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Résumé

Les architectures de réseaux de neurones profonds à usage général ont fait des progrès
surprenants dans l’apprentissage automatique pour le code, permettant l’amélioration de
la complétion de code, la programmation du langage naturel, la détection et la réparation
des bogues, et même la résolution de problèmes de programmation compétitifs à un niveau
de performance humain. Néanmoins, ces méthodes ont du mal à comprendre le processus
d’exécution du code, même lorsqu’il s’agit de code qu’ils écrivent eux-mêmes. À cette fin,
nous explorons une architecture du réseau neuronal inspiré d’interpréteur de code, via une
nouvelle famille d’architecture appelée Instruction Pointer Attention Graph Neural Networks
(IPA-GNN). Nous appliquons cette famille d’approches à plusieurs tâches nécessitant un
raisonnement sur le comportement d’exécution du programme : apprendre à exécuter des
programmes complets et partiels, prédire la couverture du code pour la vérification du matériel,
et prédire les erreurs d’exécution dans des programmes de compétition. Grâce à cette série
de travaux, nous apportons plusieurs contributions et rencontrons de multiples résultats
surprenants et prometteurs. Nous introduisons une bibliothèque Python pour construire
des représentations de graphes des programmes utiles dans la recherche sur l’apprentissage
automatique, qui sert de fondement à la recherche dans cette thèse et dans la communauté
de recherche plus large. Nous introduisons également de riches ensembles de données à
grande échelle de programmes annotés avec le comportement du programme (les sorties
et les erreurs soulevées lors de son exécution) pour faciliter la recherche dans ce domaine.
Nous constatons que les méthodes IPA-GNN présentent une forte généralisation améliorée
par rapport aux méthodes à usage général, fonctionnant bien lorsqu’ils sont entraînés pour
exécuter uniquement des programmes courts mais testés sur des programmes plus longs. En
fait, nous constatons que les méthodes IPA-GNN surpassent les méthodes génériques sur
chacune des tâches de modélisation du comportement que nous considérons dans les domaines
matériel et logiciel. Nous constatons même que les méthodes inspirées par l’interpréteur de
code qui modélisent explicitement la gestion des exceptions ont une propriété interprétative
souhaitable, permettant la prédiction des emplacements d’erreur même lorsqu’elles n’ont été
entraînées qu’à prédire la présence d’erreur et le type d’erreur. Au total, les architectures
inspirées des interpréteurs de code comme l’IPA-GNN représentent un chemin prometteur à
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suivre pour imprégner des réseaux de neurones avec de nouvelles capacités pour apprendre à
raisonner sur les exécutions de programme.

Mots-clés : apprentissage automatique, réseaux de neurones profonds, analyse de
programmes, génie logiciel
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Abstract

General purpose deep neural network architectures have made startling advances in machine
learning for code, advancing code completion, enabling natural language programming, detect-
ing and repairing bugs, and even solving competitive programming problems at a human level
of performance. Nevertheless, these methods struggle to understand the execution behavior of
code, even when it is code they write themselves. To this end, we explore interpreter-inspired
neural network architectures, introducing a novel architecture family called instruction pointer
attention graph neural networks (IPA-GNN). We apply this family of approaches to several
tasks that require reasoning about the execution behavior of programs: learning to execute
full and partial programs, code coverage prediction for hardware verification, and predicting
runtime errors in competition programs. Through this series of works we make several
contributions and encounter multiple surprising and promising results. We introduce a
Python library for constructing graph representations of programs for use in machine learning
research, which serves as a bedrock for the research in this thesis and in the broader research
community. We also introduce rich large scale datasets of programs annotated with program
behavior like outputs and errors raised to facilitate research in this domain. We find that
IPA-GNN methods exhibit improved strong generalization over general purpose methods,
performing well when trained to execute only on short programs and tested on significantly
longer programs. In fact, we find that IPA-GNN methods outperform generic methods on
each of the behavior modeling tasks we consider across both hardware and software domains.
We even find that interpreter-inspired methods that model exception handling explicitly
have a desirable interpretability property, enabling the prediction of error locations even
when only trained on error presence and kind. In total, interpreter-inspired architectures like
the IPA-GNN represent a promising path forward for imbuing neural networks with novel
capabilities for learning to reason about program executions.

Keywords: machine learning, deep neural networks, program analysis, software engineering
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Chapter 1

Introduction

1.1. Neural networks for software engineering
Over the last two decades, companies like Google and GitHub have accumulated massive

codebases, surpassing a billion lines of code [49, 117]. As a common practice, software
engineers rely on automated tools to analyze and manipulate programs at every step of
the software development process [1]. Through machine learning, we can design methods
that take advantage of these large codebases to assist developers further, enhancing their
productivity.

Already, neural network techniques have achieved impressive results on a number of
software engineering tasks, but they struggle on tasks that directly call for reasoning about
program executions. Neural networks have enabled new capabilities in program analysis
[94, 118], program repair [32, 138, 141], code completion [96, 102], programming by example
[38], and even competitive programming [95]. These approaches achieve their success through
pattern recognition, learning from millions of labeled examples of the task at hand. However,
tasks that require modeling the execution behavior of programs have presented a persistent
challenge for neural network methods; a variety of settings have highlighted that when a task
directly requires reasoning about a program’s execution behavior, general purpose neural
network approaches have so far fallen short.

This thesis looks specifically at neural methods for modeling the execution behavior of
programs to advance neural approaches to program analysis. Modeling execution behavior
is central to a wide range of tasks, from predicting program properties like execution time
or runtime errors, to security assessments like vulnerability detection. We will consider the
tasks of learning to execute full and partial programs, predicting test coverage for hardware
verification, and identifying runtime errors in real programs without having to run them.
Our main approach will be to model execution behavior in a neural network by drawing from
program interpreters in our design of novel neural architectures. Through this approach, we’ll
not only improve performance on the tasks of interest, we’ll also discover interpretability



properties that give our models novel capabilities and we’ll design and release a library
that facilitates a range of research into using graph representations of programs for machine
learning.

1.2. Execution behavior of programs
When a program runs, a series of instructions are executed. These instructions have many

possible functions: i.e. performing calculations, reading and writing values from memory,
interfacing with peripheral devices, and controlling which instructions will execute next. By
performing many of these instructions in quick succession, programs serve an enormous range
of purposes; everything from Google Search to banking software works in this way, and the
ubiquity and importance of software globally cannot be overstated. The end-to-end behavior
of a program – the relationship between that program’s inputs and its outputs – is closely
linked to the execution behavior of that program. This relationship is governed by strict
rules, the semantics of the programming language, which indicate the precise meaning of
each possible instruction. General purpose neural networks, even when trained on millions
of examples of the end-to-end behavior of programs, do not recover these precise rules. We
say that tasks which require learning precise algorithmic rules to solve perfectly require
systematicity.

Programming language semantics typically have properties that make reasoning about
program executions distinct from other machine learning tasks. Particularly, programming
language semantics are precise and uniform. While software exhibits naturalness like natural
language, it also is governed by precise rules, far more well-defined and with fewer exceptions
than the rules of human languages. The semantics of a programming language are uniform
across the entire language; there is little implicit context modifying the semantics compared
with human languages which occur in ever-changing complicated environments. This precision
and uniformity in programming language semantics enables compositionality and general-
ization. What this means is that if one understands independently what two programming
language instructions do, then the behavior of the composition of these instructions follows
naturally. So if one learns how a language works well enough to understand all ten-line
programs, we might expect that they can also understand hundred-line programs. General
purpose neural methods don’t usually exhibit this property, and we aim to take advantage of
it in designing neural architectures for reasoning about programs.

Though programming language behavior is uniform in any particular environment, there
are many possible execution environments and many languages, each with their own semantics.
Our approach will be flexible enough to admit a variety of non-standard notions of program
execution, such as executing both Python and Verilog, executing with a constrained compute
budget, and even executing only partially observable programs.
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In Chapter 2 we’ll look more closely at when and why neural networks struggle to learn
the execution behavior of programs. Then we’ll aim to overcome those limitations with neural
architectures that we design to model execution behavior. To this end, we’ll employ strategies
for enabling neural networks to learn systematic and generalizable solutions.

1.3. Systematicity
To behave with systematicity means to behave according to precise and algorithmic

rules, as opposed to behaving according to fuzzier pattern matching, intuition, or in a less
principled, less organized manner. One of our goals, in seeking neural networks that can
reason about program executions, is to obtain neural networks exhibiting systematicity.
This aligns naturally with the precision and uniformity properties of programming language
semantics, which govern the execution behavior of a program given the program’s source and
its inputs.

The reason to seek solutions exhibiting systematicity is for improvements in systematic
generalization as well as for desirable interpretability properties. A systematic solution that
uses algorithmic rules often will continue to function outside of the range of inputs it was
designed for. This differs from purely pattern recognition based approaches which may
degrade in performance when tested in new environments. In a machine learning setting,
this amounts to out of distribution generalization, where a model continues to exhibit good
performance even when tested on a different distribution than the one it was trained on. For
reasoning about programs, we specifically are interested in solutions that can learn about
language semantics and then apply what they learn on unseen programs, possibly longer than
any training program and using unseen compositions of language features. Systematicity in a
solution can also improve its interpretability. A systematic solution may permit inspection,
allowing a developer to understand what the latent variables represent. In some systematic
solutions, the components of the solution can be composed, with the compositions retaining
meaning. Examining the models introduced in this thesis, we observe both improvements
in systematic generalization as well as interpretability benefits; the IPA-GNN learns to
execute from small programs, and continues to work on longer programs, and the Exception
IPA-GNN’s interpretability allows for predicting runtime error locations despite never seeing
error locations during training.

Consider two strategies for imbuing a neural network with systematicity: systematicity
through structure and systematicity through learning. Using structure to induce systematicity
in a neural network means carefully selecting the neural architecture to promote systematicity
in the functions the model learns. By varying the architecture, we modify a neural network’s
inductive bias, which can make learning precise rules more or less likely. The contributions
we consider in this thesis focus on systematicity through structure. As an alternative strategy,
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one can use the training data and training technique, in conjunction with a general purpose
architecture, to again encourage systematicity in the network’s solutions. My research makes
contributions via both strategies, though we will focus only on systematicity through structure
for the duration of this thesis. To illustrate the range of my contributions, I will now present
an overview of my thesis contributions and my research contributions beyond those of this
thesis.

1.4. Thesis Contributions
My thesis contributions center around the use of interpreter-inspired neural architectures

and graph representations of programs for machine learning for program analysis. I facilitate
research into the use of graph representations of programs for machine learning via the
python_graphs library, and I introduce the instruction pointer attention graph neural
network (IPA-GNN) family of architectures, showing its value in a variety of scenarios.

My first contribution is a Python library that enables the construction of graph represen-
tations of Python programs for use in machine learning systems. This library enables not
only our work on IPA-GNN architectures for Python programs, but also has enabled research
into graph representations of programs for machine learning along multiple other fronts. I
showcase the research that this library enables and perform a case study illustrating properties
of the graphs that the library produces on a dataset of millions of programs authored in a
competition setting.

Second, I introduce the instruction pointer attention graph neural network (IPA-GNN)
family of architectures. In this work we consider the tasks of learning to execute programs
and learning to execute partial programs (programs for which a single statement has been
masked.) We take special interest in systematic generalization, measuring the capability of
models to generalize by learning from shorter programs and testing on longer programs. In
both settings, full and partial program execution, the IPA-GNN approach yields improved
generalization properties compared with general purpose models.

We next find that the IPA-GNN architecture is suitable for performing hardware verifica-
tion, not just software analysis, with appropriate modifications. Adjusting the architecture
to model the concurrent and repeating execution found in Verilog, a hardware description
language, the resultant RTL IPA-GNN architecture performs well for predicting test coverage
during hardware verification for chip design.

Finally we apply the IPA-GNN family of architecture to a developer assistance task,
identifying runtime errors as static analysis. Though this task is typically performed via
dynamic analysis, we show that IPA-GNN derived methods can also exhibit strong performance
on this task while treating it as a static analysis task. As part of this work we contribute
a new dataset derived from millions of competitive programming submissions to facilitate
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further work in this direction. We also design an extension of the IPA-GNN that models
Python exception handling, which we term the Exception IPA-GNN, and find that it exhibits
useful interpretability, performing unsupervised error localization despite not being trained
on error location data.

In total my thesis contributions show the value of imbuing neural networks with system-
aticity by modifying the neural architecture to more closely resemble a program interpreter.
My research contributions also include introducing systematicity through other mechanisms,
which we shall enumerate next, though we will not consider these in detail in the thesis.

1.5. Additional Contributions
Beyond the contributions presented in this thesis, I have made additional research

contributions during my PhD, which I enumerate here.
First, I have made contributions toward applying machine learning to programming by

example. In TF-Coder [131] and BUSTLE [111] we achieve systematicity through classical
(non-neural) algorithms, namely via enumerative search. With TF-Coder we show that a
carefully optimized search algorithm with aggressive value-based and argument-based pruning
achieves useful performance on program synthesis in a practical domain, tensor manipulations.
In BUSTLE we guide a bottom-up enumerative search via a neural network model in the inner
loop of the search. These approaches achieve systematicity through structure not of their
neural components, but rather by using machine learning components inside a non-neural
algorithm.

Frequently in deep learning, program understanding is cast as natural language un-
derstanding, with programs treated as mere sequences of tokens without regard to their
underlying semantics. This approach is often quite effective, but can also miss some of the
advantages of leveraging our prior knowledge of how programs are structured and how they
operate. GREAT [62] explores how we can simultaneously leverage structural knowledge
of programs and still treat them as flat sequences. In GREAT, we introduce the Global
Relational Embedding Attention Transformer as well as sandwich models. The former is a
graph neural network that encodes relations between all nodes. The later alternates layers
between a graph neural network with only local connectivity, and a Transformer (i.e. a
graph neural network with global connectivity.) The key insight behind the success of these
approaches is that there is independently valuable information in both the local and global
structures of programs.

Across many domains in machine learning, including program synthesis and natural lan-
guage processing, a common operation is sampling from probability distributions. Frequently
it is desirable to sample without replacement. In Shi et al. [130] we introduce a more efficient
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method for sampling without replacement that can act as a drop-in replacement for Python’s
random number generation library.

In Vasic et al. [141] we show it’s useful to train a model to simultaneously localize and
repair variable-misuse bugs. Supervision from one part of the task is useful for the other.

In Zhao et al. [163] we show the value of modeling edits to source code, rather than merely
modeling source code as static language. Treating code as dynamic, rather than static, allows
for models to take into account user intent, not just what the user has written so far. This
modeling consideration allows models to have a conception of how code is developing by
considering its history, rather than treating it as a static flat piece of text.

I have also made contributions toward multi-step reasoning with machine learning models.
My works with IPA-GNN are one form of this, where each layer of the model corresponds
to one or more steps of program execution. Separately, also motivated by the challenge of
modeling program executions, we published Nye et al. [110]. In this work, we introduce a
new way to prompt a large language model, where the model is encouraged to show its work
before producing a final answer to a task, effectively giving the model a “scratchpad” space
in which to think aloud before reaching a conclusion. This approach is effective for teaching
a model to execute programs step-by-step.

As the field pushes the size and quality of large language models ever higher, we identify
in Pei et al. [115] that large language models can reason about program behaviors both in a
single pass or a multi-step manner, directly predicting invariants at program points in Java
programs.

Looking beyond simple sequential decoding from a model toward drawing samples from
models as part of larger programs, we published Dohan et al. [41]. Here we cast repeated
interactions with probabilistic models in the language of probabilistic programming, showing
how several recent techniques for eliciting knowledge from large language models fit this
perspective.

Collectively, my contributions make progress toward the systematicity through machine
learning for code through both structural and learning approaches. For the remainder of
the thesis, we focus on interpreter-inspired neural network approaches that achieve their
systematicty through structurally imposed inductive biases.

1.6. Thesis Outline
Here I provide a succinct outline of the remaining chapters of the thesis. In Chapter 2

I provide background on graph neural networks for source code (Section 2.2.4) and on
execution-aware machine learning for source code (Section 2.2.5). In Article 1 I introduce the
python_graphs library for constructing graph representations of Python programs, which
enables our subsequent research. In Article 2 I introduce the Instruction Pointer Attention
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Graph Neural Network (IPA-GNN) architecture, applied to the tasks of executing full and
partial programs where it demonstrates systematic generalization improvements. In Article 3
I extend the IPA-GNN to support hardware designs in Verilog, where it achieves state of the
art performance at predicting test coverage for chip design. In Article 4 I further explore the
capabilities of the IPA-GNN family for predicting runtime errors, extending the IPA-GNN
to model programs that raise exceptions, and I find the model’s interpretability admits a
new capability: unsupervised error localization. In the Conclusion I place these findings in a
modern context and discuss the direction this work points us in going forward.
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Chapter 2

Background

Advancing program analysis using machine learning is a core challenge in machine learning.
To contextualize our work, we provide background on the diversity of program analysis tasks
machine learning has been applied to and the range of neural approaches that have been
considered. In doing so, we motivate the particular set of challenges that we consider in this
thesis: learning to execute, coverage prediction, and runtime error prediction, all challenging
program analysis tasks requiring reasoning about execution behavior.

2.1. Setup: Program analysis tasks
Machine learning has been applied to a wide range of program analysis tasks, yielding

advancements in program analysis capabilities. We highlight here the diversity of these
tasks, introduce the terminology that we will use throughout the thesis, and emphasize two
important challenges that guide our work: systematic generalization, and the difficulty of
modeling program execution behavior.

2.1.1. The diversity of program analysis tasks

Neural network approaches have been applied to many program analysis tasks. We list
several: variable misuse detection [4, 78], joint localization and repair [141], variable name
prediction [2, 121], type inference [151], clone detection [58, 69, 147, 152, 158], vulnerability
detection [155, 164], build error repair [138], method name prediction [7, 8], and various forms
of code completion [29, 96, 102]. In variable misuse detection the task is to identify when the
wrong variable has been used; this type of mistake commonly results from copy/paste actions,
where the developer renames several instances of a variable but fails to rename all of them.
In joint localization and repair, the task is to simultaneously locate a bug (e.g. a variable
misuse bug) in code and identify what the correct version of the code should be. Most of
these tasks are approached as static analysis, where the machine learning method must make
a determination about the program under analysis given access only to its source code, but



not its inputs or an interpreter. It is quite common for researchers to study bugs that have
been synthetically produced, e.g. by injecting a bug into otherwise clean code [4, 78, 118].
This is a useful strategy for producing data that allows for more rapid iteration, but it comes
with drawbacks. There is a distribution shift when solutions learned from these synthetic
data are applied to real-world code, causing the solutions to work less well in practice than
the results on the synthetic data would suggest. To remedy this, one of our contributions
(Article 4) is a new dataset consisting of millions of human-authored programs, many of
which contain runtime errors. Unlike previous datasets, our contribution consists of bugs
that have been verified by actually running the program of interest.

2.1.2. Machine learning terminology

To aid in introducing the background material, consider the fault detection task of
identifying runtime errors. We use this as a representative task to introduce the terminology
and notation used throughout the thesis, and we will study this task extensively in Article 4.
Given a valid Python program x we must determine whether it contains a runtime error, and
if so, what kind of runtime error it contains. This is indicated by an integer label y taking on
one of K values. The label y = 0 indicates no error, and y = 1, . . . , K − 1 each indicate one
of K − 1 distinct error classes. We have a large dataset D = {(xi, yi)} of programs xi each
labeled with their runtime error class yi. As is common in supervised learning, D is divided
into train, validation, and test splits. When we consider other tasks, like learning to execute
(Article 2) or coverage prediction (Article 3), we will use the same notation with the value K
varying between tasks.

2.1.3. Systematic generalization

A primary interest of our study is systematic generalization. That is, we seek models
that exhibit favorable generalization characteristics when evaluated on test datasets with
distributions that are different, but systematically related to, the training distribution. This
is important for program analysis because certain aspects of software are consistent across
all programs written in the same language, while other aspects will be unique to a project,
with no similar examples present in the training data. In particular, programming language
semantics are stable, whereas variable and function names vary widely across programs, with
projects frequently using identifiers that are not used in any other project. We are trying to
improve systematic generalization so that our models will continue to work on new programs,
even when they contain novel combinations of programming elements. We seek generalization
properties that indicate a model has learned something fundamental and composable about
the semantics of the programming language it is being trained on. Therefore in addition to
independent and identically distributed (i.i.d.) train, validation, and test splits, in Article 2
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we will also evaluate models on test splits with longer programs than any seen at training
time.

2.1.4. The challenge of reasoning about program execution

Though neural approaches have demonstrated powerful capabilities on a wide range of
program analysis tasks, recent evidence indicates general purpose neural approaches struggle
on tasks that require reasoning about program execution. We present this evidence, and
use it to motivate the tasks that we study in this thesis. First, Austin et al. [11] finds
that large language models of code, even of 137 billion parameters, perform poorly on the
task of executing small programs. This result holds both when the task is cast as few-shot
prompting and as fine-tuning. This is significant because on other program analysis tasks,
not directly related to program execution, large language models of code produce state of
the art results. The result is echoed in the BIG-bench tasks [18]. BIG-bench is a large
suite of tasks meant to challenge large language models, ranging across a wide variety of
subject matter. It contains five tasks that resemble program execution, and all five present a
challenge for even the largest models evaluated on the benchmark, including models as large
as 540 billion parameters. This is reaffirmed yet again in our contribution in Nye et al. [110].
In this work we consider a method of prompting or tuning large language models where the
model is instructed via examples to output the step-by-step reasoning for solving a task prior
to producing the task solution. For the task of learning to execute, this approach has the
model output a step-by-step concrete execution trace, rather than directly computing the
output of program execution in a single step of decoding. The findings of this work reaffirm
the difficulty language models exhibit in learning to execute programs even when fine-tuned
directly on end-to-end program execution behavior, and also reveals an insight: when the
model is trained to reason directly about the intermediate execution behavior of a program,
not just its end-to-end behavior, it can begin to make progress on this challenging class of
tasks. We will see similar results in Article 2 and Article 4, where on both learning to execute
and runtime error prediction tasks, general purpose models like the Transformer, RNNs, and
GNNs fall short of the performance of interpreter-inspired architectures that more directly
model program executions.

This evidence that general purpose neural approaches struggle on tasks that require
reasoning about program execution motivates our choice of tasks for this thesis. We study
the following tasks in this work: learning to execute full and partial programs, test coverage
prediction during hardware design and verification, and runtime error prediction in competitive
programming. Each task is closely tied to the execution behavior of programs, seeming to
require an understanding of the step-by-step execution of a program. Learning to execute full
programs is the most clear-cut instance of this; the task is to predict the output of a program
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given access to the program’s source code. In these problems, the program inputs have
been hard coded into the programs and the programs do not rely on external dependencies.
A change at any point in a program will change the program behavior at all downstream
program points. The challenge of the task is for the model to learn the programming language
semantics from a large number of examples, and ideally to do so in a manner that generalizes
from shorter programs to longer programs. The task of learning to execute partial programs
again requires the model predict the output of a program, but now the model has restricted
access to the program, with one line occluded by a mask. This task is more difficult, with
perfect accuracy impossible due to inherent uncertainty about the code behind the mask.
To succeed on this task, the model must learn to model both the language semantics and
the uncertainty, in order to make predictions about the program output despite imperfect
information. Test coverage prediction during hardware verification requires modeling a
different type of execution, as the semantics of the hardware description language differ from
those of a typical software programming language like Python. Modeling execution of tests
of hardware requires accounting for the concurrent and repeating nature of the blocks found
in hardware descriptions. The final task we consider, runtime error prediction, is directly
applicable to the construction of developer tools. We examine it in the context of competitive
programming, introducing a runtime error prediction dataset containing millions of programs
and hundreds of thousands of runtime errors encountered by competitive programmers. These
errors arise from the execution behavior of programs across many program points, and the
source of the bug in code is not always the same location as the program point where the
error is raised by the program. Each of these tasks strains the capabilities of general purpose
neural network approaches since they require reasoning about the fine details of program
executions.

2.2. Approach: Neural Network Methods
The first step in processing source code with neural networks is to select a representation

of source code. We’ll review the choices and trade-offs one makes in selecting a representation
of source code for processing with neural architectures. We’ll then review several neural
approaches to processing source code including general purpose sequence models and graph
neural networks, and more specialized interpreter-inspired neural network architectures.

2.2.1. Sequence Representations of Source Code

When source code is written by a human and saved to disk, the representation of each
file is a sequence of characters. Files are given filepaths, themselves sequences of characters
describing a hierarchy indicating where a source code file is stored. Though the interactions
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between files are critical when developing real world large scale applications, we’ll keep our
focus on representations of individual source code files to begin with.

Like ordinary natural language text, a source code file can be comprised of arbitrary
characters in arbitrary arrangements, including non-ascii unicode characters. In practice,
however, source code tends to have some simplifying properties. Lines often are limited in
length to 80 or 120 characters. Most programming languages use keywords consisting only of
ascii characters, and so the use of non-ascii characters tends to be relegated to strings and
sometimes variable names.

2.2.2. Graph Representations of Source Code

Importantly, source code is highly structured in a way that natural language texts are not.
Valid programs adhere to a strict grammar, which varies between programming languages.
This adherence to a strict grammar has a few implications. First, it contributes to the shape
of the distribution of text appearing in source code repositories. Keywords are repeated
considerably, and the strict grammatical structure results in some n-grams having elevated
frequency, while at the same time there is a long tail of tokens with few occurrences (e.g.
occurring only in a single file or project) since programmers can choose arbitrary variable
names. Never before seen variable names at test time are common, and a “rare” token like
this will occur not just once when it does occur, but potentially many times.

Second, the strict grammar admits additional non-sequential representations of source
code. Though files are viewed as character sequences by programmers, and stored as character
sequences on disk, it is much more natural to think about a program in terms of the structures
that it contains. We will introduce the abstract syntax tree and control-flow graph to provide
two such ways of viewing and representing a program.

An abstract syntax tree (AST) is a tree representation of source code. Each node in an
abstract syntax tree represents some programming construct, such as a module, function,
while-statement, expression, operation, or variable name. Rather than relying on syntactic
structures like braces or whitespace to group related elements, the edge relations in the AST
convey these relationships. For example, the body and condition of a while loop are each
represented by nodes with their parent given by the while loop’s node. An abstract syntax
tree omits information from the source code that is purely cosmetic, such as parenthesis and
whitespace placement, and comments. This information can be important for certain learning
algorithms, and in those settings an extension to the abstract syntax tree known as a full
syntax tree can be used. The abstract syntax tree is also a fundamental building block for
processing source code further for computing control-flow graphs, data-flow graphs, or for
compiling source code to other representations.
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A control-flow graph (CFG) is a graph structure representing the possible execution paths
through a program. Typically, the nodes in a control-flow graph are basic blocks. A basic
block is a straight-line section of code, with no exits or entrances in the middle of the block.
A directed edge from node n1 to n2 in a control-flow graph represents that execution may
flow from n1 to n2; that is, n2 may be executed immediately following the completion of n1.

In our work we use will make the most use of statement-level control-flow graphs. In
this kind of control-flow graph, nodes represent individual statements rather than full basic
blocks. As before, edges represent the possible paths control may flow along.

2.2.3. Sequence Models

We now introduce recurrent neural networks (RNNs) and the Transformer architecture,
two neural network architectures well suited for processing sequential data.

Recurrent Neural Networks. The recurrent neural network architecture is well
suited for sequence processing tasks. It operates on sequential inputs of arbitrary length by
successively applying the same operation with shared weights to each element of the input
sequence, and maintaining a “memory” across applications.

Given an input sequence xi, the simplest possible RNN – the vanilla RNN – computes
it’s memory at time step t as ht = ReLU(W (i)xt + W (h)ht−1 + b). Here, W (i), W (h), and b

are learned parameters, with superscripts (i) and (h) indicating the weight matrices for the
input and hidden state respectively.

A desirable property of a sequence processing architecture is to be able to perform long
chains of sequential reasoning. On their own, RNNs struggle to learn long-range dependencies.
Multiple techniques use gating to mitigate this issue. The Gated Recurrent Units (GRU) and
Long Short-Term Memory (LSTM) architectures each take advantage of gating to improve
upon the RNN’s capability of handling long-range dependencies.

The LSTM architecture makes two key advancements over the vanilla RNN. The first is
that it includes the addition of a memory distinct from its output. The second is its use of
gating to determine dynamically when and how much to update the memory.

At each step of an LSTM RNN, a candidate memory C̃t = tanh(W (Ci)xt+W (Ch)ht−1+b(C))
is proposed. Aside from using a different nonlinearity, this is performing the same computation
as the vanilla RNN. However, rather than blindly accepting this value as the new memory and
the new output, the LSTM dynamically determines how to incorporate C̃t into the memory
and output.
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It does so through the use of three gates: the input, forget, and output gates. Each are
computed as a nonlinear function of the input and current cell memory:

it = σ(W (Ii)xt +W (Ih)ht−1 + b(I))

ft = σ(W (F i)xt +W (F h)ht−1 + b(F ))

ot = σ(W (Oi)xt +W (Oh)ht−1 + b(O))

The input and forget gates are used to determine how much of the candidate memory and
existing memory respectively will contribute to the new value of the network’s memory
according to Ct = ft ∗ Ct−1 + it ∗ C̃t. This allows the network to use its inputs and past
outputs to determine which information to keep and which to discard, which aids in handling
long-range dependencies in its inputs.

Finally the LSTM computes its per time step output as ht = ot ∗ tanh(Ct). By separating
its memory from its outputs and through its use of gating, the LSTM improves over the
vanilla RNN by being able to selectively store information needed for future predictions for
long durations.

RNNs are additionally prone to the problem of exploding gradients when trained on
long sequences. “Exploding gradients” can occur when large gradient errors accumulate
over the many steps of an RNN. Techniques for mitigating this include gradient clipping,
regularization, and truncated backpropagation through time (TBPTT). Gradient clipping
refers to the practice of imposing a maximum norm on the gradients used in gradient-based
optimization. As regularization, adding an L1 or L2 norm penalty to the loss function is a
common mitigation. TBPTT mitigates exploding gradients by only performing a limited
number of steps of backpropagation, limiting the amount of error accumulation that can
occur.

We observe that some tasks, such as processing a linear sequence of steps in order,
share the causal structure modeled by RNN architectures – a linear chain. These tasks are
particularly well suited for processing with RNNs, and this observation will inform our design
of the IPA-GNN architecture.

Transformer Architecture. We next introduce the Transformer. Like RNNs, the
Transformer architecture processes sequences, though it uses a finite fixed length receptive
field to do so. Variants of the Transformer architecture achieve state of the art results on
machine translation and other natural language processing tasks.

A central element of the Transformer is multi-head attention. Given three equal length
sequences – queries Q, keys K, and values V – the attention operation computes an output
sequence as a weighted sum of the values. The weights for the ith element of the output are
given by the scaled dot-product similarity between the ith query and all keys. We say that
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element i attends to the values of the sequence with these weights. The resulting values are
given by Attention(Q,K, V ) = softmax

(
QK⊤
√

dK

)
.

In multi-head attention with H heads, the architecture produces H different key, query, and
value sequences from the same inputs using distinct learned weight matricesWQ

h , WK
h , andW V

h .
For head h, we write Qh = QWQ

h , Kh = KWK
h , and Vh = VW V

h . Each head attends indepen-
dently to a distinct representation of the values, giving headh = Attention(Qh, Kh, Vh), and
the resultant values are combined: MultiHead(Q,K, V ) = Concat(head1, · · · , headH)WO.

Transformer models may follow an encoder-decoder structure. Each layer of the encoder
uses self-attention, meaning the keys, queries, and values are all derived from the same
input, namely the output of the previous encoder layer. Each layer of the decoder uses
attention twice, once to attend over the outputs of the encoder, and once to process the
output auto-regressively. In the attention layer processing the output, a causal mask is used
to prevent information leakage. The architecture described thus far treats the input as a
set; to distinguish elements of the input by their order, positional encodings are added to its
embeddings. We refer the reader to Vaswani et al. [143] for additional architectural details,
including the use of skip connections and layer normalization.

Comparison with RNNs. Unlike RNNs, the Transformer architecture has a finite fixed
size context window and so cannot process input sequences of arbitrary length. In spite of
this, the Transformer architecture has excelled at sequence processing tasks such as machine
translation, and variations of the Transformer commonly achieve state of the art results.
While the limited context window appears as a drawback relative to RNNs, in practice RNN
architectures struggle to remember inputs for as many steps as commonly used as the size of a
Transformer’s context window. The Transformer exhibits the following advantages. It scales
well and trains efficiently using teacher forcing. Through its use of attention, the gradient
paths end up smaller than in comparable RNNs, and full information flow between all pairs
of locations is achieved with every step. This allows it to learn long range dependencies with
as much ease as short range dependencies.

Also unlike RNNs, which naturally model a linear chain causal structure, the causal
structure most closely modeled by a Transformer is an all-to-all causal structure. This makes
this Transformer architecture not well suited for systematic generalization in sequence length.

2.2.4. Graph neural networks

Since it is natural to represent programs as graphs containing structural information, it
is useful to study graph neural networks (GNNs), neural architectures that process graph
data structures. We introduce message passing neural networks (MPNNs) as a general
framework for processing graph structured data. We then describe two specific graph neural
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networks, Graph Attention Networks (GAT) and Gated Graph Neural Networks (GGNN),
both instances of MPNNs.

Message Passing Neural Networks. Consider a directed graph G = (V,E) with
vertices vi ∈ V and edges ei ∈ E. Suppose each vertex is annotated with an embedding
h0,i ∈ RH , and each edge is annotated with discrete edge type ei ∈ {1, . . . T}. A single layer
of a message passing neural network computes a new hidden state ht,i through a few steps:

(1) It may compute per-node messages as a function of the previous hidden state at the
nodes a(1)

t,i = f (1)(ht−1,i).
(2) It may compute per-edge messages as a function of the node messages and the

edge-type a(2)
t,i,j = f (2)(ht−1,i, ei,j)

(3) ht,i is computed as an aggregation of all messages incident on i; ht,i = f (3)(a(1)
t,i ,∪a

(2)
t,i,j).

In this formulation, information is propagated along edges at each timestep. Typically
these neural networks are trained using a fixed number of layers, thereby inducing a radius
around each node which can affect the node’s final value.

Gated Graph Neural Network. The gated graph neural network (GGNN) is an MPNN
with the following components. Per-edge messages are computed as a dense layer applied to
the node embeddings, where the dense weights vary by edge type. a(2)

t,i,j = W (ei,j)ht−1,i The
incoming messages to each node are averaged and a GRU layer gates the aggregation of this
average with the existing hidden state ht,i = GRU(ht−1,i, µ(∪a(2)

t,i,j)).
Graph Attention Network. The GAT architecture also conforms to the MPNN

framework. It uses attention to update the node values, similar to the attention operation
used by the Transformer. Though the initial GAT paper does not support edge types, the
architecture is easily extended to a “relational graph attention network” (R-GAT) to support
edge types in a manner analogous to the GGNN.

2.2.5. Interpreter-inspired machine learning models

Several neural approaches are more specialized than the general purpose sequence and
graph processing architectures described so far, loosely mimicking components of a program
interpreter. We review these interpreter-inspired architectures briefly here. Neural Turing
Machines [54] augment a recurrent neural network with an external memory, allowing the
network to perform reads and writes to the memory as differentiable operations. In Neural
Programmer [107], a neural model is augmented with a series of discrete non-differentiable
operations, which the model may apply in a differentiable manner, thereby learning discrete
programs through gradient descent. The Neural Programmer-Interpreter [123] acts like a
program interpreter in that it uses a recurrent neural network trained to perform computation
as seen in detailed program traces, as well as to select learned subprograms to call and what
arguments to call them with. The Neural Random-Access Machine model [85] has operations
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for reading and writing to an external memory at locations specified by pointers, which,
similar to the Neural Programmer, may be called in a differentiable manner. The Neural
GPU applies a convolutional gated recurrent unit (CGRU) at each layer and is thereby able
to learn algorithms from examples and apply them on larger examples. Bošnjak et al. [20]
implements a differentiable interpreter for the Forth programming language that admits
programs with differentiable slots whose behavior can be learned from data.

Continuing in this tradition, the models we focus on in this thesis are interpreter-inspired
and draw in particular on an underexplored facet of program interpreters for understanding
program executions: control-flow. The IPA-GNN family of architecture that we introduce in
Article 2 will perform learned executions of programs. It will proceed step-by-step through the
program under analysis, respecting its control-flow structure, while simultaneously considering
multiple plausible paths through the program and learning additional language semantics
only from end-to-end examples.
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Article 1.

A Library for Representing
Python Programs as Graphs

for Machine Learning
by

David Bieber1, Kensen Shi1, Petros Maniatis1, Charles Sutton1,
Vincent Hellendoorn1, Daniel Johnson1, and Daniel Tarlow1

This article was published in 2022.

I present my contributions and the contributions of the coauthors.
I designed, implemented, and open sourced the python_graphs library, including control-

flow and data-flow analysis, program graph construction, and cyclomatic complexity; I
performed the literature review of graph representations of programs for machine learning
research; I applied python_graphs at scale to Project CodeNet programs, conducting the
case study presented within; I authored the article reproduced here.

Kensen Shi performed extensive analysis on the program graphs obtained from two
datasets and added essential documentation to the python_graphs project. Petros Maniatis
made important contributions to the object-graph format and toward marshalling graphs
between protocol buffer formats. Charles Sutton made contributions on the program graphs
protocol buffer representation, performed Python 2 to Python 3 updates, and contributed to
the hole-filling dataset generator. Vincent Hellendoorn added indentation tracking to the
library’s syntax node construction and contributed toward Python 3 compatibility. Daniel
Johnson made the python_graphs library enforce having exactly one program graph node
per AST node and ensured deterministic read orders. Daniel Tarlow provided many hours of



advising and feedback on this project along the way.

Abstract. Graph representations of programs are commonly a central element of machine
learning for code research. We introduce an open source Python library python_graphs
that applies static analysis to construct graph representations of Python programs suitable
for training machine learning models. Our library admits the construction of control-flow
graphs, data-flow graphs, and composite “program graphs” that combine control-flow, data-
flow, syntactic, and lexical information about a program. We present the capabilities and
limitations of the library, perform a case study applying the library to millions of competitive
programming submissions, and showcase the library’s utility for machine learning research.
Keywords: graph neural networks, representations of source code, static analysis
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1. Introduction
In this report we present python_graphs1, a Python library for constructing graph

representations of Python programs for use in machine learning research. This report details
the capabilities and limitations of the library as they pertain to applying machine learning to
source code.

A standard class of approaches in applying machine learning to code is to construct a
graph representation of a program, and then to perform the analysis of interest on that
graph representation, learning from a large dataset of labeled example programs. Graph
representations of programs used for machine learning include the abstract syntax tree (AST),
control-flow graph (CFG), data-flow graphs, inter-procedural control-flow graph (ICFG),
interval graph, and composite “program graphs” that encode information from multiple of
the aforementioned graphs, possibly with additional program-derived data.

The python_graphs library directly allows for the construction of some of these graph
types (e.g., control-flow graphs and composite program graphs) from arbitrary Python
programs, and it provides tools that aid in constructing the others. It has been used
successfully in a variety of machine learning for code publications, and we make it available
as free and open source software to allow for broader use.

In Section 2 we present an overview of the use of graph representations of code in
machine learning. In Section 3 we describe the capabilities (Section 3.1), possible extensions
(Section 3.2), and limitations (Section 3.3) of python_graphs. In the context of this thesis,
the python_graphs library enables the construction of the graph structures supporting the
research in Articles 2 and 4. Section 4 highlights the applications of python_graphs for
machine learning research, showcasing its utility beyond our own research efforts. Section 5
presents a case study applying python_graphs to 3.3 million programs from Project CodeNet
[119].

2. Background
Graph representations of code in machine learning. Graph representations of

source code are regularly used in machine learning research. Most common among these is the
abstract syntax tree. Several works learn directly from ASTs [7, 8, 9, 24, 81, 93, 99, 147, 148,
152, 158, 160, 165] or produce an AST as output [120, 156], while Johnson et al. [70] learns
to dynamically augment an AST with new edges useful for a downstream task. Other works
operate on a program’s control-flow graph [15, 16, 36, 146] or data-flow graph [58, 79], or
joint control and data flow graph (CDFG) [142]. A typical composite program graph uses an
AST backbone with some subset of control-flow, data-flow, lexical, and syntactic information
encoded as additional edges [4, 5, 62, 90, 92, 155, 161, 164]. Swarna et al. [137] meanwhile
1https://github.com/google-research/python-graphs
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uses AST, CFG, and program dependence graph (PDG) representations concurrently, without
unifying them into a single graph. Pashakhanloo et al. [113] forms a graph via CodeQL
queries to a database representing a program. Georgiev et al. [48] forms a hypergraph, where
edges can connect more than two nodes, containing again control-flow, data-flow, lexical, and
syntactic information. Still other representations include a program’s interval graph [149]
or a graph formed from the pointers in the heap [94]. A graph can also encode additional
information, e.g., as in Tarlow et al. [138] which constructs a graph jointly representing code,
a compiler error, and a build file.

Our work directly admits constructing control-flow graphs, performing data-flow analyses,
and constructing certain composite program graphs from Python programs (Section 3.1). It
can also be extended for constructing interprocedural control-flow graphs, novel composite
program graphs, additional data-flow graphs, or span-mapped graphs (Section 3.2).

Tools for constructing graph representations. We compare python_graphs with
existing Python static analysis tools. Tree-sitter [23] can build a concrete syntax tree for
a given source file and update it incrementally as the source changes. It supports over
40 languages including Python. Our system must operate directly on the built-in Python
AST rather than a language agnostic syntax tree. CodeQL [105] is a query language for
source code. These queries admit searching for control-flow and data-flow paths in source
code. pycfg [53] generates control-flow graphs from Python source in a similar manner to
python_graphs, but lacks support for certain language features like exceptions and generators.
Scalpel [89] similarly generates control-flow graphs from Python and also performs additional
static analyses, e.g., call graph construction. python_graphs performs data-flow analyses on
top of its control-flow graphs, producing composite program graphs containing control-flow,
data-flow, syntactic, and lexical information in one graph.

3. Capabilities, Possible Extensions, and Limitations
We provide a comprehensive overview of the capabilities of the python_graphs library,

a discussion of how python_graphs can enable still further capabilities (i.e. assisting in
constructing the graph types not directly supported by the library today), and a discussion
of the library’s limitations.

3.1. Capabilities

The python_graphs library enables a number of static analyses on Python source code.
The main use cases are computing control-flow graphs, performing data-flow analyses, con-
structing composite “program graphs,” and measuring cyclomatic complexity of Python
programs and functions [1]. Each of these operations may be applied to a full Python
program or an individual Python function. The library handles any of the following input
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1 def fn1():
2 x = 0
3 for i in range(5):
4 x += i
5 return x

(a) Example function under analysis.
python_graphs accepts function objects such
as fn1.
1 import ast
2 syntax_tree = ast.parse(source)

(c) AST object for code in the string source.

1 import inspect
2 source = inspect.getsource(fn1)
3

4 assert source == """def fn1():
5 x = 0
6 for i in range(5):
7 x += i
8 return x
9 """

(b) Source for fn1 as a string object. The built-
in inspect module facilitates accessing source
for functions when available.

Fig. 1. The input formats accepted by the python_graphs library are (a) function, (b)
source code, and (c) AST. The code snippets here demonstrate construction of each input
format for the example function fn1.

types: (a) Python function, (b) source code string, or (c) abstract syntax tree. Figure 1 shows
constructing all three valid input formats for a sample program. In all cases, the library first
converts the input to an abstract syntax tree for analysis.

3.1.1. Control-Flow Graphs. A control-flow graph represents the possible paths of execution
through a program. Each node in a control-flow graph represents a basic block. A basic block
is a straight-line section of source code that is executed contiguously. The only branches
into a basic block enter at the start, and the only branches out of a basic block exit at the
end (other than Exceptions). An edge in a control-flow graph represents a possible path of
execution. There is an edge between node A and node B in a program’s control-flow graph if
and only if it is possible to execute basic block B immediately following the conclusion of
executing basic block A [1].

In addition to producing these standard control-flow graphs, the python_graphs library
can also produce statement-level control-flow graphs. A node in a statement-level control-flow
graph represents a single line or instruction, rather than a complete basic block. An edge
between two nodes indicates that the two lines may be executed in succession. Figure 2b
shows the statement-level CFG for the fn1 program.

A control-flow graph is useful for machine learning for source code in two respects. First,
it is a useful representation of code suitable for processing with graph neural networks,
for example in Bieber et al. [15, 16]. Second, the control-flow graph forms the basis for a
number of further analyses including data-flow analyses (liveness analysis, reachability, etc.),
computing cyclomatic complexity, and constructing program graphs, each implemented by
the python_graphs library.

In Python, any line of code can raise an exception. Taking this form of execution into
account, this limits basic blocks to a single line of code, since a raised exception is an exit
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1 # 1. Use control_flow to construct a CFG.
2 from python_graphs import control_flow
3 graph = control_flow.get_control_flow_graph(fn1)

1 # 2. Access a particular basic block by source.
2 block = graph.get_block_by_source("x += i")

1 # 3. Convert the CFG to a pygraphviz.AGraph.
2 from python_graphs import control_flow_graphviz
3 agraph = control_flow_graphviz.to_graphviz(graph)

(a) Example usage of python_graphs to (1) construct a
CFG, (2) access basic blocks by source, and (3) convert
to pygraphviz for visualization.

n Source CFG
1 x = 0

.0 = range(5)
i = next(.0)
x += i
return x

2
3
4
5

(b) The statement-level control-
flow graph for the program fn1 in-
troduced in Figure 1. .0 denotes
the iterator constructed by the for
loop in fn1.

Fig. 2. python_graphs supports construction and analysis of control-flow graphs for arbitrary
Python functions.

branch. Rather than restrict basic blocks to a single line of code, we take a more pragmatic
approach, and introduce a second optional edge type, “interrupting edges”, in our control-flow
graph data structure that represents control flow due to exceptions. An interrupting edge
from block A to block B indicates that an exception raised during the execution of A can
cause control to flow to block B. python_graphs control-flow graphs can be used with or
without these interrupting edges.

To construct a control-flow graph with python_graphs, use the control_flow module’s
get_control_flow_graph as in Figure 2.

3.1.2. Data-Flow Analyses. A data-flow analysis computes information about how the
variables in the program are used, such as which variables are live at a given program
location. A live variable is one that may be read at some point in the future before its value
is overwritten. The python_graphs library implements two best-effort data-flow analyses:
liveness and last-access analysis.

Data-flow analyses are performed through iterative application of the data-flow equations
until a fixed point is reached. The python_graphs library supports both forward and
backward data-flow analysis, and so can be extended to support additional data-flow analyses.
Liveness is implemented as a backward analysis, and last-access as a forward analysis.

An example of using the liveness analysis to obtain the set of loop variables in a while
loop is provided with the library, a necessary step in rewriting Python while loops into their
functional form. The data_flow module provides the data-flow analyses, as in Figure 3.

3.1.3. Composite Program Graphs. The python_graphs library implements a single kind
of composite program graph, based closely on that of Allamanis et al. [4]. In this document
we refer to these composite program graphs simply as “program graphs”, though of course
other kinds of program graphs are possible, with different node and edge types.
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1 # 1. Use data_flow to perform liveness analysis.
2 from python_graphs import data_flow
3 analysis = data_flow.LivenessAnalysis()
4 for block in graph.get_exit_blocks():
5 analysis.visit(block)

1 # 2. Construct a program graph with program_graph.
2 from python_graphs import program_graph
3 pg = program_graph.get_program_graph(program)

1 # 3. Access a particular node by source.
2 node = pg.get_node_by_source_and_identifier(
3 'return x', 'x')
(a) Example usage of python_graphs to (1) perform
liveness analysis on a program’s control-flow graph. Inde-
pendently, (2) shows constructing a composite program
graph, and (3) accessing one of its node by source.

# Source Live in Live out
1 x = 0

.0 = range(5)
i = next(.0)
x += i
return x

∅
{x}

2 {x} {x, i}
3 {x, i} {x}
4 {x} ∅

(b) The results of the liveness data-flow
analysis. Live in and live out indicate the
variables that are live at the start and
end of each basic block respectively. #
denotes basic block number. The analy-
sis is for the program fn1 introduced in
Figure 1 and Figure 2.

Fig. 3. Example usage of data-flow analysis and program graph construction in
python_graphs.

A program graph has the abstract syntax tree of the program it represents as its back-
bone. Each node in the program graph directly corresponds to a single node in the AST,
and vice versa. Lists and primitive values in the AST have corresponding nodes in the
program graph as well. Corresponding to each syntax element in the program (leaf nodes
in the AST) is a syntax node in the program graph. Each edge in the AST also appears in
the program graph. The program graph then has additional edges representing the follow-
ing relationships between program pieces: “NEXT_SYNTAX”, “LAST_LEXICAL_USE”,
“CFG_NEXT”, “LAST_READ”, “LAST_WRITE”, “COMPUTED_FROM”, “CALLS”,
“FORMAL_ARG_NAME”, and “RETURNS_TO”. Collectively, the edges in a program
graph convey control-flow, data-flow, lexical, and syntactic information about the program.

We summarize the edge types and their meanings in Table 1. These edge types are also
useful for constructing other graph types (Section 3.2): interprocedural control-flow graphs,
data-flow graphs, and other composite program graphs.

The python_graphs library provides the function get_program_graph for constructing
a program graph from any of the supported input types (source code, an abstract syntax
tree, or Python function). Figure 3a shows example usage.

Table 2 lists several programs along with their control-flow graphs and program graphs as
computed by python_graphs.

3.1.4. Cyclomatic Complexity. Cyclomatic complexity is a standard measure of program
complexity based on the set of possible paths through a program. It measures the number of
linearly independent execution paths through a program. The python_graphs library can
compute the cyclomatic complexity of a Python function. This functionality is available via
the function cyclomatic_complexity, which accepts a Python function (as source, AST, or
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Python function object) and returns an integer. To compute the cyclomatic complexity of a
program, python_graphs first constructs its control-flow graph. In a control-flow graph with
E edges, N nodes, and P distinct connected components, the cyclomatic complexity M is
given by M = E −N + 2P .

3.2. Possible Extensions

The following capabilities are possible to implement using python_graphs, but are not
directly provided by python_graphs out of the box.

3.2.1. Alternative Composite Program Graphs. The program graphs generated by
python_graphs’s get_program_graph make specific choices for what nodes and edges are
included in the graph. Other choices are possible. For alternative composite program
graph schemes, the source of python_graphs’s get_program_graph function serves as an
illustrative example for how to construct a composite program graph with the desired set of
nodes and edges.

3.2.2. Inter-procedural Control-Flow Graphs. python_graphs’s get_control_flow_graph
function constructs the control-flow graph for a single function or program; it does not
include edges indicating control flow between functions.

Table 1. Descriptions of the edge types supported by python_graphs. A directed edge from
node src to node dest has the semantics given in this table.

Edge type Description

FIELD dest is a field of AST node src.
NEXT_SYNTAX dest is the syntax element immediately following src in top-to-

bottom left-to-right order.
LAST_LEXICAL_USE The variable at node dest has its previous appearance at src in

top-to-bottom left-to-right order.
CFG_NEXT The statement indicated by dest can be executed immediately

following that indicated by src.
LAST_READ When src is about to execute, it may be that the variable at src

was most recently read at dest.
LAST_WRITE When src is about to execute, it may be that the variable at src

was most recently written to at dest.
COMPUTED_FROM src indicates a variable on an assignment’s left hand side, and dest

a variable on its right hand side.
CALLS src is an AST call node, and dest is the definition of the function

being called.
FORMAL_ARG_NAME src is an argument in a function call; dest is the corresponding

parameter in the function definition.
RETURNS_TO src is the return node in a function definition, and dest is the AST

call node that calls that function.

54



Table 2. Example programs and their associated control-flow graphs and program graphs.
Enlarged versions of the program graph figures are included in Appendix A.1.

# Source n Statement CFG Program Graph

1
def fn1(a, b):

return a + b
1 a, b ← args

return a + b
<exit> Figure 17

2
3

2

def fn2(a, b):
c = a
if a > b:

c -= b
return c

1 a, b ← args
c = a
a > b
c -= b
return c
<exit> Figure 18

2
3
4
5
6

3

def fn3(a, b):
c = a
if a > b:

c -= b
c += 1
c += 2
c += 3

else:
c += b

return c

1 a, b ← args
c = a
a > b
c -= b
c += 1
c += 2
c += 3
c += b
return c
<exit>

Figure 19

2
3
4
5
6
7
8
9

10

4

def fn4(i):
count = 0
for i in range(i):

count += 1
return count

1 i ← args
count = 0
range(i)
i ← iter
count += 1
return count
<exit> Figure 20

2
3
4
5
6
7

5

def fn5(i):
count = 0
for _ in range(i):

if count > 5:
break

count += 1
return count

1 i ← args
count = 0
range(i)
_ ← iter
count > 5
count += 1
return count
<exit> Figure 21

2
3
4
5
6
7
8

6

def fn6():
count = 0
while count < 10:

count += 1
return count

1 count = 0
count < 10
count += 1
return count
<exit> Figure 22

2
3
4
5

7

def fn7():
try:

raise ValueError('N/A')
except ValueError as e:

del e
return

1 raise ValueError('N/A')
ValueError
e ← exception
del e
return
<exit> Figure 23

2
3
4
5
6

8
def fn8(a):

a += 1
1 a ← args

a += 1
<exit> Figure 24

2
3
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An interprocedural control-flow graph (ICFG) is a control-flow graph that shows the
control flow possible between functions, not just within a function. We can view an ICFG
as a composite program graph consisting of the control-flow graphs of a program and all its
functions, as well as CALLS and RETURNS_TO edges indicating the possible interprocedural
control flows in the program. python_graphs provides the capability for constructing the
necessary control-flow graphs and additional edges, making it possible to write a function to
construct ICFGs as well.

3.2.3. Data-Flow Graphs. A data-flow graph represents the data dependencies present in a
program. The nodes in a data-flow graph represent the variable access locations in a program,
and the edges in a data-flow graph denote relationships between these accesses. An example
of such a relationship is an edge with dest indicating where a variable is assigned to and
src indicating where the assigned value is subsequently used (equivalent to python_graphs’s
LAST_WRITE edges). We can therefore view data-flow graphs as composite program graphs
consisting of a subset of AST nodes (just those representing variable accesses) and selected
edge types like LAST_READ or LAST_WRITE.

3.2.4. Span-Mapped Graphs. In order to use the graphs produced by the python_graphs
library for machine learning applications, it can be useful to tokenize the sections of code
corresponding to each node. We suggest two approaches to handling this: (1) whole program
tokenization and (2) per-node tokenization.

In whole program tokenization we tokenize the entire program first. Then, using
python_graphs, we create a graph structure for the program. Finally we extract for each
node the span of tokens from the whole program tokenization corresponding to that node.
This approach allows for the possibility that a token consisting of multiple characters will be
part of two consecutive nodes, and we must choose which node(s) to associate that token
with.

In per-node tokenization, we instead split the program source into chunks according to
which node in the graph they are part of, and then tokenize those chunks independently.

The key data required by these approaches is a mapping from a graph node to a span
in the textual representation of program source (approaches 1 and 2) or to a span in the
tokenized representation of program source (approach 1 only). We call a graph augmented
with this data a span-mapped graph. Both approaches are possible using python_graphs.
Bieber et al. [16] uses approach 1, with code freely available online2. This same code example
is informative for any project wishing to implement approach 2.

3.2.5. Additional Data-Flow Analyses. python_graphs implements liveness and last-access
data-flow analyses, and provides a framework for implementing additional analyses. This

2https://github.com/google-research/runtime-error-prediction
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framework allows somewhat straightforward implementation of definite assignment analysis
or computing reaching definitions, for example.

3.3. Limitations

Python source code is difficult to analyze statically because so much of Python’s behavior
is determined dynamically. We perform a “best-effort” analysis, which we do not guarantee
will be correct considering all of Python’s language features. Inspection in Python allows
manipulation of stack frames or of local or global variables, causing hard-to-detect effects
on data and control flow. Eval and exec permit the execution of arbitrary code constructed
dynamically and inaccessible to our analysis. Operations can be overloaded dynamically, so
e.g. even a simple addition operation can have effects overlooked by our analyses. These
language features are empowering to Python users, but restrict the guarantees our analyses
can provide.

4. Use cases
We next show how the python_graphs library is used in machine learning research. Uses

include both building graph representations of programs as inputs to neural networks, and
providing supervision for models that output graphs.

4.1. Graph Representations as Model Inputs

Instruction Pointer Attention Graph Neural Networks. The instruction pointer
attention graph neural network (IPA-GNN) model family [15, 16] operates on control-flow
graphs as its primary input. IPA-GNN architectures then perform a soft execution of the
input program, maintaining a soft instruction pointer representing at each model step a
probability distribution over the statements in a program. These works use python_graphs
to produce the control-flow graphs for the programs under consideration, which include both
simple synthetic programs [15] and complex human-authored programs from a competition
setting [16].

The original IPA-GNN work [15] uses the control-flow edges as produced by
python_graphs’s default settings, and represents each statement with a 4-tuple of values,
which is possible because the domain of statements is restricted. By contrast, the follow-up
work on competition programs [16] uses a larger control-flow graph that additionally includes
interrupting edges, indicating to where control would flow from each node if an exception
were raised during the execution of that node. Further, a sequence of tokens is associated
with each node in the control-flow graph, following Section 3.2.4, allowing it to handle
arbitrary human-authored Python statements.
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Global Relational Models of Source Code. Hellendoorn et al. [62] investigates
models that combine global information (like a Transformer) and structural information
(like a GNN), i.e. Graph-Sandwich models and the GREAT (Graph-Relational Embedding
Attention Transformer) model. This paper uses python_graphs to construct the composite
program graphs of Section 3.1.3. The models accept these program graphs as input and uses
them to identify variable misuse bugs.

4.2. Program Graphs as Targets

Graph Finite-State Automaton (GFSA) Layers. Johnson et al. [70] introduces a
neural network layer that adds a new learned edge type to an input graph. Toward learning
static analyses of Python code, it trains a neural model to take an AST as input and predict
a composite program graph as output. The model thereby learns to perform both control-flow
and data-flow analyses from data. For its targets, it produces a composite program graph
with python_graphs, selecting a subset of the default edge types and introducing a few
additional edge types (as in Section 3.2.1).

Learning to Extend Program Graphs to Work-in-Progress Code. Li et al. [92]
learns to predict edge relations from work-in-progress code, even when the code does not
parse. The composite program graphs of Section 3.1.3 form the ground truth edge relation
targets for this work.

5. Case Study: Project CodeNet
In order to evaluate the python_graphs library on the diversity of language features found

in realistic code, we obtain a dataset of 3.3 million programs from Project CodeNet [119].
For each program, we use python_graphs to construct a control-flow graph and a composite
program graph complete with syntactic, control-flow, data-flow, and lexical information about
the program. We collect metrics about the resulting graphs to provide information about the
robustness of python_graphs and the size, complexity, and connectedness of the program
graphs it produces.
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Status # Programs Freq. (%)

Success 3,157,463 96.08
ast.parse failures 126,751 3.86

SyntaxError 114,817 3.49
IndentationError 8,893 0.27
TabError 3,032 0.09
RecursionError 5 0.00
ValueError 4 0.00

RuntimeError 2,100 0.06
return outside function 1,719 0.05
break outside loop 330 0.01
continue outside loop 51 0.00

Total 3,286,314 100%

Table 3. Control-flow graph construction
success rates on a dataset of both valid and
invalid Python submissions to competitive
programming problems.

Edge Type # / Program Freq. (%)

FIELD 370.4 100.00
SYNTAX 163.4 99.99

NEXT_SYNTAX 162.4 99.99
LAST_LEXICAL_USE 26.1 99.12

CFG_NEXT 18.1 99.06
LAST_READ 38.0 92.29

LAST_WRITE 30.6 98.83
COMPUTED_FROM 11.7 98.55

CALLS 0.5 21.37
FORMAL_ARG_NAME 0.6 12.99

RETURNS_TO 0.7 15.56

Table 4. Frequencies of edge types in the
composite program graphs for the Project
CodeNet Python submissions. # / Program
is the average number of occurrences of the
edge type across all programs. Freq. (%)
shows the percent of programs exhibiting the
edge type at least once.

python_graphs cannot construct graph representations for every submission in Project
CodeNet, as many of them do not parse. Table 3 shows how many of the programs graph
construction succeeds for, as well as the failure reasons for the remaining graphs. The

Fig. 4. The relationship between program
length and cyclomatic complexity for Python
submissions in Project CodeNet. Fig. 5. Box plots for various metrics of pro-

gram graphs for Python submissions in Project
CodeNet. The vertical blue line in each box-
plot shows the median of the data as usual,
while the blue × shows the mean.
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Table 5. Summary statistics for various graph metrics across the dataset. The diameter
and maximum betweenness centrality metrics do not include graphs exceeding 5000 nodes.

Metric Min Median Mean Max
Node Count 3 364 534.8 751,817
Edge Count 2 548 822.4 4,675,600
Maximum Degree 2 19 21.6 150,004
Mean Degree 1.3 3.0 3.0 79.9
AST Height 1 9 9.5 269
Diameter 2 13 13.0 143
Maximum Betweenness Centrality 0.0 0.3 0.3 1.0

programs for which python_graphs cannot produce graph representations are predominantly
those which fail to parse under Python’s own parser: ast.parse. The majority of such
programs cause the parser to raise a SyntaxError, IndentationError, or TabError, with just
nine leading the built in parser to raise a RecursionError or ValueError. The python_graphs
library rejects an additional 2100 programs (0.07%) because they contain either return
outside of a function body, or break or continue outside of a loop. In total, this result
gives us confidence there are no language feature corner cases that elude the python_graphs
library and cause failures for well-formed programs that otherwise can be run by a standard
Python interpreter. In Table 4 we report for each program graph edge type the fraction of
programs it appears in as well as the mean number of appearances across all programs.

We next use python_graphs to measure the cyclomatic complexity of each of the submis-
sions. Figure 4 plots the relationship between program length and cyclomatic complexity.
We measure program length in non-empty lines of code (LOC). Omitting as outliers those
programs longer than 800 LOC or with complexity exceeding 200 (just 118 programs out of
3.16 million), we perform linear regression and observe R2 = 0.896, in line with prior work
[87, 139].

We measure the size of program graphs according to their node counts and edge counts,
the height of their AST backbone, and graph diameter. As measures of connectedness, we
compute the maximum degree of a node, mean degree of the nodes, and maximum betweenness
centrality of a node in the graph. The distributions of each of these metrics are shown with
boxplots in Figure 5, and key summary statistics are listed in Table 5. Appendix A.2 contains
histograms showing the distribution of each metric across the dataset. These metrics convey
the scale and diversity of submissions to online programming contests and the graph sizes
needed for processing these submissions as python graphs with graph neural networks.
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6. Discussion
The core capabilities of python_graphs for machine learning research are generating

control-flow graphs, performing data-flow analyses, generating composite program graphs,
and computing cyclomatic complexity of Python programs. For our research, we have
been fruitfully using python_graphs for graph representations of programs for multiple
years. It serves an instrumental role in the research in Articles 2 and 4. The library is
robust and flexible, having been successfully run on millions of programs and used in several
published papers. Still, several open challenges remain for providing insights into program
semantics to machine learners. First, due to the dynamic nature of Python the library’s
analyses are limited to providing best-effort results, not considering the possible effects of e.g.
dynamic execution or introspection. A further key limitation of the library is its restriction
to processing Python programs. This makes getting a consistent graph representation across
programming languages challenging, which is important when training a multi-lingual model
of code. While significant recent progress has been made in machine learning for code research,
many fundamental problems in the space remain open research challenges. Examples of these
challenges include learning about program semantics from end-to-end program behavior, and
identifying neural models exhibiting systematic generalization. For these challenges, where
the structure and semantics of programs are important, python_graphs provides a framework
to study how graph representations of programs may contribute to forward progress.
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Abstract. Graph neural networks (GNNs) have emerged as a powerful tool for learning
software engineering tasks including code completion, bug finding, and program repair. They
benefit from leveraging program structure like control flow graphs, but they are not well-
suited to tasks like program execution that require far more sequential reasoning steps than
number of GNN propagation steps. Recurrent neural networks (RNNs), on the other hand,
are well-suited to long sequential chains of reasoning, but they do not naturally incorporate
program structure and generally perform worse on the above tasks. Our aim is to achieve the
best of both worlds, and we do so by introducing a novel GNN architecture, the Instruction
Pointer Attention Graph Neural Network (IPA-GNN), which achieves improved systematic
generalization on the task of learning to execute programs using control flow graphs. The
model arises by considering RNNs operating on program traces with branch decisions as
latent variables. The IPA-GNN can be seen either as a continuous relaxation of the RNN
model or as a GNN variant more tailored to execution. To test the models, we propose
evaluating systematic generalization on learning to execute using control flow graphs, which
tests sequential reasoning and use of program structure. More practically, we evaluate these
models on the task of learning to execute partial programs, as might arise if using the model
as a heuristic function in program synthesis. Results show that the IPA-GNN outperforms a
variety of RNN and GNN baselines on both tasks.
Keywords: learning to execute, recurrent neural networks, graph neural networks
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1. Introduction
Static analysis methods underpin thousands of programming tools from compilers and

debuggers to IDE extensions, offering productivity boosts to software engineers at every stage
of development. Recently machine learning has broadened the capabilities of static analysis,
offering progress on challenging problems like code completion [22], bug finding [4, 62], and
program repair [138]. Graph neural networks in particular have emerged as a powerful tool
for these tasks due to their suitability for learning from program structures such as parse
trees, control flow graphs, and data flow graphs.

These successes motivate further study of neural network models for static analysis
tasks. However, existing techniques are not well suited for tasks that involve reasoning
about program execution. Recurrent neural networks are well suited for sequential reasoning,
but provide no mechanism for learning about complex program structures. Graph neural
networks generally leverage local program structure to complete static analysis tasks. For
tasks requiring reasoning about program execution, we expect the best models will come
from a study of both RNN and GNN architectures. We design a novel machine learning
architecture, the Instruction Pointer Attention Graph Neural Network (IPA-GNN), to share
a causal structure with an interpreter, and find it exhibits close relationships with both RNN
and GNN models.

To evaluate this model, we select two tasks that require reasoning about program execution:
full and partial program execution. These “learning to execute” tasks are a natural choice
for this evaluation, and capture the challenges of reasoning about program execution in a
static analysis setting. Full program execution is a canonical task used for measuring the
expressiveness and learnability of RNNs [159], and the partial program execution task aligns
with the requirements of a heuristic function for programming by example. Both tasks require
the model produce the output of a program, without actually running the program. In full
program execution the model has access to the full program, whereas in partial program
execution some of the program has been masked out. These tasks directly measure a model’s
capacity for reasoning about program execution.

In our study of neural networks exhibiting systematicity, we evaluate our models for
systematic generalization to out-of-distribution programs, on both the full and partial
program execution tasks. In the program understanding domain, systematic generalization
is particularly important as people write programs to do things that have not been done
before. Evaluating systematic generalization provides a strict test that models are not only
learning to produce the results for in-distribution programs, but also that they are getting the
correct result because they have learned something meaningful about the language semantics.
Models that exhibit systematic generalization are additionally more likely to perform well in
a real-world setting.
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We evaluate against a variety of RNN and GNN baselines, and find the IPA-GNN
outperforms baseline models on both tasks. Observing its attention mechanism, we find it
has learned to produce discrete branch decisions much of the time, and in fact has learned to
execute by taking short-cuts, using fewer steps to execute programs than used by the ground
truth trace.

We summarize our contributions as follows:
• We introduce the task of learning to execute assuming access only to information available

for static analysis (Section 3).
• We show how an RNN trace model with latent branch decisions is a special case of a GNN

(Section 4).
• We introduce the novel IPA-GNN model, guided by the principle of matching the causal

structure of a classical interpreter.
• We show this outperforms other RNN and GNN baselines. (Section 5).
• We illustrate how these models are well-suited to learning non-standard notions of execution,

like executing with limited computational budget or learning to execute programs with
holes.

2. Background and Related Work
Static analysis is the process of analyzing a program without executing it [1]. One

common static analysis method is control flow analysis, which produces a control flow graph
[6]. Control flow analysis operates on the parse tree of a program, which can be computed for
any syntactically correct source file. The resulting control flow graph contains information
about all possible paths of execution through a program. We use a statement-level control
flow graph, where nodes represent individual statements in the source program. Directed
edges between nodes represent possible sequences of execution of statements. An example
program and its control flow graph are shown in Figure 6.

When executing a program, an interpreter’s instruction pointer indicates the next instruc-
tion to execute. At each step, the instruction pointer corresponds to a single node in the
statement-level control flow graph. After the execution of each instruction, the instruction
pointer advances to the next statement. When the control flow graph indicates two possible
next statements, we call this a branch decision, and the value of the condition of the current
statement determines which statement the instruction pointer will advance to.

Recurrent neural networks have long been recognized as well-suited for sequence processing
[135]. Another model family commonly employed in machine learning for static analysis is
graph neural networks [125], which are particularly well suited for learning from program
structures [4]. GNNs have been applied a variety of program representations and static
analysis tasks [4, 40, 62, 126, 134, 138, 151]. Like our approach, the graph attention network
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n Source Tokenization (xn) Control Flow Graph (n→ n′) Nin(n) Nout(n)
0 v0 = 23 0 = v0 23 ∅ {1}
1 v1 = 6 0 = v1 6 {0} {2}
2 while v1 > 0: 0 while > v1 0 {1, 7} {3, 8}
3 v1 -= 1 1 -= v1 1 {2} {4}
4 if v0 % 10 <= 3: 1 if <= % v0 3 {3} {5}
5 v0 += 4 2 += v0 4 {4} {6}
6 v0 *= 6 2 *= v0 6 {5} {7}
7 v0 -= 1 1 -= v0 1 {4, 6} {2}
8 <exit> - - - - {2, 8} {8}

Fig. 6. Program representation. Each line of a program is represented by a 4-tuple
tokenization containing that line’s (indentation level, operation, variable, operand), and is
associated with a node in the program’s statement-level control flow graph.

(GAT) architecture [144] is a message passing GNN using attention across edges. It is
extended by R-GAT [25] to support distinct edge types.

The task of learning to execute was introduced by [159], who applied RNNs. We are
aware of very little work on learning to execute that applies architectures that are specific to
algorithms. In contrast, neural algorithm induction [27, 47, 54, 55, 56, 71, 74, 123] introduces
architectures that are specially suited to learning algorithms from large numbers of input-
output examples. The modeling principles of this work inspire our approach. The learning to
execute problem is different because it includes source code as input, and the goal is to learn
the semantics of the programming language.

Systematic generalization measures a model’s ability to generalize systematically to out-
of-distribution data, and has been an area of recent interest [13]. Systematic generalization
and model design go hand-in-hand. Motivated by this insight, our architectures for learning
to execute are based on the structure of an interpreter, with the aim of improving systematic
generalization.

3. Task
Motivated by the real-world setting of static analysis, we introduce two variants of the

“learning to execute” task: full and partial program execution.

3.1. Learning to Execute as Static Analysis

In the setting of machine learning for static analysis, models may access the textual source
of a program, and may additionally access the parse tree of the program and any common
static analysis results, such as a program’s control flow graph. However, models may not
access a compiler or interpreter for the source language. Similarly, models may not access
dependencies, a test suite, or other artifacts not readily available for static analysis of a single
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file. Prior work applying machine learning for program analysis also operates under these
restrictions [4, 62, 126, 132, 151, 159]. We introduce two static analysis tasks both requiring
reasoning about a program’s execution statically: full and partial program execution.

In full program execution, the model receives a full program as input and must determine
some semantic property of the program, such as the program’s output. Full program execution
is a canonical task that requires many sequential steps of reasoning. The challenge of full
program execution in the static analysis setting is to determine the target without actually
running the program. In previous work, full program execution has been used as a litmus
test for recurrent neural networks, to evaluate their expressiveness and learnability [159]. It
was found that long short-term memory (LSTM) RNNs can execute some simple programs
with limited control flow and O(N) computational complexity. In a similar manner, we are
employing this variant of learning to execute as an analogous test of the capabilities of graph
neural networks.

The partial program execution task is similar to the full program execution task, except
part of the program has been masked. It closely aligns with the requirements of designing a
heuristic function for programming by example. In some programming by example methods,
a heuristic function informs the search for satisfying programs by assigning a value to each
intermediate partial program as to whether it will be useful in the search [75]. A model
performing well on partial program execution can be used to construct such a heuristic
function.

We consider the setting of bounded execution, restricting the model to use fewer steps
than are required by the ground truth trace. This forces the model to learn short-cuts in
order to predict the result in the allotted steps. We select the number of steps allowed such
that each loop body may be executed at least twice. In our experiments, we use bounded
execution by default. However, we compare in Section 5 to a Trace RNN model that follows
the ground truth control flow, and surprisingly we find that the bounded execution IPA-GNN
achieves better performance on certain length programs.

In both task settings we train the models on programs with limited complexity and test on
more complex programs to evaluate the models for systematic generalization. This provides
a quantitative indication of whether the models are not only getting the problem right, but
getting it right for the right reasons – because they’ve learned something meaningful about
the language semantics. We expect models that exhibit systematic generalization will be
better suited for making predictions in real world codebases, particularly when new code
may be added at any time. Another perhaps less appreciated reason to focus on systematic
generalization in learning to execute tasks is that the execution traces of real-world programs
are very long, on the order of thousands or even millions of steps. Training GNNs on such
programs is challenging from an engineering perspective (memory use, time) and a training
dynamics perspective (e.g., vanishing gradients). These problems are significantly mitigated if

68



we can strongly generalize from small to large examples (e.g., in our experiments we evaluate
GNNs that use well over 100 propagation steps even though we only ever trained with 10s of
steps, usually 16 or fewer).

3.2. Formal Specification and Evaluation Metrics

We describe both tasks with a single formalization. We are given a complexity function
c(x) and dataset D consisting of pairs (x, y); x denotes a program, and y denotes some
semantic property of the program, such as the program’s output. The dataset is drawn from
an underlying distribution of programs D, and is partitioned according to the complexity
of the programs. Dtrain consists only of examples (x, y) satisfying c(x) ≤ C, the threshold
complexity, while Dtest consists of those examples satisfying c(x) > C. For each program x,
both the textual representation and the control flow graph are known. xn denotes a statement
comprising the program x, with x0 denoting the start statement. Nin(n) denotes the set
of statements that can immediately precede xn according to the control flow graph, while
Nout(n) denotes the set of statements that can immediately follow xn. Since branch decisions
are binary, |Nout(n)| ≤ 2 ∀ n, while |Nin(n)| may be larger. We define Nall(n) as the full
set of neighboring statements to xn: Nall(n) = Nin(n) ∪Nout(n). The rest of the task setup
follows the standard supervised learning formulation; in this paper we consider only instances
of this task with categorical targets, though the formulation is more general. We measure
performance according to the empirical accuracy on the test set of programs.

4. Approach
In this section we consider models that share a causal structure with a classical interpreter.

This leads us to the design of the Instruction Pointer Attention Graph Neural Network
(IPA-GNN) model, which we find takes the form of a message passing graph neural network.
We hypothesize that by designing this architecture to share a causal structure with a classical
interpreter, it will improve at systematic generalization over baseline models.

4.1. Instruction Pointer RNN Models

When a classical interpreter executes a straight-line program x, it exhibits a simple causal
structure. At each step of interpretation, the interpreter maintains a state consisting of the
values of all variables in the program, and an instruction pointer indicating the next statement
to execute. When a statement is executed, the internal state of the interpreter is updated
accordingly, with the instruction pointer advancing to the next statement in sequence.

A natural neural architecture for modeling the execution of straight-line code is a recurrent
neural network because it shares this same causal structure. At step t of interpretation, the
model processes statement xt−1 to determine its hidden state ht ∈ RH , which is analogous to
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the values of the variables maintained in an interpreter’s state. In this model, which we call
the Line-by-Line RNN model, the hidden state is updated as

ht = RNN(ht−1,Embed(xnt−1)), (4.1)

where nt = t is the model’s instruction pointer.
Each of the models we introduce in this section has the form of (4.1), but with different

definitions for the instruction pointer nt. We refer to these models as Instruction Pointer
RNNs (IP-RNNs).

n Source Control Flow Graph Line-by-Line RNN Trace RNN Hard IP-RNN IPA-GNN GGNN
0 v0 = 407
1 if v0 % 10 < 3:
2 v0 += 4
3 else:
4 v0 -= 2
5 <exit>

Fig. 7. Model paths comparison. The edges in these graphs represent a possible set of
paths along which information may propagate in each model. The pills indicate the positions
where a model makes a learned branch decision. The Hard IP-RNN’s branch decision is
discrete (and in this example, incorrect), whereas in the IPA-GNN the branch decision is
continuous.

Consider next when program x includes control flow statements. When a classical
interpreter executes a control flow statement (e.g. an if-statement or while-loop), it makes a
branch decision by evaluating the condition. The branch decision determines the edge in the
program’s control flow graph to follow for the new value of the instruction pointer. At each
step of execution, values of variables may change, a branch decision may be made, and the
instruction pointer is updated.

To match this causal structure when x has control flow, we introduce latent branch
decisions to our model family. The result is an RNN that processes some path through the
program, with the path determined by these branch decisions. The simplest model is an
oracle which has access to the ground-truth trace, a sequence (n∗

0, n
∗
1, . . .) of the statement

numbers generated by executing the program. Then, if the instruction pointer is chosen as
nt = n∗

t , the resulting model is an RNN over the ground truth trace of the program. We refer
to this model as the Trace RNN.

If instead we model the branch decisions with a dense layer applied to the RNN’s hidden
state, then the instruction pointer is updated as

nt = Nout(nt−1)|j where j = argmax Dense(ht). (4.2)

This dense layer has two output units to predict which of the two branches is taken. We call
this the Hard IP-RNN model (in contrast with the soft instruction pointer based models in
Section 4.2). It is a natural model that respects the causal structure of a classical interpreter,
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but is not differentiable. A fully differentiable continuous relaxation will serve as our main
model, the IPA-GNN. The information flows of each of these models, as well as that of a
gated graph neural network, are shown in Figure 7.

4.2. Instruction Pointer Attention Graph Neural Network

To allow for fully differentiable end-to-end training, we introduce the Instruction Pointer
Attention Graph Neural Network (IPA-GNN) as a continuous relaxation of the Hard IP-RNN.
Rather than discrete branch decisions, the IPA-GNN makes soft branch decisions; a soft
branch decision is a distribution over the possible branches from a particular statement. To
accommodate soft branch decisions, we replace the instruction pointer of the Instruction
Pointer RNN models (nt) with a soft instruction pointer pt,n, which at step t is a distribution
over all statements xn. For each statement xn in the support of pt,:, we might want the model
to have a different representation of the program state. So, we use a different hidden state
for each time step and statement. That is, the hidden state ht,n ∈ RH represents the state of
the program, assuming that it is executing statement n at time t.

As with the IP-RNN models, the IPA-GNN emulates executing a statement with an RNN
over the statement’s representation. This produces a state proposal a(1)

t,n for each possible
current statement n

a
(1)
t,n = RNN(ht−1,n,Embed(xn)). (4.3)

When executing straight-line code (|Nout(xn) = 1|, n→ n′) we could simply have ht,n′ = a
(1)
t,n,

but in general we cannot directly use the state proposals as the new hidden state for the next
statement, because there are sometimes multiple possible next statements (|Nout(xn) = 2|).
Instead, the model computes a soft branch decision over the possible next statements and
divides the state proposal a(1)

t,n among the hidden states of the next statements according to this
decision. When |Nout(xn)| = 1, the soft branch decision bt,n,n′ = 1, and when |Nout(xn)| = 2,
write Nout(xn) = {n1, n2} and

bt,n,n1 , bt,n,n2 = softmax
(
Dense(a(1)

t,n)
)
. (4.4)

All other values of bt,n,: are 0. The soft branch decisions determine how much of the state
proposals a(1)

t,n flow to each next statement according to

ht,n =
∑

n′∈Nin(n)
pt−1,n′ · bt,n′,n · a(1)

t,n. (4.5)

A statement contributes its state proposal to its successors in an amount proportional
both to the probability assigned to itself by the soft instruction pointer, and to the probability
given to its successor by the branch decision. The soft branch decisions also control how
much probability mass flows to each next statement in the soft instruction pointer according
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to
pt,n =

∑
n′∈Nin(n)

pt−1,n′ · bt,n′,n. (4.6)

The execution, branch, and aggregation steps of the procedure are illustrated in Figure 8.
By following the principle of respecting the causal structure of a classical interpreter,

we have designed the IPA-GNN model. We hypothesize that by leveraging this causal
structure, our model will exhibit better systematic generalization performance than models
not respecting this structure.

4.3. Relationship with IP-RNNs

As a continuous relaxation of the Hard IP-RNN model, the IPA-GNN bears a close
relationship with the Instruction Pointer RNN models. Under certain conditions, the IPA-
GNN is equivalent to the Hard IP-RNN model, and under still further conditions it is
equivalent to the Trace RNN and Line-by-Line RNN models. Specifically:
• If the IPA-GNN’s soft branch decisions saturate, the IPA-GNN and Hard IP-RNN are

equivalent.
• If the Hard IP-RNN makes correct branch decisions, then it is equivalent to the Trace

RNN.
• If the program x is straight-line code, then the Trace RNN is equivalent to the Line-by-Line

RNN.
To show the first two we can express the Hard IP-RNN and Trace RNN models in terms of

two dimensional state ht,n and soft instruction pointer pt,n. As before, let Nout(xn) = {n1, n2}.
Using this notation, the Hard IP-RNN’s branch decisions are given by

bt,n,n1 , bt,n,n2 = hardmax
(
Dense(a(1)

t,n)
)
, (4.7)

where hardmax projects a vector v to a one-hot vector, i.e., (hardmax v)|j = 1 if j = argmax v
and 0 otherwise. The Trace RNN’s branch decisions in this notation are given by

bt,n,n′ = 1{n∗
t−1 = n ∧ n∗

t = n′}. (4.8)

Otherwise the model definitions are the same as for the IPA-GNN. The final assertion follows
from observing that straight-line code satisfies n∗

t = t.
These connections reinforce that the IPA-GNN is a natural relaxation of the IP-RNN

models, and that it captures the causal structure of the interpreter it is based on. These
connections also suggest there is a conceivable set of weights the model could learn that
would exhibit strong generalization as a classical interpreter does if used in an unbounded
execution setting.
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Table 6. The IPA-GNN model is a message passing GNN. Selectively replacing its components
with those of the GGNN yields two baseline models, NoControl and NoExecute. Blue
expressions originate with the IPA-GNN, and orange expressions with the GGNN.

IPA-GNN (Ours) NoControl NoExecute GGNN
h0,n = 0 = 0 = Embed(xn) = Embed(xn)
a

(1)
t,n = RNN(ht−1,n,Embed(xn)) = RNN(ht−1,n,Embed(xn)) = ht−1,n = ht−1,n

a
(2)
t,n,n′ = pt−1,n′ · bt,n′,n · a(1)

t,n = 1 · a(1)
t,n = pt−1,n′ · bt,n′,n ·Dense(a(1)

t,n) = 1 ·Dense(a(1)
t,n)

h̃t,n =
∑

n′∈Nin(n)
a

(2)
t,n,n′ =

∑
n′∈Nall(n)

a
(2)
t,n,n′ =

∑
n′∈Nin(n)

a
(2)
t,n,n′ =

∑
n′∈Nall(n)

a
(2)
t,n,n′

ht,n = h̃t = h̃t = GRU(ht−1,n, h̃t,n) = GRU(ht−1,n, h̃t,n)

4.4. Relationship with GNNs

Though the IPA-GNN is designed as a continuous relaxation of a natural recurrent model,
it is in fact a member of the family of message passing GNN architectures. To illustrate
this, we select the gated graph neural network (GGNN) architecture [94] as a representative
architecture from this family. Table 6 illustrates the shared computational structure held by
GGNN models and the IPA-GNN.

The GGNN model operates on the bidirectional form of the control flow graph. There are
four possible edge types in this graph, indicating if an edge is a true or false branch and if it is
a forward or reverse edge. The learned weights of the dense layer in the GGNN architecture
vary by edge type.

Fig. 8. A single IPA-GNN layer. At each
step of execution of the IPA-GNN, an RNN
over the embedded source at each line of code
produces state proposals a(1)

t,n. Distinct state
values are shown in distinct colors. A two out-
put unit dense layer produces branch decisions
bt,n,:, shown as pill lightness and edge width.
These are used to aggregate the soft instruction
pointer and state proposals to produce the new
soft instruction pointer and hidden states pt,n

and ht,n.

The comparison highlights two changes
that differentiate the IPA-GNN from the
GGNN architecture. In the IPA-GNN, a
per-node RNN over a statement is analo-
gous to a classical interpreter’s execution of
a single line of code, while the soft instruc-
tion pointer attention and aggregation mech-
anism is analogous to the control flow in a
classical interpreter. We can replace either
the control flow components or the execution
components of the IPA-GNN model with the
expressions serving the equivalent function
in the GGNN. If we replace both the control
flow structures and the program execution
components in the IPA-GNN, the result is
precisely the GGNN model. Performing just
the control flow changes introduces the No-
Control model, while performing just the execution changes introduces the NoExecute model.
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We evaluate these intermediate models as baselines to better understand the source of the
performance of the IPA-GNN relative to GNN models.

5. Experiments
Through a series of experiments on generated programs, we evaluate the IPA-GNN and

baseline models for systematic generalization on the program execution as static analysis
tasks.

5.1. Dataset

We draw our dataset from a probabilistic grammar over programs using a subset of
the Python programming language. The generated programs exhibit variable assignments,
multi-digit arithmetic, while loops, and if-else statements. The variable names are restricted
to v0, . . . , v9, and the size of constants and scope of statements and conditions used in a
program are limited. Complex nesting of control flow structures is permitted though. See the
supplementary material for details.

From this grammar we sample 5M examples with complexity c(x) ≤ C to comprise Dtrain.
For this filtering, we use program length as our complexity measure c, with complexity
threshold C = 10. We then sample 4.5k additional samples with c(x) > C to comprise Dtest,
filtering to achieve 500 samples each at complexities {20, 30, . . . , 100}. An example program
is shown in Figure 6.

For each complete program, we additionally construct partial programs by masking one
expression statement, selected uniformly at random from the non-control flow statements.
The target output remains the result of “correct” execution behavior of the original complete
program.

In both the full program execution and partial program execution tasks, we let the target y
be the final value of v0 mod 1000. We select this target output to reduce the axes along which
we are measuring generalization; we are interested in generalization to more complex program
traces, which we elect to study independently of the complexity introduced by more complex
data types and higher precision values. The orthogonal direction of generalization to new
numerical values is studied in [132, 140]. We leave the study of both forms of generalization
together to future work.

5.2. Evaluation Criteria

On both tasks we evaluate the IPA-GNN against the Line-by-Line RNN baseline, R-GAT
baseline, and the NoControl, NoExecute, and GGNN baseline models. On the full program
execution task, we additionally compare against the Trace RNN model, noting that this
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(a) Execution of full programs (b) Execution of partial programs

Fig. 9. Accuracy of models as a function of program length on the program execution tasks.
Spread shows one standard error of accuracy.

model requires access to a trace oracle. Following Zaremba and Sutskever [159], we use a
two-layer LSTM as the underlying RNN cell for the RNN and IPA-GNN models.

We evaluate these models for systematic generalization. We measure accuracy on the test
split Dtest both overall and as a function of complexity (program length). Recall that every
example in Dtest has greater program length than any example seen at training time.

5.3. Training

We train the models for three epochs using the Adam optimizer [82] and a standard cross-
entropy loss using a dense output layer and a batch size of 32. We perform a sweep, varying the
hidden dimension H ∈ {200, 300} and learning rate l ∈ {0.003, 0.001, 0.0003, 0.0001} of the
model and training procedure. For the R-GAT baseline, we apply additional hyperparameter
tuning, yet we were unable to train an R-GAT model to competitive performance with the
other models. For each model class, we select the best model parameters using accuracy
on a withheld set of examples from the training split each with complexity precisely C.

Table 7. Accuracies on Dtest (%)

Model Full Partial

Trace RNN (Oracle) 66.4 —
Line-by-Line RNN 32.0 11.5

NoControl 28.1 8.1
NoExecute 50.7 20.7

GGNN 16.0 5.7
IPA-GNN (Ours) 62.1 29.1

5.4. Program Execution Results

Table 7 shows the results of each model on the
full and partial execution tasks. On both tasks,
IPA-GNN outperforms all baselines.

Figure 9 breaks the results out by complexity.
At low complexity values used during training, the
Line-by-Line RNN model performs almost as well
as the IPA-GNN. As complexity increases, however,
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n Source CFG v0 = 323 v0 = 849

0 v0 = ??
1 if v0 % 10 < 5:
2 v0 -= 3
3 else:
4 v0 -= 4
5 v0 += 2
6 v0 *= 9
7 if v0 % 10 >= 4:
8 if v0 % 10 < 6:
9 v0 *= 8
10 <exit>

n Source CFG v0 = 159 v0 = 673

0 v0 = ??
1 v7 = 7
2 while v7 > 0:
3 v7 -= 1
4 v0 -= 9
5 if v0 % 10 < 5:
6 v0 -= 6
7 v0 *= 1
8 v0 -= 4
9 v0 += 7
10 <exit>

Fig. 10. Instruction Pointer Attention. Intensity plots show the soft instruction pointer
pt,n at each step of the IPA-GNN on two programs, each with two distinct initial values for
v0.

the performance of all baseline models drops off faster than that of the IPA-GNN. Despite
using the ground truth control flow, the Trace RNN does not perform as well as the IPA-GNN
at all program lengths.

Examining the results of the ablation models, NoExecute significantly outperforms No-
Control, indicating the importance of instruction pointer attention for the IPA-GNN model.

Figure 10 shows the values of the soft instruction pointer pt,n over the course of four
predictions. The IPA-GNN learns to frequently produce discrete branch decisions. The model
also learns to short-circuit execution in order to produce the correct answer while taking
fewer steps than the ground truth trace. From the first program, we observe the model has
learned to attend only to the path through the program relevant to the program’s result.
From the second program, we see the model attends to the while-loop body only once, where
the ground truth trace would visit the loop body seven times. Despite learning in a setting
of bounded execution, the model learned a short-circuited notion of execution that exhibits
greater systematic generalization than any baseline model.

6. Conclusion and Future Work
Following a principled approach, we designed the Instruction Pointer Attention Graph

Neural Network architecture based on a classical interpreter. Importantly, however, the
IPA-GNN learns much of the Python language semantics entirely from data, rather than
having those semantics baked into the architecture; the IPA-GNN is a learned interpreter.
By closely following the causal structure of an interpreter, the IPA-GNN exhibits stronger
systematic generalization than baseline models on tasks requiring reasoning about program
execution behavior. The IPA-GNN outperformed all baseline models on both the full and
partial program execution tasks.

These tasks, however, only capture a subset of the Python programming language. The
programs in our experiments were limited in the number of variables considered, in the
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magnitude of the values used, and in the scope of statements permitted. Even at this modest
level of difficulty, though, existing models struggled with the tasks, and thus there remains
work to be done to solve harder versions of these tasks and to scale these results to real world
problems. Fortunately the domain naturally admits scaling of difficulty and so provides a
good playground for studying systematic generalization.

We believe our results suggest a promising direction for models that solve real world tasks
like programming by example. We proffer that models like the IPA-GNN may prove useful
for constructing embeddings of source code that capture information about a program’s
semantics.

7. Broader Impact
Our work introduces a novel neural network architecture better suited for program

understanding tasks related to program executions. Lessons learned from this architecture
will contribute to improved machine learning for program understanding and generation.
We hope the broader impact of these improvements will be improved tools for software
developers for the analysis and authoring of new source code. Machine learning for static
analysis produces results with uncertainty, however. There is risk that these techniques will
be incorporated into tools in a way that conveys greater certainty than is appropriate, and
could lead to either developer errors or mistrust of the tools.
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Abstract. Verification is a serious bottleneck in the industrial hardware design cycle,
routinely requiring person-years of effort. Practical verification relies on a “best effort”
process that simulates the design on test inputs. This suggests a new research question:
Can this simulation data be exploited to learn a continuous representation of a hardware
design that allows us to predict its functionality? As a first approach to this new problem,
we introduce Design2Vec, a deep architecture that learns semantic abstractions of hardware
designs. The key idea is to work at a higher level of abstraction than the gate or the bit level,
namely the Register Transfer Level (RTL), which is similar to software source code, and can
be represented by a graph that incorporates control and data flow. This allows us to learn
representations of RTL syntax and semantics using a graph neural network. We apply these
representations to several tasks within verification, including predicting what cover points of
the design will be covered (simulated) by a test, and generating new tests to cover desired
cover points. We evaluate Design2Vec on three real-world hardware designs, including the
TPU, Google’s industrial chip used in commercial data centers. Our results demonstrate
that Design2Vec dramatically outperforms baseline approaches that do not incorporate the
RTL semantics and scales to industrial designs. It generates tests that cover design points
that are considered hard to cover with manually written tests by design verification experts
in a fraction of the time.
Keywords: hardware verification, test coverage, graph neural networks
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1. Introduction
Hardware designs are verified to check if a design implements the architectural specification

correctly. Verification is widely considered the most serious bottleneck in the contemporary
industrial hardware design cycle [44, 45, 46]. It requires 60-75% of the time, compute, and
human resources during the design phase, routinely taking multiple person-years of effort.
Verification is a complex problem because modern hardware has billions of inputs and flops,
and the number of states is exponential in the number of flops and inputs. Checking every
state of the system is infeasible due to a combinatorial state space explosion. While there
is excellent research in automatic hardware verification techniques involving formal and
static analysis, their applicability in practice is limited by scale. Instead, practical design
verification sacrifices automation and completeness for a “best effort, risk reducing” process
based on simulating the design on test inputs.3

Traditionally, formal verification methods analyze synchronous hardware designs through
reachability analysis of a gate level state transition graph. Each node in this graph corresponds
to a single value of bit-level state of all registers, and edges correspond to the legal changes in
state that the design can make in a single clock cycle. It is well known in the formal methods
community that most questions about hardware functionality can be posed as reachability
questions in the state transition graph. This suggests a fundamental new research question
in representation learning: Can we learn a continuous representation of a hardware design
that allows us to predict its functionality?

This paper presents a first approach to this problem. Since designs are practically verified
by simulations using millions of test inputs, this gives us a ready source of training data. To
avoid the combinatorial explosion at the gate level, we approach the problem at a higher level
of abstraction, the Register Transfer Level (RTL) that describes hardware at the bit-vector
or integer level. RTL is described in a Hardware Description Language (Verilog RTL [145])
that is syntactically similar to the source code of software, while modeling the concurrent,
non-deterministic, non-terminating, and reactive semantics of hardware. Despite the higher
level of abstraction, RTL static analysis approaches for reachability analysis [10] and test
input generation [103] do not scale to even reasonably sized practical designs. So our research
question can be restated as: Can we use simulation data to learn a tractable continuous
representation that can predict the answers to the state reachability queries in hardware?

In this paper, we introduce Design2Vec, an architecture for learning continuous represen-
tations that capture the semantics of a hardware design. We choose to represent the design
as a control data flow graph (CDFG) at the RTL level. Based on the CDFG, we use graph
neural networks (GNN) to learn representations that predict states reached by the design

3All future references to verification will imply simulation based design verification as the majority practice
in industry, not formal verification.
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when simulated on test inputs. While standard GNN architectures do work well, we achieve
improved performance by introducing a new propagation layer that specifically incorporates
the concurrent and non-terminating semantics of RTL. Design2Vec is trained to predict if,
given a simulation test input, a particular branch (like a case statement in software) will
be covered. The CDFG is an abstraction of the gate-level state space since one edge in the
CDFG maps to many edges in the gate-level transition graph. We can therefore interpret
Design2Vec as learning an abstraction of the intractable gate-level design state space.

We apply Design2Vec to two practical problems in hardware verification: coverage
prediction and test generation. The coverage prediction model can act as a proxy simulator,
and an engineer can query it to estimate coverage in seconds, instead of waiting for a night
of simulations. Our test generation method uses a gradient-based search over the trained
Design2Vec model to generate new tests. It is desirable to find tests for hard to cover points,
or points human experts find difficult to cover after reaching around 80% (or more) cumulative
coverage using random testing. This coverage plateau can take months to close, effectively
taking multiple expert months of productivity and effort.

We demonstrate Design2Vec is able to successfully learn representations of multiple
designs: (i) IBEX v1 [67], a RISC-V design (ii) IBEX v2, IBEX enhanced with security
features, and (iii) Tensor Processing Unit (TPU) [72], Google’s industrial scale commercial
infrastructure ML accelerator chip, and performs dramatically better than black-box baselines
that are uninformed by knowledge of the design (up to 50% better, and on average 20% better
for real designs). Our results show that Design2Vec achieves over 90% accuracy in coverage
prediction on the industrial TPU design, making it ideal to serve as a proxy simulator that
can evaluate if a test can cover a given point within seconds. Our results on test generation
show that Design2Vec is able to successfully find tests for hard to cover points in real designs
in a fraction of the time (up to 88 fewer simulator calls for TPU and 40 fewer for IBEX) as
compared to random testing and a black-box optimizer. This order of magnitude improvement
can potentially lead to huge savings. Our key contributions follow.
• We introduce the problem of learning continuous representations (abstractions) of hardware

semantics that can be used for various tasks in hardware verification. We present Design2Vec,
a model that encodes the syntactic and semantic structure of an RTL design using a GNN
based architecture.
• We propose the RTL IPA-GNN, which extends a recent architecture for learning to execute

software [15] to model the concurrent and non-terminating semantics of RTL.
• We introduce a test generation algorithm that uses Design2Vec to generate focused tests for

a subset of cover points. The tests generated by Design2Vec are able to successfully cover
hard to cover points using significantly fewer simulations than state of practice human
expert guided random testing and a state of the art black-box optimization tool.
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• We demonstrate the scalability of the approach to large industrial scale designs. Our
approach is practical in industrial settings.

2. Design2Vec: Representation learning of design ab-
stractions

Verilog RTL source code is a powerful tool for writing non-terminating, continuous,
reactive “programs” to design hardware. A program in RTL is structured as a modular
hierarchy, with multiple concurrent blocks executing within each module. We consider the
subset of behavioral RTL that can be synthesized into gate level designs [145].

Figure 11 shows an example snippet of Verilog RTL source code. A “module” corresponds
to a hardware construct (e.g. a decoder or ALU). A module can instantiate other modules (e.g.
a cache module may instantiate a prefetch module). Each “variable” in the RTL corresponds
to either an input signal (input), an output signal (output), a register that stores values
(reg) or a temporary variable (wire). The bit width of each such variable is declared. In the
example, a, b, and state are two-bit registers, c, d, p, and q are two-bit input signals.

This design has three concurrent (always) blocks denoted by three colors. For synchronous
hardware, an external clock signal triggers execution of each concurrent block per clock cycle.
On each clock cycle, one statement in each always block is executed. The statements in
an always block are thereby executed in sequence over multiple consecutive clock cycles.
When executing a statement, the input values of variables in the current cycle come from the
output values of variables from the previous cycle. There is an implicit loop from the end of
each block back to its start, simulating the non-terminating nature of hardware. Within a
cycle, the order in which the always blocks are executed is non-deterministic. In practice,
it is as determined by an RTL simulator. Figure 29 in Appendix C.1 shows the execution
(simulation) over a three cycle window of this example.

RTL designs are typically simulated using an RTL design simulator, which does not suffice
for the design goals of our analysis. For use with machine learning, we choose to represent
RTL as a control data flow graph (CDFG). The CDFG we construct for each Verilog RTL
program encodes the program’s simulation semantics, so that our models may make inferences
about the their behavior.

The CDFG has nodes and heterogeneous edges. Nodes correspond to statements in code.
Edges corresponds to either data flow or control flow. Dotted lines show data dependencies
between concurrently executing blocks. The root node corresponds to the begin node of the
top module. Branches denote localized node sequences. The designs that we consider contain
branches, but not loops, which are atypical in synthesizable RTL.

A test is a set of high level parameters, each of which can be Boolean, integer or categorical.
A test defines a distribution over input signals to the design. When a test is run, the testbench
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Fig. 11. An example snippet of a Verilog RTL source code module and the corresponding CDFG.

samples many inputs from this distribution, and simulates the design on that sequence of
inputs. The output of the testbench is Boolean input vectors applied to the RTL design
under test. These input vectors execute different design paths. All the branches executed
along different design paths are said to be covered.

A test is written to achieve different types of design code coverage. Branch coverage tends
to be the most important metric. Branch coverage of a test refers to branches executed by
that test. Each branch is referred to as a cover point. A cover point over the RTL CDFG is
identified as a sequence of nodes starting from the branch control node and ending at the
destination of the branch. Two local branch cover points lie along the same global path if
they have ancestor/descendant relationship. Figure 30 in Appendix C.1 shows the executed
branches the input arrives at a certain clock cycle.

2.1. Architecture

Our Design2Vec architecture, shown in Figure 12, is trained on the supervised task of
coverage prediction. The network takes as input a cover point C, represented as a sequence
of CDFG notes, and a test parameter vector I, and outputs the probability is_hit(C, I) that
the test I covers C.

Cover point embedding: We use a graph convolution network (GCN) over the Verilog
CDFG. Each node n ∈ N has attributes/features denoted by fn

j such as node identifier, node
type, fan in and fan out. In addition, the RTL token sequence sn =< sn

1 ,s
n
2 , · · · ,sn

k > in
the program statement is also considered as an additional attribute. We first perform an
embedding of the token sequence ϕ(sn) using an LSTM (or alternatively using a pre-trained
word2vec module):

ϕ(sn) = LSTM(< sn
1 ,s

n
2 , · · · ,sn

k >). (2.1)
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Fig. 12. The Design2Vec architecture that takes as input a cover point and an input test vector,
and predicts the corresponding coverage. CDFG: Control and data flow graph. TP: test parameter.
CP: cover point.

The initial embedding of a node ϕ(0)(n) is computed as concatenation of the node attribute
values and the token sequence embedding:

ϕ(0)(n) = Concat(< ϕ(sn), fn
1 , · · · ,fn

l >). (2.2)

Let the embedding of a graph G at a step t be denoted by ψ(t)(G) = {ϕ(t)(n)|∀n ∈ N}. We
use a GCN (with learnable parameters θ) to perform a sequence of graph convolution steps
to update the node embeddings:

ψ(t+1)(G) = fθ(ψ(t)(G)) ∀t ∈ {0,1, · · · ,T}. (2.3)

A cover point C =< n1,n2, · · · ,nm > is a sequence of nodes. The cover point identity is used
to select the corresponding sequence of node embeddings of the cover point nodes. Since
these sequences are of varying length, an LSTM layer is used to produce the cover point
embeddings

ϕ(T )(C) = LSTM(< ϕ(T )(n1), ϕ(T )(n2), · · · , ϕ(T )(nm) >). (2.4)

Test parameter embedding: For the input test parameters I, each of which can be integers
or categorical, we learn an embedding for the parameters by passing them through a feed
forward MLP layer as

ϕ(I) = MLP(Concat(i1, · · · ,ip)). (2.5)

MLP layer: Finally, the test parameter ϕ(I) and cover point embeddings ϕ(T )(C) are
concatenated and provided to a feed forward layer with sigmoid activation to predict for each
cover point

is_hit(C, I) = MLPσ(Concat(ϕ(T )(C), ϕ(I))). (2.6)

Given a supervised dataset of test inputs and the corresponding coverage information of
different cover points in the RTL design, the network is trained using binary cross entropy
loss. We find that our model learns more from local paths than global paths (root to cover
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point). A reason for this is that GNNs are not proficient at learning long path information.
In the case of a control flow, tracing and learning global paths is relevant. We use shortcut
edges, where we add edges along every kth node along a path, to reinforce the relationship of
long paths (results in Appendix D). We use a variation of the GNN, called the GNN-MLP [21]
to propagate edge information. We also used gating layers and residual layers in the GGNN.

2.2. RTL IPA-GNN architecture

We enhance the recently proposed Instruction Pointer Attention Graph Neural Network
(IPA-GNN) architecture [15] that explicitly models control flow in programs. This section
motivates and precisely describes each of the architectural enhancements our novel RTL
IPA-GNN architecture makes over the original IPA-GNN in order to model the concurrent,
non-terminating semantics of RTL.

First, since RTL hardware is highly parallel, the RTL IPA-GNN maintains a separate
instruction pointer for each always block in the hardware design. The original includes only
a single instruction pointer. Making this change allows modeling the concurrent execution of
all modules in an RTL specification. Accordingly, the RTL IPA-GNN instantiates its soft
instruction pointer pt,n as

p0,n = 1n is an always block start node,

and our RTL IPA-GNN implementation computes its hidden state proposals as

a
(1)
t,n = Dense(ht−1,n).

Second, the domain of RTL requires the model support switch conditions, not just binary
conditions. So, we modify the soft branch decision mechanism of the IPA-GNN. In the RTL
IPA-GNN, the soft branch decisions at timestep t are given as

bt,n,m = softmax (Dense(ht−1,n) · Embed(en,m)) ,

where m ∈ Nout(xn) is a control node child of xn.
Embed(en,m) is an embedding for the control edge from xn to xm. It includes an embedding

of whether the condition is positive or negative, the first variable referenced by the condition,
and the form of the condition. It is computed as a concatenation of a learned embedding of
each of these three properties of the condition represented by the edge.

Third, data flow in an RTL design is also more complex than in a single-threaded program.
We model data flow in the RTL IPA-GNN architecture by propagating messages between
nodes along data flow edges at each step of the model. This entails aggregating hidden state
proposals both from control node state proposals (these are within a node’s always block)
and from the proposals of other parent nodes (which may be from a different always block),
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Fig. 13. Test Input Generation
Input: A set of uncovered points C =
{C1, · · · , Cm}

1: I = {}
2: while C ̸= ∅ do
3: C = PickRandomCoverPoint(C)
4: C = C \ C
5: for j = 1 . . . K do
6: ▷ Optimize cover prob. wrt test

parameters I
7: I ← random()
8: while I has not converged do
9: I ← I +∇I is_hit(C, I)

10: I ← I.append(I)
return I
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Fig. 14. The overall workflow to use Design2Vec in
generative loop to generate input test parameters.

giving
h′

t,n =
∑

n′∈Nin(n)∩Nctrl

pt−1,n′ · bt,n′,n · a(1)
t,n′ +

∑
n′∈Nin(n)∩N̄ctrl

a
(1)
t,n′ .

Here Nctrl ⊆ N denotes the set of control nodes in the CDFG.
Finally, we introduce a control edge from the end of each always block to the start of the

always block to model non-termination, a critical RTL property. With this update to the
CDFG, the instruction pointer probability mass in the RTL IPA-GNN returns to the start
of each always block after reaching its conclusion. Incorporating RTL semantics into our
modeling decisions improves coverage prediction performance in some settings as compared
with domain independent GNNs.

2.3. Gradient-based search for test generation

We now present an algorithm to generate tests to cover different cover points in an RTL
design using a trained Design2Vec model. Figure 14 shows the overall flow. The key idea of
Algorithm 13 is to perform a gradient based search to maximize the Design2Vec predicted
probability of covering desired cover points. The algorithm takes as input a set C of uncovered
points for which we would like to generate tests. For each uncovered point C ∈ C, the
algorithm first selects a random test I, a vector of test parameters. The algorithm then
computes the objective function as the predicted probability of covering the input cover point,
and computes gradients of the objective function with respect to each parameter of I. The
test parameters in I are updated using a gradient ascent method until I converges (Line 9 in
Algorithm 13). This process is repeated from different random initializations of I to get a list
of K test parameters. Finally, the tests with highest predicted coverage are run through an
RTL simulator to get the actual coverage.
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3. Impact of Design2Vec solutions in practical verifica-
tion

In this section, we detail the verification flow, and highlight the value proposition brought
by the Design2Vec solutions to this problem. Figure 31 in the Appendix A.2 shows the
industrial verification flow. The current approach for verifying RTL designs is constrained
random verification [28]. This involves a complex program called the testbench. The input
to the testbench is a set of test parameters written by verification engineers that define the
distribution over inputs that will be applied to the RTL design. Some inputs need to be
constrained, while others will be randomized by the testbench to widely sample the input
space. The testbench output is a Boolean level stimulus that is applied to the primary
inputs of the RTL design. Each such high level “test” corresponds to millions of cycles of
Boolean input stimuli that run through an overnight regression. Bug reports and coverage
are assessed at the end of a nightly regression. This process is iterated upon until there are 0
bugs and 100% of the design cover points are covered. Simulator calls are costly and need to
be minimized. Effectively, this entire process costs multiple engineer years of productivity
and resources.

Figure 32 illustrates how Design2Vec would integrate in the loop. We select two tasks
for Design2Vec to provide practical value in constrained random verification: (i) Coverage
prediction, or predicting which cover points in the design would be covered by a given test.
Such a predictive model can serve as a proxy simulator, and an engineer can query it to
estimate coverage instantaneously, instead of waiting for a night of simulation. (ii) Test
parameter generation, or automating tests towards faster coverage closure, especially for
covering hard-to-cover points. 4 in the verification cycle.

4. Coverage prediction experiments
We first evaluate the Design2Vec architecture on the task of coverage prediction. We

evaluate two key research questions: (i) whether Design2Vec is able to exploit information
from the RTL hardware design to improve predictions and (ii) whether coverage prediction is
good enough for Design2Vec to serve as a proxy simulator.

We evaluate our methods on the three real-world designs from Table 17. For each
design, we obtain training data by generating random tests and sampling each test parameter
uniformly. For each test, we use the testbench to randomly sample input test stimulus, and a
Verilog RTL simulator to obtain ground-truth labels of whether a cover point is covered by
that test or not, in the form of a coverage vector. We sample 1696 tests for IBEX v1, 1938
for IBEX v2, and 1995 for TPU. Some cover points are very easy to predict, e.g., they are
4In this paper we use a tool that is better than human guided random testing as a baseline for hard to cover
points.
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covered by almost 0% or nearly 100% of the random tests. To avoid evaluating our models
on these trivial cases, we only include cover points in the data if they are covered by between
10% and 90% of the random tests. After this filtering, there are 160 cover points in the data
set for the IBEX v1 design, 177 for IBEX v2, and 3781 for TPU.

Furthermore, there is a particular type of generalization that is vital to applying coverage
prediction in practice. Recall that when a design engineer uses a coverage prediction model,
it is because they are proposing a new test that should exercise a cover point that is not
exercised by the existing test. Therefore, in practice the primary concern is how well the
model predicts whether a test that it has never seen during training will exercise a cover
point that the model has never seen how to cover during training. For this reason, we divide
the data into training and test point by cover point, such that no cover point and no test
occurs in both the training and validation set for the learned models.5 All results are the
median over three random train-validation splits.

We ask two key questions in our experiments: 1) does representation learning allow
Design2Vec to generalize from cover points in the training set to related cover points (e.g.
neighbors in CDFG) and 2) do the graph neural networks provide deeper learning of CDFG
graph structure and cover point relationships than more shallow representations?

Table 8 compares Design2Vec to three baselines across all three designs, varying the
size of the training set. One is the naive statistical frequency baseline of guessing the most
common value; it is the average positive rate over all cover points in the validation data
(or (1-average positive rate), whichever is larger). This baseline does not take into account
any correlations between cover points or test inputs. The second baseline is a multilayer
perceptron (MLP) that treats the design as a black box, and does not take into account any
information from the RTL. The MLP takes as input the test parameters, represented the
same as in Design2Vec, and the numeric index of the cover point, represented as a one-hot
vector. While it cannot generalize across cover points, the MLP can still learn to generalize
across test parameters (e.g., some test parameters activate many cover points, some few). In
that sense it is stronger than statistical frequency.

The third baseline is node sequence embedding, a stronger baseline that enhances MLP
by allowing it to generalize across cover points. Recall that every cover point is defined as a
sequence of nodes down a control-flow path from the root of an always block to a particular
node, e.g., n1-n2-n4 in Figure 1. We use node sequences over all the training cover points in
a Word2Vec model to learn embeddings for each control flow node, which is then concatenated
and padded into a cover point embedding. This representation of the cover point is used
instead of the one-hot representation in the MLP. Cover points that have structural proximity
in the CDFG graph, e.g., n1-n2-n4 and n1-n3-n4 would have similar embeddings. This

5We avoid using the term “test set” to refer to the data on which we evaluate our machine learning methods,
to avoid confusion with tests of the RTL design.
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Table 8. Accuracy at coverage prediction for Design2Vec (with the RTL IPA-GNN layer)
compared to a black-box multi-layer perceptron (MLP), which does not have information
about the design.

IBEX v1 IBEX v2 TPU
Train cover points 50% 80% 90% 50% 80% 90% 50% 80% 90%

Design2Vec 74.2 77.3 77.8 73.4 78.0 80.3 90.5 90.6 91.1
Node Seq Embedding 59.7 59.1 63.2 58.5 57.3 59.0 87.9 88.4 88.6
MLP 57.5 56.8 56.8 58.7 58.0 58.2 42.8 42.5 34.7
Statistical Frequency 50.5 51.6 50.8 54.1 54.5 54.7 68.5 68.6 68.6

baseline can generalize to new cover points if there is a nearby coverpoint in training. While it
takes graph structure into account, it does not have the full flexibility of GNN-style message
propagation. First two baselines answer question 1 while node sequence embedding helps
answer 3.

In these results, Design2Vec uses the RTL IPA-GNN (subsection 2.2) as the GNN layer.
Hyperparameters including number of layers, learning rates, and embedding dimensions are
reported in Appendix C.5.

Notably, the MLP performs catastrophically poorly on the test data. It is slightly
better than statistical frequency. Indeed, on the largest design, the industrial TPU design,
Design2Vec has an accuracy of 47% higher in absolute terms than the MLP. We observe
that the training accuracy of MLP is high (above 95%), so the MLP overfits and fails to
generalize to cover points outside the training set. This is expected, since it has no information
about which of the training cover points are most close to the cover points in validation set.
The MLP prediction is based only on test parameter features. Node sequence embedding
performs much better than the two blackbox models in every case, indicating that even
shallow representation learning using RTL CDFG structure helps generalization.

The Design2Vec model wins by a substantial margin in every case, indicating that the
GNN based architecture is able to learn deep relationships in the design and generalize
effectively to majority of the cover points unseen during training.

This pattern holds across all three designs. On IBEX v1 and v2, the difference between
the two models is smaller (although still around 15% absolute). This is due to the irregular
structure of the Ibex designs, with fewer repeated hardware modules, causing the control flow
path to be harder to predict. On the TPU industrial design is the largest and most complex
of the three, Design2Vec has over 90% accuracy. The node sequence embedding also has high
accuracy on this design. This can be attributed to the highly regular structure of TPU with
a relatively easier to predict control flow.

For Design2Vec, we also compare several variants of graph neural networks: graph
convolution networks [83], gated graph neural networks [94], GNN-MLP [21], and the RTL
IPA-GNN (subsection 2.2). These results are shown in Table 9. Additionally, we vary the
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Table 9. Coverage prediction accuracies of different GNN architectures within Design2Vec.

IBEX v1 IBEX v2 TPU
Architecture Node Fusion 50% 80% 90% 50% 80% 90% 50% 80% 90%

GCN lstm 74.0 73.0 73.2 70.4 74.5 73.9 90.9 90.5 91.1
mean 74.1 75.8 74.0 69.0 73.9 72.5 — — —

GGNN lstm 75.0 75.9 74.5 71.4 77.0 76.0 91.1 90.4 91.2
mean 73.8 75.6 76.4 70.0 75.1 72.3 — — —

GNN-MLP lstm 73.8 76.8 78.5 70.7 74.5 71.2 91.0 90.1 91.1
mean 73.0 76.4 74.4 70.1 75.1 72.0 — — —

RTL IPA-GNN lstm 74.2 77.3 77.8 73.4 78.0 80.3 90.5 90.6 91.1
mean 73.6 77.2 76.3 72.2 75.8 78.9 — — —

method by which representations of CDFG nodes are aggregated to represent cover points.
Recall from subsection 2.1 that to represent a cover point, we take the final node embeddings
from the GNN, apply a mask to obtain only a few relevant CDFG, and then aggregate them.
We compare using an LSTM, as in (2.4), to simply taking the mean. We compare this for
different GNN architectures, and note that aggregation methods performed similarly on
IBEX, so we evaluate only LSTM aggregation on TPU. Overall, all GNN variants performed
similarly. RTL IPA-GNN performs similarly to the other GNN architectures on IBEX v1 and
TPU, but is significantly better on IBEX v2. Since the RTL IPA-GNN performs similarly or
better than other GNNs across the three designs, we use this as the main Design2Vec model
in Table 8. We also tuned several other features of the architecture, including presence of the
residual connections, embedding size, and label smoothing (details in Appendix B and C).

Given that TPU is a typical ML accelerator chip whose architecture will
have similar properties across generations, the high coverage prediction accuracy
(>90%) shows the potential of Design2Vec to serve as a proxy simulator taking
seconds instead of a night of simulations.

5. Test generation using Design2Vec
In this section, we evaluate Design2Vec on the test generation task, especially for hard to

cover points during coverage closure. In general, there are two RTL testing approaches, namely
directed testing and random testing. Directed testing refers to targeted testing of specific
functionality in RTL, whereas random testing refers to undirected, random perturbation of
inputs with the goal of covering the design space maximally. Design2Vec based test generation
is directed and should ideally be compared with a directed testing baseline. However, we did
not find a comparable directed testing tool in the open source (or commercially).6

6At this time, there is no practical tool for automated directed testing in industry. Some directed testing
tools have been proposed in literature but are not available in the public domain for comparison. Random
testing tools in open source use different tool flows and RTL language, making a comparison infeasible.
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We present two comparative studies between Design2Vec and Vizier SRP, a random
testing tool [52] that uses black-box optimization to maximize total coverage all cover points
with every test. This comparison is inherently unequal due to the difference in their objectives
of the two tools. We compare both tools with respect to coverage achieved and number of
simulator calls made by each tool to achieve that coverage. Given that simulator calls are
expensive, this is a relevant metric to compare.

Vizier SRP functions as follows. In each trial, it generates a test for the total set of cover
points in the design, and calls the simulator. It uses actual coverage feedback in an active
learning loop along with Bayesian optimization to generate tests with progressively higher
coverage.

In the first study, we find points that are to hard to cover for Vizier SRP and challenge
Design2Vec to generate tests for those points. To find hard to cover points, we run Vizier
SRP until around 80% cumulative coverage is reached. From Table 10, it is seen that the
remaining uncovered points are indeed rare from cover probabilities on a randomly sampled
dataset (not used for training).

We intercept Vizier SRP after running for a number of trials (200 for IBEX v1, 243
for TPU). We provide the same sample tests collected by Vizier SRP as training data for
Design2Vec. For each point uncovered until that point by Vizier SRP, we provide them as
(unseen) target points for the Design2Vec test generation algorithm described in Table 13.

Design2Vec generates multiple test recommendations, of which we select the top ranking
recommendation and call the simulator for evaluating actual coverage. If the target cover point
is uncovered, we generate a different test using Design2Vec and repeat the same procedure
until it is covered. For this study, we run a small number of Design2Vec tests (25). Table 18
in Appendix A demonstrates some example parameterized tests generated by Design2Vec.

We continue to run Vizier SRP further (upto 400 trials) and record the coverage at every
trial (between 201-400). If an uncovered point gets covered, we measure the number of
simulator calls (trials) taken by Vizier SRP to cover it for the first time and compare with the
number of simulator calls (tests) used by Design2Vec to cover it. Note that Vizier SRP uses
active learning for the remaining trials until 400, while Design2Vec uses zero shot learning in
this configuration.

After 200 trials of Vizier, there were 22 uncovered points in IBEX and 23 uncovered
points in the TPU. Table 10 shows the results of this comparison. Both Vizier SRP and
Design2Vec cover 3 cover points. Vizier SRP covers 2 cover points that Design2Vec does not.
Design2Vec covers 1 cover point within 12 tests that Vizier SRP does not upto 400. Similarly,
for 882, due to its low probability, Vizier SRP needs 24 tests to cover it, while Design2Vec
uses only 3 tests to cover. Neither Design2Vec nor Vizier SRP cover 16 cover points. We
expect Design2Vec to cover more if it is run beyond 25 tests. Table 11 shows similar results
on the hard to cover points in the TPU design.
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In the second study, we compare Design2Vec with Vizier as a test generation tool for
overall coverage. We train the two tools independently with different datasets, closer to the
practical use case. We evaluate the total coverage of Design2Vec as compared to Vizier for
a sample of randomly selected points with varying cover probabilities (in the spectrum of
always covered to rarely/never covered). We randomly select 10 cover points from each of
the three buckets of cover probabilities and hid these 30 cover points from Design2Vec. We
generate tests for each of the 30 cover points using individual cover points as the search
objective and report the number of tests required for Design2Vec and Vizier to hit the cover
point for the first time. Table 23 in Appendix C.7 shows the summarized observations over
the 30 randomly selected points. Design2Vec is clearly valuable when generating tests hard
to cover points.

In practice, the intended use case of Design2Vec is to complement Vizier SRP. While
Vizier SRP can maximize for cumulative coverage, Design2Vec can generate tests for hard
to cover points. Notably, hard to cover points take a lot of time and resources to cover in
practice. These results show the power of representation learning in Design2Vec.
Despite the lack of examples covering hard to cover points, Design2Vec is able
to generate a test to cover these cover points with orders of magnitude fewer
simulator calls than a black-box optimizer and random testing.
Cover Point Number of Used Tests
ID Prob. Vizier Design2Vec

401 0.0012 Not covered 29
526 0.0059 Not covered 12
528 0.0035 Not covered 10
879 0.0071 42 14
882 0.0059 24 3
886 0.0018 93 25
664 0.01 55 Not covered
881 0.0053 108 Not covered
14 cover points Not covered Not covered

Table 10. Comparison of Design2Vec and black-box
optimizer tests for covering hard to cover points: IBEX
v1. Number of tests are RTL simulations.

Cover Point Number of Used Tests
ID Prob. Vizier Design2Vec

35793 0.0 22 17
36996 0.0 90 2
36372 0.0 78 17

Table 11. Comparison of Design2Vec and
black-box optimization to hit target cover
points: TPU. Number of tests are RTL
simulations.

6. Related work
Automated test generation for RTL: Most previous techniques for RTL test genera-

tion generate Boolean level stimuli at the inputs of the RTL design [86, 103, 104, 124, 153].
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Table 12. Comparing test generation of easy, medium and hard to cover points. Design2Vec is very
efficient at generating tests for hard to cover points. Summarized result of table in Appendix C.7
Table 23.

Cover probabilities Difficulty Summary of comparison

[0.5,1.0) Easy Both Vizier and Design2Vec cover all points with a single test.
[0.2,0.5) Medium Vizier and Design2Vec cover 9 out of 10. Design2Vec takes 3 fewer tests on average.

[0.05, 0.2) Hard Design2Vec takes 20 fewer tests than Vizier on average. Up to 40 fewer in cases.

By virtue of operating at a higher abstraction level of parameterized tests, it is orders of mag-
nitude more scalable than the Boolean input stimulus generation techniques. Static analysis
based approaches for test generation [14, 59, 112] are based on traversing the state transition
graph at a logic gate level, or the RTL design have inherent scalability limitations. Approaches
that combine static and dynamic analysis like HYBRO [97] and concolic testing [103, 104, 153]
in RTL rely on SMT/SAT solvers, which are also limited by scale. Other approaches random
forests and decision trees with static analysis and formal verification [43, 98] require manual
feature engineering and handcrafted algorithms.
Neural program testing: While our approach learns the semantics of a design, learning
based fuzzing [51] does not take program semantics into account. In contrast to our approach
that models semantics of an RTL design, Neuzz [129] approximates a program using only
the input-output behavior of the program, which is similar to our black-box MLP baseline.
GMetaExp [34] models test generation as a reinforcement learning problem with the objec-
tive of maximizing total program coverage, where programs are represented using a GGNN.
Learning to execute: Among methods that model program semantics, [159] present an
approach to use LSTM to embed a program as input and generate the output as the output
sequence. IPA-GNN [15] represents the program execution using an RNN augmented with a
differentiable mechanism to represent next instruction after a statement execution. Unlike
these works that learn to generate program output, we tackle the problem of reachability, or
learning to reach a state/node in a graph.
Abstractions for verification: Abstraction techniques have been used to scale design
verification for many decades. Some techniques are property specific [33, 84], design spe-
cific [60], data abstractions (word level abstractions) [80, 157], language based (abstract
interpretation) [35, 66], execution or structure based [42]. These abstractions are typically
defined manually and are challenging to create in a precise way to both scale the verification
as well as maintain desired precision. In contrast, GNN based abstractions are task-specific,
in the form of continuous representations of the CDFG nodes, that generalizes both across
tasks, as well as designs.
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7. Conclusion
We present an approach that is able to learn representations of hardware designs that

can predict their functionality. With Design2Vec, we demonstrate, for the first time, the
ability of deep learning in creating abstractions of the hardware design state space. These
abstractions outperform black-box baselines and human baselines (state of practice) in
verification by orders of magnitude in performance as well as scale. They can also generalize
across different designs. Since Design2Vec learns reachability over the RTL design graph, it
can also potentially generalize to other verification tasks like debugging, property generation
and root causing. The utility of the RTL IPA-GNN architecture in Design2Vec’s performance
points to the value of designing architectures with systematicity. Through its construction,
the architecture has a bias toward mimicking the simulation of the RTL programs it is
trained on, often resulting in improvements on the learning task. More broadly, this work
shows the power and potential of deep learning to make a significant leap in progress in the
area of verification, which is considered a longstanding practical and scientific challenge in
computing.

95





Article 4.

Static Prediction of Runtime
Errors by Learning to Execute

Programs with External
Resource Descriptions

by

David Bieber1, Rishab Goel1, Daniel Zheng1, Hugo Larochelle1, and Daniel Tarlow1

This article was published in ICLR 2023.

I present my contributions and the contributions of the coauthors.
I identified the problem setting and research need and prepared the dataset by imple-

menting a pipeline to instrument and run each of the Python submissions. I implemented
the models and organized and ran the experiments. I led the team discussions, coordinated
the team’s activities, and authored the paper reproduced here.

Rishab Goel implemented the token RNN baseline and tracked and performed neural
network experiments. Daniel Zheng visualized programs and instruction pointers with
intensity plots, and made extensive training, evaluation, debugging, and code review
contributions. This work was done under the advising of Hugo Larochelle and Daniel Tarlow.



Abstract. The execution behavior of a program often depends on external resources,
such as program inputs or file contents, and so cannot be run in isolation. Nevertheless,
software developers benefit from fast iteration loops where automated tools identify errors
as early as possible, even before programs can be compiled and run. This presents an
interesting machine learning challenge: can we predict runtime errors in a “static” setting,
where program execution is not possible? Here, we introduce a real-world dataset and task
for predicting runtime errors, which we show is difficult for generic models like Transformers.
We approach this task by developing an interpreter-inspired architecture with an inductive
bias towards mimicking program executions, which models exception handling and “learns
to execute” descriptions of the contents of external resources. Surprisingly, we show that
the model can also predict the location of the error, despite being trained only on labels
indicating the presence/absence and kind of error. In total, we present a practical and
difficult-yet-approachable challenge problem related to learning program execution and we
demonstrate promising new capabilities of interpreter-inspired machine learning models for
code.
Keywords: program analysis, runtime errors, interpreter-inspired architectures
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1. Introduction
We investigate applying neural machine learning methods to the static analysis of source

code for early prediction of runtime errors. The execution behavior of a program is in general
not fully defined by its source code in isolation, because programs often rely on external
resources like inputs, the contents of files, or the network. Nevertheless, software developers
benefit from fast iteration loops where automated tools identify errors early, even when
program execution is not yet an option. Therefore we consider the following machine learning
challenge: can we predict runtime errors in a “static” setting, where program execution is
not possible?

This runtime error prediction task is well suited as a challenge problem because it
is difficult-yet-approachable, has real-world value for software developers, requires novel
modeling considerations that we hypothesize will be applicable to a range of learning for
code tasks, and with this work, now has a suitable large dataset of complex human-authored
code with error labels. The task is to predict whether a program will exhibit a runtime error
when it is run, and if so to determine the error; even when static analysis cannot provide
guarantees of an error in the code, patterns learned from data may point to likely errors. Our
dataset consists of 2.4 million Python 3 programs from Project CodeNet [119] written by
competitive programmers. We have run all programs in a sandboxed environment on sample
inputs to determine their error classes, finding the programs exhibit 26 distinct error classes
including “no error”. Each program relies on an external resource, the stdin input stream,
and we pair each program with a natural language description of the behavior of the stream.
We make the task and dataset, along with all models considered in this work, available for
the research community to facilitate reproduction of this work and further research7.

To make progress on this challenging task, we identify a promising class of models from
prior work, interpreter-inspired models, and we demonstrate they perform well on the task.
Instruction Pointer Attention Graph Neural Network (IPA-GNN) [15] models simulate the
execution of a program, following its control flow structure, but operating in a continuous
embedding space. We make a number of improvements to IPA-GNN: scaling up to handle
complex programs requiring thousands of execution steps, adding the ability to “learn to
execute” descriptions of external resources, and extending the architecture to model exception
handling and recover error locations. We evaluate these interpreter-inspired architectures
against Transformer, LSTM, and GGNN neural baselines, and against pylint as a static
analysis baseline. Our combined improvements lead to increased accuracy in predicting
runtime errors and to interpretability allowing for prediction of error locations even though
the models are only trained on error presence and error class, not error location. In total, we
summarize our contributions as:

7https://github.com/google-research/runtime-error-prediction
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• We introduce the runtime error prediction task and a large accompanying dataset, providing
runtime error annotations for millions of competition Python programs.
• We demonstrate that IPA-GNN architectures are practical for the complexity of real pro-

grams by scaling them to handle competition programs, and there we find they outperform
generic models.
• We demonstrate that external resource descriptions, such as Japanese or English descriptions

of stdin, can be leveraged to improve performance on the task across all model architectures.
• We extend the IPA-GNN to model exception handling, resulting in the Exception IPA-GNN,

which we find can localize errors even when only trained on error presence and kind, not
error location.

2. Related Work
Program analysis. Program analysis is a rich family of techniques for detecting defects in

programs, including static analyses which are performed without executing code [12, 100, 154]
and dynamic analyses which are performed at runtime [26, 50, 127]. Linters and type checkers
are popular error detection tools that use static analysis. Static analysis (e.g. symbolic
execution) does not typically use concrete inputs, while dynamic analysis requires concrete
inputs and program execution. Compared with traditional static analysis, our approach is
more flexible in its input representation, using a general “resource description” abstraction,
which can represent the entire spectrum from concrete inputs to input constraints to missing
inputs.

Execution-aware models. Several neural architectures draw inspiration from program
interpreters [15, 20, 37, 47, 54, 55, 74, 123]. Our work is most similar to Bieber et al. [15]
and Bošnjak et al. [20], focusing on how interpreters handle control flow and exception
handling, rather than on memory allocation and function call stacks. Other works use
program execution data directly, training with textual representations of execution traces as
inputs [109, 110, 114] or performing execution during synthesis [31, 95, 133]. Compared with
these, our approach uses weaker supervision, using only runtime error labels for training.

Fault detection and localization datasets. There has been considerable recent interest
in applying machine learning to identifying and localizing faults in source code [3]. Puri et al.
[119] makes a large dataset of real world programs available, which we build on in constructing
our runtime errors dataset. Our dataset (i) is large (it has millions of examples), (ii) exhibits
many programming language features, (iii) is written by human authors, and (iv) has error
labels from the execution behavior of programs. Previous code datasets only exhibit a subset
of these properties: large real-world and competition code datasets [63, 65, 76, 95, 119, 122]
exhibit properties i, ii, and iii, but not iv, while learning to execute datasets [15, 159] exhibit
property iv but not i, ii, or iii. Recent program synthesis datasets [11, 29] exhibit ii and iii
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Table 13. Distribution of target classes in the runtime errors dataset. † denotes the balanced
test split.

Target Class Train # Valid # Test #

No error 1881303 207162 205343 /
13289†

AssertionError 47 4 8
AttributeError 10026 509 1674

EOFError 7676 727 797
FileNotFoundError 259 37 22

ImportError 7645 285 841
IndentationError 10 0 12

IndexError 7505 965 733
KeyError 362 39 22

MemoryError 8 7 1
ModuleNotFoundError 1876 186 110

NameError 21540 2427 2422

Target Class Train # Valid # Test #

numpy.AxisError 20 2 3
OSError 19 2 2

OverflowError 62 6 11
re.error 5 0 0

RecursionError 2 0 1
RuntimeError 24 5 3
StopIteration 3 0 1
SyntaxError 74 4 3

TypeError 21414 2641 2603
UnboundLocalError 8585 991 833

ValueError 25087 3087 2828
ZeroDivisionError 437 47 125

Timeout 7816 1072 691
Other 18 8 2

only. Other datasets obtain error labels by injecting synthetic errors [4, 78, 118] (lacking the
realism of iii) or from commit messages [40, 73] (lacking i and iv).

Fault localization approaches. Fault localization approaches vary in (i) level of
supervision – weak (error labels) [91] vs strong (explicit location labels) [5, 101, 162, 164] –
and (ii) localization granularity – statement-level [5, 101, 162] vs method-level [91, 164]. Our
approach uses weak supervision in the form of runtime error labels to indirectly learn fault
localization at a statement-level.

3. Runtime Error Prediction
Task. The goal of the runtime error prediction task is to determine statically whether a

program is liable to encounter a runtime error when run, and if so, what error kind. The
programs cannot be executed directly, as they lack unit tests and depend on external resources
which are not available. A textual description of the external resources, which may be the
program’s inputs, a file’s contents, or network access, is provided. This makes reasoning
about the execution behavior of the programs plausible, even though actually performing the
execution is not. We treat this task as one-class classification, with each error type as its
own class and with “no error” as an additional class.

Dataset. We construct the runtime errors dataset using Python submissions to competi-
tive programming problems from Project CodeNet [119]. Beginning with the 3.28 million
Python submissions in Project CodeNet, we filter the submissions to keep only those written
in Python 3, which are syntactically valid, which do not make calls to user-defined functions,
and which do not exceed a threshold length of 512 tokens once tokenized. By running each
submission in a sandboxed environment, we identify its ground truth runtime error class.
Each submission is associated with a competitive programming problem whose problem
statement we parse to obtain a description in either English or Japanese of the inputs the
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program is liable to receive at runtime. This process results in a dataset of 2.44 million
submissions, each paired with one of 26 target classes. The “no error” target is most common,
accounting for 93.4% of examples. For examples with one of the other 25 error classes, we
additionally note the line number at which the error occurs.

We divide the problems into train, validation, and test splits at a ratio of 80:10:10. All
submissions to the same problem become part of the same split. This reduces similarities
between examples across splits that otherwise could arise from the presence of multiple similar
submissions for the same problem. Since there is a strong class imbalance in favor of the
no error class, we also produce a balanced version of the test split by sampling the no error
examples such that they comprise roughly 50% of the test split. We use this balanced test
split for all evaluations. We report the number of examples having each target class in each
split in Table 13. We describe the full dataset generation and filtering process in greater
detail in Appendix D.1, and we evaluate the limitations of the dataset quantitatively in
Appendix D.2.

While there are many datasets in the literature that test understanding of different aspects
of code including bug-finding, we believe ours fills a gap: it is large-scale (millions of examples),
it has real-world implications and presents a practical opportunity for improvement using
ML-based approaches, and it tests a combination of statistical reasoning and reasoning about
program execution.

4. Approach: IPA-GNNs as Relaxations of Interpreters
We make three modifications to the Instruction Pointer Attention Graph Neural Network

(IPA-GNN) architecture. These modifications scale the IPA-GNN to complex code, allow it
to incorporate external resource descriptions into its learned executions, and add support
for modeling exception handling. The IPA-GNN architecture is a continuous relaxation of
the standard interpreter (I) defined by the pseudocode in Algorithm 1, minus the magenta
text. We frame these modifications in relation to specific lines of the algorithm: scaling
the IPA-GNN to complex human-authored code (Section 4.1) and incorporating external
resource descriptions (Section 4.2) both pertain to interpreting and executing statement xp

at Line 3, and modeling exception handling adds the magenta text at lines 4-6 to yield a
new interpreter (I ′) (Section 4.3). We showcase the behavior of both interpreters I and I ′

on a sample program in Figure 15, and illustrate an execution of the same program by a
continuous relaxation of interpreter I ′ (Ĩ ′) alongside it.

4.1. Extending the IPA-GNN to Real Programs

Bieber et al. [15] interprets the IPA-GNN architecture as a message passing graph neural
network operating on the statement-level control-flow graph of the input program x. Each

102



Algorithm 1 Interpreter for which the Exception IPA-GNN is a continuous relaxation
Input: Program x

1: h← ∅; p← 0 ▷ Initialize the interpreter.
2: while p /∈ {nexit, nerror} do
3: h← Evaluate(xp, h) ▷ Evaluate the current statement.
4: if Raises(xp, h) then
5: p← GetRaiseNode(xp, h) ▷ Raise exception.
6: else
7: if Branches(xp, h) then
8: p← GetBranchNode(xp, h) ▷ Follow branch.
9: else

10: p← p+ 1 ▷ Proceed to next statement.

node in the graph corresponds to a single statement in the program. At each step t of the
architecture, each node performs three steps: it executes the statement at that node (Line 3,
Equation 4.2), computes a branch decision (Lines 7-8, Equation 4.4), and performs mean-field
averaging over the resulting states and instruction pointers (Appendix D.3, Equations D.3
and D.4).

Unlike in Bieber et al. [15] where program statements are simple enough to be uniformly
encoded as four-tuples, the programs in our runtime errors dataset consist of arbitrarily
complex Python statements authored by real programmers in a competition setting. The

Fig. 15. A sample program and its execution under discrete interpreters I and I ′ (Algo-
rithm 1) and under continuous relaxation Ĩ ′ of interpreter I ′. pI t denotes the instruction
pointer under I at step t.

n Source
1 x = input()
2 if x > 0:
3 y = 4/3 * x
4 else:
5 y = abs(x)
6 z = y + sqrt(x)
7 <exit>
8 <raise>

(a) A sample program illus-
trative of Algorithm 1 be-
havior, which raises a Val-
ueError if x < 0 at line 6.

StdIn -3
StdIn Description "A single integer -10..10"

(b) The resource description suggests values the program may receive
on stdin.

t hI,I′ pI pI′ hĨ′ pĨ′

0 {} 1 1 10000000
1 {x: -3} 2 2 01000000
2 {x: -3} 5 5 00001000
3 {x: -3, y: 3} 6 6 00000100
4 ValueError: line 6 7 8 00000001

(c) Step-by-step execution of the program under interpreters I and
I ′, and continuous relaxation Ĩ ′. Distinct colors represent distinct
embedding values.
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language features used are numerous and varied, and so the statement lengths vary substan-
tially, with a mean statement length of 6.7 tokens; we report the full distribution of statement
lengths in Figure 34.

The IPA-GNN architecture operates on a program x’s statement-level control-flow graph,
and so requires per-statement embeddings Embed(xn) for each statement xn. We first apply
either a local or global Transformer encoder to produce per-token embeddings, and we
subsequently apply one of four pooling variants to a span of such embeddings to produce a
node embedding per statement in a program. In the local approach, we apply an attention
mask to limit the embedding of a token in a statement to attending to other tokens in the
same statement. In the global approach, no such attention mask is applied, and so every
token may attend to every other token in the program. We consider four types of pooling in
our hyperparameter search space: first, sum, mean, and max. The resulting embedding is
given by

Embed(xn) = Pool
(
Transformer(x)Span(x,n)

)
. (4.1)

First pooling takes the embedding of the first token in the span of node n. Sum, mean, and
max pooling apply their respective operations to the embeddings of all tokens in the span of
node n.

Finally we find that the programs in our dataset require as many as 174 steps of the
IPA-GNN under the model’s heuristic for step limit T (x) (Appendix D.5). To reduce the
memory requirements, we apply rematerialization at each layer of the model [30, 57].

4.2. Executing with Resource Descriptions

In our dataset, each program x may be accompanied by a description of what values stdin
may contain at runtime. We convert this description into embedding d(x); the embeddings,
vocabulary, and tokenizer used to produce d(x) are shared with those used to produce token
embeddings from program source. Analogous to Line 1 of Algorithm 1, IPA-GNN architectures
initialize with per-node hidden states h0,: = 0 and soft instruction pointer p0,n = 1{n = 0}.
Here pt,n represents the probability under the model that node n is executing at step t.
Following initialization, each step of an IPA-GNN begins by simulating execution (Line 3) of
each non-terminal statement with non-zero probability under the soft instruction pointer to
propose a new hidden state contribution

a
(1)
t,n = RNN(ht−1,n,Modulate(Embed(xn), d(x), ht−1,n)). (4.2)

The text in magenta shows our modification to the IPA-GNN architecture to incorporate
external resource descriptions. We consider both Feature-wise Linear Modulation (FiLM)
[116] and cross-attention [88] for the Modulate function, which we define in Appendix D.4.
Modulation allows the IPA-GNN to execute differently at each step conditioned on the
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information in the resource description, whether it be type information, value ranges, or
candidate values.

We also consider an additional method: injecting the description as a docstring at the
start of the program. This method yields a new valid Python program, and so any model
can accommodate it.

4.3. Modeling Exception Handling

The final modification we make to the IPA-GNN architecture is to model exception
handling. In Algorithm 1, this corresponds to adding the magenta text to form interpreter I ′,
computing a raise decision (Lines 4-6, Equation 4.3). We call the architecture that results
the Exception IPA-GNN.

Whereas execution always proceeds from statement to next statement in interpreter I
and in the IPA-GNN, interpreter I ′ admits another behavior. Under I ′ and the Exception
IPA-GNN, execution may proceed from any statement to a surrounding “except block”, if it
is contained in a try/except frame, or else to a special global error node, which we denote
nerror. In the sample execution in Figure 15c we see at step t = 4 the instruction pointer pI′

updates to nerror = 8.
We write that the IPA-GNN makes raise decisions as

bt,n,r(n), (1− bt,n,r(n)) = softmax
(
Dense(a(1)

t,n)
)
. (4.3)

The dense layer here has two outputs representing the cases that an error is and is not raised.
Here r(n) denotes the node that statement n raises to; r(n) = nerror if n is not contained
in a try/except frame, and bt,n,n′ denotes the probability under the model of execution
transitioning from n to n′.

Next the model makes soft branch decisions in an analogous manner; the dense layer for
making branch decisions has distinct weights from the layer for making raise decisions.

bt,n,n1 , bt,n,n2 = (1 − bt,n,r(n)) · softmax
(
Dense(a(1)

t,n)
)
. (4.4)

The text in magenta corresponds to the “else” at Line 6. The model has now assigned
probability to up to three possible outcomes for each node: the probability that n raises an
exception bt,n,r(n), the probability that the true branch is followed bt,n,n1 , and the probability
that the false branch is followed bt,n,n2 . In the common case where a node is not a control
node and has only a single successor, the probability of reaching that successor is simply
1− bt,n,r(n).

Finally, we assign each program a step limit T (x) using the same heuristic as Bieber et al.
[15], detailed in Appendix D.5. After T (x) steps of the architecture, the model directly uses
the probability mass at nexit and nerror to predict whether the program raises an error, and if
so it predicts the error type using the hidden state at the error node. We write the modified

105



IPA-GNN’s predictions as

P (no error) ∝ pT (x),nexit and P (error) ∝ pT (x),nerror , with (4.5)

P (error = k | error) = softmax
(
Dense(hT (x),nerror)

)
. (4.6)

We train with a cross-entropy loss on the class predictions, treating “no error” as its own
class.

4.4. Unsupervised Localization of Errors

Since the Exception IPA-GNN makes soft decisions as to when to raise an exception, we
aggregate these soft decisions to obtain the model’s prediction for where a program raises
an error. We use this to evaluate the model’s localization accuracy despite training without
error locations as supervision.

For programs that lack try/except frames, we compute the localization predictions of the
model by summing, separately for each node, the contributions from that node to the error
node across all time steps. This gives an estimate of exception provenance as

p(error at statement n) =
∑

t

pt,n · bt,n,nerror . (4.7)

For programs with a try/except frame, we must trace the exception back to the statement
that originally raised it. To do this we calculate a recurrence as detailed in Appendix D.8.

5. Experiments
In our experiments we evaluate the following research questions:
RQ1: How does the adaptation of the IPA-GNN to realistic code compare against existing

static analysis and against standard architectures like GGNN, LSTM, and Transformer?
(Section 5.1)

RQ2: What is the impact of including resource descriptions? What methods for incorpo-
rating them work best? (Section 5.2)

RQ3: How interpretable are the soft instruction pointer values in the Exception IPA-
GNN for localizing errors? How does unsupervised localization with the Exception IPA-GNN
compare to alternative unsupervised localization approaches based on multiple instance
learning? (Section 5.3)

5.1. Evaluation of IPA-GNN Against Baselines

We describe the experimental setup for our first experiment, comparing the IPA-GNN
architectures with Transformer [143], GGNN [94], and LSTM [64] baselines. In all approaches,
we use the 30,000 token vocabulary constructed in Appendix D.1, applying Byte-Pair Encoding
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(BPE) tokenization [128] to tokenize each program into a sequence of token indices. The
Transformer operates on this sequence of token indices directly, with its final representation
computed via mean pooling. For all other models (GGNN, LSTM, IPA-GNN, and Exception
IPA-GNN), the token indices are first combined via a masked (local) Transformer to produce
per-node embeddings, and the model operates on these per-node embeddings as in Section 4.1.
Following Bieber et al. [15] we encode programs for a GGNN using six edge types, and use a
two-layer LSTM for the LSTM baseline and in all IPA-GNN variants.

In order to compare against the capabilities of a standard static analysis setup, we also
consider a baseline based on pylint. For this baseline, we map a subset of the findings that
pylint can identify to runtime error classes that they can indicate. The baseline predicts
an error class if pylint identifies a corresponding finding. The purpose of this baseline is to
consider a standard tool used by Python developers and see how it is performing on the task.
We provide further details in Appendix D.7.

For each neural approach, we perform an independent hyperparameter search using
random search. We list the hyperparameter space considered and model selection criteria in
Appendix D.5. The models are each trained to minimize a cross-entropy loss on the target
class using stochastic gradient descent for up to 500,000 steps with a mini-batch size of 32.
In order to more closely match the target class distribution found in the balanced test set, we
sample mini-batches such that the proportion of examples with target “no error” and those
with an error target is 1:1 in expectation. We evaluate the selected models on the balanced
test set, and report the results in Table 14a (see rows without check marks). Weighted F1
score (W. F1) performs a weighted average of the per-class F1 scores by class frequency,
and weighted error F1 score (E. F1) does the same while restricting consideration to those
examples with a runtime error.

We perform additional evaluations using the same experimental setup but distinct initial-
izations to compute measures of variance, which we detail in Appendix D.6.

RQ1: The interpreter-inspired architectures show significant gains over the pylint, LSTM,
GGNN and Transformer baseline approaches on the runtime error prediction task. We observe
that the pylint baseline can make incorrect predictions because it correctly identifies an
issue in the code under analysis when that code does not result in a runtime error in our
dataset; pylint’s lower performance on runtime error prediction is not evidence against pylint’s
performance for its intended use cases. We attribute the interpreter-inspired architectures’
relative success over other neural architectures to their inductive bias toward mimicking
program execution.
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Table 14. Error classification and error localization results on the balanced test set with
and without resource descriptions (R.D.).

(a) Accuracy, weighted F1, and weighted error F1
scores.

Model R.D.? Acc. W. F1 E. F1

B
as

e-
li

ne
s

Pylint 60.4 47.9 23.8
GGNN 62.8 58.9 45.8
Transformer 63.6 60.4 48.1
LSTM 66.1 61.4 48.4

A
bl

at
io

ns

GGNN " 68.3 66.5 56.8
Transformer " 67.3 65.1 54.7
LSTM " 68.1 66.8 58.3
IPA-GNN 68.3 64.8 53.8
E. IPA-GNN 68.7 64.9 53.3

O
ur

s IPA-GNN " 71.4 70.1 62.2
E. IPA-GNN " 71.6 70.9 63.5

(b) Localization accuracy (%) for the MIL
Transformers and Exception IPA-GNN.

Model R.D.? Local.

Local MIL Transformer 33.0
Local MIL Transformer ! 48.9
Global MIL Transformer 48.2
Global MIL Transformer ! 48.8
E. IPA-GNN 50.8
E. IPA-GNN + Docstring ! 64.7
E. IPA-GNN + FiLM ! 64.5
E. IPA-GNN + Cross Attention ! 68.8

Table 15. A comparison of early and late fusion methods for incorporating external resource
description information into interpreter-inspired models.

Baseline Docstring FiLM Cross-attention
Model Acc. W. F1 E. F1 Acc. W. F1 E. F1 Acc. W. F1 E. F1 Acc. W. F1 E. F1

IPA-GNN 68.3 64.8 53.8 71.4 70.1 62.2 71.6 70.3 62.9 72.0 70.3 62.6
E. IPA-GNN 68.7 64.9 53.3 71.6 70.9 63.5 70.9 68.8 59.8 73.8 72.3 64.7

5.2. Incorporating Resource Descriptions

We next evaluate methods of incorporating resource descriptions into the models. For
each architecture we apply the docstring approach of processing resource descriptions of
Section 4.2. This completes a matrix of ablations, allowing us to distinguish the effects
due to architecture change from the effect of the resource description. We follow the same
experimental setup as in Section 5.1, and show the results again in Table 14a (compare rows
with check marks to those without).

We also consider the FiLM and cross-attention methods of incorporating resource descrip-
tions into the IPA-GNN. Following the same experimental setup again, we show the results of
this experiment in Table 15. Note that the best model overall by our model selection criteria
on validation data was the IPA-GNN with cross-attention, though the Exception IPA-GNN
performed better on test.

RQ2: Across all architectures, the results show external resource descriptions improve
performance on the runtime error prediction task. On the IPA-GNN architectures, we see
further improvements by considering architectures that incorporate the resource descrip-
tion directly into the execution step of the model, but these gains are inconsistent. The
pylint baseline is unable to incorporate resource descriptions. Critically, using any resource
description method is better than none at all.
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To understand how the resource descriptions lead to better performance, we compare
in Figure 16 the instruction pointer values of two Exception IPA-GNN models on a single
example (shown in Table 16). The model with the resource description predicts that the
input() calls will read input beyond the end of the stdin stream. In contrast, the model
without the resource description has less reason to suspect an error would be raised by those
calls. The descriptions of stdin in our runtime errors dataset also frequently reveal type
information, expected ranges for numeric values, and formatting details about the inputs.
We visualize additional examples in Appendix D.11.

5.3. Interpretability and Localization

We next investigate the behavior of the Exception IPA-GNN model, evaluating its ability
to localize runtime errors without any localization supervision. In unsupervised localization,
the models predict the location of the error despite being trained only with error presence
and kind supervision.

Multiple Instance Learning Baselines. Unsupervised localization may be viewed as
multiple instance learning (MIL) [39]. Consider the subtask of predicting whether a particular
line contains an error. In an n-line program, there are n instances of this subtask. The
available supervision only indicates if any one of these subtasks has an error, but not which
one. By viewing each instance as a bag of subtasks, we have cast the problem as MIL.

Using this view, we introduce two variations on the Transformer architecture as multiple
instance learning baselines. The first is the “Local MIL Transformer”, in which each statement
in the program is encoded individually, as in the local node embeddings computation of

Fig. 16. Heatmap of instruction pointer values produced by Baseline and Docstring
Exception IPA-GNNs for the example in Table 16. The x-axis represents timesteps and the
y-axis represents nodes, with the last two rows respectively representing nexit and nerror. The
Baseline instruction pointer value is diffuse, with most probability mass ending at nexit.
The R.D. instruction pointer value is sharp, with almost all probability mass jumping to
nerror from node 2.

Baseline Resource Description
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Table 16. Per-node localization predictions from the Baseline and Docstring Exception
IPA-GNN models on a sample program from the validation split. The target class is
EOFError, occurring on line 2 (n = 2). Baseline predicts No Error with confidence
0.708, while R.D. predicts EOFError with confidence 0.988, localized at line 3 (n = 3).
The input description shows the cause for error: there are more input() calls than the
number of expected inputs.

StdIn Description Input: Input is given from Standard Input in the following
format Constraints: Each character of S is A or B. |S| = 3

n Source Baseline R.D.

0 a = str(input()) 16.9 0.4
1 q = int(input()) 3.2 0.3
2 s = [input().split() for i in range(q)] 0.5 99.3

3,4 for i in range(q): 6.4 0.0
5 if int(s[i][0]) == 1 and len(a)>1: 0.1 0.0
6 a = a[::-1] 0.7 0.0
7 elif int(s[i][0])== 2 and int(s[i][1])==1: 0.1 0.0
8 a=s[i][2]+a 0.2 0.0

else:
9 a=a+s[i][2] 0.0 0.0
10 print(a) 1.1 0.0

Section 4.1. The second is the “Global MIL Transformer”, in which all tokens in the program
may attend to all other tokens in the Transformer encoder. In both cases, the models
make per-line predictions, which are aggregated to form an overall prediction as defined in
Appendix D.9.

Localization Experiment. Using the same protocol as Section 5.1, we train each of
the MIL Transformer and Exception IPA-GNN models. As before, the models are trained
only to minimize cross-entropy loss on predicting error kind and presence, receiving no error
location supervision. We report the localization results in Table 14b. Localization accuracy
(“Local.”) measures the percent of the test examples with errors for which the model
correctly predicts the error line number.

RQ3: The Exception IPA-GNN’s unsupervised localization capabilities far exceed that
of baseline approaches. In Figure 16 we see the flow of instruction pointer mass during the
execution of a sample program (Table 16) by two Exception IPA-GNN models, including
the steps where the models raise probability mass to nerror. Tallying the contributions to
nerror from each node yields the exception provenance values in the right half of Table 16.
This shows how the model’s internal state resembles plausible program executions and allows
for unsupervised localization. As a beneficial side-effect of learning plausible executions, the
Exception IPA-GNN can localize the exceptions it predicts.
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6. Discussion
In this work, we introduce the task of predicting runtime errors in competitive programming

problems and advance the capabilities of interpreter-inspired models. Our models support
the complexity of competition code and demonstrate that natural language descriptions of
external resources can reduce the ambiguity that arises in a static analysis setting. We show
that the interpreter-inspired models outperform standard alternatives and that their inductive
biases allow for interesting interpretability in the context of unsupervised localization.

Though they perform best, current IPA-GNN models require taking many steps of
execution, up to 174 on this dataset. A future direction is to model multiple steps of program
execution with a single model step, to reduce the number of model steps necessary for long
programs. Extending the interpreter-inspired models with additional interpreter features,
or supporting multi-file programs or programs with multiple user-defined functions are also
interesting avenues for future work.

Learning to understand programs remains a rich area of inquiry for machine learning
research because of its complexity and the many aspects of code. Learning to understand
execution behavior is particularly challenging as programs grow in complexity, and as they
depend on more external resources whose contents are not present in the code. Our work
presents a challenging problem and advances interpreter-inspired models, both of which we
hope are ingredients towards making progress on these difficult and important problems.
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Conclusion

We conclude with a summary of the contributions of the works presented, a discussion of how
the lessons learned fit in the modern context of the fast-changing field of machine learning,
and what direction this points us in going forward.

1. Summary
In this thesis we introduced the instruction pointer attention graph neural network

(IPA-GNN) family of architectures, including the IPA-GNN, RTL IPA-GNN, and Exception
IPA-GNN. Examining this interpreter-inspired model family, we call attention to the system-
aticity properties of the models, particularly improvements in systematic generalization and
interpretability, the flexibility of the architectures to model a variety of non-standard forms
of execution, and the range of tasks these models are appropriate for, and the real-world
value they provide. By drawing from the structure of program interpreters, these models are
well-suited for modeling the execution behavior of programs, a skill that remains difficult for
general purpose neural architectures. We now review the contributions of each of the articles
of the thesis.

In Article 1 we introduced the python_graphs library for constructing graph represen-
tations of Python programs for machine learning research. This library not only supports
our IPA-GNN research, it also facilitates additional research into the use of the structure
of Python programs for machine learning, making such research both easier and more cost
effective to pursue. Several works build on it in studying the use of program structure
in machine learning for code. We use it extensively in our study of IPA-GNNs. Then,
with Article 2, we introduce our first interpreter-inspired neural architecture, the IPA-GNN.
IPA-GNN architectures form the basis of our contributions across each of the subsequent
articles as well. Each of the IPA-GNN variants we consider can be viewed as a continuous
relaxations of some discrete interpreter. In Article 2, this is a simple interpreter that can
execute a subset of the Python programming language. Here we observe the IPA-GNN to
exhibit improved strong generalization on learning to execute tasks, outperforming baseline
models on executing long programs when trained only on short ones. This gave the first



evidence of the utility of the IPA-GNN for performing non-standard notions of execution:
the IPA-GNN learns to execute both full and partial programs in a step-limited execution
environment. Though the programs in these experiments were simple, the next two articles
consider more realistic sets of programs. Article 3 extends the IPA-GNN to support hardware
descriptions written in Verilog, yielding the register transfer level (RTL) IPA-GNN. The
model family continues to show its adaptability to different forms of execution. Here, the
RTL IPA-GNN models execution of a hardware description, where blocks are concurrent and
repeating, in contrast with the earlier single threaded non-repeating Python programs. The
results of the RTL IPA-GNN on cover point prediction are valuable to design verification
engineers, highlighting the real-world utility of this research. Finally, with Article 4, we
consider the developer task of predicting runtime errors. The IPA-GNN family of models is
effective on this task, outperforming a suite of general purpose baselines including a popular
static analysis tool. This task again highlights the real-world utility of the research, and
accordingly we make our dataset and models available publicly to facilitate further research.
The flexibility of the IPA-GNN to model different forms of execution here allows for modeling
exception handling with the Exception IPA-GNN. The inductive bias of this architecture
allows a new interpretability capability: it enables localizing errors, despite training the
model only on error kind and presence, not error location.

In total these contributions represent both tangible progress on meaningful applications
in program analysis, as well as a promising direction for continued improvements to machine
learning models of programs and their executions.

2. Placing in Modern Context
The works presented in this thesis span multiple years, from 2019 to 2023. In this time,

machine learning has advanced considerably. In this section we review the recent rapid
advancement of machine learning for code in this time and the implications for our research.

In March 2019, shortly after the start of my PhD, Richard Sutton published “The Bitter
Lesson” [136]. Sutton’s message is that, in the long term, the methods that prevail are the ones
that scale to absorb increased availability of compute, and that the methods that consistently
do this are search and learning. Sure enough, in the years that followed, advancements
in model and data scale lead to impressive new capabilities in machine learning for code.
In August 2021, OpenAI released Codex which enabled practical open domain natural
language programming. That same month, Google published Austin et al. [11] showing large
language models performing program synthesis. Then, in February 2022, DeepMind released
AlphaCode, notable for achieving median human performance at competitive programming.
These milestones on the one hand have reinforced “The Bitter Lesson”. At the same time,
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despite the increasing scale of models and data, tasks requiring reasoning about program
executions remained difficult.

The rapid progress that these publications indicate was brought about primarily through
scale and transfer from unsupervised learning. With unsupervised learning, models can
leverage large amounts of data that are not directly related to the task of interest, in order
to learn broadly useful representations of inputs. This allows scaling data sources without
the expensive labeling process required for scaling supervised learning datasets. Between this
and advancements in hardware and frameworks for machine learning, researchers achieved
unprecedented model and data scales. The models used in the accomplishments noted above
are Transformers with hundreds of billions of parameters, and were trained on hundreds of
billions of tokens of input data.

In this time period, there were also advancements in our understanding of scaling laws
for deep neural networks, for example with Kaplan et al. [77] published in January 2020. As
the amount of data available for any particular task grows, general purpose neural networks
become better function approximators. For any desired error level greater than the intrinsic
entropy of the task, there is some finite amount of data (possibly intractably large), that allows
the model to achieve that error level with a general purpose neural network. Large models
trained on large volumes of data demonstrate impressive transfer capabilities, leveraging
what they learn from their pre-training data to perform well on tasks related to, but not
directly represented by, this data. The impressive recent advances in machine learning for
code are possible only because of these properties. The large Transformers used in Codex
and AlphaCode were first pretrained on large amounts of code, and then fine-tuned for their
downstream tasks. So, in a machine learning landscape dominated by large general purpose
models pretrained on large amounts of both natural language and code data, how do our
contributions fit in?

Comparatively, the models we examine in this thesis are tiny. The 8 million parameter
models in Article 4 are 100,000 times smaller than the largest models in use today. A key
question, therefore, is whether the interpreter-inspired models scale effectively. Do they retain
their interpretability and systematic generalization benefits as they are scaled?

We can view the inductive bias introduced by using an interpreter-inspired model as
providing information about the underlying task to the model. In the large data limit, this
additional information baked into the architecture does not contribute value. However, in
practice, data is limited, and on the realistic data volumes used in our articles we find that
the intrinsic prior indeed does matter substantially. Our setting did not consider pre-training
on unsupervised tasks; once this is taken into consideration, the total volume of data is much
higher. In this setting, does the intrinsic prior still have value? Are interpreter-inspired
architectures like the IPA-GNN suitable for taking advantage of the large amounts of unlabeled
code data on GitHub.
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We present some ways in which the IPA-GNN architecture family might leverage both
increased data scale and transfer learning. Models like the IPA-GNNs of Article 4, which use
a Transformer encoder followed by an IPA-GNN interpreter, can be scaled along multiple
dimensions. The Transformer encoder can be scaled up independently of the IPA-GNN.
To fully take advantage of transfer learning on large datasets, both general purpose pre-
training tasks and execution-specific pre-training are possible. The Transformer encoder can
leverage the general purpose pre-training tasks that are already useful in natural language
processing today. A natural line of research is to ask: what are the intrinsic unsupervised
tasks appropriate for pre-training a model centered around modeling execution? These could
be tasks that use data from an execution or partial execution (e.g. given some values for
variables, predict a property of the state after several steps of execution, predict whether a
property will become true after execution, etc), or tasks that rely only on syntactic properties
(e.g. if two statements execute, what must have executed in between?). Future work in this
direction will be critical for understanding the role large interpreter-inspired models will play
in predicting behavioral properties of programs moving forward.

3. Future Directions
The context laid out above naturally shapes our curiosity about interpreter-inspired

architectures. What are their scaling characteristics, as compared with general purpose
models? Supposing we pre-train one or more parts of an interpreter-inspired model, how
well does information from unsupervised pre-training transfer for execution-specific tasks?
How well do they incorporate transfer learning from unsupervised training? In the runtime
error predictions paper, the parameter count is dominated by parameters in the Transformer
encoder, not in the IPA-GNN. As we scale an interpreter inspired architecture, what is the
trade-off between scaling the encoder that produces statement embeddings, and scaling the
IPA-GNN specific parameters that perform relaxed execution over these embeddings? What
is the trade-off between scaling data and scaling compute? How does transfer factor in? We
know that for producing good embeddings of source code, pre-training on unsupervised tasks
is fruitful; are there pre-training tasks particularly fruitful when using embeddings in an
execution aware setting?

The IPA-GNN uses many steps of execution, one model step per execution step in
the common case. This results in models that use more computation than a fixed depth
Transformer of comparable size. One direction we are exploring is modeling multiple steps
of execution in a single step of the model. For this, we are considering approaches that
allow execution not just following the statement-level control-flow graph directly, but instead
executing groups of statements simultaneously. This allows for modeling longer programs
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using fewer model steps overall, while still preserving the inductive bias toward mimicking
program executions.

The large language models that have lead to success in tasks like natural language
programming and competitive programming gain their capabilities from both scale and
transfer. As we investigate scaling up interpreter-inspired models like the IPA-GNN, we must
ask what pre-training tasks are appropriate to give the benefits of transfer. The IPA-GNN
in Article 4 uses a Transformer encoder. This can be pretrained using the unsupervised
pre-training tasks that have shown success in natural language processing and in execution-
agnostic models of code. For example, next token prediction, masked language modeling, and
span denoising have each shown great promise.

An open research question is what are the appropriate execution-specific pre-training tasks
to maximize the benefits for transfer learning. One approach we are considering is leveraging
trace data as additional supervision for training the IPA-GNN, with the goal of reducing the
sample complexity allowing the model to learn about the programming language semantics
more quickly. Using traces as supervision provides a much greater amount of information
per example during training compared with only runtime error labels. Additional research
is required to identify pre-training tasks that are suitable for unsupervised learning for the
IPA-GNN.

The interpreter-inspired models that we considered in this thesis focused on modeling
control flow. Other aspects of program interpreters have been explored in prior works, and
there remains room to model additional components of an interpreter. The key is to strike a
balance between imposing a prescriptive inductive bias on the model with allowing the model
the freedom to learn the most suitable representations. Key aspects of interpreters to study
in further depth are data flow, function call stacks, and the separation of concerns (distinct
variables) in program state.

Improvements in execution-aware machine learning bring us closer to building developer
tools that can help developers save time. One aspiration of this research is to build a system
that can alert developers when they launch a long-running job if that job is likely to fail. If we
can make this alert with high confidence, this can save developers significant time, allowing
them to fix the software before waiting for it to schedule, run, and crash. The applications
that we study in this thesis already demonstrate real world value: coverage prediction during
hardware validation assists design verification engineers, and runtime error prediction serves
as an early warning developer tool that helps competitive programmers save time. New
applications like early crash prediction could provide further value, saving developers time
and perhaps preventing service outages.

Two fundamental advances that need to occur to fully tackle these target applications are
handling large codebases, and handling multi-service programs that communicate with one
another over a network. The research in this thesis processes only single-file programs, and
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the interpreter-inspired architectures are not designed to handle interprocess communication
or inter-service communication. Another capability that may be useful for crash prediction is
giving the models access to the logs of recent similar jobs. Long context models like Jaegle
et al. [68] and retrieval models like Borgeaud et al. [19] provide an interesting direction of
study for providing these missing capabilities.

One of the reasons we study tasks requiring reasoning about execution behavior is that
these tasks retain significant headroom even for large language models. As we measure the
scaling properties of interpreter-inspired architectures and compare them with general purpose
language model, it becomes important to identify whether there is anything fundamental about
these execution tasks that keeps them challenging for fixed depth models. Stochastic depth
models (models whose depth varies according to a distribution from example to example) are
a promising approach to tasks with widely varying computational requirements like execution,
and form an interesting generalization of the variable depth property of IPA-GNN models.

This thesis raises more questions than it answers, and points us in a promising direction
going forward toward improved models of code and code execution, and in turn toward a
promising future of developer tools.
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A. Appendixes for Article 1
A.1. Program Graph Visualizations

Fig. 17. Program graph for Program #1 from Table 2.
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Fig. 18. Program graph for Program #2 from Table 2.
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Fig. 19. Program graph for Program #3 from Table 2.
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Fig. 20. Program graph for Program #4 from Table 2.
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Fig. 21. Program graph for Program #5 from Table 2.
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Fig. 22. Program graph for Program #6 from Table 2.
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Fig. 23. Program graph for Program #7 from Table 2.
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Fig. 24. Program graph for Program #8 from Table 2.
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A.2. Histograms of Program Graph Metrics

Fig. 25. Histograms for various metrics of program graphs from the Project CodeNet dataset.
Red bars include graphs where the metric lies outside the range covered by the other bars.
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B. Appendixes for Article 2
B.1. Architecture Details

We provide additional architectural details here beyond those provided in the paper.
In this work, all GNN models (IPA-GNN, NoExecute, NoControl, GGNN, and R-GAT)

compute their final hidden state as hfinal = hT (x),nexit . Here nexit is the index of the program’s
exit statement, and the number of neural network layers T (x) is computed as

T (x) =
∑

0≤i≤nexit

2LoopNesting(i) +
∑

i∈Loops(x)
2LoopNesting(i) (B.1)

LoopNesting(i) denotes the number of loops with loop-body including statement xi. And
Loops(x) denotes the set of while-loop statements in x. This provides enough layers to permit
message passing along each path through a program’s loop structures twice, but not enough
layers for the IPA-GNN to learn to follow the ground truth trace of most programs.

In all models, the output layer consists of the computation of logits, followed by a softmax
cross-entropy categorical loss term. The softmax-logits are computed according to

s = softmax (Dense(hfinal)) . (B.2)

The cross entropy loss is then computed as

L = −
K∑
i

1y=i log(si). (B.3)

This loss is then optimized using a differentiable optimizer during training.

B.2. Data Generation

For the learning to execute full and partial programs tasks, we generate a dataset from
a probabilistic grammar over programs. Figure 26 provides the grammar. If, IfElse, and
Repeat statements are translated into their Python equivalents. Repeat statements are
represented using a while-loop and counter variable selected from v1. . . v9 uniformly at
random, excluding those variables already in use at the entrance to the Repeat statement.
We generate the control-flow graphs following Bieber et al. [17].

Attention plots for randomly sampled examples from the full program execution task are
shown in Figure 27. We then mask a random statement in each example and run the partial
program execution IPA-GNN model over each program, showing the resulting attention plots
in Figure 28. All four tasks are solved correctly in the full program execution task task,
and the first three are solved correctly in the partial execution task, while the fourth partial
execution task shown is solved incorrectly.
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Program P := I B

Initialization I := v0 = M
Block B :=B S | S

Statement S := E | If(C,B) | IfElse(C,B1, B2) | Repeat(N,B)
| Continue | Break | Pass

Condition C := v0 mod 10 O N

Operation O := > | < | >= | <=
Expression E := v0 += N | v0 -= N | v0 *= N

Integer N := 0 | 1 | 2 | . . . | 9
Integer M := 0 | 1 | 2 | . . . | 999

Fig. 26. Grammar describing the generated programs comprising the dataset in this paper.

n Source CFG IPA
0 v0 = 589
1 if v0 % 10 >= 8:
2 v0 *= 4
3 else:
4 if v0 % 10 < 0:
5 v0 *= 1
6 else:
7 if v0 % 10 >= 6:
8 if v0 % 10 < 3:
9 v0 += 9
10 <exit>

n Source CFG IPA
0 v0 = 36
1 if v0 % 10 >= 7:
2 v0 *= 3
3 if v0 % 10 > 3:
4 v0 *= 4
5 v5 = 3
6 while v5 > 0:
7 v5 -= 1
8 break
9 v0 *= 2
10 <exit>

n Source CFG IPA
0 v0 = 528
1 v0 *= 1
2 v0 += 9
3 v0 += 3
4 if v0 % 10 < 8:
5 if v0 % 10 < 3:
6 if v0 % 10 < 0:
7 v0 -= 7
8 v0 -= 9
9 <exit>

n Source CFG IPA
0 v0 = 117
1 if v0 % 10 <= 6:
2 v0 -= 9
3 v0 += 7
4 else:
5 v1 = 2
6 while v1 > 0:
7 v1 -= 1
8 v0 -= 6
9 v0 *= 1
10 <exit>

Fig. 27. Intensity plots show the soft instruction pointer pt,n at each step of the IPA-GNN
during full program execution for four randomly sampled programs.
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n Source CFG IPA
0 v0 = 589
1 if v0 % 10 >= 8:
2 v0 *= 4
3 else:
4 if v0 % 10 < 0:
5 v0 *= 1
6 else:
7 if v0 % 10 >= 6:
8 if v0 % 10 < 3:
9 [MASK]
10 <exit>

n Source CFG IPA
0 v0 = 36
1 if v0 % 10 >= 7:
2 [MASK]
3 if v0 % 10 > 3:
4 v0 *= 4
5 v5 = 3
6 while v5 > 0:
7 v5 -= 1
8 break
9 v0 *= 2
10 <exit>

n Source CFG IPA
0 v0 = 528
1 [MASK]
2 v0 += 9
3 v0 += 3
4 if v0 % 10 < 8:
5 if v0 % 10 < 3:
6 if v0 % 10 < 0:
7 v0 -= 7
8 v0 -= 9
9 <exit>

n Source CFG IPA
0 v0 = 117
1 if v0 % 10 <= 6:
2 v0 -= 9
3 v0 += 7
4 else:
5 v1 = 2
6 while v1 > 0:
7 v1 -= 1
8 [MASK]
9 v0 *= 1
10 <exit>

Fig. 28. The same programs as in Figure 27, with a single statement masked in each. The
intensity plots show the soft instruction pointer pt,n at each step of the IPA-GNN during
partial program execution.

C. Appendixes for Article 3
C.1. RTL CDFGs

We show an example of RTL CDFG execution (simulation) over multiple cycles in
Figure 29. In the example, at a given clock cycle t, the values of a and b from the previous
clock cycle t-1 will be used for evaluating the condition a > b in the green always block and
the corresponding branch will be executed in that cycle. In the other two always blocks, in
cycle t, b and a will be assigned values based on values of c and d from previous cycle t-1.
In the next cycle t+1, a and b will get values of a and b from cycle t.

The input stimulus and the branches covered by the simulation are shown in Figure 30.

C.2. Industrial verification flow

Figure 31 shows the context of our solution within the industrial verification flow. Figure 32
shows the Design2Vec solution inbuilt into the constrained random verification environment.
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Fig. 29. RTL and CDFG execution (simulation) over three cycles t-1, t, t+1

Fig. 30. Input stimulus and corresponding branches that are covered. Coverage is a path tracing
through the CDFG.

C.3. Sizes of designs

We show a comparison of the relative sizes of RTL CDFGs between IBEX and the TPU
design in Table 17.
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Fig. 31. Industrial verification flow with manually generated testbench, tests, constraints
and coverage feedback. This flow takes multiple person-years of engineer productivity to
converge

Fig. 32. Value proposition of Design2Vec when integrated into the loop of an industrial
verification flow. It learns about the design state space and generates tests to cover different
uncovered cover points (holes). It can potentially be used to generate constraints.
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Table 17. Comparison of relative sizes of RTL CDFGs between IBEX and TPU design.

IBEX v1 TPU Block
# CDFG Nodes 5500 40000
# CDFG Edges 9300 58000
# Branch cover points 900 45000
# Number of gates 10028 1088343

C.4. Examples of generated tests

See Table 18 for examples of tests generated by Design2Vec for hard to cover points.

Table 18. Example tests generated by Design2Vec for hard to cover points. Multiple cover points
that are local neighbors of the target point are provided as input to Design2Vec, which helps the
GNN-based architecture.

Cover Points Top Test Recommendations

{521, . . . 526, . . . , 531} +instr_cnt=17600 +illegal_instr_ratio=35 +hint_instr_ratio=45
... +enable_unaligned_load_store=0 +disable_compressed_instr=1
+randomize_csr=0 +no_wfi=1

{881, . . . 882, . . . , 891} +instr_cnt=17400 +illegal_instr_ratio=25 +hint_instr_ratio=35
... +enable_unaligned_load_store=0 +disable_compressed_instr=1
+randomize_csr=0 +no_wfi=1

C.5. Experimental hyperparameters

The methods in Section 4 use the following hyperparameters: number of layers, learning
rate, GNN embedding dimension, residual connection frequency, dropout rate, MLP embed-
ding dimensions. We vary these parameters: number of layers ∈ {4, 8, 16, 32}, learning rate
∈ {1e−2, 1e−3, 3e−4, 1e−4}. We hole these parameters fixed: GNN embedding dimension
= 16, residual connection frequency = 4, dropout rate = 0.1, MLP embedding dimensions
= [256, 128, 64]. The IPA-GNN model only has one additional hyperparameter: normalization
term ∈ {1, pt,n}.

Number of layers describes the number of GNN layers in the Design2Vec model. GNN
embedding dimension describes the embedding dimension of the intermediate and final
node embeddings produced by the GNN. The residual connection frequency indicates where
skip connections are added between layers of the GNN. The normalization term is used to
normalize ht,n after each RTL IPA-GNN layer.

Our experiments were run on commodity GPUs in a commercial data center. In total,
the experiments reported here required approximately five GPU-weeks of computation.
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C.6. Architectural ablation studies

In this section, we present more detailed comparison of different hyperparameter settings
and ablations of Design2Vec. Since we hypothesize that propagating information across
longer distances in the graph is important, we were especially interested in the effect of
residual connections [61], but we also measure the effect of label smoothing [106]. See results
in Table 19. Our default Design2Vec architecture (top row in table) uses residual connections
that skip back 4 layers, and does not use label smoothing. In practice, we see that none of
these variants have a large effect on performance.

Table 19. Comparison of training and validation accuracy across variants of the Design2Vec
architecture on coverage prediction on the TPU design.

Architecture Train Valid
Design2Vec (GCN) 92.1 90.3
Design2Vec + no residual connections 92.1 90.7
Design2Vec + label smoothing 92.1 90.3
Design2Vec + residual (every 2 layers) 92.1 90.1

We further consider architectural ablations that vary the K-hop edges added to the input
CDFG in Table 22, as well as the depth of the network in Table 21. We further test each
setup in settings that vary the selection of training and validation splits in Tables 20.

Table 22. Comparing the training and validation accuracy of the Design2Vec model using a
k-hop edge augmented graph (k ∈ {2, 4, 16}) across a variety of experimental setups.

K-Hop Hide Test Params Cover Point Hiding Method Seed Train Valid

2 FALSE Deterministic — 86.88 83.48
2 FALSE Random cover point 123 87.25 76.87
2 FALSE Deterministic — 65.07 69.14
2 FALSE Random cover point 123 82.47 74.43
2 FALSE Deterministic — 87.62 79.08
2 FALSE Random cover point 123 87.68 77.02
2 FALSE Deterministic — 82.66 78.34
2 FALSE Random cover point 123 66.42 61.58
2 FALSE Deterministic — 89.81 78.92
2 FALSE Random cover point 123 89.26 77.17
2 FALSE Deterministic — 84.25 79.11
2 FALSE Random cover point 123 84.69 74.36
2 TRUE Deterministic — 87.00 82.30
2 TRUE Random cover point 123 87.39 75.69
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2 TRUE Deterministic — 83.15 83.04
2 TRUE Random cover point 123 82.87 72.78
2 TRUE Deterministic — 87.74 76.93
2 TRUE Random cover point 123 87.83 76.19
2 TRUE Deterministic — 82.83 75.75
2 TRUE Random cover point 123 83.29 76.86
2 TRUE Deterministic — 90.04 76.16
2 TRUE Random cover point 123 89.62 73.33
2 TRUE Deterministic — 84.86 76.69
2 TRUE Random cover point 123 84.79 73.12
4 FALSE Deterministic — 86.86 85.30
4 FALSE Random cover point 123 87.22 77.75
4 FALSE Deterministic — 65.03 69.03
4 FALSE Random cover point 123 65.90 64.28
4 FALSE Deterministic — 87.63 80.32
4 FALSE Random cover point 123 87.68 78.85
4 FALSE Deterministic — 82.83 79.74
4 FALSE Random cover point 123 82.22 80.57
4 FALSE Deterministic — 89.75 79.98
4 FALSE Random cover point 123 89.30 78.28
4 FALSE Deterministic — 84.65 80.27
4 FALSE Random cover point 123 84.55 74.76
4 TRUE Deterministic — 87.03 80.18
4 TRUE Random cover point 123 87.39 75.28
4 TRUE Deterministic — 82.75 83.00
4 TRUE Random cover point 123 82.20 74.67
4 TRUE Deterministic — 87.94 76.56
4 TRUE Random cover point 123 87.79 77.02
4 TRUE Deterministic — 83.05 76.05
4 TRUE Random cover point 123 83.35 75.64
4 TRUE Deterministic — 90.01 77.08
4 TRUE Random cover point 123 89.26 74.03
4 TRUE Deterministic — 81.17 77.00
4 TRUE Random cover point 123 84.70 73.24
16 FALSE Deterministic — 86.97 84.39
16 FALSE Random cover point 123 87.30 73.10
16 FALSE Deterministic — 64.92 68.95
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16 FALSE Random cover point 123 82.62 76.84
16 FALSE Deterministic — 87.67 79.56
16 FALSE Random cover point 123 87.66 76.26
16 FALSE Deterministic — 64.94 65.32
16 FALSE Random cover point 123 83.14 78.83
16 FALSE Deterministic — 89.79 79.80
16 FALSE Random cover point 123 89.37 77.98
16 FALSE Deterministic — 84.95 77.44
16 FALSE Random cover point 123 84.64 73.66
16 TRUE Deterministic — 87.04 79.44
16 TRUE Random cover point 123 87.41 73.71
16 TRUE Deterministic — 64.57 66.58
16 TRUE Random cover point 123 82.43 73.24
16 TRUE Deterministic — 87.85 75.15
16 TRUE Random cover point 123 87.85 73.63
16 TRUE Deterministic — 83.45 77.44
16 TRUE Random cover point 123 66.86 62.25
16 TRUE Deterministic — 90.16 76.61
16 TRUE Random cover point 123 89.65 72.47
16 TRUE Deterministic — 84.25 77.18
16 TRUE Random cover point 123 84.57 70.69
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Table 20. Comparing the train and validation accuracy across different split selection
methods: whether to hide test parameters, and whether to sample the training set via every-k
sampling or uniformly random cover points.

Hide Test Params Cover Point Hiding Method Seed Train Valid
FALSE Deterministic — 86.97 84.54
FALSE Random cover point 123 87.41 76.86
FALSE Deterministic — 82.47 84.45
FALSE Random cover point 123 80.09 75.93
FALSE Deterministic — 87.80 80.76
FALSE Random cover point 123 87.73 80.51
FALSE Deterministic — 83.09 79.62
FALSE Random cover point 123 83.18 78.80
FALSE Deterministic — 89.91 80.58
FALSE Random cover point 123 89.53 78.06
FALSE Deterministic — 78.62 76.34
FALSE Random cover point 123 83.39 75.08
TRUE Deterministic — 87.17 82.67
TRUE Random cover point 123 87.51 75.92
TRUE Deterministic — 82.50 83.97
TRUE Random cover point 123 82.83 78.51
TRUE Deterministic — 88.07 78.32
TRUE Random cover point 123 87.96 75.98
TRUE Deterministic — 83.28 78.23
TRUE Random cover point 123 83.40 78.06
TRUE Deterministic — 90.16 77.27
TRUE Random cover point 123 89.78 73.84
TRUE Deterministic — 62.89 63.79
TRUE Random cover point 123 83.51 73.63

Table 21. Comparing the train and validation accuracy on TPU while varying the numbers
of GCN layers. We report the results across three seeds for each network depth.

Seed GCN Layers Train Valid
111 3 92.13 90.75
123 3 92.13 90.13
321 3 92.11 90.67
111 12 92.12 90.53
123 12 92.14 90.21
321 12 92.12 90.61
111 24 92.11 90.19
123 24 92.14 90.82
321 24 92.09 90.55
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C.7. Comparison of Design2Vec and black-box optimizer tests

Table 23. Comparison of Design2Vec and black-box optimizer tests for covering overall
cover points in different cover point probability buckets.

Prob.
Bucket

Cover
Point ID

Cover
Prob.

Design2Vec
covers?

# D2V
tests

Vizier
Covers?

# Vizier
tests

# D2V -
# Vizier

[0.5, 1.0) 97 99.94% Yes 1 Yes 1 0
[0.5, 1.0) 113 99.94% Yes 2 Yes 1 1
[0.5, 1.0) 158 87.85% Yes 1 Yes 1 0
[0.5, 1.0) 164 53.36% Yes 3 Yes 1 2
[0.5, 1.0) 266 98.70% Yes 1 Yes 1 0
[0.5, 1.0) 394 98.00% Yes 1 Yes 1 0
[0.5, 1.0) 810 84.79% Yes 1 Yes 1 0
[0.5, 1.0) 841 97.29% Yes 1 Yes 1 0
[0.5, 1.0) 850 96.93% Yes 1 Yes 1 0
[0.5, 1.0) 858 85.14% Yes 1 Yes 1 0
[0.2, 0.5) 16 35.26% Yes 1 Yes 2 -1
[0.2, 0.5) 47 24.12% Yes 1 Yes 4 -3
[0.2, 0.5) 50 24.00% Yes 1 Yes 4 -3
[0.2, 0.5) 185 34.43% Yes 2 Yes 5 -3
[0.2, 0.5) 356 49.17% Yes 2 Yes 3 -1
[0.2, 0.5) 422 49.17% Yes 4 Yes 3 1
[0.2, 0.5) 813 48.58% Yes 1 Yes 5 -4
[0.2, 0.5) 816 48.53% Yes 1 Yes 5 -4
[0.2, 0.5) 817 28.83% Yes 1 Yes 9 -8
[0.2, 0.5) 818 38.38% Yes 1 Yes 5 -4
[0.05, 0.2) 400 9.38% Yes 5 Yes 2 3
[0.05, 0.2) 506 7.72% Yes 5 Yes 4 1
[0.05, 0.2) 624 10.02% Yes 1 Yes 13 -12
[0.05, 0.2) 646 6.90% Yes 1 Yes 45 -44
[0.05, 0.2) 649 6.72% Yes 5 Yes 45 -40
[0.05, 0.2) 656 5.37% Yes 1 No — NA
[0.05, 0.2) 667 19.16% No — Yes 20 NA
[0.05, 0.2) 677 6.43% Yes 6 Yes 36 -30
[0.05, 0.2) 700 6.43% Yes 5 Yes 36 -31
[0.05, 0.2) 708 8.37% Yes 2 Yes 4 -2
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D. Appendixes for Article 4
D.1. Python Runtime Error Dataset Details

We describe in detail the construction of the Python Runtime Error dataset from the
submissions in Project CodeNet [119]. The Project CodeNet dataset contains over 14 million
submissions to 4,053 distinct competitive programming problems, with the submissions
spanning more than 50 programming languages. We partition the problems into train, valid,
and test splits at an 80:10:10 ratio. By making all submissions to the same problem part of
the same split we mitigate concerns about potential data leakage from similar submissions to
the same problem. We restrict our consideration to Python submissions, which account for
3,286,314 of the overall Project CodeNet submissions, with 3,119 of the problems receiving at
least one submission in Python. In preparing the dataset we execute approximately 3 million
problems in a sandboxed environment to collect their runtime error information, we perform
two stages of filtering on the dataset, syntactic and complexity filtering, and we construct a
textual representation of the input space for each problem from the problem description.

Syntactic Filtering. In this first phase of filtering, we remove submissions in Python 2
as well as those which fail to parse and run from our dataset. We remove 76,888 programs
because they are in Python 2, 59,813 programs because they contain syntax errors that
prohibit parsing, 2,011 programs that result in runtime errors during parsing, and 6 additional
programs for which the python-graphs library fails to construct a control-flow graph [17]. A
program may result in a runtime error during parsing if it contains return, break, continue
keywords outside of an appropriate frame.

Program Execution. We attempt to run each submission in a sandboxed environment
using the sample input provided in the Project CodeNet dataset. The environment is a
custom harness running on a Google Cloud Platform (GCP) virtual environment. This
allows us to collect standard out and standard error, to monitor for timeouts, and to catch
and serialize any Python exceptions raised during execution. We restrict execution of each
program to 1 second, marking any program exceeding this time as a timeout error. If the
program encounters a Python exception, we use the name of that exception as the target
class for the program. If an error type occurs only once in the dataset, we consider the target
class to be Other. Programs not exhibiting an error or timeout are given target class “no
error”.

In addition to collecting the target class, we record for each runtime error the line number
at which the error occurs. We use these line numbers as the ground truth for the unsupervised
error localization task considered in Section 5.3.

Extracting Resource Descriptions by Parsing Problem Statements. For each
problem, we parse the problem statement to extract the input description and input constraints,
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if they exist. These two sections of the problem statement together form the external resource
description that accompanies that problem. The problem statements in our dataset are each
written either in English or Japanese, and so we write our parser to support both languages.
When one or both of these sections are present in the problem statement, we construct
the external resource description for the problem by concatenating together the headers
and contents of the sections that are present. For the experiments that use the resource
description as a docstring, we prepend to each submission a docstring containing the resource
description for problem that goes with that submission. Similarly these serve as the resource
descriptions in the experiments that process resource descriptions via either cross-attention
or FiLM.

Vocabulary Construction and Complexity Filtering. All experiments use the same
vocabulary and tokenization procedure. For this, we select the standard Byte-Pair Encoding
(BPE) tokenization procedure [128]. We construct the vocabulary using 1,000,000 submissions
selected from the training split, along with the input space descriptions constructed for all
problems in the train split. We use a vocabulary size of 30,000.

We then apply size-based filtering, further restricting the set of programs considered.
First, the program length after tokenization is not to exceed 512 tokens, the number of nodes
and edges in the control-flow graph are each not to exceed 128, and the step limit T (x) for
a program computed in Appendix D.5 is not to exceed 174. We select these numbers to
trim the long tail of exceptionally long programs, and this filtering reduces the total number
of acceptable programs by less than 1%. To achieve consistent datasets comparable across
all experiments, we use the longest form of each program (the program augmented with its
input space information as a docstring) when computing the program sizes for size-based
submission filtering. The control-flow graphs are constructed following Bieber et al. [17].

We further impose the restriction that no user-defined functions (UDFs) are called in
a submission; this further reduces the number of submissions by 682,220. A user-defined
function is a function defined in the submission source code, as opposed to being a built-in
or imported from a third party module. Extending the IPA-GNN models to submissions
with UDFs called at most once is trivially achieved by replacing the program’s control-flow
graph with its interprocedural control-flow graph (ICFG) [108]. We leave the investigation of
modeling user-defined functions to further work.

Final Dataset Details. After applying syntactic filtering (only keeping Python 3
programs that parse) and complexity filtering (eliminating long programs and programs that
call user-defined functions), we are left with a dataset of 2,441,130 examples. The division
of these examples by split and by target class is given in Table 13. Figure 33 shows the
distribution of program lengths in lines represented in the completed dataset, with an average
program length of 14.2 lines. The average statement length is 6.7 tokens, with full distribution
shown in Figure 34.
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Fig. 33. A histogram showing the distribu-
tion of program lengths, measured in lines,
represented in the runtime errors dataset
train split.

Fig. 34. The distribution of statement
lengths, measured in tokens, in the runtime
errors dataset train split.

Data License. The Project CodeNet [119] data that we use is available under the CDLA
Permissive v2.0 license, and we release our derived dataset under this same license.

D.2. Under-approximation of Error Labels

As described in Section 3, the ground truth error targets in our dataset are obtained by
running each submission on only a single input. We do this because we only have a single
input available from the online judges with which to execute the programs. As a result, the
error labels we obtain under-approximate the full set of errors liable to appear at runtime.
Metadata obtained from [119] indicates whether each submission encountered a runtime error
on a larger set of inputs, though it does not indicate the kind or location of these errors when
they are present. We use this metadata to determine the degree to which our labels are an
under-approximation. We find that on the balanced test set there are 1,076 submissions (4%)
which, per the metadata, encounter an error, but for which our evaluation finds no error.
These are likely examples for which the program runs without error on the input we have,
but for which the program fails on some additional unavailable input.

We next measure generalization from the labels in our dataset to the labels suggested
by the metadata without retraining. Since these labels are only binary indicators of error
presence, we use our model to perform binary classification by summing the predicted
probabilities of all error kinds. The model predicts “no error” on 76.2% of the examples for
which our dataset finds no error. On the examples for which the metadata indicates no error,
this drops to 75.9%, and on the examples for which the metadata indicates there is an error,
this rises to 80.9%. These examples, where a single input detects no error but multiple inputs
detect an error, are difficult for the model to classify. We hypothesize that the types of errors
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our labels omit systematically differ from those our labels include as an explanation for this
4.7% discrepancy.

D.3. IPA-GNN Architecture

We provide a concise and precise definition of the IPA-GNN baseline architecture, following
the notation of Bieber et al. [15]. The IPA-GNN operates on the statement-level control-flow
graph of the input program x, maintaining per-node per-step hidden states ht,n and a soft
instruction pointer pt,n. At each step t, each node xn participates in execution, branch
prediction, and aggregation. First, the IPA-GNN models executing the statement at each
node to produce per-node state proposals

a
(1)
t,n = RNN (ht−1,n,Embed(xn)) . (D.1)

Then, the model uses these to inform soft branch decisions at every control flow juncture,
given as

bt,n,n1 ,bt,n,n2 = softmax
(
Dense(a(1)

t,n)
)
, (D.2)

where {n1, n2} = Nout(xn) when |Nout(xn)| = 2. When |Nout(xn)| = 1 we have bt,n,n′ = 1 for
n′ ∈ Nout(xn) indicating straight-line code. For all other n, n′, bt,n,n′ = 0. The state proposals
and branch decisions in turn feed into the computation of the new hidden states

ht,n =
∑

n′∈Nin(n)
pt−1,n′ · bt,n′,n · a(1)

t,n (D.3)

and new instruction pointer values

pt,n =
∑

n′∈Nin(n)
pt−1,n′ · bt,n′,n. (D.4)

The hidden state at final time step T (x) at the program’s exit node nexit, given by hT (x),nexit

are used for downstream predictions.

D.4. Input Modulation

In Section 4.2, we consider both cross-attention [88] and Feature-wise Linear Modulation
(FiLM) [116] as options for the Modulate function. We provide the definitions of these
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operations here. First, cross-attention modules the input as:

MultiHead(Embed(xn), d(x), ht−1,n) = Concat(Concat(head1, ..., headh)WO,Embed(xn))

(D.5)

where headi = softmax
(
QK

′

√
dk

)
V (D.6)

Q = WQ
i Concat(Embed(xn), ht−1,n) (D.7)

K = WK
i d(x) (D.8)

V = W V
i d(x) (D.9)

Here, WO ∈ Rhdv×dmodel , WQ
i ∈ Rdk×(dmodel+dEmbed(xn)), WK

i ∈ Rdk×dd(x) , and W V
i ∈ Rdv×dd(x)

are learnable parameters. Similarly, for FiLM we modulate the input with the resource
description as follows:

FiLM(Embed(xn), d(x), ht−1,n) = Concat(β · d(x) + γ,Embed(xn)) (D.10)

where β = σ(Wβ Concat(xn,ht−1,n) + bβ), (D.11)

γ = σ(Wγ Concat(xn,ht−1,n) + bγ), (D.12)

where Wγ ∈ Rdd(x)×(dmodel+dEmbed(xn)), and Wγ ∈ Rdd(x)×(dmodel+dEmbed(xn)) are learnable parame-
ters.

D.5. Training Details

Hyperparameter selection. We select hyperparameters by performing a random search
independently for each model architecture. The hyperparameters considered by the search
are listed in Table 25. All architectures use a Transformer encoder, and the Transformer sizes
considered in the search are listed in Table 25 and defined further in Table 24.

Table 24. Hyperparameter settings for each of the three Transformer sizes.

Hyperparameter T-128 T-256 T-512

Embedding dimension 128 256 512
Number of heads 4 4 8

Number of layers 2 2 6
qkv dimension 128 256 512

MLP dimension 512 1024 2048

Step limit. For the IPA-GNN and Exception IPA-GNN, the function T (x) represents
the number of execution steps modeled for program x. We reuse the definition of T (x) from
Bieber et al. [15] as closely as possible, only modifying it to accept arbitrary Python programs,
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rather than being restricted to the subset of Python features considered in the dataset of the
earlier work.

Parameter counts. We provide in Table 26 the total number of parameters in each
model, for the best performing hyperparameters in each model class. For all model classes,
the maximum number of parameters considered is roughly equal (approximately 8.8 million).

Compute usage and model speeds. All models are trained on Google Cloud Platform
using TPUv2 accelerators. We use approximately one TPU-week of compute in training
each IPA-GNN model. At inference time, IPA-GNN compute is proportional to the number
of model steps, which is up to 174 for examples in our dataset. We measure the average
inference time on the test set: 0.43 seconds per batch of 32. We also measure the training
speed in seconds per step for each method, which we report in Table 26. We observe that
the IPA-GNN train times are slower than those of the generic models, a drawback of the
IPA-GNN model family in its current implementations. That said, we also note that the
IPA-GNN models do not benefit from the same optimizations as basic implementations of
the well known general purpose models (GGNN, Transformer, and LSTM), and with further
optimizations the IPA-GNN performance can be improved.

D.6. Metric Variances

Under the experimental conditions of Section 5.1, we perform three additional training
runs to calculate the variance for each metric for each baseline model, and for the Exception
IPA-GNN model using the docstring strategy for processing resource descriptions. For these
new training runs, we use the hyperparameters obtained from model selection. We vary the
random seed between runs (0, 1, 2), thereby changing the initialization and dropout behavior
of each model across runs. We report the results in Table 27; ± values are one standard
deviation.

Table 25. Hyperparameters considered for random search during model selection.

Hyperparameter Value(s) considered Architecture(s)

Optimizer {SGD} All
Batch size {32} All

Learning rate {0.01, 0.03, 0.1, 0.3} LSTM, Transformers, IPA-GNNs
Learning rate {0.001, 0.003, 0.01, 0.03} GGNN

Gradient clipping {0, 0.5, 1, 2} All
Hidden size {64, 128, 256} All

RNN layers {2} LSTM, IPA-GNNs
GNN layers {8, 16, 24} GGNN

Span encoder pooling {first, mean, max, sum} All
Cross-attention number of heads {1, 2} IPA-GNNs with Cross-attention

MIL pooling {max, mean, logsumexp} MIL Transformers
Transformer dropout rate {0, 0.1} All

Transformer attention dropout rate {0, 0.1} All
Transformer size {T-128, T-256, T-512} All
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Table 26. The parameter count, training latency (sec/step), and inference latency (sec/batch)
for the best performing instance of each model variant. Training and inference latencies use
batch size 32.

Model Parameter Count Train Latency Inference Latency
GGNN 4,831,903 0.055 0.040

Transformer 8,578,975 0.054 0.051
LSTM 4,361,823 0.058 0.057

IPA-GNN 4,368,161 0.727 0.294
E. IPA-GNN 8,856,099 1.167 0.435

Table 27. Mean and standard deviation for each metric is calculated from three training
runs per model, using the hyperparameters selected via model selection.

Method R.D.? Acc. W. F1 E. F1

GGNN 61.98 ± 1.24 56.62 ± 2.96 41.24 ± 5.51
Transformer 63.82 ± 0.62 59.86 ± 0.52 46.75 ± 0.93

LSTM 66.43 ± 0.60 62.33 ± 1.12 50.10 ± 1.94
Exception IPA-GNN " 71.44 ± 0.15 70.78 ± 0.07 63.54 ± 0.03

D.7. Static Analysis Baseline

Our work builds towards a developer tool that predicts runtime errors in programs without
running the program, treating the task as static analysis. Existing static analysis tools already
inspect Python source code for possible issues, though they are not generally designed with
runtime error prediction in mind. Among the most popular such tools are the linters pylint
and flake8, the type analyzer pytype, and the formatter black. We elect to compare against
pylint as it is the most common of these tools and hence most representative of a modern
developer workflow. Additionally, a formatter is not well suited to the task of predicting errors,
and type analysis benefits from type annotations which are rarely utilized in competition
code. In our comparison of machine learning methods against pylint (Section 5), we build a
runtime error classifier based on pylint’s output. For each kind of error or warning that pylint
can detect, we determine whether it is indicative a runtime error class. For example, pylint’s
error no-member (E1101) indicates the AttributeError runtime error. The pylint baseline
predicts a runtime error class whenever pylint’s errors or warnings indicate that error class,
and “no error” otherwise. Table 28 shows the mapping from pylint findings to runtime error.

Only eleven of twenty-six the runtime error classes (those listed in Table 28, and “no
error”) can be predicted by this baseline. Additionally, the presence of a pylint finding that
corresponds to an error does not guarantee the error would actually be present when running
the program; for example an undefined variable may appear on an unused control-flow path,
benign at runtime. The results of this baseline are reported in Section 5.
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D.8. Localization by Modeling Exception Handling

For programs that lack try/except frames, we compute the localization predictions of the
Exception IPA-GNN model by summing, separately for each node, the contributions from
that node to the exception node across all time steps. This gives an estimate of exception
provenance as

p(error at statement n) =
∑

t

pt,n · bt,n,nerror . (D.13)

For programs with a try/except frame, however, we must trace the exception back to the
statement that originally raised it. To do this, we keep track of the exception provenance at
each node at each time step; when an exception raises, it becomes the exception provenance
at the statement that it raises to, and when a statement with non-zero exception provenance
executes without raising, it propagates its exception provenance to the next node unchanged.

Define vt,n,n′ as the amount of “exception probability mass” at time step t at node n′

attributable to an exception starting at node n. Then we write

vt,n,n′ =
∑

k∈Nin(n′)
vt−1,n,k · bt,k,n′ · pt,k + (1−

∑
vt−1,:,n) · bt,n,n′ · pt,n · 1{n′ = r(n)}. (D.14)

The first term propagates exception provenance across normal non-raising execution, while
the second term introduces exception provenance when an exception is raised. We then write
precisely

p(error at statement n) = vT (x),n,nerror , (D.15)

allowing the Exception IPA-GNN to make localization predictions for any program in the
dataset.
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Table 28. The pylint baseline for runtime error prediction predicts the error class shown
when it encounters any of the corresponding pylint findings. Many of pylint’s 235 finding
types do not indicate runtime errors. This table shows the mapping used by the pylint
baseline.

Error Class PyLint Finding

AssertionError bad-thread-instantiation (W1506)

AttributeError misplaced-format-function (E0119)
no-member (E1101)
not-context-manager (E1129)
missing-format-attribute (W1306)
not-async-context-manager (E1701)

ImportError import-error (E0401)
relative-beyond-top-level (E0402)
no-name-in-module (E0611)

IndexError potential-index-error (E0643)
too-few-format-args (E1306)
invalid-format-index (W1307)

KeyError missing-format-argument-key (W1303)
missing-format-string-key (E1304)

NameError used-before-assignment (E0601)
undefined-variable (E0602)

RuntimeError misplaced-bare-raise (E0704)
modified-iterating-dict (E4702)
modified-iterating-set (E4703)

SyntaxError syntax-error (E0001)
return-outside-function (E0104)
yield-outside-function (E0105)
duplicate-argument-name (E0108)
too-many-star-expressions (E0112)
invalid-star-assignment-target (E0113)
star-needs-assignment-target (E0114)
nonlocal-and-global (E0115)
nonlocal-without-binding (E0117)
used-prior-global-declaration (E0118)
await-outside-async (E1142)
yield-inside-async-function (E1700)
invalid-unicode-codec (E2501)
bidirectional-unicode (E2502)

TypeError abstract-class-instantiated (E0110)
bad-reversed-sequence (E0111)
invalid-slots-object (E0236)
invalid-slots (E0238)
inherit-non-class (E0239)
inconsistent-mro (E0240)
duplicate-bases (E0241)
invalid-enum-extension (E0244)
invalid-length-returned (E0303)
invalid-bool-returned (E0304)

Error Class PyLint Finding

TypeError (cont.) invalid-index-returned (E0305)
invalid-repr-returned (E0306)
invalid-str-returned (E0307)
invalid-bytes-returned (E0308)
invalid-hash-returned (E0309)
invalid-length-hint-returned (E0310)
invalid-format-returned (E0311)
invalid-getnewargs-returned (E0312)
invalid-getnewargs-ex-returned (E0313)
unpacking-non-sequence (E0633)
raising-bad-type (E0702)
bad-exception-cause (E0705)
raising-non-exception (E0710)
notimplemented-raised (E0711)
catching-non-exception (E0712)
bad-super-call (E1003)
not-callable (E1102)
isinstance-. . . -not-valid-type (W1116)
no-value-for-parameter (E1120)
too-many-function-args (E1121)
unexpected-keyword-arg (E1123)
redundant-keyword-arg (E1124)
missing-kwoa (E1125)
invalid-sequence-index (E1126)
invalid-slice-index (E1127)
invalid-unary-operand-type (E1130)
unsupported-binary-operation (E1131)
repeated-keyword (E1132)
not-an-iterable (E1133)
unsupported-membership-test (E1135)
unsubscriptable-object (E1136)
unsupported-assignment-operation (E1137)
unsupported-delete-operation (E1138)
dict-iter-missing-items (E1141)
unhashable-member (E1143)
bad-format-character (E1300)
mixed-format-string (E1302)
format-needs-mapping (E1303)
bad-string-format-type (E1307)
invalid-envvar-value (E1507)
invalid-envvar-default (W1508)

ValueError return-in-init (E0101)
class-variable-slots-conflict (E0242)
unbalanced-tuple-unpacking (W0632)
bad-format-string (W1302)
format-combined-specification (W1305)
bad-open-mode (W1501)

D.9. Localization by Multiple Instance Learning

The Local Transformer and Global Transformer models each compute per-statement node
embeddings Embed(xn) given by Equation 4.1. In the multiple instance learning setting,
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these are transformed into unnormalized per-statement class predictions

ϕ(class = k, lineno = l) = Dense (Embed(xn)) . (D.16)

We consider three strategies for aggregating these per-statement predictions into an overall
prediction for the task. Under the logsumexp strategy, we treat ϕ as logits and write

log p(class = k) ∝ log
(∑

l

expϕ(k, l)
)
, (D.17)

log p(lineno = l) ∝ log
∑

k∈K

expϕ(k, l)
 (D.18)

where K is the set of error classes.
The max and mean strategies meanwhile follow Wang et al. [150] in asserting

p(class = k | lineno = l) = softmax (ϕ(k, l)) , (D.19)

compute the location probabilities as

p(lineno = l) ∝
∑
k∈K

p(class = k | lineno = l), (D.20)

and compute the outputs as

log p(class = k) ∝ log max
l
p(class = k | lineno = l), and (D.21)

log p(class = k) ∝ log 1
L

∑
l

p(class = k | lineno = l) (D.22)

respectively, where L denotes the number of statements in x. As with all methods considered,
the MIL models are trained to minimize the cross-entropy loss in target class prediction, but
these methods still allow reading off predictions of p(lineno).

D.10. Broader Impact

Our work builds toward improvements to developer tools, suggesting the possibility of
future tools that predict runtime errors in code even when that code lacks unit tests. However,
the false positive rate under the current best models present a challenge. A developer tool
built using these models may present the developer with incorrect predictions. This could
cause the developer to make mistakes, or to lose trust in the tooling, lowering productivity in
the short term and making it harder to win back trust in the long term when tools are built
upon higher quality models with fewer errors. We therefore recommend that tool developers
use a combination of cautious judgement and data driven evaluations when deciding when to
implement features that rely on models like the ones we present.
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D.11. Example Visualizations

We sample three examples at random from the Python Runtime Error dataset validation
split, and visualize them here. As in Figure 16, we show instruction pointer heatmaps for
both the Baseline and Docstring Exception IPA-GNN model variants.

In the heatmaps, the x-axis represents time steps and the y-axis represents nodes, with
the last two rows representing the exit node nexit and the exception node nerror. Note that
for loop statements are associated with two spans in the statement-level control-flow graph,
one for construction of the loop iterator, and a second for assignment to the loop variable.
Hence we list two indexes for each for loop statement in these figures, and report the total
error contribution for the line.

Fig. 35. The target error kind is IndexError, occuring on line 5 (n = 5). Baseline
incorrectly predicts No error with confidence 0.808. Docstring correctly predicts In-
dexError with confidence 0.693, but localizes to line 3 (n = 2). Both Baseline and
Docstring instruction pointer values start out sharp and become diffuse when reaching the
for-loop. The Baseline instruction pointer value ends with most probability mass at nexit.
The Docstring instruction pointer value has a small amount of probability mass reaching
nexit, with most probability mass ending at nerror.
StdIn Description Input: Input is given from Standard Input in the following

format: N a_1 a_2 ... a_N
Constraints: All values in input are integers. 1 <= N ,
a_i <= 100

n Source Baseline R.D.

0 N = int(input()) 2.9 0.2
1 A = list(map(int, input().split())) 0.8 0.0
2 res = 0 3.0 63.3

3,4 for i in range(1, len(A)+1, 2): 9.8 6.3
5 res += A[i] % 2 0.3 0.1
6 print(res) 0.2 2.2

Baseline Resource Description

164



Fig. 36. The target error kind is ValueError, occuring on line 1 (n = 0). Baseline
incorrectly predicts IndexError with confidence 0.319 on line 1 (n = 0). Docstring
correctly predicts ValueError with confidence 0.880 on line 2 (n = 1), corresponding to
A[n]. Both Baseline and Docstring instruction pointer values start out sharp and quickly
shift most of the probability mass to the exception node.

StdIn Description
Input: Input is given from Standard Input in the following
format: H N A_1 A_2 ... A_N
Constraints: 1 <= H <= 10ˆ9 1 <= N <= 10ˆ5 1 <= A_i <= 10ˆ4
All values in input are integers.

n Source Baseline R.D.

0 H,N,A = list(map(int, input().split())) 9.7 3.4
1,2 for i in A[N]: 43.7 83.0
3 if H <= 0: 2.9 2.8

break
else:

4 H -= A[i] 6.0 0.0
5 if set(A): 0.2 0.1
6 print("Yes") 9.3 0.7

else:
7 print("No") 3.3 0.2

Baseline Resource Description
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Fig. 37. The target error kind is No Error. Baseline correctly predicts No Error with
confidence 0.416. Docstring also correctly predicts No Error with confidence 0.823. The
Baseline instruction pointer value makes its largest probability mass contribution to nerror
at n = 0 and ends up with mass split between nexit and nerror. The Docstring instruction
pointer value accumulates little probability in nerror and ends up with most probability mass
in nexit.
StdIn Description Input: n m d1 d2 ... dm Two integers n and m are given in

the first line. The available denominations are given in
the second line.
Constraints: 1 <= n <= 50000 1 <= m <= 20 1 <= denomination
<= 10000 The denominations are all different and contain 1.

n Source Baseline R.D.

0 from itertools import combinations_with_replacement as C 40.1 1.3
1 n, m = map(int, input().split()) 2.3 7.1
2 coin = sorted(list(map(int, input().split()))) 7.2 2.8
3 if n in coin: 2.0 0.2
4 print(1) 2.0 1.5

else:
5 end = n // coin[0] + 1 0.3 0.1
6 b = False 0.1 0.3

7,8 for i in range(2, end): 2.4 0.7
9,10 for tup in list(C(coin, i)): 3.4 1.2
11 if sum(tup) == n: 0.3 0.0
12 print(i) 0.3 0.1
13 b = True 0.6 0.9

break
14 if b: break 0.1 1.4

Baseline Resource Description
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