
Université de Montréal

Stabilizing Q-Learning for Continuous Control

par

David Yu-Tung Hui

Département de mathématiques et de statistique

Faculté des arts et des sciences

Mémoire présenté en vue de l’obtention du grade de

Maître ès sciences (M.Sc.)

en Informatique

December 31, 2022

© David Yu-Tung Hui, 2022

Université de Montréal
Faculté des arts et des sciences

Ce mémoire intitulé

Stabilizing Q-Learning for Continuous Control

présenté par

David Yu-Tung Hui

a été évalué par un jury composé des personnes suivantes :

Glen Berseth

(président-rapporteur)

Pierre-Luc Bacon

(directeur de recherche)

Aaron Courville

(codirecteur)

Irina Rish

(membre du jury)

Résumé

LŠapprentissage profond par renforcement a produit des décideurs qui jouent aux échecs, au

Go, au Shogi, à Atari et à Starcraft avec une capacité surhumaine. Cependant, ces algo-

rithmes ont du mal à naviguer et à contrôler des environnements physiques, contrairement

aux animaux et aux humains. Manipuler le monde physique nécessite la maîtrise de do-

maines dŠactions continues tels que la position, la vitesse et lŠaccélération, contrairement

aux domaines dŠactions discretes dans des jeux de société et de vidéo. LŠentraînement de

réseaux neuronaux profonds pour le contrôle continu est instable : les agents ont du mal

à apprendre et à conserver de bonnes habitudes, le succès est à haute variance sur hyper-

paramètres, graines aléatoires, même pour la même tâche, et les algorithmes ont du mal à

bien se comporter en dehors des domaines dans lesquels ils ont été développés. Cette thèse

examine et améliore lŠutilisation de réseaux de neurones profonds dans lŠapprentissage par

renforcement. Le chapitre 1 explique comment le principe dŠentropie maximale produit des

fonctions dŠobjectifs pour lŠapprentissage supervisé et non supervisé et déduit, à partir de

la dynamique dŠapprentissage des réseaux neuronaux profonds, certains termes régulisants

pour stabiliser les réseaux neuronaux profonds. Le chapitre 2 fournit une justiĄcation de

lŠentropie maximale pour la forme des algorithmes acteur-critique et trouve une conĄgura-

tion dŠun algorithme ńacteur-critiqueż qui sŠentraîne le plus stablement. EnĄn, le chapitre 3

examine la dynamique dŠapprentissage de lŠapprentissage par renforcement profond aĄn de

proposer deux améliorations aux réseaux ńciblesż et ńjumeauxż qui améliorent la stabilité

et la convergence. Des expériences sont réalisées dans les simulateurs de physique idéale

DeepMind Control, MuJoCo et Box2D.

Keywords: informatique; intelligence artiĄcielle; apprentissage profond; apprentissage

par renforcement; apprentissage par renforcement profond; contrôle; contrôle continu; Q-

Learning; MuJoCo

5

Abstract

Deep Reinforcement Learning has produced decision makers that play Chess, Go, Shogi,

Atari, and Starcraft with superhuman ability. However, unlike animals and humans, these

algorithms struggle to navigate and control physical environments. Manipulating the physi-

cal world requires controlling continuous action spaces such as position, velocity, and accel-

eration, unlike the discrete action spaces of board and video games. Training deep neural

networks for continuous control is unstable: agents struggle to learn and retain good behav-

iors, performance is high variance across hyperparameters, random seed, and even multiple

runs of the same task, and algorithms struggle to perform well outside the domains they have

been developed in. This thesis Ąnds principles behind the success of deep neural networks in

other learning paradigms and examines their impact on reinforcement learning for continuous

control. Chapter 1 explains how the maximum-entropy principle produces supervised and

unsupervised learning loss functions and derives some regularizers used to stabilize deep net-

works from the training dynamics of deep learning. Chapter 2 provides a maximum-entropy

justiĄcation for the form of actor-critic algorithms and Ąnds a conĄguration of an actor-

critic algorithm that trains most stably. Finally, Chapter 3 considers the training dynamics

of deep reinforcement learning to propose two improvements to target and twin networks

that improve stability and convergence. Experiments are performed within the DeepMind

Control, MuJoCo, and Box2D ideal-physics simulators.

Keywords: computer science; artiĄcial intelligence; deep learning; reinforcement learning;

deep reinforcement learning; control; continuous control; Q-Learning; MuJoCo

7

Contents

Résumé . 5

Abstract . 7

List of tables . 11

List of figures . 13

List of acronyms and abbreviations . 15

Acknowledgements . 17

Chapter 1. Background . 19

1.1. Deep Learning . 19

1.1.1. Unsupervised Learning . 22

1.1.2. Normalizing Flows . 26

1.1.3. Autoencoders . 27

1.1.4. Supervised Learning . 28

1.2. Deep Neural Networks . 29

1.2.1. The Neural Tangent Kernel . 30

1.2.2. Stabilizing Deep Learning . 32

1.3. Reinforcement Learning . 33

1.3.1. Deep Reinforcement Learning . 34

1.3.2. Model-Free Reinforcement Learning . 36

1.3.3. Deep Q-Learning. 37

1.3.4. Stabilizing Deep Q-Learning . 38

1.4. Summary . 40

Chapter 2. Scaling Continuous Control . 43

2.1. Scaling A Maximum-Entropy Model . 44

2.1.1. Maximum-Entropy Reinforcement Learning . 47

9

2.1.2. Types of Probabilistic Actors . 47

2.2. Scaling Experimental Setup . 49

2.3. MuJoCo Results . 51

2.4. DeepMind Control Results . 54

2.5. Related Work . 56

2.6. Conclusion . 57

Chapter 3. Convergent Continuous Control . 59

3.1. Training Dynamics of Q-Learning . 60

3.1.1. Target Networks Do Not Guarantee Convergence . 61

3.1.2. Convergence with LayerNorm . 62

3.2. Empirical Convergence Across Action Dimensions . 63

3.3. LayerNorm Results and Discussion . 64

3.4. Fixed Asymmetry With Twin Networks . 67

3.5. Related Work . 69

3.6. Conclusion . 71

Chapter 4. Conclusion . 73

Bibliography . 75

10

List of tables

2.1 Return averaged over 10 seeds of 10 rollouts after training for a million timesteps

for with different scales with different-sized critics. Corresponds to a table of

Figure 2.2. Mean ± standard error is given to three signiĄcant Ągures. 52

2.2 Comparing the return averaged over 10 seeds of 10 rollouts after training for a

million timesteps. Numbers in each entry were selected from the best-performing

conĄguration for each type of policy. Mean ± standard error numbers are given

to three signiĄcant Ągures. 53

2.3 Return averaged over 10 seeds of 10 rollouts after training for a million timesteps

with autotuned and Ąxed β = 1e−7 squashed Gaussian policies and deterministic

policies used with a small critic of two hidden layers of size 256. Mean ± standard

error numbers are given to three signiĄcant Ągures. 55

3.1 Interquartile Mean (IQM) averaged over 12 seeds of 10 rollouts after training for a

million timesteps varying asymmetry. Mean ± standard error numbers are given

to three signiĄcant Ągures. Methods that give the highest returns per environment

are bolded. 70

11

List of figures

2.1 Architecture of a residual block adapted from continuous control from pixel

observations from [BGW21b] to continuous control from states 50

2.2 Scaling the critic with varying numbers of residual blocks described in Figure 2.1.

The original critic is a neural network with two hidden layers of 256. A

deterministic policy is used. 51

2.3 Scaling the deterministic policy. Large refers to a network with four blocks

described in Figure 2.1 and small refers to a two-hidden-layer neural network of

width 256. 52

2.4 Scaling the Squashed Gaussian policy. Large refers to a network with four blocks

described in Figure 2.1 and small refers to a two-hidden-layer neural network of

width 256. 52

2.5 Scaling the Conditional Normalizing Flow policy with increasing depth of

RealNVP layers. A large critic with four blocks described in Figure 2.1 was

used. 53

2.6 Scaling the size of the latent variable used in Variational Q-learning. A large critic

with four blocks described in Figure 2.1 was used. 53

2.7 The effect of decreasing β on learning in four DMC environments. 54

2.8 Per-dimension change in log πϕ(a ♣ s) from 1 to 20 gradient steps on ϕ increase.

Lighter lines indicate more gradient steps have been taken . 54

2.9 Comparison of autotuned and Ąxed β = 1e−7 squashed Gaussian policies and

deterministic policies used with a small critic of two hidden layers of size 256. . . . 55

2.10 Scaling the critic with varying numbers of residual blocks described in Figure 2.1.

A large critic consisted of four blocks described in Figure 2.1, while a small critic

had a neural network with two hidden layers of size 256. A deterministic policy

was used. 56

3.1 Return after 1e5 timesteps calculated by the interquartile mean (IQM) over 12

seeds, each evaluated 100 times for navigation tasks across varying dimensions.

13

Shaded regions indicate the standard error computed over 12 seeds. LN stands

for LayerNorm while TN stands for Target Networks. 65

3.2 Approximate overestimation of Q-function calculated by subtracting the Monte-

Carlo return from Q(s0, a0) calculated from one state. Bottom plot has blue lines

removed for clarity of inspecting the other two. Values are means over 12 seends

and shaded regions indicate standard error computed over 12 seeds. LN stands

for LayerNorm while TN stands for Target Networks. 65

3.3 Ablation of using GroupNorm (GN) with 16 groups over LayerNorm (LN) in

DMC, MuJoCo, and Box2D environments. Return after 1e5 timesteps calculated

by the interquartile mean (IQM) over 12 seeds, each evaluated 100 times. Shaded

regions indicate standard error computed over 12 seeds. 66

3.4 Benchmarks of TD2 with GroupNorm (GN) and Target Network (TN) ablations in

DMC, MuJoCo, and Box2D environments. Return after 1e5 timesteps calculated

by the interquartile mean (IQM) over 12 seeds, each evaluated 100 times. Shaded

regions indicate standard error computed over 12 seeds. 67

3.5 Individual training runs of all twelve seeds in DMC, MuJoCo, and Box2D

environments. The solid line is the return after 1e5 timesteps calculated by

the interquartile mean (IQM) over 12 seeds. A dashed line indicates the return

evaluated over 100 times for one particular run. 68

3.6 Asymmetric Q-Learning results with varying degrees of asymmetry determined by

β, with more positive βs denoting a steeper positive half. Returns were calculated

by the interquartile mean (IQM) over 12 seeds, each evaluated 100 times. Shaded

regions indicate standard error computed over 12 seeds. 69

14

List of acronyms and abbreviations

CDF Cumulative Distribution Function

CNF Conditional Normalizing Flow

DDPG Deep Deterministic Policy Gradient

DDQN Double Deep Q-Networks

DL Deep Learning

DMC DeepMind Control

DQN Deep Q-Networks

DRL Deep RL

DrQ Data-Regularized Q-Learning

ELBO Evidence-Based Lower Bound

GN GroupNorm

IID Independent and Identically Distributed

IQM InterQuartile Mean

KL Divergence Kullback-Leibler Divergence

LINEX Linear-Exponential

LN LayerNorm

MaxEnt Maximum Entropy

MaxEnt RL Maximum Entropy RL

MDP Markov(ian) Decision Process

15

ML Machine Learning

MuJoCo Multi-Joint dynamics with Contact

NLL Negative-Log-Likelihood

NTK Neural Tangent Kernel

PDF Probability Density Function

PPO Proximal Policy Gradient

RealNVP Real-valued Non-Volume Preserving transformations

ReLU RectiĄed Linear Unit

RL Reinforcement Learning

SAC Soft Actor-Critic

SL Supervised Learning

TD2 Twin DDPG

TD3 Twin Delayed DDPG

TD Temporal Difference

TN Target Network

TRPO Trust-Region Policy Gradient

UL Unsupervised Learning

VAE Variational Autoencoder

VQL Variational Q-Learning

16

Acknowledgements

There are many I would like to thank for making the writing of this dissertation so enjoyable.

Glen Berseth, Pierre-Luc Bacon, Aaron Courville, and Irina Rish took the time to suggest

minor corrections to this monograph through their role as my dissertation jury.

My co-supervisors Pierre-Luc Bacon and Aaron Courville helped and guided me to Ąnd and

develop my taste in research projects, and provided a productive work environment through

their respective leadership of friendly and inclusive research groups.

Yoshua Bengio gave me my Ąrst opportunity to research machine learning as a 2019 Mila

intern, signiĄcantly broadening my appreciation of what might be possible with computa-

tion, while Dzmitry Bahdanau was also a formative inĆuence on my perspective on machine

learning during that period.

Many ideas in this dissertation have been shaped through numerous interactions with col-

leagues, especially but not exclusively Alan Chan, Anushree Rankawat, Breandan Consi-

dine, Max Schwarzer, Tianwei Ni, Paul Crouther, Sobhan Mohammadpour, David Kanaa,

Niki Howe, Muawiz Chaudhary, Pierluca DŠOro, Padideh Nouri, Maxime Chevalier-Boisvert,

Aneri Muni, Evgenii Nikishin, Olexa Bilaniuk, Valentin Thomas, Shawn Tan, Ionelia Buzatu,

Laetitia Teodorescu, Alexandre Piché, Joseph Viviano, Salem Lahlou, Manuel Del Verme,

Harry Mingde Zhao, Myriam Lizotte, Mohammad Reza Samsami, Hugo Sonnery, Nathan

Schucher, Jonathan Pilault, Chin-Wei Huang, Disha Shrivastava, Julien Roy and Jean Harb.

Alan Chan also helped with the ChatGPT French translations used in this dissertation.

I would like to express my immense gratitude towards my parents, Diana and Victor, who

have always been a source of inspiration and encouragement to me. Their curiosity about my

research was especially invaluable during my time away from Mila following the disruption

caused by the COVID-19 pandemic.

I have wanted to research artiĄcial intelligence since a young age and will spend the rest of

my life happy I had the opportunity to do so alongside great colleagues, friends, and family.

17

Chapter 1

Background

This thesis improves the effectiveness of deep neural networks in reinforcement learning.

Deep Neural Networks, called deep networks for short, were developed for supervised

and unsupervised learning and have driven many empirical successes in image recognition

[LB+95, HZRS16, KSH17], image generation [KW13, GPAM+14, DSDB16, SE19, HJA20],

and language translation [BCB14, CVMG+14]. However, the mathematics used in deep (su-

pervised and unsupervised) learning is derived from different mathematical principles from

that of reinforcement learning. Understanding the difficulties of using deep networks in

reinforcement learning Ąrst requires understanding its effectiveness in deep learning. This

chapter therefore Ąrst prevents an overview of deep learning with a particular emphasis on

uncovering the Ąrst principles that make supervised and unsupervised learning so effective.

Then, the mathematics of deep networks are introduced, alongside theoretical mathematical

derivations for some commonly-used methods to regularize deep networks during training.

Finally, reinforcement learning is introduced. This chapter provides theory that is later used

in subsequent chapters and is not intended to be a comprehensive overview of reinforcement

learning, deep learning, or deep networks. A more in-depth discussion of those topics may

be found in [SB18a] and [GBC16].

1.1. Deep Learning

Machine Learning (ML) algorithms uncover implicit patterns in data. They are best

targeted at problems where statistically-observed relationships are difficult to mathemati-

cally specify [LBH15]. There are three broad types of machine learning. Unsupervised

Learning (UL) algorithms learn summarize datasets by compressing each datapoint into

a short numerical description. They have most notably generated semantically-meaningful

text [DCLT18, BMR+20], images, [KW13, GPAM+14, DSDB16, SE19, HJA20] and recently

videos [HCS+22, HSG+22]. Supervised Learning (SL) algorithms match a datapoint to

an underlying concept. They have been successfully applied to recognize an item in an image

[LB+95, HZRS16, KSH17] and recognize a speaker from an audio Ąle [RB18]. Reinforce-

ment Learning (RL) algorithms make decisions that would be highly rewarded (scored).

A major difference between (online) RL and supervised and unsupervised learning is the

stationarity of the data it is learned from. Supervised and unsupervised learning (Deep

Learning (DL)) problems are usually posed with a Ąxed dataset, while an RL agent and

the environment would mutually affect each other, causing RL datasets to change constantly.

This is the primary source of instability in RL[SB18b, SB18a].

Good learning algorithms uncover patterns from a dataset that generalize to arbitrary

unseen samples of the population the dataset is sampled from. Such patterns must be

resistant to noise and thus use high-level representations of concepts such as what object

is the subject of a photo, what word is being spoken in an audio Ąle, or what action is being

performed by a robot [BCV13, GBC16]. A learning algorithm abstracts these representations

from low-level information in each datapoint such as the value of a pixel in a photograph,

the frequency spectrum of a certain timeframe within an audio Ąle, or the voltage of a motor.

Consider representing a M -datapoint dataset with N discrete states. The number of data-

points M is typically much larger than the number of representing states N . If ni datapoints

have been assigned to state i, the total number of possible datapoint-state assignations (not

caring about orderings as datapoints are sampled from a set) is:

Ω =
M !
∏

i ni!

A representation gives a more distinguishable description of a dataset if its states partition

datapoints as evenly as possible. Distinguishability may be posed as an optimization problem

to maximize the number of datapoints ni associated with each i:

arg max
¶ni♢

Ω = arg max
¶ni♢

M !
∏

i ni!

This optimization problem is hard because of the factorials. StirlingŠs Approximation ap-

proximates a log-factorial log k! as k log k− k and may be used if log Ω is instead optimized.

As the log function monotonically increases, it does not affect the optimizing variable ni.

max log
M !
∏

i ni!

= max
¶ni♢



log M !−
N
∑

i=1

log ni!

]

20

= max
¶ni♢



M log M −M −
N
∑

i=1

(ni log ni − ni)

]

SterlingŠs Approximation (twice)

= max
¶ni♢



M log M − 2M −
N
∑

i=1

ni log ni

]

where
n
∑

i

ni = M

= max
¶ni♢



−
∑

i

ni

M
log

ni

M

]

removing non-dependent terms on n and dividing by M

= max
¶pi♢



−
∑

i

pi log pi

]

where pi = lim
M→∞

ni

M
is the probability of being in state i

The resulting term inside the maximization S = −
∑

i pi log pi is entropy, which measures

how well a representation distinguishes between datapoints, in other words how informative

a representation would be of a datapoint [BN06], Section 1.6. Differential Entropy is the

entropy of continuous representations, given by:

S = −
∫

pi log pi di

Maximising the information of a representation is approximated by maximising S with re-

spect to p: the variational principle of maximum entropy (Maximum Entropy)

[Jay57a, Jay57b], an optimization problem given by:

max
p



−
∫

pi log pi di



, subject to

∫

pi di = 1

where the constraint exists to sum pi to a probability. Solving with Lagrange multipliers

yields a uniform distribution.

This distribution partitions datapoints as evenly as possible, but each datapoint occurs with

equal likelihood. Another constraint is needed for maximum entropy to produce a non-

uniform distribution over datapoints. A constraint may be formed by assuming that each

datapoint i is associated with a real-valued quantity Ei named energy. E is called an energy

function because entropy was Ąrst developed to study the behavior of gases used in steam

engines. Instead of considering datapoints and the probability they would appear, physicists

studied gas molecules whose energy (measured by its temperature, proportional to the speed

at which it traveled) increased with lower probability [Car90]. For historical purposes, this

section takes mathematical notation from statistical physics.

Adapting the physics of thermodynamics to machine learning implies that samples that occur

with lower probability would have higher energy [LCH+06]. Specifying E is difficult and the

success of a machine learning depends on whether Es may be well-speciĄed. Maximizing

21

entropy for systems with an energy constraint produces:

max
p

S = −
∫

pi log pi di

subject to

∫

piEi di = Ē

and

∫

pi di = 1

where Ē is a numerical value that determines the mean energy of the overall system. In

physics, this would be the average temperature of the gas. Solving using the method of

Lagrange multipliers yields a Lagrangian of:

L = S − α

∫

pi dpi − 1



− β

∫

piEi dpi − Ē



and the Boltzmann Distribution:

pi =
e−βEi

∫

e−βEj dj
(1.1.1)

In thermodynamics, the distribution over gas-particle velocities was empirically veriĄed to

follow a variant of the Boltzmann Distribution named the Maxwell-Boltzmann Distribution

[Max60b, Max60a].

Different constraints with different energy functions yield different probability distributions.

max
p

S = −
∫

pi log pi di

subject to

∫

pi di = 1

and

∫

pii di = µ̄

and

∫

(i− µ)2 di = σ

yields the popularly used Gaussian distribution. All distributions whose functional forms

are derived from maximum entropy form the exponential family, so named because the

logarithm in entropy produces an exponential term in their probability functions.

1.1.1. Unsupervised Learning

Unsupervised Learning (UL) algorithms represent a dataset without needing human

feedback, labels, or annotations. Maximum-Entropy Unsupervised Learning is posed as:

min
p

H[p(x)]

22

subject to

∫

p(x) dx = 1 for all x

and

∫

Eθ(x) p(x) dx = Ē

given θ = arg min
θ

∫

Eθ(x) p(x) dx− Ē



(1.1.2)

The above constrained optimization problem Ąnds a probability distribution given arbitrary

energy function E. Hand-crafting a good energy function requires prior knowledge of the

dataset and is of equivalent difficulty to hand-crafting an unsupervised learning algorithm.

A good alternative is to instead learn an energy function that is most appropriate for the

dataset [LCH+06]. A learnable energy function is speciĄed by a deep network Eθ that inputs

x and outputs a scalar parameter. θ is trained to minimize the discrepancy between learned

distribution p(x) and empirical distribution calculated over the dataset with Dirac functions

δ:

d(x) =
1

n

n
∑

i=0

δ(x− xi)

using the empirical expected energy Ē over the dataset:

Ē =

∫

Eθ(x) d(x) dx =

∫

Eθ(x)
1

n

n
∑

i=0

δ(x− xi) dx =
1

n

n
∑

i=0

Eθ(xi)

and d(x) is an empirical distribution over the dataset given by Dirac functions, following its

use in [VI19].

p and θ in Problem 1.1.2 may be solved by iteratively optimizing between θ and p. p may

be found by the method of Lagrangian Multipliers, producing Lagrangian:

L(p, α, β) = H[p(x)]− α

∫

p(x) dx− 1



− β

∫

Eθ(x) p(x) dx− Ē



given θ = arg min
θ

∫

Eθ(x) p(x) dx− Ē



and Boltzmann Distribution:

p(x) =
e−βEθ(x)

∫

e−βEθ(x′) dx′

Analytically solving for β might be hard, depending on Eθ, so numerical optimization is

preferred. The original constrained optimization problem (Problem 1.1.2) may be rewritten

with (strong) Lagrangian duality as:

min
α,β

max
p

L(p, α, β)

23

Since minp and maxα have been found, the problem simpliĄes to just an optimization over

β:

min
α,β

max
p

L(p, α, β) = min
β

min
α

max
p

L(p, α, β)

= min
β

J(β)

where

J(β) = min
α

max
p

L(p, α, β)

Substituting the expression of p into L gives:

J(β) = −
∫

p(x) log
e−βEθ(x)

∫

e−βEθ(x′) dx′
dx− β

∫

Eθ(x) p(x) dx− Ē



= −
∫

p(x)



−βEθ(x)− log

∫

e−βEθ(x′) dx′



dx− β

∫

Eθ(x) p(x) dx− Ē



= −
∫

p(x)



− log

∫

e−βEθ(x′) dx′



dx− βĒ (cancel expectation of βEθ)

= log

∫

e−βEθ(x′) dx′ − β

∫

Eθ(x) d(x) dx

=

∫



log

∫

e−βEθ(x′) dx′ − βEθ(x)



d(x) dx

= −
∫

d(x) log
e−βEθ(x)

∫

e−βEθ(x′) dx′
dx

simplifying Problem 1.1.2 to:

min
β

J(β) = min
β



−
∫

d(x) log
e−βEθ(x)

∫

e−βEθ(x′) dx′
dx



given θ = arg min
θ

∫

Eθ(x) p(x) dx− Ē



This simpliĄed problem may be optimized by block-coordinate descent that iterates between:

β ← β − η
∂

∂β

∫

d(x) log
e−βEθ(x)

∫

e−βEθ(x′) dx′
dx

θ ← θ − η

∫

Eθ(x) p(x) dx− Ē



The gradient of the Ąrst step is:

∂

∂β



−
∫

log
e−βEθ(x)

∫

e−βEθ(x′) dx′
d(x) dx



=
∂

∂β

∫

βEθ(x) + log

∫

e−βEθ(x′) dx′ d(x) dx

24

=

∫

Eθ(x) d(x) dx +
∂

∂β
log

∫

e−βEθ(x) dx

The second term in the above expression evaluates to:

∂

∂β
log

∫

e−βEθ(x) dx =
∂

∂β
log

∫

e−βEθ(x) dx

=
1

∫

e−βEθ(x′) dx′

∫

∂

∂β
e−βEθ(x) dx

= − 1
∫

e−βEθ(x′) dx′

∫

Eθ(x)e−βEθ(x) dx

= −
∫

Eθ(x)
e−βEθ(x)

∫

e−βEθ(x′) dx′
dx

= −
∫

Eθ(x) p(x) dx

thus:

∂

∂β
J(β) =

∫

Eθ(x) d(x) dx−
∫

Eθ(x) p(x) dx

=

∫

∂

∂β
β Eθ(x) d(x) dx−

∫

∂

∂β
β Eθ(x) p(x) dx

Note that by a similar argument the derivative of the second constraint is

∂

∂θ
J(β) =

∫

∂

∂θ
β Eθ(x) d(x) dx−

∫

∂

∂θ
β Eθ(x) p(x) dx

The derivatives with respect to β and θ are the same, with just a change of a parameter.

Given that θ in E would be found by the chain rule and E is a scalar across real numbers,

β is a redundant scale parameter. This eliminates the need for block-coordinate descent,

simplifying the entire optimization problem into minimizing:

J(θ) = −
∫

d(x) log
eEθ(x)

∫

eEθ(x) dx′
dx

= −
∫

d(x) log pθ(x) dx (1.1.3)

= −
∫

1

n

n
∑

i=0

δ(y − yi) log pθ(x) dx

= − 1

n

n
∑

i=0

log pθ(xi) (1.1.4)

The energy function is learned simultaneously as the probability distribution in end-to-end

learning, a concept that has made deep learning so successful [LBH15]. This formula gives

us some rules of thumb for designing maximum-entropy deep learning algorithms:

25

(1) The model should be probabilistic and a member of the exponential family.

(2) The model should optimize for a cross-entropy with the empirical distribution

(Equation 1.1.3), resulting in minimizing the negative log-likelihood (NLL) of

the model calculated over the dataset (Equation 1.1.4).

The duality between maximum likelihood and maximum entropy has previously been studied

in [BDPDP96] but not extended to cover the case when the energy function is learned

alongside the probability distribution end-to-end.

1.1.2. Normalizing Flows

Normalizing Flows are the most mathematically straightforward class of unsupervised

learning method. More comprehensive introductions to them may be found in [KPB20,

BTLLW21] They assume that each datapoint x is a complicated non-linear reparameteriza-

tion of random variable z drawn from a multivariate unit Gaussian distribution.

z ∼ N(0, I)

x = gθ(z)

The cumulative distribution function (cdf) of x written in terms of z is:

Pθ(x) = P (gθ(z))

However, Equation 1.1.4 uses a probability distribution functions (pdf), deĄned as:

pθ(x) = p(gθ(z))

∣

∣

∣

∣

d

dz
gθ(z)

∣

∣

∣

∣

If gθ is not a bijection, then its derivative wrt z will be non-square and its determinant used in

calculating the derivative may not exist. Bijectivity is ensured if gθ is invertible. Invertibility

enables exact inference of the probability of a sample through recovering z = g−1
θ (x) and

evaluating its pdf with respect to a multivariate unit Gaussian. θ may be found by

− log pθ(x) = − log p(g−1
θ (x))− log

∣

∣

∣

∣

d

dx
g−1

θ (x)

∣

∣

∣

∣

where d
dx

g−1
θ is the log-volume fraction.

26

1.1.3. Autoencoders

Autoencoders [Kra91, BYAV13, AB14] model pθ(x) as a Gaussian distribution. Ignoring the

normalization constant and standard deviation, the distribution is given by

pθ(x) ∝ exp−
∑

j

(x(j) − fθ(x)(j))2

When substituted into Equation 1.1.4, the log-likelihood simpliĄes into a per-input-element

squared error:

min
θ

∑

j

(x(j) − fθ(x)(j))2

The deep network fθ takes an x as input and reconstructs it, thus giving the autoencoder

its name. Inputs that occur more in-distribution would be reconstructed better than images

that are more out-of-distribution. The energy function in this distribution is the recon-

struction error, which may be used to detect out-of-distribution samples, which have high

reconstruction and are unlikely to occur for trained samples [Bis94].

It is difficult to estimate the probability of a sample with an autoencoder as it requires nor-

malizing by the reconstruction error over all samples. Variational Autoencoders (VAEs)

[KW13] abstract a datapoint x into a latent variable z whose probability may be estimated.

These methods are variational because of the introduced latent variable z which needs to

be integrated over in order to calculate log p(x). This integration is intractable, and thus the

model cannot be trained with exact inference, thus requiring the Evidence-Based Lower

Bound (ELBO) to approximate the probability with a lower bound:

log p(x) = log
∑

z

p(x, z)

= log
∑

z

q(z ♣ x)

q(z)
p(x, z)

⩾
∑

z

q(z ♣ x) log
p(x, z)

q(z)

=
∑

z

q(z ♣ x)



log p(x ♣ z) + log
p(z)

q(z)



= E
z∼q(z♣x)

[log p(x ♣ z)] + DKL[q(z ♣ x) ∥ p(z)]

The whole model is trained by Ąrst passing a datapoint x into the encoder q to produce a

latent variable z, which is then passed to decoder p to reconstruct x. The KL-divergence

between q is minimized with respect to a uniform Gaussian distribution p(z), regularizing

the learned distribution of q.

27

1.1.4. Supervised Learning

Supervised Learning produces functions that match inputs x with labels y. Typically, an

input x is a vector, matrix, or tensor, while a label y is a scalar. We provide a detailed

derivation for the loss function used in supervised learning from the maximum-entropy per-

spective, such that we can subsequently reuse this framework for reinforcement learning in

Chapter 2. Maximum-Entropy Supervised Learning has a loss function of:

max
θ
− 1

n

n
∑

i=1

log pθ(yi ♣ xi) (1.1.5)

For discrete y, the model has the form:

pθ(yi ♣ x) =
eEθ(x,yi)

∑

j eEθ(x,yj)

The tranformation of E to p shown above is done by the Softmax function [Bri89, Bri90]

The loss function of MaxEnt SL (Equation 1.1.5) is derived from:

max
p

−
∫∫

p(y ♣ x) d(x) log p(y ♣ x) dx dy

subject to

∫

p(y ♣ x) dy = 1 for all x

and

∫∫

Eθ(x, y) p(y ♣ x) d(x) dx dy = Ē

given θ = arg min
θ

∫∫

Eθ(x, y) p(y ♣ x) d(x) dx dy − Ē



(1.1.6)

with moment target constraint:
∫∫

Eθ(x, y) d(y ♣ x) d(x) dx dy =

∫∫

Eθ(x, y) d(x, y) dy

=

∫∫

Eθ(x, y)
1

n

n
∑

i=0

δ(x− xi) δ(y − yi) dx dy

=
1

n

n
∑

i=0

Eθ(xi, yi)

= Ē

and the empirical distributions:

d(x) =
1

n

n
∑

i=0

δ(x− xi)

28

d(x, y) =
1

n

n
∑

i=0

δ(x− xi)δ(y − yi)

The objective of Problem 1.1.6 is conditional entropy. It may be derived from noting that

entropy is a special case of forward-Kullback-Leibler Divergence with respect to a uniform

distribution. In

min
p



−
∫

p(x) log
u(x)

p(x)
dx



= max
p



−
∫

p(x) log p(x) dx



the uniform distribution u does not contribute towards the maximization and is the same

for all elements. The entropy of a conditional distribution follows the same forward-KL with

respect to a uniform distribution:

min
p

DKL[p(y ♣ x) d(x) ♣♣ u(y ♣ x) d(x)] = min
p



−
∫∫

p(y ♣ x) d(x) log
u(y ♣ x) d(x)

p(y ♣ x) d(x)
dx dy



= max
p



−
∫∫

p(y ♣ x) d(x) log p(y ♣ x) dx dy



1.2. Deep Neural Networks

Deep neural networks are used in supervised and unsupervised learning to parameterize en-

ergy functions that take a datapoint as input and outputs a scalar. This is challenging as

datapoints are often in the format of a vector, matrix or tensor and may be very high dimen-

sional. Deep Neural Networks, often called Deep Networks or Neural Networks are

a parametric class of functions that have been mathematically proven to approximate any

function, making them ideal for discovering an arbitrary energy function [HSW89, C+01].

As its name suggests, a neural network is composed of many neurons. This mathematical

function performs an affine transformation of its input x that is then fed into a nonlinear

activation function ρ.

ρ(w⊤x + b)

Neurons are composed in parallel and in sequence to form a network. A layer of a neural

network are neurons in parallel, the number of which denotes its width. The depth of a

neural network are sequentially composed layers.

The set of all ws and bs from all neurons are written as θ, the parameters of a neural

network. θ is initialized to random values, and their numerical values are adjusted during

training. During training, each parameter is adjusted to minimize a loss function L such as

Equation 1.1.4 and Equation 1.1.5. An arbitrary parameter w ∈ θ is adjusted by gradient

29

descent by:

wt+1 ← wt − η
∂

∂w
L(w)

∣

∣

∣

∣

wt

The learning rate η is chosen to be small enough such that the change in w is small because

the gradient is only accurate to a small region of w: the local change of the loss function.

Parameters are updated until the loss converges. The number of gradient updates, or

timesteps, is typically on the order of magnitude of the number of datapoints.

1.2.1. The Neural Tangent Kernel

Machine learning may uncover more patterns if more data is analyzed. The greater com-

plexity of patterns resulting from an increased volume of data requires more powerful and

more complex function approximation to uncover them, which may be achieved by wider

and deeper neural networks with more parameters [KMH+20, HBM+22]. However, more

powerful function approximation is prone to uncovering more patterns. It may overfit by

learning patterns speciĄc to only the dataset it has been trained on and not the wider pop-

ulation. Much of deep learning research has focused on regularizing the numerical value

of parameters during training such that larger ones may be used. Popular regularization

methods may be found by Ąnding how they affect the convergence of training a neural net-

work. This subsection investigates the convergence of supervised and unsupervised learning

by introducing a strategy that will later be used in reinforcement learning.

Suppose a neural network fθ(x) with parameters θ minimizes L(fθ(x)) with parameters θ:

min
θ

Lθ = min
θ

1

n

n
∑

i=1

lθ,i

= min
θ

1

n

n
∑

i=1

lθ(xi)

with gradient descent update rule

δθ = − 1

n

n
∑

i=1

∇θlθ(xi)

Note that the change in weights is negative due to gradient descent. For convergence, the

loss must decrease to a minimum, and L must therefore be constructed to be bounded from

below. We further assume that L is a convex function. One method for the loss to converge

is if, for every timestep, the change in loss δL ⩽ 0. The change in loss may be analytically

30

quantiĄed by a Ąrst-order Taylor expansion around θ with a small change of δθ:

Lθ+δθ = Lθ + δθ⊤∇Lθ + · · ·

which implies that:

δL ≈ δθ⊤∇Lθ

= δθ⊤ 1

m

m
∑

j=1

∇θlθ(xj)

= −
(

1

n

n
∑

i=1

∇θlθ(xi)

⊤
1

m

m
∑

j=1

∇θlθ(xj)

= − 1

nm

n
∑

i=1

m
∑

j=1

∇θlθ(xi)
⊤∇θlθ(xj)

For convergence,

− 1

nm

n
∑

i=1

m
∑

j=1

∇θlθ(xi)
⊤∇θlθ(xj) ⩽ 0

The strictest way to enforce this loss is if each component in the sum obeys:

0 < ∇θlθ(xi)
⊤∇θlθ(xj)

=
dli

dfθ

dlj

dfθ

∇θfθ(xi)
⊤∇θfθ(xj) (1.2.1)

Now, due to the convexity of L, we have:

li − lj ⩾
dlj

dfθ

(fθ(xi)− fθ(xj))

lj − li ⩾
dli

dfθ

(fθ(xj)− fθ(xi))

whose product yields

−(li − lj)
2
⩾ − dli

dfθ

dlj

dfθ

(fθ(xi)− fθ(xj))
2

=⇒


li − lj

fθ(xi)− fθ(xj)

2

<
dli

dfθ

dlj

dfθ

=⇒ dli

dfθ

dlj

dfθ

> 0

Substituting this inequality in 1.2.1 yields the Neural Tangent Kernel (NTK) [JGH18]:

∇θfθ(xi)
⊤∇θfθ(xj) > 0

31

1.2.2. Stabilizing Deep Learning

If ρ(x) are the activations of the penultimate layer of a neural network with output fw(x) =

w⊤ρ(x) + b, the NTK simpliĄes into:

ρ(xi)
⊤ρ(xj) > 0

This term is positive when the activation function on ρ is the Rectified Linear Unit

(ReLU) [GBB11]:

ReLU(x) = max(x, 0)

Activation functions such as the ReLU are typically applied throughout the network and not

only on the penultimate layer.

The inequality involving the NTK also controls the rate of convergence Ű the greater the

inequality, the faster the network should converge.

ρ(xi)
⊤ρ(xj) > 0

However, faster convergence is not necessarily desirable. Fast (and premature) convergence

to a suboptimal minimum may result in underfitting to a pattern that is not detailed

enough to capture either the dataset or the population. To prevent premature convergence,

the magnitude of ρ is standardized to a Ąxed value following:

ϕ(x)i =
ρi − µ(ρ)

σ(ρ)
⊙ wi + bi

for an arbitrary element ϕi of the activation vector ϕ. w and b form an affine transformation

on the standardized vector that was intended to add more capacity to the normalization

layer to distinguish between different elements, but this was later shown to cause overĄtting

[XSZ+19]. The standardized vector (without the affine portion) has a constant L2 norm with

respect to the input:

∥ϕ(x)∥2
2 =

√

√

√

√

n
∑

i=1

ϕ(x)2
i

=

√

√

√

√

√

n
∑

i=1





ρi − µ(ρ)
√

1
n−1

∑n

i=1(ρi − µ(ρ))2





2

=

√

√

√

√

n
∑

i=1

(n− 1)
(ρi − µ(ρ))2

∑n

j=1(ρj − µ(ρ))2

32

=

√

(n− 1)

∑n

i=1(ρi − µ(ρ))2

∑n

j=1(ρj − µ(ρ))2

=
√

n− 1

If normalization techniques are used, the magnitude of the NTK of a layer is bounded by

n, the number of terms in normalization. This is crucially greater than 0, thus ensuring

convergence.

ϕ(xi)
⊤ϕ(xj) ⩽ ♣ϕ(xi)

⊤ϕ(xj)♣
= ∥ϕ(xi)∥2∥ϕ(xj)∥2

= n− 1

> 0

Different normalization layers select different quantities to standardize over. LayerNorm

[BKH16] standardizes an entire layer, while GroupNorm [WH18] divides a layer into a Ąxed

number of groups that are then standardized. The Ąrst normalization layer to be introduced

was BatchNorm [IS15], which normalizes all elements of a group pooled across a minibatch

used in gradient descent.

1.3. Reinforcement Learning

Reinforcement Learning (RL) agents make decisions that maximize a feedback signal.

A human trains a reinforcement learning agent just as they might condition an animal in

behavioral psychology. Good decisions are rewarded with a high numerical score and are

reinforced. The learner, or agent, does not require any prior knowledge of the environment

it is situated in, making RL a generally-applicable tool that may be used where it is un-

known how the agentŠs decisions and the environment might mutually affect each other. RL

is generally-applicable because it abstracts the decision-making process down to three math-

ematical concepts: an abstract description of the environment, the decision maker, and the

feedback signal to be maximized. A good overview of RL may be found at [SB18b, SB18a].

Environments are described as a Markov Decision Process (MDP) [Bel57, How60], a

structure that consists of four quantities. A decision process transitions between states s ac-

cording to a sequence of actions a. The process is Markovian when transition probabilities

between states p(st+1 ♣ st, at) only depend on the state and action at the previous (discrete)

timestep t. Starting states are sampled from starting distribution p(s0), while transitions to

a new state returning a scalar reward r(st, at, st+1). For brevity, let τi = (si, ai, si+1) and

ri = r(τi).

33

As the environment is Markovian the policy may be speciĄed by π(a ♣ s) as only the current

state needs to be considered. If acting for n timesteps, π produces a trajectory τi:n in an

arbitrary MDP with probability:

pπ(τ0:n) = p(s0)
n
∏

i=0

π(ai ♣ si) p(si+1 ♣ si, ai)

This trajectory is associated with a discounted return

R(τi:n) =
n
∑

j=i

γjrj

that scores the quality of a trajectory. A discount factor 0 < γ < 1 is used in the return

to ensure that the sum is Ąnite when the number of timesteps considered, or time horizon,

is inĄnite [Sam37].

The objective of RL is to Ąnd good policies that maximize the expected return over

trajectories:

E
τ0:n∼pπ(τ0:n)

[R(τ0:n)] =

∫

pπ(τ0:n) R(τ0:n) dτi:n

Optimization may be performed offline [LGR12, LKTF20] using analytic properties or em-

pirical statistics of the MDP or online through trial and error and continual interaction with

the MDP. This thesis focuses on continuous control environments where analytic properties

and empirical statistics are difficult to collect, making online RL appropriate.

1.3.1. Deep Reinforcement Learning

Sample efficiency is the metric of how quickly the expected return is maximized with

as few samples of interaction with the environment (samples) as possible. The efficiency

of learning a good policy decreases for MDPs with increasingly large state spaces because

more trial and error exploration in the environment is needed to Ąnd a good solution. This

is especially true for continuous control environments where the state space is functionally

inĄnite because it is a set of continuous quantities: positions, velocities, and accelerations.

Learning becomes more efficient if the policy generalizes previously made good decisions

to similar states. As deep networks have shown powerful generalization in supervised and

unsupervised learning, Deep Reinforcement Learning (DRL) speciĄes a policy πθ as a

neural network with parameters θ. A naïve way to Ąnd good θ is to maximize the expected

return with gradient ascent:

θ ← θ + η∇θ E
τ0:n∼pπθ

(τ0:n)
[R(τ0:n)]

34

The gradient of the path integral cannot be computed analytically because in the online

setting p(st+1 ♣ st, at), r(at, st) and p(s0) and thus their derivatives are unknown. The

gradient is instead estimated by the Policy Gradient Theorem [SMSM99]:

∇θ E
τ0:n∼pπθ

(τ0:n)
[R(τ0:n)]

= ∇θ

∫

pπθ
(τ0:n) R(τ0:n) dτi:n

=

∫

pπθ
(τ0:n)∇θ log pπθ

(τ0:n) R(τ0:n) dτi:n (log-derivative)

= ∇θ E
τ0:n∼pπθ

(τ0:n)
[R(τ0:n)∇θ log pπθ

(τ0:n)]

= ∇θ E
τ0:n∼pπθ

(τ0:n)



R(τ0:n)∇θ log

(

p(s0)
n
∏

i=0

πθ(ai ♣ si) p(si+1 ♣ si, ai)

]

= ∇θ E
τ0:n∼pπθ

(τ0:n)



R(τ0:n)
n
∑

i=0

∇θ log πθ(ai ♣ si)

]

= ∇θ E
τ0:n∼pπθ

(τ0:n)



n
∑

i=0

R(τi:n)∇θ log πθ(ai ♣ si)

]

(Markov property of return)

Training a policy using Policy Gradients is unstable because the expectation requires many

Monte-Carlo samples of trajectories from the environment. Insufficient samples result in in-

accurate expected return estimates and unstable policy training. Popular policy-gradient al-

gorithms such as Trust-Region Policy Gradient (TRPO) [SLA+15] and Proximal Policy Gra-

dient (PPO) [SWD+17] stabilize training by preventing the policy parameters from changing

too quickly. However, these algorithms are still inefficient because previous trajectories from

previous policy rollouts cannot be re-used to evaluate the current policy. If a new policy

produces a previous action with low probability, its log-probability will approach inĄnity,

producing large gradients and introducing instability in gradient ascent. Instead, samples

have to be on-policy: they are always sampled from the current policy. Discarding samples

every gradient update is inefficient.

Model-Based Methods are an off-policy method that stores samples from all (previous)

policies to train a policy. Samples are stored in a replay buffer [Lin92] and re-sampled to

train a model that estimates components of the underlying MDP:

max
ϕ2

log pϕ2
(s0)

max
ϕ1

log pϕ1
(st+1 ♣ st, at)

min
ϕ3

∥rt − rϕ3
(at, st)∥

35

Reusing samples give model-based methods superior sample efficiency over policy-gradient

methods. The policyŠs expected discounted return may be estimated by the model without

needing evaluation in the environment:

∇θ

∫

(

pϕ1
(s0)

n
∏

i=0

πθ(ai ♣ si) pϕ2
(si+1 ♣ si, ai)



R(τ0:n) dτi:n

Model-based methods such as are computationally inefficient because their transition model

pϕ1
(st+1 ♣ st, at) requires modeling the probability of the entire next state, which might

contain noise or irrelevant distractors the policy would not consider when making decisions.

Popular methods such as World Models [HS18], PlaNet[HLF+19], and Dreamer [HLBN19]

model the evolution of a latent representation of the state rather than the entire state.

Recent research has focused on improving latent representations to remove all components

that are not decision-aware [Aba20, NAAB22]. Decision-aware information should only be

predictive of the return, as this is the only information the policy should process. Decision-

aware model-based approaches include DeepMDP [GKB+19] and MuZero [SAH+20] but have

a more complex implementation.

1.3.2. Model-Free Reinforcement Learning

Model-free methods are sample efficient and decision aware because they use a replay buffer

to directly estimate the expected return for policy π from a state input with a value function

deĄned by:

Vπ(si) =

∫

p(τi:n ♣ si) R(τi:n) dτi:n

A recursive deĄnition for the value function is provided by the Bellman-Consistency

Equation:

Vπ(si) =

∫

p(τi:n ♣ si) R(τi:n) dτi:n

=

∫ n
∏

j=i

π(aj ♣ sj) p(sj+1 ♣ sj, aj)

(

ri +
n
∑

j=i+1

γj−irj



dτi:n

=

∫∫ n
∏

j=i

π(aj ♣ sj) p(sj+1 ♣ sj, aj)

(

ri +
n
∑

j=i+1

γj−irj



dτi dτi+1:n

=

∫∫

π(ai ♣ si) p(si+1 ♣ si, ai)
(

ri + γVπ(si+1)


dτi

= E
ai∼π(·♣si)

si+1∼p(·♣si,ai)

ri + γVπ(si+1)

36

The state-action-value function, or Q-function is deĄned by

Qπ(si, ai) =

∫

p(τi:n ♣ si, ai)
n
∑

j=i

γj−irj dτi:n

= E
si+1∼p(·♣si,ai)

[ri + γVπ(si+1)]

and has Bellman-Consistency Equation

Qπ(si, ai) = E
si+1∼p(·♣si,ai)



ri + γ E
ai+1∼π(·♣si)

Qπ(si+1, ai+1)



Let V ⋆ and Q⋆ be the value and Q-function for the optimal policy π⋆. An optimal policy

would always act to maximize expected return and follow π⋆(s) = maxa Q⋆(s, a). The optimal

policy has value and Q-functions that follow the Bellman (Optimality) Equation:

Q⋆(st, at) = E
si+1∼p(·♣si,ai)

[

r(st, at) + max
a

Q⋆(st+1, a)
]

V ⋆(st) = max
a

E
si+1∼p(·♣si,ai)

[r(st, a) + V ⋆(st+1)]

where V ⋆ is the optimal value function. The nomenclature of Bellman Consistency and

Bellman Optimality is taken from [AJKS19], which goes into more mathematical detail. A

value and Q-function may be updated by bootstrapping: using the target value found

on the left-hand side to calculate the new online value on the right-hand side. Empirical

estimates for the expectation may be calculated with a replay buffer. A related but useful

concept is the Temporal-Difference (TD) error calculated by subtracting the RHS of a

Bellman equation from the LHS.

Algorithms that evaluate a policy with a value function are known as actor-critic systems

where the policy is the actor and the critic is the value function [SMSM99, MBM+16]. As

a policy may be more easily derived from a Q-function than a value function, Q-learning is

often the choice of critic.

1.3.3. Deep Q-Learning

Deep Q-learning approximates the state-action-value function with a neural network Qθ.

Parameters θ are trained to minimize the discrepancy between itself and a predicted value

given by the Bellman Equation of the optimal Q-function. Denoting y(si, ai, si+1) = ri +

γ maxa Q⋆(si+1, a) for brevity,

min
θ

E
si,ai





Qθ(si, ai)− E
si+1∼p(·♣si,ai)

[y(si, ai, si+1)]

2
]

37

= min
θ



E
si,ai



E
si+1∼p(·♣si,ai)

[

(Qθ(si, ai)− y(si, ai, si+1))
2]+ V

si+1∼p(·♣si,ai)
[y(si, ai, si+1)]



= min
θ

E
si,ai,si+1

[

(Qθ(si, ai)− y(si, ai, si+1))
2]

= min
θ

E
si,ai,si+1



(

Qθ(si, ai)− ri − γ max
a

Q⋆(si+1, a)
2


This loss is not computable for two reasons. First, the outer expectation over si, ai should

be computed with respect to the stationary distribution induced by the optimal policy. As

this would require many samples of interaction, (s, a, r, s′) samples, where s and s′ are stored

in a replay buffer and used to approximate the stationary distribution:

min
θ

E
s,a,r,s′



(

Qθ(s, a)− r − γ max
a′

Q⋆(s′, a′)
2


Secondly, the target Q⋆ is unknown, so is replaced by current estimate Qθ. When using

gradient descent methods, gradients should not be taken through the target θ just as no

gradients would pass through Q⋆. This method of passing gradients through an expression

evaluated with two neural networks is called semi-gradient descent. The stop-gradient

operator is applied to target parameters θ and denoted by θ̄, yielding the Deep Q-Networks

(DQN) loss [MKS+15], where this derivation was introduced in the appendix:

min
θ

E
s,a,r,s′



(

Qθ(s, a)− r − γ max
a′

Qθ̄(s
′, a′)

2


In continuous action spaces, max Qθ̄(s
′, a′) may be found by gradient ascent on a′:

a′ ← a′ + η
∂

∂a′
Qθ̄(s

′, a′)

Gradient ascent typically takes multiple iterations (around 20 for continuous control) until

convergence, so another neural network πϕ trained by:

ϕ = arg max
ϕ

Qθ(s, πϕ(s))

approximates arg maxa Qθ(s, a). Multiple steps of gradient ascent are amortized by interleav-

ing gradient steps of ϕ and θ and training them together, yielding the Deep Deterministic

Policy Gradients (DDPG), Algorithm 1 [LHP+15]:

1.3.4. Stabilizing Deep Q-Learning

Two empirically-found regularization methods are popular in continuous control. The Ąrst

deals with instability in the Q-functionŠs learning target as it uses a target estimate of itself

to compute a bootstrapped learning target. The objective for training the Q-function is con-

stantly changing and unstable. Large changes to θ, the parameters of the Q-function, impact

38

Algorithm 1 DDPG

while training do
Obtain action a = πϕ(s) from current state s

Get reward r and next state s′ from environment
Store (s, a, r, s′) in replay buffer
s← s′

Sample a batch (si, ai, ri, s′
i)1:n from replay buffer

Update critic parameters θ ← θ − η
∂

∂θ

1

n

n
∑

i=1

(Qθ(si, ai)− (ri + γQθ̄(s
′
i, πϕ(s′

i))))
2

Update actor parameters ϕ← ϕ + η
∂

∂ϕ

1

n

n
∑

i=1

Qθ(si, πϕ(si))

while testing do
Obtain action a = πϕ(s) from current state s

Get next state s′ from environment
s← s′

the targets, sometimes occasionally leading to divergence when the Q-function becomes in-

creasingly larger, tending to inĄnity and producing an inaccurate assessment of the actor. To

stabilize target Q-values, DQN froze the parameters of target networks θ̄ for a Ąxed number

of timesteps and periodically updated them [MKS+15, HMVH+18]. As the periodic update

might still produce a large change to the target values, DDPG updated target networks by

instead taking a moving average over parameters, whose update speed is determined by the

size of 0 < α ⩾ 1:

θ̂ ← (1− α)θ̂old + αθ

This yields a critic learning loss of:

min
θ

E
s,a,r,s′



(

Qθ(s, a)− r − γ max
a′

Q ¯̂
θ
(s′, a′)

2


Stabilizing the target parameters with an exponential moving average is synechdocally re-

ferred to as target networks [LHP+15].

The second regularizer deals with inaccuracies in target Qs due to noise Y . Noise may come

from a stochastic environment, function approximation inaccuracies, or even incomplete data

in the replay buffer that may not be representative of the environment [TS93, VHGS16].

Noisy target Q-values given by:

Q̂(s, a) = Q(s, a) + Y (s, a)

produce the following expected error in bootstrapped targets:

E

[(

r(s, a) + γ max
a

Q̂(s, a)


−
(

r(s, a) + γ max
a

Q(s, a)
]

39

= E

[

γ
(

max
a

Q̂(s, a) + max
a

Q(s, a)
]

= γE
[

max
a

Y (s, a)
]

Even if Y has zero mean, positive components will be selected by maxa, leading to systematic

overestimation of the bootstrapped targets.

Many methods have been developed to tackle overestimation. Double Q-Learning [Has10]

recognized that the source of overestimation originated from selecting the maximal Q-value:

maxa Q(s, a). Two Q-functions are instead used, and each Q function evaluates an action

that would maximize the other:

Q1(s, a)← r + γQ2

(

s′, arg max
a′

Q1(s
′, a′)



Q2(s, a)← r + γQ1

(

s′, arg max
a′

Q2(s
′, a′)



Noise in one Q-function is unlikely to be correlated with another, and learning would not

exploit bad beliefs in either Q-function, preventing the Q-function from learning inaccuracies

about itself.

Double DQN (DDQN) [VHGS16] updates Double Q-Learning to the deep learning set-

ting, where the online and target Q-networks function as the double Qs. However, only the

online Q-network is updated:
(

Qθ(s, a)− r − γQ ¯̂
θ
(s′, arg max

a′

Qθ(s
′, a′))

2

as the target network parameters are updated by an exponential moving average.

Continuous control is more prone to overestimated targets because bootstrapped targets are

evaluated by a policy by Qθ(s, πϕ(s)), and ϕ has been trained to maximize Q. The continuous

space of actions increases the severity of which Q might be exploited by maximization, and

DDQN is shown to still produce overestimated targets. Twin Networks [FHM18] train an

ensemble of two Q-functions and selects the minimum target of the two as the bootstrap

target:

∑

j∈¶1,2♢



Qθj
(s, a)− r − γ min

i∈¶1,2♢
Qθi

(s′, a′)

2

1.4. Summary

Unsupervised, supervised and reinforcement learning are learning algorithms but are moti-

vated by very different principles. Unsupervised and supervised learning use loss functions

derived from maximum entropy on a Ąxed dataset. In contrast, reinforcement learning uses

40

loss functions that maximize the expected return from a continually-changing dataset, caus-

ing instability. Chapter 2 investigates the intersection of reinforcement learning and the

maximum-entropy principle, given its success in unsupervised and supervised learning.

Function approximation introduces overestimation in reinforcement learning. Deep networks,

a particularly powerful class of function approximation, might be more prone to overestima-

tion when used in deep reinforcement learning. Theoretical motivations behind regularizers

used in deep networks were introduced after considering the training dynamics of deep learn-

ing. Their application to the training dynamics of deep reinforcement learning is discussed

in Chapter 3.

41

Chapter 2

Scaling Continuous Control

In the last decade, deep neural networks trained with supervised and unsupervised learning

have produced many advances such as identifying 1000 objects[HZRS16, KSH17], translat-

ing text between languages [BCB14, CVMG+14], recognizing speech [RB18] and generat-

ing coherent prose, images [KW13, GPAM+14, DSDB16, SE19, HJA20] and lately videos

[HCS+22, HSG+22] given textual inputs. The success of deep supervised and unsupervised

learning has been largely attributed to scaling the amount of data provided to a learning

algorithm [RWC+19, KMH+20, BMR+20, HBM+22]. More data contains more statistical

relationships to be uncovered, provided the learning algorithm Ű the deep neural network

Ű is strong enough. A limiting factor to the strength of the deep neural network is its

number of parameters. Increasing the parameters of a deep neural network increases its

complexity and ability to approximate complex functions more accurately by using more

parameters to partition the dataset more evenly [SK22, BDK+21]. In certain natural lan-

guage processing tasks, scaling up the parameters of a deep neural network yields empirically

predictable improvements in performance. The effectiveness of scaling parameters is limited

by the size of the dataset the model is being trained on when the number of parameters

becomes sufficiently large and redundant [KMH+20, HBM+22]. Although conventional wis-

dom suggests that models with many parameters might overĄt, these studies instead provide

a counterexample that against overĄtting in large models.

Data ought to be the limiting factor for online reinforcement learning (hereafter RL). Un-

like supervised and unsupervised learning, RL does not assume access to a Ąxed dataset.

Instead, the agent gathers data through interacting with an environment, which may be

expensive and time-consuming. The quality of an RL algorithm is often judged by sample

efficiency: whether good behaviors may be learned from as few samples of interactions with

the environment as possible. Sample efficiency may be improved by scaling. A scaled-up

deep neural network learns faster, producing more informative interactions that collect better

data, ultimately perpetuating a virtuous cycle of learning faster.

Within continuous control, model-free RL uses comparatively small neural networks to su-

pervised or unsupervised learning. These networks consist of two hidden layers of width 256

and an output layer, totaling fewer than 106 parameters [LHP+15, FHM18, HZAL18]. This

is several orders of magnitudes smaller than neural networks used in image processing and

natural language processing. We investigate performance gains in reinforcement learning

with scaled-up deep neural networks. Experiments are performed from state observations

rather than pixel observations for speed and ease of experimentation within the DeepMind

Control (DMC) [TDM+18, TMD+20] and MuJoCo [TET12, BCP+16] environments.

2.1. Scaling A Maximum-Entropy Model

Unlike supervised and unsupervised learning, loss functions in RL are not derived from the

variational principle of maximum entropy (Chapter 1). We hypothesize that the principle

of maximum entropy leads to beneĄcial scaling behaviors due to the beneĄcial numerical

properties of the maximum-entropy framework. Entropy without any constraints, given by

−∑i pi log pi, is maximized by a uniform probability distribution. A loss function derived

from the maximum entropy principle would favor a uniform distribution whose values would

be all of similar magnitude. Larger models are more expressive and may be highly nonlinear

or discontinuous. More uniform distributions increasingly avoid singularities or zeros, in-

creasing their numerical stability during training. In the absence of information to distinguish

between samples Ű which might be increasingly the case for large datasets Ű a uniform distri-

bution would not favor one sample over another. Moreover, the Pitman–Koopman–Darmois

theorem [Fis34, Pit36, Koo36, Dar35] states that the exponential family are the only distribu-

tions that summarize an arbitrary amount of independent and identically distributed

(iid) datapoints using a Ąnite number of parameters, and that members of the exponential

family are derived from the maximum-entropy principle. We thus investigate the scaling

properties of an RL algorithm derived from the principle of maximum entropy.

First, as before in Chapter 1, we set up a maximum-entropy Lagrangian:

max
p

H[π(a ♣ s)] (over all s)

subject to

∫

π(a ♣ s) da = 1 (over all s)

and

∫

Qθ(s, a) π(a ♣ s) da = Q̄ (over all s)

44

given θ = arg min
θ

[

Qθ(s, a)− Q̄
]

(over all s)

The objective is the conditional entropy for the policy and not the entropy over the entire

trajectory because the task is Markovian. Similarly, the energy function considered should

only take a state-action tuple, resulting in the Q-function. Here, Q̄ is the numerical value

obtained from the Bellman (optimality) equation:

Q̄ =

∫∫

p(s′ ♣ s, a) π(a ♣ s)
(

r(s, a, s′) + γ max
a′

Qθ(s
′, a′)



da ds′

Unlike supervised or unsupervised learning respectively introduced in Subsections 1.1.4 and

1.1.1, Q̄ is not an empirical value calculated with respect to a reference distribution, because

the reference distribution would have to be an optimal policy or the policy we would like to

learn, which is unknown. As before, solving the Lagrangian of

H[π(a ♣ s)]− α

∫

π(a ♣ s) da− 1



+ τ

∫

Qθ(s, a) π(a ♣ s) da− Q̄



yields a Boltzmann distribution (Equation 1.1.1) over Q-values:

π(a ♣ s) =
eτQθ(s,a)

∫

eτQθ(s,a′) da′

Here, τ is positive because actions should be taken that maximize the expected discounted

return approximated by the Q-function. However, τ may not be subsumed and optimized

into θ, because unlike previous supervised or unsupervised learning, Q̄ is not an empirical

value that can be calculated or estimated over a Ąxed dataset.

A practical RL algorithm would update a Q-function by one gradient step following:

θ ← θ − η∇θ E
s,a,r,s′



(

Qθ(s, a)− r − γ max
a′

Qθ̄(s
′, a′)

2


before acting according to the maximum-entropy policy with τ as a hyperparameter.

π(a ♣ s) =
eτQθ(s,a)

∫

e−τQθ(s,a′) da′

Acting according to the Boltzmann distribution over the Q-function is Boltzmann Explo-

ration, a classic exploration method which is well-discussed in [CBGLN17], where a lower

τ increases randomness in decision-making, which might lead to more exploration through

more coverage of the environment.

Boltzmann Exploration is mainly used in discrete control where the integral in the partition

function (the denominator
∫

eτQθ(s,a′) da′) simpliĄes into a sum that is computable. In

continuous control, the integral is not easy to compute and π is instead approximated by

another neural network πϕ. The objective for training πϕ is chosen to be the reverse-KL

45

divergence to remove the partition function from the optimization objective:

min
ϕ

DKL[πϕ ♣♣ π] = min
ϕ

∫

a

πϕ(a ♣ s) log
πϕ(a ♣ s)

π(a ♣ s)
da

= max
ϕ



H[πϕ(a ♣ s)] +

∫

a

πϕ(a ♣ s) log
eτQθ(s,a)

∫

eτQθ(s,a′) da′
da



= max
ϕ



H[πϕ(a ♣ s)] +

∫

a

πϕ(a ♣ s) τQθ(s, a) da



which may be rewritten as:

max
ϕ

E
a∼πφ(a♣s)

[τQθ(s, a)− log πϕ(a ♣ s)] (2.1.1)

and trained by gradient ascent:

ϕ← ϕ + η E
a∼πφ(a♣s)

[τQθ(s, a)− log πϕ(a ♣ s)]

Typically, the objective is divided by τ and the learning rate η is adjusted accordingly.

Letting β = 1
τ

derives the objective for training the actor:

ϕ← ϕ + η E
a∼πφ(a♣s)

[Qθ(s, a)− β log πϕ(a ♣ s)]

The resultant actor-critic algorithm that was derived from the maximum-entropy principle

has previously been introduced to the community as SACLite (Algorithm 2) [YZX22], which

was presented as an empirically-found successor to the SAC [HZAL18, HZH+18] algorithm.

Algorithm 2 SACLite

while training do
Obtain action a = πϕ(s) from current state s

Get reward r and next state s′ from environment
Store (s, a, r, s′) in replay buffer
s← s′

Sample a batch (si, ai, ri, s′
i)1:n from replay buffer

Update critic parameters θ ← θ − η
∂

∂θ

1

n

n
∑

i=1

(Qθ(si, ai)− (ri + γQθ̄(s
′
i, πϕ(s′

i))))
2

Update actor parameters ϕ← ϕ + η
∂

∂ϕ

1

n

n
∑

i=1

Qθ(si, πϕ(si))− β log πϕ(a ♣ s)

while testing do
Obtain action a = πϕ(s) from current state s

Get next state s′ from environment
s← s′

46

2.1.1. Maximum-Entropy Reinforcement Learning

Maximum-Entropy Reinforcement Learning (MaxEnt RL) is not the same as an

RL algorithm derived from the variational principle of maximum entropy. MaxEnt RL

regularizes the discounted return objective of RL with entropy [HTAL17, Lev18]:

E
τ0:n∼pπ(τ0:n)



n
∑

i=0

γi(r(τi)− β log π(ai ♣ si))

]

A policy that solves MaxEnt RL must maximize entropy alongside the expected discounted

return. The goal is to produce a policy that is as uniform as possible such that all actions

are equally likely to be selected and the environment will be explored and covered better.

Soft Actor Critic (SAC) [HZH+18] is a MaxEnt RL algorithm and has a critic loss of:

min
θ

E
s,a,r,s′





Qθ(s, a)− r − γ E
a∼πφ(a♣s)

[Qθ̄(s
′, a′)− β log πϕ(a′ ♣ s′)]

2
]

and the same policy loss as SACLite that was derived in the previous section (Equation 2.1.1).

The authors of SACLite empirically found that removing the entropy regularizer in the SAC

critic resulted in more stable training. Removing the entropy regularizer has also been shown

to be more stable for offline RL [KFTN21, KZTL20, KFTN21].

SAC (and SACLite) utilize automatically tune the value of β by gradient descent on β to

optimize:

min
β

E
s



E
a∼πφ(a♣s)

[

H̄ − β log πϕ(a ♣ s)
]



(2.1.2)

with gradient descent in a process called automatic entropy tuning. Here, target en-

tropy H̄ is a Ąxed hyperparameter, typically chosen to be the logarithm of a uniform dis-

tribution over the action dimension that analytically maximizes the entropy regularizer and

would be the smallest numerical value for log πϕ [HZH+18].

2.1.2. Types of Probabilistic Actors

In continuous control, the action space is n-dimensional, with each dimension ranging be-

tween -1 and 1. Policies or actors in the actor-critic algorithm take a state input and output

an action vector where each element is between -1 and 1 as well as the corresponding proba-

bility for taking that action. In addition to scaling up actors by increasing their parameters,

actors may be scaled up by increasing the complexity of their probability distribution.

47

The simplest policy of all has a fixed variance and was introduced in Deep Deterministic

Policy Gradients (DDPG). The deterministic policy Ąrst samples a latent variable

z = tanh(x). Noise sampled from a Gaussian distribution with Ąxed variance is added to

these outputs, which are then clipped to -1 and 1, yielding the action. The distribution of

the DDPG distribution is a conditional truncated Gaussian distribution with a state-input-

dependent mean. The Ąxed variance of this distribution has a Ąxed entropy, which simpliĄes

the actor loss of DDPG to:

min
ϕ

E
s



E
a∼πφ(a♣s)

[Qθ(s, a)]



The policy in SACLite (and hence SAC) is a conditional squashed Gaussian distribution

with state-dependent mean and variance. First, a latent variable z is sampled from a condi-

tional Gaussian with learned mean µϕ(s) and variance σϕ(s) produced by a neural network

with parameters ϕ with input state s. z has the same dimensionality as the output action

a and a hyperbolic tangent function applied to z squashes the outputs to -1 and 1. Like a

normalizing Ćow (Subsection 1.1.2), this changes the volume of the support from the space of

real numbers of the Gaussian distribution to -1 and 1, thus requiring a change in probability

density. The Squashed Gaussian policy and its probability density is given by:

log πϕ(a ♣ s) = log Nµφ(s),σφ(s)(z) + log(1− a)2,

where a = tanh(z) and z ∼ Nµφ(s),σφ(s)

A Conditional Normalizing Flow (CNF) policy introduces a more complex reparam-

eterization of the Gaussian latent variable z with learned parameters. The normalizing

Ćow layers condition the transformation of z to a and vice versa conditional on state-input s

[WWHW19]. This is denoted by z = g−1
ϕ (a ♣ s) and a = gϕ(z ♣ s). We choose to use RealNVP

layers because of their simplicity to implement and effectiveness [DSDB16], and also because

it has previously been applied to reinforcement learning in [WSB19, SLZ+20, HHAL18].

Scaling the number of RealNVP layers increases the depth and complexity of reparameteri-

zation.

log pϕ(a ♣ s) = log p(g−1
ϕ (a, z)) + log

∣

∣

∣

∣

d

dz
g−1

ϕ (a ♣ s)

∣

∣

∣

∣

, where a = gϕ(z ♣ s) and z ∼ Nµφ(s),σφ(s)

Both the Squashed Gaussian and CNF policy may be trained with Equation 2.1.1.

(Conditional) normalizing Ćows require sampling from a latent variable with the same dimen-

sionality as the target space (Section 1.1.2) [WWHW19, KPB20]. More complex normalizing

Ćows may be attained from deeper transformations, but the amount of randomness remains

the same. Increased randomness and increased exploration may result from a latent variable

sampled from higher-dimensional distribution than the resultant action. Exact inference of

this method cannot be performed and this has to be done instead by variational inference

48

(Section 1.1.3). The Variational Q-Learning (VQL) policy uses a latent variable:

πϕ(a ♣ s) =

∫

πϕ(a, z ♣ s) dz

=

∫

πϕ1
(a ♣ z, s) πϕ2

(z ♣ s) dz

resulting in a two-stage policy that samples an action by Ąrst sampling a latent action before

then using it as a context variable to sample the observed action. Typically, in variational

inference, a lower bound for the log-probaility would be found and maximized. In RL, log π

is maximized in Equation 2.1.1 and it does not make sense to then minimize a the lower

bound. A lower bound to − log π must instead be constructed. This may be achieved by

subtracting a non-negative KL-divergence constraining π(z ♣ a, s) to a prior distribution

q(z ♣ a, s):

− E
a∼π(a♣s)

[log π(a ♣ s)] ⩾ − E
a∼π(a♣s)

[log π(a ♣ s) + DKL[π(z ♣ a, s) ♣♣ q(z ♣ a, s)]]

= − E
a∼π(a♣s)



log π(a ♣ s) + E
z∼π(z♣a,s)

[log π(z ♣ a, s)− log q(z ♣ a, s)]



= − E
z∼π(z♣a,s)
a∼π(a♣s)

[log π(a ♣ s) + log π(z ♣ a, s)− log q(z ♣ a, s)]

= − E
z∼π(z♣s)

a∼π(a♣z,s)

[log π(a ♣ z, s) + log π(z ♣ s)− log q(z ♣ a, s)]

piϕ2
and qϕ3

would be conditional Gaussian distributions of the same dimensionality, while

piϕ1
is a squashed Gaussian distribution. The actor objective for Variational Q-Learning

(VQL) is:

max
ϕ

E
z∼πφ2

(z♣s)

a∼πφ1
(a♣z,s)

[Qθ(s, a)− log πϕ1
(a ♣ z, s)− log πϕ2

(z ♣ s) + log qϕ3
(z ♣ a, s)]

and trained by sampling z from πϕ2
, a from πϕ1

before the above objective is calculated.

This lower bound to − log π has previously been used to train hierarchical variational models

[RTB16].

2.2. Scaling Experimental Setup

We investigate performance gains for the maximum-entropy actor-critic family of algorithms

when both the actor and the critic are scaled up.

Scaling up the critic may be done by increasing the number of parameters in its neural

network. In reinforcement learning from pixel observations within DMC, [BGW21b] found

that scaling up the DrQ [KYF20] and DrQv2 [YFLP21] algorithms yielded sample-efficiency

49

improvements. Algorithms were scaled up with a residual neural network architecture, while

Spectral Norm [MKKY18] was applied to all linear layers apart from the Ąrst and last to

stabilize the gradients.

Our experiments adapt the architecture of [BGW21b] for state observations following Fig-

ure 2.1. The critic is scaled by increasing the number of blocks in Figure 2.1. We found

that applying spectral norm to the critic resulted in no learning at all, so removed it from

our experiments. The addition of the input of the block to the output is reminiscent of the

skip-connection technique in [HZRS16], which has been shown to improve network perfor-

mance by increasing the number of ways information may propagate from input to output

[VWB16, AN16].

Fig. 2.1. Architecture of a residual block adapted from continuous control from pixel ob-
servations from [BGW21b] to continuous control from states

Scaling the actor is investigated by comparing the performance improvements between a

deterministic policy, squashed Gaussian policy, conditional normalizing Ćow (CNF) policy

and variational policy, which we name Variational Q-Learning (VQL). The deterministic and

squashed Gaussian policies are scaled up with the residual blocks just like the critic, while

the CNF policy is scaled by increasing the number of residual layers and VQL is scaled by

increasing the dimensionality of its latent variable.

Experiments were carried out in the MuJoCo environment (with state observations) because

this was the environment SAC was developed in. Good and reliable performance within that

environment is therefore expected and scaling up the algorithm might lead to better perfor-

mance. Experiments are performed in the HalfCheetah, Ant, and Humanoid domains for a

mixture of problems of easy, medium, and hard difficulties. DMC with state observations is

used as a second environment to validate whether scaling claims found in MuJoCo hold.

50

Fig. 2.2. Scaling the critic with varying numbers of residual blocks described in Figure 2.1.
The original critic is a neural network with two hidden layers of 256. A deterministic policy
is used.

As suggested by [HIB+18], ten seeds per environment were used to calculate aggregate sta-

tistics. Experiments were run for a million timesteps. The policy was tested every 1000

timesteps and the average return from ten rollouts was recorded. The small neural networks

used in the following algorithms had two hidden layers of size 256 and ReLU activations

[GBB11] as standard. The blocks of [BGW21b] have two linear layers: the Ąrst has width

2048 and the second 1024. Automatic entropy tuning is used throughout unless stated oth-

erwise, and the Ąxed standard deviation of the deterministic policy was set to 0.2.

2.3. MuJoCo Results

Figures 2.2 indicate that scaling the critic works up to two blocks before performance sat-

urates. Table 2.1 show a signiĄcant increase between one and two blocks before further

increases do not result in many changes. In experiments with scaling the actor, a large critic

with four blocks was used as this is comfortably larger than two blocks so any performance

increases with the large critic should be down to the actor.

Scaling the actor was ineffective. Figures 2.3, 2.4, 2.5, and 2.6 did not show any improvement

when each type of actor was scaled. The only improvements shown in Figures 2.3 and 2.4

were down to scaling the critic. Moreover, Table 2.2 was constructed by taking the best

result from all scaling conĄgurations of each policy class and showing that no class of policy

was signiĄcantly better than the others.

51

Fig. 2.3. Scaling the deterministic policy. Large refers to a network with four blocks de-
scribed in Figure 2.1 and small refers to a two-hidden-layer neural network of width 256.

Fig. 2.4. Scaling the Squashed Gaussian policy. Large refers to a network with four blocks
described in Figure 2.1 and small refers to a two-hidden-layer neural network of width 256.

Scale HalfCheetah-v3 Ant-v3 Humanoid-v3

Original 8590 ± 454 2550 ± 459 459 ± 425
1 Block 10300 ± 595 2330 ± 2550 2930 ± 2680
2 Blocks 11800 ± 621 6460 ± 351 6570 ± 949
3 Blocks 11200 ± 966 6200 ± 490 6600 ± 276
4 Blocks 10900 ± 1190 6700 ± 50.6 6430 ± 481
5 Blocks 11200 ± 1290 6670 ± 224 6540 ± 196

Table 2.1. Return averaged over 10 seeds of 10 rollouts after training for a million timesteps
for with different scales with different-sized critics. Corresponds to a table of Figure 2.2.
Mean ± standard error is given to three signiĄcant Ągures.

52

Fig. 2.5. Scaling the Conditional Normalizing Flow policy with increasing depth of Real-
NVP layers. A large critic with four blocks described in Figure 2.1 was used.

Fig. 2.6. Scaling the size of the latent variable used in Variational Q-learning. A large critic
with four blocks described in Figure 2.1 was used.

Environment Det. Policy Squashed CNF VQL

HalfCheetah-v3 11300 ± 966 12200 ± 609 12300 ± 675 115 ± 452
Ant-v3 6670 ± 224 6720 ± 154 6660 ± 217 6630 ± 228
Humanoid-v3 6600 ± 276 6150 ± 429 6740 ± 536 7040 ± 322

Table 2.2. Comparing the return averaged over 10 seeds of 10 rollouts after training for a
million timesteps. Numbers in each entry were selected from the best-performing conĄgura-
tion for each type of policy. Mean ± standard error numbers are given to three signiĄcant
Ągures.

53

Fig. 2.7. The effect of decreasing β on learning in four DMC environments.

Fig. 2.8. Per-dimension change in log πϕ(a ♣ s) from 1 to 20 gradient steps on ϕ increase.
Lighter lines indicate more gradient steps have been taken

2.4. DeepMind Control Results

This section investigates whether a larger critic produces better results in DMC. There is also

no reason not to use a more complicated policy than the squashed Gaussian or deterministic

policies commonly used.

Automatic entropy tuning of the squashed Gaussian policy (Equation 2.1.2) is ineffective in

DMC. Figure 2.7 shows that higher dimensional DMC environments train better when β is

set to increasingly small values. Figure 2.8 shows that the average log πϕ(a ♣ s) per element

of a increases with the number of gradient steps and the action dimension.

As the best value of β might vary between environments, we instead use a deterministic

policy. Figure 2.9 and Table 2.3 show that a deterministic policy is competitive with a

squashed Gaussian policy, regardless of autotuning.

Finally, Figure 2.10 showed that scaling up the critic with a deterministic policy is shown

to be ineffective. Five seeds were used in this experiment due to the computational cost of

running the large critic over twelve DMC tasks.

54

Fig. 2.9. Comparison of autotuned and Ąxed β = 1e−7 squashed Gaussian policies and
deterministic policies used with a small critic of two hidden layers of size 256.

Environment Autotuned Fixed Deterministic

acrobot-swingup 8.91 ± 7.24 7.01 ± 3.96 2.89 ± 0.673
Ąnger-turn_hard 894 ± 91.2 868 ± 79.3 872 ± 4.36
hopper-hop 127 ± 52.6 116 ± 27.5 141 ± 44.5
Ąsh-swim 320 ± 88.4 262 ± 129 318 ± 48.7
cheetah-run 864 ± 14.4 812 ± 35 856 ± 9.39
walker-run 775 ± 17.8 562 ± 90.7 734 ± 21.9
quadruped-run 780 ± 33.6 745 ± 52.3 516 ± 153
swimmer-swimmer15 235 ± 68.1 272 ± 51.5 341 ± 46.4
humanoid-stand 577 ± 84.4 444 ± 173 499 ± 135
humanoid-run 73 ± 58.7 128 ± 13.6 130 ± 8.22
dog-run 21.8 ± 33.7 134 ± 17.1 124 ± 7.6
humanoid_CMU-run 0.762 ± 0.0857 1.06 ± 0.141 0.963 ± 0.111

Table 2.3. Return averaged over 10 seeds of 10 rollouts after training for a million timesteps
with autotuned and Ąxed β = 1e−7 squashed Gaussian policies and deterministic policies
used with a small critic of two hidden layers of size 256. Mean ± standard error numbers
are given to three signiĄcant Ągures.

55

Fig. 2.10. Scaling the critic with varying numbers of residual blocks described in Figure 2.1.
A large critic consisted of four blocks described in Figure 2.1, while a small critic had a neural
network with two hidden layers of size 256. A deterministic policy was used.

2.5. Related Work

[YFLP21] also found that a deterministic policy was more stable than a squashed Gaussian

but in the visual domain of DMC from pixels. The squashed Gaussian experienced the same

entropy collapse as in Figure 2.8, but it was not speciĄed whether the collapse was more

likely with increased action dimensions.

[SBSG20] found beneĄts of using identity skip-connections similar to [BGW21b], except that

the identity was concatenated similar to [HLVDMW17] rather than added to the output.

Scaling beneĄts were shown in MuJoCo from states and DMC from pixels, but results in

DMC from states were not presented.

Finally, previous works have presented some evidence that the SAC critic loss does not scale

whereas the DDPG critic does: [KYF20] presents SAC trained on DMC from pixels, showing

that good performance is only obtained with regularization while the appendix of [HIB+18],

page 22 presents scaling improvements of larger DDPG networks on MuJoCo ran on rllab

[DCH+16].

56

Normalizing Flows have been applied to actor-critic continuous control but with not much

success. [HHAL18] trains by incrementally adding RealNVP normalizing Ćow layers to learn

more complex policies, showing some success after training on MuJoCo tasks for more than

a million timesteps. [MDD+20] show mixed results for a MuJoCo agent trained with planar

normalizing Ćows while [WSB19] used a RealNVP policy for continuous gridworld tasks.

However, both these methods have a normalizing Ćow transformation that is not conditioned

on the state input, performing z = g−1
ϕ (a) and a = gϕ(z) instead of z = g−1

ϕ (a ♣ s) and

a = gϕ(z ♣ s). In offline RL, [SLZ+20] used a pretrained normalizing Ćow to transform a

Gaussian to learned density regions of the action space, whose parameters were frozen and

transferred over to a new agent to facilitate data-efficient transfer learning for the same agent

on a different task.

Variational Q-Learning trains a hierarchical policy, an approach that bears some similarities

with the options framework [SPS99, Pre00], but without the persistence of an option for

multiple timesteps. The latent variable may be thought of as a distributed representation of

a context variable for the state. Options are a special case of the latent variable framework

when the latent variable collapses to a set of discrete values that might be the same for several

timesteps. [ZCB+22] train a latent-variable policy for reinforcement learning in a similar way

to our work, but the latent variable is formed from the hidden state of a recurrent neural

network applied to all previous observations in the problem of DMC from states.

2.6. Conclusion

This chapter was motivated by deriving an RL algorithm from the principle of maximum

entropy and testing whether it when scaled. SACLite and DDPG were shown to have

maximum-entropy justiĄcations, while SAC did not and was instead derived from a different

viewpoint of Maximum-Entropy RL.

Scaled-up critics were found to yield improvements in MuJoCo but not DMC, indicating

that improvements in MuJoCo might not hold in DMC or vice versa. Future work and

experiments should look into understanding the difference and benchmarking in both.

Scaling up the actor both in terms of increasing its parameters and increasing its complexity

were found to be ineffective in MuJoCo. We attribute this to the fact that the optimization

problem in actor-critic systems learns a critic Ąrst then an actor from the critic. We hypoth-

esize that the actorŠs quality is bounded by the quality of the critic and that efforts should

focus on improving the critic and understanding its training dynamics.

57

In DMC, the log-probability of a non-deterministic policy collapses to a high value, indicating

that it has become deterministic as most actions are low-probability. This motivates the use

of a ŞdeterministicŤ policy with Ąxed variance, resulting in the DDPG algorithm with Twin

Critics.

58

Chapter 3

Convergent Continuous Control

An exciting application of continuous control is robotics. Robotic systems that control the

physical world require controlling and understanding continuous quantities such as posi-

tions, velocities, and accelerations [TDM+18]. However, continuous control trains unstably

[Irp18, HIB+18], with minor variations in hyperparameters or even random seed yield drasti-

cally different training behaviors. Although deep reinforcement learning (DRL) has produced

superhuman agents in Chess, Shogi, Go and Atari [SHM+16, SSS+17, SAH+20, KCJ+22]

with discrete control, DRL struggles to solve continuous control in simulated robotics envi-

ronments such as DeepMind Control (DMC) or MuJoCo with ideal physics have been fully

solved.

Within these environments, DDPG with Twin Networks (which we name TD2 for conve-

nience) has been shown to be the most stable and sample-efficient continuous control algo-

rithm (Chapter 2), [YFLP21]. TD2 is an elegant continuous control algorithm because it

makes minimal modiĄcations to the mathematics of actor-critic continuous control with only

two regularization techniques.

Deep Deterministic Policy Gradients (DDPG) was the Ąrst actor-critic algorithm

that successfully showed learning in continuous-control tasks with deep learning networks.

The crucial component that stabilizes DDPG was an exponential moving average in the

parameters of target networks (herein abbreviated to target networks) [LHP+15]. Twin

Networks, introduced in TD3, take the minimum of two Q-functions to compute the boot-

strap target in the Bellman backup for training the critic. Twin Networks were shown to

greatly improve sample-efficiency within MuJoCo [FHM18]. Both Twin Networks and Target

Networks are ubiquitous components of nearly all following actor-critic continuous control

algorithms. However, TD2 only solves environments where the action dimensionality is not

low or high (Figure 2.9, Chapter 2). Its regularizers might be hindering performance on

these environments. These regularizers are empirically discovered but may interfere with

the mathematics of an actor-critic algorithm. Understanding the impact of deep learning

regularizers on training requires investigating the training dynamics of Deep Q-Learning.

3.1. Training Dynamics of Q-Learning

Using standard RL notation, the Q-Learning loss is given by:

Lθ =
1

n

n
∑

i=1

1

2
ϵ2

θ,i =
1

n

n
∑

i=1



1

2

(

Qθ(si, ai)− ri − γ max
a

Qθ̄(s
′
i, a)

2


where θ̄ indicates a stop-gradient operation and (s, a, r, s′) tuples are sampled from a replay

buffer. The Q-learning gradient update is given by the semi-gradient update rule of:

θ ← θ − η
1

n

n
∑

i=1

ϵθ,i∇θQθ(si, ai) (3.1.1)

As Chapter 2 showed that modiĄcations to the critic had a greater effect on learning, while

changes to the actor barely mattered, we thus turn our attention to analyzing the training

dynamics of the critic. We analyze the training dynamics of Q-learning following the Neural

Tangent Kernel approach introduced in Subsection 1.2.1. We Ąrst focus on the Q-learning

loss without target networks for ease of analysis.

A Ąrst-order Taylor expansion of Lθ+δθ with perturbation δθ is used to Ąnd a Ąrst-order

approximation of the change in loss δL. To compute this value, we Ąrst take a Ąrst-order

Taylor expansion of the online Q:

Qθ+δθ,i = Qθ,i + δθ⊤∇θQθ,i + · · ·

and the target Q:

Q′
θ,i+δθ

= Q′
θ,i+δθ = Q′

θ,i + δθ⊤∇θQ
′
θ,i + · · ·

where Qθ(si, ai) and maxa Qθ(s
′
i, a) are respectively abbreviated as Qθ,i and Q′

θ,i. These yield

a Taylor expansion of Lθ+δθ,i, the loss for sample i as:

Lθ+δθ,i =
1

2
(Qθ,i + δθ⊤∇θQθ,i − r − γ(Q′

θ,i + δθ⊤∇θQ
′
θ,i))

2

=
1

2
(ϵi + δθ⊤(∇θQθ,i − γ∇θQ

′
θ,i))

2

= Lθ + ϵi δθ⊤(∇θQθ,i − γ∇θQ
′
θ,i) + · · ·

and

δLi = ϵi δθ⊤(∇θQθ,i − γ∇θQ
′
θ,i)

60

When the semi-gradient update rule of δθ (Equation 3.1.1) is substituted, the change in the

loss for a sample i becomes:

δLi = −ϵi η
1

n

n
∑

j=1

ϵj∇θQ
⊤
θ,j(∇θQθ,i − γ∇θQ

′
θ,i)

With expectations over multiple samples in the loss function, the change in loss is:

δL = −η
1

n2

n
∑

i=1

n
∑

j=1

ϵi ϵj∇θQ
⊤
θ,j(∇θQθ,i − γ∇θQ

′
θ,i)

The Q-Learning loss is a squared loss and bounded below at 0. As the loss is minimized

iteratively by gradient descent, the convergence of the loss may be shown by a negative

change in the loss at every iteration. This convergence is only guaranteed if

δL < 0

which implies:

−η
1

n2

n
∑

i=1

n
∑

j=1

ϵi ϵj∇θQ
⊤
θ,j(∇θQθ,i − γ∇θQ

′
θ,i) < 0

−
n
∑

i=1

n
∑

j=1

ϵi ϵj∇θQ
⊤
θ,j(∇θQθ,i − γ∇θQ

′
θ,i) < 0

Note that there is no guarantee that this inequality is positive because the signs of ϵs are

undetermined.

3.1.1. Target Networks Do Not Guarantee Convergence

Target networks have been empirically shown to prevent divergence. As mentioned previ-

ously, target networks take an exponential moving average of the target network parameters,

which will be denoted as

θ̂ ← (1− α)θ̂old + αθ

where 0 < α < 1. The smaller α is, the slower θ̂ changes between updates. The intuition

behind target networks is to provide slow-moving (and therefore more consistent and stable)

estimates for the online networks to learn from. Target Networks also modify the convergence

condition as follows. The δθ updates of Q′
¯̂
θ

becomes

Q′

(1−α)θ̂old+α(θ+δθ)
= Q′

(1−α)θ̂old+α(θ+δθ)

= Q′
θ̂+αδθ

= Q′
θ̂

+ α δθ⊤∇θ̂Q
′
θ̂

61

which after substitution into Lθ−δθ yields

δL = −η
1

n2

n
∑

i=1

n
∑

j=1

ϵi ϵj∇θQ
⊤
θ,j(∇θQθ,i − α γ∇θQ

′
θ,i)

which modiĄes the inequality for convergence into:

−
n
∑

i=1

n
∑

j=1

ϵi ϵj∇θQ
⊤
θ,j(∇θQθ,i − α γ∇θQ

′
θ,i) < 0

Decreasing α slows down the exponential moving average and the change in θ̂, decreasing

the magnitude of the bracketed term, which may speed up convergence. Note that target

networks do not guarantee convergence of Q-learning because, as above, there is no guarantee

that this inequality is positive because the signs of the ϵs are undetermined.

3.1.2. Convergence with LayerNorm

Placing LayerNorm [BKH16] on ρ satisĄes the condition for convergence and prevents di-

vergence. LayerNorm standardizes a vector by subtracting its mean and dividing by its

standard deviation. As shown in Subsection 1.2.2, the L2 norm of the output of LayerNorm

is proportional to the dimensionality of its input and not the inputŠs magnitude. Consider

linear Qθ(s, a) = θ⊤ρ(s, a), with

∇θ θ⊤ρ(s, a) = ρ(s, a)

This simpliĄes the inequality to

−
n
∑

i=1

n
∑

j=1

ϵi ϵj ρ(sj, aj)
⊤(ρ(si, ai)− α γ ρ(si, ai)) < 0

Let the magnitude of the feature vector with LayerNorm applied be ∥ρ(s, a)∥2 = c

−
n
∑

i=1

n
∑

j=1

ϵi ϵj

(

ρ(sj, aj)
⊤ρ(si, ai)− α γ ρ(sj, aj)

⊤ρ(si, ai)
)

⩽ −
n
∑

i=1

n
∑

j=1

ϵi ϵj

(

♣ρ(sj, aj)
⊤ρ(si, ai)♣ − α γ ♣ρ(sj, aj)

⊤ρ(si, ai)♣
)

(magnitude)

⩽ −
n
∑

i=1

n
∑

j=1

ϵi ϵj

(

∥ρ(sj, aj)
⊤ρ(si, ai)∥2 − α γ ∥ρ(sj, aj)

⊤ρ(si, ai)∥2

)

(Cauchy-Schwartz)

= −
n
∑

i=1

n
∑

j=1

ϵi ϵj

(

c2 − α γ c2
)

(deĄne ∥ρ(s, a)∥2 = c)

62

= −c2 (1− α γ)
n
∑

i=1

n
∑

j=1

ϵi ϵj

Now, to show that the following inequality holds,

−c2 (1− α γ)
n
∑

i=1

n
∑

j=1

ϵi ϵj < 0

The inequality only depends on the product of ϵs, which may be rewritten as a square term

and a correlation term
n
∑

i=1

n
∑

j=1

ϵi ϵj

=
n
∑

i=1

ϵ2
i +

n
∑

j=1
j ̸=i

ϵiϵj

= lim
n→∞

n
∑

i=1

ϵ2
i

As the number of samples approaches inĄnity, the correlation term has an expectation of

0 because in the limit of inĄnite samples ϵi and ϵj would be considered to be independent.

Thus only the Ąrst squared term needs to be considered. Now

−c2 (1− α γ)
n
∑

i=1

ϵ2
i < 0

αγ − 1 < 0

By deĄnition, γ < 1, α < 1, and thus LayerNorm facilitates convergence. Note that in

theory, LayerNorm enables convergence of Q-learning even without target networks, in other

words, if α = 1.

3.2. Empirical Convergence Across Action Dimensions

The impact of target networks and LayerNorm are investigated in TD2. LayerNorm is

only applied to the critic and placed on every layer after the preactivations and before

the activation function of ReLU. This is because the theory only suggests that LayerNorm

and target networks are necessary on the critic. Although the theory was developed for

LayerNorm only on the penultimate features of a neural network, LayerNorm is placed at

every layer, just as in supervised learning ReLUs and LayerNorm are placed throughout the

network while only having theory (Subsection 1.2.2) that places them on the penultimate

layer.

63

In addition to DMC and MuJoCo, the resultant algorithm is tested on an artiĄcial n-

dimensional navigation task that should be fairly easy to solve. DMC and MuJoCo have

environments of varying action dimensions but the problem semantics (most notably the

dynamics functions) differ across environments. In contrast, the n-dimension navigational

space is designed to yield environments that are as similar as possible across varying dimen-

sionalities.

In n-dimensional navigation, an agent Ąnds itself at an n-dimensional (Euclidean) position

for every timestep. The agent changes its position between −1 and 1 for each dimension,

receiving a reward that is the difference between the L2 of the origin and its position for

two consecutive timesteps, divided by the square root of n. The agent starts in a position

that is sampled from a unit Gaussian and acts in this environment for 1000 timesteps. The

dimensionality n may be varied to verify whether Q-learning only works for medium-range

action dimensions.

Like the previous section, experiments were run for a million timesteps. The policy was

tested every 1000 timesteps and the average return from ten rollouts was recorded. However,

aggregate statistics were instead computed by the InterQuartile Mean (IQM), which had

recently been shown to be a more sensitive aggregate metric [ASC+21]. Twelve seeds were

used because it was the smallest as a multiple of four greater than 10 so the windsorizing

in the IQM would be over whole numbers. The small neural networks used in the following

algorithms had two hidden layers of size 256 and ReLU activations [GBB11] as standard.

A major difference from the DDPG [LHP+15] and [FHM18] algorithms was that weights

were initialized with orthogonal intialization [SMG13] rather than the historically used

Xavier initialization [GB10]. A gain of
√

2 was used for all layers apart from the last layer

of the actor, which had a gain of 1. The Ąxed standard deviation of the deterministic policy

was set to 0.2.

3.3. LayerNorm Results and Discussion

Figure 3.1 shows that increasing the dimensionality of the navigation environment makes

it harder for TD2 to solve. TD2 without LayerNorm fails at dimension 10. The ablation

of DDPG (removing target networks from LayerNorm) indicates that this failure is due to

the lack of LayerNorm. Analysis of the overestimation in the Q-function shows that the

Q-values diverge for high action-dimension environments in Figure 3.2. Although TD2 and

LayerNorm fail to achieve comparable performance for navigation tasks below and above a

dimensionality of 50, we hypothesize that they might be solvable given more interactions

than the 1e5 used in these experiments given that the critic values in the higher action

64

Fig. 3.1. Return after 1e5 timesteps calculated by the interquartile mean (IQM) over 12
seeds, each evaluated 100 times for navigation tasks across varying dimensions. Shaded
regions indicate the standard error computed over 12 seeds. LN stands for LayerNorm while
TN stands for Target Networks.

Fig. 3.2. Approximate overestimation of Q-function calculated by subtracting the Monte-
Carlo return from Q(s0, a0) calculated from one state. Bottom plot has blue lines removed
for clarity of inspecting the other two. Values are means over 12 seends and shaded regions
indicate standard error computed over 12 seeds. LN stands for LayerNorm while TN stands
for Target Networks.

dimensions of Figure 3.2 have not diverged and require more samples to become inaccurate,

just as the critic values for Navigation in a 2D environment eventually recovered from an

initial inaccuracy. We further note that consistent with our theory, LayerNorm enables good

Q-learning to be performed without the need for target networks.

65

Fig. 3.3. Ablation of using GroupNorm (GN) with 16 groups over LayerNorm (LN) in
DMC, MuJoCo, and Box2D environments. Return after 1e5 timesteps calculated by the
interquartile mean (IQM) over 12 seeds, each evaluated 100 times. Shaded regions indicate
standard error computed over 12 seeds.

Figure 3.3 shows that a variant of LayerNorm, GroupNorm [WH18], is more effective over

DMC, MuJoCo and Box2D. GroupNorm splits a vector into a Ąxed number of groups

before standardizing each, producing a smaller variance than LayerNorm. We choose to use

16 groups because the size of the layer is 256, whose square root is 16. The number of groups

should be large enough such that its behavior is distinct from LayerNorm but small enough

such that there is still enough variation between groups.

Figure 3.4 shows that GroupNorm enables good Q-learning to be performed without the

need of target networks, but the best results are obtained with both LayerNorm and target

networks, which is consistent with our theory. Close inspection of individual training runs in

Figure 3.5 show that over twelve seeds, all training runs with GroupNorm retain behaviors

that obtain positive returns, unlike the ablations which are also higher variance.

Figure 3.4 shows that DMC with one critic (DDPG) instead of two (Twin Critics) may some-

times be more effective, especially for acrobot, where TD2 does not learn good behaviors,

even with GroupNorm. However, DDPG is not superior to TD2 over all environments and

is inferior in MuJoCo and Box2D. This indicates that there is more than just a convergence

issue at fault with actor-critic algorithms.

66

Fig. 3.4. Benchmarks of TD2 with GroupNorm (GN) and Target Network (TN) ablations
in DMC, MuJoCo, and Box2D environments. Return after 1e5 timesteps calculated by the
interquartile mean (IQM) over 12 seeds, each evaluated 100 times. Shaded regions indicate
standard error computed over 12 seeds.

3.4. Fixed Asymmetry With Twin Networks

The interplay between Twin Critics and actor-critic continuous control is investigated. Con-

sider the Q-Learning loss with standard RL notation:

Lθ(s, a, r, s′) = (Qθ(s, a)− r − γQθ̄(s
′, a′))

2

where a′ = πϕ(s′). This loss is minimized by gradient descent wrt θ.

Twin Networks modify the loss by introducing an ensemble of two Q-network and selecting

the minimum of the two for a target value:

LTwin

θj
(s, a, r, s′) =

∑

j∈¶1,2♢



Qθj
(s, a)− r − γ min

i∈¶1,2♢
Qθi

(s′, a′)

2

Twin Networks was motivated to reduce the overestimation of the target Q-values. We hy-

pothesize that Twin Networks might promote underestimation which may sometimes cripple

policy learning. The source of underestimation might be traced back to a rearrangement of

the Twin-Q-Network loss:

LTwin

θ (s, a, r, s′) =
∑

j∈¶1,2♢



Qθj
(s, a)− r − γ min

i∈¶1,2♢
Qθi

(s′, a′)

2

=
∑

j∈¶1,2♢



max
i∈¶1,2♢

[

Qθj
(s, a)− r − γQθi

(s′, a′)
]

2

67

Fig. 3.5. Individual training runs of all twelve seeds in DMC, MuJoCo, and Box2D envi-
ronments. The solid line is the return after 1e5 timesteps calculated by the interquartile
mean (IQM) over 12 seeds. A dashed line indicates the return evaluated over 100 times for
one particular run.

This loss is asymmetric for positive and negative quantities. Positive quantities are more

heavily penalized than negative quantities. Minimizing this loss (wrt θ) might be interpreted

as trying to minimize the more positive of a pair of (non-squared) TD losses Ű the loss furthest

from zero is minimized. However, this only holds if both TD losses are positive. If both losses

are negative, the less negative loss with be selected to be minimized Ű the loss closer to zero

minimized. This may mean that in some environments (such as acrobot-swingup in DMC),

Twin Networks are less likely to recover from underestimation.

The degree of asymmetry required varies between environments. Less asymmetry is needed

in acrobot-swingup than in the MuJoCo Humanoid environment. A simple way to vary the

degree of asymmetry is to introduce a hyperparameter α that varies the steepness of the loss

68

Fig. 3.6. Asymmetric Q-Learning results with varying degrees of asymmetry determined
by β, with more positive βs denoting a steeper positive half. Returns were calculated by the
interquartile mean (IQM) over 12 seeds, each evaluated 100 times. Shaded regions indicate
standard error computed over 12 seeds.

function of DDPG for positive and negative residuals:

α (max [0, Qθ(s, a)− r − γQθ̄(s
′, a′)])

2
+ (1− α) (min [0, Qθ(s, a)− r − γQθ̄(s

′, a′)])
2

Experiments were run on DMC, MuJoCo, and Box2D. Figure 3.6 showed that an asym-

metric loss could match and sometimes surpass the TD2 and DDPG algorithms. Note that

DDPG corresponds to a symmetric loss when α = 0.5. Table 3.1 found that higher degrees

of asymmetry were needed to solve DMC environments of higher action dimension, while

MuJoCo and Box2D environments needed the highest amount of asymmetry at all. There

is a ŚGoldilocks ZoneŠ of asymmetry that is neither too low nor too high that produces the

best learning.

3.5. Related Work

Normalization has previously been used in Q-learning but has not been shown to cause

convergence of online RL. DDPG [LHP+15] used BatchNorm in the critic but was removed in

TD3 [FHM18] as it was shown to hurt performance. [BAAB19] showed that LayerNorm could

replace target networks in DDPG but with marginally worse performance in MuJoCo and

did not have a mathematical justiĄcation for using LayerNorm. [BGW21a] used LayerNorm

on the penultimate layer of the critic and showed a reduced variance for DMC from pixels.

An alternate method of normalization Ű dividing the penultimate layer by its L2 norm

Ű also reduced variance to a marginally better effect. Finally, [KAM+21] analyzed training

69

Environment 0.1 0.2 0.4 0.5

acrobot-swingup 199 ± 54.6 188 ± 29.8 260 ± 65.9 340 ± 44
finger-turn_hard 915 ± 38.1 904 ± 39.6 941 ± 44.6 876 ± 8.5
cheetah-run 463 ± 68.9 676 ± 33.5 757 ± 10 778 ± 35.7
quadruped-run 588 ± 25.2 672 ± 30.1 767 ± 31.2 715 ± 26
humanoid-run 54.2 ± 2.74 72.8 ± 3.26 103 ± 3.72 120 ± 3.05
dog-run 101 ± 2.71 125 ± 4.57 168 ± 8.57 176 ± 9.24
HalfCheetah-v4 5710 ± 1700 7470 ± 1020 9230 ± 950 10300 ± 145
Ant-v4 -161 ± 14.6 -117 ± 35.2 437 ± 54 1240 ± 251
Humanoid-v4 247 ± 41.6 340 ± 33.9 859 ± 147 2550 ± 235
BipedalWalker-v3 -111 ± 1.15 -91.4 ± 17.1 124 ± 60 168 ± 43.5

Environment 0.6 0.7 0.9 0.99

acrobot-swingup 187 ± 29.8 14.3 ± 14.6 1.76 ± 1.54 2.27 ± 1.39
finger-turn_hard 921 ± 43.7 854 ± 65 66.7 ± 47.1 33.4 ± 47.1
cheetah-run 763 ± 18.7 761 ± 16.9 701 ± 23.8 463 ± 17.6
quadruped-run 776 ± 32.4 729 ± 29.8 280 ± 24.7 205 ± 8.87
humanoid-run 129 ± 6.72 117 ± 5.29 0.969 ± 0.0945 1.21 ± 0.0786
dog-run 191 ± 8.03 197 ± 3.67 35 ± 13.7 4.3 ± 0.349
HalfCheetah-v4 10000 ± 310 9440 ± 464 8100 ± 174 5580 ± 83.1
Ant-v4 2140 ± 167 3730 ± 238 4670 ± 367 655 ± 74.4
Humanoid-v4 4010 ± 375 5130 ± 82.1 5090 ± 78.4 510 ± 38.2
BipedalWalker-v3 312 ± 2.99 302 ± 12.8 20.4 ± 107 -74.5 ± 19.5

Table 3.1. Interquartile Mean (IQM) averaged over 12 seeds of 10 rollouts after training
for a million timesteps varying asymmetry. Mean ± standard error numbers are given to
three signiĄcant Ągures. Methods that give the highest returns per environment are bolded.

dynamics for offline RL using a different method that yielded the same convergence condition,

and [KAG+22] showed that the condition could also be satisĄed by dividing the penultimate

layer by its L2 norm. [WU21] also presents the convergence condition but using one sample

rather than an expectation.

It is well-known that different environments require different amounts of pessimism.

[MPHP+21] notes that neither DDPG nor TD3 consistently get better results than the

other, and learns to select a target estimate from either the mean or minimum of two critics.

[KSGV20] train an ensemble of distributional critics where n is a Ąxed hyperparameter

determined at the start of training. [KGT+22] design a mechanism to adjust n during

training by adjusting it such that the aggregated values of truncated critic values are

close to Monte-Carlo returns. [KLA+21] Ąnd a convex combination of an optimistic and

pessimisic Q-value that is learned during training.

70

Asymmetric losses in reinforcement learning are less well-studied. [KFTN21] use a similar

weighted quadratic loss as our work but in the offline RL setting. Two anonymous submis-

sions [Ano22b] and [Ano22a], concurrent work to ours, use asymmetric loss functions in actor-

critic continuous control. [Ano22b] uses the asymmetric LINEX (Linear-Exponential)

[Var75] loss function and [Ano22a] compute a softmax over the TD-error to weigh the impor-

tance of each squared TD-loss. The temperature of the softmax is adjusted during training

by a trust-region method.

3.6. Conclusion

The training dynamics of deep Q-learning were investigated via a similar method to the Neu-

ral Tangent Kernel. The lack of a theoretical convergence guarantee for Target Networks

and a convergence guarantee for LayerNorm was empirically veriĄed, as was the theoretical

claim that using LayerNorm with Target Networks would converge faster and be more sample

efficient. A variant of LayerNorm, GroupNorm, was found to be empirically better. More-

over, Twin Networks was found to harm performance in DMC but removing Twin Networks

hurt performance in MuJoCo. Further analysis revealed that Twin Networks were a form of

asymmetric loss and that adjusting the degree of asymmetry led to improvements across all

domains, but had to be tuned per environment. We propose that future work automatically

adjusts the amount of asymmetry.

71

Chapter 4

Conclusion

This dissertation improved the use of deep networks within a particular set of environments

in deep reinforcement learning called continuous control.

New mathematical justiĄcations for supervised and unsupervised learning were found, moti-

vated by whether the empirical success of deep networks in those learning paradigms could

be harnessed and transferred to reinforcement learning. The maximum-entropy principle

was introduced as a Ąrst principle behind deriving the loss functions used in supervised and

unsupervised learning, and the effectiveness of layer normalization in the optimization pro-

cess of deep networks were theoretically shown. When applied to reinforcement learning, the

maximum-entropy principle provided a mathematical justiĄcation for actor-critic algorithms.

Applying a Neural Tangent Kernel-inspired framework to supervised learning showed that

layer normalization and the ReLU activation function helped training converge, while that

same framework applied to temporal difference learning with deep Q-functions showed that

layer normalization was a sufficient condition for convergence in that setting. The NTK-

inspired analysis showed that Target Networks were insufficient for convergence but could

speed up the rate of convergence when combined with layer normalization. Applying layer

normalization to actor-critic algorithms trained exceptionally stably, with all seeds learning

and retaining behaviors that obtained positive reward and low-variance between seeds. Fu-

ture work should empirically investigate whether layer normalization and asymmetric losses

may be applied to even more challenging reinforcement learning tasks such as continuous

control from pixels, discrete control and other reinforcement learning domains.

Empirically, this dissertation found that changes to the critic had a greater impact on training

than changes to the actor. Many types of probabilistic policies were proposed but changing

their type made little difference to training overall, giving no reason not to use the simplest

policy type: deterministic. Increasing the number of parameters of the critic networks

changed performance but did not lead to monotonic improvements with scale. The most

sensitive component of an actor-critic agent was the choice of using Twin Critics or not to

compute bootstrapped targets. Generalizing the binary choice of using Twin Critics or not

into the continuous relaxation of using asymmetric loss functions was empirically shown to

be advantageous, especially when the degree of asymmetry was tuned per environment. This

leads to an obvious avenue for future work as automatically Ąnding the optimal degree of

asymmetry, and theoretical justiĄcations for why this would be needed.

In general, this dissertation highlights the need for further mathematics explaining the inter-

action between deep networks and reinforcement learning. The maximum-entropy principle

was found to derive the actor loss, but there is no justiĄcation for what critic loss to use.

A potential avenue to determine that loss function would be to understand what noise is

introduced into Q-learning when function approximation is used, which could then be in-

corporated into a maximum-likelihood framework. If the correct critic noise is taken into

account, it would hold for arbitrarily powerful function approximators, enabling the most

powerful tool in deep learning Ű scaling Ű to be used in deep Q-learning.

74

Bibliography

[AB14] Guillaume Alain and Yoshua Bengio. What regularized auto-encoders learn

from the data-generating distribution. The Journal of Machine Learning

Research, 15(1):3563Ű3593, 2014.

[Aba20] Romina Abachi. Policy-aware model learning for policy gradient methods.

PhD thesis, University of Toronto (Canada), 2020.

[AJKS19] Alekh Agarwal, Nan Jiang, Sham M Kakade, and Wen Sun. Reinforcement

learning: Theory and algorithms. CS Dept., UW Seattle, Seattle, WA, USA,

Tech. Rep, pages 10Ű4, 2019.

[AN16] Masoud Abdi and Saeid Nahavandi. Multi-residual networks: Improving the

speed and accuracy of residual networks. arXiv preprint arXiv:1609.05672,

2016.

[Ano22a] Anonymous. AsymQ: Asymmetric Q-loss to mitigate overestimation bias in

off-policy reinforcement learning. November 2022.

[Ano22b] Anonymous. Extreme Q-Learning: MaxEnt RL without Entropy. November

2022.

[ASC+21] Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville,

and Marc Bellemare. Deep reinforcement learning at the edge of the statisti-

cal precipice. Advances in neural information processing systems, 34:29304Ű

29320, 2021.

[BAAB19] Aditya Bhatt, Max Argus, Artemij Amiranashvili, and Thomas Brox. Cross-

norm: Normalization for off-policy td reinforcement learning. arXiv preprint

arXiv:1902.05605, 2019.

[BCB14] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural ma-

chine translation by jointly learning to align and translate. arXiv preprint

arXiv:1409.0473, 2014.

[BCP+16] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John

Schulman, Jie Tang, and Wojciech Zaremba. Openai gym, 2016.

[BCV13] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learn-

ing: A review and new perspectives. IEEE transactions on pattern analysis

and machine intelligence, 35(8):1798Ű1828, 2013.

[BDK+21] Yasaman Bahri, Ethan Dyer, Jared Kaplan, Jaehoon Lee, and Utkarsh

Sharma. Explaining scaling laws of neural network generalization. 2021.

[BDPDP96] Adam Berger, Stephen A Della Pietra, and Vincent J Della Pietra. A max-

imum entropy approach to natural language processing. Computational lin-

guistics, 22(1):39Ű71, 1996.

[Bel57] Richard Bellman. A markovian decision process. Journal of mathematics and

mechanics, pages 679Ű684, 1957.

[BGW21a] Johan Bjorck, Carla P Gomes, and Kilian Q Weinberger. Is high vari-

ance unavoidable in rl? a case study in continuous control. arXiv preprint

arXiv:2110.11222, 2021.

[BGW21b] Nils Bjorck, Carla P Gomes, and Kilian Q Weinberger. Towards deeper

deep reinforcement learning with spectral normalization. Advances in Neural

Information Processing Systems, 34:8242Ű8255, 2021.

[Bis94] Christopher M Bishop. Novelty detection and neural network validation. IEE

Proceedings-Vision, Image and Signal processing, 141(4):217Ű222, 1994.

[BKH16] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normaliza-

tion. arXiv preprint arXiv:1607.06450, 2016.

[BMR+20] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Ka-

plan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry,

Amanda Askell, et al. Language models are few-shot learners. Advances in

neural information processing systems, 33:1877Ű1901, 2020.

[BN06] Christopher M Bishop and Nasser M Nasrabadi. Pattern recognition and

machine learning, 2006.

[Bri89] John Bridle. Training stochastic model recognition algorithms as networks

can lead to maximum mutual information estimation of parameters. Advances

in neural information processing systems, 2, 1989.

[Bri90] John S Bridle. Probabilistic interpretation of feedforward classiĄcation net-

work outputs, with relationships to statistical pattern recognition. In Neu-

rocomputing, pages 227Ű236. Springer, 1990.

[BTLLW21] Sam Bond-Taylor, Adam Leach, Yang Long, and Chris G Willcocks. Deep

generative modelling: A comparative review of vaes, gans, normalizing Ćows,

energy-based and autoregressive models. arXiv preprint arXiv:2103.04922,

2021.

[BYAV13] Yoshua Bengio, Li Yao, Guillaume Alain, and Pascal Vincent. Generalized

denoising auto-encoders as generative models. Advances in neural informa-

tion processing systems, 26, 2013.

76

[C+01] Balázs Csanád Csáji et al. Approximation with artiĄcial neural networks.

Faculty of Sciences, Etvs Lornd University, Hungary, 24(48):7, 2001.

[Car90] Sadi Carnot. Reflections on the motive power of heat and on machines fitted

to develop that power. J. Wiley, 1890.

[CBGLN17] Nicolò Cesa-Bianchi, Claudio Gentile, Gábor Lugosi, and Gergely Neu. Boltz-

mann exploration done right. Advances in neural information processing sys-

tems, 30, 2017.

[CVMG+14] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bah-

danau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase

representations using rnn encoder-decoder for statistical machine translation.

arXiv preprint arXiv:1406.1078, 2014.

[Dar35] Georges Darmois. Sur les lois de probabilitéa estimation exhaustive. CR

Acad. Sci. Paris, 260(1265):85, 1935.

[DCH+16] Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel.

Benchmarking deep reinforcement learning for continuous control. In Inter-

national conference on machine learning, pages 1329Ű1338. PMLR, 2016.

[DCLT18] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert:

Pre-training of deep bidirectional transformers for language understanding.

arXiv preprint arXiv:1810.04805, 2018.

[DSDB16] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation

using real nvp. arXiv preprint arXiv:1605.08803, 2016.

[FHM18] Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approxi-

mation error in actor-critic methods. In International Conference on Machine

Learning, pages 1587Ű1596. PMLR, 2018.

[Fis34] Ronald Aylmer Fisher. Two new properties of mathematical likelihood. Pro-

ceedings of the Royal Society of London. Series A, Containing Papers of a

Mathematical and Physical Character, 144(852):285Ű307, 1934.

[GB10] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training

deep feedforward neural networks. In Proceedings of the thirteenth inter-

national conference on artificial intelligence and statistics, pages 249Ű256.

JMLR Workshop and Conference Proceedings, 2010.

[GBB11] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectiĄer

neural networks. In Proceedings of the fourteenth international conference

on artificial intelligence and statistics, pages 315Ű323. JMLR Workshop and

Conference Proceedings, 2011.

[GBC16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT

press, 2016.

77

[GKB+19] Carles Gelada, Saurabh Kumar, Jacob Buckman, OĄr Nachum, and Marc G

Bellemare. Deepmdp: Learning continuous latent space models for repre-

sentation learning. In International Conference on Machine Learning, pages

2170Ű2179. PMLR, 2019.

[GPAM+14] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-

Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative ad-

versarial nets. Advances in neural information processing systems, 27, 2014.

[Has10] Hado Hasselt. Double q-learning. Advances in neural information processing

systems, 23, 2010.

[HBM+22] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya,

Trevor Cai, Eliza Rutherford, Diego de Las Casas, Lisa Anne Hendricks,

Johannes Welbl, Aidan Clark, et al. Training compute-optimal large language

models. arXiv preprint arXiv:2203.15556, 2022.

[HCS+22] Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang, Ruiqi Gao,

Alexey Gritsenko, Diederik P Kingma, Ben Poole, Mohammad Norouzi,

David J Fleet, et al. Imagen video: High deĄnition video generation with

diffusion models. arXiv preprint arXiv:2210.02303, 2022.

[HHAL18] Tuomas Haarnoja, Kristian Hartikainen, Pieter Abbeel, and Sergey Levine.

Latent space policies for hierarchical reinforcement learning. In International

Conference on Machine Learning, pages 1851Ű1860. PMLR, 2018.

[HIB+18] Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Pre-

cup, and David Meger. Deep reinforcement learning that matters. In Pro-

ceedings of the AAAI Conference on Artificial Intelligence, volume 32, 2018.

[HJA20] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic

models. Advances in Neural Information Processing Systems, 33:6840Ű6851,

2020.

[HLBN19] Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi.

Dream to control: Learning behaviors by latent imagination. arXiv preprint

arXiv:1912.01603, 2019.

[HLF+19] Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha,

Honglak Lee, and James Davidson. Learning latent dynamics for planning

from pixels. In International conference on machine learning, pages 2555Ű

2565. PMLR, 2019.

[HLVDMW17] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger.

Densely connected convolutional networks. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition, pages 4700Ű4708, 2017.

[HMVH+18] Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Os-

trovski, Will Dabney, Dan Horgan, Bilal Piot, Mohammad Azar, and David

78

Silver. Rainbow: Combining improvements in deep reinforcement learning.

In Thirty-second AAAI conference on artificial intelligence, 2018.

[How60] Ronald A Howard. Dynamic programming and markov processes. 1960.

[HS18] David Ha and Jürgen Schmidhuber. World models. arXiv preprint

arXiv:1803.10122, 2018.

[HSG+22] Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Moham-

mad Norouzi, and David J Fleet. Video diffusion models. arXiv preprint

arXiv:2204.03458, 2022.

[HSW89] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedfor-

ward networks are universal approximators. Neural networks, 2(5):359Ű366,

1989.

[HTAL17] Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Rein-

forcement learning with deep energy-based policies. In International confer-

ence on machine learning, pages 1352Ű1361. PMLR, 2017.

[HZAL18] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft

actor-critic: Off-policy maximum entropy deep reinforcement learning with

a stochastic actor. In International conference on machine learning, pages

1861Ű1870. PMLR, 2018.

[HZH+18] Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Se-

hoon Ha, Jie Tan, Vikash Kumar, Henry Zhu, Abhishek Gupta, Pieter

Abbeel, et al. Soft actor-critic algorithms and applications. arXiv preprint

arXiv:1812.05905, 2018.

[HZRS16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual

learning for image recognition. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 770Ű778, 2016.

[Irp18] Alex Irpan. Deep reinforcement learning doesnŠt work yet. https://www.

alexirpan.com/2018/02/14/rl-hard.html, 2018.

[IS15] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep

network training by reducing internal covariate shift. In International con-

ference on machine learning, pages 448Ű456. PMLR, 2015.

[Jay57a] Edwin T Jaynes. Information theory and statistical mechanics. Physical

review, 106(4):620, 1957.

[Jay57b] Edwin T Jaynes. Information theory and statistical mechanics. ii. Physical

review, 108(2):171, 1957.

[JGH18] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent ker-

nel: Convergence and generalization in neural networks. Advances in neural

information processing systems, 31, 2018.

79

https://www.alexirpan.com/2018/02/14/rl-hard.html
https://www.alexirpan.com/2018/02/14/rl-hard.html

[KAG+22] Aviral Kumar, Rishabh Agarwal, Xinyang Geng, George Tucker, and Sergey

Levine. Offline q-learning on diverse multi-task data both scales and gener-

alizes. arXiv preprint arXiv:2211.15144, 2022.

[KAM+21] Aviral Kumar, Rishabh Agarwal, Tengyu Ma, Aaron Courville, George

Tucker, and Sergey Levine. Dr3: Value-based deep reinforcement learning

requires explicit regularization. arXiv preprint arXiv:2112.04716, 2021.

[KCJ+22] Steven Kapturowski, Víctor Campos, Ray Jiang, Nemanja Rakićević, Hado

van Hasselt, Charles Blundell, and Adrià Puigdomènech Badia. Human-level

atari 200x faster. arXiv preprint arXiv:2209.07550, 2022.

[KFTN21] Ilya Kostrikov, Rob Fergus, Jonathan Tompson, and OĄr Nachum. Offline

reinforcement learning with Ąsher divergence critic regularization. In Inter-

national Conference on Machine Learning, pages 5774Ű5783. PMLR, 2021.

[KGT+22] Arsenii Kuznetsov, Alexander Grishin, Artem Tsypin, Arsenii Ashukha, Ar-

tur Kadurin, and Dmitry Vetrov. Automating control of overestimation bias

for reinforcement learning. 2022.

[KLA+21] Thommen George Karimpanal, Hung Le, Majid Abdolshah, Santu Rana,

Sunil Gupta, Truyen Tran, and Svetha Venkatesh. Balanced q-learning:

Combining the inĆuence of optimistic and pessimistic targets. arXiv preprint

arXiv:2111.02787, 2021.

[KMH+20] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Ben-

jamin Chess, Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and

Dario Amodei. Scaling laws for neural language models. arXiv preprint

arXiv:2001.08361, 2020.

[Koo36] Bernard Osgood Koopman. On distributions admitting a sufficient statistic.

Transactions of the American Mathematical society, 39(3):399Ű409, 1936.

[KPB20] Ivan Kobyzev, Simon JD Prince, and Marcus A Brubaker. Normalizing Ćows:

An introduction and review of current methods. IEEE transactions on pattern

analysis and machine intelligence, 43(11):3964Ű3979, 2020.

[Kra91] Mark A Kramer. Nonlinear principal component analysis using autoassocia-

tive neural networks. AIChE journal, 37(2):233Ű243, 1991.

[KSGV20] Arsenii Kuznetsov, Pavel Shvechikov, Alexander Grishin, and Dmitry Vetrov.

Controlling overestimation bias with truncated mixture of continuous distri-

butional quantile critics. In International Conference on Machine Learning,

pages 5556Ű5566. PMLR, 2020.

[KSH17] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classiĄca-

tion with deep convolutional neural networks. Communications of the ACM,

60(6):84Ű90, 2017.

80

[KW13] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv

preprint arXiv:1312.6114, 2013.

[KYF20] Ilya Kostrikov, Denis Yarats, and Rob Fergus. Image augmentation is all you

need: Regularizing deep reinforcement learning from pixels. arXiv preprint

arXiv:2004.13649, 2020.

[KZTL20] Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative

q-learning for offline reinforcement learning. Advances in Neural Information

Processing Systems, 33:1179Ű1191, 2020.

[LB+95] Yann LeCun, Yoshua Bengio, et al. Convolutional networks for images,

speech, and time series. The handbook of brain theory and neural networks,

3361(10):1995, 1995.

[LBH15] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature,

521(7553):436Ű444, 2015.

[LCH+06] Yann LeCun, Sumit Chopra, Raia Hadsell, M Ranzato, and Fujie Huang. A

tutorial on energy-based learning. Predicting structured data, 1(0), 2006.

[Lev18] Sergey Levine. Reinforcement learning and control as probabilistic inference:

Tutorial and review. arXiv preprint arXiv:1805.00909, 2018.

[LGR12] Sascha Lange, Thomas Gabel, and Martin Riedmiller. Batch reinforcement

learning. In Reinforcement learning, pages 45Ű73. Springer, 2012.

[LHP+15] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom

Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with

deep reinforcement learning. arXiv preprint arXiv:1509.02971, 2015.

[Lin92] Long-Ji Lin. Self-improving reactive agents based on reinforcement learning,

planning and teaching. Machine learning, 8(3):293Ű321, 1992.

[LKTF20] Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline rein-

forcement learning: Tutorial, review, and perspectives on open problems.

arXiv preprint arXiv:2005.01643, 2020.

[Max60a] James Clerk Maxwell. Ii. illustrations of the dynamical theory of gases. The

London, Edinburgh, and Dublin Philosophical Magazine and Journal of Sci-

ence, 20(130):21Ű37, 1860.

[Max60b] James Clerk Maxwell. V. illustrations of the dynamical theory of gases.Ůpart

i. on the motions and collisions of perfectly elastic spheres. The Lon-

don, Edinburgh, and Dublin Philosophical Magazine and Journal of Science,

19(124):19Ű32, 1860.

[MBM+16] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves,

Timothy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asyn-

chronous methods for deep reinforcement learning. In International confer-

ence on machine learning, pages 1928Ű1937. PMLR, 2016.

81

[MDD+20] Bogdan Mazoure, Thang Doan, Audrey Durand, Joelle Pineau, and R Devon

Hjelm. Leveraging exploration in off-policy algorithms via normalizing Ćows.

In Conference on Robot Learning, pages 430Ű444. PMLR, 2020.

[MKKY18] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida.

Spectral normalization for generative adversarial networks. arXiv preprint

arXiv:1802.05957, 2018.

[MKS+15] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Ve-

ness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidje-

land, Georg Ostrovski, et al. Human-level control through deep reinforcement

learning. nature, 518(7540):529Ű533, 2015.

[MPHP+21] Ted Moskovitz, Jack Parker-Holder, Aldo Pacchiano, Michael Arbel, and

Michael Jordan. Tactical optimism and pessimism for deep reinforcement

learning. Advances in Neural Information Processing Systems, 34:12849Ű

12863, 2021.

[NAAB22] Evgenii Nikishin, Romina Abachi, Rishabh Agarwal, and Pierre-Luc Bacon.

Control-oriented model-based reinforcement learning with implicit differen-

tiation. In Proceedings of the AAAI Conference on Artificial Intelligence,

volume 36, pages 7886Ű7894, 2022.

[Pit36] Edwin James George Pitman. Sufficient statistics and intrinsic accuracy. In

Mathematical Proceedings of the cambridge Philosophical society, volume 32,

pages 567Ű579. Cambridge University Press, 1936.

[Pre00] Doina Precup. Temporal abstraction in reinforcement learning. University of

Massachusetts Amherst, 2000.

[RB18] Mirco Ravanelli and Yoshua Bengio. Speaker recognition from raw waveform

with sincnet. In 2018 IEEE Spoken Language Technology Workshop (SLT),

pages 1021Ű1028. IEEE, 2018.

[RTB16] Rajesh Ranganath, Dustin Tran, and David Blei. Hierarchical variational

models. In International conference on machine learning, pages 324Ű333.

PMLR, 2016.

[RWC+19] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya

Sutskever, et al. Language models are unsupervised multitask learners. Ope-

nAI blog, 1(8):9, 2019.

[SAH+20] Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan,

Laurent Sifre, Simon Schmitt, Arthur Guez, Edward Lockhart, Demis Hass-

abis, Thore Graepel, et al. Mastering atari, go, chess and shogi by planning

with a learned model. Nature, 588(7839):604Ű609, 2020.

[Sam37] Paul A Samuelson. A note on measurement of utility. The review of economic

studies, 4(2):155Ű161, 1937.

82

[SB18a] Richard S Sutton and Andrew G Barto. Reinforcement learning: An intro-

duction. MIT press, 2018.

[SB18b] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An In-

troduction. The MIT Press, second edition, 2018.

[SBSG20] Samarth Sinha, Homanga Bharadhwaj, Aravind Srinivas, and Animesh Garg.

D2rl: Deep dense architectures in reinforcement learning. arXiv preprint

arXiv:2010.09163, 2020.

[SE19] Yang Song and Stefano Ermon. Generative modeling by estimating gradients

of the data distribution. Advances in Neural Information Processing Systems,

32, 2019.

[SHM+16] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre,

George Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda

Panneershelvam, Marc Lanctot, et al. Mastering the game of go with deep

neural networks and tree search. nature, 529(7587):484Ű489, 2016.

[SK22] Utkarsh Sharma and Jared Kaplan. Scaling laws from the data manifold

dimension. J. Mach. Learn. Res., 23:9Ű1, 2022.

[SLA+15] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp

Moritz. Trust region policy optimization. In International conference on

machine learning, pages 1889Ű1897. PMLR, 2015.

[SLZ+20] Avi Singh, Huihan Liu, Gaoyue Zhou, Albert Yu, Nicholas Rhinehart, and

Sergey Levine. Parrot: Data-driven behavioral priors for reinforcement learn-

ing. arXiv preprint arXiv:2011.10024, 2020.

[SMG13] Andrew M Saxe, James L McClelland, and Surya Ganguli. Exact solutions

to the nonlinear dynamics of learning in deep linear neural networks. arXiv

preprint arXiv:1312.6120, 2013.

[SMSM99] Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour.

Policy gradient methods for reinforcement learning with function approxima-

tion. Advances in neural information processing systems, 12, 1999.

[SPS99] Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and

semi-mdps: A framework for temporal abstraction in reinforcement learning.

Artificial intelligence, 112(1-2):181Ű211, 1999.

[SSS+17] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja

Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian

Bolton, et al. Mastering the game of go without human knowledge. nature,

550(7676):354Ű359, 2017.

[SWD+17] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and

Oleg Klimov. Proximal policy optimization algorithms. arXiv preprint

arXiv:1707.06347, 2017.

83

[TDM+18] Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego

de Las Casas, David Budden, Abbas Abdolmaleki, Josh Merel, Andrew

Lefrancq, et al. Deepmind control suite. arXiv preprint arXiv:1801.00690,

2018.

[TET12] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine

for model-based control. In 2012 IEEE/RSJ International Conference on

Intelligent Robots and Systems, pages 5026Ű5033. IEEE, 2012.

[TMD+20] Saran Tunyasuvunakool, Alistair Muldal, Yotam Doron, Siqi Liu, Steven

Bohez, Josh Merel, Tom Erez, Timothy Lillicrap, Nicolas Heess, and Yuval

Tassa. dm_control: Software and tasks for continuous control. Software

Impacts, 6:100022, 2020.

[TS93] Sebastian Thrun and Anton Schwartz. Issues in using function approximation

for reinforcement learning. In Proceedings of the 1993 Connectionist Models

Summer School Hillsdale, NJ. Lawrence Erlbaum, volume 6, pages 1Ű9, 1993.

[Var75] Hal R Varian. A bayesian approach to real estate assessment. Studies in

Bayesian econometric and statistics in Honor of Leonard J. Savage, pages

195Ű208, 1975.

[VHGS16] Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learn-

ing with double q-learning. In Proceedings of the AAAI conference on artifi-

cial intelligence, volume 30, 2016.

[VI19] Vladimir Vapnik and Rauf Izmailov. Rethinking statistical learning theory:

learning using statistical invariants. Machine Learning, 108(3):381Ű423, 2019.

[VWB16] Andreas Veit, Michael J Wilber, and Serge Belongie. Residual networks

behave like ensembles of relatively shallow networks. Advances in neural

information processing systems, 29, 2016.

[WH18] Yuxin Wu and Kaiming He. Group normalization. In Proceedings of the

European conference on computer vision (ECCV), pages 3Ű19, 2018.

[WSB19] Patrick Nadeem Ward, Ariella Smofsky, and Avishek Joey Bose. Improving

exploration in soft-actor-critic with normalizing Ćows policies. arXiv preprint

arXiv:1906.02771, 2019.

[WU21] Zhikang T Wang and Masahito Ueda. Convergent and efficient deep q learn-

ing algorithm. In International Conference on Learning Representations,

2021.

[WWHW19] Christina Winkler, Daniel Worrall, Emiel Hoogeboom, and Max Welling.

Learning likelihoods with conditional normalizing Ćows. arXiv preprint

arXiv:1912.00042, 2019.

84

[XSZ+19] Jingjing Xu, Xu Sun, Zhiyuan Zhang, Guangxiang Zhao, and Junyang Lin.

Understanding and improving layer normalization. Advances in Neural In-

formation Processing Systems, 32, 2019.

[YFLP21] Denis Yarats, Rob Fergus, Alessandro Lazaric, and Lerrel Pinto. Mastering

visual continuous control: Improved data-augmented reinforcement learning.

arXiv preprint arXiv:2107.09645, 2021.

[YZX22] Haonan Yu, Haichao Zhang, and Wei Xu. Do you need the entropy reward

(in practice)? arXiv preprint arXiv:2201.12434, 2022.

[ZCB+22] Dinghuai Zhang, Aaron Courville, Yoshua Bengio, Qinqing Zheng, Amy

Zhang, and Ricky TQ Chen. Latent state marginalization as a low-cost

approach for improving exploration. arXiv preprint arXiv:2210.00999, 2022.

85

	Résumé
	Abstract
	Contents
	List of tables
	List of figures
	List of acronyms and abbreviations
	Acknowledgements
	Chapter 1. Background
	1.1. Deep Learning
	1.1.1. Unsupervised Learning
	1.1.2. Normalizing Flows
	1.1.3. Autoencoders
	1.1.4. Supervised Learning

	1.2. Deep Neural Networks
	1.2.1. The Neural Tangent Kernel
	1.2.2. Stabilizing Deep Learning

	1.3. Reinforcement Learning
	1.3.1. Deep Reinforcement Learning
	1.3.2. Model-Free Reinforcement Learning
	1.3.3. Deep Q-Learning
	1.3.4. Stabilizing Deep Q-Learning

	1.4. Summary

	Chapter 2. Scaling Continuous Control
	2.1. Scaling A Maximum-Entropy Model
	2.1.1. Maximum-Entropy Reinforcement Learning
	2.1.2. Types of Probabilistic Actors

	2.2. Scaling Experimental Setup
	2.3. MuJoCo Results
	2.4. DeepMind Control Results
	2.5. Related Work
	2.6. Conclusion

	Chapter 3. Convergent Continuous Control
	3.1. Training Dynamics of Q-Learning
	3.1.1. Target Networks Do Not Guarantee Convergence
	3.1.2. Convergence with LayerNorm

	3.2. Empirical Convergence Across Action Dimensions
	3.3. LayerNorm Results and Discussion
	3.4. Fixed Asymmetry With Twin Networks
	3.5. Related Work
	3.6. Conclusion

	Chapter 4. Conclusion
	Bibliography

