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Résumé

Avec la ratification de l’Accord de Paris, les pays se sont engagés à limiter le réchauffement
climatique bien en dessous de 2, de préférence à 1,5 degrés Celsius, par rapport aux niveaux
préindustriels. À cette fin, les émissions anthropiques de gaz à effet de serre (GES, tels que
CO2) doivent être réduites pour atteindre des émissions nettes de carbone nulles d’ici 2050. Cet
objectif ambitieux peut être atteint grâce à différentes stratégies d’atténuation des GES, telles
que l’électrification, les changements de comportement des consommateurs, l’amélioration
de l’efficacité énergétique des procédés, l’utilisation de substituts aux combustibles fossiles
(tels que la bioénergie ou l’hydrogène), le captage et le stockage du carbone (CSC), entre
autres. Cette thèse vise à contribuer à deux de ces stratégies : le covoiturage (qui appartient
à la catégorie des changements de comportement du consommateur) et la capture et le
stockage du carbone. Cette thèse fournit des modèles mathématiques et d’optimisation et
des algorithmes pour la planification opérationnelle et tactique des systèmes de covoiturage,
et des heuristiques pour la planification stratégique d’un réseau de captage et de stockage du
carbone.

Dans le covoiturage, les émissions sont réduites lorsque les individus voyagent ensemble
au lieu de conduire seuls. Dans ce contexte, cette thèse fournit de nouveaux modèles
mathématiques pour représenter les systèmes de covoiturage, allant des problèmes d’affectation
stochastique à deux étapes aux problèmes d’empaquetage d’ensembles stochastiques à deux
étapes qui peuvent représenter un large éventail de systèmes de covoiturage. Ces modèles
aident les décideurs dans leur planification opérationnelle des covoiturages, où les conducteurs
et les passagers doivent être jumelés pour le covoiturage à court terme. De plus, cette
thèse explore la planification tactique des systèmes de covoiturage en comparant différents
modes de fonctionnement du covoiturage et les paramètres de la plateforme (par exemple, le
partage des revenus et les pénalités). De nouvelles caractéristiques de problèmes sont étudiées,
telles que l’incertitude du conducteur et du passager, la flexibilité de réappariement et la
réservation de l’offre de conducteur via les frais de réservation et les pénalités. En particulier,
la flexibilité de réappariement peut augmenter l’efficacité d’une plateforme de covoiturage,
et la réservation de l’offre de conducteurs via les frais de réservation et les pénalités peut
augmenter la satisfaction des utilisateurs grâce à une compensation garantie si un covoiturage
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n’est pas fourni. Des expériences computationnelles détaillées sont menées et des informations
managériales sont fournies.

Malgré la possibilité de réduction des émissions grâce au covoiturage et à d’autres stratégies
d’atténuation, des études macroéconomiques mondiales montrent que même si plusieurs
stratégies d’atténuation des GES sont utilisées simultanément, il ne sera probablement pas
possible d’atteindre des émissions nettes nulles d’ici 2050 sans le CSC. Ici, le CO2 est capturé
à partir des sites émetteurs et transporté vers des réservoirs géologiques, où il est injecté pour
un stockage à long terme. Cette thèse considère un problème de planification stratégique
multipériode pour l’optimisation d’une chaîne de valeur CSC. Ce problème est un problème
combiné de localisation des installations et de conception du réseau où une infrastructure
CSC est prévue pour les prochaines décennies. En raison des défis informatiques associés à
ce problème, une heuristique est introduite, qui est capable de trouver de meilleures solutions
qu’un solveur commercial de programmation mathématique, pour une fraction du temps
de calcul. Cette heuristique comporte des phases d’intensification et de diversification, une
génération améliorée de solutions réalisables par programmation dynamique, et une étape
finale de raffinement basée sur un modèle restreint. Dans l’ensemble, les contributions de cette
thèse sur le covoiturage et le CSC fournissent des modèles de programmation mathématique,
des algorithmes et des informations managériales qui peuvent aider les praticiens et les parties
prenantes à planifier des émissions nettes nulles.

Mots-clés : affectation de covoiturage; captage et stockage du carbone; programmation
stochastique; heuristiques.
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Abstract

With the ratification of the Paris Agreement, countries committed to limiting global warming
to well below 2, preferably to 1.5 degrees Celsius, compared to pre-industrial levels. To this
end, anthropogenic greenhouse gas (GHG) emissions (such as CO2) must be reduced to reach
net-zero carbon emissions by 2050. This ambitious target may be met by means of different
GHG mitigation strategies, such as electrification, changes in consumer behavior, improving
the energy efficiency of processes, using substitutes for fossil fuels (such as bioenergy or
hydrogen), and carbon capture and storage (CCS). This thesis aims at contributing to two of
these strategies: ridesharing (which belongs to the category of changes in consumer behavior)
and carbon capture and storage. This thesis provides mathematical and optimization models
and algorithms for the operational and tactical planning of ridesharing systems, and heuristics
for the strategic planning of a carbon capture and storage network.

In ridesharing, emissions are reduced when individuals travel together instead of driving
alone. In this context, this thesis provides novel mathematical models to represent ridesharing
systems, ranging from two-stage stochastic assignment problems to two-stage stochastic set
packing problems that can represent a wide variety of ridesharing systems. These models
aid decision makers in their operational planning of rideshares, where drivers and riders
have to be matched for ridesharing on the short-term. Additionally, this thesis explores the
tactical planning of ridesharing systems by comparing different modes of ridesharing operation
and platform parameters (e.g., revenue share and penalties). Novel problem characteristics
are studied, such as driver and rider uncertainty, rematching flexibility, and reservation of
driver supply through booking fees and penalties. In particular, rematching flexibility may
increase the efficiency of a ridesharing platform, and the reservation of driver supply through
booking fees and penalties may increase user satisfaction through guaranteed compensation
if a rideshare is not provided. Extensive computational experiments are conducted and
managerial insights are given.

Despite the opportunity to reduce emissions through ridesharing and other mitigation
strategies, global macroeconomic studies show that even if several GHG mitigation strategies
are used simultaneously, achieving net-zero emissions by 2050 will likely not be possible without
CCS. Here, CO2 is captured from emitter sites and transported to geological reservoirs, where
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it is injected for long-term storage. This thesis considers a multiperiod strategic planning
problem for the optimization of a CCS value chain. This problem is a combined facility
location and network design problem where a CCS infrastructure is planned for the next
decades. Due to the computational challenges associated with that problem, a slope scaling
heuristic is introduced, which is capable of finding better solutions than a state-of-the-art
general-purpose mathematical programming solver, at a fraction of the computational time.
This heuristic has intensification and diversification phases, improved generation of feasible
solutions through dynamic programming, and a final refining step based on a restricted
model. Overall, the contributions of this thesis on ridesharing and CCS provide mathematical
programming models, algorithms, and managerial insights that may help practitioners and
stakeholders plan for net-zero emissions.

Keywords: ridesharing matching; carbon capture and storage; stochastic programming;
heuristics.
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Chapter 1

Introduction

A net-zero emissions target has to be met by 2050 to reach the objective of the Paris Agreement:
to limit global warming to 2 degrees Celsius (preferably 1.5 degrees Celsius) compared to
pre-industrial levels. This requires a radical reduction of anthropogenic greenhouse gas
(GHG) emissions. Out of all GHG emissions, CO2 is the most prevalent one. Emissions can
be mitigated in several ways, such as electrification, changes in user behavior, improving
the energy efficiency of processes, using substitutes for fossil fuels such as biomass and
hydrogen, and carbon capture and storage (CCS). All strategies listed above have an impact
on the reduction of GHG emissions, and the cement industry is an example that shows
that a combination of mitigation strategies is needed to sufficiently reduce emissions. In
this industry, about 60% of the CO2 emissions in a cement plant come from the calcination
reaction, and not from the burning of fossil fuels [Strunge et al., 2022]. Thus, even if fossil
fuels are completely replaced in the cement industry, a considerable amount of emissions will
be left unaddressed. These unaddressed emissions can be mitigated with CCS. Further, the
replacement of fossil fuels with, for example, biomass, poses additional challenges: biomass is
a limited resource, and its demand will grow with the decarbonization of industrial sectors.
Thus, the supply chain of biomass will have to be adapted, and a growth in agricultural
production will be needed to satisfy the ever-increasing needs for biomass [Popp et al., 2021].
Overall, macroeconomic studies around the world show that several GHG mitigation strategies
have to be used in parallel to sufficiently reduce emissions, and that the net-zero target is
unlikely to be met without CCS [Lane et al., 2021, Riahi et al., 2017, IEA, 2017].

To address the need for implementing several GHG mitigation strategies in parallel, this
thesis focuses on the operational, tactical, and strategic planning of two mitigation strategies.
The first strategy concerns the operational and tactical planning of ridesharing systems as a
means to reduce the total distance traveled by individuals when commuting. Ridesharing falls
into the scope of changes in user behavior GHG mitigation strategies. The second strategy
concerns the strategic planning of CCS, where CO2 is captured from emitter sites, and



transported into geological reservoirs (inshore or offshore) where it is injected for long-term
storage. CCS allows for the mitigation of emissions in sectors of the economy where, for
example, CO2 is a byproduct of chemical reactions, or in sectors where replacing fossil fuels
is not attainable in the short to medium term. In this thesis, the planning of ridesharing
and CCS is done by the use of Operations Research tools. More specifically, mathematical
programming models and algorithms for optimizing these models. With better planning,
the overall performance of ridesharing and CCS may improve, which may reduce operating
costs and improve the GHG mitigation potential of these systems. In the following, further
details are provided on the mathematical models behind the planning problems associated
with these mitigation strategies.

1.1. Ridesharing systems
Ridesharing systems are agencies that match drivers and riders such that they can travel

together to fulfill their itineraries, rather than driving alone. Individuals may rideshare for
a multitude of reasons, such as reducing their transportation costs, reducing their carbon
footprint, lack of access to a vehicle, or unreliable access to mass transit. In the Operations
Research literature, ridesharing systems are often modeled as one-to-one bipartite matching
problems [e.g., Agatz et al., 2011, Wang et al., 2018], as below:

max
∑
i∈D

∑
j∈R

sijxij (1.1.1)

s.t.
∑
j∈R

xij ≤ 1, ∀i ∈ D (1.1.2)

∑
i∈D

xij ≤ 1,∀j ∈ R (1.1.3)

xij ∈ { 0, 1 } , (1.1.4)

where D is a set of drivers and R is a set of riders available for ridesharing. For each
driver i ∈ D and rider j ∈ R, let xij be a binary variable valued to one if and only if
driver i rideshares with rider j. The value generated when driver i rideshares with rider j is
represented by sij. This value can represent, for example, the distance savings generated by
this rideshare (illustrated in Figure 1.1). Thus, the objective function of the model above
maximizes the total value generated by rideshares, while constraints (1.1.2) and (1.1.3) ensure
that a driver can be matched to at most one rider and that a rider can be matched to at
most one driver, respectively. The model above is a mixed-integer programming problem, but
the integrality constraints (1.1.4) can be relaxed, as the constraint matrix of this formulation
is totally unimodular and therefore the optimal solution of the resulting linear programming
relaxation is integral [Edmonds and Johnson, 2003]. Thus, the bipartite matching problem
can be represented as a linear program, which is solvable in polynomial time. The bipartite
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matching model has been adapted to represent ridesharing systems with different attributes,
such as matching stability [so that participants have little incentive to leave the ridesharing
platform, see Wang et al., 2018]. Different types of ridesharing systems are reviewed in
Chapter 2.

Fig. 1.1. Distance savings generated by a rideshare between driver a and rider b, where
o(a) and o(b) correspond to the origin coordinates of a and b, respectively. Parameters d(a)
and d(b) correspond to the destination coordinates of a and b, respectively. Individual travel
distances are in green, and shared travel distances are in blue.

o(a)

d(a)

o(b)

d(b)

The ridesharing papers of this thesis concern both operational and tactical planning of
ridesharing systems: in operational planning, rideshares for the short-term are planned, and
in tactical planning, different ridesharing system attributes are evaluated to identify the
trade-off of different modes of operation. The first two articles of this thesis (Chapter 3 and
Chapter 4) extend the bipartite matching model to a multiperiod and stochastic one-to-one
matching problem for ridesharing. The problem allows for the dynamic matching of drivers
and riders, as well as for the rematching of drivers and riders such that ridesharing agreements
can be rearranged to improve the performance of the ridesharing system. The rematching
operation comes at a cost: the system has to pay a penalty, which may represent monetary
compensation to participants. The third article of this thesis (Chapter 5) continues to
focus on ridesharing under uncertainty, but allows for rideshares with more than one rider
(many-to-one matching). The problem is modeled as a two-stage stochastic set-packing
model, and is general enough to represent different ridesharing modes of operation. Overall,
the ridesharing papers of this thesis explore how user incentives (or compensation due to
inconveniences) can be implemented in ridesharing systems and what impact these incentives
have on the system profitability. These papers also explore how ridesharing systems can be
optimized under uncertainty. Based on computational experiments, insights on incentive
policies are given, as well as insights on optimization under uncertainty for ridesharing.

1.2. Carbon capture and storage
In CCS, CO2 emissions are first captured from emitter sites and then transported to

geological reservoirs where it is injected for long-term storage. Emitter sites can be industrial
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facilities in different sectors, such as steel, cement, pulp and paper, bioenergy, fertilizer
and chemicals, combustion-based power, oil and gas, and hydrogen generation. Geological
reservoirs can be, for example, saline aquifers and depleted oil reservoirs. The transportation
of CO2 can be done through different modes, such as pipelines, ships, trucks, and trains. The
deployment of a CCS infrastructure may span several decades and require billions of dollars
of investments. To help stakeholders assess the costs of CCS, strategic planning models for
the optimization of a CCS value chain can be used. Such models have combined facility
location and network design decisions, and may contain a single time period or multiple time
periods, depending on the level of accuracy required when assessing CCS costs. In these
models, sources correspond to emitter sites, sinks correspond to geological reservoirs, and a
network corresponds to the CO2 transportation infrastructure (e.g., pipelines, trains, ships).
An optimized CCS infrastructure is illustrated in Figure 1.2.

Fig. 1.2. Example of a CCS network from an Alberta oil sands case study [Middleton
and Brandt, 2013]. The data necessary to build this case study was provided by Richard
Middleton.
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The multiperiod CCS pipeline value chain optimization model studied in Chapter 6 is
based on the model of Jones et al. [2022]. In this model, an objective function minimizes
(for the whole planning horizon) the costs of activating and operating sources (emitter sites),
activating and operating sinks (geological reservoirs), and activating a network (pipeline
network). The operating costs are associated with the CO2 capture and injection rates at
sources and sinks. Sources and sinks can be opened only once during the planning horizon,
and CO2 can only be captured from sources and injected at sinks if these sites were previously
activated. Each source and sink has a maximum CO2 capture rate (capacity constraints).
Furthermore, sinks have two levels of decisions: the activation of geological reservoirs, and
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the digging of injection wells at these reservoirs. Each well has a maximum CO2 injection
rate, and each reservoir also has a maximum CO2 injection rate as well as a maximum
number of injection wells that can be dug. Finally, each reservoir has a lifetime injection
capacity. The activation of pipelines is a discrete decision. The capacity of pipelines is
a continuous decision, and the total cost of activating a pipeline at a certain capacity is
represented by a piecewise linear function. A constraint specifies that, for each time period,
a certain amount of CO2 has to be captured from wells and injected at reservoirs. Together
with this constraint, mass balance constraints ensure the flow of CO2 from sources to sinks.
Due to the combination of multiperiod facility location decisions and multiperiod network
design decisions, solving this model poses considerable computational challenges. The CCS
paper of this thesis addresses a computational need of analysts: high-quality solutions for
strategic CCS planning problems have to be generated quickly, such that analysts can perform
sensitivity studies that may contain hundreds or thousands of experiments. To address this
need, this thesis provides a novel slope scaling heuristic that generates (on average) better
solutions than a state-of-the-art mathematical programming solver, at a fraction of the time.

1.3. Organization of this thesis
This thesis provides mathematical programming models and solution methodologies for

operational and strategic planning problems with greenhouse gas emission mitigation potential.
In Chapter 2, a literature review on GHG emissions mitigation strategies is conducted, with
a focus on ridesharing and CCS as potential strategies. The main scientific contributions
of this thesis are given by four articles (corresponding to Chapter 3, Chapter 4, Chapter 5,
and Chapter 6). In Chapter 3, a stochastic one-to-one multiperiod ridesharing problem
with matching and rematching is introduced, along with two-stage stochastic programming
models and reduction techniques to reduce the number of variables of multiperiod models.
In Chapter 4, the model of Chapter 3 is adapted and empirically evaluated on a rolling
horizon framework, and different system parameters are evaluated in order to understand
their impact on system performance. Namely, penalties for unmatching and also penalties
for delayed matches. In Chapter 5, a one-to-many two-stage stochastic ridesharing problem
is proposed. In this problem, drivers must be booked in advance for a fee, and a penalty
may be paid if drivers are not assigned to any rideshare. Such problem is general enough to
represent different ridesharing modes of operation, which are discussed and computationally
evaluated. The computational results are then analyzed, leading to managerial insights on
these operation modes. In Chapter 6, a slope scaling heuristic for a multiperiod CCS problem
is proposed. This problem has characteristics of combined facility location problems and
network design problems. Computational experiments show that the slope scaling heuristic
generates better solutions than a commercial mixed-integer linear programming solver, at a
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fraction of the computational time. Chapter 7 concludes this thesis and provides possible
directions for future work. Appendix A provides supplementary material for Chapter 5.
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Chapter 2

Literature Review

This chapter first conducts a general review of the literature on greenhouse gas (GHG)
mitigation strategies in Section 2.1. Then, two specific GHG mitigation strategies that are
studied throughout this thesis are reviewed: ridesharing systems, reviewed in Section 2.2,
and carbon capture and storage (CCS), reviewed in Section 2.3. For further reviews on
ridesharing, we refer to the literature reviews written in Chapters 3, 4, and 5. For a further
review of CCS, we refer the literature review in Chapter 6.

2.1. Review on greenhouse gas mitigation strategies
To sufficiently reduce anthropogenic GHG as an effort to meet the targets of the Paris

Agreement, combining several GHG mitigation strategies is necessary [Riahi et al., 2017]. We
give an overview of some of these main strategies. Namely, electrification, replacements to
fossil fuels, changes in consumer behavior, and CCS.

2.1.1. Replacements to fossil fuels

Carbon-intensive fossil fuels can be replaced by cleaner alternatives [Riahi et al., 2017]. For
example, in the shipping industry, liquefied natural gas can be used instead of conventional
marine fuels such as heavy fuel oil and marine gas oil, as it generates fewer CO2 emissions
[Comer and Sathiamoorthy, 2022]. Alternatively, renewable energy can be used instead of
fossil fuels, such as solar and wind energy [Granovskii et al., 2007], and bioenergy, where
biomass is used as a fossil fuel replacement to, for example, heat boilers [Saidur et al., 2011].
Furthermore, hydrogen can be used as another fossil fuel replacement, as it does not release
CO2 when it is used to produce energy [Razi and Dincer, 2022].

2.1.2. Electrification

Electrification may contribute to reducing emissions in several sectors that traditionally
depend on fossil fuels for energy, such as agriculture [e.g., with the electrification of agricultural



machinery, see Scolaro et al., 2021], transportation [e.g., the electrification of buses, see Xylia
et al., 2019], and in commercial and residential buildings [e.g., the electrification of space
heating and water heating, see Dennis, 2015].

2.1.3. Changes in consumer behavior

Changes in consumer habits can contribute to the mitigation of GHG emissions. In
Girod et al. [2014], the authors review the carbon footprint of products in the five main
consumption categories: food, shelter, travel, goods, and services. For each category, the
authors identify consumption options compatible with the Paris Agreement target to limit
global warming. In Matasci et al. [2021], the authors conduct an analysis of the consumer
environmental impact (both direct and indirect) on different sectors of the Swiss economy.
The potential for mitigating agricultural GHG emissions through consumer behavior together
with biotechnology and organic systems is studied in Del Grosso and Grant [2011].

In the field of transportation, researchers seek to understand the factors that influence
the choice of transport mode by individuals, with the goal of minimizing car-based trips
and therefore minimizing emissions [Comendador et al., 2014]. The efficient planning of
ridesharing systems can influence consumer choice, leading to more drivers and riders choosing
ridesharing over driving alone.

2.1.4. Carbon capture and storage

Finally, CCS [Smit et al., 2014] can be used to address the emissions that have not been
reduced by other strategies. In CCS, CO2 is captured from emitter sites and transported
to underground geological reservoirs (inshore or offshore), where it is injected for long-term
storage. CCS is part of a group called carbon dioxide removal (CDR) technologies and
practices [Terlouw et al., 2021]. Other CDR methods include afforestation and reforestation
[Trabucco et al., 2008], soil carbon sequestration [Lal, 2004], biochar [Lehmann et al., 2021],
enchanced rock weathering [Beerling et al., 2020], bioenergy with CCS [Fridahl and Lehtveer,
2018], direct air CCS [Gambhir and Tavoni, 2019], and ocean fertilization [Lampitt et al.,
2008].

2.2. Review on ridesharing
In ridesharing, individuals travel together (e.g., from home to a common work location)

to fulfill their itineraries rather than driving alone. Individuals may engage in ridesharing
for a multitude of reasons. For example: to reduce transportation costs, to reduce their
environmental footprint, or because they do not have access to a car or to a reliable form of
mass transit. Ridesharing leads to higher vehicle occupancy and reduced vehicle miles traveled,
and therefore reductions in fuel consumption and GHG emissions [Shaheen et al., 2018,
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Coulombel et al., 2019, Yan et al., 2020]. Minimizing the carbon footprint of transportation
systems [e.g., in freight transportation Bektaş et al., 2019] is part of the field of green logistics
[see Dekker et al., 2012]. A particular field within green logistics is the field of shared mobility,
which includes the sharing of transportation equipment such as car sharing [Jung and Koo,
2018], bike sharing [Kou et al., 2020], and the sharing of the transportation itself, such as
ridesharing [Teal, 1987].

The practice of ridesharing is not new, and dates as back as WWII. A growing number of
ridesharing systems benefited from the introduction of mobile phones and the Internet [Chan
and Shaheen, 2012, Dailey et al., 1999]. Chronologically, ridesharing had several phases, such
as the ridesharing clubs during WWII, ridesharing as a response to the 1970s oil crisis, and
today’s technology-enabled ridesharing systems where individuals that do not know each
other can be matched for ridesharing [Chan and Shaheen, 2012]. Despite the practice of
ridesharing not being new, ridesharing systems still have a large potential for growth: in
2017, the United States Department of Transportation estimated that the average vehicle
occupancy rate in the United States is about 1.67 person per vehicle, and the occupancy rate
for vehicles used for work-related trips is even smaller [McGuckin and Fucci, 2018]. Thus,
there is a large fleet of vehicles that are operating under capacity, and the individuals that
are driving these vehicles for commuting purposes could engage in ridesharing. Some benefits
of a growth in ridesharing participation include the reduction of GHG emissions [Shaheen
et al., 2018, Coulombel et al., 2019, Yan et al., 2020], and the reduction of traffic congestion
and demand for parking infrastructure [Shaheen et al., 2018].

2.2.1. Surveys on ridesharing and related shared mobility systems

There are several reviews on ridesharing and related shared mobility systems in the
literature. In Agatz et al. [2012], the authors outline the optimization challenges in dy-
namic ridesharing and survey related Operations Research models in the literature. Some
optimization challenges outlined by the authors are modeling related, such as:

(1) the number of participants in a rideshare (single versus multiple riders);
(2) the possibility of transfers between multiple rideshares;
(3) the dynamic arrival of ridesharing requests;
(4) reoptimization policies upon the release of new information;
(5) anticipation of future requests;
(6) deviations from planned trips.

This thesis provides contributions to points (1), (3), (4), (5), and (6). Further, the authors
identify key characteristics of dynamic ridesharing systems:

• rideshares can be established on short notice;
• drivers that engage in ridesharing are independent;
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• trip-related costs on a rideshare are distributed among participants such that it is
financially beneficial for them to rideshare;
• trips in dynamic ridesharing are non-recurrent, as opposed to traditional ridesharing

systems that require a long-term commitment among participants;
• trips are prearranged: participants agree in advance to rideshare;
• the matching of drivers and riders is automated.

In Furuhata et al. [2013], the authors highlight that despite the convenience of modern
communication systems, the widespread use of ridesharing still faces challenges. Three key
challenges highlighted by the authors are: the design of pricing mechanisms that are attractive
to drivers and riders, a ride arrangement that takes into consideration user preferences and
other system attributes, and building trust between unknown drivers and riders in ridesharing
systems. The authors present a classification of 39 ridesharing companies and introduce a
framework to help identify key challenges in the widespread adoption of ridesharing. On
a wider scope, Mourad et al. [2019], survey models and algorithms for optimizing shared
mobility systems. The authors classify shared mobility systems in two groups: systems
where people share rides (e.g., ridesharing, vanpooling, dial-a-ride), and systems where parcel
transportation and people transportation are combined (e.g., combined delivery, share-a-
ride, crow-sourcing). A more recent survey [Martins et al., 2021] reviews ridesharing and
prearranged carpooling optimization problems. The authors classify optimization papers
according to solution methodology, identify ridesharing and prearranged carpooling challenges
in smart and sustainable cities, and discuss algorithmic venues for the generation of real-time
solutions, which may be required in dynamic ridesharing systems.

2.2.2. Casual and organized ridesharing

Ridesharing can be either casual or organized. Casual ridesharing (also called flexible
carpooling, casual carpooling, or slugging) is user-run, where impromptu ridesharing groups
are formed in meeting points such as park-and-ride facilities or public transit centers [Chan
and Shaheen, 2012]. On the other hand, in organized ridesharing, an intermediate platform
acts as a broker that matches drivers and riders. Such platforms can simply advertise
the itineraries of drivers and riders. Users can then communicate with each other to plan
rideshares, or the platform can suggest users a specific rideshare. These platforms allow
for the creation of rideshares between individuals with no previous historical involvements
[Dailey et al., 1999], and usually charge a small fee from participants or take a cut of the
monetary savings generated by the rideshare.
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2.2.3. The value of ridesharing

A common assumption in the literature is that individuals will consider engaging in
ridesharing only if it brings financial benefit to them [e.g., Agatz et al., 2011]. For example,
individuals may rideshare if the cost of ridesharing is smaller than the cost of some alternative
form of transportation, such as the cost of driving alone. Additionally, riders that participate
in ridesharing benefit from not having to pay the upfront costs and maintenance costs of
owning a car. The scientific literature on ridesharing often assumes that the monetary value
associated with a rideshare equates to the amount of travel distance savings generated by the
trip when compared to the individual trips for each participant [Agatz et al., 2011, Wang
et al., 2018]. This is referred to the distance savings generated by a rideshare, and this metric
can help estimate the GHG emissions mitigation potential of ridesharing. Such savings have
monetary value, and this value can be distributed among the participants and the ridesharing
company when calculating the ridesharing trip costs. The literature on Shapley values for
ridesharing discusses how these distance savings (or trip costs) can be distributed among
ridesharing participants [e.g., see Levinger et al., 2020].

2.2.4. Incentives for the adoption of ridesharing

The adoption of ridesharing can be driven by several incentives. Ridesharing not only
benefits the participating individuals: as ridesharing leads to fewer cars on the road and
therefore to less congestion, it brings benefits to mass transit systems (e.g., buses), taxis, and
individuals who are driving alone. Thus, policymakers may have an interest in promoting
ridesharing, and may achieve that by implementing incentive policies. For example, in order
to make ridesharing more appealing than driving alone, reserved parking may be offered to
individuals who rideshare [Brownstone and Golob, 1992]. Further, high-occupancy vehicle
(HOV) lanes can be implemented, where one or more lanes of a road or highway are reserved
for rideshares, taxis, and mass transit [Giuliano et al., 1990]. Similar to HOV lanes, high-
occupancy toll lanes can be introduced, where ridesharing vehicles and other vehicles (e.g.,
buses) can drive toll-free, but all other users of the lane (e.g., solo drivers) have to pay a
toll [Kon, 2010]. Another way of making ridesharing user-friendly is to guarantee rides back
home if individuals rideshare to work [Brownstone and Golob, 1992]. Ridesharing can also
be promoted through carbon-emission reduction certification and carbon trading programs,
where users of the platform can participate in carbon trading due to the carbon emission
reductions generated when ridesharing [Si et al., 2022].

2.2.5. Different types of ridesharing systems

A wide variety of ridesharing systems with different problem characteristics and assump-
tions is studied in the literature. Ridesharing involves a driver picking up one or more
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passengers, driving to each passenger’s destination, and finally driving to the driver’s destina-
tion. Further, participants may have time constraints when ridesharing. Thus, ridesharing
can be viewed as a form of pickup and delivery problem with time windows [see Parragh
et al., 2008a,b, for surveys on different pickup and delivery problems].

In its simplest form, one-to-one ridesharing, a driver picks up only one passenger. These
systems are therefore often modeled as bipartite matching problems, which are solvable in
polynomial time. This is the case of the dynamic driver-rider matching problem by Agatz et al.
[2011]. Alternatively, in one-to-many ridesharing, a driver picks up one or more passengers.
These systems therefore require modeling complex vehicle routing decisions through, for
example, three-index flow formulations or set partitioning formulations, which are known to
be NP-hard. This is the case in Baldacci et al. [2004], who introduced a dial-a-ride problem
for ridesharing. In this problem, a driver is able to pick up multiple riders, and all participants
have the same destination (e.g., the workplace). To solve this problem, the authors propose
an exact method.

Some studies take into account fairness when planning rideshares in order to encourage a
loyal user base. For example, Wang et al. [2018] study a ridesharing problem with matching
stability, such that participants are less likely to quit the system and arrange rideshares by
themselves. This study was later extended by Peng et al. [2022] to consider a taxi-sharing
setting with stability constraints. Both studies propose a one-to-many problem and model
them either via a set-packing or a set-partitioning formulation. In Peng et al. [2022], the
authors propose a branch-and-price algorithm to solve their one-to-many taxi-sharing problem
with stability constraints.

To improve the efficiency of ridesharing, [Stiglic et al., 2015] evaluate the impact of
meeting points, where participants agree to be picked up and dropped off at meeting points
within a certain distance of their origins and destinations. The authors conclude that meeting
points can significantly increase the system-wide distance savings and the number of matched
participants. Meeting points imply geographical flexibility. Alternatively, temporal flexibility
is evaluated by Stiglic et al. [2016], where flexible departure times or detour times can
significantly increase the likelihood that drivers and riders find a match for ridesharing.

Some studies focus on the integration of ridesharing with mass transit systems. For
example, in Stiglic et al. [2018], the authors evaluate the performance of this integration
according to driver flexibility, park-and-ride matches (i.e., the driver parks and takes mass
transit after dropping off riders at a transit station), number of participants, and mass transit
system parameters such as train speed and departure frequency. When considering integration
with mass transit, participants are transferring from one transportation mode to another.
When considering only rideshares as transportation modes, Masoud and Jayakrishnan [2017]
consider a problem setting where participants can transfer from one rideshare to another.
Finally, a system containing dedicated drivers is studied by Lee and Savelsbergh [2015]. The
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purpose of this study is to understand the value of employing a small number of dedicated
drivers, such that these can service riders that would remain unmatched if no dedicated
drivers were available.

2.3. Review on carbon capture and storage
In CCS, CO2 is captured at emitter sites and transported to geological reservoirs (inshore

or offshore) where it is injected for long-term storage. Emitter sites can be industrial facilities
in different sectors, such as steel, cement, pulp and paper, bioenergy, fertilizer and chemicals,
combustion-based power, oil and gas, and hydrogen generation. The transportation of CO2

can be done through different modes, such as pipelines, ships, trucks, and trains.
Around the world, studies indicate that net-zero emissions by 2050 will not be achievable

without using a combination of GHG mitigation strategies, including CCS [IEA, 2017, Lane
et al., 2021, Riahi et al., 2017]. The cement industry is a good example for the need of
implementing CCS: in this industry, about two-thirds of the CO2 emissions are a byproduct
of a chemical reaction, and not from the burning of fossil fuels [Strunge et al., 2022]. Not
using CCS in the cement industry would mean that the majority of CO2 emissions in this
sector would not be addressed, unless cement is replaced by other materials, which is unlikely
to be feasible within the timeframe of the Paris Accords.

2.3.1. Surveys on models for CCS planning problems

Huang et al. [2013] review network design models for the transportation of CO2 and
energy expansion planning with a focus on CCS. The authors provide a classification of
models according to objective function type (single-objective and multi-objective), objective
function terms, types of constraints, model type, and solution methodology. Tapia et al.
[2018] conduct a review of optimization and decision-making models for the planning of CCS
systems, as well as systems that combine CCS with CO2 utilization. The authors identify
that most planning techniques in the literature are either mathematical models, pinch-based
methods, or miscellaneous approaches such as numerical simulations and metaheuristics.
In Zhang et al. [2022], the authors survey 16 source-sink matching models for CCS and
classify them according to six key attributes: mitigation targets, carbon sources, carbon sinks,
transportation networks, utilization, and integration and synergy of models (e.g., modeling
uncertainty, policies, risk assessment, and integration within a negative-carbon technology
system).

2.3.2. Characteristics of a CCS network

This section provides some details on the emitters, geological reservoirs and modes of
transportation that may be part of a CCS network.
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2.3.2.1. Emitters. Emitters may be industrial sites in various sectors, such as steel,
cement, pulp and paper, bioenergy, fertilizer and chemicals, combustion-based power, oil
and gas, as well as fossil fuel based hydrogen generation. Different technologies can be
used to capture CO2 from emitter sites. These technologies fall in three broad groups:
post-combustion, pre-combustion, and oxyfuel combustion [read more in Chapter 6 and Bui
et al., 2018].

2.3.2.2. Geological reservoirs. CO2 can be injected in underground geological forma-
tions for long-term storage. Some geological reservoirs that are fit for CO2 storage are, for
example, saline aquifers and depleted oil reservoirs [Cauchois et al., 2021]. In North America,
it is estimated that saline aquifers correspond to 95% of the available CO2 storage capacity
[Middleton et al., 2020]. To successfully deploy CCS, hundreds or thousands of potential
storage sites have to be identified and screened, and particularities and uncertainties of each
site may impact CO2 injection capacity and costs [Keating et al., 2011, Middleton et al., 2020].
For example, some attributes that impact CO2 injection rates and associated costs are the
reservoir depth, thickness, permeability, porosity, and temperature [Middleton et al., 2020].
As geological reservoir storage is uncertain, given the financial and time scale of ramping-up
CCS, this uncertainty provides considerable risks to the successful deployment of CCS [Lane
et al., 2021]. Compared to a scenario where reservoir capacity is widely available for CO2

storage, a scenario where storage capacity is limited would require relying on GHG mitigation
technologies that are at an earlier stage of development, and that are more expensive than
CCS [IEA, 2019].

2.3.2.3. Transportation modes. CO2 can be transported from emitter sites to geological
reservoirs by a mix of pipelines, ships, trucks, and trains [IPCC, 2005, Han and Lee, 2011].
Each transportation mode poses a different tradeoff, and may require the transportation of
CO2 in a specific phase (e.g., gaseous, supercritical). For example, pipelines can transport
pressurized CO2 in supercritical phase, which allows for the transportation of large volumes of
CO2 (which may be a requirement to achieve net-zero emissions). The CO2 pressure has to be
maintained throughout the pipeline network, which requires the installation of recompression
stations [Svensson et al., 2005]. Alternatively, repurposed oil and gas pipelines can be used to
transport CO2, usually in gaseous phase. Reusing oil and gas infrastructure can reduce the
deployment costs of CCS [Cauchois et al., 2021]. However, gaseous phase CO2 is at a lower
density than supercritical phase CO2, which means that oil and gas pipelines can be less
attractive when transporting large volumes of CO2 is a priority. CO2 transportation by ship
and truck is more flexible than pipeline transportation: ships and trucks can be deployed
faster than pipelines and they can adapt more quickly to routing changes and changes in
capacity requirements [Svensson et al., 2005]. For CO2 transportation by ships, purpose-built
CO2 tankers can be used. Alternatively, other types of ships can be repurposed to allow
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for the transportation of CO2 [Orchard et al., 2021]. Transportation of CO2 by train can
take advantage of existing railway networks, but cannot adapt to routing changes as easily
as ships and trucks. Despite the advantages of transporting CO2 by ships, trucks or trains,
these transportation modes are less efficient at transporting large volumes of CO2, in contrast
to supercritical phase pipelines.

2.3.3. Technologies related to CCS

We now list some technologies related to CCS, namely, direct air carbon capture and
storage, bioenergy with CCS, and CCS with CO2 utilization. In direct air carbon capture
and storage, CO2 is captured from air and stored in geological reservoirs. This technology
has, however, considerably higher costs when compared to other GHG mitigation strategies:
the concentration of CO2 in the air is about 300 times more dilute than the concentration
of CO2 in flue gas streams found in industrial emitter sites, which considerably increases
the costs of separating CO2 [Ranjan and Herzog, 2011]. In bioenergy with CCS [BECCS,
Fridahl and Lehtveer, 2018], bioenergy is extracted from biomass (e.g., trees and crops). The
CO2 absorbed when growing these trees and crops is then captured when the biomass is used
(e.g., combustion, fermentation). Thus, BECCS has the potential to achieve net-negative
CO2 emissions. Also, some products can be made using the CO2 obtained with CCS [Aresta
and Dibenedetto, 2010]. For example, in enhanced oil recovery, CO2 is injected in depleted
oil fields to extract oil that would not be possible to be extracted otherwise, and has the
potential to reduce the carbon footprint of oil production [Middleton, 2013].

2.3.4. Optimization models for a CCS value chain

Deploying a CCS infrastructure during the next decades would require investments in the
order of billions of dollars, and CCS stakeholders can benefit from having access to tools that
aid them in planning for the deployment of CCS and assessing costs. To this end, several
strategic planning problems have been proposed to optimize the value chain of CCS. We
refer to this as CCS value chain optimization (VCO). These problems are often modeled as
combined facility location and network design problems [e.g., Middleton and Bielicki, 2009,
Jones et al., 2022], where facilities (sources and sinks) correspond to emitters and geological
reservoirs, and the network corresponds to the CO2 transportation infrastructure between
emitters and geological reservoirs.

Models for the CCS VCO have different levels of detail when representing CCS infras-
tructure and costs. For example, networks that connect sources and sinks may be explicitly
represented in the model, or this network may be simplified to yield a simpler model. For
example, in Diamante et al. [2013], the authors propose a bipartite matching problem where
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sources and sinks are directly connected. In contrast, models such as SimCCS [a widely-
recognized single-period VCO model for pipeline-based CCS, see Middleton and Bielicki, 2009]
explicitly consider complex pipeline networks connecting sources and sinks, and therefore
provide a more accurate cost estimation of CCS costs. Other models [e.g. Han and Lee, 2011,
d’Amore and Bezzo, 2017] consider more than one transportation mode (e.g., pipelines, trains,
trucks, and ships).

Models for CCS VCO can also be divided according to the temporal aspect of decisions.
The deployment of CCS infrastructure will likely span several decades. The underlying
planning problem therefore has multiple time periods. Single-period CCS models such
as SimCCS [Middleton and Bielicki, 2009] simplify the temporal aspect of decisions, and
may therefore overestimate CCS costs by more than 50% [see Middleton et al., 2012b]. A
benefit of using single-period models is that solving the underlying optimization problem is
computationally more tractable. To better represent the real costs associated with a CCS
infrastructure, SimCCS was extended to a multiperiod context [Middleton et al., 2012b, Jones
et al., 2022], referred to as SimCCS-Time.

To improve the tractability of SimCCS, Lobo [2017] proposes valid inequalities for a
single-period CCS problem. In Whitman et al. [2021], the authors propose three heuristics for
a single-period CCS model. Namely, a constructive heuristic, a slope scaling heuristic, and a
hybrid combination of the first two heuristics. In Middleton [2013], the author proposes a
piecewise linear approximation for pipeline costs, which renders a model that is, on average,
two to three orders of magnitude faster to solve than traditional models with discrete pipeline
capacities. Given the importance of solving real-world sized instances of the multiperiod
planning problem, Chapter 6 builds on the proposed slope scaling heuristic to develop an
efficient heuristic capable of finding high-quality solutions within a matter of minutes.
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Chapter 3

Dynamic and Stochastic Rematching for
Ridesharing Systems: Formulations and

Reductions

This chapter introduces a one-to-one dynamic and stochastic matching problem for ridesharing.
A novelty characteristic of this problem is the possibility of unmatching previously-matched
riders and drivers. This allows the system to rearrange rideshares in the case where more
profitable rideshares become available. To promote user-friendliness, unmatching is associated
with a penalty (e.g., compensation to unmatched users), leading to a trade-off between not
unmatching and unmatching to obtain a more profitable rideshare while paying a penalty.
Both driver and rider release are uncertain. We therefore propose a stochastic optimization
model. As the stochastic model has to represent different realizations of driver and rider
release, its number of variables and constraints may pose computational challenges. To
address this issue, this chapter introduces model reduction techniques based on platform
assumptions commonly found in ridesharing systems. The main contributions of this chapter
are theoretical, and Chapter 4 extends the contributions of this chapter by empirically
evaluating on a rolling horizon framework different models for the here proposed problem.
The contributions of the student are:

• Introduction of a novel ridesharing problem;
• Deterministic and two-stage stochastic mathematical programming models for that

problem;
• Reduction techniques to reduce the number of variables and constraints on these

models.
The contents of this chapter were published in the Lecture Notes in Computer Science.
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Abstract
We introduce a dynamic and stochastic rematching problem with applications in request

matching for ridesharing systems. We propose three mathematical programming formulations
that can be used in a rolling horizon framework to solve this problem. We show how these
models can be simplified provided that specific conditions that are typically found in practice
are met.

Keywords: ridesharing, request matching, stochastic programming.

3.1. Introduction
Ridesharing systems are matching agencies for drivers and riders that are interested in

sharing commute expenses. Over time, these systems receive requests from their customers
corresponding to the intent of engaging in ridesharing as a driver or as a rider for a certain
itinerary. In this context, an itinerary is composed of an origin, a destination, the desired
departure time, and the desired arrival time. A common goal of ridesharing systems is to
create matches that generate profit and that promote customer engagement. We use the
term match to refer to the pairing of two requests, meaning that the customers behind these
requests are assigned to travel together to fulfill their corresponding itineraries. A driver
request may be matched to a rider request if their itineraries are compatible and if the
corresponding ridesharing trip generates value for the participants. The value of a ridesharing
trip is often assumed to be the amount of travel distance savings generated by the trip when
compared to the individual trips for each participant [Agatz et al., 2011, Wang et al., 2018].

In this work, we study a ridesharing system that matches requests that arrive dynamically
and may unmatch requests whose corresponding rides have not yet started. We assume to
have access to forecasts on the probability that future requests exist. To avoid compromising
customer engagement, we allow for defining a penalty on unmatch operations, which may
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correspond to a discount on future trips offered to the unmatched customers. These penalties
may depend, for example, on the amount of time since the requests have been created.
Unmatching a request that was released much earlier would therefore lead to a large penalty.
Nevertheless, unmatching requests may be desirable if a new request becomes available such
that it allows for a highly profitable match with a currently-matched request.

Research on optimization for ridesharing started gaining traction with the work of Agatz
et al. [2011], where the authors studied a dynamic driver-rider matching problem. Several
further studies explored specific attributes of ridesharing systems. To name a few, Stiglic
et al. [2015] studied the impact of meeting points in ridesharing systems, Stiglic et al. [2016]
studied the impact of participant time flexibility in ridesharing, Stiglic et al. [2018] studied the
integration of a ridesharing system with public transit, and Wang et al. [2018] investigated the
impact of matching stability on a dynamic ride-matching system. For surveys on ridesharing
and related shared mobility systems, we refer the reader to Agatz et al. [2012], Furuhata
et al. [2013] and Mourad et al. [2019]. Our work extends the ridesharing request matching
literature by addressing the stochasticity in requests, the unmatching of requests, and the time-
dependency of matching profits and unmatching penalties. In summary, our contributions are
threefold: 1) we introduce a new dynamic and stochastic rematching problem 2) we propose
three mathematical programming formulations to solve this problem, and 3) we show how
these formulations can be simplified under specific but realistic conditions.

3.2. Problem Definition
Requests in a ridesharing system arrive continuously over a planning horizon T =

{ 1, 2, . . . , h }. Let G = (V, E) be a bipartite graph where V is the set of requests and E is
the set of edges between compatible requests. The set of requests is partitioned into a set
of driver requests D and a set of rider requests R, such that V = D ∪ R, D ∩ R = ∅, and
E ⊆ D ×R. A pair of requests (ij) ∈ D ×R does not belong to E if the itineraries of i and
j are incompatible or if the corresponding ridesharing trip does not generate value for its
participants.

At each time period t ∈ T , a pair of requests (ij) ∈ E can be matched for a profit of
ct

ij and unmatched for a cost of dt
ij. We assume that ct

ij ≤ dt
ij, i.e., it is never profitable to

unmatch a pair of requests and then match it in the same time period. A pair of requests (ij)
is said to be active at the beginning of the time period t if it was not unmatched since the
last period it has been matched. For each request i ∈ V , let ri be its release time and bi be
its latest possible match time. The latest possible match time may correspond to the desired
departure time or to the latest time period that a customer is willing to wait for a match.
The pair of requests (ij) ∈ E can only be matched or unmatched at time period t ∈ T if
both requests have already been released and if they are still available for matching. Hence,
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matching and unmatching are only possible if t ∈ Wij, where

Wij = { t ∈ T | max(ri, rj) ≤ t ≤ min(bi, bj) } .

If the condition above is not met, we interdict matches and unmatches by assigning ct
ij = −M

and dt
ij = M , where M is a sufficiently big constant such that an optimal solution never has

the pair of requests (ij) matched or unmatched outside Wij.
The objective of the ridesharing system is to dynamically match and unmatch driver

and rider requests such that the net profit over the planning horizon is maximized. In
the following, we present three mathematical programming formulations that can be used
in a rolling horizon framework to provide matches and rematches at specific time periods
throughout the planning horizon. We first present a myopic formulation that can be used
when no forecasts on future demand are available. Then, we present a static formulation
that can be used when the information for all time periods is known in advance, or when a
sufficiently accurate forecast is available. Finally, we present a stochastic formulation that
can be used when sufficient historical information is known to accurately generate multiple
scenarios that are representative of future demand.

3.3. The Myopic Problem
When no forecasts on future demand are available, a myopic optimization problem can be

defined. For each pair (ij) ∈ E, let xt
ij be a binary variable equal to 1 if and only if the pair

(ij) is matched at time period t, yt
ij be a binary variable equal to 1 if and only if the pair (ij)

is unmatched at time period t, and at
ij be a binary constant equal to 1 if and only if (ij) is

active at the beginning of t. The myopic problem of matching and unmatching requests such
that the net profit at time period t ∈ T is maximized can be formulated as below

fmyo(t, at) := max
∑

(ij)∈E

(ct
ijx

t
ij − dt

ijy
t
ij) (3.3.1)

s.t.
∑

(ij)∈δ(v)
(xt

ij − yt
ij) ≤ 1−

∑
(ij)∈δ(v)

at
ij ∀v ∈ V (3.3.2)

yt
ij ≤ at

ij ∀(ij) ∈ E (3.3.3)

xt
ij, yt

ij ∈ { 0, 1 } ∀(ij) ∈ E. (3.3.4)

The objective function (3.3.1) maximizes the net profit of matching and unmatching requests
at time period t. Constraints (3.3.2) ensure that requests can only be matched if they are
inactive. Constraints (3.3.3) ensure that requests can only be unmatched if they are active.

The formulation above can be rewritten as a maximum-weight bipartite matching problem.
Let E0 = { (ij) ∈ E | at

ij = 0 } and E1 = E \ E0. For each pair (ij) ∈ E0, let xt
ij be a binary

variable equal to 1 if and only if the inactive pair (ij) is matched at time period t. For each
pair (ij) ∈ E1, let zt

ij be a binary variable equal to 1 if and only if the active pair (ij) is not
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unmatched at time period t. The bipartite matching reformulation is defined below

f ′
myo(t) := max

∑
(ij)∈E0

ct
ijx

t
ij +

∑
(ij)∈E1

dt
ij(zt

ij − 1) (3.3.5)

s.t.
∑

(ij)∈δ(v)∩E0

xt
ij +

∑
(ij)∈δ(v)∩E1

zt
ij ≤ 1 ∀v ∈ V. (3.3.6)

The objective function (3.3.5) maximizes the net profit of matching and unmatching requests
at time period t. If zt

ij = 0, then (ij) is unmatched, which yields a penalty of −dt
ij in the

objective function. Constraints (3.3.6) ensure that requests can be matched at most once,
either in E0 or in E1. Despite having two sets of variables, the formulation above is equivalent
to a classic bipartite matching formulation. Nevertheless, we have decided to use distinct
variable names to highlight the differences between matches in E0 and matches in E1.

3.4. The Static Problem
When the requests released throughout all time periods are known in advance, a multi-

period static problem that provides matches and unmatches for the whole planning horizon
can be formulated. This model can be used as a benchmark for other models evaluated in
the rolling horizon framework, and is defined below

max
∑
t∈T

∑
(ij)∈E

(ct
ijx

t
ij − dt

ijy
t
ij) (3.4.1)

s.t.
t∑

ℓ=1

∑
(ij)∈δ(v)

(xℓ
ij − yℓ

ij) ≤ 1 ∀t ∈ T, v ∈ V (3.4.2)

yt
ij ≤

t−1∑
ℓ=1

(xℓ
ij − yℓ

ij) ∀t ∈ T, (ij) ∈ E (3.4.3)

xt
ij, yt

ij ∈ { 0, 1 } ∀t ∈ T, (ij) ∈ E. (3.4.4)

The objective function (3.4.1) maximizes the net profit over the full planning horizon.
Constraints (3.4.2) ensure that requests can only be matched if they are inactive. Constraints
(3.4.3) ensure that requests can only be unmatched if they are active.
Assumption 1. The profit of matching a pair of requests is never bigger than the cost of
unmatching it, i.e.,

ct
ij ≤ dk

ij ∀t ∈ T, k ∈ T, t ≤ k.

Proposition 1. If Assumption 1 holds for all pairs of requests, then it is never necessary to
unmatch in an optimal solution for (3.4.1)–(3.4.4).
Proof 1. Let (x̄, ȳ) be an optimal solution for (3.4.1)–(3.4.4) and z(x̄, ȳ) its objective function
value. Assume that there exists a pair (ij) ∈ E and time periods t ∈ T and k ∈ T with t ≤ k

such that x̄t
ij = 1 and ȳk

ij = 1. As ct
ij − dk

ij ≤ 0, there exists a solution (x̂, ŷ) similar to (x̄, ȳ),
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except for x̂t
ij = 0 and ŷk

ij = 0. Consequently, z(x̂, ŷ) ≥ z(x̄, ȳ), which either contradicts the
optimality of (x̄, ȳ), or shows that both solutions have the same objective function value. □

If Assumption 1 holds, by Proposition 1, it follows that the static problem can be reduced
by removing all unmatching variables, which gives the formulation below

max
∑
t∈T

∑
(ij)∈E

ct
ijx

t
ij (3.4.5)

s.t.
∑
t∈T

∑
(ij)∈δ(v)

xt
ij ≤ 1 ∀v ∈ V (3.4.6)

xt
ij ∈ { 0, 1 } ∀t ∈ T, (ij) ∈ E. (3.4.7)

As each pair (ij) ∈ E can be matched at most once, it is more profitable to match (ij) at the
time period that maximizes ct

ij,∀t ∈ T . Thus, the multiple time periods can be represented
implicitly and the formulation above can be reduced to a maximum-weight bipartite matching
problem, as below

max
∑

(ij)∈E

ĉijxij (3.4.8)

s.t.
∑

(ij)∈δ(v)
xij ≤ 1 ∀v ∈ V, (3.4.9)

where ĉij = max { ct
ij | t ∈ T } . Let x̄ be an optimal solution for Eqs. (3.4.8)–(3.4.9). If

x̄ij = 1, then (ij) is matched in time period t ∈ arg maxt∈T ct
ij.

The static formulation can be adapted to be used in a rolling horizon framework if a
forecast such as the expected future demand is available. The static model that matches and
unmatches requests for a time period k ∈ T while taking into consideration a forecast for
periods (k + 1), . . . , h is defined below

fstat(k, ak) := max
h∑

t=k

∑
(ij)∈E

(ct
ijx

t
ij − dt

ijy
t
ij) (3.4.10)

s.t.
t∑

ℓ=k

∑
(ij)∈δ(v)

(xℓ
ij − yℓ

ij) ≤ 1−
∑

(ij)∈δ(v)
ak

ij ∀t = k, . . . , h, v ∈ V (3.4.11)

yt
ij ≤ ak

ij +
t−1∑
ℓ=1

(xℓ
ij − yℓ

ij) ∀t = k, . . . , h, (ij) ∈ E (3.4.12)

xt
ij, yt

ij ∈ { 0, 1 } ∀t = k, . . . , h, (ij) ∈ E. (3.4.13)

The formulation above is similar to the single-scenario case of the two-stage stochastic
programming formulation defined next.
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3.5. The Stochastic Problem
To address the uncertainty on future demand, we introduce a two-stage stochastic

programming formulation. In the first stage, matching and unmatching decisions are given
for requests available at the current time period t ∈ T . In the second stage, these decisions
are made for the remainder of the planning horizon, given the first-stage decisions and a
sample realization of future requests.

Let S be the set of second-stage scenarios and ps the probability associated with each
scenario s ∈ S. We assume that each scenario s ∈ S contains a full realization of the planning
horizon since the time period t + 1. For each request i ∈ V and scenario s ∈ S, let ξs

i be a
random variable defined below

ξs
i =

1 if request i is available for matching in scenario s,

0 otherwise.

For each pair (ij) ∈ E and time period k = (t + 1), . . . , h, if ξs
i = 0 or ξs

j = 0, then cks
ij = −M

and dks
ij = M . Otherwise, cks

ij = ck
ij and dks

ij = dk
ij. Moreover, if a request i ∈ V is released

before the second stage, i.e., ri ≤ t, then we assume that ξs
i = 1,∀s ∈ S. The two-stage

stochastic programming formulation is defined as below

fsto(t) := max
∑

(ij)∈E0

ct
ijx

t
ij +

∑
(ij)∈E1

dt
ij(zt

ij − 1) +
∑
s∈S

psQ(t + 1, s, at+1) (3.5.1)

s.t.
∑

(ij)∈E0∩δ(v)
xt

ij +
∑

(ij)∈E1∩δ(v)
zt

ij ≤ 1 ∀v ∈ V (3.5.2)

at+1
ij =

xt
ij if (ij) ∈ E0,

zt
ij otherwise.

∀(ij) ∈ E (3.5.3)

xt
ij ∈ { 0, 1 } ∀(ij) ∈ E0 (3.5.4)

zt
ij ∈ { 0, 1 } ∀(ij) ∈ E1. (3.5.5)

The objective function (3.5.1) maximizes the net profit at time period t plus the expect net
profit for time periods (t + 1), . . . , h. Constraints (3.5.2) match and unmatch requests for
period t. Equations (3.5.3) define the values of at+1

ij ,∀(ij) ∈ E. The second-stage problem is
a multiperiod problem over the time periods (t + 1), . . . , h, and is defined for each scenario
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s ∈ S as below

Q(k, s, ak) := max
h∑

t=k

∑
(ij)∈E

(cts
ijx

ts
ij − dts

ijy
ts
ij ) (3.5.6)

s.t.
t∑

ℓ=k

∑
(ij)∈δ(v)

(xℓs
ij − yℓs

ij ) ≤ 1−
∑

(ij)∈δ(v)
ak

ij ∀t = k, . . . , h, v ∈ V (3.5.7)

yts
ij ≤ ak

ij +
t−1∑
ℓ=k

(xℓs
ij − yℓs

ij ) ∀t = k, . . . , h, (ij) ∈ E (3.5.8)

xts
ij , yts

ij ∈ { 0, 1 } ∀t = k, . . . , h, (ij) ∈ E. (3.5.9)

We now show how the two-stage formulation can be reduced if some realistic conditions
are met.

3.5.1. Reductions based on the system environment

Motivated by the fact that unmatching close to the departure time is typically not user-
friendly, we study how to reduce the stochastic model if the penalty of unmatching does not
become less expensive over time.
Assumption 2. For each (ij) ∈ E, the unmatching costs are non-decreasing in Wij, i.e.,

dt
ij ≤ dk

ij ∀t ∈ Wij, k ∈ Wij, t < k

Proposition 2. If Assumption 2 holds, then for each (ij) ∈ E, dt
ij is non-decreasing in

{ t ∈ T | min(Wij) ≤ t ≤ h }.
Proof 2. For each t ∈ T , if t ∈ Wij, then dt

ij ≤ M . Otherwise, if max(Wij) < t ≤ h, then
dt

ij = M . □

Proposition 3. If Assumptions 1 and 2 hold, then the two-stage problem can be reduced
such that the second stage has a single period.
Proof 3. Let (x̄, ā, ȳ) be an optimal solution for the two-stage problem. For each (ij) ∈ E

where āk
ij = 1, the corresponding time period t for when (ij) was last matched must be in

Wij. Moreover, by Proposition 2, it follows that the second-stage penalties for unmatching
(ij) are non-decreasing. Thus, k is the best period to unmatch (ij) in the second stage.
Together with Proposition 1, it follows that an optimal solution will never unmatch the
same pair more than once in the second stage. Consequently, the second-stage unmatching
variables yts

ij ,∀t = (k + 1), . . . , h, (ij) ∈ E can be set to 0. As a result, the time periods
for the second-stage matching variables can be represented implicitly, which gives us the
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single-period second-stage problem below

Q′(k, s, ak) := max
∑

(ij)∈E

(ĉs
ijx

s
ij − dks

ij yks
ij ) (3.5.10)

s.t.
∑

(ij)∈δ(v)
(xs

ij − yks
ij ) ≤ 1−

∑
(ij)∈δ(v)

ak
ij ∀v ∈ V (3.5.11)

yks
ij ≤ ak

ij ∀(ij) ∈ E (3.5.12)

xs
ij, yks

ij ∈ { 0, 1 } ∀(ij) ∈ E, (3.5.13)

where ĉs
e = max { cts

ij | t = k, . . . , h }. Together, Eqs. (3.5.1)–(3.5.5) and (3.5.10)–(3.5.13) form
a reduced two-stage model. □

3.5.2. Reductions based on the first-stage solution structure

In certain situations, it is important to efficiently solve the second-stage problem given a
first-stage solution. For example, when the two-stage problem is solved independently within
a mathematical decomposition method. We provide two reductions for the second-stage
problem, based on the first-stage solution.

3.5.2.1. No matches before the second stage. If ak
ij = 0, ∀(ij) ∈ E, then the

second-stage problem is independent of the first stage, and is defined as follows

Q′′(k, s, 0) := max
h∑

t=k

∑
(ij)∈E

(cts
ijx

ts
ij − dts

ijy
ts
ij ) (3.5.14)

s.t.
t∑

ℓ=k

∑
(ij)∈δ(v)

(xℓs
ij − yℓs

ij ) ≤ 1 ∀t = k, . . . , h, v ∈ V (3.5.15)

yts
ij ≤

t−1∑
ℓ=k

(xℓs
ij − yℓs

ij ) ∀t = k, . . . , h, (ij) ∈ E (3.5.16)

xts
ij , yts

ij ∈ { 0, 1 } ∀t = k, . . . , h, (ij) ∈ E, (3.5.17)

which has the same structure as the static problem defined in Eqs. (3.4.1)–(3.4.4). It follows
that if Assumption 1 holds, then the formulation above can be rewritten as a maximum-weight
bipartite matching problem.

3.5.2.2. Matches before the second stage. If Assumption 1 holds, then the
second-stage unmatching of pairs in { (ij) ∈ E | ak

ij = 0 } is never profitable, even if
{ (ij) ∈ E | ak

ij = 1 } ̸= ∅. Thus, the variables yts
ij ,∀t = k, . . . , h, (ij) ∈ E, ak

ij = 0 can be set
to 0.

Although the second-stage problem can be reduced in such cases, these reductions do not
apply to the full two-stage problem defined in Eqs. (3.5.1)–(3.5.9).
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3.6. Conclusions and Future Work
We have introduced a matching and rematching problem with applications in request

matching for ridesharing systems. We have presented three mathematical formulations that
can be used in a rolling horizon framework. We discussed how to reduce these formulations
provided that specific conditions that are typically found in practice are met. In some
cases, these formulations can be reduced to a simple maximum-weight bipartite matching
formulation. Some opportunities for future work are the evaluation of the proposed models
on a rolling horizon framework and the development of efficient decomposition methods that
exploit the proposed model reduction techniques.
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Chapter 4

Rolling Horizon Strategies for a Dynamic and
Stochastic Ridesharing Problem with

Rematches

In this chapter, myopic and stochastic models for the problem presented in Chapter 3
are empirically evaluated within a rolling horizon framework. The studied problem is a
one-to-one dynamic driver and rider matching problem with stochastic drivers and riders.
Additionally, this problem allows for the rematching of previously-matched requests, such
that the ridesharing system can rearrange decisions if it is advantageous. As the contributions
of Chapter 3 are of theoretical nature, this chapter extends these contributions through the
analysis of computational results. The computational results allow the assessment of model
performance, the value of rematching under different penalty levels, and the impact of other
system parameters. The contributions of the student are:

• An expected value approximation for a two-stage stochastic matching and rematching
problem for ridesharing;
• Empirical evaluation of this ridesharing problem;
• Managerial insights on the value of rematching and other system attributes;
• Insights on the performance of stochastic model approximations according to different

system attributes.
The contents of this chapter were submitted to Discrete Applied Mathematics, and this

submission is currently under review. A technical report is available in https://www.cirrelt.
ca/documentstravail/cirrelt-2021-20.pdf.

https://www.cirrelt.ca/documentstravail/cirrelt-2021-20.pdf
https://www.cirrelt.ca/documentstravail/cirrelt-2021-20.pdf


Rolling Horizon Strategies for a
Dynamic and Stochastic Ridesharing

Problem with Rematches
Gabriel Homsi 1, Bernard Gendron 1, Sanjay Dominik Jena 2

1 Department of Computer Science and Operations Research, Université de Montréal and
CIRRELT, Canada

2 Department of Management and Technology, École des Sciences de la Gestion, Université
du Québec à Montréal and CIRRELT, Canada

Abstract
We study a dynamic matching and rematching problem with applications in ridesharing

systems. Transportation requests for riders and passengers arrive dynamically and are
represented as nodes of a bipartite graph, connected by edges that correspond to compatible
requests. Matching requests by selecting the corresponding edge earns a profit. We further
allow for unmatching previously matched requests. While this increases the system’s flexibility
to adjust to new matching opportunities, unmatching may degrade customer experience and
therefore implies penalty costs. We evaluate myopic and stochastic multi-period mixed-integer
programming models in a rolling horizon framework. All models are compared against a
static model that has perfect knowledge about future requests, using a novel and extensive
benchmark set of realistic instances. Our results demonstrate the value of being able to
unmatch, as well as the benefits of the stochastic strategies over the myopic strategy.

Keywords: ridesharing; bipartite matching; stochastic optimization; rolling horizon;
rematching.

4.1. Introduction
Traffic congestion and air pollution are common problems in metropolitan areas. In

addition to the environmental impact, these issues have an immediate impact on urban
quality of life. To mitigate these issues, cities may encourage individuals to engage in
ridesharing.

The act of ridesharing consists of traveling together to share trip expenses, which con-
tributes to the reduction of vehicle emissions. The practice of ridesharing is not new, and
dates as back as WWII and the 1970s oil crisis [Chan and Shaheen, 2012]. Nevertheless,
ridesharing still has a huge growth potential: the average vehicle occupancy rate in the
United States is estimated to be about 1.67 persons per vehicle [McGuckin and Fucci, 2018].

52



Additionally, the occupancy rate of vehicles used for work-related trips is even smaller (see
Figure 4.1). Those vehicles, operating under capacity, could potentially engage in ridesharing.
Note that there is no consensus in the literature on the differences between carpooling and
ridesharing [Neoh et al., 2017]. We therefore use these terms interchangeably.

Fig. 4.1. Vehicle occupancy rate by trip purpose, source: [McGuckin and Fucci, 2018].

In this work, we revisit a matching and rematching problem with applications in ridesharing
systems, previously defined in Homsi et al. [2020]. Ridesharing systems are matching agencies
for drivers and riders that are interested in sharing commute expenses. Over time, these
systems receive requests from their customers corresponding to the intent of engaging in
ridesharing for a certain itinerary, either as a driver or as a rider. In this context, an itinerary
is composed of an origin, a destination, the earliest departure time, and the latest arrival
time. A common goal of ridesharing systems is to create matches that generate profit and
that promote customer engagement. We use the term match to refer to the pairing of two
requests, meaning that the customers behind these requests are assigned to travel together to
fulfill their corresponding itineraries. Requests may not only be matched, but may also be
unmatched afterwards (for a certain penalty cost) such that they can be reassigned to better
rideshares.
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Note that there are no guarantees that all requests will be provided service. Matching
all driver and rider requests may not only be infeasible in practice, but is also likely to be
unprofitable from a system operator’s perspective. As such, the here considered planning
problem assumes that the ridesharing operator wants to maximize profit, which is in line
with current ridesharing systems (e.g., Netlift and Amigo Express), where driver supply is
often not equal to rider demand.

This problem has been considered in Homsi et al. [2020], who proposed a static formulation
spanning the entire planning horizon, as well as a myopic and a two-stage stochastic model
that can be integrated in a rolling horizon framework. In this paper, we extend these
developments in order to evaluate the usefulness of a variety of models proposed for this
problem in practice.
Contributions. The contributions of this paper can be summarized as follows. In addition to
the previously introduced models, we here propose an expected value model, which optimizes
over the average demand of the considered scenarios. We then evaluate the performance of all
models in extensive computational experiments on novel problem instances generated based on
trip data from an industrial collaborator. Specifically, we simulate a rolling horizon planning,
where new requests are dynamically released into the system and the different models are
used to dynamically generate matching and unmatching decisions. Finally, we also investigate
different matching profit and unmatching penalty functions, providing valuable insights on
how different corporate strategies may affect profitability and customer satisfaction.

4.2. Related Work
Ridesharing has been the focus of extensive research in the literature. For surveys on

ridesharing and related shared mobility systems, we refer the reader to Agatz et al. [2012],
Furuhata et al. [2013] and Mourad et al. [2019]. In Agatz et al. [2012] components and
challenges of ride-matching optimization for dynamic ridesharing systems are discussed.
Shortly after, Furuhata et al. [2013] presented a broad taxonomy for 39 ridesharing matching
agencies and identified challenges in the mass adoption of ridesharing. A more general survey
on shared mobility systems was recently conducted by Mourad et al. [2019], which not only
includes problems where vehicles carry passengers, but also parcels next to passengers.

Ridesharing studies usually focus either on operational-level decisions or on policy studies.
Studies focusing on operational planning typically formulate an optimization model to find
efficient rideshares for the participants. Policy-based studies explore the impact of pricing
and incentive policies on ridesharing, and focus less on individual-based decisions and more
on a macro-level analysis.
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4.2.1. Operational planning studies

In operational planning studies, ridesharing problems are usually formulated as vehicle
routing problems (VRPs) or as bipartite matching problems.

4.2.1.1. Vehicle routing based problems. One of the first studies to model a rideshar-
ing problem as a VRP formulation is the work of Baldacci et al. [2004]. The authors solve a
carpooling problem with a common workplace destination. The authors propose exact and
heuristic methods based on Lagrangean column generation. In Lee and Savelsbergh [2015], the
authors study the impact of dedicated drivers on ridesharing systems. A ridesharing problem
with transfers is studied in Masoud and Jayakrishnan [2017]. In Riley et al. [2019], the
authors study a dynamic VRP where the objective function has a penalty term proportional
to the amount of time that customers are left unserved.

4.2.1.2. Bipartite matching based problems. When a bipartite matching formulation
is used, one side of the graph usually corresponds to driver requests, and the other side
usually corresponds to rider requests. These studies often focus on one-to-one matches, that
is, when a driver carries exactly one passenger. Agatz et al. [2011] were among the first to
study a dynamic bipartite matching problem with applications to ridesharing. The authors
solved this problem under a rolling horizon simulation framework. Subsequent studies focus
on specific attributes present in ridesharing operations such as meeting points [Stiglic et al.,
2015], participant time flexibility [Stiglic et al., 2016], integration with mass transit systems
[Stiglic et al., 2018], and matching stability [Wang et al., 2018]. Recently, Homsi et al. [2020]
first defined a rematching problem with applications in ridesharing. In this work, we further
investigate this problem.

4.2.1.3. Online matching. Dynamic ridesharing systems have strong connections to
online matching problems. Online matching studies usually focus on the competitive ratio of
deterministic and randomized online matching algorithms. In Mehta [2005], the author studies
the generalized online matching problem and its applications in search engine advertisement.
In Chen et al. [2009], the authors study an iterative matching problem where each edge of the
graph has a probability of existing. Edges with a probability of existing are useful when the
compatibility between two nodes is uncertain, for example, in kidney exchange settings. In
our problem, the nodes of our graph are uncertain. The existence or not of an edge between
two nodes is certain, as it depends only on the profitability and on the time-window feasibility
of the rideshare associated with these nodes.

4.2.2. Policy studies

Pricing strategies and incentive policies may impact the viability of ridesharing systems.
In some cases, subsidies must be allocated to encourage adoption. In Brownstone and Golob
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[1992], the authors study the impact of incentive policies such as reserved parking and
guaranteed rides home. To evaluate the impact of these policies, the authors built a discrete
choice model. The impact of high occupancy vehicle (HOV) lanes is studied in Giuliano et al.
[1990]. Later, Kon [2010] study the impact of introducing tolls for solo drivers that decide to
take HOV lanes, referred to as high occupancy toll lanes. To motivate rider participation in
ridesharing, Masoud and Jayakrishnan [2017] propose a mechanism design where riders are
matched on a first-come, first-served basis, but are also offered the opportunity to buy the
itinerary of a previously-matched rider. Our study focuses less on policy and more on the
daily operational planning of a ridesharing company.

4.3. Problem Definition
We now formally define the setting of our ridesharing matching problem. Requests in

a ridesharing system arrive dynamically over a planning horizon T = { 1, 2, . . . , h }. Let
G = (V, E) be a bipartite graph where V is the set of requests that may be released and E

is the set of edges between compatible requests. The set of requests is partitioned into a
set D of drivers requesting a passenger and a set R of riders requesting a driver, such that
V = D ∪ R, D ∩ R = ∅, and E ⊆ D × R. For each request v ∈ V , let ov ∈ R2 be its origin
coordinates, dv ∈ R2 be its destination coordinates, rv ∈ T be its release time, av ∈ R be its
earliest departure time, and bv ∈ R be its latest arrival time. Let Et be the set of pairs of
requests that can be matched or unmatched at time period t ∈ T , with E = ⋃

t∈T Et. At each
time period t ∈ T , a pair of released requests (ij) ∈ Et can be matched for a profit of pt

ij and
unmatched for a cost of ct

ij. We assume that

pt
ij ≤ ct

ij,

i.e., it is never profitable to unmatch a pair of requests and then match it in the same time
period. A pair of requests (ij) is said to be active at the beginning of the time period t if
it was matched before t and not unmatched ever since. The objective of the problem is to
match and unmatch requests such that the net profit over the planning horizon is maximized.

4.3.1. Release of requests

Whether a request v ∈ V is released or not is uncertain, and is represented as a random
binary variable qv equal to 1 if and only if v is released. The value of qv is observed at
period rv, i.e., at the corresponding release time of v. We write q when referring to a possible
realization of q, and we write q′ when referring to the actual realization of q within our
rolling horizon simulation framework.
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4.3.2. Request compatibility

A pair of requests (ij) is in Et if and only if
• both requests have already been released, i.e., max{ri, rj} ≤ t;
• the departure time of both requests is not in the past, i.e., t ≤ min{ai, aj};
• the rideshare generates distance savings for its participants;
• and the rideshare is time-window feasible.

The value of a ridesharing trip is often assumed to be the amount of travel distance
savings generated by the trip when compared to the individual trips for each participant
[Agatz et al., 2011, Wang et al., 2018]. Let d(o, d) be the distance (in km) between two points
o and d. The distance savings sij (in km) generated by a rideshare (ij) ∈ Et is the difference
between the distance of the individual trips and the distance of the rideshare trip, as below

sij = d(oi, di) + d(oj, dj)− [d(oi, oj) + d(oj, dj) + d(dj, di)].

To determine if a rideshare (ij) is time-window feasible, we check if the departure
and arrival times of the participants are compatible. Let t(p1, p2) be the travel time (in
periods) between any two points p1 and p2. The following conditions must be met to ensure
time-window feasibility:

max{ai + t(oi, oj), aj}+ t(oj, dj) ≤ bj

for the rider, and
max{ai + t(oi, oj), aj}+ t(oj, dj) + t(dj, di) ≤ bi

for the driver. Next, we give a formal definition of the static problem that generates decisions
for the entire planning horizon.

4.3.3. The static problem definition

When all real realizations q′
v of requests v ∈ V are known in advance, a static problem

can be defined, taking optimal decisions for the full planning horizon. The optimal objective
function value of this problem gives an upper bound that can be used to evaluate the
performance of strategies that generate matches and unmatches dynamically, as described in
Section 4.4. Let

δt(v) = { (ij) ∈ Et | v ∈ (ij) }

be the adjacency of each node v ∈ V for each period t ∈ T and

Wij = { t ∈ T | (ij) ∈ Et }

be the periods where i and j can be matched. For each pair (ij) ∈ Et, let xt
ij be a binary

variable equal to 1 if and only if the pair (ij) is matched at time period t, yt
ij be a binary

variable equal to 1 if and only if the pair (ij) is unmatched at time period t, and zt
ij be a binary
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variable equal to 1 if and only if (ij) is active at the beginning of period t. Without loss of
generality, we here assume that all requests are initially unmatched, that is, z1

ij = 0,∀(ij) ∈ E.
The static model is defined as:

fstat(z1) := max
h∑

t=1

∑
(ij)∈Et

(pt
ijx

t
ij − ct

ijy
t
ij) (4.3.1)

s.t.
∑

(ij)∈δt(v)
(xt

ij − yt
ij) ≤ q′

v −
∑

(ij)∈δt(v)
zt

ij ∀t = 1, . . . , h, v∈V (4.3.2)

yt
ij ≤ zt

ij ∀t = 1, . . . , h, (ij)∈Et (4.3.3)

zt+1
ij = zt

ij +

xt
ij − yt

ij if (ij) ∈ Et

0 otherwise
∀t = 1, . . . , h, (ij)∈E (4.3.4)

xt
ij, yt

ij ∈ { 0, 1 } ∀t = 1, . . . , h, (ij)∈Et (4.3.5)

zt+1
ij ∈ { 0, 1 } ∀t = 1, . . . , h, (ij)∈E. (4.3.6)

Objective (4.3.1) maximizes the net profit over the full planning horizon. Constraints (4.3.2)
ensure that requests can only be matched if they are released and inactive. Constraints (4.3.3)
ensure that requests can only be unmatched if they are active. Constraints (4.3.4) define
the values of z for the next time period. As the static problem assumes perfect knowledge
of q′, it is not used in a dynamic environment, but solved only once for the entire planning
horizon. Note that, as the objective of this model is to maximize profit, it is not guaranteed
that released requests will always be matched. As previously mentioned, it may neither be
feasible nor profitable to match all requests. To tackle the dynamic arrival of requests, we
next introduce a rolling horizon simulation framework to evaluate the myopic and stochastic
decision strategies.

4.4. The Rolling Horizon Framework
We now describe the rolling horizon framework. Such frameworks are common, for

example, in dynamic vehicle routing problems [Mitrović-Minić et al., 2004]. In this framework,
information on released requests (i.e., the realization of uncertain requests) arrives dynamically,
time is discretized into τ periods per hour, and new decisions can be taken at each time period.
At period t, the system only knows the values of q′

v,∀v ∈ V, rv ≤ t, and may or may not
have access to information about the distribution of q for subsequent time periods. Previous
matching decisions can only be modified if the requests are unmatched. Thus, decisions taken
at each time period may impact the profitability of future decisions, and different matching
strategies may have different performances throughout the planning horizon. The rolling
horizon framework is outlined in Algorithm 4.1.
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Algorithm 4.1: Rolling horizon simulation framework.
1 for t := 1, . . . , h do
2 observe q′

v,∀v ∈ V, rv = t;
3 obtain some estimate on q′

v,∀v ∈ V, rv > t;
4 decide on matches and unmatches for period t;
5 end

We now introduce three strategies that can generate decisions (as in line 4 of Algorithm 4.1)
within the rolling horizon framework. The first one is a myopic strategy that assumes no
knowledge on future information. The other strategies are stochastic, each assuming different
levels of knowledge about the distribution of q.

4.4.1. The myopic strategy

A simple approach to generate matches and unmatches in a rolling horizon framework
when forecasts for q are unavailable consists in formulating a myopic strategy. At each time
period t, the strategy optimizes only for the current time period. Therefore, decisions may
not be optimal when considering the full planning horizon. Given the smaller model size,
this strategy may be used when decisions are required quickly. Moreover, the performance of
the myopic strategy can be used as a benchmark to assess the performance of the stochastic
strategies, described in the next sections. We formulate the myopic problem of matching and
unmatching requests such that the net profit at time period k ∈ T is maximized as below:

fmyo(k, zk) := max
∑

(ij)∈Ek

(pk
ijx

k
ij − ck

ijy
k
ij) (4.4.1)

s.t.
∑

(ij)∈δk(v)
(xk

ij − yk
ij) ≤ q′

v −
∑

(ij)∈δk(v)
zk

ij ∀v ∈ V, rv ≤ k (4.4.2)

yk
ij ≤ zk

ij ∀(ij) ∈ Ek (4.4.3)

zk+1
ij = zk

ij +

xk
ij − yk

ij if (ij) ∈ Ek

0 otherwise
∀(ij) ∈ E (4.4.4)

xk
ij, yk

ij ∈ { 0, 1 } ∀(ij) ∈ Ek (4.4.5)

zk+1
ij ∈ { 0, 1 } ∀(ij) ∈ E. (4.4.6)

The objective (4.4.1) maximizes the net profit of matching and unmatching requests at time
period k. The constraints (4.4.2) ensure that only inactive requests can be matched. The
constraints (4.4.3) ensure that only active requests can be unmatched. The constraints (4.4.4)
define the values of z for the next time period. Note that this formulation only accesses the
values of q′

v for the requests released up to the current period k (rv ≤ k).
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4.4.2. The stochastic strategies

The decisions generated at period k impact the decisions for subsequent time periods
k + 1, . . . , h. It is therefore beneficial to develop strategies that go beyond the myopic view
and explicitly consider the impact of decisions made at period k on subsequent time periods.
While the static model may be used based on forecasts for the requests, such point-estimates
may not well represent their stochastic nature. We therefore adapt the static model to a
two-stage stochastic programming model that exploits information on the distribution of q.

Two-stage stochastic programming models have two sets of decisions: first-stage and
second-stage decisions. Variable coefficients associated with the first-stage decisions are
assumed to be known and certain. On the other hand, some coefficients associated with
the second-stage decisions are uncertain, but it is assumed that their distributions can
be sufficiently well estimated. First-stage decisions are optimized based on the objective
associated with the first stage decisions and their anticipated impact on the second-stage
problem. This impact is referred to as the second-stage value function, and quantifies the
impact of the first stage decisions over all possible realizations of the second-stage coefficients.
For further reading on stochastic programming, we refer the reader to Birge and Louveaux
[2011].

In our case, first-stage decisions are given for the requests available at the current time
period. In the second stage, these decisions are made for the remainder of the planning
horizon, considering all possible outcomes for q. This leads to first-stage decisions that
maximize the expected net profit over the remainder of the planning horizon. The stochastic
program is defined as follows.

fsto(k, zk) := max
∑

(ij)∈Ek

(pk
ijx

k
ij − ck

ijy
k
ij) + Q(k + 1, zk+1) (4.4.7)

s.t.
∑

(ij)∈δk(v)
(xk

ij − yk
ij) ≤ q′

v −
∑

(ij)∈δk(v)
zk

ij ∀v ∈ V, rv ≤ k (4.4.8)

yk
ij ≤ zk

ij ∀(ij)∈Ek (4.4.9)

zk+1
ij = zk

ij +

xk
ij − yk

ij if (ij) ∈ Ek

0 otherwise
∀(ij)∈E (4.4.10)

xk
ij, yk

ij∈{ 0, 1 } ∀(ij)∈Ek (4.4.11)

zk+1
ij ∈ { 0, 1 } ∀(ij)∈E, (4.4.12)

where
Q(k + 1, zk+1) = Eq[Q(k + 1, zk+1, q)]

is the expected second-stage value function. The objective (4.4.7) maximizes the first-stage
net profit (for period k) plus the expected second-stage net profit (for periods k + 1, . . . , h).
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The constraints (4.4.8) and (4.4.9) match and unmatch requests for period k. The constraints
(4.4.10) define the values of z for the next time period. The first-stage problem has a structure
similar to the one of the myopic problem (4.4.1)–(4.4.5). For a specific realization q of q (also
called scenario), the second-stage value function Q(k + 1, zk+1, q) is a multiperiod problem
over the time periods (k + 1), . . . , h, defined below.

Q(k, zk, q) := max
h∑

t=k

∑
(ij)∈Et

(pt
ijx

t
ij − ct

ijy
t
ij) (4.4.13)

s.t.
∑

(ij)∈δt(v)
(xt

ij − yt
ij) ≤ q′

v −
∑

(ij)∈δt(v)
zk

ij ∀t = k, . . . , h, v∈V, rv < k (4.4.14)

∑
(ij)∈δt(v)

(xt
ij − yt

ij) ≤ qv −
∑

(ij)∈δt(v)
zk

ij ∀t = k, . . . , h, v∈V, rv ≥ k (4.4.15)

yt
ij ≤ zt

ij ∀t = k, . . . , h, (ij)∈Et (4.4.16)

zt+1
ij = zt

ij +

xt
ij − yt

ij if (ij) ∈ Et

0 otherwise
∀t = k, . . . , h, (ij)∈E (4.4.17)

xt
ij, yt

ij ∈ { 0, 1 } ∀t = k, . . . , h, (ij)∈Et (4.4.18)

zt+1
ij ∈ { 0, 1 } ∀t = k, . . . , h, (ij)∈E, (4.4.19)

and has a structure similar to the one of the static problem (4.3.1)–(4.3.6). We emphasize that
this two-stage stochastic program maximizes the expected profit over all possible realizations.
However, given that in the rolling horizon simulation a specific realization q′ will occur, the
planning is not guaranteed to be optimal for q′. Additionally, our stochastic program is
limited to two stages, which only approximates the true multistage structure of our problem.

4.4.2.1. The expected value strategy. Solving the stochastic program is a challenging
task, as the number of all possible realizations of q is exponential in the number of requests.
We are thus interested in alternative models that approximate Q(k+1, zk+1). A first approach
to approximate the second-stage value function is to replace the random variables q with
their expected values E[q]. We refer to this problem as the expected value problem (EVP).
As we can not reasonably assume perfect knowledge of E[q] in a real-life setting, we build the
EVP based on the expected value over N independent samples q1, . . . , qN of q (which may
stem from historical observations). To build the EVP, we replace the expected second-stage
value function Q(k + 1, zk+1) by

Q̄(k + 1, zk+1) = Q(k + 1, zk+1, q̄),

where
q̄ = 1

N

N∑
j=1

qj
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is the expected value of the samples q1, . . . , qN . The EVP is defined below.

fevp(k, zk) := max
∑

(ij)∈Ek

(pk
ijx

k
ij − ck

ijy
k
ij) + Q̄(k + 1, zk+1) (4.4.20)

s.t. (4.4.8)–(4.4.12). (4.4.21)

As the expected values of our random variables can be fractional and the second-stage decision
variables are binary, most of them will assume value zero to satisfy the matching constraints.
Therefore, the first-stage decisions would likely be identical or similar to the ones generated
by the myopic model, leading to an ill-defined EVP. To circumvent this issue, we relax the
integrality constraints of all second-stage variables.

4.4.2.2. The sample average approximation strategy. The EVP may not generate
good first-stage decisions, and solving the full stochastic program may be necessary. However,
enumerating all 2|V | realizations of q along with their probability distribution may be
infeasible in practice and computationally intractable. We consider instead an approximation
of Q(k + 1, zk+1), where we sample N ≪ 2|V | samples q1, . . . , qN of q. Specifically, samples
are generated by independent random sampling from the binary distributions associated
with the release of each request. Such samples are also referred to as scenarios, and we
aim to build a model that optimizes second-stage decisions for each scenario, while keeping
the same first-stage decisions. In the stochastic programming literature, this link between
the set of first-stage decisions and the multiple sets of second-stage decisions is referred
to as non-anticipativity [Birge and Louveaux, 2011]. Thus, the objective function of such
model would quantify the expected profitability of first-stage decisions under several possible
realizations of the random variables. To write this objective function, we replace Q(k+1, zk+1)
by

QN(k + 1, zk+1) = 1
N

N∑
j=1

Q(k + 1, zk+1, qj),

and solve the so-called sample average approximation (SAA) problem:

fsaa(k, zk) := max
∑

(ij)∈Ek

(pk
ijx

k
ij − ck

ijy
k
ij) + QN(k + 1, zk+1) (4.4.22)

s.t. (4.4.8)–(4.4.12). (4.4.23)

Both the SAA and EVP models can be easily used within a rolling horizon framework
like the one outlined in Algorithm 4.1. At each optimization step, i.e., at each moment in
time when the optimization model is executed, the input data of the model is set according
to requests that have already been occurred, as well as the past matching decisions. Requests
that have already been released are included in the first stage of the two-stage stochastic
model, and sample realizations (or mean values, if the EVP is used) of potential future
requests are present in the second stage of the model.
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4.5. Computational Study
In this section, we evaluate the performance of the dynamic strategies. We generate an

extensive set of benchmark instances based on data obtained from an industrial partner. We
then repeatedly simulate each strategy in the rolling horizon framework.

4.5.1. Benchmark instances

To ensure that we consider multiple realistic set-ups for ridesharing systems, we generate
an extensive benchmark set of 240 instances based on the demand patterns of Netlift, a
Montreal-based ridesharing company. We based our instances on their ridesharing patterns
observed from January to June 2019. A problem instance consists of a planning horizon
T , a set of requests V , the random vector q, the probabilities P (qv = 1),∀v ∈ V , and a
real realization q′ of q. We consider a planning horizon T = { 1, . . . , 72 }, where each period
corresponds to an interval of 20 minutes. The first period corresponds to 8pm and the last
period corresponds to the same time 24 hours later. We also consider that |V | = 150 · |T |,
where 77% of the requests are requests from drivers. We generate instances with different
characteristics: patterns of origins and destinations, request groups, release times, and
proportion of recurrent requests. We generate 10 instances for each combination of such
characteristics, which are described in the following.

4.5.1.1. Patterns of origins and destinations. Origins and destinations are restricted
to the greater Montreal region and are distributed according to three different patterns:
3g, 5g, and 7g. We define the greater Montreal region with the following longitude and
latitude bounding box: -73.9058, 45.4146, -73.4769, 45.7029. All patterns have one demand
center representing downtown Montreal (coordinates -73.56154389, 45.49721524). The other
demand centers represent different regions of interest in the Montreal metropolitan area,
such as La Petite-Italie (-73.61233988, 45.53537754), Côte-Vertu (-73.6882723, 45.52320286),
Dollard-des-Ormeaux (-73.836727, 45.49915694), Montréal-Est (-73.53648307, 45.61656685),
Rosemère (-73.81177627, 45.63200686), and Montréal-Nord (-73.63821111, 45.59797576). In
pattern 3g, points are sampled from three demand centers. In pattern 5g, points are sampled
from five demand centers. Finally, in pattern 7g, points are sampled from seven demand
centers. The coordinates for each demand center are obtained by sampling from Gaussian
distributions with variance 10−4. We have opted to generate origins and destinations with
Gaussian distributions (as opposed to uniform distributions), given that they can more
realistically represent demand hot spots, with higher demand in the center and lower demand
as the distance from the center gets larger. Additionally, to represent requests outside common
demand centers, all patterns have some points that are generated uniformly over the greater
Montreal region bounding box (described in the next section). The different patterns are
illustrated in Figure 4.2, with the downtown region highlighted in orange.
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Fig. 4.2. The distribution of points for different patterns. Orange points refer to downtown.

(a) Pattern 3g. (b) Pattern 5g.

(c) Pattern 7g.

4.5.1.2. Request groups. Requests belong to one of the following groups: central or
random. The central requests have a downtown origin and a non-downtown destination, or
a non-downtown origin and a downtown destination. These origins and destinations are
generated from the Gaussian distributions of each pattern. The random requests have origins
and destinations uniformly sampled from the greater Montreal region. We use a centrality
parameter ωc to control the proportion of central requests (ωc) and the proportion of random
requests (1 − ωc), where ωc ∈ { 25%, 75% }. Figure 4.3 exemplifies how the distribution
of points changes for two different values of ωc. Note that when ωc approaches zero, the
distribution of points becomes entirely uniform.
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Fig. 4.3. Distribution of points for different values of ωc.

(a) ωc = 25%. (b) ωc = 75%.

4.5.1.3. Release times. The release times of requests are either uniform or clustered.
In the uniform case, for each v ∈ V , rv is a period in T chosen uniformly at random. In
the clustered case, if a request belongs to the random group, then its release time is also a
randomly chosen period in T . Otherwise, if the request belongs to the central group, then
the release time is a number randomly chosen from { 1, . . . , 12 } (8 pm to midnight) if its
destination is downtown, or from { 36, . . . , 48 } (next day, 8 am to noon) if its destination is
outside downtown.

Figure 4.4 shows the distribution of uniform and clustered release times for different values
of ωc. For uniform release times, the value of ωc does not affect the shape of the distribution.
However, for clustered release times, smaller values of ωc lead to more evenly distributed
request releases.
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Fig. 4.4. Distribution of release times for different values of ωc.

(a) Uniform release times.

(b) Clustered release times.

4.5.1.4. Random variables and recurrent requests. For each request v ∈ V , the
probability of it being released (qv = 1) is a random number in [20%, 50%]. Some requests may
be recurrent. Recurrent requests represent customers that use the ridesharing system regularly.
For these requests, we assign higher probabilities, randomly selected from [80%, 100%]. We
control the proportion of recurrent requests in V with a trip-recurrence parameter ωr and
generate instances with ωr ∈ { 5%, 10% }.

4.5.1.5. Travel distance and time. To evaluate the profitability and the time-window
feasibility of matches, it is necessary to define the distances between origins and destinations.
One option is to use a dedicated routing software such as OSRM [Luxen and Vetter, 2011] to
find real route distances. Another more suitable option for preliminary analyses is to use
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a simple distance metric d̄(a, b) as an approximation for the real distance and to adjust it
with coefficients found by fitting a regression model. We use this second option, using the
great-circle distance as an approximation for the real distance. We express the adjusted
distance d(a, b) as a function of the great-circle distance d̄(a, b), as shown below:

d(a, b) = β0 + β1d̄(a, b).

To obtain the coefficients β0 and β1, we built a linear least squares regression model
with 100 distances for trips within the Greater Montreal area, illustrated in Figure 4.5. For
each of those 100 trips, we obtained the true distances from OSRM and fitted the linear
regression, yielding β0 = 0.62 and β1 = 1.26 (rounded to two decimal places). Finally, based
on travel distance, we calculate the travel time t(a, b) assuming a constant speed of 40km/h,
i.e., t(a, b) = d(a, b)/40.

Fig. 4.5. The regression model.

4.5.1.6. Departure and arrival times. We generate the requests departure times based
on their release times plus a delay. For each request v ∈ V with release time rv, we randomly
select a period in rv, . . . , rv + 30 for its departure time av. Departure times are therefore
requested on average five hours after their corresponding release times. The arrival time bv is
av + tv(ov, dv).

4.5.1.7. Objective function. We define the profit coefficient p and the penalty coefficient
c based on the distance savings generated by the rideshare and on the number of time periods
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between request release and request matching or unmatching:

pt
ij := sij −

λp

τ · 100∆t
ijsij ∀t ∈ T, (ij) ∈ Et,

ct
ij := sij + λc

τ · 100∆t
ijsij ∀t ∈ T, (ij) ∈ Et.

The coefficient τ is the number of periods per hour (in our case, τ = 3) and

∆t
ij = (t− ri) + (t− rj)

2 ∀t ∈ T, (ij) ∈ Et,

is the average number of periods between t and the release time of the two requests. The
parameters λp and λc are penalty coefficients that represent the hourly decrease of matching
profit and the hourly increase of unmatching penalty. We generally assume that (λp, λc) =
(5, 2), such that matching profits are penalized 5% per hour and unmatching costs are
increased 2% per hour. We conduct further experiments with different values for λp and λc

in Section 4.5.2.8.

4.5.2. Computational experiments

In this section, we evaluate the performance of the dynamic strategies when simulated in
a rolling horizon framework. We implemented the strategies in Python 3.7 and used CPLEX
12.10 to solve the mathematical programming models. We limited CPLEX to one thread and
used its default parameters. The experiments were run on a cluster with CPUs ranging from
2.1 to 2.4 GHz.

When solving the instances with the stochastic strategies, we consider 5 to 40 scenarios.
We always perform 5 rolling horizon simulations for these strategies, each of which considers
new samples of q. We used the model reduction techniques proposed in Homsi et al. [2020]
to reduce the time needed to build and solve the models.

4.5.2.1. Performance over all instances. We first analyze the average performance
of each strategy over our instance benchmark set. The set contains a total of 240 instances
for all combinations of patterns 3g, 5g and 7g, ωc ∈ { 25%, 75% }, ωr ∈ { 5%, 10% }, and
clustered and uniform release times. Average results over the instances are shown in Table 4.1.
The column “gap” is the percentage gap to the revenue generated by the static model. The
column “std” is the gap standard deviation. The column “T(min)” is the average sum of
computing time (in minutes) required to build and solve the 72 models with CPLEX. The
last row contains the average over all rows (except for row STAT).
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Table 4.1. Rolling horizon results averaged over all instances.

algo |S| gap std T(min)
STAT – – – 0.01
MYO – 4.05 1.04 0.08
EVP 5 2.77 0.90 1.58

10 2.72 0.90 1.75
20 2.69 0.89 1.75
40 2.69 0.90 1.66

SAA 5 2.71 0.90 4.87
10 2.66 0.91 10.01
20 2.66 0.91 20.37
40 2.65 0.92 39.45

mean – 2.84 0.92 9.06

The results show that both stochastic strategies outperform the myopic strategy. Further-
more, increasing the number of scenarios tends to reduce the gap of the stochastic strategies.
Using the same set of scenarios, the SAA constantly outperforms the EVP. However, the
difference between the gaps found by the two models is rather small. On the other hand, the
SAA is about 3 to 24 times slower than the EVP. In fact, the SAA computing time increases
with the number of scenarios, while the EVP computing time remains stable. Note again
that this is the total computing time required for 72 optimization runs carried out during
a planning horizon of 24 hours. The time required for each run is rather negligible. We
elaborate on the computing time per optimization run in Section 4.5.2.7.

4.5.2.2. Performance for different patterns. We evaluate the performance of each
strategy on the patterns 3g, 5g, and 7g. The average results are shown in Table 4.2.

Table 4.2. Rolling horizon results for different patterns.

3g 5g 7g
algo |S| gap std T(min) gap std T(min) gap std T(min)
STAT – – – 0.01 0.00 0.00 0.01 0.00 0.00 0.01
MYO – 4.08 1.03 0.10 3.83 0.96 0.07 4.23 1.08 0.08
EVP 5 2.81 0.89 1.81 2.69 0.91 1.40 2.81 0.89 1.51

10 2.78 0.90 2.02 2.66 0.91 1.55 2.72 0.89 1.68
20 2.74 0.89 2.03 2.63 0.89 1.54 2.71 0.89 1.68
40 2.72 0.88 1.91 2.64 0.91 1.45 2.70 0.89 1.61

SAA 5 2.72 0.87 5.89 2.63 0.92 4.10 2.76 0.91 4.61
10 2.69 0.89 12.18 2.57 0.90 8.35 2.70 0.93 9.50
20 2.67 0.88 24.71 2.59 0.90 16.99 2.71 0.95 19.42
40 2.66 0.88 47.80 2.56 0.91 32.91 2.71 0.95 37.64

mean – 2.88 0.90 10.94 2.76 0.91 7.60 2.89 0.93 8.64
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The results indicate that the stochastic strategies outperform the myopic strategy for
all patterns. For patterns 3g and 5g, the SAA strategy outperforms the EVP strategy. For
pattern 7g, both strategies have a similar performance.

4.5.2.3. Performance for different values of centrality parameter ωc. We now
evaluate how the performance of each strategy changes for different values of ωc. The higher
the value of ωc, the more to-downtown and from-downtown trips are present in the set of
potential requests. We test ωc ∈ { 25%, 75% }. Results are summarized in Table 4.3.

Table 4.3. Results for different values of centrality ωc.

25% 75%
algo |S| gap std T(min) gap std T(min)
STAT – – – 0.01 0.00 0.00 0.01
MYO – 4.45 0.74 0.04 3.65 1.13 0.13
EVP 5 3.37 0.59 0.91 2.17 0.75 2.24

10 3.35 0.55 0.99 2.09 0.72 2.51
20 3.31 0.55 0.99 2.07 0.71 2.51
40 3.31 0.55 0.93 2.06 0.72 2.39

SAA 5 3.27 0.57 2.02 2.14 0.81 7.72
10 3.24 0.58 4.07 2.08 0.80 15.95
20 3.24 0.56 8.36 2.07 0.81 32.38
40 3.23 0.57 15.76 2.06 0.81 63.14

mean – 3.42 0.59 3.79 2.27 0.81 14.33

The results indicate that increasing ωc leads to smaller gaps for all strategies. This
suggests that the higher geographical density of downtown trips and the wider availability of
information on periods associated with central trips reduces uncertainty. However, increasing
ωc also leads to a denser graph and therefore bigger models, which increases the CPU time.

4.5.2.4. Performance for different values of trip-recurrence ωr. We now investigate
the impact of the proportion of recurrent requests on each strategy. Bigger values of ωr may
represent the fact that the company has a loyal customer base. We here test ωr ∈ { 5%, 10% }.
Results are shown in Table 4.4.
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Table 4.4. Results for different values of trip-recurrence ωr.

5% 10%
algo |S| gap std T(min) gap std T(min)
STAT – – – 0.01 0.00 0.00 0.01
MYO – 4.01 0.99 0.08 4.08 1.08 0.09
EVP 5 2.86 0.91 1.50 2.68 0.88 1.65

10 2.82 0.90 1.68 2.62 0.88 1.82
20 2.79 0.88 1.71 2.59 0.89 1.80
40 2.79 0.89 1.60 2.59 0.89 1.72

SAA 5 2.82 0.92 4.39 2.59 0.87 5.35
10 2.76 0.92 9.11 2.56 0.89 10.91
20 2.76 0.93 18.68 2.56 0.88 22.07
40 2.74 0.94 35.92 2.55 0.88 42.98

mean – 2.93 0.92 8.30 2.76 0.90 9.82

The results indicate that as ωr increases, the myopic strategy gap and standard deviation
increase, and the stochastic strategies gaps and standard deviations decrease. This result
is expected because the myopic strategy has no knowledge that some requests are highly
likely to be released, and therefore it is subject to generate many suboptimal rideshares. On
the other hand, the stochastic strategies can capture this information and generate better
decisions. The results also show that as ωr increases, the CPU time increases, this is due to
having a denser graph, as more requests are released.

4.5.2.5. Performance on clustered and uniform release times. We now evaluate
the impact of clustered and uniform release times. Results are shown in Table 4.5.

Table 4.5. Results for clustered and uniform release times.

clustered uniform
algo |S| gap std T(min) gap std T(min)
STAT – – – 0.01 0.00 0.00 0.01
MYO – 3.44 0.96 0.12 4.65 0.70 0.05
EVP 5 2.34 0.93 1.90 3.20 0.63 1.25

10 2.31 0.92 2.11 3.13 0.64 1.39
20 2.28 0.92 2.13 3.11 0.63 1.38
40 2.27 0.91 2.03 3.11 0.64 1.29

SAA 5 2.26 0.92 6.51 3.15 0.62 3.23
10 2.20 0.92 13.37 3.11 0.63 6.65
20 2.20 0.93 27.32 3.11 0.61 13.42
40 2.19 0.94 53.16 3.11 0.61 25.75

mean – 2.39 0.93 12.07 3.30 0.64 6.04

The results suggest that instances with clustered release times take longer to be solved.
This is due to denser graphs for the periods where requests are released more often. For the
instances with uniform release times, all gaps are larger. This is due to the randomness in
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release times, which causes less information to be available at each period and makes the
prediction on the release of future requests harder for the stochastic strategies.

4.5.2.6. The impact of forbidding unmatching. We now evaluate the performance
of each strategy when unmatching is forbidden. To do so, we assign a big value for λc. As
shown in Homsi et al. [2020], the static model never unmatches previously matched requests
given that the rematching profits are never bigger than the unmatching costs. Therefore,
forbidding unmatching does not impact the optimal objective function value of the static
model and we can directly compare the performance of the various models under these two
problem variants. Results are shown in Table 4.6.

Table 4.6. Results with allowed and forbidden unmatching.

allowed forbidden
algo |S| gap std T(min) gap std T(min)
STAT – 0.00 0.00 0.01 0.00 0.00 0.01
MYO – 4.05 1.04 0.08 14.89 4.41 0.08
EVP 5 2.77 0.90 1.58 3.48 1.26 1.57

10 2.72 0.90 1.75 3.18 1.11 1.75
20 2.69 0.89 1.75 3.10 1.07 1.75
40 2.69 0.90 1.66 3.07 1.04 1.66

SAA 5 2.71 0.90 4.87 3.50 1.21 4.80
10 2.66 0.91 10.01 3.34 1.11 9.89
20 2.66 0.91 20.37 3.34 1.09 19.97
40 2.65 0.92 39.45 3.38 1.11 38.16

mean – 2.84 0.92 9.06 4.59 1.49 8.85

When unmatching is forbidden, the gap of the myopic strategy is about 4 times higher,
and the gap of the stochastic strategies is about 1.5 times higher. Thus, the flexibility of
unmatching is beneficial to all strategies and may increase the profits of ridesharing companies.
This is particularly the case for the myopic strategy, given that the lack of predictions for
future requests may lead to bad premature decisions which can only be corrected if unmatching
is allowed.

The results also allow us to draw interesting conclusions on the relationship between the
value of unmatches and the value of stochastic information, and how unmatching or stochastic
information can be used in isolation to find solutions with similar gaps.
No stochastic information. When stochastic information is not available, unmatches can
be used to correct past decisions. In this case, the myopic strategy gap is only slightly larger
than the best gap of the stochastic strategies with forbidden unmatches (4.05% vs. 3.07%).
No unmatches. Otherwise, when unmatching is forbidden, stochastic information can be
exploited to generate matches that are less likely to benefit from rematching. In this case,
increasing the number of scenarios reduces the stochastic strategies gaps from 3.50% to 3.07%.
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Due to that, stochastic strategies with forbidden unmatches attain a gap slightly smaller
than the myopic strategy gap with allowed unmatches (3.07% vs. 4.05%).
Everything is available. Finally, when unmatches are allowed and stochastic information
is available, the average gap of the stochastic strategies is even smaller than the myopic
strategy gap with allowed unmatches (2.65% vs. 4.05%). However, increasing the number of
scenarios decreases the gap at a slower pace. As it is unlikely that good forecasts on future
information will be always available during daily practice, the possibility of unmatching
becomes a valuable asset in a decision-maker toolset.

4.5.2.7. Solution characteristics. The goal of this section is to understand the structure
and characteristics of the solutions generated from each strategy by investigating solution
attributes besides profit, such as the number of matches and unmatches. For this analysis,
we consider only the subset of experiments where unmatches are allowed. Average results
are shown in Table 4.7. Columns “matches” and “unmatches” give the number of matches
and unmatches generated in the rolling horizon, respectively. Column “net” represents the
difference between both values, i.e., the number of active matches at the end of the planning
horizon. Column “prop” gives the proportion of unmatches over all matches and unmatches.
Column “match delay” shows the average number of periods between release times and
matches. Finally, column Tmax indicates the highest computing time (in minutes) encountered
in the different optimization runs throughout the day.

Table 4.7. Statistics on matches and unmatches.

algo |S| matches unmatches net prop match delay Tmax

STAT – 270.52 0.00 270.52 0.00 3.29 0.01
MYO – 395.73 126.30 269.43 24.19 3.16 0.00
EVP 5 279.48 10.00 269.48 3.46 4.55 0.04

10 276.90 7.38 269.52 2.60 4.63 0.04
20 276.07 6.53 269.55 2.31 4.65 0.04
40 275.85 6.30 269.55 2.23 4.66 0.04

SAA 5 283.39 13.97 269.42 4.70 4.44 0.11
10 280.71 11.24 269.48 3.85 4.53 0.23
20 279.18 9.65 269.53 3.34 4.60 0.47
40 278.47 8.95 269.52 3.11 4.63 0.93

mean – 291.75 22.26 269.50 5.53 4.43 0.21

Unmatch proportion. The results highlight the greediness of the myopic strategy. Even if
it has a net match balance similar to all other strategies, it has a large unmatch proportion
of 24.19%. It matches far more than the static model, which indicates that many matches are
created prematurely and are unmatched as soon as new information arrives. Alternatively, the
stochastic strategies have a smaller unmatch proportion. Increasing the number of scenarios
reduces this proportion even more, while keeping the net match balance stable.
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The EVP unmatch proportion. The EVP strategy has a slightly smaller unmatch
proportion than the SAA strategy. In Homsi et al. [2020], it is shown that the unmatching
of requests in the isolated second-stage problem is never profitable, provided that matching
profits are smaller than unmatching costs. The same assumption is also present in our
problem definition, and the results on unmatching profitability trivially extend to our EVP
model with continuous second-stage variables and fractional right hand side coefficients. This
suggests that the first-stage decisions generated by the EVP strategy are the ones that are
less likely to require unmatching upon the arrival of new information, which may explain the
smaller unmatch proportion of the EVP strategy.
Matching delay. The myopic strategy has a matching delay similar to the one found in
the static model (3.16 and 3.29 periods, i.e., about 60 minutes). The stochastic strategies
have a longer delay (about 4.5 periods, i.e., about 1h30min), and increasing the number of
scenarios slightly increases this delay. The SAA strategy has a slightly smaller matching
delay than the EVP strategy, which may explain its slightly bigger unmatch proportion, as
early decisions lead to more unmatches. The fact that the stochastic strategies have a delay
of only 30 minutes longer shows that the solutions generated by these strategies are not only
more profitable, but they also do not much degrade the customer experience.
Time per iteration. Among all models, the SAA requires the longest computing times.
With 40 scenarios, it takes about one minute to solve the model. Nevertheless, given that
each time period corresponds to an interval of 20 minutes, the SAA with up to 40 scenarios
is solved sufficiently fast for a dynamic use in practice. If time periods correspond to shorter
intervals (e.g., 1 to 5 minutes), having real-time decisions may be necessary. In this case,
the EVP may become an interesting alternative, given that it takes at most 0.04 minute
(2.4 seconds) per optimization run, and its solution time does not depend on the number of
scenarios.

4.5.2.8. Performance under different corporate preferences. Ridesharing com-
panies may have different objectives when it comes to the desired customer experience. A
company may therefore adjust the profit and penalty parameters λp and λc to best fit their cor-
porate strategy. The goal of this section is to assess the performance of the dynamic strategies
when the objective function penalties λp and λc change. We conduct two sets of experiments
on the subset of instances with pattern 3g, ωc ∈ { 25%, 75% }, and ωr ∈ { 5%, 10% }. In the
first set of experiments, we fix λc = 2 and test values for λp from 0 to 10. In the second set
of experiments, we fix λp = 5 and test values for λc from 0 to 10. We limited the stochastic
strategies to five scenarios, and for each instance, we conducted five runs with different
random samples of q. Results are illustrated in Figure 4.6. The vertical axis represents the
average percentage gap between the obtained profit (for each strategy) and the optimal profit
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(obtained from the static model). The horizontal axis represents the different values of λp

and λc.

Fig. 4.6. Gap for different values of λp and λc.

The results indicate that the stochastic strategies always outperform the myopic strategy.
Below we discuss the results for interesting values for λp and λc.
Inexpensive vs. expensive delayed matching. When the profit parameter λp decreases,
the gap between the stochastic strategies and the myopic strategy widens, as matching early
is less important. Given that the stochastic strategies have forecasts for future requests,
they may avoid premature matches, favoring delayed matching without the need of frequent
unmatching. In contrast, when λp increases, the gap between the stochastic strategies and
the myopic strategy narrows, as matching as soon as possible becomes more important, and
therefore the stochastic strategies start to behave similarly to the myopic strategy.
Inexpensive vs. expensive unmatches. When the penalty parameter λc reduces, the
gap between all strategies reduces, as there are seemingly no disadvantages for matching
myopically and unmatching for little or no cost when necessary. Still, when unmatching
is free (λc = 0), the myopic strategy is still the worst performer. This suggests that even
when unmatching is free, matching as soon as possible may not be the best decision, as some
matches may permanently block unmatches (e.g. when a rideshare starts) and restrict better
matches in the future. In contrast, when λc > 3, the EVP strategy slightly outperforms
the SAA strategy. This may be explained by the results in Table 4.7: as the unmatch
proportion of the EVP is smaller than the one of the SAA, the EVP is more profitable when
the unmatching costs increase.

We now analyze how the number of unmatches for each strategy changes as we vary λp

and λc. Results are illustrated in Figure 4.7.
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Fig. 4.7. Unmatches for different values of λp and λc.

The results indicate that as λp increases, the myopic strategy unmatches less. Contrarily,
the SAA tends to unmatch more as λp increases, and the number of unmatches of the EVP is
relatively stable regardless of the value of λp. Quite understandably, an increase of λc leads
to a reduction in the number of unmatches for all strategies.

4.6. Conclusions and Future Work
In this paper, we have revisited a matching and rematching problem with applications in

request matching for ridesharing systems. In addition to the existing myopic and two-stage
stochastic models, we have proposed an EVP variant of the problem. Given that the demand
averaged over all scenarios is typically fractional, a classical implementation of this model
would tend to prevent any matches in the second-stage. We therefore relax the integrality for
the second-stage decisions.

We then conducted computational experiments for all models on an extensive set of
benchmark instances representative of different ridesharing settings. Our results demonstrate
the value of unmatches and the value of stochastic information: the average gap for the myopic
strategy is 4.05% and the average gap for the stochastic strategies is 2.69%. When unmatching
is forbidden, the benefits of stochastic information are clear, resulting in significantly lower
average gaps (4.59% vs. 14.89%). These benefits are less pronounced when unmatches are
allowed, which indicates that the possibility to unmatch and rematch is a good substitute
for when reliable forecasts on future requests are difficult to obtain. Furthermore, the SAA
strategy generates slightly better solutions than the EVP strategy: it has an average gap of
2.67%, while the EVP strategy has an average gap of 2.72%. We believe that our results can
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provide valuable insights to ridesharing operators, such as understanding in which scenarios
unmatching may provide benefits, how much effort should be allocated to forecast future
information, and how to define the penalties for delayed matches and unmatches.
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Chapter 5

Two-Stage Stochastic One-to-Many Driver
Matching for Ridesharing

In the previous chapters, a one-to-one ridesharing problem was studied. This imposes an
artificial constraint on the number of passengers in a rideshare, which limits the emission
mitigation potential of the ridesharing system. This chapter relaxes this assumption and
studies a one-to-many ridesharing problem. While the one-to-one problem studied in the
previous chapters was modeled based on a bipartite matching formulation, the one-to-many
problem of this chapter is modeled using a set-packing formulation, which allows for the
representation of ridesharing routes with more than one rider. The here considered problem
has stochastic riders and a two-stage structure: all drivers are known in the first stage, and
riders are released in the second stage. This chapter explores the possibility of booking drivers
in advance (in the first stage) to improve user-friendliness through better predictability:
booked drivers are paid a fee in advance, or are provided compensation in case they are
not assigned to a rideshare. In the second stage, the released riders are observed and can
be assigned for ridesharing with booked drivers. The problem introduced in this chapter is
general enough to represent a wide range of ridesharing systems. The results of extensive
computational experiments are analyzed to identify the advantages and disadvantages of
different types of ridesharing systems and stochastic programming model approximations.
The contributions of the student are:

• The introduction of a novel one-to-many ridesharing problem with driver booking;
• Deterministic and two-stage stochastic mathematical programming models for that

problem;
• Approximations to the two-stage stochastic programming model, including a relaxation

of the classical sample average approximation model;
• Empirical evaluation of this ridesharing problem on four different ridesharing modes

of operation;



• Managerial insights on different ridesharing modes of operation, and recommendations
on the best mode of operation along with recommendations on system parameters.

The contents of this chapter have been accepted for publication in Networks. A technical
report is available in https://www.cirrelt.ca/documentstravail/cirrelt-2022-36.pdf.
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Abstract
We introduce a modeling framework for stochastic rider-driver matching in many-to-one

ridesharing systems, in which drivers have to be selected before the exact rider demand is
known. The modeling framework allows for the use of driver booking fees and penalties for
unmatched drivers, therefore supporting different system operating modes. We model this
problem as a two-stage stochastic set packing problem. To tackle the intractability of the
stochastic problem, we introduce three model approximations and evaluate them on a large
set of benchmark instances for three different system operating modes. Our computational
experiments show the superiority of some model approximations over others and provide
valuable insights on the impact of penalties and booking fees on the system’s profitability
and user satisfaction.

Keywords: 2-stage stochastic programming; ridesharing matching; mixed-integer pro-
gramming.

5.1. Introduction
Ridesharing agencies match drivers and riders to jointly fulfill their itineraries. As more

than half of the world population lives in urban areas [UN, 2018], the potential benefits of
ridesharing are numerous. For instance, the reduction of road congestion and CO2 emissions,
improved access to transportation in regions with limited mass transit, and the reduction
of transportation costs. Individuals may participate in ridesharing for several reasons [see,
e.g., Teal, 1987]. Reasons may be, for example: environmental awareness, economical
savings, and the lack of access to mass transit systems. Furthermore, cities may encourage
ridesharing through the introduction of high-occupancy vehicle lanes [Giuliano et al., 1990],
and governments may implement carbon-reduction regulations to promote ridesharing [Si
et al., 2022].
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The practice of ridesharing is not new, and dates as early as WWII and the 1970s oil
crisis. Furthermore, the expansion of telecommunication systems, particularly the Internet,
contributed to the development of numerous ridesharing systems [Chan and Shaheen, 2012].
The potential scale of ridesharing markets is evidenced by surveys conducted by the US
government on the occupancy rate of vehicles. These surveys show that the average occupancy
rate of vehicles involved in work-related trips has been smaller than 1.4 since the 1970s
[McGuckin and Fucci, 2018]. Thus, provided the presence of a large user-base, ridesharing
systems can promptly access a large fleet of vehicles with spare capacity for transportation.
The presence of such user-base is therefore of key importance for the success of a ridesharing
system.

Ridesharing has similarities to other shared mobility practices, such as ridehailing (also
known as ridesourcing, e.g., Uber and Lyft), taxi sharing (e.g., UberPOOL and Lyft Line),
carsharing, and even practices that do not involve cars, such as bike sharing. In each of these
cases, a resource must be shared between individuals to fulfill their transportation objectives.
For carsharing and bike sharing, the shared resources are vehicles and bikes, respectively:
participants can rent a car or a bike for a short amount of time to fulfill their transportation
needs. In contrast, for ridesharing, ridehailing (or ridesourcing), and taxi sharing, participants
share the same resource (i.e., the same vehicle) to fulfill a transportation trip. In ridehailing
and taxi sharing, drivers typically are professionals who receive a salary for their work. In
ridesharing, drivers typically are not professionals, but individuals with a planned trip from
an origin to a destination (e.g., from their home to their work location). Such drivers may
wish to reduce transportation costs by sharing the ride with other individuals with similar
origins and destinations. For a comprehensive classification of shared mobility systems, we
refer the reader to Shaheen and Chan [2016].

Different ridesharing platforms exist across the globe (e.g., BlaBlaCar and Kangaride).
Factors such as sociodemographics and user behavior, demand and pricing, supply and user
incentives, and platform operations and reliability influence the success of ridesharing systems.
Analysis of such factors, among others, are summarized in several surveys [see, e.g., Agatz
et al., 2012, Wang and Yang, 2019]. Specifically, several works have identified the target
groups and the required conditions that encourage users to engage in ridesharing [see, e.g.,
Gargiulo et al., 2015, Liu and Li, 2017, Sprei, 2018]. Our paper proposes models to match
drivers and riders in a variety of ridesharing systems and further complements the works
above in the sense that it empirically explores the impact of the system’s configuration on its
performance.

Driver booking and rideshare assignment. Ridesharing systems are two-sided
markets: the ridesharing platform serves as an intermediary agency that proposes rideshares
(matches) to drivers and riders. These drivers and riders are free to accept or reject a
rideshare. Therefore, focusing on user-friendliness is a priority for ridesharing companies.
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Ridesharing works best when participants have similar itineraries. For example, when
commuting from residential to commercial areas or vice versa. Even if ridesharing systems
limit themselves to rideshares that are geographically compatible, these rideshares may not be
user-friendly enough to convince the participants to commit to the rideshares. Encouraging
user participation can be achieved in several ways. One way of increasing user participation
is, for example, to offer incentives such as service guarantees to participants. Furthermore,
applying Operations Research tools to ridesharing may improve the quality of the generated
rideshares and the overall performance of the system.

Given the importance of available drivers within the system that can be matched to ride
requests, it is of utmost importance that drivers remain satisfied users of the system. It is
therefore in the best interest of the operator to respond as quickly as possible to driver requests.
Such timely response is not only a matter of user-friendliness, but may be a requirement for
many drivers in order to prepare for the ridesharing trip. The ridesharing matching problem
here studied therefore assumes that the operator has to respond to driver requests in a timely
manner. As such, drivers have to be selected, typically, before all compatible rider requests
are known. The operator has two possibilities to reassure selected (i.e., booked) drivers:
either by paying an a priori booking fee or by paying compensation in case a selected driver
is not matched to any rideshare.

The information and decision flow of the resulting planning problem can hence be organized
into six stages, as illustrated in Figure 5.1. The platform first receives driver requests for
the upcoming planning period (e.g., throughout the evening). The system then considers all
received driver requests and decides which drivers will be booked for the upcoming ridesharing
period. This step has to occur sufficiently early (e.g., at the end of the day) to give drivers a
reasonably quick response and, in our case, will be optimized, using stochastic information
on potential future rider requests. Meanwhile, rider requests may come in, which will be
considered up to a specific moment. Within a second optimization step, the platform then
assigns booked drivers and rider requests to rideshares. This assignment has to be carried
out sufficiently early (e.g., early next morning) before the actual start of the trip to give
participants the time to prepare for the rideshare (or look for alternative transportation
modes, in case a rider was not matched).

The underlying planning problem is a two-stage many-to-one dynamic ridematching
problem, in which drivers can be booked on different types in the first stage, while the rider
requests are still uncertain. In the second stage, the actual rider requests are observed and
assigned to booked drivers. Assignment decisions between drivers and riders correspond to
planned ridesharing trips that may take place in the near future. The objective is to book
drivers and assign riders to booked drivers such that the planned rideshares maximize profit.
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Fig. 5.1. Information and decision flow for our planning problem.

Contributions. The contributions of this paper are as follows: 1) We introduce a novel
many-to-one ride-matching problem that allows for booking drivers on different contract
types under rider request uncertainty. The representation of stochasticity in the context of
driver booking, as well as allowing for booking on different contract types extend the existing
literature. Our work thus expands the Operations Research toolset available for researchers
and practitioners in shared mobility. 2) We propose a two-stage stochastic set-packing
modeling framework, instantiating three different ridesharing system operating modes. Such
models provide a flexible starting point for operators that can be tailored to their specific
contexts. This planning problem is NP-hard, implying a significant computational effort
to solve the mathematical models. 3) We show how to efficiently enumerate feasible
ridesharing routes and integrate them into the formulation. Using pruning techniques to
consider only time-feasible trips, our exact enumeration procedure reduces the computing
time to a fraction of the time required when naively enumerating all routes. 4) We propose
models that approximate the second-stage value function of the two-stage stochastic model,
specifically, a sample average approximation model and an expected value problem model.
To further improve the computational tractability, we introduce a relaxation of the sample
average approximation model where the integrality constraints of the second-stage problem
are relaxed. Such developments allow us to solve the problem in computing times sufficiently
fast in practice. 5) Finally, we evaluate all models on a new set of benchmark instances that
represent a wide range of ridesharing operations. Specifically, we analyze the performance of
the solutions generated by each model and quantify the economic importance to explicitly
consider the uncertainty in the problem. Further, we analyze the impact of booking fees,
penalties, and the use of multiple booking types, and provide managerial insights, allowing
operators to identify system configurations that are both profitable and result in high user
satisfaction.

Outline. This paper is structured as follows. In Section 5.2, we conduct a literature review
and distinguish our work with respect to previous research in the field of ridesharing. In
Section 5.3, we define the considered planning problem. In Section 5.4, we introduce mathe-
matical formulations to solve the problem, namely, a deterministic and a two-stage stochastic
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formulation. We also provide approximations for the two-stage stochastic formulation. In
Section 5.5, we conduct computational studies where we evaluate the two-stage stochastic
approximations on instances inspired by data from an industrial partner. We also summarize
the managerial insights drawn from such results. In Section 5.6, we present the conclusions
of our study and identify potential future research directions.

5.2. Related Work
Ridesharing planning is usually modeled either as one-to-one bipartite matching [Agatz

et al., 2011] or as vehicle routing [Baldacci et al., 2004]. The bipartite matching formulation
allows for a simple modeling of the decision problem, and its network structure allows it to
be solved in polynomial time. Different characteristics of ridesharing operations were studied
before. For instance, Baldacci et al. [2004] study a same-destination dial-a-ride problem for
carpooling with multiple passengers per vehicle. Wang et al. [2018] and Peng et al. [2022]
study ridesharing and taxi-sharing problems with stability constraints. The motivation for
studying matching stability is that users would be less likely to arrange rideshares outside a
rideshare platform that provides stable matches to their users. When considering multiple
riders per vehicle, both studies employ a set-packing or set-partitioning formulation (which
are known to be NP-Hard) similar to our problem, but without rider stochasticity, booking
fees, and penalties for not finding a match. In particular, Peng et al. [2022] propose a
branch-and-price algorithm to solve a many-to-one stable matching problem. To find feasible
rideshares, the authors design the pricing subproblem as several knapsack problems, one for
each driver. As the authors consider routes with at most two riders, this pricing subproblem
can be solved efficiently. For surveys on ridesharing and related problems, we refer the reader
to Agatz et al. [2012], Furuhata et al. [2013], Mourad et al. [2019], and Martins et al. [2021].

The issue of information flow and uncertainty concerning user requests has received mixed
attention in the ridesharing literature. Several studies [e.g. Agatz et al., 2011, Wang et al.,
2018] assume that information is released dynamically within a rolling horizon framework. In
other words, in ridesharing contexts, information is rarely fully known in advance. However,
tackling this uncertainty has often been overlooked in the literature on ridesharing and
related fields. For example, the two studies cited above myopically generate decisions
within a rolling horizon framework. Further, Bertsimas et al. [2019] study an online taxi
dispatching problem, and propose a myopic matching policy that has no access to predictions
on future demand. Myopic approaches are likely to underperform approaches that explicitly
acknowledge uncertainty. To the best of our knowledge, Homsi et al. [2020, 2021] are the only
studies that address demand uncertainty in a dynamic context. Homsi et al. [2020] introduce
a two-stage matching model with rematches and stochastic rider requests for ridesharing,
while Homsi et al. [2021] evaluate this model within a rolling horizon framework. Our work
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is inspired by these works in the sense that we consider stochastic rider requests. We further
extend these works by allowing for multiple riders in the same rideshare. However, we do not
consider the possibility of rematching in our study. Instead, our work focuses on the interplay
between the ridesharing decisions and the booking fees and penalties.

Furthermore, to the extent of our knowledge, there are no ridesharing studies that consider
the possibility of different service type agreements between participants and the ridesharing
system. We address this gap in the literature by allowing for different types of driver booking,
which may be associated with different booking fees and penalties, and impact the profitability
and feasibility of potential rideshares. Finally, previous studies have suggested penalties
based on the response time, i.e., the time of occurrence of requests and the time the match is
generated [e.g. Riley et al., 2019, Homsi et al., 2020], or penalties for riders that were not
serviced [Lee and Savelsbergh, 2015]. However, to the best of our knowledge, no attention was
given to studying penalties associated with the failure to provide a rideshare to drivers once
an agreement (i.e., a booking) between the system and the drivers is established. Given that
a ridesharing system depends on the presence of a large driver user-base to attract potential
riders, our study explores the use of penalties for unmatched drivers. These penalties promote
a higher level of service stability to users, as the rideshare operator has a monetary risk
associated with decisions that are likely to leave drivers without a rideshare. Furthermore,
prioritizing drivers may be an effective strategy to bootstrap a ridesharing system, as the
presence of drivers is needed in order to attract a rider user-base.

From an Operations Research perspective, the here considered problem has connections to
several classical optimization problems. As drivers have to pick up riders at their origin and
drop them off at their destinations, the problem resembles an extension of the Pickup and
Delivery Problem defined on a graph [see, e.g. Parragh et al., 2008a], in which the vehicles
have to be selected before the commodities are known. From the matching perspective, the
problem structurally can also be seen as a stochastic set-packing problem [see, e.g. Escudero
et al., 2011], where the objective function coefficients are uncertain. In our case, the right-
hand-side coefficients of some constraints are uncertain. Our problem also has connections to
capacitated facility location problems, which can be modeled as a set-partitioning problem
[Baldacci et al., 2002]. In this case, driver bookings correspond to the activation of facilities,
and the rideshares correspond to binary assignments of customers to facilities. These three
classic Operations Research problems (Pickup and delivery, Set-packing and Capacitated
facility location) are NP-hard. Given that our problem generalizes these three classic problems,
solving it is at least as difficult as solving these problems. Furthermore, our problem is
stochastic, which further increases its difficulty.
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5.3. Planning Problem and Operating Modes
We now define the planning problem and the variants considered in this paper. Section

5.3.1 introduces the general planning problem, based on which Section 5.3.2 then instantiates
three problem variants corresponding to different rideshare operating modes.

5.3.1. Problem Definition

A ridesharing platform receives transportation requests for a specific time window (also
referred to as the planning period), indicating the willingness of drivers and riders to engage
in ridesharing with other users on the platform. When creating requests, a user specifies its
origin, destination, earliest departure time, latest required arrival time at the destination,
and whether it wants to participate as a driver or a rider. Based on this information, the
platform plans ridesharing groups such that participants can fulfill their itineraries while
traveling together to save fuel. As such, a ridesharing group is defined as a planned trip
composed of one driver and one or more riders.

Driver and rider requests. Drivers are defined as individuals that possess a vehicle
and have a planned itinerary consisting of an origin, a destination, an earliest departure
time, and a latest arrival time at which the driver has to arrive at her destination. Drivers
may participate in a rideshare with riders, i.e., a driver may pick up riders at their origin
locations and drop them off at their specified destinations, as long as the specified time
windows are respected. In most ridesharing systems that involve commuting or intra-city
transportation, driver requests must be made and selected in a timely manner before the
actual rider requests are known. As such, the matching planning problem considers driver
and rider requests with itineraries that fall into the window of a specific planning period, e.g.,
the morning commuting period of a weekday. Specifically, this planning period spans the
time period starting at the earliest departure time among all drivers and ending at the latest
arrival time among all drivers. Once the driver requests for the planning period are known, a
subset of these requests has to be booked in advance (e.g., the evening before) before rider
requests are known, such that these booked drivers can be assigned to rider requests once
they have occurred.

The occurrence of specific rider requests is uncertain. It is assumed that the platform is able
to characterize this uncertainty through probability distributions or historical observations
(e.g., rider requests observed throughout the last weekdays). The planning problem therefore
resolves into a two-stage structure: in the first stage, driver requests are released and must
be booked; in the second stage, rider requests are known and must be assigned to booked
drivers. As mentioned above, such two-stage structure may represent a context where driver
requests are made and selected in the evening. Rider requests are then gradually released
until the morning commuting period of the planning day and assigned to the selected drivers.
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Contract types. Given that drivers have to be selected before the actual rider requests
are known, it may be possible that a booked driver is not assigned to any actual rideshare.
In order to provide an incentive to drivers and encourage an expanding driver user-base, the
system operator may therefore book a driver according to different contract types, which can
be seen as a type of service agreement or booking policy: either a predefined fee is paid to a
selected driver, no matter whether the driver is actually assigned to a rideshare, or a penalty
is paid to drivers that have been selected, but not assigned to a rideshare. These contract
types, along with their specified booking fees and penalty values, may be specified for different
service characteristics. For example, the operator may decide to pay higher booking fees for
drivers that are available during larger time windows. While the costs to book drivers may
increase, larger availability windows also offer higher flexibility to match potential riders. As
a result, the final choice of such contract types may impact several relevant performance
measures considered by the system operator, such as the profitability of the rideshare, the
satisfaction of drivers (reflected by the level of compensation when not matched) and the
satisfaction of riders (reflected by the ability to match them).

While drivers are typically compensated for making available their vehicles, riders typically
pay fees in order to be matched with the prospect of saving due to the rideshare. Incentives
to participate in a rideshare are therefore monetary. Riders pay for the service, because it
is cheaper than driving alone, or because they do not have access to a car or other forms
of transportation. The drivers pick up riders in exchange for compensation because it is
also cheaper than driving alone. Therefore, both drivers and riders are potentially saving
money when ridesharing. We can characterize the benefit associated with a rideshare by, for
example, the amount of distance savings that it generates for its participants. Specifically,
such savings may be computed as the difference between the total rideshare distance and
the individual travel distances in case each participant drives alone. However, the general
problem, as well as our modeling framework are general enough to allow for benefits that are
based on other performance measures. Note that we do not make any assumption on how
the fees are distributed among participants. For further reading on this subject, we refer the
reader to literature on, for example, Shapley values for ridesharing [Levinger et al., 2020].

The objective of the problem is to book drivers and then assign them to riders to build
rideshares with maximal value. Note that this problem does not require that all rider’s
requests are served. In fact, this would be an unreasonable requirement when demand
is uncertain. While, instead, this problem focuses on the profitability of the system, our
computational experiments will allow us to study the conditions under which the proportion
of satisfied rider requests is high. In the following, we will refer to this problem as the 2-Stage
Stochastic Driver Matching Problem (2S-SDMP). Next, we describe how this problem can
represent different operating modes of ridesharing services.
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5.3.2. Different Operating Modes

The above introduced notions of contract types, booking fees and penalties allow for
various ridesharing system configurations. In the following, we will focus on three specific
problem variants, which represent realistic operating modes in practice and will allow us to
explore the impact of the system parameters on the performance measures relevant to the
operator:

• Multiple contract types with penalties (pen-k): Each driver can be booked at
one of k different contract types (i.e., k = |L| denotes the cardinality of the set of
contract types L). Booking a driver is free of cost. However, a penalty is paid if a
booked driver is not assigned to a rideshare. Each contract type specifies a different
driver availability window and a penalty. Assigning rider itineraries to the route
of a driver results in overall savings (both in terms of used vehicles and in terms
of distance), which is shared among the participants. This variant corresponds to
traditional ridesharing systems, with an additional penalty mechanism to attract
drivers to its user-base. For k = 1, this variant represents ridesharing operations
where the system only offers one type of contract to its users. For k > 1, it represents
a more flexible system that offers drivers different types of contracts.
• Multiple contract types with booking fees (fee-k): Booking a driver involves a

fee, but there are no additional penalties in case drivers are not assigned to rideshares.
Drivers can be booked at one of k contract types. While drivers have a specific
origin (i.e., a location where they will start their trip), they do not have a fixed
destination. This variant may represent any context where fees are paid in advance by
the platform to reserve driver capacity, for example, taxi-like sharing platforms where
drivers are independent contractors that are booked in advance to transport riders.
After completing the trip, they are free to take new trips or to leave the platform.
Here, benefits from rideshares mostly come from the cost savings when several riders
share the same taxi, as opposed to paying a separate taxi for each ride.
• Penalties and booking fees (pen-fee): Drivers can be booked on one of two

contract types: either without a booking fee, but with a penalty if the driver is not
assigned to a rideshare, or vice-versa (i.e., with a booking fee, but without penalties).
This variant may fit a traditional ridesharing system, which has a smaller driver
user-base and would like to attract more riders by providing more driver resources. If
a driver is willing to be booked on either contract type, this provides an additional
opportunity to optimize profits and improve the overall service level.

As mentioned earlier, a ridesharing operator is not only concerned with the profitability
of the system but also with its long-term success, often reflected by its attractiveness to the
driver and rider user-base (reflected by, e.g., booking fees, penalties, matching probability).
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The first problem variant, pen-k, will allow us to explore the trade-off between driver
availability windows, rideshare profitability, and penalties. Large driver availability windows
allow for more matching flexibility, but their attractiveness depend on the price. The second
problem variant, fee-k, will allow us to study how the system’s profitability is affected by an
increasing compensation of the drivers. Finally, studying the hybrid variant pen-fee may
help understand under which penalty values are acceptable compared to the booking fees.
Note that, while the here presented planning problem involves only a single time period, the
problem can be used in a dynamic multi-period setting. We elaborate on the relation to the
multi-period and multi-stage counterpart in Appendix A.1.

5.4. Mathematical Models
In this section, we formally describe the problem that we are studying through math-

ematical programming models that are general enough to encompass all problem variants
discussed above (see Section 5.3.2). In Section 5.4.1, we first introduce a deterministic model,
which assumes that the actual rider requests are known in advance. While this is unrealistic
in practice (unless requests can be accurately predicted), the performance of the deterministic
model operating under perfect information can be used as a benchmark. We then define a
two-stage stochastic model in Section 5.4.2, explicitly addressing rider request uncertainty.
Finally, we discuss several approximations of the two-stage model in Section 5.4.3.

5.4.1. The deterministic formulation

Let D be the set of driver requests and R be the set of rider requests, which jointly form
the set of transportation requests with D ∩ R = ∅. Let L be the set of contract types on
which a driver can be booked. In order to be available to participate in a rideshare, a driver
i ∈ D has to be booked at some contract type ℓ ∈ L, implying a booking cost (e.g., a booking
fee) of f ℓ

i . A rideshare is a route that starts at the driver’s origin location, then picks up and
delivers one or more riders to their destination, and ends at the driver’s destination.

Each booked driver and each rider can participate in at most one rideshare. Let P(R)
be the power set of riders R, i.e., a set containing all subsets of R. For a given driver i ∈ D

booked at contract type ℓ ∈ L, let Ωℓ
i ⊆ P(R) represent the set of feasible rider subsets

that may share a ride with driver i. Any rider subset ω ∈ Ωℓ
i therefore represents a possible

rideshare, and we here assume that the exact route for this rideshare is the most economical
one, generating a total system revenue rℓ

iω. The set of feasible rideshares Ωℓ
i , along with the

corresponding revenues, can be enumerated beforehand. If a booked driver is not assigned to
any rideshare, a penalty pℓ

i is paid for compensation.
Let zℓ

i be a binary variable that takes value 1, if and only if driver i ∈ D is booked at
type ℓ ∈ L. For each driver i ∈ D, type ℓ ∈ L and riders ω ∈ Ωℓ

i , let yℓ
iω be a binary variable
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that takes value 1, if and only if the riders in ω share a ride with driver i ∈ D, booked at
type ℓ ∈ L.

Further, for each rider j ∈ R, let b′
j be a binary constant equivalent to 1, if and only if

rider request j occurs, i.e., rider j is available ridesharing. For a given driver i ∈ D, contract
type ℓ ∈ L and rider subset ω ∈ Ωℓ

i , let ajω denote a binary constant equivalent to 1, if and
only if j ∈ ω. A deterministic matching model can be written as:

max
∑
i∈D

∑
ℓ∈L

−f ℓ
i zℓ

i +
∑
i∈D

∑
ℓ∈L

( ∑
ω∈Ωℓ

i

rℓ
iωyℓ

iω − pℓ
i(zℓ

i −
∑

ω∈Ωℓ
i

yℓ
iω)

)
(5.4.1)

∑
ℓ∈L

zℓ
i ≤ 1 ∀i ∈ D (5.4.2)

∑
ω∈Ωℓ

i

yℓ
iω ≤ zℓ

i ∀i ∈ D, ℓ ∈ L (5.4.3)

∑
i∈D

∑
ℓ∈L

∑
ω∈Ωℓ

i

ajωyℓ
iω ≤ b′

j ∀j ∈ R (5.4.4)

zℓ
i ∈ { 0, 1 } ∀i ∈ D, ℓ ∈ L (5.4.5)

yℓ
iω ∈ { 0, 1 } ∀i ∈ D, ℓ ∈ L, ω ∈ Ωℓ

i . (5.4.6)

Objective (5.4.1) maximizes the total system profit, given by the difference between the
revenue generated by the rideshares, the fees for booked drivers, and the penalties for drivers
that have been booked, but have not been assigned to any rideshare. Constraints (5.4.2)
ensure that drivers cannot be booked on more than one type. Constraints (5.4.3) ensure
that a driver can serve at most one rideshare, and only if it is booked. Finally, Constraints
(5.4.4) ensure that a released rider can rideshare with at most one driver. This model has a
set-packing structure with the addition of driver booking variables zℓ

i . As such, the problem
is NP-hard.

Note that, instead of using Constraints (5.4.4) no matter the outcome of constants b′
j,

the model can be slightly modified such that these constraints are defined exclusively for
the set of released riders. However, when using model (5.4.1)–(5.4.6), the presolving step of
modern mixed-integer programming solvers will remove constraints where b′

j = 0 and adjust
the bounds of the associated y-variables accordingly. To keep the model notation consistent
with the stochastic models that we will introduce next, we have decided to explicitly include
the constants b′

j,∀j ∈ R in the deterministic model.
Further note that this problem formulation makes no assumption on how route feasibil-

ity is defined, but is flexible enough to accommodate many feasibility requirements while
enumerating Ωℓ

i . The definition of feasibility may depend on the ridesharing system and
the objectives of the operator. For the sake of our numerical analyses, we will focus on
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two intuitive feasibility criteria: vehicle capacity and time-window feasibility. The latter
is even more important if the planning period spans a long time (e.g., several hours). We
give further details on route feasibility when explaining our route enumeration procedure in
Section 5.5.1.4.

While the formulation above is based on set-packing, the problem can theoretically also
be modeled as a compact arc-flow formulation [see, e.g., Baldacci et al., 2004]. Such arc-flow
formulation would require to explicitly model all driver routes, including their feasibility
requirements, on an (almost) complete graph. As such, the problem can be seen as a stochastic
extension of the Pickup and Delivery Problem with Time Windows (see Parragh et al. [2008a]
and Parragh et al. [2008b] for extensive surveys), but with an excessively large number of
vehicles. This problem generalizes the vehicle routing problem, which is known to be NP-hard
[Lenstra and Kan, 1981]. The corresponding formulations would therefore likely be intractable
for general-purpose MIP solvers and the explicit representation of route constraints (e.g. time
window constraints) may lead to a formulation that provides worse bounds than a set-packing
formulation [see, e.g., Costa et al., 2019]. Next to the issue of solving such formulations, they
also limit the possible definitions for rideshare feasibility and revenue functions. While a
set-packing formulation allows for the application of complex business rules and feasibility
criteria during the route enumeration process, an arc-flow formulation is limited to linear
additive rules.

5.4.2. The two-stage stochastic formulation

We now no longer assume that we have an a priori knowledge of whether a rider is released
or not. Instead, we assume that we can characterize the uncertainty on the release of riders
through probability distributions or historical observations. Thus, instead of having binary
constants b′

j for the release of rider j ∈ R as in the deterministic model, we represent this
uncertainty through random binary variables b̃j,∀j ∈ R.

We are concerned with finding a set of booked drivers that allows for maximum profit as
averaged over all (or most) realizations of b̃. To this end, we formulate a two-stage stochastic
problem that maximizes an expected second-stage value function. In the first stage, the
model decides which drivers to book. Based on these decisions, one second-stage problem
is solved for each realization of b̃, where booked drivers and released riders are assigned to
rideshares. The two-stage stochastic model can be written as follows:

max
∑
i∈D

∑
ℓ∈L

−f ℓ
i zℓ

i + Q(z) (5.4.7)
∑
ℓ∈L

zℓ
i ≤ 1 ∀i ∈ D (5.4.8)

zℓ
i ∈ { 0, 1 } ∀i ∈ D, ℓ ∈ L, (5.4.9)
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where
Q(z) = Eb̃[Q(z, b)]

is the expected second-stage value function. Objective (5.4.7) maximizes the expected profit
of building rideshares in the second stage, minus the costs associated with driver booking
in the first stage. For a given realization (e.g. a scenario) b of b̃, the second-stage value
function Q(z, b) is defined as:

Q(z, b) := max
∑
i∈D

∑
ℓ∈L

( ∑
ω∈Ωℓ

i

rℓ
iωyℓ

iω − pℓ
i(zℓ

i −
∑

ω∈Ωℓ
i

yℓ
iω)

)
(5.4.10)
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i

yℓ
iω ≤ zℓ

i ∀i ∈ D, ℓ ∈ L (5.4.11)

∑
i∈D

∑
ℓ∈L

∑
ω∈Ωℓ

i

ajωyℓ
iω ≤ bj ∀j ∈ R (5.4.12)

yℓ
iω ∈ { 0, 1 } ∀i ∈ D, ℓ ∈ L, ω ∈ Ωℓ

i . (5.4.13)

Objective (5.4.10) maximizes the profit of the selected rideshares, minus the costs as-
sociated with booked drivers that were not assigned to any rideshare. The second-stage
problem is a set-packing problem and, as such, is NP-hard itself. Solving the two-stage model
for all realizations of b̃ would require solving a formulation with an exponential number of
variables, which would be computationally intractable for most probability distributions. For
that reason, we now introduce three formulations that approximate the second-stage value
function.

5.4.3. Approximations for the second-stage value function

The two-stage problem may be challenging to solve, as the number of all possible rideshares
and the number of all possible realizations for b̃ are both exponential on the number of riders,
which can lead to a very large model. To address this, we propose three approximations for
the second-stage value function.

5.4.3.1. The sample average approximation problem. We first introduce a sample
average approximation (SAA) for the two-stage stochastic formulation [Birge and Louveaux,
2011]. To this end, we generate a set of scenarios S = {b1, . . . , b|S|} randomly sampled from
b̃, where |S| ≪ 2|R|. Alternatively, S can be obtained from historical observations. These
scenarios are then used to approximate the second-stage value function Q(z) by

QSAA(z) =
|S|∑
s=1

1
|S|

Q(z, bs).
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The corresponding model is solved under the same set of Constraints (5.4.8) and (5.4.9).
Note that, if only a single scenario is used to build the SAA (i.e., |S| = 1), then the model is
structurally identical to the deterministic model (5.4.1)–(5.4.6).

5.4.3.2. The sample average approximation problem with relaxed second stage.
If the integrality gap of the previously defined SAA model is small, then relaxations of the
second-stage function may still generate high-quality integer solutions. The relaxation of
integrality constraints in stochastic programming has been applied to other problems. For
example, Ahmed et al. [2003] study a multi-stage stochastic programming model for capacity
expansion under uncertainty. The authors relax the integrality constraints and then use a
heuristic to transform the continuous relaxation solution into an integer solution.

We here pursue a similar approach. We relax the integrality constraints (5.4.13) of the
second-stage problems (i.e., yℓ

iω ∈ [0, 1],∀i ∈ D, ℓ ∈ L, ω ∈ Ωℓ
i). First-stage decisions, however,

remain binary. We refer to this relaxation as the SAA-R. Such a relaxation is likely to
dramatically reduce the computing time required to solve the model, while still maintaining
first-stage binary decisions. Such formulation would also allow for the use of a Benders
decomposition algorithm to solve the model, if needed. In Section 5.5.2.2, we empirically
evaluate if the second-stage value function approximation of the SAA-R is sufficiently strong
to replace the SAA model, and provide insights on the performance of the SAA-R.

5.4.3.3. The expected value problem. When computational resources are limited and
solutions are required in nearly real-time, it may be desirable to use an approximation of the
second-stage value function that does not depend on multiple scenarios. Instead of considering
the scenarios S = {b1, . . . , b|S|} explicitly in the formulation, we may use a formulation with
a single sample mean realization:

b̄ =
|S|∑
s=1

1
|S|

bs.

The second-stage value function Q(z) is then replaced by

QEVP(z) = Q(z, b̄).

This problem is commonly referred to as the expected value problem (EVP) [Birge and
Louveaux, 2011]. Similarly to Homsi et al. [2020], the EVP has binary variables on the
left-hand side and may have fractional coefficients on the right-hand side of Constraints
(5.4.12). This may render the formulation too restrictive or even infeasible, which therefore
requires us to also relax the integrality constraints of the y variables.

5.5. Computational Study
In this section, we conduct extensive computational experiments on the proposed models.

To provide insights on a wide range of ridesharing operating modes (see Section 5.3.2), we
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evaluate four problem variants: pen-1, pen-2, fee-2 and pen-fee. We first introduce
the set of benchmark instances used throughout our experiments in Section 5.5.1. We then
evaluate the proposed models in Section 5.5.2, focusing on three types of key insights: the
benefits of using one problem variant over another; an understanding of why certain models
out- or underperform in specific settings; and, the impact of the input parameter values on
the expected user satisfaction and system profitability.

5.5.1. Benchmark instances

We generate a benchmark set of 6 base instances following the generation process of Homsi
et al. [2021], based on data from a Montreal ridesharing company. Then, we expand this
base benchmark set by varying the parameters of these instances to assess the impact on the
platform profit and user satisfaction, while keeping the same network topology. Namely, we
vary the values of the booking fees, revenues, and penalties. As such, we have 39 instances for
variant pen-1, 6 instances for variant pen-2, 6 instances for variant fee-k, and 6 instances
for variant pen-fee. An instance is composed of:

• a set D of 200 drivers, each with a specified origin, destination, and latest arrival
time;
• a set R of 200 riders, each with a specified origin, destination, latest arrival time, as

well as the probability that its request occurs;
• a set of booking types L, the booking fees coefficients f ℓ

i ,∀i ∈ D, ℓ ∈ L, and the
penalty coefficients pℓ

i ,∀i ∈ D, ℓ ∈ L;
• the availability window scaling parameters τr and τ ℓ

d,∀ℓ ∈ L, d ∈ D;
• a set of feasible rideshares Ωℓ

i for each driver and booking type, that is constructed
based on τr and τ ℓ

d,∀ℓ ∈ L, i ∈ D;
• the revenues rℓ

iω associated with each rideshare ω ∈ Ωℓ
i ,∀ℓ ∈ L, i ∈ D;

• a ground truth set of 2000 scenarios, each containing a realization of b̃, to validate
the profit of the first-stage decisions generated by our models.

Note that the availability window scaling parameters mentioned above adjust the size of
the time window that drivers are available for ridesharing. Further details are given in
Section 5.5.1.3. Next, we describe how these instances are generated.

5.5.1.1. Origin and destination locations. Inspired by Homsi et al. [2021], we ran-
domly generate points based on seven different demand clusters around the metropolitan
region of Montreal (see Figure 5.2). These demand clusters correspond to residential and
downtown regions. Due to time-window restrictions and the requirement to generate rideshares
with positive distance savings, many of the feasible rideshares satisfying these conditions have
origin or destination requests within the same local region. Thus, such complex instances
can be often separated into multiple instances and solved individually to provide close to
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optimal approximations for the larger instance. We therefore focus our study on the case
where requests originate in different residential regions and have destinations in the downtown
region. This represents, for example, the case of a daily morning commute.

Fig. 5.2. The geographical region considered around the metropolitan region of Montreal,
along with the clusters for origins and destinations. Orange points correspond to the downtown
region.

5.5.1.2. Probability of request occurrence. The probability that rider j ∈ R submits
a rider request for the upcoming planning (i.e., the probability that the random variable b̃j

takes value 1) is a real number sampled uniformly from [0, 1]. We therefore sample realizations
of b̃ to generate independent request scenarios used in our models.

5.5.1.3. Latest arrival times and availability windows. We randomly generate the
latest required arrival times for each request i ∈ D ∪ R. Its latest arrival time ti

a is a real
number sampled uniformly from [8, 10], representing the time range from 8am to 10am. The
latest arrival times represent, for example, the latest time individuals may want to arrive
at work. We hence assume that individuals are not willing to arrive later than the specified
latest arrival time. Instead, they are willing to leave home earlier to accommodate for the
delays involved in ridesharing. Thus, based on the latest arrival time, we calculate the
earliest departure time ti

d based on the travel time between an individual’s origin ui ∈ R2

and destination vi ∈ R2 (in longitude and latitude), as follows:

ti
d = ti

a − τ · d(ui, vi)
s

,∀i ∈ D ∪R,

where d(ui, vi) is the approximate routing distance in kilometers between ui and vi, s =
40 km/h is a constant speed assumed for all participants, and τ is an availability window
scaling factor. Therefore, d(ui, vi)/s represents the estimated individual travel time of user i

if she traveled alone. When referring to a driver at booking type ℓ, we use the notation τ ℓ
d.
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When referring to riders, we use the notation τr. When ridesharing, we assume that riders
are willing to accept travel times up to 30% longer than individual travel times, i.e., their
earliest departure time is computed based on τr = 1.3. As in Homsi et al. [2021], we estimate
the true routing distance between two points with the aid of a regression model trained with
OSRM routing data [Luxen and Vetter, 2011], resulting in the following formula:

d(ui, vi) = 1.57 + 81.91 · d̄(ui, vi),

where d̄(ui, vi) is the Manhattan distance between ui and vi.
In problem variant fee-k, drivers have no fixed destination, and their time windows

simply represent a time block during which they are available to provide transportation. For
each type-1 driver i ∈ D, the earliest departure time ti

d is set to as 45 minutes before ti
a (i.e.,

ti
a = ti

d + 45/60). For a type-2 driver i ∈ D, ti
d is set to one hour before ti

a (i.e., ti
a = ti

d + 1).
We uniformly sample ti

d from the interval [7, 9]. When calculating the distance savings, we
disregard the arc between the driver’s origin and the first pick-up. Note, however, that this
distance is still relevant to determine whether a rideshare is time-feasible or not.

5.5.1.4. Route enumeration and route feasibility. We a priori enumerate feasible
ridesharing routes with a depth-first search algorithm that incrementally builds routes. This
algorithm (implemented in C++) evaluates partial routes with different sizes, and extends
routes by adding new riders. The extension of a route stops as soon as the route is no longer
time-window feasible (i.e., when it violates the earliest departure time and latest arrival time
of participants). Enumerating all time-feasible routes is an exponential procedure and a naive
implementation may result in impractically large computing times. It is therefore important
to prune ridesharing routes that are not time-window feasible as early as possible, considering
the specified time-windows of both the driver and the riders. Specifically, at a certain node
(either a pickup or a delivery) that is being evaluated to extend a partial route, we prune our
route extension if at least one of the two criteria below is true:

• If the current node is a delivery and the total travel time of the partial route exceeds
the latest arrival time for the delivery;
• If the current node is a pickup and the total travel time of the partial route plus the

travel time required to go directly from that node’s origin to its destination exceeds
the latest arrival time for the delivery.

To further speed up the enumeration, we restrict the set of possible routes to those that
are user-friendly and that make sense in practice for ridesharing. Specifically, we limit each
route to at most three riders, which accurately represents the capacity of most vehicles
that have ridesharing-related availability window restrictions. As all destinations are in the
downtown region, it is unlikely that routes with additional pick-ups after deliveries would be
more advantageous than routes with all pick-ups before all deliveries. We therefore also limit
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the enumeration to routes that start dropping off riders to their destinations only after all
riders have been picked up from their origins. Our depth-first search algorithm is exact and
generates all routes that satisfy the criteria above. These criteria can be relaxed or modified
according to the needs of the ridesharing operator. A pseudo-code for the depth-first search
route enumeration algorithm is outlined in Appendix A.2.

Table 5.1 shows average statistics for the enumeration procedure, grouped by problem
variant. The first columns show the problem variant and the average number of routes
enumerated for each problem variant. The last column shows the maximum CPU time in
seconds among all problem instances required to enumerate these routes.

Table 5.1. Statistics for the route enumeration procedure by problem variant.

Variant Routes Routes (1 rider) Routes (2 riders) Routes (3 riders) max T (sec)
pen-1 2,410 1,177 1,192 41 0.75
pen-2 3,177 1,947 1,211 19 0.77
fee-2 9,862 3,823 5,853 186 11.19
pen-fee 1,996 1,518 478 0 0.65

Most problem variants can be enumerated in less than a second. For variant fee-2, the
enumeration time is the largest (11.19 seconds) due to the higher level of flexibility that
drivers have within this problem variant (i.e., fixed and large availability windows, and no final
destination). Experiments naively enumerating the trip routes without the second pruning
criteria have shown that the maximum enumeration time increases from 11.19 seconds to
3,450 seconds, which highlights the importance of using efficient pruning criteria. As such,
the enumeration procedure is sufficiently fast to be used even in real-time planning. While we
expect that the enumeration procedure scales well even if significantly larger instances were
to be considered, we here outline two potential approaches to further reduce the computing
time: First, the depth-first search could be easily parallelized to reduce the enumeration
time. Second, the procedure may be split into two parts: the enumeration of rider routes and
the matching of such routes to drivers. The former is based on the available rider-request
scenarios and therefore only needs to be updated once more refined probabilities (i.e., more
scenarios) are available (e.g., once per month). The latter has to be carried out at each
planning, but has a computational complexity linear in the number of drivers. As such, it is
likely to be extremely fast.

5.5.1.5. The revenue of a rideshare. We assume that the revenue rℓ
iω the system

operator earns for each rideshare ℓ ∈ L, i ∈ D, ω ∈ Ωℓ
i is computed as a share of the total

distance savings siω generated by the rideshare. A scaling parameter γℓ
r converts the total

distance savings into a revenue value allocated to the ridesharing operator:

rℓ
iω = γℓ

r · siω.
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This allows us to adjust the value of a rideshare individually for each driver booking type.

5.5.1.6. Booking penalties. We define the booking penalties pℓ
i , ∀i ∈ D, ℓ ∈ L as

the product of a penalty scaling parameter γℓ
p and the distance between driver origin and

destination d(ui, vi), as below:
pℓ

i = γℓ
p · d(ui, vi).

We can therefore represent situations where the system subsidizes a proportion of the driver’s
journey in case it is unable to find riders to form a rideshare. As penalties are indexed by
driver and booking type, more complex penalty functions could be used without changing
the structure of our models. For example, the penalty scaling parameter could also be
driver-dependent.

5.5.1.7. Parameters used for different problem variants. We now describe the
values of the parameters that are specific to each variant:

• Single contract type with penalties (pen-1): We consider only one level of
booking per driver (i.e., L = { 1 }) and no cost associated to driver booking (i.e.,
f 1

i = 0,∀i ∈ D). Studying this variant, we aim at understanding the benefits of
increasing the size of the availability window, which results in a trade-off between
profitability and user-friendliness. To this end, we evaluate instances with different
driver availability windows by varying τ 1

d ∈ { 1.3, 1.4, 1.5 }. Furthermore, we test the
following values for the revenue and penalty scaling coefficients (γ1

r and γ1
p):

(1) We fix γ1
r = 0.3, and vary γ1

p ∈ { 0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5 };
(2) We fix γ1

p = 0.3, and vary γ1
r ∈ { 0.1, 0.3, 0.5, 0.7, 0.9 }.

• Multiple contract types with penalties (pen-2): We consider two booking types
(i.e., L = { 1, 2 }) and no cost associated with driver booking (i.e., f 1

i = 0,∀i ∈ D).
For type-1 drivers, we assume that τ 1

d = 1.3, γ1
r = 0.2 and γ1

p = 0.3. For type-2 drivers,
we assume that τ 2

d = 1.4, γ2
r = 0.2 and vary γ2

p ∈ { 0.5, 1, 2, 4, 8, 16 }. Studying this
variant, we aim at understanding the trade-off between availability window size and
penalties.
• Multiple contract types with booking fees (fee-2): We consider two booking

levels. All booked drivers are paid a fee in advance, and there are no penalties if they
are not matched in the second stage (i.e., γℓ

p = 0,∀ℓ ∈ L). For type-1 drivers, we fix
γ1

r = 0.3 and f 1
i = 1,∀i ∈ D. For type-2 drivers, we fix γ2

r = 0.3 and vary the booking
fees f 2

i ∈ { 1.5, 2, 2.5, 3, 3.5, 4 } ,∀i ∈ D. Type-1 drivers are available for 45 minutes,
and type-2 drivers are available for 1 hour. We study this variant to explore which
booking fees can be justified when increasing the availability window.
• Penalties and booking fees (pen-fee): The operator has the choice of selecting a

driver either with a booking fee, or with a penalty as in variant pen-2. Both types
have the same availability window τ 1

d = τ 2
d = 1.3 and revenue share γ1

r = γ2
r = 0.3.
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Type-1 drivers can be booked at no cost (i.e., f 1
i = 0,∀i ∈ D), but penalties are

paid if the booked drivers are not assigned to any rideshare on the second stage. To
this end, we vary γ1

p ∈ { 0.5, 1, 1.5, 2, 2.5, 3 }. Type-2 drivers have no penalties (i.e.,
γ2

p = 0), but a fee f 2
i = 1,∀i ∈ D is paid to book them. We study this variant in

order to gain an understanding of the interplay between the use of the two different
driver booking types.

5.5.2. Computational results

In this section, we evaluate the solutions provided by the proposed models on our
benchmark instances. All experiments have been executed on a machine with an AMD 3970X
processor and 256 GB of memory. Models have been solved using CPLEX version 22.1. We
limited CPLEX to one thread, set its execution time limit to one hour, and used Python to
build all models.

5.5.2.1. Validation of first-stage decisions. To estimate the unbiased performance
of the first-stage decisions (i.e., the values of the z variables) generated by each model, we
evaluate these decisions on the ground truth validation set with 2,000 samples for b̃. Let f̃(z)
be a model’s optimal objective function value over these validation samples. We compare
f̃(z) against the objective function value of the wait-and-see problem [Madansky, 1960],
which consists of solving several independent single-scenario models, one for each sample
of b̃. First-stage decisions are therefore tailored to each sample of b̃, allowing us to obtain
the best possible profit in case the planner has the ability to accurately predict the future
realization of b̃. While this is unrealistic in practice, the wait-and-see solution can be used as
an upper bound to evaluate the quality of the solutions obtained from the other models. The
wait-and-see objective fws is the average of the objective function values of each independent
problem, and is an upper bound for f̃(z). Thus, to estimate the quality of the first-stage
solutions z we calculate the relative gap between f̃(z) and fws as:

gapws = fws − f̃(z)
fws

.

It is interesting to note that, as the first-stage decisions of the wait-and-see problem are
specific to each scenario and are aware of the actual rider requests, the wait-and-see solution
will never book drivers that are not matched in the second-stage, given that this would incur
unnecessary (and sub-optimal) penalties or booking fees.

5.5.2.2. Performance for different models on all problem variants. We now
analyze the difficulty of solving the various models for each of the problem variants. Specifically,
for each of the four problem variants, we evaluate the benefits of using a scenario-based
approach such as the SAA over a simpler model such as the EVP. We also explore the
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tradeoff between representing the second-stage problem of the SAA formulation as a binary
set-packing problem, or as a relaxation.

Table 5.2 summarizes the results averaged over the problem instances for each of the
four problem variants (pen-1, pen-2, fee-2, pen-fee) and each of the three models: the
conventional SAA, the SAA with relaxed second-stage (SAA-R) and the EVP. Column “|S|”
indicates the number of scenarios used in each model. Column “profitgt” represents the
average profit associated with the first-stage decisions and evaluated on the the ground truth
validation set. For each instance, the first-stage decisions of all models are evaluated on
the same validation set. Column “gapws (%)” indicates the average percentage gap of the
objective function value to the optimal objective function value of the wait-and-see solution.
Column “T (sec)” represents the average CPU time (in seconds) required by CPLEX to
solve the models. To assess the potential benefits of having more precise information on the
occurrence of riders, we test our models with different numbers of scenarios (specifically, with
25, 50, 100 and 200 scenarios).

Table 5.2. Results for models on all problem variants.

model |S| profitgt gapws (%) T (sec) model |S| profitgt gapws (%) T (sec)
pen-1 pen-2
SAA 25 517.44 8.73 1.96 SAA 25 234.33 20.50 43.13

50 518.70 8.46 7.37 50 255.66 13.29 53.76
100 519.66 8.25 33.21 100 258.06 12.48 530.64
200 519.95 8.16 164.08 200 262.47 10.99 1,618.65

SAA-R 25 517.44 8.73 0.75 SAA-R 25 237.74 19.35 7.99
50 518.74 8.46 2.53 50 254.19 13.79 8.02
100 519.65 8.25 9.54 100 258.20 12.43 45.14
200 519.90 8.17 44.62 200 262.72 10.91 356.84

EVP 25 500.62 12.89 0.49 EVP 25 78.91 73.00 1.85
50 499.60 13.07 0.87 50 92.66 68.36 1.83
100 506.12 11.48 0.36 100 86.45 70.46 1.26
200 506.50 11.42 0.53 200 82.60 71.76 1.77

fee-2 pen-fee
SAA 25 113.22 17.37 1,287.37 SAA 25 355.92 12.61 0.55

50 113.19 17.39 2,893.44 50 355.95 12.60 3.45
100 113.84 16.88 3,600.00 100 359.28 11.78 27.10
200 113.78 16.92 3,600.00 200 360.74 11.43 449.30

SAA-R 25 112.91 17.61 450.89 SAA-R 25 355.90 12.61 0.43
50 113.18 17.36 2,068.08 50 355.87 12.62 1.49
100 113.63 17.02 3,459.31 100 359.44 11.74 9.86
200 113.70 16.98 3,600.00 200 360.69 11.44 16.71

EVP 25 110.72 19.21 2,657.70 EVP 25 238.56 41.34 0.10
50 110.83 19.05 3,600.00 50 247.95 39.04 0.63
100 111.33 18.70 2,383.40 100 270.84 33.44 0.97
200 110.55 19.24 2,016.35 200 270.54 33.51 0.94

The results highlight the benefits of using a stochastic model: for variant pen-1 at 200
scenarios, the gaps of the SAA and the SAA-R are, on average, about 3 percentage points
smaller than the gap of the EVP (8.16% and 8.17% versus 11.42%). Moreover, the results
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show that increasing the number of scenarios reduces the gap for all models, except for the
EVP at problem variant pen-2, where the average gaps are large (68.36% to 73.00%) and do
not appear to improve consistently with the number of scenarios. In contrast, for that same
problem variant, the average gaps of the SAA and SAA-R at 200 scenarios are 10.99% and
10.91%, respectively.
On the SAA-R performance. The results show that relaxing the second-stage problem
for the SAA formulation can be an efficient strategy: for example, for variant pen-2 with
200 scenarios, the model can be solved in about 20% of the original computing time (from
1,618.65 seconds to 356.84 seconds), while the gaps are similar to those of the original SAA.
We observe similar reductions in computing time and similar gaps for all other problem
variants, except for variant fee-k where both models exceed the computing time limit, while
the gaps are similar. This may suggest two further advantages associated with relaxing
the second-stage problem: as the relaxed second-stage problems are easier to solve, we may
be able to better approximate the second-stage value function by increasing the number
of samples. Further, in the case where the original SAA formulation becomes too hard to
solve, relaxing the second-stage allows us to apply Benders decomposition (which requires
continuous subproblems).

To better understand the different levels of computational effort required to solve the SAA
and the SAA-R, we conduct further experiments where we compare the optimal solution (or
best known solution) value of each model with the solution value of its linear programming
relaxation. Average results for the SAA and SAA-R with 200 scenarios are shown in Table 5.3.
Column “profit200” indicates the profit (objective function value) of the models over the 200
scenarios used to find the first-stage decisions. Column “int. gap (%)” shows the integrality
gap between the optimal (or best known) solution and the linear programming relaxation.
Column “opt. gap (%)” indicates the optimality gap as reported by CPLEX.

Table 5.3. Integrality and optimality gaps for the SAA and the SAA-R with 200 scenarios.

variant model profit200 int. gap (%) opt. gap (%) T (sec)
pen-1 SAA 521.05 0.15 0.00 164.08

SAA-R 521.69 0.01 0.00 44.62
pen-2 SAA 268.91 0.15 0.01 1,618.65

SAA-R 269.23 0.03 0.01 356.84
fee-2 SAA 115.77 4.12 1.18 3,600.00

SAA-R 119.30 1.26 0.71 3,600.00
pen-fee SAA 364.62 0.12 0.00 449.30

SAA-R 365.04 0.00 0.00 16.71

As expected, the SAA-R model has smaller integrality gaps (often zero or close to zero)
than the SAA model, which results in faster solution times. For cases where optimality is
not proven (fee-2), we observe that the optimality gaps of the SAA-R are still smaller than
those of the SAA.
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As the SAA-R is a relaxation of the SAA, the optimal value of the objective function of
the SAA-R will be an upper bound to the optimal SAA objective. Column profit200 shows
that this upper bound is relatively tight. For all variants except for fee-2, the SAA-R
objectives have a gap of at most 0.12% to the SAA objective. For variant fee-2, none of
the models have been able to prove optimality, and the average gap between the best known
solutions of the SAA-R and the SAA is 2.96% (115.77 and 119.30). This gap could be further
improved by strengthening the relaxed second-stage set-packing formulation through valid
inequalities [see, e.g. Borndörfer, 1998].

In an effort to gain an understanding of why the SAA-R provides such tight approximations
for the second-stage value function, we inspect the proportion of the second-stage y variables
that take value 1, as opposed to variables that take a fractional value greater than zero. Upon
further inspection of a pen-1, a pen-2 and a fee-2 instance solved by the SAA-R with 200
scenarios, we have observed that y variables with value 1 represent about 91% (for pen-1),
77% (for pen-2) and 50% (for fee-2) of the total number of variables with non-zero values
(i.e., variables with value 1, and variables with non-zero fractional values). The fact that more
SAA-R variables are fractional for variant fee-2 explains the larger gap between the SAA-R
and SAA objectives (2.96%, as opposed to 0.12% for other problem variants). We furthermore
observed that the ratio between rideshares (non-zero y variables) and activated drivers is
1.01 (for pen-1), 1.12 (for pen-2) and 1.21 (for fee-2). These ratios are significantly smaller
than those in the EVP solutions (3.03, 3.22 and 4.92, respectively). This suggests that, even
if the second-stage variables are relaxed, a significant proportion of the variables assume
integer values, which leads to a better approximation of the second-stage value function, and
explains the good performance of the SAA-R. Given the high solution quality induced by
the SAA-R model on the ground truth and its small integrality and optimality gaps when
compared to the SAA model, we restrict the following experiments to the SAA-R model
using 200 scenarios.
On the EVP performance. Despite its short computing times, the EVP model does not
reliably provide a reasonable approximation to the original SAA solution. This becomes
evident, in particular, for variants pen-2 and pen-fee, where its gaps are significantly worse
than those of the other models. Instead, it may be more effective to solve the other models
with a smaller number of scenarios, which likely generates solutions of higher quality and CPU
times comparable to the EVP. The bad performance of the EVP is due to the combination of
fractional right-hand-side coefficients (for the mean sample realization b̄ of b̃) and continuous
second-stage variables, as bj ∈ [0, 1],∀j ∈ R are likely to be fractional, Constraints (5.4.12)
will likely limit the creation of rideshares to fractional values (i.e., yℓ

iω < 1). As a consequence,
the EVP solution may partially open multiple rideshares for the same driver, such that the
cost of the booking fee is offset. Indeed, upon further inspection of some instances, we have
observed that drivers are partially assigned to, on average, 3.03 different rideshares for pen-1,
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3.22 for pen-2, and 4.92 for fee-2. The first-stage decisions are therefore not optimized
under the assumption that drivers can be assigned to at most one rideshare, and consequently
they may not be as profitable when evaluated on the ground truth. The performance of the
EVP for variant pen-2 is further discussed in Section 5.5.2.5.

5.5.2.3. PEN-1: impact of driver availability windows. In this and the following
sections, we explore how the platform profit and user satisfaction are impacted under the
different problem variants and parameter settings. With the overall objective to gain an
understanding which parameter values are desirable such that both the platform and the
participants benefit, we will examine several performance indicators: the platform profit, the
proportion of booked drivers, the proportion of failed bookings, the proportion of satisfied
riders, and the cost of the rideshare compared to driving alone.

We first focus on the impact of the driver availability window. We limit these experiments
to variant pen-1 and test availability window scaling coefficients τ 1

d ∈ { 1.3, 1.4, 1.5 }, along
with different configurations of the revenue share scaling parameter γ1

r and penalties scaling
parameter γ1

p, namely:
• we fix the penalty coefficients to γ1

p = 0.3, and vary the share of savings collected by
the ridesharing platform γ1

r ∈ { 0.1, 0.3, 0.5, 0.7, 0.9 }, representing contexts where the
platform passes almost all revenue to the users (γ1

r = 0.1) up to contexts where the
platform keeps most of the revenue, and only little for its users (γ1

r = 0.9);
• we fix the coefficient for the share of savings collected by the ridesharing platform

to γ1
r = 0.3, and vary the penalties γ1

p ∈ { 0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5 }. This
represents contexts where the platform subsidizes only 10% of a booked driver’s trip
in case it is not assigned to a rideshare (γ1

p = 0.1) up to contexts where drivers
are highly compensated through penalties if they are not assigned to any rideshare
(1.1 ≤ γ1

p ≤ 1.5).
We expect larger availability windows to contribute to a higher number of successful matches,
and hence to more profitable solutions. However, larger availability windows may generate
inconveniences for drivers. Operators are therefore interested in identifying a reasonable value
for τ 1

d that generates sufficient profit, while causing minimal inconveniences.
The results are summarized in Table 5.4. Column “book (%)” indicates the average

proportion of booked driver over all drivers. Column “failed (%)” shows the average proportion
of failed bookings (i.e., drivers that were booked but not assigned to any rideshare) over all
booked drivers. Column “sat. riders (%)” represents the average proportion of satisfied rider
requests (i.e., riders that have been assigned to a rideshare) over all released riders. Column
“cost (%)” shows the percent average trip cost relative to individual trips (i.e., the ratio of
shared distances plus platform cut over the sum of individual distances).
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Table 5.4. SAA-R results for different values of τ 1
d on variant pen-1 (averaged

over fixed γ1
p = 0.3 with γ1

r ∈ { 0.1, 0.3, 0.5, 0.7, 0.9 }; and fixed γ1
r = 0.3 with

γ1
p ∈ { 0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5 }).

τ 1
d profitgt gapws (%) book (%) failed (%) sat. riders (%) cost (%) T (sec)

1.3 464.40 12.55 34.33 4.24 75.55 76.36 10.80
1.4 528.58 7.47 36.29 2.77 87.95 75.85 64.29
1.5 566.73 4.48 37.79 1.59 95.98 75.61 58.77

The results indicate that, as τ 1
d increases, the platform profit also increases. This is

explained by the fact that the platform is able to form more rideshares: there are more
booked drivers and fewer failed bookings, as drivers can adjust more easily to different
rideshares. Furthermore, a direct consequence of having less failed bookings is a smaller gap
to the wait-and-see solution, which has no failed bookings. Rider demand can also be better
met with larger driver availability windows: almost all riders (95.98%) are provided service
when τ 1

d = 1.5, while the trips costs for users remain stable (around 76%, representing 24%
cost savings). However, using such large availability windows would not provide the best user
experience for drivers. A reasonable trade-off value for τ 1

d seems to be 1.4, as it improves all
performance metrics and does not require a large level of driver flexibility.

5.5.2.4. PEN-1: impact of revenue share and penalty levels. The goal of this
section is to identify values for the revenue share and penalties such that the ridesharing
platform attains a good profit while keeping users satisfied. To this end, we explore the
impact of changing the platform revenue share and penalty levels independently. Then, we
study the joint impact of these parameters.

Impact of revenue share. We analyze the impact of changing the scaling parameter
γ1

r for the revenue share collected by the ridesharing platform (defined in Section 5.5.1.5). We
limit these experiments to variant pen-1. We fix the penalty coefficient to γ1

p = 0.3 and vary
the share of savings collected by the ridesharing platform γ1

r ∈ { 0.1, 0.3, 0.5, 0.7, 0.9 } (note
that results are averaged over instances with driver availability window scaling coefficients
τ 1

d ∈ { 1.3, 1.4, 1.5 }).

Table 5.5. SAA-R results for different values of γ1
r on variant pen-1 (averaged over instances

with γ1
p = 0.3 and τ 1

d ∈ { 1.3, 1.4, 1.5 }).

γ1
r profitgt gapws (%) book (%) failed (%) sat. riders (%) cost (%) T (sec)

0.1 130.93 10.31 34.67 1.54 85.13 64.81 43.31
0.3 408.47 6.70 36.33 2.42 87.14 72.85 48.82
0.5 690.73 5.30 38.17 4.05 88.91 80.74 45.21
0.7 976.08 4.39 39.17 5.12 89.72 88.44 39.61
0.9 1,261.43 3.89 40.33 6.42 90.30 96.16 29.67
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The results are summarized in Table 5.5. As expected, when increasing the revenue share,
more matching decisions become economically profitable, which leads to more booked drivers
and more matched riders, resulting in a larger profit for the platform. The platform profit also
does not seem to be critically affected by the increasing proportion of failed driver bookings
(which are compensated an equivalent of 30% of their individual trip costs, as γ1

p = 0.3).
This is explained by the fact that the total paid penalties become negligible compared to the
revenues generated from the rideshares. This disparity between revenue and penalty values
also explains why larger revenue shares are linked to smaller gaps to the wait-and-see solution.
Unfortunately, an increasing revenue share kept by the operator also results in higher costs
for the users: with γ1

r = 0.9, the participants pay on average 96% of the costs of driving
alone, which are rather unattractive cost savings. The revenue share γ1

r therefore has to be
kept at reasonable levels (e.g., at 0.3) to ensure that users save around 30% when compared
to driving alone.

Impact of different penalty levels. We now investigate how the results change
according to different penalty levels γ1

p. We limit these experiments to variant pen-1
(for availability window scaling coefficients τ 1

d ∈ { 1.3, 1.4, 1.5 }), fix the share of savings
collected by the ridesharing platform to γ1

r = 0.3, and vary the penalty scaling coefficients
γ1

p ∈ { 0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5 }. Note that any value γ1
p > 1 implies that drivers are

compensated more than their trip cost in case they are not assigned to any rideshare.

Table 5.6. SAA-R results for different values of γ1
p on variant pen-1 (averaged over instances

with γ1
r = 0.3 and τ 1

d ∈ { 1.3, 1.4, 1.5 }).

γ1
p profitgt gapws (%) book (%) failed (%) sat. riders (%) cost (%) T (sec)

0.1 420.48 3.89 40.33 6.42 90.30 73.10 42.26
0.3 408.47 6.70 36.33 2.42 87.14 72.85 48.82
0.5 402.14 8.18 35.33 1.88 85.91 72.67 49.85
0.7 397.06 9.36 34.67 1.66 85.29 72.55 53.27
0.9 392.78 10.36 34.67 1.54 85.15 72.63 44.85
1.1 389.25 11.18 33.67 1.25 83.89 72.46 54.36
1.3 386.24 11.88 33.17 1.06 83.09 72.42 42.01
1.5 383.23 12.59 33.17 1.06 83.10 72.42 42.23

The results are summarized in Table 5.6. Surprisingly, larger penalties do not have a
major impact on the system’s profit: the proportion of failed bookings decreases quickly
as the penalties increase, which avoids large profit losses. For the smallest penalty level
γ1

p = 0.1, about 5 of the 81 booked drivers are paid penalties, while at the highest penalty
level, this is the case for less than 1 booked driver on average. However, higher penalties
result in less driver bookings, and therefore also in less rider matches. This explains the small
decrease in the profit. Higher penalties may therefore be a good “marketing” strategy to
attract new drivers, as they are likely to be matched; even if they are not, they can expect
a large compensation. Additionally, from a user perspective, the average trip cost remains
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relatively stable. Penalty values at around γ1
p = 0.5 therefore seem to provide a good trade-off,

given that both the profit and the user booking percentages are relatively high, while a 50%
compensation is still sufficiently high to attract new drivers to the user-base. Finally, we note
that larger penalties increase the gap to the wait-and-see solution. This is explained by the
larger penalty costs that are paid by the stochastic solution, while the wait-and-see solution
avoids all penalties due to perfect knowledge.

Joint impact of different revenue share and penalty levels. While the above
explores the impact of increasing revenue share and penalty levels separately, we now
investigate the impact of changing both parameters at the same time. We consider all
combinations of γ1

r ∈ { 0.1, 0.3, 0.5, 0.7, 0.9 } and γ1
p ∈ { 0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5 } (for

a fixed driver availability window coefficient τ 1
d = 1.3).

Fig. 5.3. Impact of different values of γ1
r and γ1

p on key performance indica-
tors (averaged over instances with τ 1

d = 1.3, γ1
r ∈ { 0.1, 0.3, 0.5, 0.7, 0.9 } and

γ1
p ∈ { 0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5 }).

(a) profitgt (b) cost (%)

(c) book (%) (d) sat. riders (%)

Figure 5.3 illustrates the impact of the different parameter value combinations on the
four most important key performance indicators: the operator profit, the remaining costs
for users, the percentage of booked drivers and the percentage of matched rider requests.
Generally, these results confirm the previous observations: operator profits and user costs are
inversely related in regards to the profit share. It is interesting to note that system profit
and user costs roughly sum to 100%, which is not obvious, given that the latter is computed
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as the cost savings (directly correlated to the total travel distance) that a user can obtain by
sharing a ride as when opposed to driving alone. For the operator, this suggests an important
trade-off, which will be mostly dictated by the importance of the user savings. For example,
if the system aims at an average cost of about 70% for the riders and drivers, the operator
should expect that the revenue share γ1

r has to be kept below 30% (i.e., a value of 0.3).
In contrast, the penalty level only marginally impacts the operator profit and user costs,

but considerably impacts the percentages of booked drivers and matched rider requests. In
order to keep users happy, it appears to be beneficial to keep the penalty value at a reasonably
low value around γ1

p = 0.5. As shown in the previous study, this may slightly increase the
percentage of drivers that have been booked, but not matched; however, in such rare cases, a
50% compensation of the total trip costs are likely to be sufficiently attractive to drivers.

5.5.2.5. PEN-2: larger availability windows at the cost of higher penalties.
We now assess whether large availability windows are a more beneficial choice, even in
the case of larger penalty values. To this end, we assess problem variant pen-2 with
type-1 driver availability windows of (τ 1

d = 1.3 and larger type-2 availability windows of
τ 2

d = 1.4). Larger availability windows clearly lead to a higher matching flexibility, as more
ridesharing routes become time-feasible. To properly compensate type-2 drivers for the
inconvenience, we evaluate the impact of larger values of type-2 penalties. Specifically, we test
γ2

p ∈ { 0.5, 1, 2, 4, 8, 16 }, while the penalty for type-1 drivers remains at the same (smaller)
value of γ1

p = 0.3. Note that all experiments assume a fixed revenue share of γ1
r = γ2

r = 0.3,
which has been found in previous experiments to be a beneficial trade-off between operator
profits and savings for users.

Table 5.7. SAA-R results for different values of γ2
p on variant pen-2 (τ 1

d = 1.3, τ 2
d = 1.4

and γ1
p = 0.3).

γ2
p profitgt gapws (%) book

L1 (%)
book
L2 (%)

failed
L1 (%)

failed
L2 (%)

sat.
riders (%)

cost (%) T (sec)

0.50 271.22 8.04 4.54 30.31 9.25 0.62 87.32 68.71 423.83
1.00 269.32 8.68 6.26 29.42 10.53 0.28 87.84 69.00 760.35
2.00 266.79 9.53 7.73 26.96 9.10 0.14 86.47 68.66 262.40
4.00 263.26 10.73 8.19 26.97 8.97 0.13 86.45 68.89 283.12
8.00 256.42 13.03 8.70 25.47 8.43 0.12 85.79 68.54 187.28
16.00 249.34 15.43 8.26 25.48 8.26 0.09 84.96 68.47 224.06

The results are summarized in Table 5.7. Columns “book L1 (%)” and “book L2 (%)”
indicate the average percentages of all drivers booked at types 1 and 2, respectively. Columns
“failed L1 (%)” and “failed L2 (%)” show the average proportions of booked, but unmatched
type-1 and type-2 drivers, respectively. The results show that the optimal solutions book a
much larger percentage with larger availability windows (i.e., type-2 drivers), even when faced
with unrealistically high penalties (such as γ2

p = 16). Indeed, larger availability windows
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reduce the likelihood of failing a booking (from about 10% for type-1 drivers to at most 0.62%
for type-2 drivers), as drivers have more flexibility. In absolute terms, far less than 1 out of
the more than 50 booked type-2 drivers remain unmatched on average. The monetary risk to
the ridesharing platform is therefore marginal, even when penalties are high. Interestingly,
trip costs for users remain stable. On the downside, larger penalties imply that a smaller
proportion of the available drivers is booked, Nevertheless, high penalties may be an interesting
temporary “marketing strategy” to attract a large driver user-base in the near-future without
sacrificing much profit. Finally, as observed in previous experiments, larger penalties increase
the gaps to the wait-and-see solution. This is expected, given that the latter has perfect
knowledge of rider requests and can therefore avoid penalties.
On the EVP performance for variant PEN-2. Intrigued by the rather bad performance
of the EVP for problem variant pen-2 (see Table 5.2), we now explore the model performance
for different penalty values γ2

p in Table 5.8. As before, these experiments involve high penalties
for type-2 drivers, ranging from γ2

p = 0.5 to 16.

Table 5.8. EVP results for different values of γ2
p on variant pen-2 (τ 1

d = 1.3, τ 2
d = 1.4 and

γ1
p = 0.3).

γ2
p profitgt gapws (%) book

L1 (%)
book
L2 (%)

failed
L1 (%)

failed
L2 (%)

sat.
riders (%)

cost (%) T (sec)

0.50 260.17 11.77 6.12 30.79 12.54 2.25 89.62 69.05 1.72
1.00 244.22 17.15 4.27 32.69 14.59 2.41 89.73 69.05 2.00
2.00 203.87 30.79 3.39 33.56 15.30 2.71 89.71 69.05 1.76
4.00 140.37 52.24 5.33 31.63 11.10 2.67 89.59 69.00 1.73
8.00 -30.50 109.97 6.35 30.56 9.22 2.98 89.65 69.04 1.85
16.00 -322.52 208.62 5.37 31.59 10.45 2.81 89.61 69.08 1.55

The results are quite conclusive and highlight the negative consequences of the EVP’s
inability to discriminate the probabilistic risk of failed driver bookings. The EVP solution
books more type-2 drivers than the SAA-R solution (31.59% vs. 25.48% for γ2

p = 16; compare
Table 5.7), which allows for a high flexibility to match the fractional rider requests. However,
the proportion of failed type-2 bookings remains relatively high when compared to the SAA-R
solutions (2.81% vs. 0.09% for γ2

p = 16), resulting in several penalties when evaluated on
the ground truth. We expect these results to generalize to other problem variants if large
penalty values are evaluated. This, in turn, may ultimately jeopardize the profitability of the
system. In practice, this is likely to be unacceptable and makes the EVP an unnecessarily
risky choice as a planning model.

5.5.2.6. FEE-2: larger availability windows at the cost of higher booking fees.
We now investigate whether the conclusions from the previous section also hold in the case
of the problem variant, where booking fees are paid instead of penalties. To this end, we
consider problem variant fee-2, which has two different booking types. Drivers can be
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booked at type 1 for a fee of f 1
i = 1, which are available for 45 minutes. Alternatively, drivers

can be booked at type 2, for a larger time window of 1 hour and a higher booking fee of
f 2

i ∈ { 1.5, 2.0, 2.5, 3.0, 3.5, 4.0 }.

Table 5.9. SAA-R results for different values of f 2
i on variant fee-2 (f 1

i = 1; type-1 drivers
are available for 45 minutes; type-2 drivers are available for 1 hour).

f 2
i profitgt gapws (%) opt. gap (%) book

L1 (%)
book
L2 (%)

failed
L1 (%)

failed
L2 (%)

sat.
riders (%)

cost (%) T (sec)

1.5 148.68 10.84 0.59 1.32 16.13 12.22 12.81 77.61 71.53 3,600.00
2.0 131.88 14.06 0.85 2.76 14.15 21.21 11.57 75.24 71.39 3,600.00
2.5 117.34 16.69 1.11 4.11 12.47 25.21 10.96 73.66 71.42 3,600.00
3.0 106.00 17.99 0.61 5.04 11.07 22.53 7.73 71.28 71.45 3,600.00
3.5 94.15 20.39 0.67 5.46 10.17 27.25 7.58 69.04 71.42 3,600.00
4.0 84.14 21.90 0.44 5.93 9.34 25.91 6.62 66.95 71.53 3,600.00

The results are summarized in Table 5.9. As the models tend to exceed the CPU time
limit for this problem variant, column “opt. gap (%)” shows the optimality gap of the best
known solution as reported by CPLEX. Even though CPLEX did not prove optimality for
any instance, the final optimality gaps are rather small. The difficulty of solving problem
instances for this problem variant can be explained by the fact that drivers have no fixed
destination, and are therefore more flexible. This leads to a larger number of feasible routes
when compared to other problem variants (as previously shown in Table 5.1), which leads to
larger formulations that require more computational resources to be solved.

Although the proportion of booked type-2 driver decreases and the proportion of booked
type-1 drivers increases with larger type-2 penalties, the system tends to prioritize type-2
drivers. This highlights the benefit of larger availability windows, which is in line with
previous findings for other problem variants (see Sections 5.5.2.3 and 5.5.2.5). However,
in contrast to variant pen-2, fees that are paid for every booked driver, and not only for
those who remain unmatched, result in less driver bookings in general, and therefore in less
matched rider requests. Larger type-2 booking fees naturally amplify this phenomena: the
system starts matching more type-1 drivers, which further reduces the number of successful
matches, and therefore reduces the overall system profit. The percentage of failed bookings
are relatively high on both booking types, given that no additional penalty is paid if a booked
driver remains unmatched. For a similar reason, such higher number of failed booking do
not imply less satisfied drivers, since drivers are compensated in either case. Finally, similar
to previous results, the gaps to the wait-and-see solution are relatively high, given that the
latter can avoid paying booking fees to drivers that are not matched.

5.5.2.7. PEN-FEE: impact of mixed booking costs and penalties. As a final set
of experiments, we now focus on variant pen-fee, a context where drivers can be booked
either by means of penalties (booking type 1) or by a fixed booking fee without risk of future
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penalties (booking type 2). Specifically, type-1 drivers can be booked with potential penalty
scaling values γ1

p ∈ { 0.5, 1, 1.5, 2, 2.5, 3, 8, 16 }. Type-2 drivers are booked without penalties,
but with a constant booking fee f 2

i = 1,∀i ∈ D. Both booking types have the same relative
availability window scaling values τ 1

d = τ 2
d = 1.3 and revenue share γ1

r = γ2
r = 0.3.

Table 5.10. SAA-R results for different values of γ1
p on variant pen-fee (τ 1

d = τ 2
d = 1.3,

γ1
r = γ2

r = 0.3 and f 2
i = 1).

γ1
p profitgt gapws (%) book

L1 (%)
book
L2 (%)

failed
L1 (%)

failed
L2 (%)

sat.
riders (%)

cost (%) T (sec)

0.5 369.27 9.34 29.08 6.41 1.41 32.48 80.65 73.59 16.17
1.0 363.25 10.81 25.33 9.51 0.68 26.86 80.28 73.26 16.17
1.5 360.86 11.40 24.38 10.35 0.50 26.04 80.28 73.21 15.28
2.0 358.69 11.93 23.41 11.32 0.39 24.51 80.28 73.21 18.87
2.5 356.49 12.47 22.43 11.86 0.33 23.46 79.95 73.03 17.67
3.0 355.56 12.69 21.94 12.35 0.26 22.83 79.95 73.03 16.13
8.0 346.81 14.83 20.96 13.60 0.18 22.27 80.24 73.06 20.94
16.0 338.49 16.87 19.97 14.59 0.13 21.14 80.24 73.05 20.88

The results, summarized in Table 5.10, indicate that, for lower penalty values, the system
favors type-1 drivers (those that potentially imply penalties) over type-2 drivers (those paid
booking fees). While the proportion of type-1 drivers decreases as the penalties increase,
even for unrealistically large penalty values (i.e., γ1

p = 16), we do not observe an inflection
point at which booking fees become more favorable. Such behavior is mostly motivated by
the underlying percentages of booked, but unmatched drivers: the proportion of failed type-1
drivers is negligibly small, while the proportion of failed type-2 drivers is quite high (but
without economic impact). For γ1

p = 16, the average penalty for an unmatched type-1 driver
is 335.85, which may pose considerable risks to the ridesharing platform, as a single penalty
paid would almost be in the same orders of the entire profit. On average, however, only
0.05 type-1 drivers remain unmatched (200 drivers ×19.97%× 0.13%). Among all booked
type-2 drivers, only about 4 to 6 remain unmatched, on average (and in this case, without
any economic impact).

Similar to previous results, larger penalties only have a limited negative impact on the
profit, as the system rarely fails a type-1 booking and has to pay the penalty. Further, larger
penalties lead to larger gaps to the wait-and-see solution, similar to previous results. All other
performance metrics remain similar, which confirms the conclusions of previous experiments,
suggesting that penalties are an attractive driver compensation mechanism to ridesharing
operator (as opposed to booking fees), while maintaining an overall customer satisfaction.

5.5.2.8. Summary of managerial insights and recommendations. Throughout
our extensive computational experiments, a series of managerial insights have been derived.
These insights concern the benefits of the different operating modes, as well as the values of
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the system’s parameters that ensure both system profitability and a high user satisfaction.
We summarize these insights as follows:

(1) Larger availability windows allow for more matching flexibility and ultimately lead to
a higher number of successful matches and hence a higher platform profit. Operators
may want to carefully study the possibility and costs for having drivers committed to
larger availability windows, given the higher matching probability associated to such
increased flexibility;

(2) Large penalties do not necessarily jeopardize the profitability of the system, given
that optimal planning solutions will adjust the driver bookings in order to keep
failed bookings low, and therefore mostly avoid penalties. As a result, announcing
(potentially temporary) high penalty compensation may be a valid marketing strategy
to attract new drivers to the system’s user-base;

(3) In a similar vein, if penalties can mostly be avoided on average, a driver compensation
mechanism via penalties is likely to be preferable to system operators over fixed
booking fees;

(4) Even when both compensation schemes (i.e., booking fees and penalties) are available
and penalty values are unrealistically large, compensating drivers via penalties is
likely to remain favorable;

(5) While a higher revenue share kept by the operator also implies more profit, it is
inversely related to the savings for the users. As such, operators may want to carefully
study the maximum revenue-share percentage that results in reasonable cost savings
for the riders. For the settings used in our experiments, we have found that the share
of the total profit retained by the company should not exceed 30% to ensure that
matched riders save approximately 30% of costs when compared to driving alone.

5.6. Conclusions
We have introduced a general modeling framework for ridesharing systems, where drivers

have to be selected before driver requests become available. This framework allows for the
representation of many-to-one ridesharing systems, and addresses the uncertainty of rider
requests while taking into consideration compensation strategies for drivers (booking fees
and penalties for not providing a rideshare). The mixed-integer programming modeling
framework consists of a two-stage set-packing model with stochastic nodes. We exemplify the
usage of this model by means of three instances of ridesharing system operating modes and
identify the conditions under which the here proposed problem also solves the more general
multi-stage problem variant used in a dynamic context.

We evaluate three models that approximate the second-stage value function: the SAA
model, the expected value model, and the SAA model with a relaxed second-stage problem
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(SAA-R). Our computational results show that the SAA and SAA-R models generate better
solutions, while the latter is solved within a a fraction of the required computing time.

Furthermore, based on our computational results, we have derived valuable managerial
insights on the possible operating modes and parameter values. In summary, the experiments
highlighted 1) the value of having larger availability windows; 2) that larger penalties do not
necessarily negatively impact the system’s profit; 3) the value of using booking penalties over
booking fees, and 4) appropriate parameter settings for revenue share and penalty that result
in a balanced system profit and customer satisfaction.

This research opens several promising research directions. From a practical viewpoint, it
may be worthwhile investigating multi-stage problem variants that cannot be solved exactly
by the here proposed two-stage stochastic model (e.g., variants where drivers can be selected
at any time during the day, as well as the possibility of un- and re-matching drivers and
riders). From a methodological point of view, mathematical decomposition algorithms may
be employed to solve the here proposed models faster and on larger scale. In this regards,
integrating route-generation via column generation may be a promising avenue to solve the
SAA, while Benders decomposition may be employed to solve the SAA-R.
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Chapter 6

Strategic Planning of Carbon Capture and
Storage: a Multiperiod Slope Scaling Heuristic

The previous three chapters of this thesis focused on the operational and tactical planning of
ridesharing systems. While improving the efficiency of ridesharing systems may contribute to
generating less greenhouse gas emissions, other mitigation strategies must be used in parallel
to significantly reduce emissions. This chapter focuses on another mitigation strategies:
carbon capture and storage (CCS). More specifically, this chapter focuses on the value chain
optimization of a multiperiod CCS problem. This problem has the characteristics of joint
network design and facility location problems, and solving it poses considerable challenges to
commercial mathematical programming solvers. To address these challenges, this chapter
introduces a slope scaling heuristic that can generate, on average, better solutions than
a commercial mathematical programming solver, for a fraction of the computational time.
These results are particularly important for analysts, which may need to conduct hundreds
or thousands of sensitivity studies to assess the costs of deploying a CCS infrastructure. An
extended version of this chapter will be submitted for publication in a peer-reviewed journal.
The contributions of the student are:

• The introduction of a slope scaling heuristic for a multiperiod combined network
design and facility location problem;
• A dynamic programming algorithm to improve the quality of the slope scaling solution;
• The implicit representation of pipeline cost functions within the slope scaling approxi-

mation;
• The introduction of a restricted model to improve the best-known solution found by

slope scaling;
• Computational experiments and insights on the performance of commercial math-

ematical programming solvers and slope scaling, according to different instance
characteristics.
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Abstract
Global efforts are underway to implement various decarbonization strategies in all sectors

of economic activity to meet the objectives of the Paris Agreement. One major strategy
is carbon capture and storage (CCS), which involves capturing CO2 at emitter sites, and
transporting it to geological storage sites, where it is to be injected underground for long-term
storage. In this work, we focus on the multiperiod strategic planning of a CCS supply chain
involving pipeline CO2 transportation. From an Operations Research standpoint, such a
problem exhibits the characteristics of combined facility location and network design. To
account for multiple scenarios of potentially realistic input parameters values, this problem
may have to be be solved thousands of times. Thus, reaching high-quality solutions quickly is
paramount. As commercial solvers struggle to provide high-quality solutions under these time
constraints, we propose a slope scaling heuristic based on previous work for single-period CCS
and network design. This heuristic approximates the cost of design variables, generates upper
bounds via dynamic programming, uses a long-term memory search strategy, and includes
a final improvement phase where a restricted model is solved. Computational experiments
show that the proposed heuristic generates better solutions than CPLEX for most considered
instances, at a fraction of the time.

Keywords: carbon and capture and storage; heuristics; slope scaling; dynamic program-
ming.
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6.1. Introduction
In order to meet the target of the Paris Agreement, that is, to “limit global warming

to well below 2, preferably to 1.5 degrees Celsius, compared to pre-industrial levels” (Paris
Agreement to the UN FCCC, 2015), global efforts are currently underway to decarbonize all
sectors of economic activity. In particular, Canada has recently passed legislation reflecting
its commitment to achieve net-zero carbon emissions by 2050 (Canadian Net-Zero Emissions
Accountability Act, 2021). Similarly, the United States introduced in 2021 “The Long-Term
Strategy of the United States, Pathways to Net-Zero Greenhouse Gas Emissions by 2050”
[United States Department of State and United States Executive Office of the President,
2021]. According to the UN, as of March 2022, more than 70 countries responsible for roughly
76% of global emissions have adopted a net-zero target.

Studies around the world indicate that meeting those objectives will require a combination
of various greenhouse gas (GHG) mitigating strategies [e.g, Riahi et al., 2017]. Those include
improving the energy efficiency of existing industrial facilities, replacing industrial processes
by less GHG-intensive alternatives, using substitutes to fossil fuels (e.g. biomass), alternative
materials, electrifying the transportation and industrial sectors, as well as using hydrogen
(H2) as an alternative energy source.

In some industrial sectors, eliminating GHG emissions and short-term use of fossil fuels
can be difficult. For example, roughly 60% of the CO2 equivalent emissions in a cement plant
originate from the calcination reaction itself, not from the burning of fossil fuels [Strunge
et al., 2022]. Alternative pathways, such as replacing cement with alternative materials, could
take decades to implement, as they impact global supply chains. This example illustrates the
fact that a careful investigation is necessary to devise realistic strategies towards net-zero
targets.

Of all anthropogenic GHGs, carbon dioxide (CO2) is the most prevalent, and the analysis
of global energy and economy scenarios [Lane et al., 2021, Riahi et al., 2017, IEA, 2017]
indicates that net-zero carbon emissions may not be achievable without capturing CO2

emissions from the atmosphere [Vinca et al., 2018, IEA, 2019], and either storing them
underground in geological formations (geological CO2 storage), storing them temporarily in
living organisms such as plants and trees (biological CO2 sequestration), or reusing them to
synthesize materials or fuels (CO2 utilization). The present study focuses on carbon capture
and geological storage (CCS), which involves capturing CO2 at emitter sites and transporting
it to geological storage sites, where it is to be injected underground for long-term storage.

In order to be an effective path to reach net-zero carbon emissions, the current pace of
CCS implementation has to be increased [Lane et al., 2021]. However, this poses a complex
issue. The deployment of CCS involves planning ahead for decades (e.g. up to 2050), billions
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of dollars of investment across industries and governments, as well as defining policies that
can accelerate its adoption (e.g. carbon credits, taxes, markets, subsidies).

6.1.1. Mathematical optimization for CCS

Given the importance and urgency of developing efficient CCS networks, various determin-
istic planning models based on mathematical optimization are being developed to aid in the
strategic planning of CCS value chains, namely for CO2 pipeline networks (see Section 6.2).
These models can aid in the preliminary analysis done by government stakeholders to assess
the CO2 mitigation potential and the costs of CCS, as well as the impact of policy measures
(e.g., CO2 taxes and subsidies). As such, these models can contribute to accelerate CCS
adoption and implementation by providing a holistic view of an optimized supply chain.

The CCS infrastructure strategic planning problem is inherently multiperiod in nature.
Capture targets and CO2 incentives (e.g. taxes, subsidies) may change over time depending
on government policy. Market fluctuations (e.g. commodities and materials) may influence
infrastructure costs. Moreover, sources and sinks may only be available after (or until) a
certain period. For example, emitter plants may close due to market changes and storage site
availability may change as investor confidence grows. Furthermore, capture, transportation
and storage operations will go through a ramping-up period, during which the volume of CO2

captured, transported and stored will increase. As such, pipeline capacity planning can be
anticipatory, or alternatively, be increased as needed. Although single-period CCS models
exist, they can overestimate costs by more than 50% when compared to their multiperiod
counterparts [Middleton et al., 2012b]. Therefore, the present study focuses on multiperiod
CCS models.

To the best of our knowledge, for multiperiod pipeline-based CCS value chain optimization
(VCO), all published works use commercial optimization solvers to tackle a single mixed-
integer linear programming (MILP) model. Unfortunately, models that consider the pipeline
routing explicitly may reach large optimality gaps (13%+) after one hour of calculations
(see Section 6.6). At the scale of a country like the United States, decarbonization efforts
may require capturing hundreds of millions of tonnes per year of CO2 from roughly 1000
sources [Talsma et al., 2022]. Furthermore, for sensitivity studies models may need to be
evaluated hundreds or thousands of times to assess trade-offs between costs, overall CO2

capture potential and other model input parameter values [e.g., Middleton and Yaw, 2018].
In that context, for large geographic regions, providing sensitivity results with acceptable
optimality gaps may be impractically long. Adding more complex model attributes such
as alternative transportation modes, distinguishing between CO2 phases and considering
uncertain parameters may exacerbate this problem. To address this issue, in this study, we
propose a heuristic for a multiperiod CCS planning problem. This heuristic finds better
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solutions than CPLEX on average, at a fraction of the computational cost. Numerical
experiments on instances having up to 50 time periods and six pipeline capacity trends show
that the proposed heuristic attains relative CCS cost improvements of up to 80.88% over
CPLEX.

From an Operations Research standpoint, this model exhibits the characteristics of facility
location problems (sources and sink decisions) and of network design problems (pipeline
decisions). Sources and sink decisions consist of when to open source nodes (emitters), which
capture technologies to use and how much CO2 to capture. Sink decisions include when to
open sink nodes (geological storage), how many wells to dig and how much CO2 to store
underground. Network design decisions include which pipeline arcs to build, and when. These
arcs can be selected out of a candidate network of pipelines. Network decisions also include
the choice of pipeline capacity and CO2 flow for each arc. Parallel pipelines (i.e., several
pipelines on the same arc) are allowed in order to reflect the trade-off between over-sizing
pipelines in advance and adding capacity incrementally as needed (i.e. building new pipelines
on the same arc).

In order to instantiate such model, one must first determine a candidate pipeline network
embedding all potential pipeline routes linking candidate sources and sinks. Popular ap-
proaches to generate such a directed graph, like the CostMAP open-source code [Hoover et al.,
2020], do so in a stepwise manner. First, geographic features of the region of interest are
rasterized, e.g. topography, waterways, rights of way, existing infrastructure, such as roads,
electric grid lines, demographics, and protected areas (wildlife, first nations). Afterwards, a
cost is associated to passing a pipeline segment through the center of each raster cell of the
map, depending on the local geographic data and on the orientation of the pipeline segment.
One can then associate a cost to any pipeline path on that map by summing the costs for
passing through each raster cell (center) it intersects. The candidate network results from
applying a least-cost path algorithm (e.g. Dijkstra) to each pair of source and sink nodes of
interest. In practice, to be numerically efficient, to avoid near parallel arcs and impractically
long paths linking nodes that are far apart, least-cost path calculations are carried out for
each adjacent node pair in a Delaunay triangulation of the set of sources and sinks. Further
details can be found in Middleton et al. [2012a] and Hoover et al. [2020].

Problem data includes the geographic region of interest (e.g. a state, province or country)
and a time horizon (e.g. up to 2050) partitioned in discrete periods that typically span
multiple years. We consider a set of source sites (i.e. emitters), each with possibly multiple
alternative capture units as well as a CO2 capture target for that region. That target
corresponds to the total quantity of CO2 to be captured per year and per time period. The
CO2 can be stored in a set of sinks (i.e. geological storage sites), each possibly containing
sub-reservoirs (i.e. stacked reservoirs). Transportation from sources to sinks is done through
a candidate pipeline network. Each source and sink has a capacity parameter, corresponding
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to maximal capture rates for each capture unit and maximal injection rates for each reservoir
subsite. Cost data consists of fixed and variable costs for each capture unit, reservoir subsite,
and pipeline arc.

Given that data, one aims to minimize the total cost of the project while meeting annual
capture targets for each time period. Decisions at each time period include the selection of
capture units, pipeline arcs, and reservoir subsites, how much CO2 to annually capture and
inject for each capture unit and reservoir subsite (respectively), how much CO2 to annually
transport on each opened pipeline arc and which pipeline capacity to build on each arc as
well how many wells to drill at each reservoir subsite.

6.1.2. Contributions and outline

The main contribution of this work is the introduction of a slope scaling heuristic for
the multiperiod strategic planning of pipeline-based CCS supply chains. Such heuristic is a
novel multiperiod extension of previous network design and CCS slope scaling heuristics. It
has novel attributes such as the implicit representation of pipeline capacity cost functions,
generation of improved upper bounds through dynamic programming, and solution refining
through a restricted model. Such heuristic is flexible enough to be adapted to different CCS
problems, such as problems with non-linear pipeline cost functions, problem settings with
multiple modes of CO2 transportation, and models with a CO2 price for uncaptured emissions.
Computational experiments on a wide range of CCS instances with different sizes show that
the proposed slope scaling heuristic outperforms CPLEX on most instances, at a fraction of
the computational time.

This paper is organized as follows. In Section 6.2, we conduct a review of the literature
on strategic planning of CCS pipeline networks and related problems. In Section 6.3 and
Section 6.4, we define the planning problem and the corresponding mathematical programming
model (respectively). We then introduce the slope scaling heuristic in (Section 6.5). To assess
the performance of the proposed heuristic, the results of extensive computational experiments
are analyzed in Section 6.6. Conclusions and avenues for future research are then summarized
in Section 6.7.

6.2. Literature Review
In this section, we give an overview of past work related to the present study. As such,

we cover the following topics: pipeline-based CCS value chain optimization models, related
Operations Research problems, computational challenges and heuristics to address such
planning problems.
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6.2.1. Pipeline-based CCS value chain optimization models

This work focuses on strategic planning models for CCS VCO. At the strategic level, the
planning horizon typically spans decades (e.g. up to 2050, or beyond). Some of these models
consider only pipelines [e.g., Jones et al., 2022], while others consider a mix of transportation
modes [e.g., Han and Lee, 2011]. Pipelines play an important role in transporting large
volumes of CO2, and this study considers solely this transportation mode. Middleton and
Bielicki [2009] introduced SimCCS, a single-period pipeline-based VCO model that is now
widely recognized. In SimCCS, emitter sites and geological reservoirs are connected through
a network of pipelines which stems from an analysis of geographical features of the region
considered. Not all CCS VCO models represent pipeline routing explicitly. For example, in
Diamante et al. [2013], emitter sites and geological reservoirs are connected directly, without
considering pipeline routes. Often termed “source-sink” matching problems, the problem
studied by the authors can be represented with a linear programming formulation, which is
solvable in polynomial time. Representing a complex network of pipelines leads to a more
accurate representation of CCS transportation costs, but it comes with a computational
complexity disadvantage: these models extend network design problems, which are NP-hard
and therefore challenging to solve. This contrasts with source-sink matching models that can
be solved in polynomial time (e.g., bipartite matching or transportation linear programming
models). Single-period models assume that all infrastructure is built at the beginning of
the planning horizon, and therefore disregard the tradeoff between making infrastructure
available early and their financing and discounting implications on the remainder of the
planning horizon. In fact, single-period models can overestimate costs by more than 50%
[see Middleton et al., 2012b]. To address this issue, Middleton et al. [2012b] introduced
a multiperiod version of SimCCS, referred to as SimCCS-Time, which was later used and
adapted in other studies [Yaw et al., 2021, Jones et al., 2022]. Given the importance of
multiperiod CCS planning problems, this paper focuses on SimCCS-Time. For reviews on
different CCS models, we refer the reader to Tapia et al. [2018] and Zhang et al. [2022].

6.2.2. Related problem groups

SimCCS-Time combines facility location and network design decisions and therefore shares
similarities with other problems in the Operations Research field. For example, source and
sink activation are classical facility location decisions [see, e.g., Laporte and Nickel, 2015].
The facility decisions in SimCCS-Time are more complex than the ones found in traditional
facility location problems: there are decisions on source capture processes, reservoirs subsites
and digging of wells on reservoir subsites. Multiperiod CCS planning problems also have
connections with multiperiod facility location problems, and the ability to expand a CCS
network over time has similarities to multiperiod facility location problems where the capacity
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level of facilities can be changed over time [Jena et al., 2015]. Pipeline activation and flow
decisions are present in network design problems [Crainic et al., 2021] and multiperiod network
design problems [Fragkos et al., 2021]. Furthermore, the combination of these two decision
groups are present in combined facility location and network design problems [e.g., Melkote
and Daskin, 2001a,b, Contreras and Fernández, 2012]. Other related problems that combine
facility location decisions with some form of transportation of goods are hub location problems
[combined hub location and network decisions, see, e.g., Contreras and O’Kelly, 2019], and
location routing problems [combined facility location and routing decisions, see, e.g., Nagy
and Salhi, 2006]. Particularly, SimCCS-Time generalizes the facility location problem and
the single-commodity network design problem. As such, it is NP-hard. The closest planning
problem to SimCCS in the literature is, to the best of our knowledge, the combined facility
location and network design problem of Melkote and Daskin [2001a]. The authors propose
valid inequalities to strengthen the LP relaxation of the proposed formulation. However, in
their formulation, the demand of sources and sinks is fixed, as opposed to SimCCS (and
SimCCS-Time), where the demands at sources (capture rates) and sinks (injection rates)
are decision variables that are linked by a global annual CO2 capture target constraint.
Furthermore, their model is single-period, and does not allow for the representation of capture
processes, reservoir subsites, and wells.

6.2.3. Computational challenges: valid inequalities and model ap-
proximations

In the original version of SimCCS and SimCCS-Time, pipelines have discrete capacities,
which may pose considerable computational challenges to solve the problem: the industry-
standard pipeline diameters in North America (NPS) has 25 pipeline diameters ranging
from 4 to 48 inches, and models with 25 pipeline sizes are unlikely to be solved within a
reasonable time [Middleton, 2013]. For example, in Middleton [2013], a case study on the
Gulf Coast region with 24 sources and 29 reservoirs cannot be solved by parallel CPLEX
(with 12 cores) within a day. To improve model solution time, Lobo [2017] studied valid
inequalities to improve the SimCCS linear relaxation bounds. Alternatively, to reduce model
size and solution time, Middleton [2013] proposed a single-period model approximation where
the cost of different pipeline capacities is approximated by a piecewise linear function and
diameters are replaced with capacity trends, i.e., the corresponding piecewise segments. The
author shows that the piecewise model is, on average, two to three orders of magnitude faster
to solve than the discrete pipeline capacity model, and that the approximation error is rather
small: they are considerably lower than the uncertainty ranges when estimating pipeline
costs. SimCCS-Time has also been adapted to represent piecewise linear costs for pipelines
[Yaw et al., 2021, Jones et al., 2022]. Given the recent spotlight given to piecewise pipeline
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capacities for SimCCS-Time, the present study focuses on the latest version of SimCCS
time with piecewise pipeline capacities [i.e., the version of Jones et al., 2022]. Despite
the computational benefits associated with the piecewise SimCCS-Time model, Jones et al.
[2022] highlight strategies to mitigate the computational effort required to solve multiperiod
problems, such as limiting the number of sources and sinks considered, and by limiting the
number of time periods. However, the authors expect that in many cases, single-period
models will have to be used due to the sheer size of multiperiod formulations.

6.2.4. Heuristics for CCS planning problems

To generate high-quality solutions quickly, Whitman et al. [2021] proposed three heuristics
for a single-period CCS problem with discrete pipeline capacities. Namely, the authors
proposed a greedy shortest-path heuristic, a slope scaling heuristic with diversification
and intensification features [based on the network design slope scaling heuristic of Crainic
et al., 2004], and a hybrid heuristic that combines the first two heuristics. The authors’
computational experiments show that the proposed heuristics execute much faster than
CPLEX, but result in inferior solution quality. Specifically, costs can be up to 20.92% higher
than the costs of the solutions provided by CPLEX. In d’Amore and Bezzo [2017], the authors
propose a two-stage heuristic for a multiperiod and multi-modal CCS problem. The heuristic
relaxes the binary transportation variables in the first stage. The CO2 capture decisions
obtained from the first stage are then used to build a reduced second-stage model with
binary transportation variables. To the best of our knowledge, there is only one study that
proposes a heuristic for SimCCS-Time: Jones et al. [2022] use a single-period CCS model to
generate decisions for SimCCS-Time. This heuristic falls into the category of rolling horizon
heuristics, which were previously used on multiperiod network design problems [e.g., see
Papadimitriou and Fortz, 2015]. As pointed out Jones et al. [2022], such a heuristic cannot
anticipate future demand by building more infrastructure in advance, and therefore may plan
a CCS infrastructure that opens additional infrastructure as needed, which may be more
costly than overprovisioning infrastructure (e.g., building pipelines with more capacity than
what is immediately needed).

Our work introduces a multiperiod slope scaling heuristic for CCS VCO based on the
single-period slope scaling heuristics for CCS [Whitman et al., 2021] and network design
[Crainic et al., 2004], using piecewise linear costs for pipelines instead of discrete pipeline
capacities [e.g., namely, the version of SimCCS-Time introduced by Jones et al., 2022].
In addition to the extension of the slope scaling heuristic to a multiperiod problem, we
introduce novel heuristic components, such as the generation of improved upper bounds
through dynamic programming and the implicit representation of pipeline capacity cost
functions. The computational experiments show that the proposed heuristic does not only
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generate solutions at a fraction of the time required by CPLEX, but that these solutions are,
on average, of higher quality than those found by CPLEX.

6.3. Problem Definition
In this section we describe the multiperiod strategic planning problem for CCS pipeline

networks. In a given geographical region of interest, we consider a set of CO2 emitters
(sources) from which CO2 could be captured and a set of potential sinks (geological sites)
for long term underground storage of CO2. Each source can contain multiple CO2 capture
units and each sink can contain multiple subsites (stacked reservoirs), and each subsite can
contain several injection wells. We assume that a candidate pipeline network embedding all
potential pipeline arcs is given. Such a network can be obtained by constructing a rasterized
cost map of the region of interest and generating corresponding least-cost paths (Middleton
et al., 2012a; Hoover et al., 2019a-b).

Infrastructure for CCS will evolve over time. As such, the planning horizon usually spans
decades (e.g. up to 2050, or beyond). It is discretized in a finite set of time periods, possibly
of varying duration, each typically lasting at least one year. For each period, an annual CO2

capture target must be met for the whole region of interest (i.e. cumulative over all sources).
These targets can reflect increasing CO2 capture incentives to meet a net-zero CO2 emissions
objective. Many factors can influence the number and duration of time periods. These include
the dynamics of carbon price and capture target forecasts, as well as construction cycles and
infrastructure build times. Moreover, the duration of time periods also depends on the degree
of confidence in economic and market forecasts. Longer periods are typically favored when
uncertainty levels increase. As in similar studies [Middleton et al., 2012b, Yaw et al., 2021,
Jones et al., 2022], we neglect infrastructure build times. In other terms, infrastructure can
be operated immediately when it is introduced.

One of the main decisions to be determined is which sources, sinks and pipeline arcs should
be activated (and when) in order to meet CO2 targets. In practical terms, source activation
corresponds to retrofitting a CO2-emitting industrial process with a capture technology. We
use the term capture unit to represent a CO2 emitting process at a given source retrofitted
with a capture technology, including separation, purification, compression and drying to
adjust the CO2 temperature, pressure and composition. Pipeline activation corresponds to
choosing a pipeline capacity to be built on an arc in the candidate network. Recall that we
allow for parallel pipelines to be built on a given arc, so as to reflect the trade-off between
building an oversized pipeline as soon as possible and adding capacity incrementally over time.
As in similar studies, we do not consider the repurposing of existing oil and gas pipelines to
transport CO2 in the gas phase [Cauchois et al., 2021]. We solely consider building new CO2

pipelines (supercritical phase) and therefore do not distinguish between CO2 phases. Sink
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activation corresponds to doing prospective studies of a given geological formation, digging
wells and installing injection equipment. Each activation decision has a corresponding fixed
cost, corresponding to fixed O&M (operation and maintenance) and capital costs.

Once infrastructure is built, one must determine for each time period the capture rate
of capture units at sources, the flow of CO2 in pipelines and the injection rate at storage
sites (i.e. sinks). Each of these decisions has a corresponding variable cost, corresponding to
variable O&M and capital costs.

Each aforementioned decision occurs at each year within each time period. A common
simplifying assumption, which we also make in this study, is to assume that for each year
within a time period, all decisions are identical [e.g., see Middleton et al., 2012b]. This
improves computational tractability.

The objective of the decision problem is to determine source, sink and pipeline decisions
over the whole time horizon in order to define a CCS infrastructure that satisfies the CO2

capture targets at each time period while minimizing the fixed and variable costs for capture,
storage and pipeline transportation. In the following section, we introduce a mixed-integer
programming model for the multiperiod strategic planning of CCS infrastructure.

6.3.1. Application context

In a CCS supply chain, CO2 is captured from emitting processes at industrial sites in
various sectors, such as steel, cement, pulp and paper, bioenergy, fertilizer and chemicals,
combustion-based power, oil and gas, as well as fossil fuel-based hydrogen generation. Capture
technologies fall into three broad categories: post-combustion, pre-combustion, and oxyfuel
combustion. The industrial combustion of fossil fuels results in CO2-rich gases, called flue
gases. As its name indicates, post-combustion capture separates CO2 from flue gases after
the combustion process. Alternatively, pre-combustion capture takes place before combustion.
It consists in mixing fuel with air (or oxygen) and using steam to produce H2 and CO2, which
are subsequently separated. Oxyfuel combustion replaces the air necessary for combustion
by air with a high oxygen concentration (∼ 95%). This results in less exhaust gas and a
high CO2 concentration (∼ 80 + %). For each of these broad categories, several technologies
can be considered. The specific choice of technology depends on the nature of the emitting
process, namely on gas composition, as well as on economic and technological considerations,
all of which fall outside the scope of this work [Bui et al., 2018, Baylin-Stern and Berghout,
2021].

After being captured, CO2 can be transported via a mix of pipelines, ships, trains and
trucks to eventual storage locations. The choice of transport mode depends on costs, on the
volumes to be transported, and on geographic considerations. In the beginning stages of CCS
projects, transport modes need to be flexible and scalable. Vehicle transportation can offer
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that flexibility and adapt to the initial ramp-up of transported volumes. Pipelines offer the
possibility of transporting large volumes of pressurized CO2 to points linked to hubs and
trunklines, but infrastructure takes a longer time to build. Trains can be an economically
sound alternative to pipelines when smaller volumes need to be transported to remote regions,
i.e. far from pipeline trunk lines. Ships and offshore pipelines (on the seabed floor) are the
main transportation options available when storing CO2 in offshore geological formations.
Economic analysis shows that above a certain distance threshold, ranging from 500 to 1000 km
depending on vessel tank pressure, offshore pipelines become more costly than ships [Orchard
et al., 2021]. Trucks can offer a backup solution to increase inland network robustness, namely
when pipeline links become temporarily unavailable due to failures (e.g. corrosion). In order
to eventually capture, transport and sequester the annual gigatons of CO2 necessary to meet
net-zero targets, pipeline infrastructure may need to grow in many countries around the
world, including in the US [Middleton et al., 2021].

The state in which CO2 is transported depends on the choice of transportation mode.
If repurposed oil and gas pipelines are considered, a recent survey indicates that pipeline
operators favor transporting CO2 in gaseous phase due to engineering and safety considerations
[Cauchois et al., 2021]. On the other hand, when building new pipelines for CO2 transportation,
the supercritical phase is favored, in part due to its advantageous viscosity, density and
low rate of corrosion [IPCC, 2005]. Transportation in railcars, ships and trucks is done in
cryogenic tanks containing liquid CO2. In this study, we focus on transporting large volumes
of CO2 through pipelines.

After being transported to its destination, CO2 is injected underground to be stored inside
geological formations for 10,000+ years [Alcalde et al., 2018]. Both depleted oil fields and
saline aquifers will play a role in geological CO2 storage. The former offers the advantage
of having well-characterized geology coming from years of operations. On the other hand,
saline aquifers offer the advantage of having no existing wells that need to be cemented (for
pressure control and leak prevention). In North America, saline aquifers may constitute up
to 95% of available CO2 storage capacity [Middleton et al., 2020].

6.4. Mathematical formulation
We now describe the mathematical formulation for the multiperiod strategic planning

problem for CCS pipeline networks. This model is a variant of the multiperiod combined
facility location and network design model for CCS planning of Jones et al. [2022] obtained
by adding capture units [Middleton et al., 2012b], reservoir subsites [Ellett et al., 2017] and
wells [Middleton et al., 2012b] together with their corresponding binary or integer variables.
CCS infrastructure can be built on a planning horizon (e.g., up to 2050) that is discretized
into n time periods H = { 1, . . . , n }. Each period h has a duration of Oh years. As such,
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the total number of years of the planning horizon is ∑
h∈H Oh. For each period h ∈ H, there

is an annual CO2 capture target CapCO2h (in tonnes/year) to be satisfied. During that
planning horizon, there are three groups of decisions to be made: pipeline-related decision,
source-related decisions, and reservoir-related decisions, as described next.
Pipeline-related decisions. As initially proposed by Middleton [2013] and later used by
Jones et al. [2022], pipeline costs are approximated with piecewise linear functions, and it is
assumed that there are no variable costs for transporting CO2 [as in Middleton, 2013, Jones
et al., 2022]. Let (I, K) be a directed graph where I = S ∪R ∪ I0 is the union set of sources
S, reservoirs R and junction nodes I0, and K is a set of arcs. An arc (i, j) ∈ K has origin
i ∈ I and destination j ∈ I. For each node i ∈ I, let δ−(i) ⊆ K be the set of incoming
arcs for i, and δ+(i) ⊆ K the set of outgoing arcs for i. Let C be a set of pipeline capacity
trends and KC = { (i, j, c),∀(i, j) ∈ K, c ∈ C }. The construction of a pipeline on arc k with
capacity trend c at period h is represented by a binary variable yp

kch. A continuous variable
pkch represents the capacity chosen for this arc (in tonnes/year), which is bounded by Qmax

kc

(from above). If this arc is activated during period h ∈ H with capacity pkch, then a cost of
αkchpkch + βkch is paid (in dollars). A continuous variable xkh represents the flow of CO2 (in
tonnes/year) on arc k during time period h.
Source-related decisions. We consider a set of sources S that emit CO2. These sources
have one or more CO2 capture processes that can be activated. Let G denote the set of these
source capture processes, where a tuple (i,g) ∈ G denotes source i with capture process g. If
activated, this capture process has a maximum yearly CO2 capture rate (capacity) of Qs

ig (in
tonnes/year). For each period h ∈ H, a binary variable ys

igh is associated with the activation
of the capture process g at source i during the time period h. Activating capture process
(i, g) at time period h (i.e., ys

igh = 1) incurs a fixed cost F s
igh (in dollars), making the capture

process available for CO2 capture from period h onwards. The activation of a capture process
involves the retrofitting of a CO2 emitting process such that CO2 can be captured from that
process. A non-negative variable aigh specifies the amount of CO2 captured (in tonnes/year)
at this capture process during period h, and it is associated with a variable cost V s

igh (in
dollars/tonne).
Reservoir-related decisions. Let R be a set of reservoirs and U be a set of subsites at these
reservoirs. For each (j,u) ∈ U and period h ∈ H, let yr

juh be a binary variable associated with
the activation of the subsite u at reservoir j during the time period h. Activating a reservoir
subsite (j, u) at time period h (i.e., yr

juh = 1) incurs a fixed cost F r
juh (in dollars), making

the subsite available for digging CO2 injection wells from period h onwards. Let wjuh be an
integer variable associated with the number of injection wells dug into reservoir subsite (j, u)
at period h. Digging an injection well at reservoir subsite (j, u) at time period h incurs a
fixed cost F w

juh (in dollars), making the well available for injection from period h onwards. A
non-negative variable bjuh specifies the amount of CO2 injected at reservoir subsite (j, u) at

127



time period h, and it is associated with a variable cost V r
juh (in dollars/tonne). This reservoir

subsite has a maximum yearly CO2 injection rate of Qr
ju (in tonnes/year), and a lifetime

capacity of Qres
ju tonnes (that is, the total CO2 storage capacity over the whole planning

horizon). The maximum number of wells that can be dug at this reservoir is P w
ju, and each

well has a yearly CO2 injection rate of Qw
ju (in tonnes/year). Such multiperiod combined

network design and facility location problem for CCS can be formulated as follows:

min
∑

h∈H,(i,g)∈G

(F s
ighys

igh + V s
ighaigh) +

∑
h∈H,(j,u)∈U

(F r
juhyr

juh + F w
juhwjuh + V w

juhbjuh)+

∑
h∈H,(k,c)∈KC

(αkchpkch + βkchyp
kch) (6.4.1)
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∑
h∈H

ys
igh ≤ 1 ∀(i, g) ∈ G (6.4.2)

aigh ≤ Qs
ig

h∑
τ=1

ys
igτ ∀h ∈ H, (i, g) ∈ G (6.4.3)

∑
(i,g)∈G

aigh = CapCO2h ∀h ∈ H (6.4.4)

∑
h∈H

yr
juh ≤ 1 ∀(j, u) ∈ U (6.4.5)

bjuh ≤ Qr
ju

h∑
τ=1

yjuτ ∀h ∈ H, (j, u) ∈ U (6.4.6)

bjuh ≤ Qw
ju

h∑
τ=1

wjuτ ∀h ∈ H, (j, u) ∈ U (6.4.7)

h∑
τ=1

wjuτ ≤ P w
ju

h∑
τ=1

yr
juτ ∀h ∈ H, (j, u) ∈ U (6.4.8)

∑
h∈H

Ohbjuh ≤ Qres
ju

∑
h∈H

yr
juh ∀(j, u) ∈ U (6.4.9)

pkch ≤ Qmax
kc yp

kch ∀h ∈ H, (k, c) ∈ KC (6.4.10)

xkh ≤
h∑

τ=1

∑
c∈C

pkcτ ∀h ∈ H, k ∈ K (6.4.11)

∑
k∈δ−(i)

xkh −
∑

k∈δ+(i)
xkh =


∑

(i,g)∈G aigh if i ∈ S,

−∑
(j,u)∈U bjuh if i ∈ R,

0 otherwise.

∀h ∈ H, i ∈ I (6.4.12)

ys
igh ∈ { 0, 1 } , aigh ∈ R≥0 ∀h ∈ H, (i, g) ∈ G (6.4.13)

yr
juh ∈ { 0, 1 } , wjuh ∈ Z≥0, bjuh ∈ R≥0 ∀h ∈ H, (j, u) ∈ U (6.4.14)

yp
kch ∈ { 0, 1 } , pkch ∈ R≥0, xkh ∈ R≥0 ∀h ∈ H, (k, c) ∈ KC (6.4.15)

Objective (6.4.1) minimizes, for the whole planning horizon, the fixed source activation
costs, the variable source CO2 capture costs, the fixed reservoir activation costs, the fixed
reservoir well digging costs, the variable reservoir CO2 injection costs, and the fixed pipeline
activation costs. Costs are discounted to present value and amortized. This is further
explained in Section 6.6, and it implies that all costs are non-increasing over time (e.g.,
F s

ig1 ≥ F s
ig2). Opening all infrastructure at the beginning of the planning horizon is therefore

unlikely to be optimal.
Source-related constraints. Constraints (6.4.2) ensure that a source can only be activated
once during the planning horizon. Constraints (6.4.3) are the capacity constraints for the
capture rate of CO2 at the sources. Constraints (6.4.4) impose the annual CO2 capture target
for each time period.
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Reservoir-related constraints. Constraints (6.4.5) ensure that a reservoir subsite can only
be activated once during the planning horizon. Constraints (6.4.6) and (6.4.7) are capacity
constraints for the injection rate of CO2 at the reservoirs. Constraints (6.4.8) are capacity
constraints for the maximum number of wells that can be dug at reservoirs. Constraints
(6.4.9) are the reservoir lifetime capacity constraints. Multiplying the right hand side of these
constraints by the reservoir activation variables is not necessary to obtain a valid formulation,
but it strengthens the bound of the linear programming relaxation.
Pipeline-related constraints. Constraints (6.4.10) set the upper pipeline capacity for
each linear trend c ∈ C. Constraints (6.4.11) limit the flow of pipelines to their maximum
capacities. Constraints (6.4.12) are flow conservation constraints for sources, reservoirs and
junction nodes.

To improve the linear programming relaxation bound (without removing any optimal
integer solution), the following coefficients are tightened based on the largest annual CO2

capture target: Qs
ig,∀(i, g) ∈ G, Qr

ju, ∀(j, u) ∈ U, Qw
ju,∀(j, u) ∈ U , and Qmax

kc ,∀(k, c) ∈ KC .
The model above is CO2 phase agnostic (liquid, gas, supercritical) and it is assumed that
all pipeline arcs are new. Moreover, infrastructure build times are not considered and new
infrastructure (pipelines, capture units, reservoir subsites) is assumed to be immediately
available at the beginning of the time period it is opened. In order to reduce the number of
variables and equations, for each time period, each year is assumed to be identical. Hence,
the model treats CO2 flows, capture rates and injection rates as annualized and indexes them
by time period (as opposed to year).

6.5. A Slope Scaling Heuristic
We now describe a heuristic based on slope scaling (SS). Slope scaling is an iterative

heuristic that solves several approximations of an optimization problem, and was first
presented by Yaged [1971] to solve network optimization problems. At each slope scaling
iteration, feasible solutions to the original problem are generated based on the approximate
solution. We propose a novel way to generate feasible solutions within slope scaling by
using dynamic programming (see Section 6.5.4). The heuristic framework is outlined in
Figure 6.1. The heuristic runs slope scaling several times, alternating between intensification
and diversification phases (described in Section 6.5.5), as proposed by Crainic et al. [2004] for
a network design problem, and later used by Whitman et al. [2021] for a single-period CCS
planning problem. Furthermore, a final refining phase solves a restricted MILP to improve
the best-known solution found by slope scaling, described in Section 6.5.6.
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Fig. 6.1. Outline of the heuristic framework.

Being a heuristic, slope scaling has no optimality guarantees, and it may converge to
a local optimum instead of a global optimum. To improve the chances of slope scaling
finding better local optima or even global optima, Crainic et al. [2004] proposed Lagrangian
perturbation and intensification and diversification techniques for slope scaling. Slope scaling
has also been used for combined facility location and network design problems: Whitman
et al. [2021] proposed a slope scaling heuristic for a single-period CCS problem with discrete
pipeline capacities. Their heuristic has intensification and diversification phases as in Crainic
et al. [2004]. Slope scaling heuristics have also been used to generate feasible solutions for
exact methods, such as Lagrangian decomposition [e.g., Kadri et al., 2022], or in matheuristics
such as the combined column generation and slope scaling of Zetina et al. [2019]. The general
framework of a slope scaling heuristic is outlined in Algorithm 6.1:

Algorithm 6.1: General framework of a slope scaling heuristic.
1 initialize coefficients;
2 while stopping criteria not met do
3 solve approximation of original problem;
4 update approximation coefficients;
5 compute feasible solution;

6 return best feasible solution found;
At each slope scaling iteration, an approximation of the original optimization problem is

solved. In this approximation, design variables are removed and their approximate activation
costs are added to the coefficients of the continuous variables that are linked to these design
variables (i.e., pipeline capacity). After solving the simplified problem, the objective function
coefficients of these approximations are adjusted to reflect the true cost of the obtained
solution. If the next iteration generates exactly the same solution, the approximation costs
equate to the original design costs of the solution. Furthermore, a feasible solution is computed
within each iteration based on the approximate solution. The procedure stops when the
objective function value of the approximation repeats in two consecutive iterations.
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6.5.1. Selection of design variables

When developing slope scaling heuristics, usually all design variables are removed from
the formulation such that the resulting model is a linear program. This allows for a quick
reoptimization of the formulation when the approximate objective function coefficients change
with the slope scaling iterations. For example, in Crainic et al. [2004], the authors approximate
the binary arc activation variables, and the resulting formulation is a linear multi-commodity
minimum cost network flow problem. On the slope scaling for single-period CCS of Whitman
et al. [2021], besides approximating pipeline design variables, the authors approximate source
and sink design variables, which also leads to a linear program. However, our preliminary
experiments have shown that the pipeline activation decisions are the main decisions related
to the hardness of the problem. We therefore decided to develop a slope scaling heuristic
that only approximates pipeline decisions (i.e., variables yp

kch are removed), while keeping
the integrality constraint for source and sink design variables. Therefore, our slope scaling
approximation is still a MILP problem. Such formulation leads to stronger approximations
(i.e., better feasible solutions), but implies longer solution times. Our preliminary experiments
have shown, however, that for the same amount of CPU time, a MILP approximation with
early stopping leads to better overall solutions than a LP approximation. We describe later
in this section which stopping criteria are used for the MILP approximation.

To reduce the SS model size, we remove the pipeline capacity trend decisions from the SS
formulation and compute them a posteriori, based on the SS solution capacity. Thus, the SS
pipeline capacity variables pkch are not indexed by the capacity trend (i.e., pkh). This leads
to smaller models that may be faster to solve. Furthermore, our preliminary experiments
have shown that the slope scaling with implicit pipeline capacities implies better overall
solutions. This contrasts with the existing literature: the slope scaling heuristic proposed
by Whitman et al. [2021] represents different pipeline capacities explicitly within their SS
formulation. We expect that similar improvements would be observed if such discrete pipeline
capacities are represented implicitly. A limitation of representing the pipeline capacity (or
capacity trend) implicitly is that it does not allow for the activation of two pipelines with
different capacities at the same time period (as opposed to model (6.4.1)–(6.4.15)). We
assume, however, that the capacity of the largest pipeline trend is arbitrarily large, as in
Jones et al. [2022]. Furthermore, we assume that building a larger pipeline at a certain period
is no more expensive than building two smaller pipelines with the same capacity at the same
period. Thus, under these assumptions, the implicit representation of pipeline trends does
not remove the optimal solution to the original problem from the slope scaling search space.
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The slope scaling model is defined below:

SS(β̃) = min
∑

h∈H,(i,g)∈G

(F s
ighys

igh + V s
ighaigh) +

∑
h∈H,(j,u)∈U

(F r
juhyr

juh + F w
juhwjuh + V w

juhbjuh)+

∑
h∈H,k∈K

β̃khpkh (6.5.1)

∑
h∈H

ys
igh ≤ 1 ∀(i, g) ∈ G (6.5.2)

aigh ≤ Qs
ig

h∑
τ=1

ys
igτ ∀h ∈ H, (i, g) ∈ G (6.5.3)

∑
(i,g)∈G

aigh = CapCO2h ∀h ∈ H (6.5.4)

∑
h∈H

yr
juh ≤ 1 ∀(j, u) ∈ U (6.5.5)

bjuh ≤ Qr
ju

h∑
τ=1

yjuτ ∀h ∈ H, (j, u) ∈ U (6.5.6)

bjuh ≤ Qw
ju

h∑
τ=1

wjuτ ∀h ∈ H, (j, u) ∈ U (6.5.7)

h∑
τ=1

wjuτ ≤ P w
ju

h∑
τ=1

yr
juτ ∀h ∈ H, (j, u) ∈ U (6.5.8)

∑
h∈H

Ohbjuh ≤ Qres
ju

∑
h∈H

yr
juh ∀(j, u) ∈ U (6.5.9)

pkh ≤ max
c∈C

Qmax
kc ∀h ∈ H, k ∈ K (6.5.10)

xkh ≤
h∑

τ=1
pkτ ∀h ∈ H, k ∈ K (6.5.11)

∑
k∈δ−(i)

xkh −
∑

k∈δ+(i)
xkh =


∑

(i,g)∈G aigh if i ∈ S,

−∑
(j,u)∈U bjuh if i ∈ R,

0 otherwise.

∀h ∈ H, i ∈ I (6.5.12)

ys
igh ∈ { 0, 1 } , aigh ∈ R≥0 ∀h ∈ H, (i, g) ∈ G (6.5.13)

yr
juh ∈ { 0, 1 } , wjuh ∈ Z≥0, bjuh ∈ R≥0 ∀h ∈ H, (j, u) ∈ U (6.5.14)

pkh ∈ R≥0, xkh ∈ R≥0 ∀h ∈ H, k ∈ K (6.5.15)

Here, β̃kh approximates the activation costs of pipelines through the continuous pipeline
capacity variables p. The resulting model is a mixed-integer linear programming problem with
a minimum-cost flow structure for the pipeline decisions. While such model is not a linear
program and therefore cannot be solved in polynomial time, our preliminary computational
experiments have shown that under the same CPU time, the overall SS heuristic with a MILP
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approximation leads to better solutions than SS with a linear programming approximation.
This is due to the stronger approximations provided by the MILP, which generate better
feasible solutions.

As each iteration, SS solves a MILP, which may have an unpredictable solution time.
As each iteration of the SS is an approximation to the original problem with very specific
approximation coefficients, it is more favorable to quickly generate solutions rather than
solving this MILP to optimality. Hence, we use two stopping criterias for that MILP: a
maximum number of feasible solutions found, and an optimality gap threshold. Particularly,
using the number of feasible solutions as a stopping criteria allows the SS iterations to be
flexible enough to stop early even if finding small optimality gaps for some instances is
challenging, which is the case for many of our instances.

6.5.2. A note on discrete pipeline sizes.

We further note that the pipeline capacity trends are implicitly represented through the
SS coefficients. Thus, the size of the SS formulation does not depend on the number of
capacity trends (i.e., |C|). If discrete pipeline capacities were used on the original MILP
formulation, the model size would increase, as well as the computational effort necessary to
solve such model [e.g., see Middleton, 2013]. On the other hand, the implicit representation
of pipeline functions makes the SS flexible enough to represent discrete pipeline sizes or other
pipeline cost functions without increasing its model size.

6.5.3. Update of slope scaling coefficients

Slope scaling implementations initialize their coefficients to reflect the costs of the LP
relaxation of the original problem [e.g., see Crainic et al., 2004, Gendron et al., 2018]. This
usually equates to the activation cost of the design variables divided by the maximum capacity
associated with the infrastructure in question. In our case, as the capacity variables do not
represent any specific capacity trend, we use the mean ratio to initialize the slope scaling
coefficients. Let β̃t

kh be the value of the SS coefficients at iteration t for activating arc k at
time period h. For the first iteration, we initialize β̃1

kh as follows:

β̃1
kh = 1

|C|
∑
c∈C

( βkch

Qmax
kc

+ αkch),∀k ∈ K, h ∈ H.

We now describe the update of these coefficients. Let (ȳs, ā, ȳr, w̄, b̄, p̄, x̄) be a solution to
SS(β̃t). We want to set the values of the coefficients β̃t+1

kh such that if the same solution is
found again, then the objective value of the slope scaling model reflects the true value of the
corresponding integer solution on the original problem with binary design variables. To this
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end, we update the coefficients for the next SS iteration as below:

β̃t+1
kh =

βkc⋆h/p̄t
kh + αkc⋆h, if p̄t

kh > 0,

β̃t
kh, otherwise,

(6.5.16)

where:

c⋆ = min{c ∈ C : p̄t
kh ≤ Qmax

kc }. (6.5.17)

Therefore, if p̄t+1
kh = p̄t

kh (i.e., if the same pipeline capacity decisions are taken in the next SS
iteration), then:

β̃t+1
kh p̄t+1

kh =

βkc⋆h + αkc⋆hp̄t+1
kh , if p̄t

kh > 0,

0, otherwise,
(6.5.18)

which reflects the pipeline activation costs for the original formulation that SS approximates.

6.5.4. Generation of feasible solutions

Based on the solution found by the SS, a solution to the original problem is generated in
the following manner: we retain the solution values for both sources and sinks (ȳs, ā, ȳr, w̄, b̄),
as they are feasible in the original formulation. We also retain the flow values x̄, as they are
also feasible in the original formulation. Finally, what is left to decide is the value of the
pipeline activation variables yp

kch and the capacity p̄. Usually, slope scaling implementations
[e.g., Whitman et al., 2021] keep the same pipeline capacities p̄ found by SS and directly
derive binary arc decisions based on the pipeline capacities p̄ (or the flow x̄), as below:

yp
kch =

1 if p̄kch > 0,

0 otherwise.

This assumes, however, that the pipeline capacity variables are indexed by the capacity trend
(i.e. p̄kch), which requires a larger model. Even if such model is used, the SS approximation
coefficients may generate a solution where suboptimal capacity trends are selected. If pipeline
capacities are not indexed by capacity trend (i.e. p̄kh, which is the case for the here proposed
SS), the generation of feasible solutions can be improved by inspecting, for each arc, the cost
of each capacity trend that allows for a pipeline with capacity p̄kh, and opening the pipeline
at the trend with lowest cost. Not only may the pipeline capacity trend be suboptimal, but
also the timing decisions of when and how much capacity is opened. This is due to the lack
of binary pipeline activation variables on SS. The network costs therefore may not reflect the
true costs of opening pipelines over the planning horizon. To address this issue, we generate
improved feasible solutions by optimizing for the pipeline capacity, its capacity trend, and its
activation time period (i.e., yp

kch and pkch) while satisfying the fixed flow x̄. This generates a
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network of pipelines that is feasible for the source, sink and flow decisions previously selected.
We refer to this as the capacity assignment problem.
The capacity assignment problem. For each arc k ∈ K, the pipeline decisions associated
with this arc are independent of other arcs. Thus, the capacity assignment problem is
decomposable by arc. Thus, for each k ∈ K, the capacity assignment problem [CA(x̄)] is
defined as:

[CAk(x̄)] fca
k (x̄) = min

∑
c∈C

∑
h∈H

(αkchpkch + βkchyp
kch) (6.5.19)

pkch ≤ Qmax
kc yp

kch ∀h ∈ H, c ∈ C (6.5.20)
h∑

τ=1

∑
c∈C

pkcτ ≥ x̄kh ∀h ∈ H (6.5.21)

yp
kch ∈ { 0, 1 } , pkch ∈ R≥0 ∀h ∈ H, c ∈ C. (6.5.22)

By splitting decisions into two phases (flow decisions and capacity assignment decisions),
our generation of upper bounds has some similarities to select-and-time heuristics for multi-
period problems [e.g., Fragkos et al., 2021], where decisions are first selected regardless of
the time period (e.g., how much pipeline capacity to open in total), and then timed (e.g.,
when to open the pipeline capacity). In our case, we disregard the initial pipeline capacity
timing decisions, and find new timing decisions based on the selected flow of CO2 for each
time period. While our selecting decisions (xkh) do include the timing of flow decisions (and
therefore they are not identical to the decisions in traditional select-and-time heuristics),
there is an additional layer of timing decisions concerning when pipelines are built (yp

kch and
pkch).

Solving CAk(x̄) for all pipelines k ∈ K can be time intensive, as it is a multiperiod
problem. This can be sped up as follows. First, such problem has a trivial optimal solution
of 0 if no flow is ever passed on an arc. Thus, CAk(x̄) only has to be optimized for arcs that
pass flow. This may still be time intensive, as it has to be solved for all SS iterations. Several
different heuristic decisions can be applied to find feasible solutions to CAk(x̄): it may be
advantageous to build all pipeline capacity in advance, or to greedily build pipeline capacity
over time, as needed. The latter heuristic would require iterating over the first time period
until the last one, and would only build additional pipeline capacity when necessary. In other
words, spare capacity would never be built in advance. Both strategies have shortcomings:
building all capacity in advance may not take advantage of discounting (i.e., building later is
cheaper). On the other hand, greedily building pipelines may risk building more pipelines
than necessary, which would incur high activation costs.

To address the shortcomings of these heuristics, we propose a depth-first search dynamic
programming algorithm for the capacity assignment problem. Let z(h, Q) be the cost for
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opening pipelines from period h to the last time period. z(h, Q) assumes that there is a
total pipeline capacity of Q already available that was open before h. The depth-first search
algorithm is defined by the recursive equation for z(h, Q) below:

z(h, Q) =


0, if h > max{H},
z(h + 1, Q), if x̄kh = 0,

min∆∈L(h,Q) { f(k, h, ∆) + z(h + 1, Q + ∆) } , otherwise.

(6.5.23)

Here,

L(h, Q) = { x̄kτ −Q | ∀τ ∈ H, τ ≥ h, x̄kτ ≥ Q, x̄kτ ≥ x̄kh } , (6.5.24)

and

f(k, h, ∆) =


0 if ∆ = 0,

min
c∈C,∆≤Qmax

kc

{ βkch + αkch∆ } otherwise.
(6.5.25)

At a given node (h, Q) of the search tree, three groups of decisions are possible:
(1) if the current time period exceeds that last period of the planning horizon (h >

max {H }), then no more pipelines can be built;
(2) if the flow at the current time period is zero (x̄kh = 0), then building a pipeline at

this period is never optimal (assuming that pipeline costs decrease with time due to
discounting);

(3) if the flow at the current time period is not zero, then adding extra pipeline capacity
that satisfy this flow (at least) is necessary.

The best capacity assignment cost for all periods is given by z(1, 0), and the associated
solution can be obtained in O(|H|) time by inspecting the costs of the dynamic programming
recursion tree.

Being an enumerative procedure for each pipeline, the dynamic programming may require
a non-negligible portion of the CPU time available for the entire heuristic procedure. To
reduce the CPU time footprint of the dynamic programming, we employ memoization of
previously-found solutions on the dynamic programming recursion tree. We also propose a
pruning scheme: we keep the best upper bound for the capacity assignment cost. Being a
depth-first search algorithm, this equates to the minimum cost at the leaf nodes of our search.
During the depth first search, we keep the accumulated cost until the node we are currently
evaluating. As the costs during the recursion are non-decreasing, we can prune the search
tree if, at a certain node, the current accumulated cost is larger than the current best upper
bound.
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6.5.5. Long-term memory

In this section, we describe an intensification and diversification procedure for SS based
on information from previous SS iterations.
Slope scaling limitations. As described by Crainic et al. [2004], slope scaling is capable of
finding good solutions quickly, but might converge far from globally optimal solutions. To
improve the quality of solutions found by slope scaling, the authors proposed an intensification
and diversification procedure based on long-term memory. We use this procedure in our
heuristic, adapted to a multiperiod problem. Based on information from previously-found
solutions, the SS alternates between intensification and diversification phases. In the intensi-
fication phase, SS will favor building pipelines that were used often. In the diversification
phase, SS will favor building pipelines that were rarely used, and therefore direct the search
towards new regions of the search space.

The intensification and diversification is controlled by a long-term memory that tracks
information from previous SS iterations. To this end, we keep track of the following information
updated for each k ∈ K, h ∈ H:

• the number of iterations that p̄kh > 0, denoted as p̄nz
kh(t);

• the average capacity of pipeline k at period h for all iterations until t, defined as
p̄avg

kh (t) = 1
t

∑t
τ=1 p̄kh(τ).

• the maximum capacity of pipeline k at period h for all iterations until t, defined as
p̄max

kh (t) = maxτ∈1,...,t { p̄kh(τ) }.
Let β̄t be the values of the SS coefficients on iteration t and

p̄rat
kh (t) =

p̄avg
kh (t)/p̄max

kh (t), if p̄max
kh (t) > 0

0, otherwise.
(6.5.26)

If intensification is performed within this iteration, then
• βt

kh = βt
kh(1− p̄rat

kh (t)) if p̄nz
kh(t) ≥ µt + σt

• βt
kh = βt

kh(2− p̄rat
kh (t)) if p̄nz

kh(t) < µt

If diversification is performed within this iteration, then
• βt

kh = βt
kh(1 + p̄rat

kh (t)) if p̄nz
kh(t) ≥ µt + σt

• βt
kh = βt

khp̄rat
kh (t) if p̄nz

kh(t) < µt,
where µt and σt are the mean and standard deviation of { p̄nz

kh(t),∀k ∈ K, h ∈ H }.
Algorithm outline. The slope scaling procedure with intensification and diversification is
outlined below (Algorithm 6.2):
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Algorithm 6.2: SS with intensification and diversification
Result: best known upper bound found by slope scaling

1 initialize coefficients β̃1;
2 solve SS(β̃1);
3 phase← 1;
4 t← 2;
5 while time limit is not exceeded do
6 β̃t ← β̃1;
7 if phase = 1 then
8 β̃t ← intensify(β̃t);
9 else

10 β̃t ← diversify(β̃t);

11 solve SS(β̃t);
12 if phase = 1 and best-known solution was improved then
13 phase← 1 (continue intensification);
14 else
15 phase← phase ∗ (−1);

16 t← t + 1;

6.5.6. Restricted MILP

In this section, we introduce a final refinement step to further improve the best-known
feasible solution found by the SS heuristic. As usual for heuristics, SS may not be able
to find an optimal solution, and cannot certify the optimality of a solution. For example,
the approximation of pipeline costs may lead to solutions with a pipeline network different
than an optimal network. Furthermore, as the MILP used within a SS iteration is not
necessarily solved to optimality, the source and sink decisions may not be optimal for the
associated pipeline approximation decisions. To further improve the odds of SS finding
improved solutions (or even an optimal solution), we introduce a heuristic refinement phase,
employed after the execution of SS, where we solve a restricted MILP model. This model
consists of the original CCS formulation, but only allows for the use of a limited set of arcs.
As such, this may allow for a quick improvement of the SS solution. Let A ⊆ K be such set
of allowable arcs. To build the restricted model, we introduce the constraint below to the
original formulation (see Section 6.4):

yp
kch = 0 ∀k ∈ K \ A, c ∈ C, h ∈ H. (6.5.27)
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To prioritize quickly finding improved feasible solutions, we limit the size of the restricted
MILP formulation by allowing only for the arcs belonging to the best known solution found
by the SS. Furthermore, we provide the best known solution found by SS (with the improved
dynamic programming capacity assignment decisions) as an incumbent to the restricted
model. We let CPLEX solve this restricted MILP for a specified amount of time.

6.6. Computational Experiments
In this section, we compare the performance of the SS heuristic against CPLEX. Our

objective is to understand if CCS stakeholders are able to use SS to generate solutions that
are comparable or better than those generated by CPLEX. We first describe the benchmark
set of instances that we use to evaluate SS and CPLEX on in Section 6.6.1. Such benchmark
set covers different geographical regions, and has instances of small, medium and large scale.
Then, we report the results of computational experiments and discuss the performance of SS
and CPLEX according to different problem attributes in Section 6.6.2.

6.6.1. Benchmark instances

To provide a large testbed for evaluating the SS heuristic and CPLEX, we adapt six
single-period case studies from the United States Department of Energy to a multiperiod
context. These case studies cover different regions in the United States, and one region in
China. A characterization of each case study is present in Table 6.1. The costs in these
multiperiod datasets do not take into account commodity forecasts. Instead, they simply use
the costs as in the single-period case studies [e.g., Middleton, 2013] with fixed discount and
interest rates, and zero inflation [as in Middleton et al., 2012b]. A more detailed multiperiod
cost structure, including the aforementioned forecasts, is outside the scope of the present
study. The here considered model is, however, flexible enough to accommodate for that
without any changes to the model structure. We assumed a discount rate of 7% and an
interest rate of 9%, as in Middleton et al. [2012b], and refer the reader to that paper for the
discounting and amortization formulas that we used.

To represent small, medium and large-scale instances, we run experiments with four
different time periods. For case studies with a planning horizon of 30 years, we split the
planning horizon into 5, 10, 15 and 30 time periods of equal length. For case studies with
a planning horizon of 50 years, we split the planning horizon into 5, 10, 25 and 50 time
periods of equal length. Furthermore, we consider four different annual CO2 capture target
profiles, where the annual target for the last time period amounts to 25%, 50%, 75% and
100% of the maximum annually capturable/injectable CO2, and the rates for the previous
time periods are linearly interpolated based on that value. Finally, as the accuracy level of
the piecewise approximation of pipeline costs may change according to the needs of analysts,
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we run experiments with two and six piecewise linear trends for pipeline capacities. In total,
this accounts to a set of 192 different experimental settings with different network topologies,
number of time periods, target capture rates and number of linear pieces. While previous
models and heuristics for CCS planning problems usually focus on one case study, the use
of several case studies with different characteristics will allow us to understand how well
the proposed slope scaling heuristic and CPLEX would perform under diverse, yet realistic
settings.

Table 6.1. Instance information for the six case studies considered.

inst planning horizon (years) |S| |R| |K|
China Ordos Basin 30 38 53 1040
Illinois 30 1 15 136
Southeast US 30 20 7 366
Texas 30 9 3 92
Gulf Coast 50 19 29 656
Midwest 50 9 15 236

6.6.2. Computational results

In this section, we report on the performance of the SS heuristic and CPLEX and
discuss under which circumstances one approach may be more favorable than the other. We
implemented all of our models and algorithms in Python. We allocate 5 minutes for SS,
with an additional 30 seconds for the restricted MILP. We allocate one hour for CPLEX,
which is therefore much more generous. Both the SS and CPLEX are limited to one thread.
Experiments were conducted on a machine with an AMD 3970X processor and 256 GB of
memory, using CPLEX version 22.1.

To understand the impact of instance attributes on the performance of SS and CPLEX,
we group results based on the following attributes: the case study, the number of time periods
(and the length of the planning horizon), the number of capacity trends, and the annual CO2

capture target. This will allow us to derive attribute-specific insights into the performance of
SS and CPLEX.

6.6.2.1. Average results. Average results are shown in Table 6.2. Columns ∆min
ss,cplex,

∆ss,cplex and ∆max
ss,cplex show the minimum, average and maximum relative objective improve-

ment (%) between SS and CPLEX. Column freq≤ shows the proportion of experiments where
the objective of the solution found by SS is less than or equal to the objective of the solution
found by CPLEX. Column “T (sec)” shows the average CPU time taken by SS. The first
row (“all”) summarizes average results for all experiments. The second row (“SS ≤ CPLEX”)
shows average results for the cases where the solution found by SS is the same or better than
CPLEX. The third row (“SS > CPLEX”) presents average results for the cases where the
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solution found by SS is worse than CPLEX. When SS outperforms CPLEX, results are shown
in boldface. Furthermore, Figure 6.2, illustrates the distribution of ∆ss,cplex.

Table 6.2. Average results for all instances.

experiments ∆min
ss,cplex ∆ss,cplex ∆max

ss,cplex freq≤ T (sec)
all -6.16 7.03 80.88 0.59 325.94
SS ≤ CPLEX 0.00 12.37 80.88 1.00 329.11
SS > CPLEX -6.16 -0.60 -0.001 0.00 321.41

Fig. 6.2. Histogram of ∆ss,cplex for all cases.

The results show that the average SS improvement over CPLEX is 7.03%, and SS is better
than CPLEX for 59% of the instances. For those instances, the average SS improvement is
12.37% (min. 0%, max. 80.88%). SS is worse than CPLEX for 41% of the instances. For
those instances, SS is on average 0.60% worse than CPLEX (min. 0.001%, max. 6.16%). The
histogram also shows that most SS solutions have a similar cost to those found by CPLEX.
When SS is worse than CPLEX, most solutions are at most 1% worse than CPLEX. When
SS is better than CPLEX, most solutions have relative improvements between 0% and 10%,
and a sizeable portion of solutions have improvements up to 30%.

6.6.2.2. Results by case study. We now show average results grouped by the six case
studies. We aim to understand why SS performs better or worse according to the case study.
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Attributes that change with the case study are the number and location of sources and
sinks, their capacities, and the candidate network topology. Results are shown in Table 6.3.
Columns %gapavg

ss and %gapstd
ss (%gapavg

cplex and %gapstd
cplex) show the average and standard

deviation of the optimality gaps of the solutions found by SS (CPLEX) when compared to
the lower bounds found by CPLEX.

Table 6.3. Results by case study.

case study ∆ss,cplex freq≤ T (sec) %gapavg
ss %gapstd

ss %gapavg
cplex %gapstd

cplex

China Ordos Basin 8.35 0.78 335.97 6.08 3.41 14.00 8.98
Gulf Coast 27.71 0.94 335.17 50.26 20.92 60.04 25.73
Illinois -0.15 0.25 326.21 0.50 0.27 0.34 0.33
Midwest 6.46 0.53 331.91 7.53 5.39 13.10 16.75
Southeast 0.13 0.72 319.63 1.46 0.90 1.58 1.07
Texas -0.29 0.31 306.78 1.14 1.24 0.86 1.04

Illinois and Texas are the only case studies where the average improvement is negative.
That is, for these case studies, on average, SS is worse than CPLEX. The proportion of
experiments that SS is better than CPLEX is also rather small: 0.25 and 0.28, respectively.
However, the values of ∆ss,cplex are small (-0.15 and -0.29, respectively), which suggests that
SS is finding solutions similar (albeit slightly worse) to CPLEX. These instances are also
the smallest instances of the benchmark set (by number of sources, sinks, and pipelines),
are commercial solvers are known to perform better on small instances. Still, the CPU time
required by CPLEX to find these solutions is about 10 times larger than SS, for a marginal
improvement. For all other case studies, SS improves over CPLEX on average and is better
than CPLEX on most instances. The optimality gaps of SS and CPLEX show that, for
all case studies except Gulf Coast, the solutions found by SS and CPLEX have average
optimality gaps of at most 7.53% (for SS) and 14.00% (for CPLEX). This indicates that
not only SS provides solutions of higher quality than CPLEX, but also that these solutions
may have an acceptable quality for practical use. For the Gulf Coast case study, preliminary
experiments indicate that the large optimality gaps may be associated with the difficulty of
improving the lower bounds for that case study.

6.6.2.3. Results by time period. In this section, we analyze how the performance of
the SS and CPLEX compare when the number of time periods is increased. Results for case
studies with 30-years planning horizon are shown in Table 6.4 and results for case studies
with 50-years planning horizon are shown in Table 6.5.
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Table 6.4. Results for instances with a 30-year planning horizon

periods ∆ss,cplex freq≤ T (sec)
5 0.92 0.47 315.90
10 1.57 0.38 319.66
15 2.03 0.50 323.69
30 3.51 0.72 329.33

Table 6.5. Results for instances with a 50-year planning horizon (that is, Gulf Coast and
Midwest).

periods ∆ss,cplex freq≤ T (sec)
5 2.31 0.50 325.00
10 11.61 0.75 332.00
25 23.05 0.75 334.67
50 31.37 0.94 342.47

The results for a planning horizon of 30 years show that both ∆ss,cplex and freq≤ increase
with the number of periods. SS only starts outperforming CPLEX on the majority of instances
with 15 time periods or more. The average improvement over CPLEX is positive even for
time periods smaller than 15 (starting at 0.92%). For a planning horizon of 50 years, the
results also indicate that ∆ss,cplex and freq≤ increase with the number of periods. Differently
than 30-year instances, SS outperforms CPLEX on the majority of instances for any amount
of time periods (i.e., freq≤ ≥ 0.5 and ∆ss,cplex > 0). The average improvement over CPLEX
quickly increases with the number of time periods, and for 50 periods, this improvement is
31.37%.

6.6.2.4. Results by capacity trend. We now analyze how the SS and CPLEX results
change based on the number of pipeline capacity trends. An analyst may want to increase
the number of trends to represent pipeline costs more accurately. However, as increasing the
number of trends leads to more pipeline-related variables, we expect that the instances with
more capacity trends will be harder for CPLEX to solve. On the other hand, we expect that
the performance of SS will not degrade the same way, as SS represents the capacity trends
implicitly (see Section 6.5). Results are shown in Table 6.6.

Table 6.6. Results for different pipeline capacity trends.

trends ∆ss,cplex freq≤ T (sec)
2 5.27 0.50 325.34
6 8.80 0.68 326.55

The results show that both ∆ss,cplex and freq≤ increase with the number of piecewise
linear trends, which validates that SS has an advantage over CPLEX on larger formulations.
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6.6.2.5. Results by the annual CO2 capture target. Larger CO2 capture targets do
not change the model size but likely lead to solutions with more activated sources and sinks
and larger pipeline networks. Thus, we expect instances to be more difficult to solve when
the CO2 capture targets are larger. Results are shown in Table 6.7.

Table 6.7. SS compared to CPLEX.

CapCO2 ∆ss,cplex freq≤ T (sec)
25% 1.30 0.56 320.12
50% 6.50 0.60 324.01
75% 8.64 0.54 328.11
100% 11.69 0.65 331.54

The results show that the performance of SS over CPLEX increases with the CO2 capture
target. While ∆ss,cplex improves consistently, freq≤ does not seem to follow a trend. The
results confirm, however, that the model size is not the only factor influencing the performance
of SS and CPLEX, but the number of activated variables also seem to play a role.

6.7. Conclusions and Future Work
We have introduced a new slope scaling heuristic for a strategic multiperiod CCS planning

problem. We adapted elements from previous slope scaling heuristics for single-period CCS
and network design, and also proposed novel attributes to slope scaling, such as the implicit
representation of pipeline capacity cost functions and the generation of improved upper bounds
through dynamic programming. Computational experiments have shown that the proposed
heuristic outperforms CPLEX on the majority of experiments (relative improvements of up to
80.88%), at a fraction of the computational time. This was not the case for previous CCS slope
scaling heuristics, where the heuristic runs for a fraction of the time, but the solutions are
worse than those found by CPLEX. Furthermore, computational experiments were conducted
on six different geographical regions, while previous papers on models and algorithms for CCS
limit themselves to one geographical region. Thus, this work provides valuable algorithmic
insights for the CCS community, and the proposed slope scaling heuristic allows for the
representation and resolution of large multiperiod CCS problems, and may be adapted for
more complex problem settings (e.g., models with uncertainty). As the deployment of CCS
involves billions of dollars of investment across industries and governments, the superior
performance of the slope scaling can lead to significant cost savings when deploying CCS,
and therefore accelerate the pathway towards net-zero emissions.
Future work. A common use case in CCS VCO is to conduct sensitivity analyses such that
stakeholders can understand the impact, for example, of government policies on the adoption
of CO2. Conducting sensitivity analyses means that several experiments must be run within a
reasonable timeframe such that stakeholders can quickly have a good overview of the impact
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of policy changes. One may explore the reoptimization capabilities of the proposed slope
scaling heuristic. For example, for a specific case study, there may be different realizations
of an uncertain input parameter. A slope scaling reoptimization procedure could iteratively
solve these different input instances, reusing solution information from the previous iteration.

Additionally, the development of exact solution methods and bounding mechanisms may
be a promising research direction, given the magnitude of strategic planning decisions and
the difficulty of generating good lower bounds for some case studies.
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Chapter 7

Conclusions

In this thesis, two groups of problems with the potential to reduce greenhouse gas emissions
were studied: ridesharing and carbon capture and storage (CCS). Three articles studied
ridesharing problems, and one article was dedicated to studying a CCS problem.

The three articles on ridesharing consider problem attributes such as rematching flexibility,
dynamic decisions, rider and driver stochasticity, driver booking, booking fees, and penalties
for failing to provide a rideshare for booked drivers. The first article introduces a one-to-one
dynamic and stochastic matching problem for ridesharing, and model reductions are given
to reduce the model size and solution time. The second article evaluates stochastic models
for that same problem on a rolling horizon framework and provides valuable managerial
insights on model parameters that reflect different ridesharing platform settings. The third
ridesharing article introduces a general modeling framework capable of representing a wide
range of ridesharing systems. Stochastic model approximations are proposed, and the trade-off
between each model is discussed based on the results of extensive computational experiments.
Recommendations for platform configuration are also given based on the results of these
computational experiments. Overall, these three articles on ridesharing may help practitioners
improve the efficiency of their ridesharing platforms, attract a larger user base, assess the
benefits of different platform configurations, and consequently reduce emissions.

The fourth article of this thesis concerns a multiperiod CCS problem. Deploying a CCS
infrastructure would require investments in the order of billions of dollars, and efficiently
estimating CCS costs is paramount to a successful deployment of CCS. Due to the computa-
tional complexity associated with multiperiod CCS value chain optimization problems, this
article proposes a slope scaling heuristic. Computational experiments show that the proposed
heuristic outperforms a state-of-the-art general-purpose mathematical programming solver,
both in solution quality and CPU time. This provides a valuable tool for CCS analysts,
that may want to run hundreds or thousands of sensitivity experiments to assess the costs



of deploying CCS. Overall, the articles in this thesis provide a wide range of strategies and
tools to help reduce emissions.

7.1. Future Work
The topics studied in this thesis open several opportunities for future research work. Some

directions for ridesharing and CCS are provided below.

7.1.1. Ridesharing

A potential extension of the article in Chapter 3 is the introduction of a multi-stage
stochastic programming formulation for the one-to-one stochastic matching and unmatching
problem for ridesharing. Such formulation may pose computational challenges, and approxima-
tions to the multi-stage problem that go beyond two-stage approximations could be proposed.
In this regard, an interesting research question is to understand the economic gains of using
multi-stage models compared to two-stage models, and how difficult it is to solve these models.
For the two-stage set-packing problem introduced in Chapter 5, a decomposition algorithm
could be developed to improve the model solution time. As the set-packing formulation makes
no assumptions on route size, it can be easily used to represent vanpooling systems, where
different riders share a van trip. The set-packing model can also be extended to allow for
the multimodal transportation of passengers, through, for example, ridesharing and mass
transit, park-and-ride, or ridesharing and vanpooling. For these problems, larger routes
are expected, and the associated instances may pose additional computational challenges,
which may require the development of faster enumeration algorithms and model solution
methodologies, such as decomposition algorithms. Another possible research direction is
to allow for rematching in a one-to-many ridesharing system such as the one introduced
in Chapter 5. This would require combining the problem characteristics of Chapter 3 and
Chapter 5. A possible contribution related to the generation of ridesharing instances is the
improvement of the prediction of travel times. The linear regression model introduced in
Chapter 3 and Chapter 5 may be extended to better represent real-life routing attributes
such as speed limits, bridges, highways, road closures, and tunnels. Furthermore, although
the three ridesharing articles in this thesis considered the uncertainty associated with the
release of drivers and riders, another important source of uncertainty in ridesharing is the
travel time. The set-packing formulation of Chapter 5 can be extended to allow for stochastic
travel times.

7.1.2. Carbon capture and storage

For CCS, the slope scaling heuristic proposed in Chapter 6 could be extended for multi-
modal problem settings, or problem settings with uncertainty (e.g., when reservoir storage
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capacity is uncertain). Given that the slope scaling subproblem is a mathematical program-
ming formulation that is fed to a solver, it allows for a high degree of flexibility to include
additional problem features, which highlights the potential of this research direction. The
performance of the slope scaling heuristic can be further investigated as well: the heuristic
introduced in Chapter 6 performed a partial approximation of the original formulation. In
that context, one potential research direction is to investigate which variables of a formulation
should be approximated through slope scaling such that high-quality feasible solutions are
generated on each slope scaling iteration at a reasonable computational time. This research
direction can also be evaluated on traditional network design problems, where slope scaling
has been used before. Finally, due to difficulty of solving CCS planning problems with
mathematical programming solvers, one potential research direction is to improve the linear
relaxation bounds obtained with the multiperiod formulation of Chapter 6. This could be
achieved by developing, for example, valid inequalities and Lagrangian decompositions.
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Appendix A

Appendix to the third article

This is an appendix to the article in Chapter 5.

A.1. A note on the multi-stage planning problem
The above presented planning problem assumes that the driver-selection is carried out

independently for a predefined planning period, for which all driver requests are known,
while rider requests are yet unknown. This is a realistic setting in a variety of contexts, for
example, for the planning of work-related trips, where the planning takes place twice a day:
morning trips from home to work, and afternoon return trips from work to home. We now
consider a more dynamic context, where requests may be revealed gradually over time and
driver-selection takes place several times throughout the day. Specifically, consider a k-stage
planning problem, where drivers can be selected and riders can be matched at any of the k

stages, and decisions at each stage are made for the upcoming planning period (which are
therefore disjoint). We now elaborate on the suitability of the 2-stage approach presented by
the 2S-SDMP for specific assumptions on this k-stage problem.
Proposition 1. If driver-selection can only be made in the first stage and rider matches
are decided in the following stages as rider requests occur, this multi-stage problem variant
reduces to the 2S-SDMP.

While the 2S-SDMP originally assumes that all rider requests are uncertain at the time
of driver-selection, it can easily account for the case of gradual rider request release. Rider
requests that have not yet been observed in the first stage are all considered uncertain, no
matter when in the future they will be released. Rider requests that have already occurred
can still be accounted for as an uncertain rider request, with an occurrence probability of
100%. As a result, the problem structure remains unchanged, as drivers still have to be
selected in the first stage, while riders are uncertain.

In contrast, a gradual release of the drivers in a multi-stage context or the possibility of
selecting drivers at later stages may impact the suitability of the 2S-SDMP problem setting,



depending on the assumptions made on when those drivers can be selected. In many contexts,
drivers will have to be selected at specific times, h hours before, for example, the beginning
of the planning period. In the case of the 2S-SDMP where the planning may span a time
period from 6am to 10am, the driver-selection planning may be required to be carried out
at 10pm the day before, i.e., 8 hours before the beginning of the planning period (in order
to give drivers a response sufficiently early). Even in a dynamic context, this is a realistic
assumption: while driver and rider requests arrive gradually over the day, the planning is
performed several times per day, h hours (e.g., 4 hours) before the beginning of the actual
planning period.
Proposition 2. If drivers with itineraries within a given time-window have to be selected a
specific time before the start of that time-window, and if each rider request appears in only
one decision stage, then this multi-stage problem variant can be solved exactly by multiple
executions of the 2S-SDMP.

This proposition follows from the fact that the planning over the entire planning horizon
separates into independent planning problems, one for each planning period given by the
various stages. Each of those planning problems then corresponds to an independent instance
of the 2S-SDMP. Note that the assumption on the rider requests is quite realistic, given
that it is unlikely that the combination of earliest departure time and latest arrival time
allows for feasible driver matches in two consecutive planning periods. Finally, also note
that this proposition assumes that rider-request uncertainty is time-independent, i.e., there
is uncertainty whether a specific request occurs (such as in the case of morning/afternoon
commuting), but no uncertainty regarding the time-window of the rider. This also appears
to be a realistic assumption in several contexts, such as work-related trips, which typically
occur around the same time.

If, however, a driver can be booked at any decision stage before the start of the time-
window of her itinerary, or rider request uncertainty is time-dependent (i.e., there is additional
uncertainty on the time for which the ride is requested), theoretically, a multi-stage problem
is required. The 2-stage stochastic problem can be extended to approximate this multi-stage
problem by using multiple time-periods in the second stage, in which drivers can be selected
at a later moment in time and riders can be assigned to the selected drivers. An example
of such a model is given by Homsi et al. [2020], which additionally allows for rematching
participants in later time periods.

A.2. Pseudo-code for the depth-first search route enu-
meration algorithm

We now provide the pseudo-code for the depth-first search algorithm used to enumerate
feasible rideshares. Let feasible(σ) → {true, false} be a Boolean function, indicating
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whether (partial) route σ satisfies all feasibility criteria (e.g., time-feasibility). The algorithm
can be summarized as follows (Algorithm A.1):

Algorithm A.1: Outline of the depth-first search algorithm used to enumerate
ridesharing routes.

Result: set of feasible routes Ω
1 initialize set of feasible routes Ω← ∅;
2 initialize set of allowable rider pickups Ap ← R;
3 initialize set of allowable rider deliveries Ad ← ∅;
4 initialize an empty stack S;
5 for each driver i ∈ D do
6 σ ← (i) // partial route with driver departure;
7 add (Ap, Ad, σ) to the top of S;

8 while S is not empty do
9 extract (Ap, Ad, σ) from the top of S;

10 if Ap is empty and Ad is empty then
11 σ′ ← σ + σ1 // route σ extended with arrival of driver;
12 if feasible(σ′) then
13 add (A′

p, A′
d, σ′) to Ω;

14 else
15 for each pickup i ∈ Ap do
16 σ′ ← σ + i // route σ extended with pickup of rider i;
17 if feasible(σ′) then
18 A′

p ← Ap \ { i };
19 A′

d ← Ad ∪ { i };
20 add (A′

p, A′
d, σ′) to the top of S;

21 for each delivery i ∈ Ad do
22 σ′ ← σ + i // route σ extended with delivery of rider i;
23 if feasible(σ′) then
24 A′

p ← ∅ // pickups after deliveries are not allowed;
25 A′

d ← Ad \ { i };
26 add (A′

p, A′
d, σ′) to the top of S;
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