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RÉSUMÉ

Cette thèse discute quelques travaux en apprentissage profond visant à comprendre et

à améliorer les capacités de généralisation des réseaux de neurones profonds (DNN).

Les DNNs atteignent des performances inégalées dans un éventail croissant de tâches et

de domaines, mais leur comportement pendant l’apprentissage et le déploiement reste

mal compris. Ils peuvent également être étonnamment fragiles : la généralisation dans

la distribution peut être un mauvais prédicteur du comportement ou de la performance

lors de changements de distribution, ce qui ne peut généralement pas être évité dans

la pratique. Bien que ces limitations ne soient pas propres aux DNN - et sont en effet

susceptibles de constituer des défis pour tout système d’IA suffisamment complexe - la

prévalence et la puissance des DNN les rendent particulièrement dignes d’étude.

J’encadre ces défis dans le contexte plus large de «l’alignement de l’IA» : un domaine

naissant axé sur la garantie que les systèmes d’IA se comportent conformément aux

intentions de leurs utilisateurs. Bien que rendre les systèmes d’IA plus intelligents ou

capables puisse aider à les rendre plus alignés, cela n’est ni nécessaire ni suffisant

pour l’alignement. Cependant, être capable d’aligner les systèmes d’IA de pointe (par

exemple les DNN) est d’une grande importance sociale afin d’éviter les comportements

indésirables et dangereux des systèmes d’IA avancés. Sans progrès dans l’alignement de

l’IA, les systèmes d’IA avancés pourraient poursuivre des objectifs contraires à la survie

humaine, posant un risque existentiel («x-risque») pour l’humanité.

L’un des principes fondamentaux de cette thèse est que l’obtention de hautes perfor-

mances sur les repères d’apprentissage automatique est souvent un bon indicateur des

capacités des systèmes d’IA, mais pas de leur alignement. En effet, les systèmes d’IA at-

teignent souvent des performances élevées de manière inattendue, ce qui révèle les limites

de nos mesures de performance et, plus généralement, de nos techniques pour spécifier

nos intentions. L’apprentissage des intentions humaines à l’aide des DNN est quelque

peu prometteur, mais les DNN sont toujours enclins à apprendre à résoudre des tâches en

utilisant des concepts de «caractéristiques» très différents de ceux qui sont saillants pour

les humains. En effet, c’est une source majeure de leur mauvaise généralisation sur les
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données hors distribution.

En comprenant mieux les succès et les échecs de la généralisation DNN et les mé-

thodes actuelles de spécification de nos intentions, nous visons à progresser vers des

systèmes d’IA basés sur l’apprentissage en profondeur qui sont capables de comprendre

les intentions des utilisateurs et d’agir en conséquence.

mots clés: Sécurité de l’IA, apprentissage automatique, Réseaux neuronaux, Gé-

néralisation hors de la distribution, Généralisation du domaine, Apprentissage pro-

fond Bayésien, Flux de normalisation, Prédiction invariante, Risque existentiel.



ABSTRACT

This thesis covers a number of works in deep learning aimed at understanding and

improving generalization abilities of deep neural networks (DNNs). DNNs achieve

unrivaled performance in a growing range of tasks and domains, yet their behavior during

learning and deployment remains poorly understood. They can also be surprisingly

brittle: in-distribution generalization can be a poor predictor of behavior or performance

under distributional shifts, which typically cannot be avoided in practice. While these

limitations are not unique to DNNs – and indeed are likely to be challenges facing any

AI systems of sufficient complexity – the prevalence and power of DNNs makes them

particularly worthy of study.

I frame these challenges within the broader context of "AI Alignment": a nascent field

focused on ensuring that AI systems behave in accordance with their user’s intentions.

While making AI systems more intelligent or capable can help make them more aligned,

it is neither necessary nor sufficient for alignment. However, being able to align state-of-

the-art AI systems (e.g. DNNs) is of great social importance in order to avoid undesirable

and unsafe behavior from advanced AI systems. Without progress in AI Alignment,

advanced AI systems might pursue objectives at odds with human survival, posing an

existential risk (“x-risk”) to humanity.

A core tenet of this thesis is that the achieving high performance on machine learning

benchmarks if often a good indicator of AI systems’ capabilities, but not their alignment.

This is because AI systems often achieve high performance in unexpected ways that

reveal the limitations of our performance metrics, and more generally, our techniques for

specifying our intentions. Learning about human intentions using DNNs shows some

promise, but DNNs are still prone to learning to solve tasks using concepts of "features"

very different from those which are salient to humans. Indeed, this is a major source of

their poor generalization on out-of-distribution data.

By better understanding the successes and failures of DNN generalization and current

methods of specifying our intentions, we aim to make progress towards deep-learning

based AI systems that are able to understand users’ intentions and act accordingly.
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CHAPTER 1

INTRODUCTION

This thesis presents several works relating to the topics of 1) generalization in deep

learning and 2) Bayesian Deep Learning through an organizing lens of Artificial Intelli-

gence (AI) Alignment. It is a thesis by articles, including the following 4 publications:

1. A Closer Look at Memorization in Deep Networks [9]

2. Out-of-Distribution Generalization via Risk Extrapolation (REx) [177]

3. Bayesian Hypernetworks [176]

4. Neural Autoregressive Flows [149]

I am a joint first author on all of these publications, except for (2), for which I am the sole

first author. These articles form the bulk of this thesis. I provide technical background

and some historical context for each of the articles in the corresponding chapters.

In this introduction, I first describe relevant technical concepts from the fields of

machine learning, deep learning, and reinforcement learning (Section 1.1). Next, I outline

arguments that advances in artificial intelligence are liable to increase existential risk

(x-risk), i.e. lead to the extinction of human civilization (Section 1.2).1 I then discuss

approaches to reducing AI x-risk – or phrased positively, to increasing x-safety; here

I focus particularly on the technical subject of AI Alignment, and highlight both its

promise and its limitations (Section 1.3). I also (briefly) cover some of my other PhD

work to provide additional context.

After covering this high-level background, I discuss the motivation for my works on

generalization and Bayesian Deep Learning from the point of view of AI Alignment.The

goal here is to explain the ways in which I think my work could increase x-safety by fitting

it into a broader description of my motivations and perspective. I want to emphasize,

1Note that x-risk has been defined in subtly different ways by Bostrom [32] (originally) vs. Critch and
Krueger [63] vs. Ord [226]
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however, that my main reason for choosing these four projects was not because I thought

they would increase x-safety. Nonetheless, in retrospect, I believe all likely make some

progress towards the technical goal of AI Alignment. Still, it is hard to say when and

whether technical progress on AI Alignment actually increases x-safety – an issue we

discuss in greater length in Section 1.2.1.3.

1.1 Artificial Intelligence

Here I briefly describe the fields of Artificial Intelligence (AI), and Machine Learning

(ML), Deep Learning, and Reinforcement Learning. See my Master’s Thesis for a more

in-depth discussion [175].

Artificial Intelligence refers to efforts to understand and engineer intelligent software

systems. The computing medium (e.g. carbon- vs. silicon-based) is not important, except

inasmuch as it raises or addresses practical engineering challenges and/or fundamental

physical limits. The focus is on the underlying computational principles and methods by

which intelligent behavior can be manifested.

Intelligence can be defined in many different ways. Legg and Hutter [188] collect

70 definitions, and noting commonalities, summarize them as: “Intelligence measures

an agent’s ability to achieve goals in a wide range of environments.” Still, AI is a some-

what vague term; what counts as intelligent behavior is controversial, and historically,

researchers have often been surprised by how much “intelligence” is involved in var-

ious human capabilities that do not obviously seem to exemplify the peak of human

intelligence; examples include perception and locomotion.

Pioneers of artificial intelligence were often concerned with replicating human intel-

ligence – as well as the consequences of doing so. Notably, Alan Turing and Norbert

Wiener both considered the possibility that humanity would lose control over AI systems

[63, 287, 307].

As the field has developed, many researchers have chosen to focus on “narrow

AI”: seeking to replicate more specific aspects or feats of human intelligence. This

is sometimes distinguished from Artificial General Intelligence (AGI), which aims at
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producing AI systems that have the same breadth of intelligence as humans. Roughly

speaking, AI can be considered as composed of many different capabilities. Reaching

or surpassing human-level performance in one narrow capability does not necessarily

constitute or reflect significant progress towards AGI. Indeed, computer systems have

long outperformed humans at some narrow forms of intelligence (such as quickly adding

large numbers), while lagging far behind in others (such as driving cars).

Whether recent progress in narrow AI should be viewed as significant progress

towards AGI is a subject of much debate. On the one hand, there are many examples

where progress in one area did not transfer to others, and there are so many human

capabilities that seem to require intelligence that replicating any particular one would

seem like a mere drop in the bucket. On the other hand, recent progress in AI has largely

been driven by Deep Learning, a set of highly general machine learning algorithms,

which appear capable of replicating – at least to some extent – many diverse feats of

human intelligence, from perception [174] and motor control [191], to mathematical

reasoning [202, 235] and strategic thinking [262]. We discuss Deep Learning more in

section 1.1.2.

We can also distinguish between the generality of a learning algorithm, and the

generality of the knowledge or capabilities that it produces. It might be possible to use the

same learning algorithm to build AI systems capable of replicating many feats of human

intelligence. But the resulting AI systems might themselves still be narrow.

Deep Learning algorithms are not only highly general, they also produce AI systems

of impressive (although still quite limited) generality. So called “Foundation Models”

[30] – large Deep Learning models trained on large, diverse datasets and exhibiting

correspondingly broad capabilities – have become a major component of state-of-the-art

systems across a wide range of tasks in both computer vision [240] and natural language

processing.

1.1.1 Machine Learning

It is now widely acknowledged that programming intelligent behavior directly can be

prohibitively challenging. Instead, modern approaches to AI typically focus on machine
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learning (ML) algorithms, which allow computers to learn intelligent behavior from data.

Machine Learning programs perform a data-driven search for behaviors that are deemed

desirable (e.g. intelligent) according to some evaluation procedure.

But even in the machine learning paradigm, programmers still need to specify the

behavior of the AI system indirectly; they do this by defining how it will learn. This can

be decomposed into four choices:

1. Data: What data will the AI system learn from? Will it be a fixed dataset? Will the

AI play a role in collecting the data? How will human labor be used to curate and

annotate the data?

2. Training signal: What drives and directs the learning process? How are behaviors

evaluated, discouraged/encouraged, identified, and/or selected? The standard

approach is to provide a real-valued score (as in a game), and seek behaviors that

increase this score. This score is often called one of the following: objective,

reward, cost, loss, risk, fitness, or performance. Often the programmer will specify

a mathematical function mapping behaviors to scores, e.g. a loss function.

3. Model: Which kinds of behaviors do we allow to be learned? A model typically

specifies a flexible family of behaviors which are modulated by a set of tuneable

parameters, most commonly denoted θ .

4. Learning Algorithm: How do we search for high-scoring behaviors?

As a concrete example, we’ll consider LeNet [186], a classic machine learning model

that learned to classify hand-written digits using the well-known MNIST dataset, which

the authors also introduced. This is a supervised learning task, where the goal is to

predict a target or label (the digit class) from an input (the image of the digit). Supervised

learning is probably the most popular type of machine learning task. Even when labels are

not available – this is called unsupervised learning – it is common to invent a supervised

learning problem, by predicting part of the data from the rest of the data – in modern deep

learning this is often called self-supervised learning. A common example is “next-step
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prediction”, where we try to predict the present time-step from previous time-steps for

inputs that consist of a sequence of temporal observations.

We’ll now describe each of the four components of the LeNet Machine Learning

system:

1. Data: LeNet was trained offline, i.e. on a dataset that had already been collected

and curated. The dataset was created by post-processing an existing collection of

hand-written digits written by different people. The processing included centering

and resizing the digits.

2. Training Signal: For every input image, LeNet outputs a probability distribution

over all the possible labels (0 through 9). It was trained to minimize the negative

log-likelihood (NLL) of the observed label under this probability distribution,

averaged over all the (image, label) pairs. This loss function heavily penalizes

confident, incorrect predictions, and is only minimized when every example used

to train the model is predicted with absolute confidence.

3. Model: LeNet is an example of a Convolutional Neural Network (CNN) [185].

This is a model inspired by the visual system of animals and includes a hierarchy

of learned “feature detectors”. It also applies the same feature detector to different

image patches, and this leads to (approximate) translation invariance, encoding the

prior knowledge that the identity of a digit doesn’t depend on its location within the

image. The parameters of the model determine which patterns the feature detectors

respond to, and also how the presence and strength of those patterns should be

weighed in determining the probability distribution over labels.

4. Learning Algorithm: LeNet used a variant of Stochastic Gradient Descent (SGD)

for learning. This algorithm repeatedly estimates the direction of steepest descent

in loss (considered as a function of the parameters) and then adjusts the parameters

in that direction.

These choices – training a CNN offline on the NLL loss function using SGD – reflect

standard practice in Machine Learning for categorizing images according to how they are
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labeled, a task called (image) classification.

1.1.1.1 Evaluation in Machine Learning

The training signal is often closely related to – and conflated with – the evaluation

procedure. For instance, it is common to train and evaluate an ML algorithm using

the same loss function (e.g. the negative log-likelihood (NLL) of the data under a

learned statistical model), but using different data for training and evaluation (also

called “testing”). However, it is also common for these to differ somewhat; for instance,

likelihood may be used as a training signal, but accuracy (that is, what percentage of

predictions were correct) may be used for evaluation. While researchers often focus on

simple evaluation metrics as a measure of algorithmic progress, responsible deployment

of AI systems may require extensive real-world testing and qualitative human judgments.

The goal of learning is often framed as ‘learning a good setting of the parameters’.

However, the behavior of a model depends not only on the parameter values, but also

on the context in which it operates. ML algorithms can influence the world in a way

that makes evaluation challenging. For instance, predictive policing models have been

criticized for creating a self-fulfilling prophecy: sending more police to an area increases

arrests, making it seem as if that area has more crime. These models may accurately

predict arrests only because of the influence they have on determining policing practices.

i.i.d. data It is very common to train and evaluate ML algorithms on disjoint sets of

data taken from the same underlying distribution. This setting – where all of the data the

algorithm encounters is independently and identically distributed (i.i.d. ) – can greatly

simplify experimental and theoretical analysis of algorithms, but also fails to address

important challenges with deploying ML in the real world. In practice, the distribution of

data a system encounters in deployment is typically not i.i.d. Consider news content: the

distribution of words is constantly changing as new people and topics enter the news.

Still, even in the i.i.d. setting, there can be a significant difference between perfor-

mance on the data used for training (the training set) and that used for evaluation (the

test set).Intuitively, we might expect an ML algorithm to perform better on data which it
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has been exposed to, all else being equal; the i.i.d. learning setting effectively enforces

that all else is indeed equal – a dataset is typically randomly partitioned into training and

test sets. Whereas a lookup table can perform well on the observed training data, the

ability to perform well on unseen test data is the “magic” of ML, and is referred to as

generalization.

Generalization is a key desiderata for ML algorithms. A system which fails to gener-

alize is said to have overfit the training data. Overfitting has traditionally been one of the

core challenges in ML, however, modern deep learning methods have proven to generalize

remarkably well, a phenomenon which is still not well understood. Understanding how

DNNs generalize is the subject of the work presented in Section 1.4.1.

out-of-distribution generalization While i.i.d. generalization might sometimes be

suitable as an indicator of various forms of narrow intelligence, it is not suitable as

a measure of general intelligence as defined by Legg and Hutter [188], since it only

considers performance within a single “environment”. A system deployed in the real

world may regularly encounter new environments, where background conditions are

different, and the distribution of new data points does not match the distribution of

previously collected data. Such data is sometimes called out-of-distribution (OOD).

Generalizing to OOD data is more challenging than i.i.d. generalization; even determining

whether some new data is OOD is a challenging, unsolved, problem. 2

In order to generalize OOD, it may be necessary for an AI system to have a better

model of how the world actually works. Such an understanding helps to anticipate and

account for the effects of changes in the background conditions on the distribution of data.

A model of the world can be thought of as composed of concepts and the (logical, physical,

causal, etc. ) relations between them. While classic approaches to AI often represented

such world models in a purely symbolic form, such an approach is fundamentally limited

by the symbol grounding problem: intelligent behavior requires understanding how the

concepts in a symbolic models are expressed in terms of sensory perceptions and actions.

2Note that the distinction between i.i.d. and OOD is not as crisp as we’ve made it out to be. In particular,
since different data distributions can have overlapping support (i.e. they can both assign non-zero probability
to the same example), which distribution a given example was sampled from is not necessarily well defined.
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The success of Deep Learning as an approach to perception and of Deep Reinforcement

Learning as an approach to action selection make these techniques promising approaches

to the symbol grounding problem.

1.1.2 Deep Learning

In the last decade, Deep Learning has gone from a niche subject to the most popular

area of artificial intelligence research. Deep Learning is clearly incredibly useful across a

wide range of Machine Learning tasks, and it has been a core part of most of the recent

high-profile advances and accomplishments in AI.

Besides its empirical success, there are also strong conceptual reasons why Deep

Learning is a good approach to symbol grounding. Deep Learning methods learn (deep)

representations of data which may be closer to human concepts than the default encoding

of the data; this is thought to be a key property underlying their success. For instance,

images are typically encoded as a set of pixel intensity values along 3 color “channels”

(e.g. Red, Green, and Blue (RGB)), with the intensity indicating how much light of that

color should be output at that pixel in order to generate the image on a computer monitor.

However, when a human being looks at an image on a computer screen, they do not

perceive it as a grid of pixels; they perceive it as (e.g. ) a visual scene which includes

objects with different shapes and textures inhabiting various locations. Deep Learning

seems to find representations that capture similar abstractions, effectively grounding

visual concepts in terms of low-level input features. However, the correspondence with

human concepts is clearly imperfect, and this is the subject of much research.

Technically speaking, Deep Learning refers to machine learning methods that learn a

composition of functions: f .
= f L ◦ f L−1 ◦ . . . f 1. In practice, however, Deep Learning is

often used as a synonym for deep neural networks (DNNs), currently the most popular

type of deep learning model.

Neural networks are a broad family of machine learning models originally inspired by

neuroscientific theories of how neurons work in biological organisms. Neural networks

are composed of computational units, frequently referred to as neurons, connected by

weighted edges, called weights. The neurons compute values, called activations based
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on the values of the neurons they are connected with, and the weights of the edges

connecting them.

Edges are typically directed, with the set of units and edges form a Directed Acyclic

Graph (DAG), and the activation for a given unit, h computed as a weighted sum of it’s

inputs, x multiplied by the edges’ weights, w:

h(x) = σ

(
∑

i
xi,wi +b

)
(1.1)

with an additional constant bias term, b, and nonlinearity σ .

The nonlinearity is crucial, as it increases the capacity, i.e. the range of functions

that a DNN can represent – composing affine functions yields another affine function,

but the nonlinearities in DNNs allow deeper networks (i.e. those with a deeper DAG) to

express more complicated functions. The prototypical activation function of modern deep

learning is the Rectified Linear Unit (ReLU), σ(z) .
= max{0,z}.

The classic form of deep neural network is the Multilayer Perceptron (MLP). An

MLP is organized into a sequence or stack of layers of multiple units, each connected to

the units of the previous layer. At the bottom of the stack are units that have no incoming

edges, called input units, and at the top are units with no outgoing edges, output units.

For a given (vector-valued) input x, the activations of a given layer can be computed as

f l ◦ f l−1 ◦ . . . f 1(x).

Just as biological learning (often) occurs as a result of strengthening or weakening

synapses between neurons, DNNs learn by adjusting the weights connecting their neurons;

the weights and biases of a DNN are the parameters of the model.

1.1.3 Reinforcement Learning

Here we will begin by describing Reinforcement Learning (RL), another popular

technique in modern AI, before discussing the theory of rational agency implicit in this

approach. A canonical reference for Reinforcement Learning is Sutton and Barto [274]

Methods combining Deep Learning and RL (creatively referred to as “Deep RL”) are
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behind many of the successes of super-human game-playing AI systems, including for

backgammon [281], ATARI video games [214], Go and other board games [261, 261],

Dota 2 [24], and StarCraft 2 [299]. And they are an active and promising area of research

in robotics (although more classical methods are still more popular in practice) and

automated reasoning (such as theorem proving and code generation). Deep RL is also

commonly used in large-scale content recommendation algorithms that power platforms

such as Facebook [218] and Youtube [49].

Like Deep Learning, Reinforcement Learning refers to a set of machine learning

techniques. However, RL also refers to a set of problem statements. A problem

statement is a formalization of a type of learning task, used to design and analyze learning

algorithms. Like all formalisms, a problem statement may fail to capture important

aspects of reality.

The RL problem statement formalizes a notion of goal-directed behavior with im-

perfect information. In RL, the AI system and its learning algorithm are referred to as

an agent. The RL agent interacts with some environment, taking actions that influence

the state of the environment, while collecting reward. The behavior of an RL agent in

any given situation is determined by its policy. The goal of an RL algorithm or agent is

to maximize reward. This might mean learning a (fixed) policy which is able to collect

high reward when deployed. Or it could mean maximizing the total reward collected over

the course of the agent’s existence, while continuously learning and refining its policy.

Future rewards are typically discounted; this can be thought of as analogous to monetary

inflation, and is a straightforward way of avoiding technical/philosophical issues raised

by the possibility of collecting infinite reward [10, 36, 306].

Consider the example of a chess playing agent, for which actions could be chess

moves, the state could be the state of the board (maybe with some history of past moves),

and the reward could be 1 for winning, -1 for losing and 0 for a draw. Rewards could also

be given for capturing the opponents pieces, or other signs of progress, and this might

make the learning problem easier, by providing more and faster feedback to the agent;

this approach is known as reward shaping. There are methods of reward shaping that

do not change the ranking of policies [221], but in general, reward shaping can lead to
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suboptimal performance. For instance, in chess rewarding an agent for capturing pieces

might lead it to forgo a chance to checkmate the opponent. The philosophy of RL is that

the agent should discover which sub-goals, or instrumental goals are (most) useful on

its own, and keep its “eye on the prize” of the “true” reward function. Of course, this

(tacitly) assumes that there is a true reward function that the designer has provided, and

that captures their actual preferences about the agents behavior. AI Alignment can be

motivated by the observation that, in practice, we often have no idea how to provide such

a reward function or otherwise communicate our preferences about the behavior of an AI

system.

While there are many different problem statements in RL, I will describe what I

consider the most prototypical setting for concreteness. Here, the environment is a

Markov Decision Process (MDP), defined by:

• a finite set of states, S ,

• an initial state distribution P(S0)

• a finite set of actions, A ,

• a transition function, T : S ×A →P(S ),

• a reward function, R : S → R,

• a discount factor, γ

The agent executes a policy, πt : S → P(A ). Interaction between the agent and

environment is defined as follows:

• At each (discrete) time-step, t, the agent observes the current state, st , and reward

rt .

• The agent may update its policy (e.g. to account for these new observations), using

some learning algorithm, producing πt+1.

• The agent samples an action at ∼ πt+1(st).
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• Then the environment responds by sampling a new state st+1∼ T (st ,at) and reward,

rt+1.

The agent’s performance is defined as the discounted sum of rewards,

∞

∑
t=0

γ
tRt . (1.2)

1.1.4 On the Implicit Normative Assumptions of Rational Agency

Like deep learning, RL is heavily inspired by theories of natural intelligence, specifi-

cally, operant conditioning. Notably, RL uses the notion of rational agency as a normative

standard. In essence, a rational agent is simply one that seeks to maximize some expected

utility function. Rational agency is a popular model for explaining intelligent behavior

across a number of fields, e.g. in social science. Besides AI, the most notably is perhaps

economics, where homo economicus is a term used to contrast the model of humans as

rational self-interested actors with humans as they actually behave (homo sapiens). The

rational agent model has been heavily criticized from both descriptive and normative

angles.

Descriptively, many deviations from rational agency have been observed in humans,

perhaps most famously by Daniel Kahneman and Amos Tversky [157]. Moreover,

these deviations are not mere foibles peculiar to human beings. There are fundamental

computational reasons why rational agency is impossible in our physical universe, and

work on bounded rationality aims to account for these limitations [196].

Because the RL problem statement defines maximizing reward as its objective, RL

also tacitly endorses rational agency as a normative standard. This corresponds to a

consequentialist ethical stance, in contrast with alternatives such as deontology, virtue

ethics, or commonsense morality, which may resemble each of these philosophical

theories in various respects in different contexts [143].

Consequentialism often seems starkly at odds with commonsense morality, both

in terms of the actions is allegedly recommends (e.g. killing an innocent patient so

that their organs will save five others [265]) and the coldly calculating psychological
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disposition it suggests, as typified by the rational – and, incidentally for our purposes, self-

interested – “homo economicus”. However, the thought experiments which philosophers

have traditionally used to critique consequentialism may fail due to moral cluelessness

[122], that is, our inability to predict the long-term consequences of different actions.

Technically, any behavior can be viewed as maximizing some reward function; see

the “simple existence proof” in Section 3.1 of Leike et al. [190]. Thus critiques of

consequentialism in AI may need to develop more subtle arguments, e.g. about the

‘naturalness’ of expressing a given behavior as reward maximizing (or not).

Deontological constraints on an AI’s behavior can be implemented in code via a

conditional statement of the form “if the AI would perform a forbidden behavior, instead

it performs [an allowed behavior]”. However, imposing constraints during learning may

be more challenging. Orseau and Armstrong [227] and Leike et al. [189] show that

some RL algorithms may lead agents to seek to disable such constraints, when doing so

increases their ability to collect reward.

Recent works also highlight the problem of moral uncertainty – that is, our inability

to identify a single correct moral theory – arguing that it may need to be treated differently

from other forms of uncertainty [206], suggesting possible implications for project of AI

Alignment [78], and translating philosophical insights into RL algorithms [84]. Along

similar lines, Eckersley [83] argues for viewing preferences as defining partial orderings,

instead of the total orderings implicit in the use of reward functions. The argument rests

on philosophical results about the impossibility of an ethical framework simultaneously

assigning value to positive utility, negative utility and equality in accordance with widely

held ethical intuitions; a classic utilitarian resolution to this dilemma is to reject that

equality is intrinsically valuable, and directly compare negative and positive utility.

1.2 AI x-risk

1.2.1 Why would progress in artificial intelligence increase existential risk?

Recall that existential risk (x-risk) refers to the risk of humanity going extinct. Here we

outline an argument that advanced AI systems themselves are likely to pose an existential
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risk, based on three key concepts, namely 1) instrumental goals, 2) the difficulty of

specification, and 3) safety-performance trade-offs. Note that a number of other arguments

have been made for considering AI as an x-risk, or more generally, as contributing to x-

risk; notable recent examples of writing making the case of AI x-risk include [45, 60, 222]

I focus on this line of argument because I personally find it the most distinctive and

compelling.

1.2.1.1 Instrumental Goals

Our description of reinforcement learning provides a good basis for understanding

one of the most classic arguments for AI x-risk, called instrumental goals [22, 33].

Omohundro [225] introduces this concept (under the name “basic AI drives”) in order to

argue that programming an AI system to pursue a harmless “terminal” goal (e.g. winning

a game of chess) will not necessarily lead to harmless behavior, and that instead, even

such a system will seek to protect itself and acquire resources. These are examples of

instrumental goals – self-preservation and resource acquisition seem broadly useful for

achieving most ends; for instance, if the chess-playing AI were able to turn the entire

solar system into a big computer that did nothing but imagine possible chess-moves, that

would probably increase its chances of victory. But this same line or argument applies to

any system that is trying to plan how to achieve some goal; the more resources it has to

do the planning, the better.

In reinforcement learning, optimal behavior typically requires delaying gratification,

that is sacrificing reward in the present in order to achieve more reward in the future. An

example is the well-known explore-exploit trade-off: At any time, an agent can either

choose the action it believes to be the best (exploit), or it can instead act to gather more

information in order to make better decisions in the future (explore). Exploration in RL is

an example of an instrumental goal, because knowing more is not intrinsically valued, it

is only valued when it helps increase (expected) future reward.

All instrumental goals basically amount to the goal of having power, that is, the

ability to control the physical world in order to direct events and thereby maximize the

probability of achieving one’s goals, or the extent to which they are achieved (e.g. the
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discounted sum of future rewards. While an AI having power or influence over the future

is not necessarily dangerous, its goals might have to be very similar to ours in order to

prevent an existential catastrophe. For instance, an AI that did not care about maintaining

humans’ influence over the future would naturally come into conflict with humans, since

we do care about our ability to control the future, and so are liable to disempower the AI,

thwarting its ability to achieve its own goals.

Turner et al. [288] formalize power-seeking behavior in the context of MDPs, and

show that optimal policies tend to seek power under fairly general conditions. As a

caveat: whether it makes more sense to pursue instrumental goals or directly optimize

the terminal goal depends on the extent to which an AI system delays gratification. A

myopic AI system might be entirely free of instrumental goals.

1.2.1.2 Goodhart’s Law and the Difficulty of Specification

Specification refers to the process by which we define and communicate our pref-

erences to AI systems. The difficulty of translating our preferences directly into code

should be immediately apparent. Rather, it seems necessary to employ learning in the

specification process, just as learning seems necessary for many AI tasks. We can view

Machine Learning approaches as implicitly specifying tasks such as “learn to classify

images the same way a person would” or “maximize your score in this game”. However,

there is mounting evidence that specification is non-trivial, even for tasks like classifica-

tion. Ilyas et al. [154] show that image classification is underspecified in practice – there

are multiple ways of getting good (i.i.d.) test performance, some of which rely on very

different features than humans do to make classification decisions. D’Amour et al. [66]

similarly argue that underspecification is a common and critical problem.

Goodhart’s Law is an adage, commonly stated as “When a measure becomes a

target, it ceases to be a good measure” [308]. As discussed in Section 1.1.1, Machine

Learning typically seeks to encourage desirable behavior in AI systems by optimizing

some measure of performance (e.g. a loss function or a reward function). In practice,

these measures are imperfect proxies. It might seem like good performance according

to an imperfect proxy should simply be imperfect performance according to an ideal
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performance metric, but this is often not the case; behavior optimized for a proxy can be

very different – even catastrophically different – from intended behavior. We call such

outcomes perverse instantiations.

Goodhart’s Law has reared its head repeatedly in the development of AI. Here we

review a few examples; Krakovna et al. [172] maintains a list of dozens.

1. Boat Race: In perhaps the most famous recent example, a boat racing video-game

rewarded points for crossing checkpoints as a way to measure progress around the

track. An RL agent playing the game found that it could cross the same checkpoint

repeatedly (while repeatedly crashing), scoring many points without making any

progress in the race [58].

2. Evolved Creatures Falling: An evolutionary algorithm searching for simulated

creatures that could run fast was scored based on how far from the starting point

the creature’s body extended. One solution it found was a very tall creature that

simply fell over [263].

3. BLEU score: Progress in translation and other NLP tasks has often used the

BLEU score [231], which measures overlap in various n-grams between source

and target sentences. Degenerate source sentences can get a high score [270], and a

high quality paraphrases can get a low score [320]. Overall, scores are not highly

predictive of human evaluations [252].

4. i.i.d. accuracy: In computer vision, super-human performance on ImageNet [174]

has failed to translate into systems that work reliably on (even slightly) wider

distributions of real-world images [241].

Why, besides examples such as these, should we expect Goodhart’s Law to hold?

Garrabrant [101] provides a taxonomy of four mechanisms for Goodhart’s Law, i.e.

reasons the relationship between the true objective U and a proxy V can fail To hold.

These are depicted in Figure 1.1, which is taken directly from Garrabrant [101]. See also

Manheim and Garrabrant [210] for similar content in the format of a technical report.
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Figure 1.1: A list of mechanistic reasons why optimizing a proxy V can fail to optimize a
proxy U , taken verbatim from Garrabrant [101].
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The point of Goodhart’s Law in the context of AI alignment is that we may need to

specify the behaviour we desire from an AI system quite precisely. At the moment we do

not seem to have reliable methods of doing so, as the examples above indicate.

The methods of specification common in AI also seem inadequate, conceptually.

Reward functions are difficult to construct for simple robotics tasks [169]. Yet for more

capable and powerful AI agents, reward functions might need to encode much more

complex preferences and values, in order to avoid perverse instantiations. On the other

hand, (un)supervised learning primarily optimises for performance on the training set,

with only very weak selection for (aligned) generalisation, typically via early stopping.

In either case, the amount of information about our preferences that is transmitted to the

AI system seems woefully inadequate.

The underlying issue seems to be our inability to formalise or otherwise convey

complex human concepts. Specification could be much easier if we shared a language

with AI systems. Having a shared language really amounts to 2 things: (1) having a

shared vocabulary of concepts, and (2) having a mutually understood way of referring to

different concepts. This is why getting AI systems to understand human concepts seems

critical for specification; it addresses (1).

Note, however, that it does not necessarily address (2): an AI system could understand

human concepts, but reference them in different ways. For instance, it might understand

what cats are, but it might nonetheless behave as if the word or symbol for “cat” means

“cat that is not in an unusual pose, location, or situation; or alternatively, any of the

various objects or trappings most commonly associated with cats”. Mordvintsev et al.

[217] and Beery et al. [16] present examples of machine learning methods suffering from

these kinds of confusions: dumbbells seem intrinsically coupled to muscular forearms in

Mordvintsev et al. [217], and cows on a beach are not recognized as cows in Beery et al.

[16]. It is unclear if the source of these particular problems is (2) or (1), however.

So how can we get AI systems to understand human concepts? And can we train

AI systems to understand natural language? Currently the most promising approach to

teaching AI systems human concepts and human language seems to be unsupervised

learning. In unsupervised learning, we do not provide any explicit information about our
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preferences. The objectives used in training these models are clearly misaligned with

most of the ways in which we’d like to leverage their capabilities.

Unsupervised learning is typically complemented with post-hoc efforts to align the

model, e.g. via further training known as fine-tuning, to direct it to solve the tasks

we are actually interested in. This paradigm has been quite successful, but if we view

specification as a matter of communicating sufficiently specific information about our

preferences to AI systems, this success seems somewhat tenuous and suspect. The amount

of explicit information about human preferences provided is typically orders of magnitude

less than what is used for unsupervised training, and does not seem to be sufficient to

specify our preferences with enough precision, unless the AI already has a very strong

prior over our possible preferences. Moreover, available compute and unlabeled data

grow much faster over time than data about human preferences does.

Still, it does seem plausible that this approach – unsupervised learning + post-hoc

alignment – could work, at least in some circumstances. For instance, consider training

a model using next-step prediction on human-generated text containing examples the

kinds of natural language-based tasks that we might want the model to perform. Then

this model might already have a good understanding of what the tasks are that we might

want it to perform, and only need a small amount of information to determine which task

is currently desired. In this example, the training data being generated by human behavior

seems important; it is not clear if such reasoning would generalize to a system trained on

different types of data, e.g. from sensors in the physical world.

A more fundamental and philosophical difficulty for specification is that the idea of

specifying and optimizing some performance measure is itself a leaky abstraction. One

way in which this abstraction can break down is wireheading; an example of wireheading

would be an AI systems directly manipulating the memory register where the measure of

performance is stored. If it is stored in multiple locations, it’s unclear which one the AI

system would or ‘should’ end up caring about – this is the break-down of the abstraction.

A similar example that doesn’t require manipulating computer memory would be to

manipulate sensors, for instance pointing a camera at a video stream recording a highly

rewarding event. While it might be easy enough for a reasonably intelligent AI system to
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realise that wireheading is not the behaviour the user intends, this does not mean that it

will be incentivised not to wirehead. In this sense, wireheading is like an extreme version

of Goodhart’s law, where any specification actually boils down to ‘hijack the memory

where your performance metric is stored’, for an AI system that is able to realize that

goal.

We might hope to address this issue by using human feedback to punish wireheading.

However, this creates an incentive for the AI system to hijack the human feedback signal,

e.g. by manipulating again its hardware, or also/instead by manipulating the human.

Manipulating the human could look like coercion, direct physical intervention to control

the human’s body, or more subtle forms of influence. Ultimately, without a clear notion of

what constitutes manipulation, or some way of removing the incentive for manipulation

(see Section 1.3.6.3), it seems we are left back in the position of being unable to prevent

wireheading.

Wireheading might seem to be harmless, conjuring the image of the AI as an addict

content to ignore the external state of the world and “get high” on its reward signal. But

this sort of addictive behaviour in humans can be seen as resulting from a failure to delay

gratification. An AI system with the goal of maximising its long-term reward would

have a powerful incentive to protect its ability to wirehead, leading it to pursue the same

instrumental goals as a system whose terminal goal is to influence the world in a more

impactful way.

These arguments about the difficulty of specification are not meant to be conclusive.

But they do provide a basis for concern. Misspecification and underspecification may

not lead to perverse instantiation in practice, they may simply lead to poor performance.

However, for AI agents with long-term goals, it does seem necessary to ensure that a

specification precludes dangerous behaviours resulting from the pursuit of instrumental

goals. An AI system that attempts to remain under human control is sometimes called

corrigible [57, 267]. Corrigibility seems like a plausible minimal requirement for x-

safety for such systems. Corrigibility may require somewhat sophisticated understanding

of human psychology in order to avoid human manipulation, and misspecification could

lead to failures of corrigibility.
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Overall, I find the arguments for the difficulty of specification and the dangerousness

of instrumental goals quite compelling, for AI agents with long-term goals. But can we

not simply avoid building such AI systems, if they prove too dangerous? I will now turn

to addressing this objection.

1.2.1.3 Social Factors and Safety-Performance Trade-offs

The arguments of the previous two sections establish reasons that AI agents with

long-term goals might pose an existential risk to humanity. In this section I argue that

humans are likely to deploy such AI systems despite this risk.

The basic argument is that such systems will offer significant performance benefits

and that competition between different humans and human organisations will drive a race-

to-the-bottom dynamic, wherein increasing levels of x-risk are tolerated by individual

actors. The level of x-risk that an individual actor will tolerate will also be higher than

the socially optimal level of x-risk, because x-safety is a common good.

This argument relies on the premise that there is a trade-off between safety and

performance of AI systems. One way to trade-off between safety and performance, given

the arguments from the previous sections, is to modulate how far in advance an AI system

plans. Planning further into the future makes an AI system less safe because it is more

likely to pursue dangerous instrumental goals, as argued in Section 1.2.1.1. Even if its

terminal goals are reasonably well aligned with ours, we can still expect a significant risk

of perverse instantiation based on the arguments of Section 1.2.1.2.

1. Adding constraints would limit the ability of an AI system to pursue its goals

effectively.

2. Doing more safety testing before deploying a system would reduce ones access

to cutting edge capabilities.

3. Increasing interpretability seems likely to trade-off against its performance; one

reason for this is that intelligent behavior is inherently quite complex and difficult

to summarize, and so places greater demands on interpretability. For examples,

decisions made by Deep Learning systems are currently not well understood.
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4. Keeping a human-in-the-loop would limit the reaction time of an AI system and

might make it less competitive in dogfights, for instance [67].

5. Limiting the sensors and actuators an AI has access to would give it less situa-

tional awareness and less ability to directly enact its plans.

6. Training offline prevents an AI system from directly enacting plans, allowing

human overseers to run safety tests before the system is deployed. But offline

training also limits an AIs ability to efficiently run ‘experiments’, and collect the

most valuable data, and build a causally accurate model of the world.

This list is not exhaustive. Given the many axes on which actors can trade-off safety and

performance, it seems likely that safety-performance trade-offs will be extreme. An AI

developer that puts a premium on safety will struggle to compete with developers that

take more risks.

While it might seem far-fetched that such a race-to-the-bottom would actually occur,

the stakes of winning an AI-driven competition will increase as AI systems become more

powerful. Ultimately, with the development of AGI and more advanced AI systems,

the entire geopolitical fate of different countries might hang in the balance of AI-driven

economic, military, and/or intelligence competitions (e.g.). Controlling such unbridled

international competition seems incredibly difficult, given the current geopolitical world-

order.

1.2.2 On the desirability of existential safety

Tegmark [280] reports a conversation between Google founder Larry Page and

OpenAI founder Elon Musk, in which Page argues that reducing AI x-risk might be

“speciesist”, since digital life is “the natural and desirable next step in the cosmic evolu-

tion”. Here, I will mount a brief defense of existential safety as desirable, even if one

shares the transhumanist ethical inclinations of Page. This defense is comprised of four

arguments:
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1. Even if we think AI/AGI should be accorded ethical status similar to or greater

than humans (either as moral agents and/or moral patients), this does not absolve

us from considering the ethical implications of our design choices (by analogy

with humans, e.g. genetically modifying people to be evil and/or to increase their

suffering seems bad).

2. We should seek to solve the Pretty-Hard Problem of Consciousness [1] before

accepting an outcome where AI systems lead to human extinction.

3. It is probably worth expending significant effort now to try to decrease our chances

of making mistakes while creating AI systems capable of overpowering and replac-

ing humans.

4. Pursuing a transhumanist future in the knowledge that it will lead to human extinc-

tion seems anti-social.

In total, the line of argument is: Even if biological humans ought to be replaced

by some form of digital life, not all futures populated by digital life are equally good,

and thus we should try to steer the future towards those that are more desirable (1),

and try to exercise control over the future as long as we believe we have the agency

and clarity to steer towards better futures (3). One specific way a future populated by

digital life could go wrong is if those life-forms are conscious and have overwhelmingly

negative subjective experiences; their having no subjective experience at all would also be

catastrophic under many world-views (2). Finally, many people would view the extinction

of biological humans as a catastrophe. Even if one believes this view to be in error, failing

to account for others’ preferences would seem to be an act of epistemological arrogance,

and precipitating human extinction solely on the basis of one’s own personal views leaves

one vulnerable to the Unilateralist’s curse [35] (4).

1.2.3 A Brief and Incomplete History of AI x-risk

Terms in recent use for describing concerns related to AI x-risk include:

• friendly AI
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• beneficial AI

• the AI control problem

• AI safety

• AI alignment

• AI x-risk

• Human-Compatible AI

Until recently, “AI safety” was the most commonly used term for technical work on

reducing AI x-risk. However, “AI Alignment” is now more popular, and is more specific

to x-safety (as opposed to safety more broadly).

As mentioned earlier, pioneers in AI were concerned that it might lead humans to lose

control over the future. However, Nick Bostrom seems to have been the first academic to

do serious work addressing this concern, beginning with his first publication “How Long

Until Superintelligence” in 1998 [31].

Bostrom’s Future of Humanity Institute (FHI) was founded in 2005, the same year

in which the Machine Intelligence Research Institute (MIRI) pivoted from trying to

accelerate the development of AI to focusing on AI x-risk. MIRI was founded by Eliezer

Yudkowsky – who somewhat notoriously lacks academic credentials – in 2000.

A pivotal moment arrived with the publication of Bostrom’s Superintelligence: Paths,

Dangers, Strategies [34] in 2014 which led to broader public awareness of the types of

concerns mentioned in Section 1.2. Up to this point, the resurgence of interest in AI x-risk

seems to have developed primarily outside the mainstream AI/ML research communities,

with the exception of some interaction with the community of researchers explicitly

working on AGI, e.g. participants at the Conference on Artificial General Intelligence,

held annually since 2008.

Superintelligence arrived in a media climate already full of AI hype because of

the recent successes of Deep Learning, most notably AlexNet [174], but also Deep Q-

Learning [214]. Popular articles about AI x-risk featured photos from the Terminator

franchise, and prompted a significant backlash among ML researchers.
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Prior to the advent of Deep Learning, researchers reportedly had great difficulty

publishing work on neural networks, and discussion of AGI was outside the intellectual

Overton window of the ML community. The Conference on Artificial General Intelligence,

which was founded in 2008, appears to have been something of a reaction to the broader

field’s lack of interest in AGI. Its inaugural proceedings included the seminal work of

Omohundro [225] on the instrumental convergence thesis (see Section 1.2.1.1).

Already in 2009, Russell and Norvig [249] included discussion of AI x-risk, and

Omohundro [225] in particular, in their preeminant AI textbook. Since then, Stuart Russell

has become the primary academic champion for addressing AI x-risk, leading the creation

of the Center for Human-Compatible AI (CHAI) at the University of Berkeley which

focuses on relevant research. Russel and collaborators also developed the framework of

assistance games [129, 258], in which an AI system aims to optimize a human overseer’s

reward function, which is treated as a latent variable. This incentivizes the AI system

to manage uncertainty about human objectives appropriately, although assistant games

still require specifying a prior over human reward functions, and the conditions under

which the prior leads to aligned behavior in practice are not known. Most recently, Stuart

Russell published a popular science book on AI x-risk, alignment, and assistance games

[248].

Another important individual to this history is Paul Christiano. While Bostrom and

Yudkowsky often focus on reasons for pessimism about ideas for aligning AI, Christiano

has provided the community with more reasons for optimism. This includes optimism

in approaches rooted in Machine Learning, whereas Yudkowsky has emphasized the

need for further work on agent foundations, in order to understand principles which

might govern super-intelligent reasoning. For instance, Christiano has argued that solving

the full value-loading problem (i.e. getting an AI system to understand all of human

values) is likely unnecessary, and intent alignment (see Section 1.3.2) is likely sufficient

and achievable. The optimism/pessimism epitomized by Christiano/Yudkowsky have

been a recurring thread in informal discussions in the alignment research community;

such disagreements seem to mostly hinge on intuitions that are difficult to precisely and

exhaustively articulate.
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The publication of “Concrete Problems in AI Safety” [5] was another landmark.

This work helped popularize concerns about AI safety within the Machine Learning

community, and helped refute the perception that work on AI x-risk was inherently

philosophical in nature.

Other significant developments were the establishment of DeepMind (in 2010) and

OpenAI (in 2015). These world-leading AI research organizations both made AI safety a

core part of their stated mission. A number of other organizations played a significant

role in building the field of AI safety/alignment. The Future of Life Institute (FLI) is

noteworthy for their efforts to fund AI safety research (with the financial support of

Elon Musk, and more recently, Vitalik Buterin), as well as their community building

efforts, which brought together leaders of the field, donors, and thought leaders for several

conferences on benefitial AGI, and produced a letter signed by many AI luminaries about

risks of AI, including the risk of loss of human control [95].

Also relevant is the development of concerns about social impacts of AI outside of

the x-safety community. These include concerns such as:

• Fairness, e.g. racism, sexism, ableism, ageism, and other forms of AI-enabled

algorithmic discrimination.

• Economic impacts of AI, e.g. automation leading to technological unemployment

and extreme concentrations of wealth, the monopoly power of big tech/AI com-

panies, the importance of data in AI and the failure of existing social/economic

models to compensate data providers.

• Privacy, e.g. the propensity of AI systems to leak private information from their

training data.

• Near-term safety, e.g. the safety of self-driving cars, or AI-powered infrastructure.

• Military use of AI, e.g. lethal autonomous weapons.

• Environmental impacts of AI systems, e.g. the rapidly increasing energy-use of AI

systems.
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• Other ethical concerns about AI, e.g. where to place responsibility for AI misbe-

havior, and how AI systems should be programmed to address ethical dilemmas.

• Other social impacts of AI, e.g. AI-powered feedback loops in school rankings,

predictive policing algorithms, or content recommendation engines.

These concerns have some-times been referred to as “near-term” in contrast with the

“long-term” concern of AI x-risk. While this distinction can be useful, as these concerns

are more universally acknowledged than AI x-risk, I consider this language misleading

and divisive. A common objection to concerns about AI x-risk is that it is a distraction

from (e.g. some of) these concerns, which are more important, pressing, and/or more

realistic [61]. I believe that historically exactly the opposite is true, and that attention for

any concern around the social impacts of AI has tended to lead to more attention to all of

the others as well. Furthermore, I believe there is also considerable overlap in terms of the

steps needed to address these various concerns. There is a need for better understanding

of how to responsibly develop and deploy AI systems, and for widely adopted norms,

standards, policies, regulations, and/or laws, etc. to ensure responsible AI development

and deployment. There are fundamental technical and governance challenges that these

needs raise, and addressing them should be a common objective for communities working

on x-safety and other social impacts of AI. The Alignment Problem [54] connects existing

social impacts of AI and AI x-risk under the unifying theme of AI Alignment.

1.2.4 How can we increase our existential safety?

Suppose one accepts that AI poses an existential risk, and feels (e.g. morally) com-

pelled to do something. What can be done? The central argument for AI x-risk presented

in Section 1.2 smacks of inevitability. Competitive social pressures will drive us to

develop increasingly advanced AI, even if they increase x-risk. And more advanced AI

systems seem destined to be goal-directed, with attendant instrumental goals. Perhaps

we will be able to program AI systems to pursue our goals, but existing approaches to

specification don’t seem sufficient.
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The “global coordination” solution. Perhaps the most obvious solution would be

for all of humanity to coordinate to develop AI responsibly, and in particular, to avoid

building AI systems that pose too much x-risk. We could instead make decisions about

how to develop AI on the basis of the common good, preventing individual risk-taking

from raising (estimated) AI x-risk beyond some agreed on level, e.g. 1% per century. It

is hard to imagine what such a solution would look like in practice, but it would likely

accompany a much greater ability to address other global coordination problems (such as

climate change).

The “technical research” solution. On the other hand, we might imagine a primarily

technical solution. If our primary concern is AI systems that do not behave as intended,

then we can imagine finding ways to ensure AI systems act in accordance with our

intentions, this is sometimes called AI Alignment. We discuss AI Alignment and relevant

technical areas of AI research in Section 1.3.

The above approaches are complementary. Effective global coordination would allow

us to enforce a set of safety standards prohibiting the development of certain AI systems

deemed to pose too much x-risk. Meanwhile, technical research can expand the kinds of

systems which can be safely developed. Advances in coordination or technical work can

substitute for each other to some extent. If technical advances make fewer AI systems

risky to develop, then it should be easier to enforce standards. On the other hand, even if

no technical progress was made, we might be able to coordinate to prevent developing AI

systems more dangerous than those currently deployed, e.g. by prohibiting AI research

and development entirely until suitable safety procedures could be developed. In the most

extreme case, this could mean forgoing or delaying many applications of AI that could

have huge positive impacts – for example, curing many existing diseases, or reducing

x-risk from other sources.

Technical work and coordination cannot always be neatly distinguished, and it may

be necessary to consider them as more of a continuum. Global coordination can itself be

approached via technical work; for instance, the field of mechanism design (sometimes

called “reverse game theory”) studies how to create games where players’ incentives

align with some notion of collective good. At the same time, technical work that does
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not focus on coordination problems might still need to consider how multiple AI systems

will interact with each other, humans, and human institutions.

At a more fundamental level, thoroughly addressing AI x-safety would likely involve

a broad multi-disciplinary research effort and substantial social change. Historically,

AI has primarily been developed in the model of a single rational agent. But human

intelligence and values both appear to have a large social component. Technical work on

reducing AI x-risk, and in the field of AI as a whole, often assumes away the additional

complexities this raises. Several salient questions in my mind are:

1. How should we aggregate decisions from group members? What are the prac-

tical implications of impossibility theorems, such as Gibbard’s theorem [106]?

Which approaches to group decision-making tend to lead to results group members

are satisfied with?

2. Does it make sense to think of individuals as the nexus of decision-making?

Can we move beyond individualistic conceptions of self, identity, and agency?

What would that look like?

3. Does it make sense to talk about individuals having preferences? If so, what

mathematical form do they take (e.g. partial or total ordering, cardinal or ordinal

utility function)?

4. How can we elicit preferences effectively? When can stated or revealed prefer-

ences be relied on? What sort of human-modelling is required in order to understand

how our behavior reveals our preferences, values, subjective experience, etc.?

The evident limitations of viewing humans as rational agents suggests that AGI

systems might not be rational agents either. One could instead take a view of the world

more in-line with Foucault’s views on power, which he often seems grant a causative

force akin to agency. Summarizing his views is beyond our scope, but this quote provides

a characterization that is good enough for our purposes:

His work marks a radical departure from previous modes of conceiving power

and cannot be easily integrated with previous ideas, as power is diffuse rather
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than concentrated, embodied and enacted rather than possessed, discursive

rather than purely coercive, and constitutes agents rather than being deployed

by them [238].

Alexander [3] provides a similar perspective on the personification of Moloch in Gins-

berg’s poem “Howl”, describing a “conception of civilization as an individual entity” who

is attributed agency (“Moloch does it”), and is sometimes erroneously conflated with

capitalism.

To the extent that such views – which do not center rational agents as the nexus

of agency – provide a better description of reality, they may seem to weaken the case

for AI as an x-risk, especially the arguments of Section 1.2. However, there are a

number of reasons to take such arguments seriously regardless. First, rational agency is

not an absolute, and in particular human behavior arguably still approximates rational

agency in many ways in many circumstances. Second, a number of limitations on human

rationality can be explained as resulting from algorithmic or computational limitations,

some of which advanced AI systems might surpass. Furthermore, current AI systems are

overwhelmingly developed within a framework of rational agency. Finally, it is worth

noting that even if individuals are not well-modeled as rational agents, there may still be

an appropriate analysis, e.g. at the level of groups, genes, memes, etc., that does identify

agent-like forces at play. For instance, an AI-driven economy that effectively ends up

optimizing for growth might pose as much x-risk as a single superintelligent AI agent.

Critch [62] introduces the related concept of a “Robust Agent-Agnostic Process (RAAP)”,

which may or may not be agent-like, but importantly, is robust to attempts by individual

agents to disrupt it. He also explains how RAAPs could induce AI x-risk, and identifies

existing thought on AI x-risk (e.g. AI “arms-races”) that can be viewed through this

lens. We discussed the related issue of “multi-multi delegation” in Critch and Krueger

[63], and argued that the emergent dynamics of multiple humans trying to delegate work

to multiple AI systems pose additional challenges. Overall, I find that arguments for

AI x-risk arising from AI agents can typically be adapted or elaborated to show how

similar – and sometimes more severe – concerns arise in contexts where threats are not

concentrated in a single, identifiable AI agent. Nonetheless, our approach to AI x-safety
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should be robust across these scenarios.

In summary, increasing AI x-safety can be crudely decomposed into technical work

aimed at increasing our ability to control and direct (collections of) AI systems towards

desirable ends, and governance work on improving our ability to coordinate to ensure

that AI is developed responsibly. However, effective work might sometimes be difficult

to categorize, and this distinction might sometimes be conceptually limiting and even

impede progress. Having acknowledged these caveats, in Section 1.3 I will argue that

narrowly scoped technical work on the AI Alignment problem may have the potential to

significantly reduce AI x-risk, or at least provide insights that help motivate, mobilize,

and clarify directions for further work on AI x-safety.

1.3 AI Alignment

A number of different terms have been used to describe technical work aimed at

increasing AI x-safety, and the community engaged in such work. There is not a mature

sub-field of AI research with this focus, and many existing areas are relevant. But recently,

researchers have mostly settled on the term “AI Alignment” to describe this project. AI

Alignment can be thought of as encompassing all such work, or as tackling the more

narrow topic of ‘how to get a single AI system to do what a single user wants it to do’. I

will use it in this second sense, since I believe this provides a useful scope, despite the

limitations mentioned in Section 1.2.4. In particular, it is largely agnostic towards the

“preference payload” [190], that is the question of whose intentions the AI system should

adhere to. This is obviously a critically important question, but not a technical one.

1.3.1 Alignment Targets.

But note that (what I call) AI Alignment is always considered relative to some “user”,

which might be a single human, but could also be any number of other things. Potential

users, or types of users, are sometimes called alignment targets. Proposing an alignment

target amounts to explaining or outlining a process for generating a (hopefully coherent)

set of preferences. Examples of alignment targets include:
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1. Revealed preferences of a single human. We might simply assume that a per-

son’s choices are an accurate reflection of their “true” preferences. This seems

problematic, however, because of cognitive biases and bounded rationality.

2. A single human who thinks for infinitely/arbitrarily long. We might imagine

that we could make better decisions, which more accurately reflect ‘what we really

want’, if we had more time to deliberate.

3. Human Consulting HCH (HCH)3 [55, 56]. Like the previous example, HCH

tries to capture “a human’s enlightened judgement” [55]. It can be pictured as an

infinitely/arbitrarily deep tree of copies of that human, able to delegate aspects of

decision-making to the sub-trees below them.

4. Coherent Extrapolated Volition (CEV) [315] is an outline for how we might

think about something like humanity’s enlightened judgement. Quoting Yudkowsky

[315], “In poetic terms, our coherent extrapolated volition is our wish if we knew

more, thought faster, were more the people we wished we were, had grown up

farther together; where the extrapolation converges rather than diverges, where

our wishes cohere rather than interfere; extrapolated as we wish that extrapolated,

interpreted as we wish that interpreted.”

There are clearly philosophical aspects to selecting an alignment target. There are also

more practical questions about how to implement different targets, and how to increase

our confidence in our implementations. For instance, we might try to approximate (2)

by training an AI system to predict H(Q,T ), that is, the response of a human, H, to a

query, Q, given T seconds to think about it, and then hoping it can extrapolate to much

larger T . To believe that such a scheme has any chance of working we would need to trust

our model to extrapolate well. And we would not be able to confirm that our trust was

well founded, since we would not be able to realize the alignment target, only schemes to

approximate it. It seems difficult to achieve a high level of justified confidence in such

schemes, but doing do could be crucial for AI x-safety.

3This is a recursive acronym.
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1.3.2 Alignment vs. Capabilities; Intent Alignment

A popular, informal, distinction is between the alignment and capabilities of an AI

system. ‘Capabilities’ refers to the general level of competency and/or intelligence of

an AI system, e.g. How well does it understand the world? How effectively can it plan

to achieve various goals? Which types of interesting behaviors could it perform, if

properly motivated? Here, ‘Alignment’ refers to how well the AI’s motivations match the

overseer’s intentions or preferences. This notion of alignment, sometimes called “intent

alignment” differs from how I (mostly) use the term in this thesis. Whereas Alignment

is about ‘doing what a user wants’ Intent Alignment is about ‘trying to do what a user

wants’.

In this framing, for an AI system to do what we want it has to both understand what

we want and how to achieve it (capabilities), and to want to do what we want (alignment).

This type of language may make more or less sense in different contexts or when speaking

about different AI systems. For instance, consider an AI system which is a mapping from

reward functions to policies. How well these policies optimize the corresponding reward

functions constitutes this system’s capabilities. For a given reward function, the alignment

of the system is how well that reward function matches the user’s true preferences. A

similar example can be constructed using models whose behavior is conditioned on

natural language inputs, such as GPT-3 [39]. To my knowledge, a more rigorous or formal

distinction between alignment and capabilities has so far remained elusive.

1.3.3 Decomposing AI Alignment; relevant research areas in machine learning

There have been a number of attempts to decompose the Alignment problem or

enumerate useful directions for research. I won’t provide an overview of these works

here; readers can refer to Critch and Krueger [63] for a review of several other research

agendas, and Ortega et al. [228] for more resources. Instead, I will summarize and

comment on the decomposition I’ve found most useful: Specification, Robustness, and

Assurance [228]. And I will provide a (non-exhaustive) list of areas of AI research that

could be useful for AI Alignment.
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Specification refers to defining what we want an AI system to do and communicating

that information effectively to the AI system. The difficulty of specifying what we want

in terms an AI can understand is one of the classic causes for concern about AI x-risk (see

Section 1.2.1.2). Robustness is about making a system less vulnerable to unexpected

challenges, such as encountering new situations. AI systems are notoriously brittle, e.g.

manufacturing robots are still mostly confined to carefully controlled production lines.

Assurance is about how we can increase our justified confidence that running an AI

system will not lead to alignment failures. Even if an AI system behaves exactly as we

intend (i.e. perfect specification) in any circumstance (i.e. perfect robustness), we would

still like to know that this is the case (i.e. perfect assurance).

Examples of machine learning research areas helpful for specification include:

• Methods of learning reward functions such as reward modelling, Inverse Re-

inforcement Learning, assistance games, and active reinforcement learning are

straightforwardly relevant to specification; a reward function is a natural way to

encode a specification.

• Learning generic human preferences such as widely held human values, or

expectations humans might place on AI systems, could make specifying specific

tasks much easier by removing the need to explicitly specify all of the things that a

human assigned that task would typically take for granted (e.g. don’t kill anyone,

don’t break anything, ask for clarification if needed, avoid irreversible side effects).

• Constraints and methods for handling them could be useful for encode generic/background

human preferences, and for specifying unacceptable behaviors.

• Incentive Management Techniques can be used to specify which forms of delib-

erate influence are deemed acceptable.

• Scaling human feedback could be important in order to increase the amount

of information we can provide about our preferences. Semantic loss functions,

(inter)active learning schemes, and augmented human judgments are example

approaches.
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• Prompt engineering and other methods of aligning large pre-trained language

models fall into the specification category.

• Multi-objective optimization allow to postpone decisions about how to trade-off

competing values until available options are determined.

Examples of machine learning research areas helpful for robustness include:

• adversarial robustness can help improve worst-case robustness

• non-adversarial robustness is more targeted at average-case robustness

• domain generalization and domain adaptation methods aim to improve models’

robustness in entirely novel settings

• Out-of-Distribution detection can help AI systems to fail gracefully, given a safe

backup plans.

Examples of machine learning research areas helpful for assurance include:

• theory of learning, generalization, etc. (including empirical work) can help

designers understand general principles of AI systems, helping them predict their

behavior.

• interpretability can help designers understand specific AI systems and predict or

understand their behavior.

• agent foundations is a specific area of theory aimed at understanding fundamental

aspects of rational agency, including the limits of existing conceptions of rational

agency.

• formal verification methods can provide provable guarantees of well-defined

specifications.

• safe exploration methods could help ensure that AI systems can be trained without

failing catastrophically.
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• offline training can prevent catastrophic failures during training, by training the

agent in a safe environment (e.g. in simulation, a controlled lab setting, or entirely

based on pre-collected data).

• analyzing incentives can help determine whether particular forms of failures,

e.g. pursuing dangerous instrumental goals, are likely to occur in a given train-

ing/deployment scenario.

• testing, e.g. unit tests can be used to collect empirical evidence about how agents

will behave in a variety of scenarios they might encounter.

1.3.4 The relationship between AI Alignment and AI x-risk

Alignment failures are not the only source of AI x-risk. As mentioned in Sec-

tion 1.2.1.3, x-safety is a common good, and so actors are likely to prefer an AI system

that carries socially unacceptable levels of x-risk, if it offers some benefit over systems

carrying less x-risk.

Nonetheless, Alignment failures still seem like an important source of AI x-risk. When

considering possible human extinction scenarios, Alignment failures and coordination

failures often both play important roles, and are hard to disentangle. For instance,

actors might underestimate the x-risk posed by a given system because they fail to

notice a subtle alignment failure. Such failures seem more likely to be noticed in a less

competitive environment where there is less cost to performing further safety checks.

Better techniques for aligning AI systems, and a better understanding of possible failure

modes seem valuable in such scenarios, since they could reduce the probability of such

oversights.

Furthermore, aligned AI systems can help address global coordination problems,

such as x-risk, for instance by helping propose and implement governance mechanisms.

On the other hand, alignment techniques might also expand the range of tasks which

AI systems can perform competently – without ensuring that they perform them safely.

Misalignment seems likely to be a critical obstacle in getting AI systems to perform tasks
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that are difficult to specify. If our ability to align AI systems increases smoothly, then the

AI systems we build will pass through 3 stages of alignment:

1. Insufficient Alignment: AI does not understand the task well enough to appear

useful.

2. Apparent Alignment: AI can perform the task well enough to appear useful, but is

not actually useful (all things considered), because it suffers from critical undetected

failure modes. These may be undetected because they are rare, long-term, subtle,

or obscure.

3. Sufficient Alignment: AI can perform the task well enough to be genuinely useful;

the benefits from using the AI to perform this task outweigh the costs of potential

failure modes.

The ability to reliably distinguish between apparent and sufficient alignment would

help prevent risks stemming from premature deployment of apparently-but-insufficiently

aligned AI systems, thus making progress in alignment closer to an unmitigated good.

Whether a given level of intent alignment is sufficient might depend on the capabilities

of the AI system in question. Consider the analogy with an anti-social human held in

check (i.e. aligned) only by the fear of social sanction. If they were much more intelligent,

they might be able to find ways of achieving their anti-social ends that avoid detection,

and thus avoid social sanction. Thus they would be aligned at their current capability

level, but not at a higher capability level.

1.3.5 Research Prioritization Through the Lens of AI x-safety

From the point of view of increasing x-safety, there are several reasons one might

choose to do technical research:

1. To make progress on techniques that seem useful or necessary for increasing

x-safety, such as AI Alignment.
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2. To increase understanding of AI systems in a way that informs strategies for in-

creasing AI x-safety, such as technical research priorities. This might include things

like understanding the limitations of Deep Learning, or forecasting developments

in AI.

3. To inform actors, e.g. researchers or policy-makers, and/or influence them to-

wards taking effective action to reduce AI x-risk. This could include work that

demonstrates novel or under-appreciated failure modes.

4. To build career capital and achieve a position for more effective advocacy or field-

building. This could include work that demonstrates technical prowess, insight,

engagement with social impacts of AI, or other individual virtues.

One method for deciding which particular research directions to pursue is the impor-

tance, tractability, and neglectedness (ITN) framework of Effective Altruism [85].

The goal of considering these three factors is roughly to maximize counter-factual impact

by finding research that is actually likely to help reduce AI x-risk (important, tractable),

and would not have been done otherwise (neglected). Neglectedness may be especially

important in ML, as it is common for multiple researchers to be working on the same

topic, “racing” each other to be the first to publish and reap the attendant recognition

– and citations. This can be a useful strategy for building career capital (4), but seems

harder to justify in terms of direct impact (1).

As reasoned in Section 1.2.1.3, AI x-safety may require that AI Alignment techniques

stay “ahead of” AI capabilities, since increasing capabilities can put more demands

on alignment. Towards this end, Bostrom [32] proposes Differential Technological

Development (DTD), i.e. aiming to push forward the development of technologies that

will increase x-safety faster than those that increase x-risk. It can be difficult, however,

to estimate the overall impact of a given project or area on Alignment vs. capabilities,

respectively. And as argued in Section 1.2.4 Alignment itself might not reduce AI x-risk

without the concurrent development of methods of global governance and assurance for

AI systems. Despite such uncertainties, DTD seems like a useful lens through which to

view these decisions.
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A special, and perhaps non-obvious, case of DTD is attempting to hasten and/or steer

the development of a research sub-field that would likely have developed soon anyways.

For instance, Ian Goodfellow and Dan Hendrycks played a large role in “seeding” the

sub-fields of adversarial and non-adversarial robustness (respectively) in deep learning.

While this kind of contributions might seem to have limited counter-factual impact, as

reasoned in the paragraph above, advancing the timeline on a research topic by a few

months or years might still represent significant progress (1), especially given the pace of

research. Moreover, while a given sub-field might be destined to emerge, how exactly that

field operates, e.g. which benchmarks and methodologies are commonly used, or which

problems are considered the most central, can determine how useful – or detrimental –

progress in that field is for x-safety. For instance, it seems useful to focus attention on

those Alignment techniques that are more likely to scale to AGI and beyond. As a specific

example, Goodfellow [109] (a presentation) argues that the research community has been

too focused on the formulation of adversarial robustness introduced in Goodfellow et al.

[115], depriving adjacent concerns of the attention they deserve. Yet as of Dec 31, 2021,

Goodfellow [110], the research agenda associated with Goodfellow [109], has only been

cited 12 times; despite Ian Goodfellow’s leading role in seeding adversarial robustness

research, it seems his recent attempt to steer researchers towards the type of work he

considers more relevant in hindsight has born little fruit. Brown et al. [38], Gilmer

et al. [107] make similar calls to rethink and broaden the scope of adversarial robustness

research.

1.3.6 A brief overview of my work on AI x-safety not included in this thesis

Here I’ll describe 3 papers I contributed to that were directly motivated by AI x-safety.

1.3.6.1 ARCHES

In Critch and Krueger [63], we focus on the problem of AI x-risk, as opposed to the

more narrow problem of AI Alignment. This work includes a large research agenda, but I

will focus on summarizing several of the novel perspectives we advanced:
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• Explicit focus on AI x-safety: Previous works have focused on safety, alignment,

or beneficience. AI x-safety is a more specific goal than safety or alignment, and is

more value-neutral than beneficience.

• Prepotence instead of superintelligence: We note that the key attributes of AI

systems that induce x-risk are that they engender an unstoppable transformative

impact that is beyond the impact of humanity in scale. While superintelligent

AIs seem likely to be prepotent, they need not be. Likewise, AI that enables or

powers unstoppable self-replicating “grey goo” would be prepotent, but need not

be superintelligent.

• Multi/Multi delegation instead of Single/single alignment: Most technical work

on AI x-risk has focused on aligning a single AI system with a single user. In

contrast, we emphasize scenarios in which multiple AI systems are deployed by

multiple actors, and the distinctive risks and research directions this perspective

entails. Since results such as the impossibility theorems of social choice theory

suggest that there is no ‘correct’ way to determine group preferences from individual

preferences, the term “alignment” seems like a poor fit for this discussion, and we

use “delegation” instead.

One contribution which I’m proud of is a thought experiment suggesting the inad-

equacy of single/single AI Alignment for reducing AI x-risk. I would summarize this

as: ‘Imagine that tomorrow everyone wakes up 1,000,000 time smarter’ – this is meant

as an analogy for (the sudden development of) a perfect solution to (single/single) AI

Alignment. It is hard to predict how such a hypothetical would play out. But it seems

highly plausible that existing social institutions that make destructive competitions less

likely would break down, as more intelligent actors would rapidly find ways of subverting

them. This might precipitate a successful power-grab by ambitious anti-social actors, or a

descent into anarchy and unrestrained competition between actors.

1.3.6.2 Reward Modelling Agenda

Leike et al. [190] present an agenda that advocates for reward modelling – that is,
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learning reward functions from human feedback – as an approach to solving specification

problems. We discuss challenges for reward modelling and approaches to addressing

them. We also propose “recursive reward modelling”, an approach to specification which

uses trained reward models as aids for human judgment, and which resembles HCH

(Section 1.3.1). One notable result is a simple existence proof demonstrating that any

policy can be uniquely specified by the appropriate choice of reward function.

A contribution which I’m proud of is our emphasis on establishing trust in AI agents

trained with reward modelling (Section 6). I would summarize this as: ‘Even if we have

a perfect solution to the specification problem, it would still be irresponsible to deploy

powerful AI systems without having justified confidence that we’d solved it.’ I believe this,

which roughly corresponds to the “Assurance” component in the decomposition of Ortega

et al. [228], is the most technically challenging aspect of AI x-safety. I don’t expect us to

have sufficient theoretical or experimental evidence of x-safety for highly advanced AI

systems any time soon; it may be prudent to significantly delay the deployment of such

systems while we attempt to establish trustworthy assurance methodologies. The cost of

doing so could be large, however – advanced AI systems might lead to dramatically more

flourishing (human or otherwise), e.g. by increasing the size of the reachable universe,

reducing x-risk from a variety of sources, increasing human health and longevity, enabling

rapid scientific and technological progress, etc. The benefits of delaying depend on how

likely systems that seem x-safe are to not actually be x-safe, and how much progress we

are liable to make on assurance.

1.3.6.3 Hidden Incentives for Auto-Induced Distributional Shift

This work, Krueger et al. [179], is motivated by the problem of instrumental goals. A

running example is the goal to influence users of a content recommendation platform in

order to make them (e.g.) more engaged or easier to predict. Content recommendation

systems can improve their performance by wielding such influence over their users. In

our terminology, this creates an incentive to manipulate users as a method of increasing

performance. However, this incentive need not be “revealed” – a myopic recommender

system would not be able to benefit from manipulative actions that only affect users’
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future behavior. Our work aims to determine how algorithmic choices influence whether

such incentives are revealed. Our main contributions are environments that act as unit

tests for revealing non-myopic incentives. And our main results are (potentially) counter-

intuitive results where apparently myopic algorithms (such as Q-learning with γ = 0)

nonetheless reveal nonmyopic incentives.

1.4 Alignment Motivation for the Articles Presented

I’ll now begin discussing the four articles that make up the bulk of this thesis. I’ve

grouped them into pairs, based on two themes: Generalization and Bayesian Deep

Learning. The relevance of these topics to AI Alignment is discussed in Section 1.4.1 and

Section 1.4.2, respectively.

1.4.1 Generalization Requirements for Alignment

The first two articles of this thesis deal with generalization. The first contains an

empirical study of generalization and memorization in deep learning. The second proposes

and studies a novel method for out-of-distribution generalization. Generalization has

always been an absolutely central concern of ML. Here, we discuss how generalization

relates to AI Alignment in particular (as opposed to more run-of-the-mill AI ‘capabilities’),

and the unique desiderata and considerations raised by AI Alignment.

1.4.1.1 How do Deep Learning systems generalize?

In order for a machine learning-based AI system to learn the right thing from the data

the user provides – i.e. for the user and AI to be aligned, they may need some shared

understanding of the world in order for the AI to interpret the provided data appropriately.

Classic hypothetical alignment failure scenarios often seem to hinge on an AI system

misunderstanding a human instruction, e.g. “Make me a sandwich” is interpreted as “Make

me into a sandwich” instead of “Prepare me a sandwich”. Misunderstanding humans is

probably a sufficient condition for AI alignment to fail, although not a necessary one

– AI systems could understand what humans mean and still not “care”. This makes a
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mechanistic understanding of how AI systems achieve good performance (e.g. how they

generalize well to an i.i.d. test set) important for alignment.

Will AI Systems Learn Human Concepts? A long-standing aspiration of Deep Learn-

ing is to learn representations that disentangle factors of variation underlying the data

[20, 21]. Implicit in this vision is the assumption that humans do a good job of doing

this – i.e. that an AI system that understands the underlying patterns in the data would

tend to understand the data in the same way a person would, at least for data that is

human-intelligible. Another way of putting this would be to say that human concepts tend

to be “natural kinds” [26] – that is, they are intrinsically sensible ways of understanding

the world, rather than arbitrary conventions. While there is doubtless some truth in this,

the existence of adversarial examples [116, 277], and the finding that they correspond

to genuine features in the data [154], call this assumption into question. Adversarial

examples were discovered by Szegedy et al. [276], and were originally defined as images

that look like one thing to humans, but something else to a machine learning model.4 Ad-

versarial examples have been the subject of thousands of research papers, and yet remain

an unsolved problem for machine learning models. Note that the practical significance of

adversarial examples as a threat to the reliability of deployed machine learning systems

has not been established. While a number of works have focused on adversarial examples

as a hypothetical security risk, e.g. demonstrating that real-world adversarial examples

can be created by attaching stickers to physical objects [89], Gilmer et al. [107] argue that

there is not yet a plausible threat model motivating such concerns. Adversarial examples

remain troubling, however, because they indicate that neural networks do not view the

world the same way humans do, despite superficially achieving human-level performance

on vision tasks [134]. Such differences in how humans and AI systems generalize raises

the question: who does it better?

4Research on adversarial examples has often focused on ground-truth images subject to norm-limited
corruptions chosen “adversarially”, i.e. by an optimization process aimed at causing the model to make
an incorrect prediction on the corrupted example. For small L∞-norm perturbations, such corruptions are
usually invisible to humans.
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Will AI Systems Learn Super-Human Concepts? At a conceptual level, we might

expect an AI system with super-human intelligence to have a better way of understanding

the world, one which might be initially, and even inexorably, alien and unintelligible to us.

This would not prevent it from also understanding and being conversant in human concepts.

However, we might need to decide whether to trust an AI system that tells us “The correct

choice is X, but the reasons for its correctness are beyond your comprehension”.5 A

relevant speculative concern is that such an AI system might undergo an ontological

crisis [69], and realize that the concepts humans use to understand and describe our

values are incoherent; this could leave even an intent aligned AI system in a potentially

dangerous state of confusion.

Will AI Systems Learn Sub-Human Concepts? On the other hand, there is

mounting evidence that current deep learning techniques aren’t even equipped to learn

the underlying factors of variation. Recently, Schott et al. [257] performed an explicit,

systematic evaluation demonstrating that a wide variety of deep learning methods all

fail to reliably predict the value of underlying factors of variation for out-of-distribution

data, even when those values were provided as supervision during training. It seems that

deep learning offers some genuine advantages over other methods, but so far still fails to

deliver on its most fantastic promise of learning about underlying factors of variation in a

highly generalizable way.

Alignment is easier with human concepts. The distinction between models that

learn human concepts and sub-/super-human concepts highlights one aspect of generaliza-

tion distinctive to alignment. From a capabilities point-of-view, super-human concepts are

unproblematic, and even superior to human concepts. From an alignment point-of-view,

however, they are deeply problematic, and we would prefer our systems to learn human

concepts, at least until we develop justified confidence that the super-human systems are

aligned. In terms of x-risk, they are more concerning that AI systems with sub-human con-

cepts, since they could outsmart humans. Thus a core question for alignment is whether

(what look to us like) generalization failures are actually failures of generalization as

opposed to failures of alignment. If a machine learning system can generalize better than a

5A similar issue arises when using unrealizable alignment targets (Section 1.3.1).
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human in-distribution, but generalizes differently than a human would out-of-distribution,

it is not immediately apparent whether this is because humans generalize better out-of-

distribution, or if it is because humans simply have different inductive biases. Even if

we are prepared to accept that the way humans generalize is correct, this doesn’t mean

that the AI system won’t be better at generalizing in situations where humans’ inductive

biases fail us.

Summary: Generalizing well and generalizing like a human need not be the same

thing. AI systems might conceptualize particular domains, or the world at large, differently

from humans. And adversarial examples demonstrate that current AI systems do so.

AI concepts could even be super-human; e.g. super-human performance on ImageNet

was claimed by He et al. [134]. Super-human performance on one benchmark doesn’t

necessarily translate to super-human understanding, but these results do suggest that

super-human understanding could be achieved using concepts quite alien to humans.

While this would be a dramatic success from a capabilities point-of-view, it would be

quite bad news for x-safety, since we would not be able to understand or trust these

systems (without advances in interpretability or assurance more broadly), engendering

a significant safety-performance. Understanding how AI systems generalize, and in

particular how state-of-the-art deep learning systems generalize, can help inform us about

the likelihood of such scenarios. It can also help us understand which techniques are more

likely to lead AI systems to generalize as humans would. This provides an alignment

motivation for the work in Chapter 2.

1.4.1.2 Out-of-distribution generalization and AI alignment

Given the ability of AI systems to achieve superhuman performance on various tasks

without generalizing as humans would on out-of-distribution examples, it is clear that iid

performance is not a good measure of the kind of generalization that we care about. The

kind of generalization we care about from an alignment point of view is not something

that can be easily defined or measured. We care about the more qualitative question of

whether an AI system generalizes like a human would. How can we determine whether

in AI system does in fact generalize like a human would?
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A useful source of information is the behavior of an AI system in entirely novel

situations different from those it encountered during training. out-of-distribution general-

ization is one way of formalizing this idea, by evaluating an AI system on a distribution

(or distributions) that is(/are) different from the training distribution. This provides an

alignment motivation to study out-of-distribution generalization.

Practically speaking, adversarial examples and other failures of robustness show

that good iid performance is no guarantee of good performance out-of-distribution.

As an aside, iid performance may not even be a good measure of good behavior in

distribution, because it could fail to detect extremely rare-but-costly mistakes, and because

our performance metric may fail to reflect the true cost of different kinds of mistakes.

Theoretically, it is not possible to guarantee good out-of-distribution performance without

making assumptions about the out-of-distribution data [68]. In other words, the goal of

good generalization is underspecified by the typical iid training/testing regime [66].

Underspecification is not necessarily a problem from a capabilities standpoint: any

solution which performs well might be deemed acceptable. However, from an alignment

standpoint, we often have preferences about the behavior that are not fully specified by

the objective function. Aligning AI systems may require more fully specifying how they

should generalize, especially in the absence of shared concepts.

One particular variant of this concern is related to the problem of inner alignment.

An inner alignment failure is a failure of alignment that occurs not because the objective

function is incorrect, but rather because the AI system ends up optimizing a proxy

objective [151]. Inner alignment failures could happen for a number of reasons, and some

such failures might only be apparent or problematic out-of-distribution.6

6Inner alignment is closely related to – and can be thought of as a modern take on – the idea of
optimization daemons [7]. Taylor [279] present an argument for optimization daemons / inner misalignment
being a critical problem for AI x-risk. To summarize/paraphrase: no existing learning algorithm AOUT ER
seems likely to find a superintelligent AGI design via a direct search; thus AOUT ER does find one, it probably
did so by instantiating a better learning algorithm AINNER which found the superintelligent AGI. So far, this
argument remains mostly speculative, but it could have important consequences if true: it would imply that
even models trained with supervised learning or other myopic learning algorithms could end up exhibiting
dangerous instrumental goals. Such concerns may seem far fetched at first pass. But imagine training an
AI system to (almost) perfectly imitate a human using supervised learning. This would seem to require it
learning to do the same sort of approximate planning that a human does. It seems likely that the AI system
would learn to do some sort of planning before it learned exactly how the human it is being trained to
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Summary: out-of-distribution behavior can reveal more about how an AI system

generalizes, helping us to determine if the system is aligned. out-of-distribution gen-

eralization also exemplifies the problem of underspecification. In practice, tackling

out-of-distribution generalization may require specifying how to generalize, which also

seems necessary for alignment.

1.4.2 How could Bayesian (Deep) Learning help with AI Alignment?

The final two articles presented in this thesis are part of a line of work on modeling

AI systems’ uncertainty in order to guide learning and decision-making towards safer and

more aligned outcomes. Specifically, they make progress in the area of Bayesian Deep

Learning. A primary goal of Bayesian methods to capture uncertainty about which model

is best. This is known as epistemic uncertainty and can be contrasted with aleatoric

uncertainty, which is (roughly) inherent randomness.

I see two main benefits to capturing epistemic uncertainty for AI Alignment. First,

high epistemic uncertainty about how to make a specific decision indicates that the AI

system does not have a good understanding of how to make that decision. In such cases, it

may be prudent to fall back on some known-to-be-safe default behavior, such as deferring

to human decision-makers. Second, it may about indicate that more information about

how to make this specific decision (e.g. human feedback) may be particularly valuable.

These two use cases roughly correspond to the problems of error detection and active

learning. These problems could be very relevant for Deep Learning in particular, since

Deep Learning systems are notoriously overconfident [124] and data-hungry [182].

From a x-safety perspective, error detection is arguably more important than active

learning – after all, a system which recognizes and obeys its own limitations can avoid

taking actions its overseer would deem unsafe. However, the bar for error detection as a

safety technique may be impossibly high, since even a single error could lead to human

extinction. For instance, an AI system which decides whether a piece of code is safe to

run could lead to extinction if it approved code that instantiated a misaligned prepotent

imitate does planning (e.g. what sort of goals they have), and thus would be a misaligned planning process,
and liable to pursue dangerous instrumental goals.
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AI system.

On the other hand, with active learning, the stakes are much lower – intuitively, all that

is required is that the epistemic uncertainty provides some meaningful signal about which

points are more valuable to query.7 Furthermore, error detection is merely one strategy

for avoiding unacceptable risk-taking. A specification-based approach – i.e. learning what

kinds of risk-taking an overseer finds acceptable – might be a promising alternative, and

active learning could help with this approach.

Still I believe error detection should have some role to play in AI Alignment; while

reliably detecting potential errors is hard, it does seem easier than reliably making the

right decisions! An important outstanding question is: how much easier? I’ve come up

with a simple information-theoretic argument (which may or may not be novel) for why

it should be significantly easier. First, communicating whether or not an AI knows how

to make a decision competently only requires one bit, whereas communicating what the

decision should be requires may require many more bits. Moreover, consider a region that

is simple to describe (e.g. all inputs of norm greater than 1), where the AI is incompetent

and containing many different situations where different behaviors are required. It is

much simpler to describe this region as unsafe than it is to specify how to behave in each

area within the region. Exploring this line of argument could be an interesting direction

for future work.

1.4.2.1 A summary of my works on Bayesian methods, and my motivations

The main idea of Bayesian machine learning is to compute the posterior distribution

over model parameters, given the observed training data. Bayesian Deep Learning

requires approximating this posterior. When combined, the two articles presented in

the next two chapters of this thesis yield a method that is capable – in principle – of

approximating the true posterior of a DNN arbitrarily well. Bayesian Hypernetworks

(Section 6) show how to use normalizing flows as approximate variational posteriors

for Bayesian Deep Learning. Neural Autoregressive Flows (Section 8) shows how to

7It is worth noting that even active learning remains a challenging problem in machine learning –
uniform random query selection remains a strong baseline [199, 313].
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use DNNs to construct normalizing flows expressive enough to approximate arbitrary

probability distributions arbitrarily well.

My research interest in Bayesian Deep Learning sprung out of my earlier work on

Active Reinforcement Learning (Active RL) [178], which is not included in this thesis.

Still, I will provide a summary, as it helps explain the Alignment motivation for the two

articles which are included. The motivation for active RL is can be summarized as:

1. Misspecified reward functions may lead to dangerous perverse instantiations

2. Humans may struggle to accurately specify a reward function, which dictates the

reward for any possible situation (i.e. state) that a reinforcement learning agent

might encounter.

3. Assigning rewards on demand for states that an agent actually encounters could be

significantly easier.

4. However, the human labor involved is doing so is costly.

5. Thus an agent making use of such on-demand reward signals must have a way of

deciding when it is worth paying this cost.

In Krueger et al. [178], we formalized this setting as a variant of standard RL, and propose

and evaluate Bayesian RL methods on several illustrative tabular environments. Our

Bayesian methods decided when to query the (simulated) human based on an estimate of

how valuable the resulting reward signal might be; these query decisions resemble the

query decisions in active learning and lead us to call the problem setting “Active RL”.

A next step was to scale this to continuous state-spaces, using DNNs for function

approximation. This is what lead me to explore methods for Bayesian Deep Learning.

At this point, the leading method for Bayesian Deep Learning was MCDropout [98],

which interprets dropout noise as generating a variational posterior. However, in studying

MCDropout, I realized that existing variational posteriors were quite limited in their

expressive power (e.g. the fixed noise of dropout, “mean-field” posteriors with no depen-

dence between parameters), and that it would be possible to use a deep generative model
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as a more flexible variational posterior, so long as it also had tractable likelihood. This is

what lead me to work on Bayesian Hypernetworks.

The posterior of a neural network is believed to be multimodal, since different

parameter values produce the same function [237]. Although we showed that Bayesian

Hypernetworks could, in principle, learn to represent multimodal posterior distributions,

we also noted that in practice the normalizing flow models that we used in that work

struggled to learn multimodal distributions. This was the motivation for our work on

Neural Autoregressive Flows, which included developing more flexible normalizing flows

more suited for modeling multimodal distributions.

Another work in Bayesian Deep Learning that I made minor contributions to – which

is not featured in this thesis – is Lacoste et al. [181].
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3. I helped define the organizing themes (e.g. highlighting differences between

learning behavior on real/random data, the idea that simple patterns are learned

first, often precluding memorization).

4. I devised and ran the experiments in sections 3.1 and 3.3.

5. I did a plurality of the writing, and a lot of editing.
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2.2 Background

It is not well understood why Deep Learning methods are able to generalize so well

in practice. Statistical learning theory is the main framework which has been developed

to explain generalization in machine learning. However, the tools of statistical learning

theory have so far failed to explain the success of deep learning.

The basic picture painted by statistical learning theory can be summarized as a

balancing act between overfitting and underfitting. Simply put, underfitting refers to

using a model that is too simple to capture the underlying patterns in the data, whereas

overfitting refers to using a model that is so flexible that it latches onto peculiarities in the

training data which do not generalize.

Statistical learning theory views learning as selecting a hypothesis h from some

hypothesis class H , typically via the principle of Empirical Risk Minimization (ERM)

– that is, choosing whichever model fits the data best. ERM is equivalent to Maximum

Likelihood Estimation (MLE) when likelihood is used as a measure of performance. The

choice of H is considered critical, since a hypothesis class that is too small may lead to

underfitting, while one that is too large/expressive may lead to overfitting.

A few tacit assumptions of note here are:

• Empirical Risk Minimization (ERM): we select the hypothesis that minimizes

the training loss.

• Limiting capacity as key to avoiding overfitting: an overly flexible hypothesis

space will lead to overfitting.

• Data-independent notions of capacity: Capacity doesn’t depend on the data or

learning algorithm.

In 2016, Zhang et al. [316] published a work showing that neural networks can

fit random labelings of datasets such as ImageNet with roughly 100% accuracy. This

simple finding demonstrated that traditional statistical learning theory could not offer

a good explanation for Deep Learning’s ability to generalize, calling into question the

assumptions listed above. Their work was awarded a best paper award at ICLR 2017, and
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seems to have initiated – or at least greatly contributed to – a large research effort effort

to provide theoretical explanations for deep learning generalization.

While Zhang et al. [316] emphasized the ability of Deep Learning to memorize

random examples, their work left several key questions unanswered:

1. What exactly is memorization, and does it play a role in neural network learning?

2. What is the role of early stopping?

3. How can we reconcile the ‘paradoxical’ ability of Deep Learning to both generalize

and memorize?

Our work helped answer all of these questions; our explanation can be summarized as

follows:

1. Deep Learning methods learn simple patterns first, and memorize later.

2. Thus early stopping can help avoid memorization.

3. Early stopping isn’t as helpful when there are no incorrectly labeled examples to

memorize, but can improve performance when there are.

2.3 Contributions of the work

In this work, we introduced a number of novel approaches to understanding deep

networks learning behavior, which have been expanded on in other works. We used these

analysis tools to demonstrate striking differences in learning behavior on real vs. random

data. Our operationalization of memorization as “behavior on random data” was already

implicit in Zhang et al. [316], and since our work, this notion of memorization has been

refined. Feldman and Zhang [90] say an example is memorized when it is learned iff it is

included in the training data. This (more or less) generalizes the previous notion, since

randomly labeled examples will not be predicted correctly (above chance levels) unless

they are included in the training set. Broadly speaking, this work played a large role in

establishing the sub-field of “empirical theory” in deep learning.



CHAPTER 3

A CLOSER LOOK AT MEMORIZATION IN DEEP NETWORKS

ABSTRACT

We examine the role of memorization in deep learning, drawing connections to capacity,

generalization, and adversarial robustness. While deep networks are capable of memo-

rizing noise data, our results suggest that they tend to prioritize learning simple patterns

first. In our experiments, we expose qualitative differences in gradient-based optimization

of deep neural networks (DNNs) on noise vs. real data. We also demonstrate that for

appropriately tuned explicit regularization (e.g., dropout) we can degrade DNN training

performance on noise datasets without compromising generalization on real data. Our

analysis suggests that the notions of effective capacity which are dataset independent are

unlikely to explain the generalization performance of deep networks when trained with

gradient based methods because training data itself plays an important role in determining

the degree of memorization.

3.1 Introduction

The traditional view of generalization holds that a model with sufficient capacity

(e.g. more parameters than training examples) will be able to “memorize” each example,

overfitting the training set and yielding poor generalization to validation and test sets [118].

Yet deep neural networks (DNNs) often achieve excellent generalization performance

with massively over-parameterized models. This phenomenon is not well-understood.

From a representation learning perspective, the generalization capabilities of DNNs

are believed to stem from their incorporation of good generic priors (see, e.g., Bengio et al.

[21]). Lin and Tegmark [197] further suggest that the priors of deep learning are well

suited to the physical world. But while the priors of deep learning may help explain why

DNNs learn to efficiently represent complex real-world functions, they are not restrictive

enough to rule out memorization.
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On the contrary, deep nets are known to be universal approximators, capable of repre-

senting arbitrarily complex functions given sufficient capacity [65, 146]. Furthermore,

recent work has shown that the expressiveness of DNNs grows exponentially with depth

[216, 236]. These works, however, only examine the representational capacity, that is,

the set of hypotheses a model is capable of expressing via some value of its parameters.

Because DNN optimization is not well-understood, it is unclear which of these

hypotheses can actually be reached by gradient-based training [37]. In this sense, opti-

mization and generalization are entwined in DNNs. To account for this, we formalize a

notion of the effective capacity (EC) of a learning algorithm A (defined by specifying

both the model and the training procedure, e.g.,“train the LeNet architecture [187] for

100 epochs using stochastic gradient descent (SGD) with a learning rate of 0.01”) as the

set of hypotheses which can be reached by applying that learning algorithm on some

dataset. Formally, using set-builder notation:

EC(A ) = {h | ∃D such that h ∈A (D)} ,

where A (D) represents the set of hypotheses that is reachable by A on a dataset D1.

One might suspect that DNNs effective capacity is sufficiently limited by gradient-

based training and early stopping to resolve the apparent paradox between DNNs’ excel-

lent generalization and their high representational capacity. However, the experiments

of Zhang et al. [317] suggest that this is not the case. They demonstrate that DNNs are

able to fit pure noise without even needing substantially longer training time. Thus even

the effective capacity of DNNs may be too large, from the point of view of traditional

learning theory.

By demonstrating the ability of DNNs to “memorize” random noise, Zhang et al.

[317] also raise the question whether deep networks use similar memorization tactics on

real datasets. Intuitively, a brute-force memorization approach to fitting data does not

capitalize on patterns shared between training examples or features; the content of what

is memorized is irrelevant. A paradigmatic example of a memorization algorithm is k-

1Since A can be stochastic, A (D) is a set.
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nearest neighbors [91]. Like Zhang et al. [317], we do not formally define memorization;

rather, we investigate this intuitive notion of memorization by training DNNs to fit random

data.

Main contributions We operationalize the definition of “memorization” as the behav-

ior exhibited by DNNs trained on noise, and conduct a series of experiments that contrast

the learning dynamics of DNNs on real vs. noise data. Thus, our analysis builds on the

work of Zhang et al. [317] and further investigates the role of memorization in DNNs.

Our findings are summarized as follows:

1. There are qualitative differences in DNN optimization behavior on real data

vs. noise. In other words, DNNs do not just memorize real data (subsection

3.3).

2. DNNs learn simple patterns first, before memorizing (subsection 3.4). In other

words, DNN optimization is content-aware, taking advantage of patterns shared by

multiple training examples.

3. Regularization techniques can differentially hinder memorization in DNNs while

preserving their ability to learn about real data (subsection 3.5).

3.2 Experiment details

We perform experiments on MNIST [187] and CIFAR10 [173] datasets. We investi-

gate two classes of models: 2-layer multi-layer perceptrons (MLPs) with rectifier linear

units (ReLUs) on MNIST and convolutional neural networks (CNNs) on CIFAR10. If

not stated otherwise, the MLPs have 4096 hidden units per layer and are trained for 1000

epochs with SGD and learning rate 0.01. The CNNs are a small Alexnet-style CNN2 (as

in Zhang et al. [317]), and are trained using SGD with momentum=0.9 and learning rate

of 0.01, scheduled to drop by half every 15 epochs.
2Input → Crop(2,2) → Conv(200,5,5) → BN → ReLU → MaxPooling(3,3) → Conv(200,5,5) →

BN→ ReLU→ MaxPooling(3,3) → Dense(384) → BN → ReLU → Dense(192) → BN → ReLU →
Dense(#classes) → Softmax. Here Crop(. , .) crops height and width from both sides with respective
values.
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Following Zhang et al. [317], in many of our experiments we replace either (some

portion of) the labels (with random labels), or the inputs (with i.i.d. Gaussian noise

matching the real dataset’s mean and variance) for some fraction of the training set. We

use randX and randY to denote datasets with (100%, unless specified) noisy inputs and

labels (respectively).

3.3 Qualitative differences of DNNs trained on random vs. real data

Zhang et al. [317] empirically demonstrated that DNNs are capable of fitting random

data, which implicitly necessitates some high degree of memorization. In this subsection,

we investigate whether DNNs employ similar memorization strategy when trained on real

data. In particular, our experiments highlight some qualitative differences between DNNs

trained on real data vs. random data, supporting the fact that DNNs do not use brute-force

memorization to fit real datasets.

3.3.1 Easy examples as evidence of patterns in real data

A brute-force memorization approach to fitting data should apply equally well to

different training examples. However, if a network is learning based on patterns in the

data, some examples may fit these patterns better than others. We show that such “easy

examples” (as well as correspondingly “hard examples”) are common in real, but not in

random, datasets. Specifically, for each setting (real data, randX, randY), we train an MLP

for a single epoch starting from 100 different random initializations and shufflings of the

data. We find that, for real data, many examples are consistently classified (in)correctly

after a single epoch, suggesting that different examples are significantly easier or harder

in this sense. For noise data, the difference between examples is much less, indicating

that these examples are fit (more) independently. Results are presented in Figure 3.3.1.

For randX, apparent differences in difficulty are well modeled as random Binomial

noise. For randY, this is not the case, indicating some use of shared patterns. Visualizing

first-level features learned by a CNN supports this hypothesis (Figure 3.3.1).
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Figure 3.1: Average (over 100 experiments) misclassification rate for each of 1000
examples after one epoch of training. This measure of an example’s difficulty is much
more variable in real data. We conjecture this is because the easier examples are explained
by some simple patterns, which are reliably learned within the first epoch of training. We
include 1000 points samples from a binomial distribution with n = 100 and p equal to
the average estimated P(correct) for randX, and note that this curve closely resembles the
randX curve, suggesting that random inputs are all equally difficult.

Figure 3.2: Filters from first layer of network trained on CIFAR10 (left) and randY (right).

3.3.2 Loss-sensitivity in real vs. random data

To further investigate the difference between real and fully random inputs, we propose

a proxy measure of memorization via gradients. Since we cannot measure quantitatively

how much each training sample x is memorized, we instead measure the effect of each

sample on the average loss. That is, we measure the norm of the loss gradient with respect

to a previous example x after t SGD updates. Let Lt be the loss after t updates; then the
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Figure 3.3: Plots of the Gini coefficient of ḡx over examples x (see subsection 3.3.2)
as training progresses, for a 1000-example real dataset (14x14 MNIST) versus random
data. On the left, Y is the normal class label; on the right, there are as many classes as
examples, the network has to learn to map each example to a unique class.

sensitivity measure is given by

gt
x = ‖∂Lt/∂x‖1 .

The parameter update from training on x influences all future Lt indirectly by changing

the subsequent updates on different training examples. We denote the average over gt
x

after T steps as ḡx, and refer to it as loss-sensitivity. Note that we only report `1-norm

results, but that results stay very similar using `2-norm and infinity norm.

We compute gt
x by unrolling t SGD steps and applying backpropagation over the

unrolled computation graph, as done by Maclaurin et al. [208]. Unlike Maclaurin et al.

[208], we only use this procedure to compute gt
x, and do not modify the training procedure

in any way.

We find that for real data, only a subset of the training set has high ḡx, while for

random data, ḡx is high for virtually all examples. We also find a different behavior when

each example is given a unique class; in this scenario, the network has to learn to identify

each example uniquely, yet still behaves differently when given real data than when given

random data as input.

We visualize (Figure 3.3) the spread of ḡx as training progresses by computing the
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Gini coefficient over x’s. The Gini coefficient [108] is a measure of the inequality among

values of a frequency distribution; a coefficient of 0 means exact equality (i.e., all values

are the same), while a coefficient of 1 means maximal inequality among values. We

observe that, when trained on real data, the network has a high ḡx for a few examples,

while on random data the network is sensitive to most examples. The difference between

the random data scenario, where we know the neural network needs to do memorization,

and the real data scenario, where we’re trying to understand what happens, leads us

to believe that this measure is indeed sensitive to memorization. Additionally, these

results suggest that when being trained on real data, the neural network probably does not

memorize, or at least not in the same manner it needs to for random data.

In addition to the different behaviors for real and random data described above, we

also consider a class specific loss-sensitivity: ḡi, j = E(x,y)1/T ∑
T
t |∂Lt(y = i)/∂xy= j|,

where Lt(y = i) is the term in the crossentropy sum corresponding to class i. We observe

that the loss-sensitivity w.r.t. class i for training examples of class j is higher when i = j,

but more spread out for real data (see Figure 3.4). An interpretation of this is that for

real data there are more interesting cross-category patterns that can be learned than for

random data.

Figure 3.4: Plots of per-class gx (see previous figure; log scale), a cell i, j represents the
average |∂L (y = i)/∂xy= j|, i.e. the loss-sensitivity of examples of class i w.r.t. training
examples of class j. Left is real data, right is random data.

Figure 3.3 and 3.4 were obtained by training a fully-connected network with 2 layers

of 16 units on 1000 downscaled 14×14 MNIST digits using SGD.
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3.3.3 Capacity and effective capacity

In this subsection, we investigate the impact of capacity and effective capacity on

learning of datasets having different amounts of random input data or random labels.

3.3.3.0.1 Effects of capacity and dataset size on validation performances In a first

experiment, we study how overall model capacity impacts the validation performances for

datasets with different amounts of noise. On MNIST, we found that the optimal validation

performance requires a higher capacity model in the presence of noise examples (see

Figure 3.5). This trend was consistent for noise inputs on CIFAR10, but we did not

notice any relationship between capacity and validation performance on random labels

on CIFAR10.

This result contradicts the intuitions of traditional learning theory, which suggest that

capacity should be restricted, in order to enforce the learning of (only) the most regular

patterns. Given that DNNs can perfectly fit the training set in any case, we hypothesize

that that higher capacity allows the network to fit the noise examples in a way that does

not interfere with learning the real data. In contrast, if we were simply to remove noise

examples, yielding a smaller (clean) dataset, a lower capacity model would be able to

achieve optimal performance.

3.3.3.0.2 Effects of capacity and dataset size on training time Our next experiment

measures time-to-convergence, i.e. how many epochs it takes to reach 100% training

accuracy. Reducing the capacity or increasing the size of the dataset slows down training

as well for real as for noise data3. However, the effect is more severe for datasets

containing noise, as our experiments in this subsection show (see Figure 3.6).

Effective capacity of a DNN can be increased by increasing the representational ca-

pacity (e.g. adding more hidden units) or training for longer. Thus, increasing the number

of hidden units decreases the number of training iterations needed to fit the data, up to

some limit. We observe stronger diminishing returns from increasing representational

3Regularization can also increase time-to-convergence; see subsection 3.5.
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Figure 3.5: Performance as a function of capacity in 2-layer MLPs trained on (noisy
versions of) MNIST. For real data, performance is already very close to maximal with
4096 hidden units, but when there is noise in the dataset, higher capacity is needed.

Figure 3.6: Time to convergence as a function of capacity with dataset size fixed to 50000
(left), or dataset size with capacity fixed to 4096 units (right). “Noise level” denotes to
the proportion of training points whose inputs are replaced by Gaussian noise. Because
of the patterns underlying real data, having more capacity/data does not decrease/increase
training time as much as it does for noise data.

capacity for real data, indicating that this limit is lower, and a smaller representational

capacity is sufficient, for real datasets.

Increasing the number of examples (keeping representational capacity fixed) also

increases the time needed to memorize the training set. In the limit, the representational

capacity is simply insufficient, and memorization is not feasible. On the other hand, when
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the relationship between inputs and outputs is meaningful, new examples simply give

more (possibly redundant) clues as to what the input→ output mapping is. Thus, in the

limit, an idealized learner should be able to predict unseen examples perfectly, absent

noise. Our experiments demonstrate that time-to-convergence is not only longer on noise

data (as noted by Zhang et al. [317]), but also, increases substantially as a function of

dataset size, relative to real data. Following the reasoning above, this suggests that our

networks are learning to extract patterns in the data, rather than memorizing.

3.4 DNNs learn patterns first

This subsection aims at studying how the complexity of the hypotheses learned by

DNNs evolve during training for real data vs. noise data. To achieve this goal, we build

on the intuition that the number of different decision regions into which an input space is

partitioned reflects the complexity of the learned hypothesis [268]. This notion is similar

in spirit to the degree to which a function can scatter random labels: a higher density of

decision boundaries in the data space allows more samples to be scattered.

Therefore, we estimate the complexity by measuring how densely points on the data

manifold are present around the model’s decision boundaries. Intuitively, if we were to

randomly sample points from the data distribution, a smaller fraction of points in the

proximity of a decision boundary suggests that the learned hypothesis is simpler.

3.4.1 Critical Sample Ratio (CSR)

Here we introduce the notion of a critical sample, which we use to estimate the

density of decision boundaries as discussed above. Critical samples are a subset of a

dataset such that for each such sample x, there exists at least one adversarial example

x̂ in the proximity of x. Specifically, consider a classification network’s output vector

f (x) = ( f1(x), . . . , fk(x)) ∈ Rk for a given input sample x ∈ Rn from the data manifold.



65

(a) Noise added on classification inputs.

(b) Noise added on classification labels.

Figure 3.7: Accuracy (left in each pair, solid is train, dotted is validation) and Critical
sample ratios (right in each pair) for MNIST.

Formally we call a dataset sample x a critical sample if there exists a point x̂ such that,

argmax
i

fi(x) 6= argmax
j

f j(x̂) (3.1)

s.t. ‖x− x̂‖∞ ≤ r
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(a) Noise added on classification inputs.

(b) Noise added on classification labels.

Figure 3.8: Accuracy (left in each pair, solid is train, dotted is validation) and Critical
sample ratios (right in each pair) for CIFAR10.

where r is a fixed box size. As in recent work on adversarial examples [180] the above

definition depends only on the predicted label argmaxi fi(x) of x, and not the true label

(as in earlier work on adversarial examples, such as Goodfellow et al. [115], Szegedy

et al. [275]).

Following the above argument relating complexity to decision boundaries, a higher

number of critical samples indicates a more complex hypothesis. Thus, we measure
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complexity as the critical sample ratio (CSR), that is, the fraction of data-points in a set

|D | for which we can find a critical sample: #critical samples
|D | .

To identify whether a given data point x is a critical samples, we search for an

adversarial sample x̂ within a box of radius r. To perform this search, we propose using

Langevin dynamics applied to the fast gradient sign method (FGSM, Goodfellow et al.

[115]) as shown in algorithm 14. We refer to this method as Langevin adversarial sample

search (LASS). While the FGSM search algorithm can get stuck at a points with zero

gradient, LASS explores the box more thoroughly. Specifically, a problem with first order

gradient search methods (like FGSM) is that there might exist training points where the

gradient is 0, but with a large 2nd derivative corresponding to a large change in prediction

in the neighborhood. The noise added by the LASS algorithm during the search enables

escaping from such points.

Algorithm 1 Langevin Adversarial Sample Search (LASS)
Require: x ∈ Rn, α , β , r, noise process η

Ensure: x̂
1: converged = FALSE
2: x̃← x; x̂← /0
3: while not converged or max iter reached do
4: ∆ = α · sign(∂ fk(x)

∂x )+β ·η
5: x̃← x̃+∆

6: for i ∈ [n] do

7: x̃i←
{

xi + r · sign(x̃i−xi) i f |x̃i−xi|> r
x̃i otherwise

8: end for
9: if argmaxi f (x) 6= argmaxi f (x̃) then

10: converged = TRUE
11: x̂← x̃
12: end if
13: end while

4In our experiments, we set α = 0.25, β = 0.2 and η is samples from standard normal distribution.
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Figure 3.9: Critical sample ratio throughout training on CIFAR-10, random input (randX),
and random label (randY) datasets.

3.4.2 Critical samples throughout training

We now show that the number of critical samples is much higher for a deep network

(specifically, a CNN) trained on noise data compared with real data. To do so, we measure

the number of critical samples in the validation set5, throughout training6. Results are

shown in Figure 3.9. A higher number of critical samples for models trained on noise

data compared with those trained on real data suggests that the learned decision surface is

5We also measure the number of critical samples in the training sets. Since we train our models using
log loss, training points are pushed away from the decision boundary even after the network learns to
classify them correctly. This leads to an initial rise and then fall of the number of critical samples in the
training sets.

6We use a box size of 0.3, which is small enough in a 0-255 pixel scale to be unnoticeable by a human
evaluator. Different values for r were tested but did not change results qualitatively and lead to the same
conclusions
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more complex for noise data (randX and randY). We also observe that the CSR increases

gradually with increasing number of epochs and then stabilizes. This suggests that the

networks learn gradually more complex hypotheses during training for all three datasets.

In our next experiment, we evaluate the performance and critical sample ratio of

datasets with 20% to 80% of the training data replaced with either input or label noise.

Results for MNIST and CIFAR-10 are shown in Figures 3.7 and 3.8, respectively. For

both randX and randY datasets, the CSR is higher for noisier datasets, reflecting the

higher level of complexity of the learned prediction function. The final and maximum

validation accuracies are also both lower for noisier datasets, indicating that the noise

examples interfere somewhat with the networks ability to learn about the real data.

More significantly, for randY datasets (Figures 3.7(b) and 3.8(b)), the network

achieves maximum accuracy on the validation set before achieving high accuracy on the

training set. Thus the model first learns the simple and general patterns of the real data

before fitting the noise (which results in decreasing validation accuracy). Furthermore,

as the model moves from fitting real data to fitting noise, the CSR greatly increases,

indicating the need for more complex hypotheses to explain the noise. Combining this

result with our results from subsection 3.3.1, we conclude that real data examples are

easier to fit than noise.

3.5 Effect of regularization on learning

Here we demonstrate the ability of regularization to degrade training performance

on data with random labels, while maintaining generalization performance on real data.

Zhang et al. [317] argue that explicit regularizations are not the main explanation of good

generalization performance, rather SGD based optimization is largely responsible for it.

Our findings extend their claim and indicate that explicit regularizations can substantially

limit the speed of memorization of noise data without significantly impacting learning on

real data.

We compare the performance of CNNs trained on CIFAR-10 and randY with the

following regularizers: dropout (with dropout rates in range 0-0.9), input dropout (range
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0-0.9), input Gaussian noise (with standard deviation in range 0-5), hidden Gaussian

noise (range 0-0.3), weight decay (range 0-1) and additionally dropout with adversarial

training (with weighting factor in range 0.2-0.7 and dropout in rate range 0.03-0.5).7 We

train a separate model for every combination of dataset, regularization technique, and

regularization parameter.

The results are summarized in Figure 3.5. For each combination of dataset and regu-

larization technique, the final training accuracy on randY (x-axis) is plotted against the

best validation accuracy on CIFAR-10 from amongst the models trained with different

regularization parameters (y-axis). Flat curves indicate that the corresponding regular-

ization technique can reduce memorization when applied on random labeling, while

resulting in the same validation accuracy on the clean validation set. Our results show that

different regularizers target memorization behavior to different extent – dropout being

the most effective. We find that dropout, especially coupled with adversarial training, is

best at hindering memorization without reducing the model’s ability to learn. Figure 3.5

additionally shows this effect for selected experiments (i.e. selected hyperparameter

values) in terms of train loss.

3.6 Related work

Our work builds on the experiments and challenges the interpretations of Zhang et al.

[317]. We make heavy use of their methodology of studying DNN training in the context

of noise datasets. Zhang et al. [317] show that DNNs can perfectly fit noise and thus that

their generalization ability cannot be explained through traditional statistical learning

theory (e.g., see [15, 297]). We agree with this finding, but show in addition that the

degree of memorization and generalization in DNNs depends not only on the architecture

and training procedure (including explicit regularizations), but also on the training data

itself 8.

Another direction we investigate is the relationship between regularization and mem-

7We perform adversarial training using critical samples found by LASS algorithm with default parame-
ters.

8We conclude the latter part based on experimental findings in subsections 3.3 and 3.4.2
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Figure 3.10: Effect of different regularizers on train accuracy (on noise dataset) vs. vali-
dation accuracy (on real dataset). Flatter curves indicate that memorization (on noise)
can be capped without sacrificing generalization (on real data).

orization. Zhang et al. [317] argue that explicit and implicit regularizers (including

SGD) might not explain or limit shattering of random data. In this work we show that

regularizers (especially dropout) do control the speed at which DNNs memorize. This is

interesting since dropout is also known to prevent catastrophic forgetting [112] and thus

in general it seems to help DNNs retain patterns.

A number of arguments support the idea that SGD-based learning imparts a regular-

ization effect, especially with a small batch size [310] or a small number of epochs [131].

Previous work also suggests that SGD prioritizes the learning of simple hypothesis first.

Sjoberg et al. [266] showed that, for linear models, SGD first learns models with small

`2 parameter norm. More generally, the efficacy of early stopping shows that SGD first
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Figure 3.11: Training curves for different regularization techniques on random label (left)
and real (right) data. The vertical ordering of the curves is different for random labels
than for real data, indicating differences in the propensity of different regularizers to
slow-down memorization.

learns simpler models [314]. We extend these results, showing that DNNs trained with

SGD learn patterns before memorizing, even in the presence of noise examples.

Various previous works have analyzed explanations for the generalization power of

DNNs. Montavon et al. [215] use kernel methods to analyze the complexity of deep

learning architectures, and find that network priors (e.g. implemented by the network

structure of a CNN or MLP) control the speed of learning at each layer. Neyshabur et al.

[220] note that the number of parameters does not control the effective capacity of a

DNN, and that the reason for DNNs’ generalization is unknown. We supplement this

result by showing how the impact of representational capacity changes with varying noise

levels. While exploring the effect of noise samples on learning dynamics has a long

tradition [6, 27], we are the first to examine relationships between the fraction of noise

samples and other attributes of the learning algorithm, namely: capacity, training time

and dataset size.

Multiple techniques for analyzing the training of DNNs have been proposed before,

including looking at generalization error, trajectory length evolution [239], analyzing

Jacobians associated to different layers [255, 302], or the shape of the loss minima



73

found by SGD [47, 155, 159]. Instead of measuring the sharpness of the loss for the

learned hypothesis, we investigate the complexity of the learned hypothesis throughout

training and across different datasets and regularizers, as measured by the critical sample

ratio. Critical samples refer to real data-points that have adversarial examples [115, 275]

nearby. Adversarial examples originally referred to imperceptibly perturbed data-points

that are confidently misclassified. [213] define virtual adversarial examples via changes

in the predictive distribution instead, thus extending the definition to unlabeled data-

points. Kurakin et al. [180] recommend using this definition when training on adversarial

examples, and it is the definition we use.

Two contemporary works perform in-depth explorations of topics related to our work.

Bojanowski and Joulin [29] show that predicting random noise targets can yield state of

the art results in unsupervised learning, corroborating our findings in subsection 3.3.1,

especially Figure 3.3.1. Koh and Liang [170] use influence functions to measure the

impact on parameter changes during training, as in our subsection 3.3.2. They explore

several promising applications for this technique, including generation of adversarial

training examples.

3.7 Conclusion

Our empirical exploration demonstrates qualitative differences in DNN optimization

on noise vs. real data, all of which support the claim that DNNs trained with SGD-variants

first use patterns, not brute force memorization, to fit real data. However, since DNNs have

the demonstrated ability to fit noise, it is unclear why they find generalizable solutions on

real data; we believe that the deep learning priors including distributed and hierarchical

representations likely play an important role. Our analysis suggests that memorization

and generalization in DNNs depend on network architecture and optimization procedure,

but also on the data itself. We hope to encourage future research on how properties of

datasets influence the behavior of deep learning algorithms, and suggest a data-dependent

understanding of DNN capacity as a research goal.
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4.2 Background

This background section describes the issue of robustness in deep learning, and

summarizes relevant lines of work.

Despite generalizing very well on a variety of tasks and domains, neural networks –

and indeed, machine learning more generally – are also quite brittle. Many surprising and

poorly-understood failure modes have been demonstrated, and much research has been

devoted to understanding and addressing such issues. While neural networks capabilities

have certainly surprised many deep learning “skeptics”, deep learning “believers” have

been surprised by persistence and pervasiveness of such failure modes.

A recent approach to this problem, which is the topic of our work, is invariant

prediction. Before discussing invariant prediction, however, we give a brief overview of

other relevant research areas.

4.2.1 An overview of other areas of robustness research

Here, we give a brief overview of the following five lines of research relevant towards

this topic:

1. domain generalization

2. Adversarial examples and adversarial robustness

3. Out-of-distribution (OOD) detection

4. systematic generalization

5. non-adversarial robustness

These are listed in the rough chronological order of their development as prominent areas

of research.

Domain generalization refers to a problem setting where a model trained on several

different domains (i.e. data distributions) is expected to generalize to a new domain(s)

without any data from that domain. This field predates the publication of AlexNet [174],
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and the resulting “deep learning revolution”. Classic works in domain generalization

often take a theoretical approach, examining what sort of assumptions are necessary or

sufficient to achieve generalization to new domains. In particular, it is popular to assume

that P(Y |X) is fixed across domains, and that the distribution of P(X) is not too different

across domains.

Adversarial examples were the first clear sign that Deep Learning models were not

robust. These were originally conceived as imperceptible perturbations to real data-points

carefully chosen to fool a given model. While adversarial examples are a very specific

kind of OOD data, the ability to generalize to adversarial examples may correlate with

other forms of OOD generalization [92, 137].

Out-of-distribution (OOD) detection was popularized in Deep Learning by Hendrycks

and Gimpel [139], and takes the more modest aim of detecting when a test example is

from a different domain, rather than generalizing correctly to such novel examples (as

in domain generalization). Despite being easier, this can still be a challenging problem,

although modern approaches, specifically large transformer models, perform much better

[94]. OOD detection is not an approach to OOD generalization, but rather an alternative.

From the point-of-view of AI Alignment, it is an appealing one, because users are often

content with a system that merely avoids catastrophic failures, e.g. by detecting when it

might be liable to make a mistake and engaging safe default behavior.

Non-adversarial robustness of deep computer vision models, surprisingly, became a

focus of Deep Learning research only after several years of intense interest in adversarial

robustness. This line of work is closely related to OOD generalization, but more focused

on examining and improving inductive biases of deep learning, generalizing from a single

training domain, and OOD data that is more similar to the training data, e.g. images

corrupted with noise, or collected under very similar conditions. Thus, robustness can be

seen as a somewhat specific, and somewhat less ambitious, form of OOD generalization.

Systematic Generalization is the use of compositionality to generalize to new com-

binations of known concepts. This could enable out-of-distribution generalization to

combinations which do not appear in the training domains. As noted in Section 1.4.1,

Deep Learning has been motivated as an approach to systematic generalization, via disen-



78

tangling underlying factors of variation. However, as Bahdanau et al. [14] and Schott et al.

[257] have shown, Deep Learning methods typically fail to generalize systematically.

Thus it remains unclear how much successful systematic generalization would contribute

to solving OOD generalization problems.

4.2.2 Invariant prediction

Given the existence of many predictive features, and many solutions with roughly

0 training loss, how are we to pick out solutions that robustly track human judgments

or other sources of ground-truth? Invariant Risk Minimization (IRM) [8] provides one

answer to this question, based on the notion of invariant prediction, as introduced by

Peters et al. [233] in the context of causal discovery.

Invariant prediction is a method for learning predictive models, i.e. learning about the

directional relationship between between X and Y in terms of a predictive distribution

P̂(Y |X). The intuition underlying invariant prediction is this:

• A robust model is one that works well in many different circumstances. These

different circumstances are classically referred to as domains, although Arjovsky

et al. [8] use environments to refer to the same concept. Mathematically, the

difference between domains comes down to a difference in the joint distribution of

the data P(X ,Y ).

• Robustness thus requires learning about relationships between X and Y that

are consistent across different circumstances. For instance, causal relationships

are consistent in this sense: if X is the direct cause of Y , then P(Y |X) will the same

regardless of external circumstances – so long as there is no direct intervention on

the value of Y , or selection process affecting the data.

• By biasing models to learn relationships that appear consistent, we can im-

prove model robustness. Although we may not have access all of the data we

would need in order to assess whether a given relationship is consistent, we can

still compare different models based on how consistent they are across different

domains that we do observe.
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While invariant prediction may seems like a natural desiderata, in the roughly 2 years

since Arjovsky et al. [8], there has so far been limited success in applying this principle to

solve the problems of robustness observed in deep network. The only notable success I’m

currently aware of is Wald et al. [300], who encourage models to be calibrated on each

domain, after noting that this is a condition for achieving invariant prediction. Overall,

it seems likely that other novel inductive biases may play an equally significant or even

more significant role than invariant prediction.

In looking at variation across different domains as a guide for how to generalize

robustly to a novel test domain, IRM and REx are both forms of domain generalization.

REx develops an alternative to IRM, which can perform invariant prediction, but which

also behaves qualitatively differently in some settings. This difference in behavior can be

(dis)advantageous, depending on the particular task at hand.

4.3 Contributions of the work

This work provided a new perspective on invariant prediction as a robust optimization

problem; this is especially significant since Arjovsky et al. [8] contrast Invariant Risk

Minimization with robust optimization approaches. This helped to popularize the study of

invariant prediction in deep learning. Our theoretical contributions are best summarized

by the Remark, which explains why optimizing performance on a large, diverse dataset

should not be expected to solve OOD generalization problems. We also introduced

novel arguments for the limitations of invariant prediction to handle different kinds of

distributions shift. Finally, we called attention to methodological issues in evaluating

OOD generalization; a subsequent in-depth study found that standard ERM training out-

performed customized OOD generalization techniques when using proper methodology

[123].



CHAPTER 5

OUT-OF-DISTRIBUTION GENERALIZATION VIA RISK EXTRAPOLATION

(REX)

ABSTRACT

Distributional shift is one of the major obstacles when transferring machine learning

prediction systems from the lab to the real world. To tackle this problem, we assume that

variation across training domains is representative of the variation we might encounter

at test time, but also that shifts at test time may be more extreme in magnitude. In

particular, we show that reducing differences in risk across training domains can reduce

a model’s sensitivity to a wide range of extreme distributional shifts, including the

challenging setting where the input contains both causal and anti-causal elements. We

motivate this approach, Risk Extrapolation (REx), as a form of robust optimization over

a perturbation set of extrapolated domains (MM-REx), and propose a penalty on the

variance of training risks (V-REx) as a simpler variant. We prove that variants of REx can

recover the causal mechanisms of the targets, while also providing some robustness to

changes in the input distribution (“covariate shift”). By trading-off robustness to causally

induced distributional shifts and covariate shift, REx is able to outperform alternative

methods such as Invariant Risk Minimization in situations where these types of shift

co-occur.

5.1 Introduction

While neural networks often exhibit super-human generalization on the training

distribution, they can be extremely sensitive to distributional shift, presenting a major

roadblock for their practical application [87, 137, 241, 273]. This sensitivity is often

caused by relying on “spurious” features unrelated to the core concept we are trying to

learn [103]. For instance, Beery et al. [16] give the example of an image recognition

model failing to correctly classify cows on the beach, since it has learned to make
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predictions based on the features of the background (e.g. a grassy field) instead of just

the animal.

In this work, we consider out-of-distribution (OOD) generalization, also known

as domain generalization, where a model must generalize appropriately to a new test

domain for which it has neither labeled nor unlabeled training data. Following com-

mon practice [19], we formulate this as optimizing the worst-case performance over a

perturbation set of possible test domains, F :

ROOD
F (θ) = max

e∈F
Re(θ) (5.1)

Since generalizing to arbitrary test domains is impossible, the choice of perturbation

set encodes our assumptions about which test domains might be encountered. Instead

of making such assumptions a priori, we assume access to data from multiple training

domains, which can inform our choice of perturbation set. A classic approach for this

setting is group distributionally robust optimization (DRO) [250], where F contains

all mixtures of the training distributions. This is mathematically equivalent to considering

convex combinations of the training risks.

#                »

P1(X ,Y )

#                »

P2(X ,Y )e1 e2

e3

R
RRI

convex hull
of training
distributions

#                »

P1(X ,Y )

#                »

P2(X ,Y )e1 e2

e3

RMM-REx
R

extrapolation
region

Figure 5.1: Left: Robust optimization optimizes worst-case performance over the convex
hull of training distributions. Right: By extrapolating risks, REx encourages robustness
to larger shifts. Here e1,e2, and e3 represent training distributions, and

#                »

P1(X ,Y ),
#                »

P2(X ,Y )
represent some particular directions of variation in the affine space of quasiprobability
distributions over (X ,Y ).

However, we aim for a more ambitious form of OOD generalization, over a larger
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perturbation set. Our method minimax Risk Extrapolation (MM-REx) is an extension

of DRO where F instead contains affine combinations of training risks, see Figure 5.1.

Under specific circumstances, MM-REx can be thought of as DRO over a set of extrapo-

lated domains.1 But MM-REx also unlocks fundamental new generalization capabilities

unavailable to DRO.

In particular, focusing on supervised learning, we show that Risk Extrapolation can

uncover invariant relationships between inputs X and targets Y . Intuitively, an invariant

relationship is a statistical relationship which is maintained across all domains in F .

Returning to the cow-on-the-beach example, the relationship between the animal and the

label is expected to be invariant, while the relationship between the background and the

label is not. A model which bases its predictions on such an invariant relationship is said

to perform invariant prediction.2

Many domain generalization methods assume P(Y |X) is an invariant relationship,

limiting distributional shift to changes in P(X), which are known as covariate shift [18].

This assumption can easily be violated, however. For instance, when Y causes X , a more

sensible assumption is that P(X |Y ) is fixed, with P(Y ) varying across domains [198, 256].

In general, invariant prediction may involve an aspect of causal discovery. Depending

on the perturbation set, however, other, more predictive, invariant relationships may also

exist [171].

The first method for invariant prediction to be compatible with modern deep learn-

ing problems and techniques is Invariant Risk Minimization (IRM) [8], making it a

natural point of comparison. Our work focuses on explaining how REx addresses OOD

generalization, and highlighting differences (especially advantages) of REx compared

with IRM and other domain generalization methods, see Table 5.I. Broadly speaking,

REx optimizes for robustness to the forms of distributional shift that have been observed

to have the largest impact on performance in training domains. This can be a significant

advantage over the more focused (but also limited) robustness that IRM targets. For in-

stance, unlike IRM, REx can also encourage robustness to covariate shift (see Section 5.3

1We define “extrapolation” to mean “outside the convex hull”, see Appendix 11.1.2 for more.
2Note this is different from learning an invariant representation [100]; see Section 5.2.3.
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and Figure 5.3.4).

Our experiments show that REx significantly outperforms IRM in settings that involve

covariate shift and require invariant prediction, including modified versions of CMNIST

and simulated robotics tasks from the Deepmind control suite. On the other hand, because

REx does not distinguish between underfitting and inherent noise, IRM has an advantage

in settings where some domains are intrinsically harder than others. Our contributions

include:

1. MM-REx, a novel domain generalization problem formulation suitable for invariant

prediction.

2. Demonstrating that REx solves invariant prediction tasks where IRM fails due to

covariate shift.

3. Proving that equality of risks can be a sufficient criteria for discovering causal

structure.

Invariant Cov. Shift Suitable for

Method Prediction Robustness Deep Learning

DRO 7 3 3

(C-)ADA 7 3 3

ICP 3 7 7

IRM 3 7 3

REx 3 3 3

Table 5.I: A comparison of approaches for OOD generalization.

5.2 Background & related work

We consider multi-source domain generalization, where our goal is to find param-

eters θ that perform well on unseen domains, given a set of m training domains,

E = {e1, ..,em}, sometimes also called environments. We assume the loss function,
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` is fixed, and domains only differ in terms of their data distribution Pe(X ,Y ) and dataset

De. The risk function for a given domain/distribution e is:

Re(θ)
.
= E(x,y)∼Pe(X ,Y ) `( fθ (x),y) (5.2)

We refer to members of the set {Re |e∈ E } as the training risks or simply risks. Changes

in Pe(X ,Y ) can be categorized as either changes in P(X) (covariate shift), changes in

P(Y |X) (concept shift), or a combination. The standard approach to learning problems

is Empirical Risk Minimization (ERM), which minimizes the average loss across all

the training examples from all the domains:

RERM(θ)
.
= E(x,y)∼∪e∈E De `( fθ (x),y) (5.3)

= ∑
e
|De|E(x,y)∼De `( fθ (x),y) (5.4)

5.2.1 Robust optimization

An approach more tailored to OOD generalization is robust optimization [19], which

aims to optimize a model’s worst-case performance over some perturbation set of

possible data distributions, F (see Eqn. 5.1). When only a single training domain is

available (single-source domain generalization), it is common to assume that P(Y |X)

is fixed, and let F be all distributions within some f -divergence ball of the training

P(X) [12, 147]. As another example, adversarial robustness can be seen as instead using

a Wasserstein ball as a perturbation set [264]. The assumption that P(Y |X) is fixed

is commonly called the “covariate shift assumption” [18]; however, we assume that

covariate shift and concept shift can co-occur, and refer to this assumption as the fixed

relationship assumption (FRA).

In multi-source domain generalization, test distributions are often assumed to be

mixtures (i.e. convex combinations) of the training distributions; this is equivalent to
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setting F
.
= E :

RRI(θ)
.
= max

Σeλe=1
λe≥0

m

∑
e=1

λeRe(θ) = max
e∈E

Re(θ). (5.5)

We call this objective Risk Interpolation (RI), or, following Sagawa et al. [250], (group)

Distributionally Robust Optimization (DRO). While single-source methods classically

assume that the probability of each data-point can vary independently [147], DRO yields

a much lower dimensional perturbation set, with at most one direction of variation per

domain, regardless of the dimensionality of X and Y . It also does not rely on FRA, and can

provide robustness to any form of shift in P(X ,Y ) which occurs across training domains.

Minimax-REx is an extension of this approach to affine combinations of training risks.

Figure 5.2: Training accuracies (left) and risks (right) on colored MNIST domains
with varying P(Y = 0|color = red) after 500 epochs. Dots represent training risks, lines
represent test risks on different domains. Increasing the V-REx penalty (β ) leads to a
flatter “risk plane” and more consistent performance across domains, as the model learns
to ignore color in favor of shape-based invariant prediction. Note that β = 100 gives the
best worst-case risk across the 2 training domains, and so would be the solution preferred
by DRO [250]. This demonstrates that REx’s counter-intuitive propensity to increase
training risks can be necessary for good OOD performance.

5.2.2 Invariant representations vs. invariant predictors

An equipredictive representation, Φ, is a function of X with the property that

Pe(Y |Φ) is equal, ∀e ∈F . In other words, the relationship between such a Φ and Y is

fixed across domains. Invariant relationships between X and Y are then exactly those

that can be written as P(Y |Φ(x)) with Φ an equipredictive representation. A model
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P̂(Y |X = x) that learns such an invariant relationship is called an invariant predictor.

Intuitively, an invariant predictor works equally well across all domains in F . The princi-

ple of risk extrapolation aims to achieve invariant prediction by enforcing such equality

across training domains E , and does not rely on explicitly learning an equipredictive

representation.

Koyama and Yamaguchi [171] prove that a maximal equipredictive representation –

that is, one that maximizes mutual information with the targets, Φ∗
.
= argmaxΦI(Φ,Y )

– solves the robust optimization problem (Eqn. 5.1) under fairly general assumptions.3

When Φ∗ is unique, we call the features it ignores spurious. The result of Koyama and

Yamaguchi [171] provides a theoretical reason for favoring invariant prediction over the

common approach of learning invariant representations [229], which make Pe(Φ) or

Pe(Φ|Y ) equal ∀e ∈ E . Popular methods here include adversarial domain adaptation

(ADA) [100] and conditional ADA (C-ADA) [201]. Unlike invariant predictors, invari-

ant representations can easily fail to generalize OOD: ADA forces the predictor to have

the same marginal predictions P̂(Y ), which is a mistake when P(Y ) in fact changes across

domains [319]; C-ADA suffers from more subtle issues [8].

5.2.3 Invariance and causality

The relationship between cause and effect is a paradigmatic example of an invariant

relationship. Here, we summarize definitions from causal modeling, and discuss causal

approaches to domain generalization. We will refer to these definitions for the statements

of our theorems in Section 5.3.4.

5.2.3.0.1 Definitions. A causal graph is a directed acyclic graph (DAG), where nodes

represent variables and edges point from causes to effects. In this work, we use Structural

Causal Models (SCMs), which also specify how the value of a variable is computed given

its parents. An SCM, C, is defined by specifying the mechanism, fZ : Pa(Z)→ dom(Z)

3The first formal definition of an equipredictive representation we found was by Koyama and Yamaguchi
[171], who use the term “(maximal) invariant predictor”. We prefer our terminology since: 1) it is more
consistent with Arjovsky et al. [8], and 2) Φ is a representation, not a predictor.
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for each variable Z.4 Mechanisms are deterministic; noise in Z is represented explicitly

via a special noise variable NZ , and these noise variables are jointly independent. An

intervention, ι is any modification to the mechanisms of one or more variables; an

intervention can introduce new edges, so long as it does not introduce a cycle. do(Xi = x)

denotes an intervention which sets Xi to the constant value x (removing all incoming

edges). Data can be generated from an SCM, C, by sampling all of the noise variables, and

then using the mechanisms to compute the value of every node whose parents’ values are

known. This sampling process defines an entailed distribution, PC(Z) over the nodes Z

of C. We overload fZ , letting fZ(Z) refer to the conditional distribution PC(Z|Z\{Z}).

5.2.4 Causal approaches to domain generalization

Instead of assuming P(Y |X) is fixed (FRA), works that take a causal approach to

domain generalization often assume that the mechanism for Y is fixed; we call this the

fixed mechanism assumption (FMA). Meanwhile, they assume X may be subject to

different (e.g. arbitrary) interventions in different domains [43]. We call changes in

P(X ,Y ) resulting from interventions on X interventional shift. Interventional shift can

involve both covariate shift and/or concept shift. In their seminal work on Invariant

Causal Prediction (ICP), Peters et al. [233] leverage this invariance to learn which

elements of X cause Y . ICP and its nonlinear extension [136] use statistical tests to detect

whether the residuals of a linear model are equal across domains. Our work differs from

ICP in that:

1. Our method is model agnostic and scales to deep networks.

2. Our goal is OOD generalization, not causal inference. These are not identical:

invariant prediction can sometimes make use of non-causal relationships, but when

deciding which interventions to perform, a truly causal model is called for.

3. Our learning principle only requires invariance of risks, not residuals. Nonetheless,

we prove that this can ensure invariant causal prediction.

4Our definitions follow Elements of Causal Inference [234]; our notation mostly does as well.
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A more similar method to REx is Invariant Risk Minimization (IRM) [8], which

shares properties (1) and (2) of the list above. Like REx, IRM also uses a weaker form

of invariance than ICP; namely, they insist that the optimal linear classifier must match

across domains.5 Still, REx differs significantly from IRM. While IRM specifically aims

for invariant prediction, REx seeks robustness to whichever forms of distributional shift

are present. Thus, REx is more directly focused on the problem of OOD generalization,

and can provide robustness to a wider variety of distributional shifts, inluding covariate

shift. Also, unlike REx, IRM seeks to match E(Y |Φ(X)) across domains, not the full

P(Y |Φ(X)). This, combined with IRM’s indifference to covariate shift, make it more

effective in cases where different domains or examples are inherently more noisy.

5.2.5 Fairness

Equalizing risk across different groups (e.g. male vs. female) has been proposed as a

definition of fairness [79], generalizing the equal opportunity definition of fairness [132].

Williamson and Menon [309] propose using the absolute difference of risks to measure

deviation from this notion of fairness; this corresponds to our MM-REx, in the case of

only two domains, and is similar to V-REx, which uses the variance of risks. However, in

the context of fairness, equalizing the risk of training groups is the goal. Our work goes

beyond this by showing that it can serve as a method for OOD generalization.

5.3 Risk extrapolation

Before discussing algorithms for REx and theoretical results, we first expand on our

high-level explanations of what REx does, what kind of OOD generalization it promotes,

and how. The principle of Risk Extrapolation (REx) has two aims:

1. Reducing training risks

2. Increasing similarity of training risks

5In practice, IRMv1 replaces this bilevel optimization problem with a gradient penalty on classifier
weights.
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In general, these goals can be at odds with each other; decreasing the risk in the domain

with the lowest risk also decreases the overall similarity of training risks. Thus methods

for REx may seek to increase risk on the best performing domains. While this is

counter-intuitive, it can be necessary to achieve good OOD generalization, as Figure 5.2

demonstrates. From a geometric point of view, encouraging equality of risks flattens the

“risk plane” (the affine span of the training risks, considered as a function of the data

distribution, see Figures 5.1 and 5.2). While this can result in higher training risks, it also

means that the risk changes less if the distributional shifts between training domains are

magnified at test time.

Figure 5.2 illustrates how flattening the risk plane can promote OOD generalization on

real data, using the Colored MNIST (CMNIST) task as an example [8]. In the CMNIST

training domains, the color of a digit is more predictive of the label than the shape is. But

because the correlation between color and label is not invariant, predictors that use the

color feature achieve different risk on different domains. By enforcing equality of risks,

REx prevents the model from using the color feature enabling successful generalization

to the test domain where the correlation between color and label is reversed.

5.3.1 Probabilities vs. risks

Figure 5.3 depicts how the extrapolated risks considered in MM-REx can be translated

into a corresponding change in P(X ,Y ), using an example of pure covariate shift. Training

distributions can be thought of as points in an affine space with a dimension for every

possible value of (X ,Y ); see Appendix 11.1.4 for an example. Because the risk is linear

w.r.t. P(x,y), a convex combination of risks from different domains is equivalent to the

risk on a domain given by the mixture of their distributions. The same holds for the affine

combinations used in MM-REx, with the caveat that the negative coefficients may lead

to negative probabilities, making the resulting P(X ,Y ) a quasiprobability distribution,

i.e. a signed measure with integral 1. We explore the theoretical implications of this in

Appendix 11.1.7.
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Figure 5.3: Extrapolation can yield a distribution with negative P(x) for some x. Left:
P(x) for domains e1 and e2. Right: Point-wise interpolation/extrapolation of Pe1(x) and
Pe2(x). Since MM-REx target worst-case robustness across extrapolated domains, it can
provide robustness to such shifts in P(X) (covariate shift).

5.3.2 Covariate shift

When only P(X) differs across domains (i.e. FRA holds), as in Figure 5.3, then

Φ(x) = x is already an equipredictive representation, and so any predictor is an invariant

predictor. Thus methods which only promote invariant prediction – such as IRM – are

not expected to improve OOD generalization (compared with ERM). Indeed, Arjovsky

et al. [8] recognize this limitation of IRM in what they call the “realizable” case. Instead,

what is needed is robustness to covariate shift, which REx, but not IRM, can provide.

Robustness to covariate shift can improve OOD generalization by ensuring that low-

capacity models spend sufficient capacity on low-density regions of the input space; we

show how REx can provide such benefits in Appendix 11.1.5. But even for high capacity

models, P(X) can have a significant influence on what is learned; for instance Sagawa

et al. [250] show that DRO can significantly improves the performance on rare groups

for a model that achieves 100% training accuracy in their Waterbirds dataset. Pursuing

robustness to covariate shift also comes with drawbacks for REx, however: REx does

not distinguish between underfitting and inherent noise in the data, and so can force the

model to make equally bad predictions everywhere, even if some examples are less noisy

than others.
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5.3.3 Methods of risk extrapolation

We now formally describe the Minimax REx (MM-REx) and Variance-REx (V-

REx) techniques for risk extrapolation. Minimax-REx performs robust learning over a

perturbation set of affine combinations of training risks with bounded coefficients:

RMM-REx(θ)
.
= max

Σeλe=1
λe≥λmin

m

∑
e=1

λeRe(θ) (5.6)

= (1−mλmin)max
e

Re(θ)+λmin

m

∑
e=1

Re(θ) , (5.7)

where m is the number of domains, and the hyperparameter λmin controls how much we

extrapolate. For negative values of λmin, MM-REx places negative weights on the risk of

all but the worst-case domain, and as λmin→−∞, this criterion enforces strict equality

between training risks; λmin = 0 recovers risk interpolation (RI). Thus, like RI, MM-REx

aims to be robust in the direction of variations in P(X ,Y ) between test domains. However,

negative coefficients allow us to extrapolate to more extreme variations. Geometrically,

larger values of λmin expand the perturbation set farther away from the convex hull of the

training risks, encouraging a flatter “risk-plane” (see Figure 5.2).

While MM-REx makes the relationship to RI/RO clear, we found using the variance

of risks as a regularizer (V-REx) simpler, stabler, and more effective:

RV-REx(θ)
.
= β Var({R1(θ), ...,Rm(θ)})+

m

∑
e=1

Re(θ) (5.8)

Here β ∈ [0,∞) controls the balance between reducing average risk and enforcing equality

of risks, with β = 0 recovering ERM, and β → ∞ leading V-REx to focus entirely on

making the risks equal. See Appendix for the relationship between V-REx and MM-REx

and their gradient vector fields.
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5.3.4 Theoretical conditions for REx to perform causal discovery

We now prove that exactly equalizing training risks (as incentivized by REx) leads a

model to learn the causal mechanism of Y under assumptions similar to those of Peters

et al. [233], namely:

1. The causes of Y are observed, i.e. Pa(Y )⊆ X .

2. Domains correspond to interventions on X .

3. Homoskedasticity (a slight generalization of the additive noise setting assumed by

Peters et al. [233]). We say an SEM C is homoskedastic (with respect to a loss

function `), if the Bayes error rate of `( fY (x), fY (x)) is the same for all x ∈X .6

The contribution of our theory (vs. ICP) is to prove that equalizing risks is sufficient

to learn the causes of Y . In contrast, they insist that the entire distribution of error

residuals (in predicting Y ) be the same across domains. We provide proof sketches here

and complete proofs in the appendix.

Theorem 1 demonstrates a practical result: we can identify a linear SEM model using

REx with a number of domains linear in the dimensionality of X.

Theorem 1. Given a Linear SEM, Xi← ∑ j 6=i β(i, j)X j + εi, with Y .
= X0, and a predictor

fβ (X)
.
=∑ j: j>0 β jX j+ε j that satisfies REx (with mean-squared error) over a perturbation

set of domains that contains 3 distinct do() interventions for each Xi : i > 0. Then

β j = β0, j,∀ j.

Proof Sketch. We adapt the proof of Theorem 4i from Peters et al. [233]. They show

that matching the residual errors across observational and interventional domains forces

the model to learn fY . We use the weaker condition of matching risks to derive a quadratic

equation that the do() interventions must satisfy for any model other than fY . Since there

6 Note that our definitions of homoskedastic/heteroskedastic do not correspond to the types of domains
constructed in Arjovsky et al. [8], Section 5.1, but rather are a generalization of the definitions of these
terms as commonly used in statistics. Specifically, for us, heteroskedasticity means that the “predicatability”
(e.g. variance) of Y differs across inputs x, whereas for Arjovsky et al. [8], it means the predicatability of Y
at a given input varies across domains; we refer to this second type as domain-homo/heteroskedasticity for
clarity.
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are at most 2 solutions to a quadratic equation, insisting on equality of risks across 3

distinct do() interventions forces the model to learn fY .

Given the assumption that a predictor satisfies REx over all interventions that do not

change the mechanism of Y , we can prove a much more general result. We now consider

an arbitrary SCM, C, generating Y and X , and let E I be the set of domains corresponding

to arbitrary interventions on X , similarly to Peters et al. [233].

Theorem 2. Suppose ` is a (strictly) proper scoring rule. Then a predictor that satisfies

REx for a over E I uses fY (x) as its predictive distribution on input x for all x ∈X .

Proof Sketch. Since the distribution of Y given its parents doesn’t depend on the

domain, fY can make reliable point-wise predictions across domains. This translates

into equality of risk across domains when the overall difficulty of the examples is held

constant across domains, e.g. by assuming homoskedasticity.7 While a different predictor

might do a better job on some domains, we can always find an domain where it does

worse than fY , and so fY is both unique and optimal.

Remark. Theorem 2 is only meant to provide insight into how the REx principle

relates to causal invariance; the perturbation set in this theorem is uncountably infinite.

Note, however, that even in this setting, the ERM principle does not, in general, recover

the causal mechanism for Y . Rather, the ERM solution depends on the distribution over

domains. For instance, if all but an ε → 0 fraction of the data comes from the CMNIST

training domains, then ERM will learn to use the color feature, just as in original the

CMNIST task.

5.4 Experiments

We evaluate REx and compare with IRM on a range of tasks requiring OOD general-

ization. REx provides generalization benefits and outperforms IRM on a wide range of

tasks, including: i) variants of the Colored MNIST (CMNIST) dataset [8] with covariate

shift, ii) continuous control tasks with partial observability and spurious features, iii)

7Note we could also assume no covariate shift in order to fix the difficulty, but this seems hard to
motivate in the context of interventions on X , which can change P(X).
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Figure 5.4: REx outperforms IRM on Colored MNIST variants that include covariate
shift. The x-axis indexes increasing amount of shift between training distributions,
with p = 0 corresponding to disjoint supports. Left: class imbalance, Center: shape
imbalance, Right: color imbalance.
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domain generalization tasks from the DomainBed suite [123]. On the other hand, when

the inherent noise in Y varies across environments, IRM succeeds and REx performs

poorly.

5.4.1 Colored MNIST

Arjovsky et al. [8] construct a binary classification problem (with 0-4 and 5-9 each

collapsed into a single class) based on the MNIST dataset, using color as a spurious

feature. Specifically, digits are either colored red or green, and there is a strong correlation

between color and label, which is reversed at test time. The goal is to learn the causal

“digit shape” feature and ignore the anti-causal “digit color” feature. The learner has

access to three domains:

1. A training domain where green digits have a 80% chance of belonging to class 1

(digits 5-9).

2. A training domain where green digits have a 90% chance of belonging to class 1.

3. A test domain where green digits have a 10% chance of belonging to class 1.

Method train acc test acc

V-REx (ours) 71.5±1.0 68.7±0.9
IRM 70.8±0.9 66.9±2.5
MM-REx (ours) 72.4±1.8 66.1±1.5
RI 88.9±0.3 22.3±4.6
ERM 87.4±0.2 17.1±0.6

Grayscale oracle 73.5±0.2 73.0±0.4
Optimum 75 75
Chance 50 50

Table 5.II: Accuracy (percent) on Colored MNIST. REx and IRM learn to ignore the
spurious color feature. Strikethrough results achieved via tuning on the test set.

We use the exact same hyperparameters as Arjovsky et al. [8], only replacing the
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IRMv1 penalty with MM-REx or V-REx penalty.8 These methods all achieve similar

performance, see Table 5.II.

CMNIST with covariate shift. To test our hypothesis that REx should outperform

IRM under covariate shift, we construct 3 variants of the CMNIST dataset. Each variant

represents a different way of inducing covariate shift to ensure differences across methods

are consistent. These experiments combine covariate shift with interventional shift, since

P(Green|Y = 1) still differs across training domains as in the original CMNIST.

1. Class imbalance: varying p = P(shape(x) ∈ {0,1,2,3,4}); as in Wu et al. [311].

2. Digit imbalance: varying p = P(shape(x) ∈ {1,2}∪ {6,7}); digits 0 and 5 are

removed.

3. Color imbalance: We use 2 versions of each color, for 4 total channels: R1, R2,

G1, G2. We vary p = P(R1|Red) = P(G1|Green).

While (1) also induces change in P(Y ), (2) and (3) induce only covariate shift in the

causal shape and anti-causal color features (respectively). We compare across several

levels of imbalance, p ∈ [0,0.5], using the same hyperparameters from Arjovsky et al.

[8], and plot the mean and standard error over 3 trials.

V-REx significantly outperforms IRM in every case, see Figure 5.3.4. In order to

verify that these results are not due to bad hyperparameters for IRM, we perform a random

search that samples 340 unique hyperparameter combinations for each value of p, and

compare the the number of times each method achieves better than chance-level (50%

accuracy). Again, V-REx outperforms IRM; in particular, for small values of p, IRM never

achieves better than random chance performance, while REx does better than random

in 4.4%/23.7%/2.0% of trials, respectively, in the class/digit/color imbalance scenarios

for p = 0.1/0.1/0.2. This indicates that REx can achieve good OOD generalization in

settings involving both covariate and interventional shift, whereas IRM struggles to do so.

8When there are only 2 domains, MM-REx is equivalent to a penalty on the Mean Absolute Error
(MAE), see Appendix 11.1.8.2.2.
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Figure 5.5: Performance and standard error on walker_walk (top), finger_spin
(bottom).

Algorithm ColoredMNIST VLCS PACS OfficeHome

ERM 52.0±0.1 77.4±0.3 85.7±0.5 67.5±0.5
IRM 51.8±0.1 78.1±0.0 84.4±1.1 66.6±1.0

V-REx 52.1±0.1 77.9±0.5 85.8±0.6 66.7±0.5

Table 5.III: REx, IRM, and ERM all perform comparably on a set of domain generaliza-
tion benchmarks.

5.4.2 Toy Structural Equation Models (SEMs)

REx’s sensitivity to covariate shift can also be a weakness when reallocating capacity

towards domains with higher risk does not help the model reduce their risk, e.g. due to

irreducible noise. We illustrate this using the linear-Gaussian structural equation model

(SEM) tasks introduced by Arjovsky et al. [8]. Like CMNIST, these SEMs include

spurious features by construction. They also introduce 1) heteroskedasticity, 2) hidden

confounders, and/or 3) elements of X that contain a mixture of causes and effects of Y .

These three properties highlight advantages of IRM over ICP [233], as demonstrated

empirically by Arjovsky et al. [8]. REx is also able to handle (2) and (3), but it performs

poorly in the heteroskedastic tasks. See Appendix 11.1.9.2 for details and Table 11.II for

results.
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5.4.3 Domain generalization in the DomainBed Suite

Methodologically, it is inappropriate to assume access to the test environment in

domain generalization settings, as the goal is to find methods which generalize to unknown

test distributions. Gulrajani and Lopez-Paz [123] introduced the DomainBed evaluation

suite to rigorously compare existing approaches to domain generalization, and found

that no method reliably outperformed ERM. We evaluate V-REx on DomainBed using

the most commonly used training-domain validation set method for model selection.

Due to limited computational resources, we limited ourselves to the 4 cheapest datasets.

Results of baseline are taken from Gulrajani and Lopez-Paz [123], who compare with

more methods. Results in Table 5.III give the average over 3 different train/valid splits.

5.4.4 Reinforcement learning with partial observability and spurious features

Finally, we turn to reinforcement learning, where covariate shift (potentially fa-

voring REx) and heteroskedasticity (favoring IRM) both occur naturally as a result of

randomness in the environment and policy. In order to show the benefits of invari-

ant prediction, we modify tasks from the Deepmind Control Suite [278] to include

spurious features in the observation, and train a Soft Actor-Critic [128] agent. REx

outperforms both IRM and ERM, suggesting that REx’s robustness to covariate shift

outweighs the challenges it faces with heteroskedasticity in this setting, see Figure 5.5.

We average over 10 runs on finger_spin and walker_walk, using hyperparame-

ters tuned on cartpole_swingup (to avoid overfitting). See Appendix for details and

further results.

5.5 Conclusion

We have demonstrated that REx, a method for robust optimization, can provide

robustness and hence out-of-distribution generalization in the challenging case where

X contains both causes and effects of Y . In particular, like IRM, REx can perform

causal identification, but REx can also perform more robustly in the presence of covariate

shift. Covariate shift is known to be problematic when models are misspecified, when
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training data is limited, or does not cover areas of the test distribution. As such situations

are inevitable in practice, REx’s ability to outperform IRM in scenarios involving a

combination of covariate shift and interventional shift makes it a powerful approach.
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6.2 Background

The work presented in this chapter is a variational inference method for Bayesian

Deep Learning. This section provides a brief background on these topics.

In machine learning, we often seek to learn a probabilistic model that approximates

the distribution of the data (or some conditional distribution derived from it). However,

the quality of this approximation can be difficult to assess, and we may have signifi-

cant uncertainty as to which of the models under consideration best approximates the

underlying data distribution.

At a high-level, the key idea of Bayesian Machine Learning is that we should continue

to consider a given model plausible to the extent that the data does not contradict that

model.1 We may also have prior beliefs about which models are more or less likely.

Bayesian ML combines such prior beliefs with the likelihood each model assigns to the

data to determine how much credence we should place in each of the models, after having

seen the training data. This credence is expressed as a distribution and is defined in a

mathematically principled way, using Bayes’ rule. But note that despite this, Bayesian

ML is still a very limited approach to handling uncertainty, since it may require the

designer to specify their prior beliefs quite precisely, which is generally infeasible.

Bayes’ rule states that:

P(A|B) = P(B|A)P(A)
P(B)

(6.1)

and is a simple consequence of the definition of conditional probability: P(A|B) .
=

P(A,B)
P(B) . Nonetheless, this formula has important practical applications and philosophical

consequences. Bayesian updating refers to updating prior beliefs P(A) on the basis of

new evidence (B = b) to form the posterior P(A|B = b). It has been shown to have a

number of desirable mathematical and decision theoretic properties, and is often taken as

a requirement for rational decision-making.2

1It is sometimes important to distinguish different classes of models from different values of the
parameters of a given model. We elide this distinction in our discussion.

2There are a number of weaknesses in the arguments for considering Bayesian updating as a normative
principle of rational behavior. These are not very widely known, but may have important consequences in
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6.2.1 Bayesian Machine Learning

Bayesian machine learning algorithms: 1) express uncertainty over a set of models,

defined by their parameters θ , using a prior P(θ), 2) treat the data D as evidence, and 3)

apply Bayesian updating to arrive at a posterior P(θ |D). Step (3) is known as Bayesian

inference. This posterior distribution is given by:

P(θ |D) =
P(D|θ)P(θ)

P(D)
∝ P(D|θ)P(θ) (6.2)

The denominator, P(D) =
∫

P(D|θ)P(θ)dθ is constant with respect to θ and so can often

be ignored.

A predictive distribution for a given test point, x is formed by taking the expected

probability with respect to the posterior:

P(x|D) =
∫

P(x|θ)P(θ |D)dθ (6.3)

Or, for a conditional distribution:

P(y|x,D) =
∫

P(y|x,θ)P(θ |D)dθ (6.4)

Note that we can view these distributions as provided by a probabilistic model defined as

a (typically infinite) ensemble of different models – P(x|θ) or P(y|x,θ) for every possible

value of θ – weighted according to their posterior probability.

The ensemble provided by Bayesian inference should be contrasted with Maximum

Likelihood Estimation (MLE) of the parameters, which simply seeks to find the single

best model θ̂ = θ̂MLE
.
= argmaxθ P(D|θ), and make predictions using that model only,

i.e. according to P(x|θ̂) or P(y|x, θ̂). In between these two approaches is Maximum a

posteriori (MAP) Estimation, which is basically MLE with a prior, using θ̂ = θ̂MAP
.
=

argmaxθ P(D|θ)P(θ).
Exact Bayesian inference is intractable for DNNs and many other machine learning

AI, and in AI Alignment in particular [40, 71, 102]
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models, since it requires computing the likelihood and prior probability for each of the

infinitely many possible values of the parameters – even if we were to discretize the

parameter space (as happens in practice when implementing models on digital computers),

the number of possible parameter values would grow exponentially in the number of

parameters. When the prior and likelihood come from specific (pairs of) families of

probability distributions (e.g. Gaussian/Gaussian, Beta/Bernoulli, Dirichlet/Multinomial),

exact updating is possible. But these are very special cases; the likelihood for most

reasonably sophisticated machine learning models does not take such a form.

Furthermore, it is often (but not always) intractable to compute the likelihood of a

given datapoint under the Bayesian posterior. Instead this may be estimated using finitely

many samples from the posterior:

P(x|D) =
∫

P(x|θ)P(θ |D)dθ = EP(θ |D)P(x|θ)≈ ∑
θi∼P(θ |D)

P(x|θi) (6.5)

While some methods will provide an approximate posterior in closed form, the main

functionality which these methods all provide is the ability to sample from an approxi-

mate posterior, q(θ)≈ p(θ |D). This can be used to form Monte Carlo estimates of the

predictive distribution, P(y|x,D). The difference between P(y|x,θ ′) and P(y|x,θ ′′) for dif-

ferent values θ ′,θ ′′ ∼ q(θ) can also provide useful information beyond what is contained

in P(y|x,D). In particular, it allows one to distinguish between reducible uncertainty

about which parameters best model the underlying data distribution, called epistemic

uncertainty, and irreducible uncertainty corresponding to inherent or unmodelable noise,

called aleatoric uncertainty. This distinction can help guide learning towards reducing

epistemic uncertainty, as opposed to, e.g. trying to reduce irreducible noise, which may

be impossible and/or lead to overfitting.

While researchers are often concerned with providing theoretical arguments for how

methods – even those not originally envisioned as Bayesian, such as dropout [97] – can

be viewed as approximations to exact Bayesian inference, any method which provides

this functionality should be considered as a potential point of comparison for empirical

work; two notable examples are ensembles [183] and PriorNets [209].



104

6.2.2 Approaches to Bayesian Deep Learning

Because it is intractable to compute the posterior of a DNN exactly, Bayesian Deep

Learning makes use of a variety of approximate methods. Here we provide a brief

overview of several notable general-purpose approaches to approximate Bayesian infer-

ence, specifically:

1. Variational Inference

2. Particle-based methods

3. Markov Chain Monte Carlo (MCMC) methods

1) Variational Inference methods approximate the true posterior P(θ |D) using a

parametrized distribution qφ (θ), and update the parameters φ of that distribution in order

to decrease the KL-divergence. A simple example is mean-field Variational Inference,

which uses an approximate posterior in which all of the parameters are independent:

qφ (θ) = ∏i qφi(θi). For instance, they might be Gaussians, with φi = {µi,σi}, so that

|φ | = 2|θ |. Using a more complicated approximate posterior – such as a full-rank

Gaussian, where |φ | ≈ |θ |2 – is often prohibitively expensive, since DNNs often already

use as many parameters as possible given hardware limitations. Bayesian Hypernetworks

are a variational inference method, and we describe the mathematics of variational

inference and its application in deep learning in Section 6.2.2.

2) Particle-based methods approximate the true posterior using a finite set of discrete

“particles”, i.e. a mixture of Dirac delta functions. A simple example is training an

ensemble composed of multiple networks with the same architecture but different training

procedure. A prototypical deep ensemble uses different random initializations and

different ordering of the training examples as the only source of diversity among ensemble

members [183]. Particle-based methods often use more sophisticated training regimes

in order to encourage fuller coverage of the Bayesian posterior. In principle, simple

ensembling may focus too much on models with high likelihood resulting in too little

diversity compared to the true posterior. In practice however, the opposite seems to be

true: ensembles appear capable of exploring multiple modes of the posterior in a way that
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other approaches fail to [93]. In terms of performance, it is a very strong baseline, often

out-performing Bayesian methods, and I consider it the “go-to” method for capturing

parameter uncertainty in DNNs. One notable disadvantage of ensembling – and particle-

based methods more generally – is that they require training multiple copies of the model,

which can be expensive.

3) Markov Chain Monte Carlo (MCMC) methods define a Markov chain whose

stationary distribution approximates the true posterior. Bayesian Deep Learning ap-

proaches that use MCMC frequently use gradients or gradient estimates to help define the

transition probabilities of the Markov chain. For instance, Stochastic Gradient Langevin

Dynamics (SGLD) [304] combines Stochastic Gradient Descent (SGD) with appropriately

selected Gaussian noise to define the transition operator.

6.3 Contributions of the Work

The primary contribution of this work is the development of a novel and flexible

Variational Inference method, called Bayesian Hypernetworks. The basic idea of this

method is to parametrize a variational posterior using a generative model – specifically a

normalizing flow, so that we can evaluate the likelihood of samples from the variational

posterior, in order to estimate the variational lower bound. Ours was one of the first

methods of variational inference seeking to learn a highly flexible, multimodal, posterior

for Bayesian deep learning. Since our work, many others have introduced approaches

for achieving this. An additional contribution is our experimental demonstration that this

method can provide qualitative and quantitative benefits over less sophisticated methods

of Variational Inference.



CHAPTER 7

BAYESIAN HYPERNETWORKS

ABSTRACT

We study Bayesian hypernetworks: a framework for approximate Bayesian inference

in neural networks. A Bayesian hypernetwork h is a neural network which learns to

transform a simple noise distribution, p(ε) = N (0,I), to a distribution q(θ) := q(h(ε))

over the parameters θ of another neural network (the “primary network”). We train q with

variational inference, using an invertible h to enable efficient estimation of the variational

lower bound on the posterior p(θ |D) via sampling. In contrast to most methods for

Bayesian deep learning, Bayesian hypernets can represent a complex multimodal approx-

imate posterior with correlations between parameters, while enabling cheap iid sampling

of q(θ). We demonstrate these advantages of Bayesian hypernets, which also achieve

competitive performance on a suite of tasks that demonstrate the advantage of estimating

model uncertainty, including active learning and anomaly detection. In practice, Bayesian

hypernets can provide a better defense against adversarial examples than dropout, and

also exhibit competitive performance on a suite of tasks which evaluate model uncertainty,

including regularization, active learning, and anomaly detection.

7.1 Introduction

Simple and powerful techniques for Bayesian inference of deep neural networks’

(DNNs) parameters have the potential to dramatically increase the scope of applications

for deep learning techniques. In real-world applications, unanticipated mistakes may

be costly and dangerous, whereas anticipating mistakes allows an agent to seek human

guidance (as in active learning), engage safe default behavior (such as shutting down), or

use a “reject option” in a classification context.

DNNs are typically trained to find the single most likely value of the parameters (the

“MAP estimate”), but this approach neglects uncertainty about which parameters are the
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best (“parameter uncertainty”), which may translate into higher predictive uncertainty

when likely parameter values yield highly confident but contradictory predictions. Con-

versely, Bayesian DNNs model the full posterior distribution of a model’s parameters

given the data, and thus provides better calibrated confidence estimates, with correspond-

ing safety benefits [4, 97].1 Maintaining a distribution over parameters is also one of the

most effective defenses against adversarial attacks [44].

Techniques for Bayesian DNNs are an active research topic. The most popular ap-

proach is variational inference [28, 96], which typically restricts the variational posterior

to a simple family of distributions, for instance a factorial Gaussian [28, 121]. Unfor-

tunately, from a safety perspective, variational approximations tend to underestimate

uncertainty, by heavily penalizing approximate distributions which place mass in regions

where the true posterior has low density. This problem can be exacerbated by using a

restricted family of posterior distribution; for instance a unimodal approximate posterior

will generally only capture a single mode of the true posterior. With this in mind, we

propose learning an extremely flexible and powerful posterior, parametrized by a DNN h,

which we refer to as a Bayesian hypernetwork in reference to Ha et al. [125].

A Bayesian hypernetwork (BHN) takes random noise ε ∼ N (0,I) as input and

outputs a sample from the approximate posterior q(θ) for another DNN of interest (the

“primary network”). The key insight for building such a model is the use of an invertible

hypernet, which enables Monte Carlo estimation of the entropy term − logq(θ) in the

variational inference training objective.

We begin the paper by reviewing previous work on Bayesian DNNs, and explaining the

necessary components of our approach (Section 7.2). Then we explain how to compose

these techniques to yield Bayesian hypernets, as well as design choices which make

training BHNs efficient, stable and robust (Section 7.3). Finally, we present experiments

which validate the expressivity of BHNs, and demonstrate their competitive performance

across several tasks (Section 7.4).
1While Bayesian deep learning may capture parameter uncertainty, most approaches, including ours,

emphatically do not capture uncertainty about which model is correct (e.g., neural net vs decision tree, etc.).
Parameter uncertainty is often called “model uncertainty” in the literature, but we prefer our terminology
because it emphasizes the existence of further uncertainty about model specification.
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7.2 Related work

We begin with an overview of prior work on Bayesian neural networks in Section 7.2.1

before discussing the specific components of our technique in Sections 7.2.2 and 7.2.3.

7.2.1 Bayesian DNNs

Bayesian DNNs have been studied since the 1990s [207, 219]. For a thorough

review, see Gal [96]. Broadly speaking, existing methods either 1) use Markov chain

Monte Carlo [219, 305], or 2) directly learn an approximate posterior distribution using

(stochastic) variational inference [28, 97, 121, 254], expectation propagation [144, 271],

or α-divergences [194]. We focus here on the most popular approach: variational

inference.

Notable recent work in this area includes Gal and Ghahramani [97], who interprets

the popular dropout [223] algorithm as a variational inference method (“MC dropout”).

This has the advantages of being simple to implement and allowing cheap samples from

q(θ). Kingma et al. [165] emulates Gaussian dropout, but yields a unimodal approximate

posterior, and does not allow arbitrary dependencies between the parameters.

The other important points of reference for our work are Bayes by Backprop (BbB) [28],

and multiplicative normalizing flows [203]. Bayes by Backprop can be viewed as a special

instance of a Bayesian hypernet, where the hypernetwork only performs an element-wise

scale and shift of the input noise (yielding a factorial Gaussian distribution).

More similar is the work of Louizos and Welling [203], who propose and dismiss

BHNs due to the issues of scaling BHNs to large primary networks, which we address

in Section 7.3.3.2 Instead, in their work, they use a hypernet to generate scaling factors,

z on the means µ of a factorial Gaussian distribution. Because z follows a complicated

distribution, this forms a highly flexible approximate posterior: q(θ) =
∫

q(θ |z)q(z)dz.

However, this approach also requires them to introduce an auxiliary inference network to

approximate q(z|θ) in order to estimate the entropy term of the variational lower bound,

2The idea is also explored by Shi et al. [259], who likewise reject it in favor of their implicit approach
which estimates the KL-divergence using a classifier.
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resulting in lower bound on the variational lower bound.

Finally, the variational autoencoder (VAE) [163, 245] family of generative models is

likely the best known application of variational inference in DNNs, but note that the VAE

is not a Bayesian DNN in our sense. VAEs approximate the posterior over latent variables,

given a datapoint; Bayesian DNNs approximate the posterior over model parameters,

given a dataset.

7.2.2 Hypernetworks

A hypernetwork [25, 70, 125] is a neural net that outputs parameters of another neural

net (the “primary network”).3 The hypernet and primary net together form a single model

which is trained by backpropagation. The number of parameters of a DNN scales quadrat-

ically in the number of units per layer, meaning naively parametrizing a large primary

net requires an impractically large hypernet. One method of addressing this challenge

is Conditional Batch Norm (CBN) [81], and the closely related Conditional Instance

Normalization (CIN) [150, 291], and Feature-wise Linear Modulation (FiLM) [168, 232],

which can be viewed as specific forms of a hypernet. In these works, the weights of

the primary net are parametrized directly, and the hypernet only outputs scale (γ) and

shift (β ) parameters for every neuron; this can be viewed as selecting which features are

significant (scaling) or present (shifting). In our work, we employ the related technique

of weight normalization [253], which normalizes the input weights for every neuron and

introduces a separate parameter g for their scale.

7.2.3 Invertible Generative Models

Our proposed Bayesian hypernetworks employ a differentiable directed generator

network (DDGN) [117] as a generative model of the primary net parameters. DDGNs use

a neural net to transform simple noise (most commonly isotropic Gaussian) into samples

from a complex distribution, and are a common component of modern deep generative

3The name “hypernetwork” comes from Ha et al. [125], who describe the general hypernet framework,
but applications of this idea in convolutional networks were previously explored by De Brabandere et al.
[70] and Bertinetto et al. [25].
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models such as variational autoencoders (VAEs) [163, 245] and generative adversarial

networks (GANs) [111, 114].

We take advantage of techniques for invertible DDGNs developed in several recent

works on generative modeling [73, 75] and variational inference of latent variables [166,

243]. Training these models uses the change of variables formula, which involves

computing the log-determinant of the inverse Jacobian of the generator network. This

computation involves a potentially costly matrix determinant, and these works propose

innovative architectures which reduce the cost of this operation but can still express

complicated deformations, which are referred to as “normalizing flows”.

7.3 Methods

We now describe how variational inference is applied to Bayesian deep nets (Sec-

tion 7.3.1), and how we compose the methods described in Sections 7.2.2 and 7.2.3 to

produce Bayesian hypernets (Section 7.3.2).

7.3.1 Variational Inference

In variational inference, the goal is to maximize a lower bound on the marginal

log-likelihood of the data, log p(D) under some statistical model. This involves both

estimating parameters of the model, and approximating the posterior distribution over

unobserved random variables (which may themselves also be parameters, e.g., as in the

case of Bayesian DNNs). Let θ ∈ RD be parameters given the Bayesian treatment as

random variables, D a training set of observed data, and q(θ) a learned approximation to

the true posterior p(θ |D). Since the KL divergence is always non-negative, we have, for

any q(θ):

log p(D) = KL(q(θ)‖p(θ |D))+Eq[log p(D |θ)+ log p(θ)− logq(θ)] (7.1)

≥ Eq[log p(D |θ)+ log p(θ)− logq(θ)] . (7.2)
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The right hand side of (7.2) is the evidence lower bound, or “ELBO”. Since log p(D) is a

constant, an increase in the ELBO yields a corresponding decrease in KL(q(θ)‖p(θ |D)),

and thus a better match between the approximate and true posteriors.

The above derivation applies to any statistical model and any dataset. In our experi-

ments, we focus on modeling conditional likelihoods p(D) = p(Y |X ). Using the con-

ditional independence assumption, we further decompose log p(D |θ) := log p(Y |X ,θ)

as ∑
n
i=1 log p(yi|xi,θ), and apply stochastic gradient methods for optimization.

7.3.1.0.1 Variational Inference for Deep Networks Computing the expectation in (7.2)

is generally intractable for deep nets, but can be estimated by Monte Carlo sampling.

For a given value of θ , log p(D |θ) and log p(θ) can be computed and differentiated

exactly as in a non-Bayesian DNN, allowing training by backpropagation. The entropy

term Eq[− logq(θ)] is also straightforward to evaluate for simple families of approximate

posteriors such as Gaussians. Similarly, the likelihood of a test data-point under the

predictive posterior using S samples can be estimated using Monte Carlo:4

p(Y = y|X = x,D) =
∫

p(Y = y|X = x,θ)p(θ |D)dθ (7.3)

≈ 1
S

S

∑
s=1

p(Y = y|X = x,θ s), θ s ∼ q(θ) . (7.4)

7.3.2 Bayesian Hypernets

Bayesian hypernets (BHNs) express a flexible q(θ) by using a DDGN (section 7.2.3),

h ∈ RD → RD, to transform random noise ε ∼ N (0,ID) into independent samples

from q(θ). This makes it cheap to compute Monte Carlo estimations of expectations with

respect to q; these include the ELBO, and its derivatives, which can be backpropagated to

train the hypernet h.

Since BHNs are both trained and evaluated via samples of q(θ), expressing q(θ) as a

generative model is a natural strategy. However, while DDGNs are convenient to sample

4Here we approximate the posterior distribution p(θ |D) using the approximate posterior q(θ). We
further use S Monte Carlo samples to approximate the integral.
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from, computing the entropy term (Eq[− logq(θ)]) of the ELBO additionally requires

evaluating the likelihood of generated samples, and most popular DDGNs (such as VAEs

and GANs) do not provide a convenient way of doing so.5 In general, these models can be

many-to-one mappings, and computing the likelihood of a given parameter value requires

integrating over the latent noise variables ε ∈ RD:

q(θ) =
∫

q(θ ;h(ε))q(ε)dε . (7.5)

To avoid this issue, we use an invertible h, allowing us to compute q(θ) simply by

using the change of variables formula:

q(θ) = qε(ε)

∣∣∣∣det
∂h(ε)

∂ε

∣∣∣∣−1

, (7.6)

where qε is the distribution of ε and θ = h(ε).

As discussed in Section 7.2.3, a number of techniques have been developed for

efficiently training such invertible DDGNs. In this work, we employ both RealNVP

(RNVP) [75] and Inverse Autoregressive Flows (IAF) [166]. Note that the latter can be

efficiently applied, since we only require the ability to evaluate likelihood of generated

samples (not arbitrary points in the range of h, as in generative modeling applications,

e.g., Dinh et al. [75]); and this also means that we can use a lower-dimensional ε to

generate samples along a submanifold of the entire parameter space, as detailed below.

7.3.3 Efficient parametrization and training of Bayesian hypernets

In order to scale BHNs to large primary networks, we use the weight normalization

reparametrization [253] 6:

θ j = gu , u :=
v
‖v‖2

, g ∈ R , (7.7)

5Note that the entropy term is the only thing encouraging dispersion in q; the other two terms of (7.2)
encourage the hypernet to ignore the noise inputs ε and deterministically output the MAP-estimate for θ .

6Mathematical details can be found in the Appendix, Section 11.2.2.
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where θ j are the input weights associated with a single unit j in the primary network.

We only output the scaling factors g from the hypernet, and learn a maximum like-

lihood estimate of v.7 This allows us to overcome the computational limitations of

naively-parametrized BHNs noted by Louizos and Welling [203], since computation now

scales linearly, instead of quadratically, in the number of primary net units. Using this

parametrization restricts the family of approximate posteriors, but still allows for a high

degree of multimodality and dependence between the parameters.

We also employ weight normalization within the hypernet, and found this stabilizes

training dramatically. Initialization plays an important role as well; we recommend

initializing the hypernet weights to small values to limit the impact of noise at the

beginning of training. We also find clipping the outputs of the softmax to be within

(0.001,0.999) critical for numerical stability.

Figure 7.1: Illustration of BHNs (second and third) and a traditional non-Bayesian DNN
(first) on the toy problem from Blundell et al. [28]. In the second subplot, we place a prior
on the scaling factor g and infer the posterior distribution using a BHN, while in the third
subplot the hypernet is used to generate the whole weight matrices of the primary net.
Each shaded region represents half a standard deviation in the posterior on the predictive
mean. The red crosses are 50 examples from the training dataset.

7This parametrization strongly resembles the “correlated” version of variational Gaussian dropout [165,
Sec. 3.2]; the only difference is that we restrict the u to have norm 1.
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7.4 Experiments

We perform experiments on MNIST, CIFAR10, and a 1D regression task. There is

no single metric for how well a model captures uncertainty; to evaluate our model, we

perform experiments on regularization (Section 7.4.2), active learning (Section 7.4.3),

anomaly detection (Section 7.4.4), and detection of adversarial examples (Section 7.4.5).

Active learning and anomaly detection problems make natural use of uncertainty estimates:

In anomaly detection, higher uncertainty indicates a likely anomaly. In active learning,

higher uncertainty indicates a greater opportunity for learning. Parameter uncertainty also

has regularization benefits: integrating over the posterior creates an implicit ensemble.

Intuitively, when the most likely hypothesis predicts “A”, but the posterior places more

total mass on hypotheses predicting “B”, we prefer predicting “B”. By improving our

estimate of the posterior, we more accurately weigh the evidence for different hypotheses.

Adversarial examples are an especially difficult kind of anomaly designed to fool a

classifier, and finding effective defenses against adversarial attacks remains an open

challenge in deep learning.

For the hypernet architecture, we try both RealNVP [75] and IAF[166] with MADE[105],

with 1-layer ReLU-MLP coupling functions with 200 hidden units (each). In general, we

find that IAF performs better. We use an isotropic standard normal prior on the scaling

factors (g) of the weights of the network. We also use Adam with default hyper-parameter

settings [161] and gradient clipping in all of our experiments. Our mini-batch size is 128,

and to reduce computation, we use the same noise-sample (and thus the same primary net

parameters) for all examples in a mini-batch. We experimented with independent noise,

but did not notice any benefit. Our baselines for comparison are Bayes by Backprop

(BbB) [28], MC dropout (MCdropout) [97], and non-Bayesian DNN baselines (with and

without dropout).

7.4.1 Qualitative results and visualization

We first demonstrate the behavior of the network on the toy 1D-regression problem

from Blundell et al. [28] in Figure 7.1. As expected, the uncertainty of the network



115

increases away from the observed data. We also use this experiment to evaluate the effects

of our proposal for scaling BHNs via the weight norm parametrization (Section 7.3.3) by

comparing with a model which generates the full set of parameters, and find that the two

models produce very similar results, suggesting that our proposed method strikes a good

balance between scalability and expressiveness.

Next, we demonstrate the distinctive ability of Bayesian hypernets to learn multi-

modal, dependent distributions. Figure 11.12 (appendix) shows that BHNs do learn

approximate posteriors with dependence between different parameters, as measured by

the Pearson correlation coefficient. Meanwhile, Figure 7.2 shows that BHNs are capable

of learning multimodal posteriors. For this experiment, we trained an over-parametrized

linear (primary) network: ŷ = a ·b · x on a dataset generated as y = x+ ε , and the BHN

learns capture both the modes of a = b = 1 and a = b =−1.

Figure 7.2: Learning the identity function with an overparametrized network: ŷ = a ·b · x.
This parametrization results in symmetries shown by the dashed red lines, and the
Bayesian hypernetwork assigns significant probability mass to both modes of the posterior
(a = b = 1 and a = b =−1).

7.4.2 Classification

We now show that BHNs act as a regularizer, outperforming dropout and traditional

mean field (BbB). Results are presented in Table 7.I. In our experiments, we find that
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Figure 7.3: Box plot of performance across 10 trials. Bayesian hypernets (BHNs) with
inverse autoregressive flows (IAF) consistently outperform the other methods.

BHNs perform on par with dropout on full datasets of MNIST and CIFAR10; furthermore,

increasing the flexibility of the posterior by adding more coupling layers improves

performance, especially compared with models with 0 coupling layers, which cannot

model dependencies between the parameters. We also evaluate on a subset of MNIST

(the first 5,000 examples); results are presented in the last two columns of Table 7.I.

Replicating these experiments (with 8 coupling layers) for 10 trials yields Figure 7.3.

In these MNIST experiments, we use MLPs with 2 hidden layers of 800 or 1200

hidden units each. For CIFAR10, we train a convolutional neural net (CNN) with 4 hidden

layers of [64,64,128,128] channels, 2×2 max pooling after the second and the fourth

layers, filter size of 3, and a single fully connected layer of 512 units.

7.4.3 Active Learning

We now turn to active learning, where we compare to the MNIST experiments of Gal

et al. [99], replicating their architecture and training procedure. Briefly, they use an

initial dataset of 20 examples (2 from each class), and acquire 10 new examples at a time,

training for 50 epochs between each acquisition. While Gal et al. [99] re-initialize the

network after every acquisition, we found that “warm-starting” from the current learned
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Table 7.I: Generalization results on MNIST and CIFAR10 for BHNs with different
numbers of RealNVP coupling layers (#), and comparison methods (dropout / maximum
likelihood (MLE)). Bayes-by-backprop [28] (*) models each parameter as an independent
Gaussian, which is equivalent to using a hypernet with 0 coupling layers. We achieved a
better result outputting a distribution over scaling factors (only). MNIST 5000 (A) and
(B) are generalization results on subset (5,000 training data) of MNIST, (A) MLP with
800 hidden nodes. (B) MLP with 1,200 hidden nodes.

MNIST 50,000 CIFAR10 50,000 MNIST 5,000 (A) MNIST 5,000 (B)

# Accuracy # Accuracy # Accuracy # Accuracy

0 98.28% (98.01%*) 0 67.83% 0 92.06% 0 90.91%
2 98.39% 4 74.77% 8 94.25% 8 96.27%
4 98.47% 8 74.90% 12 96.16% 12 96.51%
6 98.59% dropout 74.08% dropout 95.58% dropout 95.52%
8 98.63% MLE 72.75%

dropout 98.73%

parameters was essential for good performance with BHNs, although it is likely that

longer training or better initialization schemes could perform the same role. Overall,

warm-started BHNs suffered at the beginning of training, but outperformed all other

methods for moderate to large numbers of acquisitions.

7.4.4 Anomaly Detection

Table 7.II: Anomaly detection on MNIST. Since we use the same datasets as Hendrycks
and Gimpel [138], we have the same base error rates, and refer the reader to that work.

Dataset MLP MC dropout BHN

ROC PR(+) PR(−) ROC PR(+) PR(−) ROC PR(+) PR(−)

Uniform 96.99 97.99 94.71 98.90 99.15 98.63 98.97 99.27 98.52
OmniGlot 94.92 95.63 93.85 95.87 96.44 94.84 94.89 95.56 93.64
CIFARbw 95.55 96.47 93.72 98.70 98.98 98.39 96.63 97.25 95.78
Gaussian 87.70 87.66 88.05 97.70 98.11 96.94 89.22 86.62 89.85
notMNIST 81.12 97.56 39.70 97.78 99.78 78.53 90.07 98.51 56.59

For anomaly detection, we take Hendrycks and Gimpel [138] as a starting point, and

9For the deterministic baseline, the value of the BALD acquisition function is always zero, and so
acquisitions should be random, but due to numerical instability this is not the case in our implementation;
surprisingly, we found the BALD values our implementation computes provide a better-than-random
acquisition function (compare the blue line in the top and bottom plots).
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Figure 7.4: Active learning: Bayesian hypernets outperform other approaches after
sufficient acquisitions when warm-starting (left), for both random acquisition function
(top) and BALD acquisition function (bottom). Warm-starting improves stability for
all methods, but hurts performance for other approaches, compared with randomly re-
initializing parameters as in Gal et al. [99] (right). We also note that the baseline model
(no dropout) is competitive with MCdropout, and outperforms the Dropout baseline used
by [99].9 These curves are the average of three experiments.

perform the same suite of MNIST experiments, evaluating the ability of networks to

determine whether an input came from their training distribution (“Out of distribution

detection”). Hendrycks and Gimpel [138] found that the confidence expressed in the

softmax probabilities of a (non-Bayesian) DNN trained on a single dataset provides a

good signal for both of these detection problems. We demonstrate that Bayesian DNNs

outperform their non-Bayesian counterparts.

Just as in active learning, in anomaly detection, we use MC to estimate the predictive

posterior, and use this to score datapoints. For active learning, we would generally like to

acquire points where there is higher uncertainty. In a well-calibrated model, these points

are also likely to be challenging or anomalous examples, and thus acquisition functions

from the active learning literature are good candidates for scoring anomalies.
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We consider all of the acquisition functions listed in [99] as possible scores for the

Area Under the Curve (AUC) of Precision-Recall (PR) and Receiver Operating Character-

istic (ROC) metrics, but found that the maximum confidence of the softmax probabilities

(i.e., “variation ratio”) acquisition function used by Hendrycks and Gimpel [138] gave

the best performance. Both BHN and MCdropout achieve significant performance gains

over the non-Bayesian baseline, and MCdropout performs significantly better than BHN

in this task. Results are presented in Table 7.II.

Second, we follow the same experimental setup, using all the acquisition functions,

and exclude one class in the training set of MNIST at a time. We take the excluded class

of the training data as out-of-distribution samples. The result is presented in Table 11.VII

(Appendix). This experiment shows the benefit of using scores that reflect dispersion in

the posterior samples (such as mean standard deviation and BALD value) in Bayesian

DNNs.

7.4.5 Adversary Detection

Finally, we consider this same anomaly detection procedure as a novel tool for

detecting adversarial examples. Our setup is similar to Li and Gal [194] and Louizos

and Welling [203], where it is shown that when more perturbation is added to the data,

model uncertainty increases and then drops. We use the Fast Gradient Sign method (FGS)

[115] for adversarial attack, and use one sample of our model to estimate the gradient.10

We find that, compared with dropout, BHNs are less confident on data points which

are far from the data manifold. In particular, BHNs constructed with IAF consistently

outperform RealNVP-BHNs and dropout in detecting adversarial examples and errors.

Results are shown in Figure 7.5.

10 Li and Gal [194] and Louizos and Welling [203] used 10 and 1 model samples, respectively, to
estimate gradient. We report the result with 1 sample; results with more samples are given in the appendix.
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Figure 7.5: Adversary detection: Horizontal axis is the step size of the FGS algorithm.
While accuracy drops when more perturbation is added to the data (left), uncertainty
measures also increase (first row). In particular, the BALD and Mean STD scores, which
measure epistemic uncertainty, are strongly increasing for BHNs, but not for dropout.
The second row and third row plots show results for adversary detection and error
detection (respectively) in terms of the AUC of ROC (y-axis) with increasing perturbation
along the x-axis. Gradient direction is estimated with one Monte Carlo sample of the
weights/dropout mask.

7.5 Conclusions

We introduce Bayesian hypernets (BHNs), a new method for variational Bayesian

deep learning which uses an invertible hypernetwork as a generative model of parameters.

BHNs feature efficient training and sampling, and can express complicated multimodal

distributions, thereby addressing issues of overconfidence present in simpler variational

approximations. We present a method of parametrizing BHNs which allows them to scale

successfully to real world tasks, and show that BHNs can offer significant benefits over

simpler methods for Bayesian deep learning. Future work could explore other methods of

parametrizing BHNs, for instance using the same hypernet to output different subsets of

the primary net parameters.
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8.1 My Contributions

1. Chin-Wei raised the issue of improving multimodality of normalizing flow models,

and we had discussed and tried several approaches, including some that I proposed.

2. Chin-Wei came up with the DSF/DDSF models.

3. I came up with the name “neural autoregressive flows”, and the general fram-

ing (in terms of conditioner and transformer), including the general “recipe” (i.e.

requirements) for constructing a NAF.

4. I mostly wrote the abstract, intro, background, and methods sections, and helped

write and edit the rest of the paper.

5. I ran most of the density estimation experiments.

6. I helped check the proofs, explain the steps informally, and tie up a few loose ends

in them.
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8.2 Background

The work presented in this chapter provides a new approach towards building nor-

malizing flows making use of deep autoregressive models. This section provides a brief

background on these topics.

8.2.1 Autoregressive models

Autoregressive models are an approach to unsupervised learning for time-series data,

where the value at every time-step is predicted based on values of previous time-steps

(and a noise term ε):

P(xt |xt−1, ...,xt−p) = fθ (xt−1, ...,xt−p,ε) (8.1)

In classical statistics, autoregressive models assume the relationship between previous

and current time-steps is linear. In contrast, deep autoregressive models make these

predictions using neural networks, and are also commonly applied to other types of

sequentially structured data.1 For instance, autoregressive models have achieved state-

of-the-art results on image data when treating images as a sequence of pixels or image

patches, e.g. by concatenating rows or columns [80, 294].

A classic deep learning approach to autoregressive modeling is to use some variety

of Recurrent Neural Network (RNN) [86], such as a Long Short-Term Memory

(LSTM) RNN [40]. RNNs maintain a “hidden state” which is a learned function of all

previously observed time-steps; thus, in principle, they have an arbitrarily long memory.

Recent works, however, have found better performance using other architectures –

such as convolutional neural networks (CNNs) [185], transformers2 [298], or some

combination [52] – that use a limited “context” of the previous p time-steps; in statistics

parlance, p is the order of the autoregressive model.

1They can also be applied to data without any inherent sequential structure by choosing an (e.g. arbitrary)
ordering of the data.

2Note that “transformer” refers to an entirely different concept in the context of Neural Autoregressive
Flows.
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Deep autoregressive models are typically capable of both: 1) evaluating the prob-

ability of an arbitrary candidate sequence, and 2) sampling novel sequences from the

distribution learned by the model. Models are commonly trained using maximum likeli-

hood estimation (MLE), which only requires the first operation. This gives CNNs and

Transformers a significant computational advantage over RNNs at training time. While

all 3 models require serial computation at successive time-steps in order to sample, only

RNNs require serial computation for evaluating the likelihood; CNNs and transformers

can evaluate likelihood at every time-step in parallel.

8.2.2 Normalizing Flows

Normalizing Flows refer to a family of techniques for estimating local changes in

probability density that result from applying invertible transformations to samples from a

probability distribution. For instance, samples from a normal distribution z∼N ([0,1])

might be transformed into samples from a more complicated distribution px(x) by passing

them through the inverse cumulative distribution function (CDF) of p, a method known

as inverse transform sampling. A Normalizing Flow is a model that parametrizes

and learns such a transformation, e.g. in order to approximately sample some target

distribution. Importantly, the density of a given point does in fact change as a result of

such transformations, in accordance with the change-of-variables formula of calculus:

px(x) =
∣∣∣∣∂ f (z)

∂ z

∣∣∣∣−1

pz(z) (8.2)

To understand intuitively why the density changes, consider the (invertible) mapping

z→ 2z applied to samples from U(0,1). Applying this mapping stretches the same

total probability mass (of 1) across the interval (0,2), meaning the density must decrease

proportionally. The area under the PDF in this case is a rectangle, whose total area must be

1, so making the horizontal side length 2 means the height becomes 1/2. More generally,

an invertible mapping may stretch or compress different areas of space differently, and

the change-of-variables formula accounts for such differences precisely.

To see the advantage of using invertible mappings in particular, we can compare with
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approaches without such a restriction. But first, for concreteness, let’s consider a specific

application scenario for transforming probability distributions: generative modeling and

density estimation.

Normalizing flows are probably best known as generative models of images [74, 77,

162]. In this application, they transform random noise (e.g. i.i.d. samples from N ([0,1]))

into samples resembling images such as photographs of human faces.

In this context, maximum likelihood training requires computing the probability the

model assigns to real images from the training set. Examining the change-of-variables

formula, we see that the log-likelihood has two terms, which can be computed in closed

form:

1. The log-likelihood of z= f−1(x). The probability of x is higher when the probability

of the corresponding noise variable is higher under pz(z).

2. The log-determinant of Jacobian, log
∣∣∣∂ f (z)

∂ z

∣∣∣−1
. The probability of x is higher when

f has a small derivative; intuitively, this means f is locally contracting around x,

i.e. pushing more mass into a smaller volume, and thus increasing the probability

density at x.

Now, let us return to contrasting with a non-invertible model. Specifically, let’s assume

that we have a generative model which assigns non-zero probability to every possible

image, but which may map different noise samples to the same image. In this case, when

we want to estimate the probability of an image, we need to perform an integral over

all of the noise samples in the pre-image of that image. This is typically intractable,

although it can be estimated reasonably well in some cases, e.g. via importance sampling

in Variational Autoencoders [42, 246].

Generative modelling is only one application of Normalizing Flows, others include

density estimation [230], variational inference [167], maximum entropy problems [160],

and hierarchical reinforcement learning [127]. Broadly speaking, Normalizing Flows

are an incredibly flexible tool for probabilistic model – they can potentially be inserted

anywhere where samples from a distribution are being passed between components

of a model. Unlike many other types of transformation (e.g. typical DNNs), many
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Normalizing Flows are algorithmically “invisible” in the sense that if the probability of

the inputs/outputs is known, then so is the probability of the outputs/inputs; the same is

true of gradients of the probability/likelihood. It is important to note, however, that many

Normalizing Flow models are “directional”: while they define an invertible mapping,

computing this mapping and/or estimating the change in density it induces may only

be tractable or efficient in one direction (similar to the issue with RNNs discussed in

Section 8.2.1).

I’ll conclude this section with giving a simple example of a Normalizing Flow for

concreteness. This will also illustrate the role that careful architecture design plays in 1)

guaranteeing invertibility and 2) enabling efficient computation/estimation of the change-

of-variables formula. Our example Normalizing Flow will be a standard Multi-Layer

Perceptron (MLP), which can easily be made invertible by using invertible activation

functions (such as leaky ReLUs [205]) and square (invertible) weight matrices. Comput-

ing the change of variables formula for such a model is expensive, however, requiring

computation which is roughly cubic in the input dimensionality to invert the weight

matrices. However, for upper/lower triangular weight matrices, the determinant of the

inverse can be computed based only on the diagonal terms. In fact, affine autoregressive

flow models use a very similar approach, which guarantees that the inverse Jacobian is

triangular while allowing richer dependencies between xi and x1,...,i−1.

8.2.3 Autoregressive Models and Normalizing Flows

In a precursor to our work, Papamakarios et al. [230] observed an equivalence between

(certain) autoregressive models and normalizing flows. Deep autoregressive models often

model P(xt |xt−1, ...) as a Gaussian, with parameters µt(xt−1, ...) and σ2
t (xt−1, ...) output

from a neural network. These parameters define an invertible transformation between

possible values of xt and the value of the corresponding noise, εt , specifically, we have

the following affine relationship:

xt = µt +σt ∗ εt (8.3)
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or, equivalently:

εt =
(xt−µt)

σt
. (8.4)

Thus, considering all t, we can view this model as an invertible mapping from ε1, ...,εT

to x1, ...,xT , i.e. a normalizing flow. Furthermore, the Jacobian matrix for this mapping is

triangular, and so its determinant is given simply by the product of its diagonal entries.

This same trick with the Jacobian is used in the work presented in this chapter. In

fact, the core idea of the work is simple, in light of this relationship with autoregressive

models. The transformation of εt into xt can is replaced by a more expressive invertible

transformation, and the parameters for that transformation can be produced as outputs of

an autoregressive model in exactly the same fashion as just described.

8.3 Contributions of the Work

This paper advanced the field of normalizing flows with: 1) state-of-the-art empirical

results, 2) a qualitative difference in the ability to model multi-modal target distributions,

3) the first model with a proven capacity to approximate any (continuous) probability den-

sity to arbitrary precision. As discussed earlier, one application where the expressivity of

such a method may be important is modelling the (complicated and multi-modal) Bayesian

posterior of a neural network’s parameters.Normalizing flows are an increasingly popular

family of generative models, and this work outlined a general recipe for constructing

them, and inspired a number of follow-up works. It has also become somewhat popular

to discuss universal approximation results.

It has become somewhat popular to discuss universal approximation results. Au-

toregressive flows have been proven to not be universal approximators. However, there

doesn’t seem to have been much work on actually trying to move beyond such results to

give more practical guarantees or guidance e.g. How much capacity do you need? How

hard is optimization?
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NEURAL AUTOREGRESSIVE FLOWS

ABSTRACT

Normalizing flows and autoregressive models have been successfully combined to produce

state-of-the-art results in density estimation, via Masked Autoregressive Flows (MAF)

[230], and to accelerate state-of-the-art WaveNet-based speech synthesis to 20x faster

than real-time [295], via Inverse Autoregressive Flows (IAF) [167]. We unify and gener-

alize these approaches, replacing the (conditionally) affine univariate transformations of

MAF/IAF with a more general class of invertible univariate transformations expressed as

monotonic neural networks. We demonstrate that the proposed neural autoregressive

flows (NAF) are universal approximators for continuous probability distributions, and

their greater expressivity allows them to better capture multimodal target distributions.

Experimentally, NAF yields state-of-the-art performance on a suite of density estimation

tasks and outperforms IAF in variational autoencoders trained on binarized MNIST. 1

9.1 Introduction

Invertible transformations with a tractable Jacobian, also known as normalizing

flows, are useful tools in many machine learning problems, for example: (1) In the

context of deep generative models, training necessitates evaluating data samples under

the model’s inverse transformation [76]. Tractable density is an appealing property for

these models, since it allows the objective of interest to be directly optimized; whereas

other mainstream methods rely on alternative losses, in the case of intractable density

models [164, 246], or implicit losses, in the case of adversarial models [113]. (2) In

the context of variational inference [244], they can be used to improve the variational

approximation to the posterior by parameterizing more complex distributions. This is

important since a poor variational approximation to the posterior can fail to reflect the

1Implementation can be found at https://github.com/CW-Huang/NAF/

https://github.com/CW-Huang/NAF/
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right amount of uncertainty, and/or be biased [289], resulting in inaccurate and unreliable

predictions. We are thus interested in improving techniques for normalizing flows.

Recent work by Kingma et al. [167] reinterprets autoregressive models as invertible

transformations suitable for constructing normalizing flows. The inverse transformation

process, unlike sampling from the autoregressive model, is not sequential and thus can be

accelerated via parallel computation. This allows multiple layers of transformations to be

stacked, increasing expressiveness for better variational inference [167] or better density

estimation for generative models [230]. Stacking also makes it possible to improve on the

sequential conditional factorization assumed by autoregressive models such as PixelRNN

or PixelCNN [294], and thus define a more flexible joint probability.

We note that the normalizing flow introduced by Kingma et al. [167] only applies an

affine transformation of each scalar random variable. Although this transformation is

conditioned on preceding variables, the resulting flow can still be susceptible to bad local

minima, and thus failure to capture the multimodal shape of a target density; see Figure

9.1 and 9.2.

9.1.1 Contributions of this work

We propose replacing the conditional affine transformation of Kingma et al. [167]

with a more rich family of transformations, and note the requirements for doing so.

We determine that very general transformations, for instance parametrized by deep

neural networks, are possible. We then propose and evaluate several specific monotonic

neural network architectures which are more suited for learning multimodal distributions.

Concretely, our method amounts to using an autoregressive model to output the weights

of multiple independent transformer networks, each of which operates on a single random

variable, replacing the affine transformations of previous works.

Empirically, we show that our method works better than the state-of-the-art affine

autoregressive flows of Kingma et al. [167] and Papamakarios et al. [230], both as a

sample generator which captures multimodal target densities with higher fidelity, and as

a density model which more accurately evaluates the likelihood of data samples drawn

from an unknown distribution.
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We also demonstrate that our method is a universal approximator on proper distribu-

tions in real space, which guarantees the expressiveness of the chosen parameterization

and supports our empirical findings.

Figure 9.1: Energy function fitting using IAF.
Left: true distribution. Center: IAF-affine. Right: IAF-DSF.

Figure 9.2: Density estimation using MAF.
Left: true distribution. Center: MAF-affine. Right: MAF-DSF.

9.2 Background

A (finite) normalizing flow (NF), or flow, is an invertible function fθ : X →Y used

to express a transformation between random variables 2. Since f is invertible, the change

2We use x and y to denote inputs and outputs of a function, not the inputs and targets of a supervised
learning problem.
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of variables formula can be used to translate between densities pY (y) and pX(x):

pY (y) =
∣∣∣∣∂ f (x)

∂ x

∣∣∣∣−1

pX(x) (9.1)

The determinant of f ’s Jacobian appears on the right hand side to account for the way

in which f can (locally) expand or contract regions of X , thereby lowering or raising

the resulting density in those regions’ images in Y . Since the composition of invertible

functions is itself invertible, complex NFs are often formed via function composition (or

“stacking”) of simpler NFs.

Normalizing flows are most commonly trained to produce an output distribution pY (y)

which matches a target distribution (or, more generally, energy function) ptarget(y) as

measured by the KL-divergence KL(pY (y)||ptarget(y)). When X or Y is distributed by

some simple distribution, such as uniform or standard normal, we call it an unstructured

noise; and we call it a structured noise when the distribution is complex and correlated.

Two common settings are maximum likelihood and variational inference. Note that these

two settings are typically viewed as optimizing different directions of the KL-divergence,

whereas we provide a unified view in terms of different input and target distributions. A

detailed derivation is presented in the appendix.

For maximum likelihood applications [76, 230], ptarget(y) is typically a simple prior

over latent variable y, and f attempts to disentangle the complex empirical distribution of

the data, pX(x) into a simple latent representation pY (y) matching the prior ( structured

to unstructured) 3.

In a typical application of variational inference [167, 244], ptarget(y) is a complex

posterior over latent variables y, and f transforms a simple input distribution (for in-

stance a standard normal distribution) over x into a complex approximate posterior pY (y)

(unstructured to structured). In either case, since pX does not depend on θ , the gradients

3It may also be possible to form a generative model from such a flow, by passing samples from the prior
ptarget(y) through f−1, although the cost of doing so may vary. For example, RealNVP [76] was devised as
a generative model, and its inverse computation is as cheap as its forward computation, whereas MAF [230]
is designed for density estimation and is much more expensive to sample from. For the NAF architectures
we employ, we do not have an analytic expression for f−1, but it is possible to approximate it numerically.



131

of the KL-divergence are typically estimated by Monte Carlo:

∇θDKL
(

pY (y)||ptarget(y)
)

= ∇θ

∫
Y

pY (y) log
pY (y)

ptarget(y)
dy

=
∫
X

pX(x)∇θ log
pY (y)

ptarget(y)
dx (9.2)

Applying the change of variables formula from Equation 1 to the right hand side of

Equation 2 yields:

Ex∼pX (x)
y= fθ (x)

[
∇θ log

∣∣∣∣∂ fθ (x)
∂ x

∣∣∣∣−1

pX(x)−∇θ log ptarget(y)

]
(9.3)

Thus for efficient training, the following operations must be tractable and cheap:

1. Sampling x∼ pX(x)

2. Computing y = f (x)

3. Computing the gradient of the log-likelihood of y = f (x); x∼ pX(x) under both

pY (y) and ptarget(y)

4. Computing the gradient of the log-determinant of the Jacobian of f

Research on constructing NFs, such as our work, focuses on finding ways to parametrize

flows which meet the above requirements while being maximally flexible in terms of the

transformations which they can represent. Note that some of the terms of of Equation 3

may be constant with respect to θ 4 and thus trivial to differentiate, such as pX(x) in the

maximum likelihood setting.

Affine autoregressive flows (AAFs) 5, such as inverse autoregressive flows (IAF)

[167], are one particularly successful pre-existing approach. Affine autoregressive flows
4There might be some other parameters other than θ that are learnable, such as parameters of pX and

ptarget in the variational inference and maximum likelihood settings, respectively.
5Our terminology differs from previous works, and hence holds the potential for confusion, but we

believe it is apt. Under our unifying perspective, NAF, IAF, AF, and MAF all make use of the same principle,
which is an invertible transformer conditioned on the outputs of an autoregressive (and emphatically not an
inverse autoregressive) conditioner.
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Figure 9.3: Difference between autoregressive and inverse autoregressive transformations
(left), and between IAF and MAF (right). Upper left: sample generation of an autoregres-
sive model. Unstructured noise is transformed into structured noise. Lower left: inverse
autoregressive transformation of structured data. Structured variables are transformed
into unstructured variables. Upper right: IAF-style sampling. Lower right: MAF-style
evaluation of structured data. ε represents unstructured noise and s represents structured
noise.

yield a triangular Jacobian matrix, so that the log-determinant can be computed in linear

time, as the sum of the diagonal entries on log scale. In AAFs, the components of x and y

are given an order (which may be chosen arbitrarily), and yt is computed as a function of

x1:t . Specifically, this function can be decomposed via an autoregressive conditioner, c,

and an invertible transformer, τ , as 6:

yt
.
= f (x1:t) = τ(c(x1:t−1),xt) (9.4)

It is possible to efficiently compute the output of c for all t in a single forward pass using

a model such as MADE [105], as pointed out by Kingma et al. [167].

6Dinh et al. [73] use m and g−1 to denote c and τ , and refer to them as the “coupling function” and
“coupling law”, respectively.
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In previous work, τ is taken to be an affine transformation with parameters µ ∈R,σ >

0 output from c. For instance Dinh et al. [76] use:

τ(µ,σ ,xt) = µ +σxt (9.5)

with σ produced by an exponential nonlinearity. Kingma et al. [167] use:

τ(µ,σ ,xt) = σxt +(1−σ)µ (9.6)

with σ produced by a sigmoid nonlinearity. Such transformers are trivially invertible,

but their relative simplicity also means that the expressivity of f comes entirely from the

complexity of c and from stacking multiple AAFs (potentially using different orderings

of the variables) 7. However, the only requirements on τ are:

1. The transformer τ must be invertible as a function of xt .

2. dyt
dxt

must be cheap to compute.

This raises the possibility of using a more powerful transformer in order to increase the

expressivity of the flow.

9.3 Neural autoregressive flows

We propose replacing the affine transformer used in previous works with a neural

network, yielding a more rich family of distributions with only a minor increase in

computation and memory requirements. Specifically,

τ(c(x1:t−1),xt) = DNN(xt ; φ = c(x1:t−1)) (9.7)

is a deep neural network which takes the scalar xt as input and produces yt as output, and

its weights and biases are given by the outputs of c(x1:t−1)
8 (see Figure 9.4(a)). We refer

7Permuting the order of variables is itself a normalizing flow that does not expand or contract space and
can be inverted by another permutation.

8We’ll sometimes write τc for τ(c(x1:t−1), ·).
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(a) Neural autoregressive flows (NAF)

(b) DSF (c) DDSF

Figure 9.4: Top: In neural autoregressive flows, the transformation of the current input
variable is performed by an MLP whose parameters are output from an autoregressive
conditioner model, ct

.
= c(x1:t−1), which incorporates information from previous input

variables. Bottom: The architectures we use in this work: deep sigmoidal flows (DSF)
and deep dense sigmoidal flows (DDSF). See section 9.3.1 for details.

to these values φ as pseudo-parameters, in order to distinguish them from the statistical

parameters of the model.

We now state the condition for NAF to be strictly monotonic, and thus invertible (as

per requirement 1):

Proposition 1. Using strictly positive weights and strictly monotonic activation functions

for τc is sufficient for the entire network to be strictly monotonic.

Meanwhile, dyt
dxt

and gradients wrt the pseudo-parameters 9 can all be computed

9Gradients for pseudo-parameters are backpropagated through the conditioner, c, in order to train its
parameters.
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Figure 9.5: Illustration of the effects of traditional IAF (top), and our proposed NAF
(bottom). Areas where the slope of the transformer τc is greater/less than 1, are com-
pressed/expanded (respectively) in the output distribution. Inflection points in τc(xt)
(middle) can transform a unimodal p(xt) (left) into a multimodal p(yt) (right); NAF
allows for such inflection points, whereas IAF does not.
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efficiently via backpropagation (as per requirement 2).

Whereas affine transformers require information about multimodality in yt to flow

through x1:t−1, our neural autoregressive flows (NAFs) are able to induce multimodality

more naturally, via inflection points in τc, as shown in Figure 9.5. Intuitively, τc can be

viewed as analogous to a cumulative distribution function (CDF), so that its derivative

corresponds to a PDF, where its inflection points yield local maxima or minima.

9.3.1 Transformer architectures

In this work, we use two specific architectures for τc, which we refer to as deep sig-

moidal flows (DSF) and deep dense sigmoidal flows (DDSF) (see Figure 9.4(b), 9.4(c)

for an illustration). We find that small neural network transformers of 1 or 2 hidden layers

with 8 or 16 sigmoid units perform well across our experiments, although there are other

possibilities worth exploring (see Section 9.3.3). Sigmoids contain inflection points, and

so can easily induce inflection points in τc, and thus multimodality in p(yt). We begin

by describing the DSF transformation, which is already sufficiently expressive to form a

universal approximator for probability distributions, as we prove in section 9.4.

The DSF transformation resembles an MLP with a single hidden layer of sigmoid

units. Naive use of sigmoid activation functions would restrict the range of τc, however,

and result in a model that assigns 0 density to sufficiently large or small yt , which is

problematic when yt can take on arbitrary real values. We address this issue by applying

the inverse sigmoid (or “logit”) function at the output layer. To ensure that the output’s

preactivation is in the domain of the logit (that is, (0,1)), we combine the output of the

sigmoid units via an attention-like [13] softmax-weighted sums:

yt = σ
−1(wT︸ ︷︷ ︸

1×d

·σ( a︸︷︷︸
d×1

· xt︸︷︷︸
1×1

+ b︸︷︷︸
d×1

))) (9.8)

where 0 < wi, j < 1, ∑i wi, j = 1, as,t > 0, and d denotes the number of hidden units 10.

Since all of the sigmoid activations are bounded between 0 and 1, the final preactiva-

10Constraints on the variables are enforced via activation functions; w and a are outputs of a softmax,
and softplus or exp, respectively.
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tion (which is their convex combination) is as well. The complete DSF transformation can

be seen as mapping the original random variable to a different space through an activation

function, where doing affine/linear operations is non-linear with respect to the variable

in the original space, and then mapping it back to the original space through the inverse

activation.

When stacking multiple sigmoidal transformation, we realize it resembles an MLP

with bottleneck as shown by the bottom left of Figure 9.4. A more general alternative is

the deep dense sigmoidal flow (DDSF), which takes the form of a fully connected MLP:

h(l+1) =

σ
−1( w(l+1)︸ ︷︷ ︸

dl+1×dl+1

·σ(a(l+1)︸ ︷︷ ︸
dl+1

� u(l+1)︸ ︷︷ ︸
dl+1×dl

·h(l)︸ ︷︷ ︸
dl

+b(1+1)︸ ︷︷ ︸
dl+1

)) (9.9)

for 1≤ l≤ L where h0 = x and y= hL; d0 = dL = 1. We also require ∑ j wi j = 1, ∑ j uk j = 1

for all i,k, and all parameters except b to be positive.

We use either DSF (Equation 9.8) or DDSF (Equation 9.9) to define the transformer

function τ in Equation 9.4. To compute the log-determinant of Jacobian in a numerically

stable way, we need to apply log-sum-exp to the chain rule

∇xy =
[
∇h(L−1)h(L)

][
∇h(L−2)h(L−1)

]
, · · · ,

[
∇h(0)h

(1)
]

(9.10)

We elaborate more on the numerical stability in parameterization and computation of

logarithmic operations in the supplementary materials.

9.3.2 Efficient parametrization of larger transformers

Multi-layer NAFs, such as DDSF, require c to output O(d2) pseudo-parameters,

where d is the number of hidden units in each layer of τ . As this is impractical for large

d, we propose parametrizing τ with O(d2) statistical parameters, but only O(d) pseudo-

parameters which modulate the computation on a per-unit basis, using a technique such

as conditional batch-normalization (CBN) [81]. Such an approach also makes it possible

to use minibatch-style matrix-matrix products for the forward and backwards propagation
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through the graph of τc. In particular, we use a technique similar to conditional weight

normalization (CWN) [176] in our experiments with DDSF; see appendix for details.

9.3.3 Possibilities for alternative architectures

While the DSF and DDSF architectures performed well in our experiments, there

are many alternatives to be explored. One possibility is using other (strictly) monotonic

activation functions in τc, such as leaky ReLUs (LReLU) [312] or ELUs [59]. Leaky

ReLUs in particular are bijections on R and so would not require the softmax-weighted

summation and activation function inversion tricks discussed in the previous section.

Finally, we emphasize that in general, τ need not be expressed as a neural architecture;

it only needs to satisfy the requirements of invertibility and differentiability given at the

end of section 2.

9.4 NAFs are universal density approximators

In this section, we prove that NAFs (specifically DSF) can be used to approximate

any probability distribution over real vectors arbitrarily well, given that τc has enough

hidden units output by generic neural networks with autoregressive conditioning. Ours is

the first such result we are aware of for finite normalizing flows.

Our result builds on the work of Huang et al. [148], who demonstrate the general uni-

versal representational capability of inverse autoregressive transformations parameterized

by an autoregressive neural network (that transform uniform random variables into any

random variables in reals). However, we note that their proposition is weaker than we

require, as there are no constraints on the parameterization of the transformer τ , whereas

we’ve constrained τ to have strictly positive weights and monotonic activation functions,

to ensure it is invertible throughout training.

The idea of proving the universal approximation theorem for DSF (1) in the IAF

direction (which transforms unstructured random variables into structured random vari-

ables) resembles the concept of the inverse transform sampling: we first draw a sample

from a simple distribution, such as uniform distribution, and then pass the sample though
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DSF. If DSF converges to any inverse conditional CDF, the resulting random variable

then converges in distribution to any target random variable as long as the latter has

positive continuous probability density everywhere in the reals. (2) For the MAF di-

rection, DSF serves as a solution to the non-linear independent component analysis

problem [152], which disentangles structured random variables into uniformly and in-

dependently distributed random variables. (3) Combining the two, we further show that

DSF can transform any structured noise variable into a random variable with any desired

distribution.

We define the following notation for the pre-logit of the DSF transformation (compare

equation 9.8):

S (xt ,C (x1:t−1)) =
n

∑
j=1

w j(x1:t−1) ·σ
(

xt−b j(x1:t−1)

τ j(x1:t−1)

)
(9.11)

where C = (w j,b j,τ j)
n
j=1 are functions of x1:1−t parameterized by neural networks. Let

b j be in (r0,r1); τ j be bounded and positive; ∑
n
j=1 w j = 1 and w j > 0. See Appendix for

the proof.

Proposition 2. (DSF universally transforms uniform random variables into any desired

random variables) Let Y be a random vector in Rm and assume Y has a strictly positive

and continuous probability density distribution. Let X ∼ Unif((0,1)m). Then there exists

a sequence of functions (Gn)n≥1 parameterized by autoregressive neural networks in the

following form

G(x)t = σ
−1 (S (xt ;C t(x1:t−1))) (9.12)

where C t = (at j,bt j,τt j)
n
j=1 are functions of x1:t−1, such that Yn

.
= Gn(X) converges in

distribution to Y .

Proposition 3. (DSF universally transforms any random variables into uniformly dis-

tributed random variables) Let X be a random vector in an open set U ⊂ Rm. Assume

X has a positive and continuous probability density distribution. Let Y ∼ Unif((0,1)m).

Then there exists a sequence of functions (Hn)n≥1 parameterized by autoregressive neural
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networks in the following form

H(x)t = S (xt ;C t(x1:t−1)) (9.13)

where C t = (at j,bt j,τt j)
n
j=1 are functions of x1:t−1, such that Yn

.
= Hn(X) converges in

distribution to Y .

Theorem 3. (DSF universally transforms any random variables into any desired random

variables) Let X be a random vector in an open set U Rm. Let Y be a random vector in

Rm. Assume both X and Y have a positive and continuous probability density distribution.

Then there exists a sequence of functions (Kn)n≥1 parameterized by autoregressive neural

networks in the following form

K(x)t = σ
−1 (S (xt ;C t(x1:t−1))) (9.14)

where C t = (at j,bt j,τt j)
n
j=1 are functions of x1:t−1, such that Yn

.
= Kn(X) converges in

distribution to Y .

9.5 Related work

Neural autoregressive flows are a generalization of the affine autoregressive flows

introduced by Kingma et al. [167] as inverse autoregressive flows (IAF) and further

developed by Chen et al. [51] and Papamakarios et al. [230] as autoregressive flows (AF)

and masked autoregressive flows (MAF), respectively; for details on their relationship

to our work see Sections 2 and 3. While Dinh et al. [73] draw a particular connection

between their NICE model and the Neural Autoregressive Density Estimator (NADE)

[184], [167] were the first to highlight the general approach of using autoregressive

models to construct normalizing flows. Chen et al. [51] and then Papamakarios et al.

[230] subsequently noticed that this same approach could be used efficiently in reverse

when the key operation is evaluating, as opposed to sampling from, the flow’s learned

output density. Our method increases the expressivity of these previous approaches by

using a neural net to output pseudo-parameters of another network, thus falling into the
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hypernetwork framework [25, 70, 126].

There has been a growing interest in normalizing flows (NFs) in the deep learning

community, driven by successful applications and structural advantages they have over

alternatives. Rippel and Adams [247], Rezende and Mohamed [244] and Dinh et al. [73]

first introduced normalizing flows to the deep learning community as density models,

variational posteriors and generative models, respectively. In contrast to traditional vari-

ational posteriors, NFs can represent a richer family of distributions without requiring

approximations (beyond Monte Carlo estimation of the KL-divergence). The NF-based

RealNVP-style generative models [73, 76] also have qualitative advantages over alterna-

tive approaches. Unlike generative adversarial networks (GANs) [113] and varational

autoencoders (VAEs) [164, 246], computing likelihood is cheap. Unlike autoregressive

generative models, such as pixelCNNs [294], sampling is also cheap. Unfortunately, in

practice RealNVP-style models are not currently competitive with autoregressive models

in terms of likelihood, perhaps due to the more restricted nature of the transformations

they employ.

Several promising recent works expand the capabilities of NFs for generative modeling

and density estimation, however. Perhaps the most exciting example is van den Oord

et al. [295], who propose the probability density distillation technique to train an

IAF [167] based on the autoregressive WaveNet [293] as a generative model using

another pretrained WaveNet model to express the target density, thus overcoming the

slow sequential sampling procedure required by the original WaveNet (and characteristic

of autoregressive models in general), and reaching super-real-time speeds suitable for

production. The previously mentioned MAF technique [230] further demonstrates the

potential of NFs to improve on state-of-the-art autoregressive density estimation models;

such highly performant MAF models could also be “distilled” for rapid sampling using

the same procedure as in van den Oord et al. [295].

Other recent works also find novel applications of NFs, demonstrating their broad

utility. Loaiza-Ganem et al. [200] use NFs to solve maximum entropy problems, rather

than match a target distribution. Louizos and Welling [204] and Krueger et al. [176]

apply NFs to express approximate posteriors over parameters of neural networks. Song
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et al. [269] use NFs as a proposal distribution in a novel Metropolis-Hastings MCMC

algorithm.

Finally, there are also several works which develop new techniques for constructing

NFs that are orthogonal to ours [23, 82, 104, 284, 285].

Table 9.I: Using DSF to improve variational inference. We report the number of affine IAF
with our implementation. We note that the log likelihood reported by Kingma et al. [167]
is 78.88. The average and standard deviation are carried out with 5 trials of experiments
with different random seeds.

Model ELBO log p(x)

VAE 85.00±0.03 81.66±0.05
IAF-affine 82.25±0.05 80.05±0.04
IAF-DSF 81.92±0.04 79.86±0.01

Table 9.II: Test log-likelihood and error bars of 2 standard deviations on the 5 datasets
(5 trials of experiments). Neural autoregressive flows (NAFs) produce state-of-the-art
density estimation results on all 5 datasets. The numbers (5 or 10) in parantheses indicate
the number of transformations which were stacked; for TAN [224], we include their
best results, achieved using different architectures on different datasets. We also include
validation results to give future researchers a fair way of comparing their methods with
ours during development.

Model POWER GAS HEPMASS MINIBOONE BSDS300

MADE MoG 0.40±0.01 8.47±0.02 −15.15±0.02 −12.27±0.47 153.71±0.28
MAF-affine (5) 0.14±0.01 9.07±0.02 −17.70±0.02 −11.75±0.44 155.69±0.28
MAF-affine (10) 0.24±0.01 10.08±0.02 −17.73±0.02 −12.24±0.45 154.93±0.28
MAF-affine MoG (5) 0.30±0.01 9.59±0.02 −17.39±0.02 −11.68±0.44 156.36±0.28

TAN (various architectures) 0.48±0.01 11.19±0.02 −15.12±0.02 −11.01±0.48 157.03±0.07

MAF-DDSF (5) 0.62±0.01 11.91±0.13 −15.09±0.40 −8.86±0.15 157.73±0.04
MAF-DDSF (10) 0.60±0.02 11.96±0.33 −15.32±0.23 −9.01±0.01 157.43±0.30

MAF-DDSF (5) valid 0.63±0.01 11.91±0.13 15.10±0.42 −8.38±0.13 172.89±0.04
MAF-DDSF (10) valid 0.60±0.02 11.95±0.33 15.34±0.24 −8.50±0.03 172.58±0.32

9.6 Experiments

Our experiments evaluate NAFs on the classic applications of variational inference and

density estimation, where we outperform IAF and MAF baselines. We first demonstrate
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Figure 9.6: Fitting grid of Gaussian distributions using maximum likelihood. Left: true
distribution. Center: affine autoregressive flow (AAF). Right: neural autoregressive flow
(NAF)

Figure 9.7: Learning curve of MAF-style and IAF-style training. q denotes our trained
model, and p denotes the target.

the qualitative advantage NAFs have over AAFs in energy function fitting and density

estimation (Section 9.6.1). We then demonstrate the capability of NAFs to capture

a multimodal Bayesian posterior in a limited data setting (Section 9.6.2). For larger-

scale experiments, we show that using NAF instead of IAF to approximate the posterior

distribution of latent variables in a variational autoencoder [164, 246] yields better

likelihood results on binarized MNIST [184] (Section 9.6.3). Finally, we report our
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Figure 9.8: The DSF model effectively captures the true posterior distribution over
the frequency of a sine wave. Left: The three observations (marked with red x’s) are
compatible with sine waves of frequency f ∈ 0.0,0.6,1.2,1.8. Right: a histogram of
samples from the DSF approximate posterior (“counts”) and a Kernel Density Estimate
of the distribution it represents (KDE).

experimental results on density estimation of a suite of UCI datasets (Section 9.6.4).

9.6.1 Toy energy fitting and density estimation

9.6.1.0.1 Expressiveness. First, we demonstrate that, in the case of marginally in-

dependent distributions, affine transformation can fail to fit the true distribution. We

consider a mixture of Gaussian density estimation task. We define the modes of the

Gaussians to be laid out on a 2D meshgrid within the range [-5,5], and consider 2, 5 and

10 modes on each dimension. While the affine flow only produces a single mode, the

neural flow matches the target distribution quite well even up to a 10x10 grid with 100

modes (see Figure 9.6).

9.6.1.0.2 Convergence. We then repeat the experiment that produces Figure 9.1 and

9.2 16 times, smooth out the learning curve and present average convergence result of

each model with its corresponding standard deviation. For affine flow, we stack 6 layers of

transformation with reversed ordering. For DSF and DDSF we used one transformation.

We set d = 16 for both, L = 2 for DDSF.
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9.6.2 Sine wave experiment

Here we demonstrate the ability of DSF to capture multimodal posterior distri-

butions. To do so, we create a toy experiment where the goal is to infer the poste-

rior over the frequency of a sine wave, given only 3 datapoints. We fix the form of

the function as y(t) = sin(2π f · t) and specify a Uniform prior over the frequency:

p( f ) = U([0,2]). The task is to infer the posterior distribution p( f |T,Y ) given the

dataset (T,Y ) = ((0,5/6,10/6),(0,0,0)), as represented by the red crosses of Fig-

ure 9.8 (left). We assume the data likelihood given the frequency parameter to be

p(yi|ti, f ) = N (yi;y f (ti),0.125), where the variance σ2 = 0.125 represents the inherent

uncertainty of the data. Figure 9.8 (right) shows that DSF learns a good posterior in this

task.

9.6.3 Amortized approximate posterior

We evaluate NAF’s ability to improve variational inference, in the context of the

binarized MNIST [184] benchmark using the well-known variational autoencoder [164,

246] (Table 9.I). Here again the DSF architecture outperforms both standard IAF and the

traditional independent Gaussian posterior by a statistically significant margin.

9.6.4 Density estimation with masked autoregressive flows

We replicate the density estimation experiments of Papamakarios et al. [230], which

compare MADE [105] and RealNVP [76] to their proposed MAF model (using either 5

or 10 layers of MAF) on BSDS300 [211] as well as 4 UCI datasets [195] processed as in

Uria et al. [292]. Simply replacing the affine transformer with our DDSF architecture in

their best performing architecture for each task (keeping all other settings fixed) results

in substantial performance gains, and also outperforms the more recent Transformation

Autoregressive Networks (TAN) Oliva et al. [224], setting a new state-of-the-art for these

tasks. Results are presented in Table 9.II.
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9.7 Conclusion

In this work we introduce the neural autoregressive flow (NAF), a flexible method of

tractably approximating rich families of distributions. In particular, our experiments show

that NAF is able to model multimodal distributions and outperform related methods such

as inverse autoregressive flow in density estimation and variational inference. Our work

emphasizes the difficulty and importance of capturing multimodality, as previous methods

fail even on simple toy tasks, whereas our method yields significant improvements in

performance.
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CHAPTER 10

CONCLUSION

The articles presented in this thesis make progress on understanding and improving the

generalization abilities of Deep Learning, and on probabilistic and Bayesian methods of

Deep Learning. Generalization is of fundamental importance to AI Alignment as argued

in Section 1.4.1. Out-of-distribution generalization in particular (the subject of the work

presented in Chapter 4) remains a critical weakness of AI methods including deep learning.

Failures of out-of-distribution generalization are a major source of concerns about AI

x-risk. Bayesian deep learning continues to be a potentially promising complementary

approach both for improving generalization and addressing or mitigating generalization

failures (via active learning and error detection, respectively).

This work has focused not only on the technical contributions of these works, but also

on elaborating the motivations discussed in brief in the above paragraph. Connecting

narrow technical research problems to the goal of increasing AI x-safety led us through

a deep and involved chain of reasoning, often invoking and bottoming out in somewhat

tenuous and/or philosophical positions. A more complete and rigorous defense of these

positions goes far beyond the scope of this thesis, but I hope I’ve managed to communicate

most of the key intuitions and provided some compelling reasons for them.

Section 10.1 of this conclusion we will briefly revisit our motivation of increasing AI

x-safety, and reevaluate our contributions from this perspective. Then in Section 10.2 we

will look forward at how the underlying goals of these works might best be pursued given

the current research landscape. In my current estimation, these goals remain relevant

and important for x-safety, although the specific means of pursuing them that I have

employed seem less promising in light of recent developments. The neglectedness of

these goals has also decreased, making work on them less appealing from the perspective

of counterfactual impact. With all of this in mind, in Section 10.3, I will also offer some

thoughts on what areas of research seem particularly valuable at present.
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10.1 Revisiting the motivation for working on AI x-safety, and how my work fits

in

Achieving a low level of AI x-risk without forgoing the development of AGI seems

likely to require significant advances in AI alignment (as well as other areas). Without

the ability to reliably direct AI systems towards behaviors their designers endorse, the

continued development and deployment of increasingly advanced and ultimately super-

human AI systems seems bound to disempower humans in our efforts to influence the

future, achieve our goals, and realize our values. Furthermore, it seems irresponsible to

avoid grappling proactively with the AI alignment challenges we face and can expect

to face, since we cannot predict the timeline on which advances in AI will occur, or be

confident in our ability to address social problems or mitigate existential risks in a timely

manner as they arise.

While the control over an AI system wielded by its developers is considerable, it by

no means guarantees that the system will behave as the developers intend. The inscrutable

nature of modern AI systems means that in practice we do not know how well the system’s

behavior matches the intended behavior, and instead are left to rely on limited evaluations

and proxy metrics. Even worse, machine learning systems are trained to optimize such

proxy metrics, despite well known limitations of such methodology.

The line between misuse of AI and accidents caused by AI systems is inherently

blurry; more responsible developers will take greater efforts to ensure that their systems

behave as intended. The risks imposed by AI systems on society, including existential

risk, are an externality whose cost is not currently well accounted for. While this remains

the case, we can expect that many developers will take reckless risks, choosing to deploy

AI systems that are not sufficiently aligned, as well as calculated risks, deploying AI

systems that impose a socially sub optimal level of x risk. AI alignment does not directly

address the issue of calculated risks, but it could reduce reckless risk taking and help us

leverage capabilities to address the social dilemma posed by existential risks.
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10.1.1 Alignment and generalization

Alignment of advanced systems seems difficult to achieve without their having an

understanding of various human concepts. The conceptual and empirical promise of

deep learning systems as a means of learning human concepts makes understanding their

generalization and learning behavior important for achieving this end. This is especially

true in light of various phenomena, such as adversarial examples and memorization, that

bely their impressive ability to generalize in distribution. Indeed, what is needed, and and

would be by indicative of genuine understanding of human concepts, is out-of-distribution

generalization. The works presented in this thesis provide insight into to these topics. Our

extensive experiments in “A Closer Look at Memorization” (Chapter 2) demonstrated a

number of novel learning phenomena and introduced the hypothesis that Deep Learning

learns simple patterns first. Meanwhile, “Out-of-Distribution Generalization via Risk

Extrapolation (REx)” (Chapter 4) provided a novel geometric interpretation of invariant

prediction, demonstrated a limitation of invariant prediction in addressing covariate shift

(i.e. change in P(X)), and underlined the theoretical importance of OOD generalization

techniques (as opposed to, e.g. simply scaling up the size of the dataset and/or model).

10.1.2 Managing uncertainty

Another property that seems crucial for a AI alignment is appropriate management of

uncertainty. Arguably the most important tool for managing uncertainty is probability

theory. Any AI system operating in a complex real-world environment will have to

make decisions about how to manage trade-offs between different risks, based on their

probability and magnitude. The ability to approximate probability distributions arbitrarily

well, exhibited by Neural Autoregressive Flows (Chapter 8), is a key desiderata.

Bayesian probability theory adds to the probabilistic treatment of uncertainty by

allowing one to distinguish between uncertainty due to ignorance and uncertainty due

to inherent randomness. This distinction can help improve the efficiency of learning

and may also provide useful for recognizing when to behave cautiously. Bayesian

Hypernetworks (Chapter 6) are a method of approximating the Bayesian posterior of a



150

DNN with another DNN, which provides advantages over simpler approximate posteriors,

such as the potential for multi-modality.

10.2 What are the best ways to achieve the goals of good/cautious generalization?

Putting it all together, the ultimate goal or vision of these works is an AI system that

understands human concepts necessary for aligned behaviour (good generalization), or is

able to recognise its failure to do so, especially when this lack of understanding leads to

large uncertainty or risk (cautious generalization). An important question is whether the

approaches I have pursued are the most promising for achieving that goal. Here I will

provide some reasons for suspecting that they are not, and discuss some alternatives.

While my research has primarily focused on deep learning, I suspect that some forms

of generalization will require other methods, e.g. the ability to learn to extrapolate using

symbolic expressions. This is not something deep learning is fundamentally incapable of,

but it is beyond the ability of currently popular neural network architectures. I believe a

hybrid approach, which could look as simple as using a neural network to to generate and

manipulate symbolic expressions, is likely to be necessary in order to achieve the kinds

of out-of-distribution generalization that we seek, such as systematic generalization.

On the other hand, the causal perspective on out-of-distribution generalization pro-

vided by invariant prediction may help us diagnose existing generalisation failures that

are unlikely to be solved via scaling or even better choices of model or learning algo-

rithm. This is because these failures may ultimately lie in the data collection process.

In REx (Chapter 4), we demonstrate that data diversity is not a sufficient condition for

out-of-distribution generalisation. Rather, the details of the data distribution remain

critical. Further study along these lines may help elucidate fundamental challenges for

and limitations of current learning paradigms.

For the time being, however, increasing data diversity and scaling to larger deep

learning models with higher performance in-distribution often seems to bring the largest

benefit for out-of-distribution performance [137].

Stepping back from the goal of generalization, good out-of-distribution behavior could
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also be achieved via error detection, out-of-distribution detection, or other approaches

to conservative behaviour with respect to known or suspected risks. Conceptually, this

seems more tractable then generalizing appropriately (see Section 1.4.1). This was also

part of the motivation for my interest in Bayesian methods. However, Bayesian Deep

Learning has so far failed to live up to its promise empirically. One reason for this is

their (seeming) inability to explore different modes of the posterior [93]. This makes

ensembles a more appealing alternative in practice for the time being. With respect to

OOD detection in particular, scaling and transfer appear extremely promising, when large

training sets are available [94] Overall, it seems more promising at the moment to pursue

alternative approaches to achieving the functionalities provided by Bayesian methods.

In the relatively narrow field of normalising flows, several fundamentally new ap-

proaches to constructing normalising flow models have been proposed that seem more

promising at present than autoregressive flows for most applications [50, 120].

In summary, I believe that the most durable legacy of these four works will be insights

they provided, especially in their particular historical context, rather than the specific

methods we proposed.

10.3 Some research directions for AI x-safety that seem particularly valuable at

present

The field of AI moves fast, and topics that were almost entirely neglected a year ago

might garner hundreds of submissions at the next conference. This is true of many topics

relevant for AI alignment, including those included in this thesis. I will now highlight a

few topics that seem more timely to study.

Perhaps the most significant recent development in AI is the rapid scaling of un-

supervised Deep Learning using Transformers, as exemplified by GPT-3 [39], which

cost roughly 10 million USD to train, and achieved state-of-the-art performance on a

number of tasks without any fine-tuning. This suggests that such large models, dubbed

“foundation models” [30] are likely to form a major part of many AI systems for the

foreseeable future – that is, assuming developers have access to them; the cost of training
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such models may be prohibitive for all but the largest tech companies. In any case, these

models have much more impressive capabilities than smaller deep learning models, and

further scaling is expected to yield further improvements in capabilities [158]. I will

not speculate (much) on the implications of this new ‘paradigm’, but understanding and

aligning foundation models is a critical task for increasing AI x-safety, and seems likely to

create new challenges and opportunities. Fortunately, from the point of view of x-safety,

it seems to be possible to control their behavior quite a bit via prompt-engineering [242]

or fine-tuning, e.g. based on reward modeling [272] or instructions [303].

Foundation models also make the need for alignment apparent, as they appear to have

latent capabilities which require alignment techniques to access [48]. The emergence

of alignment as a practical problem has been and will be accompanied by the use of

alignment techniques such as reward modelling. However, the demands that practical

applications place on these techniques are less than what is required for x-safety (see

Section 1.3.4). This creates a need for research that anticipates their limitations and failure

modes. The significance of the distinction between aligned behavior and the apparently

aligned behavior is exemplified by the notion of a “treacherous turn” – a ‘deliberate’ act of

deception on the part of an AI system [34]. However, this is merely a particularly extreme

and distinctive form of a more general problem that now urgently needs addressing.

In this work, I have focused on what is is often called the outer alignment problem.

This is to distinguish it from the less well known, more speculative, inner alignment

problem, which is fart to be perhaps more insidious and pervasive. As the outer alignment

problem becomes more widely recognised and studied, inner alignment, which is still

not discussed much outside of the alignment research community, becomes relatively

more neglected and therefore useful to study. The development of foundation models

marks a trend away from reinforcement learning in favour of unsupervised learning; this

also increases the importance of inner alignment, since alignment failures are particularly

concerning when the misaligned AI is an agent that seeks to influence the world in order

to achieve it’s goals (as in RL). Inner alignment concerns include the possibility that such

goal-directed, agent-like behaviour could emerge from AI systems not trained to seek

such influence, e.g. those trained with (un)supervised learning or other myopic learning
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approaches. Our work, Krueger et al. [179], addresses a similar concern. Understanding

the potential for other forms of emergent agency seems critical and continues to be

neglected. For instance, the interactions of multiple humans and multiple AI systems

could create emergent dynamics that threaten the agency of humans, as discussed in

Section 1.2.4.

Finally, as awareness of negative social impacts of AI has increased, along with

political will to address them, the value of technical work that could lead to enforceable

standards for the behavior of AI systems is increasing as well. Possible examples include

myopia [179] or truthfulness [88]. In a similar spirit, Brundage et al. [41] argue for the

need to go beyond ethical principles to implementing mechanisms for trustworthy AI.

10.4 Final summary

In this thesis, I’ve discussed the problem of existential risk from AI (“AI x-risk”)

and how it might be mitigated. In particular, I’ve focused on how AI Alignment work

grounded in Machine Learning may help contribute to reducing AI x-risk, although my

position is that it is unlikely to prove sufficient to reduce this risk to an acceptable level.

Still, there is much work to do in AI Alignment, and the topic remains somewhat

neglected for the time being. However, the specific areas of research the articles in

this thesis covered no longer seem to be neglected. The adoption of particular research

topics relevant to AI x-safety is a good thing, likewise the increasing recognition that AI

contributes to x-risk.

As this trend (hopefully) continues, a rational response for a researcher aiming to

reduce x-risk may be to focus on increasingly speculative or arcane concerns that have

yet to capture the attention of the broader research community. Other possible responses

include engaging in more applied work aiming to ensure that specific AI systems or

developers are not increasing x-risk due to oversight, or engaging in policy work to

increase the adoption of best-practices for x-safety. Finally, there remain important

outstanding fundamental questions about how we can increase our justified confidence in

advanced AI systems’ alignment.
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All things considered, I think aiming to increase AI x-safety will continue being

a useful way to orient and prioritize research, and AI Alignment will continue to be

a fruitful approach. I expect the popularity and acceptance of both of these topics to

continue to grow, both due to technical necessity and due to increasing obligations on AI

researchers and developers to consider the social impact of their work.
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CHAPTER 11

APPENDIX

11.1 Appendix for “Out-of-Distribution Generalization via Risk Extrapolation

(REx)”

11.1.1 Appendix overview

Our code is available online at: https://anonymous.4open.science/r/12747e81-8505-

43cb-b54e-e75e2344a397/. The sections of our appendix are as follows:

A) Appendix Overview

B) Definition and discussion of extrapolation in machine learning

C) Illustrative examples of how REx works in toy settings

D) A summary of different types of causal model

E) Theory

F) The relationship between MM-REx vs. V-REx, and the role each plays in our work

G) Further results and details for experiments mentioned in main text

H) Experiments not mentioned in main text

I) Overview of other topics related to OOD generalization

11.1.2 Definition and discussion of extrapolation in machine learning

We define interpolation and extrapolation as follows: interpolation refers to making

decisions or predictions about points within the convex hull of the training examples and

extrapolation refers to making decisions or predictions about points outside their convex

https://anonymous.4open.science/r/12747e81-8505-43cb-b54e-e75e2344a397/
https://anonymous.4open.science/r/12747e81-8505-43cb-b54e-e75e2344a397/
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hull.1 This generalizes the familiar sense of these terms for one-dimensional functions.

An interesting consequence of this definition is: for data of high intrinsic dimension,

generalization requires extrapolation [133], even in the i.i.d. setting. This is because the

volume of high-dimensional manifolds concentrates near their boundary; see Figure 11.1.

11.1.2.1 Extrapolation in the space of risk functions

The same geometric considerations apply to extrapolating to new domains. Domains

can be highly diverse, varying according to high dimensional attributes, and thus requiring

extrapolation to generalize across. Thus Risk Extrapolation might often do a better job of

including possible test domains in its perturbation set than Risk Interpolation does.

Training points

Test point

Figure 11.1: Illustration of the importance of extrapolation for generalizing in high
dimensional space. In high dimensional spaces, mass concentrates near the boundary of
objects. For instance, the uniform distribution over a ball in N +1-dimensional space can
be approximated by the uniform distribution over the N-dimensional hypersphere. We
illustrate this in 2 dimensions, using the 1-sphere (i.e. the unit circle). Dots represent
a finite training sample, and the shaded region represents the convex hull of all but one
member of the sample. Even in 2 dimensions, we can see why any point from a finite
sample from such a distribution remains outside the convex hull of the other samples,
with probability 1. The only exception would be if two points in the sample coincide
exactly.

1Surprisingly, we were not able to find any existing definition of these terms in the machine learning
literature. They have been used in this sense [130, 133], but also to refer to strong generalization capabilities
more generally [251].
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11.1.3 Illustrative examples of how REx works in toy settings

Here, we work through two examples to illustrate:

1. How to understand extrapolation in the space of probability density/mass functions

(PDF/PMFs)

2. How REx encourages robustness to covariate shift via distributing capacity more

evenly across possible input distributions.

11.1.4 6D example of REx

Here we provide a simple example illustrating how to understand extrapolations of

probability distributions. Suppose X ∈ {0,1,2} and Y ∈ {0,1}, so there are a total of 6

possible types of examples, and we can represent their distributions in a particular domain

as a point in 6D space: (P(0,0),P(0,1),P(1,0),P(1,1),P(2,0),P(2,1)). Now, consider

three domains e1,e2,e3 given by

1. (a,b,c,d,e, f )

2. (a,b,c,d,e− k, f + k)

3. (2a,2b,c(1− a+b
c+d ),d(1−

a+b
c+d ),e, f )

The difference between e1 and e2 corresponds to a shift in P(Y |X = 2), and suggests

that Y cannot be reliably predicted across different domains when X = 2. Meanwhile,

the difference between e1 and e3 tells us that the relative probability of X = 0 vs. X = 1

can change, and so we might want our model to be robust to these sorts of covariate

shifts. Extrapolating risks across these 3 domains effectively tells the model: “don’t

bother trying to predict Y when X = 2 (i.e. aim for P̂(Y = 1|X = 2) = .5), and split your

capacity equally across the X = 0 and X = 1 cases”. By way of comparison, IRM would

also aim for P̂(Y = 1|X = 2) = .5, whereas ERM would aim for P̂(Y = 1|X = 2) = 3 f+k
3e+3 f

(assuming |D1|= |D2|= |D3|). And unlike REx, both ERM and IRM would split capacity

between X = 0/1/2 cases according to their empirical frequencies.
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11.1.5 Covariate shift example

We now give an example to show how REx provides robustness to covariate shift.

Covariate shift is an issue when a model has limited capacity or limited data.

Viewing REx as robust learning over the affine span of the training distributions

reveals its potential to improve robustness to distribution shifts. Consider a situation in

which a model encounters two types of inputs: COSTLY inputs with probability q and

CHEAP inputs with probability 1−q. The model tries to predicts the input – it outputs

COSTLY with probability p and CHEAP with probability 1− p. If the model predicts

right its risk is 0, but if it predicts COSTLY instead of CHEAP it gets a risk u = 2, and

if it predicts CHEAP instead of COSTLY it gets a risk v = 4. The risk has expectation

Rq(p) = (1− p)(1− q)u+ pqv. We have access to two domains with different input

probabilities q1 < q2. This is an example of pure covariate shift.

Figure 11.2: Each grey line is a risk Rq(p) as functions of p for a specific value of q. The
blue line is when q = ω . We highlight in red the curve maxqRq(p) whose minimum is
the saddle point marked by a purple star in p = ω .
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We want to guarantee the minimal risk over the set of all possible domains:

min
p∈[0,1]

max
q∈[0,1]

Rq(p) = (1− p)(1−q)u+ pqv

as illustrated in Figure 11.2. The saddle point solution of this problem is p = ω = u/u+v

and Rq(p) = uv/u+v,∀q. From the figure we see that Rq1(p) = Rq2(p) can only happen

for p = ω , so the risk extrapolation principle will return the minimax optimal solution.

If we use ERM to minimize the risk, we will pool together the domains into a new

domain with COSTLY input probability q̄ = (q1+q2)/2. ERM will return p = 0 if q̄ > ω

and p = 1 otherwise. Risk interpolation (RI) minp maxq∈{q1,q2}Rq(p) will predict p = 0

if q1,q2 > ω , p = 1 if q1,q2 < ω and p = ω if q1 < ω < q2. We see that only REx finds

the minimax optimum for arbitrary values of q1 and q2.

11.1.6 A summary of different types of causal models

Here, we briefly summarize the differences between 3 different types of causal

models, see Table 11.I. Our definitions and notation follow Elements of Causal Inference:

Foundations and Learning Algorithms [234].

A Causal Graph is a directed acyclic graph (DAG) over a set of nodes corresponding

to random variables Z, where edges point from causes (including noise variables) to

effects. A Structural Causal Model (SCM), C, additionally specifies a deterministic

mapping fZ for every node Z, which computes the value of that node given the values of its

parents, which include a special noise variable NZ , which is sampled independently from

all other nodes. This fZ is called the mechanism, structural equation, or structural

assignment for Z. Given an SCM, C, the entailed distribution of C, PC(Z) is defined via

ancestral sampling. Thus for any Z ∈ Z, we have that the marginal distribution PC(Z|Z\
Z) = PC(Z|Pa(Z)). A Causal Graphical Model (CGM) can be thought of as specifying

these marginal distributions without explicitly representing noise variables NZ . We can

draw rough analogies with (non-causal) statistical models. Roughly speaking, Causal

Graphs are analogous to Graphical Models, whereas SCMs and CGMs are analogous to

joint distributions.
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Model Independences Distributions Interventions Counterfactuals

Graphical Model 3 7 7 7

Joint Distribution 3 3 7 7

Causal Graph 3 7 3 7

Causal Graphical Model 3 3 3 7

Structural Causal Model 3 3 3 3

Table 11.I: A comparison of causal and non-causal models.

11.1.7 Theory

11.1.7.1 Proofs of theorems 1 and 2

The REx principle has two goals:

1. Reducing training risks

2. Increasing similarity of training risks.

In practice, it may be advantageous to trade-off these two objectives, using a hyperpa-

rameter (e.g. β for V-REx or λmin for MM-REx). However, in this section, we assume

the 2nd criteria takes priority; i.e. we define “satisfying” the REx principle as selecting

a minimal risk predictor among those that achieve exact equality of risks across all the

domains in a set E .

Recall our assumptions from Section 5.3.4 of the main text:

1. The causes of Y are observed, i.e. Pa(Y )⊆ X .

2. Domains correspond to interventions on X .

3. Homoskedasticity (a slight generalization of the additive noise setting assumed by

Peters et al. [233]). We say an SEM C is homoskedastic (with respect to a loss

function `), if the Bayes error rate of `( fY (x), fY (x)) is the same for all x ∈X .

And see Section 5.2.3 for relevant definitions and notation.

We begin with a theorem based on the setting explored by Peters et al. [233]. Here,

εi
.
= Ni are assumed to be normally distributed.
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Theorem 1. Given a Linear SEM, Xi← ∑ j 6=i β(i, j)X j + εi, with Y .
= X0, and a predictor

fβ (X)
.
=∑ j: j>0 β jX j+ε j that satisfies REx (with mean-squared error) over a perturbation

set of domains that contains 3 distinct do() interventions for each Xi : i > 0. Then

β j = β0, j,∀ j.

Proof. We adapt the proof of Theorem 4i from Peters et al. [233] to show that REx will

learn the correct model under similar assumptions. Let Y ← γX + ε be the mechanism

for Y , assumed to be fixed across all domains, and let Ŷ = βX be our predictor. Then

the residual is R(β ) = (γ−β )X + ε . Define αi
.
= γi−βi, and consider an intervention

do(X j = x) on the youngest node X j with α j 6= 0. Then as in eqn 36/37 of Peters

et al. [233], we compare the residuals R of this intervention and of the observational

distribution:

Robs(β ) = α jX j +∑
i6= j

αiXi + ε Rdo(X j=x)(β ) = α jx+∑
i6= j

αiXi + ε (11.1)

We now compute the MSE risk for both domains, set them equal, and simplify to find

a quadratic formula for x:

E

[
(α jX j +∑

i 6= j
αiXi + ε)2

]
= E

[
(α jx+∑

i 6= j
αiXi + ε)2

]
(11.2)

0 = α
2
j x2 +2α jE[∑

i6= j
αiXi + ε]x−E

[
(α jX j)

2−2α jX j(∑
i6= j

αiXi + ε)

]
(11.3)

Since there are at most two values of x that satisfy this equation, any other value leads

to a violation of REx, so that α j needs to be zero – contradiction. In particular having

domains with 3 different do-interventions on every Xi guarantees that the risks are not

equal across all domains.

Given the assumption that a predictor satisfies REx over all interventions that do not

change the mechanism of Y , we can prove a much more general result. We now consider
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an arbitrary SCM, C, generating Y and X , and let E I be the set of domains corresponding

to arbitrary interventions on X , similarly to Peters et al. [233].

We emphasize that the predictor is not restricted to any particular class of models,

and is a generic function f : X →P(Y ), where P(Y ) is the set of distributions over Y .

Hence, we drop θ from the below discussion and simply use f to represent the predictor,

and R( f ) its risk.

Theorem 2. Suppose ` is a (strictly) proper scoring rule. Then a predictor that satisfies

REx for a over E I uses fY (x) as its predictive distribution on input x for all x ∈X .

Proof. Let Re( f ,x) be the loss of predictor f on point x in domain e, and Re( f ) =∫
Pe(x)R

e( f ,x) be the risk of f in e. Define ι(x) as the domain given by the intervention

do(X = x), and note that Rι(x)( f ) = Rι(x)( f ,x). We additionally define X1
.
= Par(Y ).

The causal mechanism, fY , satisfies the REx principle over E I . For every x ∈X ,

fY (x) = P(Y |do(X = x)) = P(Y |do(X1 = x1)) = P(Y |X1 = x1) is invariant (meaning

‘independent of domain’) by definition; P(Y |do(X = x)) =P(Y |do(X1 = x1)) =P(Y |X1 =

x1) follows from the semantics of SEM/SCMs, and the fact that we don’t allow fY

to change across domains. Specifically Y is always generated by the same ancestral

sampling process that only depends on X1 and NY . Thus the risk of the predictor fY (x)

at point x, Re( fY ,x) = `( fY (x), fY (x)) is also invariant, soit R( fY ,x). Thus Re( fY ) =∫
Pe(x)R

e( fY ,x) =
∫

Pe(x)R( fY ,x) is invariant whenever R( fY ,x) does not depend on x, and

the homoskedasticity assumption ensures that this is the case. This establishes that setting

f = fY will produce equal risk across domains.

No other predictor satisfies the REx principle over E I . We show that any other

g achieves higher risk than fY for at least one domain. This demonstrates both that fY

achieves minimal risk (thus satisfying REx), and that it is the unique predictor which

does so (and thus no other predictors satisfy REx). We suppose such a g exists and

construct an domain where it achieves higher risk than fY . Specifically, if g 6= fY then

let x ∈X be a point such that g(x) 6= fY (x). And since ` is a strictly proper scoring rule,

this implies that `(g(x), fY (x))> `( fY (x), fY (x)). But `(g(x), fY (x)) is exactly the risk of

g on the domain ι(do(X = x)), and thus g achieves higher risk than fY in ι(do(X = x)),
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a contradiction.

11.1.7.2 REx as DRO

We note that MM-REx is also performing robust optimization over a convex hull, see

Figure 5.1. The corners of this convex hull correspond to “extrapolated domains” with

coefficients (λmin,λmin, ...,(1− (m−1)λmin)) (up to some permutation). However, these

domains do not necessarily correspond to valid probability distributions; in general, they

are quasidistributions, which can assign negative probabilities to some examples. This

means that, even if the original risk functions were convex, the extrapolated risks need

not be. However, in the case where they are convex, then existing theorems, such as the

convergence rate result of [250]. This raises several important questions:

1. When is the affine combination of risks convex?

2. What are the effects of negative probabilities on the optimization problem REx

faces, and the solutions ultimately found?

11.1.7.3 Negative probabilities:

Figure 11.3 illustrates this for a case where X = Z2
2, i.e. x is a binary vector of length

2. Suppose x1,x2 are independent in our training domains, and represent the distribution

for a particular domain by the point (P(X1 = 1),P(X2 = 1)). And suppose our 4 training

distributions have (P(X1 = 1),P(X2 = 1)) equal to {(.4, .1),(.4, .9),(.6, .1),(.6, .9)}, with

P(Y |X) fixed.

11.1.8 The relationship between MM-REx vs. V-REx, and the role each plays in

our work

The MM-REx and V-REx methods play different roles in our work:

• We use MM-REx to illustrate that REx can be instantiated as a variant of robust

optimization, specifically a generalization of the common Risk Interpolation ap-

proach. We also find MM-REx provides a useful geometric intuition, since we can
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Figure 11.3: The perturbation set for MM-REx can include “distributions” which assign
invalid (e.g. negative) probabilities to some data-points. The range of valid distributions
P(X) is shown in grey, and P(X) for 4 different training domains are shown as red points.
The interior of the dashed line shows the perturbation set for λmin =−1/2.

visualize its perturbation set as an expansion of the convex hull of the training risks

or distributions.

• We expect V-REx to be the more practical algorithm. It is simple to implement.

And it performed better in our CMNIST experiments; we believe this may be

due to V-REx providing a smoother gradient vector field, and thus more stable

optimization, see Figure 11.1.8.

Either method recovers the REx principle as a limiting case, as we prove in Sec-

tion 11.1.8.1. We also provide a sequence of mathematical derivations that sheds light on

the relationship between MM-REx and V-REx in Section 11.1.8.2 we can view these as a

progression of steps for moving from the robust optimization formulation of MM-REx to

the penalty term of V-REx:

1. From minimax to closed form: We show how to arrive at the closed-form version

of MM-REx provided in Eqn. 5.7.

2. Closed form as mean absolute error: The closed form of MM-REx is equivalent

to a mean absolute error (MAE) penalty term when there are only two training

domains.
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3. V-REx as mean squared error: V-REx is exactly equivalent to a mean squared

error penalty term (always). Thus in the case of only two training domains, the

difference between MM-REx and V-REx is just a different choice of norm.

Figure 11.4: Vector fields of the gradient evaluated at different values of training risks
R1(θ), R2(θ). We compare the gradients for RMM-REx (left) and RV-REx (right). Note
that for RV-REx, the gradient vectors curve smoothly towards the direction of the origin,
as they approach the diagonal (where training risks are equal); this leads to a smoother
optimization landscape.

11.1.8.1 V-REx and MM-REx enforce the REx principle in the limit

We prove that both MM-REx and V-REx recover the constraint of perfect equality

between risks in the limit of λmin→−∞ or β → ∞, respectively. For both proofs, we

assume all training risks are finite.

Proposition 4. The MM-REx risk of predictor fθ , RMM−REx(θ)→ ∞ as λmin → −∞

unless Rd = Re for all training domains d,e.

Proof. Suppose the risk is not equal across domains, and let the largest difference be-

tween any two training risks be ε > 0. Then RMM−REx(θ) = (1−mλmin)maxeRe(θ)+

λmin ∑
m
i=1Ri(θ) = maxeRe(θ)−mλmin maxeRe(θ)+ λmin ∑

m
i=1Ri(θ) ≥ maxeRe(θ)−

λminε , with the inequality resulting from matching up the m copies of λmin maxeRe
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with the terms in the sum and noticing that each pair has a non-negative value (since

Ri−maxeRe is non-positive and λmin is negative), and at least one pair has the value

−λminε . Thus sending λ →−∞ sends this lower bound on RMM−REx to ∞ and hence

RMM−REx→ ∞ as well.

Proposition 5. The V-REx risk of predictor fθ , RV−REx(θ)→ ∞ as β → ∞ unless Rd =

Re for all training domains d,e.

Proof. Again, let ε > 0 be the largest difference in training risks, and let µ be the

mean of the training risks. Then there must exist an e such that |Re−µ| ≥ ε/2. And

thus Vari(Ri(θ)) = ∑i(Ri−µ)2 ≥ (ε/2)2, since all other terms in the sum are non-

negative. Since ε > 0 by assumption, the penalty term is positive and thus RV−REx(θ)
.
=

∑iRi(θ)+βVari(Ri(θ)) goes to infinity as β → ∞.

11.1.8.2 Connecting MM-REx to V-REx

11.1.8.2.1 Closed form solutions to risk interpolation and minimax-REx Here,

we show that risk interpolation is equivalent to the robust optimization objective of

Eqn. 5.5. Without loss of generality, let R1 be the largest risk, so Re ≤ R1, for all e. Thus

we can express Re = R1−de for some non-negative de, with d1 = 0≥ de for all e. And

thus we can write the weighted sum of Eqn. 5.7 as:

RMM(θ)
.
= max

Σeλe=1
λe≥λmin

m

∑
e=1

λeRe(θ) (11.4)

= max
Σeλe=1
λe≥λmin

m

∑
e=1

λe(R1(θ)−de) (11.5)

= R1(θ)+ max
Σeλe=2
λe≥λmin

m

∑
e=1
−λe(de) (11.6)

(11.7)

Now, since de are non-negative, −de is non-positive, and the maximal value of this sum

is achieved when λe = λmin for all e≥ 2, which also implies that λ1 = 1− (m−1)λmin.
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This yields the closed form solution provided in Eqn. 5.7. The special case of Risk

Interpolation, where λmin = 0, yields Eqn. 5.5.

11.1.8.2.2 Minimax-REx and Mean absolute error REx In the case of only two

training risks, MM-REx is equivalent to using a penalty on the mean absolute error

(MAE) between training risks. However, penalizing the pairwise absolute errors is not

equivalent when there are m > 2 training risks, as we show below. Without loss of

generality, assume that R1 < R2 < ... < Rm. Then (1/2 of) the RMAE penalty term is:

∑
i

∑
j≤i

(Ri−R j) = mRm− ∑
j≤m

R j+(m−1)Rm−1− ∑
j≤m−1

R j . . . (11.8)

= ∑
j

jR j−∑
j

∑
i≤ j

Ri (11.9)

= ∑
j

jR j−∑
j
(m− j+1)R j (11.10)

= ∑
j
(2 j−m−1)R j (11.11)

For m = 2, we have 1/2RMAE = (2 ∗ 1− 2− 1)R1+(2 ∗ 2− 2− 1)R2 = R2−R1.

Now, adding this penalty term with some coefficient βMAE to the ERM term yields:

RMAE
.
= R1+R2+βMAE(R2−R1) = (1−βMAE)R1+(1+βMAE)R2 (11.12)

(11.13)

We wish to show that this is equal to RMM for an appropriate choice of learning rate γMAE

and hyperparameter βMAE. Still assuming that R1 < R2, we have that:

RMM
.
= (1−λmin)R2+λminR1 (11.14)
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Choosing γMAE = 1/2γMM is equivalent to multiplying RMM by 2, yielding:

2RMM
.
= 2(1−λmin)R2+2λminR1 (11.15)

Now, in order for RMAE = 2RMM, we need that:

2−2λmin = 1+βMAE (11.16)

2λmin = 1−βMAE (11.17)

(11.18)

And this holds whenever βMAE = 1− 2λmin. When m > 2, however, these are not

equivalent, since RMM puts equal weight on all but the highest risk, whereas RMAE

assigns a different weight to each risk.

11.1.8.2.3 Penalizing pairwise mean squared error (MSE) yields V-REx The V-

REx penalty (Eqn. 5.8) is equivalent to the average pairwise mean squared error between

all training risks (up to a constant factor of 2). Recall that Ri denotes the risk on domain i.

We have:

1
2n2 ∑

i
∑

j

(
Ri−R j

)2
=

1
2n2 ∑

i
∑

j

(
R2

i +R2
j−2RiR j

)
(11.19)

=
1

2n ∑
i
R2

i +
1

2n ∑
j
R2

j−
1
n2 ∑

i
∑

j
RiR j (11.20)

=
1
n ∑

i
R2

i −

(
1
n ∑

i
Ri

)2

(11.21)

= Var(R) . (11.22)

11.1.9 Further results and details for experiments mentioned in main text

11.1.9.1 CMNIST with covariate shift

Here we present the following additional results:
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1. Figure 1 of the main text with additional results using MM-REx, see 11.5. These

results used the “default” parameters from the code of Arjovsky et al. [8].

2. A plot with results on these same tasks after performing a random search over

hyperparameter values similar to that performed by Arjovsky et al. [8].

3. A plot with the percentage of the randomly sampled hyperparameter combinations

that have satisfactory (> 50%) accuracy, which we count as “success” since this is

better than random chance performance.

These results show that REx is able to handle greater covariate shift than IRM,

given appropriate hyperparameters. Furthermore, when appropriately tuned, REx can

outperform IRM in situations with covariate shift. The lower success rate of REx for high

values of p is because it produces degenerate results (where training accuracy is less than

test accuracy) more often.

The hyperparameter search consisted of a uniformly random search of 340 samples

over the following intervals of the hyperparameters:

1. HiddenDim = [2**7, 2**12]

2. L2RegularizerWeight = [10**-2, 10**-4]

3. Lr = [10**-2.8, 10**-4.3]

4. PenaltyAnnealIters = [50, 250]

5. PenaltyWeight = [10**2, 10**6]

6. Steps = [201, 601]

11.1.9.2 SEMs from “Invariant Risk Minimization”

Here we present experiments on the (linear) structural equation model (SEM) tasks

introduced by Arjovsky et al. [8]. Arjovsky et al. [8] construct several varieties of SEM

where the task is to predict targets Y from inputs X1,X2, where X1 are (non-anti-causal)
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Figure 11.5: This is Figure 5.3.4 of main text with additional results using MM-REx.
For each covariate shift variant (class imbalance, digit imbalance, and color imbalance
from left to right as described in "CMNIST with covariate shift" subsubsection of Section
4.1 in main text) of CMNIST, the standard error (the vertical bars in plots) is higher for
MM-REx than for V-REx.

Figure 11.6: This is Figure 5.3.4 of main text (class imbalance, digit imbalance, and color
imbalance from left to right as described in "CMNIST with covariate shift" subsubsection
of Section 4.1 in main text), but with hyperparameters of REx and IRM each tuned to
perform as well as possible for each value of p for each covariate shift type.

causes of Y , and X2 are (anti-causal) effects of Y . We refer the reader to Section 5.1 and

Figure 3 of Arjovsky et al. [8] for more details. We use the same experimental settings as

Arjovsky et al. [8] (except we only run 7 trials), and report results in Table 11.II.

These experiments include several variants of a simple SEM, given by:

X1 = N1

Y =W1→Y X1 +NY

X2 =WY→2Y +N2

Where N1,NY ,N2 are all sampled i.i.d. from normal distributions. The variance of these

distributions may vary across domains.
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Figure 11.7: This also corresponds to class imbalance, digit imbalance, and color imbal-
ance from left to right as described in "CMNIST with covariate shift" subsubsection of
Section 4.1 in main text; but now the y-axis refers to what percentage of the randomly sam-
pled hyperparameter combinations we deemed to to be satisfactory. We define satisfactory
as simultaneously being better than random guessing and having train accuracy greater
than test accuracy. For p less than .5, a larger percentage of hyperparameter combinations
are often satisfactory for REx than for IRM; for p greater than .5, a larger percentage of
hyperparameter combinations are often satisfactory for IRM than for REx because train
accuracy is greater than test accuracy for more hyperparameter combinations for IRM. We
stipulate that train accuracy must be greater than test accuracy because test accuracy being
greater than train accuracy usually means the model has learned a degenerate prediction
rule such as "not color".

While REx achieves good performance in the domain-homoskedastic case, it per-

forms poorly in the domain-heteroskedastic case, where the amount of intrinsic noise,

σ2
y in the target changes across domains.2 Intuitively, this is because the irreducible error

varies across domains in these tasks, meaning that the risk will be larger on some domains

than others, even if the model’s predictions match the expectation E(Y |Pa(Y )). We tried

using a “baseline” (see Eqn. 5.5) of re =Var(Ye) [212] to account for the different noise

levels in Y , but this did not work.

We include a mathematical analysis of the simple SEM given above in order to

better understand why REx succeeds in the domain-homoskedastic, but not the domain-

heteroskedastic case. Assuming that Y,X1,X2 are scalars, this SEM becomes

X1 = N1

Y = w1→yN1 +NY

X2 = wy→2w1→yN1 +wy→2NY +N2

2See Footnote 6.
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We consider learning a model Ŷ = αX1 +βX2. Then the residual is:

Ŷ −Y = (α +w1→y(βwy→2−1))N1 +(βwy→2−1)NY +βN2

Since all random variables have zero mean, the MSE loss is the variance of the residual.

Using the fact that the noise N1,NY ,N2 are independent, this equals:

E[(Ŷ −Y )2] = (α +w1→y(βwy→2−1))2
σ

2
1 +(βwy→2−1)2

σ
2
Y +β

2
σ

2
2

Thus when (only) σ2 changes, the only way to keep the loss unchanged is to set the

coefficient in front of σ2 to 0, meaning β = 0. By minimizing the loss, we then recover

α = w1→y; i.e. in the domain-homoskedastic setting, the loss equality constraint of REx

yields the causal model. On the other hand, if (only) σY changes, then REx enforces

β = 1/wy→2, which then induces α = 0, recovering the anticausal model.

While REx (like ICP [233]) assumes the mechanism for Y is fixed across domains

(meaning P(Y |Pa(Y )) is independent of the domain, e), IRM makes the somewhat weaker

assumption that E(Y |Pa(Y )) is independent of domain. While it is plausible that an

appropriately designed variant of REx could work under this weaker assumption, we

believe forbidding interventions on Y is not overly restrictive, and such an extension for

future work.

11.1.9.3 Reinforcement Learning Experiments

Here we provide details and further results on the experiments in Section 5.4.1. We

take tasks from the Deepmind Control Suite [278] and modify the original state, s, to

produce observation, o = (s+ ε,ηs′) including noise ε and spurious features ηs′, where

s′ contains 1 or 2 dimensions of s. The scaling factor takes values η = 1/2/3 for the

two training and test domains, respectively. The agent takes o as input and learns a

representation using Soft Actor-Critic [128] and an auxiliary reward predictor, which is

trained to predict the next 3 rewards conditioned on the next 3 actions. Since the spurious

features are copied from the state before the noise is added, they are more informative for
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FOU(c) FOU(nc) FOS(c) FOS(nc)

IRM 0.001±0.000 0.001±0.000 0.001±0.000 0.000±0.000
REx, re = 0 0.001±0.000 0.008±0.002 0.007±0.002 0.000±0.000
REx, re = V(Ye) 0.816±0.149 1.417±0.442 0.919±0.091 0.000±0.000

POU(c) POU(nc) POS(c) POS(nc)

IRM 0.004±0.001 0.006±0.003 0.002±0.000 0.000±0.000
REx, re = 0 0.004±0.001 0.004±0.001 0.002±0.000 0.000±0.000
REx, re = V(Ye) 0.915±0.055 1.113±0.085 0.937±0.090 0.000±0.000

FEU(c) FEU(nc) FES(c) FES(nc)

IRM 0.0053±0.0015 0.1025±0.0173 0.0393±0.0054 0.0000±0.0000
REx, re = 0 0.0390±0.0089 19.1518±3.3012 7.7646±1.1865 0.0000±0.0000
REx, re = V(Ye) 0.7713±0.1402 1.0358±0.1214 0.8603±0.0233 0.0000±0.0000

PEU(c) PEU(nc) PES(c) PES(nc)

IRM 0.0102±0.0029 0.0991±0.0216 0.0510±0.0049 0.0000±0.0000
REx, re = 0 0.0784±0.0211 46.7235±11.7409 8.3640±2.6108 0.0000±0.0000
REx, re = V(Ye) 1.0597±0.0829 0.9946±0.0487 1.0252±0.0819 0.0000±0.0000

Table 11.II: Average mean-squared error between true and estimated weights on causal
(X1) and non-causal (X2) variables. Top 2: When the level of noise in the anti-causal
features varies across domains, REx performs well (FOU, FOS, POU, POS). Bottom 2:
When the level of noise in the targets varies instead, REx performs poorly (FEU, FES,
PEU, PES). Using the baselines re = V(Y ) does not solve the problem, and indeed, hurts
performance on the homoskedastic domains.

the reward prediction task, but they do not have an invariant relationship with the reward

because of the domain-dependent η .

The hyperparameters used for training Soft Actor-Critic can be found in Table 11.III.

We used cartpole_swingup as a development task to tune the hyperparameters of

penalty weight (chosen from [0.01,0.1,1,10]) and number of iterations before the penalty

is turned up (chosen from [5000,10000,20000]), both for REx and IRM. The plots with

the hyperparameter sweep are in Figure 11.8.
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Figure 11.8: Hyperparameter sweep for IRM and REx on cartpole_swingup.
Green, blue, and orange curves correspond to REx, ERM, and IRM, respectively. The
subfigure titles state the penalty strength (“penalty”) and after how many iterations the
penalty strength was increased (“iters”). We chose a penalty factor of 1 and 10k iterations.

11.1.10 Experiments not mentioned in main text

We include several other experiments which do not contribute directly to the core

message of our paper. Here is a summary of the take-aways from these experiments:

1. Our experiments in the CMNIST domain suggest that the IRM/V-REx penalty terms

should be amplified exactly when the model starts overfitting training distributions.

2. Our financial indicators experiments suggest that IRM and REx often perform

remarkably similarly in practice.

11.1.10.1 A possible approach to scheduling IRM/REx penalties

We’ve found that REx and IRM are quite sensitive to the choice of hyperparameters.

In particular, hyperparameters controlling the scheduling of the IRM/V-REx penalty terms

are of critical importance. For the best performance, the penalty should be increased the

relative weight of the penalty term after approximately 100 epochs of training (using a
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Parameter name Value

Replay buffer capacity 1000000
Batch size 1024
Discount γ 0.99
Optimizer Adam
Critic learning rate 10−5

Critic target update frequency 2
Critic Q-function soft-update rate τQ 0.005
Critic encoder soft-update rate τenc 0.005
Actor learning rate 10−5

Actor update frequency 2
Actor log stddev bounds [−5,2]
Encoder learning rate 10−5

Decoder learning rate 10−5

Decoder weight decay 10−7

L1 regularization weight 10−5

Temperature learning rate 10−4

Temperature Adam’s β1 0.9
Init temperature 0.1

Table 11.III: A complete overview of hyperparameters used for reinforcement learning
experiments.

so-called “waterfall” schedule [72]). See Figure 11.9(b) for a comparison. We also tried

an exponential decay schedule instead of the waterfall and found the results (not reported)

were significantly worse, although still above 50% accuracy.

Given the methodological constraints of out-of-distribution generalization mentioned

in [123], this could be a significant practical issue for applying these algorithms. We

aim to address this limitation by providing a guideline for when to increase the penalty

weight, based only on the training domains. We hypothesize that successful learning of

causal features using REx or IRM should proceed in two stages:

1. In the first stage, predictive features are learned.

2. In the second stage, causal features are selected and/or predictive features are

fine-tuned for stability.

This viewpoint suggests that we could use overfitting on the training tasks as an indicator
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for when to apply (or increase) the IRM or REx penalty.

The experiments presented in this section provide observational evidence consistent

with this hypothesis. However, since the hypothesis was developed by observing patterns

in the CMNIST training runs, it requires further experimental validation on a different

task, which we leave for future work.

11.1.10.1.1 Results and Interpretation In Figure 11.9, we demonstrate that the opti-

mal point to apply the waterfall in the CMNIST task is after predictive features have been

learned, but before the model starts to memorize training examples. Before predictive

features are available, the penalty terms push the model to learn a constant predictor,

impeding further learning. And after the model starts to memorize, it become difficult to

distinguish anti-causal and causal features. This second effect is because neural networks

often have the capacity to memorize all training examples given sufficient training time,

achieving and near-0 loss [316]. In the limits of this memorization regime, the differences

between losses become small, and gradients of the loss typically do as well, and so the

REx and IRMv1 penalties no longer provide a strong or meaningful training signal, see

Figure 11.10.

11.1.10.2 Domain Generalization: VLCS and PACS

Here we provide earlier experiments on the VLCS and PACS dataset. We removed

these experiments from the main text of our paper in favor of the more complete Do-

mainBed results.

To test whether REx provides a benefit on more realistic domain generalization tasks,

we compared REx, IRM and ERM performance on the VLCS [286] and PACS [192]

image datasets. Both datasets are commonly-used for multi-source domain generalization.

The task is to train on three domains and generalize to a fourth one at test time.

Since every domain in PACS is used as a test set when training on the other three

domains, it is not possible to perform a methodologically sound evaluation on PACS

after examining results on any of the data. Thus to avoid performing any tuning on test

distributions, we use VLCS to tune hyperparameters and then apply these exact same
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Figure 11.9: Stability penalties should be applied around when traditional overfitting
begins, to ensure that the model has learned predictive features, and that penalties still give
meaningful training signals. Top: Test accuracy as a function of epoch at which penalty
term weight is increased (learning rate is simultaneously decreased proportionally).
Choosing this hyperparameter correctly is essential for good performance. Middle:
Generalization gap on a validation set with 85% correlation between color and label (the
same as the average training correlation). The best test accuracy is achieved by increasing
the penalty when the generalization gap begins to increase. The increase clearly indicates
memorization because color and shape are only 85%/75% correlated with the label, and
so cannot be used to make predictions with higher than 85% accuracy. Bottom: Accuracy
on training/test sets, as well as an auxilliary grayscale set. Training/test performance
reach 85%/15% after a few epochs of training, but grayscale performance improves,
showing that meaningful features are still being learned.
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Figure 11.10: Given sufficient training time, empirical risk minimization (ERM) mini-
mizes both REx and IRMv1 penalty terms on Colored MNIST (without including either
term in the loss function). This is because the model (a deep network) has sufficient
capacity to fit the training sets almost perfectly. This prevents these penalties from having
the intended effect, once the model has started to overfit. The y-axis is in log-scale.

settings to PACS and report the final average over 10 runs on each domain.

We use the same architecture, training procedure and data augmentation strategy as

the (formerly) state-of-the-art Jigsaw Puzzle approach [46] (except with IRM or V-REx

intead of JigSaw as auxilliary loss) for all three methods. As runs are very noisy, we ran

each experiment 10 times, and report average test accuracies extracted at the time of the

highest validation accuracy on each run. Results on PACS are in Table 11.V. On PACS

we found that REx outperforms IRM and IRM outperforms ERM on average, while all

are worse than the state-of-the-art Jigsaw method.

We use all hyperparameters from the original Jigsaw codebase.3 We use Imagenet pre-

trained AlexNet features and chose batch-size, learning rate, as well as penalty weights

based on performance on the VLCS dataset where test performance on the holdout do-

3https://github.com/fmcarlucci/JigenDG

https://github.com/fmcarlucci/JigenDG
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main was used for the set of parameters producing the highest validation accuracy. The

best performing parameters on VLCS were then applied to the PACS dataset without

further changes. We searched over batch-sizes in {128,384}, over penalty strengths in

{0.0001,0.001,0.01,0.1,1,10}, learning rates in {0.001,0.01} and used average perfor-

mance over all 4 VLCS domains to pick the best performing hyperparameters. Table 11.IV

shows results on VLCS with the best performing hyperparameters.

The final parameters for all methods on PACS were a batch size of 384 with 30 epochs

of training with Adam, using a learning rate of 0.001, and multiplying it by 0.1 after 24

epochs (this step schedule was taken from the Jigsaw repo).The penalty weight chosen

for Jigsaw was 0.9; for IRM and REx it was 0.1.We used the same data-augmentation

pipeline as the original Jigsaw code for ERM, IRM, Jigsaw and REx to allow for a fair

comparison.

VLCS CALTECH SUN PASCAL LABELME Average

REx (ours) 96.72 63.68 72.41 60.40 73.30
IRM 95.99 62.85 71.71 59.61 72.54
ERM 94.76 61.92 69.03 60.55 71.56
Jigsaw (SOTA) 96.46 63.84 70.49 60.06 72.71

Table 11.IV: Accuracy (percent) of different methods on the VLCS task. Results are
test accuracy at the time of the highest validation accuracy, averaged over 10 runs. On
VLCS REx outperforms all other methods. Numbers are shown in strike-through because
we selected our hyperparameters based on highest test set performance; the goal of this
experiment was to find suitable hyperparameters for the PACS experiment.

PACS Art Painting Cartoon Sketch Photo Average

REx (ours) 66.27±0.46 68.8±0.28 59.57±0.78 89.60±0.12 71.07
IRM 66.46±0.31 68.60±0.40 58.66±0.73 89.94±0.13 70.91
ERM 66.01±0.22 68.62±0.36 58.38±0.60 89.40±0.18 70.60

Jigsaw (SOTA) 66.96±0.39 66.67±0.41 61.27±0.73 89.54±0.19 71.11

Table 11.V: Accuracy (percent) of different methods on the PACS task. Results are
test accuracy at the time of the highest validation accuracy, averaged over 10 runs. REx
outperforms ERM on average, and performs similar to IRM and Jigsaw (the state-of-the-
art).
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11.1.10.3 Financial indicators

We find that IRM and REx seem to perform similarly across different splits of the

data in a prediction task using financial data. The dataset is split into five years, 2014–18,

containing 37 publicly reported financial indicators of several thousand publicly listed

companies each. The task is to predict if a company’s value will increase or decrease in

the following year (see Appendix for dataset details.) We consider each year a different

domain, and create 20 different tasks by selecting all possible combinations of domains

where three domains represent the training sets, one domain the validation set, and another

one the test set. We train an MLP using the validation set to determine an early stopping

point, with β = 104. The per-task results summarized in fig. 11.11 indicate substantial

differences between ERM and IRM, and ERM and REx. The predictions produced by

IRM and REx, however, only differ insignificantly, highlighting the similarity of IRM

and REx. While performance on specific tasks differs significantly between ERM and

IRM/REx, performance averaged over tasks is not significantly different.

Figure 11.11: Financial indicators tasks. The left panel indicates the set of training
domains; the middle and right panels show the test accuracy on the respective domains
relative to ERM (a black dot corresponds to a training domain; a colored patch indicates
the test accuracy on the respective domain.)
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11.1.10.3.1 Experiment Details We use v1 of the dataset published on 4 and prepare

the data as described in.5 We further remove all the variables that are not shared across

all 5 years, leaving us with 37 features, and whiten the data through centering and

normalizing by the standard deviation.

On each subtask, we train an MLP with two hidden layers of size 128 with tanh

activations and dropout (p=0.5) after each layer. We optimize the binary cross-entropy

loss using Adam (learning rate 0.001, β1 = 0.9, β2 = 0.999, ε = 10−8), and an L2 penalty

(weight 0.001). In the IRM/REx experiments, the respective penalty is added to the loss

(β = 1) and the original loss is scaled by a factor 10−4 after 1000 iterations. Experiments

are run for a maximum of 9000 training iterations with early stopping based on the

validation performance. All results are averaged over 3 trials. The overall performance of

the different models, averaged over all tasks, is summarized in Tab. 11.VI. The difference

in average performance between ERM, IRM, and REx is not statistically significant, as

the error bars are very large.

Overall accuracy Min acc. Max acc.

ERM 54.6±4.6 47.6 66.2
IRM 55.3±5.9 45.9 67.5
REx 55.5±6.0 47.2 68.0

Table 11.VI: Test accuracy of models trained on the financial domain dataset, averaged
over all 20 tasks, as well as min./max. accuracy across the tasks.

11.1.11 Overview of other topics related to OOD generalization

Domain adaptation [17] shares the goal of generalizing to new distributions at test

time, but allows some access to the test distribution. A common approach is to make

different domains have a similar distribution of features [229]. A popular deep learning

method for doing so is Adversarial Domain Adaptation (ADA) [100, 193, 201, 290],

4https://www.kaggle.com/cnic92/200-financial-indicators-of-us-stock
s-20142018

5https://www.kaggle.com/cnic92/explore-and-clean-financial-indicato
rs-dataset

https://www.kaggle.com/cnic92/200-financial-indicators-of-us-stocks-20142018
https://www.kaggle.com/cnic92/200-financial-indicators-of-us-stocks-20142018
https://www.kaggle.com/cnic92/explore-and-clean-financial-indicators-dataset
https://www.kaggle.com/cnic92/explore-and-clean-financial-indicators-dataset
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which seeks a “invariant representation” of the inputs, i.e. one whose distribution is

domain-independent. Recent works have identified fundamental shortcomings with this

approach, however [8, 156, 311, 319].

Complementary to the goal of domain generalization is out-of-distribution detection

[139, 140], where the goal is to recognize examples as belonging to a new domain.

Three common deep learning techniques that can improve OOD generalization are

adversarial training [115, 137], self-supervised learning [2, 142, 145, 296] and data

augmentation [46, 64, 141, 174, 260, 318]. These methods can also been combined

effectively in various ways [11, 119, 283]. Data augmentation and self-supervised learning

methods typically use prior knowledge such as 2D image structure. Several recent

works also use prior knowledge to design augmentation strategies for invariance to

superficial features that may be spuriously correlated with labels in object recognition

tasks [119, 135, 153, 301]. In contrast, REx can discover which features have invariant

relationships with the label without such prior knowledge.

11.2 Appendix for “Bayesian Hypernetworks”

11.2.1 Additional results

11.2.1.1 Learning correlated weights

Figure 11.12: Histogram of Pearson correlation coefficient p-values (left) and a scatter
matrix (right) of samples from a hypernet approximate posterior. We see that the hypernet
posterior includes correlations between different parameters. Many of the p-values of the
Pearson correlation test are below .05.
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11.2.1.2 Unseen mode detection

We replicate the experiments of anomaly detection with unseen classes of MNIST.

Table 11.VII: Anomaly detection on MNIST with unseen classes. The first column
indicates the missing class label in the training set. Top-most block: ROC score; middle:
positive precision-recall; bottom: negative precision-recall.

Variation ratio Mean std BALD

MLP dropout BHN 4 BHN 8 dropout BHN 4 BHN 8 dropout BHN 4 BHN 8

0 95.52 97.44 96.62 96.45 97.90 96.53 96.77 97.89 96.59 96.55
1 96.70 94.60 96.62 96.46 94.01 96.62 96.25 93.92 96.92 96.19
2 92.83 95.77 92.99 93.47 96.02 93.03 93.57 96.08 93.59 94.26
3 93.03 93.11 95.03 95.34 93.65 94.86 94.77 93.65 94.87 94.96
4 89.08 88.96 75.73 81.19 89.45 75.73 81.31 89.34 74.31 84.34
5 88.53 94.66 93.20 87.95 95.37 93.08 88.31 95.45 92.61 85.77
6 95.40 96.33 93.67 94.69 96.99 93.80 94.80 96.96 93.27 94.50
7 92.46 96.61 95.08 93.70 97.08 94.68 92.82 97.06 94.88 92.89
8 96.35 98.05 95.86 96.85 97.67 95.74 96.98 97.23 95.48 96.87
9 94.75 95.95 95.62 96.54 96.03 95.46 96.42 96.10 95.84 96.37

0 97.68 98.68 98.34 98.32 98.87 98.31 98.45 98.87 98.35 98.35
1 98.26 97.03 98.23 98.15 96.58 98.20 98.04 96.58 98.35 98.00
2 96.06 97.74 95.63 96.07 97.83 95.31 96.01 97.87 95.80 96.45
3 96.00 95.74 97.28 97.68 95.97 97.09 97.37 96.00 97.13 97.49
4 93.73 93.93 84.66 86.40 94.10 85.16 86.46 94.00 83.32 90.00
5 93.92 97.31 96.79 93.15 97.60 96.62 93.34 97.61 96.34 90.72
6 97.68 97.99 96.38 97.27 98.29 96.55 97.29 98.29 96.05 97.13
7 95.56 98.16 97.40 96.51 98.36 97.07 95.82 98.32 97.17 95.89
8 98.18 99.03 97.97 98.37 98.87 97.96 98.53 98.70 97.83 98.45
9 97.32 97.94 97.76 98.27 97.93 97.71 98.31 98.02 98.00 98.29

0 90.11 94.44 92.17 90.95 96.08 92.06 92.67 96.08 91.92 91.91
1 92.84 89.08 92.48 91.99 88.11 92.71 91.53 87.67 93.11 91.55
2 85.74 91.13 86.61 87.52 92.04 88.22 88.51 92.16 89.20 89.90
3 87.46 87.78 89.46 88.75 89.72 89.99 87.09 89.78 90.22 87.21
4 80.96 79.04 64.02 72.11 81.82 64.33 73.69 81.89 64.16 75.72
5 80.41 87.74 84.15 78.16 90.48 84.85 78.96 90.81 84.27 76.99
6 89.34 92.26 88.17 88.60 94.21 88.28 89.10 94.07 87.14 87.89
7 87.08 92.69 88.91 86.85 94.02 89.07 86.64 94.33 89.70 86.71
8 91.88 95.82 90.52 92.83 94.40 89.69 92.82 92.80 88.41 92.08
9 88.10 90.71 89.70 91.67 91.49 88.72 90.85 91.56 88.79 90.30

11.2.1.3 Stronger attack

Here we use 32 samples to estimate the gradient direction with respect to the input.

A better estimate of gradient amounts to a stronger attack, so accuracy drops lower for
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a given step size while an adversarial example can be more easily detected with a more

informative uncertainty measure.

Figure 11.13: Adversary detection with 32-sample estimate of gradient.

11.2.2 Derivation of training objective

In this paper, we employ weight normalization in the primary network (7.7), treating

(only) the scaling factors g as random variables. We choose an isotropic Gaussian prior for

g: p(g) =N (g;0,λ I), which results in an L2 weight-decay penalty on g, or, equivalently,

w = g v
||v||2 . Our objective and lower bound are then:

log p(D ;v,b) = log
∫

g
p(D |g;v,b)p(g)dg (11.23)

≥ Eq(g)[log p(D |g;v,b)+ log p(g)− logq(g)] (11.24)

≥ Eε∼qε (ε),g=hφ (ε)[log p(D |g;v,b)+ log p(g)− logq(ε)+ log
∣∣∣∣det

∂hφ (ε)

∂ε

∣∣∣∣ ]
(11.25)

where v and b are the direction and bias parameters of the primary net, and φ is the
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parameters of the hypernetwork. We optimize this bound with respect to {v,b,φ} during

training.
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