
Université de Montréal

Context-Aware Ranking: From Search to Dialogue

par

Yutao Zhu

Département d’informatique et de recherche opérationnelle
Faculté des arts et des sciences

Thèse présentée en vue de l’obtention du grade de
Philosophiæ Doctor (Ph.D.)

en Discipline

March 21, 2023

© Yutao Zhu, 2023





Université de Montréal
Faculté des arts et des sciences

Cette thèse intitulée

Context-Aware Ranking: From Search to Dialogue

présentée par

Yutao Zhu

a été évaluée par un jury composé des personnes suivantes :

Bang Liu
(président-rapporteur)

Jian-Yun Nie
(directeur de recherche)

Philippe Langlais
(membre du jury)

Xiaodong He
(examinateur externe)

Marie-Claude L’Homme
(représentant du doyen de la FESP)





Résumé

Les systèmes de recherche d’information (RI) ou moteurs de recherche ont été largement
utilisés pour trouver rapidement les informations pour les utilisateurs. Le classement est la
fonction centrale de la RI, qui vise à ordonner les documents candidats dans une liste classée
en fonction de leur pertinence par rapport à une requête de l’utilisateur. Alors que IR
n’a considéré qu’une seule requête au début, les systèmes plus récents prennent en compte
les informations de contexte. Par exemple, dans une session de recherche, le contexte de
recherche tel que le requêtes et interactions précédentes avec l’utilisateur, est largement utilisé
pour comprendre l’intention de la recherche de l’utilisateur et pour aider au classement des
documents. En plus de la recherche ad-hoc traditionnelle, la RI a été étendue aux systèmes
de dialogue (c’est-à-dire, le dialogue basé sur la recherche, par exemple, XiaoIce), où on
suppose avoir un grand référentiel de dialogues et le but est de trouver la réponse pertinente
à l’énoncé courant d’un utilisateur. Encore une fois, le contexte du dialogue est un élément
clé pour déterminer la pertinence d’une réponse.

L’utilisation des informations contextuelles a fait l’objet de nombreuses études, allant
de l’extraction de mots-clés importants du contexte pour étendre la requête ou l’énoncé
courant de dialogue, à la construction d’une représentation neuronale du contexte qui sera
utilisée avec la requête ou l’énoncé de dialogue pour la recherche. Nous remarquons deux
d’importantes insuffisances dans la littérature existante. (1) Pour apprendre à utiliser les
informations contextuelles, on doit extraire des échantillons positifs et négatifs pour l’entraî-
nement. On a généralement supposé qu’un échantillon positif est formé lorsqu’un utilisateur
interagit avec (clique sur) un document dans un contexte, et un un échantillon négatif est
formé lorsqu’aucune interaction n’est observée. En réalité, les interactions des utilisateurs
sont éparses et bruitées, ce qui rend l’hypothèse ci-dessus irréaliste. Il est donc important de
construire des exemples d’entraînement d’une manière plus appropriée. (2) Dans les systèmes
de dialogue, en particulier les systèmes de bavardage (chitchat), on cherche à trouver ou gé-
nérer les réponses sans faire référence à des connaissances externes, ce qui peut facilement
provoquer des réponses non pertinentes ou des hallucinations. Une solution consiste à fonder
le dialogue sur des documents ou graphe de connaissances externes, où les documents ou les
graphes de connaissances peuvent être considérés comme de nouveaux types de contexte.
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Le dialogue fondé sur les documents et les connaissances a été largement étudié, mais les
approches restent simplistes dans la mesure où le contenu du document ou les connaissances
sont généralement concaténés à l’énoncé courant. En réalité, seules certaines parties du do-
cument ou du graphe de connaissances sont pertinentes, ce qui justifie un modèle spécifique
pour leur sélection.

Dans cette thèse, nous étudions le problème du classement de textes en tenant compte
du contexte dans le cadre de RI ad-hoc et de dialogue basé sur la recherche. Nous nous
concentrons sur les deux problèmes mentionnés ci-dessus. Spécifiquement, nous proposons
des approches pour apprendre un modèle de classement pour la RI ad-hoc basée sur des
exemples d’entraîenemt sélectionnés à partir d’interactions utilisateur bruitées (c’est-à-dire
des logs de requêtes) et des approches à exploiter des connaissances externes pour la recherche
de réponse pour le dialogue. La thèse est basée sur cinq articles publiés. Les deux premiers
articles portent sur le classement contextuel des documents. Ils traitent le problème ovservé
dans les études existantes, qui considèrent tous les clics dans les logs de recherche comme
des échantillons positifs, et prélever des documents non cliqués comme échantillons négatifs.
Dans ces deux articles, nous proposons d’abord une stratégie d’augmentation de données non
supervisée pour simuler les variations potentielles du comportement de l’utilisateur pour tenir
compte de la sparcité des comportements des utilisateurs. Ensuite, nous appliquons l’appren-
tissage contrastif pour identifier ces variations et à générer une représentation plus robuste
du comportement de l’utilisateur. D’un autre côté, comprendre l’intention de recherche dans
une session de recherche peut représentent différents niveaux de difficulté - certaines inten-
tions sont faciles à comprendre tandis que d’autres sont plus difficiles et nuancées. Mélanger
directement ces sessions dans le même batch d’entraînement perturbera l’optimisation du
modèle. Par conséquent, nous proposons un cadre d’apprentissage par curriculum avec des
examples allant de plus faciles à plus difficiles. Les deux méthodes proposées obtiennent de
meilleurs résultats que les méthodes existantes sur deux jeux de données de logs de requêtes
réels.

Les trois derniers articles se concentrent sur les systèmes de dialogue fondé les docu-
ments/connaissances. Nous proposons d’abord un mécanisme de sélection de contenu pour
le dialogue fondé sur des documents. Les expérimentations confirment que la sélection de
contenu de document pertinent en fonction du contexte du dialogue peut réduire le bruit
dans le document et ainsi améliorer la qualité du dialogue. Deuxièmement, nous explorons
une nouvelle tâche de dialogue qui vise à générer des dialogues selon une description narra-
tive. Nous avons collecté un nouveau jeu de données dans le domaine du cinéma pour nos
expérimentations. Les connaissances sont définies par une narration qui décrit une partie du
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scénario du film (similaire aux dialogues). Le but est de créer des dialogues correspondant à
la narration. À cette fin, nous concevons un nouveau modèle qui tient l’état de la couverture
de la narration le long des dialogues et déterminer la partie non couverte pour le prochain
tour. Troisièmement, nous explorons un modèle de dialogue proactif qui peut diriger de
manière proactive le dialogue dans une direction pour couvrir les sujets requis. Nous conce-
vons un module de prédiction explicite des connaissances pour sélectionner les connaissances
pertinentes à utiliser. Pour entraîner le processus de sélection, nous générons des signaux de
supervision par une méthode heuristique. Les trois articles examinent comment divers types
de connaissances peuvent être intégrés dans le dialogue.

Le contexte est un élément important dans la RI ad-hoc et le dialogue, mais nous sou-
tenons que le contexte doit être compris au sens large. Dans cette thèse, nous incluons à la
fois les interactions précédentes avec l’utilisateur, le document et les connaissances dans le
contexte. Cette série d’études est un pas dans la direction de l’intégration d’informations
contextuelles diverses dans la RI et le dialogue.

Mots clés: recherche d’information, classement de documents sensible au contexte, sys-
tème de dialogue basé sur la recherche, dialogue fondé sur les connaissances
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Abstract

Information retrieval (IR) or search systems have been widely used to quickly find desired
information for users. Ranking is the central function of IR, which aims at ordering the
candidate documents in a ranked list according to their relevance to a user query. While
IR only considered a single query in the early stages, more recent systems take into account
the context information. For example, in a search session, the search context, such as the
previous queries and interactions with the user, is widely used to understand the user’s search
intent and to help document ranking. In addition to the traditional ad-hoc search, IR has
been extended to dialogue systems (i.e., retrieval-based dialogue, e.g., XiaoIce), where one
assumes a large repository of previous dialogues and the goal is to retrieve the most relevant
response to a user’s current utterance. Again, the dialogue context is a key element for
determining the relevance of a response.

The utilization of context information has been investigated in many studies, which range
from extracting important keywords from the context to expand the query or current utter-
ance, to building a neural context representation used with the query or current utterance
for search. We notice two important insufficiencies in the existing literature. (1) To learn
to use context information, one has to extract positive and negative samples for training. It
has been generally assumed that a positive sample is formed when a user interacts with a
document in a context, and a negative sample is formed when no interaction is observed. In
reality, user interactions are scarce and noisy, making the above assumption unrealistic. It
is thus important to build more appropriate training examples. (2) In dialogue systems, es-
pecially chitchat systems, responses are typically retrieved or generated without referring to
external knowledge. This may easily lead to hallucinations. A solution is to ground dialogue
on external documents or knowledge graphs, where the grounding document or knowledge
can be seen as new types of context. Document- and knowledge-grounded dialogue have
been extensively studied, but the approaches remain simplistic in that the document content
or knowledge is typically concatenated to the current utterance. In reality, only parts of
the grounding document or knowledge are relevant, which warrant a specific model for their
selection.
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In this thesis, we study the problem of context-aware ranking for ad-hoc document rank-
ing and retrieval-based dialogue. We focus on the two problems mentioned above. Specif-
ically, we propose approaches to learning a ranking model for ad-hoc retrieval based on
training examples selected from noisy user interactions (i.e., query logs), and approaches to
exploit external knowledge for response retrieval in retrieval-based dialogue. The thesis is
based on five published articles.

The first two articles are about context-aware document ranking. They deal with the
problem in the existing studies that consider all clicks in the search logs as positive samples,
and sample unclicked documents as negative samples. In the first paper, we propose an
unsupervised data augmentation strategy to simulate potential variations of user behavior
sequences to take into account the scarcity of user behaviors. Then, we apply contrastive
learning to identify these variations and generate a more robust representation for user
behavior sequences. On the other hand, understanding the search intent of search sessions
may represent different levels of difficulty – some are easy to understand while others are
more difficult. Directly mixing these search sessions in the same training batch will disturb
the model optimization. Therefore, in the second paper, we propose a curriculum learning
framework to learn the training samples in an easy-to-hard manner. Both proposed methods
achieve better performance than the existing methods on two real search log datasets.

The latter three articles focus on knowledge-grounded retrieval-based dialogue systems.
We first propose a content selection mechanism for document-grounded dialogue and demon-
strate that selecting relevant document content based on dialogue context can effectively re-
duce the noise in the document and increase dialogue quality. Second, we explore a new task
of dialogue, which is required to generate dialogue according to a narrative description. We
collect a new dataset in the movie domain to support our study. The knowledge is defined
as a narrative that describes a part of a movie script (similar to dialogues). The goal is to
create dialogues corresponding to the narrative. To this end, we design a new model that can
track the coverage of the narrative along the dialogues and determine the uncovered part for
the next turn. Third, we explore a proactive dialogue model that can proactively lead the
dialogue to cover the required topics. We design an explicit knowledge prediction module
to select relevant pieces of knowledge to use. To train the selection process, we generate
weak-supervision signals using a heuristic method. All of the three papers investigate how
various types of knowledge can be integrated into dialogue.

Context is an important element in ad-hoc search and dialogue, but we argue that context
should be understood in a broad sense. In this thesis, we include both previous interactions
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and the grounding document and knowledge as part of the context. This series of studies is
one step in the direction of incorporating broad context information into search and dialogue.

Keywords: information retrieval, context-aware document ranking, retrieval-based dia-
logue system, knowledge-grounded dialogue
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Chapter 1

Introduction

Because it’s there.

George Mallory
the pioneer of the Mount Everest expedition

Information access is one of the fundamental daily needs of human beings. To quickly ob-
tain the desired information, various information retrieval (IR) systems have been developed.
For example, search engines such as Google, Bing, and Baidu are IR systems on the Web
that are used to retrieve relevant pages in response to user queries, providing a convenient
and efficient way to access information from the Web. IR is not limited to retrieving texts.
In dialogue systems (chatbots), such as Microsoft Xiaoice, Apple Siri, and Google Assistant,
IR systems can also be used to retrieve the proper replies to user input utterances, thereby
producing natural and fluent human-machine conversations. With the exponential growth
of information, building effective IR systems has attracted more and more attention.

Practical IR systems often include two essential components: retrieval and ranking, both
of which influence the performance of the system. To explain their differences, we consider a
simplified IR system that takes the user-issued query as input and returns a list of relevant
documents from a document repository.1 In this case, the retrieval component seeks to
retrieve numerous candidate documents from a large repository. This component is required
to be efficient because the repository is often enormous. Okapi BM25 [157] is one of the
most commonly used algorithms for relevance computing in this stage. The documents with
the highest BM25 scores are returned and form a candidate document list. Even when the
returned document list is significantly smaller than the size of the repository, it is still too
large (e.g., hundreds or thousands of documents) for human users to check. Moreover, BM25

1Henceforth, we will refer to the user input as a “query”. It can be a search query for search engines, a user
utterance for chatbots, a question for question answering systems, etc.
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Fig. 1. Representation-focused and interaction-focused architectures of ad-hoc ranking
models.

scores merely assess the word overlap between the query and document, which is insufficient
for measuring the relevance accurately. Therefore, a ranking component is necessary for a
practical IR system. This component is intended to compute more precise relevance scores
between a query and a document and to rerank the candidate document list (hence, this
process is also known as reranking). As the candidate document list is much smaller than
the full repository, it is feasible to apply more complex ranking algorithms. In the early
stages, researchers proposed many learning-to-rank algorithms [15] to learn a ranking func-
tion. They typically rely on manually extracted features (such as document length and
keyword counts), which severely restricts their accuracy. Following the advancement of deep
learning, many neural network-based methods have been proposed. Due to their capability
of automatic feature extraction and their strong performance on various tasks, they have
swiftly become the dominant methods. Consequently, the goal of this thesis is to enhance
the ranking performance based on neural models.

Early academic studies attempted to improve ad-hoc ranking performance by employing
neural models. Ad-hoc ranking takes a single query into account and requires models
to rank relevant texts as high as possible. Thus, the key challenge is determining how to
compute the relevance between the query and candidate text. As illustrated in Figure 1,
existing methods can be categorized into two groups according to their different assump-
tions for relevance evaluation. The first group is representation-focused architectures. It
assumes that the relevance is contingent on the compositional meaning of the input texts.
Therefore, representation-focused methods usually design a complex representation function
for both the query and candidate text to obtain their representations. Then, the relevance
score is calculated based on these representations through a matching function (e.g., cosine
similarity). For example, DSSM [75] utilizes two fully-connected networks to represent the
query and candidate text and computes their relevance by cosine similarity. Based on a
similar two-tower architecture, ARC-I [72] and MV-LSTM [190] respectively apply 1D con-
volutional neural networks (CNNs) and bi-directional LSTMs to enhance the representation
learning. Nevertheless, researchers discovered that it is very challenging to represent the
query or candidate text with a single vector, and the case is even worse when the text is

2
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long. In contrast, another group of interaction-focused architectures assumes that the rel-
evance is essentially about the relationship between the query and candidate text; so, it is
more effective to directly learn the relevance relation from the basic interactions between
document and query (e.g., between tokens in them). These approaches emphasize the design
of complex interaction and evaluation functions in order to compute the relevance score. For
instance, KNRM [211] performs fine-grained interaction between the tokens in query and
candidate text to generate a matching matrix, from which a kernel pooling method calcu-
lates the relevance score. MatchPyramid [134] directly constructs a matching matrix using
the word embeddings of the query and candidate text. Then, a CNN is used to extract the
matching features, and a feed-forward neural network is used to compute the relevance score.
Lately, pre-trained language models, such as BERT [34], are also applied for ad-hoc ranking,
where interaction can be captured through attention mechanisms. The interaction-focused
architecture generally performs better than the representation-focused architecture because
it performs interaction over low-level representations (e.g., word embeddings) and preserves
the original matching signals to a significant extent. However, these approaches are more
time consuming than representation-based approaches.

In the utilization scenario, traditional IR focuses on one-shot search, in which a single
query is used to retrieve documents. In more realistic search scenarios, users perform search
in a session, i.e., a query is submitted to the system within a search context. With
the evolution of ranking models, researchers have found that the search context is also very
helpful for capturing user search intents. The task that leverages both the context and query
to rank candidate texts is called context-aware ranking, which is the focus of our thesis.
We show the comparison between ad-hoc ranking and context-aware ranking in Figure 2.
In the former, a single query is considered without context, while in the latter, the query
is submitted after a series of interactions between the system and the user (queries and
retrieved documents), so the intent can be influenced by the latter.

Context-aware ranking has been studied in many scenarios, whereas in this thesis, we
focus on the two most prevalent ones: search and dialogue. In the search scenario, user
behavior has progressively shifted from a one-shot query to multiple interactions with the
search engines, particularly for complicated and ambiguous information needs. A typical sce-
nario involves initiating a search with general queries and then refining them after browsing
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documents. During this process, search intents may be modified and refined. It is essential
to model the search context because it reflects how the search intents have gradually evolved
and how the users’ information needs are satisfied, which is helpful for understanding the
users’ real search intents underlying the current query. In the dialogue scenario, the dialogue
context is also critical for understanding the query (i.e., user input utterance), as the context
may provide background knowledge (such as topic) of the dialogue and users in a dialogue
frequently omit information that has already been mentioned in context. In recent years, re-
searchers have found that search and dialogue are not two independent scenarios, but can be
naturally combined. Conversational search is the result of this combination [32, 117, 143],
where users tend to use natural language texts as queries and the entire search behaves like
a conversation between users and search engines. Intuitively, the strategy for conversational
search should account for both the search requirement and the dialogue’s characteristics.
We will study the problem of context-aware document ranking and context-aware dialogue
ranking in relation to the search and dialogue scenarios.

This thesis is composed of five published articles that address the problems of context-
aware IR and context-aware dialogue. In the following sections, we will describe the moti-
vations of these studies and summarize the main ideas used in them.

1.1. Search: Context-Aware Document Ranking
As aforementioned, the search context is critical for understanding the potential search

intent of the current query. The task is defined as ranking a list of candidate documents
based on the current query and previous search behaviors (including previous queries and
clicked documents). The challenge lies in inferring user intents from search context. Earlier
studies sought to extract statistical or rule-based features from the search context and used
them to expand the query [198, 208]. These methods require a lot of human expertise in
feature extraction, which greatly restricts their applicability and performance. Afterwards,
neural networks were introduced to model the search context. A typical structure is based
on hierarchical recurrent neural networks (RNNs) [3]. Concretely, each of the queries in the
search context is first represented as a vector by a lower-level RNN. Then, a higher-level RNN
receives the vectors as input, aggregates the information in all queries, and outputs a vector
for document ranking. This structure is extended by incorporating the previously clicked
documents into the context modeling [4]. Recent years have witnessed great success of pre-
trained language models on various IR and NLP tasks [48, 54, 85, 130, 146, 212, 245].
Some researchers concatenated historical queries and clicked documents as a long sequence
and applied BERT [34] to perform document ranking [149]. It yields encouraging results.

All existing methods train new models for context-aware document ranking following a
standard paradigm: they first treat each search session in the search log as a positive sample,
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while sampling unclicked documents for the current query to form negative samples; then,
all training samples are mixed together and uniformly sampled as batches of data to train
the model. This paradigm is straightforward and effective, but it has two limitations.

(1) All search sessions (sequences) are treated as definite and accurate. That is, an
observed sequence from search logs is considered a positive sample, whereas any unseen
sequence is either neglected or used as a negative sample. This strict view disregards the
flexibility and sparseness of user activities during a search session. When using a search
engine, it is common for users to have diverse interaction patterns or submit different queries
for the same information need. These interactions vary from user to user and search context
to search context. The same holds true for user click behaviors: one can click on different
documents for the same information need. This flexibility has not been explicitly addressed
in previous research when extracting the training examples. In the same way, user behaviors
are sparse in the sense that not all the relevant documents are selected by users. It is thus
wrong to assume that all the unselected documents are irrelevant. When we have a large
amount of log data and are only interested in common user patterns, existing methods can
still extract emerging strong patterns and discard accidental variations. Unfortunately, when
we train models on log data using this assumption, the models are incapable of capturing
the nuances in user behaviors and coping with the variance. A better approach is to view
the data as they are: they are just samples of possible query formulations and interactions,
but much more are not shown in the logs.

To tackle this problem, in our first article [245], we propose a contrastive learning-
based method to enhance the representation of the user behavior sequence and
improve the performance of context-aware document ranking. We first design
three data augmentation strategies to generate possible variations for user search behavior
sequences in a search log. Concretely, we mask some terms in a query or document, delete
some queries or documents from the sequence, or reorder the sequence. These strategies aim
to simulate typical variations in user behaviors. The generated sequences can be considered
similar to the observed ones. Then, we employ contrastive learning to distinguish similar
and dissimilar sequence pairs. It attempts to bring similar sequences (generated variants)
together and separate dissimilar sequences (other randomly sampled sequences). In this way,
models can better cope with the variations and become more robust to unseen user behavior
sequences. Our experiments on two real search log datasets demonstrate the effectiveness of
contrastive learning for context-aware document ranking.

(2) The second limitation of the existing approaches lies in the fact that all training sam-
ples are uniformly sampled to form a training batch, with the assumption that all positive
samples are of similar importance to reflect relevance. It goes in a similar way for negative
samples that reflect irrelevance. While it is typically true that both positive and negative ex-
amples are beneficial for training a ranking model, they are not equally useful at the training
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stage. In the context of human learning, it is common to follow a curriculum that regulates
the ordering and content of the educational materials [92, 137, 167]. With this strategy,
students can leverage previously acquired knowledge to facilitate the acquisition of new and
more complex concepts. Things are similar for the training of a context-aware document
ranking model. Various training samples have varying levels of difficulty for learning. For
example, given a search context, positive documents are easily identifiable if they are close to
the current query and notably distinct from negative documents. In contrast, if the positive
and negative documents are quite similar, they are hard to distinguish. When human learn-
ers are faced with samples of mixed difficulty, they may become confused because signals
from different samples may appear inconsistent or because they lack the necessary informa-
tion to comprehend difficult samples. Recent research in machine learning has demonstrated
that learning with a batch of samples of mixed difficulties may disturb the optimization, in
particular when the network is deep [7]. In this case, curriculum learning, i.e., learning from
easy samples before hard samples, is especially useful.

Motivated by these observations, in our second article [246], we propose a dual curricu-
lum learning framework for context-aware document ranking. This new training
framework takes the difficulty of different training samples into account. We develop two
complementary curricula, one for positive (search context, document) pairs and one for neg-
ative pairs. In the curriculum for positive pairs, sampling is restricted to easy pairs in the
early steps, and then gradually expanded to the entire sample set, so that hard pairs can
also be learned. In the curriculum for negative pairs, we do the opposite: sampling from
all pairs in the early steps, then restricting gradually to hard pairs in the late steps. This
curriculum strategy is applicable to any existing learning approach, and we have integrated
it into three state-of-the-art approaches for context-aware document ranking. Experiments
on two search log datasets show that our curriculum learning method significantly improves
the three strong baselines, including the one that we previously proposed in the first article.

1.2. Dialogue: Context-Aware Dialogue Ranking
Many search engines now support the use of natural language queries, transforming the

search process into a “conversation” between humans and search engines. Hence, researchers
have utilized techniques of dialogue systems to enhance the performance of search engines.

Dialogue systems aim at providing a response to a human input. Existing approaches
can be roughly categorized into generation-based and retrieval-based, depending on whether
the response is generated from scratch or retrieved from a repository. ChatGPT [132] is a
recently proposed generation-based dialogue system. With the great power of its backbone
large language models and instruction tuning, it can help users with various tasks, such
as writing emails, proofreading texts, and summarizing documents. Nevertheless, since all
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responses are generated by the model, their factualness and accuracy cannot be guaranteed.
We concentrate on the retrieval-based methods, which can also be treated as an application
of IR systems. The responses are retrieved from a large repository, which can provide good
quality and fluency. Besides, these responses can be controlled by constraining the repository,
which are suitable for some domain-specific applications, such as legal consulting based on
legal provisions or policy analyzing from government websites. It is important to note that
all of these applications rely on a rich repository.

Similar to the search scenario, studies on retrieval-based dialogue systems have pro-
gressed from modeling a single user input utterance [111] to modeling the entire dialogue
context [178, 205, 223, 230]. The dialogue context can provide background knowledge
(such as topic) of the dialogue, which is crucial for selecting an appropriate response. This
task is referred to as context-aware dialogue ranking. It is defined as selecting a proper
response from a candidate list for a dialogue context. The task is similar to context-aware
document ranking, but with the following replacement: “search context” → “dialogue con-
text”, “query” → “user input utterance”, and “candidate document list” → “candidate
response list”.

In the early years, researchers utilized hierarchical RNNs to represent each utterance
within the context and aggregate its information as a vector. Then, another RNN was uti-
lized to represent the response candidate as a vector. Finally, the context-response match-
ing score can be computed using cosine similarity [111]. This method can be categorized
into the representation-focused architecture mentioned earlier. Similarly, various approaches
based on the interaction-focused architecture are proposed and quickly became the main-
stream due to their superior performance. A typical framework is “representation-matching-
aggregation” [178, 205, 223, 230]. Specifically, all utterances in the dialogue context
and the response candidate are first represented as word-level vectors by a group of neural
networks, such as CNNs or RNNs. Then, an interaction matrix is computed based on the
word-level representations, and the second group of neural networks is used to extract match-
ing features. Finally, a third group of neural networks is employed to aggregate the matching
signals and determine the final matching score. Recently, pre-trained language models have
been introduced to the dialogue response ranking task with excellent success [54, 67] (we
will describe them in Section 2.3.1.2).

Thanks to recently proposed powerful models, existing retrieval-based dialogue systems
have been capable of selecting more suitable responses for dialogue contexts. Nonetheless,
one can still find a big gap between human-machine dialogues and real human dialogues.
The lack of proper knowledge is the main obstacle for dialogue models to delve deeply
into a topic. Whereas pre-trained language models have learned a lot of knowledge from
large-scale text corpora, it is infeasible to store all world-knowledge in their parameters.
Consequently, providing external knowledge as additional input to the system is an effective
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way to improve dialogue performance. Knowledge-grounded dialogue models have attracted
increasing interest. In addition to the dialogue context, external knowledge is incorporated as
additional “context” to facilitate dialogue modeling. Various knowledge can be introduced to
achieve different purposes. For instance, endowing dialogue models with pre-defined personas
is an effective way to produce more interesting and engaging dialogues [100, 145, 226], which
are referred to as personalized dialogue systems. Document-grounded dialogues have also
been investigated to simulate the scenario that people discuss about a document, e.g., a piece
of news or a Wikipedia page. Domain-specific knowledge graphs are also a common way to
provide external knowledge, which has shown to be effective for boosting domain-specific
dialogues [105, 127, 242, 234].

Although external knowledge has been introduced to human-machine dialogues in an
effort to increase their quality, the relationship between the knowledge and dialogue remains
weak, as evidenced by several factors: (a) The external knowledge is incorporated into the
dialogue process without careful selection. One often hopes that the use of knowledge can
be automatically learned by the signals back-propagated from the final response selection.
Sadly, this is impracticable due to the complexity and diversity of the knowledge integration
process. (b) The knowledge plays just a supplementary role in the dialogue process, such as
providing some background information. Under this circumstance, models often employ little
to no knowledge. Things are even worse when there is a lot of noise in the knowledge (e.g.,
in a knowledge graph that is automatically extracted). Motivated by these observations,
we investigate methods for bridging knowledge and dialogue more tightly so as to
enhance dialogue performance.

(1) Our first exploration in this direction is to enable the model to do some knowledge
selection prior to incorporating it into the dialogue. It is conducted under the setting of
document-grounded dialogues, wherein the document contains a great deal of information
(perhaps containing noise) awaiting selection. The task is formally defined by selecting
a proper response that should be not only coherent with the dialogue context, but also
consistent with the provided document. The common strategy in existing approaches is
ranking responses according to a combination of context-response matching and document-
response matching [58, 226, 231]. The latter encourages responses to be pertinent to the
document’s content. Yet, based on our observations, a good response need not be tied to
the entire content of the external knowledge (i.e., document), but rather to a small part of
it. For example, given a Wikipedia article about a movie, when discussing the actors of the
movie, the model would only need to access the information related to these actors, while
information about the movie’s producer, publisher, or plot is irrelevant. Intuitively, it is
necessary and effective to perform a selection on the knowledge before feeding it into the
dialogue.
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Table 1. An example of movie script extracted from the movie Forrest Gump.

Narrative Jenny doesn’t like to go home. To accompany Jenny, Gump decides to go home
later. Gump is Jenny’s best friend.

Script line 1 Mama’s going to worry about me.
Script line 2 Just stay a little longer.
Script line 3 OK, Jenny, I’ll stay.
Script line 4 You are my most special friend.

To address this problem, in our third article [247], we propose a content selection
network for document-grounded retrieval-based dialogue systems. On the one
hand, we design a new gate mechanism to achieve a hard selection on the document content.
Content relevant to the current dialogue step will be assigned a higher weight and pass
the selection gate, while the irrelevant parts will be rejected. This allows our model to
automatically filter out noise from the document. On the other hand, as the dialogue topic
evolves, before performing the content selection, we design a decay mechanism and determine
the current dialogue context by focusing on the most recent utterances, rather than on the
entire dialogue history. This further improves the accuracy of the content selection. Overall,
we refine the document prior to feeding it into the model, effectively narrowing the gap
between the document and dialogue, thereby improving the dialogue performance. Our
experiments on two public datasets demonstrate the effectiveness of our proposed method.

(2) Following the previous article, we investigate ways to further promote the proximity
of knowledge and dialogue. We consider the following research question: Can the dialogue
fully cover the given knowledge? Since there is no existing dataset supporting our study, we
first construct a new dataset based on movie scripts. An example is illustrated in Table 1.
In this dataset, each piece of script is associated with a narrative, which describes what
happens in the piece of script. This is the most relevant dataset we are able to collect for
the research, in which the piece of script corresponds to the dialogue, while the narrative
represents the knowledge. The task is characterized as selecting a proper script line that is
both coherent with the context and consistent with the given narrative. Despite having a
similar form, the narrative in this research problem plays a totally different role: its content
should be completely covered by the script session. Therefore, it is inappropriate to take
the narrative as a general context and do narrative-response matching. Generally, there are
two challenges in using the narrative: (a) When determining the next script line, one should
keep track of which part of the narrative has already been covered by previous script lines.
This role of the narrative is different from that of the context. In general dialogue modeling,
typical methods of context-aware response ranking focus on measuring the matching degree
between the context and the response. If the same matching mechanism is performed for a
narrative, many lines will be redundant. So, tracking the narrative is an essential step for
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the task. (b) When determining the next script line, it is also necessary to decide which
part of the narrative should be expressed. The narrative is often organized in a specific
chronological order. Thus, the model for narrative-guided script ranking needs to be able to
learn how to utilize the remaining information in the narrative.

To address these issues, in our fourth article [250], we propose a new model that can
leverage the narrative to generate movie script. Our model is able to keep track of
what has been stated in the narrative and what is still remaining to select the next line by
an updating mechanism. This is an example of a more general dialogue system that aims to
accomplish a set or sequence of tasks, for which the system should keep track of what has
been done, and what should be done next. We also design a content prediction module that
can assist the model in learning to predict the narrative content that should be covered by
the next line. Experimental results on our newly collected dataset indicate that the narrative
does indeed play a different role than a general context, and our model can control the script
selection process so that the whole script is close to the pre-defined narrative. Our study
answers the research question that the dialogue can be forced to cover all of the required
knowledge with proper model architectures. It paves the way for more controllable dialogue
systems.

(3) The previous article demonstrates the possibility of utilizing external knowledge to
influence the dialogue process. Going one step further in the same direction, we explore de-
signing a dialogue model that may proactively adjust the dialogue topic and lead the dialogue
using the provided knowledge. At the time we analyzed this problem, most approaches for
dialogue systems worked passively, i.e., they could only respond to human input but fail to
lead a dialogue proactively. This kind of system may quickly become boring for the user. We
start our study by following a preliminary work on proactive dialogue [204], where models
are trained to proactively lead the dialogue by covering some pre-defined topics (called a
goal) with supplementary knowledge. This study treats both the goal and supplementary
knowledge as additional context and perform attention to integrate them into the dialogue
response ranking process. The modeling of goals and knowledge are all optimized through
the final ranking loss, making it difficult to tell if an error is the result of suboptimal goal
modeling, poor knowledge prediction, or bad response selection.

To tackle this problem, in our fifth article [248], we propose a multi-task learning
framework for knowledge-grounded proactive human-machine conversation. We
design an explicit knowledge prediction module to select the relevant piece of knowledge to
use. This module is combined with a response selection module to form a multi-task learn-
ing framework. The knowledge prediction module first tracks the state of goal achievement,
i.e., which part of the goal has been achieved, and then leverages the dialogue context to
predict which knowledge should be used in the current turn. The response selection module
then relies on the selected knowledge to determine the final answer. Different from existing
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methods, we explicitly optimize knowledge prediction using automatically generated weak-
supervision signals to assist in learning to predict the relevant knowledge more accurately.
The experimental results demonstrate that the explicitly trained knowledge prediction pro-
cess can indeed identify the most relevant piece of knowledge to use, resulting in superior
performance over the state-of-the-art methods.

In summary, in this thesis, we leverage context information in a document reranking
model and use contrastive learning to train the model more effectively; and for retrieval-
based conversation, we explore several directions to leverage external knowledge so that the
conversations can be more knowledgeable and proactive. This thesis is organized as follows:
we will first introduce some background knowledge and related work from our studies. Then,
we will present our two published articles on context-aware document ranking. Both are
dedicated to enhancing the existing training paradigm and improving performance. Next, we
will present three other articles on knowledge-grounded retrieval-based dialogue systems, all
of which improve dialogue performance by strengthening the interaction between knowledge
and dialogue. Finally, we will give some general conclusions about the thesis.
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Chapter 2

Background

In this chapter, we will provide background knowledge about our work. Namely, we will
describe basic neural networks, document ranking, dialogue systems, commonly used evalu-
ation metrics, and statistical significance tests.

2.1. Basic Neural Networks
In modern natural language processing, an essential step is to create vector representa-

tions for words and texts. A good word representation can lead to better performance on
downstream tasks. In this section, we briefly introduce some neural architectures that are
commonly used to compute text representations.

2.1.1. Traditional Models

2.1.1.1. Convolutional Neural Network (CNN). Convolutional neural networks are based
on the shared-weight architecture of the convolutional kernels that slide along input features
and provide feature maps [93]. They are first applied to image processing tasks. There are
also many applications to NLP tasks, for example, capturing n-gram features from word
embeddings [205, 230]. According to different shapes of input, CNNs can be implemented
by kernels with different dimensions. Here, we use the most commonly applied 2D-CNN as
an example for illustration. Given an input matrix M, the k-th kernel Wk slides over M
and generates a feature map zk as follows:

zk
i,j = σ(

rk−1∑
s=0

rk−1∑
t=0

Wk
s,t · Mi+s,j+t + bk), (2.1.1)

where rk denotes the size of the k-th kernel; bk is a bias parameter; Mi,j is the element at
the i-th row and j-th column of M; and σ(·) is a non linear function, often implemented by
ReLU. Overall, with k kernels, CNNs can output k feature maps. A pooling layer is often
used after a convolutional layer to reduce the dimensions of data by combining the elements



in feature maps. For example, a max-pooling layer can be defined as:

pk
i,j = max

0≤s<dk

max
0≤t<dk

zk
i·dk+s,j·dk+t, (2.1.2)

where dk is the size of the pooling kernel.
CNNs can be stacked into multiple layers so as to extract features in different granulari-

ties. They simulate the receptive field in biological process, thus naturally fitting to extract
image features.

2.1.1.2. Recurrent Neural Network (RNN). Recurrent neural networks are a kind of neu-
ral network architecture specifically designed to deal with sequential data. It was originally
proposed for modeling time series data [36, 44]. Later, researchers found its great potential
in NLP tasks [123, 124], as a sentence or a text is naturally a sequence of words. For-
mally, given a sequence of words [y1,y2, · · · ,yN ], where yt is associated with a k-dimensional
vector representation xt, RNN computes a hidden vector ht at each time step t, which is
often considered as a representation that embeds all information in previous words, i.e.,
[y1, y2, · · · , yt]. ht is obtained by a function g, which can be defined as:

ht = g(ht−1,xt). (2.1.3)

The function g can have different forms, for example:

g(ht−1,xt) = σ(Wht−1 + Uxt + b), (2.1.4)

where W, U ∈ R
k×k are parameters that aggregate the previous state and the current input,

and b ∈ R
k are biases. σ(·) is a non-linear function, such as sigmoid, tanh, or ReLU.

The naive RNNs have two well-known problems: gradient exploding and gradient van-
ishing [8]. The gradient will be extremely large or approach zero when the training error
is backpropagated over time. These problems limit RNNs’ capability of capturing the long-
term dependency in long sequences. To tackle these problems, several new architectures are
proposed, where the most famous two are the Long Short-Term Memory model (LSTM) [71]
and the Gate Recurrent Unit model (GRU) [27]. They both apply gate mechanisms to con-
trol the information flow between recurrent units and improve the modeling of long-term
dependencies. RNNs typically model sequential data in one direction (e.g., from left to
right), and researchers also found that applying two RNNs in bi-directions (called Bi-RNN)
and combining their hidden states can further improve their capability [71].

2.1.1.3. Transformer. Transformer [186] is a neural architecture proposed later, which
has quickly become the mainstream method for various tasks. The vanilla Transformer
consists of an encoder and a decoder. They have similar structures but the decoder includes
an additional attention mechanism to aggregate information from the encoder. In this thesis,
we mainly use the encoder, so we briefly introduce it here.
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A Transformer encoder contains a stack of N identical layers, each of which has two sub-
layers. The first is a multi-head self-attention mechanism, and the second is a simple fully-
connected feed-forward network. Specifically, the attention mechanism can be formalized as
a scaled dot-product attention with three inputs as follows:

Attn(Q,K,V) = softmax(QK�
√

d
)V, (2.1.5)

where Q ∈ R
Nq×d, K ∈ R

Nk×d, and V ∈ R
Nk×d denote the query, key, and value matrices,

respectively. Nq and Nk denote the number of query and key/value vectors. d is the di-
mension of the representation. The attention mechanism can be explained as follows: for
each query vector in Q, it first computes the dot-products of the query with all keys, aim-
ing to evaluate the similarity between the query and each key. Then, it is divided by

√
d

for scaling and applies a softmax function to compute the weights on the values. Finally,
the new representation of the query is calculated as weighted sum of values. To make the
attention function more flexible, a multi-head attention mechanism is often applied. Instead
of performing a single attention, multi-head attention first projects the input Q, K, and V
into h different spaces, each of which has a dimension of dm = d/h. Then, it computes the
attention with the function defined in Equation (2.1.5) as follows:

MultiHead(Q,K,V) = concat
([

Attn(QWQ
i ,KWK

i ,VWV
i )

]h

i=1

)
WO, (2.1.6)

where WQ
i , WK

i , WV
i ∈ R

d×dm , and WO ∈ R
d×d are parameters to project the input

matrices, and the output MultiHead(Q,K,V) has the same shape as Q.
Based on the multi-head attention mechanism, a Transformer encoder layer can be defined

as:

encoder(Q,K,V) = LayerNorm(A + FFN(A)), (2.1.7)

A = LayerNorm(Q + MultiHead(Q,K,V)), (2.1.8)

FFN(X) = ReLU(XWF1 + bF1)WF2 + bF2 , (2.1.9)

where WF1 , WF2 , bF1 , and bF2 are parameters. LayerNorm(·) stands for layer normaliza-
tion [6]. When using Transformer encoder for representation, a commonly used variant is
self-attention, which can be defined as:

SelfAttn(X) = encoder(X,X,X). (2.1.10)

By performing attention to the input X itself, we can obtain a more effective representation
for X, allowing the tokens in X to connect among themselves.
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Fig. 1. BERT input representation. The input embeddings are the sum of the token em-
beddings, the segmentation embeddings, and the position embeddings.

2.1.2. Pre-trained Language Models

With the development of hardware resources, training large models on large-scale datasets
have gradually become possible. Researchers have found that training models (such as
Transformer) on large-scale datasets by general language modeling objectives can greatly
improve the models’ text representation capability. This technique is called pre-trained
language models.

Once proposed, pre-trained language models have been widely applied to various nat-
ural language processing (NLP) tasks and achieved outstanding performance. In general,
these models are first pre-trained on large-scale corpora, and then fine-tuned on downstream
datasets for specific tasks. By pre-training, the model can learn effective language represen-
tations, thus further improving the performance on downstream tasks. In the early stage,
researchers explored pre-training Transformer [186] on natural language corpus for language
modeling. The great performance reveals the potential of pre-training. Typical works include
GPT, GPT-2 [151], and the later GPT-3/3.5 [12, 133]. Thereafter, researchers found that
the standard conditional language models can only capture the information in a left-to-right
or right-to-left manner, while the semantic information of the context is neglected, thus lead-
ing to sub-optimal performance on language understanding tasks. To tackle this problem,
BERT [34], i.e., the bidirectional Transformer encoder, is proposed. By training with the
Masked Language Modeling (MLM) and Next Sentence Prediction (NSP) objectives, the
model can better capture contextual information from both sides, thus achieving excellent
performance on many tasks. Following BERT, many studies designs various pre-training
objectives for different tasks [96, 107, 152].

Since BERT is employed in our studies, we introduce its structure and general usage in
more detail.
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BERT, which stands for Bidirectional Encoder Representations from Transformers, is
a recently proposed language representation model [34]. BERT is designed to pre-train
deep bidirectional representations from unlabeled text by jointly conditioning on both left
and right contexts. BERT’s architecture is a multi-layer Transformer encoder. With the
self-attention mechanism, the representation of a token can attend to all other tokens, thus
achieving information aggregation from context in both sides (left and right). BERT is pre-
trained on BooksCorpus [243] and English Wikipedia with the training objectives of Masked
Language Modeling (MLM) and Next Sentence Prediction (NSP). In the MLM task, BERT
is trained to predict the randomly masked token [MASK] based on its context tokens. By this
means, BERT can learn the relationship between tokens. The NSP task asks the model to
predict whether two sentences are consecutive in a document, which can improve the model’s
capability of modeling relationships between sentences.

The input representation of BERT is shown in Figure 1. For each token, its representation
is the sum of three embeddings: the token embedding, the segmentation embedding, and
the position embedding. The token embedding maps each token into a vector through an
embedding table (randomly initialized). The segmentation embedding indicates the token
belongs to the first or the second sentence (explained later). The position embedding reflects
the token’s position (e.g., the position of the [CLS] token is zero).

BERT is often used to compute a representation for a single sentence or a sentence pair.
Formally, when representing a single sentence A = [wA

1 ,wA
2 , · · · ,wA

m] with m tokens, it first
constructs the input sequence as:

SA = [CLS]wA
1 wA

2 · · · wA
m[SEP], (2.1.11)

where [CLS] and [SEP] are two special tokens. Then, the output representation of the [CLS]
token is used as the sentence representation. Since only a single sentence is represented, the
segmentation embeddings of all tokens are the same. When representing a sentence pair
(A, B), where A = [wA

1 ,wA
2 , · · · ,wA

m] and B = [wB
1 ,wB

2 , · · · ,wB
n ], it constructs the input

sequence as:

SAB = [CLS]wA
1 wA

2 · · · wA
m[SEP]wB

1 wB
2 · · · wB

n [SEP], (2.1.12)

where the [SEP] token is used to separate two sentences. As shown in Figure 1, to indicate
different sentences, the segment embeddings are set as EA and EB respectively for sentence
A and sentence B. Similarly, the [CLS] token’s representation is used as the representation
of the sentence pair. Intuitively, each token in the sequence can attend to all other tokens
in both sentences, so the interaction between the two sentences can be captured.
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2.2. Document Ranking
A Modern information retrieval system usually contains two essential components: doc-

ument retrieval and document (re-)ranking. The former aims at retrieving many relevant
documents as a candidate list from a large repository, while the latter focuses on (re-)ranking
the documents in the candidate list according to their relevance. In this thesis, we concentrate
on the document ranking task, where the candidate documents are provided by upstream
retrieval systems (such as BM25 [157] or dense retrievers [85, 212]).

In document ranking, according to whether search context information is used, we can
categorize the task into ad-hoc ranking (no search context is used) and context-aware ranking.
Below, we review some representative studies in both categories. All of them are based on
neural networks, which are the most relevant to our study.

2.2.1. Ad-hoc Ranking

Based on different assumptions for relevance evaluation, existing neural ranking mod-
els can be divided into two categories, namely representation-focused architecture and
interaction-focused architecture [62]. Besides these two categories, there are also some hybrid
models that combine both architectures in learning relevance features.

The assumption of representation-focused architecture is that relevance relies on com-
positional meaning of the input texts. Therefore, models based on this architecture usually
design a complex representation function for both queries and documents to obtain their
high-level representations. The final relevance score is computed based on these represen-
tations through an evaluation function. Typical methods include DSSM [75], ARC-I [72],
and MV-LSTM [190]. DSSM applied two fully-connected networks to represent queries and
documents; ARC-I used 1D convolutional layers and max-pooling layers to produce high-
level representation for queries and documents; and MV-LSTM employed a bi-directional
LSTM for encoding queries and documents. This architecture is more suitable for short
texts (since it is difficult to obtain good representation for long texts) and more efficient for
online computing (because it can pre-calculate representations of the texts offline).

In contrast, the assumption of interaction-focused architecture is that relevance is essen-
tially about the relation between queries and documents, so it is more effective to learn the
interactions directly. Models based on this architecture often focus on designing complex
interaction function and evaluation function to produce the relevance score. For exam-
ple, KNRM [211] constructed a matching matrix by computing word-level cosine similarity
between the query and document. Then, a group of kernels was applied to convert the word-
level interactions to query-document ranking features. These ranking features were combined
by a ranking layer to produce the final ranking score. ARC-II [72] applied 1D convolutional
layers to compute the interactions between the query and document. Then, 2D convolutional
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layers and max-pooling layers were employed to extract features and a multi-layer perceptron
was used to compute the final matching score. MatchPyramid [134] directly constructed
an interaction matrix based on word embeddings and also applied 2D convolutional and
max-pooling layers to extract matching features. Some BERT-based models [218] can also
be treated as interaction-focused because the query and document interaction is achieved
by the self-attention. This architecture generally performs better than the representation-
focused architecture since more detailed interaction signals can be captured. However, the
interaction-focused architecture is inefficient for online computing as the interaction cannot
be pre-computed.

In order to take advantage of both representation-focused methods and interaction-
focused methods, some hybrid models are proposed. For example, DUET [126] employed
both representation-focused architecture and interaction-focused architecture as two sub-
models, and used a sum operation to combine the scores from both networks to produce
the final relevance score. ILM [129] further combined the deep learning-based neural fea-
tures and traditional features. It obtained representation-focused features by encoding the
query and document respectively and concatenating them together; it computed interaction-
focused features by applying CNNs over the interaction matrix; and it also extracted some
non-neural features (such as BM25 score and TF-IDF score). All three kinds of features were
finally combined together to compute the final ranking score.

2.2.2. Context-aware Ranking

With the recent development, search engines can support more and more complex infor-
mation needs. Users’ search behaviors have evolved from one-shot query to multiple inter-
actions with the search engine. For example, when users have ambiguous information needs,
they will first search for some general information and gradually refine their queries to be
more specific. These consecutive queries form a search session. Intuitively, the evolution of
user queries reflect the change in user search intents, and the corresponding clicking behaviors
reveal how their information needs might be satisfied. Therefore, to model the user intent
of the current query, the context information in search sessions (including previous queries
and the corresponding clicked documents) has shown to be very useful [9, 50, 83, 239].
Compared to ad-hoc ranking that only uses the current query, context-aware ranking should
also exploit the search context, which is a more complex problem. Researchers have explored
leveraging context and search activities in different forms to build better models for search
query or document ranking.

Early studies focused on deriving contextual features from users’ search activities to
characterize their search intent and rank documents. For example, some keywords were
extracted from users’ historical queries and clicked documents and used to expand the current
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query [165]. Statistical features and rule-based features were also introduced to quantify
context information from user search behavior [198, 208]. However, these methods often rely
on manually extracted features or handcrafted rules, which heavily limits their applications
to different datasets. Later, researchers started to build predictive models for users’ search
intent or future behavior. For example, a hidden Markov model was employed to model the
evolution of users’ search intent, based on which the document ranking is conducted [14].

Encouraged by the development of neural networks, various approaches have been pro-
posed for context-aware document ranking. For example, Ahmad et al. [3] proposed a hierar-
chical neural structure with RNNs to model historical queries, and the output was combined
with the current query’s representation for document ranking. They have also found that
jointly learning query suggestion and document ranking can boost the model’s performance
on both tasks. Based on this structure, in addition to leveraging historical queries, re-
searchers introduced historical clicked documents (modeled together with the queries by the
hierarchical RNNs) and found they are also helpful for document ranking [4].

More recently, large-scale pre-trained language models, such as BERT [34], have achieved
great success in many NLP and IR tasks [86, 87, 106, 113]. Qu et al. [149] proposed to
concatenate all historical queries, clicked documents, and unclicked documents as a long
sequence and leveraged BERT as an encoder to compute their term-level representations.
These representations were further combined with relative position embeddings and human
behavior embeddings through another transformer-based structure to get the final repre-
sentations. The ranking score is computed based on the representation of the special [CLS]
token. Chen et al. [21] designed three generative tasks, i.e., predicting future queries, clicked
documents, and a supplementary query, to enhance the user behavior sequence modeling.
They applied BART [96] that has a BERT-like Transformer encoder for document ranking,
and a Transformer decoder for those generative tasks.

Different from existing studies, we do not devise new model architectures, but focus on
improving the training paradigm for context-aware document ranking. In our first article,
we propose a contrastive learning based-method to simulate potential variations in human
search behavior. It greatly enhances the robustness of user behavior sequence representation.
Then, in our second article, we design a curriculum learning framework to regulate the order
of the training samples into an easy-to-hard manner, with which existing models can be
improved significantly.

2.3. Dialogue Systems
According to the application domains, dialogue systems can be generally categorized into

domain-specific systems and open-domain systems. The former aims at handling specific
tasks, such as booking tickets, thus being also known as task-oriented systems. This kind
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of systems have been widely applied in real scenarios to automate the completion of the
tasks, thus reduce the cost of human resources. The later seeks to communicate with people
in a chit-chat style, so it is often referred to as a chatbot. As the purpose of the two
kinds of systems are different, their implementations are different as well. For task-oriented
systems, the domain and task are determined, so the overall process of the conversation can
be predefined. The system only needs to fulfill the given steps to complete a specific task.
The core problem in such a system is to recognize the information from user input and track
the state of the conversation by filling the slots, while the response itself can be directly
generated from a set of templates. In contrast, open-domain conversation systems cannot
identify user intent in advance, so the key problem is understanding the user’s input and
constructing a proper response. In this thesis, we focus on retrieval-based dialogue, which
aims at retrieving an appropriate response from a large dialogue repository. This approach
is widely applied in some open-domain dialogue systems such as XiaoIce. We will study
the problem of response selection. Besides, as we consider external knowledge as additional
context and investigate their impact on response selection performance, we also review some
knowledge-grounded dialogue systems in this section.

2.3.1. Open-domain Dialogue Systems

Inspired by the Turing test proposed in 1950 [184], researchers and engineers have de-
veloped many dialogue systems for chitchat [29, 195]. ELIZA, created in 1966, is perhaps
the first chatbot known publicly [195]. It can chat with people in a specific domain based
on many hand-crafted scripts and limited domain knowledge. Recently, with large-scale hu-
man dialogue data, researchers begin to explore data-driven approaches to build a chatbot.
Existing methods can be categorized into two groups. The first is generation-based meth-
ods. The model is trained to learn how to generate a response from scratch (introduced
in Section 2.3.1.1). After training, it can generate a response to any user input. However,
because all responses are generated by neural networks, grammatical correctness and fluency
cannot be guaranteed.1 The second group of methods are retrieval-based. Several response
candidates are retrieved by an IR system from a large repository, and the model is designed
to rerank them by their relevance with user input (introduced in Section 2.3.1.2). Since all
responses are human-written, they are usually fluent and correct in grammar. However, the
system may not make a suitable response when the size of the repository is limited. So, the
retrieval-based dialogue is applicable only when a large repository of dialogues is available.
This thesis assumes that we have such a large repository. We focus on context-aware ranking
problem, which is widely studied in retrieval-based approaches.

We will introduce some representative studies in both categories in following sections.
1This was generally the case before the arrival of ChatGPT, which demonstrates a great capacity to generate
fluent sentences.
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2.3.1.1. Generation-based Methods. Some early studies treat the response generation task
as a statistical machine translation (SMT) problem, which enjoys the advantage of its end-
to-end and data-driven features [156, 187]. Compared to earlier work that heavily relied
on hand-crafted rules [95, 222] or generated rules from data [131], the SMT model resulted
in a paradigm change [156]. Thereafter, Sordoni et al. [170] extended the neural language
model in SMT architecture and proposed a sequence-to-sequence (seq2seq) model to rescore
the generated outputs. However, SMT-based models do not use a proper representation of
the dialogue context. It only concatenates one or a few previous utterances with the current
one as the input. More recently, more sophisticated seq2seq methods have been applied to
response generation and achieve better performance [98, 162, 163, 187]. In these seq2seq
models, an encoder encodes the dialogue context (user input) into a vector representation,
based on which a decoder generates the response.

Formally, given an input context X = (x1, · · · ,xLX
), the encoder represents it as a vector.

Then, the decoder decodes the response Y = (y1, · · · ,yLY
) based on the representation. The

generation probability of the response Y can be defined as:

p(Y |X) =
LY∏
t=1

p(yt|y<t,X), (2.3.1)

where yt denotes the word generated at the t-th step, and y<t denotes the previous generated
words (y1, · · · ,yt−1). Both the encoder and decoder are often implemented as recurrent
neural networks (RNNs). The definition we give above is often known as single-turn response
generation, because the previous turns between two interlocutors are not considered. Indeed,
by concatenating previous utterances in the dialogue context with the current one as input,
the methods proposed for single-turn response generation can be easily extended to multi-
turn response generation.

Based on the seq2seq structure with attention mechanism [164, 187], multiple exten-
sions have been made to tackle the “safe response” problem [98] (i.e., to respond by general
utterances such as “OK”); to incorporate external knowledge [209, 234]; to generate re-
sponses with emotions or personas [100, 145, 233]; to model the hierarchical structure of
the dialogue context [162, 210]; and to reduce the cost in response decoding [206].

Recently, pre-trained language models have shown their power in many NLP tasks. They
are also applicable for building open-domain dialogue systems. In response generation, Di-
aloGPT [229] applied the multi-layer Transformer and is trained on large-scale dialogue pairs
extracted from Reddit. With a large amount of training data to fine-tune the parameters,
it outperformed traditional non-pre-trained methods significantly.

2.3.1.2. Retrieval-based Methods. The key issue of retrieval-based methods is how to
measure the suitability of a candidate response to a user input. Formally, suppose that we
have a dataset D, in which each sample is represented as (c, r, y), where c = {u1, . . . ,un}
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Fig. 2. Illustration of two typical methods for building retrieval-based dialogue systems.

represents a conversation context with {ui}n
i=1 as utterances; r is a response candidate; and

y ∈ {0,1} is a binary label, indicating whether r is a proper response. The goal is to learn a
matching model g from D, such that for a new context-response pair (c,r), g(c,r) measures
the degree of suitability of a response r to the given context c. Early work studied single-
turn response selection where only the last utterance un is used, while recent work paid more
attention to context-response matching for multi-turn response selection.

Sequential matching network (SMN) [205] is the first model for multi-turn response selec-
tion. It proposed a representation-matching-aggregation framework (as shown in the upper
side of Figure 2), which has been further extended by many studies. In this framework, the
context and response were initially encoded in vector space through a pre-trained embedding
table (such as word2vec [122] or GloVe [140]). Then, a matching matrix was computed be-
tween each utterance and the response candidate by cosine similarity or dot product. Next,
CNNs or RNNs were applied to extract matching features from the matching matrices. Fi-
nally, all matching features were aggregated by another RNN. Several studies extended this
framework by introducing new neural architectures. For instance, deep attention matching
network (DAM) [237] applied self-attention and cross-attention mechanism to facilitate the
representation of the context and response, and allow for interactions between them. By
stacking multiple attention layers, more fine-grained features can be extracted so that the
final performance is improved. Multi-representation fusion network (MRFN) [177] proposed
to represent the context and response in multiple ways, including character-based word em-
bedding, word2vec, sequential representation based on RNNs, and local representation based
on CNNs, etc. Then, matching features were extracted separately based on these different
representations and then aggregated together. As different representations are expected to
capture information about various aspects, the model can rely on multiple matching features
for response selection. Multi-hop selector network (MSN) [223] devised a selection mecha-
nism to filter out irrelevant context. The refined context is shown to be more effective in
response selection.
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Later, similar to generation-based methods, pre-trained language models, such as
BERT [34] and its variants (e.g., RoBERTa [108]), also boosted the performance on
response selection over several public datasets (as shown in the lower side of Figure 2).
For example, SA-BERT [55] demonstrated that separately modeling the utterance from
different speakers can improve the performance. Different speakers were marked by type
embeddings, and there was a special separation token between utterances. Such clear
indicators can help pre-trained models to learn coherency within and between speakers.

2.3.2. Knowledge-Grounded Conversation

Existing open-domain dialogue systems can provide fluent responses based on dialogue
context, but there is still a gap between human-machine dialogues and real human dialogues.
The lack of proper knowledge is the primary reason that makes it difficult for dialogue
methods to delve deeply into a topic. Large pre-trained language models have exhibited the
capability of extracting implicit knowledge from a large amount of texts used to pre-train
them [12, 227, 160, 181]. In a dialogue on a topic well covered by the texts used in the
pre-training, correct answers can be provided. However, as one can also see from the recent
ChatGPT model, wrong answers can be generated on a topic that is not well covered [132].
For example, the answer can be factually wrong, or an answer can be invented without
grounding. Explicit knowledge grounding in dialogue can be an effective way to enhance the
current dialogue systems.

Various approaches to knowledge-grounded conversation have been proposed. We select
and introduce two categories of approaches, which are the most relevant to our study.

2.3.2.1. Document-grounded Dialogue. Leveraging grounding document is reported to be
an effective way to enhance human-machine conversation [52, 118, 226, 231]. Zhou et
al. [235] published a dataset in which conversations are grounded on movie-related articles
from Wikipedia.2 The interlocutors are shown with these Wikipedia articles and asked to
talk about them, so that the collected conversations are grounded on these external docu-
ments (knowledge). Based on this dataset, Zhao et al. [231] proposed to model the context
and document interactions. They devised a document-grounded matching network that lets
the document and the context attend to each other so as to generate better representations
for response selection. Through the attention mechanism, different parts of the document
contents are assigned different weights and further participate in response selection to differ-
ent extents. Gu et al. [58] argued that the dialogue context and document should interact
with the response candidate in parallel, as opposite to being fused together. They designed
a dually interactive matching network, where the document can interact with the response
candidate directly.

2Wikipedia, https://www.wikipedia.org
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Different from previous methods, we find that documents often contain a lot of noise.
Even though one may expect the noise contents (for the current step) to be assigned with
lower weights, they can still disorient response selection, especially when there is a direct
keyword match. To alleviate this problem, in our third article, we propose to perform a
selection on the document content before integrating it into the response selection process.
Two concurrent works with ours have adopted similar ideas [57, 73].

2.3.2.2. Methods for Knowledge Selection. Selecting proper knowledge is an essential step
for knowledge-grounded dialogue systems. For example, Ghazvininejad et al. [52] applied
a memory network to store and fetch the knowledge. The knowledge is selected accord-
ing to its similarity with the dialogue turn. Lian et at. [104] proposed a model with the
knowledge selection mechanism which leverages both prior and posterior distributions over
the knowledge to facilitate knowledge selection. The basic idea is that a relevant knowledge
should lead to similar prior and posterior distributions, and the posterior distribution can
act as weak labels for learning the prior distribution. Kim et al. [90] extended this method
to a sequential knowledge Transformer that employs a sequential latent variable model to
better leverage the response information for the proper choice of the knowledge. Pre-trained
language models have been applied for automatic knowledge selection. For example, Zhao
et al. [232] proposed a model based on GPT-2. The knowledge is sequentially selected and
concatenated to the context sequence so as to generate responses. Essentially, the knowledge
selection is achieved by the attention mechanisms in pre-trained language models.

In our two last articles, we perform knowledge selection for different purposes. In the
fourth article which tries to simulate dialogue in movie following a narrative, we conduct
selection on a given narrative to determine which part of narrative should be covered by
the current dialogue (script line). The model should also pay attention to which part of the
narrative has been covered by previous script, which is not required in problems studied in the
existing work. In the fifth article focusing on proactive dialogue, we use knowledge to drive
dialogue. The selected knowledge should be not only consistent with the dialogue context,
but also relevant to the current dialogue target (i.e.entity). We design a new heuristic to
generate weak labels for pieces of knowledge according to whether they are involved in the
gold standard answer. The weak labels are used to train a knowledge selection model, which
greatly improves the selection accuracy.

2.4. Evaluation Metrics
Evaluation is essential to assess the quality of an approach and to compare different

approaches. In this section, we introduce some metrics that are used in our experiments.
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Precision@k (P@k) It measures the proportion of relevant documents up to the k-th
position in the ranking list, which is defined as:

P@k =
k∑

i=1

r(di)
k

, (2.4.1)

where r(di) ∈ {0,1} indicates the binary relevance score of the document di in the ranked
list.

Recall@k (R@k) It measures the proportion of relevant documents that are ranked
in the top k of the ranking list, which is defined as:

R@k =
k∑

i=1

r(di)
N

, (2.4.2)

where N is the total numbers of relevant documents.
Average Precision (AP) It considers both precision and recall by computing an

average of the precision at k, k being chosen as the positions of relevant documents. The
definition is as follows:

AP =
∑

i:r(di)=1

P@i

N
, (2.4.3)

where N is the total number of relevant documents.
Mean Average Precision (MAP) It is defined as the mean AP over the set of

evaluation topics T :

MAP =
∑
t∈T

AP(t)
|T | . (2.4.4)

Mean Reciprocal Rank (MRR) It considers the first relevant document’s position
in the ranked list, which is defined as:

MRR = 1
|T |

∑
t∈T

1
it

, (2.4.5)

where it is the rank of the first relevant document in the list for the topic t.
Normalized Discounted Cumulative Gain@k (NDCG@k) This metric is often

used for graded relevance (vs binary relevance in the metrics presented above). The gain of
a document in the ranked list is obtained by discounting its relevance score by the logarithm
of its rank. The discounted gain of each document in the ranked list is accumulated to
compute the discounted cumulative gain (DCG) as follows:

DCG@k =
k∑

i=1

2r(di)−1

log2(i + 1) , (2.4.6)

where r(di) is the relevance score of the document di. NDCG normalize the DCG scores
across topics: it divides the DCG score by the DCG obtained by the ideal ranking of the
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documents in the ranked list as:

NDCG@k = DCG@k

IDCG@k
, (2.4.7)

where IDCG@k is the DCG score of the ideal ranking list.

2.5. Statistical Significance
Statistical significance refers to the claim that a set of observed data are attributed to

a specific cause rather than the result of chance. Given two systems A and B, we can
use statistical significance testing to check whether their performance difference is due to
the result of chance. There are several different significance tests, such as randomization
test [28], Wilcoxon signed rank test [189], sign test [189], bootstrap test [28], and student’s
paired t-test [43]. Each of them has its own criterion and null hypothesis. Among them,
t-test is the most commonly used and appropriate one [168].

Concretely, in a t-test, we first have a null hypothesis that the mean of the distribution
of the performance difference between two systems A and B is zero, i.e., the two runs are
identical. Then, we perform the statistical significance test as follows (taking the case that
the two runs have similar variances as an example):

t = x̄1 − x̄2

s
√

1
n1

+ 1
n2

, (2.5.1)

where t is the t-value, x1 and x2 are the means of the two runs being compared, s2 is the
pooled standard error of the two runs, and n1 and n2 are the number of observations in
each of the runs. Then, we can compare the t-value against the values in a critical value
chart (e.g., a Student’s t table) to obtain a p-value, which is the probability of obtaining the
observed difference in performance, under the assumption that the null hypothesis is true.
A low p-value indicates a high confidence of rejecting the null hypothesis, i.e., the difference
between the two systems is not a result of chance.

27





First Article.

Contrastive Learning of
User Behavior Sequence

for Context-Aware
Document Ranking

by

Yutao Zhu1, Jian-Yun Nie1, Zhicheng Dou2, Zhengyi Ma2,
Xinyu Zhang3, Pan Du1, Xiaochen Zuo2, and Hao Jiang3

(1) University of Montreal, Quebec, Canada
(2) Gaoling School of Artificial Intelligence, Renmin University of China, Beijing, China
(3) Distributed and Parallel Software Lab, Huawei, Hangzhou, Zhejiang, China

This article was published in Proceedings of the 30th ACM International Conference on
Information and Knowledge Management, pp. 2780-2791. 2021 .

The main contributions of Yutao Zhu for this articles are presented as follows:
• Propose the idea;
• Conduct the experiments;
• Write the paper.

Jian-Yun Nie and Zhicheng Dou contributed to the model design and paper writing;
Zhengyi Ma and Xiaochen Zuo helped conduct the experiments; Xinyu Zhang and Hao
Jiang provided the computation resources for experiments; Pan Du contributed to the paper
writing.



Résumé. Les informations contextuelles dans les sessions de recherche se sont avérées utiles
pour saisir l’intention de recherche des utilisateurs. Les études existantes ont exploré les
séquences de comportement des utilisateurs dans les sessions de différentes manières afin
d’améliorer la suggestion de requête ou le classement des documents. Cependant, une sé-
quence de comportement de l’utilisateur a souvent été considérée comme un signal précise
et exacte reflétant le comportement de l’utilisateur. En réalité, elle est très variable: les re-
quêtes de l’utilisateur pour la même intention peuvent varier, et il peut cliquer sur différents
documents. Pour apprendre une représentation plus robuste de la séquence de comporte-
ment de l’utilisateur, nous proposons une méthode basée sur l’apprentissage contrastif, qui
prend en compte les variations possibles dans les séquences de comportement de l’utilisa-
teur. Plus précisément, nous proposons trois stratégies d’augmentation des données pour
générer des variantes similaires des séquences de comportement de l’utilisateur et les contras-
ter avec d’autres séquences. Ce faisant, le modèle est forcé d’être plus robuste en ce qui
concerne les variations possibles. La représentation optimisée de la séquence est incorporée
dans le classement des documents. Des expériences sur deux ensembles de données réelles
de logs de requêtes montrent que le modèle proposé surpasse de manière significative les
méthodes de l’état de l’art, ce qui démontre l’efficacité de notre méthode pour le classement
des documents en fonction du contexte.
Mots clés : Classement des documents en fonction du contexte, apprentissage contrastif,
séquence de comportement de l’utilisateur, augmentation des données

Abstract. Context information in search sessions has proven to be useful for capturing
user search intent. Existing studies explored user behavior sequences in sessions in different
ways to enhance query suggestion or document ranking. However, a user behavior sequence
has often been viewed as a definite and exact signal reflecting a user’s behavior. In reality, it
is highly variable: user’s queries for the same intent can vary, and different documents can
be clicked. To learn a more robust representation of the user behavior sequence, we propose
a method based on contrastive learning, which takes into account the possible variations in
user’s behavior sequences. Specifically, we propose three data augmentation strategies to
generate similar variants of user behavior sequences and contrast them with other sequences.
In so doing, the model is forced to be more robust regarding the possible variations. The
optimized sequence representation is incorporated into document ranking. Experiments on
two real query log datasets show that our proposed model outperforms the state-of-the-art
methods significantly, which demonstrates the effectiveness of our method for context-aware
document ranking.
Keywords: Context-aware Document Ranking, Contrastive Learning, User Behavior Se-
quence, Data Augmentation

Prologue
At the time we wrote this article, existing studies focused on either deigning new struc-

tures to model user search behavior or applying multi-task learning to jointly optimize
context-aware document ranking and other related tasks (such as query suggestion). All
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of these studies directly trained models on search log data, where the observed search ses-
sions are used as positive samples, while unobserved ones are disregarded or used as negative
samples. They overlooked the fact that there are no fixed search patterns for specific infor-
mation needs. All queries and clicked documents are just possible options for satisfying a
search intent, while a vast number of options have not yet been recorded in the search log.
Under this circumstance, models cannot learn sufficient knowledge to deal with potential
variations in user behavior sequences. To deal with this problem, we are inspired by recent
studies on contrastive learning, and propose several data augmentation strategies to mimic
the potential variations. Each user behavior sequence is augmented by introducing minor
changes, so the produced sequences are similar to the original one. Through contrastive
learning to distinguish these similar sequence pairs from randomly sampled dissimilar ones,
the models can generate more robust representation for user behavior sequences and fur-
ther improve the performance on context-aware document ranking. It is worth noting that,
though our proposed method is designed for context-aware document ranking, where the
previous search behaviors of a search session serve as the context, it is a general learning
method that can also be applied to other context-aware ranking problems, as long as the
context can be represented by a text sequence.

1. Introduction
Search engines have evolved from one-shot searches to consecutive search interactions

with users [2]. To fulfil complex information needs, users will issue a sequence of queries,
examine and interact with some of the results. User historical behavior or interaction history
in a session is known to be very useful for understanding the user’s information needs and
to rank documents [9, 50, 83, 238].

Various studies exploited user behavior data for different purposes. For example, by ana-
lyzing search logs, researchers found that a user’s search history provides useful information
for understanding user intent during the search sessions [9]. To utilize the historical user
behavior in document ranking, some early work explored query expansion and learning to
rank techniques [9, 17, 64, 165]. More recently, various neural structures have been used
to model the user behavior sequence. For example, a recurrent neural network (RNN) is
proposed to model the historical queries and suggest the next query [169]. This structure
has been extended to model both the historical queries and clicked documents, leading to
further improvement on document ranking [3, 4]. Pre-trained language models have also
been exploited to encode contextual information from user behavior sequences, and they
achieved promising results [149].

All these studies tried to learn a prediction or representation model to capture the in-
formation hidden in the sequences. However, user behavior sequences have been viewed as
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definite and exact sequences. That is, an observed sequence is used as a positive sample and
any unseen sequence is not used or is viewed as a negative sample. This strict view does
not reflect the flexible nature of user’s behavior in a session. Indeed, when interacting with
a search engine, users do not have a definitive interaction pattern, nor a fixed query for an
information need. All these are flexible and change greatly from a user to another, and from
a search context to another. Similarly, user’s click behaviors are also not definitive: one can
click on different documents for the same information need, and can also click on irrelevant
documents. The high variation is inherent in the user’s interactions with a search engine.
This characteristic has not been explicitly addressed in previous studies. One typically re-
lied on a large amount of log data, hoping that strong patterns can emerge, while accidental
variations (or noise) can be discarded. This is true to some extent when we have a large
amount of log data and when we are only interested in the common patterns shared by users.
However, the models strictly relying on the log data cannot fully capture the nuances in user
behaviors and cope with the variations. A better approach is to view the data as they are,
i.e., they are just samples of possible query formulations and interactions, but much more
are not shown in the logs.

To tackle this problem, in this work, we propose a data augmentation approach to
generate possible variations from a search log. More specifically, we use three strategies to
mask some terms in a query or document, delete some queries or documents, or reorder
the sequence. These strategies reflect some typical variations in user’s behavior sequences.
The generated behavior sequences can be considered similar to the observed ones. We have,
therefore, automatically tagged user behavior sequences in terms of similarity, which are
precious for model training. In addition, we can generate more training data from search logs,
which has always been a critical issue for research in this area. Based on the augmented data,
we utilize contrastive learning to extract what is similar and dissimilar. More specifically,
the contrastive model tries to pull the similar sequences (generated variants) closer and to
distinguish them from semantically unrelated ones. Compared to the existing approaches
based on search logs, we expect that contrastive learning can better cope with the inherent
variations and generate more robust models to deal with new behavior sequences.

Contrastive learning is implemented with a pre-trained language model BERT [34]
through encoding a sequence and its variants into a contextualized representation with a
contrastive loss. The document ranking is then learned by a linear projection on top of
the optimized sequence representation. With both the original sequences and corresponding
variants modeled in the representation, the final ranking function can not only address the
context information thoroughly, but also learn to cope with the inherent variations, hence
generating better ranking results during prediction.
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We conduct experiments on two large-scale real-world search log datasets (AOL and
Tiangong-ST). Experimental results show that our proposed method outperforms the exist-
ing methods (including those exploiting search logs) significantly, which demonstrates the
effectiveness of our approach.

Our contributions are three-fold:
(1) We design three different data augmentation strategies to construct similar se-

quences of observed user behavior sequences, which modify the original sequence at term,
query/document, and behavior levels.

(2) We propose a self-supervised task with a contrastive learning objective based on the
augmented behavior sequences to capture what is hidden behind the sequences and their
variants, and to distinguish them from other unrelated sequences.

(3) Experiments on two large-scale real-world search log datasets confirm the effectiveness
of our method. This study shows that contrastive learning with automatically augmented
search logs is an effective way to alleviate the shortage of log data in IR research.

2. Related Work
2.1. Exploiting Historical Log Data

Context information in sessions has shown to be useful in modeling user intent in search
tasks [9, 50, 83, 239]. Early studies focused on extracting contextual features from users’
search activities so as to characterize their search intent. For example, some keywords
were extracted from users’ historical queries and clicked documents and used to rerank the
documents for the current query [165]. Statistical features and rule-based features were
also introduced to quantify or characterize context information [198, 208]. However, these
methods often rely on manually extracted features or handcrafted rules, which limits their
application in different retrieval tasks.

Later, researchers started to build predictive models for users’ search intent or future
behavior. For example, a hidden Markov model was employed to model the evolution of
users’ search intent. Then, both document ranking and query suggestion were conducted
based on the predicted user intent [14]. Reinforcement learning has also been applied to
model user interactions in search tasks [59, 112]. Unfortunately, the predefined model
space or state transition structure limits the learning of rich user-system interactions.

The development of neural networks generated various solutions for context-aware doc-
ument ranking. Some researchers proposed a hierarchical neural structure with RNNs to
model historical queries and suggest the next query [169]. This model is further extended
with the attention mechanism to better represent sessions and capture user-level search be-
havior [24]. Recently, researchers found that jointly learning query suggestion and document
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ranking can boost the model’s performance on both tasks [3]. In addition to leveraging his-
torical queries, the historical clicked documents are also reported to be helpful in both query
suggestion and document ranking [4].

More recently, large-scale pretrained language models, such as BERT [34], have achieved
great performance on many NLP and IR tasks [86, 87, 106, 113]. Qu et al. [149] proposed
to concatenate all historical queries, clicked documents, and unclicked documents as a long
sequence and leveraged BERT as an encoder to compute their term-level representations.
These representations were further combined with relative position embeddings and human
behavior embeddings through another transformer-based structure to get the final represen-
tations. The ranking score is computed based on the representation of the special “[CLS]”
token.

Our framework is also based on BERT, but we use contrastive learning to pretrain the
model in a self-supervised manner. Theoretically, this strategy better leverages the available
training data, which can also be applied to existing methods.

2.2. Contrastive Learning for IR

Contrastive learning aims to learn effective representation of data by pulling semanti-
cally close neighbors together and pushing apart other non-neighbors [66, 193]. It has been
widely applied in computer vision [23, 179, 252] and NLP tasks [40, 49, 61, 207] and
has proven its high efficiency in leveraging the training data without the need of annotation.
What is required in contrastive learning is to identify semantically close neighbors. In visual
representation, neighbors are commonly generated by two random transformations of the
same image (such as flipping, cropping, rotation, and distortion) [23, 35]. Similarly, in text
representation, data augmentation techniques such as word deletion, reordering, and substi-
tution are applied to derive similar texts from a given text sequence [121, 207]. Although
the principle of contrastive learning is well accepted, the ways to implement it are still under
exploration, with the general guiding principles of alignment and uniformity [193].

As for pre-training, Chang et al. [19] designed several paragraph-level pre-training tasks
and the Transformer models can improve over the widely-used BM25 [157]. Ma et al. [113]
constructed a representative word prediction (ROP) task for pre-training BERT. Experi-
mental results showed that the BERT model pre-trained with ROP and masked language
model (MLM) tasks achieves great performance on ad-hoc retrieval. Our proposed sequence
representation optimization stage can be treated as a pre-training stage because it is trained
before document ranking (our main task). However, as we do not use external datasets, we
do not categorize our method as a pre-training approach.
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Fig. 3. The illustration of COCA. The query-document sequence (Hn) is augmented with two
different strategies, and the processed sequences are treated as a positive pair (H ′

n and H ′′
n).

Other augmented sequences in the same minibatch are used to construct negative pairs for
them (not shown here). The contrastive objective is to pull close the representation of the
two sequences in positive pairs and push apart the representation of others.

In this work, we propose a contrastive learning objective for optimizing the sequence rep-
resentation in order to improve the downstream document ranking task. This first attempt
paves the way for future research on the use of contrastive learning to IR.

3. Methodology
Context-aware document ranking aims at using the historical user behavior sequence

and the current query to rank a set of candidate documents. In this work, we design a new
framework for this task. Our framework aims at optimizing the representation of the user
behavior sequence before learning document ranking. As shown in Figure 3, our framework
can be divided into two stages: (1) sequence representation optimization and (2) document
ranking. In the first stage, we design a self-supervised task with contrastive learning objective
to optimize the sequence representation. In the second stage, our model uses the optimized
sequence representation and further learns the ranking model. We call our framework COCA
– COntrastive learning for Context-Aware document ranking.

3.1. Notations

Before introducing the task and the model, we first provide the definitions of important
concepts and notations. We present a user’s search history as a sequence of M queries
Q = {q1, · · · ,qM}, where each query qi is associated with a submission timestamp ti and the
corresponding list of returned documents Di = {di,1, · · · ,di,M}. Each query qi is represented
as the original text string that users submitted to the search engine. Q is ordered according
to query timestamp ti. Each document di,j has two attributes: its text content and click
label yi,j (yi,j = 1 if it is clicked). In general, user clicks serve as a good proxy of relevance
feedback [4, 80, 81, 149]. Given all available historical queries and clicked documents up
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to n turns, we denote the user behavior sequence as Hn = {q1,d1, · · · ,qn,dn}.3 As reported
in [4, 149], the unclicked documents are less helpful and may even introduce noise, so they
are not considered in the user behavior sequence.

3.2. Overview

With the above concepts and notations, we briefly introduce the two stages in COCA as
follows.

(1) Sequence Representation Optimization. As shown in the left side of Figure 3,
our target is to obtain a better representation of the user behavior sequence Hn in this
stage. To achieve this, we first construct two augmented sequences H ′

n and H ′′
n from Hn

with randomly selected augmentation strategies (Section 3.3.1). Such a pair of sequences
are considered to be similar. Then a BERT encoder is applied to get the representations
of these two sequences (Section 3.3.2). With the contrastive loss, the model learns to pull
them close and push them away from other sequences in the same minibatch (Section 3.3.3).
By comparing the two augmented sequences, the BERT encoder is forced to learn a more
generalized and robust representation for sequences.

(2) Document Ranking. As shown in the right side of Figure 3, we aim to rank the
relevant documents as high as possible in this stage. Given the current query qi and the
historical behavior sequence Hi−1, we treat Hi−1 ∪ {qi} as a sequence and the candidate
document di,j as another sequence. Then, we concatenate them together and use the BERT
encoder trained in the first stage to generate a representation. The final ranking score is
obtained by a linear projection on the representation. A cross-entropy loss is applied between
the predicted ranking score and the click label yi,j.

3.3. Sequence Representation Optimization

The user behavior sequence contains abundant information about the user intent. To
optimize the representation of the user behavior sequence, we propose a self-supervised ap-
proach. Specifically, we apply a contrastive learning objective to pull close the representation
of similar sequences and push apart different ones. The similar sequences are created by the
three augmentation strategies described below.

3.3.1. Augmentation Strategy. Inspired by the existing data augmentation strategies in
NLP and image processing, we propose three strategies to construct similar sequences,
namely term mask, query/document deletion, and behavior reordering (shown in Figure 4).
These strategies correspond to three levels of variation in user behaviors, i.e., term level,
query/document level, and user behavior level.

3Following previous studies [149], we only use one clicked document to construct the sequence.
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(b) Query/Document Deletion

(a) Term Mask

[T_MASK] [T_MASK] [T_MASK] [T_MASK] [T_MASK]

(c) Behavior Reordering

[DEL]

Fig. 4. Three augmentation strategies used in COCA. We use the user behavior sequence
with three query-document pairs as an example.

(a) Term Mask. In natural language processing, the “word mask” or “word dropout”
technique has been widely applied to avoid overfitting. It has been shown to improve the
robustness of the sentence representation, e.g., in sentence generation [10], sentiment analy-
sis [30], and question answering [45]. Inspired by this, we propose to apply a random term
mask operation over the user behavior sequence (including query terms and document terms)
as one of the augmentation strategies for contrastive learning.

With the term-level augmentation strategy, we can obtain various user behavior sequences
similar to the original one. The similar sequences only have minor differences in some terms.
This aims to simulate the real search situations where users may issue slightly different queries
for searching the same target, and a document may satisfy similar information needs. By
contrasting similar sequences with others, the models can learn the importance of different
terms in both queries and documents. Besides, it can also help the model to learn more
generalized sequence representation by avoiding relying too much on specific terms.

Specifically, for a user behavior sequence Hn = {q1,d1, · · · ,qn,dn}, we first represent it
as a term sequence Hn = {w1, · · · ,wNT

}, where NT is the total number of terms. Then,
we randomly mask a proportion γ of terms Tn = {t1, · · · ,tL}, where Ltm = �N · γ�, and ti

is the index of term to be masked. If a term is masked, it is replaced by a special token
“[T_MASK]”, which is similar to the token “[MASK]” used in BERT [34]. Therefore, we
formulate this augmentation strategy as a function f tm over the user behavior sequence Hn
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as:

f tm(Hn) = {ŵ1, · · · ,ŵN}, (3.1)

ŵt =

⎧⎪⎨⎪⎩wt, t /∈ Tn,

[T_MASK], t ∈ Tn.
(3.2)

(b) Query/Document Deletion. Random crop (deletion) is a common data augmen-
tation strategy in computer vision to increase the variety of images [23, 179]. This operation
can create a random subset of an original image and help the model generalize better. In-
spired by this, we propose a query/document deletion augmentation operation for contrastive
learning.

The query/document deletion strategy can improve the learning of sequence representa-
tion in two respects. First, after deletion, the resulting user behavior sequence becomes a
similar one with the difference on some queries or documents. This reflects a type of varia-
tion in real query logs. By contrasting these similar sequences with others, the models are
trained to learn the influence of the deleted queries or documents. Second, the generated
incomplete sequence provides a partial view of the original sequence, which forces the model
to learn a more robust representation without relying on complete information.

Specifically, for a user behavior sequence Hn = {q1,d1, · · · ,qn,dn}, we treat each query
and document as a sub-sequence s and represent the sequence as Hn = {s1,s2, · · · ,s2n−1,s2n}.
Then, we randomly delete a proportion μ of sub-sequences Rn = {r1, · · · ,rL}, where Ldel =
�2n · μ�, and ri is the index of the sub-sequence to be deleted. Different from the term
mask strategy, if a query or document is deleted, the whole sub-sequence is replaced by a
special token “[DEL]”. This augmentation strategy is formulated as a function fdel on Hn

and defined as:

fdel(Hn) = {ŝ1, · · · ,ŝ2n}, (3.3)

ŝr =

⎧⎪⎨⎪⎩sr, r /∈ Rn,

[DEL], r ∈ Rn.
(3.4)

(c) Behavior Reordering. Many tasks assume the strict order of the sequence, e.g.,
natural language generation [89, 186] and text coherence modeling [101, 102, 251]. How-
ever, we observe that the user search behavior sequence is much more flexible. For example,
when users only have a vague search intent, they will issue several queries in a random order
to obtain related information before making their real intent clear [59]. Besides, sometimes
users may issue a repeated query when they miss some information, which is called re-finding
behavior [114, 240]. Under this circumstance, we cannot assume the order of the queries is
strict. To prevent the model from relying too much on the order information and make the
model more robust to the newly issued query, we propose a behavior reordering strategy for
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contrastive learning. Different from the former two strategies, user behavior reordering does
not reduce the information contained in the sequence. Models can focus on learning content
representation in queries and documents rather than merely “remembering” their relative
order.

For a user behavior sequence Hn = {q1,d1, · · · ,qn,dn}, we treat each query and its cor-
responding document as a behavior sub-sequence and denote it as Hn = {b1, · · · ,bn}, where
bi = {qi,di}. Then, we randomly select two behavior sub-sequences and switch their posi-
tions, and this operation is conducted Lbr = �n · η� times, where η is the reordering ratio.
Considering the randomly selected i-th pairwise position as (ui, vi), we switch bui

and bvi
,

which can be formulated as a function f br on Hn:

f br(Hn) = {b̂1, · · · ,b̂n} (3.5)

b̂j =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
bj, j �= ui and j �= vi,

bvi
, j = ui,

bui
, j = vi.

(3.6)

3.3.2. Representation. Previous work has shown the effectiveness of applying BERT [34]
for sequence representation [31, 130, 149, 175, 251]. In our framework, we also use the
pre-trained BERT as an encoder to represent the augmented user behavior sequences (shown
in the left side of Figure 3). For a user behavior sequence Hn = {q1,d1, · · · ,qn,dn}, following
the design of vanilla BERT, we add special tokens “[CLS]” and “[SEP]” at the head and tail
of the sequence, respectively. Besides, to further indicate the end of each query/document,
we append a special token “[EOS]” at the end of it. Therefore, the input sequence X is
represented as:

X = [CLS]q1[EOS]d1[EOS] · · · qn[EOS]dn[EOS][SEP]. (3.7)

Then, the embedding of each token, the positional embedding, and the segment embedding
are added together and input to BERT to obtain the contextualized representation.4 The
output of BERT is a sequence of representations for all tokens, and we use the representation
of “[CLS]” token as the sequence representation:

z = g1

(
BERT(X)[CLS]

)
, (3.8)

where z ∈ R
768, and g1(·) is a linear projection.

3.3.3. Training Objective. We apply a contrastive learning objective to optimize the user
behavior sequence representation. A contrastive learning loss function is defined for the
contrastive prediction task, i.e., trying to predict the positive augmentation pair (Hi, Hj) in
set {H}. We construct the set {H} by randomly augmenting twice for all sequences in a
4Please refer to the original paper of BERT [34] for more details about these embeddings.
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minibatch. The strategy of each augmentation is randomly selected from our proposed three
ones. Assuming a minibatch with size N , we can obtain a set {H} with size 2N . The two
augmented sequences from the same user behavior sequence form the positive pair, while
all other sequences from the same minibatch are regarded as negative samples for them.
Following previous work [23, 49, 207, 40], the contrastive learning loss for a positive pair
is defined as:

l(i,j) = − log exp(sim(zi,zj)/τ)∑2N
k=1 1k �=i exp(sim(zi,zk)/τ)

, (3.9)

where 1k �=i is the indicator function to judge whether k �= i and τ is a hyperparameter
representing temperature. The overall contrastive learning loss is defined as all positive
pairs’ losses in a minibatch:

LCL =
2N∑
i=1

2N∑
j=1

m(i,j)l(i,j), (3.10)

where m(i,j) = 1 when (Hi, Hj) is a positive pair, and m(i,j) = 0 otherwise.
From another perspective, the contrastive learning stage can be viewed as a kind of

domain-specific post-training for pre-trained language models. As these contextualized lan-
guage models are usually pre-trained on general corpora, such as the Toronto Books Corpus
and Wikipedia, it is less effective to directly fine-tune these models on our downstream rank-
ing task if there is a domain shift. Our contrastive learning stage can help the model on do-
main adaptation to further improve the ranking task. This strategy has shown to be effective
in various tasks including reading comprehension [214] and dialogue generation [54, 196].

3.4. Context-aware Document Ranking

In the previous step, the BERT encoder has been optimized with the contrastive learning
objective. We now incorporate this BERT encoding to learn the context-aware document
ranking task.

3.4.1. Representation. Previous studies have applied BERT for ranking in a manner of
sequence pair classification [31, 130, 149]. Different from the first stage, the ranking stage
aims at measuring the relationship between the historical user behavior sequence Hn−1 =
{q1,d1, · · · ,qn−1,dn−1}, the current query qn, and a candidate document dn,i. Therefore, we
treat Hn−1 ∪ qn as one sequence and dn,i as another sequence, and the input sequence Y is
represented as:

Y = [CLS]q1[EOS]d1[EOS] · · · qn[EOS][SEP]dn,i[EOS][SEP]. (3.11)

Afterwards, the embedding of each token, the positional embedding, and the segment em-
bedding are added together and input to BERT. Note that Y contains two sequences, so
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we set their segment embeddings respectively as 0 and 1 to distinguish them. The output
representation of “[CLS]” is used as the sequence representation to calculate the ranking
score z as:

h = BERT(Y )[CLS], z = g2(h), (3.12)

where h ∈ R
768, and g2(·) is a linear projection to map the representation into a (scalar)

score.

3.4.2. Optimization. Following previous studies [4, 149], we use the following cross-
entropy loss to optimize the model:

Lrank = − 1
N

N∑
i=1

yi log zi + (1 − yi) log(1 − zi), (3.13)

where N is the number of samples in the training set.

4. Experiments
4.1. Datasets and Evaluation Metrics

We conduct experiments on two public datasets: AOL search log data [135] and
Tiangong-ST query log data [22].5

For AOL search log, we use the one provided by Ahmad et al. [4]. The dataset contains
a large number of sessions, and each session consists of several queries. In training and
validation sets, there are five candidate documents for each query in the session. In the test
set, 50 documents retrieved by BM25 [157] are used as candidates for each query in the
session. All queries have at least one satisfied click in this dataset, and if there are more
than one clicked documents, we use the first one in the list to construct the user behavior
sequence.

Tiangong-ST dataset is collected from a Chinese commercial search engine. It contains
web search session data extracted from an 18-day search log. Each query in the dataset has
10 candidate documents. In the training and validation sets, we use the clicked documents
as the satisfied clicks. Some queries may have no satisfied click, we use a special token
“[Empty]” for padding. For the test, the last query of each session is manually annotated
with relevance scores, while other (previous) queries in the session have only click labels.
Therefore, we construct two test sets based on the original test data as follows:

(1) Tiangong-ST-Click: In this test set, we only use the previous queries (i.e., without the
last query) and their candidate documents. Similar to AOL dataset, in this test scenario, all
5We understand that the AOL dataset should normally not be used in experiments. We choose to use it here
because it contains real human clicks, which fits our experiments well. MS MARCO Conversational Search
dataset may be another possible dataset, but the sessions in it are artificially constructed rather than real
search logs. So, we do not use the MS MARCO dataset in experiments.
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Table 1. The statistics of the datasets used in the paper.

AOL Training Validation Test

# Sessions 219,748 34,090 29,369
# Queries 566,967 88,021 76,159
Avg. # Query per Session 2.58 2.58 2.59
Avg. # Document per Query 5 5 50
Avg. Query Len 2.86 2.85 2.9
Avg. Document Len 7.27 7.29 7.08
Avg. # Clicks per Query 1.08 1.08 1.11
Tiangong-ST Training Validation Test

# Sessions 143,155 2,000 2,000
# Queries 344,806 5,026 6,420
Avg. # Query per Session 2.41 2.51 3.21
Avg. # Document per Query 10 10 10
Avg. Query Len 2.89 1.83 3.46
Avg. Document Len 8.25 6.99 9.18
Avg. # Clicks per Query 0.94 0.53 (3.65)

documents are labeled with “click” or “unclick”, and the model is asked to rank the clicked
documents as high as possible. Note that the query with no click document is not used for
testing.

(2) Tiangong-ST-Human: In this test set, only the last query with human annotated
relevance score is used. The score ranges from 0 to 4. More details can be found in [22].

The statistics of both datasets are shown in Table 1. Following previous studies [4, 47,
74, 76], to reduce memory requirements and speed up training, we only use the document
title as its content.

Evaluation Metrics We use Mean Average Precision (MAP), Mean Reciprocal Rank
(MRR), and Normalized Discounted Cumulative Gain at position k (NDCG@k, k =
{1,3,5,10}) as evaluation metrics. For Tiangong-ST-Human, since the candidate documents
are provided by a commercial search engine, the irrelevant documents are expected to be lim-
ited. Hence, as suggested by the authors of [22], we only evaluate the results with NDCG@k.
All evaluation results are calculated by TREC’s evaluation tool (trec_eval) [63].

4.2. Baseline

We compare our method with several baseline methods, including those for (1) ad-hoc
ranking and (2) context-aware ranking.

(1) Ad-hoc ranking methods. These methods do not use context information (histor-
ical queries and documents), and only current query is used for ranking documents.
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Table 2. Experimental results on all datasets. All baseline models are based on the code
released in the original paper. The best performance and the second best performance are in
bold and underlined, respectively. The improvement of COCA over the best baseline is given.
† indicates COCA achieves significant improvements over all existing methods in paired t-test
with p-value < 0.01.

Model MAP MRR NDCG@1 NDCG@3 NDCG@5 NDCG@10

AOL
ARC-I 0.3361 0.3475 0.1988 0.3108 0.3489 0.3953
ARC-II 0.3834 0.3951 0.2428 0.3564 0.4026 0.4486
KNRM 0.4038 0.4133 0.2397 0.3868 0.4322 0.4761
Duet 0.4008 0.4111 0.2492 0.3822 0.4246 0.4675
M-NSRF 0.4217 0.4326 0.2737 0.4025 0.4458 0.4886
M-Match 0.4459 0.4572 0.3020 0.4301 0.4697 0.5103
CARS 0.4297 0.4408 0.2816 0.4117 0.4542 0.4971
HBA 0.5281 0.5384 0.3773 0.5241 0.5624 0.5951
COCA 0.5500† 0.5601† 0.4024† 0.5478† 0.5849† 0.6160†

Improv. 4.15% 4.03% 6.65% 4.52% 4.00% 3.51%
Tiangong-ST-Click

ARC-I 0.6597 0.6826 0.5315 0.6383 0.6946 0.7509
ARC-II 0.6729 0.6954 0.5458 0.6553 0.7086 0.7608
KNRM 0.6551 0.6748 0.5104 0.6415 0.6949 0.7469
Duet 0.6745 0.7026 0.5738 0.6511 0.6955 0.7621
M-NSRF 0.6836 0.7065 0.5609 0.6698 0.7188 0.7691
M-Match 0.6778 0.6993 0.5499 0.6636 0.7199 0.7646
CARS 0.6909 0.7134 0.5677 0.6764 0.7271 0.7746
HBA 0.6957 0.7171 0.5726 0.6807 0.7292 0.7781
COCA 0.7481† 0.7696† 0.6386† 0.7445† 0.7858† 0.8180†

Improv. 7.53% 7.32% 11.53% 9.37% 7.76% 5.13%
Tiangong-ST-Human

ARC-I - - 0.7088 0.7087 0.7317 0.8691
ARC-II - - 0.7131 0.7237 0.7379 0.8732
KNRM - - 0.7473 0.7505 0.7624 0.8891
Duet - - 0.7577 0.7354 0.7548 0.8829
M-NSRF - - 0.7124 0.7308 0.7489 0.8795
M-Match - - 0.7311 0.7233 0.7427 0.8801
CARS - - 0.7385 0.7386 0.7512 0.8837
HBA - - 0.7612 0.7518 0.7639 0.8896
COCA - - 0.7769 0.7576 0.7703 0.8932
Improv. - - 2.06% 0.77% 0.84% 0.40%

KNRM [211] performs fine-grained interaction between current query and candidate doc-
uments and obtain a matching matrix. The ranking features and scores are then calculated
by a kernel pooling method.
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ARC-I [72] is a representation-based method. The query and document are represented by
convolutional neural networks (CNNs), respectively. The score is calculated by a multi-layer
perceptron (MLP).

ARC-II [72] is an interaction-based method. A matching map is constructed from the
query and document, based on which the matching features are extracted by CNNs. The
score is also computed by an MLP.

Duet [126] computes local and distributed representations of the query and document by
several layers of CNNs and MLPs. Then, it integrates both interaction-based features and
representation-based features to compute ranking scores.

(2) Context-aware ranking methods. These methods can leverage both context
information and current query to rank candidate documents.

M-NSRF [3] is a multi-task model, which jointly predicts the next query and ranks corre-
sponding documents. The historical queries in a session are encoded by a recurrent neural
network (RNN). The ranking score is computed based on the query representation, history
representation, and document representation.

M-Match-Tensor [3] is similar to M-NSRF but learns a contextual representation for each
word in the queries and documents. The computation of ranking score is based on the
word-level representation.

CARS [4] is also a multi-task model, which learns query suggestion and document ranking
simultaneously. Different from M-NSRF, this method also models the click documents in the
history through an RNN. An attention mechanism is applied to compute representations for
each query and document. The final ranking score is computed based on the representation
of historical queries, clicked documents, current query, and candidate documents.6

HBA-Transformer [149] (henceforth denoted as HBA) concatenates historical queries,
clicked documents, and unclick documents into a long sequence and applies BERT [34] to
encode them into representations. Then, a higher-level transformer structure with behavior
embedding and relative position embedding is employed to further enhance the representa-
tion. Finally, the representation of the first token (“[CLS]”) is used to calculate the ranking
score. This is the state-of-the-art method in context-aware document ranking task. It is the
most similar to our approach, but without contrastive learning.

4.3. Implement Details

We use PyTorch [136] and Transformers [200] to implement our model. The pre-trained
BERT is provided by Huggingface.7 The maximum number of tokens in the two stages

6We will notice some slight discrepancies between our results and those of the original paper of CARS. This
is due to different tie-breaking strategies in evaluation. Following [149], we use trec_eval while the authors
of CARS uses an author-implemented evaluation.
7https://huggingface.co/bert-base-uncased
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are set as 128. Sequences with more than 128 tokens are truncated by popping query-
document pairs from the head. We use AdamW [110] optimizer in both stages. In the
sequence representation optimization stage, both the term mask ratio and query/document
deletion ratio are tuned from 0.1 to 0.9 and set as 0.6. As for behavior reordering, only one
pair of positions are switched because the session is not long (on average 2.5 queries per
sessions). The three strategies are randomly selected. Note that the reordering strategy can
only be applied to sessions with more than one query. The batch size is set as 128, and the
temperature is set as 0.1. We train the model for four epochs. The learning rate is set as 5e-5.
In the document ranking stage, we apply a dropout layer on the sequence representation with
the rate of 0.1. The learning rate is set as 5e-5 and linearly decayed during the training. We
train the model for three epochs. All hyperparameters are tuned based on the performance
on the validation set. Our code is released on GitHub at https://github.com/DaoD/COCA.

4.4. Experimental Results and Analysis

The experimental results are shown in Table 2. We can find that COCA outperforms all
existing methods. This result clearly demonstrates the superiority of our method. Based on
the results, we can make the following observations.

(1) Among all models, COCA performs the best, demonstrating its effectiveness on model-
ing user behavior sequence through contrastive learning. In general, context-aware document
ranking models outperform ad-hoc ranking models. For example, on the AOL dataset, the
weak contextualized model M-NSRF can nevertheless outperform the strong ad-hoc ranking
model KNRM. This indicates that modeling user behavior sequence is beneficial for under-
standing user intent and improving ranking results.

(2) Compared with RNN-based multi-task learning models (M-NSRF, M-Match-Tensor,
and CARS), BERT-based methods (HBA and COCA) achieve better performance. In particular,
on the AOL dataset, HBA and COCA improve the results by more than 15% in terms of all
metrics. Notably, HBA and COCA learn document ranking independently without supervision
signals from the query suggestion task. This result reflects the obvious benefit of using
pre-trained language models (such as BERT) to document ranking.

(3) HBA is the state-of-the-art method on context-aware document ranking task. It de-
signs sophisticated structures over a BERT encoder to evaluate user behavior from various
perspectives, including an intra-behavior attention on clicked documents and skipped doc-
uments; an inter-behavior attention on all turns; and an embedding that indicates their
relative positions. In comparison, our COCA only applies a standard BERT encoder and
achieves significantly better performance (paired t-test with p-value < 0.01). Both MAP
and MRR are improved by around 4%. The key difference between them is the contrastive
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Table 3. Performance of COCA on the AOL dataset with different data augmentation strate-
gies.

MAP MRR NDCG@1 NDCG@3 NDCG@10

COCA (Full) 0.5500 0.5601 0.4024 0.5478 0.6160
None 0.5341 0.5445 0.3867 0.5296 0.5999
TM 0.5472 0.5576 0.4009 0.5444 0.6121
QDD 0.5452 0.5554 0.3969 0.5422 0.6110
TM + QDD 0.5492 0.5592 0.4005 0.5467 0.6155
TM + BR 0.5448 0.5550 0.3963 0.5414 0.6115
QDD + BR 0.5473 0.5576 0.3995 0.5444 0.6132

learning we use. The improvements of COCA over HBA demonstrates the advantage of using
contrastive learning for behavior sequence representation.

(4) Intriguingly, the improvements of COCA on the AOL dataset are much more significant
than those on the Tiangong-ST dataset. There are two potential reasons: (a) COCA is trained
on data using click labels rather than relevance labels, and the user behavior sequence is also
constructed based on click labels. Therefore, the model is better at predicting click-based
scores than relevance scores. (b) According to our statistics, more than 77.4% documents
are labeled as relevant (i.e., their annotated relevance scores are larger than 1), hence the
base score is quite high. Even the basic model ARC-I can obtain NDCG@1 and NDCG@10
values of 0.7088 and 0.8691. Without more precise relevance labels for training, it is more
challenging for our model to further improve relevance ranking.

4.5. Discussion

We further investigate the following research questions.

4.5.1. Influence of Data Augmentation Strategy. To study the effectiveness of our pro-
posed sequence augmentation strategy, we test the performance on AOL with different com-
binations of strategies. The results are shown in Table 3. “None” means that we use the
original BERT parameters for document ranking without our proposed sequence optimization
stage. We denote the term mask strategy as “TM”, query/document deletion as “QDD”, and
behavior reordering as “BR”. Note that the reordering strategy can only apply to sequences
with more than two query-document pairs, thus cannot work independently.

First, compared with no sequence optimization stage, optimizing sequence representation
with any combination of our proposed strategies is helpful. This clearly demonstrates that
our proposed method is effective in building a more robust representation. Second, the term
mask works best and this single strategy can improve around 2.5% in MAP. This implies
that learning user behavior sequences with similar queries and documents are very useful for
document ranking. Finally, it is interesting to see that combining term mask and behavior
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Table 4. Performance of COCA on the AOL dataset with different hyperparameters.

CE (↓) Acc. MAP MRR NDCG@1 NDCG@10
Te

m
pe

ra
.

τ 0.05 0.5662 79.62 0.5417 0.5521 0.3947 0.6078
0.1 0.5823 83.56 0.5500 0.5601 0.4024 0.6160
0.3 1.6240 84.03 0.5451 0.5552 0.3972 0.6116
0.5 4.3226 69.85 0.5433 0.5536 0.3950 0.6031
1.0 5.2148 62.33 0.5417 0.5522 0.3951 0.6073

Ba
tc

h
Si

ze 16 0.7289 81.14 0.5380 0.5482 0.3897 0.6044
32 0.7226 80.92 0.5447 0.5547 0.3972 0.6108
64 0.7210 81.20 0.5432 0.5534 0.3951 0.6089
128 0.5823 83.56 0.5500 0.5601 0.4024 0.6160

reordering strategy (i.e., “TM + BR”) leads to a performance degradation compared with
only using the term mask strategy. After checking the sequence representation optimization
process, we find that the contrastive learning loss in this case is very low and the prediction
accuracy is very high, which indicates that this combination is easy to overfit and cannot
learn a good sequence representation.

4.5.2. Performance with Different Hyperparameters. As reported in recent work [23], the
temperature and batch size are two important hyperparameters in contrastive learning. To
investigate the impact of them, we train our model with different settings and test their
performance. In addition to evaluating the performance of ranking, we also compute the loss
value (cross-entropy, CE) and prediction accuracy in contrastive prediction. The results are
shown in Table 4.

Considering temperature, according to Equation (3.9), a higher temperature will cause a
higher loss, which are consistent with our results. However, a lower contrastive loss cannot
always lead to a better performance. Indeed, τ = 0.1 is the best choice for the document
ranking task. Therefore, it is important to select a proper temperature for contrastive
learning. Similar observations are also reported in other recent studies [23, 49].

As for batch size, we can see that contrastive learning benefits from larger batch sizes.
According to a recent study [23], larger batch sizes can provide more negative examples, so
that the convergence can be facilitated. Due to our limited hardware resources, the largest
batch size we can handle is 128. We speculate that a larger batch size can bring more
improvements.

4.5.3. Performance on Sessions with Different Lengths. To understand the impact of the
session length on the final ranking performance, we categorize the sessions in the test set
into three bins:

(1) Short sessions (with 1-2 queries) - 77.13% of the test set;
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Fig. 5. Performance on different lengths of sessions.

(2) Medium sessions (with 3-4 queries) - 18.19% of the test set;
(3) Long sessions (with 5+ queries) - 4.69% of the test set.

As we also consider sessions with only one query, the short sessions have a higher proportion
than that provided in [4].

We compare COCA with Duet, CARS, HBA on AOL dataset and show the results regarding
MAP and NDCG@3 in Figure 5. First, it is evident that COCA outperforms all context-
aware baseline methods on all three bins of sessions. This suggests COCA’s advantages in
learning search context. Second, we can see the ad-hoc ranking method Duet performs worse
than other context-aware ranking methods. This demonstrates once again that modeling the
historical user behavior is essential for improving the document ranking performance. Third,
we can observe that COCA performs relatively worse in long sessions than in short sessions.
We hypothesize that those longer sessions are intrinsically more difficult, and similar trend
in baseline methods can support this. This can be due to the fact that a long session may
contain more noise or exploratory search. This is also shown by a larger improvement in the
short sessions from COCA to the ad-hoc baseline ranker Duet than that in the long sessions
(37.10% v.s. 26.83% in terms of MAP). This result implies that it may be useful to model
the immediate search context rather than the whole context.

4.5.4. Effect of Modeling User Behavior Progression. It is important to study how the
modeled search context helps document ranking when a search session progresses. We com-
pare COCA with CARS and HBA at individual query positions in short (S), medium (M), and
long (L) sessions. The results are reported in Figure 6. Due to the limited space, long
sessions with more than seven queries are not presented.

It is noticeable that the ranking performance is improved steadily as a search session
progresses, i.e., more search context becomes available for predicting the next click. Both
COCA and HBA benefit from it, while COCA improves faster by better exploiting the context. In
contrast, the performance of CARS is unstable. This implies that BERT-based methods are
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Fig. 7. The performance with different training data amount and training epochs.

much more effective in modeling search context. One interesting finding is that, when the
search sessions get longer (e.g., from L4 to L7), the gain of COCA diminishes. We attribute
this to the more noisy nature of long sessions.

4.5.5. Influence of Amount of Training Data. As reported by recent studies [23, 49], the
amount of data for contrastive learning has a great impact on downstream task (e.g., docu-
ment ranking in our case). We investigate such influence by training the model with different
proportions of data and different epochs. As a comparison, we also illustrate the performance
of COCA without sequence representation optimization stage (denoted as “None”).

We first reduce the number of training data used for contrastive learning.8 It is clear
that contrastive learning benefits from a larger amount of data. Surprisingly, our proposed
sequence representation optimization stage can still work with only 20% of training data.
8Note that all models are trained four epochs with different number of data.
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This demonstrates the potential and effectiveness of learning better sequence representation
for context-aware document ranking. We also train COCA with different number of epochs
in the sequence optimization stage. The performance on document ranking is shown in
the right side of Figure 7. The results suggest that the contrastive learning also benefits
from larger training epochs. In our implementation, the data augmentation strategies are
randomly selected in different epochs. Therefore, the sequence representation can be more
fully learned. When training more than four epochs, the performance is stable without
further improvement. Therefore, four epochs is the best choice in our experiments.

5. Conclusion and Future Work
In this work, we aimed at learning better representation of user behavior sequence for

context-aware document ranking. A self-supervised task with contrastive learning objective
is introduced for optimizing sequence representation before learning document ranking. To
construct positive pairs in contrastive learning, we proposed three data augmentation strate-
gies at term, query/document, and user behavior level. These strategies can improve the
generalization and robustness of sequence representation. The optimized sequence represen-
tation is used in document ranking task. We conducted comprehensive experiments on two
large-scale search log datasets. The results clearly showed that our proposed method is very
effective. In particular, our method with contrastive learning was shown to outperform the
close competitor HBA without it.

This is the first attempt to utilize contrastive learning in IR and much remains to be
explored. For example, it may be more appropriate to exploit recent history instead of the
whole history. Query and document weighting in the history could also be a promising
avenue.
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Résumé. Les informations contextuelles dans les sessions de recherche sont importantes
pour saisir les intentions de recherche des utilisateurs. Diverses approches ont été proposées
pour modéliser les séquences de comportement des utilisateurs afin d’améliorer le classement
des documents dans une session. Généralement, les échantillons d’entraînement des paires
(contexte de recherche, document) sont échantillonnés de manière aléatoire dans chaque
époque d’entraînement. En réalité, la difficulté de comprendre l’intention de recherche de
l’utilisateur et de juger de la pertinence du document varie considérablement d’un contexte
de recherche à l’autre. Le mélange d’échantillons d’apprentissage de difficultés différentes
peut perturber le processus d’optimisation du modèle. Dans ce travail, nous proposons
un cadre d’apprentissage par curriculum pour le classement de documents en fonction du
contexte, dans lequel le modèle de classement apprend des signaux de correspondance entre
la paire de contexte de recherche et de document candidat de plus facile à plus difficile. Ce
faisant, nous visons à guider le modèle progressivement vers un optimum global. Pour tirer
parti des exemples positifs et négatifs, deux curriculums sont conçus. Les expériences sur
deux ensembles de données réelles de log de requête montrent que notre cadre proposé peut
améliorer la performance de plusieurs méthodes existantes de manière significative, démon-
trant ainsi l’efficacité de l’apprentissage par curriculum pour le classement des documents
en fonction du contexte.
Mots clés : Apprentissage du programme scolaire, difficulté de l’échantillon, classement
des documents en fonction du contexte

Abstract. Contextual information in search sessions is important for capturing users’
search intents. Various approaches have been proposed to model user behavior sequences
to improve document ranking in a session. Typically, training samples of (search context,
document) pairs are sampled randomly in each training epoch. In reality, the difficulty to
understand user’s search intent and to judge document’s relevance varies greatly from one
search context to another. Mixing up training samples of different difficulties may confuse
the model’s optimization process. In this work, we propose a curriculum learning framework
for context-aware document ranking, in which the ranking model learns matching signals
between the search context and the candidate document in an easy-to-hard manner. In so
doing, we aim to guide the model gradually toward a global optimum. To leverage both
positive and negative examples, two curricula are designed. Experiments on two real query
log datasets show that our proposed framework can improve the performance of several
existing methods significantly, demonstrating the effectiveness of curriculum learning for
context-aware document ranking.
Keywords: Curriculum Learning, Sample Difficulty, Context-aware Document Ranking

Prologue
Our previous study based on contrastive learning achieved the state-of-the-art perfor-

mance on context-aware document ranking. During the research process, we noticed that
understanding the user intents of search sessions represents different difficulties. Some queries
are short and accurate, for which it is easy to retrieve relevant documents, while others are
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complex and ambiguous, which are hard to understand. However, all existing methods (in-
cluding the one we proposed in the previous article) assumed that all positive and negative
samples are equally important for model optimization, i.e., all samples are uniformly sam-
pled to form a training batch. Imagine that when human learners are presented with samples
of mixed difficulties, they may be confused because signals from different samples may be
inconsistent. Things are similar in model training: when models are trained with a batch of
samples with mixed difficulties, their optimization process is easily disturbed. To tackle this
problem, we introduce curriculum learning that organizes training samples in an easy-to-hard
manner for optimization. By this means, models can first learn some basic matching signals
from easy samples, and then leverage such knowledge in the learning with hard samples.

After we finish this article, there are several new methods for context-aware document
ranking tasks. One study followed the idea of multi-task learning, and proposed several
generative tasks as a supplement for learning document ranking [21]. It applied generative
pre-trained language models (i.e., BART [96]) and achieved good performance. Two studies
aimed to enhance the current search session’s representation by other similar sessions in
the log data [192, 220]. Current session and extracted similar sessions construct a graph
structure and is modeled by graph neural networks. Our work can be considered as the first
attempt of using curriculum learning for context-aware document ranking.

1. Introduction
Users’ search behaviors have evolved from one-shot queries to multiple interactions with

search engines [2]. To fulfill a complex information retrieval task, users may issue a series
of queries, examine and interact with some results. Many studies have shown that historical
user behavior or search activities can be leveraged to improve document ranking, especially
when users’ search intent is ambiguous [4, 9, 50, 83, 241, 253].

Previous studies have exploited user search behaviors for understanding user intent and
improving document ranking within a session [9, 17, 169]. Earlier research explored query
expansion and learning-to-rank techniques [9, 17, 64, 165]. More recently, many neural
architectures have been developed to model user behavior sequences and capture user search
intent [3, 4, 149, 169, 245]. For example, a hierarchical RNN with attention mechanism
was used to model the historical queries and the corresponding clicked documents, lead-
ing to better document ranking [3, 169]. Researchers also discovered that learning query
suggestion as a supplementary task is also beneficial for document ranking [4]. Recently,
pre-trained language models have also been used to capture search intent from user behavior
sequences [149, 245].

Although the approaches proposed are different, they all rely on the information extracted
from previous search logs, for example, (search context, document) pairs that are considered
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as positive or negative samples. The search context usually aggregates the current query
and the previous queries (and interacted documents in some cases). All positive pairs are
assumed to be samples of equal importance that reflect relevance, and are put together in the
same pool for sampling a training batch. The same for negative pairs that reflect irrelevance.
While it is true that positive and negative examples are generally useful for training a good
ranking model, it is not true that they are equally useful at different training stages. In
some cases, the relevance (or irrelevance) relation in a pair of (search context, document)
is obvious, while in other cases, it is more subtle. Let us illustrate this by some examples.
In the left part of Figure 8, we show two search contexts (sessions) containing queries and
the documents clicked by the user. Let us try to understand the search intent in each of the
search context. In the first case, the relevance relation between the search context formed by
q1 and the clicked document d+

1 is clear because both are about the singer “Clay Aiken”. In
comparison, in the second case, the relation between the search context formed by [q1, d+

1 , q2]
and the clicked document d+

2 is more difficult to capture. The underlying intent is “Chanel’s
designer handbags”, which can only be understood with the help of the historical query q1 and
the clicked document d+

1 . If a human is asked to learn from these two samples, the relevance
signal in the first one is much easier to capture than in the second. For a training process, the
situation is similar: These pairs represent different levels of difficulty for a training process
to digest. When a human learner is presented with samples of mixed difficulties, he/she
can be confused because signals from different samples may appear inconsistent, or they do
not have sufficient knowledge to understand difficult samples. Recent studies in machine
learning also showed that learning with a batch of samples of mixed difficulties may disturb
the optimization, especially when the network is deep [7]. In this case, curriculum learning,
i.e., learning from easy samples before hard samples, becomes particularly useful.

A similar problem occurs when negative samples are considered. As can be seen in the
right side of Figure 8, for the second search context, the negative candidate d−

2,1 contains
information about “designer handbags”. Compared with d−

2,3, we can see that d−
2,1 is much

harder than d−
2,3 to be recognized as a negative sample. Therefore, it is also desirable to

learn from easy negative samples before hard ones. If we compare d−
2,1 with the positive

document d+
2 , we can learn that “chanel” is an important term reflecting the user’s real

intent. Such comparison/contrast is also common and critical for human learning, especially
for discriminating similar concepts [25].

Motivated by the observations above, we propose a novel training framework that takes
into account the levels of difficulty in the training samples. Our framework is inspired by
both curriculum learning [65, 139] and contrastive learning [23, 49, 173, 174]. Curriculum
learning simulates the human recognition process, i.e., learning with easier samples first and
more difficult samples later. It has achieved great performance on various tasks, such as im-
age classification [53, 65], natural language understanding [213], and ad-hoc retrieval [139].
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Fig. 8. Illustration of DCL’s utilization of samples. The left side shows positive pairs of
different difficulties. In the early training steps, the model can only learn from easy pairs
(e.g., the first pair). Then, as the training progresses, harder pairs (e.g., the second pair)
are added. The right side is the curriculum of negative pairs. All negative candidates (d−

1,1,
d−

1,2, and d−
1,3) of easy cases are used for training in the early steps, while only hard negatives

(d−
2,1) are used in later steps.

Contrastive learning aims at learning representations such that similar samples stay close to
each other, while dissimilar ones are far apart. By comparing similar and dissimilar samples,
the model can be better optimized to capture their differences.

Concretely, we treat the search context and the candidate document as a pair and op-
timize the model by contrasting positive pairs (with clicked documents) and negative pairs
(with unclicked documents). We design a dual curriculum learning framework incorporating
two complementary curricula for positive and negative pairs, respectively. In the curriculum
for positive pairs, sampling is restricted to easy pairs in early steps, and then extended grad-
ually to the whole set of samples, so that hard pairs can also be learned. In the curriculum
for negative pairs, we do the opposite: sampling from all pairs in early steps, then restricting
gradually to hard pairs in late steps. These strategies are inspired by similar human learning:
we select learning (positive) examples from easy to hard, but want to contrast them with all
the negative examples at the beginning to have a better idea of the general differences be-
tween the positives and negatives. Toward the end of the learning, as the obvious differences
have been learned, the easy negatives cannot provide effective learning signals, so we focus
on distinguishing hard negative examples (these hard ones are demonstrated to be beneficial
for model optimization [212, 225]). Our two curricula intend to follow the same principle
during the training process.
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The curriculum strategy can be used in any existing approach. We integrate it into three
state-of-the-art approaches for context-aware document ranking. We conduct experiments on
two large-scale search log datasets (AOL [135] and Tiangong-ST [22]). Experimental results
show that our curriculum learning method significantly improves three strong baselines.
The consistent performance gains demonstrate the effectiveness and wide applicability of
our approach. Our further experiments show that both positive and negative curricula are
beneficial to the ranking effectiveness.

Our contributions are three-fold:
(1) We propose a novel curriculum learning framework for context-aware document rank-

ing, in which the difficulty of training samples is taken into account.
(2) We devise two complementary curricula for learning user intent from positive and

negative pairs of (search context, candidate document). By learning them in an easy-to-
hard manner, the model’s performance can be improved gradually.

(3) Experimental results on two large-scale benchmark datasets show significant improve-
ments. The experiments also confirm the broad applicability, flexibility, and high robustness
of our method.

2. Related Work
2.1. Context-Aware Document Ranking

Context information in sessions has shown to be beneficial in modeling user search in-
tent [9, 50, 83]. Early research focused on characterizing users’ search intent by extracting
contextual features from their search behaviors [165, 198, 208]. However, because these
methods are built on handcrafted rules or manually collected features, they can only be
used for a limited number of retrieval tasks. Researchers also developed predictive models
for users’ search intent or future behavior [14], but the learning of complex user-system
interactions is limited by the predefined features.

The recent development of deep neural networks has triggered new approaches to context-
aware document ranking. For example, researchers exploited hierarchical RNN-based archi-
tectures to model the sequence of historical queries [79, 169, 201]. These architectures
were further enhanced by attention mechanism to better capture search behaviors [24]. It
is also found that learning query suggestion and document ranking jointly can boost the
performance on both tasks [3]. Besides, historical clicked documents are also reported to be
helpful in predicting user search behaviors [4].

Recently, pre-trained language models, such as BERT [34], have achieved promising
results on several NLP and IR tasks [86, 87, 106, 113]. Some researchers proposed con-
catenating all historical queries and candidate documents into a long sequence to compute a
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sequence representation using BERT, based on which the ranking score is determined [149].
Furthermore, contrastive learning has shown to be beneficial for optimizing the BERT en-
coder in context-aware document ranking [245].

Different from the studies above, we focus on improving the model optimization process
by curriculum learning rather than designing new architectures or supplementary tasks for
context-aware document ranking. Our work is orthogonal to the above approaches and can
be combined with them. In fact, in most existing approaches, sampling of training data
is necessary in the optimization process. This is typically done by random sampling or by
selecting hard samples. Our work will show that selecting samples by curriculum from easy
to hard can better optimize the existing models.

2.2. Curriculum Learning for IR

In the context of human learning, it is common to follow a curriculum that regulates
the ordering and content of the education materials [92, 137, 167]. With this strategy,
students can leverage previously learned concepts to help them learn new and more difficult
ones. Inspired by research in cognitive science [159], researchers proposed machine learn-
ing algorithms based on a curriculum [7, 37]. The core idea is to train the model using
easy samples first and increase the difficulty along the training process. Such a curriculum
learning (CL) strategy has achieved great performance on several tasks, such as image clas-
sification [53, 65], machine translation [142, 228], dialogue generation [172], and natural
language understanding [213].

In the area of IR, CL research is still in its early stage. The first attempt applied CL
to learning-to-rank (LTR) [42], however, without much success. Later, researchers found
that manually collected features in LTR can be a source of noise, and the CL strategy is
more suitable for neural ranking models [139]. More recently, several heuristics have been
proposed to determine the difficulty of different answers, based on which a CL-based method
is used. This led to improved performance in answer ranking [116].

All existing CL-based methods for IR tasks are designed for organizing positive samples,
but the influence of negative samples is neglected. We notice that some studies have focused
on selecting hard negative samples for IR tasks [97, 150, 225], but they did not use CL. In
this paper, we propose two complementary and contrastive curricula to enhance the model’s
learning using both positive and negative context-document pairs. Our experiments show
that regulating the learning pace of both positive and negative samples is very effective.

3. Methodology
The goal of context-aware document ranking is to rank a list of candidate documents using

the search context. In this work, we propose a Dual Curriculum Learning (DCL) framework
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Fig. 9. The training process of our framework. For the curriculum of positive pairs, only
easy samples are used at the beginning (t1). Along the training process, the positive sampling
space is gradually extended to the whole positive pairs (t3). For the curriculum of negative
pairs, the sampling space is shrinking from all samples (t1) to only hard samples (t3).

for this task. As shown in Figure 8, our framework consists of two complementary curricula
for learning positive and negative context-document pairs. In each curriculum, the pairs are
sorted according to their difficulty so that the model can learn them from easy to hard.

3.1. Notations and Task Definition

We first define some important concepts and notations before introducing our framework.
A user’s search behavior is represented as a sequence of n interactions Hn = [q1,d+

1 · · · ,qn,d+
n ],

where each query qi is associated with a corresponding clicked document d+
i . If there are

several clicked documents, each of them is associated with the query to form a separate pair in
the sequence. Each query qi is represented by the original text string submitted to the search
engine, while each clicked document di is represented by its text content. All queries are
ordered according to the timestamps. For convenience, we further denote C = [q1,d+

1 , · · · ,qn]
as a search context when qn is submitted after a series of queries and interacted documents.
When training a ranking model, for each positive clicked document, a set of m unclicked
documents are selected as negative candidates.9 As a result, the candidate document set for
the search context C is represented as D = {d+

n , d−
1 , · · · d−

m} (the subscript n in d+
n will be

omitted).
With the above notations, the task of context-aware document ranking can be defined

as: ranking the candidate document set D based on the search context C so as to rank the
clicked document d+ as high as possible.

To make it clear, henceforth, we will call the pair (C, d+) a positive pair, whereas the
pairs (C, d−

i )m
i=1 are m negative pairs.

Notice that in this paper, we leverage user logs to learn a ranking model because user
clicks can serve as a good proxy of relevance feedback [4, 80, 81, 149]. However, the same
method can be used with human relevance judgments if available.
9Different selection strategies of negative candidates can be used in different datasets.
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3.2. Overview

Our framework consists of two complementary curricula as follows:
(1) Curriculum of Positive Pairs. As shown in the left side of Figure 8, our first

curriculum is designed for positive pairs. The target is to teach the model how to understand
users’ intent by capturing matching clues between search context and clicked documents. To
achieve this goal, we first sort all positive pairs in the training set according to their difficulty
and then let the model learn from easy ones to hard ones. By this means, the model can
gradually increase its ability to capture matching signals.

(2) Curriculum of Negative Pairs. We also design a curriculum for negative pairs
(right side of Figure 8) to enhance the model’s ability to identify the mismatching information
between search context and negative documents. Specifically, we progressively increase the
difficulty of the negative candidate documents associated with each selected positive
pair in the training set. In this way, the model is encouraged to gradually distinguish more
subtle mismatching signals between search context and negative documents.

The principles used in the two curricula have some differences. The learning from positive
pairs aims at identifying the relevance signals. In the curriculum, the model can gradually
capture signals from shallow and easy matching (such as similar terms) to deep and hard
matching (such as semantic information). On the contrary, a group of negative documents is
associated with a specific positive pair, so they provide supplementary mismatching signals.
As the curriculum progresses, the negative document becomes more similar to the positive
document, so the model has to capture more fine-grained clues to distinguish them. Overall,
we train the model with the two complementary curricula simultaneously so that its capa-
bility of modeling users’ intent can be gradually enhanced. The whole process is shown in
Figure 9.

It is worth noting that our DCL is a general training framework that works by organizing
the learning order of the training samples. Therefore, it can be applied to various base
models to improve their performance (this will be shown in our experiments).

3.3. Dual Curriculum Learning Framework

The implementation of our approach involves several key concepts, which we examine
below.

How does curriculum learning work? When training neural networks, a mini-batch of
training samples is usually randomly (i.e., uniformly – every sample is selected with the
same likelihood) sampled from the training set and used for optimizing the model at a step.
Curriculum learning, on the other hand, aims at adjusting the order of the samples so that
they are learned according to a predefined pace rather than at random. In our framework,
we design two curricula for learning positive pairs and negative pairs from easy to hard,
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respectively. Following the paradigm of curriculum learning [65, 139], each curriculum is
defined by two functions:

• A difficulty function determines the difficulty of samples so that the samples can be
sorted according to their difficulty.

• A pacing function controls the learning pace. Essentially, it adjusts the sampling space
to control the difficulty of the training samples at each step.

The curricula and their combination are described below.

3.3.1. Curriculum of Positive Pairs. The green part of Figure 9 illustrates the curriculum
of positive pairs. Positive pairs are sorted from easy to hard according to a difficulty function.
Thereafter, we gradually enlarge the sampling space so that more difficult positive samples
will be included. The key is to define an appropriate difficulty function.

Difficulty Function. Different heuristics can be used to determine the difficulty of
documents for a query [16, 116]. We consider two factors for measuring the difficulty of
each positive training pair (C, d+): (1) The first factor is the ranking score M(·,·) between
C and d+ (see details in Section 3.3.4): A higher M(C,d+) indicates that it is easier to select
d+ based on C. (2) We also consider the position of the clicked document in the ranked list:
A higher position indicates that it is easier to select it out of all documents. Formally, the
difficulty for (C, d+) is computed as follows:

dp(C, d+) = rankC(d+)︸ ︷︷ ︸
∈[1,|D|]

+
⎛⎝1 − M(C,d+)

max(Ci,d
+
i )∈D M(Ci,d

+
i )

⎞⎠
︸ ︷︷ ︸

∈(0,1]

, (3.1)

where D is the training set. The first term is the ranking position of d+ under the search
context C; the second term is the normalized ranking score of (C,d+). In this function,
the difficulty is dominated by the position of the clicked document (the first term), while
the normalized ranking score (the second term) makes an effect only when different (C,d+)
pairs are ranked at the same position. This particular definition of difficulty leads to good
experimental performance among different alternatives we tested.

Pacing Function. The pacing function determines how the training process transitions
from easy to hard pairs. Following previous studies on curriculum learning [65, 139], we
define the pacing function fp(t) with respect to the training step t. The value of fp(t) is a
proportion, and only the first fp(t) × |D| positive pairs can be used at the training step t.
fp(t) is defined as follows:

fp(t) = min
⎛⎝1.0,

(
t · 1 − δk

αT
+ δk

) 1
k

⎞⎠ , (3.2)

where T is the total number of training steps, α,δ ∈ (0,1) and k ∈ [1, + ∞) are hyperparam-
eters. As shown by the green line in Figure 10, this function has the following properties:
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Fig. 10. Pacing functions used in both curricula.

(1) the initial value fp(0) is δ, so that the model can only use some easy pairs in the first
training step; (2) it increases monotonically so that harder pairs are added to the training
set gradually; (3) when it reaches αT steps (fp(αT ) = 1), all pairs in the corpus can be used
for training.

3.3.2. Curriculum of Negative Pairs. Negative samples are also very important for learn-
ing a ranking model [225]. By comparing positive and negative pairs, the model can learn
what matching signals are vital in a contrastive manner.

The orange part of Figure 9 shows the curriculum of negative pairs. Similar to positive
pairs, the negative pairs are also arranged according to their difficulties (more details later).
By gradually constraining the sampling space, the model will focus on more difficult samples
in later steps.

Difficulty Function. Similar to the positive curriculum, we use the relevance between
the search context and the negative candidate as the difficulty of the negative pair. A
negative candidate with a high ranking score to the search context is deemed to be hard to
distinguish. For a negative pair (C,d−

i ), its difficulty is defined as:

dn(C,d−
i ) = M(C,d−

i ), (3.3)

where M(·,·) is a scoring model similar to that used in the curriculum of positive pairs.
Different from the difficulty function fp(t) in Equation 3.2, it is unnecessary to introduce the
ranking position and normalization operation, because all negative candidates are associated
with the same query; their ranking positions are determined by the ranking scores.
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It is worth noting that we follow previous studies [4] to select negative candidates: the
unclicked documents ranked around the clicked document (within a window) are considered
as negative samples. By this means, we can avoid using too trivial or too hard negative
documents. The obtained list of negative pairs is denoted as L, in which all pairs are sorted
according to their difficulties descendingly.

Pacing Function. The pacing function fn(t) for negative pairs is designed in a similar
way to that for positive pairs. fn(t) adjusts the sampling space from which the negative
sequences are sampled. It decreases with t. At time step t, we sample from the first fn(t)×|L|
negative pairs for training. fn(t) is defined as:

fn(t) = max
⎛⎝η, 1 + η −

(
t · 1 − ηk

βT
+ ηk

) 1
k

⎞⎠ , (3.4)

where β,η ∈ (0,1) are hyperparameters. As shown by the organce line in Figure 10, this
function is similar to fp(t), but makes opposite effect (i.e., decreasing rather than increasing)
along with t.

Remark. As shown in Figure 9 and Figure 10, we design the curriculum of negative
pairs in a manner opposite to that of positive pairs, namely we gradually focus on only
hard negative pairs. This is because: (1) All positive pairs are collected from human click
data, which are very valuable for learning the real user intent. So, we choose to enlarge the
positive sampling space and use all positive pairs in the end. (2) The negative pairs are
sampled from the repository for facilitating the learning of the associating positive pairs.
When the training progresses, too easy samples cannot provide enough “contrast effect”,
thus we discard them and only focus on hard samples. This strategy can lead to a more
robust optimization in retrieval performance [225].

3.3.3. Combination of Two Curricula. DCL trains ranking models with the two curricula
simultaneously. Specifically, for a training step t, we build a batch of training data as follows:
First, we select a batch of positive pairs (C, d+) according to the pacing function fp(t). Then,
for each search context C in the positive pairs, we sample m negative candidate documents
based on the pacing function fn(t). The process is summarized in Algorithm 1.

The whole training process of our framework naturally simulates two learning paradigms
of human beings. On the one hand, the learning material is organized from easy to hard,
which has been demonstrated to be effective for both animal training and human learning.
In our case, such a training process is beneficial for model optimization. On the other hand,
in cognitive science, learning through comparison is also an effective way to understand new
concepts [70]. In our framework, the model can learn by contrasting positive and negative
candidate documents.
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Algorithm 1 Training in DCL
1: Input: the dataset D; the ranking model; difficulty functions dp(·,·) and dn(·,·); pacing

functions fp(·) and fn(·); the number of negative pairs m.
2: Score all positive pairs by dp(C,d+) and sort them ascendingly;
3: for each training step t do
4: Collect the first fp(t) · |D| positive pairs as a subset P ;
5: Uniformly sample a batch of positive pairs Bt from P ;
6: for [Ci,d

+
i ] in Bt do

7: Score all negative pairs by dn(Ci,d
−
j ), get a list of negative pairs L by the heuristic

rule, and sort them descendingly;
8: Collect the first fn(t) · |L| negative pairs as a subset N ;
9: Uniformly sample m pairs D−

i from N ;
10: end for
11: Optimize the ranking model on the data {Ci,d

+
i ,D−

i }|Bt|
i=1;

12: end for
13: Output: Trained ranking model.

3.3.4. Selection of Scoring Model. In Equation (3.1) and (3.3), DCL applies a scoring
model M(·,·) to measure the ranking score between the search context and the candidate
document. In our experiments, we use two different methods for M(·,·): (1) BM25 [157]
and (2) a BERT-based score commonly used in dense retrieval [85, 87]. Since we need to
compute the ranking score between a search context and all documents in the training set,
we apply dot-product based on BERT representations for fast computation:

M(C, d) = BERT(C)[CLS] · BERT(d)[CLS]. (3.5)

To achieve better performance, we fine-tune BERT encoders on positive sequences with in-
batch negatives [85]. Then, we can obtain the representations of all the search contexts and
documents. Afterwards, we use FAISS [82] to compute M(C, d) efficiently.

4. Experiments
4.1. Datasets and Evaluation Metrics

Following previous work [4, 20, 149, 245], we conduct experiments on two public
datasets: AOL search log data [135] and Tiangong-ST query log data [22].10 Another
possibility is the MS MARCO Conversational Search dataset [128], but the sessions in it
are artificially constructed rather than derived from real search logs and the corresponding
clicked documents are unavailable. Therefore, we do not use the MS MARCO dataset in
experiments.

10We understand that the AOL dataset should normally not be used in experiments. We still use it because
there are not many datasets available that fit our experiments well.
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Table 5. The statistics of the datasets. The number in paretheses is the average number
of relevant documents.

AOL Training Validation Test

# Sessions 219,748 34,090 29,369
# Queries 566,967 88,021 76,159
Avg. # Query per Session 2.58 2.58 2.59
Avg. # Document per Query 5 5 50
Avg. Query Len 2.86 2.85 2.9
Avg. Document Len 7.27 7.29 7.08
Avg. # Clicks per Query 1.08 1.08 1.11
Tiangong-ST Training Validation Test

# Sessions 143,155 2,000 2,000
# Queries 344,806 5,026 6,420
Avg. # Query per Session 2.41 2.51 3.21
Avg. # Document per Query 10 10 10
Avg. Query Len 2.89 1.83 3.46
Avg. Document Len 8.25 6.99 9.18
Avg. # Clicks per Query 0.94 0.53 (3.65)

We use the AOL dataset constructed by Ahmad et al. [4]. The dataset contains a large
number of sessions, each of which consists of several queries. Each query in the training and
validation sets has five candidate documents. The test set uses 50 documents retrieved by
BM25 [157] as candidates for each query. All queries have at least one satisfied click in this
dataset.

Tiangong-ST dataset is collected from a Chinese commercial search engine. It contains
web search session data extracted from an 18-day search log. Each query in the dataset has
ten candidate documents. In the training and validation sets, we use the clicked documents
as the satisfied clicks. For queries with no satisfied clicks, we use a special token “[Empty]”
for padding. In the test set, the candidate documents for the last query of each session
have been manually annotated with relevance scores from from 0 to 4, which are used for
evaluation. More details can be found in [22].

The statistics of both datasets are shown in Table 5. In Tiangong-ST test set, the
relevance scores are provided instead of click labels, so we report the average number of
documents with positive relevance scores (≥ 1). Following previous studies [4, 74, 76, 245],
to reduce memory requirements and speed up training, we only use the document title as its
content.

Evaluation Metrics. Similar to previous studies [4, 149, 245], we use Mean Average
Precision (MAP), Mean Reciprocal Rank (MRR), and Normalized Discounted Cumulative
Gain at position k (NDCG@k, k = {1,3,5,10}) as evaluation metrics. In AOL, as clicked
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Table 6. Experimental results on two datasets. All results using our framework (X+DCL)
outperforms the original results (X) significantly at p-value < 0.01 with Bonferroni correction
in paired t-test.

Model MAP MRR NDCG@1 NDCG@3 NDCG@5 NDCG@10

AOL
ARC-I 0.3361 0.3475 0.1988 0.3108 0.3489 0.3953
ARC-II 0.3834 0.3951 0.2428 0.3564 0.4026 0.4486
KNRM 0.4038 0.4133 0.2397 0.3868 0.4322 0.4761
Duet 0.4008 0.4111 0.2492 0.3822 0.4246 0.4675
M-NSRF 0.4217 0.4326 0.2737 0.4025 0.4458 0.4886
M-Match 0.4459 0.4572 0.3020 0.4301 0.4697 0.5103
CARS 0.4297 0.4408 0.2816 0.4117 0.4542 0.4971
HBA 0.5281 0.5384 0.3773 0.5241 0.5624 0.5951
HBA+DCL 0.5599 0.5693 0.4074 0.5626 0.5961 0.6242
Improv. +6.02% +5.74% +7.98% +7.35% +5.99% +4.89%
RICR 0.5338 0.5450 0.3894 0.5267 0.5648 0.5971
RICR+DCL 0.5630 0.5742 0.4219 0.5589 0.5943 0.6257
Improv. +5.47% +5.36% +8.35% +6.11% +5.22% +4.79%
COCA 0.5500 0.5601 0.4024 0.5478 0.5849 0.6160
COCA+DCL 0.5794 0.5888 0.4281 0.5841 0.6167 0.6432
Improv. +5.35% +5.12% +6.38% +6.63% +5.44% +4.42%

Tiangong-ST
ARC-I 0.8580 0.9159 0.7088 0.7087 0.7317 0.8691
ARC-II 0.8611 0.9227 0.7131 0.7237 0.7379 0.8732
KNRM 0.8709 0.9261 0.7473 0.7505 0.7624 0.8891
Duet 0.8663 0.9273 0.7577 0.7354 0.7548 0.8829
M-NSRF 0.8517 0.9084 0.7124 0.7308 0.7489 0.8795
M-Match 0.8529 0.9211 0.7311 0.7233 0.7427 0.8801
CARS 0.8556 0.9268 0.7385 0.7386 0.7512 0.8837
HBA 0.8615 0.9316 0.7612 0.7518 0.7639 0.8896
HBA+DCL 0.8986 0.9538 0.8069 0.7985 0.8130 0.9122
Improv. +4.31% +2.38% +6.00% +6.21% +6.43% +2.54%
RICR 0.8147 0.8937 0.7670 0.7636 0.7740 0.8934
RICR+DCL 0.8963 0.9498 0.7995 0.7925 0.8078 0.9089
Improv. +10.02% +6.28% +4.24% +3.78% +4.37% +1.73%
COCA 0.8623 0.9382 0.7769 0.7576 0.7703 0.8932
COCA+DCL 0.8990 0.9501 0.7936 0.7922 0.8077 0.9088
Improv. +3.21% +1.27% +2.15% +4.57% +4.86% +1.75%

documents are used instead of manually judged documents, these measures reflect the capa-
bility of a model to rank clicked documents high. All evaluation results are obtained using
the TREC’s standard evaluation tool (trec_eval) [63].

65



4.2. Baseline

We compare our method with several baseline methods, including those for (1) ad-hoc
ranking and (2) context-aware ranking.

(1) Ad-hoc ranking methods only use the current query without context information
(historical queries and documents) for document ranking.

ARC-I [72] is a representation-based approach. Query and document representations are
generated by CNNs. The ranking score is determined by a multi-layer perceptron (MLP).

ARC-II [72] is an interaction-based method. A matching map is constructed from the
query and document, from which CNNs extract matching features. The score is also com-
puted by an MLP.

KNRM [211] constructs a matching matrix by performing fine-grained interaction between
the query and documents. The ranking features and scores are computed via kernel pooling.

Duet [126] uses both interaction- and representation-based features of the query and
document extracted by CNNs and MLPs to compute ranking scores.

(2) Context-aware ranking methods utilize both context information and the current
query to rank candidate documents.

M-NSRF [3] is a multi-task model that jointly predicts the next query and ranks corre-
sponding documents. An RNN encodes a session’s historical queries. The ranking score is
calculated based on the representation of the query, the history, and the document.

M-Match-Tensor [3] (henceforth denoted as M-Match) is similar to M-NSRF, but learns a
contextual representation for each word in the queries and documents. The ranking score is
calculated by word-level representation.

CARS [4] also learns query suggestion and document ranking simultaneously. An attention
mechanism is applied to compute representations for each query and document. The final
ranking score is computed using the representation of historical queries, clicked documents,
current query, and candidate documents.11

HBA-Transformer [149] (henceforth denoted as HBA) concatenates historical queries,
clicked documents, and unclicked documents into a long sequence and applies BERT [34] to
encode them into representations. A higher-level transformer structure with behavior em-
bedding and relative position embedding enhances the representation. Finally, the ranking
score is computed based on the representation of the “[CLS]” token.

RICR [20] is a unified context-aware document ranking model which takes full advan-
tage of both representation and interaction. The session history is encoded into a latent
representation and used to enhance the current query and the candidate document. Several

11We will notice some slight discrepancies between our results and those of the original paper of CARS. This
is due to different tie-breaking strategies in evaluation. Following [149, 245], we use trec_eval while the
authors of CARS use their own implementation.
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matching components are applied to capture the interaction between the enhanced query
and candidate documents. This model is based on RNNs and attention mechanism.

COCA [245] uses contrastive learning to improve a BERT’s representation of user be-
havior sequences. By distinguishing similar user behavior sequences with dissimilar ones,
the encoder can generate more robust representation. Then, the encoder is further used
in context-aware document ranking. This is the current state-of-the-art document ranking
method based on user behavior sequence.

Due to the limited space, the implementation details are provided in our code repos-
itory.12

4.3. Experimental Results

Experimental results are shown in Table 6. We choose three recently proposed meth-
ods (i.e., HBA, RICR, and COCA) as the base model and train them with our proposed DCL
framework. The corresponding results are reported as “X+DCL”. To avoid the influence of
randomness, we set three different random seeds and report the average performance. The
standard deviation is less than 1e-3 for all results, which is omitted in the table. In general,
our DCL significantly improves the performance of three base models in terms of all evaluation
metrics on both datasets. This result clearly demonstrates DCL’s superiority. We also have
the following observations.

(1) The context-aware document ranking models generally perform better than ad-hoc
ranking methods. For instance, on the AOL dataset, the weak contextualized model M-NSRF
can still outperform the strong ad-hoc ranking model KNRM. This indicates that modeling
user historical behavior is beneficial for understanding the user intent and determining the
desired documents. For the three strong context-aware models, DCL can further improve
their performance greatly, showing its effective utilization of training samples via curriculum
learning.

(2) Compared with RNN-based methods (such as RICR and CARS), BERT-based methods
(COCA and HBA) perform better. It is noticeable that DCL can bring improvements for both
kinds of methods. Specifically, it improves the results by more than 4.7% and 1.2% in terms
of all metrics on AOL and Tiangong-ST, respectively. This result demonstrates the wide
applicability of our method to different base models and reflects the evident advantage of
learning samples from easy to hard in context-aware document ranking.

(3) COCA is the state-of-the-art approach to context-aware document ranking. It involves a
contrastive learning pre-training stage to help the BERT encoder learn more robust represen-
tations for user behavior sequences. In comparison, our DCL is a general training framework

12https://github.com/DaoD/DCL
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Table 7. Ablation study of COCA+DCL. Mark “�” and “×” indicate whether a curriculum
is used or not. “Easy” or “hard” means only easy/hard samples are used for training.

Pos. Neg. MAP MRR NDCG@1 NDCG@3 NDCG@10

× × 0.5500 0.5601 0.4024 0.5478 0.6160
� × 0.5750 0.5843 0.4222 0.5811 0.6391
× � 0.5740 0.5843 0.4231 0.5791 0.6381
� � 0.5794 0.5888 0.4281 0.5841 0.6432

× Easy 0.5240 0.5350 0.3677 0.5200 0.5939
× Hard 0.5698 0.5792 0.4173 0.5741 0.6339

without a specific pre-training step, making it more efficient in practice.13 In addition, COCA
trained with DCL achieves a new state-of-the-art performance in context-aware document
ranking task, showing the usefulness to combine both curriculum learning and contrastive
learning.

4.4. Discussion

We further discuss several aspects of our proposed DCL. These analyses are based on the
results on the AOL dataset, while we have similar findings on the Tiangong-ST dataset.

4.4.1. Impact of Both Curricula. As we propose two curricula for learning on positive
and negative pairs, to validate their effectiveness, we conduct an ablation study by disabling
each of them from COCA+DCL (i.e., the sampling is done among all samples). The results are
shown in Table 7. We can observe:

First, we can see that both curricula are useful. Applying any of them leads to per-
formance improvement. When no curriculum learning is used, we observe large drops in
performance. This directly validates our assumption in this paper that learning from easy
to hard samples can guide the model in a good learning direction. Second, the curriculum of
positive pairs brings slightly higher improvement than that of negative pairs. This suggests
that the ability to capture positive matching signals is more critical than being able to dis-
card negative signals. A possible explanation is that positive signals are more focused while
the negative ones are diffuse.

Furthermore, to investigate the influence of samples’ difficulty changes during the train-
ing, we replace the curriculum of negative pairs by only using easy or hard pairs, and the
curriculum of positive pairs is disabled to avoid additional influence. The experimental
results are shown in the bottom of Table 7.

13Compared to the pre-training step in COCA, DCL takes only around 1/3 time for training a BERT scorer,
and this cost can be further reduced if BM25 scorer is applied.
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Table 8. Performance with different difficulty scorers.

Pos. Neg. MAP MRR NDCG@1 NDCG@3 NDCG@10

None None 0.5500 0.5601 0.4024 0.5478 0.6160
BM25 BM25 0.5661 0.5763 0.4159 0.5697 0.6293
BM25 BERT 0.5600 0.5701 0.4081 0.5632 0.6244
BERT BM25 0.5794 0.5888 0.4281 0.5841 0.6432
BERT BERT 0.5652 0.5755 0.4152 0.5684 0.6290
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Fig. 11. Performance with different hyperparameters.

As can be seen, training with only hard negatives is even better than using all negatives
(first row in the table). This finding is consistent with existing studies on using hard nega-
tives to facilitate the optimization of dense retrievers [212, 150, 225]. However, only using
easy samples for training makes the performance drop sharply. This is because the easy nega-
tives cannot provide sufficient “contrastive signals” for learning the matching between search
context and candidate documents. This is also why we design our curriculum of negative
pairs as gradually shrinking to only hard negatives (details are presented in Section 3.3.2).
Finally, dynamically adjusting the learning difficulty through curriculum is beneficial for
model training (e.g., MAP is improved from 0.5698 to 0.5740). This demonstrates again the
effectiveness of applying curriculum learning.

4.4.2. Influence of Scoring Models. We proposed two scoring models for M(·,·) – BM25
and BERT. We investigate their impact, and Table 8 shows the results of COCA+DCL.

We can observe the following: (1) Despite the differences in performance, DCL combined
with each of the scoring methods can consistently bring improvements over training without
curriculum. This shows that both scoring functions can help determine the difficulty of
pairs. (2) BERT scores work better on the positive pair curriculum, while BM25 scores are
better on the negative pair curriculum. The potential reasons could be: (a) The negative
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Fig. 12. Performance on different lengths of sessions on the AOL dataset.

candidates provided in the test set are also selected by BM25. As a result, the distribution of
negative pairs selected by BM25 on the training set is closer to that on the test set, allowing
the model to perform better. (b) Negative pairs are used for learning mismatching signals.
Compared with BERT, BM25 can identify negative candidates containing similar terms. As
term-level matching signals are critical in IR, such negative candidates can provide more
useful information on term-level dissimilarity.

4.4.3. Influence of Hyperparameters. In DCL, δ (in Equation 3.2) and η (in Equation 3.4)
are two hyperparameters that control the degree of difficulty in the initial set of positive
pairs and in the set of final negative pairs. They are determined according to the validation
set. We show their impact in Figure 11.

As we can see, when δ is small (< 0.4, i.e., using very easy positive pairs at beginning),
the performance is high. When δ becomes large (i.e., including more difficult positive pairs
at beginning), the performance drops. This confirms our hypothesis that the optimization
process can be confused with more difficult pairs at beginning. When δ = 1.0, the curriculum
of positive pairs is disabled, so all positive pairs are learned in a random order. We can see
that this common strategy used in the previous studies is suboptimal.

For negative pairs, when η is too small, we end the training process with a very small
subset of the training data consisting of highly-ranked negative documents. In this case,
the sampled documents may contain false negatives. The best performance is obtained with
η = 0.7, i.e., some mixture of easy and hard negative pairs is used at the end. However,
when η is too large (i.e., 1.0), all negative pairs are randomly sampled during the whole
training, the model’s performance also decreases because of the disabled curriculum effect.
These observations confirm the impact of both curricula and suggest that the right degree
of difficulty in the initial and final pools of samples may influence the effectiveness of DCL.
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Fig. 13. Performance at different query positions in short (S1-S2), medium (M1-M4), and
long sessions (L1-L7). The number after “S”, “M”, or “L” indicates the query index in the
session.

4.4.4. Performance on Sessions with Different Lengths. To understand the impact of the
session length on the final ranking performance, we categorize the sessions in the test set
into three bins:

(1) Short sessions (with 1-2 queries) - 77.13% of the test set;
(2) Medium sessions (with 3-4 queries) - 18.19% of the test set;
(3) Long sessions (with 5+ queries) - 4.69% of the test set.
We compare COCA+DCL with Duet, HBA, RICR, and COCA and show the results regarding

MAP and NDCG@3 in Figure 12. First, COCA+DCL improves the performance of COCA across
all three session bins. This shows DCL’s high robustness for different kinds of search context.
Second, we can see the ad-hoc ranking method Duet performs worse than other context-
aware ranking methods. This highlights once again that modeling historical user behavior is
essential for improving document ranking performance. Third, COCA+DCL performs better on
short sessions than on long ones. We hypothesize that those longer sessions are inherently
more difficult to understand, and a similar trend in baseline methods may corroborate this.
This can be due to the fact that a long session may contain more diverse intents or exploratory
search.

4.4.5. Effect of Modeling User Behavior Progression. It is important to study how the
modeled search context contributes to document ranking as a search session progresses. We
compare COCA+DCL with HBA, RICR, and COCA at individual query positions in short (S),
medium (M), and long (L) sessions. The results are presented in Figure 13. Due to space
limitations, long sessions with more than seven queries are omitted.

We can see that the ranking performance generally improves when the short and medium
sessions progress (e.g., S2 is higher than S1) because more search context information be-
comes available for predicting the next click. It benefits COCA+DCL and two baselines (COCA
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and HBA), while COCA+DCL improves more rapidly by better exploiting the context. One in-
teresting observation is that, when the search sessions become longer (e.g., from L4 to L7),
the gain of DCL decreases. We attribute this to the noisier nature of long sessions.

5. Conclusion and Future Work
In this work, we proposed a novel curriculum learning framework for context-aware doc-

ument ranking. Two complementary curricula were designed for learning positive and neg-
ative context-document pairs in an easy-to-hard manner. With these curricula, the model’s
capability of capturing matching signals and identifying mismatching signals is gradually
enhanced. We conducted experiments with three recently proposed methods on two large-
scale datasets. The results clearly demonstrate the effectiveness and wide applicability of
our framework. Besides, we also investigated the influence of different settings on applying
curriculum learning to context-aware document ranking. Our work is an early attempt to
apply curriculum learning to IR, and there is still much space to be explored. For example, it
may be useful to mine the most valuable negative candidate documents. Considering query
and document weighting in computing the difficulty is also a future direction.
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Résumé. Appuyer la conversation homme-machine sur un document est un moyen efficace
d’améliorer les performances des chatbots basés sur la recherche. Cependant, seule une
partie du contenu du document peut être pertinente pour aider à sélectionner la réponse
appropriée à une conversation. Il est donc crucial de sélectionner la partie du contenu
du document pertinente pour le contexte actuel de la conversation. Dans cet article, nous
proposons un réseau de sélection du contenu des documents (CSN) pour effectuer une sélection
explicite du contenu des documents pertinent, et filtrer les parties non pertinentes. Nous
montrons dans des expériences sur deux ensembles de données de conversations publiques
fondées sur des documents que CSN peut efficacement aider à sélectionner le contenu des
documents pertinents pour le contexte de la conversation, et qu’il produit de meilleurs
résultats que les approches de pointe. Notre code et nos jeux de données sont disponibles
sur https://github.com/DaoD/CSN.
Mots clés : Sélection du contenu, dialogue basé sur des documents, chatbots basés sur la
recherche

Abstract. Grounding human-machine conversation in a document is an effective way to
improve the performance of retrieval-based chatbots. However, only a part of the document
content may be relevant to help select the appropriate response at a round. It is thus
crucial to select the part of document content relevant to the current conversation context.
In this paper, we propose a document content selection network (CSN) to perform explicit
selection of relevant document contents, and filter out the irrelevant parts. We show in
experiments on two public document-grounded conversation datasets that CSN can effectively
help select the relevant document contents to the conversation context, and it produces
better results than the state-of-the-art approaches. Our code and datasets are available at
https://github.com/DaoD/CSN.
Keywords: Content Selection, Document-grounded Dialogue, Retrieval-based Chatbots

Prologue
At the time we wrote this article, existing studies on document-grounded retrieval-based

dialogue systems concentrated on improving document-response interactions. The meth-
ods progressed from fusing the document and dialogue context as a single representation
to respectively modeling their interactions with response candidates. Evidently, the latter
methods can better capture the relationship between the document and response candidate,
resulting in superior performance. Nonetheless, the document content is introduced to the
dialogue process without careful selection. Only a soft attention mechanism has been used to
assign weights. Since the document typically contains a lot of noise, even each piece of noise
is assigned a small weight, the accumulated noise may strongly influence the dialogue. To
address this issue, we proposed an approach to directly filter out the document content irrel-
evant to the current dialogue. A gate mechanism was designed to achieve this and brought
significant improvement on this task.
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After we published this paper, we noticed two concurrent studies that also performed
document content filtering. All of these studies demonstrate the importance of reducing the
noise of the document. As we wrote this thesis, pre-trained language models have become the
dominant in various tasks, including document-grounded dialogues. The document is con-
catenated with the dialogue context as models’ input. Content filtering is again a necessary
component since the pre-trained language models have their own input length limit [232].
Therefore, our work is still relevant in this setting with pre-trained language models.

1. Introduction
Retrieval-based chatbots such as Microsoft XiaoIce [166] and Amazon Alexa [153] are

widely used in real-world applications. Given a user input, an upstream retrieval system
can provide a set of response candidates, and the retrieval-based chatbot should choose the
appropriate one. This mainly relies on a matching score between the context and each
candidate response. It has been found that the conversation context alone is insufficient
in many cases for response selection [180, 226]. In fact, human conversations are usually
also grounded in external knowledge or documents: our responses are strongly related to
our knowledge or information contained in the documents at hand. On Reddit, for example,
people usually discuss about a document posted at the beginning of a thread, which provides
the background topics and basic facts for the following conversations. On Twitter, people
may also exchange opinions related to a news article. In these cases, in addition to the con-
versation context, the document or news article also provides useful background information
to guide response selection. A conversation that does not take into account the background
information may lead to off-topic responses. This paper deals with the problem of document-
grounded conversation - conversation based on a given document [5, 58, 148, 226, 231].

The task of document-grounded response selection is formulated as selecting a good
response from a candidate pool that is consistent with the context and relevant to the
document. Several existing studies have shown that leveraging the background document can
significantly improve response selection [58, 226, 231]. Generally, the common strategy is
selecting the response based on a combination of context-response matching and document-
response matching. The latter can boost the responses that are related to the document
content. However, a good response does not need to be related to the whole content of the
document, but to a small part of it. The selection of the relevant part of the document is
crucial.

The problem can be illustrated by an example from CMUDoG [236] in Figure 14. In this
dataset, a movie-related wiki article is used as the grounding document. We can see that the
conversation is highly related to the document. R1, R2, and R3 are three candidate responses
for U6, and R3 is the desired response. The wrong response R1 could be highly scored because
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Fig. 14. An example in CMUDoG dataset. The words in color correspond to those in the
document. R3 is the ground-truth response.

it shares several key words with the document (i.e., document-response matching score is
high). However, R1 is not an appropriate response in the current context, which asks about
the length of the movie. This example shows that a correct response is well grounded in the
document not because it corresponds to the document content, but because it corresponds
to the part relevant to the conversation context. Therefore, a first challenge is to select the
part of the document content relevant to the current conversation context. R2 looks like a
proper response to U6, yet it conveys similar information as U3, which makes the dialogue
less informative. This response could be selected if we use the whole conversation history
as conversation context - the response could have a high context-response matching score.
In fact, the current context in this example is about the length of the movie. The previous
utterances in the history are less relevant. This case illustrates the need to well calibrate
and model the current conversation context.

The two key problems illustrated by the above example (R1 and R2) are not well ad-
dressed in previous studies:(1) They usually perform a soft selection of document content
by assigning attention weights to them [58, 231]. Even though the less relevant parts could
be assigned lower weights, the cumulative weight of many irrelevant parts could be large, so
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that they collectively influence the response selection in a wrong direction. We believe that a
key missing element is a proper (hard) selection of the document content that fits the current
conversation context, instead of a (soft) weighting. The hard selection of document content
is motivated by the following observation: although the whole conversation can cover many
aspects described in the grounding document, each of the step is related to only a small part
of the document content. For example, in our conversation about a movie, we could discuss
about an actor in one step. The selection of such a small part of the content is crucial. This
observation advocates a hard selection rather than a soft weighting used in the previous
studies. (2) The existing studies usually use the entire context to determine the weights
of parts (sentences) of the document content. This strategy fails to distinguish the current
conversation context from the ones in the history. As a result, a past round of conversation
could be mistaken as the current one, leading to a redundant response as illustrated by the
R2 example.

In this paper, we propose a Content Selection Network (CSN) to tackle these problems.
First, we use a modified gate mechanism to implement the document content selection
according to the conversation context, before using it to match with the response candidate.
The content relevant to the current conversation step will be assigned a higher weight and
pass the selection gate, while the irrelevant parts will be blocked. We use the gate mechanism
to select sentences or words. Second, as the topic usually evolves during the conversation,
we determine the current conversation context by focusing on the most recent utterances,
rather than on the whole conversation history. To this end, we design a decay mechanism
for the history to force the model focusing more on the current dialogue topic. The selected
document contents and the conversation context are finally combined to select the candidate
response.

The main contributions of this paper are: (1) We propose a content selection network to
explicitly select the relevant sentences/words from the document to complement the conver-
sation context. Our experiments show that this is a much more effective way to leverage the
grounding document than a soft weighting. (2) We show that document-grounded conversa-
tion should focus on the topics in the recent state rather than using the whole conversation
context. On two public datasets for document-grounded conversation, our method outper-
forms the existing state-of-the-art approaches significantly.
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2. Related Work
2.1. Retrieval-based Chatbots

Existing methods for open-domain dialogue can be categorized into two groups: retrieval-
based and generation-based. Generation-based methods are mainly based on the sequence-
to-sequence (Seq2seq) architecture with attention mechanism and aim at generating a new
response for conversation context [13, 99, 162, 164, 209]. On the other hand, retrieval-
based methods try to find the most reasonable response from a large repository of conversa-
tional data [111, 178, 205, 223]. We focus on retrieval-based methods in this paper. Early
studies use single-turn response selection where the context is a single message [72, 78],
while recent work considers all previous utterances as context for multi-turn response selec-
tion [178, 205, 223, 237]. In our work, we also consider the whole conversation history
(but with decaying weights).

2.2. Document-grounded Conversation

Multiple studies have shown that being grounded in knowledge or document can effec-
tively enhance human-machine conversation [52, 119, 226, 231]. For example, a Seq2seq
model is first applied to generate responses based on both conversation history and external
knowledge [52]. An approach using a dually interactive matching network has been pro-
posed, in which context-response matching and document-response matching are performed
separately using a shared structure [58]. This model achieved state-of-the-art performance
on persona-related conversation [226]. Recently, Zhao et al. [231] proposed a document-
grounded matching network that lets the document and the context to attend to each other
so as to generate better representations for response selection. Through the attention mech-
anism, different parts (sentences) of the document are assigned different weights and will
participate in response selection to different extents. However, even though one may ex-
pect the noise contents (for the current step) be assigned with lower weights, they can still
participate in response selection.

Our work differs from the existing studies in that we explicitly model the document
content selection process and prevent the irrelevant contents from participating in response
selection. In addition, we also define the current conversation context by focusing more on
recent utterances in the history rather than taking the whole history indistinctly. These
ideas will bring significant improvements compared to the existing methods.
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Fig. 15. The structure of CSN. From left to right, the model follows the “representation-
matching-aggregation” paradigm. A gate mechanism is designed to select relevant content
from the document.

3. Content Selection Network
3.1. Problem Formalization

Suppose that we have a dataset D, in which each sample is represented as (c,d,r,y),
where c = {u1, . . . ,un} represents a conversation context with {ui}n

i=1 as utterances; d =
{s1, . . . ,sm} represents a document with {si}m

i=1 as sentences; r is a response candidate;
y ∈ {0,1} is a binary label, indicating whether r is a proper response. Our goal is to learn
a matching model g from D, such that for a new context-document-response triplet (c,d,r),
g(c,d,r) measures the degree of suitability of a response r to the given context c and the
document d.

3.2. Model Overview

We propose a content selection network (CSN) to model g(·, · ,·), which is shown in
Figure 15. Different from the previous work [58, 178, 205] which uses the whole document
contents, we propose a selection module with a gate mechanism to select the relevant parts
of document content based on the context. Then, the context-response matching and the
document-response matching are modeled based on the sequential, self-attention, and cross-
attention representations. Finally, CNNs and RNNs are applied to extract, distill, and
aggregate the matching features, based on which the response matching score is calculated.
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3.3. Representation

Consider the i-th utterance ui = (wu
1 , · · · ,wu

L) in the context, the j-th sentence sj =
(ws

1, · · · ,ws
L) in the document, and the response r = (wr

1, · · · ,wr
L), where L is the number of

words.14 CSN first uses a pre-trained embedding table to map each word w to a de-dimension
embedding e, i.e., w ⇒ e. Thus the utterance ui, the sentence sj, and the response r are
represented by matrices Eui = (eui

1 , · · · ,eui
L ), Esj = (esj

1 , · · · ,esj

L ), and Er = (er
1, · · · ,er

L),
respectively. Then, CSN encodes the utterances, sentences and responses by bi-directional
long short-term memories (BiLSTM) [71] to obtain their sequential representations: ui =
BiLSTM(Eui), sj = BiLSTM(Esj ), r = BiLSTM(Er). Note that the parameters of these
BiLSTMs are shared in our implementation. The whole context is thus represented as
C = [u1, · · · ,un]. With the BiLSTM, the sequential relationship and dependency among
words in both directions are expected to be encoded into hidden vectors.

3.4. Content Selection

In document-grounded conversation, the document usually contains a large amount of
diverse information, but only a part of it is related to the current step of the conversation.
To select the relevant part of document contents, we propose a content selection phase by
a gate mechanism, which is based on the relevance between the document and the context.
We design the gate mechanism at two different levels, i.e., sentence-level and word-level,
to capture relevant information at different granularities. If the sentences/words in the
document are irrelevant to the current conversation, they will be filtered out. This is an
important difference from the traditional gating mechanism, in which elements are assigned
different attention weights, but no element is filtered out. We use the conversation context
to control the gate, which contains several previous turns of conversation. Along the turns,
the conversation topic gradually changes. The most important topic is that of the most
recent turn, while more distant turns are less important. To reflect this fact, we design a
decay mechanism on the history to assign a higher importance to the recent context than to
the more distant ones. The selection process is automatically trained with the whole model
in an end-to-end manner.
Sentence-level Selection. Let us first explain how document sentences are selected ac-
cording to conversation context. Considering the context c = (u1, · · · ,un) and the j-th
sentence sj in the document, CSN computes a score for the sentence sj by measuring its
matching degree with the current dialogue context. In particular, CSN first obtains the sen-
tence representations of the context c and the sentence sj by mean-pooling over the word

14To simplify the notation, we assume their lengths are the same.
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dimension of their sequential representations:

C̄ = mean
dim=2

(C), s̄j = mean
dim=1

(sj), (3.1)

where C̄ ∈ R
n×2d and s̄j ∈ R

2d. Then CSN computes a sentence-level matching vector A by
cosine similarities:

A = cos(C̄,s̄j). (3.2)

We can treat A ∈ R
n as a similarity array A = [A1, · · · ,An] and compute a matching score

S for the sentence sj by fusing the similarity scores:

S = f(A1,A2, · · · ,An). (3.3)

The fusion function f(·) can be designed in different ways, which will be discussed later. After
obtaining the matching scores for sentences, we select the relevant sentences and update their
representations as follows:

S ′ = S × (σ(S) ≥ γ), s′
j = S ′ × sj, (3.4)

where σ(·) is the Sigmoid function and γ is a hyperparameter of the gate threshold. By
this means, we will filter out a sentence sj if its relevance score is below γ. The filtering is
intended to remove the impact of clearly irrelevant parts of document content.
Word-level Selection. In the sentence-level selection, all words in a sentence are assigned
the same weights. We can further perform a selection of words by computing a score for
each word in the sentence. Specifically, CSN constructs a word-level matching map through
the attention mechanism as follows:

B = v� tanh(s�
j W1C + b1), (3.5)

where W1 ∈ R
2d×2d×h, b1 ∈ R

h and v ∈ R
h×1 are parameters. B ∈ R

n×L×L is the word-
alignment matrix between the context and the document sentence. Then, to obtain the most
important matching features between sj and each utterance in the context, CSN conducts a
max-pooling operation as follows:

B̂ = max
dim=3

B, (3.6)

where B̂ ∈ R
n×L, and it can be represented in an array form as B̂ = [B̂1, · · · ,B̂n]. The

element B̂i ∈ R
L contains L local matching signals for all words in the document sentence sj

with respect to the utterance ui. Thereafter, CSN applies a fusion function to combine these
local matching signals and obtains a global matching vector:

S = f(B̂1, B̂2, · · · , B̂n). (3.7)
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S ∈ R
L thus contains L global matching scores for all words in sj to the whole context. In

the next step, CSN selects the relevant words in the document and updates the document
representation as follows:

S′ = S  (σ(S) ≥ γ), s′
j = S′  sj, (3.8)

where  is the element-wise product. Different from the sentence-level matching score S ′ in
Equation 3.4, the word-level matching score S′ is a vector containing weights for different
words.
Fusion Function. The fusion function f(·) in Equation (3.3) and (3.7) is used to aggregate
the matching signals with each utterance in the context. Our fusion strategies attribute
different weights to the utterances in the conversation history. Two different functions are
considered: (1) Linear combination – the weight of each matching signal is learned during the
model training. Ideally, an utterance containing more information about the conversation
topic will contribute more to the selection of document content. (2) Linear combination with
decay factors. This method assumes that the topic gradually changes along the conversation
and the response is usually highly related to the most recent topic in the context. Therefore,
we use a decay factor η ∈ [0,1] on the utterances in the context to decrease their importance
when they are far away. The matching scores are then computed as:

Ai = Ai ∗ ηn−i, (sentence-level) B̂i = B̂i ∗ ηn−i. (word-level) (3.9)

The decay factor η is a hyperparameter. Note that when η = 1, it degenerates to the normal
linear combination.

3.5. Matching and Aggregation

The next problem is to select the appropriate response by leveraging the selected docu-
ment parts. Following a recent study [58], CSN uses a dually interactive matching structure
(as shown in Figure 15) to determine context-response matching and document-response
matching, where the two kinds of matching features are modeled by the same structure.

Based on the recent work [205, 223, 237] that constructs different matching feature
maps, in addition to using the sequential representations of the sentences, CSN also uses
matching on both self-attention and cross-attention representations. Given the sequential
representations of the context C = [u1, · · · ,un], the document D = [s′

1, · · · ,s′
m], and the

response candidate r, CSN first constructs a word-word similarity matrix M1 by dot product
and cosine similarity:

Mcr
1 = CH1r� ⊕ cos(C,r), Mdr

1 = DH1r� ⊕ cos(D,r), (3.10)

where H1 ∈ R
2d×2d is a parameter, and ⊕ is the concatenation operation.
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To better handle the gap in words between two word sequences, CSN applies the attentive
module, which is similar to that used in Transformer [186]. The input of an attentive module
consists of three sequences, namely query (Q), key (K), and value (V). The output is a new
representation of the query and is denoted as fATT(Q,K,V) in the remaining description.

At first, CSN uses the attentive module over the word dimension to construct multi-grained
representations, which is formulated as:

Ĉ = fATT(C,C,C), D̂ = fATT(D,D,D), r̂ = fATT(r,r,r). (3.11)

The second similarity matrix M2 is computed based on these self-attention representations:

Mcr
2 = ĈH2r̂� ⊕ cos(Ĉ,r̂), Mdr

2 = D̂H2r̂� ⊕ cos(D̂,r̂). (3.12)

Then, another group of attentive modules (cross-attention) is also applied to represent se-
mantic dependency between the context, the document, and the response candidate:

C̃ = fATT(C,r,r), r̃c = fATT(r,C,C), (3.13)

D̃ = fATT(D,r,r), r̃d = fATT(r,D,D). (3.14)

Next, CSN also constructs a similarity matrix M3 as:

Mcr
3 = C̃H3r̃c� ⊕ cos(C̃,r̃c), Mdr

3 = D̃H3r̃d� ⊕ cos(D̃,r̃d). (3.15)

The above matching matrices are concatenated into two matching cubes:

Mcr = Mcr
1 ⊕ Mcr

2 ⊕ Mcr
3 , Mdr = Mdr

1 ⊕ Mdr
2 ⊕ Mdr

3 . (3.16)

Then CSN applies a CNN with max-pooling operation to extract matching features from Mcr

and Mdr. The output feature maps are flattened as matching vectors. As a result, we obtain
two series of matching vectors: (1) between the context and the response vcr = [vu1 , · · · ,vun ];
and (2) between the selected document and the response vdr = [vs1 , · · · ,vsm ].

Finally, CSN applies LSTMs to aggregate these two series of matching vectors into two
hidden vectors (the last hidden states of the LSTMs):

h1 = LSTM(vcr), h2 = LSTM(vdr). (3.17)

These vectors are concatenated together and used to compute the final matching score by
an MLP with a Sigmoid activation function:

g(c,d,r) = σ
(
MLP(h1 ⊕ h2)

)
. (3.18)

CSN learns g(c,d,r) by minimizing the following cross-entropy loss with D:

L(θ) = − ∑
(y,c,d,r)∈D

[y log(g(c,d,r)) + (1 − y) log(1 − g(c,d,r))]. (3.19)
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4. Experiments
4.1. Dataset

We conduct experiments on two public datasets.
PersonaChat [226] contains multi-turn dialogues with user profiles. The goal is to gen-

erate/retrieve a response that corresponds to the user profile, which is used as a grounding
document [226]. This dataset consists of 8,939 complete dialogues for training, 1,000 for
validation, and 968 for testing. Response selection is conducted at every turn of a dialogue,
and the ratio of the positive and the negative samples is 1:19 in training, validation, and
testing sets, resulting in 1,314,380 samples for training, 156,020 for validation, and 150,240
for testing. Positive responses are real human responses while negative ones are randomly
sampled from other dialogues. To prevent the model from taking advantage of trivial word
overlap, the revised version of the dataset modified the persona profiles by rephrasing, gener-
alizing, or specializing sentences, making the task much more challenging. We use “revised”
and “original” to indicate the different versions of the dataset.

CMUDoG [236] is designed specifically for document-grounded conversation. During
the conversation, the speakers are provided with a movie-related wiki article. Two scenarios
are considered: (1) Only one speaker has access to the article thus she should introduce the
movie to the other; (2) Both speakers have access to the article thus they have a discussion.
We use the dataset provided by [231], where the data of both scenarios are merged because
the size of each dataset is relatively small. Notice that the model is only asked to select a
response for the user who has access to the document. The ratio of the positive and the
negative is 1:19 in training, validation, and testing sets. This results in 723,180 samples for
training, 48,500 for validation, and 132,740 for testing.

Following previous work [231], we employ recall at position k as evaluation metrics
(R@k), where k = {1,2,5}. For a single sample, if the only positive candidate is ranked within
top k positions, then R@k = 1, otherwise, R@k = 0. The final value is the average over all
test samples. Note that R@1 is equivalent to hits@1 that is used in related work [226, 58].

4.2. Baseline Models

We compare CSN using sentence-level and word-level selection (denoted as CSN-sent and
CSN-word respectively) with the following models:

(1) Starspace [203] concatenates the document with the context as a long sentence and
learns its similarity with the response candidate by optimizing the embeddings using the
margin ranking loss and k-negative sampling. Matching is done by cosine similarity of the
sum of word embeddings.
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Table 9. Experimental results on all datasets.

PersonaChat-Original PersonaChat-Revised CMUDoG
R@1 R@2 R@5 R@1 R@2 R@5 R@1 R@2 R@5

Starspace 49.1 60.2 76.5 32.2 48.3 66.7 50.7 64.5 80.3
Profile 50.9 60.7 75.7 35.4 48.3 67.5 51.6 65.8 81.4
KV Profile 51.1 61.8 77.4 35.1 45.7 66.3 56.1 69.9 82.4
Transformer 54.2 68.3 83.8 42.1 56.5 75.0 60.3 74.4 87.4
DGMN 67.6 81.3 93.3 56.7 73.0 89.0 65.6 78.3 91.2
DIM 75.5 87.5 96.5 68.3 82.7 94.4 59.6 74.4 89.6
CSN-sent 77.5 88.8 96.8 70.1 83.4 95.1 70.1 82.5 94.3
CSN-word 78.1 89.0 97.1 71.3 84.2 95.5 69.8 82.7 94.0

(2) Profile Memory Network [226] uses a memory network with the context as input,
then performs attention over the document to find relevant sentences. The combined rep-
resentation is used to select the response. This model relies on the attention mechanism to
weigh document contents.

(3) Key-value (KV) Profile Memory Network [226] uses dialogue histories as keys and
the next dialogue utterances as values. In addition to the memory of the document, this
model has a memory of past dialogues that can influence the response selection.

(4) Transformer [186] is used in [119] as an encoder for the context, document, and
response. The obtained representations are input to a memory network to conduct matching
in the same way as in Profile Memory Network.

(5) DGMN [231] is the state-of-the-art model on the CMUDoG dataset. It employs a cross
attention mechanism between the context and document and obtains a context-aware docu-
ment representation and a document-aware context representation. The two representations
and the original context representation are all matched with the response representation.
The three matching features are finally combined to output the matching score.

(6) DIM [58] is the state-of-the-art model on the PersonaChat dataset. It applies a
dually interactive matching structure to model the context-response matching and document-
response matching respectively. DIM conducts representation, matching, and aggregation by
multiple BiLSTMs, and the final matching features are used to compute the matching score
by an MLP.

4.3. Implementation Details

We use PyTorch [136] to implement the model. A 300-dimensional GloVe embed-
ding [141] is used on all datasets. On PersonaChat, another 100-dimensional Word2Vec [125]
embedding provided by [58] is used. Dropout [171] with a rate of 0.2 is applied to the word
embeddings. All hidden sizes of the RNNs are set as 300. Two convolutional layers have
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(a) Effect of γ. (b) Effect of η.

Fig. 16. Performance of different γ and η settings on original PersonaChat.

32 and 64 filters with the kernel sizes as [3, 3] and [2, 2]. AdamW [110] is employed for
optimization with a batch size of 100. The initial learning rate is 0.001 and is decayed by
0.5 when the performance on the validation set is not increasing.

4.4. Experimental Results

The experimental results are shown in Table 9. The results on all three datasets indicate
that our CSN outperforms all baselines, including DGMN and DIM, which are two state-of-the-
art models. On the PersonaChat dataset, both CSN-word and CSN-sent achieve statistically
significant improvements (p-value ≤ 0.05) compared with DIM, which is the best model on
this dataset. In general, CSN-word performs better than CSN-sent, indicating the word-
level selection is more able to select fine-grained document contents than the sentence-level
selection. This comparison also confirms our intuition that it is advantageous for document-
grounded conversation to rely on fine-grained information from the document. On CMUDoG,
the two document content selection strategies work equally well. We explain this by the fact
that the grounding document is longer in this dataset, and there is no obvious reason that
one level of selection can determine more relevant parts than another. Nevertheless, both
selection strategies show clear advantages over the baseline methods without selection.

Compared with other baselines that represent the whole document as a single vector,
DGMN, DIM, and our CSN consider fine-grained matching between parts of the document and
response. We can see that these models achieve clearly better performances, confirming the
necessity to use parts of the document rather than the whole document. However, DGMN and
DIM only assign attention weights to sentences according to the context, without eliminating
low-weighted ones. In contrast, our CSN model filters out all the irrelevant parts. In so doing,
we expect the model not to be influenced by clearly irrelevant parts. As we can see in the
experimental results, CSN achieves significantly higher performance than DGMN and DIM on
all the datasets, confirming the usefulness of explicit selection (and filtering) of document
contents.

86



Effect of Content Selection. The hyperparameter γ in Equation (3.4) and (3.8) controls
how much the document content is selected. We test the effect of this hyperparameter on
the original PersonaChat dataset. Figure 16a shows that if γ is too small or too large, too
much or too little information from the document may be selected. In particular, when
γ = 0 – the whole document content is kept, the performance drops a lot. This strategy is
comparable to that used in the existing models DIM and DGMN based on attention. We see
again the usefulness of explicit document content filtering. On the other hand, when γ = 1,
i.e., no document content is selected, it degenerates to non document-grounded response
selection and the performance also drops sharply. The best setting of γ is around 0.3 for
both CSN-sent and CSN-word, which retains an appropriate amount of relevant document
content for response matching.
Effect of Decaying Factor. The decay factor η works as prior knowledge to guide the
model focusing more on the recent utterances. A lower η means the previous utterances have
less contribution in the selection of the document. “η = 1” corresponds to the model with a
normal linear combination (the first kind of fusion function). Based on the results, we can
see that our decaying strategy (η = 0.9) performs the best. This confirms our assumption
that focusing more on the recent topic of the conversation is helpful. However, when η = 0,
only the last utterance in the history is used and the performance is lower. This illustrates
the necessity of using a larger context.

5. Conclusion and Future Work
In this paper, we proposed a document content selection network to select the relevant

content to ground the conversation. We designed a gate mechanism that uses conversation
context to retain the relevant document contents while filtering out irrelevant parts. In
addition, we also use a decay factor on the conversation history to focus on more recent
utterances. Our experiments on two large-scale datasets for document-grounded response
selection demonstrated the effectiveness of our model. We showed that both document
content selection (and filtering) and the use of decay factor contributed in increasing the
effectiveness of response selection. As a future work, it would be interesting to study if the
selection can be done at topic level, in addition to sentence and word levels.
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Résumé. La génération d’un texte basé sur une directive prédéfinie est un problème inté-
ressant mais difficile. Une série d’études ont été menées ces dernières années sur ce sujet.
Dans les systèmes de dialogue, les chercheurs ont exploré la conduite d’un dialogue basé
sur un plan. Dans la génération d’histoires, l’utilité d’un scénario a également été prouvée.
Dans cet article, nous abordons une nouvelle tâche : la génération de scénarios de films à
partir d’une narration prédéfinie. Comme première exploration, nous étudions ce problème
“basé sur la recherche”, c’est-à-dire de sélectionner la meilleure réponse (i.e., ligne de script
suivante) parmi les candidats qui correspondent au contexte (i.e., lignes de script précé-
dentes) ainsi qu’à la narration donnée. Notre modèle, (ScriptWriter-CPre) peut garder
la trace de ce qui a été dit dans la narration et de ce qui doit être dit. En outre, il peut
également prédire quelle partie de la narration doit faire l’objet d’une plus grande attention
lors de la sélection de la ligne de script suivante. Dans notre étude, nous constatons que
la narration joue un rôle différent de celui du contexte. Par conséquent, des mécanismes
différents sont conçus pour les traiter. En raison de l’indisponibilité de données pour cette
nouvelle application, nous construisons une nouvelle collection de données à grande échelle
GraphMovie à partir d’un site Web de cinéma où les utilisateurs peuvent télécharger libre-
ment leurs narrations lorsqu’ils regardent un film. Ce nouveau jeu de données est mis à la
disposition du public afin de faciliter d’autres études sur la génération de textes selon des
directives. Les résultats expérimentaux sur le jeu de données montrent que l’approche que
nous proposons, basée sur la narration, est nettement plus performante que les méthodes de
référence qui utilisent simplement la narration comme une sorte de contexte.
Mots clés : Génération de textes guidés par la narration, génération de script de films,
méthode basée sur la recherche

Abstract. Generating a text based on a predefined guideline is an interesting but challeng-
ing problem. A series of studies have been carried out in recent years. In dialogue systems,
researchers have explored driving a dialogue based on a plan, while in story generation, a
storyline has also been proved to be useful. In this paper, we address a new task–generating
movie scripts based on a predefined narrative. As an early exploration, we study this prob-
lem in a “retrieval-based” setting. We propose a model (ScriptWriter-CPre) to select the
best response (i.e., next script line) among the candidates that fit the context (i.e., previ-
ous script lines) as well as the given narrative. Our model can keep track of what in the
narrative has been said and what is to be said. Besides, it can also predict which part of
the narrative should be paid more attention to when selecting the next line of script. In
our study, we find the narrative plays a different role than the context. Therefore, different
mechanisms are designed for deal with them. Due to the unavailability of data for this
new application, we construct a new large-scale data collection GraphMovie from a movie
website where end-users can upload their narratives freely when watching a movie. This
new dataset is made available publicly to facilitate other studies in text generation under
the guideline. Experimental results on the dataset show that our proposed approach based
on narratives significantly outperforms the baselines that simply use the narrative as a kind
of context.
Keywords: Narrative-guided Text Generation, Movie Script Generation, Retrieval-based
Method
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Prologue
At the time we prepared this article, all existing dialogue systems work on providing a

response in reaction to a user input. In this case, the dialogue would become diverse and
scattered. So, we intended to explore whether the dialogue process can be more controllable.
As an initial study, we set our goal as controlling a dialogue by a given text description
(narrative). This problem can be treated as a kind of knowledge-grounded dialogue, where
the given text serves as additional knowledge. However, the given text serves as a story,
which should be completely covered by the dialogue, which is not required by the knowledge
or dialogue context in knowledge-grounded dialogue. To support our study, we collected a
new dataset from a website called GraphMovie. This website was an online platform where
end users can use their own words to describe a movie with screenshots. We noticed that
each description (called narrative) corresponds to a movie clip containing several lines of
script. So, the narrative and the corresponding script lines naturally fit our study problem,
i.e., the narrative describes what happens in the script lines. Based on this dataset, we
conducted many experiments and found that the narrative should be modeled in an different
way than the dialogue (script) context. The model should be aware of which part of the
narrative has been covered by the context and predict what should be mentioned in the next
script line. After some exploration, we proposed a new mechanism to achieve our goal and
successfully generated movie script based on given narratives. Our study demonstrated that
it is feasible to control a dialogue process by a text description in a dialogue system.

In parallel to our study, some researchers explored using keywords to generate a para-
graph [41] or a dialogue [176, 147]. Our work is different from theirs in that the narrative
we used is a natural language text rather than some keywords. The model is required to
understand the narrative content and model it in the script generation process. There was
also an interesting study that investigates generating a recipe from given ingredients [88].
All ingredients should be covered by the recipe, which is similar to our narrative. Since the
ingredients are usually selected from a fixed set, their vocabulary is smaller than our narra-
tive. Overall, all these studies try to control text generation through another text. Such a
task can find a wide applicability in the real life – to generate a story or a long text from a
summary description. Notice that the recent ChatGPT has demonstrated such a capability.
However, at the time we wrote the paper, no such system existed.

1. Introduction
A narrative is a series of related events or experiences, which can also be generally

understood as a way of telling a story. The definition of narrative given by WordNet is
“a message that tells the particulars of an act or occurrence or course of events; presented
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Narrative
Jenny doesn’t like to go home. To accompany Jenny, Gump decides to go 
home later. Gump is Jenny’s best friend. 

Initial line Mama's going to worry about me.

1st line
Just stay a little longer.

Yeah, and I'll bet you $ 10,000 he laughs his ass off.

2nd line
Ok, Jenny, I'll stay.

She lived in an old house.

3rd line
He was a very loving man.

You are my most special friend.

Fig. 17. An example of a part of a script with a narrative extracted from our GraphMovie
dataset. The narrative generally describes the plot of a short session, which consists of
several script lines. The checked lines are from a ground-truth session, while the unchecked
ones are other candidates that are relevant but incoherent with the narrative. Our task is
to select a proper line from a candidate list based on the given narrative and previous lines.
By gradually selecting more lines, the whole session can be generated.

in writing or drama or cinema or as a radio or television program”.15 In natural language
processing (NLP), narrative plays an important role in many tasks. For example, in story
generation, the storyline can be treated as a type of narrative, which is helpful in generating
coherent and consistent stories [38, 39]. In dialogue generation, the narrative can act as
a global plan for the whole conversation session, so as to avoid generating inconsistent and
scattered responses [52, 180, 210]. In movie script generation, the narrative can act as
a guideline to organize the plot in order to faithfully present the ideas elaborated in the
narrative.

In this work, we investigate the utilization of narratives in the special case of text
generation–movie script generation. This special form of conversation generation is cho-
sen due to the unavailability of the data for a more general form of application. Yet it does
require the same care to leverage narratives as in general conversation, and hence can provide
useful insight into a more general form of narrative-guided conversation or story generation.
Our idea of using narrative as a guideline for script generation has two motivations: (1) The
use of narrative can make the generated script more consistent with previous
script lines. This has been demonstrated by existing studies that apply narratives or sto-
rylines as guidelines to conversation generation [38, 39]–Without the guidance of narratives,
the utterances generated can easily deviate or become inconsistent, making the conversation
useless and even unpleasant for the user. (2) A narrative can provide a global view
of what will happen in the plot so that the whole generated script lines can be

15WordNet - narrative, http://wordnetweb.princeton.edu/perl/webwn?s=narrative
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more coherent. The coherency of the generated texts is a problem not much addressed by
the existing literature. Let us elaborate on the problem with a real example collected from
the movie Forrest Gump. Given a narrative artificially written in several lines to retell a part
of the plot in the movie, the corresponding conversation is shown in Figure 17. The first and
third lines are spoken by Jenny, while the second line is given by Forrest. We can see that
the narrative generally describes what happened in the several lines. If the narrative is not
provided, the other choice of the second line (“She lived in an old house”) can also be possible
as it is consistent with the context (but it cannot lead to the following story). Therefore,
it is important to leverage the narrative as a guideline for higher consistency and coherency
of the generated movie script. This problem is very challenging, as has been recognized in
some recent research [38, 39].

To alleviate the aforementioned problem, we study the problem of leveraging narrative
to guide script generation, and we formulate our task as selecting the following lines by
leveraging the narrative and previous lines. As an early exploration, we limit ourselves to
the “retrieval-based” setting to simplify the task. To support our study on narrative-based
generation, we collect a new dataset from GraphMovie, where end-users can retell the story
of a movie by uploading descriptive paragraphs in their own words.16 More details about the
dataset will be presented in Section 3.2.

The problem we address is closely related to dialogue generation that takes into account
the context [205, 230, 237]. However, a narrative plays a different role from a general
context. Particularly, a narrative covers a part of a story, and a good conversation guided by
a narrative should cover all aspects it delivers, which is not the case for generating dialogue
with a general context. Intuitively, there are two challenges in leveraging narratives: (1) One
should keep track of the coverage of the information of the narrative to be aware of what has
been said before. This role of narrative is different from that of context. In dialogue gener-
ation, typical methods of context-based response selection focus on measuring the matching
degree between the context and the response. If the same matching mechanism is used on
a narrative, one will often see redundant utterances. Narrative tracking aims to cope with
this problem. (2) We need to determine which remaining part of the narrative should be
expressed when generating the next immediate line. The narrative is often organized in a
specific chronological order. Thus, the model for narrative-guided text generation needs to
be able to learn how to use the remaining information in the narrative. In summary, it
is necessary to design a new mechanism to track and leverage the narrative in the script
generation/selection process.

In this paper, we propose a new model called ScriptWriter-CPre to address the problem
of script selection with the help of a narrative. This model is extended from our proposed

16Graph Movie, http://www.graphmovies.com/home/2/index.php. Unfortunately, we find this website
closed recently.
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ScriptWriter, which can keep track of what in the narrative has been said and what is still
remaining to select the next line by an updating mechanism. Matchings between the updated
narrative, context, and response are then computed respectively and finally aggregated as a
matching score. Although the narrative status has already been tracked by comparing the
current context (history) with the narrative, it is still hard for the model to determine which
remaining part to cover in the next line. This problem is challenging largely because of the
lack of direct supervision signals. With only the final loss, it is hard to tell whether the wrong
line stems from the mismatching with the context or the wrong usage of the narrative. To
tackle this problem, we extend ScriptWriter with a Content Prediction (CPre) module,
which is inspired by recent studies on knowledge-driven dialogue [90, 104]. Specifically, we
use the last line in the context to predict a distribution over the narrative, which is denoted
as the “prior distribution”. Then, we also predict a distribution based on the ground-truth
line, which is denoted as the “posterior distribution”. By reducing the distance between
the two distributions, the model can learn to predict (select) the content from the narrative
that should be covered by the next line. This is achieved by adding a supplementary KL-
divergence loss to the final loss. The clear feedback from this loss function can directly help
the model learn to use the narrative.

Existing work on composing conversations includes generation-based methods and
retrieval-based methods. Due to the advantages of informative and fluent responses,
retrieval-based approaches for conversation generation have been widely explored in previ-
ous studies [144, 205, 237, 247]. Additionally, retrieval-based methods provide an easier
way for us to evaluate the impact of the narratives in our work. Therefore, we frame our
work as a retrieval-based conversation generation task in terms of “generating” responses
by selecting proper responses from a set of candidates.

We conduct experiments on a dataset we collected and made publicly available (see Sec-
tion 5). The experiments will show that using a narrative to guide the generation/selection
of script is a much more appropriate approach than using it as part of the general context.

The problem we studied has several applications. Intuitively, our model can assist movie
script authors to generate a new movie script. It can also be used for teaching, especially for
beginners in movie creation. More generally, our method can be used in other text generation
problems. For example, researchers have reported that generating a story from scratch is
a very difficult problem. One of the solutions is providing the model with a predefined
storyline. Our method can be directly applied for this problem. Besides, similar approaches
could also be applied to dialogue generation with a narrative or any type of guidance.

Our work has three main contributions:
(1) Our work is an early exploration of movie script generation with a narrative. This

task could be further extended to a more general text generation scenario when suitable data
are available.
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(2) We construct the first large-scale data collection GraphMovie to support research on
narrative-guided movie script generation, which has been made publicly accessible.

(3) We propose a new model in which a narrative plays a specific role in guiding script
generation. Our model can not only track what in the narrative has already been covered,
but also predict the part that should be expressed in the next line. This will be shown to be
more appropriate than a general context-based approach.

(4) Extensive comparisons with nine baseline methods on both automatic and human
evaluation metrics demonstrate the superiority of our proposed method consistently. The
ablation studies further validate the effects of different modules in our design. The influences
of different hyper-parameters, narrative types, and context lengths are also revealed in the
experiments. Moreover, a case study and error analysis are performed, which provides us
some insightful findings and inspires some promising future work.

The rest of the paper is organized as follows. Related work is introduced in Section 2. The
problem formulation and the collection of the dataset are presented in Section 3. Then we
describe the details of our method in Section 4, followed by the description of the experiments
in Section 5. More analysis is conducted in Section 6. Finally, we conclude our paper and
discuss future work in Section 7.

2. Related Work
2.1. Narrative Understanding

It has been more than thirty years since researchers proposed “narrative comprehension”
as an important ability of artificial intelligence [154]. The ultimate goal is the development of
a computational theory to model how humans understand narrative texts. Early explorations
used symbolic methods to represent the narrative [11, 185] or rule-based approaches to
generate the narrative [155]. Recently, deep neural networks have been used to tackle the
problem [1]. Related problems such as generating a coherent and cohesive narrative text [26,
33, 77], identifying relations in generated stories [158], and understanding relationship
trajectories in narrative [221] have also been addressed. However, these studies only focused
on how to understand a narrative itself (e.g., how to extract information from a narrative
or how to generate a narrative). They did not investigate how to utilize the narrative in an
application task such as dialogue generation.

2.2. Dialogue Systems

Human-computer conversation is one of the most challenging tasks in NLP. The target
of this task is to produce replies for human input messages. Conversation systems have
been built for both open-domain and domain specific dialogues. The open-domain dialogue
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systems aim to produce natural and human-like conversation without restriction of domains.
A typical application is the chatbot. On the contrary, domain specific dialogue systems are
often task-oriented, such as ticket booking systems and automatic diagnosis systems.

2.2.1. Open-domain chatbot. Inspired by the Turing test proposed in 1950 [183], re-
searchers and engineers have developed many conversational systems for chitchat [29, 195].
ELIZA, created in 1966, is perhaps the first chatbot known publicly [195]. It can only
chat with people in a specific domain based on many hand-crafted scripts and limited do-
main knowledge. Recently, with large-scale human conversational data on the Internet,
researchers have explored data-driven approaches to building a chatbot. Existing methods
can be categorized into two groups. The first group of approaches learn response gener-
ation from the data. Most of the early works are inspired by statistical machine trans-
lation [156]. In recent years, neural network-based models have been widely used. Based
on the sequence-to-sequence structure with attention mechanism [164, 187], multiple exten-
sions have been made to tackle the “safe response” problem [99, 244]; to incorporate external
knowledge [209, 234]; to generate responses with emotions or personas [100, 115, 145]; to
model the hierarchical structure of the dialogue context [162, 163, 210] and to reduce the
cost of response decoding [206]. Different from the generation-based methods, the second
group of methods focus on searching for the most reasonable response from a large repository
of conversational data. The key issue of these retrieval-based methods is how to measure the
suitability of a response candidate for a user input. Early work studies single-turn response
selection where the input is a single message [72, 78], while recent work pays more attention
to context-response matching for multi-turn response selection. Representative methods in-
clude the deep learning to respond architecture (DL2R) [217], sequential matching network
(SMN) [205], deep attention matching network (DAM) [237], deep utterance aggregation
model (DUA) [230], interactive matching network (IMN) [56], and multi-hop selector net-
work (MSN) [223]. Retrieval-based methods are widely used in real conversation products
due to their more fluent and diverse responses and better efficiency. In this paper, we focus
on extending retrieval-based methods by using a narrative as a plan for a session. This is a
new problem that has not been studied before.

2.2.2. Task-oriented systems. Different from open-domain chatbots, task-oriented sys-
tems are designed to accomplish tasks in a specific domain [94, 161, 182, 194]. In these
systems, a dialogue state tracking component is designed for tracking what has happened in
a dialogue [69, 199, 215]. This inspires us to track the information in the narrative that
has not been expressed by previous lines of conversation. However, existing methods for
task-oriented dialogue cannot be applied to our task directly as they are usually predefined
for specific tasks, and state tracking is often framed as a classification problem. For example,
in a movie-booking dialogue system, “Where do you want to watch a movie?” would fit into
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a predefined dialogue act slot request(city), while the reply “I want to watch it in Seattle.” is
transformed into inform(city=“Seattle”) action [46]. Such state tracking and action design
are impossible for our task because of the wide range of topics in movie scripts and corre-
sponding narratives. To tackle this problem, we design a more general and flexible updating
mechanism for the representation of the narrative, which keeps track of the information flow
in movie dialogues.

2.3. Story Generation

Existing studies have also tried to generate a story. Early work relied on symbolic plan-
ning [18, 120] and case-based reasoning [51, 216], while more recent work uses deep learning
methods. Some of them focused on story ending generation [60, 138], where the story con-
text is given, and the model is asked to select a coherent and consistent story ending. This
is similar to the dialogue generation problem mentioned above. Besides, attempts have been
made to generate a whole story from scratch [38, 39]. Compared with the former task, the
latter is more challenging since the story framework and storyline should all be controlled
by the model.

2.4. Other Forms of Text Generation

Some other text generation work is related to ours. Feng et al. [41] proposed an LSTM-
based model to generate a paragraph-level text with multiple topics. The topic is represented
by five words which contain far less information compared to the narrative we use. Their goal
of writing a long text, e.g., an essay, is also different from movie script generation. Kiddon
et al. [88] proposed an interesting task of generating a recipe from given ingredients. The
ingredients are represented by a checklist of phrases, and the model needs to incorporate
them into the recipe in a reasonable order. They propose a checklist mechanism to update
an agenda to control which ingredients have not been used yet. This idea is similar to our
idea of updating the narrative, but the narrative used in our task consists of open-domain
natural language sentences, whose vocabulary size is much larger than the structured list of
limited ingredients.

Some recent studies also tried to guide the generation of dialogues [176, 204, 248] or
stories [219] with keywords - the next response is asked to include the keywords. This
is a step towards guided response generation and bears some similarities with our study.
However, a narrative is more general than keywords, and it provides a description of the
dialogue session rather than imposing keywords to the next response.
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Table 10. Statistics of GraphMovie corpus. A narrative is a description that summarizes
a fragment of a movie. Each narrative corresponds to a session containing several lines of
script. Micro-sessions are obtained by moving the prediction point through the session, each
of which has a sequence of previous lines at that point of time, the same narrative as the
session, and the next line to predict. The line candidates are used for prediction, which
contain one golden line and several lines randomly sampled from the dataset.

Training Validation Test

# Sessions 14,498 805 806
# Micro-sessions 136,524 37,480 38,320
# Candidates 2 10 10
Min. #lines in Session 2 2 2
Max. #lines in Session 34 27 17
Avg. #lines in Session 4.71 4.66 4.75
Avg. #words in Narrative 25.04 24.86 24.18

3. Problem Formulation and Dataset
3.1. Problem Formulation

Suppose that we have a dataset D, in which a sample is represented as (y,c,p,r), where
c = {s1, · · · ,sn} represents a context formed by the preceding sentences/lines {si}n

i=1; p is a
predefined narrative that governs the whole script session, and r is a next line candidate (we
refer to it as a response); y ∈ {0,1} is a binary label, indicating whether r is a proper response
for the given c and p. Intuitively, a proper response should be relevant to the context, and
be coherent and aligned with the narrative. Our goal is to learn a model g(c,p,r) with D to
determine how suitable a response r is to the given context c and narrative p.

3.2. Data Collection and Construction

Data is a critical issue in research on story/dialogue generation. Unfortunately, no dataset
has been created for narrative-guided story/dialogue generation. To fill the gap, we con-
structed a test collection from GraphMovie, where an editor or a user can retell the story
of a movie by uploading descriptive paragraphs in his/her own words to describe the screen-
shots selected from the movie. Each movie on this website has, on average, 367 descriptions.
A description often contains one to three sentences to summarize a fragment of a movie. It
can be at different levels - from retelling the same conversations to a high-level description.
We consider these descriptions as narratives for a sequence of dialogues, which we call a
session in this paper. Each dialogue in a session is called a line of script (or simply a line).
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To construct the dataset, we use the top 100 movies on IMDB as an initial list.17 For
each movie, we collect its descriptions from GraphMovie. Then we hire annotators to watch
the movie and annotate the start time and end time of the dialogues corresponding to each
description through an annotation tool specifically developed for this purpose. According to
the start and end time, the sequence of lines is extracted from the subtitle file and aligned
with the corresponding description.

As viewers of a movie can upload descriptions freely, not all descriptions correspond to
a narrative and are suitable for our task. For example, some uploaded paragraphs express
one’s subjective opinions about the movie, the actors, or simply copy the script. Therefore,
we manually review the data and remove such nonnarrative data. We also remove sessions
that have less than two lines. Finally, we obtain 16,109 script sessions, each of which contains
a description (narrative) and corresponding lines of the script. As shown in Table 10, on
average, a narrative has about 25 words, and a session has 4.7 lines. The maximum number
of lines in a session is 34.

Our task is to select one response from a set of candidates at any point during the session.
By moving the prediction point through the session, we obtain a set of micro-sessions, each of
which has a sequence of previous lines as the context at that point of time, the same narrative
as the session, and the next line to predict. The candidates to be selected contain one ground-
truth line–the one that is genuinely the next line, together with one (in the training set) or
nine (in the validation/test set) other candidates retrieved with the previous lines by Solr.18

The above preparation of the dataset follows the practice in the literature [111, 205, 230]
for retrieval-based dialogue.

4. Proposed Method: ScriptWriter
4.1. Overview

A good response is required to be both coherent with the previous lines, i.e., context,
and consistent with the given narrative. For example, “Just stay a little longer” can respond
“Mama’s going to worry about me” and it has no conflict with the narrative in Figure 17.
Furthermore, as our target is to generate all lines in the fragment successively, it is also
required that the following lines should convey the information that the former lines have
not conveyed. Otherwise, only a part of the narrative is covered, and we will miss some other
aspects specified in the narrative.

We propose an attention-based model called ScriptWriter-CPre to solve the prob-
lem. The overview of our model is shown in Figure 18. ScriptWriter-CPre follows a
representation-matching-aggregation framework. First, the narrative, the context, and the
17IMDB, https://www.imdb.com/
18Apache Solr, https://lucene.apache.org/solr/
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Fig. 18. The overview of our proposed ScriptWriter-CPre. ScriptWriter-CPre follows a
representation-matching-aggregation framework. It is equipped with an updating mechanism
to track what in a narrative has been expressed, based on which the representation of the
narrative is updated. Besides, we also design a supplementary loss to facilitate the learning
of content prediction.

response candidate are represented in multiple granularities by multi-level attentive blocks.
Second, we propose an updating mechanism to keep track of what in a narrative has been
expressed and explicitly lower their weights in the updated narrative so that more emphasis
can be put on the remaining parts. Third, we propose using a supplementary loss to facili-
tate the learning of content prediction, which lets the model learn to predict which part of
the narrative should be given more attention in the next line. Fourth, matching features are
extracted between different elements: between context and response to capture whether it is
a proper reply; between narrative and response to capture whether it is consistent with the
narrative; and between context and narrative to implicitly track what in the narrative has
been expressed in the previous lines. Finally, the above matching features are concatenated
together and a final matching score is produced by convolutional neural networks (CNNs)
and a multi-layer perceptron (MLP). The whole model is optimized by the combination of
the supplementary content prediction loss and the final response selection loss.

4.2. Representation

To better handle the gap in words between two word sequences, we propose to use an
attentive block, which is similar to that used in Transformer [186]. This structure is used
to represent lines in the context, a narrative, and a response.

As illustrated in Figure 19, an attentive block contains two sub-layers: a sub-layer imple-
menting an attention mechanism and a fully-connected feed-forward network (FFN). Each
layer uses a residual connection to ease the training of networks [68] and layer normalization
(LayerNorm) to avoid gradient vanishing and exploding [6]. The input of an attentive block
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Fig. 19. The structure of the Attentive Block. The attention weights are computed by the
query (Q) and key (K), and then applied to the value (V). Q, K, and V are three matrices.
Residual connection, layer normalization and a feed-forward network are used to further fuse
the information and output final results.

consists of three sequence representations, namely query (Q), key (K), and value (V).19 The
output is a new representation of query and is denoted as AttentiveBlock(Q,K,V) in the
remaining parts. The detailed computation is as follows:

AttentiveBlock(Q,K,V) = LayerNorm(X + FFN(X)), (4.1)

X = LayerNorm(Q + Attention(Q,K,V)), (4.2)

Attention(Q,K,V) = softmax
(

QK�
√

d

)
· V, (4.3)

FFN(X) = FC(ReLU(FC(X))), (4.4)

where FC(·) is the fully-connected layer, and ReLU(·) is the activation function. Q ∈ R
Nq×d

denotes the attention query matrix, K ∈ R
Nk×d is the key matrix, and V ∈ R

Nk×d is the
value matrix. Nq, Nk, and d are the number of attention query, key/value vectors, and
the dimensions of the representation, respectively. The attentive block can be explained
as follows: for each attention query vector in Q, it first computes the dot product of the
attention query with all keys, aiming to evaluate the similarity between the attention query
and each key. Then, it is divided each by

√
d, and applies a softmax function to obtain

the weights of the values. Finally, the new representation of the attention query vector
is calculated as a weighed sum of values. The original Transformer framework is used for
machine translation, where a self-attention is proposed to better represent a sentence. In
our case, self-attention is used to recognize the internal connections between words in an
utterance. So, query, key, and value become the same utterance. Our purpose of doing
intra-sentence self-attention is to connect a word to related words in the sentence so that its
representation can be enhanced by the related words in the higher layer.
19Note that the “query” in the attention function and IR have different meanings.
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More specifically, given a narrative p = (wp
1, · · · , wp

np
), a line si = (wsi

1 , · · · , wsi
nsi

), and a
response candidate r = (wr

1, · · · , wr
nr

), ScriptWriter first looks up a pre-trained embedding
table E and maps each word w into a de-dimension embedding e:

ep
i = LookUp(wp

i , E), esi
j = LookUp(wsi

j , E), er
k = LookUp(wr

k, E). (4.5)

Thus, the narrative p, the line si, and the response candidate r are represented by matrices
P0 = (ep

1, · · · , ep
np

), S0
i = (esi

1 , · · · , esi
nsi

) and R0 = (er
1, · · · , er

nr
).

Then ScriptWriter takes P0, {S0
i }n

i=1 and R0 as inputs and uses stacked attentive blocks
to construct multi-level self-attention representations. The output of the (l − 1)th level of
attentive block is input into the lth level. The representations of p, si, and r at the lth level
are defined as follows:

Pl = AttentiveBlock(Pl−1, Pl−1, Pl−1), (4.6)

Sl
i = AttentiveBlock(Sl−1

i , Sl−1
i , Sl−1

i ), (4.7)

Rl = AttentiveBlock(Rl−1, Rl−1, Rl−1), (4.8)

where l ranges from 1 to L.
Inspired by previous studies [223, 237], we apply another group of attentive blocks,

which is referred to as cross-attention, to capture the semantic dependency between p, si,
and r. Considering p and si at first, their cross-attention representations are defined by:

Pl
si

= AttentiveBlock(Pl−1, Sl−1
i , Sl−1

i ), (4.9)

Sl
i,p = AttentiveBlock(Sl−1

i , Pl−1, Pl−1). (4.10)

Here, the words in the narrative can attend to all words in the line, and vice verse. In this
way, some inter-dependent segment pairs, such as “stay” in the line and “go home later”
in the narrative, become closer to each other in the representations. Similarly, we compute
cross-attention representations between p and r and between r and si at different levels,
which are denoted as Pl

r, Rl
p, Sl

i,r and Rl
si

:

Pl
r = AttentiveBlock(Pl−1, Rl−1, Rl−1), (4.11)

Rl
p = AttentiveBlock(Rl−1, Pl−1, Pl−1), (4.12)

Sl
i,r = AttentiveBlock(Sl−1

i , Rl−1, Rl−1), (4.13)

Rl
si

= AttentiveBlock(Rl−1, Sl−1
i , Sl−1

i ). (4.14)

These representations further provide matching information across different elements in the
next step.
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Fig. 20. Updating mechanism in ScriptWriter. The narrative and all lines in the context
are first represented by the stacked attentive blocks. Then, the representation of the narrative
is updated by lines in the context one by one. The information that has been expressed is
decayed. As a result, the updated narrative focuses more on the remaining information.

4.3. Updating Mechanism

We design an updating mechanism to keep track of the coverage of the narrative by the
lines so that the selection of the response will focus on the uncovered parts. The mechanism
is illustrated in Figure 20. We update a narrative’s representation gradually by all lines in
the context one by one. For the ith line si, we conduct a matching between Si and P by
their cosine similarity at all levels (l) of attentive blocks:

Tl
si,p

[j][k] = cos(Sl
i[j], Pl[k]), (4.15)

where j and k stand for the jth word in si and kth word in p respectively. To summarize
how much information in p has been expressed by si, we compute a vector Di by conducting
summations along vertical axis on each level in the matching map Tsi,p. The summation at
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Fig. 21. A supplementary loss for the learning of content prediction. In the left side, for
the the last line sn, we compute its attention distribution over the narrative. This can be
viewed as a “predicted” weight indicating which part of the content in the narrative should be
focused on. To facilitate the prediction, in the right side, we use the ground-truth response
rgt to compute another attention distribution over the narrative. These attention weights
reflect which part of the content in the narrative is indeed useful in selecting the ground-
truth response. Therefore, we use the latter attention weights as the label and compute a
KL-divergence loss to optimize the former predicted weights. By this means, the learning of
content prediction in the narrative can be improved.

the lth level is:

Dl
i = [dl

i,1,dl
i,2, · · · ,dl

i,np
], dl

i,k = γ

nsi∑
j=1

Tl
si,p

[j][k], (4.16)

where np, nsi
denotes the number of words in p and si; γ ∈ [0,1] is a parameter to learn and

works as a gate to control the decaying degree of the mentioned information. Finally, we
update the narrative’s representation as follows for the ith line si in the context:

Pl
i+1 = (1 − Dl

i)Pl
i. (4.17)

The initial representation Pl
0 is equal to Pl defined in Equation (4.6). As a result, if there

are n lines in the context, this update is executed n times, and (1 − Dl) will produce a
continuous decaying effect.

After the updating mechanism, the updated representation of the narrative will be used
in the following operations.

4.4. Content Prediction

Inspired by recent studies on knowledge selection in knowledge-grounded dialogue [90,
104], we propose using a supplementary loss to facilitate the learning of content prediction
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(as shown in Figure 21). We define a task to predict the part of the narrative to which
we should pay more attention in the next line. Given the last line sn, we can predict a
prior attention distribution over the narrative. However, this prior distribution cannot be
effectively learned as no “correct distribution” is given as supervision. To tackle this problem,
we propose using a posterior distribution over the narrative to supervise the process. This
posterior distribution is computed by the ground-truth response and the narrative, thus can
provide valuable information for response selection.

Specifically, ScriptWriter-CPre first computes the sentence representation of the last
line sn:

Ŝl
n = MLP([Sl

n,1, · · · ,Sl
n,nsn

]), (4.18)

where Sl
n,i is the representation of the ith word in sn at the lth layer of the attentive block.

Then the prior attention distribution is computed as:

αl
i = exp(Ŝl

n · Pl
i)∑np

j=1 exp(Ŝl
n · Pl

j)
, (4.19)

where αl
i is the attention weight of the ith word in the narrative at the lth layer. This

distribution reflects how attention should be assigned to the narrative from the perspective
of the last line.

Similarly, the posterior distribution can be computed with the ground-truth response rgt

as:

βl
i =

exp(R̂l
gt · Pl

i)∑np

j=1 exp(R̂l
gt · Pl

j)
, (4.20)

where R̂l
gt is the sentence representation of rgt computed by the same process as Equa-

tion (4.18). This posterior attention distribution reflects which part of the narrative is useful
for selecting the ground-truth response. So, it is desirable to distribute attention based on
the posterior distribution. However, this latter is unknown during inference as no ground-
truth response is given. Therefore, we propose to approximate the posterior distribution
using the prior distribution so that ScriptWriter-CPre is capable of distributing appropri-
ate attention even without posterior information. To this end, we introduce an auxiliary
loss, namely the Kullback-Leibler divergence loss (Lkl), to help optimize the model. The KL
divergence loss is commonly used to measure the proximity between the prior distribution
and the posterior distribution, which is computed as follows:

Lkl(θ) = − ∑
(y,c,p,r)∈D

L∑
l=0

np∑
i=1

βl
ilogβl

i

αl
i

, (4.21)

where θ denotes the model parameters.
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Fig. 22. The context-narrative matching. All lines and the narrative are represented by
attentive blocks and the matching between them results in a matching cube Qcp. Matching
features are extracted, aggregated, and distilled by a CNN with max-pooling operation.

When minimizing Lkl, the posterior distribution βl
i can be regarded as labels and

ScriptWriter-CPre is trained to use the prior distribution αl
i to approximate βl

i. The
representations of the last line and the narrative are directly used in computing the prior
distribution. As a consequence, with Lkl, the parameters of ScriptWriter-CPre, especially
those for computing the last line’s and narrative’s representations, can be better tuned. It
is worth noting that Lkl only works in training phase, thus the ground-truth response is not
need in inference phase.

4.5. Matching

In the previous steps, we obtained the representations of all lines in the context, the
representation of the response, and the updated representation of the narrative. In this
step, we construct several matching maps and extract matching features based on these
representations.

The matching between the narrative p and the line si is conducted based on both their
self-attention and cross-attention representations, as shown in Figure 22.
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First, ScriptWriter computes the dot product on these two representations separately
as follows:

mself
si,p,l[j,k] = Sl

i[j]� · Pl[k], mcross
si,p,l[j,k] = Sl

i,p[j]� · Pl
si

[k], (4.22)

where l ranges from 0 to L. Each element is the dot product of the jth word representation in
Sl

i or Sl
i,p and the kth word representation in Pl or Pl

si
. Then the matching maps in different

layers are concatenated together as follows:

mself
si,p

[j,k] =
[
mself

si,p,0 [j,k] ⊕ · · · ⊕ mself
si,p,L [j,k]

]
,

mcross
si,p

[j,k] =
[
mcross

si,p,0 [j,k] ⊕ · · · ⊕ mcross
si,p,L [j,k]

]
,

where ⊕ is concatenation operation. Finally, the matching features computed by the self-
attention representation and the cross-attention representation are fused as follows:

Msi,p [j,k] =
[
mself

si,p
[j,k] ⊕ mcross

si,p
[j,k]

]
.

The matching matrices Mp,r and Msi,r for narrative-response and context-response are con-
structed in a similar way. For the sake of brevity, we omit the formulas. After concatenation,
each cell in Msi,p, Mp,r or Msi,r has 2(L + 1) channels and contains matching information
at different levels.

The matching between narrative, context, and response serves for different purposes.
Context-response matching (Msi,r) serves to select a response suitable for the context.
Context-narrative matching (Msi,p) helps model “remember” how much information has been
expressed and implicitly influences the selection of the next response. Narrative-response
matching (Mp,r) helps the model select a more consistent response with the narrative. As
the narrative keeps being updated along with the lines of the context, ScriptWriter tends
to dynamically choose the response that matches what remains unexpressed in the narrative.

4.6. Aggregation

To further use the information across two consecutive lines, ScriptWriter piles up all
context-narrative matching matrices and all context-response matching matrices to construct
two cubes Qcp = {Msi,p[j,k]}n

i=1 and Qcr = {Msi,r[j,k]}n
i=1, where n is the number of lines

in the session. Then ScriptWriter employs 3D convolution to distill important matching
features from the whole cube. We denote these two feature vectors as f(c,p) and f(c,r).
For narrative-response matching, ScriptWriter conducts 2D convolution on Mp,r to distill
matching features between the narrative and the response, denoted as f(p,r).

The three types of matching features are concatenated together, and the matching score
g(c,p,r) for ranking response candidates is computed by an MLP with a sigmoid activation
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function, which is defined as:

f(c,p,r) = [f(c,p) ⊕ f(c,r) ⊕ f(p,r)], (4.23)

g(c,p,r) = sigmoid
(

MLP(f(c,p,r)
)
. (4.24)

4.7. Model Training

ScriptWriter-CPre learns g(c,p,r) by minimizing cross entropy with D. The objective
function is formulated as:

Lce(θ) = − ∑
(y,c,p,r)∈D

[y log(g(c,p,r)) + (1 − y) log(1 − g(c,p,r))]. (4.25)

The two losses are combined to tune the model with a hyperparameter λ to control their
effect:

L(θ) = λLce(θ) + (1 − λ)Lkl(θ). (4.26)

5. Experiments
5.1. Evaluation setup

As presented in Table 10, we randomly split the the GraphMovie collection into training,
validation, and test sets. The split ratio is 18:1:1. We split the sessions into micro-sessions:
given a session with n lines in the context, we will split it into n micro-sessions with length
varying from 1 to n. These micro-sessions share the same narrative. By doing this, the
model is asked to learn to select one line as the response from a set of candidates at any
point during the session, and the dataset, in particular for training, can be significantly
enlarged.

We conduct two kinds of evaluation as follows:
Turn-level task asks a model to rank a list of candidate responses based on its given

context and narrative for a micro-session. The model then selects the best response for
the current turn. This setting is similar to the widely studied response selection task [205,
230, 237]. We follow these previous studies and employ recall at position k in n candidates
(Rn@k) and mean reciprocal rank (MRR) [188] as evaluation metrics. For example, R10@1
means recall at one when we rank ten candidates (one positive sample and nine negative
samples). The final results are the average numbers over all micro-sessions in the test set.
Note that among different Recall metrics, R2@1 and R10@1 are two most relevant ones to
our task, because there is only one positive line in our dataset. They correspond to the
scenarios in the training and test sets, respectively.

Session-level task aims to predict all the lines in a session gradually. It starts with
the first line of the session as the context and the given narrative and predicts the best next
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line. The predicted line is then incorporated into the context to predict the next line. This
process continues until the last line of the session is selected. Finally, we calculate precision
over the whole original session and report average numbers over all sessions in the test set.
Precision is defined as the number of correct selections divided by the number of lines in
a session. We consider two measures: 1) Pstrict which accepts a right response at the right
position; 2) Pweak which accepts a right response at any position.

5.2. Baselines

As no previous work has been done on narrative-based script generation, no proper
baseline exists. Nevertheless, some existing multi-turn conversation models based on context
can be adapted to work with a narrative: the context is simply extended with the narrative.
Two different extension methods have been tested: the narrative is added into the context
together with the previous lines; the narrative is used as a second context. In the latter case,
two matching scores are obtained for context-narrative and narrative-response. They are
aggregated through a fully-connected layer to produce a final score. This second approach
turns out to perform better. Therefore, we only report the results with this latter method.20

(1) MVLSTM [191]: this model concatenates all previous lines as a context document and
leverages an LSTM to obtain positional representations for all words in the document and the
response candidate. Then the interactions between them at different positions are modeled
by cosine similarity, resulting in a matching map. The matching features are extracted with
a k-max pooling layer and aggregated as a matching score with an MLP. To incorporate a
narrative into this model, we conduct the same operation to compute the matching score
between the narrative and a response candidate. Finally, the two scores are combined as a
final matching score with another MLP. This model considers all positional information in
the sentence, but only the top k values in the matching map are used.

(2) DL2R [217]: the model reformulates the last line with other lines in a context with
multiple approaches. The reformulated line and a response candidate are then represented
by a composition of an RNN and a CNN. The matching score is computed in a similar
way as MVLSTM. We use the same RNN and CNN to represent the narrative and compute
a matching score between the context and the narrative, which is further combined with
the context-response matching score to output a final score with an MLP. In this model, all
previous lines in the context are used to reformulate the last line, thus the context-response
matching is neglected.

(3) SMN [205]: it matches each line with the response sequentially, and then transforms
each line-response pair into a matching vector with CNNs. The matching vectors are aggre-
gated with an RNN as a matching score of the context and the response candidate. We apply
20We also tested some basic models such as RNN, LSTM, and BiLSTM [111] in our experiments. However,
they cannot achieve comparable results to the selected baselines.
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the same CNNs to obtain a matching vector for each line-narrative pair and use an RNN to
compute a matching score. Two matching scores are finally combined by an MLP. This model
is not equipped with an attention mechanism, which may provide better representations.

(4) DAM [237]: it represents a context and a response by conducting a self-attention and
a cross-attention operation on them. It uses CNNs to extract features and uses an MLP to
get a score. Similar to SMN, we perform the same operation to obtain a matching score of the
context and the narrative and combine the score with context-response matching score by
an MLP. Different from our model, this model only considers the context-response matching
and does not track what in the narrative has already been expressed by the previous lines,
i.e., context.

(5) DUA [230]: the model concatenates the last line with each previous line in the context
and response, respectively. Then it performs a self-attention operation to get the refined
representations for both the context and the response, based on which matching features
are extracted with CNNs and RNNs. Finally, it uses an MLP to get a matching score. We
apply the same self-attention operation to get the refined representation of a narrative. Then
we extract the matching features between the refined response and the narrative. Finally,
both groups of matching features are aggregated by an RNN to get a final score. This model
uses RNNs to represent sentences and aggregate the matching information, which is different
from our model.

(6) IMN [56]: the model uses an attentive hierarchical recurrent encoder, which is capable
of encoding sentences hierarchically and aggregating them with an attention mechanism to
produce more descriptive representations. Then the bidirectional interactions between the
whole multi-turn context and the response candidates are calculated to derive the matching
information between them. We apply the same structure to derive the matching features
between the narrative and the response. These features are fused with context-response
matching features to output a final score with an MLP.

(7) IOI [178]: the model performs matching by stacking multiple interaction blocks in
which the residual information from one step of interaction initiates the interaction process
again. Therefore, the matching information within a line-response pair is extracted from the
interaction of the pair iteratively, and the information flows along the chain of blocks via
representation. To leverage the narrative, we use the same multiple interaction blocks to
extract matching information within the narrative-response pair and compute a matching
score. The two scores are added together to select the response.

(8) MSN [223]: this model first utilizes a multi-hop selector to select the relevant lines as
context. Then, the model matches the filtered context with the candidate response based
on their self-attention and cross-attention representations. Next, the matching features are
extracted by a CNN and aggregated by an LSTM. The final matching score is computed by
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an MLP. The matching process is similar to SMN, thus we use a similar way to incorporate
the narrative.

(9) ScriptWriter [249]: This is the previous model we proposed. This model does not
have the narrative representation optimization module, and the other structure is similar to
ScriptWriter-CPre proposed in this paper.

5.3. Training Details

All models are implemented in Tensorflow.21 Word embeddings are pre-trained by
Word2vec [122] on the training set with 200 dimensions. We test the stack number in
{1,2,3} and report our results with three stacks. Due to the limited resources, we cannot
conduct experiments with a larger number of stacks, which could be tested in the future.
Two 3D convolutional layers both have 32 filters, respectively. They both use [3,3,3] as the
kernel size, and the max-pooling size is [3,3,3]. Two 2D convolutional layers of narrative-
response matching both have 32 filters with [3,3] as the kernel size. The max-pooling size
is also [3,3]. All parameters are optimized with Adam optimizer [91]. The learning rate is
0.001 and decreases during training. The initial value of γ is 0.5. The batch size is 64. We
use the validation set to select the best models and report their performance on the test set.
The maximum number of lines in the context is set as ten, and the maximum length of a
line, response, and narrative sentence is all set as 50. All sentences are zero-padded to the
maximum length. We also padded zeros if the number of lines in a context is less than 10.
Otherwise, we kept the latest ten lines. The dataset and the source code of our model are
available on GitHub.22

5.4. Evaluation Results

5.4.1. Automatic Metrics. The experimental results are reported in Table 11. The results
on both turn-level and session-level evaluations indicate that ScriptWriter dramatically
outperforms all baselines, including MSN and IOI, which are two state-of-the-art models
for multi-turn response selection. Most improvements are statistically significant (p-value
≤ 0.01). MSN and DAM perform better than other baselines, indicating the effectiveness of the
self- and cross-attention mechanism used in this model. IOI, IMN, and DUA also apply the
attention mechanism. They outperform the other baselines that do not use attention. Both
observations confirm the advantage of using attention mechanisms over pure RNN (such as
SMN, DL2R, and MVLSTM).

In terms of session-level evaluations, ScriptWriter-CPre achieves 1.9% and 2.6% abso-
lute improvements over the best results obtained by the baseline methods. This demonstrates

21Tensorflow, https://www.tensorflow.org
22Our project, https://github.com/DaoD/ScriptWriter
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Table 11. Evaluation results on two response selection tasks: turn-level and session-level.
The turn-level evaluation aims at measuring the performance of models on predicting a
specific line in a session, while the session-level evaluation considers the quality of the whole
session. † and � denote significant differences between each baseline and ScriptWriter-CPre
measured in t-test with p ≤ 0.01 and p ≤ 0.05, respectively.

Turn-level Session-level
R2@1 R10@1 R10@2 R10@5 MRR Pstrict Pweak

MVLSTM 0.651† 0.217† 0.384† 0.732† 0.395† 0.198† 0.224†

DL2R 0.643† 0.210† 0.321† 0.638† 0.314† 0.230† 0.243†

SMN 0.641† 0.176† 0.333† 0.696† 0.392† 0.197† 0.236†

DAM 0.631† 0.240† 0.398† 0.733† 0.408† 0.226† 0.236†

DUA 0.654† 0.237† 0.403† 0.736† 0.396† 0.223† 0.251†

IMN 0.686† 0.301† 0.450† 0.759† 0.463† 0.304† 0.325†

IOI 0.710† 0.341† 0.491† 0.774† 0.464† 0.324† 0.337†

MSN 0.724† 0.329† 0.511† 0.794� 0.464† 0.314† 0.346†

ScriptWriter 0.730† 0.365† 0.537 0.814 0.503 0.373 0.383�

ScriptWriter-CPre 0.756 0.398 0.557 0.817 0.504 0.392 0.409

that ScriptWriter-CPre can generate a more coherent and consistent script. Besides, be-
tween the two session-level measures, we observe that both our ScriptWriter-CPre and
ScriptWriter are less affected when moving from Pweak to Pstrict. This shows that the two
models can better select a response at the right position. We attribute this behavior to the
utilization of narrative coverage.

As a retrieval-based method, the selected response (i.e., the one with the highest score)
is used for constructing the session, so R@1 is the most important metric. Comparing
ScriptWriter-CPre to ScriptWriter, we can see the content prediction module can improve
both R2@1 and R10@1 significantly. Correspondingly, we can see the performance on session-
level evaluation is also improved. These results demonstrate the effectiveness of our proposed
content prediction module. We also notice that MRR is only improved by 0.001. This means
that, for those samples where the ground-truth response cannot be ranked at the top, the
average position of the ground-truth response decreases. From this result, we can speculate
that our proposed supplementary loss in content prediction module is helpful when the future
lines can be inferred from the last line and the narrative. In the future, we plan to consider
more script lines in the context for content prediction.

Besides, it is worth noting that the content prediction module only adds one MLP layer
(with a few parameters) to the model, which has less influence on the training cost. However,
this has improved the model’s performance, especially on session-level evaluation. This
suggests that this module is beneficial for our model.
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Score

Randomly Shuffled Results from Three Models

Fig. 23. Illustration of the annotation system. Three sessions generated by different models
(ScriptWriter-CPre, ScriptWriter, and MSN) are randomly shuffled and presented to the
annotators. The annotators should label them with a score ranging from 5 (the best) to 1
(the worst). In total, 100 generated sessions with different narratives are annotated.

5.4.2. Human Evaluation. Similar to dialogue generation, the ground-truth script lines
are not the only suitable ones for a given narrative due to the diversity of human lan-
guage. Therefore, we also conduct a human evaluation to compare our method with previous
baselines. We hire four experienced annotators to annotate 100 generated sessions of MSN,
ScirptWriter, and ScriptWriter-CPre. The narrative is randomly selected from the test
set, and the first line is also given. As shown in Figure 23, the four annotators are asked to
label the randomly shuffled results with scores ranging in [1, 5]. The standard of scoring is
based on the errors appearing in session coherence and narrative consistence, which is shown
as follows:

• 5: The generated lines are coherent and consistent with the narrative perfectly (0
error in coherence, 0 error in consistence).

• 4: The generated lines are coherent but have one line that is not consistent with the
narrative (0 error in coherence, 1 error in consistence).
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Table 12. Examples of annotation results. For each narrative, the results from three differ-
ent models (ScriptWriter-CPre, ScriptWriter, and MSN) are annotated. The labels given
by a human annotator are shown in the last column of the table, which reflect the quality
of the session.

Narrative: Maxie stopped the noodles at the entrance of the hospital and said that he
would also go with him. Every time they have conflicts, they talk about swimming.

ScriptWriter-CPre (1) Hey! (2) Hey, let me go first. (3) I think. . . I should also go the
beach. (4) Do you want to go swimming? (5) Yeah, let’s go.

5

ScriptWriter (1) Hey! (2) Hey, let me go first. (3) I think. . . I should also go the
beach. (4) Do you want to go swimming? (5) It doesn’t matter if
you don’t want to go. You can wait another five or six years.

4

MSN (1) Hey! (2) Hey, let me go first. (3) Hey, I’m Lucas. (4) Do you
want to go swimming? (5) Yeah, let’s go. (6) I appreciate God every
day.

2

Narrative: Bernstein asked the reporter to talk to Li Lan. Li Lan and Kane had different
views on the Spanish-American War.

ScriptWriter-CPre (1) You should meet Jack Lilan. (2) Of course he and Mr. Kane. (3)
Miss Tang Sheng, this is Mr. Kane. (4) Ask you to kill somebody.

3

ScriptWriter (1) You should meet Jack Lilan. (2) Of course he and Mr. Kane.
(3) Mr. Kane, I have something to look for you. (4) A little bit of
disagreement.

3

MSN (1) You should meet Jack Lilan. (2) Of course he and Mr. Kane. (3)
Miss Tang Sheng, this is Mr. Kane. (4) Ask you to kill somebody.
(5) I have one thing to say.

2

Narrative: Hickler invited her to dance together, and Napaloni’s wife was very happy.

ScriptWriter-CPre (1) Nobody? I’m honored to invite you. (2) I’m honored too, please
sit down and welcome. (3) Are you inviting me?

4

ScriptWriter (1) Nobody? I’m honored to invite you. (2) I’m honored too, please
sit down and welcome. (3) Are you inviting me? (4) I love music
very much especially Beethoven. (5) Thank you very much. (5) I’m
always happy to meet you.

2

MSN (1) Nobody? I’m honored to invite you. (2) Fahan Laiju will come
to my office tomorrow to see me. (3) Are you inviting me? (4) Ok,
let me do it myself.

4

• 3: There is one line that is not coherent with the context and at most one line is not
consistent with the narrative (1 error in coherence, ≤ 1 error in consistence).

• 2: There is at most one line that is incoherent with the context and more than one line
are inconsistent with the narrative (≤ 1 error in coherence, ≥ 1 error in consistence).

• 1: There is more than one line that are incoherent or inconsistent with the narrative
(≥ 1 error in coherence, ≥ 1 error in consistence).

Some annotation results are shown in Table 12.
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Table 13. Human evaluation results. The quality of the whole generated session is evalu-
ated.

(a) Absolute scoring. Annotators are asked to score the generated sessions from different models,
respectively. The scores range from 5 (the best) to 1 (the worst). The average score reflects the
overall performance of each model.

Model 1 2 3 4 5 Average

MSN 13.50% 17.50% 19.50% 23.00% 26.50% 3.3150
ScriptWriter 10.75% 15.75% 23.00% 26.00% 24.50% 3.3775
ScriptWriter-CPre 8.50% 13.50% 25.50% 24.25% 28.25% 3.5025

(b) Relative preference scoring. Annotators are asked to compare the results from two different
models, and label which one is better. “Tie” indicates the quality of the generated sessions from
two models are similar.

Win Tie Lose

ScriptWriter-CPre vs. ScriptWriter 27.75 51.5 20.75
ScriptWriter-CPre vs. MSN 33.25 47.0 19.75
ScriptWriter vs. MSN 28.25 47.5 24.25

Following the recent work [202], we compute the Kendall tau-b correlation coefficient to
evaluate the agreement between any two annotators, and then we average the Kendall tau
scores over the 100 samples and six pairs of annotation results. The coefficient is 0.633, which
indicates that annotators have moderate agreement on the scoring order of the generated
script lines.

The evaluation results are shown in Table 13a, which are consistent with the automatic
evaluation results in general. It is clear that ScriptWriter-CPre performs the best (3.5 score
on average) among the three models. More specifically, 28.25% of the results generated by our
ScriptWriter-CPre are perfect and 78% are scored higher than 2. These results demonstrate
the effectiveness of our proposed method. MSN has 31% results with 1 or 2 score, which is
the worst among the three models. Besides, we also run a pair-wise comparison between
each pair of models, and this results in Table 13b. The relative preference scores also show
that both ScriptWriter-CPre and ScriptWriter are preferred to MSN. This indicates that
using a narrative to guide the generation of script is a much more appropriate approach than
using it as a part of the general context. Between ScriptWriter-CPre and ScriptWriter,
ScriptWriter-CPre wins, indicating that the extension we propose in this paper can further
improve the approach.
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6. Further Analysis
6.1. Model Ablation

We conduct an ablation study to investigate the impact of different modules in
ScriptWriter-CPre. These studies are conducted from different perspectives:

• We investigate the influence of the number of the layers by setting l = {1,2,3};
• We validate the effectiveness of our proposed updating mechanism. Specifically, we

set γ = 0 and test the performance of our model. Under this circumstance, the
representation of the narrative is not updated but static;

• We test the influence of the cross-attention representations used in our method;
• We explore the effectiveness of narrative-response, context-narrative, and context-

response matching by removing them one by one from the entire model;
• Finally, we investigate the influence of our proposed supplementary loss Lkl for nar-

rative representation optimization. This is achieved by setting λ = 1.
Model ablation results are shown in Table 14. We have the following findings:
(1) In general, the more layers used, the higher the performance of ScriptWriter-CPre.

This result is consistent with existing work, which also shows that multi-layer structures
are preferred [178, 237]. It is possible that more than three layers can yield even better
results. However, due to the computational resources we have, we can only test at most three
layers in the experiments. Consumed memory and time increase along with the number of
layers. This suggests that adding more layers is a good strategy only if we have the necessary
computation power.

(2) ScriptWriter-CPre performs better than it with static narrative representation,
demonstrating the effectiveness of the updating mechanism for the narrative. The optimal
value of γ is around 0.647 after training, which means that only about 35% of the information
in the narrative is kept when a line conveys it.

(3) When cross-attention representations are removed from ScriptWriter-CPre, the
performance greatly degrades. This indicates that the cross-attention mechanism can capture
useful interaction features between different sources of information such as narrative and
response.

(4) In both turn-level and session-level evaluations, the performance drops the most when
we remove narrative-response matching. This indicates that the relevance of the response to
the narrative is the most useful information in narrative-guided script generation.

(5) When we remove context-narrative matching, the performance drops too, indicating
that context-narrative matching may provide implicit and complementary information for
controlling the alignment of response and narrative.
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Table 14. Ablation results in two response selection tasks: turn-level and session-level. We
test our model with different layers of attention blocks. Besides, we also validate the effec-
tiveness of different modules by removing them one by one from our model. These include
the updating mechanism for the narrative representation, the cross-attention mechanism, the
narrative-response (PR), context-narrative (CP), and the context-response (CR) matching,
and the supplementary loss for learning content prediction.

Turn-level Session-level
R2@1 R10@1 R10@2 R10@5 MRR Pstrict Pweak

ScriptWriter-CPre 0.756 0.398 0.557 0.817 0.504 0.392 0.409
0 layer 0.727 0.356 0.525 0.791 0.475 0.346 0.364
1 layer 0.729 0.359 0.533 0.806 0.490 0.358 0.368
2 layers 0.735 0.374 0.541 0.814 0.493 0.368 0.384
w static narrative 0.736 0.367 0.537 0.814 0.495 0.357 0.371
w/o Cross 0.720 0.365 0.532 0.809 0.500 0.357 0.361
w/o PR matching 0.650 0.242 0.401 0.720 0.387 0.210 0.230
w/o CP matching 0.734 0.381 0.537 0.809 0.495 0.375 0.391
w/o CR matching 0.727 0.340 0.493 0.768 0.469 0.361 0.419
w/o Lkl 0.729 0.367 0.538 0.816 0.496 0.370 0.378

(6) In contrast, when we remove the context-response matching, the performance also
drops, however, at a much smaller scale, especially on Pweak, than when narrative-response
matching is removed. This contrast indicates that narrative is a more useful piece of infor-
mation than context to determine what should be said next, thus it should be taken into
account with an adequate mechanism.

(7) When removing the supplementary loss Lkl, the model is similar to the original
ScriptWriter proposed in [249].23 We can see the performance drops significantly in both
turn-level and session-level evaluations. This result demonstrates the effectiveness of Lkl in
optimizing the representation of the narrative.

6.2. Performance with Different λs

To investigate the impact of supplementary loss Lkl in our model, we vary λ from 0.1 to 1.0
and report R2@1, R10@1, and MRR results on the validation set in Figure 24. Generally, the
performance increases along with the increase of λ and achieves the best at around λ = 0.7.
Thereafter, the performance starts to decrease. When λ is very small, the model is optimized
mainly according to Lkl. The performance is not good because the main task, generating
script lines, cannot be well-learned. With increased λ, the main task plays a more important
role in the optimization, so that the performance improves. However, when λ > 0.7, the

23There are some minor differences in hyperparameters, such as a different number of convolutional filters,
leading to slightly different results than ScriptWriter reported in Table 11.
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Fig. 24. The performance of ScriptWriter-CPre on the validation set with different λs.

performance start to decrease. This is because Lkl can no longer play a significant role with
a very small weight. When λ = 1, no supplementary loss is used, and we have analyzed this
result (at the last point in Section 5.4.1.

6.3. Performance across Narrative Types

As we explained, the narratives in our dataset are contributed by Internet users, and
they vary in style. Some narratives are detailed, while others are general. The question we
analyze is how general vs. detailed narratives affect the performance of response selection.
We use a simple method to evaluate roughly the degree of detail of a narrative: a narrative
that has a high lexical overlap with the lines in the session is considered to be detailed.
Narratives are put into six buckets depending on their level of detail, as shown in Figure 25.

We plot the performance of ScriptWriter-CPre, ScriptWriter, and MSN in session-level
evaluation over different types of narratives. We have the following observations:

(1) The first type “0” means no word overlap between narrative and dialogue sessions.
This is the most challenging case, representing extremely general narratives. It is not sur-
prising to see that all models perform poorly on this type compared to other types in terms
of Pstrict. Moreover, we find that ScriptWriter outperforms ScriptWriter-CPre on this
type of data. The difference between these two models is that ScriptWriter does not apply
the supplementary loss for narrative representation learning. The results reflect that our
proposed supplementary loss cannot perform well when there are fewer overlapping words
between the narrative and the lines. The reason is that, under this circumstance, it is hard
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Fig. 25. The performance of ScriptWriter-CPre (SW*), ScriptWriter (SW), and MSN
on the test set with different types of narrative in session-level evaluation.

to compute the similarity between the narrative and the line. Therefore, the loss Lkl is less
accurate.

(2) The performance tends to become better when the overlap ratio is increased. This
is consistent with our intuition: when a narrative is more detailed and better aligned with
the session in wording, it is easier to choose the best responses. This plot also shows that
both ScriptWriter-CPre and ScriptWriter can achieve better performance than MSN on
all types of narratives, which further demonstrates the effectiveness of using narrative to
guide the dialogue.

(3) Interestingly, we find that ScriptWriter-CPre performs worse than the other two
models in buckets “[0.8, 1]”. The potential reason is that there are a lot of words shared
between the narrative and the lines, so the model can capture their relationships easily, and
the supplementary loss has less effect. However, we cannot draw a solid conclusion on this
as there are only 0.6% data lying in this bucket.

(4) We also observe that the buckets “[0, 0.2)” and “[0.2, 0.4)” contain the largest pro-
portions of narratives. This indicates that most Internet users do not use the original lines
to retell a story. The problem we address in this paper is thus non-trivial.

6.4. Performance with Various Context Lengths

We study how ScriptWriter-CPre performs in contexts of different lengths and compare
it with ScriptWriter and MSN at both turn level and session level.

The results of the turn-level evaluation are shown in Figure 26a. At first, it is clear
that the performance of all models increases along with the increase of the number of lines
of context from one to eight. This is because more lines in the context can provide more
information, which help the model to select better responses. Also, ScriptWriter-CPre
performs much better than MSN on very short context. This demonstrates that our method
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(a) Turn-level evaluation with R2@1.

(b) Session-level evaluation.

Fig. 26. The performance of ScriptWriter-CPre (SW*), ScriptWriter (SW), and MSN
on the test set with different number of lines. We show the performance in both turn-level
and session-level evaluation.

can handle the case even when the matching information is insufficient. Finally, when there
are more than nine lines in the context, the performance of all models decreases. This
could be due to the fact that too many lines of context may more likely contain irrelevant
information for the current turn. However, this part of the data only contain less than 2%
samples. We will study the problem in the future when more data are available.

The evaluation results at the session level are illustrated in Figure 26b. The x-axis is
the total number of lines in the session. Different from the results at turn level, all models
perform best with around six to eight lines. The reasons include: (1) When there are only
a few lines in the context, the context-response matching, which is essential in our model
as shown in the ablation study, cannot perform well, thus limiting the model to selecting a
proper response. (2) When a session contains many lines of script, intuitively, the narrative
is also long. A long narrative usually contains a lot of points, which should be covered
accordingly by the lines. Therefore, these cases are much harder for the model to capture.
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Fig. 27. Matching maps between the response (the second turn in the case study) and the
given plan in the first and second level, namely mself

p,r,0 and mself
p,r,1.

Nevertheless, our model outperforms MSN in almost all cases, which further demonstrates
its effectiveness.

6.5. Visualization

We visualize four attention maps between a narrative and two consecutive responses in
both self-attentive blocks and cross-attentive blocks (mself

p,r,0 and mcross
p,r,0 ) to see what informa-

tion the attentive mechanism tries to capture.
From Figure 27, we show the heat map of attention for the example given in the in-

troduction section. It is interesting to see that only some shared words, like “Jenny” and
“Jenny”, or highly co-occurred words, like “Jenny” and “Gump”, can have high similarity in
the self-attention matching, while the semantically related words, like “stay” and “go home
later” or “accompany with”, can have higher similarity in the cross-attention matching. This
example provides additional support to the idea of leveraging both kinds of attentive blocks
for semantic matching.

Furthermore, we can also see that some phrases such as “Gump is Jenny’s” and “you
are my” have higher similarity after training. This similarity cannot be captured by shallow
semantics, but is based on a deeper understanding of the contextual information. This
example shows the usefulness of the attention mechanism for information interactions and
their aggregation.
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Narrative Jenny doesn’t like home. To accompany with Jenny, Gump decides to go home later. Gump is Jenny’s best friend.

Initial line Mama's going to worry about me.

Model Ground-truth ScriptWriter-CPre (Our model) ScriptWriter MSN

1st line Just stay a little longer. Just stay a little longer. Just stay a little longer. Go file it.

2nd line Ok, Jenny, I'll stay. OK, Jenny, I'll stay. OK, Jenny, I'll stay. OK, Jenny, I'll stay.

3rd line
You are my most special 
friend.

Forrest, I do love you. Forrest!
You are my most special 
friend.

4th line EOS The best friend. The best friend. The best friend.

Fig. 28. A case study. These are some results sampled from the session-level response
selection task. The ground-truth session is extracted from the movie Forrest Gump. The
highlighted text represents some key points of the narrative.

6.6. Case Study

We show some results generated by ScriptWriter-CPre, ScriptWriter, and MSN in Fig-
ure 28. As we highlighted, there are three key points in the narrative. The ground-truth ses-
sion is perfectly consistent with the narrative. Both ScriptWriter-CPre and ScriptWriter
successfully cover all three key points, whereas MSN misses one point.

Looking at the details in the first two lines, ScriptWriter-CPre chooses the best re-
sponse probably because it captures the semantic matching between “go home later” in the
narrative and “I’ll stay” in the dialogue, benefiting from multi-grained representations. In the
third line, although ScriptWriter-CPre selects a nonoptimal response, this response does
not conflict with either the context or the narrative. Compared with the 3rd line generated
by ScriptWriter, the line generated by our method is more related to the given narra-
tive. We attribute this to the design of the narrative representation optimization. Finally,
ScriptWriter-CPre selects the response “The best friend” in the last line that matches the
remaining key point of the narrative. On the contrary, MSN selects one (the fourth line)
that is redundant with the previous utterance (the third line). This example shows that the
method we propose in this paper can better serve our primary goal - covering the key aspects
of a narrative.

6.7. Error Analysis

Finally, we conduct an error analysis to investigate the cases that our model cannot
handle correctly and summarize some research questions for future work. We randomly
sample 50 sessions that are different from the ground-truth and categorize their errors into
four groups:

(1) The generated lines are inconsistent with the narrative or incoherent with the context
(46%). As shown in the first case of Table 15, the second and last lines are irrelevant to the
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Table 15. Examples of typical errors. Four kinds of errors are observed, including (1) being
inconsistent with the narrative or incoherent with the context; (2) generating redundant lines;
(3) generating information not included in the narrative; and (4) selecting a wrong line for
the session ending.

Narrative: Sophie doesn’t want to help the Witch, and she ask Howl to go.
Ground-truth Script: (1) So, try it yourself! (2) I’m not so kind to give you a hand (3)
Come on Howl! (4) EOS
Generated Script: (1) So, try it yourself! (2) Sophie, let’s get closer. (3) Come on Howl!
(4) I want to eat Howl’s heart.
Error: Inconsistent; No ending

Narrative: Maureen swam back to the bottom of the sea, asking other fish if they saw a
boat. But they didn’t reply Maureen.
Ground-truth Script: (1) Do you see a boat? (2) A white boat! (3) They took my son!
(4) My son! Help me! Please! (5) EOS
Generated Script: (1) Do you see a boat? (2) Do you see it? (3) Do you see it? (4) That
has nothing to do with you! (5) Talk to me at least!
Error: Redundant; No ending

Narrative: Father is confessing.
Ground-truth Script: (1) You are reported in the newspaper, son. (2) They say you do
a lot of bad things. (3) They describe how the government force you to commit suicide.
(4) When we think about this, maybe we are wrong, but it is always your home. (5) EOS
Generated Script: (1) You are reported in the newspaper, son. (2) Have you heard it?
(3) EOS
Error: Not covered

narrative. Even though our method considers both narrative-response and context-response
matching, the matching features are aggregated together for response selection. A response
candidate can be selected because it highly matches either the narrative or the context, rather
than both. The aggregation mechanism may not be sufficient to impose good matches for
both. We believe that this problem could be solved by setting a gate for both kinds of
matching to guarantee the selected response can match both narrative and context.

(2) The generated lines are redundant (26%). As shown in the second case of Table 15,
the second and third lines are the same. This problem has also been addressed by other
retrieval-based methods [197]. The reason is that existing matching-based methods pay
much attention to semantic matching but neglect to model text coherence. Some researchers
have tried to alleviate this problem by involving pre-trained language models [55, 197].
However, this is an unsolved problem and needs further exploration.

(3) The ground-truth lines contain information which is not covered by the narrative
(22%), as shown in the third case of Table 15. These cases are very difficult for models to
handle since only the context information can be used to select the proper response. Similar
to the previous problem, we think modeling text coherence can be a possible way to alleviate
this problem.
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(4) The model cannot select an ending for a session of scripts (6%), as shown in the
first two cases of Table 15. In our experiments, we add a special token “EOS” to mark the
“end of session”. This token is appended to each session of lines. We find that our model
seldom selects this token at the end of a session but tends to select other lines related to
the context or narrative. The potential reason is that the model is unable to recognize the
ending situation. In other words, the matching model can hardly match a special token
with either the context or the narrative. We plan to design an additional mechanism for
ScriptWriter-CPre to decide if a session is finished.

7. Conclusion and Future Work
Although story generation has been extensively studied in the literature, no existing work

addressed the problem of generating movie scripts following a given storyline or narrative. In
this paper, we addressed this problem in the context of generating lines in a movie script. We
proposed a model that uses the narrative to guide line generation/retrieval. We keep track
of what in the narrative has already been expressed and what is remaining to select the next
line through an updating mechanism. The final selection of the next response is based on
multiple matching criteria between context, narrative, and response. We constructed a new
large-scale data collection for narrative-guided script generation from movie scripts. This is
the first public dataset available for testing narrative-guided dialogue generation/selection.
Experimental results on the dataset showed that our proposed approach based on narrative
significantly outperforms the baselines that use narrative as an additional context. They
also showed the importance of using the narrative in the proper manner.

As a first investigation into the problem, our study has several limitations. For example,
we have not considered the order in the narrative description, which could be helpful in
generating dialogues in the correct order. Other methods to track the dialogue state and
the coverage of the narrative can also be designed. We have limited ourselves to retrieval-
based script generation. It would be interesting to extend the method to a generation-based
approach. Further investigations are thus required to fully understand how narratives can
be effectively used in dialogue generation.

124



Fifth Article.

Proactive Retrieval-based
Chatbots based on Relevant

Knowledge and Goals
by

Yutao Zhu1, Jian-Yun Nie1, Kun Zhou2, Pan Du1, Hao Jiang3, and Zhicheng Dou4

(1) University of Montreal, Quebec, Canada
(2) School of Information, Renmin University of China, Beijing, China
(3) Huawei Poisson Lab., Hangzhou, Zhejiang, China
(4) Gaoling School of Artificial Intelligence, Renmin University of China, Beijing, China

This article was published in Proceedings of the 44th International ACM SIGIR Conference
on Research and Development in Information Retrieval, pp. 2000-2004. 2021.

The main contributions of Yutao Zhu for this articles are presented as follows:
• Propose the idea;
• Conduct the experiments;
• Write the paper.

Jian-Yun Nie and Zhicheng Dou contributed to the model design and paper writing; Kun
Zhou helped conduct the experiments; Pan Du helped revise the paper; Hao Jiang provided
the computation resources for experiments.



Résumé. Un système de dialogue proactif a la capacité de diriger la conversation de ma-
nière proactive. Contrairement aux chatbots généraux qui ne font que réagir à l’utilisateur,
les systèmes de dialogue proactifs peuvent être utilisés pour atteindre certains objectifs,
par exemple recommander certains articles à l’utilisateur. La connaissance du contexte
est essentielle pour permettre des transitions fluides et naturelles dans le dialogue. Dans
cet article, nous proposons un nouveau cadre d’apprentissage multi-tâches pour le dialogue
proactif basé sur la recherche, en s’appuyant sur les connaissances. Pour déterminer les
connaissances pertinentes à utiliser, nous considérons la prédiction des connaissances comme
une tâche complémentaire et nous utilisons des signaux explicites pour superviser son ap-
prentissage. La réponse finale est sélectionnée en fonction des connaissances prédites, de
l’objectif à atteindre et du contexte. Les résultats expérimentaux montrent que la mo-
délisation explicite de la prédiction des connaissances et la sélection de l’objectif peuvent
améliorer considérablement la sélection de la réponse finale. Notre code est disponible sur
https://github.com/DaoD/KPN/.
Mots clés : Dialogue proactif, Chatbot basé sur la recherche, apprentissage multi-tâches

Abstract. A proactive dialogue system has the ability to proactively lead the conversa-
tion. Different from the general chatbots which only react to the user, proactive dialogue
systems can be used to achieve some goals, e.g., to recommend some items to the user.
Background knowledge is essential to enable smooth and natural transitions in dialogue. In
this paper, we propose a new multi-task learning framework for retrieval-based knowledge-
grounded proactive dialogue. To determine the relevant knowledge to be used, we frame
knowledge prediction as a complementary task and use explicit signals to supervise its learn-
ing. The final response is selected according to the predicted knowledge, the goal to achieve,
and the context. Experimental results show that explicit modeling of knowledge prediction
and goal selection can greatly improve the final response selection. Our code is available at
https://github.com/DaoD/KPN/.
Keywords: Proactive Dialogue, Retrieval-based Chatbot, Multi-task Learning

Prologue
In our previous work, we have used a description text to control the whole dialogue

process. We now moved a step further: leveraging an additional text to make the dialogue
system more proactive. At the time we explored this problem, the majority of dialogue
systems worked passively, that is, they were designed to provide a response to user input.
They cannot propose a new dialogue topic or lead the dialogue, making the dialogue bor-
ing quickly. We noticed some studies trying to design proactive dialogue systems, where
they provide some entities with relevant knowledge and ask the dialogue system proactively
mention these entities. This setting corresponds to a practical use – conversational rec-
ommendation systems, in which the systems are required to recommend the given entities
during a dialogue. This problem is close to our previous study, with the difference that the
narrative is replaced by an entity list and an additional knowledge graph is provided. After
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analyzing existing methods for this task, we discovered that they treated the entity list as
a piece of knowledge and performed attention to make use of the knowledge. There was no
explicit control on how to select relevant knowledge and no tracking of which entity has been
covered. Therefore, we proposed a new method that explicitly tracks the entity coverage,
and we designed a heuristic to obtain weak labels for knowledge selection. This labeling is
based on the observation that a piece of knowledge is involved or not in the gold response.
A knowledge selection model is built based on the labels. The experiments results showed
that the knowledge selection accuracy can be greatly improved if such more clear feedback
(labels) is given. Furthermore, with proper knowledge, the models are better at covering the
given entities and completing the dialogue. To our knowledge, this work is one of the few
that deal with proactive dialogue.

1. Introduction
From Microsoft Xiaoice, Apple Siri, to Google Assistant, dialogue systems have been

widely applied in our daily life. In general, these systems are designed to make responses
in reaction to the user’s requirements, such as play music, set a clock, or show the weather
forecast. These systems are perceived just as tools by users as they only react passively. Users
may be bored quickly. The problem is even more severe in a chit-chat style dialogue system.
Proactive conversation offers a solution to this problem [176, 204, 224]. A proactive
dialogue system can lead the dialogue proactively to achieve some goals. For example, it
can drive the conversation to educate the kids about some topics, to comfort a person, to
place ads unobtrusively, or to recommend items to users. Various application scenarios are
emerging, yet there has not been a standard definition of what proactive conversation should
be. Variations have been observed in the way that a goal is defined: by a sentence [249]
or by some entities that should be covered in the conversation [204], and whether the goal
should be generated dynamically [176] or predefined [224]. We are still in the early stage
of exploration in which people test different approaches in different settings. This study is a
contribution to this exploration.

In this work, we follow the setting given by Wu et al. [204], where the goal is specified by
a set of entities (topics) and the background knowledge about these entities is provided in
a knowledge graph. The goal is to lead the conversation smoothly to mention the required
entities. The knowledge graph helps to generate paths of conversation that appear natural.
Despite its simplicity, this setting has many potential applications in practice, in particular
in conversational recommendation systems [84, 103, 147], where some items can be set in
advance for recommendation. An example of proactive conversation in the movie domain is
shown in Figure 29. The goal is defined by two entities (topics): the movie McDull: Rise of
the Rice Cooker and the star Bo Peng. The system is asked to cover both entities during
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Comment

Conversation
(1) Bot Do you usually spend your weekend watching movies? 

( ?)
(2) User Of course, could you recommend good films for me? I can watch it 

on this weekend. ( )
(3) Bot You can watch Rise of the Rice Cooker, which is rated 6.9.

( · 6.9 )
(4) User Sounds great, thanks. ( )

(5) Bot It is very nice and funny. Do you know who is the star of this movie?
( · ? )

(6) User I don’t know. Who is that? ( ?)

(7) Bot It’s Bo Peng. Do you know him? People said that he was a kind of 
lacking explosive Performance.
( )

(8) User I will know more about him later. ( )

Goal

Knowledge

McDull: Rise of the 
Rice Cooker

Bo 
Peng

6.9

Nice, very 
funny

Yes

Heze City

Lack of 
explosive 

performance

Type O

START McDull: Rise of the Rice Cooker Bo Peng

Rating Native Place

Comment

Is released Blood type

Representative
Work

Star

(3rd turn)

(5th turn) (7th turn)

Fig. 29. An example of proactive dialogue. The system is asked to exploit the background
knowledge to lead the dialogue and accomplish the goal.

the conversation. By exploiting the knowledge graph, the system aims to naturally transit
from one conversation topic to another and eventually fulfill the pre-defined goal.

In this work, we focus on the retrieval-based method due to its higher fluency. Al-
though knowledge has been incorporated in some existing approaches to proactive conver-
sation [204], it has been simply embedded in the response selection process [52, 104, 105],
which is optimized globally according to the loss on the final response selection. Although
the end-to-end training could be reasonable with a very large amount of training data, in
practice, the limited training data may lead to sub-optimal solutions: when a wrong response
is selected by the system, it is hard to tell if it is due to a poor knowledge prediction or a
bad response selection, thus hard to optimize.

To tackle this problem, we design an explicit Knowledge Prediction (KP) module to
select the relevant piece of knowledge to use. This module is combined with a Response
Selection (RS) module, and both form a multi-task learning framework, called Knowledge
Prediction Network (KPN). The two tasks are jointly learned. The KP module first tracks
the state of goal achievement, i.e., which part of the goal has been achieved, and then
leverages the dialogue context to predict which knowledge should be used in the current
turn. The RS module then relies on the selected knowledge to help select the final answer.
Different from the existing methods, we explicitly optimize KP using automatically generated
weak-supervision signals to help better learn to predict the relevant knowledge. Experimental
results show that the explicitly trained KP process can indeed select the most relevant piece
of knowledge to use, and this leads to superior performance over the state-of-the-art methods.

Our main contributions are two-fold: (1) We propose a multi-task learning framework for
knowledge-grounded proactive dialogue, in which the knowledge prediction task is explicitly
trained in a weakly supervised manner. (2) We show experimentally that our model signifi-
cantly outperforms the existing methods, demonstrating the great importance of knowledge
selection in proactive conversation.
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2. Knowledge Prediction Network
Problem Formalization We follow the task definition formulated by Wu et al. [204].
For a dataset D, each sample is represented as (c,g,k,r,y) (as shown in Figure 29), where
c = {u1, · · · ,uL} represents a conversation context with {ui}L

i=1 as utterances; g represents
the goal containing some entities that the dialogue should talk about (e.g., “Bo Peng”);
k = (k1, · · · ,kM) are knowledge triplets where ki is in form of SPO (Subject, Predicate,
Object); r is a response candidate; y ∈ {0,1} is a binary label. The task is to learn a
matching model s(c,g,k,r) with D to measure the suitability of a response candidate r.

In this work, we propose a multi-task learning framework KPN that contains response
selection (RS) and knowledge prediction (KP) as two distinct tasks, as illustrated in Figure 30.
The predicted knowledge and updated goal from the KP task are used as input to the RS task.
The loss functions in the two tasks are combined for training the model jointly. Different
from the existing work that fuses the two tasks together and trains the whole model by
only the final RS loss (Lrs), we propose using a KP loss (Lkp) to supervise the knowledge
prediction process directly. The overall loss is as follows:

L = λLkp + Lrs, (2.1)

where λ is a hyperparameter (set as 0.3 in our experiment) to control the influence of the
KP loss. The joint learning process allows us to better tell if a wrong response is obtained
due to a wrong prediction of knowledge or a wrong selection of response. Details of the two
tasks are presented in Sections 2.1 and 2.2.

The processes of KP and RS are based on the following basic representations: an utter-
ance ui in the context, a goal g, a knowledge triplet kj (concatenated as a word sequence),
and a response r are first represented as matrices eui , eg, ekj , and er respectively through a
pre-trained embedding table. They will be used in different ways in the KP and RS processes.

2.1. Knowledge Prediction (KP) Task

It is widely believed that knowledge can help select suitable responses. However, not
all knowledge triplets are useful in selecting responses for a conversation turn. Therefore,
predicting whether a knowledge triplet should be used is a critical step.
Goal Tracking To decide what to say in a response, one has to know what part of the
goal is still uncovered. KPN achieves this by a goal tracking process (shown in the Tracking
part of Figure 30). The basic idea is to match the goal and the context, then the mismatched
entities are considered as uncovered. Concretely, we concatenate all utterances in the context
as a long sequence {eu

i }N
i=1, where N is the total number of words in all the utterances,

and then match it with the goal (eg) by cosine similarity: mij = cos(eg
i ,eu

j ). Then max-
pooling is applied to extract the strongest matching signals: vi = ReLU(Maxpooling(mi,:)).

129



Context

Goal 

Knowledge

Max Pooling

Tracking

Predicting

Cosine Cosine Cosine

(KP Loss)

Context Updated GoalPredicted Knowledge Response

MLPMLP
Attention

Context-Response
Matching Score

Knowledge-Response 
Matching Score

LSTM

Goal-Response 
Matching 
Score

(RS Loss)

K
no

w
le

dg
e 

P
re

di
ct

io
n 

Ta
sk

R
es

po
ns

e 
Se

le
ct

io
n 

Ta
sk

Fig. 30. The structure of KPN. The predicted knowledge ek′
i and updated goal eg′ in the

knowledge prediction task will be used as input to the response selection task.

The obtained values (v) represent the degree of coverage of the entities in the goal, while
v′ = 1 − v represents the remaining part that should be covered in the following dialogue.
Finally, the vector v′ is used to update the representation of the goal: eg′ = v′ ·eg. This goal
tracking method is simple but effective, and more sophisticated designs can be investigated
as future work.
Knowledge Predicting The knowledge prediction process is shown in the Predicting part
of Figure 30. The relevance of a piece of knowledge is determined by both the state of the
goal and the current topic of the dialogue. The former determines the target, while the latter
determines the starting point. Ideally, the relevant knowledge should pave a way leading from
the current topic to the desired goal. Usually, the current topic is contained in the last several
utterances, thus we leverage them to predict the relevant knowledge. Given the updated goal
eg′ , the last m utterances {eui}L

i=L−m+1 (where L is the number of utterances in the context,
and m is a hyperparameter set as 3 in our experiments), and the j-th piece of knowledge ekj ,
we first compute their sentence-level representations by mean-pooling over word dimensions:
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ēui = mean(eui), ēg′ = mean(eg′), and ēkj = mean(ekj ). Then we use cosine similarity
s

kj

g′ = cos(ēg′
, ēkj ), s

kj

i = cos(ēui , ēkj ) to measure their relevance, where i ∈ [L − m + 1, L],
and we obtain (m + 1) scores [skj

g′ , s
kj

L−m+1, · · · , s
kj

L ]. The relevance scores with respect to
both the goal and the context topic are aggregated by a multi-layer perceptron (MLP) with
a sigmoid activation function (σ), which is then used to update the representation of the
j-th knowledge triplet:

skj = σ
(
MLP([skj

0 ; s
kj

L−m+1; · · · ; s
kj

L ])
)
, ek′

j = skj ekj , (2.2)

where skj is the predicted probability of the j-th knowledge triplet to be used in the current
turn.
Weakly Supervised Knowledge Prediction To make a correct prediction of knowl-
edge, the common method is tuning the knowledge prediction process according to the final
response selection error. The process is thus implicitly supervised [104, 105, 204]. To
further improve the learning of the knowledge prediction, besides the response selection loss,
we introduce a weakly supervised knowledge prediction loss to train it explicitly.

In practice, it is difficult to have manual labels for knowledge triplets in each dialogue
turn. To address this problem, we propose a method to generate weak labels automatically.
For each knowledge SPO triplet, we adopt an entity linking method to link it to the response:
if the object entity appears in the ground-truth response, we label it as 1, otherwise as 0.24

We assume this weak label can indicate whether such a piece of knowledge is used in the
ground-truth response. With the weak labels ykj

, we can compute a binary cross-entropy
loss, which we call KP loss, as follows:

Lkp = − 1
|D|

∑ (
ykj

log skj + (1 − ykj
) log(1 − skj )

)
. (2.3)

2.2. Response Selection (RS) Task

Response selection (RS) is the main task. As shown in Figure 30, KPN considers the in-
teractions between response and three types of information, i.e., the context, the knowledge,
and the remaining goal. The former two can be modeled in the same way: similar to existing
work [73, 223, 247], we compute matching matrices based on both the input representa-
tions (eui , ek′

j and er) and their sequential representations obtained by LSTM [71]. As a
result, we denote the obtained matrices as Mu and Mk and apply a CNN with max-pooling
to extract the matching features vu and vk.

(1) Context-Response Matching The matching features between the context and
response are aggregated by an LSTM and the corresponding final state is fed into an MLP
24For long descriptive entities (i.e., non-factoid sentences such as the Comment entity about Bo Peng in the
Knowledge Graph in Figure 29), if more than 70% part is covered by the ground-truth response, we label
it as one. We do not use the subject entity (e.g., “Bo Peng”), because it is shared by many triplets, thus is
less accurate as the label.
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to compute the matching score scr. We use LSTM because it can model the dependency and
the temporal relationship of utterances in the context.

(2) Knowledge-Response Matching Different from the context, we assume knowl-
edge triplets to be independent. Thus, we use an attention-based method to aggregate the
matching features:

αi = ReLU
(
MLP(vk

i )
)
, h2 =

kM∑
i=1

eαi∑
j eαj

vk
i , skr = MLP(h2). (2.4)

This way, a knowledge triplet that is more related to the response will have a higher weight
in the aggregated features and contributes more in computing the final matching score.

(3) Goal-Response Matching As the goal is a single sequence of tokens, which is
much easier to model, we compute the goal-response matching score sgr by an MLP based
on their LSTM representations at the last time step.

The final matching score is then computed as: ŷ =
(
scr +skr +sgr

)
/3. We use the binary

cross-entropy loss to compute the errors:

Lrs = − 1
|D|

∑ (
y log σ(ŷ) − (1 − y) log(1 − σ(ŷ)))

. (2.5)

3. Experiments
3.1. Datasets and Baseline Models

We experiment on datasets DuConv and DuRecDial. DuConv [204] is built for
knowledge-grounded proactive human-machine conversation. The dialogues are about movies
and stars. The total number of training, validation, and test samples is 898,970, 90,540, and
50,000. DuRecDial [109] is created as a conversational recommendation dataset, which con-
tains dialogues between a seeker and a recommender. The domain of dialogue includes movie,
music, food, etc. The number of training, validation, and test samples is 342,340, 38,060,
and 55,270. The negative responses are randomly sampled with a 1:9 positive/negative ratio
in both datasets.

We compare our model against two groups of baseline methods:
DuRetrieval [204] is the only retrieval-based model specifically designed for proactive

dialogue. It uses a Transformer-based encoder for context and response representation. The
conversation goal is used as an additional piece of knowledge. All knowledge triplets are
represented by a bi-GRU with attention mechanism.

The other group of methods are not proposed for proactive dialogue but for general
knowledge-grounded dialogue. As they also incorporate knowledge into dialogue generation,
we replace our knowledge selecting module in the KP task by theirs to make a comparison.
MemNet [52] uses a memory network that performs “read” and “write” on the knowledge
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by matrix multiplication. PostKS [104] trains a knowledge prediction process to make the
prior probability (using only the context) of the knowledge prediction close to the posterior
probability (using both context and response). NKD [105] is similar to MemNet, but it first
concatenates the context and knowledge representations and then uses an MLP to compute
the weight for each piece of knowledge.

3.2. Evaluation

All models are evaluated in two scenarios.
On test set Similar to the existing work [204, 226], we evaluate the performance

of each model by Hits@1, Hits@3, and Mean Reciprocal Rank (MRR) for selecting the
correct response when it is mixed up with several other candidates. Hits@k measures the
ratio of the ground-truth response among the top k results.

Practical application Following [204], we also evaluate the performance of the mod-
els in a more practical scenario, where each ground-truth utterance is mixed up with 49
utterances retrieved by Solr.25. The task is to rank the ground-truth response as high as
possible. This test simulates a practical scenario where the model is acting as a reranker
for the candidate list returned by an upstream retrieval system. We use several metrics
to evaluate the model from different perspectives. BLEUs are used to measure the qual-
ity (similarity) of the response w.r.t. the ground-truth. To evaluate the model’s ability to
incorporate knowledge into dialogues, we compute the knowledge precision/recall/F1
score used in previous studies [104, 148, 204], which measure how much knowledge (either
correct or wrong) has been used in the responses. We also compute a more meaningful
knowledge accuracy to measure if the selected response uses the same piece of knowledge
as that involved in the ground-truth response. Similarly, goal accuracy measures if a goal
in the ground-truth is correctly covered by the selected response.

3.3. Experimental Results

The evaluation results are shown in Table 16. Based on the results, we can observe: (1)
KPN outperforms all baselines significantly by achieving the highest scores on all evaluation
metrics. (2) Compared with DuRetrieval, KPN improves Hits@1, Hits@3, and MRR by a
large margin. This strongly indicates that KPN has a better capability of selecting correct
responses. (3) In the practical application scenario, according to the results on BLEU, we
can conclude that KPN can select responses that are more similar to the golden responses.
(4) On knowledge prediction, as a comparison, we also provide the evaluation result of the
ground-truth. We find that our method outperforms other knowledge prediction models

25https://lucene.apache.org/solr/ If the number of retrieved results is less than 49, we use random
samples to pad.
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Table 16. Evaluation results. KLG. stands for knowledge and Acc. stands for accuracy.
“+X” means that knowledge prediction is replaced by X. The improvement obtained by KPN
over DuRetrival is statistically significant with p-value < 0.01 in t-test.

Ground-truth DuRetrieval KPN +MemNet +PostKS +NKD

DuConv
Hits@1 - 50.12 66.94 52.54 39.98 56.42
Hits@3 - 75.68 87.52 78.70 65.70 57.09
MRR - 63.13 78.30 67.90 81.54 70.77
BLEU1 1.00 0.47 0.56 0.50 0.48 0.50
BLEU2 1.00 0.32 0.42 0.34 0.33 0.35
KLG. P 38.24 30.11 33.45 29.24 28.55 29.40
KLG. R 9.20 7.24 8.05 7.03 6.87 7.07
KLG. F1 14.83 11.68 12.97 11.34 11.07 11.40
KLG. Acc. 100.00 53.64 57.82 50.90 50.42 52.94
Goal Acc. 100.00 58.90 77.58 72.36 69.44 74.62

DuRecDial
Hits@1 - 77.38 91.50 75.34 82.45 82.74
Hits@3 - 89.02 98.86 93.92 96.60 97.03
MRR - 84.47 95.18 85.00 89.58 89.96
BLEU1 1.00 0.46 0.61 0.51 0.53 0.53
BLEU2 1.00 0.39 0.51 0.39 0.41 0.41
KLG. P 52.64 43.42 52.55 41.04 43.70 42.87
KLG. R 3.76 5.79 7.01 5.48 5.83 5.72
KLG. F1 7.02 5.68 12.97 11.34 11.07 11.40
KLG. Acc. 100.00 94.90 95.35 94.32 94.90 94.81
Goal Acc. 100.00 78.34 84.96 82.58 83.12 83.93

(MemNet, PostKS, and NKD) on knowledge P/R/F1 and accuracy. This demonstrates that
the explicit supervised knowledge prediction is more effective than the implicit ones used
in the other methods. Nevertheless, there is still a big gap between our results and the
ground-truth, showing that the process could be much improved.

Reliability of the Weak Labels As we use an entity linking method to automatically
generate weak labels for knowledge prediction, to evaluate the reliability of these labels, we
randomly select 100 samples comprising 1,437 knowledge triplets from the validation set
of DuConv, and ask three human annotators to label which triplet is necessary to select
the current response. The result indicates that 90.26% of the generated labels are consistent
with human annotations.26 This demonstrates the high reliability of the labels automatically
generated by our entity linking method.

26The Fleiss Kappa is 0.698 that indicates the annotators achieve a substantial agreement.
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We carried out detailed Ablation Study and Influence of Hyperparameter, showing
that both the goal and knowledge strongly impact the final results. Due to space limit, these
experiments are presented in our Github page.

4. Conclusion
In this paper, we proposed a new approach to retrieval-based proactive dialogue. In

our model, we define two tasks for response selection and knowledge prediction. An in-
teractive matching structure is applied to model the matching between the knowledge and
the response. In order to make a good prediction of knowledge, explicit supervision signals
are used, which are derived from the ground-truth responses. Experimental results demon-
strated that our model can achieve better performance than the baseline models in which
the two tasks are mixed up. In particular, it is shown that training the knowledge prediction
explicitly is very effective. This work is a first demonstration of the importance of modeling
knowledge and goals explicitly in proactive dialogue.
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Chapter 3

Conclusion

In this thesis, we have presented several methods for improving context-aware ranking in
two special scenarios: search and dialogue. Both of them have wide applications in practice.
In the search scenario, we investigated the problem of context-aware document ranking. We
proposed a contrastive learning and a curriculum learning framework, which respectively
improved the robustness of the model and enhanced the model optimization process. Both
of them achieved significant improvements over previous approaches. As for the dialogue
scenario, we used different kinds of knowledge as additional context to facilitate the dialogue
response ranking. We investigated grounding a dialogue on documents with hard content
selection, controlling a movie dialogue by a pre-defined narrative, and proactively leading
a dialogue according to a given goal and background knowledge. All of them boosted the
dialogue capability in different perspectives.

In the first article, we discussed how to address the issue that current models cannot cope
with the variations in user behavior sequences. We discovered that this is because all user
behavior sequences are viewed as definite and exact sequences. We proposed three data aug-
mentation strategies to generate possible variations for user behavior sequences. By masking
some terms in a query or document, deleting some queries or documents from the sequence,
or reordering the sequence, we can simulate some typical variations in user’s behavior se-
quences. The generated behavior sequences can be considered similar to the observed ones.
Then, we applied contrastive learning to identify what is similar and dissimilar. Compared
to existing approaches, we showed that contrastive learning can better cope with the in-
herent variations of user behavior sequences and generate more robust models to deal with
new sequences. As a first attempt to capture the variations in user behavior sequences, our
proposed data augmentation strategies are simple and fully unsupervised. The augmented
sequences may be unreasonable in practice. For example, if we randomly mask some terms of
a query, its search intent may be totally changed. A potential way to tackle this problem is to
leverage the search log. We could obtain a large number of query-clicked document pairs and



use the documents under the same query to generate augmented sequences. These sequences
have similar semantics and can better simulate the real variations in user behaviors.

In the second article, we discussed our findings that the relevance/irrelevance in different
positive/negative search context-document pairs has different difficulties to identify. In the
traditional learning paradigm, training samples are randomly (uniformly) selected to form a
training batch and optimize the model. This may confuse the model with the difficulty of the
task. We proposed a curriculum learning framework to improve model optimization. The
training samples are organized according to their difficulty, then the model can learn them
from easy to hard. Our proposed framework can be used to train any existing model. In
our experiments, we showed that it greatly improved several strong baselines, demonstrating
the effectiveness of curriculum learning for context-aware document ranking. Essentially,
curriculum learning adjusts the order of the training samples so that the entire learning
can be organized in an easy-to-hard manner. It does not modify the training samples. A
further research question is how to obtain the most effective positive/negative samples for
the training. In our experiments, we have found that adding more hard negative documents
is beneficial for model optimization. These documents may provide more contrastive signals
for learning matching signals. Therefore, in the future, we plan to investigate the mining of
effective training samples for context-aware ranking.

In the third article, we focused on the problem of document-grounded dialogue response
ranking. We reported that current methods often leveraged the whole document to select
the response, which may lead to redundant or scattered results. To tackle this problem,
we built a model with hard content selection. It can filter out irrelevant document content
before performing matching with the response candidate. This significantly reduced the
noise of the document. Besides, when selecting the document content, our model paid more
attention to the recent dialogue topic rather than the whole dialogue. It further enhanced
the accuracy of document content selection. Experimental results on two datasets validate
the effectiveness of our proposed model. It demonstrates the necessity of content selection
for document-grounded dialogue response ranking. A limitation of our method is that it
cannot be combined with pre-trained models. In general, pre-trained language models adopt
attention to selecting useful information from the document, so they also have the problem
that irrelevant content may disturb the matching process. As a result, a possible future
direction is how to equip pre-trained language models with our proposed hard selection
mechanism.

In the fourth article, we paid attention to the dialogue response ranking task and dis-
cussed how to control a dialogue by following a pre-defined plan. Since there was no existing
dataset, we constructed a new one in the movie domain, and defined a new task as narrative-
guided movie script generation. The narrative plays the role of dialogue guidance, while the
script session is the corresponding dialogue. To make the script session follow the given
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narrative, we designed a new model structure that can keep track of what has been covered
in the narrative and predict what should be covered in the next script line. By iteratively
selecting the next script line, our method can generate the whole script session. Both auto-
matic and human evaluation validated that our proposed approach is capable of producing
script sessions that are consistent with the given narratives. This study also showed that a
narrative plays a different role from a general dialogue context. It is worth noting that, in
this study, we assumed that the whole script is controlled by the narrative, which is different
from human-machine dialogues, where only the chatbot side can be controlled. Therefore,
a valuable research question is how to control the chatbot with a given narrative. Though
we can apply our method to this question by only tracking the information contained on the
chatbot side, we believe a more tailored tracking mechanism is necessary in this case.

In the fifth article, we explored a research question about how to make the dialogue model
work more proactively. We followed a recent study where a dialogue model was provided
with a knowledge graph and asked to mention several given entities during the dialogue.
The model should work proactively to talk about some entities and make proper transitions
between them. We found that tuning the whole model by the final response selection loss
was insufficient to tell which part of the model is suboptimal. Therefore, we first devised an
automatic method to annotate which piece of knowledge in the knowledge graph is used at
each dialogue turn. Then, we computed a supplementary loss to supervise the knowledge
selection process. It showed that with more explicit signals, the model can select more
proper knowledge for the dialogue. Besides, in the knowledge selection process, we also
considered which entities had already been mentioned in the dialogue in order to let the
model concentrate on the knowledge about uncovered ones. The experiments indicated that
our method is better at goal completion rate, knowledge selection accuracy, and dialogue
quality. Nevertheless, we think the current setting is still too ideal, i.e., the goal with entities
is pre-defined. In most human dialogues, it is impossible to determine the dialogue topics
(e.g., the entities that should be mentioned) in advance. Therefore, a mechanism that can
dynamically generate these entities along the dialogue process is urgently required.

Overall, this thesis contains several studies trying to make good use of search and dia-
logue contexts. While our approaches demonstrated improved effectiveness, they are still far
from the natural behaviors of human beings. We observe two typical limitations in existing
methods as follows: (1) The long-term dependency in the context cannot be well-captured.
For humans, it is easy to recall communication that took place a long time ago. However,
this is extremely challenging for neural models. Though some recent large language models
can accept an input of thousands of tokens (e.g., 2,048 tokens for GPT-3 and 8,192 tokens
for ChatGPT), it is impractical to increase the input length indefinitely. (2) The context
semantic is hard to model when there are a lot of omissions. It is natural for humans to
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understand a query or sentence with some omissions, to which the world’s knowledge con-
tributes significantly. A possible solution to this problem is increasing the model’s capacity
(i.e., size), as recent large language models have done. Unfortunately, similar to the previous
problem, it is also impractical to increase the model’s size indefinitely. Recently, we have
witnessed the great power of ChatGPT. It can accomplish a lot of human tasks with very
high accuracy. Our study may be integrated with ChatGPT in several ways. For example,
through the context-aware document ranking models, more relevant documents can be re-
trieved to enhance the factualness of ChatGPT’s generated content. ChatGPT only uses
implicit knowledge extracted from texts, but does not use explicit external knowledge. It is
possible to enhance ChatGPT with the existing knowledge graphs, and for this, our proposed
methods can be useful. Finally, making ChatGPT work more proactively is also a promising
direction. In summary, despite the rapid evolution in this area, our research work is still
relevant for future research in this field.
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