while the vertical expansion corresponds to calling the next level of the
FSM. Our stick-breaking process is also a continuous realization of the idea that low-level
FSM transfers control back to high-level FSM at completion.

Recent work (Andreas et al., 2017) introduces the modular policy networks for reinforce-
ment learning so that it can be used to decompose a complex task into several simple subtasks.
In this setting, the agent is provided a sequence of subtasks, called sketch, at the beginning.
Shiarlis et al. (2018) propose TACO to jointly learn sketch alignment with action sequence,
as well as imitating the trajectory. This work can only be applied in the "weakly supervised"
setting, where they have some information like the sub-task sequence. Nevertheless, we also
choose TACO (Shiarlis et al., 2018) as one of our baselines.
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Incorporating varying time-scale for each neuron to capture hierarchy is not a new
idea (Chung et al., 2016; El Hihi and Bengio, 1996; Koutnik et al., 2014). However, these
works do not focus on recovering the structure after training, which makes these methods
less interpretable. Shen et al. (2018) introduce Ordered Neurons and show that they can
induce syntactic structure by examining the hidden states after language modelling. However
ONLSTM does not provide mechanism to achieve the top-down and bottom-up recurrence.
Our model is mainly inspired by the Ordered Memory (Shen et al., 2019). However, unlike
previous work our model is a decoder expanding from root task to subtasks, while the Ordered
Memory is an encoder composing constituents into sentences. Recently Mittal et al. (2020)
propose to combine top-down and bottom-up process. However their main motivation is
to handle uncertainty in the sequential prediction and they do not maintain a hierarchy of
memories with different update frequencies.

5.4. Experiment

We would like to evaluate whether OMPN is able to jointly learning task decomposition
during behavior cloning. We would like to answer the following questions in our experiments.

Q1: Can OMPN be applied in both continuous and discrete action space?
Q2: Can OMPN be applied in both unsupervised, as well as, weakly supervised setting for

task decomposition?
Q3: How much does each component helps the task decomposition?
Q4: How does the task decomposition performance change with different hyper-parameters,

e.g., memory dimension m and memory depths n?

5.4.1. Setup and Metrics

For the discrete action space, we use a grid world environment called Craft adapted
from Andreas et al. (2017)2. At the beginning of each episode, an agent is equipped with a
task along with the sketch, e.g. makecloth = (getgrass, gofactory). The original environment
is fully observable. To further test our model, we make it also support partial observation by
providing a self-centric window. For the continuous action space, we have a robotic setting
called Dial (Shiarlis et al., 2018) where a JACO 6DoF manipulator interact with a large
number pad3. For each episode, the sketch is a sequence of numbers to be pressed. More
details on the demonstration can be found in Appendix C.2.

2https://github.com/jacobandreas/psketch
3https://github.com/KyriacosShiarli/taco/tree/master/taco/jac
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We experiment in both unsupervised and weakly supervised settings. For the unsupervised
setting, we did not provide any task information. For the weakly supervised setting, we
provide the subtask sequence, or sketch, in addition to the observation. We use nosketch and
sketch to denote these two settings respectively. We choose compILE to be our unsupervised
baseline while TACO to be our weakly supervised baseline.

We use the ground-truth K to get the best performance of both our models and the
baselines. This setting is consistent with the previous literature (Kipf et al., 2019). The
details about task decomposition metric can be found in the appendix C.3.

5.4.2. Task Decomposition Results

Craft DialFull Partial
Align Acc F1(tol=1) Align Acc F1(tol=1) Align Acc

NoSketch OMPN 93(1.7) 95(1.2) 84(6) 89(4.6) 87(4.0)
compILE 86(1.4) 97(0.8) 54(1.4) 57(4.8) 45(5.2)

Sketch OMPN 97(1.2) 98(0.9) 78(10.7) 83(8.1) 84(5.7)
TACO 90(3.6) - 66(2.2) - 98(0.1)

Table 5.3. Alignment accuracy and F1 scores with tolerance 1 on Craft and Dial. The results
are averaged over five runs, and the number in the parenthesis is the standard deviation.

In this section, we mainly address the question Q1 and Q2. Our main results for task
decomposition in Craft and Dial are in Table 5.3. In Craft, we use the TopK detection
algorithm. Our results show that OMPN is able to outperform baselines in both unsupervised
and weakly-supervised settings with a higher F1 scores and alignment accuracy. In general,
there is a decrease of the performance for all models when moving from full observations to
partial observations. Nevertheless, compared with the baselines, we find that OMPN suffers
less performance drop than the baselines. The F1 score results with different K other than
the ground truth is in Table C.14 and Table C.15.

In Dial, our results is able to outperform compILE for the unsupervised setting, but is not
better than TACO when the sketch information is given. In general, our current model does
not benefit from the additional sketch information, and we hypothesize that it is because we
use a very trivial way of incorporating sketch information by simple concatenating it with
the observation. A more effective way would be using attention over the sketch sequence to
properly feed the related task information into the model. The F1 score results with different
K other than the ground truth is in Table C.17.
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5.4.3. Qualitative Analysis

Workbench

Toolshed

Factory

Agent

Grass

Wood

Iron

Fig. 5.19. Visualization of the learnt expanding positions on Craft. We present π and the ac-
tion sequence. The four subtasks are GetWood, GoToolshded, GetGrass and GoWorkbench.
In the action sequence, “u" is either picking up/using the object. Each ground truth subtask
is highlighted with an arrow of different colors.

In this section, we provide some visualization of the learnt expanding positions to qualita-
tively evaluate whether OMPN can operate with a subtask hierarchy.

We firstly visualize the behavior of expanding positions for Craft in Figure 5.19. We find
that at the end of each subtask, the model learns to switch to a higher expansion position
when facing the target object/place, while within each subtask, the model learns to maintain
the lower expansion position. This is our desired behavior described in Figure 5.17. What is
interesting is that although the ground truth hierarchy structure might be only two-levels,
our model is able to learn multiple level hierarchy if given some redundant depths. In this
example, the model combines the first two subtasks into one group and the last two subtasks
into another group. More results can be found in Appendix C.5.

In Figure 5.20, we show the qualitative result in Dial. We find that, instead of having
a sharp subtask boundary, the boundary between subtasks is more ambiguous with high
expanding positions across multiple time steps, and this motivates our design of the threshold
algorithm. This happens because we use the observation to determine the expanding position.
In Dial, the state difference are less significant due to a small time skip and continuous space,
so the expanding position near the boundaries might be high for multiple time steps. Also
just like in Craft, the number of subtasks naturally emerge from the peak patterns. We also
provide addition qualitative result on Kitchen released by Gupta et al. (2019b) in Figure 5.21.
More results on Kitchen can be found in Appendix C.8.
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Fig. 5.20. Visualization of the learnt expanding positions of Dial domain. The task is to
press the number sequence [9, 8, 6, 3]. We plot the π̂avg. Our threshold selection algorithm
produce a upper bound and and lower bound, and the final threshold is computed as the
average. The task boundary is detected as the last time step of a segment above the final
threshold. The frames at the detected task boundary show that the robot just finishes each
subtask.

5.4.4. Ablation Study

In this section, we aim to answer Q3 and Q4. We perform the ablation study as well as
some hyper-parameter analysis. The results are in Figure 5.22. We summarize our findings
as below:

For No Bottomup and No Topdown, we remove completely either the bottom-up or the
top-bottom process from the model. We find that both hurt the alignment accuracy and
removing bottom-up process hurts more. This is expected since bottom-up recurrence updates
the subtasks with the latest observations before predicting the termination scores, while the
top-down process is more related to outputting actions.

For No Bottomup Recurr, we remove the recurrence in the bottom-up process by making
Ct

i = F(0, xt, M t−1
i ) so as to preserve the same number of parameters as OMPN. Although

this hurts the alignment accuracy least, the existence of the performance drop confirms
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Fig. 5.21. Visualization of the learnt expanding positions of Kitchen. The subtasks are
Microwave, Bottom Knob, Hinge Cabinet and Slider. We show the upper bound, lower bound
and final threshold produced by our detection algorithm.

(a) NoSketch + Craft(Full) (b) NoSketch + Craft(Partial) (c) NoSketch + Dial

Fig. 5.22. Ablation study for task alignment accuracy for NoSketch settings

our intuition that the outputs of the lower-level subtasks are beneficial for the higher-level
subtasks to predict termination scores, resulting in better task decomposition.

For No Done, we use the OMPN architecture but remove the πend from the loss. We find
that the model is still able to learn the structure based on the inductive bias to some degree,
but the alignment accuracy is much worse.
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We also perform hyper-parameter analysis and see its effect on the task decomposition
results in Appendix C.7. We find that our task decomposition results is robust to the memory
depths n and memory size m in most cases.

5.4.5. Behavior Cloning

We show the behavior cloning results in Figure 5.23 and the full results are in Figure C.39.
For Craft, the sketch information is necessary to make the task solvable, so we don’t see much
difference when there is no sketch information. On the contrary, with full observation and
sketch information (Figure 5.23a), this setting might be too easy to show the difference since
a memory-less MLP can also achieve almost perfect success rate. As a result, only when the
environment moves to a more challenging but still solvable setting with partial observation
(Figure 5.23b), OMPN outperform LSTM on the success rate.

For Dial, we find that behaviour cloning alone is not able to solve the task and all of
our models never generate the maximum return due to the exposure bias. This is consistent
with the previous literature on applying behavior cloning to robotics tasks with continuous
states (Laskey et al., 2017). More details can be found in Figure C.42.

(a) Craft Full (b) Craft Partial (c) Dial

Fig. 5.23. The behavior cloning results when sketch information is provided. For Craft, we
define success as the completion of four subtasks. For Dial, the total maximum return is 4.

5.5. Conclusion

In this work, we investigate the problem of learning the subtask hierarchy from the
demonstration trajectory. We propose a novel Ordered Memory Policy Network (OMPN)
that can represent the subtask structure and leverage it to perform unsupervised task
decomposition. Our experiments show that OMPN learns to recover the ground truth subtask
boundary in both unsupervised and weakly supervised settings with behavior cloning. In the
future, we plan to develop a novel control algorithm based on the inductive bias for faster
adaptation to compositional combinations of the subtasks.
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Chapter 6

Fourth Article: Using Representation
Expressiveness and Learnability to Evaluate

Self-Supervised Learning Methods

Prologue

Article Details. Using Representation Expressiveness and Learnability
to Evaluate Self-Supervised Learning Methods. Yuchen Lu, Zhen Liu, Aristide Baratin,
Romain Laroche, Aaron Courville, Alessandro Sordoni. This paper is ready to submit.

Personal contributions. I concieved the main idea, implemented the code, conducted the
experiments and wrote the first draft of the paper. Zhen Liu helped with the experiments
for some self-supervised learning baseline. Alessandro Sordoni closely follow the weekly
experiment progress, provided concrete feedback on codebase, and helped running experiments.
The rest of the co-authors participated in the weekly meetings and helped polishing the
paper.

Discussion and Recent Developments. The main motivation of this work is mainly
motivated under the idea that unsupervised representation learning works like a process
of language evolution (Kirby, 2001), where there is a trade-off between expressiveness and
learnability. The idea of Cluster Learnability is also inspired by the human study done
by Laina et al. (2020). The connection between intrinsic dimension and expressiveness is also
inspired by the connection between intrinsic dimension and the entropy as is shown in Levina
and Bickel (2004).



Abstract

We address the problem of evaluating the quality of self-supervised learning (SSL) models
without access to supervised labels, while being agnostic to the architecture, learning algorithm
or data manipulation used during training. We argue that representations can be evaluated
through the lens of expressiveness and learnability. We propose to use the Intrinsic Dimension
(ID) to assess expressiveness and introduce Cluster Learnability (CL) to assess learnability.
CL is measured in terms of the performance of a KNN classifier trained to predict labels
obtained by clustering the representations with K-means. We thus combine CL and ID into
a single predictor – CLID. Through a large-scale empirical study with a diverse family of
SSL algorithms, we find that CLID better correlates with in-distribution model performance
than other competing recent evaluation schemes. We also benchmark CLID on out-of-domain
generalization, where CLID serves as a predictor of the transfer performance of SSL models
on several visual classification tasks, yielding improvements with respect to the competing
baselines.

6.1. Introduction

Despite impressive recent progress in self-supervised learning (SSL) (Chen et al., 2020a;
Caron et al., 2021; Grill et al., 2020; Caron et al., 2020, 2018; He et al., 2020b; Chen and He,
2021), the problem of properly evaluating the quality of the learned representations without
using labelled data has not been fully explored. This is an important problem: solving it
could give us a practical tool to choose which SSL model to use when downstream task labels
are not accessible, or when the costs of fine-tuning every model to choose the best one are
prohibitive. It can also shed light on how these methods work.

In this paper, we approach it by drawing an analogy between unsupervised learning and
the evolution of human language. It has been suggested in the language evolution literature
(see e.g., Smith et al., 2013) that linguistic structure results from competing pressures for
expressiveness (to discriminate objects and concepts of the world) and learnability (to be
transmitted across generations). Here, we take the view that a similar guiding principle
may be applied to representations of natural images. Just as a language associates objects
and scenes with utterances, SSL algorithms do it with continuous vectors to images. We
hypothesize that a good representation should not only cover the diverse visual concepts in
the datasets, but also compress them in a manner that could be efficiently learned. Our goal
is to test this hypothesis by (i) proposing tractable metrics to assess expressiveness and
learnability, (ii) designing performance predictors based on these, and (iii) testing these
predictors through a large-scale empirical study of a diverse class of SSL methods.
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Fig. 6.24. We propose to use Cluster Learnability (CL) to measure learnability and Intrinsic
Dimension (ID) for expressiveness. Left: Each circle is a SSL pre-trained checkpoint, and
the color is used to show its KNN Top1 ImageNet accuracy. Red indicates high accuracy,
while blue indicates low accuracy. Good self-supervised learning representations are learnable
and expressive, distributed over the upper-right portion of the graph. Right: Our predictor
is highly correlated with ImageNet performance, even without access to gold labels and by
staying agnostic to the model’s architecture or training algorithm.

Concretely, we propose to quantify expressiveness via an estimator of the intrinsic dimen-
sion (ID) of the data representations (Facco et al., 2017; Ansuini et al., 2019). To assess
learnability, we take inspiration from Laina et al. (2020) and propose a novel method called
Cluster Learnability (CL), based on the performance of a KNN learner trained to predict
labels induced by clustering held-out representations with K-Means. We show that a combi-
nation of CL and ID, dubbed CLID, correlates with the model performance across different
architectures (see Figure 6.24), better than existing evaluation scheme baselines (Wang and
Isola, 2020; Reed et al., 2021; Yu et al., 2020b). To further demonstrate the usefulness of
our framework, we conduct out-of-domain generalization prediction experiments on seven
downstream transfer tasks. We find that the proposed CLID predictor outperforms baseline
concurrent methods at predicting transfer performance.

Our contributions are summarized below:

• We propose an evaluation framework for self-supervised learning relying on expressive-
ness and learnability, yielding new insights into existing techniques in the literature.

• We propose tractable and generic metrics to quantify (i) expressiveness via the Intrinsic
Dimension (ID) and (ii) learnability via our novel Cluster Learnability (CL) metric.
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• We show that CLID predictors are well correlated with Top-1 KNN classification
accuracies on ImageNet, and are robust with respect to the choice of hyperparameters.

• We show that CLID predictors predict the transfer performance of pretrained SSL
models on several visual classification task, especially when used jointly with in-domain
accuracies.

6.2. Learnability and Expressiveness

In this section, we briefly discuss existing evaluation schemes of self-supervised learning
methods, which will be used as baselines in our experiments. We then describe our own
evaluation scheme, based on specific metrics to quantify learnability and expressiveness.

6.2.1. Notation

We consider the following setting: we assume we have an unlabelled dataset {xi}N
i=1

represented in X ⊂ R
d, where xi ∼ P are sampled i.i.d. from some distribution P over X .

We also consider representation maps F : X → R
m, typically pretrained neural networks,

which represent any input as an m-dimensional vector. Any such map forms a representation
dataset Z = {zi}N

i=1 where zi = F(xi).

6.2.2. Existing SSL Evaluation

Alignment and Uniformity (Wang and Isola, 2020) decomposes contrastive learning
loss and proposes to understand SSL with alignment and uniformity. Formally, they introduce
two metrics,

Lalign := Ex∼P,x′∼Paug(·|x)‖F(x) − F(x′)‖α
2 , α > 0

Lunif := logEx1,x2∼P
[
e−t||F̂(x1)−F̂(x2)||22)

]
, t > 0 (6.2.1)

where Paug is the conditional distribution defined by the data augmentation procedure,
F̂(x) := F(x)/‖F(x)‖ are the normalized features and t, α are tunable parameters. These
two metrics respectively correspond to the intuition of learnability and expressiveness. By
making the feature of positive pairs to be similar, the minimization of Lalign induces learnable
representations that can generalize from one positive example to another. Minimizing the other
component Lunif ensures that the (normalized) features are distributed over a hyper-sphere,
so that the representations can cover more concepts and achieve high expressiveness.

Maximal Coding Rate Reduction (MCR2) (Yu et al., 2020b) measures the
reduction of the average coding length per sample, a.k.a. the coding rate, of a representation,
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induced by the knowledge of some category structure (e.g., the membership of the samples in
different classes). The goal of this approach is to learn representations that discriminates
between classes while being maximally diverse MCR2 corresponds to the intuition of learning
a diverse and yet compressible (w.r.t. the class partition) representations.

Maximizing mutual information between inputs and representations (Oord et al., 2018;
Bachman et al., 2019a) can be viewed as increasing the expressiveness of the representations.
However, as pointed out by Tschannen et al. (2020), MI is not a good predictor of the model
performance. Our view is that this is because MI alone does not cover take into account
the learnability of the representations. Similar arguments can be applied to pretext tasks
evaluation scheme like rotation prediction and solving jigsaw puzzles (Reed et al., 2021).

6.2.3. Our Proposal

Here we describe our evaluation scheme under the view of learnability and expressiveness.
Our proposed metrics can be efficiently evaluated on the validation set of the dataset1.

6.2.3.1. Intrinsic Dimension (ID). We propose to use the notion of intrinsic dimensionality
(ID) of the data in the representation space (Pettis et al., 1979a) to quantify expressiveness.
Our intuition is that, as more and more fine-grained categories emerge in the representation
space, we expect the manifold complexity to increase. Intrinsic dimension is a way to
quantify this complexity, characterized as the number of parameters needed to describe the
representation manifold without loss of information.

Inferring the intrinsic dimension of a highly nonlinear manifold is a challenging problem
(e.g., Levina and Bickel, 2005). In this work, we leverage the nearest neighbor-based method
of Facco et al. (2017) to estimate ID2. This estimator (TwoNN) is shown to be reliable with
respect to representation dimensions and scalable to real-world datasets with deep neural
networks (Ansuini et al., 2019). The concept of intrinsic dimension is also connected to
entropy (we discuss this point in detail in Appendix D.2).

Formally, given zi ∈ Z and an integer k ≥ 1, we denote by rik = D(zi, NN(zi, k)) the
distance3 of zi to its k-th nearest neighbor NN(zi, k). Assuming that the points are sampled
on a manifold with intrinsic dimension d, it can be shown that, under the assumption of

1We have also experimented with metrics computed on the train set but we observed no significant difference
in the results.
2We experiment with the ID estimator based on the maximum likelihood estimation (Levina and Bickel, 2004;
Ma et al., 2018), without noticing a difference in performance.
3While we generally consider nearest neighboors w.r.t Euclidean distance, in practice we will also use the
cosine distance function, D(z1,z2) = 2 − 2 cos(z1,z2). Both produce similar results in our experiments.
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local uniformity4, the ratio of distances μi := ri2/ri1, 1 ≤ i ≤ N , follow a Pareto distribution
with parameter d + 1 on [1, ∞), i.e., μi ∼ P (μ|d) := dμ−(d+1). While d can be computed by
maximizing the likelihood, we follow a much simpler method proposed by Facco et al. (2017)
based on the cumulative distribution F (μ) = 1 − μ−d associated with P (μ|d). The idea is to
estimate d with a linear regression on the empirical cumulate of the distribution. Specifically,
assuming we sort μi ascendingly, that is μ1 ≤ μ2 ≤ ... ≤ μN , we estimate the cumulative
distribution as F emp

i = i/N and fit a straight line on the datasets {(log μi, − log(1−F emp
i ))}N

i=1

in the two dimensional plane. The slope is the estimated ID.

6.2.3.2. Cluster Learnability (CL). Let {zi, ỹi}N
i=1 be the labelled dataset obtained by

clustering the representation (e.g., with K-means). We define the learnability of the repre-
sentation as the performance of a classifier on this labelled dataset. For practical purpose,
we choose KNN classifier due to its efficiency. We re-use the dataset split to assess the
performance of a KNN classifier on this labelled dataset. Let ŷ = KNN(z; {ztrain, ỹtrain}) be
the prediction of z after seeing the training data. Learnability is defined as:

CL = 1
N

N∑
i=1

[ŷval
i == ỹval

i ] (6.2.2)

6.2.3.3. CLID Predictor. We apply our CL and ID in the context of predicting models
performance ranking. As a result, for each checkpoint model, we combine the computed CL
and ID values into a single numeric predictor, which can be used to rank the models. In the
case of without any image labels, we simply adding up these values after standardization

CLID : CL + ID

Furthermore, if we have access to the in-domain performance of the models, we can learn
a weighted sum

W-CLID : w	[CL, ID]

where w ∈ R
2 is a weight that can be learned by linear regression on the in-domain

performances. This predictor is mainly used when predicting out-of-domain performances.

4While the original derivation (Facco et al., 2017) assumes global uniformity, a post-hoc analysis shows that
it only needs local uniformity up to the second neighbor.
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6.3. Empirical Study

6.3.1. Setup

We select in total 28 self-supervised learning checkpoints trained on ImageNet over
different algorithms, architecture, and training epochs. A complete list can be found in
Table D.19 in the appendix. We use the KNN evaluation on the validation data using the
ground-truth labels to measure the performance of the model, which has been shown to be
well correlated with the linear evaluation but computationally less expensive (Caron et al.,
2021).

For the computation of cluster learnability, we choose the square root of the dataset size
as the number of clusters in Kmeans. We report results with 1 neighbor for our KNN learner.
We also show that our results are robust to other choices of hyper-parameters. We normalize
the features and use cosine distance for the K-means clustering and KNN learner5. Other
configurations of cluster numbers and neighbor numbers are also explored in section 6.3.4.
All our experiments are computed on a single V100 GPU.

6.3.2. Baselines
Wang and Isola (2020) also proposes to predict the ImageNet performance of pre-trained

SSL checkpoints as an evaluation scheme. Therefore, in our experiments, we follow the
official implementation6 with α = 2 and t = 2 as default values for the tunable parameters in
Eqn 6.2.1. We additionally define −Lcontrast = −Lalign − Lunif to compute the predictor for
this method, which reduces to the negative contrastive loss. We add a negative sign, since we
require a predictor to be in proportional to the model performance.

The original MCR2 (Yu et al., 2020b) requires a class partition to be pre-specified. In
order to adapt it into an unsupervised evaluation scheme, we use a K-means clustering as
the dataset partition. We follow the default settings7 and we normalize the features. We
also experiment with using the ground-truth label as the dataset partition, but we found no
improvements. We use the coding rate reduction ΔR (see Yu et al., 2020b, Equation 6) to be
maximized as a predictor.

For the Mutual Information baseline, we use MINE (Belghazi et al., 2018) with a fixed
student ResNet18 network (He et al., 2016) to estimate the mutual information between
inputs and representation. We use a batch size 128, learning rate 0.0005 and weight decay
0.001. The network is trained for 50000 steps on the training images, and we report MINE
5We find similar results when using L2 distance.
6See https://github.com/SsnL/moco_align_uniform
7See https://github.com/ryanchankh/mcr2
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Table 6.4. Correlation results between ImageNet performances and different predictors. We
compute both Pearson ρ and Kendall τ . Our CLID predictors achieve the highest correlation.

Predictors Pearson ρ Kendall τ

−Lalign 0.42 0.26
−Lunif -0.05 0.03
Lcontrast 0.37 0.24
ΔR -0.62 -0.33
MI 0.13 0.08
Pretext 0.61 0.27
Ours

CL 0.74 0.44
ID 0.12 0.09
CLID 0.92 0.75

on the validation data. We find that training longer is computational intensive, while the
results are similar.

For the pretext task, we experiment with rotation prediction by constructing a 4-way
classification. We randomly rotate the training images by 0, 90, 180, 270 degrees, train a KNN
classifier on the training images to predict a 4-way classification, and then report the rotation
prediction accuracy on the validation images. This is shown to be an effective evaluation in
both self-supervised learning (Reed et al., 2021) and architecture search (Liu et al., 2020).

6.3.3. Is CLID scheme correlated with ImageNet performance?

We first investigate whether the proposed evaluation scheme is useful for in-domain
(ImageNet) generalization. We perform both qualitative and a quantitative examination
and show the results in Figure 6.24. On the left, we find that the self-supervised learning
checkpoints with higher ImageNet accuracies tend to be both more learnable and more
expressive (e.g., in the upper-right corner of the graph). In the meantime, we find that
methods favouring only of these qualities at the expanse of the other, like PCLv1 and PIRL,
also have poor ImageNet accuracies. In Figure 6.24 middle and right, we compute the
correlation of our CLID predictors with respect to the ImageNet accuracy of the model
considered and show that we achieve a Pearson ρ of 0.92 for CLID.

In Table 6.4, we compare our results with the baselines. The regression plots for the
baselines can be found in Figure D.49. Our proposed predictors achieve the highest correlation
both in terms of Pearson ρ and Kendall τ coefficient. We find that Lcontrast achieves a relatively
low correlation ρ = 0.37, which apparently contradicts the observation made in Wang and
Isola (2020). We hypothesize that this is due to the fact that their analysis is restricted to SSL
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checkpoints trained with contrastive learning, and therefore Lcontrast might not be general
enough to characterize representations obtained by alternative approaches. Additionally, the
results in Wang and Isola (2020) are computed on the representations used to compute the
noise-contrastive objective, which are usually transformed by a final projection layer that is
not always present in other SSL methods. This limits its generality. Interestingly, we find
that MCR2 (ΔR) gives negative correlation which warrants further investigation. While the
MI baseline only achieves ρ = 0.13, the pretext task baseline is still surprisingly good with a
ρ = 0.61, suggesting that the rotation prediction task remains a simple but effective baseline.

6.3.4. Is CLID sensitive to its hyper-parameters?

In this section, we check the sensitivity of CLID to its hyperparameters. Since ID does
not have any hyper-parameters, we mainly examine the following hyper-parameters for CL:
the number of clusters and the number of neighbors used in the KNN Learner.

Fig. 6.25. Robustness Analysis for ImageNet. Left: The heat map of Pearson Coefficient
between the Top-1 accuracy and CLID predictor. Right: Pearson coefficient vs. the ratio
between the number of clusters and the dataset size when using one neighbor. The result
is stable with a reasonably large number of clusters, e.g., the square-root of the dataset
size (Green Dashed Line).

The results can be found in Figure 6.25. The resulting predictors can still produce a
higher correlation than the rotation prediction for a wide range of the configurations we tried.
We observe that decreasing the number of neighbors leads to a better predictor. Given our
result, we recommend setting this number to be 1.

We observe that there is an optimal cluster number so that the choice of neighbor numbers
can be more flexible. If the cluster number is too low, the results become worse. Recall that
for different checkpoints, the clusters are produced with the same K-means algorithm, so the
separability among clusters might be roughly controlled. As a result, we hypothesize that the
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Table 6.5. Kendall Ranking Coefficient results on Out-of-Domain Tasks when ImageNet
labels are not available. The CLID predictor has the best predictive performance for transfer
tasks. Full results in Table D.20, including results for the few-shot experiments.

CLID −Lcontrast ΔR MI Pretext
foods 0.75 0.17 -0.35 0.01 0.51
flowers 0.81 0.25 -0.35 0.14 0.46
pets 0.71 0.23 -0.25 -0.08 0.54
caltech101 0.56 0.11 -0.18 -0.05 0.67
stl10 0.56 0.02 -0.34 -0.21 0.41
aircraft 0.67 0.21 -0.27 0.16 0.57
cars 0.81 0.32 -0.28 0.16 0.48
Avg 0.70 0.19 -0.29 0.02 0.52

Table 6.6. Kendall Ranking Coefficient results on Out-of-Domain Tasks when ImageNet
labels are obtained. The results are computed with the joint rank product between the
predictors and the ImageNet accuracy. While the ImageNet accuracy can predict the transfer
accuracy reasonably, the proposed CLID predictor further enhances the predictive performance.
Full results in Table D.21, which include results with few-shot experiments.

Imagenet CLID W-CLID Source Ent Target Ent Lcontrast Pretext
foods 0.86 0.84 0.81 0.88 0.84 0.56 0.75

flowers 0.70 0.79 0.74 0.74 0.71 0.58 0.64
pets 0.75 0.77 0.78 0.66 0.72 0.55 0.76

caltech101 0.62 0.59 0.58 0.60 0.66 0.41 0.77
stl10 0.76 0.71 0.71 0.61 0.71 0.36 0.64

aircraft 0.60 0.66 0.61 0.68 0.64 0.50 0.62
cars 0.68 0.79 0.74 0.72 0.74 0.64 0.66
Avg 0.71 0.74 0.71 0.70 0.72 0.52 0.69

number of clusters might control the underlying difficulty of the classification problem faced
by the KNN learner. In the extreme case, we either have 1 cluster or as many clusters as
data points. In the former, KNN accuracy would always be 100% and in the latter always
be close to 0%8. As a result, neither of them would be suitable enough to distinguish the
collected checkpoints. As a rule of thumb, we recommend using a reasonably large number of
clusters, e.g., the square root of the dataset size.

6.3.5. Can CLID be used to predict transfer performance?

Here we investigate whether CLID can be a good predictor of the performance on
downstream tasks. We collect 7 out-of-domain downstream visual classification tasks. For
8To be specific it’s 1/N , where N is the dataset size. It’s close to 0% when N is large.
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each domain, we compare the ranking of our SSL checkpoints induced by CLID, and the
ranking induced by the actual test performance on that domain. We report the Kendall
τ correlation score, which is consistent with the existing benchmarks on out-of-domain
generalization (Vedantam et al., 2021).

We first investigate the scenario where the ImageNet labels are not accessible (Table 6.5).
This is an extension of our previous scenario, and it is also a realistic assumption especially
when the models are pretrained on web-scale data without clear annotations. We find that
our CLID predictor is the best, even beating the W-CLID predictor. One reason is because
the linear coefficients w are obtained from regressing in the ImageNet domain, which might
increase overfitting and hurt transfer. We also find that −Lcontrast is not a good predictor,
and a simple pretext task like rotation prediction already has reasonable performance even in
transfer settings.

In the second setting, we assume to have access to ImageNet labels (Table 6.6) and explore
whether transfer performance prediction can be improved using this additional information.
We find that the ImageNet accuracies have pretty high correlation with the downstream tasks,
with an average Kendall coefficients of 0.71. To integrate ImageNet performance information
to each our competing predictors, we proceed as follows. Let ri

pred be the ranking of i-th
checkpoint from the predictor, and ri

img be that from the ImageNet accuracy. We compute
a joint ranking by computing the rank product, which is the geometric mean of these two
ranks:

ri
joint =

√
ri

predri
img

In addition to comparing with previously presented baselines, we also add the strongest
baselines from (Vedantam et al., 2021): we train a linear classifier and measure the negative
label entropy −H(Y |X). Since the entropy can be measured on either source domain or
target domain, we denote each variant as “Source Ent” and “Target Ent”. The underlying
intuition is that, if the model has more confidence in the prediction (lower entropy), it should
generalize better.

We find that the proposed CLID predictor can further enhance the ImageNet accuracies
predictions, with an average Kendall coefficients of 0.74 for the joint ranking. We find that
“Target Ent.” and “Source Ent.” both have a reasonable performance, which is consistent
with observation in Vedantam et al. (2021), but they underperform our predictor. Note that
computing “Target Ent.” and “Source Ent.” requires training an extra linear layer, which
increases their computational requirements.
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6.4. Related Work

6.4.1. Representation Evaluation

Several recent works address the question of representation evaluation in self-supervised
learning. Whitney et al. (2021) propose to use the learning dynamics of the downstream
classifiers to measure the representation complexity. However their method still depends on
extra human labels. Pretext tasks like jigsaw or rotation prediction are shown to be well
correlated with the self-supervised evaluation (Reed et al., 2021; Deng and Zheng, 2021)
and architecture search (Liu et al., 2020). However, they also rely on crafting ad-hoc data
augmentations. Ericsson et al. (2021) argues that it is important to look at the transfer
performance of the SSL models in order to judge its quality. We agree with this statement
and therefore also test our method for out-of-domain generalization settings (section 6.3.5).
Closely related to our work, a very recent paper Garrido et al. (2022) proposes to evaluate
joint-embedding self-supervised methods without access to supervised labels, by means of the
effective rank of the learned embedding matrix.

The concepts of learnability and expressiveness, while not being explicitly mentioned, can
be found in existing literature. For example, many SSL strategies emphasize maximizing
the mutual information between inputs and representations (Vincent et al., 2008; Higgins
et al., 2017; Oord et al., 2018; Bachman et al., 2019b). These can be viewed as attempts
to increase expressiveness, since high mutual information leads to correspondence between
inputs and representations, and thus the visual concepts among the inputs are mapped to
the representation space. Recent works also pay attention to the emerging properties of
learnability in the cluster structure from SSL models through human studies (Laina et al.,
2020). The emphasis of learnability can be also found in the recent attempt to design a
compression regularizor called Conditional Entropy Bottleneck (Lee et al., 2021). Finally, the
intuition of a trade-off between learnability and expressiveness underpins other representation
analysis frameworks, such as alignment and uniformity (Wang and Isola, 2020) or Maximal
Coding Rate Reduction (Yu et al., 2020b), which are further explained in Section 5.2. In
this paper, we aim at turning this intuition into a practical self-supervised evaluation tool,
especially on predicting performances in out-of-distribution transfer tasks.

6.4.2. Learnability, Ease-of-Transmission and Compression

Learnability has been argued to be a hallmark of the human language in order to be
effortlessly transmitted through generations (Kirby et al., 2014; Rafferty et al., 2011; Beckner
et al., 2017; Zhou and Yurovsky, 2021; Kampen, 2004), and it is also true for visual concepts
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like color (Xu et al., 2010), categories (Griffiths et al., 2006), shapes (Portelance et al., 2021)
etc. In deep learning, it has been explored in the context of emergent communication (Ren
et al., 2020; Guo et al., 2019; Li and Bowling, 2019), language drift (Lu et al., 2020), and neural
module networks (Vani et al., 2021), but it is less explored for vision representation learning,
except for a human study on just two SSL methods (Laina et al., 2020). While Lee et al.
(2021) also investigates a regularizor for compressive self-supervised learning, it is unclear
whether such notion is useful as a representation evaluation framework. Learnability has a
tight connection to compression (Chaitin, 2007) and prequential codelength (Dawid, 1984),
which quantifies the compression levels with the online learning error. Existing work (Blier
and Ollivier, 2018) has uses it to support the generalization ability of the learner (e.g., deep
neural nets) on the dataset (e.g., labeled images). Here, we use this concept to quantify
the learnability of the representation, in the sense that if the emerged Kmeans clustering is
more learnable, then the same KNN learner could achieve a lower compression bound via
prequential coding.

6.4.3. Manifold Intrinsic Dimension

Intrinsic dimension can be thought of as the smallest number of variable needed to
approximate the representation manifold. Applying local neighborhood information to
estimate the intrinsic dimension is not a new idea, and it was shown to be more efficient
than the global eigenvalue approach (Pettis et al., 1979b). Ansuini et al. (2019) apply the
TwoNN estimator (Facco et al., 2017) to the non-linear representation manifold of modern
deep neural nets. They find that the intrinsic dimension is inversely correlated to the
classification accuracy Their work is further extended to confirm that natural images lies
in a low-dimension manifold (Pope et al., 2021), and that lower ID datasets leads to better
generalization. Recanatesi et al. (2019) further highlights the connections between intrinsic
dimension and the generalization properties, by comparing the models before and after
supervised training. Intrinsic dimension can also be estimated locally with a Maximum
Likelihood Estimator (Levina and Bickel, 2004), which Ma et al. (2018) propose to use as a
regularizor against overfitting noisy labels. While the above work mainly focus on ID with
supervised learning models, our work on SSL models presents a more nuanced view about ID.
It is indeed the case that lower intrinsic dimension can lead to better accuracy, especially
among supervised checkpoints (see “sup_RN18”, “sup_RN34”, “sup_RN50”in Figure 6.24).
However, we hypothesize that when learning representation from scratch without labels, e.g.,
self-supervised learning, the representation manifold still need a certain amount of complexity
in order to include enough information from the dataset.
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6.5. Limitation and Potential Negative Societal Impacts

6.5.1. Limitations

While our proposed evaluation scheme is designed to be general, a potential limitation
is that it might be only suitable to the classification tasks, since we put emphasis on the
emergence of learnable cluster structure. As a result, the proposed predictor might not
be as useful for other downstream tasks like object detection or segmentation. While our
results is true for a population of models, there are also some outliers. E.g., in Figure 6.24
“deepclusterv1” seems to have higher CL and ID than “simclrv2”, but its accuracy is lower.

6.5.2. Societal impact

This paper follows a line of work aiming at a better understanding of deep learning
algorithms. Even though it does not directly contribute to any specific application, it
promotes the development and dissemination of the deep learning technology, which, as any
technology, can be used for harmful purposes. Moreover, we acknowledge that deep learning
has been proved in the past to potentially reduce or amplify bias.

6.6. Conclusion & Discussion

We propose a unifying view to evaluate self-supervised representation learning through
expressiveness and learnability. We propose to estimate expressiveness with intrinsic dimension
(ID), and learnability with the acquisition speed of a KNN learner on the K-means clustering
of the representation. We show that the proposed CLID evaluation scheme better predicts
the ImageNet accuracy than other evaluation schemes. We further demonstrate that our
CLID can also predict the transfer task performance.

Our work is a solid step towards understanding the current SSL algorithms and opens
up interesting research directions. Future works could further explore the expressiveness-
learnability in a more theoretical context, extend this framework to other field like pretrained
language models, as well as devise new SSL algorithms that directly maximize intrinsic
dimension or cluster learnability.
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Chapter 7

Conclusion

In this thesis, we described the results of some preliminary investigations towards about
emerging language-like latents in deep neural networks. This perspective could also help us
leveraging the insights from the emergent communication works, which have been primarily
focused on small-scale signalling game. The papers we demonstrate here are by no means
conclusive, but they help illustrate several interesting points around the language-like latents
in deep learning in diverse machine learning contexts. To summarize,

• Emerging language-like latents could potentially help us develop models that can
achieve systematic generalization, which has been one of the key problems in deep
learning research (Chapter 3 and 4).

• It is possible to induce language-like latents with scalable model inductive bias or
constraints, such as neural architectural design (Chapter 5).

• It is possible that there are already language-like latents emerging in the current
state-of-art methods (Chapter 6).

Our work opens several interesting questions for further investigation. To start with, can
we further develop new algorithm or model inductive bias that can help emerge language-like
latents? Emerging language-like latents could further provide guidance on neural architec-
tural design. The ability to emerge symbol-like objects is one of the hardest problem for
connectionist models (Smolensky, 1991). Our work suggest that developing architectural
inductive bias or learning procedure that can scale is a potential solution. This can be viewed
as the continuation of the line of research that incorporating linguistic structure into neural
networks such as seq2seq models (Shen et al., 2018) and transformers (Shen et al., 2021).

Conversely, one might still ask whether language-like latents can be found more easily
as we scale up? Recently, self-supervised learning and large-scale pretrained models (Brown
et al., 2020) have shown impressive results. As a result, it is interesting to see whether
their intermediate representations would have more and more linguistic properties. This



direction can be purely analytical, and there is preliminary work showing that there are
emerging syntactic structure in the patterns of self-attention layers (Manning et al., 2020),
as well as emerging semantic segmentation from self-supervised vision transformers (Caron
et al., 2021). In the future, it would be interesting to see more works like those exploring
whether language-like latents, maybe even some re-usable modules, could appear even in a
large-pretrained model, even when they are not expected. The success or failure in finding
these language-like latents in big models might also help provide insights for the currently
heated debate on whether scaling could lead to truly general intelligence like human beings.
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Appendix A

Supplementary Material for Article One

A.1. Complementary Theoretical Intuition for SIL and
Its Limitation

We here provide a complementary intuition of Seeded Iterated Learning by referring to
some mathematical tools that were used to study Iterated Learning dynamics in the general
case. These are not the rigorous proof but guide the design of SIL.

One concern is that, since natural language is not fully compositional, whether iterated
learning may favor the emergence of a new compositional language on top of the initial one.
In this spirit, Griffiths and Kalish (2005); Kalish et al. (2007) modeled iterated learning as a
Markov Process, and showed that vanilla iterated learning indeed converges to a language
distribution that (i) is independent of the initial language distribution, (ii) depends on the
student language before the inductive learning step.

Fortunately, Chazelle and Wang (2017) show iterated learning can converge towards
a distribution close to the initial one with high probability if the intermediate student
distributions remain close enough of their teacher distributions and if the number of training
observations increases logarithmically with the number of iterations.

This theoretical result motivates one difference between our framework and classical
iterated learning: as we want to preserve the pretrained language distribution, we do not
initialize the new students from scratch as in (Li and Bowling, 2019; Guo et al., 2019; Ren
et al., 2020) because the latter approach exert a uniform prior on the space of language, while
we would like to add a prior that favors natural language (e.g. favoring language whose token
frequency satisfies Zipf’s Law).

A straightforward instantiation of the above theoretic results is to initialize new students
as the pretrained model. However we empirically observe that, periodically resetting the



model to initial pretrained model would quickly saturate the task score. As a result, we just
keep using the students from the last imitation learning for the beginning of new generation,
as well as retain the natural language properties from pretraining checkpoint.

However, we would also point out the limitation of existing theoretical results in the
context of deep learning: The theoretical iterated learning results assume the agent to be
perfect Bayesian learner (e.g. Learning is infering the posterior distribution of hypothesis
given data). However, we only apply standard deep learning training procedure in our setup,
which might not have this property. Because of the assumption of perfect Bayesian learner,
(Chazelle and Wang, 2019) suggests to use training sessions with increasing length. However
in practice, increasing k2 may be counter-productive because of overfitting issues (especially
when we have limited number of training scenarios).

A.2. Lewis Game

A.2.1. Experiment Details

In the Lewis game, the sender and the receiver architecture are 2-layer MLP with a hidden
size of 200 and no-activation (ReLU activations lead to similar scores). During interaction
learning, we use a learning rate of 1e-4 for SIL. We use a learning rate of 1e-3 for the baselines
as it provides better performance on the language and score tasks. In both cases, we use a
training batch size of 100. For the teacher imitation phase, the student uses a learning rate
of 1e-4.

In the Lewis game setting, we generate objects with p = 5 properties, where each property
may take t = 5 values. Thus, it exists 3125 objects, which we split into 3 datasets: the
pretraining, the interactive, and testing datasets. The pretraining split only contains 10
combination of objects. As soon as we provide additional objects, the sender and receiver
fully solve the game by using the target language, which is not suitable to study the language
drift phenomenon. The interactive split contains 30 objects. This choice is arbitrary, and
choosing a additional objects gives similar results. Finally, the 3.1k remaining objects are
held-out for evaluation.

A.2.2. Additional Plots

We sweep over different Gumbel temperatures to assess the impact of exploration on
language drift. We show the results with Gumbel temperature τ = 1, 10 in Fig A.27 and
Fig A.26. We observe that the baselines are very sensitive to Gumbel temperature: high
temperature both decreases the language and tasks score. On the other side, Seeded Iterated
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Learning perform equally well on both temperatures and manage to maintain both task and
language accuracies even with high temperature.

(a) Task Score (b) Sender Language Score (c) Receiver Language Score

(d) Task Score (e) Sender Language Score (f) Receiver Language Score

Fig. A.26. Complete training curves for Task score and sender grounding in Lewis Game
comparing SIL vs baselines for τ = 10 on the held-out dataset (bottom), and the interactive
training split (bottom). The first row is on held-out set while the second row is on train set.
We observe that the three methods reach 100% accuracy on the training task score, but their
score differs on the held-out split. For SIL we use k1 = 1000, k2 = k′

2 = 400.

A.2.3. Tracking Language Drift with Token Accuracy

To further visualize the language drift in Lewis game, we focus on the evolution of on the
probability of speaking different word when facing the same concept. Formally, we track the
change of conditional probability s(w|c). The result is in Figure A.28.
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(a) Task Score (b) Sender Language Score (c) Receiver Language Score

(d) Task Score (e) Sender Language Score (f) Receiver Language Score

Fig. A.27. Complete training curves for Task score and sender grounding in Lewis Game
comparing SIL vs baselines for τ = 1 on the held-out dataset (bottom), and the interactive
training split (bottom). The first row is on held-out set while the second row is on train set.
For SIL we use k1 = 1000, k2 = k′

2 = 400.

Fig. A.28. Change of conditional probability s(w|c) where c = 22 and w = 20, 21, 22, 23.
Following pretraining, s(22|22) start with the highest probability. However, language drift
gradually happens and eventually word 21 replaces the correct word 22.
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Table A.7. Translation Game Results. The checkmark in “ref len" means the method use
reference length to constrain the output during training/testing. ↑ means higher the better
and vice versa. Our results are averaged over 5 seeds, and reported values are extracted for
the best BLEU(De) score during training. We here use a Gumbel temperature of 0.5.

Method ref len BLEU↑ NLL↓ R1%↑
De En

Lee et al. (2019)
Pretrained N/A 16.3 27.18 N/A N/A
PG � 24.51 12.38 N/A N/A
PG+LM+G � 28.08 24.75 N/A N/A

Ours

Pretrained N/A 15.68 29.39 2.49 21.9
Fix Sender N/A 22.02 ± 0.18 29.39 2.49 21.9
Gumbel 27.11 ± 0.14 14.5 ± 0.83 5.33 ± 0.39 9.7 ± 1.2
Gumbel � 26.94 ± 0.20 23.41± 0.50 5.04 ± 0.01 18.9 ± 0.8
S2P(α = 0.1) 27.43± 0.36 19.16 ± 0.63 4.05 ± 0.16 13.6 ± 0.7
S2P(α = 1) 27.35± 0.19 29.73 ± 0.15 2.59 ± 0.02 23.7 ± 0.7
S2P(α = 5) 24.64± 0.16 30.84 ± 0.07 2.51 ± 0.02 23.5 ± 0.5
NIL 28.29± 0.16 29.4 ± 0.25 2.15 ± 0.12 21.7 ± 0.2

(a) BLEU De (b) BLEU En (c) NLL (d) R1

Fig. A.29. S2P has a trade-off between the task score and the language score while SIL is
consistently high with both metrics.

A.3. Translation Game

A.3.1. Data Preprocessing

We use Moses to tokenize the text (Koehn et al., 2007) and we learn byte-pair-
encoding (Sennrich et al., 2016) from Multi30K (Elliott et al., 2016) with all language.
Then we apply the same BPE to different dataset. Our vocab size for En, Fr, De is 11552,
13331, and 12124.
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A.3.2. Model Details and Hyperparameters

The model is a standard seq2seq translation model with attention (Bahdanau et al., 2015).
Both encoder and decoder have a single-layer GRU (Cho et al., 2014) with hidden size 256.
The embedding size is 256. There is a dropout after embedding layers for both encoder and
decoder For decoder at each step, we concatenate the input and the attention context from
last step.

Pretraining. For Fr-En agent, we use dropout ratio 0.2, batch size 2000 and learning rate
3e-4. We employ a linear learning rate schedule with the anneal steps of 500k. The minimum
learning rate is 1e-5. We use Adam optimizer (Kingma and Ba, 2014) with β = (0.9, 0.98).
We employ a gradient clipping of 0.1. For En-De, the dropout ratio is 0.3. We obtain a BLEU
score of 32.17 for Fr-En, and 20.2 for En-De on the IWSLT test dataset (Cettolo et al., 2012).

Finetuning. During finetuning, we use batch size 1024 and learning rate 1e-5 with no schedule.
The maximum decoding length is 40 and minimum decoding length is 3. For iterated learning,
we use k1 = 4000, k2 = 200 and k′

2 = 300. We set Gumbel temperature to be 5. We use
greedy sample from teacher speaker for imitation.

A.3.3. Language Model and Image Ranker Details

Our language model is a single-layer LSTM (Hochreiter and Schmidhuber, 1997) with
hidden size 512 and embedding size 512. We use Adam and learning rate of 3e-4. We use a
batch size of 256 and a linear schedule with 30k anneal steps. The language model is trained
with captions from MSCOCO (Lin et al., 2014). For the image ranker, we use the pretrained
ResNet-152 (He et al., 2016) to extract the image features. We use a GRU (Cho et al., 2014)
with hidden size 1024 and embedding size 300. We use a batch size of 256 and use VSE
loss (Faghri et al., 2017). We use Adam with learning rate of 3e-4 and a schedule with 3000
anneal steps (Kingma and Ba, 2014).

A.3.4. Language Statistics

We here compute several linguistic statistics on the generated samples to assess language
quality.

POS Tag Distribution. We compute the Part-of-Speech Tag (POS Tag (Marcus et al., 1993))
distribution by counting the frequency of POS tags and normalize it. The POS tag are sorted
according to their frequencies in the reference, and we pick the 11 most common POS tag for
visualization, which are:

• NN Noun, singular or mass
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(a) POS tag distribution. (b) Word Frequency Analysis (c) Difference of Log Frequency

Fig. A.30. Language statistics on samples from different method.

• DT Determiner
• IN Preposition or subordinating conjunction
• JJ Adjective
• VBG Verb, gerund or present participle
• NNS Noun, plural
• VBZ Verb, 3rd person singular present
• CC Coordinating conjunction
• CD Cardinal number

The results are shown in Figure A.30a. The peak on “period" show that Gumbel has
tendency of repeating periods at the end of sentences. However, we observe that both S2P
and

Word Frequency. For each generated text, we sort the frequency of the words and plot the
log of frequency vs. log of rank. We set a minimum frequency of 50 to exclude long tail
results. The result is in Figure A.30b.

Word Frequency Difference. To further visualize the difference between generated samples
and reference, we plot the difference between their log of word frequencies in Figure A.30c.

A.4. Human Evaluation

We here assess whether our language drift evaluation correlates with human judgement.
To do so, we performed a human evaluation with two pairwise comparison tasks.

• In Task1, the participant picks the best English semantic translation while observing
the French sentence.

• In Task2, the participant picks the best English translation from two candidates.
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Thus, the participants are likely to rank captions mainly by their syntax/grammar quality
in Task2, whereas they would also consider semantics in Task1, allowing us to partially
disentangle structural and semantic drift.

For each task, we use the validation data from Multi30K (1013 French captions) and
generate 4 English sentences for each French caption from the Pretrain, Gumbel, S2P, and
SIL. We also retrieved the ground-truth human English caption. We then build the test
by randomly sampling two out of five English captions. We gathered 22 people, and we
collect about 638 pairwise comparisons for Task2 and 315 pairwise comparisons for Task1.
We present the result in Table A.9 and Table A.10. I also include the binomial statistical
test result where the null hypothesis is methods are the same, and the alternative hypothesis
is one method is better than the other one.

Unsurprisingly, we observe that the Human samples are always preferred over generated
sentences. Similarly, Gumbel is substantially less preferred than other models in both settings.

In Task 1(French provided), human users always preferred S2P and SIL over pretrained
models with a higher win ratio. Oh the other hand when French is not provided, the human
users prefer the pretrain models over S2P and SIL. We argue that while the pretrained model
keeps generating gramartically correct sentences, its translation effectiveness is worse than
both S2P and SIL since these two models go through the interactive learning to adapt to
new domain.

Finally, SIL seems to be preferred over S2P by a small margin in both tasks. However,
our current ranking is not conclusive, since we can see the significance level of comparisons
among Pretrain, S2P, and SIL is not smaller enough to reject null hypothesis, especially in
task 1 where we have less data points. In the future we plan to have a larger scale human
evaluation to further differentiate these methods.
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Table A.8. The Win-Ratio Results. The number in row X and column Y is the empiric
ratio that method X beats method Y according collected human pairwise preferences. We
perform a naive ranking by the row-sum of win-ratios of each method. We also provide the
corresponding P-values under each table. The null hypothesis is two methods are the same,
while the alternative hypothesis is two methods are different.

Table A.9. With French Sentences

Gumbel Pretrain S2P SIL Human
Gumbel 0 0.25 0.15 0.12 0
Pretrain 0.75 0 0.4 0.4 0.13
S2P 0.84 0.6 0 0.38 0.21
SIL 0.88 0.6 0.63 0 0.22
Human 1 0.87 0.79 0.77 0
Ranking Human(3.4), SIL(2.3), S2P(2.0), Pretrain(1.7), Gumbel(0.5)

P-values
Gumbel Pretrain S2P SIL Human

Gumbel - < 10−2 < 10−2 < 10−2 < 10−2

Pretrain < 10−2 - 0.18 0.21 < 10−2

S2P < 10−2 0.18 - 0.15 < 10−2

SIL < 10−2 0.21 0.15 - < 10−2

Human < 10−2 < 10−2 < 10−2 < 10−2 -
Table A.10. Without French Sentences

Gumbel Pretrain S2P SIL Human
Gumbel 0 0.16 0.12 0.13 0.02
Pretrain 0.84 0 0.69 0.59 0.15
S2P 0.88 0.31 0 0.38 0.05
SIL 0.86 0.41 0.62 0 0.01
Human 0.98 0.85 0.95 0.98 0
Ranking Human(3.8), Pretrain(2.3), SIL(1.9), S2P(1.6), Gumbel(0.4)

P-values
Gumbel Pretrain S2P SIL Human

Gumbel - < 10−2 < 10−2 < 10−2 < 10−2

Pretrain < 10−2 - < 10−2 0.08 < 10−2

S2P < 10−2 < 10−2 - 0.06 < 10−2

SIL < 10−2 0.08 0.06 - < 10−2

Human < 10−2 < 10−2 < 10−2 < 10−2 -
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Appendix B

Supplementary Material for Article Two

B.1. Explicit losses in the Translation Game

Let LGSTE(Fr, De) be the loss of Gumbel STE, when two agents is fed with Fr and the
ground truth German translation De. Let LCE(X, Y ) to be the supervised training loss with
source X and target Y . Then for each interactive training step, we have for both agents

LS2P
sender = LGSTE(Frft, Deft) + αLCE(Frpre, Enpre) (B.1.1)

LS2P
receiver = LGSTE(Frft, Deft) + αLCE(Enpre, Depre) (B.1.2)

(a) Bleu En (b) Cosine Similarity

Fig. B.31. Cosine similarity bewteen LCE
pretrain and LINT when α = 0.7



B.2. Translation Game Implementation Details

We use the Moses tokenizer Koehn et al. (2007) and we learn a byte-pair-encoding from
Multi30K with all language. Then the same BPE is applied to different dataset. Our vocab
size for En, Fr, De is 11552, 13331, and 12124. Our pretraining datasets are IWSLT while the
finetuning datasets are Multi30K. Our language model is trained with captions data from
MSCOCO Lin et al. (2014). For image ranker, we use the captions in Multi30K as well as
the original Flickr30K images. We use a ResNet152 with pretrained ImageNet weights to
extract the image features. We also normalize the image features. We follow the pretraining
and model architecture from work Lu et al. (2020).

B.3. Hyper-parameters

During finetuning, we set Gumbel temperature to be 0.5 and follow the previous work Lu
et al. (2020) for other hyperparameters, e.g. learning rate, batch size, etc. We list our
hyper-parameters and our sweep: We mainly use P100 GPU for our experiments. For training

Name Sweep
k1 3000, 4000
k2 200, 300, 400
k′

2 200, 300, 400
α 0, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7

200k steps, Gumbel takes 17 hours, S2P takes 24 hours, SIL takes 18 hours and SSIL takes
24 hours. The best hyperparameters for SIL are k1 = 3000, k2 = 200, k′

2 = 300. The best
alpha for S2P is 1, while for SSIL we choose α = 0.5.

B.4. S2P Details

We show the results of S2P with varying α in Figure B.32. In general, one can find that
for S2P there is a trade-off between grounding score and task score controlled by α. A larger
α might delay the eventual collapse. However, if the α is too large, the task score will decrease
significantly. As a result, even though increasing α seems to fit the intuition, it cannot fix
the problem.
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(a) BLEU De (Task Score) (b) BLEU En

Fig. B.32. S2P with different α. Increased α might delay or remove the late-stage collapse,
but it might be at the cost of task score.

(a) BLEU De (b) BLEU En (c) NLL (d) RealNLL

Fig. B.33. Mix with Pretraining data in SIL.

(a) BLEU De (b) BLEU En (c) NLL (d) RealNLL

Fig. B.34. SSIL with different α
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(a) BLEU De (Task Score) (b) BLEU En

Fig. B.35. Effect of k2 for MixData.α = 0.2

(a) BLEU De (Task Score) (b) BLEU En

Fig. B.36. Effect of α for MixData. k2 = 100
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Appendix C

Supplementary Material for Article Three

C.1. OMPN Architecture Details

We use the gated recursive cell function from Shen et al. (2019) in the top-down and
bottom up recurrence. We use a two-layer MLP to compute the score fi for the stick-breaking
process. For the initial memory M0, we send the environment information into the highest
slot while keep the rest of the slots to be zeros. If unsupervised setting, then the every slot
is initialized as zero. At the first time step, we also skip the bottom-up process and hard
code π1 such that the memory expands from the highest level. This is used to make sure
that at first time step, we could propagate our memory with the expanded subtasks from
root task. In our experiment, our cell functions does not share the parameters. We find that
to be better than shared-parameter.

We set the number of slots to be 3 in both Craft and Dial, and each memory has dimension
128. We use Adam optimizer to train our model with β1 = 0.9, β2 = 0.999. The learning rate
is 0.001 in Craft and 0.0005 in Dial. We set the length of BPTT to be 64 in both experiments.
We clip the gradients with L2 norm 0.2. The observation has dimension 1076 in Craft and 39
in Dial. We use a linear layer to encode the observation. After reading the output Ot, we
concatenate it with the observation xt and send them to a linear layer to produce the action.

In section 5.2, we describe that we augment the action space into A ∪ {done} and we
append the trajectory τ = {st, at}T

t=1 with one last step, which is τ ∪ {st+1, done}. This
can be easily done if the data is generated by letting an expert agent interact with the
environment. If you do not have the luxury of environment interaction, then you can simply
let sT +1 = sT , aT +1 = done. We find that augmenting the trajectory in this way does not
change the performance in our Dial experiment, since the task boundary is smoothed out
across time steps for continuous action space, but it hurts the performance for Craft, since
the final action of craft is usually USE, which can change the state a lot.



C.2. Demonstration Generation

We use a rule-based agent to generate the demonstration for both Craft and Dial. For
Craft, we train on 500 episodes each on MakeAxe, MakeShears and MakeBed. Each of
these task is further composed of four subtasks. For Dial, we generate 1400 trajectories
for imitation learning with each sketch being 4 digits. For Craft with full observations, we
design a shortest path solver to go to the target location of each subtask. For Craft with
partial observation, we maintain an internal memory about the currently seen map. If the
target object for the current subtask is not seen on the internal memory, we perform a
left-to-right, down-to-top exploration until the target object appears inside the memory. Once
the target object is seen, it defaults to the behavior in full observations. For Dial, we use the
hand-designed controller in Shiarlis et al. (2018) to generate the demonstration.

C.3. Task Decomposition Metric

C.3.1. F1 Scores with Tolerance

For each trajectory, we are given a set of ground truth task boundary gt of length L which
is the number of subtasks. The algorithm also produce L task boundary predictions. This
can be done in OMPN by setting the correct K in topK boundary detection. For compILE,
we set the number of segments to be equal to N . Nevertheless, our definition of F1 can be
extended to arbitaray number of predictions.

precision =
∑

i,j match(predsi, gtj, tol)
#predictions)

precision =
∑

i,j match(gti, predsj, tol)
#ground truth

where the match is defined as

match(x, y, tol) = [y − tol ≤ x ≤ y + tol]

where [] is the Iverson bracket. The tolerance

C.3.2. Task Alignment Accuracy

This metric is taken from Shiarlis et al. (2018). Suppose we have a sketch of 4 subtasks
b = [b1, b2, b3, b4] and we have the ground truth assignment ξtrue = {ξt

true}T
t=1. Similar we
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have the predicted alignment ξpred. The alignment accuracy is simply∑
t

[ξt
pred == ξt

true]

For OMPN and compILE, we obtain the task boundary first and construct the alignment as
a result. For TACO, we follow the original paper to obtain the alignment.

C.4. baseline

C.4.1. compILE Details

latent [concrete, gaussian]
prior [0.3, 0.5,0.7]
kl_b [0.05, 0.1, 0.2]
kl_z [0.05, 0.1, 0.2]

Table C.11. compILE hyperparameter search.

Our implementation of compILE is taken from the author github1. However, their released
code only work for a toy digit sequence example. As a result we modify the encoder and
decoder respectively for our environments. During our experiment, we perform the following
hyper-parameter sweep on the baseline in Table C.11. Although the authors use latent to be
concrete during their paper, we find that gaussian perform better in our case. We find that
Gaussian with prior = 0.5 performs the best in Craft. For Dial, these configurations perform
equally bad.

We show the task alignments of compILE for Craft in Figure C.37. It seems that compILE
learn the task boundary one-off. However, since the subtask ground truth can be ad hoc,
this brings the question how should we decide whether our model is learning structure that
makes sense or not? Further investigation in building a better benchmark/metric is required.

C.4.2. TACO Details

dropout [0.2, 0.4, 0.6, 0.8]
decay [0.2, 0.4, 0.6, 0.8]

Table C.12. TACO hyperparameter search.

We use the implementation from author github2 and modifiy it into pytorch. Although
the author also conduct experiment on Craft and Dial, they did not release the demonstration
1https://github.com/tkipf/compile
2https://github.com/KyriacosShiarli/taco
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Fig. C.37. Task alignment results of compILE on Craft.

dataset they use. As a result, we cannot directly use their numbers from the paper. We
also apply dropout on the prediction of STOP and apply a linear decaying schedule during
training. The hyperparameter search is in table C.12. We find the best hyperparameter to
be 0.4, 0.4 for Craft. For Dial, the result is not sensitive to the hyperparameters.

C.5. Craft

We train our models on MakeBed, MakeAxe, and MakeShears. The detail of their
task decomposition is in Table C.13. We show the behavior cloning results for all settings
in Figure C.39. We display more visuzliation of task decomposition results from OMPN in
Figure C.38.

a
makebed get wood, make at toolshed, get grass, make at workbench
makeaxe get wood, make at workbench, get iron, make at toolshed
makeshears get wood, make at workbench, get iron, make at workbench

Table C.13. Details of training tasks decomposition.

We show the results of task decomposition when the given K is different in table C.14 and
table C.15. We find that when you increase the K, the recall increases while the precision
decreases.
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Fig. C.38. More results on π in Craft. The model is able to robustly switch to a higher
expanding position at the end of subtasks. The model will also sometimes discover multi-level
hierarchy.

(a) Full + NoSketch (b) Full + Sketch (c) Partial + NoSketch (d) Partial + Sketch

Fig. C.39. Behavior Cloning for Craft.

Full NoSketch Full Sketch
F1(tol=1) Pre(tol=1) Rec(tol=1) F1(tol=1) Pre(tol=1) Rec(tol=1)

K=2 62(2.4) 93(3.7) 47(1.8) 62(2.4) 93(3.4) 46(1.8)
K=3 81(2) 95(2.4) 71(1.8) 81(2.2) 95(2.3) 71(2.0)
K=4 95(1.2) 95(1.8) 95(1.8) 98(0.9) 98(1.6) 97(2.1)
K=5 92(1.6) 87(2.8) 99(0.5) 93(6.4) 87(1.1) 99(0.5)
K=6 88(2.9) 78(3.9) 100(0) 88(0.6) 79(0.9) 99(0.2)

Table C.14. Parsing results for full observations with different K
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Parital NoSketch Partial Sketch
F1(tol=1) Pre(tol=1) Rec(tol=1) F1(tol=1) Pre(tol=1) Rec(tol=1)

K=2 64(1.8) 96(2.7) 48(1.4) 57(3.7) 88(5.6) 43(2.8)
K=3 83(1.9) 96(1.9) 72(1.9) 74(3.9) 88(4.6) 64(3.5)
K=4 89(4.6) 97(1.6) 82(2.7) 83(8.1) 88(4.4) 80(4.6)
K=5 93(0.8) 90(1.9) 96(2.7) 89(3.2) 85(3.7) 94(3.8)
K=6 90(1.9) 85(1.7) 98(2.3) 87(2.1) 813.4) 97(2.3)

Table C.15. Parsing results for partial observations with different K

C.6. Dial

We show in Table C.16 the task alignment result for different thresholds. We can see that
optimal fixed threshold is around 0.4 or 0.5 for Dial, and our threshold selection algorithm
could produce competitive results. We demonstrate more expanding positions in Figure C.40.
We also show the failure cases, where our selected threshold fails to recover the skill boundary.
Nevertheless, we can see that the peak pattern exists. We show the task alignment curves for
different thresholds as well as the auto-selected threshold in Figure C.41.

Align. Acc. at different threshold
0.2 0.3 0.4 0.5 0.6 0.7 Auto

OMPN + noenv 57(12.8) 76(9.5) 87(5.7) 89(1.4) 81(5.7) 70(9.7) 87(4)
OMPN + sketch 71(11.6) 81(10.6) 85(7.4) 84(6.6) 76(7.7) 60(6.4) 84(5.7)

Table C.16. Task alignment accuracy for different threshold in Dial. The result for automatic
threshold selection is in the last column.

The behavior cloning results are in Figure C.42.

We show the task decomposition results when the K is mis-specified in Table C.17.

NoSketch Sketch
f1(tol=1) rec(tol=1) pre(tol=1) f1(tol=1) rec(tol=1) pre(tol=1)

K = 2 59(2.9) 45(2.1) 90(4.4) 58(1.4) 44(1.1) 88(2.1)
K = 3 73(5.5)) 63(5.1) 85(6.2) 72(3.8) 63(3.4) 84(4.5)
K = 4 84(7.1) 81(7.1) 84(6.9) 81(4.8) 81(4.6) 82(5.1)
K = 5 86(5.1) 91(3.6) 83(6.3) 83(5.2) 86(5.4) 82(5.3)
K = 6 87(4.2) 93(1.5) 82(6.2) 84(5.2) 88(5.5) 81(5.2)
K = 7 87(4.1) 93(1.4) 82(6.4) 84(5.2) 89(6) 81(5.2)
K = 8 86(4.1) 93(1.6) 82(6.6) 84(5.2) 90(6..1) 81(5.1)

Table C.17. F1 score, recall and precision with tolerance 1 computed at different k.
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Fig. C.40. More task decomposition visualization in Dial. Our algorithm recovers the skill
boundary for the first four trajectories but fails in the last two. Nevertheless, one can see that
our model still display the peak patterns for each subtask, and a more advanced thresholding
method could be designed to recover the skill boundaries.

(a) Dial + NoSketch (b) Dial + Sketch

Fig. C.41. The learning curves of task alignment accuracy for different thresholds as well as
the automatically selected one.

C.7. Hyperparameter Analysis

We discuss the effect of hyper-parameters on the task decomposition results. We summarize
the results in Table C.18. We show the detailed alignment accuracy curves for Craft in
Figure C.43 and for Dial in Figure C.44.
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(a) Dial + NoSketch (b) Dial + Sketch

Fig. C.42. The behavior cloning results in Dial domain.

Craft Full Craft Partial Dial
NoSketch Sketch NoSketch Sketch NoSketch Sketch

n = 3, m = 64 93(1.7) 97(1.2) 84(6) 78(10.7) 87(4) 84(5.7)
n = 2, m = 64 96(1.4) 96(1.4) 87(3.3) 77(1.2) 88(3.2) 82(5.7)
n = 4, m = 64 96(0.6) 96(2.5)) 88(3.1) 73(6.2) 86(9.8) 82(10)
n = 3, m = 32 92(4.2) 91(10.3) 88(6) 74(5.5) 88(4.9) 83(3.7)
n = 3, m = 128 96(1.5) 97(1.2) 86(3) 75(5.7) 87(2.4) 83(6.2)

Table C.18. Task alignments accuracy for different memory dimension m and depths n.
The default setting is on the first row. The next two rows change the depths, while the last
two rows change the memory dimension. The number in the parenthesis is the standard
deviation.

C.8. Qualitative Results on Kitchen

We display the qualitative results for Kitchen. We use the demonstration released
by Gupta et al. (2019b). Since they do not provide ground truth task boundaries, we provide
the qualitative results. We use a hidden size of 64 and the memory depths of 2. We set the
learning rate to be 0.0001 with Adam and the BPTT length to be 150. The input dimension
is 60 and action dim is 9. We train our model in the unsupervised (NoSketch) setting. We
show the visualization of our expanding position, in a similar fashion of the Dial domain, in
Figure C.46 and Figure C.47. We show the visualizations for other trajectories in Figure C.48

148



(a) Full + NoSketch (b) Full + Sketch (c) Partial + NoSketch (d) Partial + Sketch

(e) Full + NoSketch (f) Full + Sketch (g) Partial + NoSketch (h) Partial + Sketch

Fig. C.43. Task alignment accuracy with varying hyperparameters in Craft. We change the
depths in the first row and memory size in the second row.

(a) Dial + NoSketch (b) Dial + NoSketch (c) Dial + Sketch (d) Dial + Sketch

Fig. C.44. Task alignment accuracy in Dial. In (a) and (c) we change the depths while in
(b) and (d) we change the memory size.
Fig. C.44. TaTaTaTaTaTaTTTaTTaT skskss alignment a
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(a) Sketch + Craft(Full)

uracy in Diaaaaaaaaaaaal.lll.l.llll Innnnnnnnnnn (a( ) and (c
oryy sizeeee...

(b) Sketch + Craft(Partial)

we change theheheeheehhhehhehehhhee deededeededeedeededeptptptpptpptptptptppppppppppp hs while i

(c) Sketch + Dial

Fig. C.45. Ablation study for task alignment accuracy for Sketch settings
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Fig. C.46. Visualization of the learnt expanding positions of Kitchen. The subtasks are
Microwave, Bottom Knob, Hinge Cabinet and Slider.

Init
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D
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D

Fig. C.47. Visualization of the learnt expanding positions of Kitchen. The subtasks are
Kettle, Bottom Knob, Hinge Cabinet and Slider.
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Fig. C.48. More task decomposition visualization in Kitchen. Our algorithm seems to
recover the skill boundary for the first four trajectories but fails in the last two. Nevertheless,
one can see that our model still display the peak patterns for each subtask, and a more
advanced post-processing thresholding method might be able to recover the task boundary.
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Appendix D

Supplementary Material for Article Four

D.1. Futher Discussion on Current SSL Practice

We further discuss the motivation behind our framework, and how can approach some of
the SSL practice throught the lense of expressiveness and learnability.

Contrastive Learning. With our new view on representation quality by expressiveness-
learnability, we can try to analyze some of the practice in the contrastive learning and
see why it works and fails. Contrastive learning is a typical example of such a trade-off, and
it has the following objective:

Ex,x+,x− log
( eF(x)T F(x+)

eF(x)T F(x+) + eF(x)T F(x−)

)
It aims to output distinguishable feature vectors between positive and negative examples
which turns out to increase the expressiveness. Meanwhile, it aims to make the output vectors
among positive examples to be similar by which a higher value of learnability is ensured,
since ideally the another learner only need to see one example to generalize to other positive
examples. As a result, the degree of learnability here can be controlled by the definition
of positive examples. A more diverse selection of the positive examples should make the F
leaning toward the learnability side, since each example could represent a larger fraction of
the inputs. It is well acknowledged in the self-supervised community that a diverse data
augmentation is an essential part of the contrastive learning, and under this framework, it is
a source of the learnability pressure.

Clustering-based Learning. Perhaps our expressiveness-learnability framework is more obvious
in the clustering-based algorithm like DeepCluster (Caron et al., 2018) and SwAV (Caron
et al., 2020). In these algorithms, you learn not only F but also a bank of cluster centroids C
as well as assignments ỹ = CT F(x). As a result, we can also view these algorithms as finding
ỹ = G(x), where G is composed of F and C.



In these methods, the expressiveness is achieved by using a large number of clusters as
well as some uniformity constraint, and this can ensure each data has a distinctive cluster
assignment. SwAV achieves it with the SinkHorn iterations, while the DeepCluster, at least
in the early version, would balance the sampling ratio of images to make the cluster uniform
as well as resolving the empty cluster issues.

The learnability requirements are implicitly enforced as well. Since the space of ỹ is
usually less than x, there are usually multiple data being assigned to the same cluster. This
already ensure that a new learner should able to see a few examples to generalize within the
cluster. In addition, these algorithms also leverage the data augmentation, so that G(x) and
G(x+) should have the same ỹ, which further improves the learnability.

D.2. Intrinsic Dimension and Entropy Estimation

In this section, we briefly discuss how Intrinsic Dimension can be connected to Entropy
Estimation for highly non-linear manifolds under the MLE principle.

Suppose we have i.i.d. dataset X = {X1, X2, ..., Xn}. Let S(x,R) be a sphere around x

and radius R. We assume when R is small, the local density is constant (local uniformity).
That is we assume there is a constant f(x) inside S(x,R). Then we denote N(r,x) as the
number of data that appears inside the sphere S(x,r), out of n data. When r goes from 0 to
R, we assume the stochastic process {N(r, x)} can be described as a homogeneous Poisson
Process inside S(x,R). Then the rate of such process w.r.t. r is

λ(r) = f(x)V (D)DtD−1

where D is the intrinsic dimension, and V (D) = πD/2[Γ(D/2 + 1)]−1 is the volume of unit
sphere in RD.

Let’s say D and θ = log f(x) is our parameters for this model. Then the likelihood is the
conditional probability of the observation {N(r, x)}. That is

L(D, θ) =
∫ R

0
log λ(r)dN(r,x) −

∫ R

0
λ(r)dr

This is derived in the other paper that I do not fully understand now. But let’s say this is
true, we can estimate both parameter with MLE

∂L

∂D
= 0,

∂L

∂θ
= 0
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This gives us the estimation of D w.r.t. the choice of sphere S(x,R) as

D̂(x,R) =

⎡
⎣ 1

N(R, x)

N(R,x)∑
j=1

log R

Tj(x)

⎤
⎦

−1

where Tj(x) is the distance of j-th neighbor to x. If we control R by the predefined the
number of neighbor k, then

D̂(x,k) =
[

1
k − 1

k−1∑
j=1

log Tk(x)
Tj(x)

]−1

which is the expected log distance ratio between k-th neighbor and other neighbors.

Also from above, we have
N(R, x)

RD
= eθV (D)

to be true for all x. Therefore

log f(x) = θ = log N(R)
RDV (D) = log N(R) − D log R − log V (D)

which suggest that given the local intrinsic dimension, we have an estimation of the local
density f(x). If we also use number of neighbors k to represent R, and use our local intrinsic
dimension estimate D̂(x, k), we have estimated local density

log f̂(x) = log(k − 1) − D̂(x, k) log Tk(x) − log V (D̂(x, k))

Then our estimate of entropy based on dataset can be

Ĥ(X, k) = − 1
n

n∑
i

log f̂(Xi)

= 1
n

n∑
i

(
D̂(Xi, k) log Tk(Xi) + log V (D̂(Xi, k))

)
− log(k − 1)

D.3. Cluster Learnability and Prequential Codelength

Note that Epn. 6.2.2 can be connected to the compression lower bound of the emerged
cluster assignments datasets {zi, ỹi}N

i=1 via prequential coding (Dawid, 1984). The prequential
codelength is defined as

Lpreq = −
∑

i

log p(ỹi|(zk≤i,ỹk<i)) (D.3.1)

where p(ỹi|(zk≤i,ỹk<i)) is a conditional model, which can be computed from our KNN classifier
probabilities. If Eqn. 6.2.2 is the online learning accuracy, then Eqn. D.3.1 is online learning
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cross-entropy loss. Higher CL lead to lower prequential compression bounds on the emerged
clusters.

Name Method Architecture
infomin Unsupervised ResNet
insdis Unsupervised ResNet

pcl_v1 Unsupervised ResNet
pcl_v2 Unsupervised ResNet

pirl Unsupervised ResNet
byol Unsupervised ResNet

deepclusterv2_400ep_2x224 Unsupervised ResNet
deepclusterv2_400ep Unsupervised ResNet
deepclusterv2_800ep Unsupervised ResNet

dino_deitsmall8 Unsupervised ViT
dino_deitsmall16 Unsupervised ViT

dino_vitbase8 Unsupervised ViT
dino_vitbase16 Unsupervised ViT

dino_xcit_small_12_p16 Unsupervised XCiT
moco_v1_200ep Unsupervised ResNet
noco_v2_200ep Unsupervised ResNet
moco_v2_800ep Unsupervised ResNet

resnet18 Supervised ResNet
resnet34 Supervised ResNet
resnet50 Supervised ResNet

selav2_400ep_2x224 Unsupervised ResNet
selav2_400ep Unsupervised ResNet

simclrv2_r501xsk0 Unsupervised ResNet
simclrv2_r501xsk1 Unsupervised ResNet

simclrv1_resnet50_1x Unsupervised ResNet
swav_100ep Unsupervised ResNet
swav_200ep Unsupervised ResNet
swav_800ep Unsupervised ResNet

Table D.19. Full list of the pretrained checkpoints collected. The list of SSL methods
are: MoCo-v1 (He et al., 2020b), MoCo-v2 (Chen et al., 2020c), SeLA-v2 (Caron et al.,
2020), DeepCluster-v2 (Caron et al., 2020), SwAV (Caron et al., 2020), DINO (Caron et al.,
2021), SimCLR v2 (Chen et al., 2020b), SimCLR-v1 (Chen et al., 2020a), PCL-v1 (Li et al.,
2021), PCL-v2 (Li et al., 2021), PIRL (Misra and Maaten, 2020), BYOL (Grill et al., 2020),
InfoMin (Tian et al., 2020), InsDis (Wu et al., 2018).
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Fig. D.49. Regression results for baselines w.r.t ImageNet accuracies.

159


