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Faculté des arts et des sciences
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Résumé
Les modèles génératifs servent à générer des échantillons d’une loi de probabilité

(ex. : du texte, des images, de la musique, des vidéos, des molécules, et beaucoup
plus) à partir d’un jeu de données (ex. : une banque d’images, de texte, ou autre).
Entrainer des modèles génératifs est une tâche très difficile, mais ces outils ont un
très grand potentiel en termes d’applications. Par exemple, dans le futur lointain,
on pourrait envisager qu’un modèle puisse générer les épisodes d’une émission de
télévision à partir d’un script et de voix générés par d’autres modèles génératifs.

Il existe plusieurs types de modèles génératifs. Pour la génération d’images,
l’approche la plus fructueuse est sans aucun doute la méthode de réseaux adverses
génératifs (GANs). Les GANs apprennent à générer des images par un jeu com-
pétitif entre deux joueurs, le Discriminateur et le Générateur. Le Discriminateur
tente de prédire si une image est vraie ou fausse, tandis que le Générateur tente de
générer des images plus réalistes en apprenant à faire croire au discriminateur que
ces fausses images générées sont vraies. En complétant ce jeu, les GANs arrivent
à générer des images presque photo-réalistes. Il est souvent possible pour des êtres
humains de distinguer les fausses images (générés par les GANs) des vraies images
(ceux venant du jeu de données), mais la tâche devient plus difficile au fur et à
mesure que cette technologie s’améliore. Le plus gros défaut des GANs est que les
données générées par les GANs manquent souvent de diversité (ex. : les chats au
visage aplati sont rares dans la banque d’images, donc les GANs génèrent juste
des races de chats plus fréquentes). Ces méthodes souvent aussi souvent très in-
stables. Il y a donc encore beaucoup de chemin à faire avant l’obtention d’images
parfaitement photo-réalistes et diverses.

De nouvelles méthodes telles que les modèles de diffusion à la base de score
semblent produire de meilleurs résultats que les GANs, donc tout n’est pas gagné
pour les GANs. C’est pourquoi cette thèse n’est pas concentrée seulement sur les
GANs, mais aussi sur les modèles de diffusion. Notez que cette thèse est exclusi-
vement concentrée sur la génération de données continues (ex. : images, musique,
vidéos) plutôt que discrètes (ex. : texte), car cette dernière fait usage de méthodes
complètement différentes.

Le premier objectif de cette thèse est d’étudier les modèles génératifs de façon
théorique pour mieux les comprendre. Le deuxième objectif de cette thèse est d’in-
venter de nouvelles astuces (nouvelles fonctions objectives, régularisations, archi-
tectures, etc.) permettant d’améliorer les modèles génératifs. Le troisième objectif
est de généraliser ces approches au-delà de leur formulation initiale, pour permettre
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la découverte de nouveaux liens entre différentes approches.
Ma première contribution est de proposer un discriminateur relativiste qui es-

time la probabilité qu’une donnée réelle, soit plus réaliste qu’une donnée fausse
(inventée par un modèle générateur). Les GANs relativistes forment une nouvelle
classe de fonctions de perte qui apportent beaucoup de stabilité durant l’entraine-
ment. Ma seconde contribution est de prouver que les GANs relativistes forment
une mesure de dissimilarité. Ma troisième contribution est de concevoir une variante
adverse au appariement de score pour produire des données de meilleure qualité
avec les modèles de diffusion. Ma quatrième contribution est d’améliorer la vitesse
de génération des modèles de diffusion par la création d’une méthode numérique
de résolution pour équations différentielles stochastiques (SDEs).

Mots clés: réseaux adverses génératifs, apprentissage profond, modèles généra-
tifs, débruitage par appariement de score avec échantillonage de Langevin, débrui-
tage de modèles probabilistes de diffusion
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Abstract
Generative models are powerful tools to generate samples (e.g., images, music,

text) from an unknown distribution given a finite set of examples. Generative mod-
els are hard to train successfully, but they have the potential to revolutionize arts,
science, and business. These models can generate samples from various data types
(e.g., text, images, audio, videos, 3d). In the future, we can envision generative
models being used to create movies or episodes from a TV show given a script
(possibly also generated by a generative model).

One of the most successful methods for generating images is Generative Adver-
sarial Networks (GANs). This approach consists of a game between two players,
the Discriminator and the Generator. The goal of the Discriminator is to classify an
image as real or fake, while the Generator attempts to fool the Discriminator into
thinking that the fake images it generates are real. Through this game, GANs are
able to generate very high-quality samples, such as photo-realistic images. Humans
are still generally able to distinguish real images (from the training dataset) from
fake images (generated by GANs), but the gap is lessening as GANs become better
over time. The biggest weakness of GANs is that they have trouble generating
diverse data representative of the full range of the data distribution. Thus, there
is still much progress to be made before GANs reach their full potential.

New methods performing better than GANs are also appearing. One prime
example is score-based diffusion models. This thesis focuses on generative models
that seemed promising at the time for continuous data generation: GANs and
score-based diffusion models.

I seek to improve generative models so that they reach their full potential (Ob-
jective 1: Improving) and to understand these approaches better on a theoretical
level (Objective 2: Theoretical understanding). I also want to generalize these
approaches beyond their original setting (Objective 3: Generalizing), allowing the
discovery of new connections between different concepts/fields.

My first contribution is to propose using a relativistic discriminator, which
estimates the probability that a given real data is more realistic than a randomly
sampled fake data. Relativistic GANs form a new class of GAN loss functions that
are much more stable with respect to optimization hyperparameters. My second
contribution is to take a more rigorous look at relativistic GANs and prove that they
are proper statistical divergences. My third contribution is to devise an adversarial
variant to denoising score matching, which leads to higher quality data with score-
based diffusion models. My fourth contribution is to significantly improve the speed
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of score-based diffusion models through a carefully devised Stochastic Differential
Equation (SDE) solver.

Keywords: generative adversarial networks, deep learning, generative models,
denoising score matching, denoising diffusion probabilistic models
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1 Introduction

1.1 What are generative models?

The goal of generative modeling is to draw new samples from a probability dis-

tribution; we call this sampling from a distribution. Since the advent of deep learn-

ing, generative models have generated all sorts of complex high-dimensional data

such as images, text, music, videos, and animations. As a consequence, generative

models have the potential to revolutionize arts, science, and business. However,

training generative models is hard and comes with many hurdles.

Generative models have existed for a long time. However, the ability to generate

samples from complex high-dimensional data (e.g., images, text, music, etc.) was

only developed in the last decade. This success can be attributed to the advent of

deep learning (LeCun et al., 2015) and modern generative models such as: VAE

(Kingma and Welling, 2013), GANs (Goodfellow et al., 2020), Flow-based models

(Dinh et al., 2014, 2017), auto-regressive models (Germain et al., 2015), Implicit

Maximum Likelihood (Li and Malik, 2018), Denoising Score Matching with An-

nealed Sampling (DSL-AS) (Song and Ermon, 2019), Diffusion Reverse Processes

(Sohl-Dickstein et al., 2015), and many more.

Although generative models are more powerful than ever before, they remain

limited in their capabilities. Firstly, generating high-quality samples is very diffi-

cult, and most approaches lead to blurry images (Goodfellow et al., 2020; Larsen

et al., 2016) or produce mild artifacts (Brock et al., 2019; Karras et al., 2020). Some

models can generative realistic images (Brock et al., 2019; Karras et al., 2019), au-

dio (Oord et al., 2016), or text (Brown et al., 2020). However, these approaches

still generate plenty of unrealistic samples, clearly not part of the true data dis-

tribution. Secondly, methods that generate higher quality samples tend to be less

diverse than what we see in the true data distribution. Less common modes of the

data are often ignored (e.g., generating only blue and red cats, when black cats
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exist in the dataset); we call this phenomenon mode collapse , and it is pervasive

in GANs (Salimans et al., 2016; Arjovsky et al., 2017; Gulrajani et al., 2017).

In the simplest scenario, one may know the distribution that they want to

sample from a priori. In this case, they can use classic and semi-modern sampling

methods to generate new samples. Some of these techniques are: inverse transform

sampling (Casella and Berger, 2002), rejection sampling (Casella and Berger, 2002),

and Markov Chain Monte Carlo (MCMC) methods (Robert and Casella, 2011)

such as Metropolis-Hastings (Metropolis et al., 1953), Gibbs (Geman and Geman,

1984), and Langevin Monte Carlo (Grenander and Miller, 1994). An alternative

to sampling methods is to generate data in approximation by minimizing some

distance between real data and fake (generated) data; we call such a distance a

divergence. We discuss these fundamental techniques in Chapter 2.

Note that these techniques assume that we know the distribution of the data and

can extract related functions (e.g., density function, gradient log-density function,

cumulative distribution function, inverse cumulative distribution function, diver-

gence). In practice, however, we generally do not know the data distribution. All

we have is a dataset of samples from that distribution (e.g., a set of images, songs,

or texts); this problem set corresponds to modern generative models.

Since we do not know the distribution of the data, we must estimate the essen-

tial functions required for sampling using our dataset. For example, we can still

use LMC by estimating the density function or the gradient log-density function

(score function). To generate data by minimizing a divergence without knowing

the probability distributions, we can learn a distance between real and fake data

from only the samples. We show this in Chapter 3.

1.2 Long-term vision

Given the difficulty of the task at hand, modern approaches still have many

limitations regarding the quality and diversity of generated samples; this is where

my work comes in. I seek to be on the frontier of generative models to help them

reach their full potential.

My long-term objective is to construct a generative model that can generate

movies or TV episodes from a script (possibly also generated by a generative model);
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this is something we can envision happening in a few decades. I seek to improve

generative models in order to pave the path towards this ultimate goal. I also want

to provide better tools for artists to automatize certain aspects of their work or

directly produce art. I am highly gratified that my approach called Relativistic

GAN (Jolicoeur-Martineau, 2019) is now used (through ESRGAN (Wang et al.,

2018)) to improve the graphics of old video games (by increasing the resolution

of the textures), which makes them much more enjoyable to play (Vincent, 2019;

Patrikspacek, 2019; Papadopoulos, 2019). I take great pride in knowing that the

community uses my research.

1.3 Focus and goals of this thesis

Considering how quickly technologies change, my thesis focus on only the most

promising emerging approaches; doing so ensures that I stay ahead of the curve

and that the tools I create remain relevant for a longer time.

So far, one of the most successful approaches has been Generative Adversarial

Networks (GANs) (Goodfellow et al., 2020). This approach consists of training a

neural network (the generator) to fool a classifier (the discriminator) into thinking

that its fake generated images are actually real. GANs can generate high-quality

samples, such as photo-realistic images.

However, in recent years a new contender to GANs has arrived: score-based

diffusion models (Song and Ermon, 2019, 2020; Ho et al., 2020); this new approach

seems to perform better than GANs in terms of both quality and diversity. Score-

based diffusion models consist in adding noise to your data samples through a

Forward Diffusion Process (FDP) and then learning to reverse that process to go

from noise to data.

Since GANs and score-based diffusion models seem to be some of the most

promising approaches for continuous data generation (discrete data such as text

need different tools), this research project focuses on these two approaches (until a

new, better approach comes along).

My goals are to 1) improve generative models so that they reach their full

potential (Objective 1: Improving), 2) understand these approaches better on a

theoretical level (Objective 2: Theoretical understanding), and 3) generalize these
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approaches beyond their original setting (Objective 3: Generalizing), allowing the

discovery of new connections between different concepts/fields.

My first contribution is to propose using a relativistic discriminator, which esti-

mates the probability that a given real data is more realistic than randomly sampled

fake data. This new class of GAN loss functions is a generalization of Integral Prob-

ability Metrics GANs (Objective 3) with increased training stability (Objective 1).

My second contribution is to take a more rigorous look at relativistic GANs and

prove that they are proper statistical divergences (Objective 2). My third contribu-

tion is to devise an adversarial variant to score-based diffusion models (Objective

3), which leads to higher quality data (Objective 1). My fourth contribution is to

significantly improve the speed of score-based diffusion models through a carefully

devised Stochastic Differential Equation (SDE) solver (Objective 1).

1.4 Overview of the structure

In chapter 1, I explain what generative models are and why they matter. I

describe my long-term goal of using generative models to produce art and enter-

tainment (such as tv shows or movies). I mention that my thesis is focused on

two very promising approaches for continuous data generation: Generative Adver-

sarial Networks (GANs) and score-based diffusion models. I describe my thesis’s

three research objectives: 1) improve, 2) understand, and 3) generalize generative

models. I state my contributions.

Chapter 2 is the background section.

In Section 2.2, I provide a non-exhaustive overview of the methods used for

generating samples from a known continuous distribution. I introduce most of the

classic sampling methods and a few modern techniques. I focus mainly on Langevin

Monte Carlo (LMC) and divergence minimization, given their importance to score-

based diffusion models and GANs.

In Section 2.3, I explain how to adapt the sampling methods presented in the

previous chapter to function when we have no information on the distribution

we want to sample from, except for having a finite dataset of samples from that

distribution. First, I show how to estimate the score function (the gradient log-

density function) needed to sample from the data distribution using LMC. Second,
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I show how to estimate the divergence in divergence minimization with a critic

(classifier) network to be able to use this method without knowing the probability

density function. These two approaches form the basis of score-based diffusion

models and GANs.

In Sections 2.4 and 2.5, I respectively discuss the two generative models I study

in my thesis: score-based diffusion models and GANs.

The following Chapters consist of my four articles.

Finally, Chapter 11 concludes my thesis, discusses the impact of my research

and what may come from the future.

1.5 Excluded work

To keep my thesis succinct and coherent, I removed some of my other contri-

butions. See a list of my other work below:

1. First/Sole Author: GANs beyond divergence minimization (Objective 2)

(Jolicoeur-Martineau, 2018)

2. Co-author (I produced the experiments): Stochastic Hamiltonian Gradient

Methods for Smooth Games (Objective 2) (Loizou et al., 2020)

3. First author: Connections between Support Vector Machines, Wasserstein

distance and gradient-penalty GANs (Objective 2 and 3) (Jolicoeur-Martineau

and Mitliagkas, 2019)
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2 Background

2.1 Neural networks

This section explains the basics of convolutional neural. I do not provide all

the details but instead, show a somewhat high-level explanation of their function-

ing. For a more detailed explanation of convolutional neural networks and their

optimization, please see Goodfellow et al. (2016).

2.1.1 Artificial Neural Networks

Artificial neural networks (McCulloch and Pitts, 1943) form the basis of most

modern AI techniques and generative models. Neural networks are models that

progressively transform an input data into an output through multiple layers of

transformations.

A neural network has learnable parameters and the goal is to update the pa-

rameters over time so that the output matches the desired output (e.g., a cat image

is transformed so that the output is as close as possible to a vector (cat=1, dog=0,

car=0)).

The fact that neural networks progressively transform the data over many layers

is very powerful; the universal approximation theorem states that neural networks

with at least one hidden layer and a large enough number of neurons can approx-

imate any continuous function (Cybenko, 1989). In practice, we balance depth

(number of layers) and width (number of neurons) for efficient processing.

There are four basic components in neural networks: 1) linear layers, 2) activa-

tion functions, and 3) normalization layers.

Linear layers are simple affine transformations of the data y = βx + c that

serves to transform the data. When every node of the previous layer connects to

the next layer, we call those linear layers fully connected. With simple tabular data

(e.g., age, weight, height, hair color, salary, etc. of a person), we generally use fully
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(a) Discriminator

(b) Generator

Figure 2.1 – Neural networks used in Generative Adversarial Network
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connected layers.

Activation functions are non-linear transformations of the data (e.g., ReLU

y = max(0, x)). Adding non-linearities provides neural networks with the ability

to represent any transformation from input to output, leading to the universal

approximation theorem.

Normalization layers standardize the data, which serve to prevent variance ex-

plosion through the networks (Ioffe and Szegedy, 2015) and are especially useful

for improving training stability. They are optional.

In Figure 2.3, we show a high-level illustration of the artificial neural networks

used in Generative Adversarial Networks (GANs). The Discriminators take a data

sample and transform it into class labels. Meanwhile, the Generator takes random

noise and transforms it into fake generated data. More details on GANs will be

shown in Section 2.5. Assume that every arrow represents a multiplication (linear

transformation) and that every node contains an activation function and, option-

ally, a normalization layer.

Although powerful, adapting neural networks to handle image data is non-trivial

and is explained in the subsection below.

2.1.2 Convolutional Neural Networks (CNN)

Typically, we represent images as tensor objects of size C × H ×W where C

is the number of color channels (generally, we use three channels for RGB (Red,

Blue, and Green) colors), H is the height, and W is the width. Convolutional

Neural Networks (CNN) (Fukushima and Miyake, 1982) are a specific type of neural

network which is particularly effective to process such tensor image data.

A CNN is a neural network where the linear transformation layers are replaced

with 2D convolution filters. A 2D convolution is a weighted sum (similar to linear

layers) over a small sliding window of k× k weights. It is best understood through

visualization; please see Figure 2.2.

There are multiple reasons why we use CNNs over fully-connected neural net-

works. Firstly, CNNs are closely inspired by the brain visual system Lindsay (2021).

Secondly, fully-connected linear layers lead to an excessive number of parameters;

for example, if our model has c nodes/channels in the next layer, and we have a

3× 64× 64 image, the number of parameters is 3 ∗ 64 ∗ 64 ∗ c. Meanwhile, a typical
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Figure 2.2 – 2× 2 convolution over a small black-and-white 3× 3 image
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3× 3 convolution only requires 3 ∗ 3 ∗ 3 ∗ c parameters. Thirdly, convolutions have

translation invariance, meaning that a cat found in the top-left of the image is still

seen as a cat when found in the image’s bottom-right.

A visualization of CNNs in the use case of GANs can be found in Figure 2.1.

You can see that we process the image so that the resolution (height and width)

decreases over time to transform the high-dimensional image into a low-dimensional

vector. In practice, we find that CNNs process the images so that early layers find

edges, middle layers find simple shapes (e.g., ears, mouths), and end layers find

complex shapes (e.g., face, body) (Goodfellow et al., 2016).
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(a) Discriminator

(b) Generator

Figure 2.3 – Convolutional Neural Networks (CNNs) used in Generative Adversarial Network
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2.2 Sampling from a known continuous distribution

Sampling from finite discrete distribution is trivial, but sampling from a con-

tinuous distribution is much harder. To sample from a continuous distribution, we

generally need access to certain functions that pertain to the distribution (i.e., the

density function, inverse cumulative function, or the score function). In this chap-

ter I assume that we have access to all these functions. I will show how to generate

samples using classic and MCMC methods. I will also briefly discuss the concept of

divergence minimization as a way to generate samples in an approximate matter.

2.2.1 Classic sampling methods

2.2.1.1 Sampling from a uniform distribution

The most basic distribution is the uniform distribution. To use any sampling

method, we generally need to sample from a uniform distribution first. We can do

so through a pseudorandom number generator (PRNG) (James, 1990), such as the

highly popular Mersenne Twister (Matsumoto and Nishimura, 1998). A PRNG

follows a recursive equation to generate a sequence of integer numbers (between 0

and K). One can then sample from a standard uniform variable by taking these

integers and dividing them by K.

2.2.1.2 Inverse Transform Sampling

The standard way to sample from a continuous distribution P, as taught in

graduate mathematical statistic courses, is the Inverse Transform Sampling (ITS)

(Casella and Berger, 2002). It works in the following way:

1. Sample u ∼ U(0, 1),

2. x = F−1(u) is now a sample from P,

where F−1 is the inverse Cumulative Distribution Function (CDF).

Although very simple, this approach requires knowing the inverse CDF, which

is extremely non-trivial to compute. ITS is thus only used for simple distributions

for which we have extracted the inverse CDF.
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2.2.1.3 Rejection Sampling

To be able to sample without knowing the CDF, a classic approach is rejection

sampling (Casella and Berger, 2002). Let p be the density of P and q be the density

of a (proposal) distribution Q that is easy to sample from. Choose a small constant

M such that p(x) ≤Mq(x) ∀x; then, rejection sampling works in the following way:

1. Sample u ∼ U(0, 1),

2. Sample x from a proposal distribution q,

3. Accept x as a sample from P if u < p(x)
Mq(x)

This method generates samples from a simpler distribution and only a small pro-

portion of the samples as being part of the desired distribution. M corresponds to

the expected number of iterations needed to accept a sample. The higher the num-

ber of dimensions, the larger M needs to be. This method does not scale well to

high-dimension and can require an absurd amount of iterations for a single accept.

2.2.2 Markov chain Monte Carlo (MCMC) methods

The methods presented above either required knowing the inverse CDF or are

not scalable. This brings us to Markov chain Monte Carlo (MCMC) methods

(Robert and Casella, 2011), which form a set of highly powerful tools for sample

generations. Some of the most popular MCMC methods are Metropolis-Hastings

(Metropolis et al., 1953), Gibbs (Geman and Geman, 1984), Langevin Monte Carlo

(Grenander and Miller, 1994), and Hamiltonian (Duane et al., 1987) sampling.

These approaches start from an initialization sample (generally pure Gaussian

noise) and generate a new sample based on a random modification of the pre-

vious sample (i.e., following a Markov chain). In theory, after enough iterations,

the samples should converge to real samples of the distribution.

To converge in distribution from a Markov Chain, we need a Markov process,

which asymptotically reaches the unique stationary distribution with density p(x).

To ensure that this is the case, we need two conditions: detailed balance and

ergodicity (Robert and Casella, 2013). Ergodicity requires that the Markov process

must be aperiodic (i.e., one must not return to the sample state after a fixed amount

of steps), and the expected number of steps needed to return to a previous state

must be finite. Detailed balance is about ensuring that the process is reversible
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and that p(xi)q(xj|xi) = p(xj)q(xi|xj), where q(xi|xj) is the probability that the

state xi transitions to xj. In practice, we generally have ergodicity but not detailed

balance.

2.2.2.1 Metropolis-Hastings

To enforce detailed balanced, we can use Metropolis-Hastings (Metropolis et al.,

1953). This approach consists of accepting or rejecting the next proposed sample.

We accept the proposed sample (x′
k+1 = xk+1) with probability:

min

(
1,

p(xk+1)q(xk|xk+1)

p(xk)q(xk+1|xk)

)
; (2.1)

otherwise, we reject the proposed sample (x′
k+1 = xk).

The accept/reject step ensures that we have detailed balance, and thus the chain

{x′
k}Kk=1 produced by the process has p(x) as the density of its unique stationary

distribution.

2.2.2.2 Random Walk

A classic choice of proposed sample for the Markov Chain is xk+1 ∼ N (xk, σ
2),

where σ is a constant; this corresponds to a random Gaussian walk. The transition

probability becomes q(x′|x) = N (x′−x, σ2). Although the Random Walk proposal

works, it could lead to many rejections (especially in high-dimensions) since we

move aimlessly in any direction.

2.2.2.3 Langevin Monte Carlo (Langevin sampling)

Instead of the random walk proposal distribution, we would like a proposal dis-

tribution that brings us closer to the distribution and produces samples that are

more likely to be accepted. To achieve this goal, Langevin Monte Carlo (LMC) pro-

poses a new sample by following the gradient-log-density (i.e., a vector field which

points toward samples of increasing probabilities); this corresponds to following the

Langevin dynamics.

The (over-damped) Langevin dynamics is defined as the following Stochastic
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Differential Equation (SDE):

ẋ = ∇x log p(x) +
√
2ẇ,

where w is the standard Brownian motion. To simulate from Langevin dynamics,

we need to discretize the SDE; we can do by assuming a fixed step size λ and using

the Euler–Maruyama method (Kloeden and Platen, 2013):

xk+1 ← xk + λ∇x log p(xk) +
√
2λϵ, (2.2)

where ϵ ∼ N (0, I). The transition probability becomes q(x′|x) = N (x′ − x −
λ∇x log p(x), 2λI).

We see that this amount to Gradient Ascent of the log-density with some added

Gaussian noise. We know that the mode (most probable value of the distribution)

is reached at the maximum of p(x), which is when∇x log p(xk) = 0. Thus, following

Equation 2.2, but setting ϵ = 0 would bring the sample toward the mode. This

means that we can intuitively think of Langevin dynamics as going toward the

mode of the distribution while adding some noise to ensure that we explore areas

around the mode. This ensures a much greater acceptance ratio.

Due to the Metropolis-Hastings accept/reject step, Langevin Monte Carlo re-

quires that one knows both the density p(x) and the score function (i.e., the gradient

log-density ∇x log p(x)). Below, I show that, by decreasing the step size, we can

effectively remove the need for the accept/reject step (and thus, for the density

function).

Langevin dynamics with decreasing step sizes consists in the following iterative

process:

xk+1 ← xk + λk∇x log p(xk) +
√
2λkϵ, (2.3)

where 0 ≤ λk+1 ≤ λk,
∑∞

k=1 ϵk = 0,
∑∞

k=1 ϵ
2
k =∞.

As can be seen, we now decrease the step size over time toward zero. It has

been shown that samples at the end of this process converge in distribution to p(x)

(Welling and Teh, 2011). Notably, the probability of acceptance in the Metropolis-

Hastings step goes to 1 as the step size goes to 0; this means that we are almost

always guaranteed to accept our next proposal sample when the step size becomes

small. Due to this, in practice, the algorithm works well without any Metropolis-
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Hastings accept/reject step (Welling and Teh, 2011).

Thus, we can use Langevin dynamics with decreasing step sizes without having

access to p(x); all we need is to use this approach is the score function. In the next

chapter, I show how we can estimate the score function using a score network. This

will allow us to sample from an unknown distribution using only samples from a

dataset.

2.2.3 Divergence minimization

Although not a sampling method in the traditional sense, one can train a Gen-

erator model to produce samples from the distribution by minimizing a divergence.

We explain how this works below.

Assume we have a neural network Gθ (the Generator), which takes as input a set

of random variables z (generally standard uniform or standard Gaussian noise) and

produces an output of the same shape/dimension as the data from P. The input

noise serves to produce diversity so that there is an infinite amount of possible

generated outputs. The goal of the Generator is to produce samples of the data

distribution. We can achieve this goal by training Gθ to minimize the distance

between the distribution of its fake generated samples (Qθ) and the distribution of

real data (P). We call distances between distributions statistical divergences. We

can formalize this idea as:

min
θ
D(P ∥ Qθ) (2.4)

At the optimum, the divergence is zero, and samples from the Generator are

effectively samples from the true data distribution.

To be able to minimize a divergence, we need have a divergence D, but most

divergences are highly computationally demanding or require knowing the proba-

bility density functions of real data p(x) and fake (generated) data qθ(x). As an

example, let’s focus on a popular class of divergences called f -divergences (Rényi

et al., 1961):

Df (P ∥ Qθ) =

∫
X
qθ(x)f

(
p(x)

qθ(x)

)
dx, (2.5)

where f is a convex function and f(1) = 0.

If we do not have p(x) and qθ(x), we cannot solve this equation. However,

there are ways around this. As we will show in the next chapter, one can learn
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a divergence only using real and fake samples (without knowing p(x) or qθ(x)).

Through a learned divergence, we will be able to generate samples from an unknown

distribution using only samples from a dataset.
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2.3 Sampling from an unknown continuous

distribution

In the previous section, I introduced how to use Langevin Monte Carlo (LMC)

to sample from a distribution using only the score function (gradient log-density). I

also showed how to learn a Generator to sample from a distribution by minimizing

a divergence (distance between probability distributions), which requires knowing

the density function. However, in practice, we generally do not possess the score

function nor the density function. This chapter shows how to estimate the score

function and a divergence using samples from a dataset to allow the use of LMC

and divergence minimization when the distribution is unknown.

Note that there are many other ways of generating samples from an unknown

continuous distribution which do not follow from the classic sampling methods

introduced in the previous chapter; we mention them briefly in Chapter 1. For a

more complete literature of the subject, I recommend the Standard course on Deep

Generative Models (CS236), whose notes and slides are freely available online 1.

2.3.1 Score Matching

2.3.1.1 Traditional score matching

The most straightforward way to estimate the score function of a distribution

P through a score network sθ(x) is to solve the following problem:

min
θ

1

2
Ex∼P

[
||sθ(x)−∇x log p(x)||22

]
(2.6)

This consists of approximating the score function at every sample from a dataset.

However, we do not know ∇x log p(x), which makes this loss function completely

unusable. However, this equation can be shown to be equivalent to the following

minimization problem (Vincent, 2011):

min
θ

Ex∼P

[
tr(∇xsθ(x)) +

1

2
||sθ(x)||22

]
(2.7)

1. https://deepgenerativemodels.github.io
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Astonishingly, this equation does not depend on the actual score function; it can

be used to train the score network using only samples from the dataset. However,

due to the tr(∇xs(x)) term, this approach does not scale well to high-dimensional

data. We show another solution below.

2.3.1.2 Sliced score matching

A more scalable alternative to the traditional score matching approach is sliced

score matching (Song et al., 2020):

min
θ

Ev∼N (0,I)Ex∼P

[
vT∇xsθ(x)v +

1

2
||sθ(x)||22

]
(2.8)

Although solving 2.7 or 2.8 allows us to estimate the score function, both of

these approaches are slow. If the data has a large dimension K (e.g., for a small

3x32x32 image, K = 3072), the score network has the same dimension, and the

gradient of the score network has dimension K2 (e.g., for a small 3x32x32 image,

K2 = 9437184 dimensions). Thus, the fact that the sliced score matching approach

still relies on the score network’s gradient and does matrix multiplication is a

problem.

Besides, both previous approaches have one critical problem: any region such

that p(x) ≈ 0, will not contain samples from the dataset and will lead to regions

where the score network is undefined. In the case of a Dirac distribution (which

corresponds to a dataset of K samples where each sample is assigned a probability

1/k), we see that we only learn the score function at data samples and nowhere else.

If our goal is to use the score network as a gradient field, which points where one

should go, this will not do as we may reach such a low-density area (not containing

any training data sample) after any Langevin step. It puts us at a high risk of

getting stuck or going in random directions. The big problem being that with

complex high-dimensional data such as images, most of the space is filled with low-

density/empty areas. There is, thankfully, a solution to this problem, as shown

next.
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2.3.1.3 Denoising score matching

One way to solve the previous issue is to use Denoising Score Matching (DSM)

(Vincent, 2011):

min
s

1

2
Ep(x̃,x,σ)

[
λ(σ) ∥s(x̃, σ)−∇x̃ log qσ(x̃|x)∥22

]
(2.9)

where λ(σ) is a weighting function, p(x̃, x, σ) = qσ(x̃|x)p(x)p(σ), p(x) is the density
of the data distribution, p(σ) is the density of the level of noise, and qσ(x̃|x) is the
perturbation kernel. This approach consists in adding some noise to the data

samples so that we learn the score function over varying levels of noise.

For an optimal score network s∗(x, σ), it can be shown (Vincent, 2011) that

lim
σ→0

s(x, σ) = ∇x log p(x).

This means that we obtain the score function when the noise is zero.

In the approach by Song and Ermon (2019), they use qσ(x̃|x) = N (0, σ2I),

λ(σ) = σ2, and p(σ) is the uniform distribution over a set {σi}Li=1 corresponding to

different levels of noise; in practice, this set is defined as a geometric progression

between σ1 and σL (with L chosen according to some computational budget):

{σi}Li=1 =

{
γiσ1

∣∣∣ i ∈ {0, . . . , L− 1}, γ ≜
σ2

σ1

= ... =

(
σL

σ1

) 1
L−1

< 1

}
. (2.10)

With such Gaussian noise, the DSM loss function can then be reduced to:

min
s

1

2
Ep(x̃,x,σ)

[∥∥∥∥σs(x̃, σ) + x̃− x

σ

∥∥∥∥2
2

]
(2.11)

The optimal score network for such a loss estimates the score function at var-

ious levels of Gaussian noise corruption. At high noise levels, the score network

landscape is very smooth with support on the whole space. Meanwhile, at low noise

levels, the score network is sharp and concentrated close to real data. Thus, rather

than using s(x, 0), we could ,in theory, use s(x, σ) with a σ small enough to be close

to the truth, but large enough so that most of the support is covered (and we do

not reach an undefined region after a Langevin step). Rather than use a single σ,
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Song and Ermon (2019) propose starting with s(x, σ) where σ is large and slowly

decreasing σ until it is close to zero; this effectively corresponds to using Langevin

dynamics with decreasing step sizes and a noisy score function. We discuss this

idea in more detail in Chapter 2.4 as it forms the basis of score-based diffusion

models.

2.3.2 Divergence estimation

As mentioned in the previous chapter, most divergences, such as f -divergences,

require knowing the density function of real and fake (generated) data. For f -

divergences, a solution is to make use of their dual form (Nguyen et al., 2010)

which states that:

Df (P ∥ Q) ≥ max
C:X→R

Ex∼P [C(x)]− Ey∼Q [f ∗(C(x))] , (2.12)

where f ∗(t) = supu∈domainf
{ut− f(u)} is the Fenchel conjugate (Hiriart-Urruty

and Lemaréchal, 2012) of f .

It can be shown that the inequality (≥) of Equation 2.12 becomes an equality

(=) under certain mild conditions (Nowozin et al., 2016). Thus, we can estimate

f -divergences by solving a maximization problem.

f -divergences form a very broad set of divergences. For example, f -divergences

encompass Kullback-Leibler (KL) (Kullback, 1997) and Jensen-Shannon (JSD)

(Lin, 1991) divergences, two very popular choices of f -divergences. However, other

popular divergences, such as the Wasserstein distance (Vaserstein, 1969), are not

f -divergences; they are instead Integral Probability Metrics (IPMs). IPMs form

the following set of divergences:

IPMF(P ∥ Q) = sup
C:X→R
C∈F

Ex∼P [C(x)]− Ey∼Q [C(x)] , (2.13)

where F is a class of functions (e.g., 1-Lipschitz functions, convex functions, bounded

functions, functions with a bounded gradient norm). The class of function serves

to ensure that the supremum exists, and it is not infinity (which would be the

case if we optimized this objective over any function). Very popular divergences

such as the Wasserstein distance (Vaserstein, 1969), Total variation distance, and
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Maximum mean discrepancy (Gretton et al., 2007) are IPMs. Most divergences

used in the literature are f -divergences or IPMs.

We see that IPMs correspond to a maximization problem, just as the dual form

of f -divergences. In practice, we parametrize the critic as a neural network Cθ and

we maximize its objective function over the parameters θ. Thus, the problem of

minimizing an f-divergence or IPM can be represented as:

min
θ
D(P ∥ Qθ) = min

θ
max

ϕ
Dϕ(P ∥ Qθ), (2.14)

where Dϕ is an objective function that depends on a critic and leads to a divergence

when we choose the critic that maximize it. The critic’s objective function serves to

estimate a divergence and the goal of the generator is to minimize that divergence.

This formulation has the benefit of not depending on the density function; we can

thus estimate a divergence using only real samples from a dataset and fake samples.

In Chapter 2.5, we will show that divergence minimization, as represented in

equation 2.13, forms the basis of GANs. In addition, we will explain how to solve

the min-max problem given that it is highly non-trivial to solve.
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2.4 Score-based diffusion models

Yang Song developed Denoising Score Matching with Annealed Sampling (DSM-

AS) (Song and Ermon, 2019) during his Ph.D. at Stanford. This approach is one

of the initial iterations of what we now know as score-based diffusion models. The

idea behind it is to estimate a noisy version of the gradient log-density using a

score (neural) network (i.e., denoising score matching) and then generate samples

from the distribution through Annealed Langevin sampling (Grenander and Miller,

1994) by using the score network.

The combination of denoising score matching (DSM) with Langevin sampling

makes this approach shine as the results obtained were outstanding at the time

it was published. From my perspective and one of many others, this approach

appeared to be entirely novel and groundbreaking. In reality, this approach was

one drop in a large ocean of earlier work on diffusion processes and denoising auto-

encoders (Bengio et al., 2013; Sohl-Dickstein et al., 2015; Alain et al., 2016; Goyal

et al., 2017). Nevertheless, what really distinguished DSM-AS from earlier work

was how exceptionally well it performed (competitive with SOTA methods) and

scaled to high-dimensional data.

Given the impressive start of DSM-AS, I started studying DSM-AS and explor-

ing ways to improve it. As time went by, this approach started to show amazing

results in image generation (Song and Ermon, 2020; Ho et al., 2020; Song et al.,

2021; Ho et al., 2021; Vahdat et al., 2021). As an example, the paper by Ho et al.

(2020) came out a year after the original paper by Song and Ermon (2019) and ob-

tained results on CIFAR-10 (Krizhevsky and Hinton, 2009) better than any SOTA

generative model in terms of image quality/diversity (as determined by the Fréchet

Inception Distance (Heusel et al., 2017)). I show examples of images generated by

this variant and the improved version of DSM-AS (Song and Ermon, 2020) in 2.4

and 2.5 respectively.

In this section, I first introduce the original DSM-AS approach by Song and

Ermon (2019), which uses Langevin Monte Carlo (LMC) while using a score net-

work conditional on the amount of Gaussian noise and decreasing the level of noise.

Then, I introduce a more general framework that forms the basis of modern score-

based diffusion models. This approach works in the following way: define a forward

stochastic process which slowly corrupt real data into Gaussian noise (from t = 0
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to t = T ), use Denoising Score Matching (DSM) to estimate the score function

at any step t, and reverse the process (from t = T to t = 0) (i.e., transforming

Gaussian noise into real data). Finally, I discuss the current limitations/problems

associated with this class of techniques and briefly discuss current and possible

future solutions.

2.4.1 Denoising Score Matching with Annealed Sampling (DSM-

AS)

Figure 2.4 – Samples of humans generated through denoising diffusion models (Ho et al., 2020)

2.4.1.1 Sampling from the distribution induced by the score function

As shown in section 2.3.1.3, we can estimate a noisy version of the score function

using a conditional score network s(x, σ) which depends on the level of Gaussian

noise. Although s(x, σ) converges to the true score function when σ is small, at

that level of noise, we still have the issue of low-density areas of the space not being

well-defined. Since we cannot explore the full suport of the distribution using a

small σ, Song and Ermon (2019) suggested starting the LMC with a large σ, and

then slowly decrease σ over time. They call this approach Annealed Langevin

Sampling (ALS) and it bears strong similarity to Langevin with decreasing step
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Figure 2.5 – Samples of humans, beds, towers, and churches generated using an improved version
of denoising score matching (Song and Ermon, 2020)

sizes (Equation 2.3) except that the score network changes over time (instead of

being a fixed score function). ALS is defined formally in Algorithm 1.

Algorithm 1 Annealed Langevin Sampling

Require: sθ, {σi}Li=1, ϵ, nσ.

1: Initialize x

2: for i← 1 to L do

3: αi ← ϵ σ2
i /σ

2
L

4: for t← 1 to nσ do

5: Draw z ∼ N (0, I)

6: x← x+ αisθ(x, σi) +
√
2αiz

return x

The inner loop of ALS consists of Langevin sampling with a fixed step size.

Thus, if the number of Langevin steps L is large enough, we should converge in

distribution to the distribution implied by s(x, σ). The outer loop of ALS simulta-

neously reduces the step size, and the level of noise σ in the score network. Thus,

we start by sampling from the distribution implied by the noisy score function and

decreases σ until we are approximately sampling from the actual score function.

This allows the process to explore better the full support of the distribution (mode

coverage) while converging to the distribution. With only one small σ, the process
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would not be able to cover the distribution.

Song and Ermon (2020) found that mode coverage was poor unless starting

from a very large σ. They recommend using the maximum L2 distance between

two real data samples as the starting σ0; doing so ensures that one can quickly

move away from one mode of the distribution to another and thus sample from the

full range of the distribution. In addition, they recommend having the set of noise

levels {σi}Li=1 follow a geometric progression (i.e., σi+1 = γσi, where 0 < γ < 1),

choosing L as large as possible, and choosing the smallest noise level to not be too

small; they suggests σL = .01.

This summarizes the basic idea of DSM-AS, but a few improvements and gen-

eralizations of this approach have been made since then. I discuss them below.

2.4.2 Generalizing DSM-AS by reversing a process from data to

noise (modern score-based diffusion models)

Since the paper on DSM-AS, a different but very similar approach based on

Denoising Diffusion Processes (DDPs) has emerged (Ho et al., 2020). DDPs are

motivated very differently, and yet, they also use Denoising Score Matching and

a sampling process very similar to LMC. In this section, we explain the general

framework that leads to DSM-AS and DDPs as special cases (Song et al., 2021).

As we will show, the framework consists of defining a Forward Diffusion Process

(FDP) from real data to Gaussian noise. Then, one can generate samples from the

data distribution by going through the Reverse process from Gaussian noise to

real data. See Figure 2.6 for a visual representation of the Forward and Reverse

processes.

Figure 2.6 – Forward and Negative diffusion processes. We can define a Forward process going
from data to noise and reverse this process to go from noise to data. However, to reverse the
process, we need to know the score function at every step.
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The main difference between DSM-AS and DDPs is the choice of perturbation

kernel q(x̃|x), which underlie an assumed forward degenerative process (i.e., a pro-

cess transforming real data samples into Gaussian noise). Let t ∈ [0, . . . , T ] and

denote the sample x at time t as xt. We start from real data at x0 and choose a

perturbation q(xt|x0) so that x0 only has a negligible influence on xT . Thus, at

the end of the forward process, xT effectively does not depend on x0 and can be

sampled independently (generally as Gaussian noise).

In DSM-AS, we let the perturbation kernel be q(xt|x0) = N (x0, σ
2
t I). This

corresponds to the process resulting from the following discrete Markov Chain

xt+1|xt:

xt+1 ← xt +
√
σt+1 − σtzt,

where zt ∼ N (0, I). In the continuous-time limit, replacing {σt}Tt=1 by a function

σ(t) over t ∈ [0, 1], we obtain the following FDP (Song et al., 2021):

ẋ =

√
d[σ2(t)]

dt
ẇ. (2.15)

We call this the Variance Exploding (VE) Forward process. Importantly, if σT

is large, we have approximately that xT ∼ N (0, σ2
TI) since the impact of x0 is

minuscule compared to the added noise. Thus, xT can be sampled independently

from x0.

In DDP, the authors use the other way around; they first define the discrete

Markov Chain xt+1|xt as:

xt+1 ←
√
1− βtxt +

√
βtzt,

where {βt}Tt=1 is a set of parameters between 0 and 1. In the continuous-time limit,

replacing {βt}Tt=1 by a function β(t) over t ∈ [0, 1], we obtain the following FDP:

(Song et al., 2021):

ẋ = −1

2
β(t)x+

√
β(t)ẇ. (2.16)

We call this the Variance Preserving (VP) Forward process. The perturbation

kernel can be found to be q(xt|x0) =
√∏T

t=1[1− βt]x0+
√∏T

t=1[βt]zt. Importantly,

we see that
∏T

t=1[1 − βt] → 0 as T → ∞, which means that xT ∼ N (0, I). Thus,

xT can be sampled independently from x0.
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As we will show, we create the Forward process so that we may be able to reverse

this process in order to generate samples starting from Gaussian noise: (N (0, σTI)

with VE and N (0, I) with VP).

Since there is a Forward process from real data to Gaussian noise, there could

also be a Reverse process from Gaussian noise to real data. In fact, Anderson

(1982) showed that every Forward diffusion process of the following form:

ẋ = f(x, t) + g(t)ẇ (2.17)

can be reversed using the Reverse Diffusion Process (RDP):

ẋ = f(x, t)− g(t)2∇x log pt(x) + g(t)ẇr, (2.18)

where w̃r is the standard Brownian motion in reverse time, and pt is the time-

conditional distribution of the samples at time t. Both VE and VP Forward pro-

cesses, Equations 2.15 and 2.16 respectively, have the the form of Equation 2.17;

thus, they can be reversed using Equation 2.18.

Given that we do not possess the time-conditional score functions, we can esti-

mate them using denoising score matching in the following way:

min
θ

1

2
Ep(xt,x0,t)

[
λ(t) ∥sθ(xt, t)−∇xt log q(xt|x0)∥22

]
, (2.19)

where p(xt, x0, t) = q(xt|x0)p(x0)p(t), where p(t) ∼ U(0, T ).
As can be seen, this is simply a different way of stating 2.9. It can be shown

that for an optimal score network, we have s∗(x, t) = ∇x log pt(x) for all t.

Thus, after training a time-conditional score network, we can sample from the

data distribution by starting from Gaussian noise and solving the RDP 2.18 using

any SDE solver.

Song et al. (2021) discretized the RDP of VE and VP in the same way as

their respective Forward Process. They found that many iterations were needed to

converge well and, thus, they proposed to augment their algorithm with Langevin

Monte Carlo (LMC). They use the reverse step in an outer loop and use LMC in

an inner loop to act as a correction-step. They call this approach PC sampling,

and it is represented in Algorithm 2 for the VE process and in Algorithm 3 for the

VP process.
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Algorithm 2 PC sampling (VE SDE)

1: xN ∼ N (0, σ2
maxI)

2: for i = N − 1 to 0 do
3: x′

i ← xi+1+(σ2
i+1−σ2

i )sθ∗(xi+1, σi+1)
4: z ∼ N (0, I)

5: xi ← x′
i +
√

σ2
i+1 − σ2

i z

6: for j = 1 to M do
7: z ∼ N (0, I)
8: xi ← xi + ϵisθ∗(xi, σi) +

√
2ϵiz

9: return x0

Algorithm 3 PC sampling (VP SDE)

1: xN ∼ N (0, I)
2: for i = N − 1 to 0 do

3: x′
i ← (2−

√
1− βi+1)xi+1 + βi+1sθ∗(xi+1, i+ 1)

4: z ∼ N (0, I)

5: xi ← x′
i +
√

βi+1z
6: for j = 1 to M do
7: z ∼ N (0, I)
8: xi ← xi + ϵisθ∗(xi, i) +

√
2ϵiz

9: return x0

We see that the PC sampling resembles the Annealing sampling (Algorithm 1)

except that they add the reverse step in the outer loop. In fact, if we take small

enough steps so that σi+1 ≈ σi, the PC sampling for the VE process (Algorithm 2)

is exactly equivalent to the Annealing Sampling.

Importantly, it can be shown that the RDP 2.18 has an equivalent ODE formu-

lation. There exist an ODE such that the marginal distribution pt(x) at any time t

is the same as the one produced by the reverse SDE (Song et al., 2021). This ODE

can be shown to be:

ẋ = f(x, t)− 1

2
g(t)2∇x log pt(x). (2.20)

Thus, instead of solving an SDE, one can solve an ODE, which is generally much

easier.

The framework described above provides us with an alternate perspective in

which we are trying to reverse a destructive Forward process. This perspective is

more theoretically grounded than annealing σ over time within Langevin sampling.

It also can take advantage of ODE solvers to balance quality/speed. However,

Algorithm 2 and Algorithm 3 require more score network evaluations than Algo-

rithm 1, and the correction-step is not well theoretically justified. Also, it is not

yet clear whether using Algorithm 2, Algorithm 3, or solving the RDP 2.18 with

an ODE solver performs significantly better than the original Algorithm 1.

2.4.3 Discussion

As can be seen from the samples generated by some of the first score-based dif-

fusion models from 2019/2020 (Figures 2.4 and 2.5), the images were high-quality,
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but they still had significant visual corruptions. Given the quality limitations

at the time, I explored possible improvements to quality using adversarial score

matching (Jolicoeur-Martineau et al., 2021). Since then, progress has been steady,

and some score-based diffusion models now produce images that look even more

photo-realistic than those generated by GANs (see Figure 2.7).

Cascaded diffusion model VQ-VAE-2 BigGAN-deep

Figure 2.7 – Comparing the quality and diversity of generated red fishes from ImageNet (Ho
et al., 2021; Razavi et al., 2019; Brock et al., 2019)

Now that we have a general framework for score-based diffusion models, we need

to uncover what variation works best in terms of quality and speed. For example,

Song et al. (2021) proposed using a different FDP to align the objective closer to

maximum likelihood estimation and makes it easier to extract the log-likelihood.

Meanwhile, Nachmani et al. (2021) showed that using Gamma noise instead of

Gaussian noise leads to higher quality images.

Currently, the biggest issue with score-based diffusion models is that generating

samples is very slow and requires many iterations. More work is needed to improve

speed so that high-resolution images can be produced in a reasonable amount of

time. Ideally, we would like to find a way to obtain near real-time sample generation

in order to compete with GANs, which can generate samples in real-time. At the

time of writing, the most promising fast sampling technique seems to be Progressive

Distillation (Salimans and Ho, 2022) which manages to generate data with no

significant loss in quality through only 4 to 16 iterations.

Regarding sampling, it is also unclear why one would use LMC over other

more modern MCMC sampling methods. Either we can do better with these other

sampling methods, or something fundamentally important about LMC needs to

be uncovered. An exciting line of direction is high-order denoising score matching
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which allows using second-order Langevin dynamics to potentially sample in much

fewer iterations (Meng et al., 2021).
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2.5 Generative Adversarial Networks (GANs)

Generative Adversarial Networks (GANs) (Goodfellow et al., 2020) is considered

to be one of the best approach to generative modelling. This approach came to be

as a result of a drunken argument at the bar Les 3 Brasseurs (Giles, 2018). Ian

Goodfellow, a Ph.D. student at UdeM at the time, wondered if he could generate

realistic images by making two neural networks, the generator G and the critic C,

compete with one another. He defined the goal of C to be determining how likely a

sample is to be real or fake (i.e., C is a classifier) and the goal of G to be ”fooling”

C into thinking that the fake data generated by G are actually real.

His approach turned out to work exceptionally well, as GANs have become one,

if not the most, successful approach to generative modeling. GANs are now used

everywhere. One of its biggest successes is generating high-quality images. I show

examples of images produced by GANs in Figures 2.8, 2.9, and 2.10. As can be

observed, samples generated by GANs are very realistic, which is by the design of

the adversarial game, since it trains the generator to make samples realistic from

the perspective of the critic.

Figure 2.8 – Samples of cats generated by my Relativistic GAN (Jolicoeur-Martineau, 2019)

I start this chapter with a review of the original GAN. I show how to extend this

game to other objective functions. I show that this game can be re-interpreted as

divergence minimization (a concept we have introduced in sections 2.2.3 and 2.3.2).

I then discuss the Wasserstein distance and how this specific divergence influences

how we train GANs. I finish with a discussion on the central issues of GANs and

how we can partially fix these issues.
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Figure 2.9 – Samples generated by BigGAN (Brock et al., 2019)

Figure 2.10 – Samples of humans generated by StyleGAN2 (Karras et al., 2020)
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2.5.1 Standard GAN

In the original version of GAN (Saturating-GAN) (Goodfellow et al., 2020), we

try to solve the following game:

min
G:Z→X

max
C:X→R

−Ex∼P [log(σ(C(x)))]− Ez∼Z [log(1− σ(C(G(z))))] , (2.21)

where σ(x) is the sigmoid function, P is the distribution of real data with support

X , Z is a latent distribution (generally a multivariate normal distribution), C(x)

is the critic evaluated at x, G(z) is the generator evaluated at z, and G(z) ∼ Q,

where Q is the distribution of fake data.

This equation corresponds to a cross-entropy objective function, where the dis-

criminator D(x) = σ(C(x)) is a classifier which outputs the probability that the

the given sample x is real (from P) rather than fake (from Q). The first term of

the equation makes C(x)→∞ (or equivalently D(x)→ 1), while the second term

makes C(G(z)) → −∞ (or equivalently D(G(z)) → 0). Meanwhile, G tries to

counter by making C(G(z)) → ∞ (or equivalently D(G(z)) → 1); in other words,

D determines the probability a given sample is real and G attempt to make fake

images appear real from the point of view of the critic.

Since we cannot optimize functions directly, we parametrize G and C using

neural networks with trainable parameters θ and ϕ respectively. We train G and

C iteratively, so we denote them Gθk and Cϕk
, where k ∈ [1, . . . , K].

To train C and G to play this min-max game, we generally use Stochastic

Gradient Ascent/Descent (SGAD) (Robbins and Monro, 1951). Two choices arise:

we can train both networks successively (alternating SGAD) or simultaneously

(simultaneous SGAD).

Let OC(ϕ, θ) and OG(ϕ, θ) be respectively the objective function of C (to be

maximized) and of G (to be minimized). In the case of standard GAN, OC(ϕ, θ) =

OG(ϕ, θ) = −Ex∼P
[
log(σ(Cθ(x)))

]
− Ez∼Z [log(1− σ(Cϕ(Gθ(z))))].

Alternating SGAD consists in the following update rules:

ϕk+1 ← ϕk +∇ϕk
[OC(ϕk, θk)] , (2.22)

θk+1 ← θk −∇θk [OG(ϕk+1, θk)] . (2.23)
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Simultaneous SGAD consists in the following update rules:

ϕk+1 ← ϕk +∇ϕk
[OC(ϕk, θk)] , (2.24)

θk+1 ← θk −∇θk [OG(ϕk, θk)] . (2.25)

In practice, alternating SGAD tends to work better in GANs (Goodfellow et al.,

2020) even though both simultaneous and alternating SGAD can converge under

certain conditions (Mescheder et al., 2018). Thus, practitioners generally use al-

ternating SGAD.

Importantly, in practice, Saturating-GAN tends to have vanishing gradients;

thus, Goodfellow et al. (2020) suggested using a different formulation with the

same optimum with less risk of vanishing gradients (but as I will discuss, still tends

to happen). This alternate formulation (non-saturating-GAN) can be formulated

as to:

max
C:X→R

−Ex∼P [log(σ(C(x)))]− Ez∼Z [log(1− σ(C(G(z))))] , (2.26)

max
G:Z→X

−Ez∼Z [log(σ(C(G(z))))] , (2.27)

We see that generator still makes C(G(z))→∞ (or equivalentlyD(G(z))→ 1),

thus the goal is fundamentally the same. In practice, we use the non-saturating

version.

2.5.2 Generalizing GANs to other objective functions

Since the goal is to make C output a large positive number for real data and

a small negative number for fake data, we can generalize saturating and non-

saturating GANs to any classifier loss function. GANs can thus be defined very

generally as:

max
C:X→R

Ex∼P [f1(C(x))] + Ey∼Q [f2(C(y))] , (2.28)

min
G:Z→X

Ez∼Z [g(C(G(z)))] , (2.29)

for some choice of f1, f2, g : R→ R.
Irrespective of the objective function, GANs with a saturating loss have g =

−f2, while GANs with a non-saturating loss have g = f1. Most GAN variants use

the non-saturating loss or are such that the non-saturating and saturating losses

are the same. Unless otherwise specified, I assume the non-saturating loss function.
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There are many variants for the objective functions, but three are very popular

and successful: Non-saturating GAN, Least-Squares GAN (LSGAN) (Mao et al.,

2017), and Hinge GAN (Lim and Ye, 2017). LSGAN corresponds to f1(z) =

−(1 − z)2, f2(z) = −(1 + z)2, and g(z) = f1(z). HingeGAN (Lim and Ye, 2017)

corresponds to f1(z) = −max(0, 1 − z), f2(z) = −max(0, 1 + z), and g(z) = −z.
SGAD can be applied irrespective of the loss function used.

2.5.3 Divergence minimization perspective

I previously showed how GANs correspond to an adversarial game between two

players. However, there is a different perspective that can be used to define GANs.

From sections 2.2.3 and 2.3.2, we have seen that estimating f -divergences and IPMs

(which encompass most divergences used in the literature) can be done by training

a critic C to classify real from fake data. W had formalized this idea as:

min
θ
D(P ∥ Qθ) = min

θ
max

ϕ
Dϕ(P ∥ Qθ), (2.30)

where Dϕ is an objective function that depends on a critic.

As it turns out most GANs can be interpreted from the perspective of divergence

minimization. The critic’s objective function in GAN, LSGAN, and HingeGAN cor-

responds respectively to the Jensen-Shannon divergence (JSD) (Lin, 1991), Pearson

χ2 divergence (Lin, 1991), and Reverse KL divergence (Kullback, 1997).

2.5.4 Wasserstein distance and its influence on modern GANs

For most divergences, the mapping θ → D(P ∥ Qθ) is not continuous even when

the mapping θ → Gθ is continuous. Arjovsky et al. (2017) showed this to be the case

with Kullback-Leibler (KL) (Kullback, 1997) and the Jensen-Shannon divergence

(JSD) (Lin, 1991), two very popular choices of f -divergences. The latter, JSD, is

the divergence used in the original GAN. The fact that these divergences are not

continuous with respect to the parameters means that that optimization is difficult,

and instability is expected.

On the other, Arjovsky et al. (2017) showed that the mapping θ → W (P,Qθ) is

continuous, when W is the Wasserstein distance (Vaserstein, 1969). Furthermore,

W (P,Qθ) is differentiable everywhere. Thus, they propose using this divergence.
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Given a metric d(x1, x2), the Wasserstein’s distance is defined as:

W (P,Q) := inf
π∈Π(P,Q)

∫
M×M

d(x1, x2) dπ(x1, x2),

where Π(P,Q) is the set of all distributions with marginals P and Q and we call π a

coupling. Unless otherwise specified, we assume the metric d(x1, x2) = ||x1− x2||2.
Estimating the Wasserstein distance is far from trivial, but it can be shown

through Kantorovich-Rubinstein duality (Villani, 2008) that its dual form is a par-

ticular case of Integral Probability Metric (IPM):

IPMF(P ∥ Qθ) = sup
C:X→R
C∈F

Ex∼P [C(x)]− Ey∼Q [C(x)] , (2.31)

for some specific choice of functions F . The Wasserstein distance corresponds to

the IPM where F is the set of 1-Lipschitz functions (i.e., f(x)−f(y)
d(x,y)

≤ 1 for all

x, y ∈ X ). Thus, if we can solve the maximization problem while ensuring that the

critic is 1-Lipschitz, we can estimate the Wasserstein distance.

Given that the Wasserstein distance is continuous and differentiable everywhere,

it can make for a good choice of divergence. In practice, it has been found to work

well and make training much more stable (Arjovsky et al., 2017). Many ways to

estimate the Wasserstein distance for GAN purposes have been devised, but I will

focus on the two most popular approaches: 1) spectral normalization (Miyato et al.,

2018), and 2) gradient penalty (Gulrajani et al., 2017).

The first approach, Spectral normalization, constrains the critic to be 1-Lipschitz

by normalizing the weight matrix’s spectral norm at each layer of the neural net-

work to be Lipschitz-1 (Miyato et al., 2018). This approach is easy to apply and

does not lead to significant computing overhead.

The second approach, gradient penalty, requires a bit more background to un-

derstand. Gulrajani et al. (2017) showed that the optimal critic C∗(x) of the

Wasserstein distance (from equation 2.31) is such that for any x̂ = αx1+(1−α)x2,

0 ≤ α ≤ 1, where (x1, x2) comes from the optimal coupling π∗, we have that

||∇C∗(x̂)||2 = 1 almost everywhere. Since we do not know the optimal coupling, we

cannot sample from it. As a simple solution, Gulrajani et al. (2017) proposed to en-

force the gradient-norm one constraint using a soft penalty on every convex combi-

nation of real and fake samples; this corresponds to penalizing Ex̃[||∇x̃C(x̃)||2 − 1)2]
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to be small, where x̃ = αx1 + (1 − α)x2, α ∼ U(0, 1), x1 ∼ P, and x2 ∼ Q. This

approach is called Wasserstein GAN with gradient-penalty (WGAN-GP).

Importantly, WGAN-GP does not necessarily estimate the Wasserstein distance

since we are not sampling from π∗ (Petzka et al., 2018). However, it can be shown

(Jolicoeur-Martineau and Mitliagkas, 2019) that if d(x1, x2) = ||x1 − x2||2 and f is

a differentiable function, we have that:

||∇xf(x)||2 ≤ 1 ⇐⇒ f is 1-Lipschitz. (2.32)

This means that one should not penalize the gradient to be one, but to be less-or-

equal than one. This can be enforced by penalizing Ex̃[max(0, ||∇x̃C(x̃)||2 − 1)] to

be small (Petzka et al., 2018; Jolicoeur-Martineau and Mitliagkas, 2019).

Gradient norm penalties are highly popular in GANs as they have been shown

theoretically and empirically to help the stability, and convergence of most GANs

(Wasserstein or Non-Wasserstein) (Fedus et al., 2018; Kodali et al., 2017; Mescheder

et al., 2018; Karras et al., 2019). I have also shown that gradient penalties (and

thereby 1-Lipschitz constraints) arise in Non-Wasserstein GANs from the use of

a maximum-margin classifier as GAN critic (Jolicoeur-Martineau and Mitliagkas,

2019).

2.5.5 Discussion

GANs can generate highly realistic samples; however, they have two main flaws:

instability and mode collapse.

First, training of GANs can be highly unstable. This issue has mostly been

improved through the use of gradient penalties (Gulrajani et al., 2017), Spectral

normalization (Miyato et al., 2018), more stable loss functions (Gulrajani et al.,

2017; Jolicoeur-Martineau, 2019; Mao et al., 2017; Lim and Ye, 2017), and better

model architectures (Radford et al., 2015; Brock et al., 2019; Miyato et al., 2018;

Zhang et al., 2019; Karras et al., 2018, 2019, 2020).

Second, GANs can generate high-quality samples, but the diversity in samples

can be low. This is because GANs can solve the min-max problem simply by gen-

erating a single perfectly realistic image. Thus, without any additional constraint,

GANs tend to mode collapse. There are, however, solutions to this problem. Both

Spectral normalization and gradient penalty seem to improve diversity and reduce
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mode collapse (Miyato et al., 2018; Gulrajani et al., 2017). A theoretically grounded

solution is PACGAN (Lin et al., 2018), which consists of showing the critic more

than one sample at a time by concatenating multiple input samples into one. With

PACGAN, for samples to be considered realistic by the critic, multiple realistic

and different samples must be provided at a time (unless the true distribution has

extremely low diversity or is discrete). This ensures good diversity in theory and

practice.

Although the solutions above reduce the problems of instability and mode col-

lapse, they are unperfect. For example, Brock et al. (2019) found that gradient

penalty prevented their model from mode collapsing, but at the expense of produc-

ing much lower quality images. I had similar observations from using PACGAN.

Meanwhile, without gradient penalty, even if using Spectral normalization, Brock

et al. (2019) found that GANs inevitably mode collapse at some point in training.

Thus, more effort still needs to be made to improve GANs in order to have both

high-quality and high-diversity.
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3 Prologue to the first article

3.1 Article Details

Jolicoeur-Martineau, A. (2019). The relativistic discriminator: a key element

missing from standard GAN. International Conference on Learning Representations

(ICLR).

3.2 Context

At the time, training GANs was very difficult and generally led to severe in-

stabilities; this was especially true when trying to generate high-dimensional data

such as high-resolution images. In trying to understand GANs better, I ended up

discovering a new class of GAN loss functions which appeared to have advantages

based on a few theoretical reasons (see the three arguments in the abstract). I

then found that these relativistic loss functions were significantly more stable than

their non-relativistic counterparts. With relativistic loss functions, I successfully

generated high-quality samples in 256x256 for a very small data-set of N = 2011,

a very challenging task at the time.

I invented this approach on my own, using my single GTX 1060 GPU to train

the models. While models were training, I was unable to use my computer. I could

only leave train a model during the night or for longer when away from home. My

friends and family must have thought I was crazy, but I knew I had something

really promising. Now, Relativistic GANs have received over 500 citations and are

used by many. It seems to be particularly good in super-resolution (Wang et al.,

2018), text generation (Nie et al., 2019), and for relatively small datasets with

unruly/unstable settings.
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I refer to myself as ”we” instead of ”I” in the paper because papers need to be

anonymized during peer review, and speaking in plural makes more sense for this

purpose.

3.3 Personal contribution to the paper

I wrote the whole paper.
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4

The relativistic
discriminator: a key
element missing from
standard GAN

4.1 Abstract

In standard generative adversarial network (SGAN), the discriminator D es-

timates the probability that the input data is real. The generator G is trained

to increase the probability that fake data is real. We argue that it should also

simultaneously decrease the probability that real data is real because 1) this would

account for a priori knowledge that half of the data in the mini-batch is fake, 2)

this would be observed with divergence minimization, and 3) SGAN would be more

similar to integral probability metric (IPM) GANs.

We show that this property can be induced by using a“relativistic discriminator”

which estimate the probability that the given real data is more realistic than a

randomly sampled fake data. We also present a variant in which the discriminator

estimate the probability that the given real data is more realistic than fake data,

on average. We generalize both approaches to non-standard GAN loss functions

and we refer to them respectively as Relativistic GANs (RGANs) and Relativistic

average GANs (RaGANs). We show that IPM-based GANs are a subset of RGANs

which use the identity function.

Empirically, we observe that 1) RGANs and RaGANs are significantly more

stable and generate higher quality data samples than their non-relativistic counter-

parts, 2) Standard RaGAN with gradient penalty generate data of better quality

than WGAN-GP while only requiring a single discriminator update per generator

update (reducing the time taken for reaching the state-of-the-art by 400%), and

3) RaGANs are able to generate plausible high resolutions images (256x256) from

a very small sample (N=2011), while GAN and LSGAN cannot; these images are

of significantly better quality than the ones generated by WGAN-GP and SGAN

with spectral normalization.

The code is freely available on https://github.com/AlexiaJM/RelativisticGAN.
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4.2 Introduction

Generative adversarial networks (GANs) (Goodfellow et al., 2020) form a broad

class of generative models in which a game is played between two competing neural

networks, the discriminator D and the generator G. D is trained to discriminate

real from fake data, while G is trained to generate fake data that D will mistakenly

recognize as real. In the original GAN by Goodfellow et al. (2020), which we refer

to as Standard GAN (SGAN), D is a classifier, thus it is predicting the probability

that the input data is real. When D is optimal, the loss function of SGAN is

approximately equal to the Jensen–Shannon divergence (JSD) (Goodfellow et al.,

2020).

SGAN has two variants for the generator loss functions: saturating and non-

saturating. In practice, the former has been found to be very unstable, while the

latter has been found to more stable (Goodfellow et al., 2020). Under certain

conditions, Arjovsky and Bottou (2017) proved that, if real and fake data are

perfectly classified, the saturating loss has zero gradient and the non-saturating loss

has non-zero, but volatile gradient. In practice, this means that the discriminator

in SGAN often cannot be trained to optimality or with a too high learning rate;

otherwise, gradients may vanish and, if so, training will stop. This problem is

generally more noticeable in high-dimensional setting (e.g., high resolution images

and discriminator architectures with high expressive power) given that there are

enough degrees of freedom available to perfectly classify the training set.

To improve on SGAN, many GAN variants have been suggested using differ-

ent loss functions and discriminators that are not classifiers (e.g., LSGAN (Mao

et al., 2017), WGAN (Arjovsky et al., 2017)). Although these approaches have par-

tially succeeded in improving stability and data quality, the large-scale study by

Lucic et al. (2018) suggests that these approaches do not consistently improve on

SGAN. Additionally, some of the most successful approaches, such as WGAN-GP

(Gulrajani et al., 2017), are much more computationally demanding than SGAN.

Many of the recent successful GANs variants have been based on Integral prob-

ability metrics (IPMs) (Müller, 1997) (e.g., WGAN , WGAN-GP, Fisher GAN

(Mroueh and Sercu, 2017), Sobolev GAN (Mroueh et al., 2018)). In IPM-based

GANs, the discriminator is real-valued and constrained to a specific class of func-

tion which regularize the discriminator. See Mroueh et al. (2018) for a review of
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the different IPMs.

These IPM constraints have been shown to be beneficial even in non-IPM based

GANs. Spectral normalization (Miyato et al., 2018) improves the stability of var-

ious GANs and it consists in making the discriminator Lipschitz-1, which is the

constraint of WGAN. Similarly, the gradient penalty of WGAN-GP also provides

improve the stability of SGAN (Fedus et al., 2018). Although this shows that

certain IPM constraints improve the stability of GANs, it does not explain why

IPM-based GANs generally provide increased stability over other metrics/diver-

gences in GANs (e.g., JSD for SGAN, f -divergences for f -GANs (Nowozin et al.,

2016)).

Note that although powerful, IPM-based GANs tend to more computationally

demanding than other GANs. Certain IPM-based GANs use a gradient penalty

(e.g. WGAN-GP, Sobolev GAN) which is very computationally costly and most

IPM-based GANs need more than one discriminator update per generator update

(WGAN-GP requires at least 5 (Gulrajani et al., 2017)). Assuming equal training

time for D and G, every additional discriminator update increase training time by

a significant 50%.

In this paper, we argue that non-IPM-based GANs are missing a key ingredient,

a relativistic discriminator, which IPM-based GANs already possess. We show that

a relativistic discriminator is necessary to make GANs analogous to divergence

minimization and produce sensible predictions based on the a priori knowledge

that half of the samples in the mini-batch are fake. We provide empirical evidence

showing that GANs with a relativistic discriminator are more stable and produce

data of higher quality.

4.3 Background

4.3.1 Generative adversarial networks

GANs can be defined very generally in terms of the discriminator in the following

way:

LD = Exr∼P

[
f̃1(D(xr))

]
+ Ez∼Pz

[
f̃2(D(G(z)))

]
, (4.1)
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and

LG = Exr∼P [g̃1(D(xr))] + Ez∼Pz [g̃2(D(G(z)))] , (4.2)

where f̃1, f̃2, g̃1, g̃2 are scalar-to-scalar functions, P is the distribution of real data,

Pz is generally a multivariate normal distribution centered at 0 with variance 1,

D(x) is the discriminator evaluated at x, G(z) is the generator evaluated at z (Q
is the distribution of fake data, thus of G(z)). Note that, through the paper, we

refer to real data as xr and fake data as xf . Without loss of generality, we assume

that both LD and LG are loss functions to be minimized.

Most GANs can be separated into two classes: non-saturating and saturating

loss functions. GANs with the saturating loss are such that g̃1=−f̃1 and g̃2=−f̃2,
while GANs with the non-saturating loss are such that g̃1=f̃2 and g̃2=f̃1. Saturating

GANs are intuitive as they can be interpreted as alternating between maximizing

and minimizing the same loss function. After trainingD to optimality, the loss func-

tion is generally an approximation of a divergence (e.g., Jensen–Shannon divergence

(JSD) for SGAN (Goodfellow et al., 2020), f -divergences for F-GANs (Nowozin

et al., 2016), and Wassertein distance for WGAN (Arjovsky et al., 2017)). Thus,

training G to minimize LG can be roughly interpreted as minimizing the approx-

imated divergence (although this is not technically true; see Jolicoeur-Martineau

(2018)). On the other hand, non-saturating GANs can be thought as optimizing

the same loss function, but swapping real data with fake data (and vice-versa).

In this article, unless otherwise specified, we assume a non-saturating loss for all

GANs.

SGAN assumes a cross-entropy loss, i.e., f̃1(D(x)) = − log(D(x)) and f̃2(D(x)) =

− log(1−D(x)), whereD(x) = sigmoid(C(x)), and C(x) is the non-transformed dis-

criminator output (which we call the critic as per Arjovsky et al. (2017)). In most

GANs, C(x) can be interpreted as how realistic the input data is ; a negative number

means that the input data looks fake (e.g., in SGAN, D(x) = sigmoid(−5) = 0),

while a positive number means that the input data looks real (e.g., in SGAN,

D(x) = sigmoid(5) = 1).
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4.3.2 Integral probability metrics

IPMs are statistical divergences represented mathematically as:

IPMF (P||Q) = sup
C∈F

Ex∼P[C(x)]− Ex∼Q[C(x)],

where F is a class of real-valued functions.

IPM-based GANs can be defined using equation 1 and 2 where f̃1(D(x)) =

g̃2(D(x)) = −D(x) and f̃2(D(x)) = g̃1(D(x)) = D(x), where D(x) = C(x) (i.e., no

transformation is applied). It can be observed that both discriminator and gener-

ator loss functions are unbounded and would diverge to −∞ if optimized directly.

However, IPMs assume that the discriminator is of a certain class of function that

does not grow too quickly which prevent the loss functions from diverging. Each

IPM applies a different constraint to the discriminator (e.g., WGAN assumes a

Lipschitz D, WGAN-GP assumes that D has a gradient norm equal to 1 around

real and fake data).

4.4 Missing property of SGAN

We argue that the key missing property of SGAN is that the probability of real

data being real (D(xr)) should decrease as the probability of fake data being real

(D(xf )) increase. We provide three arguments suggesting that SGAN should have

this property.

4.4.1 Prior knowledge argument

Assuming a rational human was shown half real data and half fake data. If they

perceived all samples shown as equally real (C(xf ) ≈ C(xr) for most xr and xf ),

they would assume that each sample has probability .50 of being real. However, this

is not the case for the discriminator in SGAN. If all samples looked real (C(xf ) ≈
C(xr) ≥ 3), D would assume incorrectly that they are indeed all real (D(x) ≈ 1 for

all x). Of course, once trained with the labels, D would decrease D(xf ) and thus

would obtain more reasonable estimates. However, if D(xr) decreased as D(xf )

increased, we would have had that D(x) ≈ .50 for all x before even retraining
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D. A rational human would not require retraining. IPM-based GANs implicitly

account for the fact that some of the samples must be fake because they compare

how realistic real data is compared to fake data. This is the behavior that we would

want.

4.4.2 Divergence minimization argument

In SGAN, when optimized, we have that the discriminator loss function is equal

to the Jensen–Shannon divergence (JSD) (Goodfellow et al., 2020). The JSD is

minimized (JSD(P||Q) = 0) when D(xr) = D(xf ) =
1
2
for all xr ∈ P and xf ∈ Q

and maximized (JSD(P||Q) = log(2)) when D(xr) = 1, D(xf ) = 0 for all xr ∈ P
and xf ∈ Q. Thus, if we were directly minimizing the divergence from maximum

to minimum, we would expect D(xr) to smoothly decrease from 1 to .50 for most

xr and D(xf ) to smoothly increase from 0 to .50 for most xf (Figure 1a). However,

when minimizing the saturating loss in SGAN, we are only increasing D(xf ), we

are not decreasing D(xr) (Figure 1b). Furthermore, we are bringing D(xf ) closer

to 1 rather than .50.

This means that SGAN dynamics are very different from the minimization of

the JSD. To bring SGAN closer to divergence minimization, training the generator

should not only increase D(xf ) but also decrease D(xr) (Figure 1c). Note that

although specific to the JSD, similar dynamics are true for other divergences; when

the divergence is maximal, D(xr) andD(xf ) are very far from one another, but they

converge to the same value as the divergence approach zero. Thus, this argument

applies to other divergences.

4.4.3 Gradient argument

We compare the gradients of standard GAN and IPM-based GANs for further

insight. It can be shown that the gradients of the discriminator and generator in

non-saturating SGAN are respectively:

∇wL
GAN
D = −Exr∼P [(1−D(xr))∇wC(xr)] + Exf∼Qθ

[D(xf )∇wC(xf )] , (4.3)

∇θL
GAN
G = −Ez∼Pz [(1−D(G(z)))∇xC(G(z))JθG(z)] , (4.4)

where J is the Jacobian.
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Figure 4.1 – Expected discriminator output of the real and fake data for the a) direct minimization
of the Jensen–Shannon divergence, b) actual training of the generator to minimize its loss function,
and c) ideal training of the generator to minimize its loss function (lines are dotted when they
cross beyond the equilibrium to signify that this may or may not be necessary).

It can be shown that the gradients of the discriminator and generator in IPM-

based GANs are respectively:

∇wL
IPM
D = −Exr∼P[∇wC(xr)] + Exf∼Qθ

[∇wC(xf )], (4.5)

∇θL
IPM
G = −Ez∼Pz [∇xC(G(z))JθG(z)], (4.6)

where C(x) ∈ F (the class of functions assigned by the IPM).

From these equations, it can be observed that SGAN leads to the same dynamics

as IPM-based GANs when we have that:

1. D(xr) = 0, D(xf ) = 1 in the discriminator step of SGAN

2. D(xf ) = 0 in the generator step of SGAN.

3. C(x) ∈ F

Assuming that the discriminator and generator are trained to optimality in each

step (which we sometimes do for D, but never for G) and that it is possible to

perfectly distinguish real from the fake data (strong assumption, but generally true

early in training); we would have that D(xr) = 1, D(xf ) = 0 in the generator

step and that D(xr) = 1, D(xf ) = 1 in the discriminator step for most xr and xf

(Figure 1b). Thus, the only missing assumption would be that D(xr) = 0 in the

discriminator step.

Although the above scenario is not realistic (because we never train G to op-

timality), if all the assumptions were respected and the generator could indirectly
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influence D(xr), we would have that D(xr) = 0, D(xf ) = 1. Thus, SGAN would

have the same gradients as IPM-based GANs. We conjecture that making SGAN

more similar to IPM-based GANs could potentially improve its stability (our results

will show that it does in fact improves stability).

4.5 Method

4.5.1 Relativistic standard GAN

In standard GAN, the discriminator can be defined, in term of the non-transformed

layer C(x), as D(x) = sigmoid(C(x)). A simple way to make discriminator rela-

tivistic (i.e., having the output ofD depends on both real and fake data) is to sample

from real/fake data pairs x̃ = (xr, xf ) and define it as D(x̃) = sigmoid(C(xr) −
C(xf )).

We can interpret this modification in the following way: the discrimina-

tor estimates the probability that the given real data is more realistic

than a randomly sampled fake data . Similarly, we can define Drev(x̃) =

sigmoid(C(xf ) − C(xr)) as the probability that the given fake data is more re-

alistic than a randomly sampled real data. An interesting property of this dis-

criminator is that we do not need to include Drev in the loss function through

log(1−Drev(x̃)) because we have that 1−Drev(x̃) = 1− sigmoid(C(xf )−C(xr)) =

sigmoid(C(xr)− C(xf )) = D(x̃); thus, log(D(x̃)) = log(1−Drev(x̃)).

The discriminator and generator (non-saturating) loss functions of the Rela-

tivistic Standard GAN (RSGAN) can be written as:

LRSGAN
D = −E(xr,xf )∼(P,Q) [log(sigmoid(C(xr)− C(xf )))] . (4.7)

LRSGAN
G = −E(xr,xf )∼(P,Q) [log(sigmoid(C(xf )− C(xr)))] . (4.8)

4.5.2 Relativistic GANs

More generally, we consider any discriminator defined as a(C(xr) − C(xf )),

where a is the activation function, to be relativistic. This means that almost any
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GAN can have a relativistic discriminator. This forms a new class of models which

we call Relativistic GANs (RGANs).

Most GANs can be parametrized very generally in terms of the critic:

LGAN
D = Exr∼P [f1(C(xr))] + Exf∼Q [f2(C(xf ))] (4.9)

and

LGAN
G = Exr∼P [g1(C(xr))] + Exf∼Q [g2(C(xf ))] , (4.10)

where f1, f2, g1, g2 are scalar-to-scalar functions. If we use a relativistic discrimi-

nator, these GANs now have the following form:

LRGAN
D = E(xr,xf )∼(P,Q) [f1(C(xr)− C(xf ))] + E(xr,xf )∼(P,Q) [f2(C(xf )− C(xr))]

(4.11)

and

LRGAN
G = E(xr,xf )∼(P,Q) [g1(C(xr)− C(xf ))] + E(xr,xf )∼(P,Q) [g2(C(xf )− C(xr))] .

(4.12)

If one use the identity function (i.e., f1(y) = g2(y) = −y, f2(y) = g1(y) = y), this

results in a degenerate case since there is no supremum/maximum. However, if

one adds a constraint so that C(xr)−C(xf ) is bounded, then there is a supremum

and one arrives at IPM-based GANs. Thus, although different, IPM-based GANs

share a very similar loss function focused on the difference in critics.

Importantly, g1 is normally ignored in GANs because its gradient is zero since

the generator does not influence it. However, in RGANs, g1 is influenced by fake

data, thus by the generator.

4.5.3 Relativistic average GANs

The discriminator has a very different interpretation in SGAN compared to

RSGAN. In SGAN, D(x) estimates the probability that x is real, while in RGANs,

D(xr, xf ) estimates the probability that xr is more realistic than xf . As a middle

ground, we developed an alternative to the Relativistic Discriminator, which retains

approximately the same interpretation as the discriminator in SGAN while still

being relativistic.

We propose the Relativistic average Discriminator (RaD) which compares the
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critic of the input data to the average critic of samples of the opposite type. The

discriminator loss function for this approach can be formulated as:

LRaSGAN
D = −Exr∼P

[
log
(
D̄(xr)

)
)
]
− Exf∼Q

[
log
(
1− D̄(xf )

)]
, (4.13)

where

D̄(x) =

sigmoid(C(x)− Exf∼QC(xf )) if x is real

sigmoid(C(x)− Exr∼PC(xr)) if x is fake.
(4.14)

RaD has a more similar interpretation to the standard discriminator than the rel-

ativistic discriminator. With RaD, the discriminator estimates the prob-

ability that the given real data is more realistic than fake data, on

average .

As before, we can generalize this approach to work with any GAN loss function

using the following formulation:

LRaGAN
D = Exr∼P

[
f1
(
C(xr)− Exf∼QC(xf )

)
)
]
+ Exf∼Q [f2 (C(xf )− Exr∼PC(xr))] .

(4.15)

LRaGAN
G = Exr∼P

[
g1
(
C(xr)− Exf∼QC(xf )

)
)
]
+ Exf∼Q [g2 (C(xf )− Exr∼PC(xr))] .

(4.16)

We call this general approach Relativistic average GAN (RaGAN).

4.6 Experiments

Experiments were conducted on the CIFAR-10 dataset (Krizhevsky and Hinton,

2009) and the CAT dataset (Zhang et al., 2008). Code was written in Pytorch

(Paszke et al., 2017) and models were trained using the Adam optimizer (Kingma

and Ba, 2014) for 100K generator iterations with seed 1 (which shows that we did

not fish for the best seed, instead, we selected the seed a priori). We report the

Fréchet Inception Distance (FID) (Heusel et al., 2017), a measure that is generally

better correlated with data quality than the Inception Distance (Salimans et al.,

2016) (Borji, 2019); lower FID means that the generated images are of better

quality.
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For the models architectures, we used the standard CNN described by Miyato

et al. (2018) on CIFAR-10 and a relatively standard DCGAN architecture (Radford

et al., 2015) on CAT (see Appendix). We also provide the source code required to

replicate all analyses presented in this paper.

4.6.1 CIFAR-10

In these analyses, we compared standard GAN (SGAN), least-squares GAN

(LSGAN), Wassertein GAN improved (WGAN-GP), Hinge-loss GAN (HingeGAN)

(Miyato et al., 2018), Relativistic SGAN (RSGAN), Relativistic average SGAN

(RaSGAN), Relativistic average LSGAN (RaLSGAN), and Relativistic average

HingeGAN (RaHingeGAN) using the standard CNN architecture on stable setups

(See Appendix for details on the loss functions used). Additionally, we tested

RSGAN and RaSGAN with the same gradient-penalty as WGAN-GP (named

RSGAN-GP and RaSGAN-GP respectively).

We used the following two known stable setups: (DCGAN setup) lr = .0002,

nD = 1, β1 = .50 and β2 = .999 (Radford et al., 2015), and (WGAN-GP setup)

lr = .0001, nD = 5, β1 = .50 and β2 = .9 (Gulrajani et al., 2017), where lr is the

learning rate, nD is the number of discriminator updates per generator update, and

β1, β2 are the ADAM momentum parameters. For optimal stability, we used batch

norm (Ioffe and Szegedy, 2015) in G and spectral norm (Miyato et al., 2018) in D.

Results are presented in Table 1. We observe that RSGAN and RaSGAN gen-

erally performed better than SGAN. Similarly, RaHingeGAN performed better

than HingeGAN. RaLSGAN performed on par with LSGAN, albeit sightly worse.

WGAN-GP performed poorly in the DCGAN setup, but very well in the WGAN-

GP setup. RasGAN-GP performed poorly; however, RSGAN-GP performed bet-

ter than all other loss functions using only one discriminator update per generator

update. Importantly, the resulting FID of 25.60 is on par with the lowest FID

obtained for this architecture using spectral normalization, as reported by Miyato

et al. (2018) (25.5). Overall, these results show that using a relativistic discrimi-

nator generally improve data generation quality and that RSGAN works very well

in conjunction with gradient penalty to obtain state-of-the-art results.
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Table 4.1 – Fréchet Inception Distance (FID) at exactly 100k generator iterations on the CIFAR-
10 dataset using stable setups with different GAN loss functions. We used spectral norm in D
and batch norm in G. All models were trained using the same a priori selected seed (seed=1).

lr = .0002 lr = .0001
β = (.50, .999) β = (.50, .9)

Loss nD = 1 nD = 5

SGAN 40.64 41.32
RSGAN 36.61 55.29
RaSGAN 31.98 37.92

LSGAN 29.53 187.01
RaLSGAN 30.92 219.39

HingeGAN 49.53 80.85
RaHingeGAN 39.12 37.72

WGAN-GP 83.89 27.81
RSGAN-GP 25.60 28.13
RaSGAN-GP 331.86

4.6.2 CAT

CAT is a dataset containing around 10k pictures of cats with annotations.

We cropped the pictures to the faces of the cats using those annotations. After

removing outliers (hidden faces, blurriness, etc.), the CAT dataset contained 9304

images ≥ 64x64, 6645 images ≥ 128x128, and 2011 images ≥ 256x256. The CAT

dataset is particularly challenging due to its small sample size and high-resolution

images; this makes it perfect for testing the stability of different GAN loss functions.

We trained different GAN loss functions on 64x64, 128x128, 256x256 images.

For 256x256 images, we compared RaGANs to known stable approaches: Spec-

tralSGAN (SGAN with spectral normalization in D) and WGAN-GP. Although

some approaches were able to train on 256x256 images, they did so with signifi-

cant mode collapse. To alleviate this problem, for 256x256 images, we packed the

discriminator (Lin et al., 2018) (i.e., D took a concatenated pair of images instead

of a single image). We looked at the minimum, maximum, mean and standard

deviation (SD) of the FID at 20k, 30k, ..., 100k generator iterations; results are

presented in Table 2.

Overall, we observe lower minimum FID, maximum FID, mean and standard
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Table 4.2 – Minimum (min), maximum (max), mean, and standard deviation (SD) of the Fréchet
Inception Distance (FID) calculated at 20k, 30k . . . , 100k generator iterations on the CAT dataset
with different GAN loss functions. The hyper-parameters used were lr = .0002, β = (.50, .999),
nD = 1, and batch norm (BN) in D and G. All models were trained using the same a priori
selected seed (seed=1). Note: A missing number imply that the model did not converge and
became stuck in the first few iterations.

Loss Min Max Mean SD

64x64 images (N=9304)
SGAN 16.56 310.56 52.54 96.81
RSGAN 19.03 42.05 32.16 7.01
RaSGAN 15.38 33.11 20.53 5.68

LSGAN 20.27 224.97 73.62 61.02
RaLSGAN 11.97 19.29 15.61 2.55

HingeGAN 17.60 50.94 32.23 14.44
RaHingeGAN 14.62 27.31 20.29 3.96

RSGAN-GP 16.41 22.34 18.20 1.82
RaSGAN-GP 17.32 22 19.58 1.81

128x128 images (N=6645)
SGAN - - - -

RaSGAN 21.05 39.65 28.53 6.52

LSGAN 19.03 51.36 30.28 10.16
RaLSGAN 15.85 40.26 22.36 7.53

256x256 images (N=2011)
SGAN1 - - - -
RaSGAN 32.11 102.76 56.64 21.03

SpectralSGAN 54.08 90.43 64.92 12.00

LSGAN1 - - - -
RaLSGAN 35.21 299.52 70.44 86.01

WGAN-GP 155.46 437.48 341.91 101.11

deviation (sd) for RGANs and RaGANs than their non-relativistic counterparts

(SGAN, LSGAN, RaLSGAN).

In 64x64 resolution, both SGAN and LSGAN generated images with low FID,

but they did so in a very unstable matter. For example, SGAN went from a FID

of 17.50 at 30k iterations, to 310.56 at 40k iterations, and back to 27.72 at 50k

iterations. Similarly, LSGAN went from a FID of 20.27 at 20k iterations, to 224.97
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at 30k iterations, and back to 51.98 at 40k iterations. On the other hand, RaGANs

were much more stable (lower max and SD) while also resulting in lower minimum

FID. Using gradient-penalty did not improve data quality; however, it reduced the

SD lower than without gradient penalty, thus increasing stability further.

SGAN was unable to converge on 128x128 or bigger images and LSGAN was

unable to converge on 256x256 images. Meanwhile, RaGANs were able to gen-

erate plausible images with low FID in all resolutions. Although SpectralSGAN

and WGAN-GP were able to generate 256x256 images of cats, the samples they

generated were of poor quality (high FID). Thus, in this very difficult setting, rela-

tivism provided a greater improvement in quality than gradient penalty or spectral

normalization.

4.7 Conclusion and future work

In this paper, we proposed the relativistic discriminator as a way to fix and

improve on standard GAN. We further generalized this approach to any GAN loss

and introduced a generally more stable variant called RaD. Our results suggest

that relativism significantly improve data quality and stability of GANs at no

computational cost. Furthermore, using a relativistic discriminator with other tools

of the trade (spectral norm, gradient penalty, etc.) may lead to better state-of-the-

art.

Future research is needed to fully understand the mathematical implications of

adding relativism to GANs. Furthermore, our experiments were limited to certain

loss functions using only one seed, due to computational constraints. More exper-

iments are required to determine which relativistic GAN loss function is best over

a wide-range of datasets and hyper-parameters. We greatly encourage researchers

and machine learning enthusiasts with greater computing power to experiment fur-

ther with our approach.
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5 Prologue to the second
article

5.1 Article Details

Jolicoeur-Martineau, A. (2020). On Relativistic f -Divergences. International

Conference on Machine Learning (ICML).

5.2 Context

After writing the paper on Relativistic GANs, I wanted to understand them

further from a strong theoretical point-of-view. In this paper, I took a more rig-

orous look at Relativistic GANs. I showed that f-divergences with a relativistic

discriminator lead to relativistic f-divergences, and I proved that they were proper

statistical divergences. I studied the weak topology of the divergence and showed

how to construct unbiased estimators. Unbiased estimators performed worse em-

pirically than biased estimators. In the end, this work left me with more questions

than answers!

I refer to myself as ”we” instead of ”I” in the paper because papers need to be

anonymized during peer review, and speaking in plural makes more sense for this

purpose.

5.3 Personal contribution to the paper

I wrote the whole paper.
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6 On relativistic f-divergences

6.1 Abstract

We take a more rigorous look at Relativistic Generative Adversarial Networks

(RGANs) and prove that the objective function of the discriminator is a statistical

divergence for any concave function f with minimal properties (f(0) = 0, f ′(0) ̸= 0,

supx f(x) > 0). We devise additional variants of relativistic f -divergences. We

show that the Wasserstein distance is weaker than f -divergences which are weaker

than relativistic f -divergences. Given the good performance of RGANs, this sug-

gests that Wasserstein GAN does not performs well primarily because of the weak

metric, but rather because of regularization and the use of a relativistic discrimi-

nator. We introduce the minimum-variance unbiased estimator (MVUE) for Rela-

tivistic GANs and show that it does not perform better. We show that the estimator

of Relativistic average GANs (RaGANs) is asymptotically unbiased and that the

finite-sample bias is small; removing this bias does not improve performance.

6.2 Introduction

Generative adversarial networks (GANs) (Goodfellow et al., 2020) are a very

popular approach to approximately generate data from a complex probability dis-

tribution using only samples of data (without any information on the true data dis-

tribution). Most notably, it has been very successful at generating photo-realistic

images (Karras et al., 2018, 2019). It consists in a game between two neural net-

works, the generator G and the discriminator D. The goal of D is to classify real

from fake (generated) data. The goal of G is to generate fake data that appears to

be real, thus ”fooling”D into thinking that fake data is actually real.
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There are many GAN variants and most of them consist of changing the loss

function of D. To name a few: Standard GAN (SGAN) (Goodfellow et al., 2020),

Least-Squares GAN (LSGAN) (Mao et al., 2017), Hinge-loss GAN (HingeGAN)

(Miyato et al., 2018), Wasserstein GAN (WGAN) (Arjovsky et al., 2017).

For most GAN variants, training D is equivalent to estimating a divergence:

SGAN estimates the Jensen–Shannon divergence (JSD), LSGAN estimates the

Pearson χ2 divergence, HingeGAN estimates the Reverse-KL divergence, andWGAN

estimates the Wasserstein distance. Even more generally, f -GANs (Nowozin et al.,

2016) estimate any f -divergence (which includes most of the popular divergences),

while IPM-based GANs (Mroueh and Sercu, 2017) estimate any Integral proba-

bility metric (IPM) (Müller, 1997). Thus, intuitively, GANs can be thought of as

estimating a diverge and then minimizing it (this is not technically correct; see

Jolicoeur-Martineau (2018)).

Recently, Jolicoeur-Martineau (2019) showed that IPM-based GANs possess

a unique type of discriminator which they call a Relativistic Discriminator (RD).

They explained that one can construct f -GANs while using a RD and that doing so

improves the stability of the training and quality of generated data. They called this

approach Relativistic GANs (RGANs). They proposed two variants: Relativistic

paired GANs (RpGANs) 1 and Relativistic Average GANs (RaGANs).

Jolicoeur-Martineau (2019) provided mathematical and intuitive arguments as

to why using a Relativistic Discriminator (RD) may be helpful. However, they

did not prove that the loss functions are mathematically sensible. Furthermore,

the estimators that they used are not the minimum-variance unbiased estimators

(MVUE).

The contributions of this paper are the following:

1. We prove that the objective functions of the discriminator in RGANs are

divergences (relativistic f -divergences).

2. We devise additional variants of Relativistic f -divergences.

3. We show that the Wasserstein Distance is weaker than f -divergences which

are weaker than relativistic f -divergences.

4. We present the minimum-variance unbiased estimator (MVUE) of RpGANs

and show that using it hinders the performance of the generator.

1. We added the word ”paired” to better distinguish the variant with paired real/fake data
(originally called RGANs) and the general approach called Relativistic GANs (RGANs).
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5. We show that RaGANs are only asymptotically unbiased, but that the finite-

sample bias is small. Removing this bias does not improve the performance

of the generator.

6.3 Background

For the rest of the paper, we will refer to the ”critic”C(x) instead of the discrim-

inator D(x). The critic is the discriminator before applying the activation function

(D(x) = a(C(x)), where a is an activation function and C(x) ∈ R). Intuitively,

the critic can be thought of as describing how realistic x is. In the case of SGAN

and HingeGAN, a large C(x) means that x is realistic, while a small C(x) means

that x is not realistic. We use this notation because Relativistic GANs are defined

in terms of the critic rather than the discriminator.

6.3.1 Generative Adversarial Networks

GANs can be defined very generally in the following way:

sup
C:X→R

Ex∼P [f1(C(x))] + Ey∼Q [f2(C(y))] , (6.1)

sup
G:Z→X

Ex∼P [g1(C(x))] + Ez∼Z [g2(C(G(z)))] , (6.2)

where f1, f2, g1, g2 : R → R, P is the distribution of real data with support X ,
Z is the latent distribution (generally a multivariate normal distribution), C(x)

is the critic evaluated at x, G(z) is the generator evaluated at z, and G(z) ∼ Q,

where Q is the distribution of fake data. See Brock et al. (2019) for details on how

different choices of Z performs. The critic and the generator are generally trained

with stochastic gradient descent (SGD) in alternating steps.

Most GANs can be separated in two classes: non-saturating and saturating loss

functions. GANs with the saturating loss are such that g1=−f1 and g2=−f2, while
GANs with the non-saturating loss are such that g1=f2 and g2=f1. In this paper,

we will assume that the non-saturating loss is used as it generally works best in

practice (Goodfellow et al., 2020) (Nowozin et al., 2016). Note that g1 generally
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has no impact on training since its gradient with respect to G is zero; we can thus

ignore it.

Although not always the case, the most popular GAN loss functions (SGAN, LS-

GAN with labels -1/1, HingeGAN, WGAN) are symmetric (i.e., f2(x) = f1(−x)).
For simplicity, in this paper, we restrict ourselves to symmetric loss functions.

Non-saturating Symmetric GANs (SyGANs) can be represented more simply

as:

sup
C:X→R

Ex∼P [f(C(x))] + Ey∼Q [f(−C(y))] , (6.3)

sup
G:Z→X

Ez∼Z [f(C(G(z)))] , (6.4)

for some function f : R → R. For easier optimization, we generally want f to be

concave with respect to the critic. This is the case in symmetric f -GANs.

In this paper, we restrict our relativistic divergences to symmetric cases with

concave f . Although this may be somewhat constraining, not making these as-

sumptions would be very problematic for GANs. By not assuming concavity, we

could have an objective function that diverges to infinity (and thus an infinite di-

vergence). This is particularly problematic for GANs because early in training, we

expect P and Q to be perfectly separated (because of fully disjoint supports). This

would cause the objective function to explode towards infinity and thereby causing

severe instabilities. The Kullback–Leibler (KL) divergence is a good example of

such a problematic divergence for GANs. If a single sample from the support of Q
is not part of the support of P, the divergence will be ∞. Also, note that the dual

form of the KL divergence cannot be represented as a SyGAN with equation (3)

since f1(x) = x and f2(x) = −ex−1 are not symmetric (Nowozin et al., 2016).

6.3.2 Integral Probability Metrics

Rather than using a concave function f to ensure a maximum on the objective

function, IPM-based GANs instead force the critic to respect some constraint so

that it does not grow too quickly. IPM-based GANs are defined in the following

way:

sup
C:X→R
C∈F

Ex∼P [C(x)]− Ey∼Q [C(y)] , (6.5)
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sup
G:Z→X

Ez∼Z [C(G(z))] , (6.6)

where F is a class of functions such that the IPM is not infinite. See Mroueh et al.

(2018) for an extensive review of the choices of F .

6.3.3 Relativistic GANs

Rather than training the critic on real and fake data separately, Relativistic

GANs tries to maximize the critic’s difference (CD). In Relativistic paired GANs

(RpGANs), the CD is defined as C(x)−C(y), while in Relativistic average GANs

(RaGANs), the CD is defined as C(x) − E
y∼Q

C(y) (or vice-versa). The CD can be

understood as how much more realistic real data is from fake data. The optimal

size of the CD is determined by the choice of f . With a least-square loss, the CD

must be exactly equal to 1. On the other hand, with a log-sigmoid loss, the CD is

grown to around 2 or 3 (after-which the gradient of f vanishes to zero). This will

be explained in more details in the next section. Again, we focus only on choices

of f that have symmetry (as done with SyGANs).

Relativistic paired GANs (RpGANs) are defined in the following way:

sup
C:X→R

E
x∼P
y∼Q

[f (C(x)− C(y))] , (6.7)

sup
G:Z→X

E
x∼P
z∼Z

[f (C(G(z))− C(x))] . (6.8)

Relativistic average GANs (RaGANs) are defined in the following way:

sup
C:X→R

E
x∼P

[
f

(
C(x)− E

y∼Q
C(y)

)]
+ E

y∼Q

[
f

(
E

x∼P
C(x)− C(y)

)]
, (6.9)

sup
G:Z→X

E
z∼Z

[
f
(
C(G(z))− E

x∼P
C(x)

)]
+ E

x∼P

[
f

(
E

z∼Pz

C(G(z))− C(x)

)]
. (6.10)

6.4 Relativistic Divergences

We define statistical divergences in the following way:
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Definition 6.4.1. Let P and Q be probability distributions and S be the set of all

probability distributions with common support. A function D : (S, S)→ R>0 is a

divergence if it respects the following two conditions:

D(P,Q) ≥ 0

D(P,Q) = 0 ⇐⇒ P = Q.

In other words, divergences are distances between probability distributions. The

distribution of real data (P) is fixed and our goal is to modify the distribution of fake

data (Q) so that the divergence decreases over time through the training process.

It is important to show that we use a divergence; this ensures that it is not possi-

ble to obtain a critic which cannot distinguish real from fake sample (D(P,Q) = 0)

when the two distributions (real and fake) are not the same (P ̸= Q). If we did

not have a divergence, it could be possible to reach a situation where the generator

cannot learn (since the critic returns the same value for real and fake samples)

while the generator still isn’t generating samples from the real distribution.

6.4.1 Main Theorem

As discussed in the introduction, in most GANs, the objective function of the

critic at optimum is a divergence. We show that the objective function of the critic

in RpGANs, RaGANs, and other variants also estimate a divergence. The theorem

is as follows:

Theorem 1. Let f : R → R be a concave function such that f(0) = 0, f is

differentiable at 0, f ′(0) ̸= 0, supx f(x) = M > 0, and arg supx f(x) > 0. Let P
and Q be probability distributions with support X . Let M = 1

2
P + 1

2
Q. Then, we
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have that

DRp
f (P,Q) = sup

C:X→R
2 E
x∼P
y∼Q

[f (C(x)− C(y))]

DRa
f (P,Q) = sup

C:X→R
E

x∼P

[
f

(
C(x)− E

y∼Q
C(y)

)]
+

E
y∼Q

[
f

(
E

x∼P
C(x)− C(y)

)]
DRalf

f (P,Q) = sup
C:X→R

2 E
x∼P

[
f

(
C(x)− E

y∼Q
C(y)

)]
DRc

f (P,Q) = sup
C:X→R

E
x∼P

[
f
(
C(x)− E

m∼M
C(m)

)]
+

E
y∼Q

[
f
(

E
m∼M

C(m)− C(y)
)]

are divergences.

We ask that the supremum of f(x) is reached at some positive x (or at ∞).

This is purely to ensure that a larger CD can be interpreted as leading to a larger

divergence (rather than the opposite). This does not reduce the generality of The-

orem 3.1. If f(x) is maximized at x < 0, we have that g(x) = f(−x) is maximized

at x > 0 and one can simply use g instead of f .

We require that f is differentiable at zero and its derivative to be non-zero.

This assumption may not be necessary, but it is needed for one of our main lemma

which we use to prove that these objective functions are divergences.

Note that DRp
f (P,Q) corresponds to RpGANs, DRa

f (P,Q) corresponds to Ra-

GANs, DRalf
f (P,Q) corresponds to a simplified one-way version of RaGANs (Ralf-

GANs), and DRc
f (P,Q) corresponds to a new type of RGAN called Relativistic

centered GANs (RcGANs). RalfGANs are not particularly interesting as they sim-

ply represent a simpler version of RaGANs. On the other hand, RcGANs are

interesting as they center the critic scores using the mean of the whole mini-batch

(rather than the mean of only real or only fake mini-batch samples). This diver-

gence also has similarities to the Jensen–Shannon divergence (JSD) since the JSD

is the sum of the KL-divergence between P and M to the KL-divergence between

Q and M.

A logical extension to RcGANs would be to standardize the critic scores; how-

ever, this would not lead to a divergence given that we could not control the size of
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the elements inside f . To make it a divergence, we would need a learn-able scaling

weight (as in batch norm (Ioffe and Szegedy, 2015)), but this would counter the ef-

fect of the standardization. Thus, standardizing and scaling would just correspond

to an equivalent re-parametrization of DRc
f .

A sketch of the proof can be found below; the full proof is found in Appendix

A.

6.4.2 Sketch of the Proof

Although the four divergences need separate proofs, a similar framework is

used in each of them. Each proof consists of three steps. For clarity of notation, let

Df (P,Q) = sup
C:X→R

F (P,Q, C, f) be the divergence, where F is any of the objective

functions in Theorem 3.1.

First, we show that Df (P,Q) ≥ 0. This is easily proven by taking the simplest

possible choice of critic, which does not depend on the probability distributions,

i.e., Cw(x) = k for all x. This critic always leads to f(0) and thus to a objective

function equal to 0. This means that

Df (P,Q) = sup
C:X→R

F (P,Q, C, f) ≥ F (P,Q, Cw, f) = 0.

Second, we show that P = Q =⇒ Df (P,Q) = 0. This step generally relies on

Jensen’s inequality (for concave functions) which we use to show that Df (P,P) ≤ 0.

Given that Df (P,P) ≥ 0 and Df (P,P) ≤ 0, we have that Df (P,P) = 0.

Third, we show that Df (P,Q) = 0 =⇒ P = Q. This step is by far the

most difficult to prove. Instead of showing it directly, we instead prove it by

contraposition, i.e., we show that P ̸= Q =⇒ Df (P,Q) > 0. To prove this,

we use the fact that if P ̸= Q, there must be values of the probability density

functions, p(x) and q(x) respectively, such that p(x) > q(x) (and vice versa). Let

T = arg supS P(S)−Q(S), we know that this set is not empty. Note that when P
and Q have probability density functions p(x) and q(x) respectively, we have that

T = {x|p(x) > q(x)}. To make the proof as simple as possible, we use the following

sub-optimal critic:

C ′(x) =

∇ if x ∈ T

0 else,
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where ∇ ≠ 0. This critic function is very simple, but, as we will show, there exists

a ∇ > 0 such that this leads to an objective function greater than 0 which means

that the divergence is also greater than 0.

With this critic in mind, our goal is to transform the problem into the following:

Df (P,Q) = sup
C:X→R

F (P,Q, C, f) ≥ F (P,Q, C ′, f)

≥ L(∇)

> 0,

where L(∇) = af(∇) + bf(−∇), for some a > 0 and b > 0 s.t. a > b. We have

been able to show this with all divergences.

We want to find a ∇ > 0 large enough so that the positive term (f(∇)) is big,
but small enough so that the negative term (f(−∇)) is not too big. The main

caveat is that, by concavity, f(∇) ≤ |f(−∇)|. This means that the negative term

is always bigger in absolute value than the positive term. This is problematic, since

a could be be very close to b and we want af(∇) > bf(−∇) to get L(∇) > 0 which

proves that we have a divergence. The solution is to choose ∇ to be very small.

By continuity of the concave function, if we make ∇ small enough (very close to

0), we can reach a point where (f(∇) ≈ −f(−∇)). In which case, if a = b+ ϵ, we

have that

L(∇) = af(∇) + bf(−∇) ≈ af(∇)− bf(∇)

= bf(∇) + ϵf(∇)− bf(∇)

= ϵf(∇)

> 0.

In the actual proof, we show that there always exists a δ > 0 small enough such

that any ∇ ∈ (0, δ) leads to L(∇) > 0. This concludes the sketch of the proof.

6.4.3 Subtypes of Divergences

Figure 1 shows three examples of concave f with the necessary properties to be

used in relativistic divergences; they are the concave functions used in SGAN, LS-

GAN (with labels 1/-1), and HingeGAN. Their respective mathematical functions
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Figure 6.1 – Plots of f with respect to the critic’s difference (CD) using three appropriate choices
of f for relativistic divergences. The bottom gray line represents f(0) = 0; the divergence is
zero if all CDs are zero. The above gray line represents the maximum of f ; the divergence is
maximized if all CDs leads to that maximum.

are

fS(z) = log( sigmoid(z)) + log(2), (6.11)

fLS(z) = −(z − 1)2 + 1, (6.12)

fHinge(z) = −max(0, 1− z) + 1. (6.13)

Interestingly, we see that they form three different types of functions. Firstly,

we have functions that grow exponentially less as x increases and thus reach their

supremum at ∞. Secondly, we have functions that grow to a maximum and then

forever decrease (thus penalizing large CDs). Thirdly, we have functions that grow

to a maximum and then never change. SGAN is of the first type, LSGAN is of the

second, and HingeGAN is of the third type.
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This shows that for all three types, we have that the CD is only encouraged to

grow until a certain point. With the first type, we never truly force the CD to stop

growing, but the gradients vanish to zero. Thus, SGD effectively prevents the CDs

from growing above a certain level (sigmoid saturates at around 2 or 3).

It is useful to keep in mind that Figure 1 also represents the concave functions

used for SyGANs, in which case f applies to real and fake data separately (f(x)

and f(−y)).

6.4.4 Weakness of the Divergence

The paper by Arjovsky et al. (2017) on using the Wasserstein distance (and

other IPMs) for GANs has been extremely influential. In this paper, the authors

suggest that the Wasserstein distance is more appropriate than f -divergences for

training a critic since it induces the weakest topology possible. Rather than giving

a formal definition in terms of topologies, we use a simpler definition (as also done

by Arjovsky et al. (2017)):

Definition 6.4.2. Let P be a probability distribution with support X , (Pn)n∈N be a

sequence of distributions converging to P, and D1 and D2 be statistical divergences

(per definition 3.1).

We say that D1 is weaker than D2 if we have that:

D2(Pn,P)→ 0 =⇒ D1(Pn,P)→ 0 ∀ (Pn)n∈N ,

but the converse is not true.

We say that D1 is a weakest distance if we have that:

D1(Pn,P)→ 0 ⇐⇒ Pn
D→ P ∀ (Pn)n∈N ,

where
D→ represents convergence in distribution.

Thus, intuitively, a weaker divergence can be thought of as converging more

easily. Arjovsky et al. (2017) showed that the Wasserstein distance is a weakest

divergence and that it is weaker than common f -divergences (as used in f -GANs

and standard GANs). They also showed that the Wasserstein distance is continuous

with respect to its parameters and they attributed this property to the weakness

of the divergence.
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Considering this argument, one would except that RaGANs would be weaker

than RpGANs which would be weaker than Symmetric GANs since this is generally

the order of their relative performance and stability (however, note that this is not

always true and GANs can perform better than RaGANs). Instead, we found the

opposite relationship:

Theorem 2. Let P be a probability distribution with support S, (Pn)n∈N be a se-

quence of distributions converging to P, f : R → R be a concave function such

that f(0) = 0, f is differentiable at 0, f ′(0) ̸= 0, supx f(x) = M > 0, and

arg supx f(x) > 0. Then, we have that

DW (P,Q) is weakest,

DW (P,Q) is weaker than DSy
f (P,Q),

DSy
f (P,Q) is weaker than DRp

f (P,Q),

DRp
f (P,Q) is weaker than DRa

f (P,Q),

where DW is the Wasserstein distance and DSy is the distance in Symmetric GANs

(see equation 3).

The proof is in Appendix B.

Given the good performance of RaGANs, this suggests that the argument made

by Arjovsky et al. (2017) is insufficient. It only focuses on a perfect sequence of

converging distributions, but the generator training does not guarantee a converging

sequence of fake data distributions. It ignores the complex dynamics and intricacies

of the generator training, which are still not well understood. Furthermore, it

assumes an optimal critic which is effectively unobtainable. In practice, obtaining a

semi-optimal critic requires training the critic for multiple iterations before training

the generator; this significantly increase the computational time.

Furthermore, it has been found that WGAN does not provide a good approxima-

tion of the Wasserstein distance and that better approximations of the Wasserstein

distance lead to worse GANs (Mallasto et al., 2019). This provides further argu-

ment towards the idea that the weakness of the divergence is not a good indicator of

a good divergence for GANs. As previously suggested (Jolicoeur-Martineau, 2019),

we hypothesize that what make WGAN good for GANs are likely 1) the constraint

of the critic (a Lipschitz critic) and 2) the use of a relativistic discriminator, rather
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than the weakness of the divergence.

6.5 Estimators

6.5.1 RpGANs

To estimate RpGANs, Jolicoeur-Martineau (2018) used the following estima-

tor 2:

D̂Rp
f (P,Q) = sup

C:X→R

2

k

k∑
i=1

[f(C(xi)− C(yi))] ,

where x1, . . . , xk and y1, . . . , yk are samples from P and Q respectively.

Although this is an unbiased estimator of DRp
f (P,Q), it is not the estimator

with the minimal variance for a given mini-batch. Using the two-sample version

(Lehmann, 1951) of the U-statistic theorem (Hoeffding, 1992) and given that the

loss function is symmetric with respect to its arguments, one can show the following:

Corollary 1. Let P andQ be probability distributions with support X . Let x1, . . . , xk

and y1, . . . , yk be i.i.d. samples from P and Q respectively. Then, we have that

D̂Rp∗
f (P,Q) = sup

C:X→R

2

k2

k∑
i=1

k∑
j=1

[f(C(xi)− C(yj))]

is the minimum-variance unbiased estimator (MVUE) of DRp
f (P,Q).

Although it is the MVUE, this estimator requires O(k2) operations instead of

O(k). In the experiments, we will show that using this estimator does not lead to

good performance. Given the quadratic scaling and lack of performance gain, it

may not be worth using.

6.5.2 RaGANs and RalfGANs

The divergences of RaGANs and RalfGANs assume that one knows the true

expectation of the critic of real and fake data. However, in practice, we can only es-

2. Note that they actually used 1
k instead of 2

k because of how they defined the divergence.
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timate the expectation. Although never explicitly mentioned, Jolicoeur-Martineau

(2019) simply replaced all expectations by the mini-batch mean:

E [C(x)] ≈ 1

k

k∑
i=1

C(xi),

where k is the size of the mini-batch.

Given the non-linear function applied after calculating the CD, the divergences

of RaGANs are biased with finite batch size k. This means that RaGANs are only

asymptotically unbiased. How large k must be for the bias to become negligible is

unclear.

We attempted to find a close form for the bias with fS, fLS, and fHinge (equa-

tions 11, 12, 13 and Figure 1), but we were only able to find a closed form with

fLS. The bias with fLS has a simple form and can be removed, as shown below:

Corollary 2. Let P and Q be probability distributions with support X . Then, we

have that

sup
C:X→R

1

k

(
σ̂C(x) + σ̂C(y) −

k∑
i=1

[(
C(xi)− µ̂C(y) − 1

)2]
−

k∑
j=1

[(
µ̂C(x) − C(yj)− 1

)2])
+ 2,

sup
C:X→R

2

k

(
σ̂C(y) −

k∑
i=1

[(
C(xi)− µ̂C(y) − 1

)2])
+ 1,

inf
C:X→R

1

k

(
1

2
σ̂C(x) +

1

2
σ̂C(y) +

k∑
i=1

[
(C(xi)− µ̂C − 1)2

]
+

k∑
j=1

[
(µ̂C − C(yj)− 1)2

])
− 2

are unbiased estimator of DRa
fLS

(P,Q), DRalf
fLS

(P,Q), and DRc
fLS

(P,Q) respectively.

Furthermore,

µ̂C(x) =
1

k

k∑
i=1

C(xi),
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µ̂C(y) =
1

k

k∑
i=1

C(yi),

µ̂C =
1

k

k∑
i=1

(
C(xi) + C(yi)

2

)
,

σ̂C(x) =
1

(k − 1)

k∑
i=1

(
C(xi)− µ̂C(x)

)2
,

σ̂C(y) =
1

(k − 1)

k∑
i=1

(
C(yi)− µ̂C(y)

)2
.

See Appendix C for the proof. This means that we can estimate the loss func-

tions in RaLSGAN, RalfLSGAN, and RcLSGAN without bias. In the experiments,

we will show that the bias is negligible with the usual choices of f (equations 11,

12, 13) and batch size (32 or higher).

6.6 Experiments

All experiments were done with the spectral GAN architecture for 32x32 im-

ages (Miyato et al., 2018) in Pytorch (Paszke et al., 2017). We used the stan-

dard hyperparameters: learning rate (lr) = .0002, batch size (k) = 32, and the

ADAM optimizer (Kingma and Ba, 2014) with parameters (α1, α2) = (.50, .999).

We trained the models for 100k iterations with one critic update per generator up-

date. For the datasets, we used CIFAR-10 (50k training images from 10 categories)

(Krizhevsky and Hinton, 2009), CelebA (200k of face images from celebrities) (Liu

et al., 2015) and CAT (10k images of cats) (Zhang et al., 2008). All models were

trained using the same seed (seed=1) with a single GPU. To evaluate the qual-

ity of generated outputs, we used the Fréchet Inception Distance (FID) (Heusel

et al., 2017). For a review of the different evaluation metrics for GANs, please

see Borji (2019). CAT was preprocessed by cropping all images to the faces of the

cats, removing outliers (faces hidden by background), and removing images smaller

than 32x32. CelebA images were center cropped to 160x160 before being resized

to 32x32. See code for details; the code to reproduce the experiments is available

on https://github.com/AlexiaJM/relativistic-f-divergences.
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6.6.1 Bias

We approximated the bias of RaGANs and RcGANs by estimating the real/fake

critic mean from 320 samples rather than the 32 mini-batch samples. For fLS, we

were able to calculate the true value of the bias (in expectation, see Corollary 4.2).

Results on CIFAR-10 are shown in Figure 2.

Figure 6.2 – Plots of the relative bias (i.e., the biased estimate divided by the unbiased estimate)
of relativistic average and centered f -divergences estimators over training time on CIFAR-10 with
a mini-batch size of 32. Approximations of the bias were made using 320 independent samples.

For RAGANs, the approximation of the relative bias with fLS was correct from

4k iterations and onwards. For all choices of f , we observed the same pattern of

low approximated relative bias which stabilized after a certain number of iterations.

We suspect that this may be due to the important instabilities of the first iterations

when the discriminator is not optimal. At 15k iterations, all biases were stabilized.

We calculated the average of the bias with different f starting at 15k iterations:

.995 for the true relative bias with fLS, .996 for the approximated relative bias with

fLS, .994 for the approximated relative bias with fS, and .997 for the approximated

relative bias with fHinge.

For RcGANs, the approximation of the bias with fLS was correct from the very

beginning of training. All biases were relatively stable over time with the exception

of fS which increased linearly over time (up to around 1.05). We calculated the

average of the bias with different f : 1.007 for the true relative bias with fLS, 1.007

for the approximated relative bias with fLS, 1.03 for the approximated relative bias

with fS, and 1.007 for the approximated relative bias with fHinge.
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Overall, this shows that the bias in the estimators of RaGANs and RcGANs

tends to be small. Furthermore, with the exception of fS, the bias is relatively

stable over time. Thus, accounting for the bias, may not be necessary.

6.6.2 Divergences

To test the new relativistic divergences proposed (and verify whether removing

the bias in RaGANs is useful), we ran experiments on CIFAR-10 using fLS, on

LSUN bedrooms using fHinge, and on CAT using fHinge (these choices of f were

arbitrary). Results are shown in Table 1.

Table 6.1 – Minimum (and standard deviation) of the FID calculated at 10k, 20k, ... , 100k
iterations using different loss functions (see equations 11, 12, 13) and datasets.

CIFAR-10 CelebA CAT
Loss fLS fHinge fS

GAN 31.1 (8) 15.3 (52) 15.2 (11)
RpGAN 31.5 (8) 16.7 (4) 12.9 (2)
RpGANMVUE 30.2 (12) 21.9 (3) 18.2 (3)
RaGAN 29.2 (7) 15.9 (5) 12.3 (1)
RaGANunbiased 30.3 (13) - -
RcGAN 31.7 (8) 18.1 (3) 16.5 (7)
RcGANunbiased 32.3 (9) - -

Using the MVUE for RpGAN resulted in the generator having a worse perfor-

mance on CIFAR-10 with fLS (β = .37, p = .72), CelebA with fHinge (β = 2.08,

p = .07), and CAT with fS (β = 4.02, p = .003). Similarly, using the unbiased esti-

mator made the generator perform sightly worse for RaLSGAN (β = 2.37, p = .04)

and RcLSGAN (β = 1.33, p = .05). These results are surprising as they suggest

that using noisy or slightly biased estimators may be beneficial.

6.7 Conclusion

Most importantly, we proved that the objective function of the critic in RGANs

is a divergence. In addition, we showed that f -divergences are weaker than rela-

tivistic f -divergences. Thus, the weakness of the topology induced by a divergence
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alone cannot explain why WGAN performs well. Finally, we took a closer look

at the estimators or RGANs and found that 1) the estimator of RpGANs used

by Jolicoeur-Martineau (2019) is not the minimum-variance unbiased estimator

(MVUE) and 2) the estimators of RaGANs and RalfGANs are slightly biased with

finite batch-sizes. Surprisingly, we found that neither using the MVUE with Rp-

GANs or using an unbiased estimator with RaGANs and RalfGANs improved the

performance. On the contrary, using better estimators always slightly decreased the

quality of generated samples. This suggests that using noisy estimates of the diver-

gences may be beneficial as a regularization mechanism. This could be explained by

vanishing gradients when the discriminator becomes closer to optimality (Arjovsky

and Bottou, 2017).

It still remains a mystery as to why RaGANs are better than RpGANs and the

direct mechanism that leads to RGANs performing in a much more stable matter.

Future work should attempt to better understand the effect of the critic’s difference

on training. Our experiments were limited to the generation of small images; thus,

we encourage further experiments with the MVUE and the unbiased estimator of

RaLSGAN.
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7 Prologue to the third article

7.1 Article Details

Jolicoeur-Martineau, A.∗, Piché-Taillefer, R.∗, Mitliagkas, I., Tachet des Combes,

R. (2021). Adversarial score matching and improved sampling for image generation.

International Conference on Learning Representations (ICLR).
∗ Equal contribution

7.2 Context

At the time, score-based diffusion models had just come up, and they did not

produce as high-quality samples as GANs. I came up with the idea of encouraging

realistic images from the point-of-view of a discriminator, as in GANs, to help

ensure that the images generated by the score network are high quality.

Generating data with score-based diffusion models was also very unstable, and

it was unclear how to properly select the noise in the sampling stage (this was later

determined theoretically in Song et al. (2021). This led Rémi and I to investigate

the matter, which then became the Consistent Annealed Sampling proposed in the

paper.

7.3 Personal contribution to the paper

I proposed the adversarial score-matching approach and initiated the project.

Rémi Piché-Taillefer proposed the Consistent Annealed Sampling. Me and Rémi

Piché-Taillefer worked equally on the writing and experiments. Ioannis Mitliagkas
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supervised the project and helped with the writing. Rémi Tachet des Combes

helped with the writing and the theoretical proofs/derivations.
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8
Adversarial score matching
and improved sampling for
image generation

8.1 Abstract

Denoising Score Matching with Annealed Langevin Sampling (DSM-ALS) has

recently found success in generative modeling. The approach works by first training

a neural network to estimate the score of a distribution, and then using Langevin

dynamics to sample from the data distribution assumed by the score network. De-

spite the convincing visual quality of samples, this method appears to perform

worse than Generative Adversarial Networks (GANs) under the Fréchet Inception

Distance, a standard metric for generative models. We show that this apparent

gap vanishes when denoising the final Langevin samples using the score network.

In addition, we propose two improvements to DSM-ALS: 1) Consistent Annealed

Sampling as a more stable alternative to Annealed Langevin Sampling, and 2)

a hybrid training formulation, composed of both Denoising Score Matching and

adversarial objectives. By combining these two techniques and exploring differ-

ent network architectures, we elevate score matching methods and obtain results

competitive with state-of-the-art image generation on CIFAR-10.

8.2 Introduction

Song and Ermon (2019) recently proposed a novel method of generating sam-

ples from a target distribution through a combination of Denoising Score Matching

(DSM) (Hyvärinen, 2005; Vincent, 2011; Raphan and Simoncelli, 2011) and An-

nealed Langevin Sampling (ALS) (Welling and Teh, 2011; Roberts et al., 1996).

Since convergence to the distribution is guaranteed by the ALS, their approach

(DSM-ALS) produces high-quality samples and guarantees high diversity. Though,

this comes at the cost of requiring an iterative process during sampling, contrary
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to other generative methods. These generative methods can notably be used to

diverse tasks like colorization, image restoration and image inpainting (Song and

Ermon, 2019; Kadkhodaie and Simoncelli, 2020).

Song and Ermon (2020) further improved their approach by increasing the sta-

bility of score matching training and proposing theoretically sound choices of hy-

perparameters. They also scaled their approach to higher-resolution images and

showed that DSM-ALS is competitive with other generative models. Song and Er-

mon (2020) observed that the images produced by their improved model were more

visually appealing than the ones from their original work; however, the reported

Fréchet Inception Distance (FID) (Heusel et al., 2017) did not correlate with this

improvement.

Although DSM-ALS is gaining traction, Generative adversarial networks (GANs)

(Goodfellow et al., 2020) remain the leading approach to generative modeling.

GANs are a very popular class of generative models; they have been successfully

applied to image generation (Brock et al., 2019; Karras et al., 2018, 2019, 2020)

and have subsequently spawned a wealth of variants (Radford et al., 2015; Miyato

et al., 2018; Jolicoeur-Martineau, 2019; Zhang et al., 2019). The idea behind this

method is to train a Discriminator (D) to correctly distinguish real samples from

fake samples generated by a second agent, known as the Generator (G). GANs ex-

cel at generating high-quality samples as the discriminator captures features that

make an image plausible, while the generator learns to emulate them.

Still, GANs often have trouble producing data from all possible modes, which

limits the diversity of the generated samples. A wide variety of tricks have been

developed to address this issue in GANs (Kodali et al., 2017; Gulrajani et al., 2017;

Arjovsky et al., 2017; Miyato et al., 2018; Jolicoeur-Martineau and Mitliagkas,

2019), though it remains an issue to this day. DSM-ALS, on the other hand, does

not suffer from that problem since ALS allows for sampling from the full distribution

captured by the score network. Nevertheless, the perceptual quality of DSM-ALS

higher-resolution images has so far been inferior to that of GAN-generated images.

Generative modeling has since seen some incredible work from Ho et al. (2020),

who achieved exceptionally low (better) FID on image generation tasks. Their

approach showcased a diffusion-based method (Sohl-Dickstein et al., 2015; Goyal

et al., 2017) that shares close ties with DSM-ALS, and additionally proposed a

convincing network architecture derived from Salimans et al. (2017).
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In this paper, after introducing the necessary technical background in the next

section, we build upon the work of Song and Ermon (2020) and propose improve-

ments based on theoretical analyses both at training and sampling time. Our

contributions are as follows:

— We propose Consistent Annealed Sampling (CAS) as a more stable alterna-

tive to ALS, correcting inconsistencies relating to the scaling of the added

noise;

— We show how to recover the expected denoised sample (EDS) and demon-

strate its unequivocal benefits w.r.t the FID. Notably, we show how to resolve

the mismatch observed in DSM-ALS between the visual quality of generated

images and its high (worse) FID;

— We propose to further exploit the EDS through a hybrid objective function,

combining GAN and Denoising Score Matching objectives, thereby encour-

aging the EDS of the score network to be as realistic as possible.

In addition, we show that the network architecture used used by Ho et al.

(2020) significantly improves sample quality over the RefineNet (Lin et al., 2017)

architecture used by Song and Ermon (2020). In an ablation study performed

on CIFAR-10 and LSUN-church, we demonstrate how these contributions bring

DSM-ALS in range of the state-of-the-art for image generation tasks w.r.t. the

FID.

8.3 Background

8.3.1 Denoising Score Matching

Denoising Score Matching (DSM) (Hyvärinen, 2005) consists of training a score

network to approximate the gradient of the log density of a certain distribution

(∇x log p(x)), referred to as the score function. This is achieved by training the

network to approximate a noisy surrogate of p at multiple levels of Gaussian noise

corruption (Vincent, 2011). The score network s, parametrized by θ and condi-
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tioned on the noise level σ, is tasked to minimize the following loss:

1

2
Ep(x̃,x,σ)

[∥∥∥∥σsθ(x̃, σ) + x̃− x

σ

∥∥∥∥2
2

]
, (8.1)

where p(x̃,x, σ) = qσ(x̃|x)p(x)p(σ). We define further qσ(x̃|x) = N (x̃|x, σ2I)

the corrupted data distribution, p(x) the training data distribution, and p(σ) the

uniform distribution over a set {σi} corresponding to different levels of noise. In

practice, this set is defined as a geometric progression between σ1 and σL (with L

chosen according to some computational budget):

{σi}Li=1 =

{
γiσ1

∣∣∣ i ∈ {0, . . . , L− 1}, γ ≜
σ2

σ1

= ... =

(
σL

σ1

) 1
L−1

< 1

}
. (8.2)

Rather than having to learn a different score function for every σi, one can

train an unconditional score network by defining sθ(x̃, σi) = sθ(x̃)/σi, and then

minimizing Eq. 8.1. While unconditional networks are less heavy computationally,

it remains an open question whether conditioning helps performance. Li et al.

(2019) and Song and Ermon (2020) found that the unconditional network produced

better samples, while Ho et al. (2020) obtained better results than both of them

using a conditional network. Additionally, the denoising autoencoder described in

Lim et al. (2020) gives evidence supporting the benefits of conditioning when the

noise becomes small (also see App. C.5 and C.4 for a theoretical discussion of the

difference). While our experiments are conducted with unconditional networks, we

believe our techniques can be straightforwardly applied to conditional networks;

we leave that extension for future work.

8.3.2 Annealed Langevin Sampling

Given a score function, one can use Langevin dynamics (or Langevin sampling)

(Welling and Teh, 2011) to sample from the corresponding probability distribu-

tion. In practice, the score function is generally unknown and estimated through

a score network trained to minimize Eq. 8.1. Song and Ermon (2019) showed that

Langevin sampling has trouble exploring the full support of the distribution when

the modes are too far apart and proposed Annealed Langevin Sampling (ALS) as

a solution. ALS starts sampling with a large noise level and progressively anneals
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it down to a value close to 0, ensuring both proper mode coverage and convergence

to the data distribution. Its precise description is shown in Algorithm 4.

Algorithm 4 ALS

Require: sθ, {σi}Li=1, ϵ, nσ

1: Initialize x

2: for i← 1 to L do

3: αi ← ϵ σ2
i /σ

2
L

4: for nσ steps do

5: Draw z ∼ N (0, I)

6: x← x+ αisθ(x, σi) +
√
2αiz

return x

Algorithm 5 CAS

Require: sθ, {σi}Li=1, γ, ϵ

1: Initialize x

2: β ←
√

1− (1− ϵ/σ2
L)

2
/γ2

3: for i← 1 to L do

4: αi ← ϵ σ2
i /σ

2
L

5: Draw z ∼ N (0, I)

6: x← x+ αisθ(x, σi) + βσi+1z

return x

8.3.3 Expected denoised sample (EDS)

A little known fact from Bayesian literature is that one can recover a denoised

sample from the score function using the Empirical Bayes mean (Robbins, 1955;

Miyasawa, 1961; Raphan and Simoncelli, 2011):

s∗(x̃, σ) =
H∗(x̃, σ)− x̃

σ2
, (8.3)

where H∗(x̃, σ) ≜ Ex∼qσ(x|x̃)[x] is the expected denoised sample given a noisy

sample (or Empirical Bayes mean), conditioned on the noise level. A different way

of reaching the same result is through the closed-form of the optimal score function,

as presented in Appendix C.5. The corresponding result for unconditional score

function is presented in Appendix C.4 for completeness.

The EDS corresponds to the expected real image given a corrupted image; it

can be thought of as what the score network believes to be the true image concealed

within the noisy input. It has also been suggested that denoising the samples (i.e.,

taking the EDS) at the end of the Langevin sampling improves their quality (Saremi

and Hyvarinen, 2019; Li et al., 2019; Kadkhodaie and Simoncelli, 2020). In Section

8.5, we provide further evidence that denoising the final Langevin sample brings

it closer to the assumed data manifold. In particular, we show that the Fréchet

Inception Distance (FID) consistently decreases (improves) after denoising. Finally,

in Section 8.6, we build a hybrid training objective using the properties of the EDS
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discussed above.

There are interesting links to be made between ALS and the RED algorithm

(Romano et al., 2017; Reehorst and Schniter, 2018). The RED algorithm attempts

to find the maximum a posteriori probability (MAP) denoised sample (i.e., the most

plausible real data) given a noisy sample. It does so by solving an optimization

problem to obtain a sample close to the noisy sample for which the EDS is a

fixed point (denoising the sample does not change it because it is a real sample).

Thus, just like ALS, the RED algorithm generates plausible real data given a

score network. However, this algorithm does not ensure that we sample from the

distribution and obtain full mode coverage. Thus, ALS’s key benefit is ensuring

that we sample from the full support of the distribution.

8.4 Consistent scaling of the noise

In this section, we present inconsistencies in ALS relating to the noise scaling

and introduce Consistent Annealed Sampling (CAS) as an alternative.

8.4.1 Inconsistencies in ALS

One can think of the ALS algorithm as a sequential series of Langevin Dynamics

(inner loop in Algorithm 4) for decreasing levels of noise (outer loop). If allowed

an infinite number of steps nσ, the sampling process will properly produce samples

from the data distribution.

In ALS, the score network is conditioned on geometrically decreasing noise (σi).

In the unconditional case, this corresponds to dividing the score network by the

noise level (i.e., sθ(x̃, σi) = sθ(x̃)/σi). Thus, in both conditional and unconditional

cases, we make the assumption that the noise of the sample at step i will be

of variance σ2
i , an assumption upon which the quality of the estimation of the

score depends. While choosing a geometric progression of noise levels seems like

a reasonable (though arbitrary) schedule to follow, we show that ALS does not

ensure such schedule.

Assume we have the true score function s∗ and begin sampling using a real

image with some added zero-centered Gaussian noise of standard deviation σ0 = 50.
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In Figure 8.1a, we illustrate how the intensity of the noise in the sample evolves

through ALS and CAS, our proposed sampling, for a given sampling step size ϵ and

a geometric schedule in this idealized scenario. We note that, although a large nσ

approaches the real geometric curve, it will only reach it at the limit (nσ →∞ and

ϵ → 0). Most importantly, Figure 8.1b highlights how even when the annealing

process does converge, the progression of the noise is never truly geometric; we

prove this formally in Proposition 1.

(a) Standard deviation of the noise in the image (b) Difference between the standard deviation from
ALS and CAS

Figure 8.1 – Standard deviation during idealized sampling using a perfect score function s∗. The
black curve in (a) corresponds to the true geometric progression, as demonstrated in Proposition
2.

Proposition 1. Let s∗ be the optimal score function from Eq. 8.3. Following the

sampling described in Algorithm 4, the variance of the noise component in the

sample x will remain greater than σ2
t at every step t.

The proof is presented in Appendix C.6. In particular, for nσ < ∞, sampling

has not fully converged and the remaining noise is carried over to the next iteration

of Langevin Sampling. It also follows that for any sθ different from the optimal s∗,

the actual noise at every iteration is expected to be even higher than for the best

possible score function s∗.

8.4.2 Algorithm

We propose Consistent Annealed Sampling (CAS) as a sampling method that

ensures the noise level will follow a prescribed schedule for any sampling step size ϵ

and number of steps L. Algorithm 5 illustrates the process for a geometric schedule.
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Note that for a different schedule, β will instead depend on the step t, as in the

general case, γt is defined as σt+1/σt.

Proposition 2. Let s∗ be the optimal score function from Eq. 8.3. Following the

sampling described in Algorithm 5, the variance of the noise component in the

sample x will consistently be equal to σ2
t at every step t.

The proof is presented in Appendix C.7. Importantly, Proposition 2 holds no

matter how many steps L we take to decrease the noise geometrically. For ALS, nσ

corresponds to the number of steps per level of noise. It plays a similar role in CAS:

we simply dilate the geometric series of noise levels used during training by a factor

of nσ, such that Lsampling = (Ltraining − 1)nσ + 1. Note that the proposition only

holds when the initial sample is a corrupted image (i.e., x0 = I+σ0z0). However,

by defining σ0 as the maximum Euclidean distance between all pairs of training

data points (Song and Ermon, 2020), the noise becomes in practice much greater

than the true image; sampling with pure noise initialization (i.e., x0 = σ0zt)

becomes indistinguishable from sampling with data initialization.

8.5 Benefits of the EDS on synthetic data and image

generation

As previously mentioned, it has been suggested that one can obtain better sam-

ples (closer to the assumed data manifold) by taking the EDS of the last Langevin

sample. We provide further evidence of this with synthetic data and standard

image datasets.

It can first be observed that the sampling steps correspond to an interpolation

between the previous point and the EDS, followed by the addition of noise.

Proposition 3. Given a noise-conditional score function, the update rules from Al-

gorithm 4 and Algorithm 5 are respectively equivalent to the following update rules:

x← (1− η)x+ ηH(x, σi) +
√

2ησiz for z ∼ N (0, I) and η =
ϵ

σ2
L

x← (1− η)x+ ηH(x, σi) + βσi+1z
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The demonstration is in Appendix C.8. This result is equally true for an uncon-

ditional score network, with the distinction that η would no longer be independent

of σi but rather linearly proportional to it.

Intuitively, this implies that the sampling steps slowly move the current sample

towards a moving target (the EDS). If the sampling behaves appropriately, we

expect the final sample x to be very close to the EDS, i.e., x ≈ H(x, σL). However,

if the sampling step size is inappropriate, or if the EDS does not stabilize to a fixed

point near the end of the sampling, these two quantities may be arbitrarily far from

one another. As we will show, the FIDs from Song and Ermon (2020) suffer from

such distance.

From Proposition 3, we see that CAS shares some similarities with the algorithm

by Kadkhodaie and Simoncelli (2020). While the weight we give to the denoiser (η)

decreases geometrically (by its linearity in σ), their schedule appears to be much

steeper. They also estimate the residual noise in their samples by the ℓ2 norm

instead of determining it through a schedule, as CAS strives to do. As a note, we

had found weak evidence during development that estimating the residual noise

worsened the FID.

The equivalence showed in Proposition 3 suggests instead to take the expected

denoised sample at the end of the Langevin sampling as the final sample; this

would be equivalent to the update rule x← H(x, σL) at the last step. Synthetic 2D

examples shown in Figure 8.2 demonstrate the immediate benefits of this technique.

(a) Swiss Roll dataset (b) 25 Gaussians dataset

Figure 8.2 – Langevin sampling on synthetic 2D experiments. Circles are real data points, crosses
are generated data points. On both datasets, taking the EDS brings the samples much closer to
the real data manifold.

We train a score network on CIFAR-10 (Krizhevsky and Hinton, 2009) and

report the FID from both ALS and CAS as a function of the sampling step size

and of denoising in Figure 8.3. The first observation to be made is just how critical
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Figure 8.3 – Partial estimate of FID (lower is better) as a function of the sampling step size on
CIFAR-10, with nσ = 1. The interactions between consistent sampling and denoising are shown.

denoising is to the FID score for ALS, even as its effect cannot be perceived by the

human eye. For CAS, we note that the score remains small for a much wider range

of sampling step sizes when denoising. Alternatively, the sampling step size must

be very carefully tuned to obtain results close to the optimal.

Figure 8.3 also shows that, with CAS, the FID of the final sample is approx-

imately equal to the FID of the denoised samples for small sampling step sizes.

Furthermore, we see a smaller gap in FID between denoised and non-denoised

for larger sampling step sizes than ALS. This suggests that consistent sampling

is resulting in the final sample being closer to the assumed data manifold (i.e.,

x ≈ Hθ(x, σL)).

Interestingly, when Song and Ermon (2020) improved their score matching

method, they could not explain why the FID of their new model did not improve

even though the generated images looked better visually. To resolve that matter,

they proposed the use of a new metric (Zhou et al., 2019) that did not have this

issue. As shown in Figure 8.3, denoising resolves this mismatch.

8.6 Adversarial formulation

The score network is trained to recover an uncorrupted image from a noisy input

minimizing the ℓ2 distance between the two. However, it is well known from the

image restoration literature that ℓ2 does not correlate well with human perception
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of image quality (Zhang et al., 2012; Zhao et al., 2016). One way to take advantage

of the EDS would be to encourage the score network to produce an EDS that is more

realistic from the perspective of a discriminator. Intuitively, this would incentivize

the score network to produce more discernible features at inference time.

We propose to do so by training the score network to simultaneously minimize

the score-matching loss function and maximize the probability of denoised samples

being perceived as real by a discriminator. We use alternating gradient descent to

sequentially train a discriminator for a determined number of steps at every score

function update.

In our experiments, we selected the Least Squares GAN (LSGAN) (Mao et al.,

2017) formulation as it performed best (see Appendix C.2 for details). For an

unconditional score network, the objective functions are as follows:

max
ϕ

Ep(x)

[
(Dϕ(x)− 1)2

]
+ Ep(x̃,x,σ)

[
(Dϕ(Hθ(x̃, σ) + 1)2

]
(8.4)

min
θ

Ep(x̃,x,σ)

[
(Dϕ(Hθ(x̃, σ))− 1)2 +

λ

2

∥∥∥∥σsθ(x̃, σ) + x̃− x

σ

∥∥∥∥2
2

]
, (8.5)

where Hθ(x̃, σ) = sθ(x̃, σ)σ
2 + x̃ is the EDS derived from the score network.

Eq. 8.4 is the objective function of the LSGAN discriminator, while Eq. 8.5 is the

adversarial objective function of the score network derived from Eq. 8.1 and from

the LSGAN objective function.

We note the similarities between these objective functions and those of an LS-

GAN adversarial autoencoder (Makhzani et al., 2015; Tolstikhin et al., 2018; Tran

et al., 2018), with the distinction of using a denoising autoencoder H as opposed

to a standard autoencoder. We can highlight this difference by reformulating Eq.

8.5 as:

min
θ

Ep(x̃,x,σ)

[
(Dϕ(Hθ(x̃, σ))− 1)2 +

λ

2σ2
∥Hθ(x̃, σ)− x∥22

]
, (8.6)

As GANs favor quality over diversity, there is a concern that this hybrid ob-

jective function might decrease the diversity of samples produced by the ALS. In

Section 8.7.1, we first study image generation improvements brought by this method

87



and then address the diversity concerns with experiments on the 3-StackedMNIST

(Metz et al., 2017) dataset in Section 8.7.2.

8.7 Experiments

8.7.1 Ablation Study

We ran experiments on CIFAR-10 (Krizhevsky and Hinton, 2009) and LSUN-

churches (Yu et al., 2015) with the score network architecture used by Song and

Ermon (2020). We also ran similar experiments with an unconditional version of

the network architecture by Ho et al. (2020), given that their approach is similar to

Song and Ermon (2019) and they obtain very small FIDs. For the hybrid adversarial

score matching approach, we used an unconditional BigGAN discriminator (Brock

et al., 2019). We compared three factors in an ablation study: adversarial training,

Consistent Annealed Sampling and denoising.

Details on how the experiments were conducted are found in Appendix C.2.

Unsuccessful experiments with large images are also discussed in Appendix C.3.

See also Appendix C.9 for a discussion pertaining to the use of the Inception Score

(Heusel et al., 2017), a popular metric for generative models.

Results for CIFAR-10 and LSUN-churches with Song and Ermon (2019) score

network architecture are respectively shown in Table 8.1 and 8.2. Results for

CIFAR-10 with Ho et al. (2020) score network architecture are shown in Table

8.3.

Table 8.1 – [Non-denoised / Denoised FID] from 10k samples on CIFAR-10 (32x32) with Song
and Ermon (2019) score network architecture

Sampling Non-adversarial Adversarial

non-consistent (nσ = 1) 36.3 / 13.3 30.0 / 11.8
non-consistent (nσ = 5) 33.7 / 10.9 26.4 / 9.5

consistent (nσ = 1) 14.7 / 12.3 11.9 / 10.8
consistent (nσ = 5) 12.7 / 11.2 9.9 / 9.7

We always observe an improvement in FID from denoising and by increasing nσ

from 1 to 5. We observe an improvement from using the adversarial approach with
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Table 8.2 – [Non-denoised / Denoised FID] from 10k samples on LSUN-Churches (64x64) with
Song and Ermon (2019) score network architecture

Sampling Non-adversarial Adversarial

non-consistent (nσ = 1) 43.2 / 40.3 40.9 / 36.7
non-consistent (nσ = 5) 42.0 / 39.2 40.0 / 35.8

consistent (nσ = 1) 41.5 / 40.7 38.2 / 36.7
consistent (nσ = 5) 39.5 / 39.1 36.3 / 35.4

Table 8.3 – [Non-denoised / Denoised FID] from 10k samples on CIFAR-10 (32x32) with Ho et al.
(2020) unconditional score network architecture

Sampling Non-adversarial Adversarial

non-consistent (nσ = 1) 25.3 / 7.5 21.6 / 7.5
non-consistent (nσ = 5) 20.0 / 5.6 17.7 / 6.1

consistent (nσ = 1) 7.8 / 7.1 7.7 / 7.1
consistent (nσ = 5) 6.2 / 6.1 6.1 / 6.5

Song and Ermon (2019) network architecture, but not on denoised samples with

the Ho et al. (2020) network architecture. We hypothesize that this is a limitation

of the architecture of the discriminator since, as far as we know, no variant of

BigGAN achieves an FID smaller than 6. Nevertheless, it remains advantageous

for more simple architectures, as shown in Table 8.1 and 8.2. We observe that

consistent sampling outperforms non-consistent sampling on the CIFAR-10 task at

nσ = 1, the quickest way to sample.

We calculated the FID of the non-consistent denoised models from 50k samples

in order to compare our method with the recent work from Ho et al. (2020). We

obtained a score of 3.65 for the non-adversarial method and 4.02 for the adversarial

method on the CIFAR-10 task when sharing their architecture; these scores are

close to their reported 3.17. Although not explicit in their approach, Ho et al.

(2020) denoised their final sample. This suggests that taking the EDS and using

an architecture akin to theirs were the two main reasons for outperforming Song

and Ermon (2020). Of note, our method only trains the score network for 300k

iterations, while Ho et al. (2020) trained their networks for more than 1 million

iterations to achieve similar results.
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8.7.2 Non-adversarial and Adversarial score networks have equally

high diversity

To assess the diversity of generated samples, we evaluate our models on the

3-Stacked MNIST generation task (Metz et al., 2017) (128k images of 28x28), con-

sisting of numbers from the MNIST dataset (LeCun et al., 1998) superimposed on

3 different channels. We trained non-adversarial and adversarial score networks in

the same way as the other models. The results are shown in Table 8.4.

We see that each of the 1000 modes is covered, though the KL divergence is

still inferior to PACGAN (Lin et al., 2018), meaning that the mode proportions

are not perfectly uniform. Blindness to mode proportions is thought to be a fun-

damental limitation of score-based methods (Wenliang, 2020). Nevertheless, these

results confirm a full mode coverage on a task where most GANs struggle and,

most importantly, that using a hybrid objective does not hurt the diversity of the

generated samples.

3-Stacked MNIST
Modes (Max 1000) KL

DCGAN (Radford et al., 2015) 99.0 3.40
ALI (Dumoulin et al., 2017) 16.0 5.40
Unrolled GAN (Metz et al., 2017) 48.7 4.32
VEEGAN (Srivastava et al., 2017) 150.0 2.95
PacDCGAN2 (Lin et al., 2018) 1000.0 0.06
WGAN-GP (Gulrajani et al., 2017) 959.0 0.73
PresGAN (Dieng et al., 2019) 999.6 0.115
MEG (Kumar et al., 2019) 1000.0 0.03
Non-adversarial DSM (ours) 1000.0 1.36
Adversarial DSM (ours) 1000.0 1.49

Table 8.4 – As in Lin et al. (2018), we generated 26k samples and evaluated the mode coverage
and KL divergence based on the predicted modes from a pre-trained MNIST classifier.

90



8.8 Conclusion

We proposed Consistent Annealed Sampling as an alternative to Annealed

Langevin Sampling, which ensures the expected geometric progression of the noise

and brings the final samples closer to the data manifold. We showed how to ex-

tract the expected denoised sample and how to use it to further improve the final

Langevin samples. We proposed a hybrid approach between GAN and score match-

ing. With experiments on synthetic and standard image datasets; we showed that

these approaches generally improved the quality/diversity of the generated samples.

We found equal diversity (coverage of all 1000 modes) for the adversarial and

non-adversarial variant of the difficult StackedMNIST problem. Since we also

observed better performance (from lower FIDs) in our other adversarial models

trained on images, we conclude that making score matching adversarial increases

the quality of the samples without decreasing diversity. These findings imply that

score matching performs better than most GANs and on-par with state-of-the-art

GANs. Furthermore, our results suggest that hybrid methods, combining multiple

generative techniques together, are a very promising direction to pursue.

As future work, these models should be scaled to larger batch sizes on high-

resolution images, since GANs have been shown to produce outstanding high-

resolution images at very large batch sizes (2048 or more). We also plan to further

study the theoretical properties of CAS by considering its corresponding stochastic

differential equation.
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9 Prologue to the fourth
article

9.1 Article Details

Jolicoeur-Martineau, A., Li, K., Piché-Taillefer, R., Kachman, T., Mitliagkas,

I. (2022). Gotta Go Fast When Generating Data with Score-Based Models. Inter-

national Conference on Learning Representations (ICLR).

9.2 Context

Although score-based models provide high-quality samples and generate from

the full support of the distribution (contrary to most other generative models), they

are extremely slow. Generating a mini-batch of data can take minutes to hours.

Most existing faster methods are specific to the VP process or work poorly with

VE while requiring heavy hyper-parameter tuning. I wanted to find a method that

works well for VE while requiring as little tuning as possible. I concluded that we

could get rid of the hyperparameter tuning and slow speed by devising a Stochastic

Differential Equation (SDE) solver that works well on score-based models.

9.3 Personal contribution to the paper

I created the new Algorithm, initiated the project, wrote most of the paper,

I wrote most of the code and ran the experiments. Rémi Piché-Taillefer helped

with the code and figures. Other members helped in guiding the high-level discus-

sion (the project started with a completely different direction). Ioannis Mitliagkas

supervised the project.
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10
Gotta Go Fast when
generating data with
score-based models

10.1 Abstract

Score-based (denoising diffusion) generative models have recently gained a lot of

success in generating realistic and diverse data. These approaches define a forward

diffusion process for transforming data to noise and generate data by reversing

it (thereby going from noise to data). Unfortunately, current score-based models

generate data very slowly due to the sheer number of score network evaluations

required by numerical SDE solvers.

In this work, we aim to accelerate this process by devising a more efficient SDE

solver. Existing approaches rely on the Euler-Maruyama (EM) solver, which uses

a fixed step size. We found that naively replacing it with other SDE solvers fares

poorly - they either result in low-quality samples or become slower than EM. To

get around this issue, we carefully devise an SDE solver with adaptive step sizes

tailored to score-based generative models piece by piece. Our solver requires only

two score function evaluations per step, rarely rejects samples, and leads to high-

quality samples. Our approach generates data 2 to 10 times faster than EM while

achieving better or equal sample quality. For high-resolution images, our method

leads to significantly higher quality samples than all other methods tested. Our

SDE solver has the benefit of requiring no step size tuning.

Code is available on https://github.com/AlexiaJM/score sde fast sampling.

10.2 Introduction

Score-based generative models (Song and Ermon, 2019, 2020; Ho et al., 2020;

Jolicoeur-Martineau et al., 2021; Song et al., 2021; Rémi Piché-Taillefer, 2021) have

been very successful at generating data from various modalities, such as images (Ho
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et al., 2020; Song et al., 2021), audio (Chen et al., 2020; Kong et al., 2021; Mittal

et al., 2021; Kameoka et al., 2020), and graphs (Niu et al., 2020). They have further

been used effectively for super-resolution (Salimans et al., 2016; Kadkhodaie and

Simoncelli, 2020), inpainting (Kadkhodaie and Simoncelli, 2020), source separa-

tion (Jayaram and Thickstun, 2020), and image-to-image translation (Sasaki et al.,

2021). In most of these applications, score-based models achieved superior perfor-

mances in terms of quality and diversity than the historically dominant Generative

Adversarial Networks (GANs) (Goodfellow et al., 2020).

Score-based models can be understood in two main classes: those based on

a Variance Exploding (VE) diffusion process (Song and Ermon, 2019) and those

based on a Variance Preserving (VP) one (Ho et al., 2020). Both diffusion processes

progressively transform real data into Gaussian noise; N (0, σ2
maxI) for VE where

σ2
max is very large, and N (0, I) for VP.

The diffusion process (VE, VP, etc.) is then reversed in order to generate real

data from Gaussian noise. Reversing the process requires the score function, which

is estimated with a neural network (known as a score network). Although very

powerful, score-based models generate data through an undesirably long iterative

process; meanwhile, other state-of-the-art methods such as GANs generate data

from a single forward pass of a neural network. Increasing the speed of the gener-

ative process is thus an active area of research.

Chen et al. (2020) and San-Roman et al. (2021) proposed faster step size sched-

ules for VP diffusions that still yield relatively good quality/diversity metrics. Al-

though fast, these schedules are arbitrary, require careful tuning, and the optimal

schedules will vary from one model to another.
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Figure 10.1 – Comparison between our novel SDE solver at various values of error tolerance and
Euler-Maruyama for an equal computational budget. We measure speed through the Number
of Function Evaluations (NFE) and the quality of the generated images through the Fréchet
Inception Distance (FID; lower is better). See Table 10.1-10.2 for more details.

Block et al. (2020) proposed generating data progressively from low to high-

resolution images and show that the scheme improves speed. Similarly, Nichol

and Dhariwal (2021) proposed generating low-resolution images and then upscale

them since generating low-resolution images is quicker. They further suggested

to accelerate VP-based models by learning dimension-specific noise rather than

assuming equal noise everywhere. Note that these methods do not affect the data

generation algorithm and would thus be complementary to our methods.

Song et al. (2021) and Song et al. (2020) proposed removing the noise from

the data generation algorithm and solve an Ordinary Differential Equation (ODE)

rather than a Stochastic Differential Equation (SDE); they report being able to

converge much faster when there is no noise. Although it improves the generation

speed, Song et al. (2021) report obtaining lower-quality images when using the

ODE formulation for the VE process (Song et al., 2021). We will later show that
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our SDE solver generally leads to better results than ODE solvers at similar speeds.

Thus, existing methods for acceleration often require considerable step size/sched-

ule tuning (this is also true for the baseline approach) and do not always work

for both VE and VP processes. To improve speed and remove the need for step

size/schedule tuning, we propose to solve the reverse diffusion process using SDE

solvers with adaptive step sizes.

It turns out that off-the-shelf SDE solvers are ill-suited for generative model-

ing and exhibit either (1) divergence, (2) slower data generation than the baseline,

or (3) significantly worse quality than the baseline (see Appendix D.1). This can

be attributed to distinct features of the SDEs that arise in score-based generative

models that set them apart from the SDEs traditionally considered in the numer-

ical SDE solver literature, namely: (1) the codomain of the unknown function is

extremely high-dimensional, especially in the case of image generation; (2) evalu-

ating the score function is computationally expensive, requiring a forward pass of

a large mini-batch through a large neural network; (3) the required precision of the

solution is smaller than usual because we are satisfied as long as the error is not

perceptible (e.g., one RGB increment on an image).

We devise our own SDE solver with these features in mind, resulting in an

algorithm that can get around the problems encountered by off-the-shelf solvers. To

address high dimensionality, we use the ℓ2 norm rather than the ℓ∞ norm to measure

the error across different dimensions to prevent a single pixel from slowing down

the solver. To address the cost of score function evaluations while still obtaining

high precision, we (1) take the minimum number of score function evaluations

needed for adaptive step sizes (two evaluations), and (2) use extrapolation to get

high precision at no extra cost. To take advantage of the reduced requirement for

precision, we set the absolute tolerance for the error according to the range of RGB

values.

Our main contribution is a new SDE solver tailored to score-based generative

models with the following benefits:

— Our solver is much faster than the baseline methods, i.e. reverse-diffusion

method with Langevin dynamics and Euler-Maruyama (EM);

— It yields higher quality/diversity samples than EM when using the same

computing budget;

— It does not require any step size or schedule tuning;
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— It can be used to quickly solve any type of diffusion process (e.g., VE, VP)

10.3 Background

10.3.1 Score-based modeling with SDEs

Let x(0) ∈ Rd be a sample from the data distribution pdata. The sample is grad-

ually corrupted over time through a Forward Diffusion Process (FDP), a common

type of Stochastic Differential Equation (SDE):

dx = f(x, t)dt+ g(t)dw, (10.1)

where f(x, t) : Rd×R→ Rd is the drift, g(t) : R→ R is the diffusion coefficient and

w(t) is the Wiener process indexed by t ∈ [0, 1]. Data points and their probabil-

ity distribution evolve along the trajectories {x(t)}1t=0 and {pt(x)}1t=0 respectively,

with p0 ≡ pdata. The functions f and g are chosen such that x(1) be approximately

Gaussian and independent from x(0). Inference is achieved by reversing this diffu-

sion, drawing x(1) from its Gaussian distribution and solving the Reverse Diffusion

Process (RDP) equal to:

dx =
[
f(x, t)− g(t)2∇x log pt(x)

]
dt+ g(t)dw̄, (10.2)

where ∇x log pt(x) is referred to as the score of the distribution at time t (Hyväri-

nen, 2005) and w̄(t) is the Wiener process in which time flows backward (Anderson,

1982).

One can observe from Equation 10.2 that the RDP requires knowledge of the

score (or pt), which we do not have access to. Fortunately, it can be estimated

by a neural network (referred to as the score network) by optimizing the following

objective:

L(θ) = Ex(t)∼p(x(t)|x(0)),x(0)∼pdata

[
λ(t)

2

∥∥sθ(x(t), t)−∇x(t) log pt(x(t)|x(0))
∥∥2
2

]
,

(10.3)
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where λ(t) : R → R is a weighting function generally chosen to be inversely pro-

portional to:

E
[∥∥∇x(t) log pt(x(t)|x(0))

∥∥2
2

]
.

One can demonstrate that the minimizer of that objective θ∗ will be such that

sθ∗(x, t) = ∇x log pt(x) (Vincent, 2011), allowing us to approximate the reverse

diffusion process. As can be seen, evaluating the objective requires the ability to

generate samples from the FDP at arbitrary times t. Thankfully, as long as the drift

is affine (i.e., f(x, t) = Ax +B), the transition kernel p(x(t)|x(0)) will always be
normally distributed (Särkkä and Solin, 2019), which means that we can solve the

forward diffusion in a single step. Furthermore, the score of the Gaussian transition

kernel is trivial to compute, making the loss an inexpensive training objective.

There are two primary choices for the FDP in the literature, which we discuss

below.

10.3.2 Variance Exploding (VE) process

The Variance Exploding (VE) process consists in the following FDP:

dx =

√
d [σ2(t)]

dt
dw.

Its associated transition kernel is:

x(t)|x(0) ∼ N (x(0), [σ2(t)− σ2(0)]I) ≈ N (x(0), σ2(t)I).

In practice, we let σ(t) = σmin

(
σmax

σmin

)t
, where σmin = 0.01 and σmax ≈

maxi
∑N

j=1 ||x(i) − x(j)|| is the maximum Euclidean distance between two samples

from the dataset {x(i)}Ni=1 (Song and Ermon, 2020). Using the maximum Euclidean

distance ensures that x(1) does not depend on x(0); thus, x(1) is approximately

distributed as N (0, σ2(1)I).

10.3.3 Variance Preserving (VP) process

The Variance Preserving (VP) process consists in the following FDP:

dx = −1

2
β(t)xdt+

√
β(t)dw.
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Its associated transition kernel is:

x(t)|x(0) ∼ N (x(0) e−
1
2

∫ t
0 β(s)ds, (1− e−

∫ t
0 β(s)ds) I).

In practice, we let β(t) = βmin + t (βmax − βmin), where βmin = 0.1 and βmax =

20. Thus, x(1) is approximately distributed as N (0, I) and does not depend on

x(0).

10.3.4 Solving the Reverse Diffusion Process (RDP)

There are many ways to solve the RDP; the most basic one being Euler-

Maruyama (Kloeden and Platen, 1992), the SDE analog to Euler’s method for

solving ODEs. Song et al. (2021) also proposed Reverse-Diffusion, which consists

in ancestral sampling (Ho et al., 2020) with the same discretization used in the

FDP. With the Reverse-Diffusion, (Song et al., 2021) obtained poor results un-

less applying an additional Langevin dynamics step after each Reversion-Diffusion

step. They named this approach Predictor-Corrector (PC) sampling, with the

predictor corresponding to Reverse-Diffusion and the corrector to Langevin dy-

namics. Although using a corrector step leads to better samples, PC sampling is

only heuristically motivated and the theoretical underpinnings are not yet under-

stood. Nevertheless, (Song et al., 2021) report their best results (in terms of lowest

Fréchet Inception Distance (Heusel et al., 2017)) using the Reverse-Diffusion with

Langevin dynamics for VE models. For VP models, they obtain their best results

using Euler-Maruyama.

10.4 Efficient Method for Solving Reverse Diffusion

Processes

10.4.1 Setting up the algorithm

We start with a general algorithm for solving an SDE (similar to most ODE/SDE

solvers). We choose the various options/hyper-parameters based on a mixture of
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theory and experiments; an ablation study of the different hyper-parameters can

also be found in Appendix D.2.

10.4.1.1 Integration method

Solving the RDP to generate data can take an undesirably long time. One

would assume that solving SDEs with high-order methods would improve speed

over Euler-Maruyama, just like high-order ODE solvers improve speed over Euler’s

method when solving ODEs. However, this is not always the case: while higher-

order solvers may achieve lower discretization errors, they require more function

evaluations, and the improved precision might not be worth the increased compu-

tation cost (Lehn et al., 2002; Lamba, 2003).

Our preliminary attempts at using SDE solvers with the DifferentialEquations.jl

Julia package (Rackauckas and Nie, 2017b) confirmed that higher-order methods

were significantly slower (6 to 8 times slower; see Appendix D.1). Lamba’s algo-

rithm (Lamba, 2003), a low-order adaptive method, yielded the fastest results, thus

motivating us to restrict our search to the space of low-order methods. Still, the

resulting images were of lower quality.

Using a fixed step-size while solving an ODE/SDE requires some tuning and

one should be able to advance faster (from t = 1 to t = 0) in regions of low noise.

To gain more speed, one can dynamically adjust the step size over time; this is a

common approach used in most fast ODE/SDE solvers. Such technique generally

use two integration methods: a lower-order (x′) method and a higher-order (x′′)

method. The local error E(x′,x′′) = x′ − x′′ is used to determine how stable

the lower-order method is at the current step size; the closer to zero, the more

appropriate the step size is. From this information, we can dynamically adjust the

step size and decide whether or not to accept the proposed sample of the lower-

order method. Alternatively, one can select x′′ as the proposal, which we will refer

to as extrapolating.

Rather than using the Improved Euler ODE solver (Süli and Mayers, 2003) as in

Lamba (2003) or a high-order stochastic Runge-Kutta method (Rößler, 2010) as in

Rackauckas and Nie (2017a) (which did not work well in our preliminary attempts

with the Julia package) we instead rely on the more recent Improved Euler SDE

solver (Roberts, 2012) as our higher order method. This method is very similar to

the classical Improved Euler ODE solver, but it is made to work with SDEs instead
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of ODEs. Importantly, this method only requires two score function evaluations

and re-uses the same score function evaluation used for EM, meaning that it is

only twice as expensive as EM. Similarly to Lamba’s algorithm, this method, albeit

quick, leads to images of poor quality. However, by using extrapolation (taking x′′

instead of x′ as our proposal), we were able to match and improve over the baseline

approach (EM). Thus, using the stochastic Improved Euler was the key to taking

bigger steps without sacrificing precision. Note that Lamba’s algorithm cannot use

extrapolation due to its use of a non-stochastic ODE solver (Improved Euler).

An algorithm has strong-order p when the local error from t to t+h is O(hp+1)).

Euler-Maruyama has strong-order 0.5 while Improved Euler has strong-order 1

(Roberts, 2012). The highest strong-order found in the DifferentialEquations.jl

Julia package (Rackauckas and Nie, 2017b) are order 1.5. Thus, our method obtains

a balance between methods that are 1) low precision, but fast and 2) high precision,

but slow.

10.4.1.2 Tolerance

In ODE/SDE solvers, the local error is divided by a tolerance term. Tradition-

ally, the mixed tolerance δ(x′) : Rd → Rd is calculated as the maximum between

the absolute and relative tolerance:

δ(x′) = max(ϵabs, ϵrel|x′|), (10.4)

where the absolute value | · | is applied element-wise.

The DifferentialEquations.jl Julia package instead calculates the mixed toler-

ance through the maximum of the current and previous sample:

δ(x′,x′
prev) = max(ϵabs, ϵrel max(|x′|, |x′

prev|)). (10.5)

Having no trivial prior for which approach to use, we tried both and found

the latter approach (Equation 10.5) to converge much faster for VE models (see

Appendix D.2).

Given our focus on image generation, we can set ϵabs a priori. During training

and at the end of the data generation, images are represented as floating-point

tensors with range [ymin, ymax]. When evaluated, they must be transformed into
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8-bit color images; this means that images are scaled to the range [0, 255] and con-

verted to the nearest integer (to represent one of the 256 values per color channel).

Given the 8-bit color encoding, an absolute tolerance ϵabs =
ymax−ymin

256
corresponds

to tolerating local errors of at most one color (e.g., x′
ij with Red=5 and x′′

ij with

Red=6 is accepted, but x′
ij with Red=5 and x′′

ij with Red=7 is not) channel-wise.

One-color differences are not perceptible and should not influence the metrics used

for evaluating the generated images. For VP models, which have range [−1, 1],
this corresponds to ϵabs = 0.0078 while for VE models, which have range [0, 1], this

corresponds to ϵabs = 0.0039.

To control speed/quality, we vary ϵrel, where large values lead to more speed

but less precision, while small values lead to the converse.

10.4.1.3 Norm of the scaled error

The scaled error (the error scaled by the mixed tolerance) is calculated as

Eq =

∥∥∥∥ x′ − x′′

δ(x′,x′
prev)

∥∥∥∥
q

.

Many algorithms use q =∞ (Lamba, 2003; Rackauckas and Nie, 2017a), where

||x||∞ = max(x1, ...,xk) over all k elements of x. Although this can work with

low-dimensional SDEs, this is highly problematic for high-dimensional SDEs such

as those in image-space. The reason is that a single channel of a single pixel (out of

65536 pixels for a 256×256 color image) with a large local error will cause the step

size to be reduced for all pixels and possibly lead to a step size rejection. Indeed,

our experiments confirmed that using q = ∞ slows down generation considerably

(see Appendix D.2). To that effect, we instead use a scaled ℓ2 norm:

||x||2 =

√√√√ 1

n

k∑
i=1

(
x′ − x′′

δ(x′,x′
prev)

)
k

.

10.4.1.4 Hyperparameters of the dynamic step size algorithm

Upon calculating the scaled error, we accept the proposal x′′ if Eq ≤ 1 and

increment the time by h Whether or not it is accepted, we update the next step
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size h in the usual way:

h← min(hmax, θhE
−r
q ), (10.6)

where hmax is the maximum step size, θ is the safety parameter which determines

how strongly we adapt the step size (0 being very safe; 1 being fast, but high

rejections rate), and r is an exponent-scaling term.

Although ODE theory tells us that we should let r = 1
p+1

with p being the

order of the lower-order integration method, there is no such theory for SDEs

(Rackauckas and Nie, 2017a). Thus, as Rackauckas and Nie (2017a) suggest, we

resorted to empirically testing values and found that any r ∈ [0.5, 1] works well on

both VE and VP processes, but that r ∈ [0.8, 0.9] is slightly faster (see Appendix

D.2). We arbitrarily chose r = 0.9 as the default setting.

Finally, we defaulted to setting θ = 0.9 for the safety parameter as is common in

the literature, and choose hmax to be equal to the largest step size possible, namely

the remaining time t.

10.4.1.5 Handling the mini-batch

Using the same step size for every sample of a mini-batch means that every

images would be slowed down by the other images. Since every image’s RDP is

independent from one another, we apply a different step size to each data sample;

some images may converge faster than others, but we wait for all images to have

converged.

10.4.2 Algorithm

In Section 10.4.1, We defined every aspect of the algorithm needed to numer-

ically solve Equation 10.2 for image generation. The algorithm thus consists in

using adaptive step sizes through Equation 10.6 with the hyperparameters defined

in the previous subsection (q = ∞, θ = 0.9, r = 0.9, ϵabs = ymax−ymin

256
) with

Euler-Maruyama as the low-order method and Improved Euler as the high-order

method. The resulting algorithm is described in Algorithm 6. This algorithm is

straightforward to parallelize across the batch dimension.

Note that this algorithm is only for solving an RDP; a more general version

for solving an arbitrary forward-time diffusion process can be found in Appendix
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D.3. Additionally, we present a demonstration in Appendix D.6 showing that the

extrapolation step conserves the stability and convergence of the EM step.

Algorithm 6 Dynamic step size extrapolation for solving Reverse Diffusion Pro-
cesses

Require: sθ, ϵrel, ϵabs, hinit = 0.01, r = 0.9, θ = 0.9 ▷ for images: ϵabs =
ymax−ymin

256

t← 1
h← hinit

Initialize x
x′
prev ← x

while t > 0 do
Draw z ∼ N (0, I)
x′ ← x− hf(x, t) + hg(t)2sθ(x, t) +

√
hg(t)z ▷ Euler-Maruyama

x̃← x− hf(x′, t− h) + hg(t− h)2sθ(x
′, t− h) +

√
hg(t− h)z

x′′ ← 1
2
(x′ + x̃) ▷ Improved Euler (SDE version)

δ ← max(ϵabs, ϵrel max(|x′|, |x′
prev|)) ▷ Element-wise operations

E2 ← 1√
n
∥(x′ − x′′) /δ∥2

if E2 ≤ 1 then ▷ Accept
x← x′′ ▷ Extrapolation
t← t− h
x′
prev ← x′

h← min(t, θhE−r
2 ) ▷ Dynamic step size update

return x

10.5 Experiments

To test Algorithm 6 on RDPs, we apply it to various pre-trained models from

Song et al. (2021). To start, we generate low-resolution images (32x32) by testing

the VP, VE, VP-deep, and VE-deep models on CIFAR-10 (Krizhevsky and Hinton,

2009). Then, we generate higher-resolutions images (256x256) by testing the VE

models on LSUN-Church (Yu et al., 2015), and Flickr-Faces-HQ (FFHQ) (Karras

et al., 2019). See implementation details in Appendix D.4. We used four or less

V100 GPUs to run the experiments.

To measure the performance of the image generation, we calculate the Fréchet

Inception Distance (FID) (Heusel et al., 2017) and the Inception Score (IS) (Sali-

mans et al., 2016), where low FID and high IS correspond to higher quality/diver-
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sity. We compare our method to the three base solvers used in Song et al. (2021):

Reverse-Diffusion with Langevin dynamics, Euler-Maruyama (EM), and Probabil-

ity Flow, where the latter solves an ODE instead of an SDE using Runge-Kutta

45 (Dormand and Prince, 1980). We also compare against the fast solver by (Song

et al., 2020) called denoising diffusion implicit models (DDIM), which is only defined

for VP models. We define the baseline approach as the solver used by Song et al.

(2021) which leads to the lowest FID (EM for VP models and Reverse-Diffusion

with Langevin for VE models). For our algorithm, the only free hyperparameter is

the relative tolerance which we set to ϵrel ∈ {0.01, 0.02, 0.05, 0.1, 0.5}.
The FID and the Number of score Function Evaluations (NFE) are described

in Table 10.1 for low-resolution images and Table 10.2 for high-resolution images.

The Inception Score (IS) is described for CIFAR-10 in Appendix D.5.

10.5.1 Performance

Compared to EM, we observe that our method is immediately advantageous in

terms of quality/diversity for high-resolution images, along with 2 to 3× speedups

(ϵrel = 0.02). While this advantage becomes less obvious in terms of the FID on

CIFAR-10, our method still offers > 5× computational speedups at no apparent

disadvantage (ϵrel ∈ {0.02, 0.05}).
Reverse-Diffusion with Langevin achieves the lowest FID for VE models on

CIFAR-10, though at the cost of a 4× computational overhead over our method.

Furthermore, their advantage vanishes for VP models and when generating high-

resolution images.

We further compare our SDE solver to EM given the same computational budget

and observe that our method is always immensely preferable in high-resolutions and

for VP models. For VE models on CIFAR-10, we observe that our algorithm leads

to a better FID as long as the NFE is sufficiently large (270). Note that since

our algorithm takes two score function evaluations per step, EM has the advantage

of doing twice as many steps given the same NFE, which appears to be a factor

more important than the order of the method at low budget in low-resolution VE.

Nevertheless, comparing for equal number of iterative step, the results still point

to our method being always preferable. For high-resolution images, we see that

EM cannot converge on moderate to small NFEs due to the high-dimensionality,
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Table 10.1 – Number of score Function Evaluations (NFE) / Fréchet Inception Distance (FID)
on CIFAR-10 (32x32) from 50K samples

Method VP VP-deep VE VE-deep

Reverse-Diffusion & Langevin 1999 / 3.41 1999 / 3.28 1999 / 2.40 1999 / 2.21

Euler-Maruyama 1000 / 2.55 1000 / 2.49 1000 / 2.98 1000 / 3.14
DDIM 1000 / 2.86 1000 / 2.69 – –

Ours (ϵrel = 0.01) 329 / 2.70 330 / 2.56 738 / 2.91 736 / 3.06
Euler-Maruyama (same NFE) 329 / 10.28 330 / 10.00 738 / 2.99 736 / 3.17

DDIM (same NFE) 329 / 4.81 330 / 4.76 – –

Ours (ϵrel = 0.02) 274 / 2.74 274 / 2.60 490 / 2.87 488 / 2.99
Euler-Maruyama (same NFE) 274 / 14.18 274 / 13.67 490 / 3.05 488 / 3.21

DDIM (same NFE) 274 / 5.75 274 / 5.74 – –

Ours (ϵrel = 0.05) 179 / 2.59 180 / 2.44 271 / 3.23 270 / 3.40
Euler-Maruyama (same NFE) 179 / 25.49 180 / 25.05 271 / 3.48 270 / 3.76

DDIM (same NFE) 179 / 9.20 180 / 9.25 – –

Ours (ϵrel = 0.10) 147 / 2.95 151 / 2.73 170 / 8.85 170 / 10.15
Euler-Maruyama (same NFE) 147 / 31.38 151 / 31.93 170 / 5.12 170 / 5.56

DDIM (same NFE) 147 / 11.53 151 / 11.38 – –

Ours (ϵrel = 0.50) 49 / 72.29 48 / 82.42 52 / 266.75 50 / 307.32
Euler-Maruyama (same NFE) 49 / 92.99 48 / 95.77 52 / 169.32 50 / 271.27

DDIM (same NFE) 49 / 37.24 48 / 38.71 – –

Probability Flow (ODE) 142 / 3.11 145 / 2.86 183 / 7.64 181 / 5.53
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Table 10.2 – Number of score Function Evaluations (NFE) / Fréchet Inception Distance (FID)
on LSUN-Church (256x256) and FFHQ (256x256) from 5K samples

Method VE (Church) VE (FFHQ)

Reverse-Diffusion & Langevin 3999 / 29.14 3999 / 16.42

Euler-Maruyama 2000 / 42.11 2000 / 18.57

Ours (ϵrel = 0.01) 1104 / 25.67 1020 /15.68
Euler-Maruyama (same NFE) 1104 / 68.24 1020 / 20.45

Ours (ϵrel = 0.02) 1030 / 26.46 643 / 15.67
Euler-Maruyama (same NFE) 1030 / 73.47 643 / 44.42

Ours (ϵrel = 0.05) 648 / 28.47 336 / 18.07
Euler-Maruyama (same NFE) 648 / 145.96 336 / 114.23

Ours (ϵrel = 0.10) 201 / 45.92 198 / 24.02
Euler-Maruyama (same NFE) 201 / 417.77 198 / 284.61

Probability Flow (ODE) 434 / 214.47 369 / 135.50

making of our SDE solver the way to go.

Generally, we observe that the VE process cannot be solved as fast as the VP

process; this is due to the enormous Gaussian noise in the VE process causing

larger local errors. This reflects the issue mentioned in Section 10.4.1.1 regarding

high-order SDE solvers not always being beneficial in terms of speed for SDEs with

heavy Gaussian noise. In practice, for VE, the algorithm uses a small step size in

the beginning to ensure high accuracy and eventually increases the step size as the

noise becomes less considerable.

10.5.2 Solving an ODE instead of an SDE

We see that our SDE solver generally does better than Probability Flow, espe-

cially in high-resolution, where we obtain greatly lower FIDs with a similar budget.

Our algorithm attains the same NFE as Probability Flow when ϵrel = 0.10 for

low-resolution images and when 0.05 < ϵrel < 0.10 for high-resolution images. For

the same budget, Probability Flow has higher FID than our approach on all but

low-resolution VE models. However, in that case, our algorithm achieves a much

lower FID when ϵrel ≤ 0.05, albeit slower. In high-resolution, Probability Flow

leads to very poor FIDs, suggesting no convergence.
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10.5.3 DDIM

Contrary to Song et al. (2020),the FID of DDIM worsens significantly when

the NFE decreases. This could be due to differences between Song et al. (2021)

continuous-time score-matching and the DDIM training procedure and architec-

ture. Nevertheless, the FID increase engendered by a reduced budget is much less

dramatic than for EM. As of note, DDIM succeeds in maintaining a lower FID than

our solver at extremely small NFEs (< 50), albeit with extremely poor FID.

10.6 Limitations

Although we tested our approach on a wide range of settings, we nevertheless

only tested on continuous-time image generation models. We did so because solving

the SDE requires continuous-time and the only such pre-trained models at time of

publishing are the one by Song et al. (2021).

Although our approach removes step size and schedule tuning, we still need

to choose a value of the relative tolerance, which indirectly affects the number

of steps taken; one could theoretically tune this hyper-parameter to optimize a

certain metric, going against the point of removing tuning. Still, letting ϵrel = 0.01

for precise results and ϵrel = 0.05 for fast results are reasonable choices, as all

evidence points to the FID being stable w.r.t. ϵrel.

10.7 Conclusion

We built an SDE solver that allows for generating images of comparable (or

better) quality to Euler-Maruyama at a much faster speed. Our approach makes

image generation with score-based models more accessible by shrinking the required

computational budgets by a factor of 2 to 5×, and presenting a sensible way of

compromising quality for additional speed.
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11 Discussion

In Chapter 1, I discussed the extremely promising applications of generative

models, especially regarding art content generation. I envision a future where

artists can collaborate with generative models to produce complex media such as

paintings, tv shows, video games, and comic books. To pave the way toward this

goal, I have focused on some of the most promising generative models: GANs and

score-based diffusion models. In Chapter 2, I discussed both approaches and their

pros and cons.

As discussed in Section 2.5, GANs can provide high-quality, but they suffer from

training instabilities, and they often do not sample from the entire distribution

(mode collapse). In Chapters 4 and 6, I provided a well-grounded method called

Relativistic GAN which significantly improves the stability of GANs and has also

been shown to prevent mode collapse (Sun et al., 2020).

As discussed in Section 2.4, score-based diffusion models initially suffered from

significant instabilities, and their remaining issue is how slow they are in generating

data. In Chapter 8, I provided an adversarial score-based model which improves

sample quality, and I discussed an improved sampling technique for improving

stability. In Chapter 10, I devised a new SDE solver to significantly improve the

speed of the generation with score-based diffusion models.

Thus, for both GANs and score-based diffusion models, I improved the various

issues associated with each technique. In particular, Relativistic GAN has already

had a massive impact, having been cited already more than 500 times; they are

now being used for super-resolution (Wang et al., 2018) text generation (Nie et al.,

2019), and relatively small datasets with unruly/unstable settings. As score-based

diffusion gains traction, my work to improve quality, stability, and speed will be

used to help achieve this.

There still remains a long way for fully realistic complex media generation such

as video generation. I suspect score-based diffusion methods will be important for

such systems, but I do not think it will be enough. More work will need to be
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done to fix the following problems: 1) sequences of frames for which the motion

does not make physical sense, 2) lack of long-term memory, 3) colossal memory

requirements, and 4) lack of integration of audio and text into the model. I will

continue working on this problem until we finally reach the point of generating

full-fledged videos with AI. Hopefully, this time will come sooner than later!
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A

The relativistic
discriminator: a key
element missing from
standard GAN

A.1 Intuitive and memeful visual representation of

RaGANs

See Table A.1.

A.2 Intuition behind RaGANs

Although the relative discriminator provide the missing property that we want

in GANs (i.e., G influencingD(xr)), its interpretation is different from the standard

discriminator. Rather than measuring “the probability that the input data is real”,

it is now measuring “the probability that the input data is more realistic than a

randomly sampled data of the opposing type (fake if the input is real or real if

the input is fake)”. To make the relativistic discriminator act more globally, as

in its original definition, our initial idea was the following: average the relativistic

discriminator over random samples of data of the opposing type. This can be

conceptualized in the following way:

P (xr is real) := Exf∼Q[P (xr is more real than xf )]

= Exf∼Q[sigmoid(C(xr)− C(xf ))]

= Exf∼Q[D(xr, xf )],

P (xf is real) := Exr∼P[P (xf is more real than xr)]

= Exr∼P[sigmoid(C(xf )− C(xr))]

= Exr∼P[D(xf , xr)],
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Table A.1 – An illustrative example of the discriminator’s output in standard GAN as tradi-
tionally defined (P (xr is real) = sigmoid(C(xr))) versus the Relativistic average Discriminator
(RaD) (P (xr is real|C(xf )) = sigmoid(C(xr)−C(xf ))). Breads represent real images, while dogs
represent fake images.

Scenario Absolute probability Relative probability
(Standard GAN) (Ra Standard GAN)

Real image looks real
and

fake images look fake

C(xr) = 8 C(xf ) = −5
P (xr is bread) = 1 P (xr is bread|C(xf )) = 1

Real image looks real
but

fake images look
similarly real on average

C(xr) = 8 C(xf ) = 7

P (xr is bread) = 1 P (xr is bread|C(xf )) = .73

Real image looks fake
but

fake images look more
fake on average

C(xr) = −3 C(xf ) = −5
P (xr is bread) = .05 P (xr is bread|C(xf )) = .88
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where D(xr, xf ) = sigmoid(C(xr)− C(xf )).

Then, the following loss function for D could be applied:

LD = −Exr∼P
[
log
(
Exf∼Q[D(xr, xf )]

)
)
]
− Exf∼Q [log (1− Exr∼P[D(xf , xr)])] .

(A.1)

The main problem with this idea is that it would require looking at all possible

combinations of real and fake data in the mini-batch. This would transform the

problem from O(m) to O(m2) complexity, where m is the batch size. This is

problematic; therefore, we do not use this approach.

Instead, we propose to use the Relativistic average Discriminator (RaD) which

compares the critic of the input data to the average critic of samples of the opposite

type (See section 4.3). This approach has O(m) complexity.

A.3 Gradients

A.3.1 SGAN

∇wL
GAN
D = −∇wExr∼P [logD(xr)]−∇wExf∼Qθ

[log(1−D(xf ))]

= −∇wExr∼P

[
log

(
eC(xr)

eC(xr) + 1

)]
−∇wExf∼Qθ

[
log

(
1− eC(xf )

eC(xf ) + 1

)]
= −∇wExr∼P

[
C(xr)− log

(
eC(xr) + 1

)]
+∇wExf∼Qθ

[
log
(
eC(xf ) + 1

)]
= −Exr [∇wC(xr)] + Exr [D(xr)∇wC(xr)] + Exf

[D(xf )∇wC(xf )]

= −Exr∼P [(1−D(xr))∇wC(xr)] + Exf∼Qθ
[D(xf )∇wC(xf )]
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∇θL
GAN
G = −∇θEz∼Pz [logD(G(z))]

= −∇θEz∼Pz

[
log

(
eC(G(z))

eC(G(z)) + 1

)]
= −∇θEz∼Pz

[
C(G(z))− log

(
eC(G(z)) + 1

)]
= −Ez∼Pz

[
∇xC(G(z))JθG(z)−

(
eC(G(z))

eC(G(z)) + 1

)
∇xC(G(z))JθG(z)

]
= −Ez∼Pz [(1−D(G(z)))∇xC(G(z))JθG(z)]

A.3.2 IPM-based GANs

∇wL
IPM
D = −∇wExr∼P[C(xr)] +∇wExf∼Qθ

[C(xf )]

= −Exr∼P[∇wC(xr)] + Exf∼Qθ
[∇wC(xf )]

∇θL
IPM
G = −∇θEz∼Pz [C(G(z))]

= −Ez∼Pz [∇xC(G(z))JθG(z)]

A.4 Simplified form of relativistic saturating and

non-saturating GANs

The formulation of RGANs can be simplified when we have the following two

properties: (1) f2(−y) = f1(y) and (2) the generator assumes a non-saturating loss

(g1(y) = f2(y) and g2(y) = f1(y)). These two properties are observed in standard

GAN, LSGAN using symmetric labels (e.g., -1 and 1), IPM-based GANs, etc. With

these two properties, RGANs with non-saturating loss can be formulated simply

as:

LRGAN∗
D = E(xr,xf )∼(P,Q) [f1(C(xr)− C(xf ))] (A.2)
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and

LRGAN∗
G = E(xr,xf )∼(P,Q) [f1(C(xf )− C(xr))] . (A.3)

Assuming f2(−y) = f1(y), we have that

LRGAN
D = E(xr,xf )∼(P,Q) [f1(C(xr)− C(xf ))] + E(xr,xf )∼(P,Q) [f2(C(xf )− C(xr))]

= E(xr,xf )∼(P,Q) [f1(C(xr)− C(xf ))] + E(xr,xf )∼(P,Q) [f1(C(xr)− C(xf ))]

= 2E(xr,xf )∼(P,Q) [f1(C(xr)− C(xf ))] .

If g1(y) = −f1(y) and g2(y) = −f2(y) (saturating GAN), we have that

LRGAN−S
G = E(xr,xf )∼(P,Q) [g1(C(xr)− C(xf ))] + E(xr,xf )∼(P,Q) [g2(C(xf )− C(xr))]

= −E(xr,xf )∼(P,Q) [f1(C(xr)− C(xf ))]− E(xr,xf )∼(P,Q) [f2(C(xf )− C(xr))]

= −E(xr,xf )∼(P,Q) [f1(C(xr)− C(xf ))]− E(xr,xf )∼(P,Q) [f1(C(xr)− C(xf ))]

= −2E(xr,xf )∼(P,Q) [f1(C(xr)− C(xf ))] .

If g1(y) = f2(y) and g2(y) = f1(y) (non-saturating GAN), we have that

LRGAN−NS
G = E(xr,xf )∼(P,Q) [g1(C(xr)− C(xf ))] + E(xr,xf )∼(P,Q) [g2(C(xf )− C(xr))]

= E(xr,xf )∼(P,Q) [f2(C(xr)− C(xf ))] + E(xr,xf )∼(P,Q) [f1(C(xf )− C(xr))]

= E(xr,xf )∼(P,Q) [f1(C(xf )− C(xr))] + E(xr,xf )∼(P,Q) [f1(C(xf )− C(xr))]

= 2E(xr,xf )∼(P,Q) [f1(C(xf )− C(xr))] .

A.5 Testing the gradient argument

Previously, we argued that SGAN could be equivalent to IPM-GANs under very

strict conditions and assumptions. We mentioned that although most assumptions

are reasonable, the assumption that the generator is trained to optimality is unre-

alistic. In which case, SGAN would not be equivalent to IPM-based GANs since

D(xr) would not reach 0.

As an experiment, we calculated the mini-batch average of D(xr) in the first

100 iterations of the training for the CAT dataset in 256x256. Note that SGAN

becomes stuck at around 200 iterations and can never go beyond generating noise.
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Thus, a difference in the distribution of D(xr) could reveal something meaningful

about why Relativistic GANs can converge while their non-relativistic counterparts

cannot.

In those 100 iterations, we have that the distance between P and Q is maximal

since G only generate noise. Thus, we can perfectly distinguish real from fake data,

which is one of the assumptions. The remaining assumptions were that D and G

would be trained to optimality. Although we did not train D more than once, after

the discriminator step, we generally had that D(xr) ≈ 1. What we wanted to verify

is whether D(xr) ≈ 0 after the generator step in Relativistic GANs, even though

we did not train G enough to reach optimality.

Figure A.1 – Density plots of the mini-batch average of D(xr) during the first 100 iterations of
training on CAT with 256x256 images using only one or two generator updates per discriminator
updates. If D(xr) = 0 in all iterations, this would mean that the loss function would be the same
as IPM-based GANs.

Results are shown in Figure 2. We observe that with only one generator update

per discriminator update (nG = 1), RSGAN and RaSGAN never reach an average

D(xr) of 0 but the distribution is much less concentrated around 1 than with SGAN.

With nG = 2, RSGAN and RaSGAN sometimes reach an average D(xr) of 0 and

they form an almost uniform distribution around [0, 1]. This suggests that with the

missing property (i.e., using Relativistic GANs), SGAN can be made more similar

to IPM-based GANs, but never equivalent. Thus, Relativistic Standard GANs can

be seen as having a dynamic in-between SGAN and IPM-based GANs.
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A.6 CIFAR-10 Hard/unstable experiments

In these analyses, we compared SGAN, LSGAN, WGAN-GP, RSGAN, RaS-

GAN, RaLSGAN, and RaHingeGAN with the standard CNN architecture on un-

stable setups in CIFAR-10. Unless otherwise specified, we used lr = .0002, β1 = .5,

β2 = .999, nD = 1, and batch norm (Ioffe and Szegedy, 2015) in G and D. We

tested the following four unstable setups: (1) lr = .001, (2) β1 = .9, β2 = .9, (3)

no batch norm in G or D, and (4) all activation functions replaced with Tanh in

both G and D (except for the output activation function of D).

Results are presented in Table 4. We observe that RaLSGAN performed better

than LSGAN in all setups. RaHingeGAN performed slightly worse than HingeGAN

in most setups. RSGAN and RaSGAN performed better than SGAN in two out

of four setups, although differences were small. WGAN-GP generally performed

poorly which we suspect is due to the single discriminator update per generator

update. Overall, this provide good support for the improved stability of using the

relative discriminator with LSGAN, but not with HingeGAN and SGAN. Although

results are worse for the relativistic discriminator in some settings, differences are

minimal and probably reflect natural variations.

It is surprising to observe low FID for SGAN without batch normalization

considering its well-known difficulty with this setting (Arjovsky et al., 2017). Given

these results, we suspected that CIFAR-10 may be too easy to fully observe the

stabilizing effects of using the relative discriminator. Therefore, in the manuscript,

we focused on the more difficult CAT dataset with high resolution pictures.

A.7 Loss functions used in experiments

A.7.1 SGAN (non-saturating)

LSGAN
D = −Exr∼P [log (sigmoid(C(xr)))]− Exf∼Q [log (1− sigmoid(C(xf )))] (A.4)

LSGAN
G = −Exf∼Q [log (sigmoid(C(xf )))] (A.5)
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Table A.2 – Fréchet Inception Distance (FID) at exactly 100k generator iterations on the CIFAR-
10 dataset using unstable setups with different GAN loss functions. Unless otherwise specified,
we used lr = .0002, β = (.50, .999), nD = 1, and batch norm (BN) in D and G. All models were
trained using the same a priori selected seed (seed=1).

Loss lr = .001 β = (.9, .9) No BN Tanh

SGAN 154.20 35.29 35.54 59.17
RSGAN 50.95 45.12 37.11 77.21
RaSGAN 55.55 43.46 41.96 54.42

LSGAN 52.27 225.94 38.54 147.87
RaLSGAN 33.33 48.92 34.66 53.07

HingeGAN 43.28 33.47 34.21 58.51
RaHingeGAN 51.05 42.78 43.75 50.69

WGAN-GP 61.97 104.95 85.27 59.94

A.7.2 RSGAN

LRSGAN
D = −E(xr,xf )∼(P,Q) [log(sigmoid(C(xr)− C(xf )))] (A.6)

LRSGAN
G = −E(xr,xf )∼(P,Q) [log(sigmoid(C(xf )− C(xr)))] (A.7)

A.7.3 RaSGAN

LRaSGAN
D = −Exr∼P

[
log
(
D̃(xr)

)]
− Exf∼Q

[
log
(
1− D̃(xf )

)]
(A.8)

LRaSGAN
G = −Exf∼Q

[
log
(
D̃(xf )

)]
− Exr∼P

[
log
(
1− D̃(xr)

)]
(A.9)

D̃(xr) = sigmoid
(
C(xr)− Exf∼QC(xf )

)
D̃(xf ) = sigmoid (C(xf )− Exr∼PC(xr))

A.7.4 LSGAN

LLSGAN
D = Exr∼P

[
(C(xr)− 0)2

]
+ Exf∼Q

[
(C(xf )− 1)2

]
(A.10)
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LLSGAN
G = Exf∼Q

[
(C(xf )− 0)2

]
(A.11)

A.7.5 RaLSGAN

LRaLSGAN
D = Exr∼P

[
(C(xr)− Exf∼QC(xf )− 1)2

]
+ Exf∼Q

[
(C(xf )− Exr∼PC(xr) + 1)2

]

LRaLSGAN
G = Exf∼P

[
(C(xf )− Exr∼PC(xr)− 1)2

]
+ Exr∼P

[
(C(xr)− Exf∼QC(xf ) + 1)2

]
A.7.6 HingeGAN

LHingeGAN
D = Exr∼P [max(0, 1− C(xr))] + Exf∼Q [max(0, 1 + C(xf ))] (A.12)

LHingeGAN
G = −Exf∼Q [C(xf )] (A.13)

A.7.7 RaHingeGAN

LHingeGAN
D = Exr∼P

[
max(0, 1− D̃(xr))

]
+ Exf∼Q

[
max(0, 1 + D̃(xf ))

]
(A.14)

LHingeGAN
G = Exf∼P

[
max(0, 1− D̃(xf ))

]
+ Exr∼Q

[
max(0, 1 + D̃(xr))

]
(A.15)

D̃(xr) = C(xr)− Exf∼QC(xf )

D̃(xf ) = C(xf )− Exr∼PC(xr)
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A.7.8 WGAN-GP

LWGAN−GP
D = −Exr∼P [C(xr)] + Exf∼Q [C(xf )] + λEx̂∼Px̂

[
(||∇x̂C(x̂) ||2 − 1)2

]
(A.16)

LWGAN−GP
G = −Exf∼Q [C(xf )] (A.17)

Px̂ is the distribution of x̂ = ϵxr + (1− ϵ)xf , where xr ∼ P, xf ∼ Q, ϵ ∼ U [0, 1].

A.7.9 RSGAN-GP

LRSGAN
D = −E(xr,xf )∼(P,Q) [log(sigmoid(C(xr)− C(xf )))]

+ λEx̂∼Px̂

[
(||∇x̂C(x̂) ||2 − 1)2

]
LRSGAN
G = −E(xr,xf )∼(P,Q) [log(sigmoid(C(xf )− C(xr)))] (A.18)

Px̂ is the distribution of x̂ = ϵxr + (1− ϵ)xf , where xr ∼ P, xf ∼ Q, ϵ ∼ U [0, 1].

A.7.10 RaSGAN-GP

LRaSGAN
D = −Exr∼P

[
log
(
D̃(xr)

)]
− Exf∼Q

[
log
(
1− D̃(xf )

)]
+ λEx̂∼Px̂

[
(||∇x̂C(x̂) ||2 − 1)2

]
LRaSGAN
G = −Exf∼Q

[
log
(
D̃(xf )

)]
− Exr∼P

[
log
(
1− D̃(xr)

)]
(A.19)

D̃(xr) = sigmoid
(
C(xr)− Exf∼QC(xf )

)
D̃(xf ) = sigmoid (C(xf )− Exr∼PC(xr))

Px̂ is the distribution of x̂ = ϵxr + (1− ϵ)xf , where xr ∼ P, xf ∼ Q, ϵ ∼ U [0, 1].
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A.8 Algorithms

Algorithm 7 Training algorithm for non-saturating RGANs with symmetric loss
functions

Require: The number of D iterations nD (nD = 1 unless one seeks to train D to

optimality), batch sizem, and functions f which determine the objective function

of the discriminator (f is f1 from equation 10 assuming that f2(−y) = f1(y),

which is true for many GANs).

while θ has not converged do

for t = 1, . . . , nD do

Sample {x(i)}mi=1 ∼ P
Sample {z(i)}mi=1 ∼ Pz

Update w using SGD by ascending with

∇w
1
m

∑m
i=1

[
f(Cw(x

(i))− Cw(Gθ(z
(i))))

]
Sample {x(i)}mi=1 ∼ P
Sample {z(i)}mi=1 ∼ Pz

Update θ using SGD by ascending with∇θ
1
m

∑m
i=1

[
f(Cw(Gθ(z

(i)))− Cw(x
(i)))

]
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Algorithm 8 Training algorithm for non-saturating RaGANs

Require: The number of D iterations nD (nD = 1 unless one seek to train D to

optimality), batch size m, and functions f1 and f2 which determine the objective

function of the discriminator (see equation 10).

while θ has not converged do

for t = 1, . . . , nD do

Sample {x(i)}mi=1 ∼ P
Sample {z(i)}mi=1 ∼ Pz

Let Cw(xr) =
1
m

∑m
i=1Cw(x

(i))

Let Cw(xf ) =
1
m

∑m
i=1 Cw(Gθ(z

(i)))

Update w using SGD by ascending with

∇w
1
m

∑m
i=1

[
f1(Cw(x

(i))− Cw(xf )) + f2(Cw(Gθ(z
(i)))− Cw(xr))

]
Sample {x(i)}mi=1 ∼ P
Sample {z(i)}mi=1 ∼ Pz

Let Cw(xr) =
1
m

∑m
i=1 Cw(x

(i))

Let Cw(xf ) =
1
m

∑m
i=1Cw(Gθ(z

(i)))

Update θ using SGD by ascending with

∇θ
1
m

∑m
i=1

[
f1(Cw(Gθ(z

(i)))− Cw(xr)) + f2(Cw(x
(i))− Cw(xf ))

]
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A.9 Architectures

A.9.1 Standard CNN

Generator

z ∈ R128 ∼ N(0, I)

linear, 128 -> 512*4*4

Reshape, 512*4*4 -> 512 x 4 x 4

ConvTranspose2d 4x4, stride 2, pad 1, 512->256

BN and ReLU

ConvTranspose2d 4x4, stride 2, pad 1, 256->128

BN and ReLU

ConvTranspose2d 4x4, stride 2, pad 1, 128->64

BN and ReLU

ConvTranspose2d 3x3, stride 1, pad 1, 64->3

Tanh
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Discriminator

x ∈ R3x32x32

Conv2d 3x3, stride 1, pad 1, 3->64

LeakyReLU 0.1

Conv2d 4x4, stride 2, pad 1, 64->64

LeakyReLU 0.1

Conv2d 3x3, stride 1, pad 1, 64->128

LeakyReLU 0.1

Conv2d 4x4, stride 2, pad 1, 128->128

LeakyReLU 0.1

Conv2d 3x3, stride 1, pad 1, 128->256

LeakyReLU 0.1

Conv2d 4x4, stride 2, pad 1, 256->256

LeakyReLU 0.1

Conv2d 3x3, stride 1, pad 1, 256->512

Reshape, 512 x 4 x 4 -> 512*4*4

linear, 512*4*4 -> 1
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A.9.2 DCGAN 64x64

Generator

z ∈ R128 ∼ N(0, I)

ConvTranspose2d 4x4, stride 1, pad 0, no bias, 128->512

BN and ReLU

ConvTranspose2d 4x4, stride 2, pad 1, no bias, 512->256

BN and ReLU

ConvTranspose2d 4x4, stride 2, pad 1, no bias, 256->128

BN and ReLU

ConvTranspose2d 4x4, stride 2, pad 1, no bias, 128->64

BN and ReLU

ConvTranspose2d 4x4, stride 2, pad 1, no bias, 64->3

Tanh

Discriminator

x ∈ R3x64x64

Conv2d 4x4, stride 2, pad 1, no bias, 3->64

LeakyReLU 0.2

Conv2d 4x4, stride 2, pad 1, no bias, 64->128

BN and LeakyReLU 0.2

Conv2d 4x4, stride 2, pad 1, no bias, 128->256

BN and LeakyReLU 0.2

Conv2d 4x4, stride 2, pad 1, no bias, 256->512

BN and LeakyReLU 0.2

Conv2d 4x4, stride 2, pad 1, no bias, 512->1
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A.9.3 DCGAN 128x128

Generator

z ∈ R128 ∼ N(0, I)

ConvTranspose2d 4x4, stride 1, pad 0, no bias, 128->1024

BN and ReLU

ConvTranspose2d 4x4, stride 2, pad 1, no bias, 1024->512

BN and ReLU

ConvTranspose2d 4x4, stride 2, pad 1, no bias, 512->256

BN and ReLU

ConvTranspose2d 4x4, stride 2, pad 1, no bias, 256->128

BN and ReLU

ConvTranspose2d 4x4, stride 2, pad 1, no bias, 128->64

BN and ReLU

ConvTranspose2d 4x4, stride 2, pad 1, no bias, 64->3

Tanh
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Discriminator

x ∈ R3x128x128

Conv2d 4x4, stride 2, pad 1, no bias, 3->64

LeakyReLU 0.2

Conv2d 4x4, stride 2, pad 1, no bias, 64->128

BN and LeakyReLU 0.2

Conv2d 4x4, stride 2, pad 1, no bias, 128->256

BN and LeakyReLU 0.2

Conv2d 4x4, stride 2, pad 1, no bias, 256->512

BN and LeakyReLU 0.2

Conv2d 4x4, stride 2, pad 1, no bias, 512->1024

BN and LeakyReLU 0.2

Conv2d 4x4, stride 2, pad 1, no bias, 1024->1

142



A.9.4 DCGAN 256x256

Generator

z ∈ R128 ∼ N(0, I)

ConvTranspose2d 4x4, stride 1, pad 0, no bias, 128->1024

BN and ReLU

ConvTranspose2d 4x4, stride 2, pad 1, no bias, 1024->512

BN and ReLU

ConvTranspose2d 4x4, stride 2, pad 1, no bias, 512->256

BN and ReLU

ConvTranspose2d 4x4, stride 2, pad 1, no bias, 256->128

BN and ReLU

ConvTranspose2d 4x4, stride 2, pad 1, no bias, 128->64

BN and ReLU

ConvTranspose2d 4x4, stride 2, pad 1, no bias, 64->32

BN and ReLU

ConvTranspose2d 4x4, stride 2, pad 1, no bias, 64->3

Tanh
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Discriminator (PACGAN2 (Lin et al., 2018))

x1 ∈ R3x256x256, x2 ∈ R3x256x256

Concatenate [x1, x2] ∈ R6x256x256

Conv2d 4x4, stride 2, pad 1, no bias, 6->32

LeakyReLU 0.2

Conv2d 4x4, stride 2, pad 1, no bias, 32->64

LeakyReLU 0.2

Conv2d 4x4, stride 2, pad 1, no bias, 64->128

BN and LeakyReLU 0.2

Conv2d 4x4, stride 2, pad 1, no bias, 128->256

BN and LeakyReLU 0.2

Conv2d 4x4, stride 2, pad 1, no bias, 256->512

BN and LeakyReLU 0.2

Conv2d 4x4, stride 2, pad 1, no bias, 512->1024

BN and LeakyReLU 0.2

Conv2d 4x4, stride 2, pad 1, no bias, 1024->1

A.10 Samples

This shows a selection of cats from certain models. Images shown are from the

lowest FID registered at every 10k generator iterations. Given space constraint,

with cats in high resolution, we show some of the nicer looking cats for each ap-

proach, there are evidently some worse looking cats (See https://github.com/A

lexiaJM/RelativisticGAN/tree/master/images/full_minibatch for all cats

of the mini-batch).
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Figure A.2 – 64x64 cats with RaLSGAN (FID = 11.97)
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Figure A.3 – 128x128 cats with RaLSGAN (FID = 15.85)
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Figure A.4 – 256x256 cats with GAN (5k iterations)

Figure A.5 – 256x256 cats with LSGAN (5k iterations)
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Figure A.6 – 256x256 cats with RaSGAN (FID = 32.11)
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Figure A.7 – 256x256 cats with RaLSGAN (FID = 35.21)
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Figure A.8 – 256x256 cats with SpectralSGAN (FID = 54.73)

150



Figure A.9 – 256x256 cats with WGAN-GP (FID > 100)
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B On relativistic f-divergences

B.1 Proving that the objective functions are

divergences

Definition B.1.1. Let P and Q be probability distributions and S be the set of all

probability distributions with common support. A function D : (S, S)→ R>0 is a

divergence if it respects the following two conditions:

D(P,Q) ≥ 0

D(P,Q) = 0 ⇐⇒ P = Q.

Definition B.1.2. A function f is concave on X if and only if

Lemma 3. Let f be a concave function on X, we have that

∀x1, x2, x3 ∈ X s.t. x1 < x2 ≤ x3 :
f(x3)− f(x1)

x3 − x1

≤ f(x2)− f(x1)

(x2 − x1)

and

∀x1, x2, x3 ∈ X s.t. x1 ≤ x2 < x3 :
f(x3)− f(x2)

(x3 − x2)
≤ f(x3)− f(x1)

x3 − x1

.

Proof. Let α = (x3−x2)
(x3−x1)

.

If x1 < x2 ≤ x3, we have that α ∈ [0, 1).

If x1 ≤ x2 < x3, we have that α ∈ (0, 1).

Either way, by concavity, we have that
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f(x2) ≥
(x3 − x2)

(x3 − x1)
f(x1) +

(
1− (x3 − x2)

(x3 − x1)

)
f(x3)

=
(x3 − x2)

(x3 − x1)
f(x1) +

(x2 − x1)

(x3 − x1)
f(x3)

If x1 < x2 ≤ x3, we have that:

f(x2)− f(x1) ≥
(x1 − x2)f(x1) + (x2 − x1)f(x3)

(x3 − x1)

f(x2)− f(x1)

(x2 − x1)
≥ f(x3)− f(x1)

(x3 − x1)

If x1 ≤ x2 < x3, we have that:

f(x2)− f(x3) ≥
(x3 − x2)f(x1) + (x2 − x3)f(x3)

(x3 − x1)

f(x2)− f(x3)

(x3 − x2)
≥ f(x1)− f(x3)

(x3 − x1)

f(x3)− f(x2)

(x3 − x2)
≤ f(x3)− f(x1)

(x3 − x1)

Lemma 4. Let f : R→ R be a concave function such that f(0) = 0. We have that

∀a, b,∇ s.t. b ≥ a > 0,∇ ≠ 0 :
f(∇b)

b
≤ f(∇a)

a
.

Proof. If ∇ > 0 we have that 0 < ∇a ≤ ∇b.
By Lemma A.1 , we have that

f(∇b)− f(0)

∇(b− 0)
≤ f(∇a)− f(0)

∇(a− 0)

⇐⇒ f(∇b)
b
≤ f(∇a)

a

If ∇ < 0, we have that ∇b ≤ ∇a < 0.
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By Lemma A.1, we have that

f(0)− f(∇a)
∇(0− a)

≤ f(0)− f(∇b)
∇(0− b)

⇐⇒ f(∇a)
∇a

≤ f(∇b)
∇b

⇐⇒ f(∇a)
a
≥ f(∇b)

b
, since ∇ < 0

Thus, when ∇ ≠ 0, we have that

f(∇b)
b
≤ f(∇a)

a

Lemma 5. Let f : R → R be a concave function such that f(0) = 0, f is dif-

ferentiable at 0, f ′(0) ̸= 0, supx f(x) = M > 0, and arg supx f(x) > 0. Let

L(∇) = af(∇) + bf(−∇), where a > 0, b > 0, and a ̸= b.

If a > b, ∃δ > 0, s.t. ∀∇∗ ∈ (0, δ) : L(∇∗) > 0

If a < b, ∃δ > 0, s.t. ∀∇∗ ∈ (−δ, 0) : L(∇∗) > 0.

Proof. By concavity, for all α ∈ (0, 1], we have f(αx∗) ≥ αf(x∗) > 0.

This means that for any ∇ ∈ (0, x∗], we have that f(∇) > 0.

By concavity, for all x, we have that 1
2
f(x)+ 1

2
f(−x) ≤ f(1

2
x− 1

2
x) = f(0) = 0.

Thus, for all ∇ ∈ (0, x∗] we have that 0 < f(∇) ≤ −f(−∇).
This means that f(∇) > 0 and f(−∇) < 0.

Let R(x) = g(x)
f(x)

, where g(x) = −f(−x).
We can show that:

lim
x→0

R(x) = lim
x→0

g(x)

f(x)
H
= lim

x→0

g′(x)

f ′(x)
= lim

x→0

f ′(−x)
f ′(x)

=
f ′(0)

f ′(0)
= 1.

If ∇ ∈ (0, x∗], by concavity we have that 0 < f(∇) ≤ −f(−∇), thus R(∇) =
−f(−∇)
f(∇)

≥ 1.

Let ϵ = (a′−b′)
b′

, where a′ > b′ > 0.

By the definition of the limit, ∃δ > 0 s.t. ∀x s.t. 0 < |x| < δ, we have

|R(x)− 1| < ϵ.
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Since this is true for all x s.t. 0 < |x| < δ, this is also true for all 0 < ∇∗ <

min(x∗, δ).

This means that

|R(∇∗)− 1| < ϵ

=⇒ (R(∇∗)− 1) <
(a′ − b′)

b′
, since R(∇) ≥ 1 for all ∇ ∈ (0, x∗]

=⇒ R(∇∗) <
a′

b′

=⇒ −f(−∇
∗)

f(∇∗)
<

a′

b′

=⇒ a′f(∇∗) + b′f(−∇∗) > 0

If a > b, let a′ = a, b′ = b, and we have af(∇∗) + bf(−∇∗) > 0 for all 0 < ∇∗ <

min(x∗, δ).

If a < b, let a′ = b, b′ = a, and we have af(∇∗)+bf(−∇∗) > 0 for all −min(x∗, δ) <

∇∗ < 0.

Theorem 6. Let f : R → R be a concave function such that f(0) = 0, f is

differentiable at 0, f ′(0) ̸= 0, supx f(x) = M > 0, and arg supx f(x) > 0. Let P
and Q be probability distributions with support X . Then, we have that

DRp
f (P,Q) = sup

C:X→R
E

x∼P
y∼Q

[f (C(x)− C(y))]

is a divergence.

Proof. Let Cw(x) = k ∀x (worst possible choice of C).

Let C∗(x) = arg sup
C:X→R

E
x∼P
y∼Q

[f (C(x)− C(y))] (best possible choice of C).

#1 Proof that DRp
f (P,Q) ≥ 0

DRp
f (P,Q) = E

x∼P
y∼Q

[f (C∗(x)− C∗(y))] ≥ E
x∼P
y∼Q

[f (Cw(x)− Cw(y))] = 0.
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#2 Proof that P = Q =⇒ DRp
f (P,Q) = 0

DRp
f (P,Q) = E

x∼P
y∼P

[f (C∗(x)− C∗(y))]

= E
x∼P

[
E
y∼P

[f (C∗(x)− C∗(y)) |x]
]

≤ E
x∼P

[
f

(
E
y∼P

[C∗(x)− C∗(y)|x]
)]

= E
x∼P

[
f

(
C∗(x)− E

y∼P
[C∗(y)]

)]
= E

x∼P
[f (C ′∗(x))] , where C ′∗(x) = C∗(x)− E

y∼P
[C∗(y)]

≤ f

(
E

x∼P
[C ′∗(x)]

)
, by Jensen’s inequality

= f(0)

= 0

Since DRp
f (P,Q) ≥ 0, we have that DRp

f (P,Q) = 0.

#3 Proof that DRp
f (P,Q) = 0 =⇒ P = Q

We prove this by contraposition (i.e., we prove that P ̸= Q =⇒ DRp
f (P,Q) ̸= 0).

To do so, we design a function C ′ that is better than the worse option (C(x) =

k ∀x).
Assume that P ̸= Q.

Let T = arg supS P(S)−Q(S) 1.

Let p =
∫
T
dP(x) =⇒ (1− p) =

∫
X\T dP(x).

Let q =
∫
T
dQ(y) =⇒ (1− q) =

∫
X\T dQ(y).

Since P ̸= Q, we know that T ̸= ∅.

This means that p > 0, q > 0, and p > q.

Let C ′(x) =

∇ if x ∈ T

0 else
, where ∇ ≠ 0.

1. If P and Q have probability density functions p(x) and q(x) respectively, then T = {x|p(x) >
q(x)}.
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Let L(∇) = E
x∼P
y∼Q

[f (C ′(x)− C ′(y))].

We have that

L(∇) =
∫
X

∫
X
f (C ′(x)− C ′(y)) dP(x)dQ(y)

=

∫
T

∫
T

f (C ′(x)− C ′(y)) dP(x)dQ(y)+∫
T

∫
X\T

f (C ′(x)− C ′(y)) dP(x)dQ(y) +∫
X\T

∫
T

f (C ′(x)− C ′(y)) dP(x)dQ(y)+∫
X\T

∫
X\T

f (C ′(x)− C ′(y)) dP(x)dQ(y)

= (1) + (2) + (3) + (4)

(1)

∫
T

∫
T

f (C ′(x)− C ′(y)) dP(x)dQ(y)

=

∫
T

∫
T

f (∇−∇) dP(x)dQ(y) = 0

(2)

∫
T

∫
X\T

f (C ′(x)− C ′(y)) dP(x)dQ(y)

=f(∇)
∫
T

dP(x)
∫
X\T

dQ(y) = f(∇)p(1− q)

(3)

∫
X\T

∫
T

f (C ′(x)− C ′(y)) dP(x)dQ(y)

=f(−∇)
∫
X\T

dP(x)
∫
T

dQ(y) = f(−∇)q(1− p)

(4)

∫
X\T

∫
X\T

f (C ′(x)− C ′(y)) dP(x)dQ(y)

=

∫
X\T

∫
X\T

f (0− 0) dP(x)dQ(y) = 0

This means that L(∇) = af(∇) + bf(−∇), where a = p(1 − q) > 0 and

b = q(1− p) > 0.

We know that a = p(1− q) > q(1− p) = b.

Thus, by Lemma A.4, we have that ∃∇∗ > 0 s.t. L(∇∗) > 0.
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Thus, if we let ∇ = ∇∗, we have that

DRp
f (P,Q) = E

x∼P
y∼Q

[f (C∗(x)− C∗(y))] ≥ E
x∼P
y∼Q

[f (C ′(x)− C ′(y))] > 0.

Theorem 7. Let f : R → R be a concave function such that f(0) = 0, f is

differentiable at 0, f ′(0) ̸= 0, supx f(x) = M > 0, and arg supx f(x) > 0. Let P
and Q be probability distributions with support X . Then, we have that

DRalf
f (P,Q) = sup

C:X→R
E

x∼P

[
f

(
C(x)− E

y∼Q
C(y)

)]
is a divergence.

Proof. Let Cw(x) = k ∀x (worst possible choice of C).

Let C∗(x) = arg sup
C:X→R

E
x∼P

[
f

(
C(x)− E

y∼Q
C(y)

)]
(best possible choice of C).

#1 Proof that DRalf
f (P,Q) ≥ 0

DRalf
f (P,Q) = E

x∼P

[
f

(
C∗(x)− E

y∼Q
C∗(y)

)]
≥ E

x∼P

[
f

(
Cw(x)− E

y∼Q
Cw(y)

)]
= E

x∼P
[f (k − k)]

= 0.
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#2 Proof that P = Q =⇒ DRalf
f (P,Q) = 0

DRalf
f (P,Q) = sup

C:X→R
E

x∼P

[
f

(
C(x)− E

y∼Q
C(y)

)]
= sup

C:X→R
E

x∼P

[
f

(
C(x)− E

y∼P
C(y)

)]
, since P = Q

= sup
C′:X→R

s.t. E[C′(x)]=0

E
x∼P

[f (C ′(x))]

= E
x∼P

[f (C ′∗(x))] , where C ′∗ = arg sup
C′:X→R

s.t. E[C′(x)]=0

E
x∼P

[f (C ′(x))]

≤ f

(
E

x∼P
[C ′∗(x)]

)
, by Jensen’s inequality

= f(0)

= 0

Since DRalf
f (P,Q) ≥ 0, we have that DRalf

f (P,Q) = 0.

#3 Proof that DRa
f (P,Q) = 0 =⇒ P = Q

We prove this by contraposition (i.e., we prove that P ̸= Q =⇒ DRa
f (P,Q) ̸=

0). To do so, we design a function C ′ that is better than the worse option (C(x) =

k ∀x).
Assume that P ̸= Q.

Let T = arg supS P(S)−Q(S).

Let p =
∫
T
dP(x) =⇒ (1− p) =

∫
X\T dP(x).

Let q =
∫
T
dQ(y) =⇒ (1− q) =

∫
X\T dQ(y).

Since P ̸= Q, we know that T ̸= ∅.

This means that p > 0, q > 0, and p > q.

Let C ′(x) =

∇ if x ∈ T

0 else
, where ∇ ≠ 0.

Let L(∇) = E
x∼P

[
f

(
C ′(x)− E

y∼Q
C ′(y)

)]
.
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We have that

L(∇) =
∫
X
f

(
C ′(x)− E

y∼Q
C ′(y)

)
dP(x)

=

∫
X
f

(
C ′(x)−

∫
T

∇dQ(y)

)
dP(x)

=

∫
X
f (C ′(x)−∇q) dP(x)

=

∫
T

f (∇−∇q) dP(x) +
∫
X\T

f (0−∇q) dP(x)

= pf (∇(1− q)) + (1− p)f (−∇q)

Case 1: If q < (1− q), by Lemma A.3, we have that:

f(−∇(1− q))

(1− q)
≤ f(−∇q)

q

=⇒ f(−∇q) ≥ q

(1− q)
f(−∇(1− q))

Thus, L(∇) ≥ pf (∇(1− q)) + (1−p)q
(1−q)

f (−∇(1− q)).

Knowing that p > q and (1− p) < (1− q), we have that p > q > q(1−p)
(1−q)

.

Thus, by Lemma A.4, we have that ∃∇∗ > 0 s.t. L(∇∗) > 0.

Case 2: If q ≥ (1− q), by Lemma A.3, we have that:

f(∇q)
q
≤ f(∇(1− q))

(1− q)

=⇒ f(∇(1− q)) ≥ (1− q)

q
f(∇q)

Thus, L(∇) ≥ p(1−q)
q

f (∇q) + (1− p)f (−∇q).
Knowing that p > q and (1− p) < (1− q), we have that (1− p) < (1− q) < (1−q)p

q
.

Thus, by Lemma A.4, we have that ∃∇∗ > 0 s.t. L(∇∗) > 0.

Thus, if we let ∇ = ∇∗, we have that

DRalf
f (P,Q) = E

x∼P

[
f

(
C∗(x)− E

y∼Q
C∗(y)

)]
≥ E

x∼P

[
f

(
C ′(x)− E

y∼Q
C ′(y)

)]
> 0.
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Theorem 8. Let f : R → R be a concave function such that f(0) = 0, f is

differentiable at 0, f ′(0) ̸= 0, supx f(x) = M > 0, and arg supx f(x) > 0. Let P
and Q be probability distributions with support X . Then, we have that

DRa
f (P,Q) = sup

C:X→R
E

x∼P

[
f

(
C(x)− E

y∼Q
C(y)

)]
+ E

y∼Q

[
f

(
E

x∼P
C(x)− C(y)

)]
is a divergence.

Proof. Let Cw(x) = k ∀x (worst possible choice of C).

Let C∗(x) = arg sup
C:X→R

E
x∼P

[
f

(
C(x)− E

y∼Q
C(y)

)]
+ E

y∼Q

[
f

(
E

x∼P
C(x)− C(y)

)]
(best possible choice of C).

#1 Proof that DRa
f (P,Q) ≥ 0

DRa
f (P,Q) = E

x∼P

[
f

(
C∗(x)− E

y∼Q
C∗(y)

)]
+ E

y∼Q

[
f

(
E

x∼P
C∗(x)− C∗(y)

)]
≥ E

x∼P

[
f

(
Cw(x)− E

y∼Q
Cw(y)

)]
+ E

y∼Q

[
f

(
E

x∼P
Cw(x)− Cw(y)

)]
= E

x∼P
[f (k − k)] + E

x∼Q
[f (k − k)]

= 0.

#2 Proof that P = Q =⇒ DRa
f (P,Q) = 0

Let C ′(x) = C(x)− E
x∼P

C(x)

DRa
f (P,Q) = sup

C:X→R
E

x∼P

[
f

(
C(x)− E

y∼Q
C(y)

)]
+ E

y∼Q

[
f

(
E

x∼P
C(x)− C(y)

)]
= sup

C:X→R
E

x∼P

[
f

(
C(x)− E

y∼P
C(y)

)]
+ E

x∼P

[
f

(
E

x∼P
C(y)− C(x)

)]
= sup

C′:X→R
s.t. E[C′(x)]=0

E
x∼P

[f (C ′(x)) + f (−C ′(x))]

≤ 2 sup
C′:X→R

s.t. E[C′(x)]=0

E
x∼P

[
f

(
1

2
C ′(x)− 1

2
C ′(x)

)]
, by concavity

= 2 sup
C′:X→R

s.t. E[C′(x)]=0

E
x∼P

[f (0)]

= 0
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Since DRa
f (P,Q) ≥ 0, we have that DRa

f (P,Q) = 0.

#3 Proof that DRa
f (P,Q) = 0 =⇒ P = Q

We prove this by contraposition (i.e., we prove that P ̸= Q =⇒ DRa
f (P,Q) ̸=

0). To do so, we design a function C ′ that is better than the worse option (C(x) =

k ∀x).
Assume that P ̸= Q.

Let T = arg supS P(S)−Q(S).

Let p =
∫
T
dP(x) =⇒ (1− p) =

∫
X\T dP(x).

Let q =
∫
T
dQ(y) =⇒ (1− q) =

∫
X\T dQ(y).

Since P ̸= Q, we know that T ̸= ∅.

This means that p > 0, q > 0, and p > q.

Let C ′(x) =

∇ if x ∈ T

0 else
, where ∇ ≠ 0.

Let L(∇) = E
x∼P

[
f

(
C ′(x)− E

y∼Q
C ′(y)

)]
+ E

y∼Q

[
f

(
E

x∼P
C ′(x)− C ′(y)

)]
.

We have that

L(∇) =
∫
X
f

(
C ′(x)− E

y∼Q
C ′(y)

)
dP(x) +

∫
X
f

(
E

x∼P
C ′(x)− C ′(y)

)
dQ(y)

=

∫
X
f

(
C ′(x)−

∫
T

∇dQ(y)

)
dP(x) +

∫
X
f

(∫
T

∇dP(x)− C ′(y)

)
dQ(y)

=

∫
X
f (C ′(x)−∇q) dP(x) +

∫
X
f (∇p− C ′(y)) dQ(y)

=

∫
T

f (∇(1− q)) dP(x) +
∫
X\T

f (−∇q) dP(x) +∫
T

f (∇(p− 1)) dQ(y) +

∫
T

f (∇p) dQ(y)

= pf (∇(1− q)) + (1− p)f (−∇q) + qf (∇(p− 1)) + (1− q)f (∇p)

= pf (∇(1− q)) + (1− p)f (−∇q) + qf (−∇(1− p)) + (1− q)f (∇p)
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Case 1: If (1− q) ≥ p, by Lemma A.3, we have that:

f(∇(1− q))

(1− q)
≤ f(∇p)

p

=⇒ f(∇p) ≥ p

(1− q)
f(∇(1− q))

Also, we have that (1− p) ≥ q, thus, by Lemma A.3, we have that:

f(−∇(1− p))

(1− p)
≤ f(−∇q)

q

=⇒ f(−∇q) ≥ q

(1− p)
f(−∇(1− p))

Also, q < p =⇒ (1− q) > (1− p), thus, by Lemma A.3, we have that:

f(−∇(1− q))

(1− q)
≤ f(−∇(1− p))

(1− p)

=⇒ f(−∇(1− p)) ≥ (1− p)

(1− q)
f(−∇(1− q))

Thus,

L(∇) = pf (∇(1− q)) + (1− p)f (−∇q) + qf (−∇(1− p)) + (1− q)f (∇p)

≥ pf (∇(1− q)) + qf (−∇(1− p)) + qf (−∇(1− p)) + pf (∇(1− q))

= 2pf (∇(1− q)) + 2qf (−∇(1− p))

≥ 2pf (∇(1− q)) + 2
q(1− p)

(1− q)
f (−∇(1− q))

Knowing that p > q and (1− p) < (1− q), we have that 2p > 2q > 2q(1−p)
(1−q)

.

Thus, by Lemma A.4, we have that ∃∇∗ > 0 s.t. L(∇∗) > 0.

Case 2: If p > (1− q), by Lemma A.3, we have that:

f(∇p)
p
≤ f(∇(1− q))

(1− q)

=⇒ f(∇(1− q)) ≥ (1− q)

p
f(∇p)
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Also, we have that q > (1− p), thus, by Lemma A.3, we have that:

f(−∇q)
q

≤ f(−∇(1− p))

(1− p)

=⇒ f(−∇(1− p)) ≥ (1− p)

q
f(−∇q)

Also, p > q, thus, by Lemma A.3, we have that:

f(−∇p)
p

≤ f(−∇q)
q

=⇒ f(−∇q) ≥ q

p
f(−∇p)

Thus,

L(∇) = pf (∇(1− q)) + (1− p)f (−∇q) + qf (−∇(1− p)) + (1− q)f (∇p)

≥ (1− q)f (∇p) + (1− p)f (−∇q) + (1− p)f (−∇q) + (1− q)f (∇p)

= 2(1− q)f (∇p) + 2(1− p)f (−∇q)

≥ 2(1− q)f (∇p) + 2
q(1− p)

p
f (−∇p)

Knowing that p > q and (1−p) < (1−q), we have that 2(1−q) > 2(1−p) > 2 q(1−p)
p

.

Thus, by Lemma A.4, we have that ∃∇∗ > 0 s.t. L(∇∗) > 0.

Thus, if we let ∇ = ∇∗, we have that

DRa
f (P,Q) = E

x∼P

[
f

(
C∗(x)− E

y∼Q
C∗(y)

)]
+ E

y∼Q

[
f

(
E

x∼P
C∗(x)− C∗(y)

)]
≥ E

x∼P

[
f

(
C ′(x)− E

y∼Q
C ′(y)

)]
+ E

y∼Q

[
f

(
E

x∼P
C ′(x)− C ′(y)

)]
> 0.

Theorem 9. Let f : R → R be a concave function such that f(0) = 0, f is

differentiable at 0, f ′(0) ̸= 0, supx f(x) = M > 0, and arg supx f(x) > 0. Let P
and Q be probability distributions with support X . Let M = 1

2
P + 1

2
Q Then, we

164



have that

DRc
f (P,Q) = sup

C:X→R
E

x∼P

[
f
(
C(x)− E

m∼M
C(m)

)]
+ E

y∼Q

[
f
(

E
m∼M

C(m)− C(y)
)]

is a divergence.

Proof. Let Cw(x) = k ∀x (worst possible choice of C).

Let C∗(x) = arg sup
C:X→R

E
x∼P

[
f
(
C(x)− E

m∼M
C(m)

)]
+ E

y∼Q

[
f
(

E
m∼M

C(m)− C(y)
)]

(best possible choice of C).

#1 Proof that DRc
f (P,Q) ≥ 0

Same proof as theorem A.6 #1.

#2 Proof that P = Q =⇒ DRc
f (P,Q) = 0

Same proof as theorem A.6 #2.

#3 Proof that DRc
f (P,Q) = 0 =⇒ P = Q

We prove this by contraposition (i.e., we prove that P ̸= Q =⇒ DRc
f (P,Q) ̸= 0).

To do so, we design a function C ′ that is better than the worse option (C(x) =

k ∀x).
Assume that P ̸= Q.

Make the same assumptions as theorem A.6 #2. The only thing that changes

is L(∇).
We instead have that

L(∇) = pf (∇(1− c)) + (1− p)f (−∇c) + qf (−∇(1− c)) + (1− q)f (∇c)

= L1(∇) + L2(∇),

where c = 1
2
p+ 1

2
q,

L1(∇) = pf (∇(1− c)) + qf (−∇(1− c)),

L2(∇) = (1− q)f (∇c) + (1− p)f (−∇c).
Knowing that p > q and (1− q) > (1− p), we can use Lemma A.4 to show that

∃δ1 > 0, s.t. ∀∇∗
1 ∈ (0, δ1) : L1(∇∗

1) > 0 and ∃δ2 > 0, s.t. ∀∇∗
2 ∈ (0, δ2) : L2(∇∗

2) >

0.

Thus, let δ = min(δ1, δ2). We have that ∀∇∗ ∈ (0, δ) : L1(∇∗) > 0 and L2(∇∗) > 0.

This means that L(∇) = L1(∇∗) + L2(∇∗) > 0
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B.2 Inequalities between Relativistic Divergences

To prove that D1 is weaker than D2, we can just show that D1(P,Q) ≤ D2(P,Q)

since we have that:

D1(Pn,P) ≤ D2(Pn,P)→ 0 =⇒ D1(Pn,P)→ 0.

Theorem 10. Let f : R → R be a concave function such that f(0) = 0, f is

differentiable at 0, f ′(0) ̸= 0, supx f(x) = M > 0, and arg supx f(x) > 0. Let P
and Q be probability distributions with support X . Then, we have that

— DS(P,Q) ≤ DRp
f (P,Q)

— DRp
f (P,Q) ≤ DRalf

f (P,Q) and DRp
f (P,Q) ≤ DRa

f (P,Q)

Proof. Showing that DS(P,Q) ≤ DRp
f (P,Q):

Let

C∗
S(x) = arg sup

C:X→R
Ex∼P [f(C(x))] + Ez∼Q [f(−C(y))]

and

C∗
Rp(x) = arg sup

C:X→R
E

x∼P
y∼Q

[f (C(x)− C(y))] .

DS(P,Q) = sup
C:X→R

Ex∼P [f(C(x))] + Ez∼Q [f(−C(y))]

= 2 E
x∼P
y∼Q

[
1

2
f (C∗

S(x)) +
1

2
f (−C∗

S(y))

]

≤ 2 E
x∼P
y∼Q

[
f

(
1

2
C∗

S(x)−
1

2
C∗

S(y)

)]

= 2 E
x∼P
y∼Q

[f (C ′(x)− C ′(y))] , where C ′(x) =
1

2
C∗

S(x)

≤ sup
C:X→R

2 E
x∼P
y∼Q

[f (C(x)− C(y))]

= DRp
f (P,Q)

Showing that DRp
f (P,Q) ≤ DRalf

f (P,Q):
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DRp
f (P,Q) = arg sup

C:X→R
2 E
x∼P
y∼Q

[f (C(x)− C(y))]

= 2 E
x∼P
y∼Q

[
f
(
C∗

Rp(x)− C∗
Rp(y)

)]
= 2 E

x∼P

[
E

y∼Q

[
f
(
C∗

Rp(x)− C∗
Rp(y)

)
|x
]]

≤ 2 E
x∼P

[
f

(
E

y∼Q

[
C∗

Rp(x)− C∗
Rp(y)|x

])]
= 2 E

x∼P

[
f

(
C∗

Rp(x)− E
y∼Q

[
C∗

Rp(y)
])]

≤ sup
C:X→R

2 E
x∼P

[
f

(
C(x)− E

y∼Q
[C(y)]

)]
= DRalf

f (P,Q)

Showing that DRp
f (P,Q) ≤ DRa

f (P,Q):
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DRp
f (P,Q) = arg sup

C:X→R
2 E
x∼P
y∼Q

[f (C(x)− C(y))]

= 2 E
x∼P
y∼Q

[
f
(
C∗

Rp(x)− C∗
Rp(y)

)]
= E

x∼P

[
E

y∼Q

[
f
(
C∗

Rp(x)− C∗
Rp(y)

)
|x
]]

+ E
y∼Q

[
E

x∼P

[
f
(
C∗

Rp(x)− C∗
Rp(y)

)
|y
]]

≤ E
x∼P

[
f

(
E

y∼Q

[
C∗

Rp(x)− C∗
Rp(y)|x

])]
+ E

y∼Q

[
f

(
E

x∼P

[
C∗

Rp(x)− C∗
Rp(y)|y

])]
= E

x∼P

[
f

(
C∗

Rp(x)− E
y∼Q

[
C∗

Rp(y)
])]

+ E
y∼Q

[
f

(
E

x∼P

[
C∗

Rp(x)
]
− C∗

Rp(y)

)]
≤ sup

C:X→R
E

x∼P

[
f

(
C(x)− E

y∼Q
[C(y)]

)]
+ E

y∼Q

[
f

(
E

x∼P
[C(x)]− C(y)

)]
= DRa

f (P,Q)

B.3 Bias in RalfGANs, RaGANs, and RcGANs

Note that we refer to the second term in RaGANs as ”RaGAN2”. When possible,

we calculate the bias for RalfGANs, RaGAN2s, RaGANs, and RcGANs.

Let

E
x∼P

[C(x)] = µx,

V ar
x∼P

[C(x)] = σ2
x,

E
x∼P

[C(x)2] = σ2
x + µ2

x,
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E
y∼Q

[C(y)] = µy,

V ar
y∼Q

[C(y)] = σ2
y ,

E
y∼Q

[C(y)2] = σ2
y + µ2

y.

In a minibatch of size k, we have that x1, . . . , xk and y1, . . . , yk are iid.

Thus, C(x1), . . . , C(xk) and C(y1), . . . , C(yk) are also iid.

This means that:

E[C(xi)C(xj)] = E[C(xi)]E[C(xj)] = µ2
x ∀i ̸= j,

E[C(yi)C(yj)] = E[C(yi)]E[C(yj)] = µ2
y ∀i ̸= j.

B.3.1 SGAN

f(x) = log( sigmoid(x)) + log(2) = − log(1 + e−x) + log(2)

BiasRaSGAN(P,Q) = E

[
f

(
C(x)− 1

k

k∑
i=1

C(yi)

)
− f (C(x)− µy)

]
= E

[
− log

(
1 + e

1
k

∑k
i=1 C(yi)−C(x)

)
+ log

(
1 + eµy−C(x)

)]
= E

[
log

(
1 + eµy−C(x)

1 + e
1
k

∑k
i=1 C(yi)−C(x)

)]
= E

[
log

(
eC(x) + eµy

eC(x) + e
1
k

∑k
i=1 C(yi)

)]
= E

[
log
(
eC(x) + eµy

)
− log

(
eC(x) + e

1
k

∑k
i=1 C(yi)

)]
≈ E

[
C(x) + eµy−C(x) − C(x)− e

1
k

∑k
i=1 C(yi)−C(x)

]
= E

[
eµy − e

1
k

∑k
i=1 C(yi)

eC(x)

]

We cannot find a close form for the bias.
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B.3.2 (Ra) LSGAN

f(x) = −(x− 1)2 + 1

D̂iv1(P,Q) = E

[
1

k

k∑
i=1

f

(
C(xi)−

1

k

k∑
j=1

C(yj)

)]

= E

1
k

k∑
i=1

−(C(xi)−
1

k

k∑
j=1

C(yj)− 1

)2

+ 1


=

1

k

k∑
i=1

(
−E

[
C(xi)

2
]
+

2

k

k∑
j=1

E [C(xi)]E [C(yj)] + 2E [C(xi)]

−21
k

k∑
j=1

E [C(yj)]−
1

k2

k∑
j=1

E[C(yj)
2]− 1

k2

k∑
r=1
r ̸=j

k∑
j=1

E[C(yj)]E[C(yr)]


=

1

k

k∑
i=1

(
−σ2

x − µ2
x + 2µxµy + 2µx − 2µy −

1

k
(σ2

y + µ2
y)−

(k − 1)

k
µ2
y

)
= −σ2

x − µ2
x + 2µxµy + 2µx − 2µy −

1

k
σ2
y − µ2

y
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D̂iv2(P,Q) = E

[
1

k

k∑
j=1

f

(
1

k

k∑
i=1

C(xi)− C(yj)

)]

= E

1
k

k∑
j=1

−(1

k

k∑
i=1

C(xi)− C(yj)− 1

)2

− 1


=

1

k

k∑
j=1

(
−E

[
C(yj)

2
]
+

2

k

k∑
i=1

E [C(xi)]E [C(yj)]− 2E [C(yj)]

+2
1

k

k∑
i=1

E [C(xi)]−
1

k2

k∑
i=1

E[C(xi)
2]− 1

k2

k∑
r=1
r ̸=i

k∑
i=1

E[C(xi)]E[C(xr)]


=

1

k

k∑
j=1

(
−σ2

y − µ2
y + 2µxµy − 2µy + 2µx −

1

k
(σ2

x + µ2
x)−

(k − 1)

k
µ2
x

)
= −σ2

y − µ2
y + 2µxµy − 2µy + 2µx −

1

k
σ2
x − µ2

x

Div1(P,Q) = E [f (C(x)− µy)]

= E
[
− (C(x)− µy − 1)2 − 1

]
= E

[
−C(x)2 + 2C(x)µy + 2C(x)− 2µy − µ2

y

]
= −σ2

x − µ2
x + 2µxµy + 2µx − 2µy − µ2

y

Div2(P,Q) = E [f (µx − C(y))]

= E
[
− (µx − C(y)− 1)2 − 1

]
= E

[
−µ2

x + 2C(y)µx − 2C(y) + 2µx − C(y)2
]

= −σ2
y − µ2

y + 2µxµy − 2µy + 2µx − µ2
x
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BiasRaLSGAN(P,Q) = D̂iv1(P,Q)−Div1(P,Q)

= −σ2
x − µ2

x + 2µxµy + 2µx − 2µy −
1

k
σ2
y − µ2

y + σ2
x + µ2

x

− 2µxµy − 2µx + 2µy + µ2
y

= −1

k
σ2
y

BiasRaLSGAN2(P,Q) = D̂iv2(P,Q)−Div2(P,Q)

= −σ2
y − µ2

y + 2µxµy − 2µy + 2µx −
1

k
σ2
x − µ2

x + σ2
y + µ2

y

− 2µxµy + 2µy − 2µx + µ2
x

= −1

k
σ2
x

BiasRalfLSGAN = BiasRaLSGAN(P,Q) + BiasRaLSGAN2(Q,P)

= −1

k
σ2
y −

1

k
σ2
x

= −1

k

(
σ2
x + σ2

y

)
Let

σ̂2
x = 1

(k−1)

∑k
i=1

(
C(xi)− 1

k

∑k
i=1 C(xj)

)
,

σ̂2
y = 1

(k−1)

∑k
i=1

(
C(yi)− 1

k

∑k
i=1 C(yj)

)
.

We know that σ̂2
x and σ̂2

y are unbiased estimators of σ2
x and σ2

y respectively.

Thus, if we add 1
k
σ̂2
y to the objective function of RalfLSGAN and 1

k
(σ̂2

x + σ̂2
y) to

the objective function of RaLSGAN, we have that the new objective functions are

unbiased.
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B.3.3 (Rc) LSGAN

D̂iv1(P,Q) = E

[
1

k

k∑
i=1

f

(
C(xi)−

1

2k

k∑
j=1

(C(xj) + C(yj))

)]

= E

1
k

k∑
i=1

−(C(xi)−
1

2k

k∑
j=1

(C(xj) + C(yj))− 1

)2

+ 1



=
1

k

k∑
i=1

−E [C(xi)
2
]
+

1

k
E
[
C(xi)

2
]
+

1

k

k∑
j=1
j ̸=i

E [C(xi)]E [C(xj)]

+
1

k

k∑
j=1

E [C(xi)]E [C(yj)] + 2E [C(xi)]−
1

k

k∑
j=1

E [C(xj)]

−1

k

k∑
j=1

E [C(yj)]−
1

4k2

k∑
j=1

E[(C(xj) + C(yj))
2]

− 1

4k2

k∑
r=1
r ̸=j

k∑
j=1

E[C(xi) + C(yi)]E[C(xr) + C(yr)]


=

(
1

k
− 1

)(
σ2
x + µ2

x

)
+

(k − 1)

k
µ2
x + µxµy + 2µx − µx − µy

− 1

4k
((σ2

x + µ2
x) + 2µxµy + (σ2

y + µ2
y))−

(k − 1)

4k
(µ2

x + 2µxµy + µ2
y)

=
(1− k)

k
σ2
x + µxµy + µx − µy −

1

4
µ2
x −

1

2
µxµy −

1

4
µ2
y −

1

4k
σ2
x −

1

4k
σ2
y

=
(.75− k)

k
σ2
x −

1

4k
σ2
y −

1

4
µ2
x −

1

4
µ2
y +

1

2
µxµy + µx − µy
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D̂iv1(P,Q) = E

1
k

k∑
i=1

−(C(yi)−
1

2k

k∑
j=1

(C(xj) + C(yj)) + 1

)2

+ 1



=
1

k

k∑
i=1

−E [C(yi)
2
]
+

1

k
E
[
C(yi)

2
]
+

1

k

k∑
j=1
j ̸=i

E [C(yi)]E [C(yj)]

+
1

k

k∑
j=1

E [C(xi)]E [C(yj)]− 2E [C(yi)] +
1

k

k∑
j=1

E [C(xj)]

− 1

4k2

k∑
j=1

E[(C(xj) + C(yj))
2]

+
1

k

k∑
j=1

E [C(yj)]−
1

4k2

k∑
r=1
r ̸=j

k∑
j=1

E[C(xi) + C(yi)]E[C(xr) + C(yr)]


=

(
1

k
− 1

)(
σ2
y + µ2

y

)
+

(k − 1)

k
µ2
y + µxµy − 2µy + µx + µy

− 1

4k
((σ2

x + µ2
x) + 2µxµy + (σ2

y + µ2
y))−

(k − 1)

4k
(µ2

x + 2µxµy + µ2
y)

=
(1− k)

k
σ2
y + µxµy + µx − µy −

1

4
µ2
x −

1

2
µxµy −

1

4
µ2
y −

1

4k
σ2
x −

1

4k
σ2
y

=
(.75− k)

k
σ2
y −

1

4k
σ2
x −

1

4
µ2
x −

1

4
µ2
y +

1

2
µxµy + µx − µy

Div1(P,Q) = E
[
f

(
C(x)− (µx + µy)

2

)]
= E

[
−
(
C(x)− (µx + µy)

2
− 1

)2

− 1

]

= E
[
−C(x)2 + C(x)(µx + µy) + 2C(x)− (µx + µy)−

(µx + µy)
2

4

]
= −σ2

x − µ2
x + µ2

x + µxµy + µx − µy −
1

4
(µ2

x + µ2
y + 2µxµy)

= −σ2
x +

1

2
µxµy + µx − µy −

1

4
µ2
x −

1

4
µ2
y
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Div2(P,Q) = E [f (C(x)− µy)]

= E

[
−
(
C(y)− (µx + µy)

2
+ 1

)2

− 1

]

= E
[
−C(y)2 + C(y)(µx + µy)− 2C(y) + (µx + µy)−

(µx + µy)
2

4

]
= −σ2

y − µ2
y + µ2

y + µxµy + µx − µy −
1

4
(µ2

x + µ2
y + 2µxµy)

= −σ2
x +

1

2
µxµy + µx − µy −

1

4
µ2
x −

1

4
µ2
y

BiasRcLSGAN(P,Q) = D̂iv1(P,Q)−Div1(P,Q)

=
3

4k
σ2
x −

1

4k
σ2
y

BiasRcLSGAN2(P,Q) = D̂iv2(P,Q)−Div2(P,Q)

=
3

4k
σ2
y −

1

4k
σ2
x

Let

σ̂2
x = 1

(k−1)

∑k
i=1

(
C(xi)− 1

k

∑k
i=1 C(xj)

)
,

σ̂2
y = 1

(k−1)

∑k
i=1

(
C(yi)− 1

k

∑k
i=1 C(yj)

)
.

We know that σ̂2
x and σ̂2

y are unbiased estimators of σ2
x and σ2

y respectively.

Thus, if we subtract 1
2k
(σ̂2

x + σ̂2
y) to the objective function of RcLSGAN, we have

that the new objective functions are unbiased.

B.3.4 HingeGAN

f(x) = −max(0, 1− x) + 1

For simplicity:

Let x′ = C(x), y′i = C(yi), p(x) and q(x) be the probability density functions of x′
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and y′i.

Div(P,Q) = E

[
f

(
C(x)− 1

k

k∑
i=1

C(yi)

)]

= E

[
−max

(
0, 1 +

1

k

k∑
i=1

y′i − x′

)
+ 1

]

This is non-linear and we cannot derive a close-form.

B.4 Architecture

Generator

z ∈ R128 ∼ N(0, I)

linear, 128 -> 512*4*4

Reshape, 512*4*4 -> 512 x 4 x 4

ConvTranspose2d 4x4, stride 2, pad 1, 512->256

BN and ReLU

ConvTranspose2d 4x4, stride 2, pad 1, 256->128

BN and ReLU

ConvTranspose2d 4x4, stride 2, pad 1, 128->64

BN and ReLU

ConvTranspose2d 3x3, stride 1, pad 1, 64->3

Tanh
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Discriminator

x ∈ R3x32x32

Conv2d 3x3, stride 1, pad 1, 3->64

LeakyReLU 0.1

Conv2d 4x4, stride 2, pad 1, 64->64

LeakyReLU 0.1

Conv2d 3x3, stride 1, pad 1, 64->128

LeakyReLU 0.1

Conv2d 4x4, stride 2, pad 1, 128->128

LeakyReLU 0.1

Conv2d 3x3, stride 1, pad 1, 128->256

LeakyReLU 0.1

Conv2d 4x4, stride 2, pad 1, 256->256

LeakyReLU 0.1

Conv2d 3x3, stride 1, pad 1, 256->512

Reshape, 512 x 4 x 4 -> 512*4*4

linear, 512*4*4 -> 1
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C
Adversarial score matching
and improved sampling for
image generation

C.1 Broader Impact

Unfortunately, these improvements in image generation come at a very high

computational cost, meaning that the ability to generate high-resolution images is

constrained by the availability of large computing resources (TPUs or clusters of

8+ GPUs). This is mainly due to the architectures used in this paper, while adding

a discriminator further adds to the training computational load.
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C.2 Experiments details

Table C.1 – Sampling learning rates for non-adversarial (ϵ) and adversarial (ϵadv) score matching

Network architecture Dataset Consistent nσ ϵ ϵadv

Song et al. (2020) CIFAR-10 No 1 1.8e-5 1.725e-5

Song et al. (2020) CIFAR-10 No 5 3.6e-6 3.7e-6

Song et al. (2020) CIFAR-10 Yes 1 5.6e-6 5.55e-6

Song et al. (2020) CIFAR-10 Yes 5 1.1e-6 1.05e-6

Song et al. (2020) LSUN-Churches No 1 4.85e-6 4.85e-6

Song et al. (2020) LSUN-Churches No 5 9.7e-7 9.7e-7

Song et al. (2020) LSUN-Churches Yes 1 2.8e-6 2.8e-6

Song et al. (2020) LSUN-Churches Yes 5 4.5e-7 4.5e-7

Ho et al. (2020) CIFAR-10 No 1 1.6e-5 1.66e-05

Ho et al. (2020) CIFAR-10 No 5 4.0e-6 4.25e-6

Ho et al. (2020) CIFAR-10 Yes 1 5.45e-6 5.6e-6

Ho et al. (2020) CIFAR-10 Yes 5 1.05e-6 1e-6

Song et al. (2020) 3-StackedMNIST Yes 1 5.0e-6 5.0e-6

Following the recommendations from Song and Ermon (2020), we chose σ1 = 50

and L = 232 on CIFAR-10, and σ1 = 140, L = 788 on LSUN-Churches, both with

σL = 0.01. We used a batch size of 128 in all models. We first swept summarily

the training checkpoint (saved at every 2.5k iterations), the Exponential Moving

Average (EMA) coefficient from {.999, .9999}, and then swept over the sampling

step size ϵ with approximately 2 significant number precision. The values reported

in Table 8.1 correspond to the sampling step size that minimized the denoised FID

for every nσ (See Table C.1). We used the same sampling step sizes for adversarial

and non-adversarial. Empirically, the optimal sampling step size is found for a

certain nσ and is extrapolated to other precision levels by solving βn′
σ
= βnσ

√
nσ/n′

σ

for the consistent algorithm. In the non-consistent algorithm, we found the best

sampling step size at nσ = 1 and divided by 5 to obtain a starting point to find the

optimal value at nσ = 5. The best EMA values were found to be .9999 in CIFAR-10
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and .999 in LSUN-churches. The number of score network training iterations was

300k on CIFAR-10 and 200k on LSUN-Churches.

Of note, Song and Ermon (2020) used non-denoised non-consistent sampling

with nσ = 5 and nσ = 4 for CIFAR-10 and LSUN-Churches respectively. However,

they did not use the same learning rates (we tuned ours more precisely) and they

used bigger images for LSUN-Churches.

Regarding the adversarial approach, we swept for the GAN loss function, the

number of discriminator steps per score network steps (nD ∈ {1, 2}), the Adam

optimizer (Kingma and Ba, 2014) parameters, and the hyperparameter λ (see Eq.

8.5) based on quick experiments on CIFAR-10. LSGAN (Mao et al., 2017) yielded

the best FID scores among all other loss functions considered, namely the original

GAN loss function (Goodfellow et al., 2020), HingeGAN (Lim and Ye, 2017), as well

as their relativistic counterparts (Jolicoeur-Martineau, 2019, 2020). Note that the

saturating variant (see Goodfellow et al. (2020)) on LSGAN worked as well as its

non-saturating version; we did not use it for simplicity. Following the trend towards

zero or negative momentum (Gidel et al., 2019), we used the Adam optimizer with

hyperparameters (β1, β2) = (−.5, .9) for the discriminator and (β1, β2) = (0, .9) for

the score network. These values were found by sweeping over β1 ∈ {.9, .5, 0,−.5}
and β2 ∈ {.9, .999}. We found the simple setting λ = 1 to perform comparatively

better than more complex weighting schemes. We used nD = 2 on CIFAR-10 and

and nD = 1 on LSUN-Churches.

The 3-Stacked MNIST experiment was conducted with an arbitrary EMA of

.999. The sampling step size was broadly swept upon. Following (Song and Ermon,

2020) hyperparameter recommendations, we obtained σ1 = 50, L = 200.

For the synthetic 2D experiments, we used Langevin sampling with nσ = 10,

ϵ = .2, and σ = .1.

C.3 Supplementary experiments

Due to limited computing resources (4 V100 GPUs), the training of models

on FFHQ (70k images) in 256x256 (Karras et al., 2019), with the same setting as

previously done by Song and Ermon (2020), was impossible. Using a reduced model

yielded very poor results. The adversarial version performed worse than the other;
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we suspect this was the case due to the mini-batch of size 32, our computational

limit, while the BigGAN architecture normally assumes very large batch sizes of

2048 when working with images of that size (256x256 or higher).

C.4 Optimal unconditional score function

Recall the loss from Eq. 8.1 where s(x̃, σ) = s(x̃)/σ, meaning s is no longer

conditioned on the noise level:

L[s] = 1

L

L∑
i=1

Ex̃∼qσi (x̃|x),x∼p(x)

[
1

2

∥∥∥∥s(x̃) + x̃− x

σi

∥∥∥∥2
2

]
(C.1)

= Ex̃∼qσ(x̃|x),x∼p(x),σ∼p(σ)

[
1

2

∥∥∥∥s(x̃) + x̃− x

σ

∥∥∥∥2
2

]
, (C.2)

where p(σ) is chosen to be a discrete uniform distribution over a specific set of

values. We use this expectation formulation over σ to obtain a more general result;

the choice of p(σ) is not important for this derivation.

According to the Euler-Lagrange equation, a function s that minimizes the

denoising score matching objective L[s] will satisfy

∂F (x̃, s)

∂s
= 0 where

L[s] = Eqσ(x̃|x)p(x)p(σ)

[
1

2

∥∥∥∥s(x̃)− x− x̃

σ

∥∥∥∥2
2

]
=

∫
x̃

F (x̃, s)dx̃ (C.3)
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Solving for s, we get

∂F (x̃, s)

∂s
=

1

2

∂

∂s

∫
σ

∫
x

q(x̃|x, σ)p(x)p(σ)
∥∥∥∥s(x̃)− x− x̃

σ

∥∥∥∥2
2

dxdσ = 0

⇐⇒
∫
σ

∫
x

q(x̃|x, σ)p(x)p(σ)
(
s(x̃)− x− x̃

σ

)
dxdσ = 0

⇐⇒ s(x̃)q(x̃) =

∫
σ

1

σ

∫
x

q(x̃|x, σ)p(x)p(σ) (x− x̃) dxdσ

⇐⇒ s(x̃) =

∫
σ

q(x̃|σ)p(σ)
q(x̃)

1

σ

∫
x

q(x|x̃, σ) (x− x̃) dxdσ

⇐⇒ s(x̃) =

∫
σ

q(σ|x̃) 1

σ

∫
x

q(x|x̃, σ) (x− x̃) dxdσ

⇐⇒ s(x̃) = Eσ∼q(σ|x̃)

[
Ex∼q(x|x̃,σ)[x]− x̃

σ

]
. (C.4)

C.5 Optimal conditional score function

As the explicit optimal score function is obtained in Appendix C.4 for the

unconditional case, a similar result can be obtained for the conditional case. Recall

the loss from Eq. 8.1

L[s] = 1

L

L∑
i=1

Ex̃∼qσi (x̃|x),x∼p(x)

[
σ2
i

2

∥∥∥∥s(x̃, σi)−
x− x̃

σ2
i

∥∥∥∥2
2

]

Then, the minimizer s∗ of L[s] would be such that s(·, σi) minimises

Ex̃∼qσi (x̃|x),x∼p(x)

[
σ2
i

2

∥∥∥∥s(x̃, σi)−
x− x̃

σ2
i

∥∥∥∥2
2

]
∀i ∈ {1, ..., L}.

Applying the same steps that in Appendix C.4, one gets that the minimizer is such

that

s∗(x̃, σ) =
Ex∼qσ(x|x̃)[x]− x̃

σ2
.

Let us finally demonstrate the equivalence between this term and the score of the

corrupted distribution of standard deviation σ:
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∇x̃ log qσ(x̃) =
1

qσ(x̃)
∇x̃

∫
p(x)qσ(x̃|x)dx

=
1

qσ(x̃)

∫
p(x)∇x̃qσ(x̃|x)dx

=
1

qσ(x̃)

∫
p(x)qσ(x̃|x)∇x̃ log qσ(x̃|x)dx

=
1

qσ(x̃)

∫
p(x)qσ(x̃|x)

x− x̃

σ2
dx

=
1

qσ(x̃)

1

σ2

(∫
qσ(x|x̃)qσ(x̃)xdx− x̃qσ(x̃)

)
=

Ex∼qσ(x|x̃)[x]− x̃

σ2

making use of the fact that qσ(x̃|x) = N (x̃|x, σ2I), qσ(x̃) ≜
∫
p(x)qσ(x̃|x)dx

and that qσ(x|x̃) = p(x)qσ(x̃|x)
qσ(x̃)

C.6 ALS Non-geometric proof

Proposition 1. Let s∗ be the optimal score function from Eq. 8.3. Following the

sampling described in Algorithm 4, the variance of the noise component in the

sample x will remain greater than σ2
t at every step t.

Proof. Assume at the start of an iteration of Langevin Sampling that the point

x is comprised of an image component and of a noise component denoted v0z0

for z0 ∼ N (0, I). We assume from the proposition statement that the Langevin

Sampling is performed at the level of variance σ2
t , meaning the update rule is as

follows:

x←x+ ησ2
t s

∗(x, σt) + σt

√
2ηz

for z ∼ N (0, I) and 0 < η < 1. From Eq. 8.3, we get:

x←x+ η(Ex′∼qv0 (x
′|x)[x

′]− x) + σt

√
2ηz

=(1− η)x+ ηEx′∼qv0 (x
′|x)[x

′] + σt

√
2ηz.
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The noise component of (1− η)x and σt

√
2ηz can then be summed as:

(1− η)v0z0 + σt

√
2ηz.

Making use of the fact that both sources of noise follow independent normal dis-

tributions, the sum will be normally distributed, centered and of variance v21, with

v21 =v20(1− η)2 + 2ησ2
t .

Applying the same steps allows us to examine the variance after multiple Langevin

Sampling iterations

v22 =v21(1− η)2 + 2ησ2
t

=v20(1− η)4 + 2ησ2
t + 2ησ2

t (1− η)2

...

v2n =v20(1− η)2n + 2ησ2
t

n−1∑
i=0

(1− η)2i

=v20(1− η)2n +
2σ2

t

2− η
(1− (1− η)2n).

From there, the two following statements can be obtained:

(1) lim
n→∞

vn = σt

√
2

2− η
> σt

(2)
dvn
dn

< 0 ⇐⇒ η < 2− 2σ2
t

v20
.

From these observations, we understand that v2n is monotonically decreasing (under

conditions generally respected in practice) but converges to a point superior to σ2
t

after an infinite number of Langevin Sampling steps. We then conclude that for all

n, the variance of the noise component in the sample will always exceed σ2
t . We

also note that this will be true across the full sampling, at every step t.

In the particular case where σt corresponds to a geometrically decreasing series,

it means that even given an optimal score function, the standard deviation of the

noise component cannot follow its prescribed schedule.
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C.7 CAS Geometric proof

Proposition 2. Let s∗ be the optimal score function from Eq. 8.3. Following the

sampling described in Algorithm 5, the variance of the noise component in the

sample x will consistently be equal to σ2
t at every step t.

Proof. Let us first define β to be equal to
√

1− (1− η)2/γ2 with η = ϵ/σ2
L and γ

defined as Eq. 8.2. At the start of Algorithm 5, assume that x is comprised of an

image component and a noise component denoted σ0z0, where z0 ∼ N (0, I) and

σ0 = σ1/γ. We will proceed by induction to show that the noise component at step

t will be a Gaussian of variance σ2
t for every t.

The first induction step is trivial. Assume the noise component of xt to be σtzt,

where zt ∼ N (0, I). Following Algorithm 5, the update step will be:

xt+1 ← xt + ησ2
t s

∗(xt, σt) + σt+1βz,

with z ∼ N (0, I) and 0 < η < 1. From Eq. 8.3, we get

xt+1 ←xt + η(Ex∼qσt (x|xt)[x]− xt) + σt+1βz

=(1− η)xt + ηEx∼qσt (x|xt)[x] + σt+1βz.

The noise component from (1− η)xt and σt+1βz can then be summed as:

σt(1− η)zt + σt+1βz.

Making use of the fact that both sources of noise follow independent normal dis-

tributions, the sum will be normally distributed, centered and of variance:

σ2
t (1− η)2 + σ2

t+1β
2 = σ2

t+1

[(
1− η

γ

)2

+ β2

]
= σ2

t+1.

By induction, the noise component of the sample x will follow a Gaussian distribu-

tion of variance σ2
i ∀i ∈ {0, ..., L}. In the particular case where σi corresponds to a

geometrically decreasing series, it means that given an optimal score function, the

standard deviation of the noise component will follow its prescribed schedule.
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C.8 Update rule

Proposition 3. Given a noise-conditional score function, the update rules from Al-

gorithm 4 and Algorithm 5 are equivalent to the respective following update rules:

x← (1− η)x+ ηH(x, σi) +
√

2ησiz for z ∼ N (0, I) and η =
ϵ

σ2
L

x← (1− η)x+ ηH(x, σi) + βσi+1z

Proof. Recall from Algorithm 4 that αi = ϵ
σ2
i

σ2
L
= ησ2

i . Then, the update rule is as

follows:

x← x+ αis(x, σi) +
√
2αi z

= x+ ησ2
i

(
H(x)− x

σ2
i

)
+
√
2αi z

= (1− η)x+ ηH(x) +
√
2ησiz

The same thing can be proven for Algorithm 5 in the very same way.

C.9 Inception Score (IS)

While the FID is improved by applying the EDS to image samples, the Inception

Score is not. Convolutional neural networks suffer from texture bias (Geirhos et al.,

2019). Since the IS is built upon convolution layers, this flaw is also strongly present

in the metric. Designed to answer the question of how easy it is to recover the class

of an image, it tends to bias towards within-class texture similarity (Barratt and

Sharma, 2018).

Since we denoise the final image, we are evaluating the expected lower level of

details across all classes. Therefore, the denoiser will confound the textures used

by the IS to distinguish between classes, invariably worsening the score. Since the

FID has already been shown to be more consistent with the level of noise than the

IS (Heusel et al., 2017), and since ALS methods are particularly prone to inject
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class-specific imperceptible noise, we would recommend against its use to compare

within and between score matching models.
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C.10 Uncurated samples

(a) CIFAR-10 Non-adversarial non-consistent nσ = 1 (b) CIFAR-10 Adversarial non-consistent nσ = 1

(c) CIFAR-10 Non-adversarial consistent nσ = 1 (d) CIFAR-10 Adversarial consistent nσ = 1

Figure C.1 – Denoised sample evolving over time for different methods
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Figure C.2 – CIFAR-10 Non-adversarial non-consistent nσ = 1

Figure C.3 – CIFAR-10 Adversarial non-consistent nσ = 1
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Figure C.4 – CIFAR-10 Non-adversarial non-consistent nσ = 5

190



Figure C.5 – CIFAR-10 Adversarial non-consistent nσ = 5
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Figure C.6 – CIFAR-10 Non-adversarial consistent nσ = 1
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Figure C.7 – CIFAR-10 Adversarial consistent nσ = 1
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Figure C.8 – CIFAR-10 Non-adversarial consistent nσ = 5
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Figure C.9 – CIFAR-10 Adversarial consistent nσ = 5
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Figure C.10 – LSUN-Churches Non-adversarial non-consistent nσ = 1
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Figure C.11 – LSUN-Churches Adversarial non-consistent nσ = 1
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Figure C.12 – LSUN-Churches Non-adversarial non-consistent nσ = 5
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Figure C.13 – LSUN-Churches Adversarial non-consistent nσ = 5
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Figure C.14 – LSUN-Churches Non-adversarial consistent nσ = 1
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Figure C.15 – LSUN-Churches Adversarial consistent nσ = 1
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Figure C.16 – LSUN-Churches Non-adversarial consistent nσ = 5
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Figure C.17 – LSUN-Churches Adversarial consistent nσ = 5
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Figure C.18 –Ho et al. (2020) network architecture with CIFAR-10 Non-adversarial non-consistent
nσ = 1
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Figure C.19 – Ho et al. (2020) network architecture with CIFAR-10 Adversarial non-consistent
nσ = 1
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Figure C.20 –Ho et al. (2020) network architecture with CIFAR-10 Non-adversarial non-consistent
nσ = 5

206



Figure C.21 – Ho et al. (2020) network architecture with CIFAR-10 Adversarial non-consistent
nσ = 5
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Figure C.22 – Ho et al. (2020) network architecture with CIFAR-10 Non-adversarial consistent
nσ = 1
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Figure C.23 – Ho et al. (2020) network architecture with CIFAR-10 Adversarial consistent nσ = 1
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Figure C.24 – Ho et al. (2020) network architecture with CIFAR-10 Non-adversarial consistent
nσ = 5
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Figure C.25 – Ho et al. (2020) network architecture with CIFAR-10 Adversarial consistent nσ = 5
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D
Gotta Go Fast When
Generating Data with
Score-Based Models

D.1 DifferentialEquations.jl

Table D.1 – Short experiments with various SDE solvers from DifferentialEquations.jl on the VP
model with a small mini-batch.

Method Strong-Order Adaptive Speed

Euler-Maruyama (EM) 0.5 No Baseline speed
SOSRA (Rößler, 2010) 1.5 Yes 5.92 times slower
SRA3 (Rößler, 2010) 1.5 Yes 6.93 times slower

Lamba EM (default) (Lamba, 2003) 0.5 Yes Did not converge
Lamba EM (atol=1e-3) (Lamba, 2003) 0.5 Yes 2 times faster

Lamba EM (atol=1e-3, rtol=1e-3) (Lamba, 2003) 0.5 Yes 1.27 times faster
Euler-Heun 0.5 No 1.86 times slower

Lamba Euler-Heun (Lamba, 2003) 0.5 Yes 1.75 times faster
SOSRI (Rößler, 2010) 1.5 Yes 8.57 times slower

RKMil (at various tolerances) (Kloeden and Platen, 1992) 1.0 Yes Did not converge
ImplicitRKMil (Kloeden and Platen, 1992) 1.0 Yes Did not converge

ISSEM 0.5 Yes Did not converge

Here, we report the preliminary experiments we ran with the DifferentialEqua-

tions.jl Julia package (Rackauckas and Nie, 2017b) before devising our own SDE

solver. As can be seen, most methods either did not converge (with warnings of

”instability detected”) or converged, but were much slower than Euler-Maruyama.

The only promising method was Lamba’s method (Lamba, 2003). Note that an

algorithm has strong-order p when the local error from t to t+ h is O(hp+1)).

D.2 Effects of modifying Algorithm 1

As can be seen, most chosen settings lead to better results. However, r seems

to have little impact on the FID. Still, using r ∈ [0.8, 0.9] lead to a little bit less

score function evaluations and sometimes lead to lower FID.
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Table D.2 – Effect of different settings on the [Inception score (IS) / Fréchet Inception Distance
(FID) / Number of score Function Evaluations (NFE)] from 10k samples (with mini-batches of
1k samples) with the VP - CIFAR10 model.

Change(s) in Algorithm 1 IS FID NFE

No change
[
q = 2, r = 0.9, δ(x′,x′

prev)
]

9.38 4.70 3972

Small modifications

δ(x′) 9.26 4.69 4166
No Extrapolation (thus, using Euler–Maruyama) 9.58 11.73 3978
q =∞ 9.48 4.90 14462
r = .5 9.41 4.69 4104
r = .8 9.36 4.68 3938
r = 1 9.41 4.69 4048

Variations of Lamba (2003) Algorithm

r = 0.5, Lamba integration 7.80 52.98 1468
r = 0.5, Lamba integration, Extrapolation 7.32 64.65 1438
r = 0.5, Lamba integration, q =∞ 9.28 21.09 2360
r = 0.5, Lamba integration, q =∞, θ = 0.8 9.21 18.82 2346

We notice that using q =∞ and δ(x′) lead to higher NFE as we expect. How-

ever, they also generally lead to higher FID, thus lower quality/diversity, which is

not expected! We hypothesized that this might be due to the large number of steps

taken when using q =∞ and δ(x′). To test this, we trained the VE and VP models

with Euler-Maruyama with 10k steps instead of 1k steps and we indeed obtained

higher FIDs. This means that taking too many steps leads to worse performance

in score-based models.

Worse quality from taking more steps should typically not happen as more steps

should mean a more precise trajectory. We hypothesize this to be caused by the

difference between using the actual score function instead of using the pre-trained

score-network; given the errors in the score network, it may be that taking too many

steps leads to some deviations from the right solution. Alternatively, this could

also be due to the metric, as no existing quality/diversity metrics for generative

models is truly perfect; but we believe that this hypothesis is less plausible than

the increasing errors from using the score-network.
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Table D.3 – Effect of different settings on the [Inception score (IS) / Fréchet Inception Distance
(FID) / Number of score Function Evaluations (NFE)] from 10k samples (with mini-batches of
1k samples) with the VE - CIFAR10 model.

Change(s) in Algorithm 1 IS FID NFE

No change
[
q = 2, r = 0.9, δ(x′,x′

prev)
]

9.39 4.89 8856

Small modifications

δ(x′) 9.39 4.99 17514
No Extrapolation (thus, using Euler–Maruyama) 9.58 6.57 8802
q =∞ 9.41 5.03 39500
r = 0.5 9.47 4.87 9594
r = 0.8 9.45 4.84 8952
r = 1 9.43 4.93 8784

Variations of Lamba (2003) Algorithm

r = 0.5, Lamba integration 9.08 18.28 2492
r = 0.5, Lamba integration, Extrapolation 3.70 169.78 2252
r = 0.5, Lamba integration, q =∞ 9.42 6.80 5886
r = 0.5, Lamba integration, q =∞, θ = 0.8 9.35 6.20 2970
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D.3 Dynamic step size algorithm for solving any type

of SDE (rather than just Reverse Diffusion

Processes)

Assume, we have a Diffusion Process of the form:

dx = f(x, t)dt+ g(x, t)dw. (D.1)

The algorithm to solve it is represented in Algorithm 9. The differences are:

— it is in forward-time

— the range of time must be given

— The diffusion can depend on x, which leads to a slightly more complicated

formulation that depends on some random number s = ±1 (Roberts, 2012).

— we retain the full trajectory instead of only the ending

— we retain the noise after a rejection to ensure that there is no bias in the

rejections
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Algorithm 9 Dynamic step size extrapolation for solving arbitrary (forward-time)
Diffusion Processes

Require: sθ, tbegin, tend, ϵrel, ϵabs, hinit = 0.01, r = 0.9, θ = 0.9

t← tbegin

h← hinit

Initialize x(t)

x′
prev ← x

Draw z ∼ N (0, I)

while t < tend do

if Stratonovich SDE or g(x, t) = g(x) then

s← 0

else ▷ Itō diffusion

Draw s ∼ Uniform({−1, 1})

x′ ← x(t) + hf(x(t), t) +
√
hg(x(t), t)(z− s) ▷ Euler-Maruyama

x̃← x(t) + hf(x′, t+ h) +
√
hg(x′, t+ h)(z+ s)

x′′ ← 1
2
(x′ + x̃) ▷ Improved Euler (SDE version)

δ ← max(ϵabs, ϵrel max(|x′|, |x′
prev|)) ▷ Element-wise operations

E2 ← 1√
n
∥(x′ − x′′) /δ∥2

if E2 ≤ 1 then ▷ Accept

t← t+ h

x(t)← x′′ ▷ Extrapolation

x′
prev ← x′

Draw z ∼ N (0, I)

h← min(t, θhE−r
2 ) ▷ Dynamic step size update

return x
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D.4 Implementation Details

We started from the original code by Song et al. (2021) but changed a few set-

tings concerning the SDE solving. This creates some very minor difference between

their reported results and ours. For the VP and VP-deep models, we obtained 2.55

and 2.49 instead of the original 2.55 and 2.41 for the baseline method (EM). For

the VE and VE-deep models, we obtained 2.40 and 2.21 instead of the original 2.38

and 2.20 for the baseline method (Reverse-Diffusion with Langevin).

As done in Song et al. (2021), we used the optimal signal-to-noise ratio of 0.01

for the Langevin corrector.

When solving the SDE, time followed the sequence t0 = 1, ti = ti−1 − 1−ϵ
N

,

where N = 1000 for CIFAR-10, N = 2000 for LSUN, ϵ = 1e − 3 for VP models,

and ϵ = 1e− 5 for VE models.

Meanwhile, the actual step size h used in the code for Euler-Maruyama (EM)

was equal to 1
N
. Thus, there was a negligible difference between the step size used

in the algorithm (h = 1
N
) and the actual step size implied by t (h = 1−ϵ

N
). Note

that this has little to no impact.

The bigger issue is at the last predictor step was going from t = ϵ to t = ϵ− 1
N

<

0. Thus, t was made negative. Furthermore the sample was denoised at t < 0 while

assuming t = ϵ. There are two ways to fix this issue: 1) take only a step from t = ϵ

to t = 0 and do not denoise (since you cannot denoise with the incorrect t or with

t = 0), or 2) stop at t = ϵ and then denoise. Since denoising is very helpful, we

took approach 2; however, both approaches are sensible.

Finally, denoising was not implemented correctly before. Denoising was im-

plemented as one predictor step (Reverse-Diffusion or EM) without adding noise.

This corresponds to:

x← x− h
[
f(x, t)− g(t)2∇x log pt(x)

]
.
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At the last iteration, this incorrect denoising would be:

x← x+
d[σ2(t)]

dt

1

N
∇x log pt(x)

= x+
σmin

N

√
2 log

(
σmax

σmin

)
∇x log pt(x)

≈ x

for VE and

x← x+

√
βmin

N
∇x log pt(x)

≈ x

for VP.

Meanwhile, the correct way to denoise based on Tweedie formula (Efron, 2011)

is:

x← x+Var[x(t)|x(0)]∇x log pt(x),

where Var[x(t)|x(0)] is the variance of the transition kernel: Var[x(t)|x(0)] =

σmin = 0.01 for VE and Var[x(t)|x(0)] = 1. This means that the correct Tweedie

formula corresponds to

x← x+ 0.012∇x log pt(x)

≈ x

for VE and

x← x+∇x log pt(x)

for VP.

As can be seen, denoising has a very small impact on VE so the difference be-

tween the correct and incorrect denoising is minor. Meanwhile, for VP the incorrect

denoising lead to a tiny change, while the correct denoising lead to a large change.

In practice, we observe that changing the denoising method to the correct one does

not significantly affect the FID with VE, but lowers down the FID significantly

with VP.
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D.5 Inception Score on CIFAR-10

Table D.4 – Inception Score on CIFAR-10 (32x32) from 50K samples

Method VP VP-deep VE VE-deep

Reverse-Diffusion & Langevin 9.94 9.85 9.86 9.83

Euler-Maruyama 9.71 9.73 9.49 9.31
Ours (ϵrel = 0.01) 9.46 9.54 9.50 9.48
Ours (ϵrel = 0.02) 9.51 9.48 9.57 9.50
Ours (ϵrel = 0.05) 9.50 9.61 9.64 9.63
Ours (ϵrel = 0.10) 9.69 9.64 9.87 9.75

Probability Flow (ODE) 9.37 9.33 9.17 9.32

D.6 Stability and Bias of the Numerical Scheme

The following constructions rely on the underlying assumption of the stochastic

dynamics being driven by a wiener process. More so, we also assume that the

Brownian motion is time symmetrical. Both assumptions are consistent and widely

used in the literature; for example, see (Gardiner, 2009) (Arnold, 1974).

The method described in Algorithm 1 gives us a significant speedup in terms

of computing time and actions. Albeit the speed up comes from a piece-wise step

in the algorithm combining the traditional Euler Maruyama (EM) with a form of

adaptive step size predictor-corrector. Here we show that both the stability and

the convergence of the EM scheme are conserved by introducing the extra adaptive

stepsize of our new scheme. As a first step, we define the stability and bias in a

Stochastic Differential Equation (SDE) numerical solution.

We denote ℜ(λ) as the real value of a complex-valued λ.

The linear test SDE is defined in the following way:

dxt = λxtdt+ σdwt (D.2)
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with its numerical counterpart

yn+1 = ℜ (hλ)yn + zn,

where the zn are random variables that do not depend on y0,y1......yn or λ and

the EM scheme is

yn+1 = (1 + hλ)yn + zn.

A numerical scheme is asymptotically unbiased with step size h > 0 if, for a

given linear SDE (D.2) driven by a two-sided Wiener process, the distribution of

the numerical solution yn converges as n→∞ to the normal distribution with zero

mean and variance σ2

2|λ|(Artemiev and Averina, 2011). This stems from the fact that

a solution of a linear SDE (D.2) is a Gaussian process whenever the initial condition

is Gaussian (or deterministic); thus, there are only two moments that control the

bias in the algorithm:

lim
n→∞

E [yn] = 0, lim
n→∞

E
[
y2
n

]
= − σ2

2 |λ|
.

A numerical scheme with step size h is numerically stable in mean if the nu-

merical solution y
(h)
n applied to a linear SDE satisfies

lim
n→∞

E [yn] = 0,

and is stable in mean square (Saito and Mitsui, 1996) if we have that

lim
h→0

(
lim
n→∞

E
[
|yn|

2]) =
σ2

2ℜ(λ)
.

In what follows, we will trace the criteria for bias through our algorithm and

show that it remains unbiased. By construction, the first EM step remains unbi-

ased, while for the RDP, we write down the time reverse Wiener process as

ỹn+1 = (1 + λh) ỹn + z̃n
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in the reverse time steps h i.e., t− nh, t− 2nh,

E
[
ỹn+1

]
= (1 + λ (t− h))E [ỹn]

= (1 + λ (t− h))E
[
(1 + λ (t− h)) ỹn−1

]
...

= (1 + λ (t− h))n+1 E [ỹ0]

= (1 + λ (t− h))n+1 E [y0] .

Thus, if

|1 + λ (t− h)| < 1,

then

lim
n→∞

E
[
y(h)
n

]
= 0.

In Algorithm 1, we are performing consecutive steps forward and backwards in time

so t = 2h such that

|1 + λh| < 1.

Thus, the scheme is both numerically stable and unbiased with respect to the mean.

Next, we focus on the numerical solution in mean square:

E
[∣∣ỹn+1

∣∣2] = |1 + λ (t− h)|2 E
[
|ỹn|

2]+ σ2h

= |1 + λ (t− h)|2
{
|1 + λ (t− h)|2 E

[∣∣ỹn−1

∣∣2]+ σ2h
}
+ σ2h

...

= |1 + λ (t− h)|2(n+1) E [|y0|] +
|1 + λ (t− h)|2(n+1) − 1

2ℜλ+ |λ|2 (t− h)
σ2.

Under the same assumption of consecutive steps, we have that

E
[∣∣ỹn+1

∣∣2] = |1 + λh|2(n+1) E [|y0|] +
|1 + λh|2(n+1) − 1

2ℜ(λ) + |λ|2 h
σ2,

lim
n→∞

E
[∣∣ỹn+1

∣∣2] = − σ2

2ℜ(λ) + |λ|2 h
,

lim
h→0

(
lim
n→∞

E
[∣∣ỹn+1

∣∣2]) = − σ2

2ℜ(λ)
.
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Assuming the imaginary part of λ is null, we have that

lim
h→0

(
lim
n→∞

E
[∣∣ỹn+1

∣∣2]) = − σ2

2 |λ|
.

Thus, the numerical scheme is stable and unbiased in the mean square.

Following the two steps for computation of x′ and x̃, the step size decreases and

does not change size; thus, all the above statements hold, and the entire algorithm

is stable and unbiased with respect to both the mean and square mean.
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D.7 Samples

(a) Dynamic-step Extrapolation (ϵ = 0.01) (b) Dynamic-step Extrapolation (ϵ = 0.02)

(c) Dynamic-step Extrapolation (ϵ = 0.05) (d) Dynamic-step Extrapolation (ϵ = 0.10)

Figure D.1 – VP - CIFAR10
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(a) Dynamic-step Extrapolation (ϵ = 0.01) (b) Dynamic-step Extrapolation (ϵ = 0.02)

(c) Dynamic-step Extrapolation (ϵ = 0.05) (d) Dynamic-step Extrapolation (ϵ = 0.10)

Figure D.2 – VP-deep - CIFAR10
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(a) Dynamic-step Extrapolation (ϵ = 0.01) (b) Dynamic-step Extrapolation (ϵ = 0.02)

(c) Dynamic-step Extrapolation (ϵ = 0.05) (d) Dynamic-step Extrapolation (ϵ = 0.10)

Figure D.3 – VE - CIFAR10
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(a) Dynamic-step Extrapolation (ϵ = 0.01) (b) Dynamic-step Extrapolation (ϵ = 0.02)

(c) Dynamic-step Extrapolation (ϵ = 0.05) (d) Dynamic-step Extrapolation (ϵ = 0.10)

Figure D.4 – VE-deep - CIFAR10
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(a) Dynamic-step Extrapolation (ϵ = 0.01) (b) Dynamic-step Extrapolation (ϵ = 0.02)

(c) Dynamic-step Extrapolation (ϵ = 0.05) (d) Dynamic-step Extrapolation (ϵ = 0.10)

Figure D.5 – VE - LSUN-Church (256x256)
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(a) Dynamic-step Extrapolation (ϵ = 0.01) (b) Dynamic-step Extrapolation (ϵ = 0.02)

(c) Dynamic-step Extrapolation (ϵ = 0.05) (d) Dynamic-step Extrapolation (ϵ = 0.10)

Figure D.6 – VE - FFHQ (256x256)
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