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Résumé

Cette thèse propose des méthodes exploitant la vaste information contenue dans les car-

nets d’ordres (LOBs). La première partie de cette thèse découvre des inefficacités dans les

LOBs qui sont source d’arbitrage statistique pour les traders haute fréquence. Le chapitre

1 développe de nouvelles relations théoriques entre les actions intercotées afin que leurs prix

soient exempts d’arbitrage. Toute déviation de prix est capturée par une stratégie novatrice

qui est ensuite évaluée dans un nouvel environnement de backtesting permettant l’étude de

la latence et de son importance pour les traders haute fréquence. Le chapitre 2 démontre

empiriquement l’existence d’arbitrage lead-lag à haute fréquence. Les relations dites lead-

lag ont été bien documentées par le passé, mais aucune étude n’a montré leur véritable

potentiel économique. Un modèle économétrique original est proposé pour prédire les ren-

dements de l’actif en retard, ce qu’il réalise de manière précise hors échantillon, conduisant

à des opportunités d’arbitrage de courte durée. Dans ces deux chapitres, les inefficacités des

LOBs découvertes sont démontrées comme étant rentables, fournissant ainsi une meilleure

compréhension des activités des traders haute fréquence. La deuxième partie de cette thèse

investigue les séquences anormales dans les LOBs. Le chapitre 3 évalue la performance de

méthodes d’apprentissage automatique dans la détection d’ordres frauduleux. En raison de

la grande quantité de données, les fraudes sont difficilement détectables et peu de cas sont

disponibles pour ajuster les modèles de détection. Un nouveau cadre d’apprentissage profond

non supervisé est proposé afin de discerner les comportements anormaux du LOB dans ce

contexte ardu. Celui-ci est indépendant de l’actif et peut évoluer avec les marchés, offrant

alors de meilleures capacités de détection pour les régulateurs financiers.
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Abstract

This thesis proposes methods exploiting the vast informational content of limit order books

(LOBs). The first part of this thesis discovers LOB inefficiencies that are sources of statistical

arbitrage for high-frequency traders. Chapter 1 develops new theoretical relationships be-

tween cross-listed stocks, so their prices are arbitrage free. Price deviations are captured by a

novel strategy that is then evaluated in a new backtesting environment enabling the study of

latency and its importance for high-frequency traders. Chapter 2 empirically demonstrates

the existence of lead-lag arbitrage at high-frequency. Lead-lag relationships have been well

documented in the past, but no study has shown their true economic potential. An original

econometric model is proposed to forecast returns on the lagging asset, and does so accurately

out-of-sample, resulting in short-lived arbitrage opportunities. In both chapters, the discov-

ered LOB inefficiencies are shown to be profitable, thus providing a better understanding

of high-frequency traders’ activities. The second part of this thesis investigates anomalous

patterns in LOBs. Chapter 3 studies the performance of machine learning methods in the

detection of fraudulent orders. Because of the large amount of LOB data generated daily,

trade frauds are challenging to catch, and very few cases are available to fit detection models.

A novel unsupervised deep learning–based framework is proposed to discern abnormal LOB

behavior in this difficult context. It is asset independent and can evolve alongside markets,

providing better fraud detection capabilities to market regulators.

Keywords : Limit order book; Statistical arbitrage; High-frequency trading; Algorithmic

trading; Mean-reversion; Lead-lag relationship; Financial econometrics; Time series anomaly

detection; Deep unsupervised learning; Machine learning
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Introduction

Today’s financial markets operate at incredibly high speeds, often nearing the speed of light,

and human traders have been mostly replaced by computers programmed to make hundreds

of decisions in the blink of an eye. In fact, it has been estimated that over 60% of all

trading volume in U.S. equity markets was generated by algorithmic trading strategies in

2018, with no end in sight for their dominance.1 Algorithms and traders alike all interact

with central limit order books (LOBs) to send orders, trade, and generally gauge other market

participants’ intentions, in search of profitability.

A LOB is the collection of all outstanding limit orders sent to a trading venue for a

single financial asset. It depicts the prices at which participants are willing to buy and

sell the security, as well as the volume available at each price level. Whenever a market

event changes the LOB’s state (e.g., an order is received by the trading venue, an order is

canceled or modified), a message from the exchange is sent to every market participant to

reflect the new information. The most active financial assets generate millions of messages

daily, often in the microsecond range, so the flow of information is humanly impossible to

interpret in real time. Even post factum analysis is an arduous task. This article–based

thesis proposes methods to systematically exploit the vast amount of LOB time series in two

research themes: statistical arbitrage, and anomaly detection.

The first two chapters are dedicated to high-frequency trading, in which new statistical

arbitrage mechanisms are proposed, and the last chapter focuses on new anomaly detection

1"Global Algorithmic Trading Market to Surpass US$ 21,685.53 Million by 2026", Business Wire, Febru-
ary 5, 2019, https://www.businesswire.com/news/home/20190205005634/en/Global-Algorithmic-Trading-
Market-to-Surpass-US-21685.53-Million-by-2026 (accessed April 17, 2023).

https://www.businesswire.com/news/home/20190205005634/en/Global-Algorithmic-Trading-Market-to-Surpass-US-21685.53-Million-by-2026
https://www.businesswire.com/news/home/20190205005634/en/Global-Algorithmic-Trading-Market-to-Surpass-US-21685.53-Million-by-2026


techniques for high-frequency data. The activities of high-frequency traders are still not well

understood in practice, so this thesis aims to fill gaps in that literature.

Chapter 1 studies statistical arbitrage in international cross-listed stocks. A new synthetic

instrument engineered from cross-listed assets’ prices is proposed. The instrument possesses

a strong mean-reversion to the exchange rate between the markets where stocks are dual-

listed, enabling the derivation of statistical arbitrage bounds. A novel, and practical, high-

frequency trading strategy is developed to profit from price deviations outside these bounds.

This approach removes the need to quantify the equilibrium level in pairs of assets, while

ensuring the mean-reversion of the signal, which are frequent issues in other well-known

arbitrage strategies. Furthermore, a methodology accounting for information latency, i.e.,

the time it takes for a trader to interact with trading venues, is constructed to study its

effect on the performance of high-frequency trading strategies, a first in the literature. This

chapter demonstrates how acting as a liquidity provider with the proposed strategy can

be profitable in North America, whereas using aggressive orders is not, because of market

frictions and the high degree of interconnectedness between trading venues in this region.

Chapter 2 examines lead-lag arbitrage at high-frequency. A lead-lag relationship is de-

fined as the phenomenon in which a process is cross-correlated to a second process at a delay.

Any lead-lag effect in an asset pair implies the future returns on the lagging asset have the

potential to be predicted from past and present prices of the leader. These relationships have

been detected in most financial markets, but no clear evidence of their arbitrage potential has

been found. This chapter suggests a general framework to test the existence, predictability,

and profitability of lead-lag relationships for any pair of assets. It details robust lead-lag

estimators applicable to LOB data, known for its asynchronicity and irregular observation

times. An econometric model is also developed to exploit lead-lag relationships in level 1

data. Previous methods relied on uniform sampling of the LOB with previous–tick interpo-

lation, whereas the proposed model can employ LOBs as they are observed, generating more

accurate return predictions. Because of the significant trading costs associated with market

orders, the few existing lead-lag arbitrage strategies are not profitable at high-frequency. To
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circumvent this problem, Chapter 2 presents a high-frequency trading strategy based on limit

orders to capture statistical arbitrage opportunities at minimal cost, using the forecasting

ability of the new econometric model. The strategy is empirically able to profit from lead-lag

arbitrage in cross-listed stocks, even when important market frictions are considered, thus

finally demonstrating their economic value.

Chapter 3 investigates the applicability of machine learning techniques in the detection of

anomalies in high-frequency markets. Securities regulators, who constantly monitor trading

activities to unveil potential infractions, still perform their investigations manually with the

help of deterministic rule–based algorithms. The level of trading activity in modern markets

poses a heightened risk of fraudulent orders going unnoticed in the vast quantity of data

generated daily. Most of earlier fraud detection methods worked on daily financial data,

but switching to LOBs allows to detect the exact fraud time, thus dramatically decreasing

the analysis burden of regulators. In this chapter, time series of features are engineered

from LOB data to detect potential fraudulent algorithmic patterns. A novel unsupervised

deep learning model based on the recent Transformer architecture is devised to capture

normal trading behaviors, instead of relying on supervised techniques that would otherwise

be unreliable in this context because of the scarcity of real fraud cases. The proposed

framework is asset independent and can evolve alongside the market in which it is deployed,

hence increasing the detection capabilities of market regulators without necessitating prior

knowledge of trade–based manipulation patterns. The method’s effectiveness is shown on

frauds simulated by a new random manipulation scenario generator.
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Abstract. We explore high-frequency arbitrage activities on international cross-listed

stocks and develop a methodology to study the effect of information latency in high-

frequency trading. We derive statistical arbitrage bounds for a mean-reverting synthetic

instrument engineered from cross-listed stock prices, and propose a new strategy that takes

advantage of price deviations outside these bounds. Market frictions such as trade costs,

inventory control, and arbitrage risks are considered. The strategy is tested with cross-listed

stocks involving three exchanges in Canada and the United States in 2019. The annual net

profit with the limit order strategy is around US$6 million, whereas the market order version

is not profitable because of the great interconnectedness between exchanges in our data.

Keywords: Latency arbitrage; High-frequency trading; Statistical arbitrage; Limit order

book; Cross-listed stocks; Supervised machine learning

1. Introduction

We study the profitability of arbitrage activities on international cross-listed stocks in

the context of North American markets. Our main research question is as follows: Is inter-

national high-speed arbitrage profitable for High-Frequency Traders (HFTers) under strong

competition and when all potential arbitrage costs and risks are considered?

Stock exchanges in different countries often use distinct market microstructures, whereas

many large public firms employ cross-border listing to reduce their cost of capital and increase

their access to liquidity. The current market structure of stock exchanges in North America

and Europe is very competitive, fragmented, and fast (Biais and Woolley [7]; Goldstein et al.

[34]; Jones [38]; O’Hara [47]; Wah [60]). Changes in regulation, particularly the Regulation

NMS in the US and the IIROC rules in Canada,2 led to an increase in the number of trading

venues, thus further fragmenting financial markets (Chao et al. [14]; Garriott et al. [32]).

In 2019, there were more than twenty designated exchanges in North America, and the

competition related to trading fees, rebates, and colocation fees has increased significantly

in recent years (Reuters [50]).

2Regulation NMS in the US: SEC Exchange Act Release No. 34-51808 (June 9, 2005). IIROC rules in
Canada: CSE Trading Rules and the Universal Market Integrity Rules, of the Investment Industry Regulatory
Organization of Canada (IIROC, 2015). See also The MiFID Directive in Europe: Directive 2004/39/EC of
the European Parliament and of the Council of April 21, 2004 on markets in financial instruments
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The existence of multiple venues means that the price of a given asset need not always

be the same across all venues for very short periods of time, opening the door to high-

speed arbitrage across markets (Foucault and Biais [26]; O’Hara [47]). Given that this form

of arbitrage can be done by creating portfolios that result from spatial arbitrage, traders

must appraise intra-market liquidity and analyze the assets’ serial correlation. Nonetheless,

serial correlation dissipates very quickly, which further increases the possibility of high-speed

spatial arbitrage (Budish et al. [12]).

In a market fragmentation context, traders need to search for liquidity across many venues

in the same country or across countries. High speed can be crucial when there is strong

competition. The ability of HFTers to enter and cancel orders very rapidly makes it hard

for many traders to discern where liquidity really exists, which creates more opportunities

for HFTers to exploit profitable trading opportunities.

International latency arbitrage opportunities may also arise because of different market

models used in local exchanges, different regulations, transient supply and demand shocks,

and the arrival of new local information generating asynchronous adjustments in asset prices.

These arbitrage possibilities terminate either when an arbitrageur exploits the new oppor-

tunity, or when market makers update their quotes to reflect the new information (Foucault

et al. [27]). However, local market makers are not always harmonized in real time. High-speed

international arbitrage may then benefit all market participants (those with and without high

speed) by reducing inter-market bid-ask spreads, a measure of market quality (Hendershott

et al. [37]; Riordan and Storkenmaier [51]). As a result, HFTers may even become inter-

market makers who provide liquidity with their arbitrage activities, as we demonstrate in

this paper.

Whereas arbitrage forces should drive prices to attain an equilibrium, an exchange that

acts as a price leader could attract a significant portion of order flow if the adjustment takes

time. For example, empirical evidence suggests that prices on Canadian and U.S. exchanges

mutually adjust for Canadian–based cross-listed stocks (Chouinard and D’Souza [18]; Eun

and Sabherwal [25]).
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Considering a cross-country environment, we revisit latency arbitrage strategies, and

propose a new model of international mean-reverting arbitrage with FX rate hedging. We

are the first to introduce a synthetic instrument, engineered from cross-listed stock prices,

that seeks to replicate the exchange rate between currencies. As we will show, this instrument

possesses a strong mean-reversion to the actual exchange rate observed in currency futures.

Using this property, we derive statistical arbitrage bounds that allow a high-frequency trader

to find statistical arbitrage opportunities in cross-listed stocks prices. Taking positions in

currency futures also protects the high-frequency trader from currency risk. The earlier

literature mainly relied on cross-markets to seek arbitrage opportunities (Budish et al. [12];

Wah [60]), which is only a subset of the opportunities that can be found with our model.

Our strategy is a hybrid between triangular arbitrage (Spraos [56]) and pairs trading

(Gatev et al. [33]). Indeed, it relies on the equilibrium of currency instruments (the syn-

thetic instrument and the currency futures), like in triangular arbitrage, but it also trades

mainly on a pair of assets (cross-listed stocks) whenever their prices diverge from a historical

equilibrium, like in pairs trading. In practice, traders face two problems when considering

triangular arbitrage or pairs trading strategies. First, they need to determine the equilibrium-

level threshold of the combined positions, which is essential to know ex ante the positions’

exit point and to determine the expected economic value of any arbitrage opportunity. Sec-

ond, traders need to ensure that the process resulting from the combined positions will

indeed correspond to a mean-reversion process. To the best of our knowledge, we are the

first to directly address these two issues simultaneously, and such a strategy has never been

proposed.

The present study is also the first to examine stocks’ cross-country mean-reverting ar-

bitrage with FX rate hedging. We adopt the perspective of a unique temporal frame of

reference, which means that we synchronize the data feeds of exchange venues and explicitly

consider the latency that comes from the transmission of information between them and the

data processing time. This approach, coupled with the inclusion of trading costs and trading
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risks in our methodology, generates more realistic results than those obtained in previous

studies.

The strategy signals when prices of cross-listed stocks deviate enough from their rela-

tive equilibrium that an economically viable arbitrage opportunity occurs. We construct

a portfolio of synthetic instruments from pairs of cross-listed stocks of the same company

traded on two exchanges and compute their relative spread (SPRD), defined as the ratio

of the stock prices (our synthetic future) and a hedging position in the equivalent currency

futures. The relative spread deviation resulting from a variation between the synthetic in-

strument and the hedging instrument is expected to be mean-reverting. We analyze this

intraday reverting behavior in detail for each pair of stocks between exchanges. Economi-

cally significant deviations of the relative spread from its target value could lead to arbitrage

opportunities. We develop different arbitrage strategies to exploit these deviations and to

demonstrate the potential profitability of mean-reverting arbitrage opportunities that exist

between international exchanges.

According to Foucault and Moinas [28], empirical studies must consider the effect of

trading speed on each component of bid-ask spreads separately. These components are

adverse selection costs, inventory costs, and order processing costs. We consider adverse

selection costs via non-execution risk. Inventory costs are minimized by applying restrictions

on the quantities traded and by precluding overnight positions. Order processing costs

are considered via infrastructure and trading platform costs, and fees and rebates are also

explicitly quantified.

High-frequency trading (HFT) technologies provide speed and information superiority

(Biais et al. [6]; Foucault and Moinas [28]), but they introduce various costs such as high

technology costs, trading fees and colocation fees (Baron et al. [5]; Shkilko and Sokolov [55]).

Potential important arbitrage profits or realized opportunity costs described in the literature

are often based on strong (and sometimes unrealistic) assumptions about the functioning of

financial markets. The most prevalent ones being latency costs, direct trading fees, rebates

on trading fees, and trading platform, colocation and proprietary data feed costs. Moreover,
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the closing of positions is not always coherent with market reality. Mean-reversion risk, exe-

cution risk, and non-execution risk are additional cost components that may affect arbitrage

profits. We propose a methodology to introduce all these costs and adjust our algorithms’

performance accordingly.

Given that high-frequency trading is very fast and competitive, the risk that the mar-

ket will move between the time of observing an arbitrage opportunity and the time of the

exchange receiving orders sent by a trader’s algorithm (i.e., execution risk when using mar-

ket orders, non-execution risk when using limit orders) is very high. Latency costs for the

transmission and the processing of information may matter when exchanges are distant and

assets quoted in different currencies are present. Moreover, because gains per trade for high-

frequency traders are relatively small given their short holding periods, trading costs and

rebates may be significant in the computation of net profits, especially when considering the

enormous quantity of trades performed daily by HFTers. The colocation and the propri-

etary data feed costs are also significant at many exchanges, although they have decreased

due to recent competition between exchanges. In this article, we find that, by overlooking

these potential costs, the HFT arbitrage profitability presented in the literature has been

overestimated (Budish et al. [12]; Dewhurst et al. [20]; Tivnan et al. [58]; Wah [60], among

others).

As Chen and Gau [13] assert, the understanding of arbitrage activity in the empirical

research is still limited. To our knowledge, we are the first to quantify the importance and the

economic value of providing liquidity in the context of arbitrage while considering the limit

order book (LOB) queue positions and limit orders instead of market orders exclusively.

Our approach is consistent with the revisited HFT market maker definition proposed by

O’Hara [47]: "HFT market making differs from traditional market making in that it is often

implemented across and within markets, making it akin to statistical arbitrage."3 Our mean-

reverting strategy is a form of statistical arbitrage.

We test the model across three North American exchanges during the first six months

of 2019: the New York Stock Exchange (NYSE) and the Chicago Mercantile Exchange
3See also Krauss [40]; Rein et al. [49] on statistical arbitrage.

36



(CME) in the United States, and the Toronto Stock Exchange (TSX) in Canada. We also

discuss how the strategy is generalizable to a much larger trading universe without additional

restrictions. As Gagnon and Karolyi [31] note, over 3,000 companies had two or more listings

in 2008, highlighting the importance of international arbitrage in market equilibrium. Our

results report a net annual profit of about C$8 million (US$6 million) for 2019 for this

international arbitrage activity, with 36 profitable cross-listed stocks that can be managed

by one trader in a large trading firm. These pairs of stocks were selected from 74 potential

cross-listed stocks by using a dynamic decision tree model from machine learning. The gross

annual profit was about C$19 million, and the main difference between the gross and the

net annual profits is explained by latency in the transmission and processing of information,

and the non-execution risk of limit orders. Trading fees were consequently not important,

yet rebates were significant. We also show that international arbitrage using market orders

is not profitable because of transaction fees and the execution risk associated with latency.

The rest of our paper is organized as follows. Section 2 presents the literature on arbitrage

trading with LOB data. Emphasis is put on empirical studies that have estimated the

profitability of this trading activity in an HFT environment. Section 3 outlines our strategy

based on a mean-reverting model of arbitrage that can be executed with market orders or

limit orders. We show the main differences between the two approaches with an emphasis

on trading cost and rebates. Section 4 presents the methodology used to study the effect

of information latency in HFT, and how we consider the multiple arbitrage costs and risks

associated with high-frequency arbitrage. Section 5 details the data from TSX, NYSE and

CME and how it is managed. It also documents the real latency costs, as well as the trading

fees and rebates, the colocation and the proprietary data feed costs at TSX (the trading

location used in the application of this paper). Section 6 is dedicated to our empirical results

and Section 7 discusses the performance of our arbitrage strategy. Section 8 concludes the

paper.
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2. Literature review

Two main issues are at the heart of research on HFT: profitability and fairness in trading.

Both are interconnected and require appropriate research approaches that are fundamental to

understanding the behavior of trading participants and making adequate policy recommen-

dations when necessary. The structure of financial markets has been radically transformed

by new technology over the last 25 years. Liquidity and price discovery now arise in a more

complex way, often owing to high speed. These changes have affected the market microstruc-

ture and the formation of capital in financial markets. They may also have reduced fairness

between market participants, warranting new regulatory rules. However, conclusions on the

private net benefits of high-frequency trading and its fairness are not always based on solid

academic research, according to Chen et al. [15] and O’Hara [47]. Moreover, the debate

about the high-frequency trading arms race is still open (Aquilina et al. [2]; Foucault and

Moinas [28]).

Academic interest in latency arbitrage is a relatively recent phenomenon, and available

studies have investigated it from different angles. The idea that price dislocations exist in

fragmented markets is not new. In fact, contributions from the 1990s highlighted the issue

in the U.S., even when market fragmentation was not as prevalent as it is today (Blume and

Goldstein [8]; Lee et al. [31]; Hasbrouck [35]). More recent studies on that matter include

Shkilko et al. [54] and Ding et al. [21]. Soon after, other articles began mentioning the

possibility for high-speed traders to exploit these market anomalies. Foucault and Biais [26]

and O’Hara [47] both mention that HFTers can capitalize on latency arbitrage opportunities

but they conclude that strong empirical evidence is still necessary.

Hasbrouck and Saar [36] are among the first to investigate trading activities within the

millisecond environment. Menkveld [44] and Menkveld [45] analyze the behavior of a HFTer

who is a market maker. They show that the market maker reduces price variations for the

same stock on different exchanges by doing arbitrage activities across trading venues. Budish

et al. [12] document the latency arbitrage opportunities between CME and NYSE from 2005

to 2011. They demonstrate that correlation between a pair of related assets breaks down as
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speed between quotes increases. They show that these breakdowns roughly yield an average

of US$75 million a year from a simple latency strategy of arbitraging the spread of one pair

of highly correlated assets: the S&P 500 exchange-traded fund (ticker SPY) traded in New

York and the S&P 500 E-mini futures contract (ticker ES) traded in Chicago. That pair of

instruments had an average of 800 daily arbitrage opportunities during that period, and the

authors notice that the arbitrage frequency tracks the overall volatility of the market, with

a higher number of opportunities during the financial crisis in 2008, the Flash Crash on May

6, 2010, and the European crisis in summer 2011.

Budish et al. [12] also find that the median ES-SPY arbitrage opportunities duration

declines drastically from 97 milliseconds in 2005 to 7 milliseconds in 2011, which is explained

by the high-speed arms race led by HFT firms. The median profits per arbitrage oppor-

tunity remain relatively constant over time, even though competition clearly reduced the

duration of arbitrage opportunities. Budish et al. [12] mention the latency issue, but in a

rather incomplete fashion. Their approach does not consider latencies such as the real infor-

mation transportation cost between the two exchanges nor the information treatment time

of a round trip. They may have overestimated the real profits generated by their trading

strategy and underestimated the execution risk since they used market orders in their appli-

cation. In their study, around 85% of latency arbitrage opportunities had a duration of less

than 10 milliseconds in 2011. It is possible that this proportion has grown since then, given

the technology developments since 2011. This emphasizes the importance of including new

latency assumptions for our more recent period of analysis. Finally, as they mention, their

strategy only considers bid-ask spread costs, whereas a richer estimate of arbitrage opportu-

nities must also include, at least, exchange fees, and all latency costs. Their study inspired

our paper, which seeks to generalize high-frequency arbitrage between pairs of correlated

assets and to incorporate practical aspects that are important barriers to the profitability of

statistical arbitrage.

Wah [60] examines latency arbitrage opportunities on a larger scale for cross-listed stocks

of the S&P 500 in eleven US stock exchanges in 2014. The strategy uses crossed market prices
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(i.e., when the bid price in an exchange is higher than the ask price in another exchange

for the same stock) to locate arbitrage opportunities documented in MIDAS trades and

quotes data from the SEC.4 Considering one infinitely fast arbitrageur operating on these

eleven markets, the author estimates that arbitrage opportunity profits were US$3.03 billion

in 2014 for the S&P 500 tickers alone. However, round trip information transportation and

information treatment time are not considered in the profitability of the strategy, nor are the

other trading costs (except for the bid-ask spread cost, due to the use of market orders). Wah

[60] influenced the present study by prompting us to reconsider the latency assumptions made

in past papers. A better understanding of latency’s importance in high-frequency trading is

needed, and this is a central aspect of our contribution.

Tivnan et al. [58] and Dewhurst et al. [20] also examine latency arbitrage on cross-listed

stocks in the U.S. National Market System, but with MIDAS data from 2016. These two

studies consider actionable dislocation segments in their computations, i.e., latency arbitrage

opportunities that last longer than the two-way travel time for a fiber-optic cable between

exchanges’ servers. At this trading speed, the transportation time assumption is especially

important, even more so when exchanges are far apart, as in our application. Dewhurst et al.

[20] and Tivnan et al. [58] have a more realistic approach when compared with Wah [60] but

they do not consider information treatment time, trading costs, and all trading risks.

3. Methodology

3.1. Arbitrage process

We propose an innovative approach for cross-listed stocks arbitrage between two ex-

changes with differing currencies. In its simplest form, this approach is based on the identi-

fication of mean-reverting arbitrage opportunities from a basket of equities traded on their

home exchange (noted as Exchange 1), their cross-listed peers at another exchange (noted as

Exchange 2), and the currency-futures contract between the two currencies (noted as Cur-

rency 1 and Currency 2) for hedging purposes. The strategy also encompasses the simpler
4MIDAS is the U.S. Securities and Exchange Commission’s Market Information Data Analytics System
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case where the two exchanges are using the same currency. That particular application does

not require currency hedging, but still relies on the formulations provided in this paper. We

will also discuss how the proposed strategy can be generalized to more than two exchanges

and two currencies, thus expanding the overall tradable universe.

We first compute a synthetic instrument calculated as the ratio of the stock’s simultane-

ous prices at Exchange 2 and at Exchange 1 (the synthetic, henceforth) obtained from the

combination of opposite positions of the same stock being traded on both exchanges. As for

internationally cross-listed stocks, the stock prices share two underlying factors: the firm’s

fundamental value and the exchange rate (Scherrer [52]). Given that we use the same stock

in the two exchanges, the idiosyncratic differences are minimal and should not affect the

convergence in pairs trading, contrary to what is often observed with different stocks in the

literature (Engelberg et al. [24]; Frazzini et al. [29]; Pontiff [48]).

Second, we hedge the synthetic instrument with an opposite position in the currency

future. Defining the relative spread (SPRD) as the ratio of the synthetic over the currency

future, we must test its stationarity, a sine qua non condition for mean-reverting strategies.

At equilibrium, SPRD must converge to a value close to 1.0 for each pair in all trading days,

with very few exceptions. Spot and futures prices should diverge slightly, only by the basis

value, which accounts for maturity differences in the two instruments.

As a distance criterion, we propose a nonparametric threshold rule adjusted for the

strategies’ net costs in order to uncover economically relevant opportunities. This is an

alternative to standard deviation multiples (Gatev et al. [33]; Stübinger [56]). The chosen

distance approach is simple and transparent, and allows for large-scale empirical applications

(Krauss [40]).

As market makers on either exchange might not be perfectly integrated, we have to

consider the differences between the functioning of the microstructures. These sources of di-

vergence may influence limit order books (depth, granularity, imbalance, and bid-ask spread)

and marketable orders (trade intensity and potential directional or bouncing behavior).
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Data from geographically distant exchanges may be asynchronous. We propose a synchro-

nization procedure to replicate an arbitrageur’s information processing lag. We implement

a two–regime shift incurred by transport delays of information to and from the exchange

servers, and we correct the timestamps for the exchanges’ processing time and matching

delays. The synchronization is effective at Exchange 1’s colocation server.

Our strategy does not hold overnight positions.5 This prevents hedging overnight gap

risk and tying up capital due to end-of-day margin requirements (Menkveld [44]). This also

avoids being forced to unwind positions due to margin squeezes (Brunnermeier and Pedersen

[11]). We use the exchanges’ appropriate trading fees and rebates to evaluate net arbitrage

performances, as well as colocation and trading platform expenses. Details on these costs

are provided in Section 5.

3.2. Relative spread

Arbitrage opportunities are identified by constructing a relative spread (SPRD) equal to

the ratio of the synthetic spread to the hedging instrument (currency futures):

γt ≡
S2,t/S1,t

rt
,

where γt is the observation of process {Γt} at time t. S1,t and S2,t are the cross-listed

stock values at Exchange 1 and Exchange 2, and rt is the exchange rate computed from the

currency hedging instrument’s value. We define simultaneous prices as prices from a unique

time frame of observation that considers the information transportation and treatment time

between trading venues, which is known as latency.

We denote

γShortt =
SBid2,t /S

Ask
1,t

rAskt

and γLongt =
SAsk2,t /S

Bid
1,t

rBidt

5In our application, we also considered not closing open positions at market close. But, because of the
fast mean-reversion time of the signals, and the fact that we stop opening new positions 15 minutes before
market close (see Appendix B for more practical considerations), overnight positions were scarce and small
in volume. This modification did not significantly modify the strategy’s performance, and is not further
analyzed.
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as the time series of the short and long relative spreads, where the exponents Bid and Ask

are the asset prices on the best bid and ask side. We will denote
{

Γit
}
, i ∈ {Short, Long}

as the processes with respective observations {γit}.

3.3. Market order arbitrage strategy

A potential arbitrage opportunity arises when the synthetic instrument is not in equilib-

rium with the observable exchange rate at time t, that is when:

γit 6= τ i, i ∈ {Short, Long},

where τ i is the equilibrium value expected for the mean-reverting processes. The arbitrage

opportunity ends when the equilibrium is restored at time t > t′, where t′ is defined as:

t′ ≡ arg min
s>t

{s | γis = τ i},

supposing that {Γit} are continuous. The synthetic is potentially overvalued at t when:

γLongt =
SAsk2,t /S

Bid
1,t

rBidt

> τLong.

In that case, since
{

ΓLongt

}
is assumed to be mean-reverting, the mispricing can be exploited

by shorting 1/τLong shares of Exchange 2 stock, taking a long position of one share in

Exchange 1 counterpart (which means that we short the synthetic), and taking a long position

in the currency future of the same value as the Exchange 2 stock position in order to hedge

our position, all transactions at time t. Then, we must revert the three positions at time t′

using market orders to lock the profit per Exchange 1 stock unit, Pt′ , in Currency 1 at time

t′:

Pt′ = 1
τLongrAskt′

(
SBid2,t − SAsk2,t′

)
+
(
SBid1,t′ − SAsk1,t

)
+

SBid2,t

τLongrAskt′

(
rBidt′

rAskt

− 1
)
− cLongt′ ,

where cLongt′ measures the trading costs in Currency 1 of all the transactions. Considering

that the foreign currency market is known for its high liquidity (Campbell and Huang [13]),

it is reasonable to assume a narrow bid-ask spread in currency futures, i.e., rAskt ≈ rBidt , and
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obtain the following approximation:6

Pt′ ≈
1

τLongrBidt′

(
SBid2,t − SAsk2,t′

)
+
(
SBid1,t′ − SAsk1,t

)
+

SBid2,t

τLongrBidt′

(
rBidt′

rAskt

− 1
)
− cLongt′ , (1)

where we have substituted rAskt′ for rBidt′ . Supposing a perfect hedge, we only buy a fraction

of the currency futures of nominal NFX (in Currency 2) that equals the amount invested in

Exchange 2 stock at time t. So only a fraction of the constant futures’ trading price is paid

on this cost-per-share basis. The trading costs paid for opening and closing our positions in

Currency 1 at time t′, cLongt′ , are approximated by:

cLongt′ ≈ 2c1 + 2 c2

τLongrBidt

+ 2 cFX
NFX

·
SBid2,t

τLong
,

where c1 and c2 are the constant per-share trading fees for market orders on Exchange 1

(in Currency 1) and Exchange 2 (in Currency 2) respectively, and cFX is the per-contract

trading costs (in Currency 1) with nominal NFX .

When the three instruments return to equilibrium, the definition of t′ implies that:

SAsk2,t′ /S
Bid
1,t′

rBidt′
= τLong ⇐⇒

SAsk2,t′

τLongrBidt′
= SBid1,τ ′ .

Using this last equality in equation (1), we get:

Pt′ ≈
SBid2,t

τLongrAskt

− SAsk1,t − c
Long
t′ ,

which means that to generate a positive profit at time t′, we at least need to have:

Pt′ > 0 ⇐⇒
SBid2,t

τLongrAskt

− SAsk1,t > cLongt′ ,

and we can rewrite this inequality as

γLongt

rBidt SBid1,t

SAsk2,t
·

SBid2,t

τLongrAskt

− SAsk1,t > cLongt′

6For example, the average bid-ask spread was around 1.23 bps for the CAD/USD futures, 0.82bps for
the EUR/USD futures, and 1.56bps for the JYP/USD futures at CME in 2015–2016, which results in
approximations precise up to 10−4. See CME Group (accessed February 22, 2023). The approximation is
necessary to eliminate terms observed at t′ in the development of nonparametric thresholds.
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⇐⇒ γLongt > τLong
rAskt

rBidt

·
SAsk2,t

SBid2,t
·
SAsk1,t + cLongt′

SBid1,t︸ ︷︷ ︸
>1 in usual market conditions

≡ κOvert . (2)

Equation (2) gives us a dynamic nonparametric upper threshold κOvert indicating when a

short position in the relative spread (SPRD) is profitable because it is overvalued considering

trading costs and bid-ask spreads when only market orders are used. This profitability holds

when there is a return to equilibrium to close the positions. The same logic with opposite

positions also holds when the synthetic is potentially undervalued, or when:

γShortt =
SBid2,t /S

Ask
1,t

rAskt

< τShort.

This results in a dynamic nonparametric lower threshold at which a long position in the

synthetic is profitable considering trading costs and bid-ask spreads when market orders are

used:

γShortt < τShort
rBidt

rAskt

·
SBid2,t

SAsk2,t
·
SBid1,t − cShortt′

SAsk1,t︸ ︷︷ ︸
<1 in usual market conditions

≡ κUndert , (3)

where cShortt′ ≈ 2c1 + 2 c2

τShortrBidt

+ 2 cFX
NFX

·
SAsk1,t

τShort
. Since all positions are closed before end of

day, we do not include shorting costs in both cLongt′ and cShortt′ . Once again, the profitability of

the strategy holds when there is a return to equilibrium to close the long position in SPRD.

From equations (2) and (3), we have a set of two signals, {γLongt } and {γShortt }, where

γLongt > γShortt ∀t, =⇒ τLong > τShort in usual market conditions (the best bid price is lower

than the best ask price in the same LOB) and with their respective dynamic nonparametric

thresholds, {κOvert } and {κUndert }, where κOver > τLong > τShort > κUndert , ∀t. The arbitrage

strategy can be summarized as follows:

• When γLongt crosses κOvert from below: short 1/τLong shares of S2, long S1 and long

the currency future for the same value as the one invested in Exchange 2 stock,

• When γShortt crosses κUndert from above: long 1/τShort shares S2, short S1 and short

the currency future for the same value as the one invested in Exchange 2 stock,
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• Close the positions when the equilibrium is restored at t′,

• Repatriate the profits generated at Exchange 2 to Exchange 1 whenever they cross

NFX .

Hence, the two series {κUndert } and {κOvert } form a bandwidth around {Γt} that needs to be

respected between Exchange 1 and Exchange 2 so that no arbitrage opportunities can occur

with market orders. Any violation in these conditions, and a high-frequency arbitrageur can

potentially profit from the price deviation.

The strategy does not open a new position as long as the previous one has not been closed.

Considering that the elapsed time between opening and closing a position, i.e., t′ − t, can

be large, risk management procedures are put in place to minimize the effect of potentially

long mean-reversion periods. See Appendix B for further details.

3.4. Limit order arbitrage strategy

We now switch to limit orders, as paying the bid-ask spread on the three instruments can

be very costly. The strategy remains the same as with market orders. The main difference is

in the profitability equation used to find entry thresholds. The relative spread is potentially

overvalued when:

γShortt =
SBid2,t /S

Ask
1,t

rAskt

> τShort.

In that case, we short SPRD at time t and revert the three positions when the equilibrium

of {ΓShortt } is restored at time t′. This results in a profit in Currency 1 of:

Pt′ = 1
τShortrAskt′

(
SAsk2,t − SBid2,t′

)
+
(
SAsk1,t′ − SBid1,t

)
+

SAsk2,t

τShortrAskt′

(
rAskt′

rBidt

− 1
)
− c̃Shortt′ (4)

per Exchange 1 stock, where c̃Shortt′ has the same formulation as cShortt′ , but instead of c1 and

c2 being the per-share trading fees for market orders, they are now per-share trading fees (or

trading rebates) for using limit orders.

Employing the same logic as previously used to obtain the nonparametric entry thresholds

κOvert and κUndert , we find that the dynamic upper threshold indicating a profitable short
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position in our relative synthetic spread using limit orders is given by:

γShortt > τShort
rBidt

rAskt

·
SBid2,t

SAsk2,t
·
SBid1,t + c̃Shortt′

SAsk1,t︸ ︷︷ ︸
multiplicative term

≡ κ̃Overt , (5)

and the dynamic lower nonparametric threshold for long positions in our relative synthetic

spread using limit orders is given by:

γLongt < τLong
rAskt

rBidt

·
SAsk2,t

SBid2,t
·
SAsk1,t − c̃

Long
t′

SBid1,t︸ ︷︷ ︸
multiplicative term

≡ κ̃Undert . (6)

Notice that the term multiplying the equilibrium level in equation (2) is always greater than

the multiplicative term in equation (5). This means that arbitrage opportunities are available

at a lower level of γShortt with limit orders, and thus should be more frequent. This is true

since limit orders greatly reduce the costs related to the strategy. The same observation can

be made for the nonparametric thresholds for long positions of equations (3) and (6): Limit

orders push the entry thresholds to a more easily attainable level compared with market

orders.

From equations (5) and (6), we have a set of two signals, {γShortt } and {γLongt } with their

respective dynamic nonparametric thresholds, {κ̃Overt } and {κ̃Undert }. The arbitrage strategy

can be summarized as follows, supposing the use of fractional shares:

• When γShortt crosses κ̃Overt from below: short 1/τShort shares of S2, long S1 and long

the currency future for the same value as the one invested in Exchange 2 stock,

• When γLongt crosses κ̃Undert from above: long 1/τLong shares S2, short S1 and short

the currency future for the same value as the one invested in the Exchange 2 stock,

• Close the positions when the equilibrium is restored at t′,

• Repatriate the profits generated at the Exchange 2 to the Exchange 1 whenever they

cross NFX .

In the strategy’s implementation, only round lots are used to reduce trading costs. See

Appendix B for further details.
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3.5. Strategy at the portfolio level and aggregate hedging

Consider a universe Ω of N cross-listed stocks on Exchange 1 and Exchange 2, |Ω| = 2N .

We wish to execute the cross-listed stocks arbitrage strategy defined in the previous sections

on every pair contained in that universe. This extension is applicable to both market and

limit orders, and is important for the application of the two previous strategies.

Due to the development of our strategy, aggregating every position in a single portfolio

offers a built-in hedging effect against movements in the exchange rate whenever positions

are open in both {ΓShortt } and {ΓLongt }, because the aggregated position in Exchange 2’s

market is reduced compared to the sum of the absolute position in every independent pair.

The hedge can be optimized with the use of currency futures, and this section explores that

extension.

Let us define ν(n)
1,t , ν

(n)
2,t ∈ R, n ∈ {1,2, . . . ,N} the size of the position in the cross-listed

stock n in both markets at time t. A position is long when the size is positive, short when

the size is negative, and the size is zero when no position is open in the asset. Let us also

define the total non-repatriated profits, in their respective currency, generated at Exchange

2 and the FX Exchange at time t respectively by G2,t, GFX,t ∈ R. Hence, the portfolio’s

exposures in Currency 1 at Exchange 1, Exchange 2 and FX Exchange at time t are given

by:

V1,t =
N∑
n=1

ν
(n)
1,t S

(n)
1,t ,

V2,t =
N∑
n=1

ν
(n)
2,t
S

(n)
2,t

rt
+ G2,t

rt
,

VFX,t =
ν∗FX,tNFX

rt
+GFX,t,

where ν∗FX,t ∈ R is the optimal position size in the currency futures at time t that we are

trying to obtain. The total value of the portfolio in Currency 1, Vt, is given by:

Vt = V1,t + V2,t + VFX,t.
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By taking a position in the currency futures that is the inverse of the position in Exchange

2, we get:

VFX,t = −V2,t ⇐⇒ ν∗FX,t = −rt
V2,t +GFX,t

NFX

, (7)

which results in a neutral aggregated position in Exchange 2’s market: V2,t + VFX,t = 0.

The portfolio’s value is now simply given by Vt = V1,t =⇒ ∂Vt
∂rt

= ∂V1,t

∂rt
= 0, assuming the

mathematical independence between Exchange 1 stocks’ prices and the exchange rate. In the

universe Ω, a portfolio invested in cross-listed stock pairs following the proposed strategy for

every pair achieves an optimal hedge against currency risk at any time t when that portfolio

has a neutral aggregated position in Currency 2. If the aggregated position in Exchange 2

stocks is not neutral, a position of ν∗FX,t contracts can be taken in the currency futures to

get a perfect hedge.

The hedging of the portfolio is done by rebalancing the position in the currency futures to

the optimal value, if necessary, whenever positions are open or closed in pairs of cross-listed

stocks, compared with the pairwise strategy which requires taking the inverse of the position

taken at Exchange 2 at every arbitrage opportunity.

3.6. Generalization of the strategy beyond two stock exchanges and

a single exchange rate

The proposed strategy and the formulated arbitrage signals can be applied to more

general trading environments. Indeed, the arbitrage signals {Γt} defined in this section can

be computed for any cross-listed asset pair between any two exchanges and any currency for

both assets (shared or not) without any modification. The global tradable universe for which

the proposed strategy can be applied to is thus quite large, as discussed in the introduction.

Different additional trading environments where the strategy can be applied are presented.

The first additional trading environment would be when there are two exchanges and a

single currency for the cross-listed asset’s pair. This can be done by setting rt = rBidt =

rAskt = 1, ∀t and ignoring the currency hedging instrument. The signals are thus solely
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based on the equilibrium between the two microstructures, which corresponds to the model

of Budish et al. [12]: Whenever a sudden jump occurs in one of the two stocks, the correlation

between them breaks down and an arbitrage opportunity potentially opens up. The arbitrage

signals proposed in this article consider both the closing conditions and the trading costs

associated with sending orders to seize the arbitrage opportunity.

The second trading environment would be when there are more than two exchanges

and a single currency for the cross-listed assets. Once again, this can be done by using

the same constraint on rt and ignoring currency hedging as previously discussed. But a

second constraint needs to be put in place to select which arbitrage opportunity to capture,

whenever multiple opportunities occur at the same time for the same asset and exchange.

This is necessary since each asset can be part of more than two exchanges, so multiple cross-

listed pairs can contain the given asset. In that case, only the cross-listed pair with signal

{Γt} that is the furthest from equilibrium τ is executed (i.e., the pair with the maximum

expected profitability). This relates closely to the model of Wah [60], but the author did not

consider latency, inventory management, nor any trading cost.

The final case would be when there are more than two exchanges and multiple exchange

rates hosted by any number of forex exchanges. The trading signals {Γt} can be computed

for every combination of cross-listed asset pair and their applicable exchange rate. As in the

previous case, multiple arbitrage opportunities can happen at the same time for the same

asset at a single exchange. Again, only the pair with signal {Γt} that is the furthest from its

equilibrium τ is executed for that particular asset. To the best of our knowledge, this has

not been studied in the literature yet.

Overall, by adding simple constraints to the proposed strategy, either on the observable

exchange rate rt, currency hedging, or on the selection of arbitrage opportunities computed

by our signals {Γt}, the strategy can be applied to any asset pair.
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4. Latencies, arbitrage costs, and arbitrage risks

4.1. Latencies and arbitrage costs

A factor of interest in this contribution is latency. In trading terms, latency refers to

the time it takes for an agent to interact with the market. We closely follow the measure of

latency proposed by Hasbrouck and Saar [36], which is based on three components: the time

it takes for a trader to learn about an event, generate a response, and have the exchange

act on that response (see also Foucault and Moinas [28]). We split that definition into two

separate quantities so that we can have more granularity on the impact of latency on the

high-frequency trading strategies.

The first quantity of importance is the latency of a message from any exchange to Ex-

change 1, which includes the one-way transportation time of the information to Exchange

1, and the information treatment time needed by the agent’s servers colocated at that last

exchange. The second quantity of importance is the latency of a message from Exchange

1 to another exchange, which is comprised of the one-way transportation time of informa-

tion from Exchange 1 to the receiving exchange, and the matching engine delay of that last

exchange.

Information treatment time refers to the timespan required to receive and analyze in-

coming information from the exchanges, followed by the decision to trade or not. Exchanges

server procedure considers information reception at the exchange gates, LOB positioning or

matching of an incoming limit order (with the LOB) and issuing traders’ confirmation to

the server gates. Round-trip latency measures the total latency delay for a message between

two exchanges.

A two-regime model associated with regular and extreme market conditions based on

quote and trade message intensity is applied. Regime shifts, from the regular state to the

extreme one, are often due to bursts in the events stream, phenomena well documented

in the literature (Dixon et al. [22]; Friederich and Payne [30]; Menkveld [45]; Shkilko and

Sokolov [55]). To help in recreating this behavior, a latency regime variable depending on

51



the number of messages a certain exchange received in the last millisecond on a per–asset

basis is used. This quantity is a good proxy of an exchange’s server traffic, which has a

positive relationship with computational delays occurring during the information treatment

time and the matching engine time components of latency. The regular regime generates a

minimal, baseline value of the latency that exists between two exchanges and a bonus on

that minimal latency is added for the extreme regime.

The latency regime variable for a given asset remains in its regular state up to a certain

static threshold for the number of messages in a single millisecond for that asset, which is

set as the 95th percentile of its empirical distribution. Let’s define qi95% as the 95th percentile

of the empirical distribution of the number of messages in one millisecond for asset i, and

define qij the number of messages during the millisecond preceding and ending at message

j ∈ [1,N i] where N i is the total number of messages for asset i during the full period. Let’s

also define Lij ∈ {Regular, Extreme} the latency regime of asset i at message j. Then, its

value is computed as follows:

Lij =


Regular, if qij < qi95%

Extreme, if qij ≥ qi95%

∀i,j.

By adding the corresponding latency to the original exchange timestamp of every message,

the data feeds of geographically distant exchanges can be approximately synchronized into

a single point of observation (e.g., Exchange 1) as they would be in practice because of the

natural and technological limits of information propagation. The methodology emulates that

relativistic effect so that what is observed by the trading algorithm at any point is a past state

of markets. The same idea applies when the algorithm sends an order to a given exchange.

The corresponding latency is added so that the agent does not interact immediately with

that exchange. This makes it possible to study the influence of latency on the performance

of high-frequency trading strategies.
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4.2. Arbitrage risks

4.2.1. Execution risk.

The choice between limit and market orders relies, in part, on the difference between non-

execution risk and execution risk (Brolley [10]; Dugast [23]; Kozhan and Tham [39]; Liu

[42]; Mavroudis [43]). To empirically solve this trade-off, we first evaluate our algorithm’s

performance using market orders exclusively. As we will see, using only market orders leads

to a negative economic value with our data in the sense that the cost of immediacy (conceding

the bid-ask spread) cannot be borne by the arbitrageur in the vast majority of trades. This

high cost also results in a very low number of potential arbitrage opportunities, since the

divergence of SPRD is rarely large enough to compensate it. We then constrain our algorithm

to limit orders, except for the liquidation of positions to avoid overnight exposures. We also

use marketable limit orders (i.e., liquidity taking limit orders at the first level) to offset

unexecuted legs. There remain two additional risks.

4.2.2. Non-execution risk.

We evaluate non-execution risk costs by managing the LOB queuing priorities. We mitigate

the risk of non-execution by dynamically keeping our limit orders to the LOB’s level one. This

is implemented conditional on the persistence of an expected profitable arbitrage. Otherwise,

we liquidate positions, if any, by issuing marketable limit orders (Dahlström and Nordén [19]).

4.2.3. Mean-reversion risk.

Mean-reversion risk arises after initial positions are taken. It materializes when the circuit

breaker timer is triggered (see Appendix B for details). All arbitrage legs are then liquidated

via marketable limit orders. As we will see, this risk is very low in our data since the processes

{ΓShortt } and {ΓLongt } are stationary for almost all stocks and trading days.
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5. Data, synchronization, TAQ emulator and trading

costs

5.1. Data

We use LOB level one data and trade data that we obtained from: the TAQ NYSE

OpenBook and the TAQ NYSE Trades historical data timestamped to the microsecond,

the CME Market Depth FIX Canadian Dollar Futures historical data timestamped to the

nanosecond, and Trades and Quotes Daily historical data from TMX Group timestamped

to the nanosecond. All the data sets were timestamped at their respective exchange, and

span from January 7, 2019 to June 28, 2019, inclusively. We only select dates where the

three exchanges were open, meaning that we remove every holiday from our sample.7 The

timestamps are truncated and rounded to the nearest millisecond above so that potential

microscopic errors in the timestamps do not affect the results.

Overall, there are 120 trading days in our data set. We have access to 74 pairs of cross-

listed stocks that were listed on both the TSX and the NYSE during at least two weeks of

that period. Pairs where one of the stocks got delisted from an exchange at any point are

kept in the sample, but the strategy is only applied to periods where both stocks of the pair

were listed and active. All cross-listed S&P/TSX 60 stocks are present in our sample during

the six months. Table 11 of Appendix A describes every available pair and Table 12 includes

their aggregated statistics during the period of analysis.

We use the quarterly CAD/USD futures listed on CME: 6CH9 expiring March 19, 2019;

6CM9 expiring June 18, 2019; and 6CU9 expiring September 17, 2019. We do not use

monthly futures because of their smaller open interest. A continuous futures contract is cre-

ated by concatenating the three futures’ data and by adjusting the LOB level one and trade

prices of the consecutive contracts so that no jumps are artificially created. The concatena-

tion dates are determined based on the daily transaction volume of consecutive futures. That

7TSX: February 18: Family Day; April 19: Good Friday; May 20: Patriot’s Day. NYSE and CME: January
21: Martin Luther King Jr. Day; February 18: President’s Day; April 19: Good Friday; May 27: Memorial
Day.
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is, whenever the futures contract with the furthest expiration date generates a significantly

higher daily transaction volume than its predecessor and remains more actively traded, we

switch to those futures’ trades and quotes for the continuous futures used in the strategy. In

order to have better hedging capabilities, we employ the Micro CAD/USD futures contract

with a nominal of C$10,000, which we approximate by dividing the continuous futures’ prices

by 10, because of its nominal of C$100,000.

5.2. Data synchronization

The strategy is executed each week, from Monday to Friday, starting at 9:30 a.m. and

ending at 4:00 p.m. Eastern Time when the three exchanges are all open to continuous

trading. Both TSX and NYSE are in the Eastern Time zone, but CME is in the Central

Time zone, one hour behind. Hence, we add an hour to the timestamps of CME data to

synchronize the three exchanges’ clocks.

5.3. TAQ emulator

The methodology and the different trading strategies are implemented in Deltix QuantOf-

fice, a trading software suite used by multiple traders, which brings them closer to real trading

practice. The Deltix trading suite allows to replay the synchronized events of the three stock

markets (level one LOB and trades) as they were obtained in streaming by traders. By

handling these events and following orders position in the queues, the real-time performance

of the strategies can be computed as realistically as possible. This implementation allows

trading fees and rebates, latency, and other trading risks and costs all presented above. It

confirms the order status (creation, cancelation, or execution) just as it would have hap-

pened in streaming trading while considering market frictions and ever-changing market

states. Standard reports, such as a trades and performance reports, are generated at the end

of a strategy’s execution. These are used to compute our results.

Moreover, the individual and aggregated positions can be managed, and the respective

Profit and Loss Reports (PnL) can be calculated altogether with performance statistics.

55



These PnLs represent the economic value of the arbitrage opportunities. Using their perfor-

mance as a benchmark, the economic impact of latency risk can be evaluated by varying the

aforementioned latency parameters. The general rules of the trading and quoting emulator

on L1 data, and information on how executions and non-executions occur are detailed in

Appendix C.

5.4. Empirical latencies and other costs

Table 1 documents the 2019 latency costs, trading costs, rebates, colocation costs, and

proprietary data feed (including the trading platform) costs used in this study. Orders and

positions are managed at TSX’s colocation premises in Toronto (TSX [59]). Information

comes from TSX, NYSE, and CME. Asynchronicities are addressed by adjusting the TSX

timestamps based on round-trip transportation time, arbitrageur information processing

delays, and exchanges matching engine delays presented in Table 2. Table 1 also documents

the fees for the liquidity–removing trades and rebates for the liquidity–providing trades.

Colocation costs in Toronto are considered in the monthly portfolio performance estimations,

as well as proprietary data feeds. Colocation enables some trading firms to receive updates

from the exchange faster than other traders who do not pay for this service.

For both latency regimes, the latency to and from TSX is set as the sum of its compo-

nents’ interval center found in Table 2, for the respective market condition. Latencies are

rounded up to the closest integer. Table 3 details the empirical latencies used. Following the

methodology introduced in Section 4, the estimation of the empirical distribution of mes-

sages per millisecond used a random sample of six weeks, where each sampled week came

from a different month contained in our data.

6. Empirical results

The empirical results are presented in two steps. First, the trading strategy performance

of Budish et al. [12] applied to our data is computed.8 The goal of this exercise is to isolate

8See Appendix D for the analysis of Wah [60].
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Table 1. Arbitrage costs

Definition Description Measurement In Deltix

Information
transportation time
between exchanges

Transportation time details:
Toronto – Chicago:

Fiber paths

Toronto – New York:
Microwave path (regular)

Fiber path (extreme situations)

See Table 2 Adjusted raw dataset
timestamp fed to Deltix

Information treatment time

Timespan required to
receive and analyze
incoming information
from the exchanges,

followed by the
decision to trade or not

See Table 2 Adjusted raw dataset
timestamp fed to Deltix

Exchange trading fees

TSX member trading fees
per share1

NYSE Type A stocks
per share2

CME Globex C/US FX futures
per contract3

Removing: $0.0015
Providing: ($0.0011)

Removing: $0.00275
Providing: ($0.00120)

$100k notional value: $0.32
$10k notional value (e-micro): $0.04

Applied to matched
orders

Colocation cost
Colocation with

exchange connectivity
rates

Half cabinet (21U,
3 kw maximum): $5,250 monthly
Initial set-up fee: $5,250 one-time

Included in monthly
portfolios performance

Proprietary data feed
TSX & Venture level 1

Distribution
Trading use case license

$4,000 monthly Included in monthly
portfolios performance

1 https://www.tsx.com/resource/en/1756/tsx-trading-fee-schedule-effective-june-4-2018-en.pdf
2 https://www.nyse.com/markets/nyse/trading-info/fees
3 https://www.cmegroup.com/company/clearing-fees.html

the importance of considering latencies, execution risk, and trading costs when evaluating the

benefits of HFT arbitrage. It also serves as a benchmark to compare our trading strategies

and test the profitability of previously proposed arbitrage on more recent data.

Second, the results from our strategies are presented. It is shown that arbitrage with

market orders is not profitable, while arbitrage with limit orders provides net profits when

latencies, rebates, exchange fees, and non-execution risk are considered. Other conclusions

are discussed.
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Table 2. Latencies1

Market
condition

Exchanges
from–to

Transportation
time

Information
treatment time

Exchanges
from–to

Transportation
time

Exchange
server

Round-trip
latency

Regular
TSX–TSX 5 µs 10–70 µs TSX–TSX 5 µs 100–300 µs 120–380 µs
NYSE–TSX 2.4 ms 10–70 µs TSX–NYSE 2.4 ms 100–300 µs 4.91–5.17 ms
CME–TSX 5 ms 10–70 µs TSX–CME 5 ms 1–5 ms 11.01–15.07 ms

Extreme
TSX—TSX 5–10 µs 200–500 µs TSX–TSX 5–10 µs 5–10 ms 5.21–10.52 ms
NYSE–TSX 4.8–9.6 ms 200–500 µs TSX–NYSE 4.8–9.6 ms 5–10 ms 14.80–29.7 ms
CME–TSX 5–10 ms 200–500 µs TSX–CME 5–10 ms 50–100 ms 60.20–120.50 ms

1Latencies are obtained following discussions with a major Canadian financial institution
trading actively in Canada and in the United-States. ms: millisecond; µs: microseconds.

Table 3. Latencies used when testing the strategies, depending on the latency regime, the
origin of the message and the exchange where the message is sent.

Latency regime Exchange
from–to Latency Exchanges

from–to Latency

Regular

TSX–TSX

NYSE–TSX

CME–TSX

1 ms

3 ms

6 ms

TSX–TSX

TSX–NYSE

TSX–CME

1 ms

3 ms

8 ms

Extreme

TSX–TSX

NYSE–TSX

CME–TSX

1 ms

8 ms

8 ms

TSX–TSX

TSX–NYSE

TSX–CME

8 ms

15 ms

83 ms

6.1. Budish, Crampton and Shim’s strategy

This contribution examines arbitrage opportunities between the two largest financial

instruments tracking the S&P 500 index: the SPDR S&P 500 exchange-traded fund (ticker

SPY) and the S&P 500 E-mini futures contract (ticker ES), using millisecond-level direct feed

data from different stock exchanges and CME. The application is consequently very different

from arbitrage trading of the same stock in two different exchanges, but some comparisons

with our research are important, given that this article suggests strong modifications to

the functioning of continuous HFT. The authors first demonstrate that the high correlation
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between the two securities observed from the bid-ask midpoints breaks down at very high-

frequency. This correlation breakdown creates technical arbitrage opportunities estimated

at approximately US$75 million of gross profit per year for the two securities alone on all

markets where the SPY is traded (not only at the NYSE). Their period of analysis includes

many high volatility periods such as the 2007-2009 financial crisis. For a more regular year

like 2005, the total gross profit is US$35 million.9 Verifying from Bloomberg that the share of

the NYSE for this market is 25%, the annual gross profit for 2005 is US$8.75 million for the

NYSE alone. These numbers represent gross profits because trading fees are not considered,

nor are latencies and exchange fees. Only bid-ask spread costs are computed.

The above numbers come from the following market environment: There is no arbitrageur

entry in the market over the period considered and a single trader observes variations of the

stock price with zero-time delay. There is also zero latency in sending orders and receiv-

ing updates from the exchanges. This is a pure continuous trading environment without

asymmetric information and inventory costs, where open positions at an exchange can be

immediately closed at another exchange with a different asset.

The strategy of Budish et al. [12] is first implemented with their theoretical settings and

minor modifications to adapt it to our data. In that sense, prices at NYSE are continuously

transferred to CAD following the CAD/USD futures observed at CME. In addition, we use

two hypotheses employed in their model: There is an absence of latency and open positions

at an exchange can be immediately closed at another exchange, resulting in a trade. Table

4 presents the results obtained on our data with the arbitrage strategy presented in Online

appendix A.2 of their article with market orders only. The second column of Table 4 presents

the results that are obtained following as closely as possible their theoretical framework. In

the next two columns, latency is considered.

We observe, in column 2 of Table 4, that gross profit is limited to C$1.4 million for six

months of continuous trading, or about C$2.8 million for a year, which is below the C$10.60

million (US$8.75 million) for the low volatility year of 2005 with their data. Many factors

9The CBOE Volatility Index (VIX) of the average closing price was equal to 12.81 in 2005, 32.69 in 2008,
and 15.39 in 2019.
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Table 4. Budish et al. [12] model on our data

1 2 3 4

Model Budish Original Budish Original
w/ 1x Latency

Budish Original
w/ 3x Latency

Latency multiplier 0 1 3
Pair selection No No No
Gross profit $1,421,685.23 $998,328.25 $1,116,673.07

Loss $0.00 -$11,492.18 -$18,696.78
Trading fees -$75,167.39 -$57,973.82 -$67,232.10

Trading rebates $0.00 $0.00 $0.00
Total net profit $1,346,517.84 $928,862.25 $1,030,744.19

Mean daily net profit $11,811.56 $8,147.91 $9,041.62
Median daily net profit $1,968.76 $1,189.76 $1,219.35

Mean daily net profit per pair, per day $110.95 $76.54 $84.93
p− value Kolmogorov-Smirnov test1 1.00 0.65

1st most profitable day
(date - profit)

2019/01/28
$184,196.22

2019/01/28
$121,108.28

2019/01/28
$127,578.22

5th most profitable day
(date - profit)

2019/01/30
$66,060.79

2019/01/24
$47,904.13

2019/01/24
$50,816.97

1st most unprofitable day
(date - profit)

2019/06/24
-$161.55

2019/06/24
-$450.32

2019/06/03
-$2,222.67

5th most unprofitable day
(date - profit)

2019/05/31
-$77.85

2019/06/27
-$340.18

2019/06/24
-$681.72

Average time in trade2 00:00.0 00:00.0 00:00.0
# Net profitable trades 31,762 23,313 29,226

# Net unprofitable trades 1,176 1,336 1,817
# Trades 32,938 24,649 31,043

% Net profitable trades 96.43% 94.58% 94.15%
Average volume per trade 345.63 352.77 326.16

Average net profit per trade $40.88 $37.68 $33.20
Average profit per net profitable trades $42.75 $40.75 $36.32

Average profit per net unprofitable trades -$7.97 -$15.91 -$16.99
1 H0 : F (x) ≤ G(x), H1 : F (x) > G(x). F (x), G(x) = cumulative distribution functions of
daily net profits from sample 1 and sample 2, respectively: p-value of 1.00 for no latency v.s.
1x latency and 0.65 for 1x latency v.s. 3x latency.

2 HH:MM:SS.U – hours:minutes:seconds:fractions of a second.

can explain the difference. The main difference is mostly related to the average daily trading

activity of the assets. They document 800 daily arbitrage opportunities in their data, while

in our data we have 200 daily arbitrage opportunities with their strategy for the 74 stocks.
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Introducing trading fees does not significantly affect the profitability in the second col-

umn, but some opportunities do not cover the trading costs. The main difference in prof-

itability is obtained when latency is introduced. This effect is observed in the next two

columns where the total net profitability drops by more than 30%. The daily net profitabil-

ity is statistically greater when latency is ignored (see p− values). This is explained by the

fact that true cross-markets occasions observed at a single geographical point last a shorter

amount of time, and some opportunities are now nonexistent compared to a latency–free

environment, thus decreasing the number of trades by around 25%. Captured arbitrage op-

portunities are also less profitable. Comparing the net profitability of column 2 with that of

column 3, it can observed that profits were indeed inflated in column 2 because of a simplified

market environment.

Another hypothesis was made in the strategy of Budish et al. [12]: Exact opposite posi-

tions in different exchanges count as a trade and result in a null inventory in both accounts.

The next table, Table 5, does not use this simplified environment, meaning that positions

can only be closed with an opposite position at the same exchange with the same stock. The

second column does not include latency. The next two columns do.
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Table 5. Budish et al. [12] model on our data with practical hypotheses

1 2 3 4

Model Budish Practical
w/o Latency

Budish Practical
w/ 1x Latency

Budish Practical
w/ 3x Latency

Latency multiplier 0 1 3
Pair selection No No No
Gross profit $779,282.29 $441,466.25 $666,886.91

Loss -$789,845.78 -$456,295.76 -$695,876.53
Trading fees -$11,686.80 -$6,957.61 -$11,089.11

Trading rebates $0.00 $0.00 $0.00
Total net profit -$22,250.29 -$21,787.12 -$40,078.73

Mean daily net profit -$195.18 -$191.12 -$351.57
Median daily net profit -$5.11 -$44.00 -$49.72

Mean daily net profit per pair, per day -$1.83 -$1.80 -$3.30
p− value Kolmogorov-Smirnov test1 0.18 0.80

1st most profitable day
(date - profit)

2019/06/27
$2,473.72

2019/06/28
$2,043.65

2019/06/28
$2,158.73

5th most profitable day
(date - profit)

2019/06/20
$1,219.50

2019/06/21
$292.03

2019/06/20
$233.39

1st most unprofitable day
(date - profit)

2019/05/15
-$9,698.68

2019/05/15
-$5,221.17

2019/06/03
-$7,570.36

5th most unprofitable day
(date - profit)

2019/06/03
-$1,718.65

2019/05/21
-$1,294.97

2019/06/05
-$2,132.83

Average time in trade2 126.06:12:08 127.12:57:37 127.14:15:11
# Net profitable trades 974 702 961

# Net unprofitable trades 958 708 987
# Trades 1,932 1,410 1,948

% Net profitable trades 50.41% 49.79% 49.33%
Average volume per trade 585.56 477.63 551.30

Average net profit per trade -$11.52 -$15.45 -$20.57
Average profit per net profitable trades $796.17 $625.62 $690.11

Average profit per net unprofitable trades -$832.69 -$651.09 -$712.53
Total Short Inventory Remaining $354,467,602.46 $276,237,299.21 $309,494,680.19
Total Long Inventory Remaining $271,097,081.28 $211,074,656.88 $236,477,971.72

1 H0 : F (x) ≤ G(x), H1 : F (x) > G(x). F (x), G(x) = cumulative distribution functions of
daily net profits from sample 1 and sample 2, respectively: p-value of 0.18 for no latency v.s.
1x latency and 0.80 for 1x latency v.s. 3x latency.

2 HH:MM:SS.U – hours:minutes:seconds:fractions of a second.

As can be seen in Table 5, the strategy does not generate any net profits when the

hypothesis of a trade occurring when exact opposite positions are taken in two different

exchanges is abandoned. The net profitability is even more statistically reduced when latency

is considered. Column 3 of Table 5 would be the closest results obtained by a HFT firm using
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the strategy during our data period. Another salient point is the very large accumulated

inventory that needs to be managed. This is attributable to the fact that price discovery

primarily occurs on the Canadian exchange (Chouinard and D’Souza [18]; Eun and Sabherwal

[25]). Coupled with a positive directional market like in our period, the jumps in prices

occurred on the bid side of the book for the Canadian stock first most of the time.10 This

resulted in taking the same short TSX positions and long NYSE positions repeatedly, thus

rarely closing previous positions to generate a trade. This shows the importance of inventory

management and currency hedging in an international arbitrage context. Overall, by not

considering practical trading aspects such as latency or real market functioning, Budish et al.

[12] inflated latency arbitrage profitability.

6.2. Market order–based strategy

Using the Augmented Dickey-Fuller test for stationarity, we obtain that both {γit}, i ∈

{Short, Long} time series from January 7, 2019 to June 28, 2019 are stationary for almost

all stocks in all trading days where the three exchanges are open at the same time, at a

p − value of 1%. Details are presented in Table 13 of Appendix A. Given that these time

series are stationary and exhibit strong mean-reversion, τ i can be defined as the equilibrium

level of the mean-reverting processes
{

Γit
}
.

The main results from the market order strategy are presented in Table 6. This strategy

is not profitable because it is too expensive to obtain enough liquidity and orders are subject

to execution risk (Loss row). Thus, following our theoretical strategy with market orders

is hazardous, especially when latency is considered. Indeed, we also observe, in columns

three and four, that increasing latency reduces the net profitability even more and this

effect is largely significant in both columns (significant p− values). The limited number of

trades reflects that TSX and NYSE are very well integrated, because the signals {γShortt }

and {γLongt } rarely cross their respective thresholds {κUndert } and {κOvert }, resulting in a low

amount of potential arbitrage opportunities for a HFTer.

10The only exception is TRQ, which dropped by 25% in our period, exhibiting an exact opposite trading
behavior.
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Table 6. Results with our market orders–based strategy

1 2 3 4

Model Market Orders
w/o Latency

Market Orders
w/ 1x Latency

Market Orders
w/ 3x Latency

Latency multiplier 0 1 3
Pair selection No No No
Gross profit $38,660.35 $41,508.69 $41,620.24

Loss -$58,361.15 -$96,751.29 -$128,442.17
Trading fees -$17,890.26 -$22,121.43 -$31,985.04

Trading rebates $0.00 $0.00 $0.00
Total net profit -$37,591.06 -$77,364.03 -$118,806.97

Mean daily net profit -$329.75 -$678.63 -$1,042.17
Median daily net profit -$18,24 -$207.53 -$595.92

Mean daily net profit per pair, per day -$4.46 -$9.17 -$14.08
p− value Kolmogorov-Smirnov test1 1.00 1.00

1st most profitable day
(date - profit)

2019/03/06
$354.30

2019/05/31
$21.63

2019/05/31
$51.54

5th most profitable day
(date - profit)

2019/06/21
$196.92

2019/06/17
-$2.54

2019/04/29
-$94.49

1st most unprofitable day
(date - profit)

2019/01/30
-$4,053.94

2019/01/16
-$4,682.15

2019/05/16
-$4,692.79

5th most unprofitable day
(date - profit)

2019/03/26
-$2,095.20

2019/01/29
-$3,504.39

2019/01/28
-$3,785.02

Average time in trade
(excl. futures contracts) 00:06:34.41 00:06:37.83 00:04:42.15

Average time in trade2
(incl. futures contracts) 02:12:28.60 00:59:30.36 00:57:59.53

# Net profitable trades 1,284 1,092 1,590
# Net unprofitable trades 2,130 2,927 4,814

# Trades 3,414 4,019 6,404
% Net profitable trades 37,61% 27.17% 24.83%

Average volume per trade 1,529.78 1,592.15 1,449.57
Average net profit per trade -$11.01 -$19.25 -$18.55

Average profit per net profitable trades $26.46 $32.92 $21.99
Average profit per net unprofitable trades -$33.60 -$38.71 -$31.94

1 H0 : F (x) ≤ G(x), H1 : F (x) > G(x). F (x), G(x) = cumulative distribution functions of
daily net profits from sample 1 and sample 2, respectively: p-value of 1.00 for no latency v.s.
1x latency and 1.00 for 1x latency v.s. 3x latency.

2 HH:MM:SS.U – hours:minutes:seconds:fractions of a second.
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6.3. Limit order–based strategy

The most interesting results from this paper are from the limit order strategy, where

arbitrageurs mainly provide liquidity to the markets. In Table 7, we observe a gross profit of

C$9.6 million with pairs of cross-listed stocks selected with supervised machine learning from

the universe of 74 possible pairs (see Appendix C), and for six months of trading. Adding

latency in the next columns affects the strategy’s profitability by reducing the net profits

by about 25%. However, the percentage of net profitable trades is rather constant between

the three columns. The profitability (unprofitability) between days of trading is also quite

stable. The average volume per trade is quite low and stable and is similar to that of Budish

et al. [12], as can be seen in the second column of Table 5. Larger volumes with higher

probability of non-execution risk could have been used, but we choose to be conservative

as to minimize the impact on the price discovery process. The annual colocation cost and

proprietary data feed total cost in Toronto is C$116,250 (see Table 1 for the cost breakdown).

Consequently, international arbitrage of cross-listed stock is profitable with the proposed

limit order strategy, even when all latencies, costs and risks are considered.

Therefore, the main question is the following: Does a net annual profit of about C$8

million (US$6 million, column 3 Table 7 with real latencies and all costs) seem reasonable for

this international arbitrage activity, which can be managed by one trader in a large trading

firm? Note that the original model of Budish et al. [12] with market orders generated a gross

annual profit of US$8.75 million from the NYSE in 2005 (C$10.60 million), in a year where

the VIX was comparable to that of 2019. But their model made only about C$2 million

gross annual profits with our data in 2019, because the market activity is much less intense

on the selected cross-listed stocks than on their two very liquid financial assets. Moreover,

as they claim, their trading model is quite simple and they predict that a more sophisticated

one should generate higher profits, which is demonstrated here in an international context

with limit orders.

To remove the possibility of backtest overfitting (Bailey et al. [3]), only one set of param-

eters for the proposed strategies has been tested (see Appendix B). It has been applied to
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Table 7. Results with our limit orders–based strategy

1 2 3 4

Model Limit Orders
w/o Latency

Limit Orders
w/ 1x Latency

Limit Orders
w/ 3x Latency

Latency multiplier 0 1 3
Pair selection Yes Yes Yes
Gross profit $9,608,178.87 $8,641,338.63 $8,363,528.28

Loss -$4,757,168.60 -$5,041,665.26 -$5,168,902.58
Trading fees -$78,132.64 -$82,067.16 -$83,537.87

Trading rebates $553,201.20 $476,071.01 $458,542.50
Total net profit $5,326,078.83 $3,993,677.22 $3,569,630.33

Mean daily net profit $46,719.99 $35,032.26 $31,312.55
Median daily net profit $44,453.98 $33,756.44 $29,610.42

Mean daily net profit per pair, per day $2,273.19 $1,704.51 $1,523.53
p− value Kolmogorov-Smirnov test1 1.00 1.00

1st most profitable day
(date - profit)

2019/05/09
$100,142.51

2019/05/09
$82,330.71

2019/05/09
$77,292.31

5th most profitable day
(date - profit)

2019/05/13
$78,509.62

2019/06/20
$58,157.95

2019/05/07
$53,633.28

1st most unprofitable day
(date - profit)

2019/06/04
$15,061.17

2019/03/13
$12,210.91

2019/03/13
$9,130.81

5th most unprofitable day
(date - profit)

2019/03/18
$22,810.62

2019/03/18
$15,997.46

2019/03/18
$13,349.39

Average time in trade
(excl. futures contracts) 00:01:29.51 00:01:39:10 00:01:41.22

Average time in trade2
(incl. futures contracts) 00:01:46.55 00:01:56.61 00:01:58.19

# Net profitable trades 1,063,897 930,388 892,772
# Net unprofitable trades 325,351 322,230 327,096

# Trades 1,389,248 1,252,618 1,219,868
% Net profitable trades 76.58% 74.28% 73.19%

Average volume per trade 188.10 187.99 188.36
Average net profit per trade $3.83 $3.19 $2.93

Average profit per net profitable trades $9.51 $9.76 $9.84
Average profit per net unprofitable trades -$14.71 -$15.78 -$15.94

% Trade using marketable orders 16.42% 19.56% 20.50%
1 H0 : F (x) ≤ G(x), H1 : F (x) > G(x). F (x), G(x) = cumulative distribution functions of
daily net profits from sample 1 and sample 2, respectively: p-value of 1.00 for no latency v.s.
1x latency and 1.00 for 1x latency v.s. 3x latency.

2 HH:MM:SS.U – hours:minutes:seconds:fractions of a second.
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every pair and every day of our data. Of course, the probability that this set of parameters

is optimal for any pair and any day is close to zero, and if we had backtested the strategies

multiple times, we could have selected the set that generated the greatest profitability and

performance metrics of our portfolio. However, by using a single set of parameters fixed

before any testing, we ensure that our findings are generalizable by avoiding any overfitting

behavior. Hence, the metrics that were shown in this section could be improved and the

results thus offer a conservative, but reasonable measure of the profitability of international

arbitrage of cross-listed stocks between Canada and the U.S..

7. Detailed limit order strategy performance

7.1. Statistics

In this section, a more detailed view of the performance of the limit order strategy in

the real latency setting is presented (column 3 of Table 7). We define a captured arbitrage

opportunity as an opportunity where the positions in a pair at TSX and NYSE are both

opened and closed with limit orders following the arbitrage strategy described in Section 3.

This excludes arbitrage opportunities where a least one leg had to be closed by the stop-loss

or the time circuit breakers implemented for risk management (see Appendix B).

Figure 1 shows the mean daily number of captured arbitrage opportunities per ticker,

and Figure 2 the mean duration of these trades. The number of captured arbitrage opportu-

nities exhibits some daily fluctuations, but the quantity remains stationary over the period.

On average, there are 180 captured arbitrage opportunities per ticker per day. The mean

duration, computed as the mean of the daily means of captured opportunity pairs, is about

122 seconds, and is also stationary during our period of analysis. Note that both quantities

are anticorrelated (Pearson correlation coefficient of -0.923). This is because the strategy

does not enter a new position as long as the previous one is still open. This condition avoids

building huge inventories which would involve, among other aspects, significant price impact

when ending arbitrage activities. Thus, a longer time to close both legs of the strategy

directly leads to a lesser number of potential arbitrage opportunities to be captured.
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Fig. 1. Mean daily number of captured arbitrage opportunities on all selected ticker

Fig. 2. Daily mean duration in seconds of captured arbitrage opportunities on all selected
ticker

Figure 3 shows the daily net profit measured as the total realized net profit per day over

the selected assets in the first six months of 2019, and Figure 4 as well with the average

per captured arbitrage opportunity. The mean daily net profit is C$67,369 and the mean

net profit per captured arbitrage opportunity is around C$19, in line with usual reported

high-frequency trading activities. Per ticker, the daily mean net profit is of C$3,411.

Figure 5 shows the empirical cumulative distribution function (CDF) of the net profit

per captured arbitrage opportunity in C$. Based on this CDF, 99.7% of the captured

arbitrage opportunities are profitable. The median is around C$11, and the 99th percentile
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Fig. 3. Total daily net profit from captured arbitrage opportunities on all selected tickers

Fig. 4. Daily mean profitability of captured arbitrage opportunities on all selected tickers

is around C$110. This confirms the theoretical validity of the strategy, meaning that when

an arbitrage opportunity is perfectly captured with limit orders, it is almost guaranteed to

be profitable. The remaining 0.3% of unprofitable captured arbitrage opportunities exist

because the positions cannot always close at the exact equilibrium value, as explained in

Appendix B.
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Fig. 5. Empirical CDF of net profit per captured arbitrage opportunity

7.2. Regression analysis

We employ a regression analysis to better understand the stylized facts affecting the

daily net profitability of the strategy. Using standard variables such as the intraday mid-

price volatility of the assets traded at exchange k ∈ {TSX, NY SE, CME} on day d (volk,d),

the average bid-ask spreads (spreadk,d), the total trading volumes (tradek,d), and the total

quantity of messages resulting from L1 updates (messagesk,d), all in their respective currency,

we want to explain the average net profitability of the selected pairs on day d (profitd). Every

variable is computed as the weighted mean of the stock–level variable in the selected pairs

on day d, where the weight given to a specific stock is the proportion of its daily traded

value, compared with the total traded value for every stock of the same exchange in our

portfolio on that day (all in C$). Table 8 reports the descriptive statistics of these variables.

In Appendix A, all variables are described in Table 14, and Table 15 reports their Pearson

correlation coefficients.

The mid-price volatilities of cross-listed stocks have similar distributions on both stock

exchanges. The same applies for the spread and the number of messages from LOB level

one. On the other hand, the volume of trades at TSX is almost three times greater than at

NYSE, which is expected from a portfolio composed entirely of Canadian stocks.
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Table 8. Descriptive statistics of variables used in the regression analysis to explain the
daily net profit of the strategy with limit orders

Variable Mean Std. Dev. Min. Q1 Median Q3 Max.
profits 3,411 1237 1,636 2,543 3,201 4,002 8,471
volTSX 0.458 0.143 0.259 0.361 0.412 0.524 0.974
volNY SE 0.467 0.151 0.269 0.357 0.420 0.548 1.007
volCME 0.086 0.047 0.024 0.054 0.074 0.114 0.244

spreadTSX 5.791 1.267 3.567 4.916 5.688 6.213 1.097
spreadNY SE 6.854 1.279 4.800 5.835 6.732 7.385 1.079
spreadCME 0.576 0.020 0.542 0.566 0.576 0.584 0.715
tradeTSX 775,033 361,920 349,538 506,020 686,478 949,768 2,288,334
tradeNY SE 280,935 153,312 118,714 183,374 226,571 296,655 973,461
tradeCME 64,664 75,053 4,195 27,383 34,537 46,817 297,363

messagesTSX 59,136 13,474 35,229 48,619 58,494 67,034 94,736
messagesNY SE 53,719 13,253 32,036 43,001 51,791 62,492 101,549
messagesCME 192,958 55,922 66,246 150,944 186,874 223,187 346,698

Count 114

From Table 15 of Appendix A, a significant and positive relationship between the strat-

egy’s profitability and the volatility of the markets can be observed. The stocks’ bid-ask

spread is the most highly and positively correlated variable with the profitability of the

strategy, which is expected since the strategy uses limit orders. Finally, all the messages

variables are statistically and positively correlated with the strategy’s profitability, which

will be explained later in this section.

As expected, pairs of the same variables on TSX and NYSE are highly correlated. To re-

duce potential multicollinearity, each of these is combined into one variable by using the mean

of the respective TSX and NYSE values, thus creating the variables volstocks,d, spreadstocks,d,

tradestocks,d and messagesstocks,d. The linear regression model is written as follows, for day

d ∈ {1,2, . . . , 114}:
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profitsd =β0 + β1volCME,d + β2volstocks,d + β3spreadCME,d + β4spreadstocks,d

+ β5tradeCME,d + β6tradestocks,d + β7messagesCME,d + β8messagesstocks,d + εd

where εd iid∼ N (0, σ2), ∀d. The regression coefficients are obtained by ordinary least squares

(OLS), and the covariance matrix is estimated with the heteroskedasticity and autocorrela-

tion consistent approach of Newey and West [46]. Table 9 summarizes the regression results.

As it suggests, the number of L1 update messages, the size of the spread and the trading

Table 9. OLS linear regression for the average daily net profitability of the limit order
strategy with Newey-West covariance matrix estimation.

Variable Coefficient p-value
β0 -3,823.011 0.202

volCME -2,533.717 0.103
volstocks 695.229 0.284

spreadCME -1,817.241 0.723
spreadstocks 791.142 0.000
tradeCME 0.001 0.518
tradestocks -0.002 0.009

messagesCME 0.003 0.139
messagesstocks 0.069 0.000

Adj. R2 0.662
F − stat 22.570

volume of the stocks all contribute significantly to the daily net profits generated by the

portfolio of cross-listed stock pairs. These results are consistent with the machine learning

pair selection methodology (see Appendix C for more details). A larger spread for the stocks

is directly beneficial to the limit order strategy, which can be explained by equations (4),

(5) and (6). Together, these equations demonstrate that a larger spread leads to a higher

profit for any given arbitrage opportunity, and that the profitable arbitrage opportunities

are more frequent for days with larger spreads. As for the number of messages, the result is

intuitive because a higher L1 activity generally increases the likelihood of active limit orders
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to be filled, or canceled by the risk management circuit breakers in the case where assets’

prices deviate from limit orders’ prices. Hence, the more messages are observed, the faster

the orders can be executed or canceled, and the faster the strategy can move on to the next

opportunity (which was observed in Figures 1 and 2), as opposed to days when markets are

quieter and limit orders can remain in the LOB for longer periods of time. Lastly, a larger

trading volume contributes negatively to profitability, especially at the NYSE. The higher

latency to that exchange prevents the strategy from reacting very rapidly compared to other

participants colocated there. Thus, trades occurring before its limit orders are included in

the LOB (or even before the information was analyzed by the algorithm) can cause the

mispricing to dissipate.

7.3. Macroeconomic environment effects

The goal of this section is to provide a robustness analysis of our model in different

macroeconomic environments by comparing its profitability across our data. Table 10 ana-

lyzes the strategy’s results for the six months of 2019 where statistically different stock-return

distributions occurred. We use first-order stochastic dominance to rank the monthly stock-

return’ distributions. Stochastic dominance quantifies whether one probability distribution

is greater than another. Given two distributions F and G, it is said that F has a first-order

stochastic dominance over G if and only if F (x) ≤ G(x), ∀x ∈ R with strict inequality for

some x. One popular test for first-order stochastic dominance is the one-sided Kolmogorov-

Smirnov test (Schmid and Trede [53]). We apply this test to every pair of monthly returns

and order them from most dominant (rank 1) to least dominant (rank 6). Hence, rank 1 is

the month with the statistically highest return distribution. Some pairs of monthly return’

distributions cannot reject the two-sided Kolmogorov-Smirnov null hypothesis that the two

distributions are identical, so these pairs are of equal rank.

From Table 10, the performance of the strategy can be analyzed in two market extremes,

namely, in the great uptrend market of January 2019 (rank 1) and in the considerable

downtrend market of May 2019 (rank 6). In both months, the strategy fares well, but
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markedly so in May, where it generated the greatest average net daily profit out of the

entire data sample. In down markets like May, bid-ask spreads increase (Chordia et al. [17]),

which is an advantage for our strategy, as shown in the previous section. This fact can be

observed in the average net profit per stock traded, which, in May, is almost triple that of

January. But liquidity severely decreases during downtrend markets, as opposed to uptrend

markets (Chordia et al. [17]), so the volume per arbitrage opportunity is significantly greater

in January than in May, which counterbalances narrower bid-ask spreads and still results

in a net profit. In more regular macroeconomic environments, e.g., February, March, April,

and June 2019, the strategy remains profitable. The strategy is market neutral, so it should

remain applicable in any macroeconomic environment, as Table 10 suggests.

Table 10. Monthly statistics of cross-listed stocks returns, and the strategy’s respective
statistics

Statistic January February March April May June
Avg. Returns1 10.25% 3.01% 0.89% 1.17% -6.60% 3.67%
Std. Returns 12.51% 6.97% 6.97% 8.05% 10.45% 9.86%
Stochastic

Dominance Rank2 1 2 4 4 6 2
Avg. Daily
Net Profit $31,104.08 $29,753.21 $28,712.23 $22,189.34 $40,215.74 $37,382.49

Avg. Daily #
of Trades 12,834 11,652 13,711 8,381 9,004 11,206

Avg. Volume
Per Trade 199.59 186.45 201.19 164.28 144.28 160.23

Avg. Net Profit
Per Stock Traded $0.0121 $0.0137 $0.0104 $0.0161 $0.0310 $0.0208
1 Monthly returns are computed as the return from first to last trade price occurring in the specified
month.

2 The stochastic dominance ranking, from most dominant to less dominant. Found by applying the
one-sided, two-sample Kolmogorov-Smirnov test at a p-value of 1% to every pair of monthly return
distributions. The two-sided, two-sample Kolmogorov-Smirnov test was also applied to confirm
when pairs had no statistically verified stochastic dominance from the one-sided Kolmogorov-
Smirnov test.
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7.4. Profitability

Figure 6 shows the net cumulated profits over the entire period on a trade basis. There

is minimal intraday drawdown, and as was shown in Figure 3, the net daily profits are

stationary, which explains the quasi linearity of the function in Figure 6.

Fig. 6. Net cumulated profits in C$ on a trade basis over the entire period

Figure 7 presents the daily maximum net aggregated positions taken at each exchange

for our portfolio of selected pairs. The maximum net open position in absolute value is

around C$453,000 at TSX, C$465,000 at NYSE, and C$590,000 at CME, meaning that

an investment of C$1,000,000 to cover the margins is more than enough. Note that only

a margin of US$1,100 per CAD/USD futures contract is needed at the CME. Given the

annual net profit of C$8 million generated by the strategy in 2019, this results in an annual

net return of 700%. Figure 8 shows the empirical CDF of the needed aggregated net margin

in C$. This margin at time t, Mt, can be expressed as follows:

Mt = |VTSX,t|+
∣∣∣∣VNY SE,t − GNY SE,t

rt

∣∣∣∣+ 1,100
rt

∣∣∣∣VCME,t −
GCME,t

rt

∣∣∣∣/100,000,

where VTSX,t, VNY SE,t and VCME,t are the portfolio exposures in C$ in the respective ex-

changes introduced in subsection 3.5. Once again, it can be seen that a capital of C$1,000,000

always covers the margins in the three exchanges, while C$185,000 covers 80% of the needed

margins at any time, meaning that the high levels of aggregated positions are transitory.
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Fig. 7. Maximum daily net aggregated long and short positions of the selected pairs portfolio
at the three exchanges

Fig. 8. Empirical CDF of the needed aggregated net margin in C$

The annualized Sharpe ratio computed from the daily returns and the margin of C$1

million is 51.04. It is very high, but the daily profits are perfectly comparable to the trading

profits of HFTers found in Baron et al. [5]. This result is explained by the low volatility of the

profits as seen in Figures 3 and 5. Also the Deflated Sharpe Ratio proposed by Bailey and

de Prado [4] is approximately equal to 1. This high value results from the fact that there
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is only one backtesting trial, hence there is no variance across the trials and a quasi-null

likelihood of a false discovery.

8. Conclusion

The profitability of high-frequency arbitrage activities in international cross-listed stocks

is studied with a novel trading strategy generalizable to a broad cross-listed assets universe.

The theoretical strategy signals when the prices of cross-listed stocks deviate enough from

their relative equilibrium that an economically viable arbitrage opportunity occurs. The

model is applied to North American markets during the first six months of 2019, namely to

the New York Stock Exchange (NYSE) and the Chicago Mercantile Exchange (CME) in the

United States, and the Toronto Stock Exchange (TSX) in Canada.

This paper is the first to examine stocks’ cross-country mean-reverting arbitrage. The

work is based on a unique temporal frame of reference, meaning the data feeds from all

exchange venues are synchronized by explicitly taking into account the latency that comes

from the transmission of information between them and the information processing time.

All potential arbitrage trading costs are also considered. The profits obtained by the limit

order strategy are reasonable when compared with previous contributions in the literature.

But international arbitrage with market orders is not profitable on our data, because of the

great interconnectedness between Canadian and American exchanges. We also show how

the profitability of high-frequency arbitrage is often overestimated in previous studies by not

considering both the practical aspects of trading and market frictions.

The original goal was not to contribute to the normative discussion about the effect of

continuous HFT on the general welfare of financial markets. Rather, it was to replicate

the precise behavior of a high-frequency trading firm as to provide a better understanding

of their arbitrage activities. This research highlights the high-frequency arbitrageur’s eco-

nomic incentive to act as a liquidity provider, and the importance of considering real market

frictions in HFT research. These results could be useful to improve the understanding of

high-frequency trading’s complex and secretive nature. The proposed model can be deployed
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in a real-time environment by institutional investors, professional arbitrageurs, market mak-

ers, hedgers, and regulators. Our approach provides a contemporary understanding of an

economically viable arbitrage approach that helps restore equilibrium in financial markets.

These arbitrage activities are usually carried out by the largest traders under strong com-

petition. They provide liquidity to the markets and are remunerated for this activity. Are

the profits they earn too high? The results of this study do not provide a conclusive answer

to this question, but we have demonstrated that high-frequency traders can make sizable

arbitrage profits under fair trading conditions.

Finally, do these arbitrage activities affect long-term investors, who are not involved in

arbitrage activities, which represent most stock investors? We do not have sufficient data to

answer this question, and this issue warrants additional quantitative research.
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Appendix A. Additional tables

Table 11. List of available cross-listed stocks with the TSX ticker and NYSE ticker counter-
part. Also included are the company’s name, economic sector and S&P/TSX 60 membership
status.

TSX Ticker NYSE Ticker Company Sector S&P/TSX 60

ABX GOLD Barrick Gold Corp. Materials Yes

AEM AEM Agnico Eagle Mines Ltd. Materials Yes

AGI AGI Alamos Gold Inc. Mining No

AQN AQN Algonquin Power & Utilities Corp. Clean Technology No

ATP AT Atlantic Power Corp. Clean Technology No

BAM.A BAM Brookfield Asset Management Inc. Financials Yes

BB BB Blackberry Ltd. Information Technology Yes

BCB COT Cott Corp. Consumer Products & Services No

BCE BCE BCE Inc. Telecommunication Services Yes

BMO BMO Bank of Montreal Financials Yes

BNS BNS Bank of Nova Scotia Financials Yes

BTE BTE Baytex Energy Corp. Oil & Gas No

BXE BXE Bellatrix Exploration Ltd. Oil & Gas No

CAE CAE CAE Inc. Technology No

CCO CCJ Cameco Corp. Energy Yes

CLS CLS Celestia Inc. Technology No

CM CM Canadian Imperial Bank of Commerce Financials Yes

CNQ CNQ Canadian Natural Resources Ltd. Energy Yes

CNR CNI Canadian National Railway Company Industrials Yes

CNU CEO CNOOC Ltd. Oil & Gas No

CP CP Canadian Pacific Railway Ltd. Industrials Yes

CPG CPG Crescent Point Energy Corp. Energy Yes

CVE CVE Cenovus Energy Inc. Energy Yes

ECA ECA Encana Corp. Energy Yes

EDR EXK Endeavour Silver Corp. Mining No

ELD EGO Eldorado Gold Corp. Mining No

ENB ENB Enbridge Inc. Energy Yes

ERF ERF Enerplus Corp. Oil & Gas No

FNV FNV Franco-Nevada Corp. Materials Yes

FR AG First Majestic Silver Corp. Mining No

FTS FTS Fortis Inc. Utilities Yes

FVI FSM Fortuna Silver Mines Inc. Mining No
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Table 11 continued from previous page

TSX Ticker NYSE Ticker Company Sector S&P/TSX 60

G GG Goldcorp Inc. Materials Yes

GIB.A GIB CGI Group Inc. Information Technology Yes

GIL GIL Gildan Activewear Inc. Consumer Discretionary Yes

GOOS GOOS Canada Goose Holdings Inc. Consumer Products & Services No

HBM HBM HudBay Minerals Inc. Mining No

IMG IAG IAMGold Corp. Mining No

JE JE Just Energy Group Inc. Utilities & Pipelines No

K KGC Kinross Gold Corp. Materials Yes

KL KL Kirkland Lake Gold Ltd. Mining No

LAC LAC Lithium Americas Corp. Mining No

MFC MFC Manulife Financial Corp. Financials Yes

MG MGA Magna International Inc. Consumer Discretionary Yes

NEXA NEXA Nexa Resources S.A. Mining No

NOA NOA North American Construction Group Industrial Products & Services No

OR OR Osisko Gold Royalties Ltd. Mining No

OSB OSB Nordbord Inc. Industrial Products & Services No

PD PDS Precision Drilling Corp. Industrial Products & Services No

PPL PBA Pembina Pipeline Corp. Utilities Yes

PVG PVG Pretium Resources Inc. Mining No

QSR QSR Restaurant Brands International Inc. Consumer Discretionary Yes

RBA RBA Ritchies Bros. Auctioneers Inc. Industrial Products & Services No

RCI.B RCI Rogers Communication Inc. Telecommunication Services Yes

RFP RFP Resolute Forest Products Inc. Industrial Products & Services No

SEA SA Seabridge Gold Inc. Mining No

SHOP SHOP Shopify Inc. Technology No

SJR.B SJR Shaw Communications Inc. Telecommunication Services Yes

SLF SLF Sun Life Financials Inc. Financials Yes

STN STN Stantec Inc. Industrial Products & Services No

SU SU Suncor Energy Inc. Energy Yes

T TU Telus Corp. Telecommunication Services Yes

TA TAC TransAlta Corp. Utilities & Pipelines Yes

TD TD Toronto-Dominion Bank Financials Yes

TECK.B TECK Teck Resources Ltd. Materials Yes

THO TAHO Tahoe Resources Inc. Mining No

TRI TRI Thomson Reuters Corp. Consumer Discretionary Yes

TRP TRP TransCanada Corp. Energy Yes

TRQ TRQ Turquoise Hill Resources Ltd. Mining No
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Table 11 continued from previous page

TSX Ticker NYSE Ticker Company Sector S&P/TSX 60

UFS UFS Domtar Corp. Consumer Products & Services No

VET VET Vermilion Energy Inc. Oil & Gas No

WEED CGC Canopy Growth Corp. Life Sciences No

WPM WPM Wheaton Precious Metals Corp. Mining No

YRI AUY Yamana Gold Inc. Mining No
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Table 13. Number of days where the Augmented Dickey-Fuller test for non-stationarity is
rejected at p = 1% for {ΓShortt } and {ΓLongt }. The test was applied on each daily time series
of the processes between 9:32 a.m. and 4:00 p.m. ET.

TSX Ticker | NYSE Ticker Short Long TSX Ticker | NYSE Ticker Short Long

ABX | GOLD 0 0 IMG | IAG 0 0

AEM | AEM 0 0 JE | JE 1 0

AGI | AGI 0 0 K | KGC 0 0

AQN | AQN 0 0 KL | KL 0 0

ATP | AT 3 5 LAC | LAC 0 2

BAM.A | BAM 0 0 MFC | MFC 0 0

BB | BB 0 0 MG | MGA 0 0

BCB | COT 0 0 NEXA | NEXA 4 2

BCE | BCE 0 0 NOA | NOA 1 0

BMO | BMO 0 0 OR | OR 0 0

BNS | BNS 0 0 OSB | OSB 0 0

BTE | BTE 0 0 PD | PDS 0 0

BXE | BXE 6 12 PPL | PBA 0 0

CAE | CAE 0 0 PVG | PVG 0 0

CCO | CCJ 0 0 QSR | QSR 0 0

CLS | CLS 0 0 RBA | RBA 0 0

CM | CM 0 0 RCI.B | RCI 0 0

CNQ | CNQ 0 0 RFP | RFP 0 0

CNR | CNI 0 0 SEA | SA 0 0

CNU | CEO 4 19 SHOP | SHOP 0 0

CP | CP 0 0 SJR.B | SJR 0 0

CPG | CPG 0 0 SLF | SLF 0 0

CVE | CVE 0 0 STN | STN 1 2

ECA | ECA 0 0 SU | SU 0 0

EDR | EXK 0 0 T | TU 0 0

ELD | EGO 0 0 TA | TAC 0 0

ENB | ENB 0 0 TD | TD 0 0

ERF | ERF 0 0 TECK.B | TECK 0 0
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Table 13 continued from previous page

TSX Ticker | NYSE Ticker Short Long TSX Ticker | NYSE Ticker Short Long

FNV | FNV 0 0 THO | TAHO 0 0

FR | AG 0 0 TRI | TRI 0 0

FTS | FTS 0 0 TRP | TRP 0 0

FVI | FSM 0 0 TRQ | TRQ 1 1

G | GG 0 0 UFS | UFS 0 0

GIB.A | GIB 0 0 VET | VET 0 0

GIL | GIL 0 0 WEED | CGC 0 0

GOOS | GOOS 0 0 WPM | WPM 0 0

HBM | HBM 0 0 YRI | AUY 0 0

Note: Since we observe a low number of days where {ΓShortt } and {ΓLongt } are not sta-

tionary, the mean-reversion risk is minimal in our strategy for almost all pairs. Even though

that risk is very low, our risk management strategy still implements circuit breakers with a

timer and a stop-loss to capture as much arbitrage opportunities as possible.
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Table 14. Variable definitions and symbols used in the regression analysis.

Variable name Symbol Definition*

Daily average net profits
per selected pair (C$) profitsk,d

∑N
n=1 profits

(n)
d

|Pd|
, where profits(n)

d are the net profits in C$

generated by the pair of cross-listed stocks n on day d, and
|Pd| is the cardinality of the set of selected pairs on that day
from our machine learning methodology. Non-selected pairs
have profits(·)

d = 0.

Intraday mid-price volatility volk,d

∑N
n=1w

(n)
k,dvol

(n)
k,d∑N

n=1w
(n)
k,d

, where w(n)
k,d = σ

(n)
k,d/µ

(n)
k,d and σ(n)

k,d and µ(n)
k,d are

the respective standard deviation and mean of the mid-price
series of stock n at exchange k and day d.

Average intraday mid-price volatility
of stocks volstocks,d

volTSX,d + volNY SE,d
2

Bid-ask spread spreadk,d

∑N
n=1w

(n)
k,dspread

(n)
k,d∑N

n=1w
(n)
k,d

, where spread(n)
k,d is the mean

bid-ask spread series (in bps) of stock n, at exchange k and
day d.

Average bid-ask spread
for stocks spreadstocks,d

spreadTSX,d + spreadNY SE,d
2

Trading volume tradek,d

∑N
n=1w

(n)
k,dtrade

(n)
k,d∑N

n=1w
(n)
k,d

, where trade(n)
k,d is the trading volume of stock

n, at exchange k and day d.

Average trading volume
for stocks tradestocks,d

tradeTSX,d + tradeNY SE,d
2

Number of L1 messages messagesk,d

∑N
n=1w

(n)
k,dmessages

(n)
k,d∑N

n=1w
(n)
k,d

, where messages(n)
k,d is the number

of L1 messages of stock n, at exchange k and day d.

Average number of L1 messages
for stocks messagesstocks,d

messagesTSX,d +messagesNY SE,d
2

*A cross-listed stock n listed at exchange k has a daily traded value on day d of w(n)
k,d =∑Q

(n)
k,d

q=1 ν
(n)
k,q S

(n)
k,d for Q(n)

k,d the number of trades that resulted from the limit order strategy. ν(n)
k,q

is the volume of the qth trade and S(n)
k,d is the stock’s value when the trade ended. Note that

Q
(·)
k,d = 0 for every non-selected pair on day d.
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Appendix B. Practical considerations for strategy im-

plementation

The equilibrium value of the relative spread, τ i, i ∈ {Short,Long} can be computed a

posteriori at the end of the day. However, in practice, these quantities need to be known

in real time to find the arbitrage opportunities. To account for overnight basis adjustment,

a simple approximation can be the sample average of the {Γit} processes during the first

minutes of a trading day before starting the strategy. We remove the first two minutes of

each trading day to let the prices converge to their daily equilibrium level.

The approximation is then used as the first value of τ i when the strategy starts. From

that starting point, the approximation is following a running average of {γit} at every L1

event in one of the three exchanges for a given stock and currency futures. Note that the

strategy needs a constant equilibrium value from the opening trades to the closing trades,

meaning that the τ is are not updated when positions are still open for a given pair.

The strategy assumes that the synthetic spreads return exactly to equilibrium at their

respective time t′. Because of market frictions (mainly discrete stock prices), there is a

null probability that the synthetic spreads would converge exactly to τ i at any time, so

bounds around equilibrium are necessary to close the positions. To solve this issue, we add

another parameter β ∈ R>0 that controls when processes are near enough to their respective

equilibrium to close the positions within reasonable bounds. The practical definition of t′

becomes:

t′Market,Short ≡ arg min
s>t

{
s | γShorts ∈ [τShort − β(τShort − κUnders ), τShort + β(τShort − κUnders )]

}

for the process {ΓShortt } with the market order-based strategy,

t′Market,Long ≡ arg min
s>t

{
s | γLongs ∈ [τLong − β(κOvers − τLong), τLong + β(κOvers − τLong)]

}

for the process {ΓLongt } with the market order-based strategy,

t′Limit,Short ≡ arg min
s>t

{
s | γShorts ∈ [τShort − β(τShort − κ̃Overs ), τShort + β(τShort − κ̃Overs )]

}
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for the process {ΓShortt } with the limit order-based strategy,

t′Limit,Long ≡ arg min
s>t

{
s | γLongs ∈ [τLong − β(κ̃Unders − τLong), τLong + β(κ̃Unders − τLong)]

}

for the process {ΓLongt } with the limit order-based strategy.

The smaller the β, the nearer the processes need to be to equilibrium to close the positions

and the closer the practical strategy gets to the theory.

The volumes sent to the market by the strategy are round lots because of the higher costs

related to sending odd lot orders, meaning that the minimum volume that can be used in the

strategy is 100 stocks on both stock exchanges. To capture as much arbitrage opportunities as

possible without heavily impacting the price discovery processes, we dynamically determine

the orders’ volume following the first level volumes available in the LOB of the exchanges

for a given pair of stocks. The orders’ volume sent to both markets is limited by the less

active one, since for one stock in Exchange 1’s market, we take a position of 1/τ stocks in

Exchange 2’s market. We have observed that τ i does not deviate far enough from 1 to send

a different number of lots in both markets for the same arbitrage opportunity. Therefore,

the implemented strategy sends the same volumes to both stock exchanges.

Defining ν̃SideExchange,t as the median volume on the first LOV level on Side ∈ {Bid,Ask}

in Exchange ∈ {1,2} based on the last 500 L1 updates preceding time t.11 The volume sent

to both markets at time t for any cross-listed stock, νt, is computed as either:

νt = 100 max
min

⌊ ν̃Bid1,t

100

⌋
,

⌊
ν̃Ask2,t

100

⌋, 1
,

or

νt = 100 max
min

⌊ ν̃Ask1,t

100

⌋
,

⌊
ν̃Bid2,t

100

⌋, 1
,

depending on whether market or limit orders are used, and whether a long or short position

is opened or closed in SPDR.

11We tested the robustness of the strategy with respect to the median volume by using 250, 1,000 and 2,500
L1 updates. The profitability did not significantly change.
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As mentioned previously, currency futures are used to hedge positions from currency

risk. The optimal position in that instrument is given by equation (7) at any time during

the strategy’s execution. To follow that position as closely as possible, the Micro CAD/USD

futures contract with a nominal of C$10,000 is employed, which is approximated by dividing

the prices of the continuous futures by 10, because of its nominal of C$100,000.

Let ν̂FX,t ∈ Z be the number of currency futures contracts needed at time t which best

approximates the position size theoretically needed at the FX Exchange at that time, ν∗FX,t,

without under-hedging the aggregated position in Exchange’s 2 market. We compute its

value as:

ν̂FX,t =


bν∗FX,tc if ν∗FX,t ≤ 0

dν∗FX,te if ν∗FX,t > 0
,∀t.

Because of high nominal value of the futures, we cannot perfectly hedge Exchange 2’s posi-

tions. In the market order strategy, only market orders are used to follow as much as possible

ν̂FX,t during the strategy’s execution. In the limit order strategy, limit orders are sent to

the top-of-the book prices, or canceled, or updated at every market event modifying ν̂FX,t to

achieve the same goal. Latency makes it more complicated to get exactly a volume of ν̂FX,t

at all times.12

To mitigate the mean-reversion risk and the non-execution risk, specifically for the limit

order strategy, a timer of 15 minutes is used to cancel any order and close any position

resulting from opening a position in the synthetic spread (SPRD) using marketable limit

orders. The timer starts when orders are sent to the markets and ends only when the orders

are filled, and the positions are closed. Along the same vein, stop-losses are also implemented

so that if the prices in the LOB level one diverge drastically from pending limit order prices,

these orders would be canceled, and any opened position would be closed with marketable

limit orders. No new positions are opened 15 minutes before market close.

12Trading the hedging instrument does not directly lead to significant losses or gains, but is necessary to
mitigate currency risk in both strategies. Slippage of market orders for the hedging instrument is insignificant
to the profitability of the strategy. Slipping does not occur with limit orders, but the non-execution risk can
generate a non-optimal hedging position, even more so when latency is considered.
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Even though the strategy is built to be theoretically profitable for every pair, the cross-

listed stocks’ characteristics could lead to unprofitable trades. To determine how the un-

derlying factors of a profitable pair differ from the ones of a unprofitable pair, we resort to

supervised learning. The resulting machine learning algorithm allows us to predict the future

profitability of our pairs, thus enabling dynamic pair selection and optimizing the strategy’s

performance by filtering out potentially unprofitable pairs.

Specifically, we utilize a decision tree algorithm, because of its interpretability. We apply

this nonparametric model to predict if a given pair will be profitable in the next period based

on the data in previous periods. We treat this problem as a dynamic binary classification

task where the output of the model at each period is either profitable or unprofitable for

each pair in the universe Ω during the next period. See Appendix C for more details on the

pair selection method using the decision tree algorithm.

Appendix C. Decision tree learning for recurrent pair

selection

For D the number of days in the data, D = {1,2, . . . ,D} the daily indices, and ` ∈ Z<D/3

the period length at which the pairs are recurrently selected in Ω. Pair selection is done

every ` days throughout the data, beginning after two periods, since the first two periods

are needed for the first decision tree to be trained. Set M =
⌊
D

`

⌋
with the model training

indicesM = {2`, 3`, . . . ,M`}. Define {Xp,d}t∈D, Xp,d ∈ X ⊆ Rw the multivariate stochastic

process of the w daily predictive features with time series {xp,d}d∈D, and {Πp,d}d∈D, Πp,d ∈ R

the net daily profit process of pair p ∈ {1,2, . . . ,n} with time series {πp,d}d∈D generated by

the strategy on pair p during day d.

Let’s also define {Yp,m}m∈M, Yp,m ∈ Y ≡ {−1, 1}, the profitability class process of pair

p, with time series {yp,m}m∈M where yp,m = −1 when the pair p is unprofitable and yp,m = 1
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when it is profitable during {t | m− `+ 1 ≤ d ≤ m}. The time series is computed as follows:

yp,m =


−1 if ∑`−1

t=0 πp,m−t ≤ 0

1 if ∑`−1
t=0 πp,m−t > 0

, ∀p,m.

The decision tree’s goal is to learn a series of M − 1 functions Hm : X 7→ Y , where each

one maps the features of all the pairs in {t | m − 2` + 1 ≤ d ≤ m − k} to their respective

profitability class during the next period {t | m− `+ 1 ≤ d ≤ m} for all m ∈M. To do so,

we use the arithmetic mean of the daily features’ time series as inputs to the model. Hence,

the set of training tuples for the decision tree at time m is given by:

Sm =


∑`−1

t=0 x1,m−`−t

`
, y1,m

,
∑`−1

t=0 x2,m−`−t

`
, y2,m

, . . . ,
∑`−1

t=0 xn,m−`−t
`

, yn,m

, ∀m
Based on a set Sm, the decision tree tries to find Hm using Gini’s impurity criterion and

information gain. To avoid overfitting issues, we limit the algorithm to a maximum depth

of two. The resulting classification function, Ĥm, is then used to predict the profitability of

each pair in the next interval {t | m− `+ 1 ≤ d ≤ m} from the most recent features:

Ĥm

∑`−1
t=0 xp,m−t

`

 = ŷp,m+`, ∀p,m.

Hence, we can select the set of pairs that will be traded throughout the next interval, which

is given by:

Pm = {j | ŷj,m+` = 1, 1 ≤ j ≤ n}, ∀m.

The decision tree is completely retrained only on the corresponding training examples at each

m ∈M, so that only local patterns are used in the prediction of the pairs’ profitability. Note

that we cannot launch the pair selection method until d = 2`, because the first ` days are

used to generate the features, and the following ` days are used to compute the profitability

of the pairs. Together, these features and profitability values from the first set of training

examples on which we train the first decision tree at d = 2`.

The daily features that compose {Xp,d}d∈D are:
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- bid-ask spread,

- total trading volume,

- ratio of the number of trades per quote,

- mid-price’s coefficient of variation,

- total number of trades and quotes, and

- a measure of the previous period’s profitability,

with ` = 3 days. The profitability prediction accuracy of the decision tree at time m ∈ M,

defined as Am, is computed as follows:

Am =
∑n
p=1 I{ŷp,m+`=yp,m+`}

n
, ∀m,

where I{·} is the indicator function. The accuracy at each period is presented in the next

figure.

Fig. 9. Prediction accuracy Am, ∀m ∈ M of the dynamic decision tree approach from
January 15 to June 20, 2019, computed every ` = 3 days for every pair in Ω.

From Figure 9, it can be observed that the methodology predicts that the next three days

of each pair will be profitable at an average of 92% accuracy. Also, the predicted accuracy

does not vary very much in the period of analysis. This process is repeated until the end of

our data. Figure 10 presents the selected pairs in time for our portfolio. It can be observed

that only 36 pairs (in green) were selected at least one time.
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Figures 11, 12, 13 represent the decision trees learned for pair selection at the beginning

of our period of analysis on 2019-01-15, in the middle period on 2019-03-29, and towards

the end on 2019-06-13, respectively. Each rectangle in a tree is a node with the best rule

minimizing the Gini impurity of the corresponding child nodes. A rule is a criterion that

splits the feature space into distinct subspaces. Feature vectors that fall within one of the

resulting subspaces are then passed to the corresponding child node. Feature vectors that

respect the interval specified by the rule in a node continue to the bottom left, and if they

do not, they continue to the right until they arrive to a leaf where the prediction takes place.

The learned rules are the first line of each non-leaf node. Leaves have no rules and are located

at the bottom of the trees. The prediction made at the leaves is the most predominant class

in the node’s sub data set, where the number of instances of each class is given by the vector

"value."

To determine the pair selection variables, well-established stylized facts are dynamically

fed ex ante into a decision tree using three days of high-frequency data. The information

set is restricted to variables from tick trades and limit order level one, and the target is the

strategy’s daily profitability class for each pair. The tree learning is done after markets close

and is used during the three following intraday activities. Most of the time, two conceptually

appealing stylized facts drive the pair selections: the bid-ask spread, an important component

of endogenous liquidity providers profitability Ait-Sahalia and Saglam [1]; Brogaard et al. [9],

and the number of messages, tightly linked to liquidity Hasbrouck and Saar [36]; Hendershott

et al. [37]. The three decision trees below exemplify a recurring decision tree structure. The

pair selection methodology based on them generates more than satisfactory results, given

their out-of-sample high profitability prediction accuracy and the excellent stability in the

performance through time (see Figure 9). This confirms that the features selected by the

decision trees are reliable predictors of the profitability of each pair traded.
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Fig. 11. Decision tree for pair selection on 2019-01-15

Fig. 12. Decision tree for pair selection
on 2019-03-29

Fig. 13. Decision tree for pair selection
on 2019-06-13
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Appendix D. Study of Wah’s strategy

We repeat the experiments done in Section 6 for Budish et al. [12], but with the strategy

of Wah [60]. Once again, it is implemented with the observed theoretical settings and minor

modifications to adapt it to our data. Prices at NYSE are continuously transferred to C$

following the CAD/USD futures observed at CME. In addition, we used two hypotheses

employed in the model: There is an absence of latency, and opened positions at an exchange

can be immediately closed at another exchange, resulting in a trade. There is a small

nuance in the case of Wah [60]: MIDAS data is recorded at a single point of observation,

meaning that the effect of latency on information observation is already considered. There

still remains the latency of the orders. Table 16 presents the results obtained on our data

with the strategy of Wah [60]. The second column of Table 16 presents the results that are

obtained following as closely as possible the respective theoretical framework that cannot be

replicated in practice. In the next two columns, latency is considered.

Wah [60] utilizes direct-feed data from MIDAS, a platform at the U.S. Securities and

Exchange Commission (SEC) that provides access to order and quote messages on all U.S.

stock exchanges. Cross-market arbitrage opportunities are analyzed from 11 U.S. equities

exchanges. The author assumes there is a single infinitely fast latency arbitrageur. When

the arbitrageur detects a latency arbitrage opportunity, the strategy is to submit market

orders to the exchanges involved in the cross-market arbitrage opportunity. The data used

by Wah [60] includes market orders for the 495 tickers of the S&P 500 from January 1, 2014

to December 31, 2014. Latency arbitrage opportunities across these exchanges were observed

to happen very frequently during that year and they generated a profit exceeding US$3.03

billion to the infinitely fast latency arbitrageur.13

When we look at column 2 of Table 16, the results of the original model with our data

generate a gross profit of C$4.7 million for 74 stocks in two exchanges for six months.14 If we

1346 tickers from the Russell 2000 were also studied but their profits are not included in the US$3.03 billion
result.
14In this section we do not use the futures contracts for hedging the exchange rate. We do however use
the exchange rate updates continuously to obtain pure variations in stock prices between Toronto and NY
exchanges.
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Table 16. Wah [60] strategy on our data

1 2 3 4

Model Wah Original
w/o Latency

Wah Original
w/ 1x Latency

Wah Original
w/ 3x Latency

Latency multiplier 0 * 1 3
Pair selection No No No
Gross profit $4,677,764.64 $4,625,043.07 $4,305,331.72

Loss $0.00 -$282,933.09 -$308,364.36
Trading fees -$2,674,499.10 -$2,832,777.28 -$2,721,234.00

Trading rebates $0.00 $0.00 $0.00
Total net profit $2,003,265.54 $1,509,332.70 $1,275,733.36

Mean daily net profit $17,572.50 $13,239.76 $11,190.64
Median daily net profit $17,083.02 $12,782.75 $10,672.95

Mean daily net profit per pair, per day $237.47 $178.92 $151.22
p− value Kolmogorov-Smirnov test 1.00 1.00

1st most profitable day
(date - profit)

2019/01/17
$35,222.68

2019/01/17
$30,985.29

2019/01/17
$29,793.92

5th most profitable day
(date - profit)

2019/01/30
$27,788.04

2019/01/30
$23,643.17

2019/05/07
$19,803.40

1st most unprofitable day
(date - profit)

2019/04/11
$6,013.47

2019/06/17
$1,470.35

2019/04/11
$502.20

5th most unprofitable day
(date - profit)

2019/04/05
$7,843.25

2019/04/15
$4,424.84

2019/06/20
$3,535.60

Average time in trade 00:00.0 00:00.0 00:00.0
# Net profitable trades 158,647 154,718 155,543

# Net unprofitable trades 49,703 76,095 79,131
# Trades 208,350 230,813 234,674

% Net profitable trades 76.14% 67.03% 66.28%
Average volume per trade 2366.07 2,380.48 2,249.33

Average net profit per trade $9.61 $6.54 $5.44
Average profit per net profitable trade $15.71 $15.96 $14.89

Average profit per net unprofitable trade -$9.83 -$12.61 -$13.14

extend these results to eleven exchanges with 495 stocks over one year, this generates about

C$0.76 billion (US$0.58 billion) in the year 2019.15

15($4,677,764.64× (495/74)× 11× (252/114) = $760,852,059.40).
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The main difference with Wah’s original study can be explained by the characteristics of

the stocks in the two studies and by the relative sizes of the exchanges. To have a comparable

market environment to Wah [60], when generating the C$0.76 billion result we assumed there

is only one very fast arbitrageur in colocation in only one exchange and trading in the 11

exchanges. If we extend the possibility that the trading activities are generated by the very

fast arbitrageur in colocation in the eleven markets, we obtain about C$3.8 billion (US$2.9)

in annual gross profits ($0.76×5)16, which is fairly close to the US$3 billion reported in the

paper. We also observe, in column 2 of Table 16, that the trading costs represent more

than half of the gross profit generated by the strategy. Only around 76% of the arbitrage

opportunities cover the trading costs. In that sense, Budish et al. [12] approach allows to

better select arbitrage opportunities. This is also true when comparing average net profits

per trades between these two strategies.

Assuming an infinitely fast arbitrageur cannot correspond to any known trading ap-

plication in the real world. In the next columns, latency is incorporated in the trading

environment. This results in a statistically significant (see p−values) decrease of 25% in net

profitability. The drop in profitability is even greater at 36% when latency is tripled from the

based value. Once again, this demonstrates the importance of latency in HFT profitability.

Ignoring this practical aspect inflates the reported profits.

As in Budish et al. [12], Wah [60] considers that a trade occurs when two opposite

positions are taken in different exchanges. We abandon this hypothesis, meaning that an

opposite position at the same exchange has to be taken in order to lead to a trade. The results

generated by this last strategy in this more practical market environment are presented in

Table 17.

The outcomes obtained by the strategy of Wah [60] in Table 17 lead to the same ob-

servations that were previously made based on Budish et al. [12] results in Section 6: The

strategy does not generate any net profit. Profits statistically decrease whenever latency is

16Here we assume the arbitrageur exploits 55 links between the exchanges even if she receives information at
one single observation point. A better approximation should consider the real volumes of arbitrage between
the exchanges.
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Table 17. Wah [60] strategy on our data with practical hypotheses

1 2 3 4

Model Wah Practical
w/o Latency

Wah Practical
w/ 1x Latency

Wah Practical
w/ 3x Latency

Latency multiplier 0* 1 3
Pair selection No No No
Gross profit $343,498.69 $337,486.65 $380,996.00

Loss -$350,969.16 -$346,625.18 -$393,820.69
Trading fees -$5,906.46 -$5,811.90 -$6,877.05

Trading rebates $0.00 $0.00 $0.00
Total net profit -$13,376.93 -$14,950.43 -$19,701.74

Mean daily net profit -$117.34 -$131.14 -$172.82
Median daily net profit -$30.39 -$29.40 -$40.99

Mean daily net profit per pair, per day -$1.59 -$1.77 -$2.34
p− value Kolmogorov-Smirnov 0.97 0.99

1st most profitable day
(date - profit)

2019/06/28
$2,447.42

2019/06/28
$2,673.73

2019/06/28
$2,462.57

5th most profitable day
(date - profit)

2019/06/25
$243.73

2019/06/25
$177.66

2019/06/25
$273.35

1st most unprofitable day
(date - profit)

2019/05/15
-$4,254.55

2019/05/15
-$4,728.90

2019/05/16
-$2,931.57

5th most unprofitable day
(date - profit)

2019/04/05
-$728.58

2019/06/23
-$922.47

2019/06/03
-$1,350.77

Average time in trade 118.17:19:47 119.05:04:35 122.17:30:38
# Net profitable trades 513 498 728

# Net unprofitable trades 527 512 756
# Trades 1,040 1,010 1,484

% Net profitable trades 49.33% 49.31% 49.06%
Average volume per trade 549.21 556.50 448.69

Average net profit per trade -$12.86 -$14.80 -$13.28
Average profit per net profitable trades $665.73 $673.80 $520.00

Average profit per net unprofitable trades -$673.43 -$684.58 -$526.80
Total Short Inventory Remaining $4,705,786,414.13 $4,693,771,499.50 $4,643,810,959.12
Total Long Inventory Remaining $3,587,847,145.39 $3,578,678,416.90 $3,540,608,627.73

introduced in the testing environment. A great inventory has also been accumulated during
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the six months, even more so than the strategy of Budish et al. [12], for the same rea-

sons. Overall, by not considering practical trading aspects such as latency or real market

functioning, Wah [60] inflated latency arbitrage’s profitability.

Appendix E. Execution rules

1. Each limit order has a standing quantity that must be executed before the order is

executed.

2. That standing quantity is computed from the following steps:

a. If the limit order’s price of a buy/sell order is equal to the best bid/ask price,

the order’s standing quantity becomes the current best bid/ask volume.

b. If the limit price of a buy/sell order is below/above the best bid/ask price,

the order’s standing quantity is undefined. In that instance, the trading and

quoting emulator waits for the limit order’s price to be equal to the best bid/ask

price and it sets the standing quantity according to 2.a.

c. If the limit order’s buy/sell price is above/below the best bid/ask price, the

order is filled.

d. If the standing quantity has been defined for a limit order, it can only be

changed by a future execution.

3. A limit order can be executed by a trade occurring at the limit order’s price. The

standing quantity must be executed first. If it has been executed completely, then

the limit order can be executed. If the remaining trade size is not large enough to

fill the limit order’s size, then a partial filling occurs. Limit orders with an undefined

standing quantity cannot be executed by a trade.

4. A limit order can be executed when the best ask/bid price becomes lower/greater

than the buy/sell limit order’s price. This also holds for limit orders with undefined

standing quantities.
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5. A limit order is filled when the best bid/ask price becomes lower/greater than the

buy/sell limit order’s price, regardless of its standing quantity. This also holds for

limit orders with undefined standing quantities.

The trading and quoting emulator is conservative in some regards, especially considering

the static standing quantity that must be executed before the corresponding limit order,

because it ignores cancellations decreasing that quantity after the order has been placed,

which follows from rules 1 and 2.a. Also, whenever a limit order is placed deeper than LOB

level 1 and its price becomes the top of the book after some time, the limit order is put at

the end of the queue of all the orders also at the new level 1 regardless of its actual position

in that queue, which follows from rules 2.a and 2.b.
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Abstract. Any lead-lag effect in an asset pair implies the future returns on the lagging

asset have the potential to be predicted from past and present prices of the leader, thus

creating statistical arbitrage opportunities. We utilize robust lead-lag indicators to uncover

the origin of price discovery and we propose an econometric model exploiting that effect with

level 1 data of limit order books (LOB). We also develop a high-frequency trading strategy

based on the model predictions to capture arbitrage opportunities. The framework is then

evaluated on six months of DAX 30 cross-listed stocks’ LOB data obtained from three

European exchanges in 2013: Xetra, Chi-X, and BATS. We show that a high-frequency

trader can profit from lead-lag relationships because of predictability, even when trading

costs, latency, and execution-related risks are considered.

Keywords: Lead-lag relationship; High-frequency trading; Statistical arbitrage; Limit or-

der book; Cross-listed stocks; Financial econometrics

1. Introduction

Lead-lag relationships have long been a subject of interest in finance, and they have been

found in multiple assets and instruments.17 But, the hypothesis that these relationships can

potentially be a source of profitable statistical arbitrage is fairly recent. For example, after

finding significant lead-lag relationships in NYSE stocks, Curme et al. [14] discussed the idea

that lagged correlations might be exploited by a prediction model. They also believed that

the resulting arbitrage opportunities may not be easily exploitable in the presence of market

frictions. The same questions were also raised in Basnarkov et al. [3] in the context of foreign

exchange markets. In this paper, we revisit the existence, predictability, and profitability of

lead-lag relationships in detail. Our main questions are the following:

1. Can lead-lag relationships be identified in the high-frequency prices of arbitrage-

linked assets?

2. If the answer to question 1 is conclusive, can returns in lagging assets be predicted?
17For example: stock index futures (Dimpfl and Jung [17]; Frino and West [27]), cash market and stock index
futures (Chan [11]), stock and stock index futures (Brooks et al. [7]), stock index and stock index futures
(Jong and Nijman [42]; Kawaller et al. [44]; Yang et al. [58]), stocks (Hou [40]), spot stock index and stock
index futures markets (Herbst et al. [38]; Judge and Reancharoen [43]; Tse [57]), foreign exchange spot and
futures markets (Chen and Gau [13]), and VIX markets (Bollen et al. [5])
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3. If the answers to questions 1 and 2 are both affirmative, can the predictability of

lagging assets be exploited by high-frequency traders (HFTers), even when important

market frictions are considered?

Up to now, the profitability of statistical arbitrage from lead-lag relationships with realistic

trading behavior has not been well established. Our goal is to demonstrate its economic

viability by proposing a new approach based on robust lead-lag indicators, the direction

probability estimation of the lagging asset’s return, and the use of LOB information in

an high-frequency trading (HFT) arbitrage strategy. We also consider important potential

market frictions between multiple exchanges with an application to DAX 30 stocks, all of

which are cross-listed in three markets: Xetra in Frankfurt, and Chi-X and BATS, both in

London.

Using recent advancements in the estimation of lead-lag, stemming from Hayashi and

Yoshida [37] and Hoffman et al. [39], we demonstrate that Chi-X led the high-frequency

prices of most DAX 30 stocks by mere milliseconds in 2013. This surprising result is in fact

in line with other studies empirically demonstrating that the most liquid, actively traded,

and least expensive exchange should be the origin of price discovery. This is true in our case,

since Chi-X received more quotes and trades for DAX 30 stocks on a daily basis than either

Xetra or BATS. Chi-X is also the exchange with the most generous trading rebates and is

thus the most competitive option for high-frequency traders, which ultimately establishes

Chi-X as the price leader for the cross-listed stocks under study. We also show that all

DAX 30 stocks listed at these exchanges are extremely well integrated, because their lags

are limited by the speed at which information can travel. This level of precision in the

estimation of cross-listed stocks lead-lag relationships has never been attained before.

Knowing that there is a definitive leader in the prices of cross-listed stocks, we then

demonstrate how lagging assets returns can be predicted accurately using current and past

prices observed at two exchanges. A new econometric model, the autoregressive distributed

lag multinomial logistic regression, is able to utilize the existing lead-lag relationship between

two price processes to predict whether the lagging asset’s next return will be positive, null, or
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negative, with an overall accuracy exceeding 80% out-of-sample. This degree of performance

is well maintained throughout our data period, further indicating the robustness of the lead-

lag relationship detected in DAX 30 stocks. On our data, the proposed model’s accuracy

compares favorably with those of models previously suggested in the lead-lag literature, e.g.,

Huth and Abergel [41] and Alsayed and McGroarty [2]. It is also a significant departure

from ordinary least square models, because it predicts the probabilities of the lagging asset’s

next return direction instead of predicting the next return itself. We show that this easier

task makes it possible to build a more profitable HFT strategy by detecting more potential

arbitrage opportunities with superior accuracy. Moreover, as opposed to popular frameworks

based on error correction or vector autoregression models, we do not require a uniform

sampling scheme of the price processes, which distinguishes our work from prior studies even

further.

Fragmented markets make arbitrage opportunities more abundant for HFTers (Foucault

and Biais [23]; O’Hara [48]). In this case of cross-listed stocks, whenever a lead-lag movement

in a lagging asset takes longer than the information latency between exchanges to occur, an

arbitrage opportunity is revealed. Earlier work on high-frequency lead-lag arbitrage failed

to generate a profit due to trading costs created by market orders, with few exceptions on

which we shall return. We empirically demonstrate the impossibility of profiting from the

usual mid-quote signal coupled with market orders in the context of high-frequency lead-lag

arbitrage. Thus, we propose a different strategy, one that makes use of limit orders, thereby

reducing the exchange trading costs while also not having to pay the bid-ask spread at every

arbitrage opportunity. Furthermore, the trading signal is based on level 1 prices rather than

mid-quotes, leading to better-informed decisions compared to earlier studies. In a scenario

where latency, trading costs, and execution-related risks are all taken into consideration,

we determine that a high-frequency trader colocated at Chi-X is able to generate a net

profit surpassing e1.9 million by arbitraging DAX 30 stocks in all of 2013 at only two

exchanges: Xetra and BATS. The presence of market frictions dramatically impedes the
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trader’s capacity to profit more from the detected lead-lag arbitrage opportunities, and risk

management procedures are absolutely necessary to obtain a satisfying profitability.

The methodology and results in this paper are important from both the academic and

practitioner standpoint. First, we contribute to the ongoing discussion about HFTers’ arbi-

trage activities,18 since the understanding of which is still limited in the empirical research

(Chen et al. [12]). Indeed, our paper demonstrates how HFTers are realistically able to profit

from a specific form of statistical arbitrage. Second, we quantify the interconnectedness of in-

ternational markets in the case of cross-listed stocks by explicitly measuring the time needed

between exchanges to incorporate new price information. Third, we further advance the

lead-lag literature by providing the first truly profitable high-frequency lead-lag arbitrage

strategy and a new econometric model that is able to predict future returns of lagging assets

with an accuracy that surpasses earlier models. Furthermore, our framework is applicable

to any pair of assets, making it useful for future studies on lead-lag relationships.

Our work falls under the lead-lag arbitrage literature, in which scarcely any studies have

attempted to quantify the financial importance of lead-lag relationships. Alsayed and Mc-

Groarty [2]; Brooks et al. [8]; Huth and Abergel [41] are closely related to our paper, especially

the first one. However, our study differs from Alsayed and McGroarty [2] on many points.

Firstly, we do not work on a mid-quote basis because, as we show, this leads to suboptimal

trading decisions. Each of the three papers above use that setting. We alternatively directly

model the best bid and ask price processes, which allows for more precise predictions and

better-informed trading decisions. Secondly, we propose an econometric model utilizing all

relevant past prices observed in both the lagging and leading assets, instead of a subset

of that information. Thirdly, rather than relying on liquidity-taking orders, as in the three

above-mentioned papers, we employ liquidity-providing limit orders to avoid important trad-

ing costs that render all of their strategies non-viable in practice. It also allows for a more

18Refer to the recent Staff Report on Algorithmic Trading in U.S. Capital Markets of the SEC: https:
//www.sec.gov/tm/reports-and-publications/special-studies/algo_trading_report_2020 and the MiFID
II Review Report on Algorithmic Trading of the ESMA: https://www.esma.europa.eu/press-news/esma-
news/esma-publishes-mifid-ii-review-report-algorithmic-trading (both accessed August 12, 2022).
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passive trading strategy, which we show to be profitable on our data. Finally, our application

covers a new area for lead-lag arbitrage: cross-listed stocks.

The remainder of the paper is organized as follows. Section 2 introduces the literature

on lead-lag relationships, where an emphasis is put on cross-listed stocks, different high-

frequency arbitrage strategies, and lead-lag estimation methods in past studies. Section 3

presents the methodology used to locate and quantify lead-lag relationships. It also details

the proposed econometric model in conjunction with the new HFT strategy built around

it. The section ends with a description of market frictions and how we include them into

our estimations. Section 4 is dedicated to the data from Xetra, Chi-X, and BATS, and also

presents the latencies and costs we utilize. Section 5 analyzes the empirical results of our

methodology and discusses their implications. Section 6 concludes the paper.

2. Literature review

As discussed in the introduction, lead-lag relationhips have been observed in most finan-

cial assets and instruments. The particular case of cross-listed stocks has been studied at

an intraday frequency in Grammig et al. [31]; Pascual et al. [49]; Frijns et al. [24]; Frijns

et al. [25]; Ghadhab and Hellara [28]; and Frijns et al. [26]. They all analyze cross-listed

stock price discovery based on variations of Hasbrouck’s information shares (Hasbrouck [33])

and/or the component shares of Gonzalo and Granger [30]. Grammig et al. [31] sample 10-

second intervals of mid-quote prices of three German firms cross-listed in New York (NYSE)

and Frankfurt (Xetra) from August to October 1999, and find that price discovery mostly

originated from the home exchange. Pascual et al. [49] arrive at the same conclusion in the

case of five Spanish ADRs listed on the NYSE and SSE at a one-minute resolution in 2000,

as do Frijns et al. [24] on four Australian and five New Zealand firms from 2002 to 2007

at a minute level. Ghadhab and Hellara [28] also corroborate the idea that local markets

are dominant for cross-listed stocks, but find that foreign markets contribute more to price

discovery for multiple-listed firms, even more so when their trading costs are lower. Other

factors affect the origin of price discovery for cross-listed stocks. Indeed, Frijns et al. [25]
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suggest that a reduced bid-ask spread and a higher trade activity, small trades in particular,

have a positive and causal impact on price discovery, from a sample of cross-listed Canadian

stocks in the US from 1996 to 2011, at a minute frequency. These recur in Frijns et al. [26],

which finds a bilateral causality between liquidity in an exchange and its contribution to

price discovery. These authors also obtain that algorithmic activity is negatively related to

price discovery for Canadian cross-listed stocks in the US from 2004 to 2017. None of the

papers mention the possibility of an arbitrageur exploiting these lead-lag relationships, nor

do they measure how predictable the lagging assets returns are. We aim to answer these

questions by proposing a novel HFT strategy and a new econometric model for cross-listed

stocks. Our methodology also considers important limiting factors of arbitrage, mainly, trad-

ing costs, latency, and execution-related risks. The proposed model is also computationally

simple enough to be used by HFTers in practice.

Very few papers have tried to develop arbitrage strategies or predictive models based on

the concept of lead-lag, and none in the context of cross-listed stocks: Judge and Reancharoen

[43] and Li et al. [32] use daily data; Brooks et al. [8] and Stübinger [56] focus on uniformly

sampled intraday data; and Huth and Abergel [41] and Alsayed and McGroarty [2], the

closest studies to our paper, also use LOB data. Brooks et al. [8] investigate the lead-lag

relationship between the spot index and futures contract of the FTSE 100 at a 10-minute

frequency. They are able to predict, one step ahead, the direction of the return in the lagging

spot price, with an out-of-sample accuracy approaching 70%, based on a version of the error

correction model (ECM) of Engle and Granger [18]. Nonetheless, because of trading costs,

their round-trip trade strategy is unable to outperform a passive buy-and-hold strategy. In

the same vein, Huth and Abergel [41] are also not able to profit from the lead-lag relationship

they detect in a futures-stock pair, since paying the bid-ask spread at every opportunity is

too expensive. Even though their linear regression model predict the next mid-quote return

at the next trade of the lagging stock with an accuracy of 60%, the opportunities detected

do not cover the market orders costs.
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On the other hand, Stübinger [56] and Alsayed and McGroarty [2] find economically

significant profit-generating strategies by exploiting lead-lag relationships. Stübinger [56]

proposes the "optimal causal path algorithm" to uncover the lead-lag structure between two

time series, and then applies it to S&P 500 constituents at a minute level, to identify promis-

ing stocks for a pair trading–type strategy. The strategy limits excessive trading by only

selecting statistically high returns of the leading stock that also cover the trading costs of

market orders. Positions are closed after ` minutes, where ` is the lag estimated from the

optimal causal path algorithm. This trading signal allows the author to significantly out-

perform a buy-and-hold strategy of the S&P 500 index after transaction costs. But, in a

high-frequency setting where lag is measured in milliseconds, as in our study, the trading sig-

nal of Stübinger [56] would result in an insignificant number of trades, since price movements

at that scale seldom cover the bid-ask spread. Alsayed and McGroarty [2] profit from lead-lag

arbitrage across international futures with a new forecasting framework yielding over 85%

accuracy in lagging contracts’ mid-quote changes. Their framework is based on the concept

of clusters, which are uninterrupted, contiguous observations of prices that allow them to

predict mid-quote movements and trade at a high frequency. But, we question the strategy’s

practical profitability because their profit calculations use mid-quote returns and not actual

execution prices. We are proposing a novel high-frequency strategy relying on limit orders

to circumvent the profitability issues of earlier studies. Our practical methodology also gets

as close as possible to real-life HFT, thus making our results more concrete and accurate. In

both Huth and Abergel [41] and Alsayed and McGroarty [2], the leading asset leads by mere

fractions of a second: around 300 milliseconds in the former and down to 25 milliseconds

for a particular pair in the latter. This highlights the importance of newer methodologies

enabling sub-second lead-lag estimation.

Considering that today’s integrated markets rely heavily on advanced information tech-

nology to connect traders and exchanges around the globe, aggregated data at the minute

level is not suitable to uncover lead-lag relationships between cross-listed stocks. This is

especially true when exchanges are geographically close. As shown in Budish et al. [10],
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the correlation of related instruments only breaks down at a millisecond resolution in well-

integrated markets, even though their correlation seem nearly perfect at a minute level.

But, using sub-second data, i.e., trades and quotes (TAQ) from LOB data, to quantify lead-

lag relationships has its challenges: it is neither synchronously nor regularly observed. As

noted in Hayashi and Yoshida [37] and Zhang [59], among others, earlier estimators based on

previous-tick interpolation are severely biased whenever the processes are not synchronously

observed. This is true for Granger’s causality (Granger [32]) and for Hasbrouck’s information

share (Hasbrouck [33]) models when working with HFT data, because correlation estimates

decrease when the processes are synchronously sampled at high frequencies. This downward

correlation bias effect was first studied in Epps [19]. Furthermore, if the two processes differ

in noise, microstructure frictions, or liquidity, these methods will not be consistent (Putnin, š

[53]). Hasbrouck [34] extends the vector error correction model (VECM) to accomodate ultra

high-frequency data, resulting in better information share estimations and opening the door

to causal methods on LOB data (see the first paragraph of this section for the overview of

lead-lag papers based on causality). The author finds significant differences in the informa-

tion share estimation from uniformly sampled data and LOB event data, a result that needs

further investigation. Since 2010, some consistent estimators of lead-lag at a high frequency

have been proposed based on LOB event time and correlation methods (e.g., Hayashi and

Koike [36]; Hoffman et al. [39]), and on large trade events (Pomponio and Abergel [50]), mak-

ing it possible to depart from previous-tick interpolation and uniform sampling, to instead

use the LOB as is. We are the first to investigate lead-lag relationships of cross-listed stocks

at that level of precision. Being able to work at the sub-second horizon is absolutely neces-

sary in our case, because the geographical proximity of the exchanges allows information to

flow between them nearly instantly.

3. Methodology and framework

We introduce the ideas behind the results presented in Section 5. Even though our

application covers cross-listed stocks, the general methodology and framework in this section
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are applicable to any financial market where a high-frequency trader suspects that a lead-lag

relationship exists between any pair of assets.

Subsection 3.1 details how we find lead-lag relationships between processes and how to

quantify their strength. Subsection 3.2 proposes an econometric model able to exploit an

existing lead-lag relationship by predicting the lagging process’ future directional movements

from past information on the leading process. Subsection 3.3 presents an HFT strategy

created from the econometric model predictions. Finally, subsection 3.4 is dedicated to the

market frictions we consider when computing our trading profits.

3.1. Lead-lag relationships

There are two main schools of thought as regards the ways of mathematically defining

and detecting lead-lag relationships, or the price discovery origin: causality methods (e.g.,

Granger [32]) and correlation methods (e.g., Herbst et al. [38]). The latter approach makes

it possible to explicitly measure the timing relationship between time series, which provides

valuable information in a trading context. Following that literature, there exists a lead-

lag relationship in a pair of stochastic processes ({Xt},{Yt}) with observations ({xt}, {yt})

whenever their cross-correlation with lag `, Corr(Xt, Yt+`), is statistically different from 0 for

any ` 6= 0. The optimal lag `∗ is defined as

`∗ ≡ arg max
`∈R

|Corr(Xt, Yt+`)| = arg max
`∈R

|ρX,Y (`)|,

where ρX,Y (`) is the lagged Pearson correlation coefficient ρX,Y (`) ≡ Cov(Xt, Yt+`)√
Var(Xt) Var(Yt+`)

,

Cov(Xt, Yt+`) is the lagged cross-covariance of processes ({Xt},{Yt}), and Var(·) is their

variance. Whenever `∗ 6= 0, the relationship between {Xt} and {Yt} is not contemporaneous

and it establishes that there is lead-lag between the processes. When `∗ > 0, {Xt} leads

{Yt} and vice versa for `∗ < 0. Knowledge of the leader at t can potentially be exploited to

forecast the lagging process at t+ `∗.

In this paper, we rely on high-frequency data, which is notable for being non-synchronous

and irregularly observed. "Non-synchronous" means that the two processes are observed at
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different times, and "irregularly observed" refers to irregular intervals between observation

times of the processes. These features drive us to depart from older lead-lag estimation

methods used in the literature, as mentioned earlier in Section 2. Hayashi and Yoshida

[37] propose a covariance estimator for non-synchronous and irregularly observed diffusion

processes, resulting in the following consistent cross-correlation estimator:

ρ̂HYX,Y =
∑
i

∑
j ∆X(IXi )∆Y (IYj )I{IX

i ∩I
Y
j 6=∅}√∑

i[∆X(IXi )]2∑j[∆Y (IYj )]2
,

where

I{A} =


1, if A is true,

0, if A is false

is the indicator function. The processes ({Xt},{Yt}) have discrete observation times 0 =

tX1 < tX2 < · · · < tXn = TX and 0 = tY1 < tY2 < · · · < tYm = T Y with intervals IXi =

(tXi−1, t
X
i ], IYj = (tYj−1, t

Y
j ] and ∆X(IXi ) = xtXi − xtXi−1

, ∆Y (IYj ) = ytYj − ytYj−1
. Hoffman et al.

[39] extend this estimator to include the lag `:

ρ̂HYX,Y (`) =
∑
i

∑
j ∆X(IXi )∆Y (IYj )I{IX

i ∩(IY
j )` 6=∅}√∑

i[∆X(IXi )]2∑j[∆Y (IYi )]2

where (IYj )` = (tYj−1 + `, tYj + `]. This makes it possible to obtain a practical and unbiased

estimation of `∗ on HFT data:

̂̀∗ = arg max
`∈R

|ρ̂HYX,Y (`)|,

which is the estimator used in this paper. In order to quantify the overall side and strength

of the lead-lag relationship, Huth and Abergel [41] introduce the Lead-Lag Ratio (LLR)

measuring the asymmetry of the cross-correlation function:

LLRX,Y ≡
∑
g∈G ρ̂

HY
X,Y (`g)2∑

g∈G ρ̂
HY
X,Y (−`g)2
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for {`g | g ∈ G}, a discrete time grid of positive lags. Whenever LLRX,Y > 1, {Xt} leads

{Yt} and the higher LLRX,Y is, the more {Xt} leads {Yt}. This statistic is also applied to

detect lead-lag relationships in our data.

3.2. Econometric model

We concentrate on the models of Huth and Abergel [41] and Alsayed and McGroarty [2]

since they are the only studies whose methodologies are directly developed on unsampled

LOB data. Huth and Abergel [41] are predicting the direction of the mid-quote move (up or

down) at the next trade of the lagging mid-quote process {Yt} by taking the sign of a linear

combination that uses the leader’s past mid-quote moves as the only exogenous variables,

like so:

R̂Y
j ≡ sign(∆̂Y (IYj )) = sign

 p∑
k=1

βk
∑

i:tXi <t
Y
j−1

∆X(IXi )I{IX
i ∩(IY

j )`k
6=∅}


where p is the last statistically significant lag. They set βk = ρ̂HYX,Y (`k) and achieve around

60% directional accuracy on test days. The model’s core idea is a binary classification, when

in fact, a logistic regression would be more appropriate than taking the sign of a model

that is designed for a harder prediction problem. Predictions that fall close to 0 can also be

problematic since they lie around the model’s decision boundary, where predictions are most

uncertain (Nguyen et al. [47]). Adding a null prediction seems necessary for HFT whenever

that occurs. Null predictions have been considered in the next contribution.

Alsayed and McGroarty [2] define clusters as sets of contiguous process variations uninter-

rupted by variations of a second process observed in parallel. They define
{
CX
i,n

∣∣∣ i,n ∈ N+
}

as the set of clusters of process {Xt}, where the subscript i refers to the cluster index and n

the variation index within each cluster. The same definition holds for process {Yt}. Figure

14 illustrates the concept of clusters.

Suppose that {Xt} leads {Yt}, and define C ·i,n as the mid-quote returns of both processes,

Alsayed and McGroarty [2] predict the next cluster’s direction of the lagging asset, R
C

Y
i
≡
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Fig. 14. Time-line illustration of dual process clusters. Observations of process {Xt} are
marked by an "X" and those of {Yt} are marked by an "O." Taken from Alsayed and Mc-
Groarty [2].

sign
(∑

nC
Y

i,n

)
, with the following rule:

R̂
C

Y
i

=



+1, ifmax
n

(
C
X

i,n

)
≥ KAM

−1, ifmin
n

(
C
X

i,n

)
≤ −KAM

0, otherwise,

where KAM ∈ R+
0 is a preset threshold. They achieve a directional accuracy in excess of

85% on pairings of S&P 500, FTSE 100, and DAX futures contracts in 2012. This high

level of accuracy can be explained by the high LLRX,Y in the three asset pairs studied.

Only relying on the leader’s latest cluster might be hazardous for asset pairs with a weaker

lead-lag relationship.

Huth and Abergel [41] and Alsayed and McGroarty [2] both offer interesting predic-

tive models that are able to exploit HFT lead-lag relationships in their respective financial

contexts. The use in Huth and Abergel [41] of the leading process’ past relevant informa-

tion, the simplicity of the Alsayed and McGroarty [2] model, and the trader’s ability to

set a confidence threshold are all important qualities in HFT econometric models. We ex-

tend their contributions by proposing a model that takes into account the aforementioned

overlooked aspects. Following Alsayed and McGroarty [2], we set clusters of the leading

price process as CX
i =

{
CX
i,j

∣∣∣ j = 1, . . . ,nXi ∈ N+
}

and the lagging price process’ as

CY
i =

{
CY
i,j

∣∣∣ j = 1, . . . ,nYi ∈ N+
}
, where i = 1,2, . . . ,N for N the number of clusters,

and CX
i,j = ∆X

IX∑
k<i

nX
k +j

, CY
i,j = ∆Y

IY∑
k<i

nY
k +j

 the absolute variations of the two
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price processes (any price process, not necessarily mid-quote). We define rCX
i

=
nX

i∑
j=1

CX
i,j as

the total price process variation within cluster CX
i and the same definition applies for {Yt}.

Without loss of generality, we assume that the first cluster we observe is from {Xt}, and

the last one is from {Yt}. We are interested in predicting the direction of rCY
i
based on past

observations of ({Xt},{Yt}), i.e.,

RCY
i
≡ sign

(
rCY

i

)
=



+1, if rCY
i
> 0

0, if rCY
i

= 0

−1, if rCY
i
< 0.

To do so, we propose the autoregressive distributed lag multinomial logistic regression

(ADLMLR) to model RCY
i
. It generalizes the logistic models for autoregressive binary vari-

ables introduced in Bonney [6] in two ways. Firstly, it departs from a binary dependent

variable to a multicategorical one, allowing for the modeling of a larger spectrum of systems.

Secondly, {Yt} is not only autoregressive, it is autoregressive with a distributed lag for {Xt},

thus incorporating past values of both processes. Our model is an important departure

from conventional approaches based on error correction models (ECM) (for example, Brooks

et al. [8]; Engle and Granger [18]; Frijns et al. [24]; Hasbrouck [33]; Judge and Reancharoen

[43]; Pascual et al. [49]; Yang et al. [58]) or vector autoregressive models (VAR) (see Dimpfl

and Jung [17]; Hou [40]) since it does not require the processes to be synchronously and

regularly observed in time, thanks to the use of clusters. We also depart from an ordinary

least squares (OLS) framework to a probabilistic one, where we are interested in predicting

the probability of the class of the next return’s direction (positive, neutral, or negative)

instead of quantifying the return itself. This probabilistic task is easier to accomplish, hence

the model predictions are more robust. As we will show, this leads to a greater profitability

potential when incorporated into an HFT strategy.
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The proposed ADLMLR model for RCY
i
is as follows. Supposing a (auto)dependence lag

of order D ∈ N+,

(
RCY

i
| rCY

i−D:i−1
, rCX

i−D+1:i

)
∼ Multinoulli(pi,−1, pi,0, pi,+1),

where pi,· ∈ [0,1], ∑ pi,· = 1 ∀i, are the conditional probabilities of their respective return

direction based on the past observations of ({Xt},{Yt}) and are denoted by:

pi,−1 = P
(
RCY

i
= −1 | rCY

i−D:i−1
, rCX

i−D+1:i

)
,

pi,0 = P
(
RCY

i
= 0 | rCY

i−D:i−1
, rCX

i−D+1:i

)
,

pi,+1 = P
(
RCY

i
= +1 | rCY

i−D:i−1
, rCX

i−D+1:i

)
,

for rCi−D:i = {rCi−D
, rCi−D+1 , . . . , rCi−1 , rCi

}. We define the conditional probabilities from the

logit function with an autoregressive distributed lag-like model:

ln
pi,−1

pi,+1

 = α−1 +
D−1∑
j=0

βj,−1rCX
i−j

+
D∑
j=1

γj,−1rCY
i−j
,

ln
 pi,0
pi,+1

 = α0 +
D−1∑
j=0

βj,0rCX
i−j

+
D∑
j=1

γj,0rCY
i−j
.

Since we also have ∑ pi,· = 1, we can find the conditional probabilities:

pi,−1 = eθi,−1

1 + eθi,−1 + eθi,0
,

pi,0 = eθi,0

1 + eθi,−1 + eθi,0
,

pi,+1 = 1
1 + eθi,−1 + eθi,0

,

where

θi,−1 = α−1 +
D−1∑
j=0

βj,−1rCX
i−j

+
D∑
j=1

γj,−1rCY
i−j
,

θi,0 = α0 +
D−1∑
j=0

βj,0rCX
i−j

+
D∑
j=1

γj,0rCY
i−j
.
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The parameters of the model Θ = {α−1, α0, β0,−1, . . . ,βD−1,−1, β0,0, . . . ,βD−1,0, γ1,−1, . . . ,

γD,−1, γ1,0, . . . ,γD,0} are found by maximum likelihood estimation of

L(Θ) =
N∏
i=D

(pi,−1)
I{

R
CY

i

=−1

}
(pi,0)

I{
R

CY
i

=0

}
(pi,+1)

I{
R

CY
i

=+1

}
,

for N the number of clusters in {Yt}, so that

Θ̂ = arg max
Θ∈R4D+2

L(Θ).

We use the BFGS algorithm of Broyden [9]; Fletcher [22]; Goldfarb [29]; Shanno [55] to

solve for Θ̂. The largest predicted probability in vector p̂i = [p̂i,−1 p̂i,0 p̂i,+1] determines the

direction of the total variation in cluster CY
i :

R̂CY
i

=



+1, if max(p̂i) = p̂i,+1, p̂i,+1 ≥ K

−1, if max(p̂i) = p̂i,−1, p̂i,−1 ≥ K

0, otherwise,

where K ∈ [0, 1] is a preset decision threshold controlling the minimum confidence needed

to make a prediction. Its empirical selection will be discussed in Section 5.2. The ADLMLR

model is also closely related to the autoregressive conditional multinomial-autoregressive

conditional duration (ACM-ACD) model of Russell and Engle [54] since price changes are

also assumed to follow a multinomial logistic model. But in their case, only a single asset

is considered. ADLMLR alters the ACM part of their model to directly consider related

assets by also conditioning on the price changes of a leading asset, thus adding a distributed

lag process in the autoregression of the lagging asset. Our price direction function is also

more adapted to trading than that of Russell and Engle [54] because of the added confidence

threshold K.19

19Note that we do not consider the duration effect studied in Russell and Engle [54], which can be further
investigated in a subsequent paper. We choose to focus on the price dynamics for now.
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3.3. High-frequency arbitrage strategy

With market orders, Brooks et al. [8] and Huth and Abergel [41] are not able to profit

from their predictions, as paying the bid-ask spread at every opportunity is prohibitive for

a HFTer, even more so considering exchange trading costs. Predicting the direction of mid-

quote movement is also not the most practical way of building an HFT strategy since orders

cannot be executed at that price — another problem discussed in Huth and Abergel [41]. To

circumvent these issues, we are predicting the return direction in the best bid and best ask

prices based on the econometric model introduced in the previous subsection. In other words,

a first model instance is used for the best bid price process and a second one is dedicated to

the best ask. We are also relying on limit orders to reduce trading costs.

We assume an existing lead-lag relationship between a leader {XBid/Ask
t } and a lagging

process {Y Bid/Ask
t }, which are the best bid/ask price processes. We also assume that our

econometric model is able to utilize that relationship to generate adequate predictions. Based

on these assumptions, we are interested in profiting from the predicted directions in clusters

of {Y Bid/Ask
t }: R̂

CY Bid/Ask

i

. For a tick size of δ, the novel HFT strategy is as follows:

• Bid price process:

– When R̂
CY Bid

i
= −1, do all actions at the same time:

1. Send a marketable sell limit order of volume V Bid
i at the current value of

{Y Bid
t };

2. Send a buy limit order of volume V Bid
i at the current value of {Y Bid

t }

minus δ;

3. Send a stop buy limit order of volume V Bid
i with stop and limit prices

equal to the current value of {Y Bid
t } plus 2δ.

– When R̂
CY Bid

i
∈ {0, 1}: do nothing.

– When a position has been open for M minutes, send a market buy order to

close.

• Ask price process:

– When R̂
CY Ask

i
= 1, do all actions at the same time:
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1. Send a marketable buy limit order of volume V Ask
i at the current value of

{Y Ask
t };

2. Send a sell limit order of volume V Ask
i at the current value of {Y Ask

t } plus

δ;

3. Send a stop sell limit order of volume V Ask
i with stop and limit prices equal

to the current value of {Y Ask
t } minus 2δ.

– When R̂
CY Ask

i
∈ {−1, 0}: do nothing.

– When a position has been open for M minutes, send a market sell order to

close.

A short (long) position is open when the marketable sell (buy) limit order hits the market

and the buy (sell) limit order tries to close it whenever the lagging process {Y Bid
t } ({Y Ask

t })

moves in the predicted direction. This allows us to capture a potential profit of δ when our

econometric model makes a good prediction. No new position is open until the previous one

has been closed. The stop limit orders are employed for risk management in the case of a

wrong prediction; the same goes for closing market orders. Additional details of the strategy

are presented in Appendix A.

3.4. Market frictions: latency, risks, and costs

In order to be as practical as possible, we use the Deltix QuantOffice trading software

suite. This software only manages back-office operations and replays the LOB messages for

backtesting purposes, letting us to get closer to real-life high-frequency trading. When using

historical data, like in this paper, QuantOffice emulates the trades and quotes in a live-

streaming environment, and computes the profit and loss results at the end of a strategy’s

execution. It is possible to bypass the software and implement an equivalent testing program,

but we utilize the professional suite to ensure the quality of the results.20

20Deltix has worked in collaboration with more than 100 banks, brokers, institutional investors and high-
frequency traders in the U.S. Hence, the results provided in this paper are representative of what would
have been obtained in these institutions before switching the strategy to live markets directly from the same
code implemented in QuantOffice. They are the closest results to real time trading possible in an academic
context.

126



Latency is of paramount importance in HFT, as shown in Poutré et al. [52]. So, we use

a simplified version of their methodology to account for latency in our empirical results. By

latency, we mean the total time it takes for a trader to interact with the market when new

information arrives. Hasbrouck and Saar [35] measure latency on three components: the time

it takes for a trader to learn about an event, to generate a response, and for the exchange

to act on that response. Considering a HFTer colocated at the leading exchange, the first

two components of latency are the amount of time required for information generated at a

lagging exchange to arrive and its treatment by the HFTer’s server and trading algorithm.

This is due to the finite speed of light causing a delay in the observed LOB between the

source of information (lagging exchange) and its point of observation (leading exchange).

To replicate that relativistic effect for a HFTer, we wait for an amount of time equal to the

true one-way information transportation time plus its treatment time before entering the

lagging exchange’s data into the HFT strategy, thus delaying it. So, for a HFTer colocated

at the leading exchange, it is as if its trading algorithm only observes past LOB states of the

geographically distant lagging exchange, as it would in practice. Moving forward, this will

be referred to as the first half of latency.

The last component of latency, which we will refer to as the second half of latency, is

treated similarly. When the HFT strategy of Section 3.3 generates a trade signal, the orders

are only sent to the execution engine after a time delay that corresponds to the same one-way

information transportation time between exchanges, plus the receiving exchange’s matching

engine delay. So, a HFTer cannot interact infinitely rapidly with a geographically distant

lagging exchange, as is the case in practice. For convenience, we assume that the HFT server

is able to process a stream of level 1 data with the same efficiency as an exchange server.

This allows us to use the same total latency value for the first and second halves of latency.

In the next section, Table 20 presents the latency values employed.

The high-frequency strategy is exposed to both execution and non-execution risks since

it utilizes market and limit orders. Those risks are taken into account using a set of fixed

professional rules determining if, when, and at what price the orders sent would have been
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executed in practice, making sure to always respect the price-time priority rules. The com-

plete list of execution rules is given in Appendix C.21 We also compute exchange trading

costs after an order’s execution, which are shown in Table 20 of the next section. Liquidity

removal costs for marketable limit and market orders, and liquidity-providing costs for limit

orders are taken into account.

4. Data

DAX 30 (which was extended to DAX 40 on November 24, 2020) is a German stock index

containing 30 of the country’s largest blue chip companies. Table 18 lists its constituents in

2013, and Table 19 details some of their stylized facts. Xetra, operated by Deutsche Börse

AG at the Frankfurt Stock Exchange, is the reference order-driven trading venue for German

stocks and has normal trading hours of 9:00 a.m. to 5:30 p.m. CET.22 Chi-X Europe, also an

order-driven exchange, is a cost-effective pan-European alternative to the largest European

exchanges, with continuous trading hours between 8:00 a.m. and 4:30 p.m. GMT, located

in London. Finally, BATS Europe (Better Alternative Trading System) is another London–

based pan-European stock exchange, founded in 2008. BATS Europe was a direct competitor

to Chi-X Europe, with the same normal trading hours, but it ultimately acquired the latter

in 2011. The London–based exchanges lag one hour behind Xetra because of different time

zones, but all their normal trading hours overlap completely, from opening to closing.

Our data covers DAX 30 stocks in the three European exchanges listed above: Xetra,

Chi-X, and BATS, and spans six months in 2013, from February to July, inclusively, thus

covering 125 trading days. The data of Chi-X and BATS was acquired from BEDOFIH

(Base Européenne de Données Financières à Haute Fréquence) and it contains the trades

and quotes at a millisecond precision for the first 20 LOB levels but only the first level is

21The execution rules were obtained from Deltix.
22Xetra offers the "continuous trading with auctions" service for its more liquid securities. Call auctions
occur three times in a regular trading day for DAX 30 stocks: from 8.50 am to 9.00 am at the earliest
(opening auction), from 1:00 p.m. to 1:02 p.m. at the earliest (intraday auction), and from 5:30 p.m. to
5:35 p.m. at the earliest (closing auction), with random end times. Continuous trading occurs in between
auctions and only these periods are used in our study. See https://www.xetra.com/xetra-en/trading/trading-
models/continuous-trading-with-auctions for the detailed trading models of Xetra.
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used in this study. Microsecond precision data for these two exchanges only started in 2019.23

Xetra’s raw data contains every market event sent by the exchange, and we use the Xetra

Parser software of Bilodeau [4] to rebuild the first level of the LOB at a microsecond precision

for each update. The timestamps are then rounded to the nearest greater millisecond, for

use in conjunction with the previous data sets. Rounding Xetra’s timestamps is absolutely

necessary to keep the most intact sequential order of events between the three exchanges,

given that both Chi-X’s and BATS’s timestamps have a lower precision level. The light

travel time between Frankfurt and London, i.e., the absolute physical limit in information

latency, is north of 2 ms, so analyzing the lead-lag relationships of Xetra’s stocks with smaller,

more precise latency values is unnecessary. Moreover, because the average rate of events is

around one per 135 ms for the most active stock (Chi-X:DBK), very few events occur in the

same millisecond at multiple exchanges. Hence, overall, losing precision on Xetra’s data by

rounding its timestamps to a millisecond accuracy does not significantly alter the lead-lag

relationship analysis, nor the strategy’s results reported in this study.

Panel A of Table 20 details the latencies used to generate the strategies’ results, which

have been communicated directly by the exchanges and a trading connectivity firm.24 Total

latencies are rounded to the nearest non-zero integer. Note that microwaves began to be

adopted in 2010 by HFTers and that a one-way trip between London and Frankfurt was

around 2.3 ms with that technology. Thus, the total latency used for both links in this study

are convervative, meaning that the profitability results presented in Section 5.3 are also

conservative, since our strategy most probably reacts more slowly than the most sophisticated

HFTers at that time. Panel B shows the trading costs of the three exchanges in 2013,25 and

23See the European Financial data Institute’s data description guide for the complete documentation (ac-
cessed April 6, 2023).
24Note that Chi-X and BATS servers are located in Equinix Slough (LD4), 32 km west of Central London,
and Xetra servers are in Frankfurt (FR2). Also note that one-way transportation latency is half of a round
trip. Sources used are: https://www.marketsmedia.com/extent-of-adoption-of-microwave-technology-in-
europe-revealed (Chi-X/Xetra one-way on fiber optics to be conservative), Deutsche Börse Group [15] (Xetra
exchange latency), and https://cdn.cboe.com/resources/press_releases/BATS_Europe_Latency_Update_
FINAL.pdf (BATS exchange latency).
25Deutsche Börse Group [16] contains the trading costs of DAX stocks at Xetra, and https://www.cboe.
com/europe/equities/notices/41029/fee_schedule/ the trading costs of Chi-X and BATS. All trading costs
are effective January 2, 2013.
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Table 18. DAX 30 constituents from February to July 2013.

Ticker Company Prime Standard
Sector

ADS Adidas Consumer
ALV Allianz Insurance
BAS BASF Chemicals
BAYN Bayer Chemicals
BEI Beiersdorf Consumer
BMW BMW Automobile
CBK Commerzbank Banks
CON Continental Automotive
DAI Daimler AG Automobile
DB1 Deutsche Börse Financial Services
DBK Deutsche Bank Banks
DPW Deutsche Post Transportation & Logistics
DTE Deutsche Telekom Telecommunication
EOAN E.ON Utilities
FME Fresenius Medical Care Pharma & Healthcare
FRE Fresenius Pharma & Healthcare
HEI HeidelbergCement Construction
HEN3 Henkel Consumer
IFX Infineon Technologies Technology
LHA Deutsche Lufthansa Transportation & Logistics
LIN Linde Chemicals
LXS Lanxess Chemicals
MRK Merck Pharma & Healthcare
MUV2 Munich Re Insurance
RWE RWE Utilities
SAP SAP Software
SDF K+S Chemicals
SIE Siemens Industrial
TKA Thyssenkrupp Industrial
VOW3 Volkswagen AG Automobile

Panel C documents the rules used by Xetra to determine stocks’ tick sizes.26 Chi-X and

BATS subsequently use the same tick sizes for cross-listed stocks also traded at Xetra.

26https://www.xetra.com/xetra-en/trading/trading-models/trading-parameter-tick-size. All websites refer-
enced in this section were accessed on September 7, 2022.
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Table 20. Latencies, trading costs, and tick rules used in the study.

Panel A: Latency for the two exchanges links used in the strategy

Link One-Way Transportation
Latency (ms)

Exchange
Latency (ms)

Total
Latency (ms)

Total
Latency Used (ms)

Chi-X / Xetra 4.150 1.100 5.250 5
Chi-X / BATS ∼ 0 0.165 0.165 1
Panel B: Trading costs associated with sending orders

Exchange Liquidity
Removal (bps)

Liquidity
Providing (bps)

BATS 0.15 0.00
Chi-X 0.30 (0.15)
Xetra 0.36 0.36

Panel C: Tick size (δ) rules at Xetra
Price Range

(e)
δ

(e)
[0,10) 0.001

[10, 50) 0.005
[50, 100) 0.01
[100,∞) 0.05

5. Results and analysis

5.1. Empirical lead-lag relationships

Table 21 presents the mid-quote lead-lag estimation of Chi-X/Xetra and Chi-X/BATS

cross-listed stocks on our data with the discrete time grid G = {0, 1, . . . , 50, 55, . . . , 100, 200,

. . . , 1000, 2000, . . . , 15000} ms.

Chi-X leads almost every DAX 30 cross-listed stock also quoted at Xetra and BATS.

Exceptions are HEN3 and RWE, where no definitive lead-lag relationship exists between Chi-

X/Xetra and Chi-X/BATS, respectively. An important observation is that ̂̀∗ (measured in

milliseconds) is lower-bounded by the actual latency observed between the markets in 2013,

i.e., around 4–5 milliseconds for Chi-X/Xetra and around 0–1 millisecond for Chi-X/BATS

(see latencies in Section 4). This demonstrates the reliability of the Hoffman et al. [39] lag

estimation. Any lead-lag movement in the lagging exchange that takes longer than latency

is theoretically exploitable by a HFTer. The number of potential arbitrage opportunities is

presented in the next subsection.
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Table 21. Mid-quote lead-lag estimation using the Hoffman et al. [39] estimator and Huth
and Abergel [41] LLRX,Y for the links Chi-X/Xetra and Chi-X/BATS on our data.

Chi-X / Xetra Chi-X / BATS
Ticker Leader LLRX,Y

̂̀∗ (ms) ρ̂HYX,Y ( ̂̀∗) Leader LLRX,Y
̂̀∗ (ms) ρ̂HYX,Y ( ̂̀∗)

ADS Chi-X 1.15 10 0.025 Chi-X 2.94 4 0.034
ALV Chi-X 2.12 8 0.046 Chi-X 4.00 2 0.157
BAS Chi-X 1.81 8 0.034 Chi-X 3.32 1 0.039

BAYN Chi-X 1.93 9 0.065 Chi-X 1.36 2 0.065
BEI Chi-X 1.07 6 0.059 Chi-X 1.64 2 0.154

BMW Chi-X 1.21 6 0.094 Chi-X 2.83 4 0.098
CBK Chi-X 2.21 10 0.077 Chi-X 3.36 1 0.034
CON Chi-X 1.37 7 0.039 Chi-X 1.89 10 0.033
DAI Chi-X 1.35 7 0.052 Chi-X 1.07 1 0.051
DB1 Chi-X 1.25 5 0.031 Chi-X 3.58 2 0.120
DBK Chi-X 1.73 5 0.100 Chi-X 2.81 4 0.105
DPW Chi-X 1.85 8 0.060 Chi-X 2.77 1 0.060
DTE Chi-X 2.34 9 0.039 Chi-X 2.12 1 0.206

EOAN Chi-X 3.98 7 0.030 Chi-X 1.31 0 0.038
FME Chi-X 1.19 7 0.035 Chi-X 2.89 2 0.032
FRE Chi-X 1.01 9 0.025 Chi-X 2.16 1 0.085
HEI Chi-X 1.53 6 0.033 Chi-X 1.07 1 0.306

HEN3 - - - - Chi-X 7.26 1 0.047
IFX Chi-X 1.26 7 0.034 Chi-X 2.38 3 0.045
LHA Chi-X 1.29 6 0.072 Chi-X 7.76 1 0.138
LIN Chi-X 2.20 8 0.063 Chi-X 1.93 1 0.087
LXS Chi-X 1.12 10 0.035 Chi-X 2.49 10 0.026
MRK Chi-X 1.48 7 0.088 Chi-X 1.80 1 0.094
MUV2 Chi-X 1.90 8 0.019 Chi-X 2.89 2 0.061
RWE Chi-X 1.27 8 0.032 - - - -
SAP Chi-X 1.56 8 0.062 Chi-X 1.30 0 0.100
SIE Chi-X 1.92 7 0.064 Chi-X 1.55 0 0.144

TKA Chi-X 1.59 7 0.047 Chi-X 1.55 1 0.100
VOW3 Chi-X 1.69 8 0.021 Chi-X 1.69 3 0.044

Interestingly, the fact that Chi-X is the leader of DAX 30 stocks is a direct counterexample

of some earlier papers where the home market was the main source of price discovery (Frijns

et al. [24]; Grammig et al. [31]; Menkveld et al. [46]; Pascual et al. [49]). Note that these

papers all work on assets with differing currencies, whereas DAX 30 stocks are all listed in a

single currency. However, we do not believe the exchange rate effect (or lack thereof) is the

factor explaining this difference in the origin of price discovery. Indeed, the observation that

Chi-X is the leader aligns with other contributions demonstrating that the most liquid and

actively traded market leads price discovery (Frijns et al. [25, 26]; Poshakwale and Theobald

[51]) (see Table 19 in Section 4 for stylized facts). This is also in line with the hypothesis that

the market with the lowest transaction costs will be the source of price discovery (Abhyankar
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[1]; Brooks et al. [8]; Ghadhab and Hellara [28]) in the case of Chi-X/Xetra relationships (see

trading costs in Section 4), which is known as the “trading cost hypothesis" introduced in

Fleming et al. [21]. In the case of the Chi-X/BATS relationships, even though the liquidity-

removal cost is higher at Chi-X, HFTers seem to be more active at that exchange than at

BATS, probably because of the higher liquidity-providing rebates given at Chi-X. Finally,

since DAX 30 stocks are multiple listed, it is also logical with the fact that foreign markets

will contribute more to price discovery than the home market (Ghadhab and Hellara [28]).

Thus, by being colocated at Chi-X, a HFTer should have the best chance of exploiting these

lead-lag relationships in DAX 30 stocks, even if Xetra is their home exchange.

From Table 21, we can answer our first question. Indeed, the exchange that is most

liquid, most actively traded, and has the highest liquidity-providing rebates will lead the

high-frequency prices in the case of cross-listed stocks, even if it is not the home exchange.

In our application, Chi-X is the definitive leader of DAX 30 stocks, over Xetra and BATS,

for the aforementioned reasons.

5.2. Econometric model performance

We choose a lag order of D = 10, given that trials on the first two weeks of data show

that rCX
i−D

and rCY
i−D

are always statistically insignificant in the model for D > 12. The

model is also losing some predictive power with D < 10, so setting D = 10 is a good middle

ground. The same D is used during the entire six months and for every stock. The models

are recurrently trained every five days with past data and are used out-of-sample through

the next five-day period, as shown in Figure 15. "Test" sections are out-of-sample periods

where live trading decisions are generated based on the predictions of the models estimated

on "train" periods consisting of past days. The first two five-day periods are reserved for

the first training iteration, and the first out-of-sample period is the following five days.

Other training frequencies were tested, but the model’s performance did not significantly

change. The lag D could also be dynamically selected at each period. But, preliminary

results showed that there were only minimal (or no) additional accuracy to be gained, so
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Fig. 15. Schema depicting the recurrent training and out-of-sample testing of our model
every five days from February 1 to July 31, 2013

always setting D = 10 is an effective alternative. In fact, the difference in accuracy within

D = 10± 2 was less than ±1–2%, so D is not a main contributor to higher model accuracy.

On the other hand, the decision threshold K ∈ [0, 1] plays an important role in selecting

the right opportunities to trade on. Figure 16 exemplifies its effect on the quality of pre-

dictions and the number of potential opportunities generated by the model. Increasing K

Fig. 16. Example of threshold K’s effect on model performance, fitted on the bid price
processes of Chi-X:DBKd and Xetra:DBK during the first training iteration. The blue line
depicts the accuracy and the red one represents the number of potential opportunities, both
as a function of K. The dotted vertical line is the peak of the accuracy function on the
training sample.

generally results in a higher accuracy in the training sample, but only up to a certain point,
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at which it tends to decrease. It also drastically reduces the number of potential opportu-

nities, since less and less predicted probability max(p̂i) ≥ K when K → 1. The peak is

found on the training sample every time a model is fitted and it is used to select the trading

opportunities out-of-sample. This is done independently for every stock at each exchange.

We use the model of Alsayed and McGroarty [2] as a benchmark because a clear compar-

ison can be made between their model and ours. Moreover, the data in both studies come

from similar periods. Their predictive framework currently has the best accuracy in the

lead-lag arbitrage literature, so it is a suitable point of comparison. The number of potential

lead-lag arbitrage opportunities on processes ({Xt}, {Yt}) is defined as

Potential Opportunities{X,Y } = PO{X,Y } =
N∑
i=1

I{
R̂

CY
i
6=0
},

which represents the number of non-null movement predictions made by a model for the next

cluster of the lagging process {Yt}. The model accuracy is then defined as

Accuracy{X,Y } = 1
PO{X,Y }

N∑
i=1

I{(
R̂

CY
i

=R
CY

i

)
∧
(
R̂

CY
i
6=0
)},

the ratio of correct non-null predictions to the total number of potential opportunities. We

exclude the null predictions in the accuracy measurement because they do not generate

trades. We want to focus on the model’s accuracy on actual opportunities. Table 22 summa-

rizes the performance of the Alsayed and McGroarty [2] predictive model on the mid-quote

from our data (see Section 3.2 for details) where δ is the tick size. For the complete per-ticker

performance, see Tables 32 and 33 in Appendix B.

Table 23 presents the out-of-sample performance summary of our econometric model on

the best bid and ask price processes obtained on the Chi-X/Xetra and Chi-X/BATS lead-lag

relationships. Multiple dynamic thresholds are tested to study the importance of K. We

begin at the peak, i.e., the values of K on the training sets that generate the highest accuracy

from the set K ∈ {0.35, 0.375, 0.40, . . . , 1}, and then decrease K from that starting point by

increments of 0.025. For the complete per-ticker performance of our model for both best bid

and ask prices processes at Xetra and BATS, see Tables 34 to 37 in Appendix B.
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Table 22. Alsayed and McGroarty [2] mid-quote direction performance summary on the
six months of data for multiple KAM .

Threshold
(KAM)

Xetra
Accuracy

(%)

Xetra Potential
Opportunities

BATS
Accuracy

(%)

BATS Potential
Opportunities

Total
Accuracy

(%)

Total Potential
Opportunities

δ 71.7 5 187 749 70.4 4 833 712 71.1 10 021 461
2δ 70.7 1 037 573 70.9 908 307 70.8 1 945 880
3δ 66.8 351 333 68.8 285 449 67.7 636 782
4δ 64.4 192 933 67.5 148 695 65.7 341 628
5δ 63.2 126 730 66.7 95 555 64.7 222 285
6δ 62.6 85 101 66.4 63 081 64.2 148 182
7δ 62.4 57 869 66.3 42 805 64.0 100 674
8δ 62.5 38 922 65.9 28 837 64.0 67 759
9δ 62.4 26 356 66.1 19 655 64.0 46 011
10δ 62.9 18 599 65.9 14 116 64.2 32 715

Table 23. ADLMLR out-of-sample performance summary on the six months of data for
multiple K.

Threshold (K)
Xetra

Accuracy
(%)

Xetra Potential
Opportunities

BATS
Accuracy

(%)

BATS Potential
Opportunities

Total
Accuracy

(%)

Total Potential
Opportunities

Peak 84.2 915 666 78.3 708 580 81.6 1 624 246
Peak - 0.025 84.3 1 093 229 78.5 868 951 81.7 1 962 180
Peak - 0.050 83.9 1 262 096 78.4 1 042 930 81.4 2 305 026
Peak - 0.075 83.5 1 428 723 78.1 1 231 914 81.0 2 660 637
Peak - 0.100 82.8 1 614 729 77.6 1 401 910 80.4 3 016 639
Peak - 0.125 82.1 1 817 528 77.0 1 568 967 79.7 3 386 495
Peak - 0.150 81.3 2 028 380 76.3 1 709 488 79.0 3 737 868
Peak - 0.175 80.6 2 162 587 75.4 1 836 598 78.2 3 999 185
Peak - 0.200 79.8 2 264 035 74.6 1 878 981 77.5 4 143 016

From Tables 22 and 23, we can see that we compare favorably in terms of accuracy. As

mentioned earlier, depending only on the latest cluster observation of the leading asset can be

hazardous whenever the lead-lag relationship is not as strong as the ones observed in Alsayed

and McGroarty [2], as defined by the LLRX,Y . In our cross-listed stock case, fully utilizing

the leading and lagging assets’ past prices resulted in an average absolute increase of 10%

in total accuracy. As expected, by decreasing the threshold K, we are able to increase the

number of potential opportunities at the expense of a lower model accuracy. The financial

effect of K is presented in the next subsection.
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We also compare the performance of the ADLMLR model to a standard autoregressive

distributed lag (ADL) model, where ADLMLR is a classification model trained with maxi-

mum likelihood and ADL is a closely related regression model fitted using the OLS method.

In Section 3.2, we made the case that ADLMLR has a greater profitability potential than

its regression counterpart, which we show here. First, we define the ADL model closest to

ADLMLR:

rCY
i

= α +
D−1∑
j=0

βjrCX
i−j

+
D∑
j=1

γjrCY
i−j

+ εj

where εj iid∼ N(0,σ2) and D ∈ N+. In order for that model’s performance to be compared

to ADLMLR’s, the predicted directions of the total variation in cluster CY
i are computed as

follows:

R̂ADL
CY

i
=



+1, if r̂CY
i
≥ KADL

0, if −KADL < r̂CY
i
< KADL

−1, if r̂CY
i
≤ −KADL.

Again, KADL ∈ R+
0 is a preset threshold found dynamically, as described at the beginning

of this subsection. Notice that, when we set D = 1, α̂ = 0, β̂0 = 1, γ̂1 = 0, the model

is almost equivalent to Alsayed and McGroarty [2] (they use the minimum and maximum

returns within the leader’s cluster, not its total return). Also, when D = p, KADL = 0,

α̂ = 0, and γ̂j = 0 ∀j, we get a model similar to Huth and Abergel [41], but on a quote

basis instead of a trade basis. Hence, the ADL model in conjunction with the direction

prediction method is a generalization of the predictive framework employed in both studies.

Table 24 presents the out-of-sample performance summary of that framework on the best

bid and ask price processes selected from a grid of KADL ∈ {0, δ, 2δ, . . . , 10δ} with D =

10. At its peak, the comparable ADL model achieves an accuracy of 79.6% on a total

of 1.4 million potential arbitrage opportunities. On the other hand, as seen in Table 23,

the ADLMLR model can reach the same level of accuracy, but on 3.4 million arbitrage

opportunities, which is over 140% more than what ADL generates. At its peak, ADLMLR’s
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Table 24. ADL out-of-sample performance summary on the six months of data

Threshold (KADL)
Xetra

Accuracy
(%)

Xetra Potential
Opportunities

BATS
Accuracy

(%)

BATS Potential
Opportunities

Total
Accuracy

(%)

Total Potential
Opportunities

Peak 84.4 634 435 75.7 777 847 79.6 1 412 282

accuracy outperforms ADL’s by an absolute 2% while creating over 200,000 more potential

opportunities. This demonstrates that the classification framework of ADLMLR indeed

produces a greater profitability potential, as compared to an equivalent regression framework.

To understand how the leading exchange affects the predictive model’s performance, we

set βj,−1 = βj,0 = 0, ∀j = 0, . . . ,D − 1 in the ADLMLR model so that only past cluster

returns in the lagging exchange are used to generate predictions for the cross-listed stock

at that same exchange. Table 25 shows the results when K ∈ {0.35, 0.375, 0.40, . . . , 1} is

dynamically set at the peak. Not utilizing the lead-lag relationship between Chi-X and the

Table 25. ADLMLR out-of-sample performance summary on the six months of data with-
out the leading exchange observations (βj,−1 = βj,0 = 0, ∀j = 0, . . . ,D − 1)

Threshold (K)
Xetra

Accuracy
(%)

Xetra Potential
Opportunities

BATS
Accuracy

(%)

BATS Potential
Opportunities

Total
Accuracy

(%)

Total Potential
Opportunities

Peak 43.6 1 690 915 42.6 1 014 306 43.2 2 705 221

lagging exchanges Xetra and BATS dramatically lowers the model’s accuracy compared to

Table 23. In fact, it does not significantly outperform a naive forecasting model randomly

predicting positive or negative returns in the lagging exchange. This random model is able

to get an accuracy of 40.1% at Xetra and 40.5% at BATS. Hence, relying only on Xetra and

BATS to predict their own future returns is hardly possible because of the poor accuracy.

This is in line with the efficient market hypothesis (Fama [20]). But, using prices observed at

Chi-X enables accurate return predictions at lagging exchanges. This is a direct violation of

the hypothesis. This is another proof of an existing lead-lag relationship for DAX 30 stocks

at these three European exchanges. Additionally, when we set γj,−1 = γj,0 = 0, ∀j = 1, . . . ,D

without constraining the βs, ADLMLR’s accuracy decreases slightly compared to Table 23.

This means that the best model employs both the leading and lagging exchange prices to
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generate its predictions; this is the one used through the remainder of the paper. Huth and

Abergel [41] and Alsayed and McGroarty [2] only incorporate a subset of that information,

but we are able to utilize it all.

We are interested in ADLMLR’s performance through time in order to make sure that it

is long-lasting and well founded. Figure 17 illustrates the out-of-sample aggregated accuracy

of our econometric models when K is set at peak training accuracy and D = 10 for every

stock and every trading period. The models’ out-of-sample accuracies are fairly stationary

in time, varying by about 3%, and centered at the temporal mean during the entirety of our

data sample. Therefore, ADLMLR is able to generate a robust predictive function based on

the lead-lag effect observed between Chi-X/Xetra and Chi-X/BATS. The model performs

on average 6% better at Xetra and it constantly outperforms the one fitted at BATS.

Fig. 17. Out-of-sample accuracy in time, weighted on Table 21 selected DAX 30 stocks of
our econometric models for Xetra and BATS at each 5-day period from February 1 to July
31, 2013.

From Table 23 and Figure 17, we demonstrate that if there is a lead-lag relationship

between any two assets, an adequate econometric model fully utilizing current and past

observations of both assets is able to predict the lagging returns with respectable accuracy. In

our case, a generalized form of autoregressive logistic regression can predict the next cluster

movement of Xetra’s and BATS’ best bid and ask prices out-of-sample with an average
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accuracy exceeding 80%. This is possible because Chi-X led the DAX 30 cross-listed stocks

prices.

5.3. Statistical arbitrage performance

We compute the performance of the HFT arbitrage strategy of Section 3.3 in two scenarios

to determine the lead-lag relationships’ financial significance. In the first scenario, we only

consider the first half of latency. We observe the LOBs of Xetra and BATS at a delay because

the physical distance between these exchanges and Chi-X causes the information to arrive

late at that location. In the second scenario, the first half of latency is still considered, but

now orders sent to Xetra and BATS also arrive at a delay to account for the second half

of latency. Both scenarios consider trading costs and assume the colocation of a server at

Chi-X. This allows us to empirically study the effect of latency on the arbitrage strategy’s

performance.

Table 26 details the performance of the HFT strategy when latency is considered in the

case of information arrival, but not when sending orders (scenario 1). By being colocated at

Chi-X, we receive Xetra’s TAQ data five milliseconds after it is sent by the exchange, and

BATS’ data is received after one millisecond. But, orders are immediately integrated into

Xetra’s and BATS’s LOBs whenever they are sent by the strategy. As in Table 23, we begin

at the peak, i.e., the values of K on the training sets that generate the highest accuracy

from the set K ∈ {0.35, 0.375, 0.40, . . . , 1}, and then decrease K from that starting point by

increments of 0.025.

We stop at K = Peak− 0.200 because it is the point at which the strategy’s profitability

starts to diminish and continues to do so past that threshold. Table 27 presents the perfor-

mance of the HFT strategy when latency is also included when sending orders to the market,

while still considering information arrival latency (scenario 2), meaning that orders sent to

Xetra take five milliseconds to arrive in the LOB, and orders sent to BATS arrive after one

millisecond from a colocated server at Chi-X. Full latency is thus considered, being the most

realistic scenario, in accounting for important market frictions.
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Table 26. Performance summary of the HFT arbitrage strategy on six months of 2013 data
for the first scenario and multiple Ks, all in e.

Threshold
(K)

Xetra Profits
(before costs)

Xetra
Net Profits

BATS Profits
(before costs)

BATS
Net Profits

Total Profits
(before costs) Total Net Profits

Peak 607 013 121 976 405 893 327 640 1 012 906 449 616
Peak - 0.025 739 347 137 269 521 868 422 887 1 261 216 560 155
Peak - 0.050 880 287 151 088 634 577 514 435 1 514 864 665 523
Peak - 0.075 1 043 393 173 071 730 251 589 172 1 773 644 762 243
Peak - 0.100 1 236 158 198 566 800 106 642 167 2 036 264 840 733
Peak - 0.125 1 443 021 214 671 847 086 674 313 2 290 107 888 984
Peak - 0.150 1 667 882 246 440 874 900 691 163 2 542 782 937 603
Peak - 0.175 1 878 797 290 017 874 617 681 707 2 753 413 971 725
Peak - 0.200 2 058 342 318 596 849 585 652 701 2 907 927 971 296

Table 27. Performance summary of the HFT arbitrage strategy on six months of 2013 data
for the second scenario and multiple Ks, all in e.

Threshold
(K)

Xetra Profits
(before costs)

Xetra
Net Profits

BATS Profits
(before costs)

BATS
Net Profits

Total Profits
(before costs) Total Net Profits

Peak 555 629 99 891 423 990 346 240 979 618 446 131
Peak - 0.025 678 371 111 283 542 332 443 910 1 220 703 555 193
Peak - 0.050 809 847 120 902 657 113 537 573 1 466 961 658 475
Peak - 0.075 962 084 136 661 752 228 614 798 1 714 312 751 459
Peak - 0.100 1 146 414 158 360 828 672 671 389 1 975 086 829 749
Peak - 0.125 1 349 241 174 914 879 733 707 632 2 228 974 882 546
Peak - 0.150 1 566 425 203 051 908 245 725 161 2 474 670 928 212
Peak - 0.175 1 773 586 244 850 910 667 718 406 2 684 254 963 257
Peak - 0.200 1 945 885 268 123 885 588 689 349 2 831 473 957 471

Comparing Table 26 with Table 27, we notice that adding latency to the orders sent

by the HFT strategy plays an important role in its net profitability, especially at Xetra.

Indeed, net profits at that exchange are reduced by 15%—20%, but the strategy still remains

profitable. On the other hand, net profits at BATS do not change dramatically (around 5%

change). The geographical proximity of BATS to Chi-X and its lower trading activity and

liquidity compared to Xetra makes it so that latency does not play an important role on

the net profitability. Because of its higher trading costs, its geographical distance to the

leading exchange, and its higher level of trading and quoting activity, as compared to BATS,

generating net profits from lead-lag arbitrage at Xetra is more challenging. From these

results, we show that a HFTer is able to exploit the lead-lag relationship that exists for most

DAX 30 stocks cross-listed at Xetra, Chi-X, and BATS even when full latency, non-execution

risk, and trade costs are considered. From Table 27, we see that a HFTer can realistically
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generate an annual net profit of over e1.9 million on DAX 30 stocks alone from the three

exchanges, or more than e33,000 on average per cross-listed stock, per exchange. Table 28

presents the detailed performance of the Alsayed and McGroarty [2] strategy with the most

accurate KAM .

Table 28. Detailed performance of the Alsayed and McGroarty [2] strategy on six months
of 2013 data in the second scenario with the most accurate threshold KAM = δ.

Exchange Xetra BATS
Gross Profit(e) 29 647 2 415
Loss (e) -11 530 611 -23 819 384
Trading Costs (e) -1 597 281 -317 594
Total Net Profit (e) -13 098 246 -24 134 563
Median Net Daily Profit (e) -110 407 -201 945
Mean Net Daily Profit (e) - 115 914 -213 580
Most Profitable Date (Net Profit, e) 5/20/2013 (-59 006) 7/23/2013 (-97 640)
Fifth Most Profitable Date (Net Profit, e) 7/22/2013 (-63 408) 7/22/2013 (-112 638)
Least Profitable Date (Net Profit, e) 2/26/2013 (-290 537) 5/2/2013 (-448 108)
Fifth Least Profitable Date (Net Profit, e) 2/21/2013 (-136 762) 2/21/2013 (-239 112)
Median Trade Time (s) 0.050 0.021
Mean Trade Time (s) 2.17 2.17
# Net Profitable Trades 27 350 1 917
# Net Unprofitable Trades 4 196 171 4 124 243
# Trades 4 223 521 4 126 160
Net Profitable Trades (%) 0.65 0.05
Mean Volume per Trade 100 100
Mean Net Profit per Profitable Trade (e) 0.68 1.17
Mean Net Profit per Unprofitable Trade (e) -3.12 -5.85

The most accurate version of the Alsayed and McGroarty [2] mid-quote strategy is not

able to cover the bid-ask spread and the transaction costs. Almost 100% of the trades in this

strategy are not profitable because a variation in the best bid (when closing a long position)

and in the best ask (when closing a short position) greater than the bid-ask spread, plus

the transaction costs, is necessary within a single cluster, which lasts on average around two

seconds at both exchanges. This profitable situation occurs 0.65% of the time at Xetra and

0.05% at BATS. Larger values of KAM do not generate better results in terms of net profit

per trade, and no KAMs generate a net profitable strategy.

We also demonstrate that a mid-quote–based market order HFT strategy, like the one in

Huth and Abergel [41] and Alsayed and McGroarty [2] is not viable in practice. To do so,

we assume a perfect model that is always able to predict the exact mid-quote return of the

lagging asset’s next cluster. If that return is above (under) a threshold KPerfect (−KPerfect),
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the strategy opens a long (short) position with a buy (sell) market order at the best ask

(bid) right before the lagging asset’s next cluster begins. The position is then closed with an

opposite market order precisely when the lagging asset’s cluster ends. This is the buy-and-

hold HFT strategy of Alsayed and McGroarty [2]. Huth and Abergel [41] employ the same

type of strategy, but on a trade basis with a threshold of 0. Table 29 presents this best case

mid-quote–based market order HFT strategy on our data in the second scenario.

Table 29. Performance of a best case mid-quote–based market order HFT strategy on six
months of 2013 data in the second scenario for multiple KPerfect.

Threshold
(KPerfect) # Trades Net Profitable

Trades (%)
Gross Profit

(e)
Loss
(e)

Trading Costs
(e)

Total Net Profits
(e)

δ 11 383 116 0.50 69 459 -44 766 290 -2 677 747 -47 374 578
2δ 2 881 086 1.36 49 936 -17 000 432 -596 335 -17 546 832
3δ 1 226 077 1.67 30 536 -10 368 212 -197 801 -10 535 476
4δ 723 858 1.40 20 858 -7 427 307 -94 246 -7 500 695
5δ 427 531 1.30 15 601 -5 414 912 -52 933 -5 454 244
6δ 303 438 1.27 13 100 -4 097 537 -34 348 -4 118 785
7δ 180 751 1.50 11 385 -2 990 559 -21 216 -3 000 390
8δ 113 714 1.82 10 196 -2 332 528 -14 061 -2 336 393
9δ 71 894 2.15 9 057 -1 873 618 -9 477 -1 874 038
10δ 47 844 2.54 8 251 -1 537 994 -6 420 -1 535 892

Even though the predictive model is perfectly accurate on the next mid-quote return of

the lagging asset, gross profits never cover the bid-ask spread cost of market orders. This is

the only source of losses in Table 29. Thus, it is impossible to profit from high-frequency lead-

lag arbitrage from mid-quote return predictions and a market order–based HFT strategy.

It also shows that at the millisecond scale, asset returns rarely cover market order trading

costs. This means that the trading signal of Stübinger [56] would also generate inconsiderable

profits in this setting. Switching from market orders to limit orders eliminates the necessity

of covering the bid-ask spread and facilitates access to profitability. It is also important

to know what side(s) of the LOB will generate the non-zero mid-quote return to capture

arbitrage opportunities and mid-quote returns do not provide that information. Predicting

the best bid and best ask returns allows better-informed trading decisions. Table 30 presents

the detailed performance of our limit order–based strategy with the most profitable K in the

second scenario.
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Table 30. Detailed performance of the HFT strategy on six months of 2013 data in the
second scenario with the most profitable threshold K = Peak− 0.175.

Exchange Xetra BATS
Gross Profit (e) 3 365 103 2 108 945
Loss (e) -1 591 517 -1 198 278
Trading Costs (e) -1 528 736 -192 261
Total Net Profit (e) 244 850 718 406
Median Net Daily Profit (e) 1 943 6 072
Mean Net Daily Profit (e) 2 167 6 358
Most Profitable Date (Net Profit, e) 6/11/2013 (9 987) 2/26/2013 (16 118)
Fifth Most Profitable Date (Net Profit, e) 6/24/2013 (5 723) 2/25/2013 (11 053)
Least Profitable Date (Net Profit, e) 5/2/2013 (-2 290) 5/9/2013 (2 812)
Fifth Least Profitable Date (Net Profit, e) 2/21/2013 (1 237) 7/26/2013 (4 173)
Median Trade Time (s) 1.02 1.44
Mean Trade Time (s) 27.82 28.45
# Net Profitable Trades 1 158 049 1 002 859
# Net Unprofitable Trades 223 452 223 998
# Trades 1 381 501 1 226 857
Net Profitable Trades (%) 83.83 81.74
Mean Volume per Trade 503.64 352.29
Mean Net Profit per Profitable Trade (e) 1.79 1.95
Mean Net Profit per Unprofitable Trade (e) -8.20 -5.51

Gross profits are considerable in both exchanges. But, losses incurred from execution-

related risks are also sizeable, drastically decreasing the net profitability of the strategy, by

approximately 50%. Losses occur whenever the model predictions are wrong, which directly

results in limit orders not being executed because the lagging assets’ level 1 prices have drifted

away from the specified limit price. At that point, losses are cut by stop limit orders. When

these limit orders are also not executed, market orders are sent to finally close the position

afterM minutes (15 minutes for Xetra and 20 for BATS; see Appendix A for details). Losses

can also occur even when the model is right, but limit orders remain in the queue without

ever being executed.

Exchange trading costs are also significant, especially at Xetra, given its prohibitive fee

structure relative to BATS. This was expected, given the large number of trades and their

limited profitability because of the brief holding period typical of HFT strategies. Overall,

considering losses and trading costs, a net profit margin of 7% was obtained at Xetra and 34%

at BATS, where the significant difference stems from that difference in their fee structure

and from the longer latency to trade on Xetra from Chi-X. All order types are expensive at
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Xetra, whereas liquidity-providing orders are free at BATS and liquidity-taking fees are less

than half of Xetra’s (see Table 20 for all fees).

Median trading times are quick at both exchanges, though slightly longer at BATS be-

cause of its lower level of trading activity compared to Xetra (see Table 19). Mean trading

times are greater than the median, given the non-execution risk of limit orders, which can

stay for up to M minutes in the LOB without being executed. The proportions of net prof-

itable trades are in line with model accuracy for both exchanges. Once again, we notice the

importance of execution-related risks from the difference between the performance of prof-

itable and non-profitable trades. In fact, the mean loss incurred is over 4.58 times greater

than the mean profit per trade at Xetra, and the same ratio is over 2.82 at BATS. Without

risk management procedures, these ratios are even greater. Table 31 presents the detailed

performance of the HFT strategy excluding stop-limit orders, maximum level 1 price varia-

tion, and the no-microstructure-change rule (see Appendix A for details). We leave the time

breaker of M minutes before closing positions; otherwise they can stay open for days and no

trade occurs in that time because the strategy waits for the previous position to close before

opening the next. This is a consequence of the non-execution risk of limit orders.

As expected, the ratio of mean loss to mean profit per trade incurred at Xetra climbs from

4.58 to 6.70 and soars from 2.82 to 18.50 at BATS. More importantly, the net profitability

decreased by 27% at Xetra and by 39% at BATS. Nonetheless, the strategy remains profitable

at both exchanges. The largest difference between Table 30 and Table 31 comes from the

absence of stop-limit orders. Without them, the positions stay open as long as the profit-

taking limit orders are not executed, up to M minutes. The average trade duration more

than doubles, hence reducing the number of arbitrage opportunities captured by about the

same quotient. Risk management procedures are thus useful in preventing large losses by

mitigating the non-execution risk of limit orders while also closing positions rapidly when

prices drift away for them.

Figure 18 presents the cumulative net profit of the most profitable version of the strategy

in scenario 2 (see Table 30). The strategy has minimal drawdown and constantly generates
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Table 31. Detailed performance of the HFT strategy on six months of 2013 data in the
second scenario with the most profitable threshold K = Peak− 0.175 without risk manage-
ment.

Exchange Xetra BATS
Gross Profit (e) 1 569 778 1 146 940
Loss (e) -767 203 -604 726
Trading Costs (e) -624 995 -100 639
Total Net Profit (e) 177 580 441 575
Median Net Daily Profit (e) 1 454 3 767
Mean Net Daily Profit (e) 1 572 3 908
Most Profitable Data (Net Profit, e) 6/13/2013 (4 708) 3/6/2013 (15 650)
Fifth Most Profitable Date (Net Profit, e) 5/23/2013 (3 910) 2/27/2013 (7 581)
Least Profitable Date (Net Profit, e) 7/5/2013 (-2 871) 7/19/2013 (-2 684)
Fifth Least Profitable Date (Net Profit, e) 2/21/2013 (1 321) 6/21/2013 (699)
Median Trade Time (s) 1.80 1.76
Mean Trade Time (s) 75.22 79.81
# Net Profitable Trades 456 981 546 489
# Net Unprofitable Trades 55 701 17 172
# Trades 512 682 563 661
Net Profitable Trades (%) 89.14 96.95
Mean Volume per Trade (e) 338.45 213.47
Mean Net Profit per Profitable Trade (e) 2.14 1.92
Mean Net Profit per Unprofitable Trade (e) -14.33 -35.52

a positive net profit on a daily basis. Table 30 answers our final question. If a lead-lag

Fig. 18. Cumulative net profit of the HFT strategy on a daily basis for Table 21 selected
DAX 30 stocks from February 1 to July 31 2013 in the second scenario with the most
profitable threshold K = Peak − 0.175.

relationship exists between two assets and if a predictive model is able to exploit it, a HFTer

can in fact realistically earn a profit. As shown in the same table, the execution-related
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risks were the main impediment to lead-lag arbitrage, followed by trading costs and latency,

based on Table 26 versus Table 27. Nonetheless, an HFT strategy that was colocated at

the leading exchange and that relied mainly on limit orders was able to profit from the

lead-lag relationship that existed between DAX 30 stocks cross-listed at Xetra, Chi-X, and

BATS in 2013. But in practice, additional costs arise when deploying such a strategy. As

detailed in this section, lead-lag arbitrage is not completely risk free, and constant monitoring

is necessary to maintain profitability in the long term. Indeed, structural changes in any

exchange, e.g., trading fees or rules, can impact the lead-lag relationships, and the model

must be regularly trained (performance overseen, etc.), thus requiring human intervention.

There are also substantial costs related to accessing colocation and data services at multiple

exchanges, which reduces further the profitability presented in this section. The strategy

then mostly becomes interesting for sophisticated HFTers that are already paying for these

resources in their general activities.27

6. Conclusion

In this paper, we investigate the existence, predictability, and profitability of lead-lag

relationships at a high frequency with an application to DAX 30 stocks cross-listed at Xetra

in Frankfurt, and Chi-X and BATS, both in London, during six months of 2013. Using the

robust lead-lag estimator of Hoffman et al. [39] and the lead-lag ratio of Huth and Abergel

[41], we first show that Chi-X leads level 1 prices by mere milliseconds. This is in line

with previous studies showing that the most actively traded, liquid, and least expensive

exchange will ultimately be the price discovery origin of arbitrage-linked assets. The lead-

lag estimation demonstrates the great interconnectedness between the three exchanges by

showing that their lag is approaching, or even equating, the physical speed limit at which

information could travel between them at that time. This level of precision is the highest in

the cross-listed stocks lead-lag literature.

27For example, Deutsche Börse Group offers colocation services starting at around e5,000/month. See
https://www.xetra.com/xetra-en/technology/co-location-services for detailed pricing (accessed April 6,
2023).
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After establishing the existence of lead-lag relationships in DAX 30 cross-listed stocks,

we develop a new predictive modeling framework based on the concept of clusters proposed

by Alsayed and McGroarty [2], in conjunction with a new, generalized version of the autore-

gressive logistic regression. Clusters allow us to depart from uniformly sampled observations

to instead employ the unadulterated LOB updates. Our econometric model employs past

and current asset prices to forecast a classification of the next clusters’ return: positive,

null, or negative. This probabilistic framework generates an out-of-sample return accuracy

exceeding 80%, with a solidly maintained performance throughout our data period, thereby

comparing advantageously to the other models put forth in the literature. Indeed, the pro-

posed approach is able to detect substantially more potential arbitrage opportunities, with

an even greater accuracy than previous regression models.

We then introduce a new high-frequency trading strategy built around our predictive

model to profit from the detected lead-lag relationships. Previous studies failed to generate

viable high-frequency strategies because of the steep costs associated with market orders

(Brooks et al. [8]; Huth and Abergel [41]). In these studies, paying the bid-ask spread and

the exchange trading costs was too prohibitive to exploit intraday lead-lag relationships. To

go further, we empirically demonstrate the non-viability of mid-quote and market order–

based strategies in the context of high-frequency lead-lag arbitrage. The results show the

quasi-impossibility of such a strategy to cover even the bid-ask spread when lags exist at the

sub-second scale. The strategy we propose relies instead on limit orders and LOB signals to

cut on these costs, at the expense of adding a non-execution risk. In a scenario where major

market frictions are present, we demonstrate that high-frequency traders could realistically

earn a profit with our limit order–based strategy. More precisely, they could generate an

annual net profit above e1.9 million from DAX 30 stocks alone and only two exchanges (Xetra

and BATS) with a colocated server at Chi-X. We show that execution-related risks, trading

costs, and latency (in that order) are important impediments to lead-lag arbitrage, and that

risk management measures are necessary to alleviate their impact on profitability. Also,
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important human capital and technological costs are associated to deploying and monitoring

the strategy.

Our goal was to demonstrate how a high-frequency trader would theoretically be able

to profit from lead-lag arbitrage and empirically show that possibility with a pragmatic ap-

proach. We intended to develop a complete framework incorporating the detection, predic-

tion, and trading of lead-lag relationships for any pair of assets. The framework empirically

achieved that for cross-listed stocks, hence advancing knowledge on lead-lag in high-frequency

markets and answering queries about their financial importance (Basnarkov et al. [3]; Curme

et al. [14]). The proposed framework is also general enough to be used on any type of assets.

However, detecting and exploiting lead-lag relationships in assets listed in a single currency

is arguably easier since there is no exchange rate to consider. Indeed, one would have to add

the effect of this third process in the lead-lag relationship. In that sense, new research explor-

ing the effects of exchange rates in lead-lag relationships in LOB data would be important

to expand the proposed framework to a greater set of international assets. Furthermore, as

shown in Russell and Engle [54] for a single asset, the duration between past market events

can be an additional source of predictability in price changes. It would be interesting to

study the time dynamics between the leading and lagging asset clusters, which could then

be potentially exploited by the prediction model and the HFT strategy.

Our study covered the application of high-frequency lead-lag relationships in an arbitrage

context. Li et al. [32] demonstrate how the daily lead-lag effect significantly improves the

profitability of alpha-factor strategies. In that sense, the statistical relationship, predictive

model, and backtesting methodology presented in this paper could also be investigated for

other types of strategies, like market making. Being able to predict an asset’s level 1 prices

from another related and leading asset would probably prove beneficial for market markers.

It would also be worthwhile to quantify the financial viability of lead-lag relationships in other

asset classes and markets, and during different time periods with the proposed framework,

or any other that might come.
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Appendix A. High-Frequency Strategy — Additional

Details

The strategy has two important variables controlling its performance: the time breaker’s

delay M , and the order volume V Bid/Ask
t . To select M at Xetra and BATS, we tested its

financial effect on the first out-of-sample period. We ran the HFT strategy in that timeframe

with M ∈ {5, 6, 7, 8, 9, 10, 15, 30, 60, 90, 120, 300, 600, 900, 1200, 1800, 3600} seconds at the

two exchanges. M = 900 seconds produced the greatest profitability in that first period at

Xetra, and M = 1200 seconds at BATS. These values where then set for the entirety of our

data, since dynamically selecting them (like we did for K) is computationally very expensive.

As shown in Figure 18, net profits are fairly constant in time, a sign that the strategy does

not suffer from a preset M .

As for V Bid/Ask
t , it follows the median level 1 volume of the last 500 LOB updates,

rounded to the closest lowest 100 to trade on round lots. Using more LOB updates does not

significantly affect the volume sent by the strategy and does not greatly impact the strategy’s

performance. More formally, given LOB update indices t = 1,2, . . . ,T , the order volume that

is sent by the HFT strategy is calculated by

V
Bid/Ask
t = 100

 ṽBid/Askt

100

, ∀t ≥ 500

where ṽBid/Askt is the empirical median of the sample vBid/Askt−499:t , for vBid/Askt ∈ N+ the best

bid/ask volume at index t. No order is sent to the market before observing 500 LOB updates.

This is done independently for every stock at Xetra and BATS. Using a windowed median

volume limits the market impact of the strategy and the liquidity risk, because the orders

dynamically and conservatively follow the liquidity present in the LOB.

To mitigate risk even more, orders are only sent when three conditions are respected:

1. The last in-cluster return of the leader CX
i,nX

i
is not generated by a trade;

2. The realized local variation of level 1 price at the lagging exchange is under a preset

threshold;
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3. No microstructure change has occurred.

The first condition is present so that the strategy does not to open a position whenever child

orders hit the same ticker at multiple exchanges and at the same time. When that occurs,

the LOBs of all exchanges move in the same direction at the same time. The strategy cannot

profit from that situation since it depends on delayed movements of the LOB at the lagging

exchange.

The second condition limits execution-related risks by not opening a position when the

volatility of level 1 prices of the LOB is too great, as measured from the previous 50 prices.

Given LOB update indexes t = 1,2, . . . T , the realized local variation is defined as

RLV
Bid/Ask
t =

49∑
i=0

∣∣∣∣pBid/Askt−i − pBid/Askt−i−1

∣∣∣∣,
where pBid/Askt ∈ R+ the best bid/ask price at index t. Whenever RLV Bid/Ask

t > δW for

δ ∈ R+ the tick size andW ∈ R+
0 a preset threshold, the strategy does not send orders. W is

found from the set {5, 10, 25, 50, 75, 100, 150, 200, 250, 500} in the same way as M . W = 100

at Xetra and W = 25 at BATS.

The third condition relates to changes in the tick size of the stock. Whenever this

microstructure shock occurs, the strategy stops trading the given ticker until it returns to

its initial tick size. This is for simplicity, because the models would need a more complex

fitting method to accommodate such an event. See Table 20 for the tick size rules.
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Appendix B. Econometric Model Performance — Ad-

ditional Results

Table 32. Alsayed and McGroarty [2] mid-quote direction predictions computed on six
months of data for each ticker at Xetra.

Accuracy (%) Potential Opportunities
Ticker \KAM δ 2δ 3δ 4δ 5δ δ 2δ 3δ 4δ 5δ

ADS 71.7 70.1 66.1 64.5 64.2 207 093 51 518 22 702 13 452 9 151
ALV 74.8 64.1 70.6 75.6 76.1 41 165 1 120 316 172 138
BAS 75.1 75.2 66.6 64.4 63.4 227 108 28 800 9 027 5 218 3 428
BAYN 73.9 75.7 67.8 64.1 63.2 251 731 41 221 13 036 6 897 4 507
BEI 74.9 71.7 66.2 63.5 62.7 110 355 21 086 8 992 5 368 3 697
BMW 74.7 75.5 68.7 66.2 63.3 236 652 38 946 11 764 5 911 3 458
CBK 65.8 67.5 65.9 63.6 62.2 339 938 99 731 26 519 14 294 10 138
CON 70.6 70.0 67.2 65.3 64.1 222 551 71 282 31 413 17 958 11 853
DAI 73.5 72.8 67.1 64.1 62.3 440 231 91 651 34 176 18 742 11 843
DB1 69.1 67.8 66.0 63.5 61.1 201 577 62 592 24 100 13 997 9 530
DBK 73.1 73.5 69.0 65.0 63.6 416 043 61 684 15 043 6 782 3 895
DPW 73.6 68.0 65.7 66.7 70.1 41 428 4 792 2 201 1 026 435
DTE 66.6 69.9 70.0 69.1 69.0 430 101 68 517 9 369 4 015 2 495
EOAN 69.1 64.3 64.3 64.4 65.0 40 405 1 681 479 194 143
FME 73.1 68.4 64.7 63.0 62.3 114 853 20 998 10 183 6 552 4 590
FRE 71.3 71.2 68.1 64.8 63.6 197 753 64 364 30 590 17 911 12 534
HEI 72.8 71.0 66.9 65.5 64.7 174 606 38 452 14 460 8 213 5 385
HEN3 - - - - - - - - - -
IFX 72.6 69.7 66.7 65.3 64.7 281 850 78 420 21 257 10 756 7 505
LHA 70.9 64.9 61.7 60.3 64.1 54 939 5 346 1 769 663 398
LIN 71.3 65.2 66.6 68.6 69.7 24 285 2 215 991 385 241
LXS 69.5 67.7 65.5 63.3 63.3 219 530 55 455 18 168 10 097 6 500
MRK 67.9 65.8 63.7 62.8 61.9 23 184 3 425 1 193 705 522
MUV2 73.2 63.2 58.6 60.7 60.2 33 239 2 010 691 239 166
RWE 72.2 69.8 64.8 61.6 58.8 171 798 23 412 7 991 4 267 2 295
SAP 73.6 71.5 67.1 66.0 63.3 145 500 19 100 7 140 3 957 2 164
SIE 75.1 74.5 66.1 63.6 63.0 243 347 32 407 10 405 6 063 3 999
TKA 68.2 64.9 61.2 59.0 63.3 73 814 7 277 2 045 791 387
VOW3 74.1 67.1 60.4 60.5 64.6 77 109 6 021 1 691 580 285
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Table 33. Alsayed and McGroarty [2] mid-quote direction predictions computed on six
months of data for each ticker at BATS.

Accuracy (%) Potential Opportunities
Ticker \KAM δ 2δ 3δ 4δ 5δ δ 2δ 3δ 4δ 5δ

ADS 72.5 72.4 69.2 67.9 67.8 186 741 44 983 18 573 10 650 7 115
ALV 65.2 70.7 78.1 81.2 80.0 40 214 1 040 319 191 160
BAS 76.6 77.1 70.2 68.7 68.4 226 470 26 610 7 384 4 171 2 741
BAYN 75.8 76.9 70.4 67.4 67.3 244 096 37 637 10 625 5 164 3 258
BEI 73.2 75.0 71.8 69.5 69.5 108 102 19 604 7 770 4 366 2 817
BMW 72.5 72.9 68.7 67.9 65.2 211 945 34 597 9 453 4 399 2 439
CBK 60.5 64.1 64.8 64.8 64.0 314 401 88 256 23 712 12 619 8 984
CON 71.4 71.1 69.3 68.0 67.0 159 198 52 819 22 658 12 242 7 924
DAI 70.5 70.3 66.2 64.2 63.6 429 938 86 667 30 589 16 030 9 785
DB1 69.4 70.4 70.6 69.6 68.6 161 937 49 272 18 013 9 583 6 132
DBK 76.2 76.9 72.6 69.5 67.8 410 400 61 851 14 984 6 539 3 671
DPW 71.8 70.4 69.6 70.4 69.9 41 742 4 160 1 812 866 415
DTE 64.4 68.6 68.3 65.9 64.9 484 711 71 700 9 915 4 351 2 757
EOAN 70.1 72.5 72.8 72.2 71.4 39 904 1 567 463 219 168
FME 70.9 70.8 68.5 67.6 68.1 119 564 18 461 8 152 4 981 3 460
FRE 69.3 69.8 68.8 67.7 67.3 128 239 43 937 19 725 10 732 7 229
HEI 68.3 70.4 70.4 69.1 67.9 132 583 31 014 10 982 6 029 4 005
HEN3 69.1 68.5 67.2 65.9 66.0 116 053 27 137 10 051 5 159 3 185
IFX 66.4 67.4 66.4 65.2 64.8 248 676 72 051 19 118 9 509 6 624
LHA 74.0 71.4 68.6 65.7 68.6 54 420 4 793 1 323 499 290
LIN 70.0 70.9 70.2 68.8 67.4 24 303 1 860 805 336 239
LXS 68.3 69.8 70.3 70.3 70.3 164 776 42 692 13 558 7 199 4 644
MRK 68.2 69.5 67.0 68.1 67.7 24 930 3 094 932 508 365
MUV2 73.0 75.4 70.3 65.5 64.4 33 414 1 775 583 226 160
RWE - - - - - - - - - -
SAP 74.0 74.1 71.4 69.8 67.2 145 724 17 172 5 822 3 059 1 688
SIE 71.8 75.5 71.0 69.3 68.7 258 849 30 501 8 470 4 527 2 880
TKA 72.1 71.8 71.5 67.5 65.1 75 764 6 849 1 714 667 350
VOW3 71.7 72.7 69.3 68.8 60.7 80 921 5 482 1 361 468 257

159



Table 34. ADLMLR bid price process direction predictions computed on six months of
data for each ticker at Xetra and multiple Ks.

Accuracy (%)
Ticker \K Peak Peak - 0.025 Peak - 0.050 Peak - 0.075 Peak - 0.100 Peak - 0.125 Peak - 0.150 Peak - 0.175 Peak - 0.200

ADS 81.8 81.6 81.0 80.3 79.4 78.7 77.5 74.4 71.5
ALV 77.7 77.7 74.1 71.6 71.9 70.1 68.6 68.0 67.1
BAS 86.1 86.0 85.6 84.8 83.8 82.6 81.4 80.2 79.1
BAYN 87.2 86.8 86.0 85.2 84.3 83.4 82.4 81.4 80.5
BEI 88.1 87.8 87.5 87.0 86.6 85.8 85.2 84.4 83.6
BMW 88.2 87.9 87.6 86.9 86.1 85.1 84.1 83.0 81.9
CBK 82.5 82.1 81.3 79.8 77.0 69.2 69.7 71.3 72.4
CON 79.8 79.8 79.7 79.5 78.9 78.3 77.5 77.3 76.1
DAI 84.5 84.5 84.3 83.8 83.2 82.5 81.6 80.7 79.7
DB1 80.7 80.5 80.1 79.9 79.2 78.4 77.4 76.6 71.8
DBK 88.6 86.4 86.1 85.8 85.2 84.6 84.0 83.3 82.4
DPW 86.4 86.6 85.8 85.2 83.9 82.6 81.0 79.9 78.9
DTE 88.2 88.1 87.7 87.1 86.3 85.4 84.4 83.4 82.5
EOAN 85.9 84.7 82.7 80.3 76.5 74.4 72.8 71.3 70.0
FME 84.9 85.2 85.0 84.7 84.2 83.7 83.0 82.3 81.5
FRE 80.5 80.4 79.4 76.7 68.6 68.9 69.2 70.1 70.8
HEI 85.5 85.4 85.0 84.7 84.1 83.5 82.6 81.7 80.9
HEN3 - - - - - - - - -
IFX 85.9 85.9 85.7 85.5 85.2 84.9 84.7 84.2 83.7
LHA 85.3 85.5 85.0 84.6 84.0 83.2 82.4 81.3 80.4
LIN 81.4 81.6 80.9 79.3 76.5 75.0 73.4 71.8 70.7
LXS 81.1 81.5 81.8 81.5 81.3 80.6 80.1 79.5 78.7
MRK 82.4 82.8 82.3 81.5 80.8 80.3 79.8 78.8 78.5
MUV2 82.3 82.3 81.1 79.6 77.7 75.4 73.0 71.2 69.9
RWE 85.2 85.2 84.8 84.3 83.5 82.6 81.7 80.8 79.6
SAP 84.8 84.6 84.0 83.2 82.2 81.1 79.9 78.6 77.4
SIE 87.3 87.4 86.7 86.1 85.1 84.0 82.8 81.9 80.8
TKA 86.5 86.7 86.3 85.7 84.9 84.0 83.0 81.6 80.4
VOW3 86 85.0 84.0 82.6 80.7 79.5 78.1 76.7 75.8

Potential Opportunities
Ticker \K Peak Peak - 0.025 Peak - 0.050 Peak - 0.075 Peak - 0.100 Peak - 0.125 Peak - 0.150 Peak - 0.175 Peak - 0.200

ADS 30 921 35 286 39 968 45 093 50 575 50 272 28 165 10 629 4 297
ALV 283 394 575 980 1 663 2 743 4 032 5 601 7 281
BAS 18 160 23 046 28 044 33 558 39 700 46 766 54 954 64 071 73 405
BAYN 26 195 31 442 36 851 42 762 49 519 57 000 65 163 73 748 82 099
BEI 15 945 18 433 21 030 23 664 26 402 29 328 32 213 35 120 37 811
BMW 25 793 30 810 35 998 41 453 47 254 53 655 60 483 67 707 74 969
CBK 33 676 40 120 41 088 35 718 31 174 10 751 12 381 11 114 12 799
CON 26 077 29 178 32 502 36 021 39 907 43 920 48 190 38 752 23 615
DAI 54 762 63 187 71 882 80 629 90 099 99 954 110 593 121 646 132 795
DB1 19 627 22 824 26 454 30 525 35 270 40 394 45 854 35 404 7 226
DBK 36 681 34 372 42 140 50 664 59 908 70 333 81 715 94 324 107 699
DPW 3 406 4 140 5 000 6 233 7 871 9 861 12 165 14 388 16 578
DTE 15 898 21 367 27 264 33 409 39 635 46 320 53 142 60 140 67 593
EOAN 1 266 1 755 2 364 3 463 5 560 8 698 13 005 17 242 20 964
FME 12 382 14 521 16 831 19 370 22 244 25 238 28 402 31 444 34 313
FRE 28 444 26 874 24 332 16 284 5 360 6 136 6 845 4 108 4 861
HEI 18 116 20 956 23 910 26 966 30 117 33 293 36 637 40 151 43 507
HEN3 - - - - - - - - -
IFX 31 499 36 515 41 742 47 484 54 301 62 839 72 185 80 774 83 824
LHA 6 115 7 515 8 892 10 548 12 648 15 196 17 983 20 867 23 714
LIN 1 422 1 767 2 166 2 739 3 705 5 053 6 810 8 821 10 925
LXS 11 547 13 920 16 593 19 606 23 095 26 695 30 538 34 767 39 377
MRK 1 657 2 028 2 490 3 040 3 691 4 414 5 135 5 893 6 539
MUV2 1 145 1 493 1 866 2 428 3 318 4 573 6 239 8 210 10 290
RWE 17 519 21 529 25 494 29 483 34 003 38 907 44 709 51 344 58 359
SAP 13 213 15 657 18 212 21 188 24 919 29 452 34 764 40 652 46 600
SIE 18 183 22 674 27 466 32 574 38 546 45 283 52 742 60 341 67 885
TKA 5 462 7 323 9 218 11 086 12 822 14 743 16 816 19 029 21 456
VOW3 5 593 6 848 8 296 10 197 12 599 15 432 18 646 22 050 25 340
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Table 35. ADLMLR bid price process direction predictions computed on six months of
data for each ticker at BATS and multiple Ks.

Accuracy (%)
Ticker \K Peak Peak - 0.025 Peak - 0.050 Peak - 0.075 Peak - 0.100 Peak - 0.125 Peak - 0.150 Peak - 0.175 Peak - 0.200

ADS 76.0 76.3 76.5 76.1 75.6 75.0 74.1 73.9 73.4
ALV 79.3 79.2 79.0 78.9 78.4 78.0 77.5 76.7 75.8
BAS 79.3 79.7 79.6 79.3 78.9 78.1 77.2 76.2 75.1
BAYN 78.9 79.1 79.0 78.7 78.2 77.7 77.1 76.2 75.2
BEI 80.1 79.7 79.1 78.3 77.3 76.1 74.3 72.3 69.6
BMW 79.2 79.1 79.0 78.9 78.5 78.3 77.9 77.3 76.5
CBK 69.4 70.5 71.5 71.9 72.1 71.9 71.8 71.4 71.2
CON 75.4 75.4 75.5 75.4 75.2 74.9 75.4 74.4 74.1
DAI 74.6 74.6 74.6 74.3 74.0 73.6 73.1 72.3 72.2
DB1 78.2 78.0 78.0 77.8 77.3 76.9 76.5 75.6 74.8
DBK 86.2 82.9 83.3 83.3 83.3 83.1 82.7 82.3 81.8
DPW 77.0 76.8 76.5 75.7 74.6 73.3 71.9 70.6 69.1
DTE 83.9 83.4 83.0 82.3 81.6 80.6 79.7 78.6 77.5
EOAN 84.2 83.1 82.3 81.4 80.4 79.4 79.2 78.4 77.7
FME 77.0 76.9 76.8 76.3 75.6 74.3 72.9 71.4 70.7
FRE 78.3 78.0 77.5 76.9 73.9 75.9 72.0 71.9 72.2
HEI 79.8 79.3 78.9 78.0 77.3 76.6 75.8 74.8 73.7
HEN3 76.7 76.6 76.1 75.3 74.5 73.9 73.1 72.1 72.9
IFX 78.3 78.2 78.0 77.6 77.0 76.1 74.8 72.2 69.5
LHA 86.7 87.1 87.1 86.2 85.5 84.8 84.1 83.2 82.4
LIN 78.7 78.3 78.5 78.3 78.0 77.5 76.9 76.2 75.2
LXS 80.5 80.9 80.8 81.0 81.0 80.7 79.9 78.9 78.1
MRK 75.8 75.8 75.2 74.7 73.3 72.0 70.7 69.7 68.3
MUV2 79.8 79.2 79.3 78.8 78.1 77.6 76.9 76.1 74.9
RWE - - - - - - - - -
SAP 78.4 78.1 77.7 77.2 76.5 75.9 75.0 73.6 71.7
SIE 78.0 78.1 77.8 77.3 76.7 75.8 74.6 73.3 72.1
TKA 84.8 84.9 84.1 83.9 83.3 82.6 81.6 80.6 79.4
VOW3 76.9 76.2 75.4 74.3 73.4 72.4 71.6 70.9 70.0

Potential Opportunities
Ticker \K Peak Peak - 0.025 Peak - 0.050 Peak - 0.075 Peak - 0.100 Peak - 0.125 Peak - 0.150 Peak - 0.175 Peak - 0.200

ADS 16 658 19 906 23 755 28 191 30 847 33 653 39 495 23 346 7 419
ALV 4 870 6 344 7 446 8 206 8 709 9 071 9 351 9 677 10 098
BAS 20 357 24 871 30 271 36 608 43 650 51 218 59 218 68 748 79 569
BAYN 25 715 31 102 37 115 43 786 51 053 59 118 68 008 77 702 87 659
BEI 14 178 16 890 19 827 23 281 27 085 26 959 29 558 31 972 31 720
BMW 16 988 20 273 24 103 28 490 33 255 38 726 44 826 51 328 58 495
CBK 6 026 7 875 9 899 12 208 14 584 17 098 19 777 22 585 25 456
CON 18 493 21 154 24 325 27 894 31 800 36 206 7 939 7 339 7 502
DAI 27 757 32 729 38 415 44 663 51 605 59 466 68 222 78 085 62 966
DB1 7 293 8 680 10 281 12 158 14 211 16 655 19 480 22 834 26 717
DBK 30 084 26 839 33 668 41 185 49 402 58 302 68 056 78 582 89 943
DPW 6 952 8 389 9 972 11 647 13 573 15 775 17 121 18 375 20 361
DTE 19 527 24 681 30 420 36 474 42 941 49 656 56 636 63 938 71 807
EOAN 2 091 4 359 7 070 9 811 12 817 14 278 15 315 16 757 18 021
FME 10 772 13 039 15 681 18 746 22 141 26 056 30 596 35 639 33 514
FRE 16 801 19 567 21 713 25 015 18 485 8 513 4 575 2 574 3 163
HEI 10 130 11 770 13 553 15 539 17 796 20 102 22 509 25 152 28 017
HEN3 12 073 13 663 15 491 17 561 19 849 22 378 20 441 21 923 20 310
IFX 24 511 29 214 34 819 41 175 48 318 56 331 58 735 56 609 37 044
LHA 3 906 5 705 7 584 9 524 11 398 13 261 15 265 17 372 19 775
LIN 5 484 7 013 8 264 9 260 10 026 10 618 11 162 11 695 12 327
LXS 4 135 5 163 6 347 7 658 9 341 11 274 13 570 16 139 19 026
MRK 3 030 3 581 4 132 4 626 5 181 5 722 6 369 6 976 7 707
MUV2 3 617 5 042 6 265 7 312 8 176 8 885 9 537 10 194 10 932
RWE - - - - - - - - -
SAP 15 259 19 120 22 756 26 421 30 150 34 157 38 404 43 569 50 664
SIE 16 256 20 633 25 579 31 271 37 625 44 290 51 478 58 937 66 880
TKA 4 009 5 651 7 628 9 474 11 436 13 528 15 714 17 975 20 742
VOW3 9 527 12 781 16 099 19 535 22 849 25 774 28 312 30 527 32 671
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Table 36. ADLMLR ask price process direction predictions computed on six months of
data for each ticker at Xetra and multiple Ks.

Accuracy (%)
Ticker \K Peak Peak - 0.025 Peak - 0.050 Peak - 0.075 Peak - 0.100 Peak - 0.125 Peak - 0.150 Peak - 0.175 Peak - 0.200

ADS 80.9 80.7 80.3 79.8 79.1 78.1 77.2 76.3 71.6
ALV 76.7 75.9 75.1 73.2 70.2 68.9 67.5 66.3 65.6
BAS 86.4 86.2 85.6 84.7 83.4 82.2 80.9 79.7 78.5
BAYN 84.8 84.5 84.0 83.5 82.7 82.0 81.0 79.9 78.8
BEI 86.8 86.7 86.3 85.9 85.2 84.6 83.8 82.9 82.4
BMW 87.9 87.7 87.3 86.7 85.9 84.8 83.8 82.7 81.6
CBK 82.3 72.1 72.2 72.3 72.7 72.5 72.4 72.3 72.3
CON 80.1 80.1 80.1 79.9 79.5 78.8 78.0 76.7 73.9
DAI 84.6 84.5 84.3 83.8 83.3 82.5 81.7 80.7 79.8
DB1 80.5 80.3 79.8 79.5 78.9 78.4 77.6 76.8 71.9
DBK 86.1 86.1 85.7 85.4 84.8 84.2 83.4 82.6 81.8
DPW 85.2 85.0 84.5 83.8 82.3 80.9 79.7 78.7 77.9
DTE 89.7 89.5 89.0 88.4 87.6 86.4 85.2 84.2 83.2
EOAN 85.8 85.3 83.2 80.5 77.0 74.6 72.3 70.5 69.0
FME 83.8 84.2 84.2 84.2 83.8 83.2 82.8 82.3 81.7
FRE 77.2 77.4 76.4 75.1 72.0 71.2 68.7 69.5 69.9
HEI 85.6 85.6 85.4 85.1 84.6 83.9 83.0 82.2 81.2
HEN3 - - - - - - - - -
IFX 86.4 86.2 85.9 85.6 85.2 84.9 84.6 84.3 83.8
LHA 86.5 86.3 85.8 85.4 84.6 83.6 82.7 81.8 80.8
LIN 81.4 80.7 79.2 77.4 75.5 73.9 72.4 71.0 69.8
LXS 81.0 81.4 81.4 81.4 81.1 80.6 80.2 79.6 78.8
MRK 78.5 78.3 78.9 79.6 78.8 78.4 77.7 77.5 76.9
MUV2 82.6 82.2 81.9 80.5 79.3 76.5 74.5 72.9 70.8
RWE 83.4 83.4 83.4 82.9 82.1 81.2 80.3 79.3 78.4
SAP 85.2 84.9 84.1 83.1 81.8 80.7 79.5 78.3 77.2
SIE 86.6 86.8 86.5 85.9 84.9 83.9 83.0 82.0 81.1
TKA 85.8 85.9 85.6 85.0 84.1 83.2 82.1 81.1 79.8
VOW3 85.6 85.7 85.2 83.9 82.5 81.0 79.4 77.9 76.8

Potential Opportunities
Ticker \K Peak Peak - 0.025 Peak - 0.050 Peak - 0.075 Peak - 0.100 Peak - 0.125 Peak - 0.150 Peak - 0.175 Peak - 0.200

ADS 28 608 32 698 37 266 42 006 47 189 52 778 58 452 29 678 7 789
ALV 643 937 1 511 2 590 4 295 6 461 9 008 11 716 14 293
BAS 20 883 25 677 30 490 35 730 42 148 49 724 58 185 67 347 76 681
BAYN 21 160 25 974 31 020 36 515 42 747 49 702 57 503 66 176 75 580
BEI 17 641 20 042 22 644 25 499 28 429 31 471 34 480 37 391 35 580
BMW 24 655 29 771 34 987 40 413 46 077 52 271 58 846 65 856 73 228
CBK 13 372 4 758 5 655 6 614 7 666 8 691 9 886 11 214 12 760
CON 25 429 28 756 32 516 36 670 41 169 45 994 40 291 21 207 3 126
DAI 55 247 64 215 73 575 83 238 93 416 104 200 116 037 128 391 126 253
DB1 19 476 22 574 26 268 30 435 35 137 40 248 45 788 32 260 9 796
DBK 27 432 34 604 42 219 50 449 59 533 69 492 80 640 92 856 105 613
DPW 2 934 3 602 4 314 5 311 6 789 8 567 10 623 12 804 14 900
DTE 19 116 24 869 30 456 36 400 42 540 49 112 56 183 63 660 71 108
EOAN 1 283 1 848 2 560 3 549 5 301 7 866 10 960 14 473 18 096
FME 11 992 14 147 16 433 19 057 22 004 25 328 28 525 31 738 34 802
FRE 20 999 22 862 21 715 13 417 5 556 6 314 2 361 2 959 3 495
HEI 18 568 21 667 24 912 28 208 31 675 35 262 38 996 42 720 46 319
HEN3 - - - - - - - - -
IFX 31 910 36 935 41 767 47 211 53 824 62 397 71 723 80 246 86 962
LHA 6 181 7 661 9 079 10 863 13 014 15 616 18 424 21 423 24 285
LIN 1 369 1 675 2 108 2 804 3 827 5 208 6 891 8 716 10 637
LXS 10 966 13 216 15 819 18 753 22 050 25 553 29 378 33 623 38 364
MRK 2 634 3 102 3 141 3 549 4 245 5 020 5 765 6 468 7 097
MUV2 1 039 1 321 1 658 2 109 2 714 3 636 4 978 6 625 8 563
RWE 16 029 19 631 23 356 27 363 31 711 36 679 42 362 48 561 55 273
SAP 13 183 15 591 18 104 21 135 25 025 29 603 34 963 40 685 46 425
SIE 18 078 22 682 27 290 32 468 38 319 44 929 52 046 59 466 66 941
TKA 6 469 8 270 10 084 11 851 13 679 15 658 17 771 20 199 22 816
VOW3 3 904 5 013 6 229 7 706 9 501 11 683 14 275 17 308 20 482
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Table 37. ADLMLR ask price process direction predictions computed on six months of
data for each ticker at BATS and multiple Ks.

Accuracy (%)
Ticker \K Peak Peak - 0.025 Peak - 0.050 Peak - 0.075 Peak - 0.100 Peak - 0.125 Peak - 0.150 Peak - 0.175 Peak - 0.200

ADS 75.5 75.6 75.4 75.0 74.3 73.6 73.5 72.9 71.1
ALV 78.1 78.5 78.1 77.8 77.2 76.9 76.4 75.9 75.1
BAS 79.8 79.9 79.5 79.1 78.3 77.4 76.5 75.2 74.0
BAYN 78.9 78.8 78.7 78.4 78.0 77.4 76.7 75.9 75.0
BEI 79.3 79.0 78.5 78.0 77.3 76.6 75.5 74.0 71.8
BMW 79.2 79.1 79.1 78.7 78.3 77.6 76.8 76.5 76.8
CBK 69.3 70.2 71.3 71.2 71.5 71.6 71.4 71.3 71.2
CON 75.3 75.5 75.5 75.6 75.7 76.6 76.7 76.8 76.4
DAI 75.2 75.2 75.2 75.1 74.9 74.6 74.1 73.3 72.8
DB1 79.0 79.1 78.5 77.9 77.1 76.4 75.6 74.4 73.2
DBK 82.5 82.5 82.5 82.5 83.5 83.1 82.8 82.4 81.8
DPW 77.6 77.3 77.0 76.1 74.8 73.4 71.8 70.3 68.6
DTE 82.4 82.4 82.0 81.5 80.8 79.9 78.7 80.2 78.9
EOAN 80.9 81.1 80.6 80.1 79.2 78.2 77.2 76.1 74.7
FME 75.8 76.1 76.3 76.2 75.6 74.9 73.8 72.3 70.9
FRE 77.2 77.2 77.1 76.6 74.9 74.5 74.7 73.9 74.0
HEI 79.3 78.9 78.4 77.8 77.1 76.3 75.3 74.3 73.3
HEN3 77.2 76.7 76.2 75.6 74.5 73.6 72.4 71.6 70.6
IFX 79.2 79.1 78.6 78.1 77.5 76.3 74.8 73.0 70.3
LHA 87.4 87.7 87.3 86.9 86.3 85.7 84.6 83.7 82.7
LIN 77.5 78.2 78.4 78.2 77.8 77.4 77.0 76.4 75.6
LXS 80.5 80.3 79.6 79.0 78.2 77.2 75.7 74.3 73.2
MRK 76.8 76.4 75.4 74.8 74.5 73.5 72.1 70.6 68.9
MUV2 80.3 81.4 80.5 80.0 79.2 78.8 78.4 77.8 77.1
RWE - - - - - - - - -
SAP 78.8 78.6 78.2 77.7 76.9 76.1 75.3 74.0 72.7
SIE 77.5 77.4 77.2 76.7 75.9 74.9 73.8 72.6 71.3
TKA 84.7 84.8 84.1 83.5 82.8 81.9 80.9 79.7 78.6
VOW3 76.3 75.6 75.4 74.6 73.7 72.8 71.8 70.9 69.8

Potential Opportunities
Ticker \K Peak Peak - 0.025 Peak - 0.050 Peak - 0.075 Peak - 0.100 Peak - 0.125 Peak - 0.150 Peak - 0.175 Peak - 0.200

ADS 20 460 24 126 28 180 32 813 38 273 44 420 24 071 10 687 7 498
ALV 3 747 5 078 6 145 6 867 7 452 7 811 8 105 8 411 8 787
BAS 25 399 30 853 37 300 44 306 51 788 59 716 68 571 78 824 90 271
BAYN 26 801 32 133 38 087 44 553 51 822 59 762 68 834 78 496 88 362
BEI 12 084 14 542 17 175 20 086 23 480 27 283 31 779 33 811 33 689
BMW 21 650 25 444 29 913 34 879 40 243 46 361 52 962 55 564 50 812
CBK 4 992 5 985 7 238 8 611 10 063 11 543 13 101 14 694 16 337
CON 15 444 17 739 20 425 23 540 26 320 23 886 20 533 9 466 9 026
DAI 32 913 38 482 45 002 52 334 60 786 70 333 81 285 93 833 74 003
DB1 10 432 12 211 14 248 16 478 19 200 22 245 25 835 29 944 32 847
DBK 21 476 28 297 35 242 42 448 37 368 44 493 51 933 60 041 68 775
DPW 6 143 7 524 8 941 10 453 12 158 14 026 16 268 17 189 16 961
DTE 14 109 18 768 24 218 30 079 36 409 43 447 52 738 37 771 43 339
EOAN 2 993 5 818 8 898 11 518 13 743 15 553 17 149 18 670 20 339
FME 9 976 12 049 14 631 17 657 21 001 24 838 29 117 33 994 36 397
FRE 17 959 20 639 23 794 27 208 24 996 5 228 6 310 3 903 4 625
HEI 9 777 11 465 13 325 15 292 17 544 19 940 22 604 25 513 28 574
HEN3 13 097 14 941 17 055 19 271 18 646 21 219 21 552 22 979 13 939
IFX 25 927 30 711 36 085 42 126 48 862 54 363 57 507 59 465 39 525
LHA 4 736 6 846 9 041 11 155 13 133 15 062 17 074 19 219 21 531
LIN 4 855 6 385 7 677 8 748 9 590 10 188 10 670 11 131 11 693
LXS 8 759 10 471 12 631 15 159 18 011 21 241 25 009 29 290 21 101
MRK 3 158 3 772 4 388 4 905 5 328 5 817 6 357 6 991 7 726
MUV2 2 001 2 917 3 858 4 655 5 235 5 663 5 971 6 209 6 490
RWE - - - - - - - - -
SAP 19 983 24 210 28 468 32 327 35 884 39 382 42 942 46 889 51 624
SIE 17 497 21 767 26 841 32 650 39 001 46 036 53 309 60 974 69 181
TKA 5 608 7 616 9 624 11 699 13 721 15 863 18 062 20 423 22 864
VOW3 7 942 10 377 13 140 16 190 19 353 22 387 25 298 27 822 30 296
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Appendix C. Execution Rules

1. Each limit order has a standing quantity that must be executed before the order is

executed.

2. That standing quantity is computed from the following steps:

a. If the limit order’s price of a buy/sell order is equal to the best bid/ask price,

the order’s standing quantity becomes the current best bid/ask volume.

b. If the limit price of a buy/sell order is below/above the best bid/ask price,

the order’s standing quantity is undefined. In that instance, the trading and

quoting emulator waits for the limit order’s price to be equal to the best bid/ask

price and it sets the standing quantity according to 2.a.

c. If the limit order’s buy/sell price is above/below the best bid/ask price, the

order is filled.

d. If the standing quantity has been defined for a limit order, it can only be

changed by a future execution.

3. A limit order can be executed by a trade occurring at the limit order’s price. The

standing quantity must be executed first. If it has been executed completely, then

the limit order can be executed. If the remaining trade size is not large enough to

fill the limit order’s size, then a partial filling occurs. Limit orders with an undefined

standing quantity cannot be executed by a trade.

4. A limit order can be executed when the best ask/bid price becomes lower/greater

than the buy/sell limit order’s price. This also holds for limit orders with undefined

standing quantities.

5. A limit order is filled when the best bid/ask price becomes lower/greater than the

buy/sell limit order’s price, regardless of its standing quantity. This also holds for

limit orders with undefined standing quantities.

The trading and quoting emulator is conservative in some regards, especially considering

the static standing quantity that must be executed before the corresponding limit order,

because it ignores cancellations decreasing that quantity after the order has been placed,
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which follows from rules 1 and 2.a. Also, whenever a limit order is placed deeper than LOB

level 1 and its price becomes the top of the book after some time, the limit order is put at

the end of the queue of all the orders also at the new level 1 regardless of its actual position

in that queue, which follows from rules 2.a and 2.b.
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Abstract. Inspired by recent advances in the deep learning literature, this article in-

troduces a novel hybrid anomaly detection framework specifically designed for limit order

book (LOB) data. A modified Transformer autoencoder architecture is proposed to learn

rich temporal LOB subsequence representations, which eases the separability of normal

and fraudulent time series. A dissimilarity function is then learned in the representation

space to characterize normal LOB behavior, enabling the detection of any anomalous sub-

sequences out-of-sample. We also develop a complete trade–based manipulation simulation

methodology able to generate a variety of scenarios derived from actual trade–based fraud

cases. The complete framework is tested on LOB data of five NASDAQ stocks in which

we randomly insert synthetic quote stuffing, layering, and pump-and-dump manipulations.

We show that the proposed asset–independent approach achieves new state-of-the-art fraud

detection performance, without requiring any prior knowledge of manipulation patterns.

Keywords: Limit order book; Time series anomaly detection; Deep learning; Trade–based

manipulation; Dissimilarity model; Unsupervised learning

1. Introduction

Exchange regulators, who constantly monitor markets to unveil potential manipulations,

traditionally perform their investigation manually. When a potentially fraudulent event, or

sequence of events, is detected by the automated system, market analysts have the respon-

sibility to carry on the necessary research and analysis to conclude whether or not there has

been a violation to the exchange’s rules and regulations. The enormous volume of orders

means that this task is especially laborious, and investigations can take years.28 A first solu-

tion to this problem is to implement rule–based systems that can automatically flag orders

as suspicious. In fact, current market regulators’ systems are based on deterministic rules

inferred from a set of known delinquent patterns defined by experts (Golmohammadi et al.

[21]), on which we shall return. However, such systems have seen limited success in practice,

as it is difficult to completely formalize abnormal behaviors by a rule–based system, because

defining all anomalies in a trading context is not realistically feasible.

28SEC’s Division of Enforcement (accessed March 18, 2023).
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A more promising avenue for this kind of problem is based in machine learning techniques,

which have seen a lot of success in a variety of real–world applications (Pang et al. [40]).

Moreover, the static nature of rule–based systems is fundamentally ill-matched with the

dynamic nature of financial markets, where fraudulent patterns might be constantly evolving

with the market (Lin [33]). In contrast, machine learning approaches can dynamically learn

unusual order patterns over time, adapting to evolving market conditions. But the current

literature on machine learning in financial market manipulation lacks generality, as only

very limited sets of features and/or fraud types are studied simultaneously. A more generic

framework able to detect several types of fraudulent patterns by utilizing a larger set of

information would be valuable (Khodabandehlou and Golpayegani [26]). We aim to fill this

gap by proposing a new model based on recent state-of-the-art methods in the deep learning

literature capable of managing multivariate time series. Furthermore, previous papers rely

on repeating the same limited sets of fraudulent orders to evaluate their methods, probably

overestimating their capabilities. We also address that problem with a more exhaustive

simulation approach generating further representative sets of trade–based manipulations.

Hence, the detection results presented in this paper are more faithful to what could be

achieved in practice..

The ultimate objective of any financial market fraud detection system, whether human,

rule or machine learning–based, is the detection of all trade–based manipulations. Trade–

based manipulations are defined as "[...] a type of behavior [that] consists of effecting trans-

actions or orders to trade which (a) give, or are likely to give a false or misleading impression

as to the supply of, or demand for, or as to the price of one or more [qualifying investments]

or (b) secure the price of one or more such investments at an abnormal or artificial level."29

Multiple manipulation schemes fit that description: advancing the bid, reducing the ask,

wash sales, marking the close, pump-and-dump, layering/spoofing, quote stuffing, and so

on, all with their respective footprint.30 In this context, anomalies are sequences of market

29Financial Conduct Authority, MAR 1.6.1 Market abuse (manipulation transactions) FCA Handbook (ac-
cessed March 18, 2023).
30See Siering et al. [53] for a complete taxonomy of financial market manipulations.
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events that are out of the ordinary, and that could potentially be associated with trade–based

manipulations. Market events include new order submissions, cancellations or modifications

of a past order, and executions. All of which are recorded sequentially in central limit order

books (LOBs), forming a collection of outstanding limit orders. The LOB depicts the prices

at which market participants are willing to buy and sell a given asset, as well as the volume

available at each price point, at any given time during trading hours. We note that, although

frauds are anomalous in well regulated markets, not all anomalies are necessarily frauds. For

example, unusual external events might trigger perfectly legal, but unusual, behavior on

markets.

The ideal situation would be to develop a supervised machine learning model to classify

orders as part of a manipulation tactic. Unfortunately, precisely because investigations often

take years, and fraud methods evolve quickly, most markets have too few examples of such

trading activities to reasonably think about using supervised machine learning methods. A

more realistic alternative and useful approach would be to develop unsupervised anomaly

detection techniques for financial markets. Such methods could flag specific subsequences of

orders as suspicious, which could then be further investigated by market regulators, reducing

the burden of their analysis. This challenge has two objectives. First and foremost, finding a

suitable unsupervised anomaly detection method that can flag most, if not all, true cases of

trade–based manipulation as anomalous, i.e., high recall. Second, the method should report

as few non-fraudulent anomalies as possible, i.e., high precision, to limit the costs associated

with the analysis non-fraudulent orders.

In this paper, we propose a novel approach specifically tailored to high-frequency financial

markets that performs better than competing methods. The approach is twofold. First,

an unsupervised autoencoder based on the Transformer architecture of Vaswani et al. [57]

is trained on LOB–based features specifically built to capture a multitude of trade–based

manipulations. We empirically show that the autoencoder learns temporal representation

vectors useful in characterizing LOB subsequences, thus easing the separability of fraudulent

patterns from regular subsequences. Second, a discriminative model estimates the boundary
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between normal and abnormal autoencoder representations, creating a dissimilarity function

that enables the detection of fraudulent orders out-of-sample. This hybrid approach reduces

the gap between state-of-the-art deep learning methods, and financial market fraud detection

research. We show that our method, which does not make use of any fraud examples, tends

to both capture all true frauds, and has lower false positive rate than competing unsupervised

methods on the LOBSTER data set (Huang and Polak [23]). The ability of the framework to

detect diverse types of manipulations is an important step in the advancement of stock market

fraud detection literature (Khodabandehlou and Golpayegani [26]). Hence, we also propose a

more exhaustive trade–based manipulation simulation methodology able to generate multiple

fraud scenarios, setting us further apart from previous literature, and rendering our results

more reliable. Finally, for the first time in the literature, we also quantitatively study the

complexity of detecting certain types of trade–based manipulations, thus providing a new

comparative standard other than the conventional anomaly detection metrics.

The paper is divided as follows. Section 2 introduces the literature on machine learning

and deep learning anomaly detection models, with a focus on time series methods. It also

provides a review of trade–based manipulation detection techniques put forward in the finan-

cial literature. Section 3 presents the unsupervised hybrid deep learning framework proposed

to capture anomalous behavior in LOB time series. Section 4 details the financial data used,

and describes three popular trade–based manipulation techniques that are then simulated to

quantify the framework’s performance. The section ends by presenting the proposed LOB

features to capture fraudulent patterns. Section 5 carries out the numerical experiments and

analyzes the effectiveness of the methodology on simulated frauds, and Section 6 concludes

the paper.

2. Literature review

Anomaly detection is an active subfield of machine learning successful in a plethora of

industrial applications (see Agrawal and Agrawal [3] for a comprehensive overview). Fol-

lowing the nomenclature of Blázquez-García et al. [5] and Chalapathy and Chawla [8], the
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problem addressed in this paper can be classified as multivariate collective outlier detection,

a niche outlier type which limits the pool of applicable detection techniques. Indeed, we

are interested in identifying sets of orders that jointly behave unusually, but are otherwise

normal on an individual basis. Blázquez-García et al. [5] describe two types of subsequence

outlier detection methods proposed in the literature: model–based, and dissimilarity–based.

The first family of techniques tries to find subsequences that strongly deviate from a model’s

expected value, either by prediction or by estimation, whereas the second family aims to

detect subsequences’ representations that stray from a reference of normalcy. Predicting

the stock market is a notoriously challenging task (Gandhmal and Kumar [19]), meaning

that prediction–based models would be hazardous for anomaly detection on LOB data. This

leaves only estimation and dissimilarity methods as suitable anomaly detectors in this con-

text. The proposed framework falls in the second family, for which the literature is notably

scarce.

Representing time series of LOBs necessitates a great ability in capturing temporal and

spatial information, because of its complexity. Deep learning models have made great strides

in that sense, especially for large data sets, which explains the growing interest in deep

anomaly detection methods. Recent techniques include autoencoders (AEs): MSCRED

(Zhang et al. [62]), OmniAnomaly (Su et al. [55]), USAD (Audibert et al. [4])); Generative

adversarial networks (GANs): MAD-GAN (Li et al. [32]); Graph neural networks (GNNs):

MTDAD-GAT (Zhao et al. [63]), GDN (Deng and Hooi [15]); Deep one-class networks:

THOC (Shen et al. [52]). Most papers follow an unsupervised approach based on recurrent

networks, e.g., long short-term memory networks (LSTMs, Hochreiter and Schmidhuber

[22]). The unsupervised approach hinges on the assumption that anomalies in the data

are either rare or absent, and that models are learning usual system behaviors well enough

to distinguish outliers out-of-sample. The Transformer architecture of Vaswani et al. [57]

has also started to appear in the time series anomaly detection literature (Meng et al.

[35], Xu et al. [61]), motivated by its success in natural language processing tasks, and

its greater memory and parallelization capabilities compared to recurrent models. Finally,
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hybrid approaches combining self-supervised representation learning and one-class classifiers,

such as kernel density estimation (KDE, Parzen [41]), one-class support vector machine

(OC-SVM, Schölkopf et al. [51]) or k-nearest neighbors (kNN, Cover and Hart [14]) recently

achieved state-of-the-art unsupervised anomaly detection performance on the visual domain

(Reiss et al. [43, 44]; Sohn et al. [54]). Inspired by these recent advances, we propose an

unsupervised hydrid methodology combining the temporal context representation capabilities

of Transformers, and the effectiveness of statistical discriminative models, to detect abnormal

behavior in LOB time series.

This paper first and foremost fits in the financial market anomalies literature. Although

research on machine learning–based anomaly detection is plentiful, literature on machine

learning for financial market anomalies is relatively scarce, and most deep learning methods

presented above have not been investigated in this context. This paper aims to reduce the

gap between deep learning research and financial assets anomaly research. Ögüt et al. [64]

were the first to investigate data mining algorithms (support vector machines and multilayer

perceptron (MLP)) in the context of daily stock price manipulation detection. Using a la-

beled data set from January 1995 to March 2004, on an index traded on the Istanbul Stock

Exchange, they find that data mining algorithms perform better in terms of total classifi-

cation accuracy compared to multivariate statistical techniques (discriminant analysis and

logistic regression). Their study utilizes daily data, which does not allow precise detection of

the manipulations, meaning that regulators would have to analyze the complete daily trading

data to find the fraudulent trades. But, because they use supervised learning algorithms,

their methodology relies on labeled data. This is not desirable in practice, since it would

require a substantial effort to generate a usable data set, and available fraud cases are very

limited. This is the main factor driving the use of unsupervised models since they do not

require any label. Furthermore, supervised models are only capable of detecting known pat-

terns in the data, rendering them useless in unveiling emerging trade–based manipulations,

or when market data’s distribution inevitably drifts. These limitations support the adoption

of unsupervised learning methods (Khodabandehlou and Golpayegani [26]).
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Diaz et al. [16] were the first to introduce intraday trading data and an "open box"

approach, in the form of decision trees, interpretable by market regulators to help detect

trade–based manipulations. They find that the average traded volume is lower during ma-

nipulation periods, whereas liquidity, returns, and volatility are higher than usual. This

corroborates with the empirical findings of Aggarwal and Wu [2]. Both studies relied on

a limited set of trade–based manipulations enforced by the SEC that are unclear on the

manipulation type, and their exact time of occurrence.

Cao et al. [6] propose a hidden markov model to detect certain trade–based manipulations:

spoofing, pump-and-dump, and "others." From a set of four mid-price features, the proposed

Adaptive Hidden Markov Model with Anomaly States (AHMMAS) can outperform standard

machine learning (OC-SVM, kNN), and other statistical methods, on simulated anomalies

injected in a LOB data set from the LOBSTER project (Huang and Polak [23]). This

approach has some important drawbacks. The biggest one being the curse of dimensionality

faced by the model. Indeed, two hidden states, one normal and one anomalous, are created for

each feature, bringing the total number of hidden states to 2n, for n the number of features.

Given that the Viterbi algorithm (Forney [18]) is employed to determine the most probable

series of hidden states in a time series of length T , the anomaly detection complexity is

O(T×22n). We argue that more features, such as: market event interarrival time, cancelation

volume, trade volume, LOB volume, LOB prices, etc., are necessary to capture a larger range

of fraudulent patterns, which is problematic for AHMMAS. On the other hand, deep learning

methods have shown great performance in high-dimensionality problems (Wang et al. [60])

and are thus better suited to generalize trade-fraud detection to multiple patterns. In a

second paper, Cao et al. [7], the authors work directly with the orders, rather than the LOB,

and use the OC-SVM algorithm to detect spoofing and quote stuffing orders from their

volume, price, and duration, achieving state-of-the-art detection capabilities at the time, in

terms of area under the receiver operating characteristic curve. But the temporal context of

the orders is ignored, so that significantly large and/or rapid orders sent by high-frequency

traders, or trades walking the book, may be wrongly classified as anomalous. We propose

174



to include such context so that those types of orders can be safely ignored when pertinent,

thus decreasing the false positive rate.

A series of studies are applying unsupervised hybrid models to first learn a representation

of price–based time series features, and then cluster them to detect abnormal orders. Abbas

et al. [1] use empirical mode decomposition (EMD), Close and Kashef [12]; Rizvi et al.

[45] employ the dendritic cell algorithm, and Rizvi et al. [47] apply kernel–based principal

component analysis. All of which then utilize KDE–based clustering techniques on the

time series’ representations, and all outperform the hidden markov model of Cao et al. [6].

The simulated fraudulent patterns in Abbas et al. [1]; Cao et al. [6, 7]; Close and Kashef

[12]; Rizvi et al. [45, 47] are all fixed and repeated, thus probably leading to an overestimation

of their methodologies’ performances. Since we aim to build a more versatile and robust

anomaly detection model, our set of simulated anomalies used out-of-sample includes more

families of trade–based fraud, and they are also stochastically generated, leading to a greater

range of fraudulent scenarios. In all these studies, only price features are used to detect

potential frauds, which lacks generality to detect non-price related tactics, e.g., quote stuffing

(Khodabandehlou and Golpayegani [26]). Furthermore, the chronological order of market

events is important to characterize trade–based manipulations. For example, in pump-and-

dump, there needs to be price ramping before observing large quantities of executions and

cancelations. If that sequence of events is not respected, it is not fraudulent. It is unclear

if the methods of Abbas et al. [1]; Close and Kashef [12]; Rizvi et al. [45, 47] are able to

consider that chronological aspect. Alternatively, deep recurrent and attention models do

consider the events’ order in their time series representation.

Newer studies in financial market anomaly detection have started to focus on deep learn-

ing approaches. Leangarun et al. [28] use a supervised MLP to detect stock price manipula-

tion using level 1 data. They can detect synthetic pump-and-dump cases with an accuracy

above 88%, but without much success on synthetic spoofing cases. In a subsequent study,

Leangarun et al. [29], employ a deep unsupervised framework based on GANs with LSTM

network generators and discriminators utilizing uniformly sampled LOBs as input to achieve
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close to 70% accuracy out-of-sample on synthetic pump-and-dump activities. In a third

paper, Leangarun et al. [30], the authors compare their LSTM-GAN to a LSTM-AE. They

find that the AE model outperforms the GAN on synthetic pump-and-dumps, and both

unsupervised models can detect five out of six real manipulation cases from the Stock Ex-

change of Thailand. Chullamonthon and Tangamchit [10] apply a supervised Transformer

encoder model to detect both synthetic pump-and-dumps, and the same real fraud cases of

Leangarun et al. [30]. The model achieves higher accuracy than the MLP of Leangarun et al.

[28]. All these studies only focus on pump-and-pumps. Instead, we are proposing a generic

framework able to detect different types of frauds from LOB data, a natural step in the next

generation of market manipulation detectors (Khodabandehlou and Golpayegani [26]). Rizvi

et al. [46] employ a MLP-AE trained on stock prices affinity matrices. The learned repre-

sentations are then clustered with the kernel density estimation–based method proposed in

Rizvi et al. [45]. This hybrid approach outperforms the works of Cao et al. [6] and Abbas

et al. [1], cementing the idea that deep unsupervised models can learn better representations

compared to previous methods. Again, it is unclear how the sequential aspect of trade–based

manipulations is considered in this model, and the lack of non-price features is problematic

for the detection of various trade–based manipulation types.

3. Methodology

3.1. Problem

We can formalize the problem as follows. Given an out-of-sample time series of length

T and dimensionality m, X = {x1,x2, . . . ,xT}, xt ∈ Rm ∀t, we are interested in finding

subsequences of fixed length k � T , S = {St = {xt−k+1,xt−k+2, . . . ,xt} ∈ Rk×m | t =

k, . . . ,T}, that strongly deviate from normalcy. Hence, we need to predict the series Y =

{yk, yk+1, . . . , yT}, where yt ∈ {0 : normal, 1 : abnormal} is associated to St. In our context,

the time series X contains LOB features useful in characterizing and detecting trade-–based

manipulation patterns, which will be presented in Section 4.
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3.2. Approach

Lately, the literature on anomaly detection is seeing a resurgence of interest in one-class

classifiers (e.g., OC-SVM, Schölkopf et al. [51], and SVDD, Tax and Duin [56]), applied

on representations learned by a higher-level deep neural network, called an encoder. The

models are trained end-to-end and achieve state of the art results on many benchmarks (Ruff

et al. [49]). Unfortunately, this approach also suffers from collapses into trivial solutions,

which makes training difficult. Recently, Sohn et al. [54] have proposed a simple fix, where

they suggest to first train an encoder network on some auxiliary task, and separately train

the one-class classifier on these representations, as two separate learning steps, achieving

impressive results on image benchmarks.

We propose to use the same approach, with some modifications for the financial domain.

In their paper, Sohn et al. [54] focus on contrastive learning on augmentations (such as rota-

tions, or flips) of the original images. Unfortunately, it is difficult to extend their approach to

financial time series since possible notions of augmentations are less clear. Indeed, because

the semantics of LOB time series are very intricate, blindly applying previously proposed

data augmentations breaks their nature, which makes contrastive learning methods difficult.

Instead, we propose to train the encoder to solve the typical autoencoding task jointly with

some decoder network on selected LOB features.31 Note that other self-supervised or unsu-

pervised tasks could be employed to train the encoder, such as masked language modeling,

or some other prediction task. But masked-autoencoders have been found to have poor

anomaly detection capabilities (Reiss et al. [44]), and predicting the stock market is arduous

(Gandhmal and Kumar [19]), which drastically increases the complexity of learning efficient

representations of LOB time series. For this reason, we prefer to adopt the autoencoding

task in this context. After training, this decoder network is discarded, and a separate one-

class classifier is trained, keeping the encoder fixed. We now detail each step of the proposed

methodology.

31The autoencoding task is an unsupervised learning technique which consists of encoding an efficient lower–
dimensional representation of the data and then decoding, i.e., reconstructing, the initial data from that
representation.
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3.3. Step 1: Autoencoding

In the first step, we train the deep neural network encoder φE : Rk×m 7→ Rd with

parameters θE, jointly with another deep neural network φD : Rd 7→ Rk×m with parameters

θD, called the decoder, where d � k × m. The composition of the encoder and decoder

networks forms the autoencoder, φD ◦ φE = φAE : Rk×m 7→ Rk×m with parameters Θ =

{θE, θD}. The goal of the encoder is to generate a representation vector, zt ∈ Rd, semantically

rich enough to summarize the input sequence St ∈ Rk×m, so the decoder is able to reconstruct

that same sequence only from zt, i.e., φD
(
zt = φE(St | θE)

∣∣∣ θD) = φAE(St | Θ) ≈ St. The

proposed autoencoder is defined in this next part.

3.3.1. Bottlenecked Transformer autoencoder.

The architecture of the proposed autoencoder mostly follows the Transformer architecture of

Vaswani et al. [57], along with some modifications. Figure 19 details the original architecture

(left) and the proposed model (right).

Initially proposed in the field of natural language processing, Transformers are deep

learning models adopting the encoder-decoder architecture of earlier sequence-to-sequence

models. Transformers process entire sequences at once, instead of relying on recursion like

deep recurrent models. They do so using self-attention in the "Multi-Head Attention" module

(see Figure 19), allowing them to focus, i.e., put more weight, on relevant portions of the input

data (timewise and feature-wise) depending on the sequence itself, to create more informative

sequence representations. The Transformer encoder consists of N encoding layers, each

successively transforming the sequence representation into a final matrix containing the

sequence’s contextual information called the encoding. The Transformer decoder is then

tasked to autoregressively generate an output sequence based on this encoding, without

attending the current or future observations of the expected output sequence. We refer

the reader to Vaswani et al. [57] for its complete description, as we want to focus on the

alterations we make to the model.

As can be seen in Figure 19, the differences with the architecture of Vaswani et al.

[57] are the addition of a bottleneck composed of the "flatten" and "linear" blocks, and
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Fig. 19. Original Transformer autoencoder of Vaswani et al. [57] (left) and the proposed
bottlenecked Transformer autoencoder (right). The encoder representation matrix in Rk×d

is flattened to a vector in Rkd, then passed to a linear layer to reduce the representation
further to Rd, before being fed to the decoder.

the removal of the "softmax" layer at the end of the decoder. Similar models have been

proposed for sentence embedding (Montero et al. [36]; Wang et al. [60]), and musical style

encoding (Choi et al. [9]), but never in the context of anomaly detection. The bottleneck

deserves some additional details. After N Transformer-encoder layers, the input matrix

St = (xt−k+1, . . . ,xt) ∈ Rk×m is mapped to a matrix Et = (et1, . . . , etk) ∈ Rk×d following the

standard Transformer architecture of Vaswani et al. [57]. After that, the bottleneck flattens,

i.e., concatenates, this representation matrix into a kd-vector et:

et =
[
et1 . . . etk

]
∈ Rkd,

which is then linearly projected into a d-vector, yielding the representation:

zt = Wet + b = φE(St | θE) ∈ Rd,
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where W ∈ Rd×kd and b ∈ Rd. Because d � k ×m, information is lost in this bottleneck.

In turn, this means the decoder only attends to a limited subset of information summarizing

the input sequence, and the encoder is forced to learn a semantically rich temporal context

vector zt.

3.3.2. Autoencoder training.

The autoencoder φAE is trained to minimize the L2 reconstruction loss of any subsequence

St, which is the standard autoencoding task:

L(Θ) = E
[(
St − φAE(St | Θ)

)2
]
,

Θ∗ = arg minΘ L(Θ).

Hence, supposing a fraud–free data set of N subsequences D = {s1, . . . , sN}, si ∈ Rk×m, the

parameters of φAE are estimated by stochastic gradient descent on the empirical measure:

Θ̂ = arg min
Θ

1
N

N∑
i=1

∣∣∣∣∣∣si − φAE(si | Θ)
∣∣∣∣∣∣
F
,

for || · ||F the Frobenius norm.

3.4. Step 2: Dissimilarity learning

In the second step, we discard the decoder φD, and train a OC-SVM on the representa-

tions zi = φE(si | θ̂E), i = 1, . . . , N, learned by the encoder on the fraud-free set D. The

OC-SVM of Schölkopf et al. [51] is a novelty detection algorithm extending the support vec-

tor machine algorithm (SVM, Cortes and Vapnik [13]) to the unsupervised case. It finds a

subset of the input space such that a new point drawn from the same distribution as the data

will lie outside the subset with arbitrarily small probability, leaving abnormal data points

outside, thus allowing us to detect any anomalous encoder representations. We introduce

the algorithm here for completeness.

Defining the feature map Φ : Rd 7→ F such that F is a space where the dot product in

the image of Φ can be obtained by a kernel function, i.e.:

k(z, z′) = Φ(z) · Φ(z′),
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the OC-SVM tries to separate the data from the origin in F with the hyperplane
{

Φ(z)
∣∣∣ w ·

Φ(z) = ρ
}
with maximum margin. If no such hyperplane exists, slack variables are added to

some mapped representations (the support vectors), while also allowing points in the origin’s

half space (the outliers). That is, the OC-SVM solves the quadratic program:

min
w∈F ,ξ∈RN ,ρ∈R

1
2 ||w||

2 + 1
νN

N∑
i=1

ξi − ρ

s.t. w · Φ(zi) ≥ ρ− ξi, ξi ≥ 0, ∀i = 1, . . . , N,

where the hyperparameter ν ∈ (0, 1) controls the upper bound on the fraction of outliers,

and ξis are the slack variables. We use the radial basis function:

kγ(z, z′) = exp(−γ‖z− z′‖2)

as the kernel with hyperparameter γ > 0. The optimization problem can be solved efficiently

with any standard quadratic programming solver. The OC-SVM decision function has a

solution of the form:

f(z) = sign
 N∑
i=1

α̂ikγ(z, zi)− ρ̂
 ∈ {−1,1},

where outliers have a negative value. The α̂i and ρ̂ estimated on the representations zi are

kept for the dissimilarity function detailed in the next subsection.

3.5. Step 3: Predicting

In the third step, once both the encoder and the OC-SVM are trained, one makes a pass

over the out-of-sample subsequences of set S, and record their dissimilarity value, which is

a slight modification of the OC-SVM decision function:

dissimilarity(St) = ρ̂−
N∑
i=1

α̂ikγ

(
φE
(
St | θ̂E

)
, φE

(
si | θ̂E

))
∈ R, ∀St ∈ S.
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This function quantifies how far the representation of the subsequence St is from the support

learned by the OC-SVM. In other words, the greater the dissimilarity, the further the sub-

sequence is from normal data (and the hyperplane learned by the OC-SVM), and the more

anomalous it is. Finally, we classify a subsequence St as anomalous if

dissimilarity(St) > τ,

for some threshold τ ∈ R controlling the sensitivity of the algorithm, i.e.,

ŷt = I{dissimilarity(St)>τ}, ∀St ∈ S,

for I{·} the indicator function. Previous financial anomaly detection papers (e.g., Lean-

garun et al. [30]) have used the L2 reconstruction loss of autoencoders for this task,∥∥∥St−φAE(St | Θ̂)
∥∥∥
F
, but as we will show, this leads to suboptimal detection performance on

our data set. Indeed, the reconstruction loss is highly volatile in time so true anomalies are

difficult to detect, generating a high false positive ratio. Our approach instead utilizes the

dissimilarity function, dissimilarity(St), to quantify the abnormality of St, yielding better

results because normal data is more easily discernible in the representation space. These

aspects will be discussed in detail in Section 5. Deep learning models have not been well

explored for collective anomalies, unlike point anomalies (Pang et al. [40]), and therefore our

paper also contributes to fill this gap in the time series literature with a direct application

to LOB data. Figure 20 presents the overall proposed anomaly detection model combining

the bottlenecked Transformer encoder, and the OC-SVM algorithm.

4. Data

As explained in Section 3, our approach is unsupervised, which means that we do not

need explicit examples of fraud to train and run our model. However, it is useful to have such

examples to evaluate our algorithm and compare it to alternative approaches out-of-sample.

To do so, we will use the standard strategy of using a fraud–free data set of orders, and

artificially add in examples of fraud in the data set, given the scarcity of actual fraudulent
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Fig. 20. Proposed dissimilarity–based anomaly detection framework.

events. Note that although these examples of fraud will only be present in the test data, our

approach will not be aware of their location, nor amount, so that the methodology remains

unsupervised. We now describe the data in further details.

4.1. Base data set

Our base data comes from the LOBSTER project (Huang and Polak [23]). It contains

the LOB level 1 (L1) data of five NASDAQ stocks: Amazon (ticker: AMZN), Apple (ticker:

AAPL), Google (ticker: GOOG), Intel (ticker: INTL), and Microsoft (ticker: MSFT) on

June 21, 2012. The LOBSTER project data has also been used in most financial market

fraud detection papers (Abbas et al. [1]; Cao et al. [6, 7]; Close and Kashef [12]; Leangarun

et al. [28]; Rizvi et al. [45, 46, 47]), so it is a good point of comparison. The data is split

into two files, one for market events, and one for rebuilt LOBs. Table 38 details the data,

and Table 39 provides some descriptive stock statistics. It is from that raw data that LOB

features are created to be used in the model of Section 3.

183



Table 38. Description of the information contained in LOBSTER project’s messages and
LOBs files.

Messages LOBs
Variable Description Variable Description
Time Nanoseconds past midnight Best bid price Best buying price
Type 1: Submission new limit order Best bid size Total number shares available at bid price

2: Partial cancelation limit order Best ask price Best selling price
3: Deletion limit order Best ask size Total number shares available at ask price
4: Execution visible limit order
5: Execution hidden limit order

OrderID Unique order reference number
Size Number shares of order
Price Price of order
Direction -1: Sell limit order

1: Buy limit order

Table 39. Descriptive statistics of LOBSTER stocks on June 21, 2012.

Statistic | Stock AAPL AMZN GOOG INTC MSFT
Quotes 54,818 27,845 24,368 202,231 205,695
Trades 34,990 11,419 11,678 32,483 33,414
Cancels/Quotes 52.34% 65.54% 55.14% 84.20% 83.76%
Std. Mid-price 2.99 1.36 4.28 0.27 0.29
Avg. Bid-Ask Spread (bps) 2.66 6.10 5.45 4.92 4.40
Avg. Best Bid Size 227.20 249.34 172.11 17,194.81 14,965.07
Avg. Best Ask Size 147.19 145.36 134.99 14,360.18 15,796.58
Avg. Order Size 88.30 95.90 81.89 503.46 600.43
Avg. Trade Size 81.46 71.00 60.47 322.37 323.95

4.2. Synthetic manipulations

As mentioned earlier, reported trade–based manipulation cases are rare, hence most stud-

ies have instead simulated some, and inserted them back in their initial fraud–free data set.

We also follow that methodology, but we significantly increase the complexity of fraudulent

patterns, as explained in Section 2. Not only do we simulate more families of trade frauds,

but we also stochastically generate them so that multiple scenarios are included in the study,

while making sure not to denature the manipulations. Previous papers repeat the same fixed,

limited, set of orders, which probably results in an overestimation of their model’s true detec-

tion potential. Three distinct trade–based manipulation types are studied: pump-and-dump,

layering, and quote stuffing. 50 trade–based manipulations of each type are randomly added

per stock. 30 seconds of fraud–free data before and after each manipulation are kept to
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create the test set containing all frauds, so that the vast majority of the test data is also

fraud–free, keeping a low anomaly ratio. The remainder of the LOB data is split to form

the training set, representing 70% of the remainder, and the validation set, representing the

last 30%. Given the large discrepancy in the data quantity between Amazon, Apple, Google

and Intel, Microsoft (see Table 39), we oversample the first group of stocks in the training

and validation data sets to get a more balanced representation. The training set is used to

train the bottlenecked Transformer autoencoder with the L2 reconstruction loss detailed in

Section 3.3.2, and the validation set is needed to select the optimal parameters Θ̂ generating

the lowest loss on that set. Then, the training and validation sets are concatenated to form

a single fraud–free set on which the OC-SVM of Section 3.4 is trained to learn the dissim-

ilarity function. The test set is only utilized to evaluate the methodology’s out-of-sample

performance. We now describe in detail the simulated trade–based manipulations.

4.2.1. Pump-and-dump.

The U.S. Securities and Exchange Commission (SEC) defines pump-and-dumps as: "[...]

schemes [that] have two parts. In the first, promoters try to boost the price of a stock [...].

Once the stock price has been pumped up, fraudsters move on to the second part, where they

seek to profit by selling their own holdings of the stock, dumping shares into the market."32

We closely follow the procedure of Chullamonthon and Tangamchit [11] to simulate pump-

and-dump patterns. We replicate their "low degree" pump-and-dump scenario in which a

price change of 3–4% occurs, with an increase in both bid and ask volumes of 25–100%

during a pump period of one second. Following that price pump, a dumping stage of three

seconds sees the same increased level of canceled bid volume and matched volume, bringing

the LOB prices to their initial level. They also propose two other, more aggressive scenarios,

but we only replicate the lowest degree of fraud to remain more conservative. The different

scenarios of Chullamonthon and Tangamchit [11] are based on cryptocurrencies pump-and-

dumps found in Kamps and Kleinberg [25], and on an event identified by Nanex Research, a

Chicago–based firm specializing in high-frequency trading data; The Westinghouse Air Brake

32https://www.investor.gov/protect-your-investments/fraud/types-fraud/pump-and-dump-schemes (ac-
cessed May 23, 2023).
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Technologies Corp stock’s (NYSE:WAB) price jumped 8% in the span of one second, and

then dropped back close to its initial value after three seconds on December 14, 2011 (Nanex

Research [38]). Table 40 lists the pump-and-dump characteristics and the ranges used to

randomly simulate the manipulations, and Figure 21 presents a simulated pump-and-dump

pattern.

Table 40. Range of randomly simulated pump-and-dump scenarios.

Characteristic Total Price Increase Non Bona Fide
Order Size Pump Duration Dump Duration

Range [3, 4]% [1.25, 2]× Average L1 Volume [750, 1,250] ms [2,250, 3,750] ms

Fig. 21. Toy example of "low degree" pump-and-dump manipulation.

4.2.2. Layering.

The Investment Industry Regulatory Organization of Canada (IIROC) defines layering as:

"[...] [the act of] placing a bona fide order on one side of the market while simultaneously

"layering" orders in the consolidated market display on the other side of the market without

intention to trade [...] as [to induce] a false or misleading appearance of trading activity or

artificial price. In this case, the purpose of the "layering" is to "bait" other market participants
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to react and trade with the bona fide order on the other side of the market at an artificial

price." (IIROC [24])

On April 30, 2014, the SEC reported layering activities that occurred on the stock W.W.

Grainger (NYSE: GWW) on June 4, 2010.33 Figure 22 details the layering orders listed

in the official document. At 11:08:55.152, the trader placed a bona fide order to sell 1,000

Fig. 22. Recreation of the layering activities found by the SEC in NYSE:GWW on June 4,
2010.

units of the stock at $101.34 per share when the best bid was at $101.27 and the best ask

at $101.37. From 11:08:55.164 to 11:08:55.323, the trader sent 11 orders to buy GWW at

increasing prices, totaling a volume of 2,600 shares, pushing the best bid price to $101.33.

Another market participant, deceived by the layering orders, traded against the bona fide

sell order of 1,000 shares at 11:08:55.333. At 11:08:55.932, the trader canceled all the non

bona fide bid orders, and the L1 prices returned to their initial value.

From this case, multiple stylized facts of interest can be used to replicate layering patterns:

the bona fide order is placed around 3 bps inside the bid-ask spread, a sequence of 11 non

bona fide orders are placed at a rate of one per 14 ms, the non bona fide orders push the
33https://nj.gov/oag/newsreleases14/Hold-and-Tobias-Consent-Order-05-02-14.pdf (accessed March 13,
2023).
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price around 6 bps away from its initial value, a trade occurs rapidly after a non bona fide

order and their placement are stopped, all the non bona fide orders are canceled less than

600 ms after the trade, and finally, the bona fide order is 2.6 times smaller than the total

volume of the non bona fide orders. Another important stylized fact is that spoofing orders

are on average 5.6 times larger than typical orders (Lee et al. [31]).34 Table 41 lists layering

characteristics and the ranges used to randomly simulate the manipulations.

Table 41. Range of randomly simulated layering scenarios.

Characteristic Bona Fide
Order Side

Bona Fide
Order Price

Bona Fide
Order Size

Nb. Non Bona
Fide Orders

Non Bona Fide
Interarrival Time

Range {Bid, Ask} Bidprice+ (0, 3) bps if Bona Fide Side = Bid
Askprice− (0, 3) bps if Bona Fide Side = Ask

[2, 3]× Non Bona Fide
Total Size [10, 12] [10, 20] ms

Characteristic Non Bona Fide
Total Size

Non Bona Fide
Price Movement Trade Delay Cancelation Delay

Range [5, 6]×
Average order size (0, 6] bps [5, 15] ms [100, 1100] ms

4.2.3. Quote stuffing.

IIROC defines quote stuffing as: "[...] the input by a Participant or Access Person of excessive

market data messages with the intent to "flood" systems and create "information arbitrage"

opportunities for itself [...]." (IIROC [24]).

Egginton et al. [17] find that quote stuffing occurs often on only one side of the book at a

time. They also notice a drastic increase in the new order and cancelation rates, a decrease

in order size, and an augmentation of order updates slightly inside the spread during quote

stuffing periods. Nanex also discovered multiple quote stuffing algorithm imprints. More

specifically, they detail the orders sent by Citadel Securities for which a disciplinary action

was taken by NASDAQ in 2014.35 For example, from 13:32:53.029 to 13:33:00.998, Citadel

placed 8 to 9 orders to buy 100 shares of NASDAQ:PENN, per millisecond, before imme-

diately canceling them. This caused delays up to 16 ms in the U.S. Securities Information

Processor, creating arbitrage opportunities (Nanex Research [39]). Nanex has also found

that order rates at 10 per millisecond and above will create delays in NYSE’s consolidated

quotation system (Nanex Research [37]). Although quote stuffing sequences can last thou-

sands of events, we limit their length as to not have a disproportionate number of fraudulent
34Multiple spoofing orders in a sequence generate a layering manipulation.
35NASDAQ Disciplinary Actions against Citadel, accessed March 15, 2023
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orders in our data set. Considering these stylized facts, Table 42 lists quote stuffing char-

acteristics and the ranges used to randomly create the manipulations. Figure 23 shows a

toy example of quote stuffing activity where a high-frequency trader submits, then almost

immediately cancels, limit orders inside the bid-ask spread. In the span of six milliseconds,

25 buy limit orders are sent to the market then rapidly canceled, thus sending a total of 50

messages to other market participants.

Table 42. Range of randomly simulated quote stuffing scenarios.

Characteristic Fraud Side Nb. Events Order Rate Order Size Order Price

Range {Bid,Ask} [50, 200] [8, 10] / ms [1, 10]th percentile
order volume distribution

Bidprice+ (0, midprice) if Fraud Side = Bid
Askprice− (0, midprice) if Fraud Side = Ask

Fig. 23. Toy example of quote stuffing.

4.3. Feature engineering

As mentioned previously, the proposed framework utilizes a set of features aiming to best

describe the variations in LOB states so that multiple manipulation types can be detected

from a single model. The trade–based manipulations described above are all very distinct,

and an adequate set of features needs to be able to describe them all. Thus, we propose LOB–

based features that cover price returns, volumes, cancelation volumes, and trade volumes,
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while also considering the rapidity at which the different market events occur. Table 43

details all the features used in the framework built from the original data presented at the

beginning of this section. All 14 features are standardized on a daily stock-per-stock basis.

For any daily stock feature vector x, its standardized version, x′, is given by:

x′ = x− x
σ

,

where x and σ are its empirical mean and standard deviation, respectively. In Table 43,

Table 43. List of LOB features proposed to capture trade–based manipulations.

Feature Description

rBidt Best bid-price return at event t: rBidt = ln
(
PBid
t /PBid

t−1

)
rAskt Best ask-price return at event t: rAskt = ln

(
PAsk
t /PAsk

t−1

)
rBidt /∆t Difference quotient of best bid-price return w.r.t. time, at event t
rAskt /∆t Difference quotient of best ask-price return w.r.t. time, at event t

Size
Bid

t Simple moving average of total size at best bid-price, at event t: SizeBidt = ∑9
k=0 Size

Bid
t−k/10

Size
Ask
t Simple moving average of total size at best ask-price, at event t: SizeAskt = ∑9

k=0 Size
Ask
t−k/10

SizeBidTrade,t Size of trade consuming liquidity at best bid-price, at event t
SizeAskTrade,t Size of trade consuming liquidity at best ask-price, at event t
SizeBidCancel,t Size of order cancelation/deletion located at best bid-price, at event t
SizeAskCancel,t Size of order cancelation/deletion located at best ask-price, at event t
IBidTrade,t Indicator of trade rapidity on best bid-price, at event t: IBidTrade,t = I{SizeBid

T rade,t
6=0}/∆t

IAskTrade,t Indicator of trade rapidity on best ask-price, at event t: IAskTrade,t = I{SizeAsk
T rade,t

6=0}/∆t
IBidCancel,t Indicator of cancelation rapidity on best bid-price, at event t: IBidCancel,t = I{SizeBid

Cancel,t
6=0}/∆t

IAskCancel,t Indicator of cancelation rapidity on best ask-price, at event t: IAskCancel,t = I{SizeAsk
Cancel,t

6=0}/∆t

P
Bid/Ask
t are the best bid/ask prices of the LOB at market event t, SizeBid/Askt the best

bid/ask size of the LOB, SizeBid/AskCancel/Trade,t the size of the cancelation/trade on the best

bid/ask side, and ∆t the time delta between market events t and t− 1.
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5. Experiments

5.1. Setup

The models are fitted on the training data set containing the features computed from

the LOBSTER data of Huang and Polak [23] presented in Section 4, for every stock. They

are trained for 250 epochs, with a batch size of 512, and on subsequences of length k = 25.

Autoencoders have a representation dimension of d = 128, which is enough to compress

the subsequence dimensionality of k ×m = 25 × 14 = 350, while ensuring they are able to

reconstruct the time series input sufficiently well. The rest of the bottlenecked Transformer

autoencoder’s hyperparameters are set similarly to Vaswani et al. [57]: h = 8, dff = 4d =

512, and N = 6, and the model is trained following their proposed methodology based on the

Adam optimizer of Kingma et al. [27]. As for the OC-SVM, γ is set like in Sohn et al. [54],

i.e., γ = 10/
(
d× Var

(
φE(si | θ̂E)

))
, and the other hyperparameters are set to their default

values in scikit-learn (Pedregosa et al. [42]). No hyperparameter tuning of the autoencoder,

nor the OC-SVM, is done as to avoid overfitting problems.

All metrics used in this section rely on combinations of true positives (TP), true negatives

(TN), false positives (FP), and false negatives (FN). Most studies in the trade–based manip-

ulation detection literature do not formally define them, and given the problem’s context,

their exact definitions are not clear. We formally introduce them to eliminate any ambiguity:

• TP: market events part of a fraud, and part of at least one detected subsequence,

• TN: market events not part of a fraud, and not part of any detected subsequences,

• FP: market events not part of a fraud, and part of at least one detected subsequence,

• FN: market events part of a fraud, and not part of any detected subsequences,

all of which are function of the dissimilarity threshold τ . Also, whenever a market event

part of a fraud is detected, then we consider that all market events in that fraud are also

detected. This is reasonable, since market regulators would catch the fraudulent behavior

by looking at the surrounding events of a flagged anomaly.
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As mentioned in Golmohammadi and Zaine [20], and Khodabandehlou and Golpayegani

[26], the misclassification cost of fraudulent orders is higher than the one of normal orders,

meaning that an emphasis on recall, as opposed to precision, is necessary to correctly evaluate

trade–based manipulation detection frameworks. Hence, a β > 1 in Fβ-measures is more

appropriate. We detail the different statistics for any given τ :

Precision(τ) = TP (τ)
TP (τ) + FP (τ) ∈ [0,1]

Recall(τ) = TPR(τ) = TP (τ)
TP (τ) + FN(τ) ∈ [0,1]

Fβ(τ) = (1 + β2) · Precision(τ) ·Recall(τ)
(β2 · Precision(τ)) +Recall(τ) ∈ [0,1]

AUPRC =
∫ ∞
−∞

Precision(τ)Recall′(τ)dτ ∈ [0,1]

FPR(τ) = FP (τ)
FP (τ) + TN(τ) ∈ [0,1]

AUROC =
∫ ∞
−∞

TPR(τ)FPR′(τ)dτ ∈ [0,1]

5.2. Main results

5.2.1. General performance and comparative study.

Like Golmohammadi and Zaine [20], we use the F4-measure to quantitatively compare the

different models, and we also provide the area under the precision-recall curve (AUPRC)

to evaluate the models’ general performance. The area under the receiver operating char-

acteristic curve (AUROC) is also included as a third metric, since it is still used in recent

literature, e.g., Close and Kashef [12]; Rizvi et al. [46]; Wang et al. [59], even though it can

be misleading in imbalanced data sets, which is the case for anomaly detection (Saito and

Rehmsmeier [50]). Table 44 compares the performance of our proposed method to some

others put forward in past studies. Only unsupervised frameworks working on tick data, i.e.,

orders or LOBs, are considered, and all are trained and tested on our data. The optimal
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threshold τ ∗ for each method is selected to optimize the F4-measure, and we also detail the

precision and recall at that point of the precision-recall curve.

Table 44. Comparative study of the proposed method with previous unsupervised papers,
on our data. Best metric in bold, second best is underlined.

Paper Model AUROC AUPRC F4 Precision Recall

Ours Transformer-AE +
OC-SVM 0.900 0.847 0.935 0.628 0.965

Abbas et al. [1] EMD +
KDE Clustering 0.700 0.375 0.803 0.195 0.992

Cao et al. [7] OC-SVM 0.944 0.732 0.899 0.397 0.976
Leangarun et al. [29] LSTM-GAN 0.694 0.323 0.774 0.197 0.878
Leangarun et al. [30] LSTM-AE 0.682 0.293 0.773 0.167 1.000

Rizvi et al. [46] MLP-AE +
MKDE Clustering 0.674 0.371 0.776 0.169 1.000

By working on uniform sampling of the LOB with one second intervals, Leangarun et al.

[29, 30] miss the entire temporal context of fast trade–based manipulations, like quote stuffing

and layering. Furthermore, the impact of layering is minimal when looked at a second

resolution, making it nearly impossible to detect in their methodology (see Section 4.2.2).

This is represented in Table 44, where they achieve the lowest AUPRC and F4-measure on our

data set. The hybrid clustering techniques of Abbas et al. [1] and Rizvi et al. [46] fare a bit

better by working directly on the LOB. But by only focusing on price features, they lack the

LOB volume and cancelation features needed to detect various trade–based manipulations.

Also, the temporal context is not considered in their methodology, which can be appropriate

for point anomalies, but is not when trying to capture collective time series anomalies. This

aspect is also a shortcoming of Cao et al. [7], where single orders are classified without

any context. But still, they achieve a greater performance than newer methods because of

better–crafted features able to encapsulate important orders’ characteristics: size, LOB price

effect, and duration. The dissimilarity objective of the OC-SVM algorithm also seems to be

more apt than clustering (in Abbas et al. [1]; Rizvi et al. [46]), and estimation models (in

Leangarun et al. [29, 30]), for trade–based fraud detection.

193



Overall, when tested on pragmatic simulations of sophisticated, and distinct, trade–based

manipulations, all previously proposed unsupervised methods fall short when compared to

our model in terms of AUPRC and F4-measure, mostly because of their lower precision, i.e.,

higher false positive rate. For market regulators, this means that less time is wasted on false

alarms, which is the main goal of this paper. The work of Cao et al. [7] is a close second, and

also significantly outperforms the other, more recent models evaluated in Table 44. Finally,

our methodology integrates more relevant features of the LOB, and their temporal context.

It also learns a more descriptive representation of the data, enabling an easier separation of

normal and abnormal subsequences compared to previous methods, which is corroborated

by Table 44.

5.2.2. Performance per stock.

Table 45 details the proposed method’s performance on a per-stock basis with the same

F4-optimal threshold τ ∗ found for Table 44. An important observation can be made from

Table 45. Per-stock performance of the proposed methodology with the general F4-optimal
τ ∗.

Stock F4 Precision Recall
AAPL 0.955 0.710 0.977
AMZN 0.893 0.783 0.901
GOOG 0.940 0.820 0.949
INTC 0.949 0.530 0.998
MSFT 0.934 0.499 0.988

Table 45, which is that the model’s performance is not drastically different for any stock in

terms of F4-measure, meaning that it was able to learn an asset–independent representation

of normality. This is important for market regulators since a single model is enough to

capture anomalies on all assets. This contrasts with rule–based systems where their rules

have to be manually adjusted for each asset, depending on their stylized facts (see Table

39 for an overview of important stylized facts in stocks). Moreover, the F4-measures are all

approaching 1, demonstrating the great general performance of the methodology.
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5.2.3. Performance per manipulation type.

For the first time in the financial market fraud detection literature, we quantitatively study

the difficulty of detecting different trade–based manipulation types. Figure 24 uses the t-

distributed stochastic neighbor embedding (t-SNE) of Maaten and Hinton [34] to visualize

the representation space of dimension d = 128.36 As can be observed, different clusters for

each manipulation tactics lie outside the main cluster of normal data, meaning that the

representation vectors are able to discriminate between normal and abnormal subsequences,

even differentiating between fraud types. Figure 25 shows the empirical distribution of our

Fig. 24. t-SNE visualization of the representation space generated by the bottlenecked
Transformer encoder.

trained dissimilarity measure on normal and fraudulent subsequences on all stocks, from the

representation vectors shown in Figure 24. Visually, pump-and-dumps seem to be the easiest

to detect given their smaller overlap with the distribution of normal data, whereas layering

activities appear to be the hardest to detect. Quote stuffing resides in between the other

two manipulation types.

Table 46 statistically confirms that ordering, based on first-order stochastic dominance

of the dissimilarity distributions. It applies the two-sample Kolmogorov-Smirnov test where
36t-SNE is a nonparametric, nonlinear dimensionality reduction technique frequently used to visualize high-
dimensional data in two or three dimensions. The low dimensional representations are modeled such that
nearby points, as defined by the Euclidean distance, are similar in the high dimensional space, while distant
points are dissimilar with high probability, thus maintaining the relationship between surrounding points.
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Fig. 25. Empirical distributions of our trained dissimilarity measure on the temporal rep-
resentations for normal, pump-and-dump, layering, and quote stuffing subsequences.

Table 46. p− values of two-sample Kolmogorov-Smirnov test for the first-order stochastic
dominance of dissimilarity distributions found by the proposed hybrid model.

F(x) | G(x) Pump-and-Dump Quote Stuffing Layering Normal
Pump-and-Dump - 1.000 1.000 1.000
Quote Stuffing 0.000 - 1.000 0.996

Layering 0.000 0.000 - 0.990
Normal 0.000 0.000 0.000 -

H0: F (x) ≤ G(x), ∀x and H1: F (x) > G(x) for at least one x, to evaluate the stochastic

ordering between each pair of dissimilarity distributions. Firstly, we can conclude that pump-

and-dump sequences have first-order stochastic dominance over all the order distributions,

and quote stuffing dominates layering. Secondly, all trade–based manipulation dissimilarity

distributions have first-order stochastic dominance over the normal dissimilarity distribution,

further demonstrating that the hybrid model is indeed able to differentiate between normal

and abnormal LOB sequences.

5.3. Ablation study

To better understand the importance of each aspect in the proposed methodology (Trans-

former vs. recurrent models, dissimilarity vs. estimation methods, temporal encoding vs. no

encoding/non-sequential encoding), we contrast its performance against four similar model
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variants. The hybrid Transformer-AE/OC-SVM model (Dissimilarity Transformer) is com-

pared to an equivalent LSTM-AE/OC-SVM model (Dissimilarity LSTM), and an equivalent

MLP-AE/OC-SVM model (Dissimilarity MLP) that all have the same representation vector

dimension d = 128.37 The proposed framework is also evaluated against a simple OC-SVM

(Dissimilarity only OC-SVM), which takes in the entire multivariate subsequence as a single

vector, thereby ignoring the temporality of the data and any encoder dimensionality reduc-

tion. Finally, the dissimilarity approach is compared to the usual reconstruction method

(Reconstruction Transformer), using the complete bottlenecked Transformer-AE trained for

the hybrid approach, and ignoring the OC-SVM. Table 47 presents the performance of these

methods on the test set containing all stocks, and all simulated frauds, for a general F4-

optimal τ ∗ per method.

Table 47. Overall performance of the proposed methodology on test set containing all
stocks, compared to variant approaches. Best metric in bold, second best is underlined.

Method | Metric AUROC AUPRC F4 Precision Recall
Dissimilarity
Transformer 0.900 0.847 0.935 0.628 0.965

Dissimilarity
LSTM 0.877 0.514 0.869 0.332 0.967

Dissimilarity
MLP 0.722 0.628 0.767 0.162 1.000

Dissimilarity
only OC-SVM 0.803 0.652 0.792 0.602 0.808

Reconstruction
Transformer 0.467 0.431 0.782 0.174 1.000

As can be concluded from Table 47, the bottlenecked Transformer architecture is able

to generate more descriptive representation vectors than LSTMs, facilitating the discrimina-

tive objective of the OC-SVM in the representation space, which in turn results in greater

AUROC, AUPRC, and F4-measure. We can also notice the importance of integrating the

temporality of the data in its representation, as the MLP generates a worse performance than

37In this context, the term "equivalent" refers to a similar L2 reconstruction loss obtained by the autoencoders
on the validation set.
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the Transformer encoder, even lower than the OC-SVM alone. This demonstrates that sim-

ple encoding is not enough, and that the performance of the bottleneck-Transformer model

results mainly from its ability to learn rich temporal representations. Finally, the estimation

method using the reconstruction error of the same bottlenecked Transformer autoencoder

results in poor detection accuracy compared to all dissimilarity methods. Overall, Table 47

demonstrates that, out of multiple similar variants, the combination of temporal encoding

from a Transformer model and a dissimilarity approach generates the best performance in

terms of AUROC, AUPRC, and F4-measure, in the context of LOB time series anomaly

detection.

6. Conclusion

In this article, we propose a novel time series anomaly detection model tailored to LOB

time series, with an application to trade–based manipulation detection in five NASDAQ

stocks. We introduce a new autoencoder, the bottlenecked Transformer autoencoder, which

can learn semantically rich temporal representations of LOB time series. The representation

space of its encoder eases the separability of normal and abnormal LOB behavior, allowing

a one-class classification algorithm to discriminate between the two categories with a dis-

similarity function, thus detecting accurately anomalous LOB subsequences out-of-sample.

The model utilizes a greater pool of LOB features to capture a larger range of fraud types

compared to the previous literature by integrating the price, volume, and time dynamics of

the LOB, a necessary step in the evolution of trade–based manipulation detection (Khod-

abandehlou and Golpayegani [26]). Finally, the framework achieves new state-of-the-art

performance by adapting recent deep learning methods proposed for image anomaly detec-

tion, reducing the gap between this active field and the financial market anomaly detection

literature.

We also present a complete trade–based manipulation scenario simulator able to gener-

ate pump-and-dump, layering, and quote stuffing tactics. The random scenarios are used to

quantify the performance of the anomaly detection model. This is an important departure
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from earlier literature in financial fraud detection, since it relied on repeating the same lim-

ited set of orders, hence overestimating the performance of previous methods. We show that

the proposed deep unsupervised anomaly detection model captures these three types of fraud

on all five stocks, meaning that it learns an asset–independent notion of normal LOB behav-

ior, without needing any prior knowledge of fraudulent patterns. We also empirically show

that the Transformer–based model learns better representations than the popular LSTM net-

work, and that dissimilarity methods outperform more traditional estimation–based anomaly

detection on LOB time series. Furthermore, we quantify the difficulty of detecting pump-

and-dump, layering, and quote stuffing manipulations, a first in the literature. Providing

this kind of analysis is also helpful in determining the comparative strengths and weaknesses

of new trade–based manipulation detectors, in addition to traditional performance metrics.

The proposed framework is a strong alternative to the rule–based systems currently used

by market regulators (Golmohammadi and Zaine [20]) in two ways. First, it learns a general

notion of normalcy, so a single model instance can be utilized for any asset, and to detect any

type of anomalous behavior. Second, it can dynamically adapt to market regimes, whereas

rule–based systems need to be manually adjusted. But, market data drift is an important

aspect to consider when deploying any data–based model (Žliobaitė et al. [58]), because the

past learned notion of normality might slowly depart from future normal market behaviors.

It is primordial to know when to retrain anomaly detection frameworks, and further research

in that sense, in the context of financial markets, is important.

Also, semi-supervised learning techniques for anomaly detection have recently been

proposed in the deep learning literature (e.g., Ruff et al. [48]), where small sets of known

anomalies are used to train the models in conjunction with the unlabeled data, boosting

their detection performance over pure unsupervised methods. It would be worthwhile to

explore and adapt these methods to the trade–based manipulation detection problem, as

only limited collections of frauds are available to researchers. Additionally, semi-supervised

approaches open the door to human-in-the-loop models where they could learn from an

ever-growing pool of detected frauds confirmed by market regulators, constantly raising
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their detection capabilities. Our framework can act as a starting point on which the

semi-supervised methods can be built upon.
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Conclusion

This thesis proposes novel methods able to exploit the vast informational content of limit

order book time series in the context of statistical arbitrage, and anomaly detection.

The first two chapters contribute to the better understanding of high-frequency traders’

arbitrage activities. Chapter 1 explores statistical and mechanical arbitrage mechanisms in

cross-listed assets. Its main contribution lies in the construction of synthetic instruments

possessing desirable statistical properties, namely, stationarity and mean-reversion, from

which theoretical arbitrage bounds can be inferred for cross-listed assets. An original trading

strategy captures price deviations outside these bounds and is empirically demonstrated

to be profitable in North American markets in 2019. Moreover, this chapter introduces a

practical backtesting methodology enabling the study of information latency and its effect on

the profitability of high-frequency trading. This framework is applied to previous strategies

developed for cross-listed assets, showing that ignoring market frictions results in severe losses

and demonstrating their importance for future academic research. Chapter 1 also discusses

how to generalize the arbitrage bounds and strategy to more trading environments. It would

be worthwhile to explore the proposed methodology in multiple-listed assets, and more than

two currencies, as to have a more global understanding of international arbitrage.

Chapter 2 investigates high-frequency lead-lag relationships, and its contribution is

twofold. First, it introduces a novel econometric model specifically designed to exploit the

lead-lag effect between two related assets that is more accurate out-of-sample compared to

previous ones. Second, a new high-frequency trading strategy is devised to capture the ar-

bitrage opportunities detected by the econometric model in European markets in 2013. The



overall contribution of this chapter is in the empirical demonstration that lead-lag relation-

ships are a source of viable arbitrage, even when the market frictions studied in Chapter

1 are introduced. The existence of lead-lag relationships has been shown in most financial

assets, but their economic importance has been questioned for almost a decade. This chap-

ter is the first to formally, and pragmatically, show the potential profitability behind them,

thus unveiling market inefficiencies exploitable by high-frequency traders. The predictive

model focuses on the price dynamics between the leading and lagging assets. It would be

interesting to also integrate their timing dynamics, which could lead to more accurate re-

turn predictions and better risk management for the trading strategy. Another fascinating

research avenue would be to explore lead-lag relationships in the context of market making,

where they could probably be useful for market makers who might better anticipate price

movements on lagging assets.

Finally, Chapter 3 focuses on the applicability of modern deep learning and machine

learning methods in algorithmic trade–based manipulation detection. It contributes to the

financial literature by proposing a novel Transformed–based unsupervised anomaly detection

framework able to learn an asset–independent notion of normalcy, thus capturing any type

of fraud, and more generally, any anomaly, without requiring prior knowledge of fraudulent

patterns or labeled data. Furthermore, the framework integrates a more general set of limit

order book features, hence expanding the types of frauds that can be captured simultaneously

by a single model. A more exhaustive trade–based manipulation simulation approach is also

proposed, rendering the detection results more reliable compared to past studies. It is shown

that the framework achieves the best detection results when compared to previous methods

on simulated fraud scenarios in NASDAQ stocks. Semi-supervised learning, where a small

set of labels is given to a model in conjunction with unlabeled data to increase its detection

capabilities, would be a valuable next step in financial market manipulation detection. It is

possible to adapt the proposed methodology to the semi-supervised paradigm, which then

opens the door to human-in-the-loop models for market regulators.
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