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Dynamical Generation of Graphene

M. Myronova and E. Bourret

Abstract. In recent years, the astonishing physical properties of carbon nanos-
tructures have been discovered and are nowadays being intensively studied.
We introduce how to obtain a graphene sheet using group theoretical methods
and how to construct a graphene layer using the method of dynamical gener-
ation of quasicrystals. Both approaches can be formulated in such a way that
the points of an infinite graphene sheet are generated. The main objective is
to describe how to generate graphene step by step from a single point of R2.
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1. Introduction

Graphene is a two-dimensional Euclidean plane tiled by regular hexagons, these
hexagons being all of the same size. The vertices of the hexagons are usually taken
as carbon atoms, but other graphene-like structures were also observed [4, 5].

Although the most promising nanomaterials are graphene and carbon nan-
otubes, their geometrical structures remain so far unexplored. Owing to their ex-
ceptional physical, chemical and mechanical properties, they found an increasing
variety of applications [6].

The mathematical way to obtain a graphene sheet and the related nanotubes
is to use the finite reflection groups. In general, we should use the Lie algebras
A2 and G2 (or respectively their groups SU(3) and G(2)) to construct a layer of
graphene, because both of them yield triangular lattices. In this paper, we con-
sider two mathematical methods to construct graphene. Both will provide identical
graphene layers.

The first method used to obtain a mathematical model for the graphene is
the construction using the simple Lie group SU(3). It gives us an opportunity to
define the congruence classes for the points of its weight lattice and, as a result, to
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obtain an hexagonal tilling of R2 by removing the points of one of the congruence
classes.

The second method we used is inspired by the process of dynamical generation
of quasicrystals [1]. It was shown that, by using the Coxeter groups H2, H3 and
H4, quasicrystals can be constructed from a single point of Cn (n = 2, 3, 4). In our
case, we consider the Lie group SU(3) and we define a step-by-step construction
of the graphene from a single point of the plane R2. Furthermore, the method of
dynamical generation could be used to obtain any crystallographic structure.

2. Root and weigh lattices of An

Let Φ = {α1, . . . , αn} be a root system of rank n of the Lie algebra An in real
Euclidean space Rn [2]. It is determined by the Coxeter–Dynkin diagram shown
in Figure 1.

α1 α2 α3 αn

Figure 1. Coxeter–Dynkin diagram of the Lie group SU(n+ 1).

The set of simple roots αi, i = 1, . . . , n of the root system Φ of An is called an
α-basis. Thus, for the Coxeter–Dynkin diagram, there is the corresponding Cartan
matrix, which gives the geometry of the α-basis:

Cjk =
2〈αj , αk〉
〈αk, αk〉

, where j, k = 1, 2, . . . , n. (1)

The set of ωk, k = 1, . . . , n is called the set of fundamental weights and forms
the ω-basis (or the basis of fundamental weights). It is convenient to work mostly
in the ω-basis. Therefore, we need to convert the α-basis using the duality relation
of the bases:

2〈αj, ωk〉
〈αj , αj〉

≡ 〈α∨
j , ωk〉 = δjk, where j, k ∈ {1, 2, . . . , n}. (2)

The link between the α- and ω-bases is also given by the Cartan matrix C
(1) and its inverse C−1:

αj =

n∑
k=1

Cjkωk and ωj =

n∑
k=1

(C−1
jk )αk. (3)

It is important to introduce the root lattice Q given by the set of all linear
combinations of the simple roots αi:

Q =
{ n∑

i=1

aiαi | ai ∈ Z
}
≡

⊕
i

Zαi ≡ Zα1 + · · ·+ Zαn. (4)
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The positive root lattice Q+ of Q is defined as:

Q+ =
{ n∑

i=1

aiαi | ai = Z≥0
}
≡ a1α1 + · · ·+ anαn. (5)

Likewise, we introduce the weight lattice P and the cone of dominant weight P+:

P = Zω1 + · · ·+ Zωn and P+ = Z≥0ω1 + · · ·+ Z≥0ωn. (6)

In general, the points of the weight lattice P of the Lie group SU(n+1) can
be split into (n+ 1) congruence classes denoted as Kk, k = Z≥0 [3]. Each point of
P belongs precisely to one congruence class and the splitting is defined as

x = a1ω1 + a2ω2 + . . .+ anωn ∈ Kk,

na1 + (n− 1)a2 + · · ·+ 2an−1 + an = k mod n+ 1. (7)

3. Construction of the graphene from the Lie algebra A2

The most appropriate way to construct a mathematical model for the graphene
layer is to use the simple Lie algebra A2. The root system of A2 and its Coxeter–
Dynkin diagram are shown in Figure 2.

α1 α2

Figure 2. The root system of Lie algebra A2 and it’s Coxeter–Dynkin
diagram are shown from left to right, respectively.

The simple roots α1 and α2 span a real Euclidean space R2. The geometric
relations between them are:

〈α1, α1〉 = 〈α2, α2〉 = 2, 〈α1, α2〉 = −1 and ∠(α1, α2) =
2π

3
.

The Cartan matrix of A2 and its inverse are defined from (1) as follows:

CA2 =

(
2 −1
−1 2

)
, C−1

A2
=

1

3

(
2 1
1 2

)
. (8)

As we mentioned before, the link between α- and ω-bases of A2 is given by
the Cartan matrix (8). Hence, we can write explicitly:

α1 = 2ω1 − ω2, α2 = −ω1 + 2ω2, ω1 =
2

3
α1 +

1

3
α2, ω2 =

1

3
α1 +

2

3
α2.

For the A2 case, the expressions for the root lattice Q (4) as well as for the
weight lattice P (6) can be simplified:

QA2 = Zα1 + Zα2, PA2 = Zω1 + Zω2. (9)

From now on, there are two ways to construct a graphene sheet using the Lie
algebra A2. The first one is to consider the root lattice QA2 and the second one
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is to use the weight lattice PA2 . Both of these lattices are triangular in R2. Root
and weight lattices coincide, but not all the points of QA2 belong to PA2 (Fig. 3).

The construction of the graphene using the root lattice QA2 starts from
finding the proximity cells, called Voronoi domains or Brillouin zones, for each of
the lattice points. In this case, the proximity cells are regular hexagons which tile
R2 (Fig. 3). We obtain the graphene sheet by removing all the points of the lattice
QA2 while retaining the hexagons of proximity cells.

However, an interesting case appears when we use PA2 . As was defined in the
previous section, the points of PA2 can be split into the three mutually congruent
classes Kk, k = 0, 1, 2, by applying the rule from Equation (7):

x = a1ω1 + a2ω2 ∈ Kk, where 2a1 + a2 = k mod 3 and k = 0, 1, 2.

The result of this splitting is the following: the points of the congruence class
K0 represent the points of QA2 , the points of K1 represent the points of QA2 +ω1,
and the points of K2 represent the points of QA2 + ω2 (Fig. 3).

Figure 3. On the left, a fragment of the QA2 is shown. The shaded
region stands for the Voronoi domain. On the right, a fragment of the
PA2 is shown. Points marked by white nodes belong to QA2 and the
congruence class K0. Points marked by red and blue nodes belong to PA2

and K1, K2, respectively. The shaded region stands for the fundamental
domain of PA2 .

Consequently, removing the points ofK0, K1 or K2 yields the hexagonal struc-
ture which represents a graphene layer. For example, in Figure 3, we disregarded
the points of K0.

Note that even though both constructions start with the triangular lattices,
the graphene structure does not form a lattice. A graphene sheet can be refined
and the construction will be based on the refinement of the lattices PA2 and QA2 .
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4. Method of dynamical generation

In this section we describe a step-by-step process to build a graphene sheet starting
from a single point of R2. We consider the weight lattice PA2 . We will be using
two different steps, namely S1 and S2 (Fig. 4):

S1 = (ω1,−ω1 + ω2,−ω2), S2 = (ω2, ω1 − ω2,−ω1).

The points of S1 belong to the K1 and the points of S2 belong to the K2.
As the seed point of our construction we can choose any point of PA2 . If the

chosen point belongs to the congruence class K0 then the first step can be either
S1 or S2. If it belongs to K1 then the next step should be S1. Finally, if it belongs
to K2 then the next step should be S2.

Figure 4. The steps of the dynamical generation of the graphene are
shown. The blue and red regions correspond to the steps S1 and S2,
respectively.

By applying this rule to a single point of R2, we dynamically generate the
points of our structure in the following way: three vectors of the starting step
define three points of the plane. If any of these points coincides with an already
existing point of the graphene structure, we disregard it. If it is a new point, it
should be kept. The more steps we do, the bigger the graphene structure gets and
after an infinite number of steps the graphene layer is complete.

For example, from Figure 3 we see that adding a point of K1 to another point
of K1 yields a point of K2 and adding a point of K2 to another point of K2 yields
a point of K1. One should also note that adding a point of K1 to a point of K2

yield a point of K0 which does not belong to the graphene structure. Therefore,
such an addition is not allowed.

However, an interesting situation arises when removing one, two, or even
three vectors from each of the steps S1 or S2. For example, consider the following
combinations of the steps:

(a) S1 = (ω1,−ω1 + ω2,−ω2), S2 = (ω2, 0, 0);

(b) S1 = (ω1, 0,−ω2), S2 = (ω2, 0,−ω1);

(c) S1 = (ω1,−ω1 + ω2,−ω2), S2 = (0, 0, 0).

This way we can obtain sheets of graphene that will not cover the entire plane
R2. The resulting graphene structures are shown in Figure 5.
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Figure 5. The resulting graphene layers are shown for the combina-
tions of steps S1 and S2 from (a), (b) and (c) from left to right, respec-
tively.
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