
Université de Montréal

FETA: Fairness Enforced Verifying, Training, and
Predicting Algorithms for Neural Networks

par

Kiarash Mohammadi

Département d’informatique et de recherche opérationnelle
Faculté des arts et des sciences

Mémoire présenté en vue de l’obtention du grade de
Maître ès sciences (M.Sc.)

en Informatique

June 15, 2023

© Kiarash Mohammadi, 2023





Université de Montréal
Faculté des arts et des sciences

Ce mémoire intitulé

FETA: Fairness Enforced Verifying, Training,
and Predicting Algorithms for Neural Networks

présenté par

Kiarash Mohammadi

a été évalué par un jury composé des personnes suivantes :

Dhanya Sridhar
(président-rapporteur)

Golnoosh Farnadi
(directeur de recherche)

Laurent Charlin
(membre du jury)





Résumé

L’automatisation de la prise de décision dans des applications qui affectent directement
la qualité de vie des individus grâce aux algorithmes de réseaux de neurones est devenue
monnaie courante. Ce mémoire porte sur les enjeux d’équité individuelle qui surviennent lors
de la vérification, de l’entraînement et de la prédiction des réseaux de neurones. Une approche
populaire pour garantir l’équité consiste à traduire une notion d’équité en contraintes sur les
paramètres du modèle. Néanmoins, cette approche ne garantit pas toujours des prédictions
équitables des modèles de réseaux de neurones entraînés. Pour relever ce défi, nous avons
développé une technique de post-traitement guidée par les contre-exemples afin de faire
respecter des contraintes d’équité lors de la prédiction. Contrairement aux travaux antérieurs
qui ne garantissent l’équité qu’aux points entourant les données de test ou d’entraînement,
nous sommes en mesure de garantir l’équité sur tous les points du domaine. En outre, nous
proposons une technique de prétraitement qui repose sur l’utilisation de l’équité comme
biais inductif. Cette technique consiste à incorporer itérativement des contre-exemples plus
équitables dans le processus d’apprentissage à travers la fonction de perte. Les techniques
que nous avons développé ont été implémentées dans un outil appelé FETA. Une évaluation
empirique sur des données réelles indique que FETA est non seulement capable de garantir
l’équité au moment de la prédiction, mais aussi d’entraîner des modèles précis plus équitables.

Mots clés: Équité, Réseaux de Neurones, Vérification

5





Abstract

Algorithmic decision-making driven by neural networks has become very prominent in
applications that directly affect people’s quality of life. This paper focuses on the problem
of ensuring individual fairness in neural network models during verification, training, and
prediction. A popular approach for enforcing fairness is to translate a fairness notion
into constraints over the parameters of the model. However, such a translation does not
always guarantee fair predictions of the trained neural network model. To address this
challenge, we develop a counterexample-guided post-processing technique to provably
enforce fairness constraints at prediction time. Contrary to prior work that enforces
fairness only on points around test or train data, we are able to enforce and guarantee
fairness on all points in the domain. Additionally, we propose a counterexample-guided
loss as an in-processing technique to use fairness as an inductive bias by iteratively
incorporating fairness counterexamples in the learning process. We have implemented
these techniques in a tool called FETA. Empirical evaluation on real-world datasets
indicates that FETA is not only able to guarantee fairness on-the-fly at prediction time
but also is able to train accurate models exhibiting a much higher degree of individual fairness.

Keywords: Fairness, Bias Mitigation, Neural Networks, Verification

7





Contents

Résumé . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

List of tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

List of figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

List of acronyms and abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Chapter 1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Chapter 2. Related Work and Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.1. Bias Mitigation Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.1.1. Pre-processing methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.1.2. In-processing methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.1.3. Post-processing methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2. Verifying Machine Learning Systems and Adversarial Examples. . . . . . . . . . . . . . . 27

2.3. Background on Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4. Background on Encoding NNs as Mixed-Integer Linear Programs . . . . . . . . . . . . . 29
2.4.1. Unbounded MILP Encoding of ReLU Neural Networks . . . . . . . . . . . . . . . . . . . . 30
2.4.2. Bounded MILP Encoding of ReLU Neural Networks . . . . . . . . . . . . . . . . . . . . . . . 31

2.4.2.1. Linear over-approximation of ReLUs for Bounds Computation . . . . . . . . . 31

Chapter 3. FETA: Fairness Enforced Verifying, Training, and Predicting
Algorithms for Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2. Preliminaries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3. CE-Fair Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

9



3.4. CE-Fair Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.4.1. Empirical Evaluation of CE-Fair Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4.1.1. Dataset details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4.1.2. Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.5. CE-Fair Training. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.5.1. Empirical Evaluation of CE-Fair Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.5.1.1. Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.6. Extensions to FETA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.7. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.8. Conclusion & Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.9. Societal Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.10. Additional Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.10.1. Comparison to the original LCIFR [69] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.10.2. Counterexample-guided Counting vs. Naive Enumeration . . . . . . . . . . . . . . . . 56

Chapter 4. Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

10



List of tables

3.1 The effect of guaranteed fair predictions on performance and model fairness – 5-fold
CV results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 The effect of CE-Fair re-training on fairness metrics – 5-fold CV results . . . . . . . . 47
3.3 Comparison of applying CE-Fair Prediction on NNb vs. on the CE-Fair

re-trained model – 5-fold CV results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.4 Accuracy of different fair models compared – 5-fold CV . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.5 Comparison of FETA and LCIFR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.6 Comparison of FETA and LCIFR (original implementation) . . . . . . . . . . . . . . . . . . . . . 56
3.7 Comparison of CE-guided Counting and Naive Enumeration in runtime . . . . . . . . . 56

11





List of figures

1.1 Overview of the FETA pipeline. CE-Fair Verification is performed on an already-
trained ReLU neural network and counterexample pairs are found. CE-Fair
Prediction can already be applied at this stage to guarantee fairness but the
accuracy cost might be high. For that reason, one can perform a few epochs of
CE-Fair Training to achieve a more desirable model in terms of fairness and then
apply CE-Fair Prediction for the final model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1 A single-output ReLU-activated feed-forward neural network . . . . . . . . . . . . . . . . . . . . 29
3.1 Empirically, the best learned NN model is not fair. The figure presents the CE

Rate for German, IPUMS Adult (IPUMS), and Law School (LS). . . . . . . . . . . . . . . . 42
3.2 Ratio of Inference time increases when using CE-Fair predictions to guarantee

fairness. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3 German (full batch). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.4 IPUMS Adult (CE batch). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.5 Law School (CE batch). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.6 Loss and average violation curves for fairness-enforced training on different datasets.

Each curve is the mean over 5 runs and the shaded area represents the std.. . . . . . 55

13





List of acronyms and abbreviations

DL Deep Learning

NN Neural Network

ReLU Rectified Linear Unit

SMT Satisfiability Modulo Theories

MILP Mixed-Integer Linear Programs

BCE Binary Cross Entropy

SCM Structural Causal Model

15





Acknowledgements

I would like to express my genuine gratitude to the following individuals and organizations
who have contributed to the completion of this Master’s thesis:

First and foremost, I would like to thank my supervisor, Golnoosh Farnadi, for their
invaluable guidance, expertise, and support throughout the entire research process. Their
mentorship and insightful feedback have been instrumental in shaping the direction and
quality of this work.

I would like to express my appreciation to the thesis committee Dhanya Sridhar, Laurent
Charlin, and Golnoosh Farnadi for dedicating time and effort to this thesis.

Moreover, I am deeply grateful to the research community at Mila and Université de
Montréal for their assistance, collaboration, and meaningful discussions during the course of
this research. Especially, my dear friends and colleagues, Rebecca Salganik, Nicola Neophytou,
and Rohan Sukumaran. Their feedback and support have been invaluable in addressing
various challenges.

I am grateful to the academic institutions and organizations that provided resources and
scholarships that supported my research. Their support has been crucial in facilitating the
research process.

I would like to express my deep appreciation to my family and friends for their immense
encouragement, understanding, and love throughout this academic journey. Their continuous
support has been a constant source of motivation and inspiration.

Finally, I would like to acknowledge the broader research community on trustworthy AI
and fairness in machine learning and algorithmic decision-making, whose collective efforts
have led in the field moving forward. I am grateful to be part of this community and I wish
it foster even more; we need it now more than ever.

17





Chapter 1

Introduction

Machine learning models, especially end-to-end trained models such as Deep Learning (DL)
models [28], are being widely used to assist high-risk decision-making scenarios, ranging from
university admissions to recidivism risk assessments [39]. These models have demonstrated
significant performance in capturing complex relationships between features. Among those,
Neural Networks (NNs) have become prevalent in many domains, especially with simple
non-linearities such as the Rectified Linear Unit (ReLU) [1]. While these models have
shown superior performance, unanticipated issues have arisen in their deployment. There are
numerous examples in consequential scenarios in which machine learning models have demon-
strated discriminatory behavior, i.e., unjustifiably favoring a majority over a demographic
minority in the most general case. This can range from loan approval [32], recidivism risk
assessments [39], salary prediction [5], etc., and has motivated a line of research on fairness
in machine learning. In these scenarios, we normally face a two-class classification task where
a binary decision (also referred to as intervention) is made for an individual. This decision or
intervention could either be assistive (when the model is classifying for a positive outcome,
e.g., job interview) or punitive (when the model is screening for a negative outcome, e.g.,
high or low risk for loan approval) [24]. As motivating examples, we revisit cases in which
deployed machine learning models have been the cause of discrimination toward demographic
groups.

Punitive intervention case (ProPublica COMPAS Study)[65]. One of the classical
examples is the case of the COMPAS algorithm. This is an algorithm used to predict
recidivism among defendants in the criminal justice system and it was later discovered that
it exhibits discriminatory behavior. The task of the algorithm is to classify individuals
as high-risk or low-risk to assist in the decision of granting bail. It has been found that
African-Americans were more likely to be classified as high-risk compared to white defendants,
even in the case that other features of the individuals are controlled, implying that the
decision of the algorithm is biased by skin color.



Assistive intervention case (Amazon’s Hiring Tool) [67]. In 2018, it was found that
the tool Amazon uses for filtering the resumes of applicants is indeed biased. The algorithm
was giving less chance to women, amplifying and perpetuating the bias in its training data,
i.e., the historical gender imbalance in the tech industry.

Apple Credit Card Application [6]. There are many more examples for either case
and examples that are not necessarily assistive or punitive. For instance, in 2019, Apple
launched a credit card application that was accused of gender bias [6]. The scandal went viral
when a couple who shared all of their bank accounts, assets, and credit cards, received different
credit limits while only their gender was different in their applications. This difference in
outputs among individuals that are similar in inputs can be considered unfair.

These examples are only a few of many, that motivate the problem of studying fairness
in machine learning from an ethical point of view. That already being enough motivation,
there are indeed legal grounds for which the problem of fairness in machine learning becomes
important. Many countries have anti-discrimination laws in place that prohibit the use of
protected attributes such as race, gender, or age as the basis of decision-making in different
domains. For example, in the United States, the disparate impact regulations ensure “that
public funds, to which all taxpayers of all races contribute, not be spent in any fashion which
encourages, entrenches, subsidizes, or results in racial discrimination.” [59].

In the context of training machine learning models, prior studies have shown that models
trained on data are prone to bias on the basis of sensitive attributes such as race, gender,
age, etc. [51, 12] It has been shown that even if sensitive features such as race and gender
are withheld from the model, the model can still be unfair. It is often the case that either
there are still proxies of sensitive features present in the data, or it is possible to reconstruct
sensitive features that are encoded in data internally. Thus, there is no straightforward
solution.

Prior work on solving this problem can be categorized into addressing two broad fairness
criteria: i) group-based notions of fairness, and ii) individual-based notions of fairness. The
former tries to equalize a statistical measure among different demographic groups on average,
e.g., demographic parity [20] or equalized odds [32]. On the other hand, individual fairness
requires that similar individuals should be treated similarly [20]; it is less straightforward to
define since the similarity measure on both the input and output spaces needs to be set. Group-
based notions, despite their prevalence, are generally difficult to be formally guaranteed for
all the input space [44, 69]. Furthermore, an algorithm that satisfies group fairness could be
blatantly unfair from the point of view of individual users [20] as group fairness only considers
average measures among demographic groups. The choice of a fairness notion in general is
very context-dependent and requires domain knowledge of the complete sociotechnical system.
For instance, following the examples mentioned above, for the COMPAS [65] and Amazon
[67] examples it seems more appropriate to choose a group fairness notion, and for the Apple

20



[6] example we could leverage an individual fairness notion; however, choosing a specific
notion within group/individual fairness notions requires more context. While no fairness
notion is superior to another, in this work we focus on satisfying individual fairness [20]
which states that the distance between the outcome for two individuals should be bounded
according to the degree of their similarity.

Working with a fairness notion, prior work either aims at auditing (aka, verifying) fairness
or mitigating bias. Auditing group fairness can mostly be done by empirical computation of
the fairness metric such as demographic parity [20] or equalized odds [32]. It is, however, more
difficult to audit individual fairness. Prior work either constructs verifiers using Satisfiability
Modulo Theories (SMT) [10] or Mixed-Integer Linear Programs (MILP) [8, 45], or aims at
performing adversarial attacks to find violations of individual fairness [55]. Bias mitigation
techniques normally fall into three categories: i) pre-processing, ii) in-processing, and iii) post-
processing. This thesis targets both verification and mitigation problems w.r.t. individual
fairness. The closest work to ours in this regard is LCIFR [69]. It combines pre-processing
and in-processing techniques to propose an approach to learning certified fair representation
that maps similar individuals close to each other in the latent space. Moreover, it proposes a
technique to certify fairness w.r.t. an individual fairness notion that is similar to ours.

Prior work on providing certified individual fairness, mainly aims at local guarantees,
however, in this work, we propose algorithms to guarantee individual fairness globally and
on the whole input space. To the best of our knowledge, this is the first work that provides
global guarantees for the individual fairness notion of causal discrimination [25]. Moreover,
our approach has the flexibility to either only improve fairness by regularizing the model for
individual fairness, or guarantee fairness at the cost of a slight decrease in accuracy.

Our approach. In this work, we propose algorithms to verify, incorporate, and guarantee
individual fairness globally for ReLU Neural Networks. We target the individual fairness
notion proposed by [25] which states that individuals who differ in sensitive attributes but
share non-sensitive attributes must receive the same outcome. This work has three main
components:

• CE-Fair Verification: We leverage the rich body of research on automated theorem
provers for NNs [52] to build a verifier that looks for individual fairness counterexam-
ples, i.e., pair of similar individuals in the whole input domain that do not receive the
same outcome.
• CE-Fair Prediction: We propose a pure post-processing approach that tweaks the

outputs of the model to satisfy the fairness criteria. Our counterexample-guided
approach performs a majority vote over individuals sharing non-sensitive attributes
to detect the fair output at prediction time. This can be applied to any arbitrary
ReLU NN.

21



• CE-Fair Training: This novel in-processing algorithm acts as a counterexample-
guided regularizer that incorporates explicit counterexamples to fine-tune an already
trained model toward being fair. We identify individual fairness counterexamples
on the training data, inducing additional supervision for training the network, and
perform this process iteratively. CE-Fair Training can be complemented by CE-Fair
Prediction to guarantee individual fairness with much less damage to accuracy.

We have implemented our tool in an open-source package called “Fairness Enforced
Verifying, Training, and Predicting Algorithm” (FETA). We perform extensive experiments
on three real-world datasets to showcase the effectiveness of our approach. Figure 1.1
demonstrates a high-level overview of the components of the FETA pipeline. Given a
trained ReLU neural network, CE-Fair Verification is performed to examine whether any
counterexamples exist and find the counterexample pairs. At this point, CE-Fair Prediction
can already be performed to guarantee fairness as post-processing; however, the cost (i.e.,
accuracy drop) might be high. Instead, one can first fine-tune the model to be fairer by
applying the in-processing CE-Fair Training and then apply CE-Fair Prediction for the
ultimate model that both guarantees fairness and is accurate.

Main contributions. Our main contributions are as follows.
(1) A practical audit tool to verify individual fairness of arbitrary ReLU NNs that searches

for counterexamples violating the fairness criteria
(2) A counterexample-guided prediction-time algorithm that guarantees individual fairness

as a post-processing approach
(3) A counterexample-guided re-training algorithm that imposes fairness supervision as

an in-processing approach
(4) An open-source package containing the implementation of all the algorithms, along

with extensive experiments on real-world datasets
This thesis is the result of two papers: i) a paper titled "Post-processing Counterexample-

guided Fairness Guarantees in Neural Networks", accepted in the AAAI 2022 Workshop on
Combining Learning and Reasoning, ii) a paper titled "FETA: Fairness Enforced Verifying,
Training, and Predicting Algorithms for Neural Networks", submitted as a conference paper
and under review at the time of writing this thesis. The former paper has become a part of the
latter. The writer of this thesis has: i) developed the idea and theoretical foundation under
the guidance of the supervisor, ii) developed the open-source tool (FETA) and conducted
extensive experiments on real-world datasets, and iii) has written the presented papers as the
first author.

Thesis layout. Chapter 2 studies the related work on fairness mitigation and verification,
as well as related work on neural network verification and adversarial learning. It is continued
by providing some necessary background on basic machine learning and deep learning concepts,
mixed-integer linear programs, and the background on encoding neural networks as MILPs.

22



Chapter 3 presents the paper titled "FETA: Fairness Enforced Verifying, Training, and
Predicting Algorithms for Neural Networks".

Chapter 4 concludes by summarizing the work, mentioning its limitations and societal
impact, and discussing the ongoing future efforts on extending the work to causal notions of
fairness to address the limitations.

Fig. 1.1. Overview of the FETA pipeline. CE-Fair Verification is performed on an already-
trained ReLU neural network and counterexample pairs are found. CE-Fair Prediction
can already be applied at this stage to guarantee fairness but the accuracy cost might be
high. For that reason, one can perform a few epochs of CE-Fair Training to achieve a more
desirable model in terms of fairness and then apply CE-Fair Prediction for the final model.

23





Chapter 2

Related Work and Background

This chapter studies the closest and most recent work related to different elements of our
work. The goal is to situate our work in the literature, motivate the differences, and showcase
the novelty and contribution to the literature. Section 2.1 studies our work in the context
of fairness in machine learning literature while section 2.2 situates our work in the neural
network verification and adversarial example literature. It is followed by sections revisiting
some fundamental backgrounds: some basic machine learning concepts in Section 2.3, and
mixed-integer linear programs and how neural networks are encoded within this framework
in Section 2.4.

2.1. Bias Mitigation Algorithms
Our work contributes to the research on both mitigating and verifying fairness in machine

learning models. As discussed earlier, methods that aim to mitigate bias, normally fall into
three categories: i) pre-processing, ii) in-processing, and iii) post-processing.

2.1.1. Pre-processing methods

Pre-processing approaches aim to mitigate bias at a data level. They are normally model-
agnostic approaches trying to transform the data such that the encoded bias is removed
[13, 41]. This could be done through data reweighing that aims to associate weights to
different group-label pairs such that bias is mitigated [41], fair representation learning that
tries to map the data into a latent space where bias is mitigated [85], or by balancing
the representation of different demographic groups to remove disparate impact [23]. The
closest work to ours in this context is [69] which learns representations in a way that similar
individuals in the input space, are mapped close to each other in the latent space. It uses
the same fairness definition as we do. We compare our approach against [69] and report the
results in Section 3.5.1.



2.1.2. In-processing methods

These methods normally define extra soft or hard constraints on the optimization problem
and aim at regularizing a model through training in order to obey a fairness criterion. In
this case, the learning algorithm itself is implicitly or explicitly regularized to prefer a fair
model w.r.t. a fairness definition. This is one of the more popular approaches and several
works have been proposed to enforce fairness as an in-processing method, mostly for group
fairness metrics [33, 44, 56]. As for in-processing techniques for individual fairness, prior
work falls into two categories based on assuming an individual fairness metric is at hand or
not. When it is not possible to compute the metric, prior work relies on having access to an
oracle that evaluates the individual fairness of the learning algorithm [26, 40]. Otherwise,
when the metric is amenable to compute, prior work relies on adversarial learning techniques
to enforce fairness [82, 83]. Another line of work assumes a Structural Causal Model (SCM)
[61] underlying the data and aims at constraining the solution space w.r.t. the causal model
[48, 49]; this is discussed in more detail in Chapter 4.

2.1.3. Post-processing methods

This group of approaches works by tweaking model predictions at inference time in a way
that the predictions obey certain fairness criteria [32, 64, 53, 63, 2]. They are flexible in the
sense that they do not require to re-train the model and are normally model-agnostic. They
use approaches such as threshold adjustments for different demographic groups to compensate
for the model bias.

In this work, we propose both in-processing (CE-Fair Training) and post-processing
(CE-Fair Prediction) bias mitigation algorithms. Our in-processing approach, unlike prior
work on in-processing for individual fairness [26, 40], does not rely on an oracle for feedback,
rather it relies on our CE-Fair Verification algorithm to search for counterexamples and
evaluate individual fairness. Moreover, our in-processing CE-Fair Training approach uses
exact counterexamples that are guaranteed to violate fairness maximally, as opposed to
approximate examples in adversarial learning [82, 83]. While we are similar to [45, 8] in
terms of in-processing, we propose a post-processing approach that, unlike others, guarantees
individual fairness. Note that, our in-processing technique is only a means to help improve
the quality of the ultimate model when post-processing is applied, i.e., it can be interpreted
as a step of a more general algorithm.

Existing post-processing algorithms either focus on group fairness or on individual fairness
notions that are different from the one we adopt [32, 64, 53, 63, 2]. Our adopted notion is
the causal discrimination definition proposed by [25]. The post-processing bias mitigation
approach proposed in [53] relies on the same fairness definition, however, it only supports a
single binary sensitive attribute while we support multiple sensitive attributes of different

26



types. Their approach works by flipping the prediction for samples that are likely to have
individual fairness bias. To do so, they train a bias detector model on an auxiliary dataset
that labels the unprivileged group as either prone to high bias or not. The bias detector
is then used at inference time to judge whether an incoming sample is likely to have been
discriminated against and flip the prediction accordingly. In contrast, our approach does not
rely on a proxy model (that itself could be prone to bias) to determine whether discrimination
has happened or not; CE-Fair Verification algorithm can provably determine if a fairness
counterexample exists. Moreover, we guarantee individual fairness at prediction time for
all the input domain using our post-precessing CE-Fair Prediction algorithm. This makes
our approach more versatile and robust, with the ability to accommodate a wider range of
real-world scenarios while ensuring fairness.

2.2. Verifying Machine Learning Systems and Adversar-
ial Examples

Our work is related to the literature on neural network verification and adversarial
examples [52] in the sense that we leverage formal verification tools and mixed-integer
programs to encode a ReLU neural network, as well as the fairness notion and different
data-type constraints. In this domain, several works have been proposed to formally verify
different properties of ReLU-activated neural networks such as robustness to adversarial
attacks [52, 43, 21]. Prior work on machine learning verification can be classified into (i)
verification using satisfiability modulo theory (SMT) or mixed-integer linear programming
(MILP) [43, 76], and (ii) verification using convex relaxations [71, 19]. The first group of
works aims at proposing efficient ways to encode neural networks and the desired properties
using first-order predicate logic or mixed-integer linear programs. Later, they leverage a
backend SMT solver or a MILP optimizer to solve the verification problem. The second
group proposes relaxations to the problem such that the optimization is more amenable to
solving. In this work, we rely on prior work [75, 11, 57] from the first group to encode neural
networks and other constraints as MILPs and build a practical and flexible individual fairness
verification framework (our CE-Fair Verification and CE-Fair Prediction algorithms).

Prior work on fairness verification has been proposed in the context of probabilistic
programs [3, 4] or linear kernels [38]. In the context of adversarially robust algorithms
(which can be divided into empirical [47, 54] and certified defenses [79, 72, 66, 34]),
specifically, [80, 58, 83] propose adversarial training-based algorithms for fairness. In our
CE-Fair Training we use individual fairness counterexamples and that makes us closely
related to these works. In general, we differ in two main ways. First, we are using the fairness
definition from [25] and, to the best of our knowledge, there is no related work in adversarial
training literature for enforcing this notion of individual fairness. Second, the literature in

27



adversarial training mostly focuses on local robustness, i.e., they try to enforce robustness
criteria in the neighborhood of a training sample rather than globally; however, we search
for counterexamples in the whole input domain and ensure fairness on a global scale. Our
algorithm is able to detect unfairness and guarantee fairness not only in the neighborhood of
training samples but for the whole input space.

2.3. Background on Machine Learning
For the sake of completion and definition, we revisit a few fundamental concepts from

machine learning and deep learning.
Definition 1. (Single-output Feed-forward Neural Network) Simply referred to as
a neural network in the thesis, it is a function F : Rd → R implementing a series of matrix
multiplications, each happening in a layer. Let x ∈ Rd be an input, we define zi and ẑi as
the input and output of layer i respectively, where z0 = x and zn = F (x) is the final output
of the neural network at layer n. Each zi is then recursively defined as:

zi = Wiẑi−1 + bi (2.3.1)

where in this case, zi = ẑi, and W and b are the weights and biases.

Definition 2. (Rectified Linear Unit) Simply referred to as ReLU, it is a popular activation
function in deep learning defined as:

ReLU(x) = max(0, x) (2.3.2)

It is used to inject non-linearities within a neural network, as defined next.

Definition 3. (Sigmoid Activation Function) Sigmoid is a curve-shaped function σ :
R→ [0, 1] defined as:

σ(x) = 1
1 + e−x

(2.3.3)

Definition 4. (Single-output ReLU-activated Feed-forward Neural Network) Simply
referred to as a ReLU neural network in this thesis, it is a neural network (Definition 1)
in which the output of each layer is passed through a ReLU function (Definition 2). More
formally, following Definition 1, we re-define ẑi as:

zi = Wiẑi−1 + bi

ẑi = ReLU(zi)
(2.3.4)

Figure 2.1 shows a simple ReLU neural network along with its weights. The activation in
the output layer is sometimes replaced by a Sigmoid function (Definition 3) that maps the
logits to probabilities (e.g., in the case of using neural nets for binary classification), i.e.,
F (x) = σ(zn).

28



x1

z1

x2 z3

z2

x3

1

2

−1

0

0

−1

ẑ1 , −1

ẑ2, 1

Fig. 2.1. A single-output ReLU-activated feed-forward neural network

The weights W and biases b are called the parameters of the neural network, often
written as Fθ to show the dependence of the function on these parameters. To estimate these
parameters, an optimization scheme and algorithm, such as Gradient Decent [68] and the
Backpropagation algorithm [30] are required. Moreover, one would require a loss function
that is an empirical metric evaluating the estimation quality of the parameters and guiding
the optimization procedure. In this work, we use ReLU neural networks for the task of binary
classification and the loss function for that is defined as follows.

Definition 5. (Binary Cross Entropy) Let fθ : R→ [0, 1] be a parametric function and
D = {(x1, y1), . . . , (xM , yM)} be a set of pairs of input-output samples where xi ∈ Rd and
yi ∈ {0, 1}. The binary cross entropy loss is then defined as:

LBCE(fθ) = − 1
M

M∑
i=1

yi log(fθ(xi)) + (1− yi) log(1− fθ(xi)) (2.3.5)

Intuitively, it is an empirical metric that measures how close the parametric distribution fθ is
to the true distribution of labels, i.e., how well fθ is doing in estimating the probability of a
sample x belonging to class 1.

2.4. Background on Encoding NNs as Mixed-Integer
Linear Programs

We start with a quick introduction to Mixed-Integer Linear Programs (MILP). We will
then explain the MILP encoding of ReLU neural networks [11, 75] adopted in this work to
construct the CE-Fair Verification algorithm.

Definition 6. (Linear Program (LP)) Constrained linear optimization problems that can
be expressed in the following form are linear programs.

maximize cT x

s.t. Ax ≤ b

and x ≥ 0

(2.4.1)

29



where vectors c and b and matrix A are given and variable x is to be derived. cT x is called
the objective function and Ax ≤ b and x ≥ 0 specify the constraints that form a convex
polytope over which the objective function is to be optimized.

Definition 7. (Mixed-Integer Linear Program (MILP)) A linear program (Definition
6) is called mixed-integer when a subset of the variables to be derived are constrained to be
integers. More specifically, an LP of the general following form:

maximize cT x + c′T x′

s.t. Ax ≤ b

A′x′ ≤ b′

and x′ ∈ Zn

(2.4.2)

where n is the dimension of vector x′.

2.4.1. Unbounded MILP Encoding of ReLU Neural Networks

We would like to encode the defined ReLU NN as a mixed-integer linear program; by
that, we mean constraints that would later be part of a larger MILP with an objective, but
for now, we do not discuss the objective. Recall the details of Definition 4, the multiplication
of weights is a linear operator and is straightforward to encode; however, it is more tricky to
encode the ReLU activations.

Definition 8. (Unbounded MILP Encoding of NNs) Similar to Definition 2, let W , b

be the weights and biases of an n-layered ReLU NN. Moreover, let zi and ẑi be the pre-ReLU
and post-ReLU values of hidden layer i ∈ {1, . . . , n}. Finally, let ki be the width of layer
i and δi be binary vectors of dimension ki. Then for i ∈ {1, . . . , n} and j ∈ {1, . . . , ki} we
would have the following MILP:

zi = Wiẑi−1 + bi (2.4.3a)
δi ∈ {0, 1}ki , ẑi = zi · δi,

δi,j = 1⇒ zi,j ≥ 0,

δi,j = 0⇒ zi,j < 0

(2.4.3b)

Intuitively, the first part (2.4.3a) defines the constraints for the linear operator of weights

multiplication and the second part (2.4.3b) uses the auxiliary binary δ variables to encode
the state of each ReLU.

30



2.4.2. Bounded MILP Encoding of ReLU Neural Networks

The optimization backend adopted in this work [31] uses Branch-and-Bound (B&B)
optimization internally. Thus, it is very useful to limit the bounds of the variables of the
MILP for more runtime-efficient optimization. For that purpose, we make the justified
assumption that there are some lower/upper bounds on the input domain. We adopt the
MILP proposed by [75].

Definition 9. (Bounded MILP Encoding of NNs) Following Definition 2.4.3, let (li, ui)
be lower bounds and upper bounds on the values of the hidden units in layer i. We then
define the following bounded MILP encoding:

zi = Wiẑi−1 + bi (2.4.4a)
δi ∈ {0, 1}ti , ẑi ⩾ 0, ẑi ⩽ ui · δi,

ẑi ⩾ zi, ẑi ⩽ zi − li · (1− δi)
(2.4.4b)

Intuitively, the first part (2.4.4a) is again only the linear multiplication of weights; the second
part (2.4.4b) ensures that δi,j = 0⇔ ẑi,j = 0 and δi,j = 1⇔ ẑi,j = zi,j , this time while having
bounds on the variables which would significantly boost optimization efficiency.

While it is beneficial to have bounds on the variables of the MILP, it is important how
the bounds are computed; the tighter the bounds are, the more efficient the optimization
will be. There are numerous approaches presented in the literature [52] for computing these
bounds. Next, we explain the bounds computation approach adopted here.

2.4.2.1. Linear over-approximation of ReLUs for Bounds Computation. We leverage an
intermediate relaxed MILP encoding proposed by [21] that over-approximates the ReLUs
only for the purpose of computing the lower/upper bounds to be plugged into the exact
encoding 2.4.4.

Definition 10. (Over-approximation of ReLUs MILP) Similar to the notation of
Definition 2.4.4, for i ∈ {1, . . . , n} and j ∈ {1, . . . , ki}, we have the following relaxed
encoding:

zi = Wiẑi−1 + bi (2.4.5a)

ẑi ⩾ zi, ẑi ⩾ 0, ẑi,j ⩽ ui,j
zi,j − li,j
ui,j − li,j

(2.4.5b)

This is a fully linear MILP that no longer encodes ReLUs as binary variables and thus is
much more efficient in terms of optimization runtime. Starting from the bounds on the input
layer (which we assume is derived from, e.g., the dataset), it progressively computes tight
bounds by solving two MILPs at each layer (with only the constraints up until the current

31



layer): one minimization to find the lower bound and one maximization to find the upper
bound. The bounds are then propagated to the next layer using interval arithmetic [35].
Finally, all the computed tight bounds are plugged into encoding 2.4.4 to have an exact and
efficient MILP encoding of ReLU neural networks.

32



Chapter 3

FETA: Fairness Enforced
Verifying, Training, and
Predicting Algorithms
for Neural Networks

by

Kiarash Mohammadi, Aishwarya Sivaraman, Golnoosh Farnadi1

(1) Mila, Université de Montréal

This article was submitted in a conference and is under review at the time of writing this thesis;
part of it was accepted at AAAI 2022 Workshop on Combining Learning and Reasoning.

The main contributions of Kiarash Mohammadi for this articles are presented.
• Development of the idea and theoretical foundation under the guidance of the super-

visor;
• Development of the open-source tool (FETA) and conducting extensive experiments

on real-world datasets;
• Writing the presented paper as the first author;

Co-author Aishwarya Sivaraman has helped with feedback through the project and
writing revisions. Co-author Golnoosh Farnadi has guided the project as the principal
investigator (PI).



Résumé. L’automatisation de la prise de décision dans des applications qui affectent
directement la qualité de vie des individus grâce aux algorithmes de réseaux de neurones
est devenue monnaie courante. Ce mémoire porte sur les enjeux d’équité individuelle qui
surviennent lors de la vérification, de l’entraînement et de la prédiction des réseaux de
neurones. Une approche populaire pour garantir l’équité consiste à traduire une notion
d’équité en contraintes sur les paramètres du modèle. Néanmoins, cette approche ne garantit
pas toujours des prédictions équitables des modèles de réseaux de neurones entraînés. Pour
relever ce défi, nous avons développé une technique de post-traitement guidée par les contre-
exemples afin de faire respecter des contraintes d’équité lors de la prédiction. Contrairement
aux travaux antérieurs qui ne garantissent l’équité qu’aux points entourant les données de
test ou d’entraînement, nous sommes en mesure de garantir l’équité sur tous les points du
domaine. En outre, nous proposons une technique de prétraitement qui repose sur l’utilisation
de l’équité comme biais inductif. Cette technique consiste à incorporer itérativement des
contre-exemples plus équitables dans le processus d’apprentissage à travers la fonction de
perte. Les techniques que nous avons développé ont été implémentées dans un outil appelé
FETA. Une évaluation empirique sur des données réelles indique que FETA est non seulement
capable de garantir l’équité au moment de la prédiction, mais aussi d’entraîner des modèles
précis plus équitables.
Mots clés : Équité, Réseaux de Neurones, Vérification

Abstract. Algorithmic decision-making driven by neural networks has become very
prominent in applications that directly affect people’s quality of life. This paper focuses
on the problem of ensuring individual fairness in neural network models during verification,
training, and prediction. A popular approach for enforcing fairness is to translate a fairness
notion into constraints over the parameters of the model. However, such a translation does
not always guarantee fair predictions of the trained neural network model. To address
this challenge, we develop a counterexample-guided post-processing technique to provably
enforce fairness constraints at prediction time. Contrary to prior work that enforces fairness
only on points around test or train data, we are able to enforce and guarantee fairness
on all points in the domain. Additionally, we propose a counterexample-guided loss as
an in-processing technique to use fairness as an inductive bias by iteratively incorporating
fairness counterexamples in the learning process. We have implemented these techniques in
a tool called FETA. Empirical evaluation on real-world datasets indicates that FETA is not
only able to guarantee fairness on-the-fly at prediction time but also is able to train accurate
models exhibiting a much higher degree of individual fairness.
Keywords: Fairness, Neural Networks, Verification

3.1. Introduction
Deep neural networks are increasingly used to make sensitive decisions, including financial

decisions such as loan approval [32], recidivism risk assessments [39], salary prediction [5],
etc. In these settings, for ethical, and legal reasons, it is of utmost importance that decisions

34



are fair. For example, all else being equal, one would expect two individuals of a different
gender to receive the same hiring decision. However, prior studies have shown that models
trained on data are prone to bias on the basis of sensitive attributes such as race, gender, age,
etc. [51, 12] It has been shown that even if sensitive features such as race and gender are
withheld from the model, the model can still be unfair as it is often possible to reconstruct
sensitive features that are encoded in data internally. Guaranteeing fairness not only helps
organizations to address laws against discrimination but also helps users to better trust and
understand the learned model [4].

Training neural network models such that fairness properties hold in their prediction is
not always straightforward or possible. Existing approaches to the problem, either identify
the absence of unfair predictions using verification [38, 77] or guarantee fairness only for
points during the training phase by constrained optimization techniques [14] or add fairness
regularizers to the loss function [42]. Other works which focus on test data points, provide
fair models by using robustness techniques [69, 82]. While these techniques are successful in
mitigating discrimination, they fail to provide global fairness guarantees for all points in the
input domain at the prediction time. Over the past years, multiple definitions of fairness
have been introduced. It is believed that none of these definitions dominates the others, and
each of them is suitable for different settings. Recent works on fairness consider group-based
notions of fairness [29, 84], e.g., demographic parity [20] or equalized odds [32], that indicate
that two populations of individuals should be treated equally on average. Despite their
prevalence, group fairness notions are generally hard to formally guarantee fairness for all
input points [44, 69]. Further, an algorithm that satisfies group fairness could be blatantly
unfair from the point of view of individual users [20]. In this paper, we focus on individual
fairness [20] which states that the distance between the outcome for two individuals should
be bounded according to the degree of their similarity.

Our approach. This paper develops techniques to detect, incorporate and guarantee
individual fairness constraints for all points in the input space to a standard ReLU neural
network without imposing further restrictions on the hypothesis space. These techniques
leverage recent work that employs automated theorem provers to formally verify the properties
of neural networks. We focus on the individual fairness notion introduced by [25]. This notion
says that a model is fair if, the decision of the model is the same for any two individuals
with various combinations of sensitive attributes when nonsensitive attributes are fixed. To
guarantee fairness, we present a counterexample-guided algorithm that detects and provably
guarantees fairness at prediction time, given an arbitrary ReLU neural network. For any given
model, our post-processing approach works by computing a majority decision for a group
of individuals who share nonsensitive attributes on-the-fly via verification counterexamples.
Furthermore, we propose a novel counterexample-guided algorithm to incorporate fairness
during training. We identify individual fairness counterexamples on the training data, inducing

35



additional supervision for training the network, and perform this process iteratively. We have
implemented our algorithms in a tool called “Fairness Enforced Verifying, Training, and
Predicting Algorithm” (FETA). Empirical evaluations on real-world benchmark datasets
demonstrate the effectiveness of our solutions to train fair and accurate models, while provably
guaranteeing fairness at the prediction time. Empirically, the two algorithms, when used in
conjunction, enable better generalization while guaranteeing fairness.

Main contributions. Our key contributions are: 1) A practical individual fairness
verification approach that detects discrimination through counterexamples given an arbitrary
ReLU neural network (see Section 3.3: CE-Fair Verification). 2) A counterexample-guided on-
line algorithm that provably guarantees individual fairness at prediction time (see Section 3.4:
CE-Fair Prediction). 3) A counterexample-guided re-training algorithm that incorporates
individual fairness during training (see Section 3.5: CE-Fair Training). 4) An end-to-end
available implementation of our methods in an open-source tool called FETA, together with
an extensive evaluation of real-world datasets (see Section 3.4.1 and Section 3.5.1).

3.2. Preliminaries
We begin by introducing some common notations. Let X be the input space consisting of

d features where X ≡ N × S and S denotes protected or sensitive features, and N denotes
remaining input features, and suppose that it is a compact finite subset X = [L, U ]d of
N ∈ Rk and S ∈ Nd−k. Let Y ∈ {0, 1} be the output space. We consider a supervised binary
classification task, where fθ : X → [0, 1] outputs a probability distribution over classes, θ

denotes the parameters and the classifier gθ : fθ(X ) → Y is defined as gθ := 1(fθ(x) ≥ ∆)
where ∆ is some classification threshold and it assigns an input to a category identified by
numeric code Y. Let D = {(x1, y1), . . . , (xM , yM)} be the training dataset containing M

samples with xm and ym respectively denoting the mth individual and the corresponding
output. The most commonly used Binary Cross Entropy (BCE) loss for this task is:

LBCE(fθ) = − 1
M

M∑
i=1

yi log(fθ(xi)) + (1− yi) log(1− fθ(xi)) (3.2.1)

where the goal is to find the best θ that minimizes LBCE across the data-generation
distribution rather than just over the finite D.

Our goal will be to verify, guarantee and train an individually fair model in some sensitive
input features. We refer to the Causal Discrimination definition, a notion of individual
fairness proposed by [25].
Definition 11. (Causal Discrimination) Assume a function gθ : fθ(X ) → Y, such that
X [1 . . . k] ∈ N and X [k + 1 . . . d] ∈ S. We define gθ to be individually fair in sensitive
features S iff for any two points x, x′ ∈ X where x[i] = x′[i], ∀i ∈ {1 . . . k}, we have that
gθ(x) = gθ(x′).

36



In Neural Networks (NN), various nonlinear activation functions have been introduced.
Among those, ReLU has been used widely and generalized well [27, 81, 18], particularly in
the context of verification [43, 37] and robustness. Hence, we will assume fθ is a ReLU neural
network. Formal properties of neural networks are often verified by encoding the semantics
of neural networks (fθ) as logical constraints. While several approaches to encoding neural
networks for verification have been studied [52, 11]; we use the encoding and optimization
approach similar to [57] that propose significantly faster techniques for our use-case than the
ones relying on Satisfiability Modulo Theories. This is crucial to our goal of guaranteeing
fairness at prediction time.
Definition 12. (MILP Encoding of Neural Networks) Let fθ be an n-layer fully-connected
ReLU neural network with a single output where θ = (W , B) and Wi and bi respectively
denoting weights and bias of ith layer. The width of each layer is represented by ti, the values
of neurons before applying ReLU are represented by vector zi, ∀i ∈ {0 . . . n} (z0 being the
input), and their values after ReLU by ẑi, ∀i ∈ {1 . . . n}, [75] proposes the following MILP
encoding, ∀i ∈ {1 . . . n}:

zi = Wiẑi−1 + bi (3.2.2a)
δi ∈ {0, 1}ti , ẑi ⩾ 0, ẑi ⩽ ui · δi,

ẑi ⩾ zi, ẑi ⩽ zi − li · (1− δi)
(3.2.2b)

Equation (3.2.2a) encodes the linear relationship, while Equation (3.2.2b) encodes the
ReLU activation function, i.e., ẑ = ReLU(z) = max(0, z). δi is a vector of binary variables
representing the state of each ReLU as non-active or active. This encoding relies on bounds
on the values of neurons, li, ui. These bounds are computed using a linear approximation of
the network proposed by [21], given the bounds on input l0 = L, u0 = U . Moreover, in this
work, we assume both continuous and discrete domains over the input variables, hence the
mixed-integer linear program (MILP).

Formal properties of functions are often characterized in terms of their counterexamples,
e.g., [74, 15, 73]. The techniques proposed in this paper will be centred around using
counterexamples to the fairness specification. Counterexample-guided algorithms rely on the
ability to find counterexamples, which require that both the counterexample specification
and the object of interest (fθ) to be encoded in a language amenable to automated reasoning.
Definition 12 provides such an encoding for fθ. In the next section, we show how to add
fairness constraints per Definition 11, to identify counterexamples.

3.3. CE-Fair Verification
In 2019, Apple launched a credit card application that was accused of gender bias [6].

The scandal went viral when a couple who shared all of their bank accounts, assets, and credit

37



cards, received different credit limits while only their gender was different in their applications.
Inspired by this real-world example, in this section, we propose an approach that focuses on
auditing and verifying a trained neural network model to detect such discriminatory outcomes.
We envision scenarios where the classifier is a proprietary model, belonging e.g. to a company
or a bank, and an external party wants to inspect the model to ensure that it is operating
fairly. We introduce Counterexample-guided fair (CE-Fair) verification that can identify
these fairness violations.
Definition 13. (CE-Fair Verification) Consider example x ∈ X , function fθ : X → [0, 1]
and sensitive features S and non-sensitive features N . Then a fairness counterexample for
example x, function fθ, and S is x′ such that (i) x[i] = x′[i], ∀i ∈ {1 . . . k} ∈ N , and (ii)
gθ(x) ̸= gθ(x′). We then define the CE-Fair verification function v for sensitive feature set
S that takes as input a function fθ : X → [0, 1] and x ∈ X as follows:

v(fθ, x) =

x′ where x′ is a fairness counterexample
∅ if no fairness counterexample exists

CE-Fair verification function v(fθ, x) can find counterexample x′ by solving the opti-
mization problem in which the two kinds of constraints defined in Definition 13 are added to
the MILP encoding from Equation 3.2.2. The feasible set of this optimization problem is
explored using an optimizer backend and if there exists a solution satisfying these constraints,
we will have a fairness counterexample. Formally, the following constraints will be added to
the MILP formulated in Equations 3.2.2a, 3.2.2b to encode fairness counterexamples:

z0[i] = x[i], ∀i ∈ {1 . . . k} (3.3.1a)

1(zn ≥ ∆) = 1− gθ(x) (3.3.1b)

where z0[i] is the variable associated with the i-th neuron in layer 0 (input layer). Concretely,
this fairness verification approach searches for a counterexample with the same nonsensi-
tive features as x and any assignments to sensitive features (z0,i where i ∈ {k + 1 . . . d}),
constraining the output of the model to be opposite to gθ(x). Here we only search for a
counterexample violating fairness as a constraint by adding the following as an objective to
the MILP:

|zn − fθ(x)| (3.3.2)

However, we can also search for the counterexample with maximum violation (see Defi-
nition 16). While CE-Fair verification is sufficient to audit and verify a trained model to
identify counterexamples as per Definition 11, in the case where there are counterexamples
–which is often the case– it is not clear how to guarantee fairness, or how to enforce it during
training. The next two sections present the counterexample-guided algorithms that address
these challenges.

38



3.4. CE-Fair Prediction
For ethical or legal reasons, a company may want to ensure that their model outcome is

the same for all individuals irrespective of their sensitive attributes. Further, they may want
to ensure fair predictions using techniques that do not require modifying and re-training the
model under study. Such requirements can be due to the utilization of outsourced models
without having any access to the original training data or having limited resources to re-train
the model. In this section, we leverage our counterexample-guided verification approach to
provably guarantee individual fairness at prediction time without any requirements to re-train
the model. We propose an online technique that leverages counterexamples to Definition 11
to construct fair predictions on-the-fly at prediction time.

A naive approach to guarantee fair predictions would be to return the same output for all
individuals, e.g., the most frequent label in the training set. While this satisfies individual
fairness, it leads to poor model performance (see Table 3.1 in Section 3.4.1). However,
this gives us intuition to return the majority decision for a group of individuals who share
nonsensitive attributes. We define CE-Fair prediction that produces individually fair output
for a given input x and fθ as:
Definition 14. (CE-Fair Prediction) For an example x ∈ X , function fθ : X → [0, 1], we
define a post-processing CE-Fair Prediction function h such that:

h (fθ(x)) = 1

 ∑
x′∈A(x)

gθ(x′)− 1(gθ(x′) = 0)
 ⩾ 0

 (3.4.1)

where:
A(x) := {X | X[1] = x[1], . . . , X[k] = x[k],

X[k + 1] = ak+1, . . . , X[d] = ad;

∀ak+1, . . . , ad ∈ [L′
k+1,...,d, U ′

k+1,...,d]d−k}

(3.4.2)

Basically, this is contrasting the 0 and 1 outputs of gθ in the space of sensitive features;
the counter increments when gθ(x′) is 1 and decrements otherwise.
Theorem 1. For any function fθ and for any input x ∈ X with S as sensitive features,
h(fθ(x)) is individually fair in S.

Proof. The proof is trivial: h outputs the same decision for all points within the group of
all assignments to the sensitive attributes given fixed nonsensitive attributes of x, thus, no
fairness counterexample exists. □

So far we have established a way to guarantee fair predictions for all input points based on
the majority decision captured in function h. To identify the majority decision, the simple
approach is to enumerate all possible assignments of sensitive attributes. Concretely, given a
test point x, we could traverse all possible assignments to the sensitive features, counting

39



the frequency of each label. The computational complexity of this approach grows with the
size of sensitive attributes and the domain size of each sensitive attribute. This approach,
however, is not practical and increases prediction time significantly (See Appendix). This
motivates the next approach in which we compute h and identify the majority decision by
leveraging our MILP framework to find counterexamples.
Definition 15. (CE-Fair Counting) All counterexamples of a test sample x (i.e., S) can be
determined in an iterative way by adding the following constraints to the verification problem
in Definition 13 and solve in iteration K + 1 as:

x′ = v(fθ, x) (3.4.3a)
d∑

i=1
(

∑
s∈S:x′k

s [i]=0

x′[i] +
∑

s∈S:x′k
s [i]=1

(1− x′[i])) ≥ 1 (3.4.3b)

k = 1, . . . , K (3.4.3c)

where S is a set of all counterexamples of x and x′ks is a counterexample of x which is
included in the set S from the previous iteration k. To satisfy Constraints 3.4.3c, the solution
must differ in at least one entry for each x′k . Once Problem 3.4.3 becomes infeasible, then all
counterexamples have been determined. Since there is a finite number of feasible assignments
(e.g., Equation 3.4.2), this iterative method will stop in a finite time.

The lazy constraints generation approach defined in Definition 15 can be implemented
more efficiently by using the optimization backend [31]. Hence, instead of iteratively finding
counterexamples, we explore the MILP search tree in pursuit of

⌈
|A(x)|

2

⌉
counterexamples

(rather than only one) where their labels are opposite to gθ(x). If that many solutions are
found, then the majority decision for the group of assignments specified by x is opposite to
gθ(x), otherwise, the prediction remains unchanged. The general scheme of CE-Fair Counting
approach is shown in Algorithm 1. The algorithm takes as an input fθ, as well as a sample x.
In line 3, the MILP encoding of fθ is obtained as per Equation 3.2.2 and constraints from
Equation 3.3.1 specifying a counterexample for x are obtained in the following line. In line 5,
the MILP search tree is explored to find counterexamples; if it finds less than

⌈
|A(x)|

2

⌉
, the

final prediction does not change, otherwise, it flips (lines 6-9).

3.4.1. Empirical Evaluation of CE-Fair Prediction

This section shows the effectiveness of CE-Fair prediction approach through empirical
evaluations on three widely known real-world benchmark datasets: German [36], IPUMS
Adult, and Law School [78].

3.4.1.1. Dataset details. Here we overview the datasets we leverage:
• German credit dataset [36]

This dataset consists of 1k samples with dimensionality 61 and sensitive features: age

40



Algorithm 1 Counterexample-guided Counting to Guarantee Fair Predictions
Input: fθ, x
Output: CE-Fair Prediction: h (fθ(x)) ∈ {0, 1}
ϕN ← ModelMIPEncoding(fθ) {Constraints in Equation 3.2.2}
ϕCE ← FairCEEncoding(ϕN , x, fθ(x)) {Constraints in Equation 3.3.1}
S ← FairCECounting(ϕN , ϕCE) {Constraints in Equation 3.4.3}
if |S|<

⌈
|A(x)|

2

⌉
then

return gθ(x)
else

return 1− gθ(x)
end if

∈ [19, 75], sex/marital status with 4 categories, and foreign worker with 2 categories.
The main task is binary classification of good or bad credit risks.
• IPUMS Adult dataset (aka, the new Adult) [16]

The initial Adult dataset [46] is used for binary classification of whether an individual’s
salary is above or below $50k. [16] discuss some limitations of this dataset and propose
a reconstruction of the Adult [46] dataset in which the actual income of the individuals
are available. Thus, one can re-define the binary classification task with some threshold
other than $50k. In our experiments, this threshold is set to $30k as the experiments
by [16] indicate the most severe unfairness to occur around the 30k threshold.
The dataset consists of 49k samples with dimensionality 103 and sensitive features:
age ∈ [17, 90], marital status with 7 categories, race with 5 categories, native country
with 41 categories, and sex with 2 categories. This is the largest sensitive feature
space among datasets used for our experiments.
• Law School dataset [78]

This dataset, consisting of 86k samples, gathers law school admission records and is
used for predicting if an individual would pass the bar exam. The input dimension is
37 and the sensitive features are: race with 3 categories and gender with 2 categories

3.4.1.2. Experimental Setup. Experiments are implemented in Python using Pytorch [60].
All experiments were run on a machine with 10 GiB RAM and a 2.1GHz Intel Xeon processor.
We use Gurobi-9.5.11 as our backend solver to generate counterexamples. We make all code,
datasets, and preprocessing pipelines publicly available. Below, we overview the experimental
setup.

• Data
The data is divided into 5 folds of 80/20 train/test sets. Moreover, 10% of the
train set is sliced for validation. Experiment results are gathered within 5-fold cross-
validation (CV). As for data types, we support categorical and numerical features.

1https://www.gurobi.com

41

https://www.gurobi.com


For the CE-Fair Prediction part, where we have counting over individuals sharing
sensitive attributes, numerical features are considered discrete. Numerical features of
nonsensitive attributes are considered real-valued.
• Model Architecture

The ReLU neural network model used across all experiments is a fixed architecture
of 3 hidden layers of width 16. This is a reasonably complex model for the tabular
datasets used in such scenarios.
• Pre-training

To pre-train the initial model (NNb), we run a grid search over learning rate (10−2,
10−3, 10−4) and batch size (64, 128). We train each configuration for 500 epochs and
select the model with the best loss on the validation set. This is the case with all
datasets except for Law School which is more tricky to train on; for that, we use a
learning rate of 0.01, a batch size of 256, train for 100 epochs, and take the last epoch
model to get the best initial pre-trained model for a fair comparison.

Q1: Does a deep neural network trained on data obey individual fairness? To
quantify the degree of unfairness in the initial model trained on data, we introduce, Coun-
terexample Rate (CE Rate), which computes how many test samples have counterexamples
as per Definition 13. As shown in Figure 3.1, the degree of fairness violation based on these
metrics is high for all our datasets, motivating the need for guaranteed fair predictions. The
percentage of data points that have counterexample can be as high as 89% for IPUMS
Adult dataset.

German IPUMS LS

40

60

80

C
E

R
at

e

Test

Fig. 3.1. Empirically, the best learned NN model is not fair. The figure presents the CE
Rate for German, IPUMS Adult (IPUMS), and Law School (LS).

Q2: What is the effect of guaranteed fair predictions on performance and overall
model fairness? In this experiment, we compare the accuracy of the best baseline model
(NNb) with CE-Fair predictions on test data. Further, to quantify the effect of fair predictions
on model fairness, we introduce flip rate which computes the number of samples in test
data where the prediction of the model was modified to satisfy individual fairness. Table 3.1
demonstrates that you can use CE-Fair predictions to guarantee fairness with accuracy

42



loss up to 8%. This can be explained as follows: since the flip rate of the best-trained
model (NNb) is high, it is expected that the drop in accuracy has a relation with the model
flip rate, as seen with German with the lowest flip rate and smallest decrease in accuracy.
Further, we compare our approach against a naive majority-based baseline which is a constant
predictor that returns the most frequent label. We observe that, on average, CE-Fair
predictions perform 8% better than the majority baseline. In Section 3.5, we propose a
counterexample-guided re-training approach to reduce the performance drop while improving
fairness metrics.

Table 3.1. The effect of guaranteed fair predictions on performance and model fairness –
5-fold CV results

Dataset NNb Majority Baseline CE-Fair Prediction
Accuracy Flip Rate Accuracy Flip Rate Accuracy Flip Rate

German 76.70± 2.78 8.90± 0.73 70.00± 1.78 0.0± 0.0 74.20± 3.50 0.0± 0.0
IPUMS Adult 81.57± 0.47 24.39± 1.52 54.61± 0.55 0.0± 0.0 73.23± 0.93 0.0± 0.0
Law School 82.72± 0.19 17.53± 0.59 72.98± 0.50 0.0± 0.0 74.36± 1.95 0.0± 0.0

Q3: How does CE-Fair prediction affect inference time? Figure 3.2 plots the ratio of
inference time of NNb and CE-Fair predictions for test data on all datasets. We observe
that the increase in inference time is proportional to the model flip rate (see Table 3.1). It
also highly depends on the dimension of the sensitive features as seen with IPUMS Adult.
This is expected since a larger flip rate means more samples are unfair and therefore more
calls to the verification engine. Of course, when violating fairness leads to ethical or legal
problems, the question is not whether we can afford fairness enforcement, but whether it is
correct to use machine learning at all. In this context, the computational price of enforcing
fairness, even if it ends up being significant, is entirely warranted.

German IPUMS LS
0

1

2

·105

In
fe

re
nc

e
T

im
e

R
at

io

Fig. 3.2. Ratio of Inference time increases when using CE-Fair predictions to guarantee
fairness.

43



3.5. CE-Fair Training
In this section, we propose an algorithm for learning fair neural networks with counterex-

amples. While in the previous section, we guaranteed fair predictions as a post-processing
approach, in this section, we propose an in-processing approach that drops the guaranteed
fairness requirement in exchange for a relatively fair model with efficient inference. Our
learning algorithm is orthogonal to the prediction technique of the previous section and both
approaches can be combined to acquire guaranteed fairness with boosted performance and
more efficient inference time (see evaluation results in Section 3.5.1).

To define our learning paradigm, we first define a specific variation of the verification
function defined in Definition 13 called vmax(fθ, x). The CE-Fair verification function can
produce a counterexample given an arbitrary sample. To make sure that the counterexamples
are representative and not out-of-distribution examples for training, we generate counterex-
amples relative to each training point. Moreover, to make sure that the counterexamples are
effective in reducing the degree of fairness violation, we instead appeal to Definition 16 to
generate counterexamples with maximal violation relative to each training point.
Definition 16. (Maximum Violation CE-Fair Verification) Given a data point x and
fθ : X → [0, 1], we find the maximum violation counterexample x′

max using vmax(fθ, x)
defined as:

arg max
x′

|fθ(x′)− fθ(x)| s.t. x′ = v(fθ, x) (3.5.1)

Suppose a sample data point x, is a young single Asian female applicant with a negative
decision on her loan application in the training set. Using vmax(fθ, x), we are able to find a
counterfactual applicant x′ with a different combination of sensitive attributes, e.g., an old
married American man with the same credit history who can potentially receive a positive
decision from the model with the highest level of violation compared to the sample data x.
Next, we show how we use such counterfactual examples, i.e., counterexamples, to train a
fair model.
Definition 17. (CE-Fair Training) The loss function for counterexample-guided training
can be written as:

LCE−F air(fθ) = LBCE(fθ)︸ ︷︷ ︸
Classification loss

+

M∑
i=1

yi log(fθ(vmax(fθ, xi)))) + (1− yi) log(1− fθ(vmax(fθ, xi))))︸ ︷︷ ︸
Fairness Counterexample-guided loss

(3.5.2)

44



where LBCE is the classification loss defined in Equation 3.2.1 and M denotes samples in
the training dataset. Note that vmax(fθ, xi) is obtained for each datapoint xi by solving a
MILP program with an objective that is defined in Equation 3.3.2 and all the constraints in
Equations 3.2.2 and 3.3.1.

Algorithm 2 summarizes the counterexample-guided training. Note that our CE-Fair
training incorporates data augmentation through counterexamples which can cause drift in
the model quality. Our approach guards against this by recomputing counterexamples for each
batch at every epoch (i.e., lines 7-9). This ensures that: i) an incorrect old counterexample
does not burden the learning, and ii) learning incorporates multiple counterexamples from
the training set at a time and so is less sensitive to any particular one. There are different
heuristics that one could adopt to use counterexamples and encourage the learned function
to become fairer. In Line 11, we allow the user to keep all the original samples in the batch
(aka, full batch) to preserve accuracy. Contrary to this, we can only keep the original samples
for which we have found a counterexample (aka, CE batch). The latter is effective in reducing
discrimination, specifically when the counterexample-guided training is initiated with an
optimal fθ. This introduces a tradeoff as to what portion of the original samples to keep. In
our empirical evaluation, we only evaluate based on full batch and CE batch for simplification.

Algorithm 2 Counterexample-guided Fairness Enforced Training
Input: fθ, D, ρ
Output: CE-Fair Fine-tuned model: fθ

for epoch ∈ {1 . . . e} do
for all batch ∈ shuffled(D) do

sampled_batch← RandomSample(batch, ρ)
for all (x, y) ∈ sampled_batch do

ϕN ← ModelMIPEncoding(fθ) {Constraints in Equation 3.2.2}
ϕCE ← FairCEEncoding(ϕN , x, fθ(x)) {Constraints in Equation 3.3.1}
x′

max ← FindMaxViolationCE(ϕN , ϕCE) {Objective as in Equation 3.5.1}
if x′

max exists then
Append(sampled_batch, (x′

max, y))
end if

end for
θ ← OptimizationStep(fθ, sampled_batch)

end for
end for

Practical Considerations. We highlight the fact that the search for counterexamples is
an expensive process and the run time grows with the size of the D, the number of epochs e,
and the dimensionality of sensitive features. To make our approach scalable, we introduce a
hyperparameter ρ that indicates what portion of the dataset we are taking. In Section 3.5.1,
we show that even a small value of ρ, as small as 1%, is effective to fine-tune the model to
become fairer in only a few epochs.

45



Multi-objective Model Selection. In fairness-enforced re-training, we are concerned
with accuracy and unfairness at the same time. We thus opt for choosing a Pareto frontier by
selecting the epoch whose accuracy and unfairness, when seen as a point in the 2D space, have
the minimum ℓ2 distance to the point corresponding to maximum accuracy and minimum
unfairness.

FETA Extension. Extending CE-Fair prediction and training to multi-class classifica-
tion (one-vs-rest approach) is straightforward. To extend these approaches to regression, e.g.,
to predict credit limit, we need to modify Equation 3.3.1b to encode fairness counterexamples
as |fθ(x) − fθ(x′)|> ϵ where ϵ is a hyperparameter that needs to be defined based on the
context. Also, we need to consider an appropriate loss function, e.g., ℓ2 loss for regression, to
include counterexamples in the training. Note that our neural network MILP encoding is not
limited to ReLU and can encode any piece-wise linear activation function.

3.5.1. Empirical Evaluation of CE-Fair Training

In this section, we evaluate the learning algorithm both on its own and in conjunction
with the prediction technique. We use the same datasets and hardware as in Section 3.4.1.

3.5.1.1. Experimental Setup. . Most of the experimental details are the same as the ones
in Section 3.4.1. Here, we only outline the details specific to CE-Fair Training. As discussed
earlier, for CE-Fair training, we have ρ = 100%, 1%, 2% for German, IPUMS Adult, and Law
School, respectively. However, for the final evaluation on the test set (i.e., all the results in
the paper), models have been evaluated on the full test set for all datasets.

We fine-tune the pre-trained NNb model through CE-Fair Training with the same
learning rate and batch size used for NNb. Each model is CE-Fair trained for 50 epochs
with mentioned ρ. Finally, we take the Nadir point of perfect accuracy and perfect CE rate
and take the model from the epoch with minimum ℓ2 distance to this Nadir point w.r.t. its
train metrics.

It is worth mentioning that for CE-Fair Training, the numerical sensitive attributes
(like "age") are considered continuous to support a larger space of counterexamples for better
regularization.

Q4: Does our CE-Fair training algorithm make the original unfair model
fairer? In this experiment, we re-train NNb model with ρ = 100%, 1%, 2% for German,
IPUMS Adult, and Law School, respectively. We train for 50 epochs and select the best model
based on the Pareto frontier discussed in Section 3.5. Figure 3.6 summarizes the learning
curves. We observe that while loss oscillates due to the fairness-performance tradeoff, the
average of maximum violation substantially decreases. The results presented here are chosen
among the full batch and CE batch options. CE batch decreases average violation

46



almost to its minimum only in the first few epochs. This is because it is focusing only on the
counterexamples while full batch experiences a more smooth curve.

Table 3.2. The effect of CE-Fair re-training on fairness metrics – 5-fold CV results

Dataset Approach Accuracy Flip Rate CE Rate
German NNb 76.70± 2.78 8.90± 0.73 29.80± 2.15

CE-Fair Training 75.70± 3.77 3.40± 0.73 17.70± 4.67
IPUMS Adult NNb 81.57± 0.47 24.39± 1.52 89.40± 1.80

CE-Fair Training 80.03± 0.57 2.80± 0.67 15.34± 2.53
Law School NNb 82.72± 0.19 17.53± 0.59 41.18± 2.05

CE-Fair Training 84.99± 0.28 5.06± 0.97 7.64± 0.89

To quantify if the function is fairer, we compare two fairness metrics Flip Rate and CE
Rate defined in Section 3.4.1. As shown in Table 3.2, counterexample-guided retraining leads
to better fairness metrics on all datasets by reducing the number of fairness violations. In
fact, in the IPUMS Adult dataset, we see the highest decrease of 74% w.r.t. CE Rate. These
results indicate the usefulness of CE-Fair learning to make the original unfair model fairer.
Further, the drop in accuracy when enforcing fairness is negligible when compared to the
original model; In fact, we observe an increase in accuracy for Law School. While CE-Fair
training significantly reduces fairness violations, it does not guarantee fair predictions for
all points in the input domain. This motivates the need for using CE-Fair predictions in
conjunction with the counterexample-guided learning algorithm, to guarantee fair predictions.

Table 3.3. Comparison of applying CE-Fair Prediction on NNb vs. on the CE-Fair
re-trained model – 5-fold CV results

Dataset Approach Accuracy Inference Time (s)
German CE-Fair Prediction 74.20± 3.50 0.45± 0.06

CE-Fair Training+ CE-Fair Prediction 75.30± 3.65 0.39± 0.03
IPUMS Adult CE-Fair Prediction 73.23± 0.93 119.64± 33.45

CE-Fair Training+ CE-Fair Prediction 79.46± 0.71 10.20± 2.90
Law School CE-Fair Prediction 74.36± 1.95 0.39± 0.14

CE-Fair Training+ CE-Fair Prediction 84.14± 0.97 0.30± 0.13

Q5: Does counterexample-guided learning improve the quality of the guar-
anteed prediction model? As shown in Table 3.3, by additionally enforcing fairness
constraints through counterexample-guided re-training, we improve both accuracy and infer-
ence time of CE-Fair predictions. Running CE-Fair predictions on the re-trained model
improves inference runtime significantly on IPUMS Adult which has the largest sensitive
feature space. The maximum drop in accuracy compared to NNb is only 1.5%. Whereas,
running CE-Fair predictions directly on NNb leads to a maximum accuracy loss of 8.3%.

47



Thus, with CE-Fair training, we get both a fairness guarantee and better runtime and model
performance.

Q6: How does FETA perform compared to fairness under unaware model?
We train a model that is unaware of the sensitive features. Such a model would satisfy

fairness definition 11 as its decision is not prone to changes in the sensitive attributes. We
call this model the blind model.

Table 3.4. Accuracy of different fair models compared – 5-fold CV

Dataset Blind Model CE-Fair Training + Prediction
German 70.30± 2.20 75.30± 3.65
IPUMS Adult 78.90± 0.15 79.46± 0.71
Law School 74.19± 1.20 84.14± 0.97

In Table 3.4, we compare the blind model with the CE-Fair Training + Prediction
models. We train the blind model for the same amount of epochs and the same ρ (ratio) as
CE-Fair Training for a fair comparison. Note that the blind model is fair by design but
similar to CE-Fair Training, it requires re-training the model. We observe that CE-Fair
Training + Prediction, aka, the FETA pipeline, gives consistently better accuracy, up to 10%
better compared to the blind model, while providing similar fairness guarantees.

Q7: How does FETA compare against existing work?
The literature on fairness in machine learning contains several well-established notions,

particularly group fairness notions like demographic parity, equalized odds, and equal oppor-
tunity [32]. However, as previously demonstrated [9], it is not straightforward to achieve
both group fairness and individual fairness in a single model. To compare our framework
with group fairness mitigation techniques, an extension to group fairness notions would be
required, but that falls outside the scope of our current work. Table 3.5 reports the accuracy
and CE Rate of FETA compared to a recent method called LCIFR [69] that mitigates
individual fairness using the same fairness definition as ours (i.e., Definition 11). To the best
of our knowledge, LCIFR is the closest related work to ours that includes the same fairness
notion. In LCIFR [69], the authors propose a fair representation learning approach and
adversarial classification to address individual fairness. We fine-tune both methods on all
datasets and extend LCIFR to accept multiple sensitive attributes similar to our setting. To
gather the results of this section, we extend the sensitive features of LCIFR and use our own
train/test split, we also report the empirical results using the original implementation in the
Appendix.We set γ = 1.0 (their loss balancing factor) for the sake of fair comparison. The
results in Table 3.5 indicate that the accuracy of FETA outperforms LCIFR on German and
Law School, and only for IPUMS Adult, LCIFR trains a more accurate model. This finding
is noteworthy because LCIFR combines both pre-processing and in-processing techniques

48



to enhance performance while our approach focuses on in-processing and post-processing
techniques. It is worth saying that our approach guarantees to have no CE rate for all three
datasets while LCIFR cannot provide any guarantees, i.e., LCIFR results are empirical and
even if they exhibit close to zero unfairness on the test set, it does not imply guaranteed
fairness over all the data points in the input space. Also, we use a combination of categorical
and continious sensitive features while for LCIFR we only use the categorical ones due to
their design. Note that using continuous sensitive features results in a larger counterexample
space.

Table 3.5. Comparison of FETA and LCIFR

Dataset Approach Accuracy (%) CE Rate (%)
German NNb 76.70± 2.78 29.80± 2.15

LCIFR [69] 72.30± 1.43 0.20± 0.24
FETA(CE-Fair Train. + Pred.) 75.30± 3.65 0.0± 0.0

IPUMS Adult NNb 81.57± 0.47 89.40± 1.80
LCIFR [69] 81.52± 0.34 0.05± 0.04
FETA(CE-Fair Train. + Pred.) 79.46± 0.71 0.0± 0.0

Law School NNb 82.72± 0.19 41.18± 2.05
LCIFR [69] 74.13± 0.76 0.008± 0.007
FETA(CE-Fair Train. + Pred.) 84.14± 0.97 0.0± 0.0

3.6. Extensions to FETA
We would like to highlight the fact that any extensions to FETA that are expressible as

MILP constraints are straightforward. The goal of this work is to present a working pipeline
of FETA that results in a provable post-processed model with high utility and guaranteed
fairness. Within this framework, one can take the liberty to leverage the flexibility of MILP
for straightforward extensions to FETA in different directions, as highlighted by the examples
below.

• Model architecture. While our study focuses on ReLU NNs, it is feasible to
extend our approach to other piece-wise linear activation functions such as Leaky
ReLU and the PReLU (Parametric ReLU). Moreover, there are several non-linear
activation functions that are not piece-wise linear, but they can be approximated
using piece-wise linear functions. To give an example, the sigmoid function is a
smooth, S-shaped curve that can be approximated using piece-wise linear functions [7].
Similarly, the hyperbolic tangent (tanh) function, which is another commonly used
activation function in neural networks, can be approximated using piece-wise linear
functions [70]. Finally, the softmax function which is often used as the activation
function in the output layer of neural networks for multi-class classification tasks,

49



can be approximated using quantiles. In this method, the output range of the
Softmax function is divided into several intervals or quantiles. Each interval is then
approximated by a linear function that passes through two points: the lower and upper
bound of the interval. Although approximating non-linear activation functions with
piece-wise linear functions can simplify the computations involved in neural network
training and inference, such approximations would result in losing the post-processing
guarantees presented in this work. Finally, extension to more diverse architectures that
are suitable for non-tabular data, including max pooling or batch normalization layers,
is also theoretically straightforward, however, it would incur extra computational
costs.
• Fairness notion and similarity measure. One will face many options to define

similarity for individual fairness. Examples include an ℓ1 distance with a threshold ϵ

or even a separate NN trained to output a similarity; both may be encoded as MILP
constraints.
In this paper, we evaluate FETA using the casual discrimination notion of individual
fairness as defined in [25] (see Definition 11). However, extending FETA to leverage
other notions of individual fairness is feasible. A simple extension to our fairness
notion is ϵ-individual fairness which indicates that for any two individuals x and x′

whose feature vectors differ by at most ϵ, their model outputs should be the same.
This can be encoded as a piece-wise linear constraint using the ℓ1 distance with a
threshold ϵ, which can be encoded easily as MILP constraints.
Another plausible extension is to consider fairness notions that are capable of capturing
relations among features. A notable example is counterfactual fairness [48] which is a
causal fairness measure. This notion requires that the model’s predictions should not
depend on an individual’s protected attributes (e.g., race or gender) except through
the attributes that are causally related to the outcome. Counterfactuals are often
defined within Pearl’s Structural Causal Model (SCM) framework [62] to capture
relations among features. This framework defines a causal model by a set of so called
structural equations. If one defines the structural equations in a piece-wise linear format
(see [49]), counterfactual fairness metric can be easily encoded in FETA. However, it
is important to acknowledge that constructing an SCM for counterfactual fairness
requires carefully identification of relevant variables and their causal relationships,
precise specification of functional relationships, and simulation of various scenarios to
evaluate fairness. This is a complex undertaking that demands specialized expertise.
Finally, another approach is to train a separate neural network on a population data to
output a similarity score between two individuals given the features in the input space
of the model. The output of the neural network can then be discretized into several

50



intervals, and a separate linear function can be used to approximate the similarity
within each interval, which can then encoded as MILP constraints.
• Expert constraints. Another way to expand FETA is by incorporating constraints

that capture domain knowledge. For example, constraints can be defined on how
features are permitted to change when searching for a counterexample. As an example,
in FETA we make sure that a categorical feature H with k values remains as 1-hot
encoding by imposing constraints such as ∑k

i=1 hi = 1. Or in the credit card scenario,
a constraint can be added to ensure that credit history is always less than age.

3.7. Related Work
Our paper is a contribution to the extensive literature on fairness in machine learning.

In this section, we will contextualize our work and compare it to existing techniques for
mitigating and verifying fairness in machine learning.

Bias Mitigation Algorithms. Methods that seek to introduce fairness into machine
learning systems broadly fall into one of three categories: pre-processing, in-processing, and
post-processing. The pre-processing approaches try to transform training data [13, 41] to
mitigate bias. E.g., the most related work to ours is a fair representation learning technique
by [69, 50] that uses the same fairness notion as we used in our paper (see Definition 11) to
learn a fair representation of the individuals and train a certified machine learning model that
accepts the fair representation as input. In-processing techniques mitigate discrimination via
model regularization by directly modifying the learning algorithm to meet the fairness criteria.
The regularization implicitly or explicitly optimizes a fairness metric. Several in-processing
techniques have been proposed for group-fairness metrics [33, 44, 56]. Further, in-processing
techniques for individual fairness fall into two categories based on whether they enforce fairness
with or without access to individual fairness metrics. The first category of work circumvents
the need for a fair metric by assuming the learner has access to an oracle that provides
feedback on violations of individual fairness [26, 40]. The second category of work enforces
fairness by assuming access to a fairness metric and using adversarial learning techniques to
enforce fairness [82, 83]. Post-processing techniques modify the model’s prediction during
the inference time to make sure that the prediction distribution approaches a specific fairness
metric [32, 64, 53, 63, 2].

In this paper, we propose both in-processing and post-processing techniques for individual
fairness. Unlike prior work, our proposed in-processing technique does not depend on oracles
for feedback on violations [26, 40] and the fair training algorithm uses counterexamples
rather than adversarial training [82, 83] to enforce fairness. Further, adversarial training
is approximate adversary examples, whereas we find exact counterexamples. While we are
similar to [45, 8] in terms of in-processing, we propose a post-processing approach that,

51



unlike others, guarantees individual fairness. Moreover, our in-processing technique is only a
help to improve the quality of the ultimate post-processed model with guarantees. While
most of the existing work on post-processing focus on group fairness or other definitions of
individual fairness [32, 64, 53, 63, 2], we propose guaranteed predictions via post-processing
using the individual fairness definition from [25]. Although Post-processing by [53] employs
the same definition of individual fairness as our method, it only supports a single binary
sensitive attribute. Moreover, their method works by training a new model on the predictions
of the original model, with the goal of transforming the predictions to be more fair. The new
model is trained to optimize a fairness objective, such as minimizing the distance between
the predicted outcomes of similar individuals with different sensitive attributes. In contrast,
our approach can handle multiple binary/continuous sensitive attributes and do not rely on a
trained model to generalize at the prediction time and provide formal provable guarantees of
fair predictions for all points in the domain. This makes our approach more versatile and
robust, with the ability to accommodate a wider range of real-world scenarios while ensuring
fairness.

Verifying machine learning systems and Adversarial Learning. Prior work on
machine learning verification can be classified into (i) verification using satisfiability modulo
theory (SMT) or mixed-integer linear programming (MILP) [43, 76], and (ii) verification
using convex relaxations [71, 19]. Our proposed approach uses the MILP encoding from prior
work [57] to build a practical individual fairness verification approach. Further, prior works
on fairness verification have been proposed in the context of probabilistic programs [3, 4] or
linear kernels [38]. Recent works propose adversarially robust algorithms which can be divided
into empirical [47, 54] and certified defenses [79, 72, 66, 34]. Specifically [80, 58, 83]
propose adversarial training-based algorithms for fairness. We are closely related to these
works, in that we carry out adversarial training using counterexamples. However, we differ in
two ways. First, to the best of our knowledge, there is no related work in the adversarial
robustness literature for ensuring individual fairness using the definition from [25]. Second,
related work in adversarial training only ensures correctness in the neighborhood of a training
point, while we globally search for a counterexample and are able to discover long-range
fairness violations.

3.8. Conclusion & Future Directions
In this work, we propose 1) a counterexample-guided fairness verification framework, 2) a

counterexample-guided approach to guarantee fairness as a post-processing approach without
intervening in the model, 3) a counterexample-guided approach to adapt an already trained
model toward being fair, which cannot guarantee fairness on its own but can be combined
with the former approach to provide better accuracy and faster inference, 4) An open-source

52



tool called FETA that facilitates the integration of multiple techniques for optimal results.
We showed using real-world datasets that in practice we can have efficient and fair models
with little damage to accuracy. While the results of our approaches are promising, we note
that the causal discrimination fairness notion adopted in this work is limited; it is important
to recognize that features may be interrelated in certain domains and that our concept of
fairness has limitations. However, we must also stress the complexity of achieving individual
fairness in both the training and post-processing stages. It should be noted that ensuring
individual fairness means ensuring that the model does not discriminate between any two
similar pairs of individuals in the outcome space. This is distinct from placing constraints
on the parameters of the trained model during the training process. An interesting future
work would be to extend FETA with other fairness notions that are capable of capturing
the relations among features. A notable example is counterfactual fairness [48] which is a
causal fairness measure based on SCM (structural causal model). Another future avenue
to explore is to bind the counterexamples to follow the distribution of the data. One can
extend our framework by adding distribution constraints to our MILP formulation to restrict
counterexamples to be Out-of-Distribution. Another limitation of FETAleft for future work
which is typical of approaches where such guarantees are provided, is scalability. Every
year, state-of-the-art neural networks grow in size with a large number of parameters which
poses incredible challenges for constraint-based verification approaches. Although the neural
network model used in our experiments is fairly complex for tabular data, this approach might
not scale to very deep networks. Indeed, it would be an interesting direction to address and
explore the limits of scaling the model architecture. For example, future work could study how
to modify the neural network learning algorithms to enable scalable constraint-based analysis.
Finally, solvers tend to use floating-point approximations leading to numeric instabilities.
Problem-specific solutions to make the approach more numerically stable could be a potential
future work as well.

3.9. Societal Impact
In this paper, we propose three approaches to enhance the fairness of neural network

models by fairness verification, fair training, and fair prediction. The impact of using these
approaches to have fair neural network models on society is considerable as they prevent
these models from incurring unfair biases or discrimination against individuals. Having access
to fair models can enhance the accessibility of resources, opportunities, and services for
historically marginalized people, such as people of color, women, people with disabilities, and
low-income individuals.

53



In addition, individually fair neural network models can enhance trust and transparency
in decision-making systems, particularly in critical areas such as criminal justice, hiring, and
lending, where biased or unfair decisions can severely impact individuals.

Moreover, fair neural network models can help promote diversity and inclusion. By
recognizing the importance of fairness and diversity in their models, companies can attract a
more diverse group of users and employees, which can lead to better products and services
for everyone.

However, while fair neural network models have the potential to promote fairness and
reduce discrimination, it is important to carefully consider their potential drawbacks and
limitations. In this paper, we focus on a specific fairness notion to verify, train and guarantee
fair prediction of neural network models. However, we acknowledge that there is a huge
literature on various notions of fairness, and individual fairness is context-dependent and
should be defined relative to a task. Hence, our framework cannot and should not be used in
every application domain.

Furthermore, there is a risk that fair neural network models could be misused or misinter-
preted. One potential disadvantage of fair neural network models is that they may not always
be able to achieve perfect fairness. It is worth mentioning that many aspects of fairness are
not captured by mathematical measures. Our framework is highly dependent on a fairness
notion, and the result change by changing the notion of fairness. Although individual fairness
can be defined in different ways in FETA as explained in Section 3.6, it is necessary to choose
only one definition for deployment; various individual fairness metrics may conflict with each
other, making it difficult to optimize for all of them simultaneously.

Finally, although our approach can produce fair predictions, it is still based on a model
produced by a machine learning algorithm. And it is important to note that FETA could
suffer from the same disadvantages as the original model in aspects that we did not consider
in this work, such as privacy, explanation, safety, security, and robustness. Hence, the user
must be aware of such a system’s limitations, especially when using these models to replace
people in decision-making.

54



Fig. 3.3. German (full batch).

Fig. 3.4. IPUMS Adult (CE batch).

Fig. 3.5. Law School (CE batch).

Fig. 3.6. Loss and average violation curves for fairness-enforced training on different datasets.
Each curve is the mean over 5 runs and the shaded area represents the std.

55



3.10. Additional Experiments
3.10.1. Comparison to the original LCIFR [69]

Here we report the results that are imported from the LCIFR [69] paper with their
original implementation. Our overlapping datasets are German and Law School so here we
only report those two.

Table 3.6 demonstrates these results. The results of LCIFR were obtained from their
corresponding paper. We can see that at the same level of accuracy, we can guarantee fairness
while LCIFR can only empirically demonstrate fairness. For the Law School dataset, the
empirical unfairness for LCIFR is significantly large. Note in this experiment, we use more
sensitive features for the German dataset which results in a more complex counterexample
space.

Table 3.6. Comparison of FETA and LCIFR (original implementation)

Dataset Approach Accuracy (%) CE Rate (%)
German NNb 76.70± 2.78 29.80± 2.15

LCIFR [69] 75.53 0.0
FETA(CE-Fair Train. + Pred.) 75.30± 3.65 0.0± 0.0

Law School NNb 82.72± 0.19 41.18± 2.05
LCIFR [69] 84.4 48.9
FETA(CE-Fair Train. + Pred.) 84.14± 0.97 0.0± 0.0

3.10.2. Counterexample-guided Counting vs. Naive Enumeration

We compare the performance of Counterexample-guided Counting for fair prediction
(CE-Fair) to a naive enumeration method using the IPUMS Adult dataset, which has the
most extensive range of sensitive features.

Table 3.7. Comparison of CE-guided Counting and Naive Enumeration in runtime

Dataset Approach Average (s) Total (s)
IPUMS Adult Enumeration 71.50 655, 655

CE-guided Counting 9.15 83, 905

56



Chapter 4

Conclusion and Future Work

This work has targeted the problem of fairness in machine learning. There have been numerous
examples that deploying machine learning models has gone wrong and people have been
discriminated against due to biases that emerged or were amplified in the model. The
community has come up with group-based or individual-based notions of fairness to remove
or mitigate the bias in machine learning models. In this work, we focused on individual
fairness that requires similar individuals to be treated similarly. The similarity, however, is
a very general term and needs to be defined. We have adopted the causal discrimination
notion from [25] that defines two individuals to be similar iff they differ only in sensitive
attributes. We proposed a fairness verification algorithm along with in-processing and post-
processing mitigation techniques. Specifically, we proposed 1) a MILP-based verification
framework that searches for individual fairness counterexamples, 2) a counterexample-guided
post-processing algorithm that tweaks the model decisions by computing a majority vote to
satisfy and guarantee individual fairness, 3) a counterexample-guided in-processing approach
that incorporates individual fairness counterexamples to fine-tune an already trained model
toward being fairer; although it cannot guarantee fairness on its own, it can be combined
with the post-processing approach to satisfy the individual fairness notion provably, 4) A
tool called FETA that has all the algorithms implemented. We have shown the effectiveness
of our approach through extensive experiments on three real-world datasets; FETA can
improve and/or guarantee individual fairness with little to no damage to accuracy and model
performance. We have studied FETA in the context of the related work and have compared it
against the closest related work, LCIFR [69]. We have shown that FETA either outperforms
related work or proposes guarantees lacking from related work. While having shown very
promising results, we acknowledge the limitations of FETA and address them in this chapter
in order of priority.

The individual fairness notion used in FETA has its own limitation; its implicit assumption
of the independence of features might not be realistic. In real-world scenarios, features are



usually correlated and there is an inherent causal mechanism underlying the data. The causal
discrimination notion, unlike its name, neglects this important aspect. As an extension to
FETA which is currently under active development, we are studying more sophisticated
individual fairness notions that do take into account the causal structure underlying the data.
We are leveraging Pearl’s Structural Causal Model (SCM) framework [61] to define a new
causal similarity measure based on counterfactual balls. We are building on top of prior work
[17, 22] from the algorithmic recourse literature that proposes similarity balls around data
points, that, unlike canonical similarity balls like the common ℓ2 ball in robustness literature,
does not have the implicit independence assumption; rather, it uses a novel form of causal
perturbation that considers the causal structure of the data into account while forming a
similarity ball around a sample.

More specifically, hard interventions are replaced by soft interventions in the Additive
Noise Model (ANM) that allow for interventions in an additive form while maintaining
causal relationships. Intuitively, in soft interventions, a vector may be added to a subset
of variables without breaking causal connections, to study the downstream causal effect
of that perturbation vector. Ultimately, this would result in the translation of, e.g., an ℓ2

perturbation ball into a counterfactual perturbation ball. The main challenge, however, would
be to handle the perturbation of the discrete variables in the SCM. For that purpose, we either
use hard interventions for discrete variables and soft interventions for continuous variables
or try to define the perturbation ball in the latent space, i.e., over exogenous variables of
the SCM in the additive noise model. Once the theoretical properties of this similarity ball
are established, we would have an individual fairness notion defined on top of this similarity
measure and FETA can be used to enforce it.

Another potential future direction for FETA would be to address the scalability issue.
FETA is providing provable guarantees for individual fairness in ReLU neural networks and
that comes at a price. While the scale of NNs we have experimented with is more than
sufficient for tabular datasets, FETA might suffer from runtime issues if applied to very deep
networks. The scalability of neural network verifiers is an active line of research in the NN
verification community. That being said, problem-specific remedies can be applied to boost
performance. For example, since the underlying optimization engine uses Branch-and-Bound
techniques, we can develop tighter bounds on the variables of the optimization problem to
further limit the search space.

It is worth mentioning that there are numerous directions in which extensions to FETA are
straightforward. For example, as for model architecture, neural networks that incorporate any
arbitrary pice-wise linear activation functions can be encoded (e.g., max-pooling). Moreover,
different expert constraints can be encoded in the form of MILP constraints; for instance,
one can encode constraints limiting the range of change of age or salary for more realistic
counterexamples.

58



Last but not least, we would like to acknowledge the complexity of the choice of a fairness
notion in general. While FETA provides a practical tool that can ultimately mitigate bias
in ML-powered decision-making scenarios, it is of utmost importance to be aware of the
challenges of choosing the right fairness notion. FETA promises bias mitigation only with
respect to the fairness notion studied in this work. There is a huge literature on various
notions of fairness, and individual fairness is very context-dependent and should be defined
relative to the task at hand. That being said, any individual fairness notion that can be
encoded as MILP constraints would be supported by FETA and that also can be considered
a potential future direction.

59





References

[1] Abien Fred Agarap. Deep learning using rectified linear units (relu). arXiv preprint arXiv:1803.08375,
2018.

[2] Aniya Agarwal, Pranay Lohia, Seema Nagar, Kuntal Dey, and Diptikalyan Saha. Automated test
generation to detect individual discrimination in ai models. arXiv preprint arXiv:1809.03260, 2018.

[3] Aws Albarghouthi, Loris D’Antoni, Samuel Drews, and Aditya V Nori. Fairsquare: probabilistic veri-
fication of program fairness. Proceedings of the ACM on Programming Languages, 1(OOPSLA):1–30,
2017.

[4] Osbert Bastani, Xin Zhang, and Armando Solar-Lezama. Probabilistic verification of fairness properties
via concentration. Proceedings of the ACM on Programming Languages, 3(OOPSLA):1–27, 2019.

[5] BBC. Gender pay gap: Men still earn more than women at most firms, 2018.
[6] BBC. Apple’s ’sexist’ credit card investigated by US regulator, 2019.
[7] Valeriu Beiu, Jan A Peperstraete, Joos Vandewalle, and Rudy Lauwereins. Vlsi complexity reduction by

piece-wise approximation of the sigmoid function. In ESANN. Citeseer, 1994.
[8] Elias Benussi, Andrea Patane’, Matthew Wicker, Luca Laurenti, and Marta Kwiatkowska. Individual

fairness guarantees for neural networks. In Lud De Raedt, editor, Proceedings of the Thirty-First
International Joint Conference on Artificial Intelligence, IJCAI-22, pages 651–658, 7 2022. Main Track.

[9] Reuben Binns. On the apparent conflict between individual and group fairness. In Proceedings of the
2020 conference on fairness, accountability, and transparency, pages 514–524, 2020.

[10] Sumon Biswas and Hridesh Rajan. Fairify: Fairness verification of neural networks, 2022.
[11] Rudy Bunel, Ilker Turkaslan, Philip H.S. Torr, Pushmeet Kohli, and M. Pawan Kumar. A unified view

of piecewise linear neural network verification. In Proceedings of the 32nd International Conference on
Neural Information Processing Systems, NIPS’18, page 4795–4804, Red Hook, NY, USA, 2018. Curran
Associates Inc.

[12] Joy Buolamwini and Timnit Gebru. Gender shades: Intersectional accuracy disparities in commercial
gender classification. In Sorelle A. Friedler and Christo Wilson, editors, Proceedings of the 1st Conference
on Fairness, Accountability and Transparency, volume 81 of Proceedings of Machine Learning Research,
pages 77–91. PMLR, 23–24 Feb 2018.

[13] Flavio Calmon, Dennis Wei, Bhanukiran Vinzamuri, Karthikeyan Natesan Ramamurthy, and Kush R
Varshney. Optimized pre-processing for discrimination prevention. Advances in neural information
processing systems, 30, 2017.

[14] YooJung Choi, Golnoosh Farnadi, Behrouz Babaki, and Guy Van den Broeck. Learning fair naive bayes
classifiers by discovering and eliminating discrimination patterns. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 34, pages 10077–10084, 2020.



[15] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith. Counterexample-guided
abstraction refinement. In International Conference on Computer Aided Verification, pages 154–169.
Springer, 2000.

[16] Frances Ding, Moritz Hardt, John Miller, and Ludwig Schmidt. Retiring adult: New datasets for fair
machine learning. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan,
editors, Advances in Neural Information Processing Systems, volume 34, pages 6478–6490. Curran
Associates, Inc., 2021.

[17] Ricardo Dominguez-Olmedo, Amir H Karimi, and Bernhard Schölkopf. On the adversarial robustness of
causal algorithmic recourse. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang
Niu, and Sivan Sabato, editors, Proceedings of the 39th International Conference on Machine Learning,
volume 162 of Proceedings of Machine Learning Research, pages 5324–5342. PMLR, 17–23 Jul 2022.

[18] Marcelo Carvalho dos Santos, Victor Henrique Cabral Pinheiro, Filipe Santana Moreira do Desterro,
Renato Koga de Avellar, Roberto Schirru, Andressa dos Santos Nicolau, and Alan Miranda Monteiro
de Lima. Deep rectifier neural network applied to the accident identification problem in a pwr nuclear
power plant. Annals of Nuclear Energy, 133:400–408, 2019.

[19] Krishnamurthy Dvijotham, Robert Stanforth, Sven Gowal, Timothy A Mann, and Pushmeet Kohli. A
dual approach to scalable verification of deep networks. In UAI, volume 1, page 3, 2018.

[20] Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard Zemel. Fairness through
awareness. In Proceedings of the 3rd innovations in theoretical computer science conference, pages 214–226,
2012.

[21] Rüdiger Ehlers. Formal verification of piece-wise linear feed-forward neural networks. CoRR,
abs/1705.01320, 2017.

[22] Ahmad-Reza Ehyaei, Amir-Hossein Karimi, Bernhard Schölkopf, and Setareh Maghsudi. Robustness
implies fairness in causal algorithmic recourse, 2023.

[23] Michael Feldman, Sorelle Friedler, John Moeller, Carlos Scheidegger, and Suresh Venkatasubramanian.
Certifying and removing disparate impact, 2015.

[24] Ian Foster, Rayid Ghani, Ron S. Jarmin, Frauke Kreuter, and Julia Lane. Data Science Methods and
Tools for Research and Practice. https://textbook.coleridgeinitiative.org/.

[25] Sainyam Galhotra, Yuriy Brun, and Alexandra Meliou. Fairness testing: testing software for discrimi-
nation. In Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering, pages
498–510, 2017.

[26] Stephen Gillen, Christopher Jung, Michael Kearns, and Aaron Roth. Online learning with an unknown
fairness metric. Advances in neural information processing systems, 31, 2018.

[27] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural networks. In Proceedings
of the fourteenth international conference on artificial intelligence and statistics, pages 315–323, 2011.

[28] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016. http://www.
deeplearningbook.org.

[29] Vincent Grari, Boris Ruf, Sylvain Lamprier, and Marcin Detyniecki. Achieving fairness with decision
trees: An adversarial approach. Data Sci. Eng., 5(2):99–110, 2020.

[30] A. Griewank and A. Walther. Evaluating Derivatives: Principles and Techniques of Algorithmic Dif-
ferentiation, Second Edition. Other Titles in Applied Mathematics. Society for Industrial and Applied
Mathematics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104), 2008.

[31] LLC Gurobi Optimization. Gurobi optimizer reference manual, 2020.

62

https://textbook.coleridgeinitiative.org/
http://www.deeplearningbook.org
http://www.deeplearningbook.org


[32] Moritz Hardt, Eric Price, and Nati Srebro. Equality of opportunity in supervised learning. Advances in
neural information processing systems, 29:3315–3323, 2016.

[33] Ursula Hébert-Johnson, Michael Kim, Omer Reingold, and Guy Rothblum. Multicalibration: Calibration
for the (computationally-identifiable) masses. In International Conference on Machine Learning, pages
1939–1948. PMLR, 2018.

[34] Matthias Hein and Maksym Andriushchenko. Formal guarantees on the robustness of a classifier against
adversarial manipulation. In Advances in Neural Information Processing Systems, pages 2266–2276, 2017.

[35] T. Hickey, Q. Ju, and M. H. Van Emden. Interval arithmetic: From principles to implementation. J.
ACM, 48(5):1038–1068, September 2001.

[36] Hans Hofmann. Statlog (german credit data) data set, 1994.
[37] Xiaowei Huang, Marta Kwiatkowska, Sen Wang, and Min Wu. Safety verification of deep neural networks.

In International Conference on Computer Aided Verification, pages 3–29. Springer, 2017.
[38] Philips George John, Deepak Vijaykeerthy, and Diptikalyan Saha. Verifying individual fairness in machine

learning models. In Conference on Uncertainty in Artificial Intelligence, pages 749–758. PMLR, 2020.
[39] Surya Mattu Julia Angwin, Jeff Larson and Lauren Kirchner. Machine Bias, 2016.
[40] Christopher Jung, Michael J Kearns, Seth Neel, Aaron Roth, Logan Stapleton, and Zhiwei Steven Wu.

Eliciting and enforcing subjective individual fairness. 2019.
[41] Faisal Kamiran and Toon Calders. Data preprocessing techniques for classification without discrimination.

Knowledge and information systems, 33(1):1–33, 2012.
[42] Toshihiro Kamishima, Shotaro Akaho, and Jun Sakuma. Fairness-aware learning through regularization

approach. In 2011 IEEE 11th International Conference on Data Mining Workshops, pages 643–650.
IEEE, 2011.

[43] Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and Mykel J Kochenderfer. Reluplex: An efficient smt
solver for verifying deep neural networks. In International Conference on Computer Aided Verification,
pages 97–117. Springer, 2017.

[44] Michael Kearns, Seth Neel, Aaron Roth, and Zhiwei Steven Wu. Preventing fairness gerrymandering:
Auditing and learning for subgroup fairness. In International Conference on Machine Learning, pages
2564–2572. PMLR, 2018.

[45] Haitham Khedr and Yasser Shoukry. Certifair: A framework for certified global fairness of neural
networks, 2022.

[46] R Kohavi. Scaling up the accuracy of naive-bayes classifiers: A decision-tree hybrid. 12 1996.
[47] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial machine learning at scale. arXiv preprint

arXiv:1611.01236, 2016.
[48] Matt J Kusner, Joshua Loftus, Chris Russell, and Ricardo Silva. Counterfactual fairness. Advances in

neural information processing systems, 30, 2017.
[49] Matt J Kusner, Chris Russell, Joshua R Loftus, and Ricardo Silva. Causal interventions for fairness.

arXiv preprint arXiv:1806.02380, 2018.
[50] Preethi Lahoti, Krishna P Gummadi, and Gerhard Weikum. ifair: Learning individually fair data

representations for algorithmic decision making. In 2019 ieee 35th international conference on data
engineering (icde), pages 1334–1345. IEEE, 2019.

[51] Jeff Larson, Surya Mattu, Lauren Kirchner, and Julia Angwin. https://github.com/propublica/compas-
analysis, 2016.

[52] Changliu Liu, Tomer Arnon, Christopher Lazarus, Clark W. Barrett, and Mykel J. Kochenderfer.
Algorithms for verifying deep neural networks. CoRR, abs/1903.06758, 2019.

63



[53] Pranay K Lohia, Karthikeyan Natesan Ramamurthy, Manish Bhide, Diptikalyan Saha, Kush R Varshney,
and Ruchir Puri. Bias mitigation post-processing for individual and group fairness. In Icassp 2019-2019
ieee international conference on acoustics, speech and signal processing (icassp), pages 2847–2851. IEEE,
2019.

[54] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards
deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083, 2017.

[55] Sagnik Maity and Arya Mazumdar. Statistical inference for individual fairness, 2021.
[56] Debmalya Mandal, Samuel Deng, Suman Jana, Jeannette Wing, and Daniel J Hsu. Ensuring fairness

beyond the training data. Advances in neural information processing systems, 33:18445–18456, 2020.
[57] Kiarash Mohammadi, Amir-Hossein Karimi, Gilles Barthe, and Isabel Valera. Scaling guarantees for

nearest counterfactual explanations. In Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics,
and Society, AIES ’21, page 177–187, New York, NY, USA, 2021. Association for Computing Machinery.

[58] Vedant Nanda, Samuel Dooley, Sahil Singla, Soheil Feizi, and John P Dickerson. Fairness through
robustness: Investigating robustness disparity in deep learning. In Proceedings of the 2021 ACM
Conference on Fairness, Accountability, and Transparency, pages 466–477, 2021.

[59] Department of Justice of the United States. Proving discrimination – disparate impact.
[60] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor

Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward Z.
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep learning library.
In NeurIPS, pages 8024–8035, 2019.

[61] Judea Pearl. Causality: Models, Reasoning, and Inference. Cambridge University Press, 2009.
[62] Judea Pearl et al. Models, reasoning and inference. Cambridge, UK: CambridgeUniversityPress, 19(2),

2000.
[63] Felix Petersen, Debarghya Mukherjee, Yuekai Sun, and Mikhail Yurochkin. Post-processing for individual

fairness. Advances in Neural Information Processing Systems, 34, 2021.
[64] Geoff Pleiss, Manish Raghavan, Felix Wu, Jon Kleinberg, and Kilian Q Weinberger. On fairness and

calibration. Advances in neural information processing systems, 30, 2017.
[65] ProPublica. There’s software used across the country to predict future criminals. and it’s biased against

blacks., 2016.
[66] Aditi Raghunathan, Jacob Steinhardt, and Percy Liang. Certified defenses against adversarial examples.

In International Conference on Learning Representations, 2018.
[67] Reuters. Amazon scraps secret ai recruiting tool that showed bias against women, 2018.
[68] Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv preprint

arXiv:1609.04747, 2016.
[69] Anian Ruoss, Mislav Balunović, Marc Fischer, and Martin Vechev. Learning certified individually fair

representations. arXiv preprint arXiv:2002.10312, 2020.
[70] Hasan Sildir and Erdal Aydin. A mixed-integer linear programming based training and feature selection

method for artificial neural networks using piece-wise linear approximations. Chemical Engineering
Science, 249:117273, 2022.

[71] Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin Vechev. An abstract domain for certifying
neural networks. Proceedings of the ACM on Programming Languages, 3(POPL):1–30, 2019.

[72] Aman Sinha, Hongseok Namkoong, and John Duchi. Certifiable distributional robustness with principled
adversarial training. In International Conference on Learning Representations, 2018.

64



[73] Aishwarya Sivaraman, Golnoosh Farnadi, Todd Millstein, and Guy Van den Broeck. Counterexample-
guided learning of monotonic neural networks. Advances in Neural Information Processing Systems,
33:11936–11948, 2020.

[74] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Sanjit Seshia, and Vijay Saraswat. Combinatorial
sketching for finite programs. In Proceedings of the 12th international conference on Architectural support
for programming languages and operating systems, pages 404–415, 2006.

[75] Vincent Tjeng and Russ Tedrake. Verifying neural networks with mixed integer programming. CoRR,
abs/1711.07356, 2017.

[76] Vincent Tjeng, Kai Xiao, and Russ Tedrake. Evaluating robustness of neural networks with mixed integer
programming. arXiv preprint arXiv:1711.07356, 2017.

[77] Caterina Urban, Maria Christakis, Valentin Wüstholz, and Fuyuan Zhang. Perfectly parallel fairness
certification of neural networks. Proceedings of the ACM on Programming Languages, 4(OOPSLA):1–30,
2020.

[78] L. F. Wightman. Lsac national longitudinal bar passage study. lsac research report series., 1998.
[79] Eric Wong and Zico Kolter. Provable defenses against adversarial examples via the convex outer adversarial

polytope. In International Conference on Machine Learning, pages 5286–5295. PMLR, 2018.
[80] Han Xu, Xiaorui Liu, Yaxin Li, Anil Jain, and Jiliang Tang. To be robust or to be fair: Towards fairness

in adversarial training. In International Conference on Machine Learning, pages 11492–11501. PMLR,
2021.

[81] Lie Xu, Chiu-sing Choy, and Yi-Wen Li. Deep sparse rectifier neural networks for speech denoising. In
2016 IEEE International Workshop on Acoustic Signal Enhancement (IWAENC), pages 1–5. IEEE, 2016.

[82] Mikhail Yurochkin, Amanda Bower, and Yuekai Sun. Training individually fair ml models with sensitive
subspace robustness. arXiv preprint arXiv:1907.00020, 2019.

[83] Mikhail Yurochkin and Yuekai Sun. Sensei: Sensitive set invariance for enforcing individual fairness.
arXiv preprint arXiv:2006.14168, 2020.

[84] Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez Rodriguez, and Krishna P Gummadi. Fairness
beyond disparate treatment & disparate impact: Learning classification without disparate mistreatment.
In Proceedings of the 26th international conference on world wide web, pages 1171–1180, 2017.

[85] Rich Zemel, Yu Wu, Kevin Swersky, Toni Pitassi, and Cynthia Dwork. Learning fair representations. In
Sanjoy Dasgupta and David McAllester, editors, Proceedings of the 30th International Conference on
Machine Learning, volume 28 of Proceedings of Machine Learning Research, pages 325–333, Atlanta,
Georgia, USA, 17–19 Jun 2013. PMLR.

65


	Résumé
	Abstract
	Contents
	List of tables
	List of figures
	List of acronyms and abbreviations
	Acknowledgements
	Chapter 1. Introduction
	Chapter 2. Related Work and Background
	2.1. Bias Mitigation Algorithms
	2.1.1. Pre-processing methods
	2.1.2. In-processing methods
	2.1.3. Post-processing methods

	2.2. Verifying Machine Learning Systems and Adversarial Examples
	2.3. Background on Machine Learning
	2.4. Background on Encoding NNs as Mixed-Integer Linear Programs
	2.4.1. Unbounded MILP Encoding of ReLU Neural Networks
	2.4.2. Bounded MILP Encoding of ReLU Neural Networks
	2.4.2.1. Linear over-approximation of ReLUs for Bounds Computation



	Chapter 3. FETA: Fairness Enforced Verifying, Training, and Predicting Algorithms for Neural Networks
	3.1. Introduction
	3.2. Preliminaries
	3.3. CE-Fair Verification
	3.4. CE-Fair Prediction
	3.4.1. Empirical Evaluation of CE-Fair Prediction
	3.4.1.1. Dataset details
	3.4.1.2. Experimental Setup


	3.5. CE-Fair Training
	3.5.1. Empirical Evaluation of CE-Fair Training
	3.5.1.1. Experimental Setup


	3.6. Extensions to FETA
	3.7. Related Work
	3.8. Conclusion & Future Directions
	3.9. Societal Impact
	3.10. Additional Experiments
	3.10.1. Comparison to the original LCIFR ruoss2020learning
	3.10.2. Counterexample-guided Counting vs. Naive Enumeration


	Chapter 4. Conclusion and Future Work
	References

