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Résumé

Plusieurs sous-problèmes d’optimisation se posent lors de la planification des transports
publics. Le problème d’itinéraires de véhicule (PIV) est l’un d’entre eux et consiste à mi-
nimiser les coûts opérationnels tout en assignant exactement un autobus par trajet planifié
de sorte que le nombre d’autobus entreposé par dépôt ne dépasse pas la capacité maximale
disponible. Bien que les transports publics soient sujets à plusieurs sources d’incertitude (à
la fois endogènes et exogènes) pouvant engendrer des variations des temps de trajet et de la
consommation d’énergie, le PIV et ses variantes sont la plupart du temps résolus de façon
déterministe pour des raisons de résolubilité. Toutefois, cette hypothèse peut compromettre
le respect de l’horaire établi lorsque les temps des trajets considérés sont fixes (c.-à-d. déter-
ministes) et peut produire des solutions impliquant des politiques de gestion des batteries
inadéquates lorsque la consommation d’énergie est aussi considérée comme fixe. Dans cette
thèse, nous proposons une méthodologie pour mesurer la fiabilité (ou le respect de l’horaire
établi) d’un service de transport public ainsi que des modèles mathématiques stochastiques
et orientés données et des algorithmes de branch-and-price pour deux variantes de ce pro-
blème, à savoir le problème d’itinéraires de véhicule avec dépôts multiples (PIVDM) et le
problème d’itinéraires de véhicule électrique (PIV-E).

Afin d’évaluer la fiabilité, c.-à-d. la tolérance aux délais, de certains itinéraires de véhi-
cule, nous prédisons d’abord la distribution des temps de trajet des autobus. Pour ce faire,
nous comparons plusieurs modèles probabilistes selon leur capacité à prédire correctement la
fonction de densité des temps de trajet des autobus sur le long terme. Ensuite, nous estimons
à l’aide d’une simulation de Monte-Carlo la fiabilité des horaires d’autobus en générant des
temps de trajet aléatoires à chaque itération. Nous intégrons alors le modèle probabiliste le
plus approprié, celui qui est capable de prédire avec précision à la fois la véritable fonction
de densité conditionnelle des temps de trajet et les retards secondaires espérés, dans nos
modèles d’optimisation basés sur les données.

Deuxièmement, nous introduisons un modèle pour PIVDM fiable avec des temps de trajet
stochastiques. Ce problème d’optimisation bi-objectif vise à minimiser les coûts opérationnels
et les pénalités associées aux retards. Un algorithme heuristique basé sur la génération de
colonnes avec des sous-problèmes stochastiques est proposé pour résoudre ce problème. Cet
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algorithme calcule de manière dynamique les retards secondaires espérés à mesure que de
nouvelles colonnes sont générées.

Troisièmement, nous proposons un nouveau programme stochastique à deux étapes avec
recours pour le PIVDM électrique avec des temps de trajet et des consommations d’éner-
gie stochastiques. La politique de recours est conçue pour rétablir la faisabilité énergétique
lorsque les itinéraires de véhicule produits a priori se révèlent non réalisables. Toutefois,
cette flexibilité vient au prix de potentiels retards induits. Une adaptation d’un algorithme
de branch-and-price est développé pour évaluer la pertinence de cette approche pour deux
types d’autobus électriques à batterie disponibles sur le marché.

Enfin, nous présentons un premier modèle stochastique pour le PIV-E avec dégradation
de la batterie. Le modèle sous contrainte en probabilité proposé tient compte de l’incertitude
de la consommation d’énergie, permettant ainsi un contrôle efficace de la dégradation de la
batterie grâce au contrôle effectif de l’état de charge (EdC) moyen et l’écart de EdC. Ce
modèle, combiné à l’algorithme de branch-and-price, sert d’outil pour balancer les coûts
opérationnels et la dégradation de la batterie.

Mots-clés : Apprentissage statistique, géneration de colonnes, optimisation stochastique,
programmation en nombres entiers, problème d’itinéraires de véhicule, transport public
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Abstract

The vehicle scheduling problem (VSP) is one of the sub-problems of public transport plan-
ning. It aims to minimize operational costs while assigning exactly one bus per timetabled
trip and respecting the capacity of each depot. Even thought public transport planning is
subject to various endogenous and exogenous causes of uncertainty, notably affecting travel
time and energy consumption, the VSP and its variants are usually solved deterministically
to address tractability issues. However, considering deterministic travel time in the VSP
can compromise schedule adherence, whereas considering deterministic energy consumption
in the electric VSP (E-VSP) may result in solutions with inadequate battery management.
In this thesis, we propose a methodology for measuring the reliability (or schedule adher-
ence) of public transport, along with stochastic and data-driven mathematical models and
branch-and-price algorithms for two variations of this problem, namely the multi-depot ve-
hicle scheduling problem (MDVSP) and the E-VSP.

To assess the reliability of vehicle schedules in terms of their tolerance to delays, we first
predict the distribution of bus travel times. We compare numerous probabilistic models
for the long-term prediction of bus travel time density. Using a Monte Carlo simulation,
we then estimate the reliability of bus schedules by generating random travel times at each
iteration. Subsequently, we integrate the most suitable probabilistic model, capable of ac-
curately predicting both the true conditional density function of the travel time and the
expected secondary delays, into the data-driven optimization models.

Second, we introduce a model for the reliable MDVSP with stochastic travel time mini-
mizing both the operational costs and penalties associated with delays. To effectively tackle
this problem, we propose a heuristic column generation-based algorithm, which incorporates
stochastic pricing problems. This algorithm dynamically computes the expected secondary
delays as new columns are generated.

Third, we propose a new two-stage stochastic program with recourse for the electric
MDVSP with stochastic travel time and energy consumption. The recourse policy aims
to restore energy feasibility when a priori vehicle schedules are unfeasible, which may lead
to delays. An adapted algorithm based on column generation is developed to assess the
relevance of this approach for two types of commercially available battery electric buses.
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Finally, we present the first stochastic model for the E-VSP with battery degradation.
The proposed chance-constraint model incorporates energy consumption uncertainty, allow-
ing for effective control of battery degradation by regulating the average state-of-charge
(SOC) and SoC deviation in each discharging and charging cycle. This model, in combina-
tion with a tailored branch-and-price algorithm, serves as a tool to strike a balance between
operational costs and battery degradation.

Keywords: Column generation, integer programming, public transport, statistical learn-
ing, stochastic programming, vehicle scheduling problem
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Chapter 1

Introduction

“Essentially, all models are wrong, but some are useful.”
- George Box

Public transport planning is complex and subject to various endogenous and exogenous
causes of uncertainty. This thesis proposes efficient data-driven methods to consider the
inherent stochasticity in these problems and help filling part of the gap between simplified
mathematical modeling of public transit systems and the multifaceted reality. Our end goal
is to build useful models to find operational plans and schedules that are more desirable (i.e.,
optimal) in real-world settings.

In this section, we first present the crucial role that public transport and its electrifi-
cation could and should play in the shift from our car-centric cities to greener and more
equitable ones. Then, we give an overview of the principal sub-problems of the public trans-
port planning process and lay out several frameworks used in the literature to deal with
uncertainties in these types of problems. Subsequently, we describe the research objectives
and contributions of the main chapters before concluding with an overview of the thesis
content.

1.1. Motivation
Movement and mobility are integral to the human condition, shaping our societies and

economies. Throughout history, the movement of people through immigration has played
a pivotal role in this respect, from the earliest waves of globalization marked by coloniza-
tion and the exploitation of exotic resources (Cox, 2013). In today’s globalized epoch, the
movement of people and goods has reached unprecedented levels. This surge in travel has
significantly exacerbated the climate crisis we face today. Indeed, most of these travels heav-
ily rely on motorized modes of transportation, including private cars, public transportation,
and airplanes, which collectively contribute to a large share of the greenhouse gases (GHGs)



emitted globally. In Canada, the transport of people accounted for 12% of the nation’s total
emissions in 2020, with an overwhelming 92% of these emissions stemming from passenger
cars and light trucks (Environment and Climate Change Canada, 2022). Indeed, automobiles
have one of the largest ratio of GHGs per passenger kilometer among all modes of transporta-
tion and are the most widespread mean of transport in Western countries. This behavioral
pattern, commonly referred to as the automobile dependence, is exacerbated by what John
Adams 1 has called ‘hypermobility’. In this vicious circle, the construction of new routes does
not lead to a decrease in traffic congestion but rather to more urban sprawl, longer trips,
and more energy consumption. Besides its impact on climate change, automobile dependence
also negatively impacts human health (e.g., road accidents, asthma, and other pulmonary
illnesses) and living conditions (e.g., noise and visual pollution and severance of communi-
ties). These consequences have, in general, a more significant impact on certain groups in
our society, such as children, black people, older people, and people with disabilities, even
though these groups generally have less access to cars for their daily travel needs (Ducan,
2011; Gössling, 2016). Therefore, car-centric transport systems are inequitable systems that
benefit a few but place a heavy economic, social, health, and environmental burden on the
community.

From a collective point of view, it is therefore desirable to promote sustainable mobility,
which is commonly defined as the combination of active means of transport (e.g., walking,
biking, trolleys, wheelchairs, etc.) and public transportation (e.g., buses, subways, trains,
shared taxis, etc.). A widely accepted approach to structuring and fostering the transi-
tion from car-centric to greener and more equitable cities is the Avoid-Shift-Improve (A-S-I)
framework. Figure 1.1 schematizes the levels of the A-S-I framework and provides examples
of measures that can be taken at each level. The first level is to avoid or reduce the need
to travel by increasing the density of existing neighborhoods, working towards degrowth
policies, or managing travel demand through telecommuting or parking pricing strategies.
Once as much travel is avoided, the second level consists of measures to promote the shift
of the remaining trips to energy-efficient modes (i.e., active transport and transit). This
shift can be achieved primarily through infrastructure development, improving the quality
of public transit services, new integrated mobility services, and various economic and regu-
latory incentives. The last level consists in improving the energy efficiency of the remaining
motorized travel (public and individual) through fuel improvements, among others.

This thesis focuses on integrating specific measures from the A-S-I framework into public
transport optimization problems, encompassing network design, frequency setting, as well
as vehicle and crew scheduling. Specifically, we investigate how bus service quality can be
factored into the planning stage and how to improve battery management of battery electric

1. John Adams is an emeritus Professor of Geography at the University College London and a specialist
in risk compensation.
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Avoid or reduce need to travel
— Compact urban planning
— Demand management

Shift
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Improve energy efficiency
— Fuel economy
— Electrification

Figure 1.1 – The Avoid-Shift-Improve framework

buses (BEBs) - two measures that fall under the shift and the improve levels of the A-S-I
framework, respectively.

First, the travel mode choice of individuals is highly impacted by the perceived quality of
transit service, characterized by several attributes such as the level of information provided
to the passengers, comfort, accessibility, and timeliness. Under identical road and public
transport network infrastructure, an individual’s preference for public transport over private
car usage can be influenced, for example, by the consistency of travel time in public trans-
port or the availability of sufficient seating capacity on trains, enabling the individual to
comfortably engage in activities such as reading the daily newsletter. Enhancing the quality
of public transport services is crucial in facilitating a modal shift from private car usage to
public transport, as it plays a pivotal role in influencing individuals’ travel mode choices (see
e.g., Vij et al., 2017).

Second, many regions worldwide have implemented zero-emission zones within city cen-
ters to reduce local air pollution, compelling public agencies to convert their fleets to BEBs.
By 2025, it is estimated that 47% of worldwide public buses will be electric (Abdelaty et al.,
2021). However, while BEBs contribute to reducing local air pollution in the Global North,
the production of batteries, the extraction of their raw materials, and their disposal pose
significant environmental and social challenges. These processes contribute to pollution, de-
struction of natural habitats, and exploitation of populations in the Global South (Amnesty
international, 2016; Weigl, 2021). In light of the global inequalities associated with electric
batteries, it becomes clear that battery management should be addressed rationally within
sustainable mobility.
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We detail the main public transport planning optimization problems in what follows and
highlight the adverse consequences of oversimplifying assumptions in one of these problems:
vehicle scheduling. In particular, these simplifications compromise the quality of public
transport services and hinder the implementation of effective battery management policies.

1.2. Background
The overall problem in transit planning involves determining how to provide passengers

with the highest level of service while respecting budgetary restrictions. We define public
transport’s service level as both the transport service’s availability (e.g., spatial, temporal,
and capacity availability) and the quality (e.g., safety, reliability, average travel time, and
comfort). This problem is excessively complex to solve as a whole and, instead, is usually
divided into sub-problems that are solved sequentially or in a (partially) integrated man-
ner. These problems arise during the strategic, tactical, or operational planning phases or
operations (real-time control strategies) (Desaulniers et al., 2005). Figure 1.2 illustrates the
public transport planning process and some sub-problems’ interactions. At the strategic
planning level, bus routes and networks are designed to meet passenger demand. The tacti-
cal planning level concerns the frequency setting of bus routes and the formalization of the
timetables. The strategic and tactical sub-problems rely heavily on passenger route choice
models to determine the demand on each route for a given network and bus route frequen-
cies. The operational planning step involves scheduling vehicles and crews at minimum cost
while respecting trip schedules, workforce and vehicle capacity at each depot, and local work
regulations. The construction of crew schedules is commonly divided into two problems:
duty scheduling and rostering, which involves establishing anonymous driver workdays and
personalized driver schedules that are valid for several weeks, respectively. If the solution to
the vehicle scheduling problem is too costly, a modified version of the frequency setting and
the timetabling problems with a reduced minimum service level is solved again. Similarly,
suppose the solution to the crew scheduling problem exceeds budgetary restrictions. In that
case, the vehicle scheduling problem is solved again to find an alternative solution with more
useful relief points, i.e., points along a vehicle block where driver exchange can occur. In
some cases, when no alternative vehicle schedule can reduce the cost of the crew scheduling
problem, backtracking to the frequency setting and timetabling problems becomes inevitable.
Finally, making certain adjustments to the operational plan may be necessary during its ex-
ecution. One of the most studied control strategies is vehicle holding. This strategy consists
of holding buses at specific stops to improve on-time performance at subsequent stops.

This thesis addresses two variants of the vehicle scheduling problem (VSP), namely the
multi-depot vehicle scheduling problem (MDVSP) and the electric vehicle scheduling problem
(E-VSP). In the MDVSP, the number of depots is greater or equal to two, and each depot

4



Network design
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and timetabling

Vehicle scheduling

Crew scheduling

Real-time control

Figure 1.2 – Public transport planning sub-problems

is limited in capacity. The E-VSP considers the specific operational constraints associated
with BEBs, particularly the limited driving range and longer refueling time. The MDVSP
and the E-VSP has been proven to be NP-hard (Bertossi et al., 1987; Sassi and Oulamara,
2017).

Usually, the MDVSP and E-VSP assume deterministic travel time and energy consump-
tion, which has two main consequences. On the one hand, considering travel time as de-
terministic may compromise schedule adherence, as travel times inevitably deviate from the
planned duration (Kramkowski et al., 2009; Amberg et al., 2019). On the other hand, E-VSP
with deterministic energy consumption may lead to solutions with sub-optimal true costs (in-
cluding recourse costs and the cost of ownership of BEBs). First, to ensure the BEBs do
not run out of energy, it is customary to incorporate a safety threshold for battery level
when solving the deterministic version of the E-VSP. A large safety threshold can lead to the
use of unnecessary buses, while a small safety threshold may lead to many costly recourse
actions. Second, considering deterministic energy consumption in the E-VSP may result in
underestimating the battery wear cost. This discrepancy arises due to the accelerated aging
of lithium-ion batteries, which are commonly used in modern BEBs (Pelletier et al., 2016;
Zhang et al., 2021), caused by significant variations in the state of charge (SoC) (Lam and
Bauer, 2012). Typically, batteries are replaced when their remaining capacity reaches ap-
proximately 70-80% of the original capacity (Zhang et al., 2021). However, this replacement
incurs substantial maintenance expenses since battery cost constitutes a significant portion
of the total cost of a new BEB. Therefore, effective control of battery aging becomes crucial
to ensure a reasonable cost of ownership over the long term.
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Several interrelated frameworks are proposed in the literature to deal with uncertainty
in mixed integer linear programs (MILPs), such as stochastic travel time and energy con-
sumption in the MDVSP and the E-VSP. Here, we focus on frameworks that have been used
in transport planning: (1) stochastic programming (see, e.g., Naumann et al., 2011; Shen
et al., 2016), (2) robust optimization (see, e.g., Bie et al., 2021; Jiang et al., 2021), (3) chance-
constrained programming (see, e.g., Bie et al., 2021), (4) simulation-based optimization (see,
e.g., Osorio and Bierlaire, 2013), and (5) dynamic programming (see, e.g., He et al., 2018).
A short review of these frameworks is conducted next to establish a clear foundation for
the directions pursued in this thesis. We refer interested readers to the Chapter 2 of Powell
(2022) for a comprehensive discussion on these frameworks and their similarities.
Stochastic programming. Stochastic programming is a collection of optimization methods
dealing with a random objective function and potentially random constraints, where the
random information follows a known distribution. This framework can deal with single-stage
and multistage problems, i.e., sequential decision-making problems where information is
revealed incrementally. Single-stage problems can usually be addressed with slightly modified
deterministic approaches (Hannah, 2015). On the other hand, multistage problems have a
structure of their own, leading us to focus on one of the most studied multistage stochastic
programs in the literature, namely 2-stage problems. For more details on single-stage and
multistage problems, we suggest readers refer to Hannah (2015).

A standard form of a 2-stage MILP is

min
x∈X

cTx+ E[Q(x,ω)] (1.2.1)

s.t. Ax ≥ b (1.2.2)

xi ∈ Z, ∀i ∈ I1 (1.2.3)

where

Q(x,ω) := min
y∈Y(ω)

fTy (1.2.4)

s.t. Dy = e− Tx (1.2.5)

yi ∈ Z, ∀i ∈ I2. (1.2.6)

In the previous program, the variables x and y represent the first- and second-stage
decisions, respectively. Also, I1 and I2 are index sets of the variables required to be integer.
The random information ω (here parameters (f , e,T ) are the actual realization of ω) is
revealed after the first stage decision and before making the second stage decision.
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The stochastic programming community typically represents all potential random infor-
mation outcomes through a scenario set Ω (Powell, 2022), where each outcome ω is assigned
a corresponding probability p(ω). By adopting this terminology, the MILP (1.2.1) - (1.2.6)
can be expressed in terms of the scenario set as follows:

min
x∈X

cTx+
∑
ω∈Ω

p(ω) min
y∈Y(ω)

fTy. (1.2.7)

Robust optimization. In some cases, it is not possible or practical (for computational rea-
sons) to consider the whole probability distributions of the random information in a MILP.
Sometimes, one primarily wants to ensure that a MILP solution works in the worst case
scenario. Robust optimization is of interest in these situations. This framework captures
random parameters by incorporating minimal information about their nature into uncer-
tainty sets. Designing uncertainty sets that are meaningful and relevant poses a significant
challenge and remains a key focus of research in the field of robust optimization. Some of
the most common uncertainty sets in the literature are the box, the polyhedral, and the
ellipsoidal uncertainty sets. We refer readers interested in this field of research to Ben-Tal
et al. (2009).

A standard form of a robust optimization problem is

min
x∈X

cTx (1.2.8)

s.t. aTi x = bi, ∀ai ∈ Uai ,∀bi ∈ Ubi , i = 1, . . . ,m (1.2.9)

xi ∈ Z, ∀i ∈ I, (1.2.10)

where Uai and Ubi are uncertainty sets and I is an index set of the variables required to be
integer.
Chance-constrained programming. This mathematical approach models problems in-
volving one or several probabilistic constraints. A standard form of such a problem is

min
x∈X

cTx (1.2.11)

s.t. P[Ax ≤ b] ≥ 1− ϵ (1.2.12)

xi ∈ Z, ∀i ∈ I. (1.2.13)

In some cases, it is possible to assume that there is no correlation between the rows of
matrix A and then the decomposition of constraint (1.2.12) into m constraints is given by

P[aTi x ≤ bi] ≥ 1− ϵ, i = 1, . . . ,m. (1.2.14)
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This latter formulation is called joint chance-constraint, whereas (1.2.11) - (1.2.13) is
called individual chance-constraint.
Simulation-based optimization. This framework regroups techniques where a stochastic
simulation, e.g., a Monte Carlo simulation, is optimized to find good decisions or strategies.
These decisions or strategies are the input of the stochastic simulation, and one wants to
find appropriate input such that the output of the stochastic simulation minimizes some
objective function. Stochastic optimization is particularly relevant to problems where the
distribution of random information is unknown or too complex to be taken into account in a
stochastic optimization framework. There exists a wide range of stochastic simulations; some
are expressed in algebraic form and others are black box input-output models, some have de-
terministic and others stochastic outputs (Amaran et al., 2016). Each type of simulation can
be addressed by classes of simulation optimization algorithms such as direct-search methods
(Kolda et al., 2003), stochastic gradient methods (Robbins and Monro, 1951; Kiefer and
Wolfowitz, 1952), and response surface methodology or metamodel methods (Søndergaard,
2003; Barton and Meckesheimer, 2006).
Dynamic programming. Finally, dynamic programming approaches can be used to solve
dynamic and stochastic problems. The input of these problems is partially or all uncertain,
but some stochastic knowledge on the uncertain parameters can be exploited. Information is
revealed along the way and the problem’s solution can be adjusted online (Pillac et al., 2013).
The dynamic dial-a-ride problem is an excellent example of a problem where demand, here
customer requests, is revealed dynamically (see e.g., Bongiovanni et al., 2022). Unfortunately,
this approach suffers from the curse of dimensionality, i.e., the state space grows rapidly with
the problem size. Therefore, approximate dynamic programming approaches, e.g., scenario-
based approaches or metaheuristics, are usually employed to address real-world cases.

1.3. Objectives and contributions
Public transport planning involves several challenging MILPs that are typically hard to

solve. Simplifying assumptions are frequently employed in solving these complex problems
to address tractability issues. Examples of such assumptions include treating all parameters
as deterministic or assuming fixed demand. However, by doing so, even optimal solutions
to these simplified problems can turn out to be sub-optimal with respect to the real world.
Some assumptions are more erroneous than others, leading to solutions that further deviate
from the absolute optimal solution. This thesis aims to identify some of the most erroneous
assumptions and propose methods to overcome them.

The overall objective of this thesis is to leverage the power of decomposition methods,
specifically column generation, and readily available APTS (Advanced Public Transporta-
tion Systems) data to relax commonly made erroneous deterministic assumptions in public
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transport planning problems. We focus on the (electric) VSP, one of the most studied pub-
lic transport planning sub-problems, and investigate the impact of relaxing two common
assumptions in this planning problem: deterministic travel time and energy consumption.

In the first step, we consider the MDVSP with stochastic travel time, aiming to improve
the reliability of selected vehicle schedules. In the second step, we address the E-VSP with
stochastic energy consumption to enhance battery management. Reliable bus service and
efficient battery management are vital for attracting and retaining public transport rider-
ship, reducing the cost of electric bus ownership, and promoting a rational use of batteries.
Subsequently, we outline the research objectives and contributions of these two steps.
MDVSP with stochastic travel time for more reliable service.

In order to improve the reliability (or delay-tolerance) of their service, transport agencies
and authorities need decision-support tools to (1) measure service reliability with meaningful
indicators, (2) predict the effect of their decisions on these indicators, (3) optimize over a
large number of possible decisions service reliability indicators. The first two works presented
in this thesis aim at providing such a toolkit; chapter 3 focuses on tasks (1) and (2) and
chapter 4 on task (3).

Our first work (see Chapter 3) aims at finding good approximations of the conditional
probability distribution of bus travel time. Schedulers can then use this information to
measure and predict the reliability of a vehicle schedule. We compare probabilistic models
for the long-term prediction of the probability density functions (PDFs) of the travel time
of bus trips. A dataset of more than 41,000 trips collected over a 2-month period on board
of buses from the city of Montréal is used to train and test these models. Our objective
is to find the model that generates the most accurate estimations of both the PDFs of the
travel time and the expected secondary delays. A Monte Carlo simulation is provided to
translate travel time PDFs predictions into expected secondary delay predictions. The best
probabilistic model over our dataset is used to build data-driven mathematical programs in
our second and third contributions.

Our second contribution (see Chapter 4) presents a data-driven approach to the MDVSP
considering travel time uncertainty. We use the PDFs of bus travel time, derived from the
work in Chapter 3, to optimize over many possible vehicle schedules. The objective is to
select schedules that exhibit cost efficiency and demonstrate tolerance towards potential
delays. We introduce a stochastic integer program for the reliable MDVSP with stochastic
travel time (R-MDVSP-STT). The expected cost of the R-MDVSP-STT is a weighted sum of
the operational costs and a penalty for delays. Furthermore, we propose a tailored heuristic
branch-and-price algorithm. The column generation algorithm produces new variables (i.e.,
columns) as needed by solving stochastic pricing problems. Three reliability metrics to
evaluate the solutions of the R-MDVSP-STT are defined, namely the expected secondary
delay per passenger, the probability that a passenger boards a delayed timetabled trip, and
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the average number of timetabled trips needed to recover from secondary delays, and a
Monte Carlo simulation is provided to approximate these metrics. We carry out numerical
experiments on three real-life instances with up to 2,195 trips and 2-3 depots from the city
of Montréal.
E-VSP with stochastic energy consumption for better battery management.

The electrification of public transit fleets raises questions about battery management and,
more specifically, how to model energy feasibility constraints in a way that maximizes the
utilization of BEBs. In an attempt to partially answer these questions, our third work (see
Chapter 5) presents a two-stage stochastic model with recourse for the multiple depot electric
vehicle scheduling problem (MDEVSP) with stochastic travel time and energy consumption.
Vehicles can be partially recharged, and we consider a non-linear charging function. Our
model takes advantage of the full information on the current SoC available in operation
by extending planned charge time when energy consumption deviations are observed. We
propose a column generation-based heuristic featuring stochastic pricing problems to solve
a real-life instance from the city of Montréal, Canada. An analysis of the relevance of our
approach for different commercially available BEBs is also provided.

Our fourth contribution (see Chapter 6) addresses the tradeoff between operational costs
and battery degradation in the E-VSP. To that end, we introduce a novel chance-constraint
model for the E-VSP with battery degradation and stochastic energy consumption. This
model controls factors that accelerate battery aging, namely high average SoC and SoC de-
viation, in two ways. First, a parameter called the maximum allowed accumulated energy
consumption (AEC) controls both the average SoC and SoC deviation. Specifically, this pa-
rameter acts as the chargers’ cutoff SoC (i.e., the threshold at which chargers stop transferring
energy to batteries). SoC deviation is further reduced by the proposed chance constraint,
which limits the probability of overusing the battery (i.e., reaching an AEC greater than or
equal to a given maximum recommended AEC). Our model also considers nonlinear charging
profiles, partial en-route charging, and charging stations with limited capacity. Computa-
tional experiments of our branch-and-price algorithm are carried out on randomly generated
instances. We compare the tradeoff between operational costs and battery degradation of
the solutions obtained by our approach to those of a baseline deterministic approach.

1.4. Thesis outline
The remainder of this document is organized as follows. Chapter 2 reviews the literature

on statistical learning for probabilistic predictions, the deterministic (electric) VSP, the
(electric) VSP under uncertainties, and the electric VSP with battery degradation. Chapters
3, 4, 5, and 6 form the main body of this thesis. In Chapter 3, statistical learning approaches
are explored to predict bus travel time uncertainty based on real-world historical data. A
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data-driven stochastic programming framework for the MDVSP with stochastic travel time
is then provided in Chapter 4. Chapter 5 introduces a two-stage stochastic program with
recourse for the MDEVSP with stochastic travel time and energy consumption. A chance-
constraint model for the E-VSP with battery degradation and stochastic energy consumption
is presented in Chapter 6. Finally, we discuss the contribution of this thesis from a unified
perspective and provide some conclusions in Chapter 7.2.
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Chapter 2

Related works

The VSP and its variants have been studied extensively in the literature over the past
decades, and several surveys have been proposed, particularly those of Desaulniers and Hick-
man (2007) and Bunte and Kliewer (2010). This section reviews the main models and solution
approaches for this optimization problem. Moreover, since we study in this thesis the VSP
from a data-driven and a stochastic perspective, we also include a discussion on statistical
learning approaches and the VSP under uncertainties. Indeed, data-driven approaches rely
on data analysis and, in our case, statistical learning.

The remainder of this section is organized as follows. In section 2.1, we provide some
background on machine learning from a probabilistic point of view and review probabilistic
models proposed in the literature. The VSP’s main modeling approaches and algorithms
are introduced in section 2.2, before going through works on the VSP under uncertainties
in section 2.3. Section 2.4 presents how the models and algorithms for the VSP have been
adapted to the E-VSP. Finally, contributions for the E-VSP under uncertainties and the
E-VSP with battery degradation are reviewed in sections 2.5 and 2.6, respectively.

2.1. Statistical learning for probabilistic predictions
Machine learning models are usually grouped into three main categories: supervised (or

predictive), unsupervised (or descriptive), and reinforcement learning. Supervised learning
aims at modeling the mapping between an input vector x and an output y given a train-
ing set B = {(xi,yi)}Ni=1 of N points. In contrast, unsupervised learning aims at learning
patterns given a dataset B = {xi}Ni=1 without labeled outputs. Examples of some common
unsupervised learning tasks are density estimation, clustering, and dimensionality reduction.
Supervised learning is the most common type of machine learning in practice (Murphy, 2012)
and takes two forms: classification and regression. Classification is a predictive task where
the output or response variable yi is categorical, i.e., yi ∈ {1, . . . ,C}, where C is the number



of classes. When the output is real-valued, the prediction is referred to as regression. Rein-
forcement learning is a third and distinct machine learning type that is rooted in dynamic
programming methods. In short, reinforcement learning algorithms learn how to behave
in a system by receiving rewards or punishments for each action. This section focuses on
regression, but we refer interested readers to the textbook of Murphy (2012) on supervised
and unsupervised learning from a probabilistic perspective and the textbook of Sutton and
Barto (2018) on reinforcement learning.

Let zi = (xi, yi) for i = 1, . . . ,N be independent and identically distributed draws with
an unknown distribution p(Z). The standard learning framework consists in (1) defining a
family F of functions, often a parametric one, (2) choosing a method to evaluate the quality
of each function f ∈ F , i.e., a loss function, and (3) optimizing over all functions considered
the loss. Examples of loss functions are the classification error L(f(x),y) = If(x)̸=y, for
classification tasks, and the quadratic error L(f(x),y) = (f(x) − y)2, for regression tasks.
Ideally, one would like to find a function f̂ that minimizes the expected risk E[L(f(x),y)].
However, because P (Z) is unknown, the empirical risk R̂ is instead minimized; i.e.,

f̂(B) = arg min
f∈F

R̂(f ,B) (2.1.1)

= arg min
f∈F

1
|B|

∑
(xi,yi)∈B

L(f(xi),yi). (2.1.2)

Different models are to be compared based on their generalization error, i.e., the expected
loss averaged over unseen or future data. To avoid biased generalization error estimation,
one must split the available dataset into a training set for parameters selection, a validation
set for hyper-parameters selection, and a test set for the final evaluation of the models. The
model f̂ selected is the one that minimizes the empirical risk R̂ over the test set.

Supervised learning can also be thought of in a probabilistic manner as a method for
finding the most probable output ŷ given an input x, by using

ŷ = f̂(x) = arg max
f∈F

p(y|x,F ,B). (2.1.3)

Yet, if most supervised learning models can be interpreted in a probabilistic way, the
focus through the loss function is usually put on outputting the best conditional expectation
of the response variable, E(y|x). Other aspects of the conditional distribution functions, such
as the skewness, quantiles of interest, and variance, must be deliberately optimized. Indeed,
in some cases, the expected value is only one of the most important aspects for a decision-
maker. In meteorology, for example, a decision-maker may prefer to know the probability of
rain versus no rain rather than the expected precipitation. In what follows, we review recent
works on various applications that have proposed models specifically designed to capture
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all aspects of the distribution and output conditional probability density functions (PDFs).
Performing distributional regression with non-Gaussian and heteroscedastic variables is a
non-trivial task, although it is common in many applications. For example, the conditional
probability distribution of bus travel time is typically skewed to the right and its variance
varies between peak and off-peak periods. The works of Carney et al. (2005), Rigby and
Stasinopoulos (2005), Schlosser et al. (2019), Duan et al. (2020), and Dutordoir et al. (2018)
all propose approaches for addressing these challenges.

Carney et al. (2005) used an ensemble of mixture density networks (MDNs) to predict
the conditional PDF of surf height. MDNs are a type of mixture of experts (Jordan and
Jacobs, 1993), i.e., an ensemble of submodels (or "experts"), each specialized in a region of
the input space where each expert and the gating function, deciding which expert to use for
each input, are neural networks. The response variable of MDNs is represented by Gaussian
mixture models (GMMs), which can model probability distributions of various shapes and
natures. Several MDNs are combined in Carney et al. (2005) using an ensemble approach
to increase the stability of a single MDN. Two ensemble approaches are compared, namely
bagging (Breiman, 1996) and boosting (Freund and Schapire, 1996). It was found that
boosting provided slightly better results over the authors’ datasets.

Generalized additive models for location, scale, and shape (GAMLSS, Rigby and
Stasinopoulos, 2005) are an extension of generalized linear models (Nelder and Wedderburn,
1972) and generalized additive models (Hastie and Tibshirani, 1986), where each parameter
of a probability distribution, namely the location, the scale, and the shape, are smooth
linear or nonlinear functions of the input vector. The heteroscedasticity is modeled by
allowing each observation to have a specific set of distributional parameters.

Schlosser et al. (2019) proposed a framework for distributional regression forests, combin-
ing tree-based methods (i.e., regression tree and random forest) and parametric distributional
models. Unlike GAMLSS, distributional regression forest models can map smooth and non-
smooth relationships between the input vector and the output and handle variable selection
and complex interactions. The numerical results show that the distributional regression for-
est performs equivalent to or better than GAMLSS without requiring prior meteorological
knowledge for variable selection.

Recently, Duan et al. (2020) introduced the natural gradient boosting (NGBoost) al-
gorithm, a supervised learning method using boosting to predict probability distributions
conditional on covariates. Their method assumes that each conditional probability distri-
bution follows a specific parametric form with two or more degrees of freedom and simulta-
neously boosts multiple parameters from the base learners. This multiparameter boosting
approach introduces poor training dynamics corrected by a generalized natural gradient de-
scent approach. NGBoost has performed comparably on many datasets to state-of-the-art
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probabilistic regression models, but it is considered more flexible, scalable, and easier to use
than the latter.

All previous works propose frequentist models (Koller and Friedman, 2009). However,
one should not forget that Bayesian methods are probabilistic in nature and can therefore
also be used to predict conditional PDFs. Gaussian processes (GPs) are a non-parametric
Bayesian method where a prior over functions is first defined before computing a posterior
over functions once data is revealed. The function’s values at a finite and random set of
points are interpreted as a multivariate Gaussian with each element of the covariance matrix
given by a positively defined kernel function (Rasmussen and Williams, 2005; Murphy, 2012).
Recently, Dutordoir et al. (2018) introduced a GP-based model with an input augmented
with latent variables that can estimate non-Gaussian conditional densities.

2.2. Vehicle scheduling problem
Vehicle scheduling is a crucial step in the service planning of public transportation and

it has been studied intensively in the last decades. Once the timetables of trips are fixed
for a given period (typically one season), transit agencies have to assign buses and drivers
to each of these trips. One timetable for all weekdays and two timetables for Saturdays and
Sundays are generally provided, thus three VSPs are usually solved every period.

The VSP can be formalized as follows. Given a set of n timetabled trips V = {1, 2, . . . ,n},
the start time d0

i and the end time d1
i for each trip i ∈ V , the deadhead travel time κij between

the end of trip i and the beginning of trip j for every pair of trips i and j ∈ V , a set of depots
D, and the capacity (number of buses available) bd of each depot d ∈ D, assign exactly one
bus to each timetabled trip while minimizing the total cost and respecting vehicle availability.
The total cost is typically composed of a cost for the acquisition of the buses and operational
costs (per distance traveled and/or time spent outside the depot). For small- to medium-
scale transit agencies with only one depot, this problem corresponds to the single-depot
vehicle scheduling problem (SDVSP). Whereas for medium- to large-scale transit agencies
with two or more depots, this problem corresponds to the MDVSP.

A vehicle schedule s is a sequence of trips planned over the horizon of one day. The first
trip of a vehicle schedule is called a pull-out trip and corresponds to a trip from a depot
d ∈ D to the start location of the first timetabled trip of the schedule, whereas the last trip
is called a pull-in trip and corresponds to a trip from the last timetabled trip of the schedule
to a depot d ∈ D. A common constraint is to consider that a vehicle schedule is feasible
if the pull-out and the pull-in trips are associated to the same depot (i.e., if it starts and
ends the day at the same depot). In between the pull-out and the pull-in trips, the vehicle
performs connections between pairs of trips. The connection of two consecutive trips i and
j ∈ s is possible if d0

j ≥ d1
i + κij + τ , where τ is the minimum layover time between two
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trips (to account for the break time for drivers, among other things). We denote by S and
Sd ⊂ S the set of all feasible vehicle schedules and the set of all feasible vehicle schedules
starting and ending at a depot d, respectively.

This section is organized as follows. The main models for the SDVSP and the MDVSP
and some extensions are introduced in Section 2.2.1. Exact and heuristic solution approaches
are reviewed in Section 2.2.2.

2.2.1. Models

The SDVSP can be modeled as a minimal decomposition problem, an assignment prob-
lem, a transport problem, or a network flow problem. In this section, the latter model
is presented as it is the basis for two common models for the MDVSP, namely the multi-
commodity (connection-based and time-space networks) and the set partitioning models.
The single commodity models with subtour breaking constraints and assignment variables
can also be used for the MDVSP, but they are not presented in this thesis as they provide
weaker linear programming bounds than their counterparts (Mesquita and Paixão, 1999;
Ribeiro and Soumis, 1994). At the end of this section, some extensions of these models
are listed. For a complete overview on models for the SDVSP and the MDVSP, we refer
interested readers to the survey of Bunte and Kliewer (2010).
Network flow model. This model, first presented in Raff (1983), is defined on networks
where each trip i ∈ V is represented by a node and the depot is represented by nodes nd0 and
nd1 for the beginning and the end of the day, respectively. Pull-out and pull-in arcs connect nd0
to all trips i ∈ V and all trips i ∈ V to nd1, respectively. Furthermore, all compatible trips are
connected. An example of this so-called connection-based network G = (V ∪{nd0}∪{nd1},A)
with node set V ∪ {nd0} ∪ {nd1} and arc set A is illustrated in Figure 2.1a. This network is
acyclic because of the compatibility requirements imposed on the arcs.

The network flow model uses the following additional notation. Let Xij and cij be the
flow and the cost of arc (i,j) ∈ A, respectively. It can be formulated as the following integer
program:

min
∑

(i,j)∈A
cijXij (2.2.1)

s.t.
∑

i:(i,j)∈A
Xij = 1, ∀j ∈ V (2.2.2)

∑
i:(i,j)∈A

Xij −
∑

i:(j,i)∈A
Xji = 0, ∀j ∈ V ∪ {nd0,nd1} (2.2.3)

Xij ∈ {0,1}, ∀(i,j) ∈ A. (2.2.4)
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The objective function (2.2.1) minimizes the total cost, while constraints (2.2.2) ensure
that every timetabled trip is included in the solution. Constraints (2.2.3) and (2.2.4) ensure
flow conservation and binary flow values, respectively. An additional constraint can be added
to (2.2.1) - (2.2.4) to limit vehicle capacity at the depot

∑
j∈V

Xnd0j
≤ b, (2.2.5)

where b is the number of buses available at the depot. If we consider nodes as transshipment
nodes, then the problem can be seen as finding the minimum cost flow in G.
Multi-commodity model. This model is a generalization of the network flow model with
more than one depot, where one connection-based network Gd is built per depot d ∈ D. As
proposed by Ribeiro and Soumis (1994) and Raff (1983), it can be expressed as the following
integer program:

min
∑
d∈D

∑
(i,j)∈Ad

cijX
d
ij (2.2.6)

s.t.
∑
d∈D

∑
i:(i,j)∈Ad

Xd
ij = 1, ∀j ∈ V (2.2.7)

∑
i:(i,j)∈Ad

Xd
ij −

∑
i:(j,i)∈Ad

Xd
ji = 0, ∀d ∈ D, j ∈ V ∪ {nd0,nd1} (2.2.8)

∑
j∈V

Xd
nd0j
≤ bd, ∀d ∈ D (2.2.9)

Xd
ij ∈ {0,1}, ∀d ∈ D, (i,j) ∈ Ad, (2.2.10)

where Ad is the arc set of Gd and Xd
ij are binary variables of the flow on arc (i,j) ∈ A in

network Gd (either 0 or 1).
The objective function (2.2.6) and constraints (2.2.7), (2.2.8), (2.2.9), and (2.2.10) are

generalizations of the objective function (2.2.1) and the equations (2.2.2), (2.2.3), (2.2.4),
and (2.2.5), respectively.

The main drawback of using this model with connection-based networks is that the num-
ber of arcs of the model grows quadratically with the number of timetabled trips (Bunte
and Kliewer, 2010). To reduce the number of arcs, Kliewer et al. (2006) introduced a multi-
commodity model based on time-space networks. In this type of network, potential compat-
ible deadhead trips are aggregated using a two-stage aggregation procedure and the number
of arcs is further reduced by replacing several arcs starting or ending at the same location
(either a terminus or a depot) by waiting arcs. An example of this this network is shown in
Figure 2.1b.
Set partitioning model. Ribeiro and Soumis (1994) reformulated the multi-commodity
model as a set partitioning problem, where each feasible vehicle schedule is a variable and
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(a) Connection-based network

depot d

station A

station B

station C

station D

time

trip 1

trip 2

trip 3

trip 4

waiting arcs
deadhead arcs
pull-in/out
trip arcs

(b) Time-space network

Figure 2.1 – Comparison of (a) connection-based and (b) time-space networks for an ex-
ample with |V| = 4

the number of constraints is small. Let ys be a binary variable equal to 1 if vehicle schedule
s is selected and ais be a binary parameter equal to 1 if vehicle schedule s covers trip i ∈ V .
The MDVSP can be expressed as this set partitioning problem

min
∑
s∈S

csys (2.2.11)

s.t.
∑
s∈S

aisys = 1, ∀i ∈ V (2.2.12)
∑
s∈Sd

ys ≤ bd, ∀d ∈ D (2.2.13)

ys ∈ {0,1}, ∀s ∈ S, (2.2.14)
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where cs is the cost of vehicle schedule s.
This formulation typically contains a large number of variables (i.e., vehicle schedules)

and it is therefore not computationally efficient to enumerate all possible vehicle schedules.
Instead, useful vehicle schedules can be generated by a column generation-based algorithm
(see section 2.2.2 for an overview on column generation algorithms introduced for the MD-
VSP).

The set partitioning model is often preferred to the multi-commodity model (with
connection-based or time-space network) because it is more easily adaptable. Indeed, the
definition of a feasible vehicle schedule can easily be modified to include path constraints,
e.g., related to fuel or electricity consumption. These modifications are then only reflected
in the pricing problems of (2.2.11) - (2.2.14), i.e., the problems solved at each iteration of
the column generation algorithm to generate new vehicle schedules.
Extensions. There is a wide range of MDVSP extensions including, among others, the
MDVSP with multiple vehicle types, with trip shifting, with trip-depot compatibility con-
straints, and with departure-duration restrictions. We refer interested readers to (Bunte and
Kliewer, 2010; Desaulniers and Hickman, 2007)

2.2.2. Algorithms

While there are polynomial time algorithms for solving the SDVSP, the MDVSP (i.e.,
when |D| ≥ 2) has been proven to be NP-hard (Bertossi et al., 1987). It is therefore
interesting to review in this section exact and heuristic algorithms for the most complicated
version of the problem, which is also the one closer to the reality of medium- and large-scale
transit agencies, namely the MDVSP. We will pay particular attention to algorithms that
can be used for real-world, large-scale cases.

A first exact solution approach for the MDVSP is presented in Carpaneto et al. (1989).
since then, several others were proposed, including in Ribeiro and Soumis (1994), Forbes
et al. (1994), Bianco et al. (1994), Löbel (1998), Mesquita and Paixão (1999), Hadjar et al.
(2006), Kliewer et al. (2006), and Oukil et al. (2007). In Ribeiro and Soumis (1994) a so-
called branch-and-price algorithm (Barnhart et al., 1998), i.e., a column generation algorithm
(with columns being feasible vehicle schedules) embedded in a branch-and-bound tree, is
proposed to solve the MDVSP formulated as a set partitioning problem. At each iteration,
the linear relaxation of (2.2.11) - (2.2.14), called the master problem (MP), is solved with
a restricted number of vehicle schedules. New columns to add to the restricted MP (RMP)
are identified by solving a set of shortest path problems on connection-based networks with
modified arc costs based on dual information obtained from the resolution of the RMP. If
vehicle schedules with negative reduced cost are found, some of them are added to the RMP.
Otherwise, the algorithm stops and we have a guarantee that the solution to the current
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RMP is also optimal for the MP. We refer interested readers to Desaulniers et al. (2005) and
Lübbecke and Desrosiers (2005) for more details on column generation. Later on, Hadjar
et al. (2006) enhanced this algorithm by introducing variable fixing and cutting planes. A
variable Xd

ij, for i,j ∈ V and d ∈ D, is fixed to zero (i.e., the arc (i,j) in the corresponding
network is removed) when its reduced cost is greater than or equal to a threshold value
that depends on the current best feasible solution and its associated dual variables. A first
feasible solution is found by performing a depth-first search in the branch-and-bound tree,
and then the algorithm backtracks in the tree. Furthermore, Hadjar et al. (2006) introduced
cutting planes to reduce the number of odd cycles in the MDVSP and a heuristic procedure
to lift these cuts. Löbel (1998) proposed to solve directly the multi-commodity model using
a column generation algorithm, where arc flow variables are generated instead of vehicle
schedules. To speed up the resolution, variables are first generated based on a Lagrangian
pricing strategy. When the objective function does not improve sufficiently in a few iterations,
the algorithm switches to the standard variable selection criterion, i.e., negative reduced cost.
When no additional arc flow variables are generated, and if there are still some fractional
variables, a rounding strategy is used. In practice, at the end of the process most of the
variables were already integral and most instances were solved to optimality. Kliewer et al.
(2006) solved large-scale instances of the multi-commodity problem with an underlying time-
space network using the general-purpose CPLEX mixed integer programming solver. More
recently, Oukil et al. (2007) proposed dual variable stabilization strategies to speed up the
convergence of a standard column generation algorithm for the MDVSP.

Several heuristic algorithms for the MDVSP have been proposed in the literature, among
others, Raff (1983), Lamatsch (1992), Dell’Amico et al. (1993), Gintner et al. (2005), Laurent
and Hao (2009), Pepin et al. (2009), Otsuki and Aihara (2016), Kulkarni et al. (2018),
and Moreno et al. (2019). Gintner et al. (2005) devised a two-phase heuristic approach to
solve large-scale MDVSP with time-space networks. In the first phase, one SDVSP problem
per depot is solved and stable chains, i.e., sequences of trips included in the solution of
each SDVSP are identified. In the second phase, all the stable chains are fixed to one by
treating each chain as a trip. The resulting problem is solved exactly. Laurent and Hao
(2009) presented an iterated local search algorithm for the MDVSP. An initial solution is
found by transforming the MDVSP into a SDVSP with a fictitious depot and solving the
resulting problem using the auction algorithm proposed by Freling et al. (2001). Then,
random neighboring solutions are found by shifting random sequences of consecutive trips
covered by the same vehicle, referred to by the authors as block chains, to another vehicle.
In Pepin et al. (2009), five heuristics and matheuristics based on multi-commodity and set
partitioning models are compared. Out of them, the column generation heuristic provided the
best solutions, but additional time savings were achieved with a large neighborhood search
method. Additionally, Otsuki and Aihara (2016) conducted a comparison between a local
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search metaheuristic that employed pruning and deepening techniques in a variable depth
search and a second-best local search. Their experimental results on MDVSP instances
demonstrated that the former approach yields superior results. Recently, Kulkarni et al.
(2018) introduced a variation of the multi-commodity model with time-space networks, the
so-called inventory formulation.

2.3. Vehicle scheduling problem under uncertainties
The VSP is typically solved deterministically, that is by disregarding the stochasticity

inherent to transportation networks. However many parameters and constraints are actually
subject to variability. For example, driver absenteeism may make one or several vehicle
schedules infeasible on a given day or the capacity of a depot may be reduced in case of
equipment failure. Another source of uncertainty in the VSP is the duration of trips, whether
they are deadhead, pull-out, pull-in, or timetabled trips. We focus in this section on SDVSP
and MDVSP models explicitly considering travel time uncertainty.

Cost-efficient solutions to the deterministic version of the VSP are typically compact (i.e.,
do not include much buffer time). Indeed, buffer times induce direct and/or indirect costs
that are not desirable in the deterministic version of this problem. When the cost of a vehicle
schedule includes a component for the time spent outside the depot, buffer times induce a
direct cost, whereas buffer times are indirectly associated with an opportunity cost for the
immobilized buses. This compactness explains why cost-efficient bus schedules are especially
prone to delays; when a disruption occurs (e.g., road accident), travel times may deviate from
the planned duration and bus schedules may be delayed if there is not enough buffer time
to absorb these deviations. Two types of delays are distinguished in the literature: primary
(or exogenous) and secondary (or endogenous, propagated) delays (Naumann et al., 2011;
Kramkowski et al., 2009; Amberg et al., 2011, 2019). The former type of delay is a direct
consequence of a disruption in the system. Secondary delays occur when buffer times are
insufficient to recover primary delays. Figure 2.2 illustrates an example of delay propagation
between two trips i and j. The primary delay of trip i is given by the difference between its
actual travel time and its planned travel time. The primary delay of trip i causes a secondary
delay of trip j equal to the difference between its actual start time and its planned start time.

Trip i

Trip j

Prim. delay

Sec. delay

Planned travel time
Actual travel time

Figure 2.2 – Delay propagation
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Primary delays are considered unavoidable in daily operations (Kramkowski et al., 2009;
Amberg et al., 2019), while secondary delays are endogenous to resource planning. Thus, at
the planning level, reliable approaches for the VSP should try to mitigate the propagation of
delays. This approach has been explored by two main families of methods in the literature:
(1) online (or real-time) and (2) offline methods. This section mainly discusses the latter
type, but the works of Huisman et al. (2004) and He et al. (2018) on solution approaches for
the dynamic VSP are worth mentioning. They present algorithms to dynamically schedule
a bus fleet according to the state of the network. Kramkowski et al. (2009), Naumann et al.
(2011), Shen et al. (2016), van Kooten Niekerk (2018), Amberg et al. (2011), and Amberg
et al. (2019) proposed offline models and solution approaches for the VSP under uncertain
travel time. Table 2.1 summarizes the main characteristics of these works, namely the type
of model, the solution method (Sol. method), if delays are fully propagated or not (Full
delay proba.), the number of trips (|V|), the number of depots (|D|), and the number of
vehicle types (|T |) of the largest instance tested. The value "NA" in this table indicates that
the solution method is not explicitly specified in Naumann et al. (2011). Note that they all
deal with the single depot case, but those that consider two or more vehicle types are also
NP-hard. Some variants of SDVSP with multiple vehicle types can be solved similarly to
the MDVSP by constructing a network by vehicle type.

Table 2.1 – Summary of the literature on the VSP under uncertain travel time. NA -
unspecified. Model: MCF - multi-commodity model, NF - network flow model. Algorithm:
MH - metaheuristic, MIP - mixed integer programming method, H - heuristic, CG - column
generation, LR - Lagrangian relaxation

Experiments
Authors Model Sol. method Full delay propa. |V| |D| |T |
Kramkowski et al. (2009) MCF MH • 1296 1 3
Naumann et al. (2011) NF NA 426 1 1
Shen et al. (2016) NF H • 450 1 1
van Kooten Niekerk (2018) NF MIP 3496 1 1
Amberg et al. (2011) MCF CG, LR • 580 1 1
Amberg et al. (2019) MCF CG, LR • 661 1 2

Kramkowski et al. (2009) presented an offline metaheuristic to increase the reliability (or
delay-tolerance) of the solutions of the VSP with multiple vehicle types. From an initial
solution computed as in Kliewer et al. (2006), a simulated annealing for noisy environments
seeks valid neighboring solutions. Two variants of neighborhood generators are compared:
a random based neighborhood operator and a selective neighborhood operator. The former
randomly selects a timetabled trip from a vehicle schedule and randomly assigns it to an-
other one such that every vehicle schedule remains feasible. If the timetabled trip cannot
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be assigned to any vehicle schedule, a new vehicle schedule is created. The selective neigh-
borhood operator selects the timetabled trip with the highest expected secondary delay and
assigns it, if possible, to the vehicle schedule providing the longest buffer time before the
timetabled trip. Experimental results on three real-life instances suggest that the random-
based neighborhood operator provides better tradeoffs between total cost and reliability on
small instances while the selective neighborhood operator is preferable on larger ones. In ad-
dition, both methods provided more reliable solutions than the initial solutions at a slightly
higher cost.

A stochastic programming framework for the VSP with stochastic travel time was pro-
posed by Naumann et al. (2011). They expanded the network of Kliewer et al. (2006) (i.e., a
time-space network) with extra waiting and deadhead arcs to be able to consider a penalty
for delays between two timetabled trips in the arc cost. However, even with this expansion,
delay propagation is restricted to pairs of consecutive trips and the cascade effect of delays
is neglected. In experiments on a real-life instance and 100 delay scenarios, several solu-
tions using the same number of vehicles and with lower penalty cost than the deterministic
approach were found.

Shen et al. (2016) introduced two models for the VSP with stochastic travel time. Both
models are formulated as a network flow problem with stochastic trip compatibility, i.e., an
arc (i,j) is built if the compatibility probability of trips i and j is greater or equal to zero. If
so, the arc is associated with a compatibility probability. A penalty for the expected infeasible
time of an arc (i,j) is imposed in the first model, for each arc in the network. The infeasible
time of an arc (i,j) is equivalent to the secondary delay of trip j if we assume trip i always
starts on time (i.e., only delays between pairwise consecutive trips are considered). Full delay
propagation is only considered in the second enhanced model by redefining the departure time
of a trip as a stochastic variable. Shen et al. (2016) provided an exact method to compute the
probability density function of the secondary delay of a trip based on the probability density
functions of the departure and arrival times of previous timetabled trips. This second model
cannot be solved by existing solution approaches for the vehicle scheduling problem (e.g.,
mixed integer programming method), so an hybrid solution approach is proposed instead.
An initial solution is computed by a matching-based heuristic and then this solution is refined
using an iterative greedy local search method. Experimental results showed that both models
provide more reliable solutions than the deterministic model while using the same number
of vehicles. The model considering full delay propagation achieved higher punctuality than
the first model with a little increase in costs.

van Kooten Niekerk (2018) introduced the stochastic departure time dependent VSP.
The model allows negative buffer times and the cost of the arcs between pairs of trips is
modified to include a cost for secondary delays. Different cost calculations with delay prop-
agation between a sequence of maximum two trips were compared to assess the potential of
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an approach incorporating full delay propagation. After carrying out computational experi-
ments, the authors concluded that accounting for the propagation of delays over longer trip
sequences in their model promised little benefit. Solutions 2 to 3% more reliable than the
baseline approach of imposing minimum buffer times were achieved.

The work of Amberg et al. (2019) is an extension of Amberg et al. (2011), and they
both address the sequential, partially integrated, and integrated vehicle and crew sched-
uling problems. The SDVSP and the MDVSP are modeled as multi-commodity problems
with underlying time-space networks in both works. In their first short proceeding paper,
mandatory buffer times between trips covered by the same vehicle schedule are imposed. Fur-
thermore, novel decomposition schemes of flows (i.e., bundle of equal-cost solutions) taking
into account secondary delays between timetabled trips and pieces of work, for the sequential
and partially integrated problems, respectively, are proposed. This method finds the most
delay-tolerant schedules included in a flow, but the reliability improvements are limited by
the flow considered. This limitation is lifted in Amberg et al. (2019), where the solution
approach of Amberg et al. (2011) is used in the initialization phase. The solution approach
of Amberg et al. (2019) combines Lagrangian relaxation and column generation and takes
into account delay propagation in vehicle and crew duties resulting from expected primary
delays (or equivalently expected travel time deviations). Delays are propagated dynamically
when building vehicle and crew duties and a penalty for delay propagation is added to the
total cost of each duty type. Experiments on real-life instances from Germany showed that
the integrated scheduling scheme provides the best trade-offs between reliability and total
cost, compared to the sequential and partially-integrated schemes.

2.4. Electric vehicle scheduling problem
The batteries of BEBs are mainly characterized by their capacity and their charging tech-

nologies. Nowadays, the main charging technologies used in public transport are conductive
charging, inductive charging, and battery swapping and these differ primarily in location and
power (see Häll et al., 2019; Li, 2016; Pelletier et al., 2016, for details on charging technolo-
gies). First, level 1 to level 2 conductive chargers are used primarily for charging at the depot,
whereas opportunity charging (or en-route charging) at end points are often done using level
3 conductive chargers (also known as fast chargers). Second, inductive chargers are mostly
used for opportunity charging at bus stops or even charging during driving. Third, battery
can be swapped in about 10 minutes at swapping stations. Since opportunity charging at
end points modifies the VSP the most, we will only consider this type of charging in what
follows.

The E-VSP is an extension of the VSP with some additional limitations: shorter driving
range, longer refueling time, and special charging infrastructure that are usually limited in
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number (Li et al., 2021). Moreover, the SoC of the battery of a BEB cannot fall below zero
and cannot exceed the battery capacity at any time. Many variations of the E-VSP are
addressed in the literature. First, some variations assume that vehicles are always charged
to full capacity (or to a given percentage of full capacity, typically 80% or 90%) and others
assume partial charging. Second, a maximum capacity for the charging infrastructure can
also be taken into account. This capacity can be limited by the number of plugs at each
charging station or by the station’s electrical grid capacity. Third, nonlinear charging profiles
of BEBs (Olsen and Kliewer, 2020) can be considered.

E-VSP extensions of network flow, multi-commodity and set partitioning models, as well
as column generation algorithms, have been extensively studied in the literature in recent
years (Perumal et al., 2022). In this section, particular attention is paid to how the models
for the SDVSP and the MDVSP have been adapted to include charging stations and plans,
a maximum driving range and non-linear charging profiles, and how these changes reflect
in the solution approach. Thus, this review is not intended to be extensive, but rather
insightful on the particular challenges of the E-VSP and ways in which these challenges have
been addressed in the literature so far. For a detailed overview on models and solution
approaches for the E-VSP, see Perumal et al. (2022).

2.4.1. Charging stations and plans

Let H be a set of charging stations located at a depot, at a terminal, or elsewhere in the
bus network. In the E-VSP, a vehicle schedule is defined as a sequence of timetabled trips
and charging periods, each associated with a start time, a duration, and a charging station
in H. A charge plan consists of one or several charging periods. In what follows, we discuss
three modeling approaches for charging stations and plans that we have identified in the
literature.

The first approach consists in creating one charging node for each pair of charging station
in hk ∈ H and timetabled trip i ∈ V , that we denote hk,i. The charging node hk,i represents
visiting charging station hk after completing timetabled trip i. In Adler and Mirchandani
(2017), one charging node hk,d for each pair of charging station hk ∈ H and depot d ∈ D
is also built. The corresponding network in presented in Figure 2.3. This approach can
easily account for partial charging (see for example the model of Wen et al. (2016)), but it
is difficult to limit the capacity of each charging station.

The second approach is to discretize the planning horizon into ρ-minute time intervals
to build time-expanded charging stations. Let R be a set of time intervals each of duration
ρ and HE be a set of time-expanded charging nodes, where each node is associated with a
charging station in H and a time interval in R. For example, we denote by hE1 r5 the node
associated with charging station h1 ∈ H and time interval r5 ∈ R. This approach illustrated
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Figure 2.3 – Connection-based network with charging nodes associated with each trip and
depot

in Figure 2.4 has been used in Tang et al. (2019), Li (2014), Wu et al. (2022), and Li et al.
(2021) with the following assumptions. On the one hand, it is assumed that a vehicle can
only start a charge period every ρ minutes. On the other hand, it is assumed that after ρ
minutes of charge, BEBs are always fully charged. While with this strategy the capacity of
each charging station can be limited by adding a capacity constraint for each time-expanded
charging station node, partial charging cannot be easily accommodated since the duration
of each node is fixed. This model is thus most appropriate in the context of fast charging
and battery swapping, when it is reasonable to assume a fix refueling time, say 10 minutes
(Adler and Mirchandani, 2017; Li, 2014), to fully recharge the battery or swap it for a full
one.

The approach of Tang et al. (2019), Li (2014), and Li et al. (2021) can be expanded using
the idea of Janovec and Koháni (2019) of connecting consecutive time-expanded charging sta-
tion nodes in order to model charging periods of different duration. We call the corresponding
network the connection-based network with interconnected time-expanded charging station
nodes. This type of network easily accommodate partial charging and charging stations with
limited capacity.

In the third approach, no additional nodes for charging stations are added to the
connection-based networks. Instead, charging time and cost are included in the connection
arcs (i.e., arcs between timetabled trips). In van Kooten Niekerk et al. (2017), it is assumed
that, whenever possible, vehicles recharge as much energy as possible between trips. In
contrast, Perumal et al. (2021) assumed that a vehicle is recharged between two timetabled
trips when there is enough time to fully recharge the battery.
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Figure 2.4 – Connection-based network with time-expanded charging station nodes

To the best of our knowledge, the adaptation of time-space networks to the E-VSP has
only be addressed by Li et al. (2021, 2019) and (see Section 2.5 for more details). As
mentioned in Section 2.2.1, the set partitioning formulation with underlying connection-
based networks is indeed more easily adaptable to the electric version of the VSP and it is
therefore not surprising to find more work in the literature using the latter type of networks.

2.4.2. Driving range

Li (2014) added the following three driving range constraints to (2.2.1)-(2.2.4):

gj =
∑

i:(i,j)∈A
(gi + ιij)Xij, ∀j ∈ V (2.4.1)

gj = 0, ∀j ∈ HE ∪ {nd0} (2.4.2)

(gi + ιij)Xij ≤ W , ∀j ∈ HE ∪ {nd1}, (i,j) ∈ A, (2.4.3)

where gi is the accumulated energy consumption (or distance traveled) at node i, ιij is the
energy (or distance) consumed from i to j, including deadhead travel between nodes i and j
and the energy (or distance) for trip j, if applicable, and W is the battery capacity (or the
maximum distance that can be traveled before battery renewal). Constraints (2.4.1) compute
the accumulated energy consumption (or distance traveled) since the last battery renewal,
constraints (2.4.2) enforce that the accumulated energy consumption (or distance traveled)
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Figure 2.5 – Example of a charging curve

is set to zero after leaving the depot or a charging station, and constraints (2.4.3) limit the
accumulated energy consumption (or distance traveled) to a maximum of W . Constraints
(2.4.1)-(2.4.3) concern the case where only full charging is considered. See Wen et al. (2016),
Janovec and Koháni (2019), and Li et al. (2020) for examples of network flow and multi-
commodity models with battery capacity constraints considering partial charging.

When the E-VSP is (re)formulated as a set partitioning problem and solved by a column
generation algorithm, all constraints related to the driving range are shifted to the sub-
problems, i.e., resource-constrained shortest path problems (Li, 2014) or weight constrained
shortest path problems with replenishment (Adler and Mirchandani, 2017).

2.4.3. Non-linear charging profiles

In order to avoid excessively high voltage that could damage BEBs lithium-ion batteries
and reduce their life cycle, one can charge batteries using the constant current/constant
voltage charging process illustrated in Figure 2.5. In the CC phase, the charging current is
kept constant until the voltage reaches a threshold and then in the CV phase the voltage is
kept constant while the current decreases (Montoya et al., 2017). These voltage and current
regime changes make the charging functions nonlinear.

Furthermore, the charging functions of BEBs depend on many factors, including cur-
rent, voltage, self-recovery and temperature (Wang et al., 2013). To capture the complex
interaction between all these factors, the SoC of BEBs must be described using differential
equations. However, these equations can hardly be included in the E-VSP. Thus, approx-
imations of the charging functions, in most cases linear ones, are studied in the literature
(Olsen and Kliewer, 2020). Montoya et al. (2017) and Olsen and Kliewer (2020) showed that
linear approximations of the charging functions can lead to infeasible solutions in the electric
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vehicle routing problem and in the E-VSP, respectively. Instead, both works propose to use
a piecewise linear approximation. To the best of our knowledge, non-linear approximations
have only been implemented by Liu and Ceder (2020), Olsen and Kliewer (2020), and Zhang
et al. (2021) in the E-VSP literature.

2.5. Electric vehicle scheduling problem under uncer-
tainties

The E-VSP takes in input the travel time and the energy consumption of a set of
timetabled, deadhead, pull-out, and pull-in trips. In real-life settings these values vary from
day-to-day due to, among other factors, weather conditions, traffic conditions, and passen-
ger demand. Yet, most works on the E-VSP consider deterministic travel time and energy
consumption. To the best of our knowledge, there are only three works in the literature
on the E-VSP with stochastic travel time: Tang et al. (2019), Bie et al. (2021), and Jiang
et al. (2021). Furthermore, the works of Bie et al. (2021) and Li et al. (2021) consider sto-
chastic energy consumption. Tables 2.2 and 2.3 summarize the main characteristics and the
constraints, out of the ones discussed in Section 2.4, of the literature on the E-VSP under
uncertainties. In Table 2.2, column |H| is the number of charging stations in the largest
instance tested. The value "NA" in this table indicates that the number of chargers used in
the numerical experiments is not explicitly specified in Tang et al. (2019). The constraints
considered in Table 2.3 are: charging stations with limited capacity (# chargers), limited
driving range, non-linear recharging functions (non-linear recharge), partial recharge, sto-
chastic charge time (stochas. charge), stochastic energy consumption (stochas. ene. cons.),
and stochastic travel time (stochas. travel time).

Table 2.2 – Summary of the literature on the E-VSP under uncertainties. NA - unspecified.
Model: SP- set partitioning, RR - range reliability-based stochastic program, NLP - non-
linear optimization model Algorithm: CG - column generation, NSGA-II - nondominated
sorting genetic algorithm with the elitist strategy, GD- gradient descent

Experiments
Authors Model Algo. |V| |D| |T | |H|
Tang et al. (2019) SP CG 96 1 1 NA
Bie et al. (2021) NLP NSGA-II 220 1 1 2
Jiang et al. (2021) SP CG 466 3 1 3
Li et al. (2021) RR GD 128 2 2 6

To the best of our knowledge, Tang et al. (2019) were the first to address the E-VSP
with uncertain travel time through a static and a dynamic vehicle scheduling model. They
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Table 2.3 – Summary of the constraints of the E-VSP under uncertainties

Authors # chargers Driving Non-linear Partial Stochas. Stochas. Stochas.
range recharge recharge charge ene. cons. travel time

Tang et al. (2019) • • •
Bie et al. (2021) • • • •
Jiang et al. (2021) • • • •
Li et al. (2021) • • •

assume that the energy consumption of a trip depends on the driving speed and therefore on
the travel time of the trip. In the static model, negative buffer times between two trips are
allowed with a penalty and a robust strategy using a buffer-distance parameter is used to
offset the potential impact of travel time stochasticity. Travel time scenarios are used in the
dynamic model to dynamically reschedule a bus fleet at the beginning of each period of the
day based on current and predicted future traffic conditions. Both models are reformulated as
set partitioning and a branch-and-price solution approach is provided. Experimental results
on small instances from the city of Beijing showed that their method is able to address the
tradeoff between total cost and en-route breakdown risks. The dynamic model takes more
computing time than the static model but outputs better solutions in terms of operational
costs.

Bie et al. (2021) proposed a model for the E-VSP with stochastic travel time and energy
consumption and possible recharge during buffer times. They derived an equation to compute
the energy consumption of a trip based on the SoC at departure, the trip travel time, and
the temperature. The energy consumption is assumed to follow a normal distribution and
the variance of this distribution is estimated based on a data sample. Their multi-objective
model minimizes the expected secondary delay and the expected energy consumption of the
selected vehicle schedules as well as the procurement cost. Chance-constraints and robust
constraints are included for time feasibility and the energy feasibility, respectively. They
solved the E-VSP using a nondominated sorting genetic algorithm with the elitist strategy.
Numerical tests were conducted on a real-life instance of 220 trips. The authors concluded
that with judicious bus scheduling, buffer times can stop delay propagation and reduce
battery SoC variability, or in other words, improve schedule robustness.

In Jiang et al. (2021), a robust E-MDVSP model with uncertain travel time, partial
recharging, and time-of-use electricity tariff considering the cardinality constrained set is
formulated. Travel time deviations affect both the recharging time, as delays can make
original charging plans infeasible, and the energy consumption. It is assumed that the energy
consumption is proportional to the travel time deviation. A solution to the E-MDVSP is
deemed feasible when, in addition to the usual requirements of the MDVSP, as long as the
travel times vary in the cardinality constrained set, (i) the departure time of each timetabled
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trip is always respected and (ii) the vehicle SoC always lies between a given safety range.
E-MDVSP instances of up to 466 trips, 3 bus routes, and 3 depots are solved to optimality
using a branch-and-price algorithm.

Li et al. (2021) addressed the multi-depot vehicle location-routing-scheduling problem
with multi-vehicle types under range uncertainty (MM-LRSP). They formulated the problem
as a two-stage stochastic problem, where in the first stage routing, scheduling and location
of charging infrastructure under different random range scenarios are generated and, in the
second stage, ad hoc service to handle incomplete trips (due to energy shortage) are sched-
uled. The objective is to minimize the cost of the regular service, including costs incurred
by the transport agency (i.e., operational costs, demand-loss, infrastructure investment, and
emissions) and the passengers, and the cost for the ad hoc trips. The MM-LRSP is modeled
by time-space-energy and passenger time-space networks. The former is an adaptation of
the time-space network where each node is associated with a location, a time, and a SoC. A
gradient descent algorithm is used to solve a range reliability-based stochastic reformulation
of the original problem. This reformulation separates the two-stage stochastic problem into
two independent problems, with the second problem being a MILP solved for each scenario.
The results showed that accounting for range uncertainty in the MM-LRSP saved up to 20%
of the total cost compared to the deterministic method for a real-world bus network of Hong
Kong city.

2.6. Electric vehicle scheduling problem with battery
degradation

BEBs’ batteries and their replacement represent a significant portion of the cost of own-
ership of BEBs; this cost may even exceed the cost of charging in some cases (Pelletier et al.,
2018). Packs need to be replaced periodically due to the gradual fading of lithium-ion battery
capacity during charging and discharging cycles, what is often referred to as cycle aging, and
during storage time, what is often referred to as calendar aging. A battery is often considered
to have reached its end of life when its capacity has dropped to 70-80% of its initial capacity
(Lam and Bauer, 2012; Zhang et al., 2019). Cluzel and Douglas (2012) reported that the
typical lifespan of battery electric vehicles ranges between five to ten years, depending on
the operating and storage conditions. After that period, the battery packs of the BEBs must
be replaced, which results in high maintenance costs. From a price perspective, it is thus
important to consider battery aging mechanisms when scheduling BEBs. This approach is
also relevant from an environmental point of view, as the production of lithium-ion batter-
ies represents about 20% of the CO2 equivalent emitted during the construction of BEBs
(Nordelöf et al., 2019). The use of battery packs must therefore be done in a rational way.
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At the planning stage, battery degradation can be considered in the E-VSP. To the best of
our knowledge, it has only been addressed by Zhang et al. (2021) and Zhou et al. (2022).

A first model for the E-VSP with battery degradation and non-linear charging profile is
presented in Zhang et al. (2021). This model considers a bus network with one terminal.
BEBs are only allowed to charge at the terminal, where it is assumed that a limited number of
chargers are available, and buses are always fully charged. Furthermore, trips are assumed
to be a loops starting and ending at the terminal (roundtrips). The authors defined the
total operational costs of a vehicle schedule as the sum of charging fees, the cost of battery
degradation, and a fixed cost to acquire the buses. The capacity fading model of Lam and
Bauer (2012) is borrowed to approximate the cost of battery degradation. A branch-and-
price algorithm tailored to the problem is proposed to solve exactly real-world instances of
up to 160 trips. In addition, a case study in a Chinese city showed that this approach could
achieve significant cost savings (10 to 27%) due to longer battery life.

The model of Zhou et al. (2022) extends the one of Zhang et al. (2021) by considering
partial charging. The authors addressed the electric bus charging scheduling problem (EB-
CSP), which involves assigning BEBs to trips and scheduling the charge periods for a single-
terminal transit network with roundtrips. A mixed-integer nonlinear nonconvex program
and a MILP approximation are introduced. The MILP uses linear functions to approximate
the charging and battery degradation functions.

Zeng et al. (2022) also proposed a model for the EB-CSP (under predetermined bus-to-
trip assignments) with battery degradation using peak-to-average power ratio, time-of-use
electricity price, and battery wear cost.
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Chapter 3

Article 1 - Predicting the probability
distribution of bus travel time to measure the

reliability of public transport services

Prologue
This work was presented at the 6th International Workshop and Symposium on Research

and Applications on the Use of Passive Data from Public Transport (TRANSIT DATA) and
was published in Transportation Research Part C: Emerging Technologies:

Ricard, L., Desaulniers, G., Lodi, A., Rousseau, L.M., 2022. Predicting the
probability distribution of bus travel time to measure the reliability of public
transport services. Transportation Research Part C: Emerging Technologies 138,
103619.

The research direction of this article, namely the prediction of bus travel time, was
initially proposed to me by Guy Desaulniers, Andrea Lodi, and Louis-Martin Rousseau. I
suggested refining this direction towards probabilistic prediction models in order to be able
to integrate these models into stochastic optimization models later on. I was responsible
for handling the data, implementing the prediction models, running the tests, analyzing the
results, and writing the article. Guy Desaulniers, Andrea Lodi, and Louis-Martin Rousseau
revised and edited the article.

3.1. Introduction
In order to increase the ridership and attract new users, public transport agencies put

increasing emphasis on improving the quality of the service they provide and particularly
its regularity, also referred to as reliability (Ma et al., 2014). Studies show that a majority



of passengers put more value on a reduction of the travel time (TT) variability than on a
reduction of TT itself (Bates et al., 2001). Reliability can be addressed at different levels,
either during the strategic planning, the tactical planning or the operational planning stages
and during operations. At the strategic planning level, adding reserved lanes for buses
can increase the reliability of the service, while during operations, bus holding is a popular
solution to alleviate risks of bus bunching. The latter consists of holding a bus at key
locations along a bus trip if it is running ahead of time. However, service reliability is rarely
taken into account at the tactical and operational planning levels, when the detailed planning
of the service is computed (van Oort, 2011). The network design, the frequencies and/or
timetables of buses, the vehicle schedules and the crew schedules are built during these stages,
among other things (Desaulniers and Hickman, 2007). This work aims at providing tools to
measure, and eventually improve, the reliability of one of the output of the service planning
phase, namely vehicle schedules. These schedules are defined as a sequence of timetabled
trips and waiting times starting and ending at the same depot, such that each travel is either
a timetabled trip or a deadhead trip (e.g., between a depot and a terminal or between two
terminals). A deadhead trip between two terminals enables the connection of two timetabled
trips ending and starting at different terminals.

To assess the reliability of a vehicle schedule, Kramkowski et al. (2009) introduced
the concept of delay tolerance, a term reused in the works of Amberg et al. (2019); van
Kooten Niekerk (2018), among others. This concept is based on primary and secondary
delays that we distinguish below. On the one hand, a primary delay (or exogenous delay) is
a deviation from the planned duration of a timetabled trip caused by a disruption (e.g., bus
bunching) or variability during operation. This type of delay cannot be avoided by sched-
uling decisions. Indeed, day-to-day disruptions and delays are considered unavoidable on
the day of operation (Amberg et al., 2019; Kramkowski et al., 2009) due to the randomness
of incidents and the variation in demand and capacity factors. Bus sharing the road with
other road-based vehicles (e.g., cars, bikes and trucks) are likely to have even higher degrees
of variability, because they are subject to the same - morning and evening peaks - traffic
patterns (Comi et al., 2017). On the other hand, a secondary delay (or endogenous delay)
occurs when the primary delays of previous trips using the same resource (e.g., vehicle or
crew) cannot be absorbed during idle time and thus propagate to the next trip. If a trip
starts on time, its secondary delay is null. Otherwise, it is equal to the delay at the de-
parture. Scheduling decisions, that is, the allocation of timetabled trips to resources, can
influence the expected secondary delays of timetabled trips. Thus, the delay tolerance of a
vehicle schedule is measured by the average expected secondary delay of its timetabled trips.

Secondary delays are stochastic, meaning that the departure of a timetabled trip may
be late on a given day and on time on the next day even if the two trips belong to the
same vehicle schedule because the secondary delay of a trip depends on the TTs of the
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previous trips covered in the schedule, which are also stochastic. TT variability is explained
by yearly, monthly, day-to-day and hourly variability as well as vehicle-to-vehicle variability
(Kumar et al., 2014; Büchel and Corman, 2018; Kieu et al., 2015). The following equations
show the dependence between the secondary delay and the TT. Consider a vehicle schedule
s = {v1, v2, ..., vms} with ms trips planned on a given day. For notational conciseness, we
denote the trip vi by i directly in the following. The secondary delay Ri of a trip i is the
difference between its actual departure time Di and its planned departure time di(assuming
that Di ≥ di), computed as

Ri = Di − di. (3.1.1)

The random variable Di is a convolution of the previous trip’s actual departure time
(Di−1), actual TT (Ti−1) and the minimum in-between time between trips i−1 and i (li−1,i):

Di = max{Di−1 + Ti−1 + li−1,i, di}, i = 2, . . . ,ms (3.1.2)

D1 = d1. (3.1.3)

Precisely, li−1,i accounts for the deadhead travel between terminals, if the trip i− 1 ends
at a different terminal than the departure terminal of trip i, and the minimum break time
for drivers. The duration of deadhead travels is stochastic, but for simplicity a fixed value
for each pair of terminals is used in the following. This value is given by the operator.

In order to compute E(Ri), the expected secondary delay of trip i, we claim that the
expected TT of trips 1, . . . , i−1 provide insufficient information. To illustrate this, let’s have
a look at a simple case. Consider trip 2 scheduled to start at d2 = 8:40AM and preceded by
trip 1 that has started at D1 = 8:00AM. Let also l1,2 = 5 minutes. If the probability that the
actual TT of trip 1 is equal to 34 minutes is P (T1 = 34 minutes) = 0.75 and the probability
that it is equal to 38 minutes is P (T1 = 38 minutes) = 0.25, then the expected TT of trip 1
is E(T1) = 35 minutes. Thus, if we only consider E(T1), we get that the expected secondary
delay of trip 2 is E(R2) = 0 minute. However, considering the probability distribution of T1,
we get that R2 = 0 minute with a probability of 0.75 and R2 = 3 minutes with a probability
of 0.25 and therefore E(R2) = 0.75 minutes. This example confirms that the correct way
to compute the expected secondary delay takes into account the probability distributions of
the TT. Moreover, and at a more fundamental level, since the planned duration of a trip i

is usually set to a value close to E(Ti), by computing the expected secondary delays using
the expected TTs, any potential delay propagation is ignored. To take into consideration
the fact that some trips are more uncertain than others, we must compute the expected
secondary delays based on the complete probability distributions of the TT. In reality, these
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distributions are much more complex than the one presented in the above example, justifying
the need to explore models for the prediction of the probability distributions of the TT.

There are two types of TT prediction: short-term and long-term. Both types can predict
either a segment or a complete trip TT. The former is usually performed less than one hour
before a trip and uses online information as well as external factors (e.g., weather). This
type of prediction can be integrated to the operator’s operations control system and provides
online information to the users about the estimated arrival time of a bus. On the other hand,
the long-term TT prediction can be performed a few days before the trip and helps for transit
planning. In this work, we are interested in computing long-term TT predictions.

We frame the long-term prediction of the density of the TT (PDTT) as a supervised
learning problem which aims at predicting, for each trip i in a set of unseen trips (test
set), an estimate of the complete conditional probability density function (PDF) of its TT,
p̂(Ti|xi), given xi the set of characteristics of trip i. We assume that the conditional PDF
of the TT does not depend on scheduling decisions, i.e., the TT uncertainty is exogenous to
the resource allocation. The end-goal of this problem is to accurately estimate the expected
secondary delays of trips in a test set. To this end, we perform simulations using the predicted
probability distributions of the TT to approximate the true expected secondary delays. The
model that generates the most accurate approximations of the expected secondary delays is
selected. This information can then be used by the operator’s schedulers to evaluate and
compare vehicle schedules in terms of their reliability or by a computer to optimize over a
large number of possible vehicle schedules. Probabilistic models are compared to a Random
Forests (RF) model, which provided the most promising results among the three regression
models studied in the work of Moreira et al. (2012). We introduce two types of probabilistic
models, namely the similarity-based density estimation models and the smoothed logistic
regression model for probabilistic classification, and present experimental results on a large-
scale dataset of more than 41,000 trips and 50 bus routes. Our contribution is threefold:

— The state-of-the-art for long-term prediction of public bus TT is almost nonexistent
(Moreira-Matias et al., 2015). This work tries to fill this gap and, in addition, it
is to our knowledge the first work to propose probabilistic models for the long-term
prediction of public bus TT.

— We propose a novel method to approximate the expected secondary delays based on
the probability distributions of the TT.

— To the best of our knowledge, it is the first study in the field of public transport that
empirically studies such a large number of bus route’s TTs simultaneously. We hope
this can make our results relevant to other bus networks.

The remainder of this paper is organized as follows. In Section 3.2, we review the lit-
erature on TT analysis. The dataset used for the PDTT is presented in Section 3.3. We
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overview the main bus route characteristics and portray a preliminary analysis of the fea-
tures. Section 3.4 describes the methodology that can be applied for the PDTT. A Monte
Carlo simulation to compute the expected secondary delays based on the results of the mod-
els for the PDTT is introduced in Section 3.5. In Section 3.6, data preparation as well as
features and parameters selection are presented, before the evaluation metrics are specified
and the performance of all models for the PDTT is compared. Thereafter, in Section 3.7, a
preview of an optimization model that uses the approximations of the expected secondary
delays in an attempt to improve the reliability of bus schedules is presented. Section 3.8
summarizes our findings.

3.2. Related works
The introduction of automatic vehicle location (AVL) data has given rise to a flourishing

number of studies in the field of public transport on speed, arrival time and TT analysis.
Because TT and arrival time measures are closely related, studies on both measures are
treated without distinction. Indeed, the arrival time Ai of a trip i is given by

Ai = Di + Ti. (3.2.1)

In this section, three topics are covered: long-term TT prediction, TT variability analysis
and TT distribution modeling. The latter fits the TT distribution of trips that occurred
during a given period in order to analyze the shape and nature of the PDF of the TT,
without trying to predict future events, as in the PDTT. We extend the field of the first
topic to all road-based transport, but the subsequent topics are restricted to the public
transport field. Approaches proposed for the PDTT are inspired by lessons learned through
the review of the literature on these topics.

Compared with the literature on short-term TT prediction, studies on long-term TT
prediction are rare and to the best of our knowledge, only the works of Chen et al. (2020),
Moreira et al. (2012) and Klunder et al. (2007) proposed or reviewed long-term TT prediction
methods. In a survey on improving the planning of public transit using AVL data, Moreira-
Matias et al. (2015) suggested that the long-term TT prediction should be valid for an
horizon of at least the entire forecasting period. They divided models found in the literature
for short-term TT prediction in four categories: (i) machine learning and regression, (ii) state-
based and time-series, (iii) traffic theory-based and (iv) historical databased, and suggested
that some regression algorithms applied for short-term TT prediction could be adapted for
long-term TT prediction. Gradient boosting is an example of a model that was successfully
applied to the short-term TT prediction and then adapted by Chen et al. (2018) to the
long-term TT prediction of trips on a freeway segment in Taiwan. The features were ranked
in order of relative importance: time of the day, day of the week, national holiday, day of
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long / consecutive holiday, big event / activity, electronic tool collection fee promotion and
narrowing of roadway. Three regression models, namely a Projection Pursuit Regression, a
Support Vector Machine and a Random Forest, were compared by Moreira et al. (2012) for
the long-term TT prediction of trips of one public bus route in Porto. With a basic pre-
processing work, the Random Forest had better results, but was slightly outperformed by a
Projection Pursuit Regression when the authors added an instance selection step. Klunder
et al. (2007) trained a k Nearest Neighbors algorithm (kNN) with only time-based variables
for the long-term TT prediction on a motorway network in the Netherlands.

The reasons for TT variability can be external or internal (Yetiskul and Senbil, 2012)
and related to demand or capacity (Mazloumi et al., 2010) (see Figure 3.1). In an early
study, Abkowitz and Engelstein (1983) suggested that shorter routes may have reduced TT
variablity. Also, they reported that a running time deviation at the beginning of a route
tends to propagate downstream. Hence, control actions to correct early deviations on a route
could reduce TT variability. Strathman and Hopper (1993) reported that the afternoon peak
period has higher TT variability, in particular because of the higher passenger demand. In
a study on TT variability in the city of Ankara, Yetiskul and Senbil (2012) found major
differences in regional TT variability and suggested that bus-stop spacing should depend
on the neighborhood density. Comi et al. (2017) performed a time series decomposition of
the TT and compared it to the temporal traffic patterns. The two are reported to have
similarities. Also, the seasonality of the time series decomposition was most significant for
the hour of the day.

Infrastructure
characteristics

Weather
Traffic conditions
Management
policies

Passenger flow
Passenger demand
Area density

Bus capacity
Driver
Vehicle type
Fare collection
process

Door configuration

Number of stops

External

Internal

Capacity Demand

Figure 3.1 – Reasons of TT variability
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TT distribution modeling has been studied mostly with the objective of quantifying the
reliability of a transit service. Most works on TT distribution modeling in public transit oc-
curred after the introduction of AVL systems. We focus our review on the work of Mazloumi
et al. (2010), Ma et al. (2016) and Büchel and Corman (2018), as they are, in our view,
the most comprehensive studies, from which useful lessons can be learned for the PDTT.
Mazloumi et al. (2010) assessed the shape and nature of the TT distribution over the course
of the day and for different levels of temporal aggregation on segments of a bus route. The
authors measured the level of temporal aggregation by the length of the departure time win-
dows (DTW), which are time slots for which trips departing during the slot are aggregated
for subsequent analyzes (e.g., 15 minutes, 30 minutes or 1 hour). The study concluded that
for shorter DTWs, the TT distribution follows a Normal distribution. For longer DTWs, this
result holds for peak periods, but not for off-peak periods. For the latter, the Log-Normal
distribution fits better. Also, the contribution of a set of features to the TT was assessed
through a linear regression analysis. The land use (industrial vs. residential) and the length
of the segment were those affecting the most the TT variance. Ma et al. (2016) studied in-
tensively the influence of temporal and spatial aggregation on the TT distribution, with the
objective of providing common grounds for modeling and evaluating the performance. To
this end, several settings of temporal and spatial aggregations were assessed and an evalua-
tion approach based on a statistical hypothesis test was proposed. The TT of a trip starting
at stop i and ending at stop j was decomposed in dwelling times DTk at each stop k of the
trip and running times RT(k,k+1) between each pair of stops

T(i,j) =
j−1∑
k=i

DTk +RT(k,k+1). (3.2.2)

Results concerning the normality of the TT distribution were in line with the ones of Ma-
zloumi et al. (2010). Also, the analysis suggested that spatial aggregation tends to decrease
the multimodality of TT distribution. A multimodal distribution is defined as a probability
distribution with several modes. A Gaussian mixture model (GMM) was proposed to address
the multimodality of the link level TT distribution. Büchel and Corman (2018) found that
the Log-Normal distribution was, out of four unimodal statistical distributions, the best fit
for the TT distribution modeling.

3.3. Data
Before introducing the data, it is essential to distinguish terms that are used in the

following and that should not be confused, namely bus routes, bus lines, timetabled trips
and trips. First, we define a bus route as an ordered sequence of road segments and bus
stops, where the first and the last stops are called terminals. Second, a bus line usually has
two associated routes, each one going in opposite directions (e.g., North-South or East-West
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axis). Third, timetabled trips are generated during service planning, which is performed for
typical days in the planning horizon. For example, service planning for the next two months
can be reduced to planning for a typical weekday, Saturday and Sunday. A timetabled trip
is associated with a given route, time and typical day and is valid for the planning horizon.
It is therefore not associated with a given date. Fourth, trips are a unique event associated
with a timetabled trip and a given date. Buses record trip data as they travel, so each data
point in the dataset is associated with a trip.

The dataset used for this study was collected during a 2-month period from 08/28/2017
to 10/29/2017 by in-car Advanced Public Transport Systems (APTS) installed in buses
running in the city of Montréal, Canada. Those systems collect automatically at every
stop of a trip the corresponding trip identifier, route identifier, direction identifier, stop
identifier, date, scheduled departure time, scheduled arrival time, actual departure time,
actual arrival time and number of passengers loading or unloading, among other things. The
scheduled departure, scheduled arrival, actual departure and actual arrival times are stored
in milliseconds. The actual TT of a trip is the difference between its actual arrival time and
its actual departure time at the terminals, whereas its primary and secondary delays are the
differences between its actual TT and its scheduled TT and between its actual departure
time and its scheduled departure time, respectively. Hence, for every trip, only the first and
last stops (i.e., terminals) data is kept. Since the APTS were embedded in approximately
20% to 30% of the vehicles at that time, weekends and holidays had an insufficient number
of trips recorded. Indeed, during weekends and holidays, the service is reduced and thus
the number of trips recorded during those days is too small to conduct relevant data-driven
analysis. For that reason, weekends and holidays are not studied and are removed from the
dataset. After removing weekends and holidays, the dataset has more than 116,000 trips.
Of the 408 routes in the dataset, only the 50 most frequent are kept for the remainder of
the study, resulting in a dataset of over 41,000 trips. The 50 selected routes run between
4:00AM to 1:59AM (+1 day) during weekdays. To facilitate the notation, we add two extra
hours to the usual 24-hour daily period. Thus, we say that the selected routes run between
4:00AM to 25:59PM.

Figure 3.2 shows the average secondary delay per scheduled departure hour and the
average secondary delay plus the standard deviation (σ) of all 41,000 trips. Note that the
secondary delay cannot be negative (see equations (3.1.1) - (3.1.3)) and thus the average
secondary delay lies between 0 to 1.5 minutes all day long. The variability of the secondary
delays is high in the late afternoon (approximately from 15:00PM to 18:59PM) likely because
delays accumulate during the day and because this is a period of high mobility.
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Figure 3.2 – Average secondary delay and variability per hour

3.3.1. Route’s characteristics

The distribution of the average TT per scheduled departure hour is presented in Figure
3.3, where each piecewise linear curve represents the evolution of the average TT of a route. It
is possible to distinguish the morning peak approximately from 6:00AM to 8:59AM, and the
afternoon peak, approximately from 14:00PM to 17:59PM for all routes. The afternoon peak
usually has an average TT higher than the morning peak and the average TT is generally
decreasing after 17:00PM.

Figure 3.3 – Average TT per scheduled departure hour

The main characteristics of the 50 selected routes, namely the number of stops, the
distance traveled and the type of operational region, are presented in Table 3.1. Each route
has a unique combination of line identifier and direction, such that A-East and A-West are
two different routes of the same bus line, but in opposite directions. We categorized the
type of operational region in 6 categories: residential areas, crossing city center (CC), from
city center (to a residential area), to city center (from a residential area), from an industrial
(indust.) area (to a residential area), to an industrial area (from a residential area). Bus line
B is the only one crossing the city center; it starts in a residential neighborhood, crosses the
city center and ends in another residential neighborhood. Industrial areas are characterized
by a high density of factories. The city center and industrial areas are usually regions where
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a large number of people commute to work every day. The majority of bus routes operate in
residential areas (32 out of 50). Those bus routes may, for example, connect two residential
areas or a residential area to a subway or train station. The number of stops per bus route
ranges from 17 to 74 stops, while the distance traveled ranges from 3.0 km to 15.3 km. In
general, as the number of stops goes up, the distance traveled goes up as well. Line P is a
counterexample, because it has a large number of stops close to each other. Note that the
number of stops and the distance traveled of two routes of the same line are generally not
equal, as the path in one direction is usually not symmetric to the path in the other direction
(e.g., because some streets are one-way).

Table 3.1 – Characteristics of bus routes studied

Line Dir. #stops Dist. Type of Line Dir. #stops Dist. Type of
(km) Region (km) Region

A East 52 13.9 Residential M West 18 4.0 Residential
A West 49 14.5 Residential N East 28 5.3 Residential
B East 46 13.2 Cross CC N West 29 5.3 Residential
B West 46 12.0 Cross CC O North 35 3.0 To indust.
C North 40 12.1 Residential O South 40 3.4 From indust.
C South 45 12.3 Residential P East 74 9.0 Residential
D North 33 10.3 From indust. P West 67 8.5 Residential
D South 36 10.4 To indust. Q East 40 7.0 Residential
E East 50 14.2 Residential Q West 38 7.0 Residential
E West 52 13.3 Residential R East 37 5.3 Residential
F East 34 7.8 Residential R West 35 5.3 Residential
F West 36 7.7 Residential S East 47 11.8 From indust.
G North 17 4.6 Residential S West 51 11.6 To indust.
G South 19 4.3 Residential T North 34 8.5 To indust.
H North 37 9.3 Residential T South 30 8.5 From indust.
H South 40 10.8 Residential U North 46 11.1 Residential
I East 71 15.3 Residential U South 42 10.7 Residential
I West 68 15.3 Residential V East 46 9.5 Residential
J North 28 7.1 From CC. V West 49 8.5 Residential
J South 30 7.1 To CC W East 43 10.3 Residential
K East 53 11.1 To CC W West 47 11.6 Residential
K West 51 11.4 From CC X North 30 6.6 From CC
L East 35 5.9 Residential X South 34 7.5 To CC
L West 36 6.0 Residential Y North 30 8.0 To CC
M East 18 4.4 Residential Y South 28 8.0 From CC

3.3.2. Features analysis

The PDTT has to be based upon features (i.e., explanatory variables) that are available a
few days or weeks in advance. For example, meteorological conditions are likely to influence
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the TT duration. However, since it is an information that is not available when solving
service planning problems, it is not considered. Likewise, the TT of the previous trip is
not considered. The list of possible features includes the day of the week, type of region,
route identifier, distance, number of stops, scheduled departure time, week number and year.
Possible values and types of features (categorical or non-categorical) are listed in Table 3.2.

Table 3.2 – Long-term features

Feature Type Possible values
Day of the week Categorical {Monday, Tuesday, ..., Friday}
Region Categorical {residential, crossing CC, ..., to indust.}
Route identifier Categorical {A East, A West, ..., Y South}
Distance (km) Non-categorical [3, 15.3]
Number of stops Non-categorical {17, 18, . . . , 74}
Scheduled departure time Non-categorical [4:00AM, 25:59PM]
Week number Non-categorical {35, 36, ..., 44}
Year Non-categorical {2017}

The feature year is discarded because our dataset is spread over 2017 only. The statistical
significance of the features scheduled departure time, day of the week and week number
can be analyzed visually by looking at Figures 3.3, 3.4 and 3.5, which present the average
TT per route depending on each of the feature respectively. Figure 3.3 suggests that the
scheduled departure time has a high importance. The relationship between the TT and the
scheduled departure time is not linear. Generally, the average TT of a bus route increases
during peak hours and is steady between the morning and the afternoon peaks. Second,
Figure 3.4 suggests that the relationship between the TT and the day of the week is less
important. This is hardly surprising given that Saturdays and Sundays are not considered.
Interestingly, there is no common pattern between the routes; for example some routes have
a slightly higher average TT on Tuesdays than on Mondays and Wednesdays, while some
others have an inverse pattern (i.e., the average TT on Tuesdays is slightly lower than on
Mondays and Wednesdays). Third, Figure 3.5 suggests that the relationship between the
TT and the week number is significant only for a handful of bus routes. In Figures 3.3, 3.4
and 3.5, we can observe that the average TT differs greatly from one bus route to another,
unsurprisingly as each route has its own characteristics (as discussed earlier).

3.4. Methodology
Several approaches have been proposed to compute the conditional PDF of a random

variable in a probabilistic fashion. Gaussian process based models are among the most
popular. The work of Dutordoir et al. (2018) proposed a Gaussian process-based model to
estimate a conditional PDF using latent variables in order to model non-Gaussian probability
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Figure 3.4 – Average TT per day of the week

Figure 3.5 – Average TT per week number

distributions. Also, Bishop (1994) developed Mixture Density Networks, which is a type
of artificial neural network predicting multimodal conditional density distributions. The
main drawback of Mixture Density Networks is that they perform poorly when the size
of the dataset is not large enough. In the work of Yeo et al. (2018), the prediction of a
continuous PDF is converted into a classification task by using a discretization technique.
This simplifies the learning task and traditional probabilistic classifiers can be used to predict
the probability mass function, which can be smoothed later on into a PDF. The focus of this
paper is on frequentist models (Koller and Friedman, 2009). In the remainder of this section
two approaches for the PDTT are presented. The first one estimates the PDFs of the TT of
a set of similar trips using parametric, semi-parametric or non-parametric density estimation
models. The second approach, namely the smoothed Logistic Regression for probabilistic
classification, is similar to that of Yeo et al. (2018), but fits a Logistic Regression instead of
a Recurrent Neural Network estimator.

3.4.1. Similarity-based density estimation

Similarity-based density estimation models are a two-step process: for each trip, (1)
find the set of similar trips and (2) estimate the density of this particular set, by fitting a
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parametric, semi-parametric or non-parametric model. Next, we will define two similarity-
based methods and introduce some density estimation models.

3.4.1.1. Similarity-based methods. Consider a trip i with a feature vector (x(i)
1 , . . . , x

(i)
d ).

We want to select, based upon one of the following similarity-based methods, the set of trips
in the (reduced) training set that have similar attributes:

— Equivalent DTW (eDTW) : select all trips from the same route that have a scheduled
departure time in the same departure time window (DTW) (Mazloumi et al., 2010;
Büchel and Corman, 2018; Ma et al., 2016) as trip i.

— k Nearest Neighbors (kNN): select the k nearest neighbors of the trip i. The distance
between trip i and trip j is the Euclidean distance between their feature vectors and
is computed as

dist(xi,xj) =

√√√√ d∑
ℓ=1

(x(i)
ℓ − x

(j)
ℓ )2. (3.4.1)

3.4.1.2. Density estimation models. The conditional probability p(Ti = ti | xi) is
estimated by fitting a given density estimation model on points close to i in the (reduced)
training set, which are either trips in the same eDTW or close neighbors.

Parametric models. Parametric density estimation considers a restricted set of common
probability distributions. Each of these distributions has a small number of parameters
that have to be estimated from the data. We consider the Normal, Log-Normal, Logistic,
Log-Logistic, Gamma, and Cauchy probability distributions. The Gamma distribution is
a family of probability distributions containing the Exponential, Erlang and Chi-Squared
distributions. In the work of Ma et al. (2016), the first four distributions were successful at
modeling the TT distribution at a route level. For each trip, parameters of these probability
distributions are found using the Maximum Likelihood Estimation (MLE) algorithm.

Semi-parametric model: Gaussian Mixture Model. GMMs are a sub-category of
mixture models composed of K normal components. GMMs are relevant when the popu-
lation modeled is multimodal and has undefined subpopulations or states, such that each
component represents a state. It is common in transport to use three components, one for
each of the traffic states: free flow, recurrent and non-recurrent traffic (Ma et al., 2016). The
PDF of a K-components GMM is given by

p̂(Ti = ti | xi) =
K∑
k=1

πikN (ti | µik,σ2
ik). (3.4.2)
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The vector of positively defined coefficients πi = (πi1, ...,πiK), such that ∑K
k=1 πik = 1,

and the vector of the model’s kth component’s parameters (µik,σ2
ik), are found by applying

the expectation maximization (EM) algorithm.

Non-parametric model: Kernel Density Estimation (KDE). A KDE model infers
the PDF of a random variable based on a sample of its population. To estimate the PDF of a
trip i, the model uses m points close to i in the training set. It is a data smoothing problem
that allows to find, in a non-parametric fashion, the curve of the PDF given a sample. The
Gaussian kernel, K(·), is the most widely used, but any function that integrates to unity
(
∫
K(t)dt = 1) can replace it. The smoothness of the estimator is adjusted by the bandwidth

parameter h as
p̂(Ti = ti | xi) = 1

m

m∑
j=1

K
(
ti − tj
h

)
. (3.4.3)

3.4.2. Smoothed Logistic Regression for probabilistic classification
(LR-PC)

Probabilistic classifiers are a type of machine learning model that can predict the proba-
bility that a given input belongs to a set of classes, instead of only predicting the class with
the highest probability. When a numerical discretization is applied to the random variable
T , such that the TT is categorized in bins of 1 minute, the PDTT task can be translated
into a probabilistic classification one: estimate the probability that T takes a value that falls
into class c ∈ {0, ...,C−1}. A model is fitted per bus route, because this setting yields better
experimental results than learning a unique model for all bus routes (see Section 3.6.2).

A question arises: how to choose the number of classes for a bus route? Our approach
was to use, for a given bus route, the difference between the trip in the training set with the
shortest duration, tmin, and the trip with the longest duration, tmax, as C, the number of
classes. Thus, P (Ti = c) is the probability that Ti takes a value in [c + tmin, c + 1 + tmin[.
We disregarded the fact that trips in the test set can have shorter or longer duration than
tmin and tmax respectively, as the smoothing discussed later implicitly solves this issue.

Multinominal Logistic Regression is naturally probabilistic and is commonly used for
probabilistic classification tasks. Classes’ probabilities of a multinomial Logistic Regression
are defined as

P̂ (⌊Ti⌋ = c+ tmin | xi, wc) = exp(wT
c xi)∑C−1

c′=0 exp(wT
c′xi)

, (3.4.4)

where wc is the vector of parameters of the class c, found using a stochastic average gradient
descent solver.
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Logistic Regression outputs a probability mass function that can be smoothed into a
PDF subsequently. As proposed by Yeo et al. (2018), the output of the multinomial Logistic
Regression, which takes the form of a p.m.f., is passed through a one-dimensional convolution
layer. This step has the effect of enforcing a spatial correlation in the output. The convolution
layer is analogous to a KDE with a bandwidth h and a kernel K(·), but uses the probability
mass function, P̂ (⌊Ti⌋ | xi, wc), instead of a sample of trips:

p̂(Ti = ti | xi) =
C−1∑
c′=0

[
K

(
ti − (c′ + tmin)

h

)
× P̂ (⌊Ti⌋ = c′ + tmin | xi, wc′)

]
. (3.4.5)

3.5. Simulation framework to measure the delay toler-
ance of a vehicle schedule

Consider again a vehicle schedule s = {1, 2, ...,ms} with ms trips. After the sched-
ule has been performed, the secondary delay Ri of a trip i can be computed using equa-
tions (3.1.1)-(3.1.3), as the actual value of the TT (Ti−1) and the actual departure time
(Di−1) of the previous trip are then available. However, before the schedule is performed,
E(R1),E(R2) . . . ,E(Rms) must be computed using the PDFs of the TT and it is impossible to
do this exactly. Instead, we propose a Monte Carlo simulation of K iterations, where at each
iteration a TT is randomly sampled, when it is possible, from p̂(Ti|xi) for each i = 1, . . . ,ms

and delays are propagated from the first to the last trip in order to compute the secondary
delay of each trip. Before going further, we must state the situation in which it is not possible
to sample the TT. This situation occurs because trips in s may not be included in B, the
dataset of 41,000 trips and 50 bus routes presented in Section 3.3. A detailed explanation
of the reasons for this is provided in Section 3.6.3 and for now just remember that this may
be the case. If trip i /∈ B, then we have no information about the TT distribution of this
trip and we have to use the scheduled duration of the trip directly. The scheduled duration
of trip i is the difference between its scheduled arrival time ai and its scheduled departure
time di. After running the K iterations, it is possible to approximate the expected secondary
delays of all the trips in the schedule. This approximation is given by:

E(Ri) ≈ R̄i =
∑K
k=1 R

k
i

K
, for i = 1, . . . ,ms, (3.5.1)

with Rk
i the secondary delay of trip i computed at iteration k. The exact expected secondary

delay of trip i is approximated by R̄i, its average secondary delay over K iterations. At each
iteration, the randomly sampled TTs of trips 1, . . . ,ms must have a duration that lies between
MinTTi and MaxTTi, the smallest and the largest observed TTs of the trips on the same
bus route as trip i. Otherwise, a new TT is sampled until that condition is fulfilled. In
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other words, we truncate the PDF of the TT below and above the times never recorded and
therefore for which we have no information.

The pseudo-code in Algorithm 1 summarizes the Monte Carlo simulation used to compute
the approximation of the expected secondary delays for all trips of a schedule s. In essence,
at each iteration of the simulation the TT of each trip in the schedule s is either sampled or
set to the planned duration and the delays are propagated from the first trip to the last one.
The simulation outputs the average secondary delay over K iterations for each trip i ∈ s.
Note that we assume that the first trip of a schedule always starts on time, i.e., its secondary
delay is null (see equation (3.1.3)).

Algorithm 1: Monte Carlo simulation to approximate the expected secondary
delays

1 SumRi ← 0,∀i ∈ s
2 for k ← 1 to K do
3 for trip i← 1 to ms do
4 if trip i = 1 then
5 Di ← di

6 else
7 Di ← max{Di−1 + Ti−1 + li−1,i, di}
8 SumRi ← SumRi + (Di − di)
9 end

10 if trip i ∈ B then
11 repeat
12 Ti ← sample from p̂(Ti|xi)
13 until MinTTi ≤ Ti ≤ MaxTTi

14 else
15 Ti ← ai − di
16 end
17 end
18 end
19 for each trip i ∈ s do
20 R̄i ← SumRi/K

21 end

3.6. Experimental results
Using the dataset described in Section 3.3, we next explain how we fit probabilistic models

for the PDTT, before comparing the performance of these models. First, we describe how
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the data is filtered and split for the PDTT. Second, we go through features and parameters
selection for each type of model and detail the selection of the temporal aggregation level.
Third, metrics to evaluate the performance of the models on the test set are presented.
Finally, all probabilistic models are compared to a Random Forests model in terms of their
performance on the test set.

3.6.1. Data preparation

The dataset is filtered in order to remove erroneous information and special situations
that we do not want to cover in the PDTT. Incomplete trips, vias and trips with detours are
discarded. A via is a trip that deviates from the main trip or an express trip. To remove
erroneous trips which were not filtered by the previous step, the Median Absolute Deviation
or MAD (Hellerstein, 2008) with a 6-delta criterion is used. A trip is discarded if it has a
TT longer or shorter than the median TT value of the trips associated with the same route
plus (minus) 6 times the corresponding standard deviation. This method also removes trips
with extended TT due to exceptional scenarios (e.g., bus failure) that the PDTT problem
should not cover, because when such exceptional scenarios occur, an additional bus is usually
dispatched to recover the schedule and prevent severe delay propagation.

We use a hold-out method and split the dataset in two sets: a training and a test set.
The validation set, a hold-out subset of the training set, is used for features and parameters
selection and the test set is used for model evaluation. Figure 3.6 summarizes the dataset
split. We split the dataset such that the training data starts on 08/28/2017 and ends on
10/08/2017. The set of test data is composed of the trips from 10/16/2017 to 10/29/2017.
Hence, a complete week, from 10/09/2017 to 10/16/2017 is discarded to simulate real-life
settings where the planning is done at least a few days ahead. The training set is split again
in a validation set and a reduced training set by slicing the last trips recorded per route from
the original training set. The reduced training set contains 80% of the trips in the original
training set and the validation set contains the remaining 20%.

Figure 3.6 – Dataset split

08/28 10/08 10/16 10/29 date

Training set

Test set

Validation set

3.6.2. Models training

In the training process, the features and parameters of the estimator p̂(·) are selected by
fitting each model to the reduced training set and evaluating them on unseen data in the
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validation set. The performance of all the probabilistic models is evaluated by the negative
log-likelihood (NLL) score over the validation set (containing nval points), computed as

NLLval = −
nval∑
i=1

log(p̂(ti|xi)), (3.6.1)

with ti the true TT of trip i. The performance of the Random Forests model, for its part,
is evaluated by the mean squared error (MSE) of the output. The pair of features and
parameters which obtains the best performance on the validation set is selected.

Similarity-based density estimation models use one of the similarity-based methods,
namely the eDTW or the kNN method. While the eDTW method does not require feature
selection, as the features used are always the route identifier and the scheduled departure
time, the kNN method does require feature selection. Indeed, the distance between neigh-
bors depends on the specified feature vector. Estimating the TT density of a trip i does
not require feature selection; it fits a probability density to a sample containing trips similar
to trip i. Thus, here the features selection problem is reduced to finding a feature vector
for the kNN method.The selection of features is carried out in parallel with the selection
of parameters. The parameters of the similarity-based methods are the DTW duration for
the eDTW method and the number k of neighbors for the kNN method. For the KDE, the
validation set is used to select the bandwidth h and the kernel function.

We found that similarity-based density estimation models and the LR-PC model fit the
data better when they are fitted per bus route. By doing so, the features describing the
bus route characteristics, namely the number of stops, distance traveled, route identifier and
type of region, become uninformative to the model. Indeed, all trips used to train the model
of a given bus route have exactly the same values for these features. The remaining features
to consider are the scheduled departure time, the week number and the day of the week.

To select the features of the similarity-based density estimation using kNN models as
well as the LR-PC and the Random Forests models, we applied the permutation feature
importance technique (Breiman, 2001). The latter reports the statistical significance of a set
of possible features by measuring the increase of a predictor score when the values of a feature
are permuted. The importance of a feature ℓ is the difference between a model’s score over
the original dataset and the average (over 10 shuffles) score over a corrupted dataset (with
the values of the feature ℓ permuted). Results of this analysis are presented in Table 3.3. In
line with the preliminary feature analysis presented in Section 3.3.2, the results indicate that
the scheduled departure time has a higher statistical significance than the week number and
the day of the week. For all models, features with a relative statistical significance of more
than 1.00% are selected. Thus, for all similarity-based density estimation models except the
Cauchy with kNN and the LR-PC model, the scheduled departure time and the week number
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are selected. Only the scheduled departure time is selected for the Cauchy with kNN and
the LR-PC models. The number of stops, the distance, the scheduled departure time, the
route identifier, the week number and the region are selected for the Random Forests model.

Table 3.3 – Relative statistical significance (%) of features. Cau.- Cauchy, Gam.- Gamma,
Nor.- Normal, L.-N.- Log-Normal, Log.- Logistic, L.-L.- Log-Logistic

kNN∗

Feature Cau. Gam. Nor. L.-N. Log. L.-L. KDE LR-PC RF
Number of stops - - - - - - - - 59.03
Distance - - - - - - - - 17.75
Sched. dep. time 99.74 96.71 97.02 97.01 97.98 98.21 97.43 99.51 17.37
Route identifier - - - - - - - - 2.25
Week number 0.50 2.47 2.10 2.32 1.61 1.49 1.69 -0.46 2.09
Region - - - - - - - - 1.20
Day of the week -0.24 0.81 0.88 0.67 0.41 0.30 0.87 0.95 0.30

Temporal aggregation is a fundamental aspect of the PDTT since it has been shown to
affect the shape and nature of the TT probability distribution (Mazloumi et al., 2010; Ma
et al., 2016). Thus, the parameter associated with it, namely the DTW duration, is studied
carefully. We select the DTW duration by analyzing how the density estimation models
perform on the validation set for different levels of temporal aggregation. DTWs considered
are, going from the most aggregated to the least aggregated, 5 periods per day (before
morning peak, morning peak, in-between morning and afternoon peaks, afternoon peak and
after afternoon peak), 60 minutes and 30 minutes. Table 3.4 compares the performance
of models using the eDTW method, with the values in bold indicating the best NNL of
the validation set for each level of temporal aggregation. For all models except the GMM,
the NLL score over the validation set is better at DTWs of 60 minutes. The Log-Logistic
model obtains the best results at all aggregation levels, matched by the Gamma, Log-Normal
and KDE models at an aggregation level of 5 periods per day. The GMM has a similar
performance to the parametric models for the most aggregated level, but it also has a poor
performance for lower levels of temporal aggregation, both 60 and 30 minutes. Since the
performance on the reduced training set is good, it indicates that the GMM overfits the
training data. For the DTWs considered, the conditional PDF of the TT is most likely
not multimodal. Thus, this model is discarded for the rest of the study. Interestingly, the
training NLL decreases when the temporal aggregation level increases for all models except
the KDE, while the NLL over the validation set increases from DTWs of 60 minutes to DTWs
of 30 minutes for all models. This suggests that models are overfitting more at DTWs of 30
minutes than at DTWs of 60 minutes.
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Table 3.4 – NLL (lower is better) of the similarity-based density estimation models using
eDTW method with different levels of temporal aggregation on the validation set

5 periods 60 minutes 30 minutes
Model Train Validation Train Validation Train Validation
Cauchy 3.24 3.30 2.72 2.89 2.60 2.96
Gamma 3.08 3.15 2.58 2.83 2.47 5.98
Normal 3.09 3.16 2.59 2.87 2.48 6.57
Log-Normal 3.09 3.15 2.57 2.81 2.46 5.72
Logistic 3.09 3.16 2.59 2.77 2.48 2.91
Log-Logistic 3.09 3.15 2.58 2.75 2.47 2.88
GMM 3.07 3.16 2.26 5.81 1.82 24.96
KDE 2.99 3.15 2.49 2.76 2.77 2.89

We can conclude that, between the three levels of temporal aggregation compared, the
best one is the one with DTWs of 60 minutes. We denote the eDTW method with DTWs
of 60 minutes as eDTW*. For the second similarity-based method, namely the kNN, the
value of k can be chosen similarly to the duration of DTWs, by assessing the performance of
the similarity-based density estimation models on the validation set for different values of k.
Figure 3.7 shows that the NLL over the validation set decreases significantly for all models
when the value of k increases up to approximately k = 13. After that, the NLL stays almost
constant. Thus, we set the number k of neighbors to 13 and denote the kNN method with
k = 13 as kNN*.

Figure 3.7 – NLL (lower is better) of the similarity-based density estimation models using
kNN method with different numbers of neighbors

The LR-PC model yields better performance when it considers transformations of the
scheduled departure time to capture a non-linear relationship with the TT. First, the sched-
uled departure time is categorized in bins of 1 hour and 30 minutes using a one-hot encoding.
Second, the sine and cosine of the scheduled departure time are computed. The total di-
mension of the feature vector is 69 (22 for the one-hot encoding of bins of 1 hour, 44 for the
one-hot encoding of bins of 30 minutes, 2 for the sine and cosine of the scheduled departure
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time and 1 for the original scheduled departure time). The bandwidth and the kernel func-
tion of the LR-PC model are selected based on the performance on the validation set, along
with the regularization strength of the Logistic Regression.

The number of trees in the Random Forest model, the maximum number of features
considered when branching, the maximum depth of each tree and the minimum number of
samples required to split an internal node are selected based on the performance on the
validation set.

3.6.3. Models evaluation

After models training, the reduced training set is combined with the validation set and
each model is trained on the complete training set using their selected features and param-
eters. The performance of the models for the PDTT is evaluated by the NLL score and the
MSE of the expected secondary delay over the test set. The NLL score over the test set is
analogue to the NLL over the validation set (NLLval) and is computed as

NLLtest = −
ntest∑
i=1

log(p̂(ti|xi)). (3.6.2)

It quantifies the likelihood of the PDFs of the TT predicted by the models, with respect
to the test points. The second metric, the MSE of the expected secondary delay over the
test set, measures the accuracy of the approximation of E(Ri) for i = 1, . . . ,ntest. It is given
by

MSER = 1
ntest

ntest∑
i=1

(
ri − R̄i

)2
, (3.6.3)

with ri the true secondary delay of trip i and R̄i the average predicted secondary delay of trip
i, for i = 1, . . . ,ntest. The latter values are obtained by running the simulation presented in
Section 3.5. This simulation takes as input a complete vehicle schedule s = {1, . . . ,ms}, the
scheduled departure and arrival times of trips i = 1, . . . ,ms and the probability distributions
of the TT of trips i ∈ s for which the information is available. Indeed, as mentioned in Section
3.3, the original dataset of 166,000 trips and 408 bus routes is reduced to a dataset of 41,000
trips and the 50 most frequent bus routes. Thus, many, if not nearly all, of the trips in the
test set are part of a vehicle schedule that contains some trips that are discarded and for
which we therefore have no information about the uncertainty of their TTs. In order to be
able to propagate delays from the first trip to the last trip of s using the recursive equations
(3.1.1)-(3.1.3), the TTs of the trips for which no information is available are considered
deterministic and equal to the planned duration.

55



3.6.4. Models comparison

Table 3.5 presents the NLL and the MSE of the expected secondary delay of all models
over the test set. On the one hand, it is interesting to see that models using a non-Gaussian
probability distribution, either a Gamma, Log-Normal, Logistic or Log-Logistic distribution,
yield a lower NLL over the test set than those using a Normal distribution, which calls
the normality of the conditional PDF of the TT into question. For the parametric models,
the Cauchy, Logistic and Log-Logistic distributions have better NLL score over the test set
when using the kNN* method, while the Gamma, Normal and Log-Normal distributions have
rather the opposite results. The KDE models also have a better NLL over the test set when
using the kNN* method than when using the eDTW* method. Overall, the Log-Logistic
with kNN* model is the one which yields the best test NLL.

On the other hand, all parametric models predict more accurate expected secondary
delays when using the kNN* method. On the contrary, the KDE models generate more
accurate expected secondary delays when using the eDTW* method. The KDE using kNN*
method and the LR-PC models surprisingly generate poorly accurate approximations of
expected secondary delays, even though they achieved good NLL scores. It appears that
smooth distributions, like parametric distributions, produce better approximations of the
expected secondary delays. From the perspective that the end-goal of the PDTT is to
approximate the expected secondary delays, the Log-Logistic with kNN* model should be
selected because it yields the lowest MSE of the expected secondary delay, with a MSE of
4.31. Furthermore, the good test NLL of this model confirms this choice.

Similarity-based density estimation models and the LR-PC model are compared with
two different interpretations of the Random Forests model. The first interpretation, which
is our benchmark, considers the Random Forests model as non-probabilistic, i.e., used ex-
clusively for point prediction (Dutordoir et al., 2018). The emphasis is on modeling the
mapping between an input x to its output y rather than on predicting the conditional PDF
p(y | x) (Dutordoir et al., 2018). For this interpretation, the NLL over the test set is not
computed because the prediction is not a PDF, but rather a point. Moreover, the expected
secondary delays are computed slightly differently than for the other models because the
TTs are considered deterministic in this interpretation. Thus, the expected secondary delays
can be computed directly using equations (3.1.1) - (3.1.3) and without using the simulation
presented in Section 3.5. As shown in Table 3.5 (see row "Random Forests (point predic-
tion)"), this interpretation of the Random Forests is outperformed by all the models in terms
of the MSE of the expected secondary delay. Thus, the experimental results show that there
is an added value in modeling the conditional PDF of the TT using probabilistic models.
The second interpretation considers the Random Forests model as probabilistic. In order to
turn the Random Forests model into a probabilistic model compatible with our framework,

56



Table 3.5 – NLL (lower is better) and MSE (lower is better) of the expected secondary
delay of similarity-based density estimation, LR-PC and Random Forests models on the test
set

Model Similarity NLLtest MSER

method
Cauchy eDTW∗ 2.87 4.44

kNN∗ 2.84 4.33
Gamma eDTW∗ 2.79 4.45

kNN∗ 2.80 4.33
Normal eDTW∗ 2.82 4.47

kNN∗ 2.84 4.37
Log-Normal eDTW∗ 2.77 4.43

kNN∗ 2.78 4.33
Logistic eDTW∗ 2.74 4.42

kNN∗ 2.73 4.34
Log-Logistic eDTW∗ 2.72 4.39

kNN∗ 2.70 4.31
KDE eDTW∗ 2.75 4.41

kNN∗ 2.73 4.43
LR-PC - 2.71 4.72
Random Forests (point prediction) - - 4.75
Random Forests (probabilistic interpretation) - 2.83 4.59

∗DTWs = 60 minutes or k = 13

we proceed as follows. We assume the conditional PDF p(y|x) is normally distributed with
constant variance σ2, that is, p(y|x) = N (µ(x),σ2). Then, because the RF model is trained
to optimize a sum-of-squares loss function, both the data-dependent mean µ(x), and the con-
stant variance σ2 can be recovered from the Random Forest model, by using the prediction
of the Random Forest model for µ(x), and the mean squared error of the model for σ2. The
results of this second interpretation can be found in row "Random Forests (probabilistic in-
terpretation)" in Table 3.5. Note that the MSE of the expected secondary delay over the test
set is better for this second interpretation than for the point prediction one, supporting our
earlier assertion about the added value of probabilistic models. However, this interpretation
is still outperformed by all models except the LR-PC model, showing the poor adequacy of
the Random Forests model with a probabilistic interpretation to actual TTs and delays. One
possible interpretation could be that the Random Forests model, which assumes Gaussian
noise, performs poorly both in terms of the NLL and the MSE of the expected secondary
delay over the test set because it assumes assumes Gaussian noise. However, as outlined by
the NLL over the test set of parametric models before, the conditional PDF of the TT is
most likely not Gaussian. Another key factor that might explain the dominance of the Ran-
dom Forests model by truly probabilistic models could be that the variance of probabilistic
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models is not constant for every trip, whereas it is the case for the Random Forests model
as we interpreted it. In sum, because both interpretations of the Random Forests model,
the non-probabilistic and the probabilistic ones, generate less accurate expected secondary
delays than truly probabilistic models, the latter prevail for the prevision of the expected
secondary delays of bus trips.

3.7. Preview of an integration in an optimization prob-
lem

The conditional PDF of the TT can be integrated in many service planning problems
in an attempt to improve the delay tolerance of the service. For example, we are currently
working on a variant of the vehicle scheduling problem with stochastic TTs that aims at
computing vehicle schedules based on the expected secondary delay of their timetabled trips.
The complete methodology and results of this work will be presented in a subsequent work.
Nevertheless, we provide below a preview of the formulation of this optimization problem
for interested readers.

The vehicle scheduling problem has been widely studied over the last half-century (Bunte
and Kliewer, 2010) and consists of assigning vehicles to cover a set of timetabled trips, in
such a way that every timetabled trip is covered exactly once and at minimal costs. When
the operator’s fleet is spread in two or more depots, it is referred to as the Multiple Depot
Vehicle Scheduling Problem (MDVSP). We introduce an extension of the MDVSP, namely
the reliable MDVSP with stochastic TTs, that exploits the long-term prediction of the PDFs
of the TT studied in this work. This model takes the set V of n timetabled trips and the
long-term prediction of the PDF of the TT of each of these timetabled trips in input in order
to output cost-efficient and delay tolerant vehicle schedules. Let D be the set of depots, S
the set of all feasible vehicle schedules, and Sd the subset of schedules starting and ending
at depot d. The problem is to find a subset of vehicle schedules in S that covers exactly
once each timetabled trip while respecting the number of available buses bd at each depot
d ∈ D and minimizing a weighted sum of the total planned vehicle operating cost and the
total expected secondary delay. To formulate this problem, we define for each timetabled
trip i ∈ V and schedule s ∈ S a binary parameter ais which is equal to 1 if schedule s covers
timetabled trip i and 0 otherwise, and denote by cs the cost of schedule s (including delay
penalties). Furthermore, we introduce for each schedule s ∈ S, a binary variable ys that
takes value 1 if schedule s is selected in the solution and 0 otherwise. The reliable MDVSP
with stochastic TTs can then be expressed as the following integer linear program:
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min
∑
s∈S

csys (3.7.1)

s.t.
∑
s∈S

aisys = 1, ∀i ∈ V (3.7.2)
∑
s∈Sd

ys ≤ bd, ∀d ∈ D (3.7.3)

ys ∈ {0,1}, ∀s ∈ S. (3.7.4)

Constraints (3.7.2) ensure that each timetabled trip is covered by a selected vehicle
schedule, whereas constraints (3.7.3) impose vehicle availability at each depot.

The objective function (3.7.1) minimizes the total cost of the selected schedules which
combines planned operational costs and delay penalties. The planned costs usually include
a fix cost per vehicle used and a variable cost that depends on the traveled distance and the
waiting time attended by a bus driver. Consider a vehicle schedule s = {1, 2, ...,ms} ∈ S
of ms timetabled trips. The total cost cs of the vehicle schedule s is a weighted sum of the
planned costs qs and the sum of the expected secondary delay E(Ri) of all timetabled trips
i covered by the schedule s, weighted by a factor β:

cs = qs + (β
ms∑
i=1

E(Ri)). (3.7.5)

Note that the PDTT is trained and tested using trips data whereas the reliable MDVSP
with stochastic TTs deals with timetabled trips. Fortunately, the selected model, namely
the Log-Logistic with kNN*, can easily compute the PDF of the TT of timetabled trips,
used to approximate the expected secondary delays. To that end, the model training is done
as presented in Section 3.3.2 using data on past trips. The selected model for the PDTT
is based on three features, the route identifier, the scheduled departure time and the week
number. Thus, the prediction of the PDF of the TT of a timetabled trip i ∈ V depends on its
feature vector xi = (x(i)

1 ,x(i)
2 ,x(i)

3 ), with x
(i)
1 , x(i)

2 and x
(i)
3 the route identifier, the scheduled

departure time and the week number of timetabled trip i, respectively. Since timetabled
trips are not associated with a given date, it is not clear how to define x(i)

3 , the week number.
However, it is straightforward to see that, for the model selected, the PDF of the TT of a
timetabled trip i is the same regardless of the value of x(i)

3 , as long as it is a week number in
the future planning horizon. Thus, the PDF of the TT of a timetabled trip can be computed
by setting its week number to any week number in the future planning horizon. Then, an
approximation of the expected secondary delay E(Ri) of all timetabled trips i covered by a
given schedule s can be computed based on the PDFs of the TT by running the Monte Carlo
simulation detailed in Section 3.5.
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Since the number of feasible schedules is typically huge, it is impossible to enumerate them
all. Instead, schedules are generated using column generation. The costs cs are computed
during the solution process by taking into account the PDFs of the TT.

When solving the reliable MDVSP with stochastic TTs, the scheduled departure and
arrival times are fixed for every timetabled trip. Thus, the choice of timetabled trip connec-
tions is the only lever to tackle reliability. The sequence of timetabled trips in each vehicle
schedule must take into account the uncertainty of the TT of these trips, i.e., the connection
between an uncertain timetabled trip and the next should allow enough idle time to avoid
delay propagation. The β factor can be modulated according to the operator’s level of aver-
sion to delay propagation. Of course, the higher the β factor, the greater the tolerance to
delay, but the higher the planned costs.

3.8. Conclusions
In public transport, reliability has become a key challenge for operators wishing to attract

new users. In this work, we proposed a method to measure, in order to eventually improve,
the reliability of bus schedules. To that end, we presented a simulation model to approximate
the delay tolerance of a vehicle schedule based on the long-term conditional PDF of the TT.
We framed the prediction of this conditional probability distribution, that we referred to
as the PDTT, as a supervised learning problem. We verified if probabilistic models could
predict more accurately the complete conditional PDF of the TT and generate more accurate
approximations of the expected secondary delays than a Random Forests model. In fact,
the latter is not inherently probabilistic and is typically used for point prediction. Also, we
compared the performance of several probabilistic models.

To train and test the PDTT models, we used a 2-month dataset collected by buses
equipped with APTS in the city of Montréal, involving 50 bus routes and a total of over
41,000 trips. The bus routes studied have various attributes (e.g., number of stops, frequency,
traveled distance, etc.) and constitute a diverse sample from which we hope to obtain results
relevant to other bus networks. Based on previous works on TT variability analysis, we
determined a set of features, the number of stops, distance, scheduled departure time, route
identifier, week number, type of region and day of the week, which we ranked in order of
statistical significance for each model.

We proposed two types of probabilistic models for the PDTT, namely similarity-based
density estimation models and the LR-PC model. The former is a two-step process that firstly
find, for each trip, the set of similar trips and then estimate the density of this set using
parametric, semi-parametric or non-parametric density estimation models. We proposed two
types of similarity-based methods, namely the eDTW and the kNN, for which the temporal
aggregation level and the number of neighbors had to be set, respectively. The LR-PC model
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applies a numerical discretization to the TT before fitting a Logistic Regression classifier per
bus route. The output of the Logistic Regression is then smoothed into a PDF using a
convolution layer analogous to a KDE.

Previous works on TT distribution modeling indicated that the level of temporal aggrega-
tion greatly affects the shape and nature of the TT distribution. Thus, we carefully selected
the DTW duration based on the performance on the validation set. The GMM model had a
poor performance for DTWs of 60 minutes and 30 minutes and thus we concluded that the
conditional PDF of the TT is most likely not multimodal. This result is aligned with the
one of (Ma et al., 2016) which observed that the multimodality of the TT decreases with
spatial aggregation.

Models were compared in terms of both of their NLL and their MSE of the expected
secondary delay over a test set. The first metric measures the likelihood of the probability
distribution of the TT predicted while the second metric measures the accuracy of the
approximations of the expected secondary delays outputted by the simulation model using
the predicted probability distributions of the TT. From all the models tested, the density-
based estimation model using kNN method and a Log-Logistic distribution yielded the best
NLL and MSE of the expected secondary delay over the test set. Precisely, it produced
approximations of the expected secondary delays that are about 9% more accurate than
the benchmark model, the Random Forests. This result indicates that there is an added
value in modeling the conditional PDF of the TT using probabilistic models. In particular,
probabilistic models account for the variability of the TT whereas the Random Forests model
does not intrinsically. Also, the Random Forests model as we interpreted it assumes, as many
other point prediction models, that the noise of the TT is Gaussian. However, the normality
of the TT was questioned because several similarity-based density estimation models using
parametric distributions had better NLL over the test set than the models using the Normal
distribution.

The Log-Logistic with kNN model generated accurate approximations of the expected
secondary delays that schedulers can use to compare few bus schedule alternatives in terms
of their reliability or to recommend changes to customers in the service planning parameters
(e.g., minimum idle time between timetabled trips). Moreover, the expected secondary
delays can be used to solve a reliable version of the MDVSP. We introduced this problem
and proposed an integer programming model for it. In a forthcoming paper, we will propose
a column generation algorithm for solving it.

3.9. Corrections
In this section, we present supplementary computational experiments aimed at rectifying

two errors identified in the methodology of the article. It is worth noting that while these
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errors, as explained later, do not significantly impact the conclusions drawn from this study,
addressing them contributes to the overall rigor of our analysis.

The first error lies in the choice of the distance metric within the kNN similarity-based
method (see Section 3.4.1). Our decision to use the Euclidean distance falls short, partic-
ularly due to the diverse nature of the feature vectors composed of mixed-type data (both
categorical and non-categorical). A more fitting alternative would be the Gower distance
(Gower, 1971), which takes mixed data types into account. The Gower distance between the
feature vectors of two trips i and j is computed as

distGower(xi,xj) =

√√√√1−
∑d
ℓ=1 sijℓδijℓ∑d
ℓ=1 δijℓ

, (3.9.1)

where δijℓ takes value 1 if xiℓ and xjℓ can be compared and 0 otherwise and sijℓ is the
similarity between xiℓ and xjℓ. If the values are categorical, the similarity is defined as the
indicator function

sijℓ =

1 if xiℓ = xjℓ

0 else,
(3.9.2)

and if the values are numerical, it is defined as

sijℓ = 1− |xiℓ − xjℓ|
rℓ

, (3.9.3)

where rℓ is the range of the feature ℓ.
The second error pertains to a modeling choice in the LR-PC model (see Section 3.4.2).

Specifically, we opted for a multinomial Logistic Regression model to predict travel time
probabilities. Here, the classes correspond to discrete 1-minute intervals. However, the
multinomial Logistic Regression model is designed for nominal dependent variables and relies
on the assumption of the independence of irrelevant alternatives (IIA). In our context, the
dependent variable is ordinal, implying it can be ordered in a meaningful way, and the labels
are not independent. As a result, a more appropriate model for computing class probabilities
would be the ordered multinomial probit model (see, e.g., Daykin and Moffatt, 2002). This
model is explicitly tailored for ordinal outcomes and free from the assumption of IIA.

We conducted additional experiments to address the aforementioned corrections. Specif-
ically, we explored two distinct approaches: the kNN similarity-based method using the
Gower distance and a smoothed ordered multinomial probit model for probabilisitic classi-
fication (OP-PC). Data preparation, models training, and models evaluation were carried
out as explained in Section 3.6.1, 3.6.2, and 3.6.3, respectively. The updated results are
presented in Table 3.6.
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Table 3.6 – NLL (lower is better) and MSE (lower is better) of the expected secondary
delay of similarity-based density estimation, LR-PC, OP-PC, and Random Forests models
on the test set - Corrections

Model Similarity NLLtest MSER

method
Cauchy eDTW∗ 2.87 4.44

kNN∗ 2.85 4.33
Gamma eDTW∗ 2.79 4.45

kNN∗ 2.76 4.27
Normal eDTW∗ 2.82 4.47

kNN∗ 2.79 4.30
Log-Normal eDTW∗ 2.77 4.43

kNN∗ 2.75 4.26
Logistic eDTW∗ 2.74 4.42

kNN∗ 2.72 4.17
Log-Logistic eDTW∗ 2.72 4.39

kNN∗ 2.70 4.17
KDE eDTW∗ 2.75 4.41

kNN∗ 2.77 4.50
LR-PC - 2.71 4.72
OP-PC - 2.76 5.20
Random Forests (point prediction) - - 4.75
Random Forests (probabilistic interpretation) - 2.83 4.59

∗DTWs = 60 minutes or k = 15

The corrected results reaffirm the fundamental takeaways discussed in Section 3.6.4.
Specifically, they validate the preference for the Log-logistic with kNN model, which presents
the lowest NLL score and MSE of the expected secondary delay over the test set among the
models considered. Also, using the Gower distance improved the performance of all models
employing the kNN similarity technique, with exceptions being the Cauchy distribution and
the KDE model. Furthermore, the outcomes achieved by the OP-PC model are inferior to
those of the LR-PC model.
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Chapter 4

Article 2 - Increasing schedule reliability in
the multi-depot vehicle scheduling problem

with stochastic travel time

Prologue
This work was presented at the Institute for Operations Research and the Manage-

ment Sciences (INFORMS) annual meeting, among other conferences, and was submitted to
Omega-The International Journal of Management Science:

Increasing schedule reliability in the multi-depot vehicle scheduling problem with
stochastic travel time. Léa Ricard, Guy Desaulniers, Andrea Lodi, Louis-Martin
Rousseau. Omega-The International Journal of Management Science, under re-
visions.

The general idea of this paper came from Guy Desaulniers, Andrea Lodi, and Louis-
Martin Rousseau, while most of the specific research ideas, particularly the modeling choices,
were contributed by me. I was responsible for modeling the problem mathematically, devel-
oping an efficient algorithm, writing an implementation guide for the programmer in charge
of modifying GENCOL according to the developed algorithm, building test instances, run-
ning tests, analyzing the results, and writing the article. Guy Desaulniers revised the model
and the algorithm. Guy Desaulniers, Andrea Lodi, and Louis-Martin Rousseau revised and
edited the article.

4.1. Introduction
One of the specificities of public transport is its social mission; most transit agencies aim

at providing a fair access to essential services and jobs, and strive to offer a service competitive



to single occupant vehicles, that is both time- and cost-efficient for users. The main goal of
the agencies, usually centered on the quality of service, reflects this mission, whereas almost
all other transport organizations, for example trucking or airline companies, are primarily
concerned with making a profit (Desaulniers and Hickman, 2007). However, agencies have
access to a limited budget and therefore seek to provide the best possible service within this
budget. To reach this goal, budget constraints must be considered throughout the whole
planning process which is commonly divided into strategic, tactical, and operational planning
steps. Indeed, the planning process cannot be addressed as a whole due to tractability issues
and is therefore often divided into the following sequential problems. Strategic planning
includes the definition of transit routes and networks, tactical planning includes setting
stops and service frequencies, whereas operational planning concerns vehicle scheduling, duty
scheduling, and crew rostering among others (Desaulniers and Hickman, 2007; Ibarra-Rojas
et al., 2015). As opposed to the strategic and tactical planning steps, the operational planning
step is traditionally addressed only with the objective of cost-efficient running, completely
or partially obliterating the main concern of agencies, namely, service quality. The vehicle
scheduling problem (VSP), one of the most studied operational planning problems and the
one we are interested in this work, makes no exception. When the bus fleet is spread in
two or more depots, the VSP is referred to as the multiple depot vehicle scheduling problem
(MDVSP) and is proven to be NP-hard (Bertossi et al., 1987). It takes as input a timetable
of trips - a trip is defined by a start time and a location, an itinerary composed of a sequence
of stops, and an end time and a location - and aims at finding a set of bus schedules
that covers exactly once every timetabled trip while minimizing the operational costs and
respecting the capacity at each depot. The operational costs usually consist of a fixed cost
per vehicle used and a variable cost per kilometer and/or minute spent outside the depot.
Bus schedules outputted by the MDVSP are sequences of trips (pull-in, pull-out, deadhead,
or timetabled trips) interspersed by waiting times (or idle times) that must start and end
at the same depot. After completing a timetabled trip, a bus can either stay at its current
location before starting another timetabled trip or move to another bus terminal to start a
subsequent timetabled trip, sometimes after some idle time. This move without passengers
is called a deadhead trip. Pull-in and pull-out trips are special cases of deadhead trips where
the departure or arrival terminal is a depot, respectively.

Because the MDVSP is traditionally tailored to minimize only operational costs without
considering the quality of the underlying service, near-optimal bus schedules outputted by
the MDVSP are often difficult to comply with on the day of operation because they typically
do not contain much buffer time (Amberg et al., 2011). Indeed, disruptions and operational
variability, for example heavy traffic (Amberg et al., 2011; Naumann et al., 2011) and fluc-
tuation of passenger volume (Amberg et al., 2011; Chen et al., 2022), can cause delays that,
in turn, can make the planned schedule infeasible when the buffer times cannot absorb these
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delays. Thus, dense bus schedules (i.e., schedules with sparse buffer times) are generally less
reliable. In this work, we define schedule reliability in terms of the invariability of service
attributes and, specifically, vehicle timeliness.

In the literature, two types of delays are distinguished: primary (or exogenous) and
secondary (or propagated) delays (Kramkowski et al., 2009; Amberg et al., 2011; Naumann
et al., 2011; Amberg et al., 2019). Primary delays are a measure of the additional time
required to complete a trip due to a disruption or operational variability or, in other words,
the difference between the actual and the planned duration of a trip. When the buffer
times of a bus schedule do not allow a full recovery of primary delays, secondary delays are
encountered. The secondary delay of a trip is the difference between its actual departure
time and its planned departure time. Because primary delays are considered unavoidable
(Kramkowski et al., 2009; Amberg et al., 2019) and agencies only have control over secondary
delays during the operational planning step, secondary delays are commonly used in the
literature as a measure of the reliability of a bus schedule. In what follows, this measure is
also used.

This work approaches the MDVSP from a stochastic perspective in an attempt to reduce
the propagation of delays in vehicle schedules and hence increase their reliability. Our
main contributions are (i) we formulate a data-driven model for the reliable MDVSP with
stochastic travel time (R-MDVSP-STT) that considers an objective function that combines
the operational costs and a penalty for the secondary delays, (ii) we introduce a column
generation algorithm for solving the R-MDVSP-STT that gives an exact lower bound on the
solution value, is fast enough to be suitable for large-scale instances and is highly adaptable,
(iii) we define three reliability metrics to evaluate the solutions of the R-MDVSP-STT, and
(iv) we show throughout computational tests on three real-world instances of the city of
Montréal that our approach provides solutions that form an approximate Pareto front with
good trade-offs between operational costs and reliability. The best probabilistic model for
predicting the travel time distributions of the Montréal bus network, as well as its features
and parameters, was selected in a previous work (Ricard et al., 2022) based on a dataset of
various attributes of more than 41,000 trips collected over a two-month period.

The remainder of this paper is organized as follows. In Section 4.2, we discuss related
works on MDVSP and methods for addressing MDVSP reliability. The R-MDVSP-STT
model and the integration of a reliability measurement and control method into the model are
detailed in Section 4.3. Section 4.4 introduces the branch-and-price algorithm used to solve
the R-MDVSP-STT. Notably, we explain how vehicle schedules are generated in the column
generation algorithm by solving shortest path problems with stochasticity. Three reliability
metrics to evaluate the quality of the R-MDVSP-STT solutions are presented in Section
4.5 with a Monte Carlo simulation to compute them. Section 4.6 evaluates the heuristic
performance of the R-MDVSP-STT as well as the trade-off between operational costs and
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reliability, in terms of the three reliability metrics proposed, and compares the results of
the R-MDVSP-STT with those of the MDVSP with mandatory buffer times. Section 4.7
summarizes our findings.

4.2. Literature review
The MDVSP has been studied since the 1970s (Dell’Amico et al., 1993), but exact al-

gorithms have been proposed only since the end of the 1980s including those of Carpaneto
et al. (1989), Ribeiro and Soumis (1994), Löbel (1998), Fischetti et al. (1999), Hadjar et al.
(2006), and Kliewer et al. (2006). The work of Ribeiro and Soumis (1994) was a break-
through that has paved the way for other exact algorithms. The authors proposed to first
model the MDVSP using an integer multicommodity flow formulation and then reformu-
lated it by applying a Dantzig-Wolfe decomposition to obtain a set-partitioning formulation,
where each variable is associated with a feasible vehicle schedule. This model can be solved
by a column generation algorithm (branch-and-price) that generates new columns (i.e., ve-
hicle schedules) by solving shortest path problems. This algorithm was later enhanced to
a branch-price-and-cut algorithm by Hadjar et al. (2006) who introduced valid inequalities
and a variable fixing technique. Based on a multicommodity flow formulation similar to
that of Ribeiro and Soumis (1994), Löbel (1998) developed a column generation algorithm
that dynamically generates the arc flow variables of this formulation. However, instead of
pricing these variables individually, a so-called Lagrangian pricing which prices groups of
variables based on two different Lagrangian relaxations is performed. Later, Kliewer et al.
(2006) modeled the MDVSP using a time-space network. This type of network contains far
fewer arcs and variables than the networks considered by the above authors. The resulting
arc-flow model can then be solved using a commercial mixed-integer programming (MIP)
solver. Furthermore, there are a number of extensions for the VSP and MDVSP including,
among others, problems with time windows (Desaulniers et al., 1998) and mixed-fleet (Li
et al., 2019; Rinaldi et al., 2020; Zhou et al., 2020). We refer interested readers to Bunte
and Kliewer (2010) and Desaulniers and Hickman (2007) for a detailed review on the VSP,
the MDVSP, and some of their extensions.

Methods found in the literature to address the timeliness of buses when forming bus
schedules can be divided into two families: online (or real-time) and offline methods. The
focus of this work is on the second family of methods as we are interested in the operational
planning step, an offline step. Nevertheless, it is noteworthy to mention the works of Huisman
et al. (2004) and He et al. (2018), who developed solution approaches to the dynamic VSP.
After a major disruption, dynamic VSP helps recover feasible schedules by rescheduling
online new vehicle itineraries.
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Kramkowski et al. (2009), Naumann et al. (2011), Shen et al. (2016), van Kooten Niekerk
(2018), Amberg et al. (2011), and Amberg et al. (2019) proposed offline models and solution
approaches for the reliable MDVSP and VSP. In particular, Kramkowski et al. (2009) pre-
sented an offline metaheuristic to increase the reliability (or delay-tolerance) of the solutions
of the VSP with multiple vehicle types. From an initial solution computed as in Kliewer
et al. (2006), a simulated annealing for noisy environments (SANE) seeks valid neighboring
solutions. The method provided small reliability improvements, but SANE appears to be
unable to find solutions with higher reliability gains. A stochastic programming framework
for the VSP with stochastic travel time was proposed by Naumann et al. (2011). The net-
work of Kliewer et al. (2006) (i.e., a time-space network) is expanded with extra waiting
and deadhead arcs in order to add a penalty in the arc cost for delays between pairwise
consecutive timetabled trips (full delay propagation was not implemented). In experiments
on a real-life instance and 100 delay scenarios, several solutions using the same number of
vehicles and with lower penalty costs than the deterministic approach were found. Shen et al.
(2016) introduced two models for the VSP with stochastic travel time featuring stochastic
trip compatibility (i.e., negative buffer times are allowed), stochastic idle time, and a penalty
for arc infeasibility. The first model considers only delays between pairwise consecutive trips,
whereas the second enhanced model considers full delay propagation. A hybrid solution ap-
proach combining a matching-based heuristic and a greedy local search is proposed for the
model considering full delay propagation. Experimental results showed that both models
provide more reliable solutions than the deterministic model while using the same number of
vehicles. The model considering full delay propagation achieved higher punctuality than the
first model with a little increase in costs. van Kooten Niekerk (2018) introduced the stochas-
tic departure time dependent vehicle scheduling problem. The model allows negative buffer
times and the cost of the arcs between pairs of trips is modified to include a cost for secondary
delays. Different cost calculations with delay propagation between a maximum of two trips
were compared to assess the potential of an approach incorporating full delay propagation.
After carrying out computational experiments, the authors concluded that accounting for
the propagation of delays over longer trip sequences in their model promised little benefit.
Solutions 2 to 3% more reliable than the baseline approach of imposing minimum buffer
times were achieved. The work of Amberg et al. (2019) is an extension of Amberg et al.
(2011) and they both address the sequential, partially integrated, and integrated vehicle and
crew scheduling problems. In both works, the VSP and the MDVSP are modeled as multi-
commodity problems with underlying time-space networks. In the first paper, mandatory
buffer times between trips covered by the same vehicle are imposed. Furthermore, novel
decomposition schemes of flows (i.e., bundles of equal-cost solutions) taking into account
secondary delays were proposed. In Amberg et al. (2019), the solution approach of Amberg
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et al. (2011) is used to find a good initial solution to the Lagrangian relaxation and col-
umn generation-based algorithm that takes into account deterministic delay propagation in
vehicle and crew duties. Experiments on real-life instances from Germany showed that the
integrated scheduling scheme provides the best trade-offs between reliability and operational
costs, compared to the sequential and partially integrated schemes. Moreover, a robust elec-
tric MDVSP (E-MDVSP) model with stochastic travel time was formulated in Jiang et al.
(2021). Energy consumption is assumed to be proportional to the travel time deviation.
A solution to the E-MDVSP is deemed feasible if, in addition to the usual requirements of
the MDVSP, the departure time of each timetabled trip is always respected and the vehicle
state-of-charge always lies in a given safety range when the travel times vary in a cardinality
constrained set.

The only stochastic model proposed in the literature that accounts for full delay prop-
agation is the enhanced model of Shen et al. (2016). This model is based on a network
flow formulation and thus is not solvable using a conventional MIP solver. Indeed, the cost
and the penalty on each arc cannot be computed beforehand as they are a function of the
previous arcs. Our work addresses this issue by introducing an alternative set partitioning
formulation for the MDVSP with stochastic travel time that can be solved using a branch-
and-price algorithm. The choice of our approach was guided by the needs of our industrial
partner, GIRO Inc., for a solution approach scalable to instances of real-life size and eas-
ily adaptable to the various rules and constraints that their customers may impose on the
vehicle schedules.

4.3. Mathematical model
We first present our model for the R-MDVSP-STT and then describe how the reliability

is integrated into the model.

4.3.1. The reliable MDVSP with stochastic travel time

Let V be a timetable of n trips and D be a set of depots. The number of vehicles available
at depot d ∈ D is denoted bd. Given the long-term prediction of the probability distributions
of the travel time and the expected ridership for all trips i ∈ V , the R-MDVSP-STT consists
of finding feasible vehicle schedules over a one-day horizon that cover exactly every trip
i ∈ V while respecting vehicle availability at each depot d ∈ D. The R-MDVSP-STT is a
bi-objective optimization problem that aims at minimizing the operational costs (including
a fixed cost per vehicle used and variable costs) and, at the same time, maximizing service
reliability. In order to find near Pareto-efficient solutions, we use a linear scalarization
method (Hwang and Masud, 1979). Consequently, the R-MDVSP-STT is reformulated as
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a single-objective optimization problem by balancing the values of the two objectives by a
weighting factor β.

A vehicle schedule is defined as a sequence of trips starting and ending at a depot. The
first trip of a vehicle schedule is a pull-out trip from a depot d ∈ D to the starting location
of the first timetabled trip of the schedule and the last trip is a pull-in trip from the end
location of the last timetabled trip of the schedule to d. Meanwhile, the vehicle performs
connections between one or several pairs of trips i and j ∈ V . If trip i ends at the same
location as the starting location of trip j, the vehicle remains at the same location and
may have to wait at the terminal. Otherwise, the vehicle performs a deadhead trip (i.e.,
a trip without passengers) from the end location of trip i to the starting location of trip
j. A vehicle schedule is deemed feasible if it starts and ends at the same depot d ∈ D
and contains a sequence of pairwise compatible timetabled trips. Let κi,j be the deadhead
travel time between the end location of trip i and the starting location of trip j and let τ
be the minimum layover time between two trips. Trips i and j ∈ V are deemed compatible
if d1

i + κi,j + τ ≤ d0
j , where d0

j and d1
i are the departure and the arrival time of trips j and

i, respectively. Let S be the set of all feasible vehicle schedules and Sd ⊂ S be the subset of
these schedules starting and ending at the depot d ∈ D, such that S = ⋃

d∈D Sd.
The proposed model for the R-MDVSP-STT uses the following additional notation. For

every vehicle schedule s ∈ S and trip i ∈ V , let ys be a binary variable that takes value 1 if
vehicle schedule s is used in the solution and ai,s be a binary parameter equal to 1 if schedule
s covers trip i.

The R-MDVSP-STT can be expressed as the following integer linear program:

min
∑
s∈S

csys (4.3.1)

s.t.
∑
s∈S

aisys = 1, ∀i ∈ V (4.3.2)
∑
s∈Sd

ys ≤ bd, ∀d ∈ D (4.3.3)

ys ∈ {0,1}, ∀s ∈ S, (4.3.4)

where cs is the total cost (weighted sum of the operational costs and the cost for delays)
of vehicle schedule s.

This set partitioning formulation is similar to those proposed by Ribeiro and Soumis
(1994) and Hadjar et al. (2006). The only difference is in the definition of the cost coefficients
cs, s ∈ S, which take into account the risks of delay propagation in our model. The objective
function (4.3.1) minimizes the total cost of the selected vehicle schedules, while constraints
(4.3.2) ensure that each timetabled trip is covered exactly once by a schedule and constraints
(4.3.3) ensure that vehicle availability is respected at each depot.
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Because S typically contains a huge number of schedules, it is not computationally effi-
cient to enumerate them a priori. Rather, as described in Section 4.4, a column generation
algorithm is used to identify vehicle schedules to include in a restricted version of the model.
This is done by solving shortest path problems by dynamic programming on so-called con-
nection networks similar to those first introduced by Ribeiro and Soumis (1994) and defined
as follows. With every depot d ∈ D, we associate a network Gd = (Vd,Ad) with node set
Vd = V ∪ {nd0,nd1} and arc set Ad. Nodes nd0 and nd1 represent depot d at the beginning and
the end of the day, respectively. Three types of arcs (i,j) are defined: pull-out arcs (i.e.,
(ndo, i) for i ∈ V), pull-in arcs (i.e., (i,nd1) for i ∈ V), and arcs between pairs of compatible
timetabled trips (i.e., (i,j) for i, j ∈ V). We have previously determined the compatibility of
trips using deterministic values for travel time, departure time and arrival time. However,
since we are taking into account the variability of travel time, an alternative approach would
be to establish a compatibility probability between any pair of trips i and j ∈ V and expand
our network to include all possible connections between trips with a non-zero compatibility
probability. This probability would represent the likelihood of trip j starting on time after
trip i. Despite considering this option, we deliberately chose not to incorporate these ad-
ditional arcs. This decision was driven by the fact that, on average, they would result in
positive secondary delays, which is not desirable in practice.

A path in Gd starting at the source node ndo and ending at the sink node nd1 is a feasible
vehicle schedule. We define the cost of a feasible schedule s associated with the set of arcs
A(s) as

cs =
∑

(i,j)∈A(s)
csij, (4.3.5)

where csij is the cost of the arc (i,j) when it is covered by vehicle schedule s, defined as shown
in Table 4.1. In this table, η is the cost per vehicle used, rT is the cost per minute of travel,
κd,i and κi,d are the deadhead travel times between the depot d and the starting location of
trip i and the end location of trip i and the depot d, respectively, rW is the cost per minute
of waiting outside a depot, and qsi is the cost associated with potential delays in trip i when
it is covered by vehicle schedule s. The cost of connection arcs is a weighted sum of the
operational costs and the cost for delays (qsi ), with β as the weighting factor. The latter cost
qsi is path-dependent and its value will be discussed in Section 4.3.2.

Table 4.1 – Cost of the arcs (i,j) ∈ A(s)

Arc (i,j) Type csij

(ndo,j) pull-out η + rTκd,j
(i, j) connection rTκi,j + rW (d0

j − d1
i ) + βqsj

(i,nd1) pull-in rTκi,d
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To avoid excessive congestion at the terminals and long idle time for the drivers, we
impose a threshold ∆ on the waiting time d0

j −d1
i between two consecutive trips i and j ∈ V .

If the waiting time exceeds ∆, the vehicle must move to the nearest depot after completing
trip i, wait at the depot, and then move to the starting location of trip j. We modified
slightly the connection network of Ribeiro and Soumis (1994) to account for this constraint
by adding a new type of connection that artificially includes the wait-at-depot. This avoids
the use of pull-in and pull-out arcs for the wait-at-depot.

4.3.2. Controlling schedule reliability

Delay propagation between all consecutive timetabled trips of a schedule is penalized
in the objective function of the R-MDVSP-STT in an attempt to increase the reliability of
the selected vehicle schedules. For each i ∈ V and s ∈ S, we define the cost for delays as
qsi = αiE(Xs

i ), where αi is the relative passenger flow (or demand volume) on trip i such
that ∑i∈V αi = 1, Xs

i is a random variable representing the secondary delay of trip i when
it is covered by schedule s, and E(Xs

i ) its expectation. The parameters αi, i ∈ V , put more
weight on delays incurred during timetabled trips with a high ridership in the cost function
so that, for example, the penalty assigned to a delayed peak hour trip is larger than the
one assigned to a delayed off-peak hour trip, when the delays of both trips are of the same
magnitude.

To be able to compute the expected secondary delay of each trip i ∈ V covered by any
schedule s ∈ S, an estimate of the discretized probability density function of the travel
time of each timetabled trip is given in input to the R-MDVSP-STT. These estimations are
taken from Ricard et al. (2022) that compared many probabilistic models for the long-term
prediction of the density of the travel time (PDTT). The PDTT is framed as a supervised
learning problem that aims at predicting, for each trip in a set of unseen (or future) trips,
the probability density function of its travel time based on its attributes (e.g., day of the
week, distance, scheduled departure time, etc.). Several models were trained and tested on a
2-month dataset of the Montréal bus network including more than 41,000 trips collected by
in-car Advanced Public Transport Systems (APTS). A similarity-based density estimation
model using a k Nearest Neighbors method and a Log-Logistic distribution provided the best
results, both in terms of the estimation of the true conditional probability density function
of the travel time and the approximation of the expected secondary delays, on this dataset.
Thus, this model (and its selected features and parameters) is used here to estimate the
probability density function of the travel time of each timetabled trip. Then, for any given
vehicle schedule s ∈ S, the probability mass function of Xs

i for all i ∈ s is recursively
computed based on the latter travel time distributions from the first to the last timetabled
trip of the schedule. Note that we consider deterministic travel times for pull-in, pull-out,
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and deadhead trips because these trips are usually short and do not involve passengers, thus
eliminating one main source of travel time variability. Next, we discuss the discretization
of the probability density functions of the travel time and the derivation of the probability
mass functions of Xs

i for each i ∈ V and s ∈ S.
First, for each trip i ∈ V , let Ṫi be a random variable representing its actual travel time

and let ḣi(t) = Pr(Ṫi = t) be the probability density function of Ṫi. The actual travel time
Ṫi for all i ∈ V varies from day-to-day due to random disruptions and demand or capacity
reasons that can either be internal or external to the bus network (Yetiskul and Senbil, 2012;
Mazloumi et al., 2010). We assume that this uncertainty is exogenous to resource allocation
or, in other words, that ḣi(t), for each i ∈ V , stays the same regardless of the selected bus
schedules.

In order to obtain a finite number of possible outcomes, we transpose Ṫi, for all i ∈ V ,
onto a discrete space by allocating the density of all non-integer travel times to the closest
rounded down travel time (using minutes as time unit). Furthermore, for each i ∈ V , we
truncate the distribution of Ṫi below its 5th percentile and over its 95th percentile. Let
ṫ 5
i and ṫ 95

i be the value of Ṫi at the 5th and 95th percentile of its probability distribution,
respectively. For each i ∈ V , let Ti be defined over Φi as

Φi = {
⌊
ṫ 5
i

⌋
,
⌊
ṫ 5
i

⌋
+ 1, ...,

⌊
ṫ 95
i

⌋
− 1,

⌊
ṫ 95
i

⌋
}, (4.3.6)

and let hi(t) be the probability mass function with a discrete finite support of Ti, where
the density of Pr(Ṫi <

⌊
ṫ 5
i

⌋
) and Pr(Ṫi ≥

⌊
ṫ 95
i

⌋
+ 1) is uniformly redistributed to

Pr(Ti =
⌊
ṫ 5
i

⌋
),Pr(Ti =

⌊
ṫ 5
i

⌋
+ 1), . . . ,Pr(Ti =

⌊
ṫ 95
i

⌋
) in order to obtain a proper proba-

bility distribution (i.e., ∑⌊ṫ 95
i ⌋

t=⌊ṫ 5
i⌋
hi(t) = 1).

Second, based on the above probability mass functions and considering that d0
i , for all

i ∈ V , κi,j, for all i, j ∈ V , and τ are also stored to the nearest minute, it is possible to
derive, for a given vehicle schedule s ∈ S, the probability mass function of Xs

i for all i ∈ s
as follows. For each i ∈ s, let Y s

i be a random variable representing the actual departure
time of trip i and let f si (y) = Pr(Y s

i = y) be the probability mass function of Y s
i . We have

developed an exact procedure inspired by the works of Errico et al. (2018) and Shen et al.
(2016) to recursively compute f si (y). This procedure is as follows.

We assume that the first timetabled trip of a schedule is never delayed, i.e., for every
schedule s ∈ S, f svs0(d0

vs0
) = 1, where vs0 ∈ s is the first timetabled trip of s. For the other trips

j ∈ s\{vs0}, three cases are distinguished: when the bus starts trip j on time (i.e., y = d0
j),

late (i.e., y > d0
j), and early (i.e., y < d0

j). The last case has zero probability because
we assume a bus cannot start ahead of time. The distribution f sj (y) of a trip j ∈ s\{vs0}
preceded by trip i ∈ s can be computed as
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f sj (y) = Pr(Y s
j = y) =


∑
k∈Φi hi(k)×∑d0

j−κi,j−τ−k
y′=d0

i
f si (y′), if y = d0

j ;∑
k∈Φi hi(k)× f si (y − κi,j − τ − k), if y > d0

j ;
0, otherwise.

(4.3.7)

Let gsj (x) = Pr(Xs
j = x) = Pr(Y s

j = d0
j + x) = f sj (d0

j + x) be the probability mass
function of Xs

j . Its expectation is given by

E(Xs
j ) =

xmaxj,s∑
x=0

x× gsj (x) =
xmaxj,s∑
x=0

x× f sj (x+ d0
j), (4.3.8)

where i is the trip that precedes the trip j in schedule s and xmaxj,s = d0
i + xmaxi,s + κi,j + τ +⌊

ṫ95
i

⌋
− d0

j is the maximum secondary delay of trip j.
Note that, by definition, Y s

i andXs
i for all i ∈ V depend on the travel times of the previous

timetabled trips in s; their uncertainty is therefore endogenous to resource allocation. In
other words, the random variables Y s

i and Xs
i for s ∈ S and i ∈ V are likely to have different

probability distributions than Y s′
i and Xs′

i for s ̸= s′ ∈ S. Hence, it is not possible to
compute Y s

i and Xs
i for all i ∈ V and s ∈ S beforehand because, as mentioned earlier,

vehicle schedules are not enumerated but rather generated dynamically when solving the
R-MDVSP-STT.

Overall, we have shown in this section how to compute, for a given vehicle schedule, the
convolution of the probability mass function of the secondary delay of every timetabled trip in
the schedule. These distributions are used to assess the reliability of the schedule, measured
by the total expected secondary delay per passenger. With this information, a decision
maker can then address the trade-off between operational costs and reliability by adjusting
the weighting factor β that controls the importance given to the penalty for unreliability.

4.4. Heuristic branch-and-price algorithm for the R-
MDVSP-STT

In real-life R-MDVSP-STT instances, there exists a very large number of feasible vehi-
cle schedules. Instead of explicitly enumerating the corresponding variables in the integer
program (4.3.1)-(4.3.4), we propose to solve the R-MDVSP-STT using a column generation
algorithm (Irnich and Desaulniers, 2005; Lübbecke and Desrosiers, 2005) embedded in a
branch-and-bound tree. This solution method is also referred to as branch-and-price (Barn-
hart et al., 1998). Furthermore, we propose to use acceleration strategies to obtain integer
solutions in a reasonable amount of time. On the one hand, we use a heuristic branching
strategy and, on the other hand, we apply a perturbation method to reduce the strong
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degeneracy inherent to the set partitioning model (4.3.1)-(4.3.4). The column generation
algorithm as well as these two acceleration strategies are detailed in the following.

4.4.1. Column generation

Column generation is an iterative algorithm that generates variables (columns) as needed.
In this context, the linear relaxation of (4.3.1)-(4.3.4) is called the master problem (MP).
At each iteration, the algorithm solves a restricted MP (RMP) that is defined as the MP
restricted to a small subset S ′ ⊆ S of the schedule variables ys. This resolution provides a
primal and a dual solution. To identify potentially useful columns to add to the RMP, a set
of pricing problems is solved with the goal of finding negative reduced cost variables. In our
case, there is one pricing problem per depot and it corresponds to a shortest path problem
with stochasticity (Wellman et al., 2013; Boland et al., 2015). If no columns with a negative
reduced cost are identified, the algorithm stops and the current RMP solution is guaranteed
to be also optimal for the MP. Otherwise, some columns with a negative reduced cost are
added to S ′ and a new iteration is started.

4.4.1.1. Shortest path problem with stochasticity. The pricing problem for depot d is
defined on the acyclic network Gd (see Section 4.3.1) with modified arc costs as detailed
next. Let (ui)i∈V and (πd)d∈D be the dual variables associated with constraints (4.3.2) and
(4.3.3), respectively. The reduced cost c̃s of a vehicle schedule s ∈ Sd housed in depot d is
given by

c̃s = cs −
∑
i∈V

aisui − πd, (4.4.1)

with the following cost breakdown per arc

c̃sij =

c
s
ij − πd, if i = nd0;
csij − ui, if i ∈ V .

(4.4.2)

Because the arc costs are stochastic and path-dependent in the R-MDVSP-STT, the stan-
dard labeling algorithm (Irnich and Desaulniers, 2005) cannot be used directly to solve the
pricing problems. The dependence assumption is crucial because, as explained by Wellman
et al. (2013), if the arc costs were stochastic but independent (i.e., if the probability mass
function of the secondary delay at each node did not depend on the ones of the previous
nodes in the path), the expected arc costs could be used directly in the standard labeling
algorithm. Faced with path-dependent uncertainty, we must therefore use the modified ver-
sion of the labeling algorithm proposed by Wellman et al. (2013) and Boland et al. (2015)
that uses a stochastic dominance criterion.
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This modified version of the labeling algorithm simultaneously extends multiple paths
in Gd until they reach the sink node (i.e., the depot). Each of these paths is obtained by
starting from a trivial path p and extending it by adding one vertex at a time. A vertex can be
added to a path if the corresponding extended path is feasible with respect to path-structural
constraints. The probability mass functions of the propagated delay and the reduced costs
are used in the algorithm to “discard paths which are not useful either to build a Pareto-
optimal set of paths or to be extended into Pareto-optimal paths”(Irnich and Desaulniers,
2005). This ability is indeed essential to efficient dynamic programming algorithms (Irnich
and Desaulniers, 2005). In the R-MDVSP-STT, two paths are not comparable if one has a
lower reduced cost than the other, but higher chances of being unreliable. In this case, no
path dominates the other and therefore no path can be discarded.

The labeling algorithm efficiently encodes paths using labels. Each label contains infor-
mation useful to identify paths that can be safely discarded. We refer interested readers to
the work of Ahuja et al. (1993) for an overview of the subject. Next, we define the labels,
the extension functions of these labels (i.e., a procedure to compute a label from a previous
label), and the stochastic dominance rule used in the dynamic programming algorithm.
Labels. Each label stores a representation of the actual departure time and the accumulated
reduced cost. As of now, many variables and parameters, notably the arc costs and the
probability distributions of both the actual departure time and the secondary delay of each
timetabled trip, have been defined in terms of the vehicle schedule covering them. We
extend these definitions to consider their counterparts in terms of the path that covers each
timetabled trip. To simplify notation, subscripts s and p, associated with a vehicle schedule
and a path, respectively, are used interchangeably in the following.

For each path p in Gd and each trip i ∈ V included in p (written as i ∈ p afterwards), let
F p
i (z) be the cumulative distribution function of Y p

i defined as

F p
i (z) =

z∑
y=d0

i

fpi (y). (4.4.3)

The actual departure time of a trip i ∈ p is represented by F p
i (z) instead of fpi (y) because,

as we will explain in the following, the former is directly used in the dominance rule. The
label Lpi of path p at node i is defined as

Lpi = (F p
i (d0

i ), ...,F p
i (d0

i + xmaxi,p ),Cp
i ), (4.4.4)

where Cp
i is the current accumulated reduced cost of path p.

Extension functions. Consider the extension of a label Lp
′

i = (F p′

i (d0
i ), ...,F p′

i (d0
i +

xmaxi,p′ ),Cp′

i ) associated with node i along the arc (i,j) to create a new label Lpj at node
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j. First, the equations for the xmaxj,p components of type F p
j (·) are derived from equation

(4.3.7) as detailed in Appendix A.1. This derivation results in

F p
j (z) =

∑
k∈Φi

hi(k)× F p′

i (z − κi,j − τ − k). (4.4.5)

When extending a label to the sink node, it is not necessary to update information on
the actual departure time, because a bus cannot be delayed once it is back at the depot.

Second, Cp
j can be decomposed in route segments (see equation (4.4.2) for the cost break-

down per arc) as
Cp
j = Cp′

i + c̃pi,j, (4.4.6)

where c̃pi,j is path-dependent if i,j ∈ V .
Stochastic dominance rule. Consider two paths p1 and p2 in Gd both ending at node i ∈ V
(that is, i is the resident node of p1 and p2) with labels Lp1

i = (F p1
i (d0

i ), ...,F p1
i (d0

i +xmaxi,p1 ),Cp1
i )

and Lp2
i = (F p2

i (d0
i ), ...,F p2

i (d0
i + xmaxi,p2 ),Cp2

i ), respectively. The path p1 dominates p2 (and
therefore p2 can be discarded) when the following two conditions hold:

(1) Cp1
i ≤ Cp2

i ,

(2) F p1
i (z) ≥ F p2

i (z), for all z ∈ {d0
i , d0

i + 1, . . . , d0
i + max{xmaxi,p1 ,xmaxi,p2 }}.

The first condition is straightforward, but we will explain in further detail the second one.
In the shortest path problem with stochasticity, the uncertain element is the cost of the arcs
and, more specifically, the cost for delays. Even though the arc costs are computed using the
expected secondary delays, the dominance condition cannot be based on the mathematical
expectation, because the probability distributions of secondary delay are path-dependent.
For example, consider again the two paths p1 and p2. If E(Xp1

i ) ≤ E(Xp2
i ), it does not

necessarily imply if we extend p1 and p2 with node j ∈ V that E(Xp1⊕j
j ) ≤ E(Xp2⊕j

j ), where
pk ⊕ j, k = 1, 2, denotes the path resulting from appending node j to path pk. Thus, a
stochastic dominance condition based on the cumulative distribution functions of the actual
departure time is used instead. When F p1

i (z) ≥ F p2
i (z) for some z ≥ d0

i , it means that
Pr(Y p1

i > z) ≤ Pr(Y p2
i > z) (i.e., path p1 is less likely to start trip i after time z). The

latter situation is desirable as it means that p1 is more likely to start on time. If it holds for
all z ∈ {d0

i , d0
i + 1, . . . , d0

i + max{xmaxi,p1 ,xmaxi,p2 }} (i.e., if the second condition holds), then p1

is undoubtedly more reliable than p2 and if we extend p1 and p2 along the same path, the
extension of p1 will be at least as reliable as the extension of p2. An example of this case is
illustrated in Figure 4.1a. This figure and Figure 4.1b display the probability mass functions
(PMF) and the cumulative distribution functions (CDF) of the actual departure time of the
resident node i ∈ V of two paths p1 and p2 in Gd. If both conditions hold, then p2 and
the extension of p2 are dominated by p1 and its extension. Path p2 can thus be discarded.
If the second condition does not hold for some z ∈ {d0

i , d0
i + 1, . . . , d0

i + max{xmaxi,p1 ,xmaxi,p2 }},
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as in the example in Figure 4.1b, it is not clear if p1 or p2 is more reliable. For example,
Pr(Y p1

i > d0
i + 1) < Pr(Y p2

i > d0
i + 1), but Pr(Y p1

i > d0
i + 2) > Pr(Y p2

i > d0
i + 2). Thus,

both paths are kept.

(a) Second condition holds (b) Second condition does not hold

Figure 4.1 – Examples of the second dominance condition applied to the trip i of paths p1
and p2

4.4.2. Heuristic branching

An exact branch-and-price algorithm (Barnhart et al., 1998) can derive an optimal solu-
tion to a MDVSP. However, medium- and large-scale MDVSP instances are difficult to solve
using exact methods because too many branch-and-bound nodes need to be explored. To
avoid exploring too many nodes, we apply one type of branching decision combined with a
variable rounding strategy. First, we branch on the number of vehicles used per depot. This
decision leads to the creation of one or two child nodes with upper and lower bounds on the
capacity of a given depot. Second, we impose the rounding of multiple schedule variables.
When this strategy is selected, a single node with one or several schedule variables fixed to 1
is created. To select the variable(s) fixed to 1, all the variables are first sorted in descending
order of their fractional value. Then, a maximum of three variables with a fractional part
greater than or equal to 0.9, namely, those with the largest fractional parts, are selected. If
there are fewer than three variables fulfilling this condition, only one or two variables are
selected, and if no variable has a fractional part greater than or equal to 0.9, the first variable
in the list, i.e., the one with the largest fractional part, is selected. Note that the values of
the maximum number of variables to round and of the fractional part threshold have been
determined empirically during a preliminary test campaign.

For medium-sized instances (less than 1,500 timetabled trips), the first technique (i.e.,
branching on the number of vehicles used per depot) is applied in priority. When this
number is integer for all depots, the algorithm switches to rounding schedule variables to
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yield integer solutions. Our experimental results suggest that when this branching decision
and this strategy are used to partially explore the branch-and-bound search tree, a good
trade-off between computing time and solution quality is achieved. When the number of
timetabled trips exceeds 1,500, the latter approach is not sufficient to reduce the computing
time and only the rounding strategy is applied. Thus, only one branch is explored, which is
equivalent to a diving heuristic. Our experimental results show that this does not significantly
sacrifice the quality of the derived solutions.

4.4.3. Constraint perturbation

Problems like (4.3.1) - (4.3.4) generally exhibit a high degree of degeneracy. In order
to cope with this issue, we use a constraint perturbation strategy (Charnes, 1952). We
introduce perturbation variables η+

i and η−
i that allow limited under- and over-covering of

trip i for all i ∈ V , respectively. The perturbed MP is defined as

min
∑
s∈S

csys +
∑
i∈V

(δ+
i η

+
i + δ−

i η
−
i ) (4.4.7)

s.t.
∑
s∈S

aisys + η+
i − η−

i = 1, ∀i ∈ V (4.4.8)
∑
s∈Sd

ys ≤ bd, ∀d ∈ D (4.4.9)

0 ≤ η+
i ≤ ξ+

i , ∀i ∈ V (4.4.10)

0 ≤ η−
i ≤ ξ−

i , ∀i ∈ V (4.4.11)

0 ≤ ys ≤ 1, ∀s ∈ S, (4.4.12)

where δ+
i and δ−

i are the penalties in the objective function for under- and over-covering trip
i ∈ V , respectively, and ξ+

i and ξ−
i are the upper bounds of η+

i and η−
i , respectively, for every

trip i ∈ V . Perturbation is removed when no other branching decision or strategy can be
applied.

4.5. Assessing schedule reliability
To address delay propagation, the R-MDVSP-STT selects vehicle schedules that are such

that they usually contain buffers to absorb recurring delays. Pushed to the extremes, the
lowest level of reliability is achieved when these schedules contain no buffer and the highest
level when a different vehicle is assigned to each timetabled trip (i.e., the number of vehicles
is equal to the number of timetabled trips). However, the former solution is likely to displease
passengers and the latter is highly cost-inefficient. The problem is thus to address the trade-
off between operational costs and reliability. This is done by adjusting the factor β in the
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cost of connection arcs (see Table 4.1). After solving several times the R-MDVSP-STT
while adjusting the factor β, it is possible to compare more carefully the solutions thereby
obtained. In this respect, we define next three reliability metrics that decision-makers can
use to thoroughly compare multiple schedules and choose the one with the most appropriate
balance, in their view, between operational costs and reliability and we provide a Monte
Carlo simulation framework to compute these metrics.

4.5.1. Reliability metrics

The R-MDVSP-STT solutions can be compared based on the following metrics: the
expected secondary delay per passenger, the probability that a passenger boards a delayed
timetabled trip, and the average number of timetabled trips needed to recover from secondary
delays. These three metrics are computed as follows.
Expected secondary delay per passenger (γ):

γ =
∑
s∈S∗

∑
i∈V

aisαiE(Xs
i ), (4.5.1)

where S∗ is the set of vehicle schedules selected in a solution.
Probability that a passenger boards a delayed timetabled trip (ψ):

ψ =
∑
s∈S∗

∑
i∈V

aisαiPr(Xs
i > ϵ), (4.5.2)

where ϵ is a grace period (i.e., if the secondary delay of a trip i ∈ V is less than or equal to
ϵ, the trip is considered on time and otherwise it is considered delayed).
Average number of timetabled trips needed to recover from secondary delays (θ):

θ = 1
|S∗|

∑
s∈S∗

Ω̄s, (4.5.3)

where Ωs is a set containing, for every timetabled trip in the schedule s, the expected number
of trips needed to get back on schedule every time it is delayed (i.e., if its secondary delay is
larger than ϵ) and Ω̄s its average. To approximate this metric, two counters, φs,k and ρs,k,
counting the number of first delayed timetabled trips and subsequent delayed timetabled
trips in schedule s at iteration k, respectively, are used. To better understand how these
counters work, let us consider the toy example presented in Figure 4.2. The timetabled trips
highlighted in red are delayed whereas the gray ones are on time. In this example, it takes
one timetabled trip to recover the first delay impacting trip vs1, whereas the second delay does
not affect the departure time of the next timetabled trip, and the last delay impacting trip vs7
is never fully recovered before the end of the schedule. Thus, φs,k = 3 and ρs,k = 1+0+2 = 3
in this example.
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nd0 vs0 vs1 vs2 vs3 vs4 vs5 vs6 vs7 vs8 vs9 nd1

E E E

Figure 4.2 – Example of the potential delay propagation in schedule s = {vs0, vs1, . . . , vs9} of
10 timetabled trips at iteration k. Delayed trips are highlighted in red

Metrics γ and ψ reflect the secondary delay a passenger is expected to encounter in the bus
network and how likely a passenger is to travel on a timetabled trip that is late, respectively.
The parameters αi, i ∈ V , weight the contribution of each trip i ∈ V to these metrics by their
relative passenger flow (or demand volume). Thus, these metrics are user-oriented, a point
of view often overlooked in the evaluation of public transportation services (van Oort, 2011).
The third metric is more agency-oriented as it provides useful information for assessing the
potential savings on recovering methods. Indeed, an extra bus is often dispatched when a
severe cascade effect of delays is observed, i.e., when the number of timetabled trips needed
to get back on schedule is relatively large. The first metric is minimized when solving (4.3.1)
- (4.3.4), whereas the two other metrics are not directly minimized. Thus, the first metric
should improve as β increases and we expect the other two metrics to follow this trend as
well, since the three metrics are interrelated.

4.5.2. Monte Carlo simulation

In this section, two simulation cases will be presented. We start with the first one. The
pseudo-code in Algorithm 2 summarizes the Monte Carlo simulation of K = 1,000 iterations
performed to compute the approximations of the three metrics: γ̂, ψ̂, and θ̂. At each iteration
k = 1, . . . ,K, delay propagation in each vehicle schedule s ∈ S∗ is assessed. In Step 8, a
travel time tki is randomly sampled from ḣi(t) for each i ∈ s except for the last timetabled
trip in s. Note that, in the simulation, we use the travel time probability density functions
ḣi(t) instead of the probability mass functions hi(t) like in the R-MDVSP-STT because the
probability density functions offer more complete information. Then, in Steps 6 and 9, the
value of ys,ki , the actual departure time of trip i covered by schedule s at iteration k, is
recursively computed for all i ∈ s, from the first timetabled trip of the schedule to the last
timetabled trip, as

ys,kvs0 = d0
vs0

(4.5.4)

ys,kj = max{ys,ki + tki + κi,j + τ , doi}, (4.5.5)

where, for each j ∈ V , i is the trip preceding j in s and vs0 is the first timetabled trip of s. In
Step 10, the secondary delay xs,kj of trip j covered by schedule s at iteration k is computed
for all j ∈ s \ {vso} as
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xs,kj = ys,kj − d0
j . (4.5.6)

Algorithm 2: Monte Carlo simulation to compute γ̂, ψ̂ and θ̂

1 γ̂ ← 0, ψ̂ ← 0, θ̂ ← 0
2 for k ← 1 to K do
3 for s ∈ S∗ do
4 φs,k ← 0 // counter of the number of first delayed timetabled

trips
5 ρs,k ← 0 // counter of the number of subsequent delayed timetabled

trips
6 ys,kvs0 ← dovs0
7 for i ∈ s \ {vs0} do
8 Randomly generate tki−1 from ḣi−1(t) or h̄i−1(t)
9 ys,ki ← max{ys,ki−1 + tki−1 + κi−1,i + τ , d0

i }
10 xs,ki ← ys,ki − d0

i

11 γ̂ ← γ̂ + (αi × xs,ki )
12 if xs,ki > ϵ then

// delayed timetabled trip
13 ψ̂ ← ψ̂ + αi
14 if xs,ki−1 ≤ ϵ then
15 φs,k ← φs,k + 1
16 else
17 ρs,k ← ρs,k + 1
18 end
19 end
20 end
21 θ̂ ← θ̂ + ρs,k

φs,k

22 end
23 end
24 γ̂ ← γ̂/K

25 ψ̂ ← ψ̂/K

26 θ̂ ← θ̂/(K × |S∗|)

Finally, the approximations of the three metrics are computed in Steps 11-26. When a trip
i ∈ s preceded by trip i − 1 is delayed at iteration k (i.e., when it has a secondary delay
larger than ϵ) and when the trip i − 1 was not delayed, the counter φs,k is incremented by
one (see Step 15). Otherwise, the counter ρs,k is incremented by one (see Step 17).

Furthermore, we study the effect of external and extraordinary factors (e.g., a severe
snowstorm) resulting in delays of the same magnitude on all timetabled trips in the so-called
second case of the simulation. For each trip i ∈ V , let ṫ 75

i and ṫ 95
i be the values of Ṫi

83



at the 75th and 95th percentiles of its probability distribution, respectively. To generate
random travel time values, we truncate the probability density function ḣi(t) below ṫ 75

i and
above ṫ 95

i , utilizing the procedure proposed in Thomopoulos (2012). At each iteration and
for each timetabled trip, a random value u ∼ U(0,1) is generated. Then, we compute
v = Ḣi(ṫ 75

i ) + u × (Ḣi(ṫ 95
i ) − Ḣi(ṫ 75

i )), where Ḣi(t) is the CDF of ḣi(t), before finding the
travel time value t such that Ḣi(t) = v.

4.6. Computational results
In this section, we test our model on three real-life instances, I1, I2, and I3 with 1,175,

1,916, and 2,195 timetabled trips, respectively, taken from the Montréal bus network and
provided by our industrial partner. The probability density functions of the travel time of
all the timetabled trips in these instances have been computed as in Ricard et al. (2022) (see
Section 4.3.2). The main properties of instances I1, I2, and I3, namely the instance name
(Instance), the number of timetabled trips (|V|), the number of arcs (|A|), the number of
depots (|D|), and the number of bus lines (# lines), are listed in Table 4.2.

Table 4.2 – Properties of real-life instances I1 - I3

Instance |V| |A| |D| # lines
I1 1,175 628,064 2 8
I2 1,916 1,622,134 3 8
I3 2,195 2,119,534 2 8

Throughout our experiments, the cost per vehicle used η, the cost per minute of travel
rT (either deadhead or pull-in/pull-out trips), the cost per minute of waiting time outside
a depot rW , the threshold on the maximum waiting time outside a depot ∆, and the grace
period ϵ are set to 1,000, 0.4, 0.2, 45 minutes, and 3 minutes, respectively. The penalties
for under- and over-covering trip i ∈ V , δ+

i and δ−
i , are set to 1 for every trip i ∈ V and the

upper bounds ξ+
i and ξ−

i are randomly selected in [0, 0.1] for every trip i ∈ V .
We conduct our experiments on a Linux machine equipped with 12 Intel core i7-8700

processors running at 3.20 GHz and a RAM of 65 GB. The branch-and-price algorithm is
implemented using the GENCOL library, version 4.5, and the pricing problems are solved
by the commercial solver CPLEX 12.8.

Next, we compare the R-MDVSP-STT to the traditional MDVSP and the MDVSP with
minimum buffer time. On the one hand, we evaluate the heuristic performance of our
algorithm and analyze how the operational costs and the reliability metrics change with the
factor β in the MDVSP and the R-MDVSP-STT solutions. On the other hand, we compare
the values of the reliability metrics of the solutions of the R-MDVSP-STT to those of the
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MDVSP with minimum buffer time to be able to establish the best approach for improving
bus schedule reliability.

4.6.1. MDVSP results

In this section, we provide baseline results obtained by solving heuristically instances
I1-I3 without considering reliability (i.e., β = 0). This is equivalent to using the traditional
MDVSP formulation. We first study the performance of our algorithm in terms of computing
time and solution quality and then we assess the trade-off between operational costs and
reliability of MDVSP solutions.

Table 4.3 reports the upper bound (UB) and the lower bound (LB) obtained, the relative
difference in percentage between the UB and the LB (Gap), the number of branching nodes
explored (# Nodes), and the computing times (CPU time) in seconds, including the total
CPU time (Total), the time to solve the root node (Root), and the time to solve the pricing
problems (Pricing).

Table 4.3 – Heuristic performance without considering reliability (MDVSP)

CPU time (seconds)
Instance UB LB Gap (%) # Nodes Total Root Pricing
I1 78,861.8 78,857.3 0.01 68 3,035.5 1,046.0 1,481.1
I2 135,919.2 135,912.2 0.01 96 6,934.2 3,327.4 3,252.2
I3 167,727.2 167,718.5 0.01 128 8,235.1 3,642.2 3,933.9

All instances are solved in less than 140 minutes with approximately half of the computing
time spent on solving the root node. Also, the optimality gaps are small (below 0.01%),
suggesting that our heuristic algorithm can find near-optimal solutions.

The trade-offs between operational costs and reliability for the instances I1-I3 solved
without considering reliability are presented in Table 4.4. The columns display the oper-
ational costs (Op. costs), the number of vehicles used (# Bus), the average number of
timetabled trips per bus (# trips/bus), and the reliability metrics (γ,ψ and θ) based on the
first and the second cases (i.e., normal conditions and external and extraordinary factors, re-
spectively). The definition of the two simulation cases as well as the method to approximate
these metrics using the travel time probability density functions were presented in Section
4.5.

Of instances I1, I2, and I3, the second is the most prone to unreliability. It has an
expected secondary delay per passenger of 2.14 minutes, a probability that a passenger
boards a delayed timetabled trip of 23%, and an average number of timetabled trips needed
to recover from secondary delays of 2.08 trips. These values are not negligible, especially for
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Table 4.4 – Operational costs versus reliability of solutions obtained without considering
reliability (MDVSP)

Reliability
Instance Op. costs # Bus # trips/bus 1st case 2nd case

γ ψ θ γ ψ θ

I1 78,861.8 75 16 0.61 0.07 1.38 1.96 0.22 2.18
I2 135,919.2 131 15 2.14 0.23 2.08 12.31 0.64 2.92
I3 167,727.2 162 14 1.46 0.17 1.89 9.08 0.58 4.19

the last metric if we consider that each bus performs an average of 15 timetabled trips per
day, but were expected because no buffer time nor stochastic optimization is considered.

4.6.2. R-MDVSP-STT results

This section investigates the performance of our algorithm when solving the R-MDVSP-
STT, i.e., when taking into account reliability (β > 0). Moreover, we present the operational
costs and the reliability metrics of several R-MDVSP-STT solutions. This allows us to
compare the solutions of our model with the baseline MDVSP solutions and assess how
the reliability metrics and operational costs fluctuate. Given the bi-criteria nature of the
objective function, we obtained multiple R-MDVSP-STT solutions (an approximate Pareto
frontier) for each instance by solving the problem multiple times with a different β value
each time. A total of 8 values within the range of η/10 to 10η, where η = 1,000 is the cost
per vehicle used, have been tested.

Table 4.5 provides the heuristic performance of our algorithm for different β values. The
upper bounds (UB) and lower bounds (LB) on the optimal values include the cost related to
delays, whereas it is not the case in Table 4.3 because β = 0. It may be noted that the opti-
mality gaps of the R-MDVSP-STT are similar to those of the MDVSP. Furthermore, the total
computing times do not increase much compared to those obtained for the MDVSP, thanks
to the use of a branching heuristic that controls the number of branching nodes explored
(see Section 4.4.2). However, the proportion of time dedicated to the pricing problems is
increased. For example, 47% of instance I2 computing time is spent on the princing problems
for the MDVSP and this proportion increases to 77% to 86% for the R-MDVSP-STT.

The trade-offs between operational costs and reliability of the vehicle schedules obtained
with different β values are provided in Table 4.6. The operational costs displayed in this
table are computed by subtracting to the solution values (UBs) the costs related to delays.
Since, in our experiments, all the solutions to the R-MDVSP-STT use the same number
of vehicles as the corresponding MDVSP schedules, the cost increase is evaluated in terms
of the variable operational costs (that exclude the cost per vehicle used). The variable
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Table 4.5 – Heuristic performance considering reliability (R-MDVSP-STT)

CPU time (seconds)
Instance β UB LB Gap (%) # Nodes Total Root Pricing
I1 η/10 78,916.8 78,912.3 0.01 42 2,820.7 1,504.3 2,205.3

η/5 78,962.0 78,956.8 0.01 44 2,630.0 1,468.0 2,071.7
η/2 79,062.1 79,057.6 0.01 43 2,803.7 1,507.5 2,174.0
η 79,183.8 79,179.2 0.01 43 2,903.8 1,474.0 2,240.4
2η 79,359.4 79,354.9 0.01 43 3,066.6 1,524.3 2,310.0
4η 79,615.2 79,610.7 0.01 43 3,364.1 1,552.9 2,495.6
8η 80,039.4 79,997.7 0.05 133 6,214.5 1,617.3 4,561.5
10η 80,170.5 80,165.4 0.01 50 3,852.5 1,544.3 2,813.9
avg. 79,356.9 79,346.8 0.01 57 3,487.2 1,517.0 2,645.3

I2 η/10 136,114.0 136,107.1 0.01 76 10,979.1 6,601.6 9,423.7
η/5 136,275.0 136,267.3 0.01 95 11,601.2 6,494.8 9,868.2
η/2 136,605.0 136,595.5 0.01 94 11,174.1 6,221.3 9,445.9
η 136,966.0 136,955.6 0.01 106 10,314.0 5,473.6 8,560.3
2η 137,452.0 137,442.9 0.01 92 10,652.6 6,175.8 8,499.1
4η 138,153.0 138,144.0 0.01 87 9,467.8 5,816.2 7,430.0
8η 139,235.0 139,226.5 0.01 81 7,666.6 4,863.0 5,932.5
10η 139,717.0 139,707.6 0.01 90 7,232.0 4,766.6 5,564.8
avg. 137,393.1 137,384.5 0.01 87 9,963.7 5,902.4 8,201.4

I3 η/10 167,862.0 167,852.2 0.01 94 10,215.8 6,366.2 8,395.6
η/5 167,977.0 167,967.8 0.01 111 10,599.1 5,986.0 8,586.8
η/2 168,229.0 168,219.3 0.01 112 10,075.9 5,998.4 8,083.8
η 168,504.0 168,493.7 0.01 128 10,957.0 5,786.1 8,602.5
2η 168,832.0 168,822.9 0.01 100 10,064.7 6,558.3 7,771.3
4η 169,212.0 169,201.8 0.01 107 9,978.4 6,129.7 7,460.4
8η 169,654.0 169,644.4 0.01 92 8,045.2 5,341.3 5,963.6
10η 169,804.0 169,794.2 0.01 75 7,409.8 5,446.4 5,714.0
avg. 168,652.3 168,642.8 0.01 97 9,634.9 6,001.1 7,591.3

operational costs increase (Var. op. costs increase) values are obtained by comparing the
R-MDVSP-STT solutions to the corresponding solutions of the MDVSP found in Table 4.4.

The R-MDVSP-STT solutions have variable operational costs up to 29.53% higher than
the base solutions, but all use the same number of buses. This is desirable in practice
because it implies that taking reliability into account does not affect the optimal fleet size.
Significant reliability gains can be achieved without much deterioration in operational costs.
For example, with β = η/5, the probability that a passenger boards a delayed timetabled
trip in instance I2 is reduced from 23% to 15% with a variable operational costs increase of
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Table 4.6 – Operational costs versus reliability of the R-MDVSP-STT solutions

Reliability
Instance β Var. op. costs # Bus 1st case 2nd case

increase(%)
γ ψ θ γ ψ θ

I1 η/10 0.16 75 0.40 0.05 0.96 1.49 0.18 2.26
η/5 0.54 75 0.33 0.04 0.78 1.01 0.13 1.41
η/2 1.51 75 0.22 0.02 0.60 0.69 0.08 1.30
η 2.82 75 0.16 0.02 0.43 0.43 0.04 1.00
2η 5.28 75 0.11 0.01 0.36 0.31 0.03 0.70
4η 7.97 75 0.08 0.01 0.34 0.22 0.02 0.56
8η 12.82 75 0.07 0.01 0.24 0.20 0.02 0.49
10η 13.57 75 0.06 0.01 0.24 0.20 0.02 0.49

I2 η/10 0.31 131 1.51 0.18 1.50 9.48 0.62 3.11
η/5 1.38 131 1.20 0.15 1.29 7.96 0.60 2.70
η/2 5.04 131 0.71 0.09 0.96 5.04 0.50 2.56
η 8.81 131 0.49 0.06 0.76 3.08 0.37 2.28
2η 14.51 131 0.33 0.04 0.56 1.58 0.21 1.39
4η 20.34 131 0.25 0.03 0.46 1.02 0.13 1.12
8η 27.49 131 0.20 0.02 0.40 0.75 0.10 0.98
10η 29.53 131 0.19 0.02 0.38 0.71 0.09 0.86

I3 η/10 0.22 162 1.03 0.13 1.32 7.23 0.56 3.95
η/5 0.59 162 0.90 0.11 1.16 6.09 0.53 2.99
η/2 2.74 162 0.57 0.07 0.88 3.89 0.43 2.59
η 5.54 162 0.36 0.04 0.73 2.39 0.29 2.13
2η 10.62 162 0.18 0.02 0.54 1.02 0.12 1.57
4η 15.02 162 0.11 0.01 0.40 0.53 0.06 1.10
8η 22.37 162 0.06 0.01 0.23 0.23 0.02 0.54
10η 24.15 162 0.05 <0.01 0.20 0.19 0.02 0.42

1.38%. Furthermore, in the first simulation case (i.e., under normal conditions), all three
reliability metrics, namely γ, ψ, and θ, improve monotonically when the penalty factor β
increases (compare columns under "1st case" in Tables 4.4 and 4.6). In the second simulation
case (i.e., under extraordinary factors), the latter remark holds for most of the solutions
with a few exceptions (compare columns under "2nd case" in Tables 4.4 and 4.6). All the
exceptions concern the third metric, θ, which is the metric the least connected to the function
minimized in (4.3.1)-(4.3.4). Specifically, the value of θ (second case) is higher than the one
of the corresponding MDVSP solution for instances I1 and I2 with β = η/10. Still, our
model produces overall good trade-offs between reliability and operational costs, even if
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some inconsistencies are observed during extraordinary events. We will analyze in the next
section how our model compares to a classical approach to address bus schedules’ reliability.

4.6.3. Comparison with the MDVSP with minimum buffer time

In Naumann et al. (2011), van Kooten Niekerk (2018), Amberg et al. (2011), and Amberg
et al. (2019), models that are aimed to improve the reliability of vehicle schedules are com-
pared to a simple approach: adding hard minimum buffer time constraints to the traditional
MDVSP. As in Naumann et al. (2011), van Kooten Niekerk (2018), Amberg et al. (2011), and
Amberg et al. (2019), we have observed that all solutions found using the latter approach
are very costly, use many additional vehicles, and most of them are largely dominated by the
R-MDVSP-STT solutions (see Appendix A.2). Instead, we propose to compare our model to
the MDVSP with soft minimum buffer time constraints. The soft constraints penalize, in the
cost function, connections that do not meet the minimum buffer time. In our experiments,
we set the numerical value of this penalty to 0.4 per minute below the minimum buffer time.

We tested several minimum buffer time rules that are drawn from the literature. The
rules and the numerical values tested are the following:

— Global buffer time, i.e., the same buffer time is imposed after each timetabled trip
(1, 2, 3, 4, 5, and 10 minutes);

— Buffer times proportional to the duration of each timetabled trip (5%, 10%, 15%,
and 20% of the expected trip duration);

— Buffer times to cover the primary delay of each timetabled trip x% of the time (50th,
75th, 90th, and 95th percentiles of Ṫi, for i ∈ V);

— Buffer times provided by our industrial partner.

Figures 4.3, 4.4 and 4.5 (one figure per instance) show the relationship between the
value of the reliability metrics and the increase in variable operational costs (relative to the
corresponding baseline solution) of the MDVSP, MDVSP with soft minimum buffer time
and R-MDVSP-STT solutions. Non-dominated solutions are circled. The simulation results
under normal conditions and under external and extraordinary factors are displayed in the
left-hand and right-hand side graphs, respectively.

On the one hand, Figures 4.3a, 4.4a and 4.5a show that, under normal conditions, all
the R-MDVSP-STT solutions are non-dominated with one exception (see the graph at the
bottom of Figure 4.3a). On the other hand, Figures 4.3b, 4.4b and 4.5b show that all the
solutions of the R-MDVSP-STT are non-dominated, in terms of metrics γ and ψ, for the
second simulation case. In terms of θ, many of the R-MDVSP-STT solutions of instance I2
are dominated by the solutions of the MDVSP or the MDVSP with soft minimum buffer
time, whereas all except one R-MDVSP-STT solutions of instance I1 and all R-MDVSP-STT
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(a) 1st case (b) 2nd case

Figure 4.3 – Reliability metrics - I1

solutions of instance I3 are non-dominated in the second simulation case. The proportion of
all non-dominated solutions that are R-MDVSP-STT solutions for each instance, scenario,
and metric is summarized in Table 4.7. Each entry of this table represents the number of
non-dominated R-MDVSP-STT solutions (where the maximum possible value is 8) on the
total number of non-dominated solutions (including MDVSP, MDVSP with soft minimum
buffer time, and S-MDVSP-STT).

90



(a) 1st case (b) 2nd case

Figure 4.4 – Reliability metrics - I2

Table 4.7 – Proportion of all non-dominated solutions that are R-MDVSP-STT solutions

Instance 1st case 2nd case
γ ψ θ γ ψ θ

I1 8/9 8/9 7/8 8/9 8/9 7/8
I2 8/10 8/10 8/9 8/10 8/15 4/7
I3 8/13 8/11 8/9 8/12 8/14 8/14
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(a) 1st case (b) 2nd case

Figure 4.5 – Reliability metrics - I3

Furthermore, the solutions of the R-MDVSP-STT form approximate Pareto-fronts in
both simulation cases. This feature is interesting for transport agencies because it allows
them to easily adjust the level of reliability.

4.7. Conclusions
In this work, we proposed a model for the R-MDVSP-STT that can be solved using MIP

technology featuring column generation. This model addresses the trade-off between two
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conflicting objectives, namely minimizing the operational costs and minimizing the expected
secondary delay per passenger. To evaluate the second objective, we introduced a method
to compute the convolution of the probability mass function of the secondary delay of every
timetabled trip in a vehicle schedule based on the discretized probability density functions
of the travel time. Furthermore, a heuristic branch-and-price algorithm for solving the R-
MDVSP-STT is proposed. In order to generate new columns (i.e., vehicle schedules) that
are both cost- and delay-efficient, a modified version of the labeling algorithm that features
a stochastic dominance criterion is used to solve the pricing problems.

We introduced three reliability metrics, two of which are passenger-oriented, and a simu-
lation framework to compute them after solving the R-MDVSP-STT. Two simulation cases
are tested. Delay propagation is assessed, first, under normal conditions (i.e., when travel
times are subject to day-to-day variability) and second, under external and extraordinary
factors (e.g., a severe snowstorm).

We conducted our experiments on three real-life instances of 1,175, 1,916, and 2,195
timetabled trips and 2 or 3 depots from the city of Montréal. Our experimental results
indicate that our approach provides near-optimal trade-offs between operational costs and
reliability in a reasonable amount of time. Specifically, under normal conditions, the R-
MDVSP-STT solutions are more reliable in terms of the three reliability metrics than the
corresponding solutions of the MDVSP. Moreover, all but one of the solutions of our model
were not dominated by a MDVSP or MDVSP with minimum buffer time (enforced by soft
or hard constraints) solution. In the presence of external and extraordinary factors, our
model also generally provided better trade-offs between operational costs and reliability than
traditional MDVSP with minimum buffer time in terms of the first and second metrics and
still good solutions in terms of the third metric. What is more, our approach allows to easily
reach a targeted reliability level by tuning the value of a weighing factor and selecting the
solution in the approximate Pareto frontier with the desired trade-off between operational
costs and reliability.

Further research avenues include extending this work to electric buses where recharging
operations can induce even more delays, especially if energy consumption is also considered
stochastic.
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Chapter 5

Article 3 - The stochastic multi-depot electric
vehicle scheduling problem with recourse

Prologue

The stochastic multi-depot electric scheduling problem with recourse. Léa Ricard,
Guy Desaulniers, Andrea Lodi, Louis-Martin Rousseau. This paper has been
accepted at the 11th symposium of the European Association for Research in
Transportation.

I contributed to the original idea of the paper and was responsible for modeling the
problem mathematically, developing an efficient algorithm, writing an implementation guide
for the programmer in charge of modifying GENCOL according to the developed algorithm,
building test instances, running rests, analyzing the results, and writing the article. Guy
Desaulniers, Andrea Lodi, and Louis-Martin Rousseau provided valuable feedback and con-
tributed to the original idea of the paper.

5.1. Introduction
The multi-depot electric vehicle scheduling problem (MDEVSP) is an extension of the

multi-depot vehicle scheduling problem with additional limitations, including shorter driv-
ing range, longer refueling time, and special charging infrastructure. It aims at finding a
set of vehicle schedules that covers each timetabled trip exactly once while minimizing the
operational costs and respecting energy feasibility and depot capacity constraints. These
vehicle schedules are subject to operational uncertainties (e.g., traffic jams, extreme weather
conditions, or special happenings in the city) that impact travel time and energy consump-
tion. Nevertheless, the MDEVSP is generally solved without taking these uncertainties into
account. This strong assumption may compromise schedule adherence and lead to solutions



with sub-optimal true costs (including recourse costs). A simple way to guarantee energy
feasibility is to adopt a robust optimization approach, i.e., ensuring that energy feasibility is
respected for the worst case energy consumption scenarios (see for example the work of Bie
et al., 2021). Some less conservative approaches, that we group into stochastic optimization
(Li et al., 2021), robust optimization with cardinality constrained set (Jiang et al., 2021), and
dynamic optimization (Tang et al., 2019), have been proposed in the literature to address
the MDEVSP with uncertain travel time and/or energy consumption.

This work presents the first stochastic model for the MDEVSP with stochastic travel
time and energy consumption (S-MDEVSP). We formulate the S-MDEVSP as a two-stage
stochastic program and introduce a recourse policy to recover energy feasibility when the
vehicle schedules outputted a priori turn out to be infeasible. The main idea of our approach
is to take advantage of the fact that charging time can be adjusted from day-to-day to cope
with energy consumption deviations. This flexibility in the charging time could allow us
to output less conservative vehicle schedules than the robust optimization approach while
guaranteeing energy feasibility. However, this flexibility may also induce delays. To control
the build-up of delays, that can also be caused by travel time deviations, we add a penalty
for delays in the objective function as in Ricard et al. (2022). Our objective is to assess
the relevance of our two-stage stochastic model for commercially available battery electric
buses (BEBs). Precisely, we want to verify if a substantial reduction in the optimal fleet size
can be archived by introducing a recourse policy. We propose a branch-and-price algorithm
to solve this challenging optimization problem and test our solution approach on a real-life
instance of the city of Montréal.

This paper is organized as follows. Section 5.2 deals with the problem definition and
a two-stage stochastic program is introduced. We devise a method to compute the second
stage cost analytically. A column generation-based solution approach is presented in Section
5.3. We present the results of computation in Section 5.4 and discuss the relevance of our
approach for different commercially available BEBs. Our main conclusions are stated in
Section 5.5.

5.2. Mathematical model
Let V be a timetable of trips, where trip i ∈ V is scheduled to start at d0

i , D be a set of
depots, such that |D| ≥ 2, H be a set of charging stations, and R be a set of k time intervals
each of duration ρ. Let HE be a set of nodes, where each node is associated with a charging
station in H and a time interval in R. For example, denote hE1 r5 the node associated with
charging station h1 ∈ H and time interval r5 ∈ R. The S-MDEVSP is defined on the acyclic
connection-based networks Gd(Vd,Ad), for d ∈ D, with node set Vd = V ∪ {nd0,nd1} ∪ HE,
where nd0 and nd1 represent depot d at the beginning and the end of the day, respectively, and
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arc set Ad. Given the probability mass function (PMF) with finite supports of the travel
time (hi(t)) and the PMF of the energy consumption (ei(µ)) of each timetabled trip i ∈ V as
well as the travel time κij and the energy consumption ιij between the end location of node
i and the start location of node j, for all pairs of nodes i,j ∈ Vd, the first stage problem of
the S-MDEVSP consists of finding an a priori set of vehicle schedules S∗ that covers exactly
once each trip i ∈ V and respects the capacity bd of each depot d ∈ D. A vehicle schedule
is defined as a sequence of timetabled trips and time-expanded charging nodes starting and
ending at a depot d ∈ D. The amount of energy recharged at each time-expanded charging
node included in a vehicle schedule is derived from a piecewise linear function similar to
the one used in Montoya et al. (2017). In the second stage, the travel time and energy
consumption values are revealed and the a priori plan is modified with respect to a recourse
policy to guarantee energy feasibility. A vehicle schedule is considered feasible if the state
of charge (SoC) of the BEB never falls below φmin (e.g., 0%), or if one or several recourse
actions can be taken to regain energy feasibility. A recourse action is taken at the second
stage if the SoC of a bus is under ω (e.g., 50%) after a charging activity. It consists in
extending the charging activity by one or several time intervals in order to reach a SoC of
at least ω.

Our model for the S-MDEVSP uses the following notation. Let S be the set of all feasible
vehicle schedules, Sd be the subset of these schedules starting and ending at the depot d, ys
be a binary variable equal to 1 if vehicle schedule s is selected, and ais be a binary parameter
equal to 1 if schedule s covers trip i ∈ V . The S-MDEVSP can be formulated as the following
integer linear program:

min
∑
s∈S

c̄sys (5.2.1)

s.t.
∑
s∈S

aisys = 1, ∀i ∈ V (5.2.2)
∑
s∈Sd

ys ≤ bd, ∀d ∈ D (5.2.3)

ys ∈ {0,1}, ∀s ∈ S, (5.2.4)

where c̄s = cs + βE[Qs(t,µ)] is the expected cost of vehicle schedule s, cs is the operational
costs of s, β is a weighting factor, and E[Qs(t,µ)] is the expected second-stage cost of s. This
latter cost penalizes the delay a passenger is likely to encounter in schedule s. Specifically,
E[Qs(t,µ)] = ∑

i∈s∪V αiE(Xs
i ), where αi is the relative passenger flow (or demand volume)

on timetabled trip i and Xs
i is the secondary delay of timetabled trip i covered by schedule

s (in minutes). A vehicle schedule s may be delayed because the travel times of its trips
deviate from the planned time, because buffer times before trips are not sufficient, or because
recourse actions are required. By adjusting the weighting factor β, one can find solutions
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with different trade-offs between operational costs and the expected second-stage cost. In
general, the larger the β the more reliable the S-MDEVSP solutions. Analytical equations to
compute E[Qs(t,µ)] in the first stage, for all s ∈ S generated, are developed in the following
two sections.

5.2.1. Probability of using a recourse action

Consider a vehicle schedule s = (1,2, . . . , i, i + 1, . . . , j − 1, j, . . . ,n) with trips i and
j ∈ V interspersed by a charging activity of j − i time intervals (i.e., i + 1, i + 2, . . . , j − 1
are time-expanded charging nodes). Let ms

j(z) be the PMF with finite supports of the SoC
of bus s just before trip j. The probability of not having to extend the charging time is

Pr{0 charge period before j ∈ s} =
100∑
z=ω

ms
j(z), (5.2.5)

and the probability of having to extend the charging time of ϕ charge periods is

Pr{ϕ charge periods before j ∈ s} = Pr{z|Λω(z) = ϕ}

=
ω−1∑

z=φmin
ms
j(z)[Λω(z) = ϕ], ϕ = 1, 2, . . . , k,

(5.2.6)

where Λω(z) is a function outputting the minimum number of additional charge time periods
to be performed when the initial SoC of a BEB is equal to z in order to get an updated SoC
of at least ω. We use the Iverson bracket (Iverson, 1962) notation (i.e., [P ] is equal to 1 if P
is true and 0 otherwise).

5.2.2. Delay propagation

Let f si (y) be the PMF with finite supports of the actual start time of activity i assigned
to schedule s and gsi (x) be the PMF with finite supports of Xs

i , i.e., of the secondary delay
of trip i, such that gsi (x) = f si (x+ d0

i ) when i ∈ V . For i ̸∈ V , gsi (x) is not defined.
Consider a schedule s = (1, 2 . . . ,n) and denote P 0

is := Pr{0 extra chr per. before i ∈ s}
and P ϕ

is := Pr{ϕ extra chr per. before i ∈ s}. We assume that the first timetabled trip of
a vehicle schedule s is never delayed (i.e., f s1 (d1)) = 1). Consider a trip j ∈ (2, 3, . . . ,n)
preceded by a trip i. The distribution of the actual start time of trip j can be recursively
computed as
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f sj (y) =



tmaxi∑
t=tmini

hi(t)
d0
j−t−Υ(i,j)∑
y′=d0

i

f si (y′)P 0
js +

k∑
ϕ=1

f si (y′ − ρϕ)P ϕ
js

 , if y = d0
j ;

tmaxi∑
t=tmini

hi(t)
f si (y − t−Υ(i,j))P 0

jrs +
k∑

ϕ=1
f si (y − t−Υ(i,j)− ρϕ)P ϕ

js

 , if y > d0
j ;

0, otherwise,

(5.2.7)

where tmini and tmaxi are the minimum and the maximum possible travel time values of
timetabled trip i ∈ V , respectively, and Υ(i,j) is equal to κij + τ if there is no charging
activity between trips i and j, or κiq + κqj + τ + (j − i)ρ if there is a charging activity of
j − i time intervals at station h ∈ H between trips i and j. Here, τ is the minimum layover
time before each timetabled trip.

The expected secondary delay of a trip j assigned to s is expressed as E(Xs
j ) = ∑xmaxjs

x=0 x×
f sj (x+ d0

j), where xmaxjs = d0
i + xmaxis + κij + τ + tmaxi − d0

j is the maximum possible secondary
delay of trip j when covered by vehicle schedule s. It should be observed that f sj (y), ms

j(z),
P 0
is, and P ϕ

is are, by definition, schedule-dependent. Since the schedules are not enumerated
but rather generated in our algorithm, is it impossible to compute f sj (y), ms

j(z), P 0
is, and P ϕ

is

for all i ∈ V and s ∈ S beforehand. Instead, the latter are dynamically generated throughout
the solution process.

Every time a trip i is delayed of 1 minute, a penalty of βαi is paid. Depending on the
transport agency’s level of delay aversion, the weighting factor β can be adjusted to find an
appropriate trade-off between the operational costs and reliability. Generally speaking, the
larger the β, the more reliable (or delay-tolerant) the S-MDEVSP solutions.

5.3. Heuristic branch-and-price algorithm for the S-
MDEVSP

Since there is generally a very large number of feasible vehicle schedules in the S-
MDEVSP, we propose a branch-and-price solution approach that generates columns (i.e.,
vehicle schedules) instead of enumerating them. We use the same heuristic branching strat-
egy as in Ricard et al. (2022) to obtain integer solutions in a reasonable amount of time.

To identify columns that could be potentially useful to add, we solve one pricing problem
per depot d ∈ D at each iteration. These pricing problems are defined on the networks Gd,
for d ∈ D, with modified arc costs c̃sij defined as

c̃sij =

c̄
s
ij − πd, if i = ndo

c̄sij − ui, if i ∈ V ,
(5.3.1)
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where (ui)i∈V and (πd)d∈D are dual variables associated with constraints (5.2.2) and (5.2.3),
respectively.

Since the cost of the arcs is stochastic and path-dependent in the S-MDEVSP, these
pricing problems correspond to shortest path problems with stochasticity (Boland et al.,
2015; Wellman et al., 2013) that can be solved by a modified version of the labeling algorithm
(see Ahuja et al., 1993, for more details on this algorithm). Next, we specify the main
characteristics of the dynamic programming algorithm, namely the labels, the extension
functions, and the stochastic dominance criteria.

5.3.1. Labels

Each label stores a representation of the actual start time cumulative distribution function
(CDF), a representation of the SoC CDF, and the accumulated reduced cost. Let F p

j (y) be
the CDF of fpj (y) at node j defined as

F p
j (y) =

y∑
y′=d0

j

fpj (y′), (5.3.2)

and let Mp
j (z) be the CDF of mp

j(z) at node j defined as

Mp
j (z) =

z∑
z′=φmin

mp
j(z′). (5.3.3)

The label Lpj of path p at node j is defined as Lpj = (F p
j (d0

j), . . . ,F
p
j (ymaxjp ),Mp

j (φmin), . . . ,
Mp

j (100),Cp
j ), where ymaxjp is the maximum value of F p

j (y) and Cp
j is the accumulated reduced

cost.

5.3.2. Extension functions

We want to extend a label Lp
′

i = (F p′

i (d0
i ), . . . ,F

p′

i (ymaxip′ ),Mp′

i (φmin), . . . ,Mp′

i (100),Cp′

i )
associated with node i along arc (i, j) to create label Lpj . The accumulated reduced cost Cp

j

at node j is given by

Cp
j = Cp′

i + c̃pij. (5.3.4)

In Section 5.2, we devised a method to analytically compute the propagation of delays
in a sequence of timetabled trips. Here, we specify this method in the form of an extension
function. The PDF of the actual start time of trip j covered by path p is given by
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fpj (y) =



∑tmaxi

t=tmini
hi(t)

∑d0
j−t−κij−τ
y′=d0

i
fp

′

i (y′), if i,j ∈ V and y = d0
j∑tmaxi

t=tmini
hi(t)fp

′

i (y − t− κij − τ), if i,j ∈ V and y > d0
j or i ∈ V and j ∈ HE

fp
′

i (y − ρ), if i,j ∈ HE∑d0
j−κij−τ
y′=d0

i

[
fp

′

i (y′)P 0
jp +∑k

ϕ=1 f
p′

i (y′ − ρϕ)P ϕ
jp

]
, if i ∈ HE, j ∈ V , and y = d0

j

fp
′

i (y − κij − τ)P 0
jp +∑k

ϕ=1 f
p′

i (y − κij − τ − ρϕ)P ϕ
jp, if i ∈ HE, j ∈ V , and y > d0

j

0, otherwise.

(5.3.5)

The components Mp
j (·) are computed as

mp
j(z) =



∑100
µ=φmin ei(µ)mp′

i (z + µ+ ιij), if i ∈ V∑100
z′=φminm

p′

i (z′)[λ(z′, ρ× Λω(z′)) = z], if i,j ∈ HE

mp′

i (z + ιij), if i ∈ HE, j ∈ V ,P 0
jp = 1

mp′

i (z + ιij) +∑ω−1
z′=0 m

p′

i (z′)[λ(z′, ρ× Λω(z′)) = z], if i ∈ HE, j ∈ V , z ≥ ω, 1− P 0
jp > 0

0, otherwise,

(5.3.6)

where λ(z,t) is a piecewise linear function giving the final SoC of a battery after a charge
of t minutes that started with an initial SoC of z. We assume all BEBs start the day fully
charged.

5.3.3. Stochastic dominance criteria

Consider two paths p1 and p2 with resident node i. Path p1 dominates path p2 when the
following conditions hold:

(1) Cp1

i ≤ Cp1

i

(2) F p1

i (y) ≥ F p2

i (y), for all y ∈ {d0
i , d0

i + 1, . . . , d0
i + max{ymaxip1 , ymaxip2 }}

(3) Mp1

i (z) ≤Mp1

i (z), for all z ∈ {φmin,φmin + 1, . . . , 100}

All dominated paths can be safely discarded because they are not part of the Pareto-
optimal set of paths or will not be extended into Pareto-optimal paths.

5.4. Computational results
We test our model on a real-life instance from the city of Montréal of 273 timetabled

trips, 2 depots, and 2 charging stations. To minimize battery degradation, φmin is set to
φmin = 25%. We compare our approach for two different types of commercially available
BEBs; an electric shuttle with battery capacity (W ) of W = 80 kWh, charger power (P )
of P = 60 kW, and an average consumption rate of 0.76 kWh/km (Gao et al., 2017) and a
35-foot transit bus with W = 492 kWh, P = 221 kW, and an average consumption rate of
1.57 kWh/km (Proterra, 2022). We assume the energy consumption distributions follow a
normal distribution.
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The heuristic performance of our solution approach and the quality of the solutions are
reported in Table 5.1 and 5.2, for the first and second type of BEB, respectively, for β
values ranging from 0 to η, where η is the cost per bus used, and ω values ranging from
φmin to 75% of the battery capacity. When ω = φmin, our approach is equivalent to a
robust optimization approach (i.e., no corrective actions). The columns display the relative
difference in percentage between the upper bound and the lower bound (Gap), the number
of branching nodes explored (Nodes), the computing times (CPU time), including the total
time in seconds (Total), the portion of the total time dedicated to solve the root node (Root)
and the pricing problems (Pricing), the operational costs (Op. costs), the fleet size (bus)
and the total penalty for delays (∑s∈S∗ E[Qs(t,z)]).

Table 5.1 – S-MDEVSP heuristic performance and quality of the solutions, with W = 80
kWh and P = 60 kW

Heuristic performance Quality of the solutions
CPU time

β ω Gap (%) Nodes Total (s) Root (%) Pricing(%) Op. costs Bus
∑
s∈S∗

E[Qs(t,z)]

0 φmin 0.05 28 1,361 39.0 99.4 32,301.8 30 0.57
35 0.05 28 1,362 39.4 99.5 32,301.8 30 0.57
50 0.05 27 1,567 42.1 99.5 31,374.0 29 0.70
75 0.09 27 2,054 38.5 99.6 31,438.4 29 0.67
avg. 0.06 28 1,586 39.8 99.5 31,854.0 30 0.63

η/2 φmin 0.13 28 3,264 34.7 99.8 32,364.0 30 0.24
35 0.13 28 3,152 34.2 99.8 32,364.0 30 0.24
50 0.14 28 5,170 24.9 99.9 31,451.6 29 0.26
75 0.16 29 6,341 28.3 99.9 31,430.8 29 0.33
avg. 0.14 28 4,482 30.5 99.8 31,902.6 30 0.27

η φmin 0.09 27 3,236 38.2 99.8 32,431.2 30 0.12
35 0.09 27 3,226 37.8 99.8 32,431.2 30 0.12
50 0.14 30 5,681 25.8 99.9 31,526.0 29 0.15
75 0.08 25 6,032 36.3 99.9 31,471.0 29 0.22
avg. 0.10 27 4,544 34.5 99.9 31,964.8 30 0.15

For both vehicle types, all problems are solved in less than 2 hours with almost all the
computing time spent on solving the pricing problems. Also, the solutions obtained with
our approach are at most 0.16 % more expensive than their corresponding lower bound,
suggesting that our heuristic can find near-optimal solutions. Generally speaking, when β

increases, the operational costs increase and the reliability improves.
For the first type of BEB, namely the shuttle with W = 80 kWh and P = 60 kW, the

introduction of the recourse policy provides significant cost savings. Indeed, the fleet size can
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Table 5.2 – S-MDEVSP heuristic performance and quality of the solutions, with W = 492
kWh and P = 221 kW

Heuristic performance Quality of the solutions
CPU time

β ω Gap (%) Nodes Total (s) Root (%) Pricing(%) Op. costs Bus
∑
s∈S∗

E[Qs(t,z)]

0 φmin 0.02 21 1,059 49.7 99.6 27,290.4 26 0.49
35 0.02 21 1,434 53.8 99.6 27,290.4 26 0.49
50 0.02 21 1,145 49.4 99.6 27,290.4 26 0.49
75 0.01 19 1,106 53.3 99.6 27,286.4 26 0.41
avg. 0.02 21 1,186 51.5 99.6 27,289.4 26 0.47

η/2 φmin 0.01 19 2,025 49.2 100.0 27,325.2 26 0.16
35 0.01 19 2,855 53.4 100.0 27,325.2 26 0.16
50 0.01 19 2,051 49.1 100.0 27,325.2 26 0.16
75 0.01 21 2,567 49.1 99.9 27,325.2 26 0.16
avg. 0.01 20 2,374 50.2 100.0 27,325.2 26 0.16

η φmin 0.01 21 2,091 46.7 100.0 27,362.6 26 0.11
35 0.01 21 3,002 50.1 100.0 27,362.6 26 0.11
50 0.01 21 2,294 47.0 99.9 27,362.6 26 0.11
75 0.01 22 2,051 47.5 99.9 27,364.0 26 0.11
avg. 0.01 21 2,360 47.8 99.9 27,363.0 26 0.11

be reduced from 30 BEBs to 29 BEBs by introducing a recourse policy with ω ≥ 50, which
could be considered as a substantial reduction since the number of vehicles used constitutes
the major part of the operational costs. Furthermore, the deterioration in reliability that
the charging policy introduces can be compensated for by a higher weighting factor β.

For the second type of BEB, namely the 35-foot transit bus with W = 492 kWh and P

= 221 kW, introducing a recourse policy does not improve the cost of the solutions found
nor does it reduce the size of the fleet. Thus, for this second type of vehicle with larger
battery capacity and higher charging power, our approach is not useful and a simple robust
optimization approach should be used to find vehicle schedules such that the vehicles never
run out of energy. Indeed, for this type of BEB, the battery capacity is large enough that
vehicles only need to charge once or twice a day. Because timetables of trips typically include
off-peak periods with fewer trips to make, charging activities can easily be scheduled during
these periods and batteries are often charged to their maximal capacity. In this context, the
recourse policy we introduced is never activated.
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5.5. Conclusions
In this work, we introduced a stochastic model for the MDEVSP that we formulated as

a two-stage stochastic program with a recourse action. We proposed an efficient branch-
and-price algorithm to solve this challenging problem. Our results indicated that the use
of recourse actions is beneficial for shuttle BEBs with relatively small battery capacity and
charging power, but not for 35-foot transit BEBs with larger battery capacity and charging
power. Medium- to large-scale transit agencies are typically equipped with up-to-date BEBs
that resemble the second type of vehicle tested, so our approach is probably not relevant for
them. However, our two-stage stochastic model may be relevant for smaller transit agencies
or those with access to fewer resources. Future work includes translating our approach to
other routing problems with smaller electric vehicles, for example the electric dial-a-ride
problem.
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Chapter 6

Article 4 - Strategies for the electric bus
scheduling problem with battery degradation:

a stochastic perspective

Prologue

Strategies for the electric bus scheduling problem with battery degradation: a
stochastic perspective. Léa Ricard, Guy Desaulniers, Andrea Lodi, Louis-Martin
Rousseau. To be submitted.

I originated the idea for the paper, while Guy Desaulniers, Andrea Lodi, and Louis-Martin
Rousseau contributed to shaping it into its current form by providing valuable feedback. I
was responsible for modeling the problem mathematically, developing an efficient algorithm,
writing an implementation guide for the programmer in charge of modifying GENCOL ac-
cording to the developed algorithm, building test instances, running tests, analyzing the
results, and writing the article. Guy Desaulniers revised the model and the algorithm. Guy
Desaulniers, Andrea Lodi, and Louis-Martin Rousseau revised and edited the article.

6.1. Introduction
The transition of public transport bus fleet towards battery electric buses (BEBs) is

gaining momentum worldwide as a solution to reduce local air and noise pollution. Cities
like Paris and Copenhagen have already committed to converting their entire bus fleets to
electric buses by 2025 (Perumal et al., 2022), and it is projected that nearly half of the buses
globally will be electric in the near future (Abdelaty et al., 2021). However, the adoption
of BEBs brings its share of challenges and additional constraints. Compared to traditional
internal combustion engine buses, BEBs require longer refueling times, have shorter driving



ranges, and rely on charging infrastructure that is often limited in capacity. Additionally,
the battery packs used in BEBs, predominantly lithium-ion batteries (Zhang et al., 2021),
are expensive and represent a significant portion of these vehicles’ total cost of ownership. In
some cases, the daily cost of battery degradation is even more than twice the daily charging
cost (Zhou et al., 2022). Lithium-ion battery packs must be replaced periodically due to
the gradual fading during charging and discharging cycles (cycle aging) and storage time
(calendar aging). Typically, a battery is considered to have reached its end of life (EoL) when
its capacity drops to 70-80% of its initial capacity (Lam and Bauer, 2012; Zhang et al., 2019).
Cluzel and Douglas (2012) reported that the typical lifespan of electric car batteries ranges
between five to ten years, depending on the operating and storage conditions. However, the
lifespan of BEBs tends to be even shorter due to their extensive usage. After this period,
the battery packs of the BEBs must be replaced, which results in high maintenance costs.
From a price perspective, it is thus essential to consider battery aging mechanisms when
scheduling BEBs. This approach is also relevant from an environmental point of view, as
the production of lithium-ion batteries accounts for about 20% of CO2 equivalent emitted
during the manufacture of BEBs (Nordelöf et al., 2019).

The degradation mechanisms of lithium-ion batteries are influenced by various factors,
including storage and operating conditions, as well as cell chemistry, all of which interact
with one another (Pelletier et al., 2017). Consequently, degradation mechanisms are highly
complex, and modeling them is difficult. Nevertheless, certain factors have been identified as
accelerators of battery aging, such as overcharging, over-discharging, extreme temperatures,
high state-of-charge (SoC) during storage, large depth-of-discharge (DoD), high charging and
discharging rates, high average SoC, and high SoC deviation (Pelletier et al., 2017; Millner,
2010; Lam and Bauer, 2012). Aside from temperature and the charging process, battery aging
is predominantly influenced by the SoC, whether it involves extreme SoC values or the SoC
range experienced throughout the day. Figure 6.1 illustrates an example of capacity fading
(measured in kWh/year) and the lifetime of a BEB’s battery cycled to different SoC ranges
obtained using the capacity fading model for LiFePO4 batteries of Lam and Bauer (2012).
We consider a BEB with a battery capacity of 300 kWh, an average energy consumption of
400 kWh per day, and an EoL threshold of 20%. By reducing the SoC range from 100%-0%
to 70%-20%, the battery’s lifetime of a BEB can be extended by more than 10 years. This
simple example highlights the importance of considering battery degradation when planning
vehicle schedules.

At the planning stage, vehicle schedules are determined by solving the vehicle scheduling
problem (VSP). This problem consists of finding the optimal bus assignment to timetabled
trips, each defined by a start time and location, an itinerary composed of a sequence of
stops, and an end time and location - such that each timetabled trip is covered exactly
one by a vehicle schedule. This problem and some of its extensions, for example, the VSP
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Figure 6.1 – Example of the capacity fading (in black) and lifetime (in red) of a BEB
cycled at SoC ranges of 100%− 0%, 100%− 20%, . . . , 70%− 20%

with multiple depots, have been extensively studied in the past decades. Several models
and algorithms (exact and heuristic ones) have been proposed, notably those of Ribeiro and
Soumis (1994), Löbel (1998), Hadjar et al. (2006), Freling et al. (2001), and Kliewer et al.
(2006). A detailed subject overview is provided in Desaulniers and Hickman (2007) and
Bunte and Kliewer (2010).

In recent years, the extension of the VSP to BEBs, namely the electric VSP (E-VSP),
has gained significant attention in the literature. In the E-VSP, BEBs must satisfy driving
range constraints and charging requirements. If the single-depot VSP can be solved in
polynomial time, the single-depot E-VSP is NP-hard (Sassi and Oulamara, 2017). Several
works addressed the single-depot case, in particular, those of Li (2014), van Kooten Niekerk
et al. (2017), Janovec and Koháni (2019). In their work, Li (2014) provided a model for the
VSP that considers BEBs with either fast charging or battery swapping. Their model uses
a fixed battery service time sufficiently large to swap or fully recharge the batteries. Each
charging station is time-expanded, and a time discretization technique is used so that the
capacity of each charging station can be constrained. A column generation-based algorithm
is devised, and computational experiments on real-world and randomly generated instances
are carried out. In van Kooten Niekerk et al. (2017), two alternative models allowing BEBs
to be partially charged are proposed. The first and second models are with continuous and
discrete SoC, respectively. The latter can also account for time-of-day electricity pricing,
nonlinear charging time, and battery lifetime. A regular column generation-based algorithm
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is compared with a faster version with Lagrangian relaxation over four datasets. The discrete
model provided solutions using the same number of buses but with more waiting time than
their continuous model. Janovec and Koháni (2019) introduced in a short proceeding paper
an E-VSP model with partial charging and limited charger capacity. A set of "charging
events", one per timetabled trip, is defined for each charger. The number of consecutive
charging events in a vehicle schedule determines the charging time. An extension of the
E-VSP, namely the E-VSP with a mixed fleet, is addressed in Olsen and Kliewer (2020),
Rinaldi et al. (2020), and Alvo et al. (2021). Furthermore, Perumal et al. (2021) proposed an
algorithm combining an adaptive large neighborhood search and column generation to tackle
the integrated vehicle and crew scheduling problem. Recently, Wu et al. (2022) presented a
bi-objective model for the multi-depot E-VSP (MDEVSP) considering grid characteristics,
namely time-of-use pricing and peak load risk. Wang et al. (2021) also studied the MDEVSP
and proposed a column generation-based genetic algorithm using an elite strategy.

The E-VSP with battery degradation has been relatively overlooked in the existing lit-
erature. To the best of our knowledge, it has only been addressed by Zhang et al. (2021)
and Zhou et al. (2022). In their work, Zhang et al. (2021) proposed a set partitioning model
for the E-VSP considering a single-terminal transit network and nonlinear charging profile.
Each trip in this single-terminal transit network is a loop starting and ending at the termi-
nal. They defined the total cost of a vehicle schedule as the sum of the charging fees, the
cost incurred by battery degradation, and a fixed cost for vehicle acquisition. The capacity
fading rate model of Lam and Bauer (2012) is employed to estimate the battery degradation
cost of a schedule. An exact branch-and-price algorithm is devised, and a dual stabilization
technique accelerates their algorithm. Their model does not accommodate partial charging,
a limitation that Zhou et al. (2022) overcomes in their work. They addressed the electric bus
charging scheduling problem (EB-CSP), which involves assigning BEBs to trips and schedul-
ing the charge periods for a single-terminal transit network with roundtrips. A mixed-integer
nonlinear nonconvex program and a mixed-integer linear programming (MILP) approxima-
tion are introduced. The MILP uses linear functions to approximate the charging and battery
degradation functions. Zeng et al. (2022) also proposed a model for the EB-CSP (under pre-
determined bus-to-trip assignments) with battery degradation using peak-to-average power
ratio, time-of-use electricity price, and battery wear cost.

6.1.1. Contributions

Our analysis of the literature on the E-VSP shows that E-VSP with battery degradation
has been little studied despite the significant impact that taking the SoC range into account
can have on battery life. Additionally, existing literature on the E-VSP with battery degra-
dation focuses solely on deterministic approaches, which may underestimate the probability
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of encountering low SoC, high SoC, or large SoC deviation. Indeed, energy consumption
varies from day to day due to factors like weather conditions and traffic congestion. Since
average SoC and SoC deviation greatly influence battery aging, a comprehensive and rep-
resentative E-VSP model considering battery degradation should incorporate information
about energy stochasticity.

This work aims at filling this gap by presenting the first model for the E-VSP with battery
degradation and stochastic energy consumption. To ensure a realistic system representation,
we also consider other important E-VSP constraints, including partial en-route charging,
nonlinear charging profile, and charging stations with limited capacity. Our proposed model
introduces a chance-constraint approach for the E-VSP with battery degradation, limiting
the probability of overusing the bus fleet’s batteries. Avoiding excessive battery usage can
minimize SoC variations throughout the day, reducing battery degradation. The average
SoC is controlled by a parameter that defines the maximum allowable accumulated energy
consumption or, equivalently, the maximum SoC. To solve the introduced chance-constraint
model, we present a tailored branch-and-price algorithm that involves stochastic pricing
problems and an exact stochastic dominance rule. We test our approach on randomly gen-
erated single-depot instances considering practical settings. Nevertheless, the model and
algorithm we present can be readily adapted to address the multi-depot case.

The remainder of this paper is organized as follows. Section 6.2 presents a general defini-
tion of the E-VSP and introduces our chance-constrained model for the E-VSP with battery
degradation and stochastic energy consumption. Furthermore, a method to decompose our
chance-constraint by vehicle schedule is provided. Section 6.3 presents our heuristic branch-
and-price algorithm. Section 6.4.1 details a simulation method to compute the capacity
fading of a solution to our stochastic problem. We compare in Section 6.5 our approach
to a deterministic baseline and analyze the tradeoff between operational costs and battery
degradation for both approaches. Section 6.6 summarizes our results.

6.2. The E-VSP with battery degradation and stochas-
tic energy consumption

We first define the E-VSP and present the non-linear charging function approximation
used in Sections 6.2.1 and 6.2.3, respectively. The second part focuses on the stochastic case.
In Section 6.2.4, we introduce the chance-constrained model for the E-VSP with battery
degradation and stochastic energy consumption. A method to compute the probability of
overuse of bus batteries is provided in Section 6.2.5.
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6.2.1. General definition

Let V , D, and H be a timetable of trips, a set of depots, and a set of charging stations,
respectively. For each trip in V , a departure time and location, an arrival time and location,
and some information about its energy consumption are given. Furthermore, the travel
time and the energy consumption between any two locations in the bus network (starting
or ending location of a trip in V , a depot in D, or a charging station in H) is known.
Given this information, the E-VSP consists in finding a set of feasible vehicle schedules S∗

that covers exactly once each timetabled trip while respecting the capacity bd (number of
available buses) of each depot d ∈ D and the capacity gh (number of available chargers) of
each charging station h ∈ H. In short, each vehicle schedule is an ordered feasible sequence
of timetabled trips and charging activities starting and ending at the same depot in D. We
provide a more precise definition later in this section after discussing the charging process
and the underlying graphical representation.

We model the capacity of each charging station with three additional sets. Let R be a
set of k + 1 time intervals, each of duration ρ. Let also HC and HW be two sets of nodes,
where each node is associated with a charging station in H in the charging or the waiting
state, respectively, and a time interval in R. For example, we denote by hC1 r5 and hW1 r5 the
nodes associated with charging station h1 ∈ H and time interval r5 ∈ R in HC and HW ,
respectively.

Our E-VSP model is defined on connection-based networks (Ribeiro and Soumis, 1994)
with time-expanded charging nodes, denoted Gd(Vd,Ad), for d ∈ D. The node set of Gd is
Vd = V ∪ {nd0,nd1} ∪HC ∪HW , where nd0 and nd1 represent depot d at the beginning and the
end of the day, respectively, and its arc set is Ad. This network contains three types of arcs
(i,j), namely pull-out and pull-in arcs, (nd0, i) and (i,nd1), ∀i ∈ V , respectively, connection
arcs (i,j), for i,j ∈ V , and charging arcs. Figure 6.2 illustrates an example of such network
with 6 trips v1 to v6, 1 charging station h1, and 7 time intervals, r0 to r6.

Two timetabled trips i and j are connected by an arc (i,j) in Gd, d ∈ D, only if the
departure time of trip j is larger than or equal to the arrival time of trip i plus the deadhead
travel time between i and j and a minimum layover time of τ minutes to board passengers at
the beginning of the trip. To minimize congestion at the terminals and reduce idle time for
drivers, we implement a waiting time threshold of 45 minutes between consecutive trips i and
j ∈ V . If the waiting time exceeds 45 minutes, the vehicle must proceed to the nearest depot
after completing trip i. At the depot, it will wait before moving to the starting location of trip
j. Charging arcs take many forms. First, for each charging station h ∈ H, all consecutive
nodes in HC and HW associated with h are connected, such that two disjoint chains are
formed per charging station. The nodes in HW associated with the latest time interval are
connected to nd1. Second, we connect each node in HW , except the ones associated with the

110



ndo

v1

v2

v3 v4

v5

v6

nd1hW1 r0 hW1 r1 hW1 r2 hW1 r3 hW1 r4 hW1 r5 hW1 r6
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charging
connection
pull-out / pull-in

Figure 6.2 – Connection-based network with time-expanded charging station nodes

kth time interval, to the node in HC associated with the same charging station and the next
time interval. Third, an arc connects each node in HC to the node in HW that belongs to
the same time interval and charging station. These first three types of charging arcs form
the lower block of Figure 6.2. This block is then connected to the timetabled trips as follows.
We create an arc between a trip in V and a node in HW , which we call a "waiting node", if
the earliest bus arrival time at the charging station following this trip falls within the time
interval associated with the waiting node. Similarly, we add an arc between a waiting node
and a trip if the latest departure time of a bus from the charging station, ensuring the bus
arrives precisely on time for the trip’s starting time, falls within the time interval associated
with the previous waiting node.

A path in the graph Gd starting at the source node nd0 and ending at the sink node nd1 is a
feasible vehicle schedule if it respects energy-feasibility and charging-feasibility constraints.
Let a bus’s accumulated energy consumption (AEC) be the sum of the energy used or gained
(when charging) over a given time. We assume that each vehicle begins the day with an
initial AEC of σinit = 0 (i.e., fully charged). The energy-feasibility constraints ensure that
the AEC of a bus remains below the maximum allowed AEC, denoted as σmax, throughout
the day. We detail in Section 6.2.2 the relationship between the AEC and the SoC of a
battery. Energy consumption values, AEC values, and σmax are expressed as a percentage
of the total battery capacity. All values are rounded to the nearest integer, so admissible
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values are within {0%, 1%, . . . , 100%}. Moreover, charging-feasibility constraints ensure that
every time a bus visits a charging station in H, exactly one recharging activity (composed
of consecutive nodes in HC) is planned.

The cost of a vehicle schedule s passing through the set of arcs A(s) is given by

cs =
∑

(i,j)∈A(s)
cij, (6.2.1)

where cij is the cost of arc (i,j), consisting of a cost per vehicle used, a cost for each minute
waiting outside the depot, a cost per unit of distance traveled, and a cost per charging
activity. This latter penalty for each charging activity is used to, on the one hand, discourage
unnecessary visits to the charging stations when the AEC is still low and, on the other hand,
take into consideration operational costs, such as the salary of employees dedicated to each
charging station.

6.2.2. The AEC compared with the SoC

Let σi and φi be the AEC and the SoC after node i ∈ s, s ∈ S, respectively. For
a given σi and a maximum allowed AEC of σmax, there are several equivalent φi values.
We provide an example of a case where an AEC level can be associated with two perfectly
equivalent SoC levels in Figure 6.3. Figure 6.3a illustrates the admissible AEC range of
a battery for σmax = 70%. In Figure 6.3b, higher SoC values are prohibited by setting
the maximum allowed SoC to φmax = 70% and the minimum allowed SoC to φmin = 0%.
In Figure 6.3c, φmax = 90% and φmin = 20%. Note that all cases are equivalent since the
difference between the battery’s total capacity and the capacity that can be used is the same,
i.e., 100% − σmax = 30%. The remaining available energy equals 20% in all three figures.
However, the AEC of σi is equivalent to φi = 20% in Figure 6.3b and to φi = 40% in Figure
6.3c.

Under the hypothesis that the wear cost of a schedule is increasing with its capacity
fading and that the capacity fading function of Lam and Bauer (2012) correctly represents the
capacity fading rate of a battery, we can show that the optimal battery management policy
with respect to the wear cost and the operational costs is always to prohibit SoC greater than
or equal to σmax, rather than prohibiting smaller SoC values. Indeed, the capacity fading
function of Lam and Bauer (2012) indicates that battery capacity degradation increases with
average SoC. Therefore, given a maximum allowed AEC of σmax, it is more favorable to limit
high SoC values instead of low SoC values. The average SoC is lowered by truncating high
SoC values, reducing capacity fade.

In what follows, we use the AEC to represent energy level. Note that, for this work,
optimizing vehicle schedules by taking AEC levels into account will always produce better
or equivalent solutions than if we took SoC levels into account.
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0 σi = 50% σmax = 70%
AEC

Admissible AEC or SoC
Remaining avail. energy

(a) AEC of σi = 50% with a battery capped at σmax = 70%

φmin = 0% φi = 20% φmax = 70%
SoC

(b) SoC of φi = 20% with an authorized SoC in 0%− 70%

φmin = 20% φi = 40% φmax = 90%
SoC

(c) SoC of φi = 40% with an authorized SoC in 20%− 90%

Figure 6.3 – Example of the comparison between AEC and SoC. The SoC levels in (b) and
(c) are equivalent to the AEC in (a)

6.2.3. Non-linear charging profile

The potential risks associated with excessive voltage levels that could permanently dam-
age the battery can be mitigated by charging the battery using the constant current - con-
stant voltage (CC-CV) scheme (Pelletier et al., 2017). In this work, we adopt the approach
introduced by Montoya et al. (2017), which involves approximating the non-linear charging
function of the CC-CV scheme with a piecewise linear function.

After charging t minutes, we approximate the AEC by a piecewise linear function λ(z,t),
where z represents the initial AEC. In our approach, a bus is recharged for ρ minutes at
each charging node. Suppose a path in Gd contains several consecutive charging nodes, the
function λ(z,ρ) is then applied a corresponding number of times equivalent to the length
of the charging node sequence. With each application, the initial AEC z is updated. The
output of λ(z,t) is capped at 0, ensuring that the presence of additional charging nodes when
the battery is fully charged does not create any issues.

6.2.4. Chance-constrained E-VSP with battery degradation

From a battery aging perspective, it is advantageous to decrease both the average SoC
and the deviation in SoC throughout the day (Lam and Bauer, 2012). Moreover, energy
consumption varies daily for the same bus trips, which can impact the amplitude of the
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SoC deviation and energy feasibility. Therefore, we aim to consider the energy consumption
uncertainty and these ideal SoC profiles in the E-VSP to reduce battery wear and ensure
energy feasibility for virtually all scenarios.

A deterministic approach to controlling the average SoC and the deviation in SoC
throughout the day is to limit the maximum allowed AEC by decreasing σmax. This ap-
proach is equivalent to reducing the battery’s available capacity and effectively reduces the
SoC deviation. Furthermore, considering that the capacity reduction is applied to the highest
SoC values, this approach also decreases the average SoC.

Now, consider that the probability mass function (PMF) with finite support of the energy
consumption of every trip i ∈ V , denoted ei(µ), is known. Then, an alternative approach is to
limit the probability of exceeding a recommended upper limit on the AEC in addition to the
strict bound on the maximum allowed AEC, denoted as σrec. As for σmax, σrec is expressed
as a percentage of the total battery capacity and rounded to the nearest integer. We consider
deterministic energy consumption for pull-in, pull-out, and deadhead trips because these trips
are usually short and do not involve passengers, eliminating several sources of uncertainty
that affect energy usage. For instance, factors such as passenger loading and heating or air
conditioning requirements within the bus are not present during these trips. To easily refer
to this approach later, we will say that a battery is overused when the AEC of a bus exceeds
σrec. We formulate the limit on the probability of overuse of a battery as a chance-constraint.

Our model uses the following additional notation. Let S be the set of all feasible vehicle
schedules and Sd ⊂ S be the subset of feasible vehicle schedules for depot d ∈ D. Let also
ais be a binary parameter equal to 1 if and only if schedule s ∈ S covers trip i, ys be a binary
variable equal to 1 if and only if schedule s is part of the solution, and whrs be a binary
parameter equal to 1 if and only if schedule s includes a charging activity at station h in
time interval r. The E-VSP with battery degradation and stochastic energy consumption
can then be formulated as the following chance-constrained integer program:

min
∑
s∈S

csys (6.2.2)

s.t.
∑
s∈S

aisys = 1, ∀i ∈ V (6.2.3)
∑
s∈Sd

ys ≤ bd, ∀d ∈ D (6.2.4)
∑
d∈D

∑
s∈Sd

wrhs ys ≤ gh, ∀h ∈ H, r ∈ R (6.2.5)

Pr{overuse of the battery of one bus or more} ≤ ϵ (6.2.6)

ys ∈ {0,1}, ∀s ∈ S. (6.2.7)
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The objective function (6.2.2) minimizes the total operational costs, while constraints
(6.2.3) ensure that each timetabled trip is covered exactly once by a schedule, constraints
(6.2.4) ensure that vehicle availability is respected at each depot, and constraints (6.2.5)
guarantee that for each charging station h ∈ H, a maximum of gh chargers are used at the
same time. Finally, the chance-constraint (6.2.6) ensures that the probability that at least
one bus battery is overused during the day is less than or equal to a maximum threshold, ϵ.

We assume that the probability of overuse of the battery of any two schedules in S
are independent. Let the probability Ps = Pr{not overuse the battery of bus assigned to
schedule s}. Using this notation and the previous independence assumption, we can rewrite
constraint (6.2.6) as

1−
∏

s∈S:ys=1
Ps ≤ ϵ, (6.2.8)

which, by the properties of logs and extending the summation to all vehicle schedules, is
equivalent to

∑
s∈S

ys ln(Ps) ≥ ln(1− ϵ). (6.2.9)

Let βs = ln(Ps) and β = ln(1− ϵ). Then, we have

∑
s∈S

ysβs ≥ β. (6.2.10)

In what follows, we provide a method to compute Ps for any given vehicle schedule s ∈ S.
If we allow a bus to use more than σrec percent of the battery capacity, we strictly enforce
that no more than σmax percent be used. This guarantees the energy feasibility of the system.

6.2.5. Computing probabilities of overuse of bus batteries

Consider a schedule s = (0,1, . . . ,n,n + 1) where 0 and n + 1 are the nodes nd0 and nd1,
respectively, associated with a depot d ∈ D and 1, . . . ,n are other nodes in Vd. Let Xs

i be
the AEC at the end of node i in schedule s and f si (x) be the truncated PMF associated with
event Xs

i = x and the event that the bus associated with schedule s has not overused its
battery up until node i− 1. Furthermore, we define f̄ si (x) as

f̄ si (x) =

f
s
i (x) x ≤ σrec

0 otherwise.
(6.2.11)

Note that, by definition, ∑σrec

x=0 f̄
s
i (x) ≤ 1. We can compute f si (x) recursively with f s0 (0) =

1 as
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f si (x) =


∑σmax

µ=0 ei(µ)f̄ si−1(x− µ− ιi−1,i) if i ∈ V
f̄ si−1(λ−1(x,ρ)) if i ∈ HC

f̄ si−1(x− ιi−1,i) otherwise,

(6.2.12)

where λ−1(z,t) is the inverse of the charging function and outputs the initial AEC such
that the final AEC after a charge of t minutes is z. Also, ιi−1,i is the deterministic energy
consumption between nodes i − 1 and i. Observe that if 1 − ∑σmax

µ=0 ei(µ) > 0 (i.e., the
probability that the energy consumption of trip i is greater than σmax is positive), the E-
VSP is infeasible. Therefore, we do not consider this case. The probability of overuse of the
battery of the bus assigned to s is thus

Ps =
σrec∑
x=0

f̄ sn+1(x) = F̄ s
n+1(σrec), (6.2.13)

where F̄ s
i (x) is the cumulative distribution function (CDF) of f̄ si (x), computed as

F̄ s
i (x) =

x∑
x′=0

f̄ si (x′), x = 0, 1, . . . ,σrec. (6.2.14)

6.3. Heuristic branch-and-price algorithm
Variants of the VSP formulated as a set partitioning problem, including the E-VSP, are

readily solved by the branch-and-bound algorithm, given their tight lower bound. However,
the number of possible variables, i.e., bus schedules, in such formulation is typically very
large. It is, therefore, not relevant nor efficient to enumerate all possible bus schedules.
Instead, a column generation algorithm (see, e.g., Desaulniers et al., 2005; Lübbecke and
Desrosiers, 2005) can be embedded in the branch-and-bound tree to generate variables as
needed. The resulting approach is called branch-and-price (Barnhart et al., 1998; Costa
et al., 2019).

One of the most challenging components of the branch-and-price algorithm for problems
like the E-VSP is the pricing problem, i.e., the generation of columns of minimum reduced
cost. In the case of the E-VSP, the pricing problem is separable by depot and consists
in solving one shortest path problem in Gd, for all d ∈ D. This problem is complexified
in our case since we consider stochastic energy consumption. Consequently, the pricing
problems transform from shortest path problems with resource constraints (SPPRC), as
described in Irnich and Desaulniers (2005), to SPPRC with stochasticity (Boland et al.,
2015; Wellman et al., 2013). The label components, extension functions, and dominance
rule of the stochastic dynamic programming algorithm used to solve the pricing problems
are detailed in Section 6.3.1. Then, we explain in Sections 6.3.2 and 6.3.3 the branching
strategy and the perturbation method adopted to accelerate computing time, respectively.
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6.3.1. Stochastic pricing problems

Column generation is used to solve the linear relaxation of (6.2.2)-(6.2.7), which is called
the master problem (MP). At each iteration of the column generation algorithm, the MP
restricted to a small subset of its variables is solved to yield a primal and a dual solution.
Then, the pricing problems come into play to identify potentially useful columns to add to
the restricted MP. These pricing problems are defined on the networks Gd, for d ∈ D, where
the arc costs have been modified to incorporate dual information obtained from the most
recent solution of the restricted MP. Let (ui)i∈V , (πd)d∈D, (αhr)h∈H,r∈R, and θ be the dual
variables associated with constraints (6.2.3), (6.2.4), (6.2.5), and (6.2.6), respectively. The
reduced cost c̃s of schedule s is

c̃s = cs −
∑
i∈V

aisui − πd −
∑
h∈H

∑
r∈R

whrs α
hr − θ ln F̄ s

n+1(σrec). (6.3.1)

As previously mentioned, schedules can be seen as paths in a network Gd, d ∈ D, i.e., as
sequences of arcs. Each pricing problem involves finding a path in Gd, d ∈ D, with minimal
reduced cost. The pricing problems verify if the solution to the restricted MP is optimal by
searching for vehicle schedules with negative reduced costs. If negative reduced cost paths
are found, all or some of these columns are added to the restricted MP. Otherwise, the
solution to the restricted MP is optimal for the MP.

Paths in Gd, d ∈ D, are constructed by dynamic programming, specifically by a labeling
algorithm (Irnich and Desaulniers, 2005). The general framework for such an algorithm
is as follows. Starting from an initial label at the source node nd0, labels are extended
throughout the network using resource extension functions to create partial paths (schedules)
until reaching the sink node where the paths correspond to complete schedules. A label
represents a partial path starting from the source node, including all necessary information
to assess the feasibility of any extension and its reduced cost. Infeasible paths are discarded
when they are identified as such. Furthermore, a dominance procedure is used to compare
the labels and eliminate non-Pareto-optimal labels to avoid enumerating all feasible paths.

The main components of the labeling algorithm used in our tailored branch-and-price
algorithm, namely the label components, the extension functions, and the dominance rule,
are detailed next.

6.3.1.1. Labeling procedure. In the E-VSP, a path p in Gd, d ∈ D, with resident node
i is usually represented by its accumulated reduced cost Cp

i and its expected AEC (or,
equivalently, its expected SoC). However, our model has three specificities: (i) the energy
consumption is stochastic, (ii) it involves a chance-constraint, and (iii) the capacity of each
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charging station is limited. Therefore, it is necessary to include more information in the
labels to describe the paths, as detailed next fully.

First, instead of keeping track of the expected AEC, we will store the worst case AEC,
that we denote ζpi for path p with resident node i. Second, to compute the probability of
overuse of a bus battery associated with a path p ending at node i and its extensions, it is
necessary to store F̄ p

i (x) for integer values of x between 0 and σrec. Simply relying on the
CDF of the AEC is insufficient for this purpose. The probability that the AEC of a bus
at a given node is above σrec indicates the probability that the battery is overused at this
specific point along the bus route, but it lacks memory. By definition, F̄ p

i (·) incorporates
this memory by capturing the probability of overuse of the bus battery for the entire path.
One must therefore store this latter CDF in a path’s label. Third, we add two resources
to ensure realistic charging activity plans. Specifically, let Ep

i be the number of charging
activities completed since the last timetabled trip in p and Rp

i be the number of times a bus
has waited at a recharging station without being recharged since the last timetabled trip
in p. The first resource ensures that at most one recharge occurs when visiting a charging
station, and the second ensures that a recharge occurs when visiting a charging station. Both
resources are initialized at a value of 0.

Given a label Lp
′

i = (F̄ p′

i (0), . . . , F̄ p′

i (σrec), ζp
′

i ,Cp′

i ,Rp′

i ,Ep′

i ) representing a partial path
p′ ending at node i, we can extend path p′ along an arc (i,j) ∈ Ad to create label Lpj =
(F̄ p

j (0), . . . , F̄ p
j (σrec), ζpj ,Cp

j ,Rp
j ,E

p
j ) by applying the following method.

The extension function to compute F̄ p
j (·) based on F̄ p′

i (·) can easily be retrieved using
equations (6.2.11), (6.2.12), and (6.2.14). It is given by

F̄ p
j (x) =


∑σmax

µ=0 ej(µ)F̄ p′

i (min{x,σrec} − µ− ιi,j) if j ∈ V
F̄ p′

i (λ−1(x,ρ)) if j ∈ HC

F̄ p′

i (min{x,σrec} − ιi,j) otherwise.

(6.3.2)

Furthermore, ζpj can be computed using

ζpj =


ζp

′

i + max{µ st. ej(µ) > 0}+ ιi,j if j ∈ V
λ(ζp

′

i , ρ) if j ∈ HC

ζp
′

i + ιi,j otherwise,

(6.3.3)

where max{µ st. ej(µ) > 0} outputs the largest energy consumption value with positive
probability. The accumulated reduced cost Cp

j is updated as

Cp
j = Cp′

i + c̃pij, (6.3.4)

where the reduced cost breakdown per arc is
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c̃sij =



cij − πd if i = nd0

cij − ui if i ∈ V and j ̸= nd1

cij − ui − θ ln F̄ s
n+1(σrec) if i ∈ V and j = nd1

cij − αhr if i = hCr ∈ HC

cij − θ ln F̄ s
n+1(σrec) if i = hW r ∈ HW and j = nd1

cij otherwise.

(6.3.5)

Observe that the part of the reduced cost attributable to the chance-constraint (6.2.6),
i.e., θ ln F̄ s

n+1(σrec), is not decomposable by arc. Indeed, the probability of overuse of the bus
battery associated with schedule s is only revealed when the bus schedule is fully formed.
Hence, we add this cost to the last arc of the schedule, the pull-in arc.

Lastly, the resources Rp′

i and Ep′

i are extended as

Rp
j =


Rp′

i + 1 if i = hW r ∈ HW and j = hCr ∈ HC

Rp′

i − 1 if i = hW r ∈ HW and j ∈ V

Rp′

i otherwise,

(6.3.6)

and

Ep
j =


Ep′

i + 1 if i ∈ V and j = hW r ∈ HW

Ep′

i − 1 if i = hW r ∈ HW and j ∈ HC

Ep′

i otherwise.

(6.3.7)

A path p ending at node i is discarded to ensure energy feasibility if it has a positive
probability of running out of energy, i.e., ζpi > σmax. Moreover, all paths such that the
chance-constraint (6.2.6) would be automatically violated if we were to include any extension
of these paths in the E-VSP solution, i.e., all paths for which ln(F̄ p

i (σrec)) < ln(1 − ϵ), are
excluded. This latter rule helps speed up the algorithm by removing the paths we know
will not be part of the solution. Moreover, a path p ending at node i is discarded when the
resources Ep

i and Rp
i exceed their respective resource windows. These windows require Ep

i

and Rp
i to be less than or equal to 0 if i ∈ V and less than or equal to 1 otherwise.

6.3.1.2. Label dominance. Consider two feasible paths in Gd, p1 and p2, both ending at
node i ∈ Vd. For pricing problems in the family of the SPPRC, we say that path p1 dominates
path p2 when:

(a) Any feasible extension e of p2 ending at node j ∈ Vd is also feasible for p1;
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(b) For any feasible extension e of p1 and p2 ending at node j ∈ Vd, the inequality
Cp1⊕e
j ≤ Cp2⊕e

j holds, where pi⊕ e, i = 1, 2, denotes a path resulting from appending
a feasible extension e to path pi.

In practice, these two conditions are hard to use directly to identify dominated labels.
So, next, we derive a stricter dominance rule which ensures that the conditions (a) and (b)
are met.

Consider two paths p1 and p2, both ending at node i. Path p1 dominates path p2 when
the following conditions hold:

(i) Cp1
i ≤ Cp2

i

(ii) Rp1
i ≤ Rp2

i

(iii) Ep1
i ≤ Ep2

i

(iv) ζp1
i ≤ ζp2

i

(v) F̄ p1
i (x) ≥ F̄ p2

i (x), for all x ∈ {0, 1, . . . ,σrec}

These conditions are valid since all the resource extension functions, namely (6.3.2),
(6.3.3), (6.3.4, (6.3.6), and (6.3.7), are non decreasing for all types of arcs, except the ex-
tension of the accumulated reduced cost when the arc (i,j) is such that j = nd1. Indeed,
the function min{x,σrec}, CDFs, and the logarithmic function are non-decreasing by defini-
tion. However, the logarithmic function is multiplied by -1 in the third and fourth cases of
the equation (6.3.5). Since we favor smaller accumulated reduced costs, we thus also favor
larger probabilities of not overusing BEBs’ batteries (given by F̄ s

n+1(σrec), for s ∈ S). Larger
probabilities are obtained with condition (v).

6.3.2. Branching strategy

To find integer solutions in a reasonable amount of time, we employ a heuristic branching
strategy, namely a diving strategy. On the one hand, we branch on the total number of
vehicles used. A single branch with a lower bound constraint on the minimum number of
vehicles used is created. On the other hand, we apply two rounding strategies - one for
schedule variables and another for connection arcs (i.e., arcs between two timetabled trips).
When either of these rounding strategies is chosen, we create a single node with one or
several schedule variables or connection arcs fixed to 1. Fixing an arc between trips i and
j to 1 is done by removing all arcs (i,k) and (k,j) ∈ Ad, d ∈ D, such that k ∈ Vd \ {i,j}.
The variables or arcs with the largest fractional values are rounded up. A maximum of three
variables or arcs with a fractional part greater than or equal to 0.99 are selected at each
branch-and-bound node. If fewer than 3 schedule variables or arcs are above this threshold,
all variables or arcs with a fractional part greater than 0.99 are selected. At worst, the
variable or arc with the largest fractional part (less than 0.99) is selected. Note that the
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minimum and maximum number of selected variables and the fractional part threshold have
been determined through empirical testing in a preliminary experimental campaign.

We prioritize the first technique, which involves branching on the total number of vehicles
used. Subsequently, we alternate between the two rounding strategies. At each node, we
choose the strategy with the highest score, where the score is determined by the selected
variable(s) or arc(s) with the smallest fractional part.

6.3.3. Constraint perturbation

MDVSPs formulated as a set partitioning problem are typically degenerate, and this
degeneracy generally increases with the time horizon considered or, equivalently, the average
number of trips per schedule (see Oukil et al., 2007; Benchimol et al., 2012). We use the
simple constraint perturbation strategy of Charnes (1952) to reduce the degeneracy in our
experiments. Let η+

i and η−
i be perturbation variables that allow a under- and over-covering

of trip i ∈ V of up to ξ+
i and ξ−

i , respectively. The perturbed MP is given by:

min
∑
s∈S

csys +
∑
i∈V

(δ+
i η

+
i + δ−

i η
−
i ) (6.3.8)

s.t.
∑
s∈S

aisys + η+
i − η−

i = 1, ∀i ∈ V (6.3.9)
∑
s∈Sd

ys ≤ bd, ∀d ∈ D (6.3.10)
∑
d∈D

∑
s∈Sd

wrhs ys ≤ gh, ∀h ∈ H, r ∈ R (6.3.11)
∑
s∈S

ysβs ≥ β (6.3.12)

0 ≤ η+
i ≤ ξ+

i , ∀i ∈ V (6.3.13)

0 ≤ η−
i ≤ ξ−

i , ∀i ∈ V (6.3.14)

0 ≤ ys ≤ 1, ∀s ∈ S, (6.3.15)

where δ+
i and δ−

i are the penalties for under- and over-covering trip i ∈ V , respectively.

6.4. Computing the battery degradation level of a bus
schedule

We evaluate the degradation level of a BEB associated with a schedule s ∈ S∗ by
analyzing the capacity fading encountered during each discharging and charging cycle
ψt ∈ s. A discharging and charging cycle refers to utilizing and replenishing electri-
cal energy stored in the vehicle’s battery pack. It involves two primary stages: 1) dis-
charging, which occurs when the vehicle is in use and draws power from the battery to
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propel itself, and 2) charging, which happens when the battery is connected to an ex-
ternal power source to restore its energy. Specifically, let us consider a vehicle sched-
ule s = (ndo, v1,hW1 r0,hC1 r1,hW1 r1, v2, v3,hW1 r3,hC1 r4,hW1 r4,v6,nd1) in the network illustrated
in Figure 6.2. This vehicle schedule consists of three discharging and charging cycles:
ψ1 = (ndo, v1,hW1 r0,hC1 r1,hW1 r1), ψ2 = (v2, v3,hW1 r3,hC1 r4,hW1 r4), and ψ3 = (v6,nd1). Figure
6.4 presents an example of the potential simplified AEC profile for these cycles. Although
the actual discharging and charging functions are nonlinear, we represent them as linear
functions in time for simplicity.

σmax

time

A
E
C

(%
)

First cycle Second cycle Third cycle

Figure 6.4 – Example of the SoC profile a vehicle schedule with three discharging and
charging cycles

In this paper, we use the capacity fading function developed in Lam and Bauer (2012) to
approximate the degradation level of a solution to the E-VSP with battery degradation and
stochastic energy consumption. This model quantifies the rate at which a battery’s capacity
degrades, i.e., the loss in kWh of the battery’s capacity per 1 kWh of charge processed. The
degradation rate depends on both the average SoC and the SoC deviation. However, in
real-world scenarios, the discharging and charging cycles differ daily due to the randomness
of energy consumption. Consequently, the average SoC and SoC deviation also fluctuate.
To address this stochasticity, we need to specify a method for approximating the expected
capacity fade of bus batteries. In Section 6.4.1, we present our adaptation of the function
of Lam and Bauer (2012) to meet our specific scenario. This adapted function calculates
capacity fading for cycles characterized by AEC levels instead of SoC. Additionally, we
introduce in Section 6.4.2 a Monte Carlo simulation that approximates the expected capacity
fading of a BEB over the entire planning horizon (typically one day).
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6.4.1. Battery capacity fading function

Let σbψt , σmψt , and σeψt be the AEC at the beginning, middle (after the discharging regime),
and end of the discharging and charging cycle ψt, respectively. The average SoC in cycle ψt
is defined as

φavgψt
= σmax −

σbψt + σmψt + σeψt
3 , (6.4.1)

and the SoC deviation is defined as

φdevψt = φavgψt
− (σmax − σmψt). (6.4.2)

Note that equations (6.4.1) and (6.4.2) assume for simplicity that the charging and dis-
charging processes are linear, even though the SoC varies non-linearly with time. The ca-
pacity fading rate (in kWh/1 kWh processed) can be computed as

ϕ(σbψt ,σ
m
ψt ,σ

e
ψt) = γ1φ

dev
ψt e

γ2φ
avg
ψt + γ3e

γ4φdevψt , (6.4.3)

where γ1 to γ4 are model parameters borrowed from Lam and Bauer (2012) (see Table 6.1
for the numerical values).

Table 6.1 – Capacity fading rate function parameters

Parameter Value Parameter Value
γ1 -4.092e-4 γ3 1.408e-5
γ2 -2.167 γ4 6.130

Given a charge processed of Σψt = (σbψt−σmψt)+(σeψt−σmψt) in cycle ψt, the daily capacity
fade of cycle ψt (in kWh) can be computed as

Φ(σbψt ,σ
m
ψt ,σ

e
ψt) = Σψt × ϕ(σbψt ,σ

m
ψt ,σ

e
ψt). (6.4.4)

The daily capacity fade of schedule s is obtained by summing the daily capacity fade of
every cycle ψt ∈ s as

Qs =
∑
ψt∈s

Φ(σbψt ,σ
m
ψt ,σ

e
ψt), (6.4.5)

where we assume the AEC at the end of the last cycle ψqs−1 ∈ s is σesq−1 = σinit, i.e., the
BEBs are recharged overnight at the depot.
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6.4.2. Monte Carlo simulation

This section proposes a Monte Carlo simulation to approximate the daily capacity fading.
After solving the E-VSP with battery degradation and stochastic energy consumption, this
simulation is performed offline and getting a solution S∗.

The Monte Carlo simulation is presented in Algorithm 3 and can be summarized as
follows. For each vehicle schedule s ∈ S∗ and in each iteration k = 1, . . . ,K, a capacity fading
valueQk

s is computed by iterating through all the nodes in the discharging and charging cycles
ψt ∈ s in Steps 7-28. The capacity fading ϕ(σb,kψt ,σm,k

ψt
,σe,kψt ) of each cycle ψt ∈ s is computed

and added to Qk
s in Step 26. To do this, random energy consumption values µki are generated

for each timetabled trip i ∈ s in Step 11. This enables the computation of σb,kψt , σm,k
ψt

, and
σe,kψt for each cycle ψt ∈ s. After iterating through all cycles in s, the algorithm adds the
capacity fading of schedule s in iteration k, Qk

s , to the capacity fading of schedule s (Qs) in
Step 29. This process is repeated K times for each vehicle schedule s ∈ S∗. Finally, in Step
33, the algorithm returns the approximated daily capacity fading per vehicle of the E-VSP
solution.

6.5. Experimental results
We evaluate our approach using simulated instances of bus line 95 in the city of Montréal,

which consists of 42 stops covering a distance of 8.5 kilometers. The random instances
have approximately 60, 150, and 250 trips distributed over 19 hours, ranging from 5 am to
midnight. To simplify the analysis, we assume a constant frequency throughout the time
horizon, adjusting it according to the instance size. We conduct five tests for each instance
size, denoted as I1, I2, and I3, where the start times of the trips are slightly shifted in each
of the five tests. Table 6.2 presents the average characteristics of instances I1, I2, and I3,
namely the instance family name (Instance), the average number of timetabled trips (|V|),
the number of charging stations (|H|), the average number of arcs (|A|), the number of
depots (|D|), and the number of chargers per charging station (Char. station capacity).
Note that while the model and algorithm presented in Sections 6.2 and 6.3, respectively, can
potentially be applied to cases where the number of depots or charging stations is larger than
or equal to 2, our tests only address the single-depot and single-charging station scenario.
This simplified case is already challenging to solve due to stochastic energy consumption and
charging station with limited capacity, and it provides sufficient information to conduct a
meaningful analysis of the potential advantages of employing a stochastic approach for the
E-VSP with battery degradation.

We assume that the energy consumption rate (kWh/km) is normally distributed based
on the findings from previous studies (see Bie et al., 2021; Abdelaty et al., 2021). The PDFs
of the energy consumption rate of each trip in V is generated using the following procedure.
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Algorithm 3: Monte Carlo simulation to approximate the total daily capacity fade
of a solution
1 W ← 0
2 for s ∈ S∗ do
3 Qs ← 0
4 for k ← 1 to K do
5 σb,kψ1 ← σinit

6 Qk
s ← 0

7 for ψt ∈ s do
8 σm,k

ψt
← σb,kψt

9 for i ∈ ψt do
10 if i ∈ V then
11 Randomly generate µki from ei(µ)
12 σm,k

ψt
← σm,k

ψt
− µki − ιi−1,i

13 end
14 if i = hW r ∈ HW and i− 1 ∈ V then
15 σm,k

ψt
← σm,k

ψt
− ιi−1,i

16 σe,kψt ← σm,k
ψt

17 end
18 if i = hCr ∈ HC then
19 σe,kψt ← λ(σe,kψt , ρ)
20 end
21 if i = nd1 then
22 σm,k

ψt
← σm,k

ψt
− ιi−1,i

23 σe,kψt ← σinit

24 end
25 end
26 Qk

s ← Qk
s + ϕ(σb,kψt ,σm,k

ψt
,σe,kψt )

27 σb,kψt+1 ← σe,kψt
28 end
29 Qs ← Qs +Qk

s

30 end
31 W ← W +Qs/K
32 end
33 Return W/|S∗|

First, for each timetabled trip, we draw the mean of its energy consumption rate distribution
from an exponential distribution with parameters Exp(1.57,0.26), where 1.57 and 0.26 are
the location and scale of the distribution, respectively. This distribution has a mean of 1.83
kWh/km. Second, we determine the variance of the normal distribution by sampling a value
from a uniform distribution U(0.35,0.5). The location and the scale of the exponential and
uniform distributions were calibrated using the data from Basma et al. (2020). The authors
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Table 6.2 – Average properties of the families of instances I1 - I3

Instance |V| |H| |A| |D| Char. station
capacity

I1 60 1 2,190 1 1
I2 155 1 11,900 1 2
I3 248 1 29,499 1 3

modeled the energy consumption rate associated with propulsion, parking brakes, doors,
suspension system, steering pumps, and air compressors. Over the ten simulation cases
carried out in Basma et al. (2020) (for a temperature of 20 degrees), the average energy
consumption rate varied from 1.74 to 2.77 kWh/km. Furthermore, the authors noticed that
heavy traffic and weather conditions could increase the average energy consumption rate of
35% and 200%, respectively.

The following model parameters are used in our tests. The costs per vehicle used, per
minute of travel (excluding the travel time of timetabled trips), per minute of waiting outside
the depot, and per charging activity are set to 1,000 0.4, 0.2, and 10, respectively. The
penalties for under- and over-covering trip i ∈ V , δ+

i and δ−
i , are set to 1 for every trip i ∈ V

and the upper bounds ξ+
i and ξ−

i are randomly chosen from the interval [0, 0.1] for every
trip i ∈ V . We consider single deck-12m BEBs equipped with 300 kWh battery packs (the
same type of BEBs as those studied in Basma et al. (2020) to ensure consistency) and time
intervals of ρ = 15 minutes. Fast chargers with an approximate power of 400 kW are used.
The chargers process 2.5 kWh per minute for AEC levels from 20%-100%, 2 kWh per minute
for AEC levels from 10%-20%, and 1.25 kWh per minute for AEC levels from 0%-10%. The
number of iterations of the Monte Carlo simulations is set to K = 1,000.

We conduct our experiments on a Linux machine equipped with 16 Intel Xeon ES-2637
v4 processors running at 3.50 GHz and a RAM of 125 GB. The branch-and-price algorithm
is implemented using the GENCOL library, version 4.5, and all linear programs are solved
by the commercial solver CPLEX 22.1.

The remainder of this section is organized as follows. In Section 6.5.1, we analyze the
algorithm behavior on I1, I2, and I3 for the deterministic case. Specifically, we analyze the
optimality gap for all instances and specify for which instances our heuristic yields exact
solutions. Section 6.5.2 compares our chance-constraint model for the E-VSP with battery
degradation and stochastic energy consumption to the deterministic approach regarding
operational costs and battery degradation. We present a visualization of the SoC profile
over a day of solutions to a given test obtained by the deterministic and stochastic approach
and highlight the added value of the latter for better battery management.
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6.5.1. Algorithm behavior for the deterministic approach

When σrec = σmax or ϵ = 100%, our approach is equivalent to a deterministic approach
considering only the worst-case energy consumption scenario. In other words, when σrec =
σmax or ϵ = 100%, the chance-constraint in (6.2.2)-(6.2.7) becomes redundant. Since the
PDFs of the energy consumption are only used to compute the probability of overuse of
a bus battery, one could replace, for every trip in V , its energy consumption PDF by a
single value equal to its worst-case energy consumption. This deterministic approach also
guarantees energy feasibility. We will use it as a baseline in what follows.

Table 6.3 presents the heuristic performance of our algorithm for the deterministic case.
The table reports the average upper bound (Avg. UB), average lower bound (Avg. LB), the
average relative difference in percentage between the UB and the LB (Avg. gap), and the
largest relative difference in percentage between the UB and the LB (Largest gap). These
metrics are averaged over the five tests conducted per family of instances. Note that our
heuristic algorithm successfully finds the optimal solution for all the tests in the instance
family I1, where σmax is set to 100% or 70%. Additionally, all the tests in our experiments
achieve optimality gaps less than or equal to 0.25%. For the instance families I1, I2, and I3,
the average optimality gaps are 0.0033%, 0.017%, and 0.065%, respectively. These results
indicate that our heuristic algorithm provides near-optimal solutions for the deterministic
approach in most cases, providing a solid basis for further comparison with our stochastic
approach.

6.5.2. Comparison with the E-VSP with battery degradation and
stochastic energy consumption

This section compares the deterministic E-VSP with battery degradation to our stochastic
approach. Table 6.4 presents the tradeoff between operational costs and battery degradation.
Each value in the table represents an average over the five tests conducted for each instance
family. The columns display the family of instances name (Inst.), the maximum allowed AEC
(σmax), the difference between the maximum allowed and the recommended AEC (σmax −
σrec), the chance-constraint threshold (ϵ), the operational costs (Op. costs), the operational
costs increase (Op. costs incr.), the number of buses (# bus), the capacity fading per year and
BEB (Cap. fade), and the capacity fading improvement (Cap. fade imp.). The operational
costs increase and the capacity fading improvement are calculated relative to the baseline
case where σmax = 100%.

The average capacity fading decreases with σmax for all instances. However, this reduction
in capacity fading comes at the cost of increased operational costs. For example, the average
capacity fading of instance I2 is 23.10 kWh per year and BEB with σmax = 100% and
4.00 kWh per year and BEB with σmax = 55% and σmax − σrec = 0%. This decrease
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Table 6.3 – Heuristic performance of the deterministic approach to the E-VSP with battery
degradation

Instance σmax Avg. UB Avg. LB Avg. gap Largest gap
(%) (%)

I1 100 3,293.28 3,293.28 0.0 0.0
85 3,889.44 3,889.20 0.0056 0.028
70 4,097.00 4,097.00 0.0 0.0
55 4,310.28 4,309.96 0.0074 0.037
avg. 3,897.50 3,897.36 0.0033 0.016

I2 100 7,465.04 7,463.36 0.023 0.051
85 7,873.92 7,872.04 0.023 0.076
70 8,280.68 8,280.04 0.0076 0.024
55 8,523.04 8,521.64 0.016 0.077
avg. 8,035.67 8,034.27 0.017 0.057

I3 100 11,607.00 11,602.25 0.041 0.091
85 11,649.96 11,646.33 0.031 0.039
70 11,918.72 11,903.40 0.13 0.25
55 12,568.84 12,561.28 0.061 0.13
avg. 11,936.13 11,928.32 0.065 0.13

of 82.7% in average capacity fading comes at the cost of a 14.2% increase in operational
costs. Interestingly, for most instances (except I1 and I2 with σmax = 85% and ϵ = 0.2), we
found that the stochastic approach can provide additional capacity fading gains with a slight
increase in operational costs. To illustrate this, let us consider the family of instances I2
with σmax = 70%. In the deterministic approach, the average capacity fading is measured at
9.21 kWh per year and per vehicle for an operational cost of 8,280.68, whereas the stochastic
approach with ϵ = 0.1 yields a reduced average capacity fading of 7.82 kWh per year and
per vehicle for an operational cost of 8,290.76. Although these improvements in capacity
fading may appear modest, they could impact the lifetime of a BEB fleet. For instance,
with an EOL threshold of 20%, a BEB experiencing a capacity fading of 9.21 kWh per
year would have a projected lifetime of 6.51 years. However, by employing the stochastic
approach, we can extend the lifetime to 7.67 years, representing an increase of 1.16 years.
This improvement in BEB lifetime comes with a marginal operational cost increase of only
1.2E-3%. To validate the benefits of our chance-constrained model over the deterministic
model, controlled field experiments over a sufficiently long period of time should be carried
out. Furthermore, we also observe that the stochastic approach with ϵ = 0.1 generally
produced solutions with smaller capacity fading compared to the stochastic approach with
ϵ = 0.2. However, it should be noted that the operational costs associated with the former
approach were usually higher.
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Table 6.4 – Operational costs versus battery degradation of solutions to the E-VSP with
battery degradation and stochastic energy consumption

Inst. σmax σmax− ϵ Op. costs Op. costs # bus Cap. fade Cap. fade
(%) σrec(%) incr. (%) (kWh/year) imp. (%)

I1 100 0 - 3,293.28 0.0 3.0 11.26 0.0
85 0 - 3,889.44 18.1 3.6 11.08 1.6

20 0.2 3,889.44 18.1 3.6 11.22 0.3
20 0.1 3,889.52 18.1 3.6 10.82 3.9

70 0 - 4,097.00 24.4 3.8 6.62 41.2
20 0.2 4,098.12 24.4 3.8 6.13 45.5
20 0.1 4,097.40 24.4 3.8 5.95 47.1

55 0 - 4,310.28 30.9 4.0 2.95 73.8
20 0.2 4,317.00 31.1 4.0 2.58 77.1
20 0.1 4,322.32 31.2 4.0 2.49 77.9

I2 100 0 - 7,465.04 0.0 7.0 23.10 0.0
85 0 - 7,873.92 5.5 7.4 15.54 32.7

20 0.2 7,872.12 5.4 7.4 15.65 32.2
20 0.1 7,872.08 5.4 7.4 15.53 32.8

70 0 - 8,280.68 10.9 7.8 9.21 60.1
20 0.2 8,285.00 11.0 7.8 8.39 63.7
20 0.1 8,290.76 11.1 7.8 7.82 66.1

55 0 - 8,523.04 14.2 8.0 4.00 82.7
20 0.2 8,567.72 14.8 8.0 3.22 86.1
20 0.1 8,576.20 14.9 8.0 3.16 86.3

I3 100 0 - 11,607.00 0.0 11.0 28.50 0.0
85 0 - 11,649.96 0.37 11.0 17.38 39.0

20 0.2 11,659.12 0.45 11.0 17.26 39.4
20 0.1 11,850.72 2.1 11.2 17.09 40.0

70 0 - 11,918,72 2,7 11.2 9.15 67.9
20 0.2 12,124.76 4.5 11.4 8.35 70.7
20 0.1 11,934.56 2.8 11.2 8.13 71.5

55 0 - 12,568.84 8.3 11.8 4.26 85.0
20 0.2 12,842.48 10.6 12.0 3.37 88.2
20 0.1 12,864.60 10.8 12.0 3.27 88.5

Figure 6.5 summarizes the results presented in Table 6.4, with each point in the graph
corresponding to a line in the table.

For each family of instances, represented by red for I1, blue for I2, and green for I3,
three distinct "groups" of points can be observed. Each group corresponds to a different
σmax value, namely σmax = 85, 70, 55. The large gaps between the operational costs of
these groups indicate an increase in fleet size, which accounts for a significant portion of the
operational costs. Notably, as the instance size increases from I1 to I3, smaller operational
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Figure 6.5 – Capacity fade improvement per operational costs increase for the deterministic
and the stochastic cases (with ϵ = 0.1, 0.2)

costs increases yield larger capacity fading improvements. This observation is particularly
interesting and suggests that, with larger instances, more substantial gains in capacity fading
improvement could potentially be achieved with relatively smaller increases in operational
costs.

Figure 6.6 provides examples of the SoC profiles of the vehicle schedules selected in the
solutions, found using a deterministic and a stochastic approach, for a test conducted in I3.
Each solid line in Figures 6.6a, 6.6b, and 6.6c represents the average SoC as a function of time
for a BEB associated with a selected vehicle schedule. The dotted lines represent the average
SoC plus or minus two times the standard deviation. In Figure 6.6a, we depict the baseline
case where battery degradation is not considered. In this case, the average SoC remains high,
and the SoC level exhibits significant variation throughout the day. However, by reducing
σmax from 100% to 55%, both the average SoC and the SoC deviation are significantly
reduced (see Figure 6.6b). Introducing our chance-constrained model (see Figure 6.6c), we
observe a further reduction in SoC deviation by imposing a threshold on the maximum
probability of one or more vehicles experiencing SoC levels below 100%− σrec = 20%. This
reduction in the average SoC and SoC deviation is desirable from a battery management
point of view, as it extends the lifespan of BEBs.
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(a) Baseline, σmax = 100%

(b) Deterministic approach with and σmax = 55%

(c) Chance-constrained model with σmax = 55%, σrec = 35%, and ϵlow =
0.1

Figure 6.6 – Example of SoC profiles of BEBs - I3

6.6. Conclusions
This work introduced a chance-constraint model to address the E-VSP with battery

degradation and stochastic energy consumption. Our proposed model can limit the maximum
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probability of overusing BEB’s batteries throughout the day. Combined with a tunable
parameter that controls the SoC cutoff during charging activities (en-route and overnight),
our approach efficiently reduces the average SoC and the SoC deviation of BEBs. These
two factors have been identified as significant accelerators of battery aging. The reduction
in average SoC and SoC deviation achieved by our approach can be controlled through two
parameters: the maximum allowed AEC (σmax) and the recommended maximum AEC (σrec).
When determining the values of these parameters, one should consider the tradeoff between
battery degradation and operational costs.

To solve the chance-constraint problem, we developed a branch-and-price algorithm incor-
porating stochastic pricing problems. In our computational experiments, we first validated
the quality of solutions obtained for the deterministic case, where the recommended maxi-
mum AEC equals the maximum allowed AEC. Subsequently, we compared this deterministic
approach, which allows for a tunable maximum allowed AEC, with our stochastic approach.
Our results demonstrate that the proposed chance-constraint model offers additional gains in
capacity fading for small operational costs increases. For example, for the analyzed BEBs and
operational settings, our stochastic approach can extend the lifetime of each BEB in a fleet
by more than one year, with a cost increase of only 1.2E-3% compared to the deterministic
approach.
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Chapter 7

Conclusions and outlook

This thesis proposed probabilistic models for predicting uncertainties in public trans-
port using APTS data. Additionally, it introduced three stochastic models and column
generation-based algorithms for variants of the VSP, namely the MDVSP and the E-VSP.
These stochastic models are considered data-driven because they incorporate, or have the
potential to incorporate, information predicted by statistical learning models trained on his-
torical APTS data, namely the PDFs of the travel time and the energy consumption of bus
trips.

The research advancements in this thesis represent a step toward more comprehensive
and accurate public transport service planning. Specifically, we contributed to the existing
literature by providing valuable insights into understanding and incorporating the inherent
uncertainty of transport networks in the VSP, which has traditionally been tackled deter-
ministically. The papers presented in Chapters 3 - 4 and Chapters 5 - 6 aim to improve the
quality of public transport service and battery management, respectively. This agenda is
of utmost importance for public transport agencies and policymakers in the context of the
current climate crisis. We now summarize the main contributions of this thesis and conclude
by identifying the limitations of our work and potential future research.

7.1. Synthesis of work
Chapter 3 established the foundation for the data-driven approaches employed in this

thesis. In particular, it allows selecting a probabilistic model for the long-term prediction
of the PDF of travel time, which performs well in predicting the true conditional PDF
of travel time and in estimating the expected reliability of a bus schedule (i.e., tolerance
to delays). The latter serves as the ultimate objective of this research: to measure the
accuracy of a prospective bus schedule. This information can then by used by the operators’
schedulers to evaluate and compare vehicle schedules in terms of their reliability or by a
computer to optimize over a large number of potential vehicle schedules. Hence, our approach



benefits public transport agencies, their optimization-based software providers, and public
transportation passengers by improving the quality of their local bus service.

Our second contribution built on the insights gained from our first paper and introduced
a data-driven model for the MDVSP with stochastic travel time, which we refer to as the
R-MDVSP-STT (Chapter 4). The objective is to find vehicle schedules that strike a balance
between operational costs and reliability. We proposed a column generation-based algorithm
that incorporates several acceleration strategies to solve this complex stochastic program.
Additionally, we define novel reliability metrics that enable practitioners to comprehend
better the tradeoff between operational costs and reliability in MDVSP solutions. The impact
of this project extends beyond theoretical contributions, as our industrial partner, GIRO
Inc., has recently successfully implemented our findings into their software. Ultimately,
this project will assist public transport agencies in enhancing the quality of their service,
a particularly relevant objective in the context of deregulation and liberalization of public
transport markets, where transport agencies are often required to commit to a minimum
level of quality or face penalties.

Chapter 5 extended the knowledge obtained from our previous papers. It introduced
a novel two-stage stochastic model with recourse, incorporating stochastic travel time and
energy consumption. This model, named the S-MDEVSP, focuses on addressing battery
management challenges. Efficient energy management of BEBs is crucial for public trans-
port agencies with a (partial) fleet of electric buses. Our research aims to help these agencies
address energy feasibility constraints while using as few vehicles as possible. To achieve this
objective, we introduced a recourse policy that enables extending the charge time when devi-
ations in energy consumption are observed. By allowing flexible adjustments to the charging
duration, we ensure that energy feasibility constraints are respected while optimizing the
utilization of BEBs.

In Chapter 6, we addressed the issue of battery degradation in BEBs by introducing a
novel chance-constraint model for the E-VSP with battery degradation and stochastic energy
consumption. This model limits the maximum probability of overusing the BEBs’ batteries
throughout the day. Combined with a parameter that controls the charger cutoff SoC (i.e.,
the threshold at which chargers stop transferring energy to batteries), our approach effec-
tively balances operational costs with battery degradation. Computational experiments of
a tailored branch-and-price algorithm demonstrated that our approach can significantly ex-
tend the lifetime of BEBs, with only marginal increases in operational costs. Since replacing
a battery in a BEB is expensive and carries a substantial environmental burden, addressing
the tradeoff between battery degradation and operational costs is particularly important to
public transport agencies. Hence, our tool is a valuable resource for assisting public transport
agencies in making informed decisions tailored to their settings.
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7.2. Limitations and future research
This thesis makes significant progress towards modeling uncertainties in public transport

planning by proposing innovative data-driven models for the VSP under uncertainties and
tailored column generation-based algorithms. Our contributions and the insights they pro-
vide open many opportunities for interesting research directions that could be addressed in
future work.

The VSP models presented in this thesis assume uncorrelated uncertainties. However,
trips are likely to have correlated travel time or energy consumption, especially among trips
assigned to the same vehicle with similar spatiotemporal attributes. Recent work by Rostami
et al. (2021) proposes a parametric convex binary quadratic program for the capacitated ve-
hicle routing problem (VRP) with uncertain and statistically correlated travel time, but this
approach is not directly applicable to the VSP. Indeed, in the VSP, each task is associated
with a single-valued time window, i.e., a start time. Although the VRP with time windows
(VRPTW) and stochastic travel time has been studied previously (see, e.g., Errico et al.,
2018), the literature has yet to address the VRPTW with uncertain and statistically cor-
related travel time. To address this gap in the VSP and VRP literature, simulation-based
optimization seems to be the most relevant methodology. In our second contribution, we
compared solutions to the R-MDVSP-STT in terms of reliability metrics estimated offline
using a Monte Carlo simulation. This procedure allowed us to assess the impact of a special
case of statistically correlated travel times, namely when external and extraordinary fac-
tors, such as a severe snowstorm, cause travel time deviations of the same magnitude for all
timetabled trips. Future research could explore incorporating the same type of Monte Carlo
simulation directly into the optimization problem as part of a simulation-based optimization
model.

As transportation networks move from ICE buses to BEBs, taking into account the un-
certainty inherent in VSPs will raise more computational issues. Indeed, we identified that
the E-VSP is much harder to solve than the MDVSP, which can be explained by two main
causes. On the one hand, the underlying networks of the E-VSP typically contain a larger
number of arcs and nodes than those of the MDVSP. These additional arcs and nodes are
added to model charging activities. On the other hand, the E-VSP contains additional con-
straints related to the energy and charging station capacity. Our approach for the E-VSP
with stochastic energy consumption presented in Chapter 6 can solve instances of approxi-
mately 250 trips and one depot, significantly extending existing works on the E-VSP under
uncertainties and with capacity-limited charging stations. However, as transport system
electrification continues to progress, larger problems are likely to arise. To address these
computational issues, several potential avenues could be explored. For instance, decompos-
ing the E-VSP into two easier problems—the VSP and the charge scheduling—could allow
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for sequential or partially integrated solution schemes, similar to the approaches adopted for
other combinations of transit planning sub-problems (see, e.g., Amberg et al., 2019; Peru-
mal et al., 2021). Another approach involves developing a more concise representation of
charging activities compared to the current time-expanded charging nodes.

In recent years, advancements in telecommunication technologies have made it possible
to utilize online APTS data for real-time adjustments to the planned schedule based on
the current state of the bus network. As a result, the dynamic VSP has garnered significant
attention in the literature since the early work of Huisman et al. (2004). Our approaches were
developed in a static setting, which also holds relevance to transport agencies in planning
ahead of time for their bus service. Nevertheless, we could adapt our models to the dynamic
case to extend our current work. The literature on dynamic and stochastic VSP remains
largely unexplored, apart from the notable exception of He et al. (2018). Investigating this
setting could provide great benefits for policymakers.
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A.1. Derivation of the cumulative distribution functions
of the actual departure time
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The term on the right-hand side of (A.1.3) reduces to ∑z−κi,j−τ−k
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A.2. Additional results

(a) 1st case (b) 2nd case

Figure A.1 – Reliability metrics - I1
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(a) 1st case (b) 2nd case

Figure A.2 – Reliability metrics - I2
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(a) 1st case (b) 2nd case

Figure A.3 – Reliability metrics - I3
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