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Fig. 1. Given a bitmap sketch (a), we lift the sketch strokes into 3D by fitting 3D geometric primitives (b, stroke thickness indicates depth) and then create a
3D mesh interpolating these strokes and lying on the primitives while preserving the sketch shape (c). Reference sketch ©Eissen and Steur, 2011.

We propose a method of reconstructing 3D machine-made shapes from
bitmap sketches by separating an input image into individual patches and
jointly optimizing their geometry. We rely on two main observations: (1)
human observers interpret sketches of man-made shapes as a collection of
simple geometric primitives, and (2) sketch strokes often indicate occlusion
contours or sharp ridges between those primitives. Using these main obser-
vations we design a system that takes a single bitmap image of a shape, esti-
mates image depth and segmentation into primitives with neural networks,
then fits primitives to the predicted depth while determining occlusion con-
tours and aligning intersections with the input drawing via optimization.
Unlike previous work, our approach does not require additional input, an-
notation, or templates, and does not require retraining for a new category
of man-made shapes. Our method produces triangular meshes that display
sharp geometric features and are suitable for downstream applications, such
as editing, rendering, and shading.
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1 INTRODUCTION
Sketching, in bitmap software or on paper, is often one of the first
steps in designing machine-made shapes, typically followed by mod-
eling the drawn 3D objects in a software. For professionals, the latter
modeling step is a tedious routine with little creativity, while for in-
experienced hobbyists it might be an impediment to creating the 3D
model. A system accepting a natural bitmap sketch and producing
a 3D model, thus sidestepping modeling altogether, would alleviate
the need for specialized training and simplify prototyping.
Despite recent progress, sketch-based modeling systems for

machine-made shapes are still rarely used in production. The
reasons for artists’ reluctance to use those tools are diverse. For
instance, some system require annotated vector input [Gryaditskaya
et al. 2020; Xu et al. 2014], even though sketches are often drawn
in bitmap format. Other systems require sketches from multiple
viewpoints [Delanoy et al. 2018, 2019] or interfere with the design
process by combining sketching and modeling into an iterative
framework [Li et al. 2020]. Most importantly, however, modern
sketch-based modeling systems tend to produce overly smooth
shapes that ostensibly ignore some of the drawn curves in the
sketch (Fig. 2).
These limitations of the existing systems are not surprising, as

designing an algorithm to reconstruct a 3D machine-made shape
from a single imprecise bitmap sketch is a daunting task: not only 3D
reconstruction from 2D input is ambiguous by itself, but sketches are
also a very sparse and distorted depiction of a 3D object. In particular,
bitmap sketches often have no shading, or very little, and depict only
the front side of an object, impeding inference of 3D information;
shapes are often heavily distorted due to the incorrect depiction
of perspective [Schmidt et al. 2009], proportions [Gryaditskaya
et al. 2019], or simply because of imprecise drawing; finally, bitmap
sketches have no explicit connectivity between points, making 2D
proximity an unreliable cue for 3D proximity.
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Fig. 2. In most learning-based approaches, the input strokes are often
smoothed out or outright ignored (center). In contrast, our results preserve
the drawn strokes, introducing sharp ridges and occlusions into the final
shape (right). Input images: chair [Eissen and Steur 2011], wagon [Delanoy
et al. 2019].
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Fig. 3. Given an artist sketch of a machine-made shape, human observers
(five participants in our study) can consistently segment the image into
primitives. We hypothesize that this segmentation allows humans to men-
tally reconstruct a 3D shape despite the inaccuracies. Input image [Manda
et al. 2021].

We propose a novel system that targets these issues and recon-
structs a 3D machine-made shape from a single natural bitmap
sketch (Fig. 1). Our main observation is that despite the inaccuracies
in a sketch, human observers can consistently segment an input
drawing into the typical geometric primitives forming man-made
shapes: cylinders, planes, cones, spheres, as well as smooth freeform
surfaces (Fig. 3, Sec. 7). We conjecture that it is precisely this seg-
mentation into primitives that allows human observers to alleviate
numerous distortions and errors in the input drawings. We repli-
cate that behavior in our algorithmic pipeline, where we segment
the input sketch and classify each region, fit geometric primitives
to each, and use these primitives as a reliable proxy for 3D shape
reconstruction.
Machine-made shapes are piecewise smooth, so their compo-

nent geometric primitives can either connect smoothly or form
sharp ridges (Fig. 1). These sharp ridges are consistently drawn in
artist sketches [Cole et al. 2008], which often also contain occlusion
contours and other strokes. We therefore observe that the surface
between the drawn strokes is smooth, while each stroke can signify
either a depth discontinuity depicted by an occlusion contour, or
a sharp ridge. Preserving those features is crucial for a quality 3D
reconstruction. We leverage this insight directly by using line draw-
ing vectorization as a component in our system, thus preserving
the drawn curves. We enforce smoothness of the 3D shape away
from the extracted curves, as well as smoothness of those curves in
3D. Furthermore, we algorithmically distinguish sharp ridges from
occlusion contours, allowing us to reconstruct sharp manifold 3D
shapes.
We combine these observations in a novel system using deep

networks to infer the approximate depth and to segment the sketch

into separate geometric primitives (Fig. 4). We then leverage these
predictions, as well as an initial rough vectorization of the input
sketch, in a novel optimization that first lifts the drawing into 3D
by fitting the depicted geometric primitives while deciding which
stroke is an occlusion contour and aligning intersections of those
primitives with the drawn strokes. After using the primitives to
find the surfaces interpolating the 3D strokes, this produces a mani-
fold piecewise smooth reconstruction of the visible surface of the
artist-intended shape, with contours close to the sketch strokes. Our
system inputs natural raster images and does not require manual
annotations to reconstruct piecewise smooth 3D shapes.

In summary, our main contributions are:
• a novel system for 3D man-made shape reconstruction from
a single natural bitmap sketch, combining deep learning, vec-
torization, and numerical optimization, and

• a user study demonstrating human observers’ consistency in
segmenting 2D bitmap sketches into geometric primitives.

We validate our system on a gallery of natural sketches, compar-
isons with prior work, and user studies.

2 RELATED WORK
We divide the related work into three main categories: sketch-based
modeling of machine-made shapes, 3D reconstruction from RGB
images, and the creation of CAD shapes from point clouds.

Sketch-based modeling of machine-made shapes. One of the typical
dominant characteristics of machine-made shapes is that they are
piecewise smooth with sharp ridges. These objects require a largely
different modeling toolkit from natural smooth objects. A complete
survey of sketch-based modeling of machine-made shapes is outside
our scope; please see [Bonnici et al. 2019; Li et al. 2022b; Yue et al.
2020; Zhong et al. 2022].
Our work is unlike methods that process input strokes in an

incremental fashion [Chen et al. 2013; Cherlin et al. 2005; Gingold
et al. 2009; Igarashi et al. 1999], which is arguably an easier problem
given the extra information available in contrast to a bitmap image.
Nevertheless, a recent exciting line of work focuses on transforming
a sequence of input strokes into CAD commands [Li et al. 2020,
2022a]. Instead, we target a complete single drawing as an input,
thus preserving the existing artistic workflows and enabling 3D
reconstruction from legacy sketches.
A related line of work processes a vector drawing as an input,

either lifting vector curves into 3D [Gryaditskaya et al. 2020; Xu et al.
2014] or reconstructing the complete 3D shape [Deng et al. 2022].
However, artists typically prefer to draw sketches on paper or in
bitmap editors; automatically vectorizing bitmap sketches with the
precision required by these methods is an open problem [Puhachov
et al. 2021]. Our method uses a bitmap sketch as its only input. We
use automatic vectorization as a part of our pipeline, treating it
only as a conservative estimate of which points in the sketch are
connected.
We are inspired by several systems [Li et al. 2018; Lun et al.

2018] that predict depth and normals, and then convert them into a
surface. For instance, Lun et al. [2018] fuse those two outputs into a
point cloud, then use standard surface reconstruction techniques
for the final surface. Li et al. [2018] additionally predict confidence
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Fig. 4. Starting with a natural bitmap sketch of a machine-made shape, we predict its depth and segmentation into primitives, and locally fit primitives to
each region’s depth. We leverage those along with the vectorization of the input sketch to lift the drawn strokes into 3D while refining the primitives and
determining occlusion contours via an optimization. We then triangulate the input sketch, cutting the triangulation along the identified occlusion contours,
and assemble the final shape by projecting this triangulation onto the primitives while maintaining its piecewise smoothness. Input image [Manda et al. 2021].

and curvature directions from annotated sketches from multiple
views, reconstructing the visible side of a natural 3D shape. These
systems primarily target natural shapes, assuming smoothness of
the reconstructed surface. In contrast, with our focus on man-made
shapes we reconstruct piecewise smooth surfaces along with sharp
ridges and occlusions.
A few other systems exploit alternative representations of ge-

ometry: predicting, for instance, point clouds [Wang et al. 2022a],
voxelizations [Delanoy et al. 2018; Han et al. 2020], or collections of
Coons patches [Smirnov et al. 2021]. A point cloud or a voxelization
can be then converted into a piecewise smooth mesh with sharp
ridges [Chen and Zhang 2021]. Delanoy et al. [2019] explore a dif-
ferent approach by reconstructing piecewise smooth normals and
leveraging them in the surface reconstruction. Unfortunately, all of
these methods have no guarantees that the drawn strokes will have
direct control over the reconstructed shape, as sometimes strokes
get smoothed out or outright ignored (Fig. 2). In our system, in
contrast, the drawn strokes explicitly affect the reconstruction, e.g.,
by introducing discontinuities or sharp ridges. We compare with
Delanoy et al. [2019] in Sec. 7.
Finally, some works only shade sketches without fully recon-

structing the 3D geometry, either directly via fully convolutional
architectures [He et al. 2021; Su et al. 2018; Zheng et al. 2020] or
by predicting normals and then inflating the surface [Hudon et al.
2018, 2019]. We compare with Zheng et al. [2020] and Hudon et al.
[2018] in Sec. 7.

3D reconstruction from a RGB image. Single-view 3D reconstruc-
tion from a photo is a classic problem in computer vision related to
our problem. We refer to the survey by Bhattacharjee and Chaud-
huri [2020] for a detailed overview, and below we focus on only the
most relevant works.
In general, these computer vision methods infer shape informa-

tion from RGB images: depthmaps [Hickson et al. 2019; Tatarchenko

et al. 2016; Yao et al. 2020], point clouds [Achlioptas et al. 2018; Fan
et al. 2017; Gadelha et al. 2018; Yang et al. 2018], voxelizations [Choy
et al. 2016; Girdhar et al. 2016; Liao et al. 2018; Wu et al. 2016, 2018],
implicit representations [Chen et al. 2020; Chen and Zhang 2019;
Guillard et al. 2021; Mescheder et al. 2019; Remelli et al. 2020], or
surface parameterizations [Groueix et al. 2018]. Another output
representation is deformation of a fixed template [Wang et al. 2018].
This significantly regularizes the ambiguous task of reconstruction,
but limits the output shapes to be topologically equivalent to the
template. Pan et al. [2019] address this limitation by predicting per-
triangle error and pruning triangles with large error, thus modifying
the mesh topology. We compare with Guillard et al. [2021] in Sec. 7.

Despite being successful for computer vision applications, these
methods typically fail to reconstruct plausible 3D objects from a
sketch. One reason for this is that there does not exist a large-scale
dataset of sketches and corresponding ground-truth 3D machine-
made shapes, making retraining these systems impossible for our
task. Most available datasets of that kind are either small-scale or
synthetic, often featuring sketch-like renders instead of natural
drawings [Gryaditskaya et al. 2019; Manda et al. 2021; Zhong et al.
2022].

A way around this dataset issue is to use differential rendering, to
allow prediction of a 3D object in a non-supervised manner [Kato
et al. 2020]. But differential rendering is poorly suited to sketches
because sketches, unlike photos, are only approximate depictions of
3D geometry with significant distortions and incorrect perspective,
so they cannot be interpreted as precise renderings of 3D geometry
[Wang et al. 2021].

CAD shapes from point clouds and voxelizations. Another mature
area of computer vision is reconstruction of CAD or machine-made
shapes from a potentially noisy or incomplete 3D point clouds.
Berger et al. [2017] provide a recent survey.
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Starting from the classic methods like RANSAC [Schnabel et al.
2007] or Hough Transform [Duda and Hart 1972], there exist mature
methods to find and fit geometric primitives to point clouds. We are
inspired by this area of work, and our optimization uses some of
the previously proposed objective functions directly [Eberly 2018]
(Sec. 4.2, App. C).

Modern methods can regress parameters controlling the geomet-
ric primitives in a differentiable manner [Li et al. 2019; Sharma
et al. 2020; Yan et al. 2021]. These works, however, have no control
over the final surface topology and often reconstruct non-manifold
shapes. Other recent methods [Du et al. 2018; Guo et al. 2022; Lam-
bourne et al. 2022; Yu et al. 2022] infer CAD shapes with sharp
features from a point cloud, voxelization, or mesh. Unfortunately,
these methods are unsuitable for our task as they often require the
inputs to be complete and noise-free (Fig.16).

Another strategy is to reduce the search space to make the recon-
struction more well-defined: Point2Cyl focuses on reconstruction
of generalized cylinders only [Uy et al. 2022], and [Hu et al. 2022]
requires a fixed user-defined template. For our problem of sketch-
based reconstruction, both of these assumptions are too limiting.

A key stage in our reconstruction pipeline is segmentation. Wang
et al. [2022b] propose a method for segmentating point clouds, after
which, each segment can then be fitted with a geometric primitive
using standard machinery. In contrast to this method, we perform
segmentation in the image space, allowing us to reconstruct the
drawn boundaries between geometric primitives in a manner con-
sistent with the artist’s intent.

Finally, an exciting avenue of work is the use of generative models,
such as SolidGen [Jayaraman et al. 2022] or DeepCAD [Wu et al.
2021]. Adapting these methods to reconstruct CAD shapes from
sketches is an interesting alternative that has not been investigated.

3 OBSERVATIONS AND OVERVIEW
We focus on presentation sketches [Gryaditskaya et al. 2019], which
contain few construction or auxiliary lines and mostly consist of
ridges and occlusion contours. In order to reconstruct the artist-
intended machine-made 3D shape despite the ambiguities and in-
accuracies in the sketch, we analyze perception and modelling re-
search, and formulate the following observations that guide our
algorithmic choices.

• Segmentation: Human observers can consistently segment
and classify sketches of machine-made shapes into the prim-
itives. Even if the lines are approximate, one can use that
segmentation to compensate for inaccuracies. Machine-made
models typically consist of patches, which can be roughly
categorized into the following types: planes, cylinders, tori,
cones, spheres, surfaces of revolution, and others [Eissen and
Steur 2011; Koch et al. 2019]. Our hypothesis is that artists
draw in a way that permits the shape of each patch to be
easily recognizable, while exploiting the natural ability that
humans have for classifying patches.

• Fidelity to the drawing: In general, we expect the 3D re-
construction to stay close to the sketch. We note however,
that this requirement directly contradicts the segmentation
requirement: due to inaccuracies typical for a natural sketch,

the curves where primitives intersect are often drawn impre-
cisely. For example, two planes may be drawn intersecting
along a curved (i.e., not straight) line, which is geometrically
impossible. We therefore aim to preserve the shape of the
primitive boundaries, but only subject to the segmentation
requirement. Moreover, as known in themodeling and percep-
tion literature, human observers prioritize preserving curve
parallelism to preserving absolute positions [Xu et al. 2014].
Thus, we allow translation of the drawn strokes more easily
than deformation of their shape.

• Piecewise smoothness: Consistent with perception research
and line drawing analysis [Cole et al. 2008; Wang et al. 2021],
we expect all sharp features of the surface to be explicitly
drawn. A stroke may also be an occlusion contour, in which
case it signifies depth discontinuity, an external silhouette, a
sharp ridges, or it may simply denote a boundary of a geomet-
ric primitive/patch. We therefore interpret the space between
the drawn strokes, i.e., the white space or shaded space, to be
smooth. Moreover, this also implies that the drawn strokes
themselves, taken as curves in 3D, are smooth unless other-
wise explicitly indicated in the drawing. We therefore enforce
smoothness of both the surface between the drawn strokes
and the reconstructed depth of the drawn strokes (see Sec. 5.2).
To correctly reconstruct the shape, we detect which of the
drawn strokes are occlusion contours and enforce depth dis-
continuities accordingly.

• Minimal occlusion: Perception research [Blanz et al. 1999]
indicates that human observers prefer views containing few
or no occlusions to the ones where important features of an
object are occluded. Within our framework, we interpret this
recommendation by minimizing the length of strokes classi-
fied as occlusion contours, strongly preferring to interpret
strokes as ridges instead.

• Regularity: As suggested by perception and modeling work
[Xu et al. 2014], we speculate that human observers rely
on regularity cues when interpreting sketches of machine-
made shapes. In particular, when then the normals or axes
of primitives are nearly parallel or orthogonal, we expect the
viewers to interpret them as exactly parallel or orthogonal re-
spectively. Therefore, in our pipeline, after detecting pairs of
primitives with nearly parallel or orthogonal normals or axes,
we enforce this as a constraint in a subsequent optimization.
Other shape regularity constraints, such as cylinder concen-
tricity or straightness of boundaries, can be implemented in a
similar fashion. This, however, drives the results further from
the input, so we do not enforce them.

Leveraging these observations, we use deep networks to predict
per-pixel depths as well as a segmentation and classification into
geometric primitives (Fig. 4, Sec. 4.1). Using these classes, we fit
primitives to the depth prediction within each region (Sec. 4.2). We
then vectorize the input image into strokes and identify the strokes
with the primitives (Sec. 5.1). We use the preliminary primitive fits
in our main optimization, where we lift the strokes into 3D, while
deciding which of them are occlusion contours and refining the
primitives so as to intersect at those lifted 3D strokes (Sec. 5.2).
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Finally, we triangulate the refined 2D sketch, transfer the segmenta-
tion onto this new triangulation (Sec. 6.1), and lift it into 3D to lie
on the optimized primitives so as to interpolate the lifted 3D strokes
(Sec. 6.2).

4 EXTRACTING GEOMETRIC PRIMITIVES
The input to our pipeline is a greyscale bitmap sketch, containing a
single machine-made shape. We start by predicting depth of each
pixel in the sketch and segmenting the input sketch into separate
geometric primitives, leveraging the structure of sketches of man-
made shapes. For simplicity of exposition here we assume that
sketches are drawn with an orthographic projection; our pipeline
can ultimately handle some gentle perspective (more discussion in
Sec. 7).

4.1 Image Segmentation and Depth
For both the depth and the segmentation, we train two encoder-
decoder convolutional neural networks. For depth estimation, the
network outputs one scalar per pixel; for segmentation, it outputs a
probability of a pixel belonging to each shape class or background.
We use non-photorealistic rendering of ABC dataset [Koch et al.
2019] as training data. For architecture, training procedure, and
dataset details please refer to App. A and B.

Segmenting into primitives. For non-background pixels, the seg-
mentation network provides probabilities of belonging to each class
of geometric primitives. To actually segment the image, i.e., separate
it into connected regions of a particular class, one normally selects
for each pixel the class with the maximum probability. We find,
however, this strategy to be unreliable for line drawings (Fig. 5).
First, such strategy is unable to discern two different primitives of
the same class next to each other. Second, the boundaries of the
segmentation regions extracted in such manner often do not align
with the drawing (Fig. 5b).

We observe that artists often (although not always) delineate
boundaries between separate geometric primitives when drawing
machine-made shapes (Fig. 5). We therefore can use the drawn
strokes to segment the input sketch into regions, integrate the
predicted per-pixel probabilities over these regions, and pick the
maximum for each. Such a segmentation along the drawn strokes,
however, is not trivial, as artists often leave gaps between strokes.
To address that, we use a traditional the trapped ball algorithm
[Li 2018; Zhang et al. 2009], with a minimum radius of 1px and a
maximum of 4px.

Note, however, that in some cases artists omit the separating lines
between different primitives (Fig. 22). We discuss this in Sec. 8.1.

4.2 Local Geometry of Each Primitive
Leveraging the per-pixel depth and the segmentation of the input
sketch, we now find the parameters of each geometric primitive;
at this stage, independently of other primitives. This provides the
initial 3D shape that roughly corresponds to the drawing and the
estimated depth, but does not have any connectivity between the
primitives (Fig. 4, 9). In the subsequent stages (Sec. 5), we assemble
these disconnected primitives into a connected 3D shape.

(a) (b) (c) (d)

Fig. 5. Given the predicted segmentation, naïvely picking the most probable
class per pixel leads to regions that are not aligned with the drawn strokes
(b). Instead, we use the Trapped Ball algorithm [Zhang et al. 2009] robustly
separating the input sketch (a) into regions (c). We then integrate the per-
pixel primitive probabilities over these regions and choose the maximum,
improving the segmentation results (d). Here planes are orange, cylinders
are green, and tori are brown. Input image [Delanoy et al. 2019].

We use standard techniques to fit a geometric primitive to an
extracted depth of each region by minimizing 𝑙2 distance (Appen-
dix C). Note that we use the same fitting energies in this stage as
we do in subsequent stages (Sec. 5). Here, because we are fitting
each primitive independently, we use closed-form solutions when
possible.

Some of these optimization problems, such as the ones for cylinder
and circular cone, are non-convex and depend heavily on the initial
guess. We use two strategies to compute a set of initial guesses and
choose the fit with the minimal error among the different options.
First, following the regularity observation (Sec. 3), we try the axes
of previously identified primitives as initial guesses to fit the new
cylinders and cones. For robustness, we start by fitting planes, then
continue by fitting the cylinders in decreasing order of area of their
2D region, as larger regions have more data and thus are more
reliable. Second, we use the classic property of cylinders and cones:
Their normals, interpreted as points on a unit sphere (also known as
a Gauss map), form a circle on a plane with the axis of the primitive
as the normal. Therefore, in order to compute the initial guess, we
estimate per-pixel normals via finite differences, compute the Gauss
map, and fit a plane and a circle to the points on the unit sphere
using standard methods. We then use the normal of that circle as
the initial guess for the axis of the cylinder or cone, and find the
rest of parameters via a standard least squares fitting.

5 BOUNDARY AND PRIMITIVE OPTIMIZATION
Given the collection of initial primitives, our goal is to assemble
them into a manifold 3D shape, refining their parameters such that
their boundaries match the sketch strokes (Fig. 4). To do so, we first
vectorize the input sketch and identify the vectorized strokes with
the primitives, thus determining primitive boundaries (Sec. 5.1). We
then lift those boundaries into 3D, while simultaneously detecting
occlusions and refining the 3D primitives (Sec. 5.2).

5.1 Identifying primitive boundaries
The identification of primitive boundaries invovles two steps.
First we vectorize the bitmap image, and then we compute
stroke-primitive correspondences.

Vectorization. We vectorize the input sketch using the method
of Puhachov et al. [2021] with their default parameters. Their algo-
rithm may produce minor artifacts, so we perform a simple cleanup.
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(a) (b) (c)

Fig. 6. We vectorize the input sketch (a) using the method of Puhachov
et al. [2021] (b), and then postprocess their results using simple heuristics,
e.g., removing the short curves in red (b,c). Input images [Eissen and Steur
2011].

We remove all strokes shorter than a pixel and split curves at in-
tersections. We also connect curves if their endpoints are within
a threshold distance (10px). We then remove short curves (with
arclength < 20px in our implementation) if they are not connected
to any other curve. We also remove curves if at least half of their
length belongs to the background (Fig. 6).
For rough drawings with overdrawn strokes, the vectorization

often produces many disconnected strokes. Hence, we treat it as
a conservative estimate of the sketch connectivity: We consider
the points connected by the vectorization to be connected; we do
not draw any conclusions regarding the points disconnected by the
vectorization.

We sample each vectorized stroke uniformly with a fixed step
size, yielding a polyline {(𝑥1, 𝑦1), . . . , (𝑥𝑛, 𝑦𝑛)}, where (𝑥𝑖 , 𝑦𝑖 ) ∈ R2.
In our implementation, for the input images of 5122 resolution, we
use a step size of 10px for performance reasons.

Stroke-primitive correspondence. For each edge of a vectorized
stroke we determine its adjacent primitives (Fig. 7).
For each side of the edge, we find the closest non-

boundary pixel such that the straight line between the
pixel and the edge lies completely inside the sketch,
i.e., does not cross any background pixels (inset, top).
We then associate the side of the edgewith that pixel’s
region. Whenever only one side of an edge finds a
primitive, or when the two sides find the same prim-
itive, we mark this edge as free (inset, bottom). Oth-
erwise, the edge is called shared (inset, top). All the
shared boundaries directly influence the primitive fitting in later
steps: we interpret them as an intersection of two primitives or
an occlusion contour. For an edge 𝑒 , we denote the set of adjacent
primitives as 𝑃 (𝑒).

5.2 Lifting boundaries into 3D
Equipped with these identifications, we now lift the vectorized
strokes into 3D by computing depth coordinates 𝑧𝑖 ∈ R for each
vertex 𝑖 (Fig. 8) and slightly adjusted image plane (𝑥𝑖 , 𝑦𝑖 ) coordinates
to compensate for inaccuracies in the sketch.
The core principle of this optimization is to find the shape of

each geometric primitive such that their intersections align with

(a) (b)

Fig. 7. We determine adjacent segmentation regions for each edge of vector-
ized strokes. We define edges adjacent to only one region as free boundaries
(dashed lines), and other edges adjacent to two regions as shared boundaries
(black solid lines). Input image [Delanoy et al. 2019].

(a) (b) (c) 

Fig. 8. Our main optimization leverages the depth map, segmentation, and
the vectorization to lift the vectorized 2D primitive boundaries (a) into 3D
(c). This optimization refines the 2D drawn strokes, decides which strokes
are occlusion contours, and refines the 3D primitives so that they connect
at the drawn strokes (b). Input image [Eissen and Steur 2011].

their shared boundary strokes. Note, however, that some shared
boundary strokes may only belong to one visible primitive in 3D, i.e.,
when the shared boundary is an occlusion contour (Fig. 8). In other
words, primitives adjacent to a shared boundary in 2D, need not be
adjacent in 3D and forcing them to have an intersection would be
incorrect. Thus, the key component of our optimization is to decide
which strokes depict occlusion contours. This allows us to preserve
the intended discontinuities in the sketch.
A further complication is that a single artist stroke may be only

partially an occluding contour (Fig. 4, the boundary of a hole on
top of the cylinder is a single stroke that is partially an occlusion
contour, partially a ridge). We therefore encode this decision as a
binary variable 𝑏𝑒 ∈ {0, 1} per edge 𝑒 of vectorized shared boundary
strokes, where 1 denotes that the shared edge is part of a non-
occluding contour. For free boundary edges 𝑒 we let 𝑏𝑒 = 1.

Finally, due to the inherent ambiguity of 3D reconstruction from
2D, as well as distortions typical for natural sketches, the predicted
depth (Sec. 4.1) is often severely distorted. Naïvely using this depth
to fit primitives within each patch directly contradicts the drawing
or produces gaps around shared edges (Fig. 9). Instead, we prioritize
fidelity to the sketch while allowing the primitives to deviate from
the predicted depth within a certain bound.

Setting this maximum deviation bound manually, however, is not
trivial; instead, we minimize it. We note that for a vector-valued
function 𝑓 : R → R𝑛 , an optimization problem (in the epigraph
form) minimizing such bound 𝑡 ∈ R,

min
𝑥

𝑡 s.t. − 𝑡 ≤ 𝑓𝑗 (𝑥) ≤ 𝑡 ∀𝑗,
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(a) (c) (e) ()(b) (d)

Fig. 9. Due to distortions typical for natural sketches, the depth prediction networks often output heavily distorted surfaces (b), which cannot be directly
used to fit primitives, either causing gaps if primitives are cut at the input strokes (c) or misalignment with the sketch if cut at the primitives’ intersections
(d). Instead, our optimization simultaneously resolves primitive shapes and 3D stroke shapes while identifying occlusion contours, thus reconstructing the
intended shape (e) and staying true to the original drawing (f). Input image [Manda et al. 2021].

(a) (b) (c) (d)

Fig. 10. Using 𝐿∞ distance allows patches to deviate from the predicted
depth within a bound, resulting in fewer occlusion contours in the final
result, compared with 𝐿2. Input image [Delanoy et al. 2019]

is equivalent to solving

min
𝑥

∥ 𝑓 (𝑥)∥∞ .

Hence we propose to minimize 𝐿∞ distance to the predicted depth
map, thus intuitively allowing the primitives to freely deviate from
the predictions within a certain minimized upper bound (Fig. 10).

This observation guides the first term in our optimization problem,
an 𝑙∞ distance,

𝐸depth = 𝑤depth max
(𝑥 ′,𝑦′ )

(
𝑧′ − Proj𝑃 (𝑥 ′, 𝑦′)

)2
, (1)

where 𝑧′ is the estimated depth (Sec.4.1), 𝑤depth is the weight for
this term, and Proj𝑃 (𝑥 ′, 𝑦′) provides the depth of the point (𝑥 ′, 𝑦′, 0)
after 𝑧−projection onto the primitive 𝑃 corresponding to the non-
background pixel (𝑥 ′, 𝑦′) in the sketch.
The remaining terms in our optimization problem focus on the

strokes. Thus, the following optimization problem lifts the bound-
aries into 3D, detects occlusion contours, and adjusts primitive
parameters:

min
𝑥,𝑦,𝑧,𝑏,𝑝

𝐸depth + 𝐸fit + 𝐸pos + 𝐸shape + 𝐸smooth + 𝐸occlusion . (2)

Here, the free parameters are the lifted stroke geometry points
(𝑥,𝑦, 𝑧), the binary variables indicating occlusion vs. ridge 𝑏, and
primitive parameters 𝑝 . Details about the individual terms in Eq. 2
are described below, in the order they appear:

• Stroke fitting. This term minimizes the distance from each
edge 𝑒 of a 3D stroke to its corresponding primitives. We
minimize this distance only when it is not part of an occluding

contour, i.e., 𝑏𝑒 = 1:

𝐸fit = 𝑤fit
∑︁

𝑒∈𝐸, 𝑝∈𝑃 (𝑒 )
𝑏𝑒 dist(𝑒, Proj𝑝 (𝑒))2 . (3)

Note that occlusion boundary edges are not lifted in this op-
timization, but we do handle them later (Sec. 6.2). In practice,
we discretize the 𝐿2 distance from the edge to the primitive
by taking the edge midpoint, i.e.,

Proj𝑝 (𝑒𝑖 ) ≡ Proj𝑝
(𝑥𝑖 + 𝑥𝑖+1

2
,
𝑦𝑖 + 𝑦𝑖+1

2

)
.

• Stroke Position. Following our principles, we allow for only
small refinement of the drawn strokes, so this term minimizes
the distance to the original vertex positions of each stroke 𝑠 .
We normalize the term by |𝑠 |, the number of vertices in the
stroke:

𝐸pos = 𝑤pos
∑︁
𝑠

1
|𝑠 |

∑︁
(𝑥,𝑦) ∈𝑠

∥(𝑥,𝑦) − (𝑥,𝑦)∥2
2 . (4)

• Boundary Shape. Following our principle of fidelity, we are
aiming to preserve the shape of each vectorized stroke and
prefer a smooth reconstruction of its 𝑧 coordinate. Precisely,
for a stroke 𝑠 = {(𝑥1, 𝑦1), . . . , (𝑥𝑛, 𝑦𝑛)}, we formulate shape
preservation using Laplacian coordinates [Sorkine et al. 2004].
That is, we preserve vectors Δ𝑥𝑠 and Δ𝑦𝑠 , where Δ is a 1D
Laplacian operator [Desbrun et al. 1999] and 𝑥𝑠 , 𝑦𝑠 ∈ R𝑛
are coordinate vectors of stroke 𝑠 . We additionally aim to
preserve stroke tangents, which we compute with a finite
difference operator 𝐷 . For brevity, we define 𝑥𝑠 = 𝑥𝑠 −𝑥𝑠 and
𝑦𝑠 = 𝑦𝑠 − 𝑦𝑠 , which lets us write

𝐸shape = 𝑤shape
∑︁
𝑠

∥Δ𝑥𝑠 ∥2
2 + ∥Δ𝑦𝑠 ∥2

2 + ∥𝐷𝑥𝑠 ∥2
2 + ∥𝐷𝑦𝑠 ∥2

2 . (5)

• Depth Smoothness. Our next term enforces smoothness of
our reconstructed 3D strokes using a Laplacian energy:

𝐸smooth = 𝑤smooth
∑︁
𝑠

∥Δ𝑧𝑠 ∥2
2 . (6)

• Occlusion. Finally, following our minimal occlusions princi-
ple, the last term aims to minimize the total length of occlu-
sion contours, which is, due to uniform sampling, equivalent
to the number of edges with 𝑏𝑒 equal to zero:

𝐸occlusion = 𝑤occlusion
∑︁
𝑒∈J

(1 − 𝑏𝑒 ). (7)

Here, J is the set of shared boundary edges.
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Following the regularity observation (Sec. 3), we formulate con-
straints for axis orthogonality and alignment between some patches.
Using the initial primitive fits (Sec.4.2), we mark primitive pairs as
nearly aligned or orthogonal when the angle between their axes is
within an 𝜀angle threshold from 0°or 90°, respectively. We then main-
tain those angles within the threshold via non-linear inequalities,
i.e., for an orthogonal pair 𝑖, 𝑗 ,(

𝑎𝑖 · 𝑎 𝑗
∥𝑎𝑖 ∥∥𝑎 𝑗 ∥

)2
≤ cos2 𝜀angle, (8)

and a similar inequality for the aligned pairs.
We use the following parameters in our optimization:𝑤depth = 1,

𝑤fit = 1000, 𝑤pos = 10, 𝑤shape = 100, 𝑤smooth = 1, 𝑤occlusion =

0.005, 𝜀angle = 14◦.

Solver. The integer constraints on the 𝑏𝑒 variables (easily hun-
dreds per sketch) make this optimization problem impractical. In-
stead, we empirically observe that a relaxation of this problem, i.e.,
replacing the integrality constraints by inequalities 0 ≤ 𝑏𝑒 ≤ 1,
always converges to integer values. While we have no formal proof
of this phenomenon, we use this relaxation in our implementation.
Therefore, we solve the nonlinear optimization problem with

equality and inequality constraints in Eq. 2 via interior point method
(IPOPT 3.11.1 [Wächter and Biegler 2006]) until convergence with
their default settings. This provides us with the final primitive
boundaries and refined primitive shapes (Fig. 8).

6 COMPUTING THE FINAL 3D SHAPE
We now find the final piecewise smooth mesh on the inferred primi-
tives interpolating the calculated 3D boundary strokes, allowing for
discontinuities only at the occlusion contours. We start by triangu-
lating the sketch interior, then perform an optimization balancing
the piecewise smoothness of the final surface with conformity to
the 3D strokes and the primitives.

6.1 2D Triangulation
Our goal is to create a piecewise smooth mesh, enforcing smooth-
ness everywhere except for the calculated boundary curves. To do so,
we need a segmented triangulation of the sketch containing the 2D
strokes refined in Sec. 5.2. To get the 2D triangulation, we first com-
pute the conforming Delaunay triangulation with the original 2D
sketch strokes as constrained edges. In our implementation, we use
the Triangle library [Shewchuk 1996]. This outputs a triangulated
set of vertices with coordinates (𝑥 𝑗 , 𝑦 𝑗 ), 𝑗 = 1, . . . , 𝑁 , which include
the original polyline vertices and new vertices in the interior. Using
the As-Rigid-As-Possible framework [Sorkine and Alexa 2007], we
then compute deformed vertices (𝑋 𝑗 , 𝑌𝑗 ) of the triangulation such
that the initial sketch strokes align with the refined sketch strokes.
Finally, we cut this triangulation (duplicating vertices) along the
predicted occlusion contours.

6.2 Optimizing the complete shape
We now lift the triangulation vertices (Fig. 11) into 3D, i.e., find
𝑍 𝑗 ∈ R for each triangulation vertex (𝑋 𝑗 , 𝑌𝑗 ) ∈ R2, with the non-
occlusion stroke vertex depths fixed to the values calculated previ-
ously. Note that the optimization in Sec. 5.2 does not optimize stroke

depth along occlusion contours. We therefore do not constrain the
𝑍 values of the vertices along the occluded contours.

For regions classified as planes, cylinders, cones or spheres, our
goal is to project the 2D triangulation vertices onto the correspond-
ing primitives. Naïvely performing 𝑧-projection, i.e., finding an inter-
section of the ray in the view direction with the primitive, however,
will often fail. This is because some 2D vertices may lie outside the
fitted primitive, so the ray does not have an intersection point (e.g.,
if the optimization in Sec. 5.2 underestimates the radius of a cylinder
or a cone). In other cases, the ray might have two intersections, so
one needs to choose the appropriate one, which is not necessarily
the closest one (e.g., circular hole in the middle of the ‘nut’ example,
Fig. 20).
Instead, we optimize the following energy, balancing projection

distance against fairness:

min
𝑍 ∈R𝑁

𝐸primitives (𝑍 ) +𝑤fairness𝐸fairness (𝑍 ), (9)

s.t. 𝑍 𝑗 = 𝑧 𝑗 , 𝑗 ∈ non-occlusion boundary.

The 𝐸primitives term is a sum of squared 𝑧−distances between the
mesh vertices and the corresponding primitive. We first project each
triangulation vertex 𝑥 𝑗 = (𝑋 𝑗 , 𝑌𝑗 , 𝑍 𝑗 ) along the ray parallel to the
𝑧-axis onto the primitive, yielding point 𝑥∗

𝑗
, and then compute ∥𝑥 𝑗 −

𝑥∗
𝑗
∥2

2. When this ray has multiple intersections with the primitive,
we take the closest one; when there is no intersection, we take the
closest distance between the ray and the primitive instead. This
term is zero in regions classified as ‘others’.

The 𝐸fairness term is a squared Laplacian energy on each region:

𝐸fairness =
∑︁
𝑝

∫
𝑝

∥Δ𝑍 ∥2𝑑𝐴, (10)

where 𝑝 iterates over all primitives. Here, the Laplacian operator is
computed once on the flat triangulation with the edges cut along
the occlusion contours, which allows to introduce discontinuities
there.
For all our experiments, we set 𝑤fairness = 0.1. For parametric

patches, this optimization performs a smooth projection of the tri-
angulation onto the primitive. For other patches, 𝐸primitives = 0, so
this optimization is Laplacian smoothing.
The energy in Eq. 9 is non-convex, and, in general, non-trivial

to optimize due to the 𝐸primitives term. We propose an efficient
ADMM algorithm [Boyd et al. 2011], which alternates between
projecting the points onto the primitives and smoothing the result
with the fairness term. More specifically, we first eliminate the
fixed variables𝑍 𝑗 , 𝑗 ∈ non-occlusion boundary, making the original
problem unconstrained, and rewrite an equivalent optimization
problem in the standard ADMM form:

min
𝑍,�̃� ∈R𝑁

𝐸primitives (𝑍 ) + 𝐸fairness (𝑍 ),

s.t. 𝑍 = 𝑍 .

We then form the augmented Lagrangian for this problem,

L = 𝐸primitives (𝑍 ) + 𝐸fairness (𝑍 ) + 𝜆𝑇 (𝑍 − 𝑍 ) + (𝜌/2)∥𝑍 − 𝑍 ∥2
2,

where 𝜆 is a vector of dual variables. We use 𝜌 = 0.2 in our results.
The actual optimization consists of alternating between minimizing
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(a) (b) (c) (d) (e) (f) (g)

Fig. 11. After lifting the boundaries to 3D and refining their 2D shape (Sec. 5.2), the original strokes (a) are deformed (b, new strokes in blue) and no longer
align with the segmentation of the input (c). We therefore triangulate the original vectorized drawing (d), deform it to match the new strokes (d,e), resulting in
segmented triangulation, cut at occlusion contours (e,red), and leverage the fitted primitives (f) to compute the final 3D surface (g).

the augmented Lagrangian L over 𝑍 keeping 𝑍 fixed, minimizing
over 𝑍 keeping 𝑍 fixed, and a dual update (see [Boyd et al. 2011] for
more details). The solution to the first optimization problem has a
closed form solution computed via 𝑧−projection of points onto the
primitives; the second one is a linear solve. For the latter, we use
SciPy sparse linear system solver, and perform ten ADMM iterations
in our implementation.

7 RESULTS AND VALIDATION
Throughout the paper, we demonstrate the performance of our
method on natural sketches (e.g., Fig. 1, 4, 2,9). We demonstrate ad-
ditional results with primitives highlighted in Fig. 20. These include
both shapes from standard categories such as chairs and cars, as well
as miscellaneous machine-made shapes. Some of the input drawings
are in orthographic projection or weak perspective (e.g., Fig. 4,14,
bottom), some are with more pronounced perspective (e.g., Fig. 20,
chair, building). Our inputs contain five sketches from [Delanoy
et al. 2019], one sketch from OpenSketch dataset [Gryaditskaya et al.
2019] (Fig. 20, house), two sketches from [Manda et al. 2021], and
four new sketches, including three derived from [Eissen and Steur
2011] (Fig. 4, Fig. 6, Fig. 20 ‘bin’).

Qualitative Evaluation. We asked 7 non-professionals and 6 artists
to comment on the results of our algorithm. We showed each one
of them an input sketch and two views of our algorithmic result
and asked to comment on the following statement, separately for
each sketch, "The shapes (bottom) capture the intent of the drawing
(top)". The questionnaire presented five Likert-type reply options:
"Strongly disagree" (-2), "Disagree" (-1), "Neither disagree nor agree"
(0), "Agree" (1), "Strongly Agree" (2). On average, the participants
agreed with the statement (𝑎𝑣𝑔 = 1.4, 𝑠𝑡𝑑 = 0.74). After the ques-
tionnaire, whenever a user disagreed for at least one example, we
performed a short follow-up semi-structured interview with a single
question: "Do you have any comments on some of your choices?".
Two of the participants commented on the our ‘Wagon’ and ‘Train’
having only two wheels instead of four. We note that we only re-
construct the visible surface, while the two extra wheels are fully
hidden in the input sketches.

7.1 Comparison with Prior Art
We compare ourmethod to prior art, includingmethods that produce
full 3D models from bitmap sketches [Delanoy et al. 2019; Guillard

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Ours Other Both Neither

Fig. 12. Summary of comparative preferences in our perceptual user study.
Participants strongly preferred our results over the alternatives [Delanoy
et al. 2019; Guillard et al. 2021].

et al. 2021]1, a method that only produces normals [Hudon et al.
2018], and a recent method that produces shading [Zheng et al.
2020]. We additionally compare our algorithmic results to the state-
of-the-art system that converts a 3D point cloud into a manifold
machine-made shape [Guo et al. 2022].

Qualitative Comparisons. We qualitatively assess our results by
comparing them to algorithmic alternatives via a comparative per-
ceptual study. Study participants were shown input sketches, to-
gether with rendered images of 3D reconstructions from our method
and an alternative method. The input marked as ‘A’ is shown at the
top, and the two reconstruction outputs are placed at the bottom
and marked as ‘B’ and ‘C’. Participants were asked to select the
output that is a more accurate reconstruction of the sketch: “Which
of the blue shapes on the bottom, B or C, more accurately represents
drawing A (top)?”. The answer options were ‘B’, ‘C’, ‘Both’, and
‘Neither’. We collected answers for each query from 17 different
participants (12 males, 5 females, 18-35 years old). The protocol, the
study layout, and all study data is provided in the supplementary
material.

Unlike our system, which targets arbitrary machine-made shapes,
the work of Zhong et al. [2022] and Guillard et al. [2021] are limited
to the standard ShapeNet shape categories, such as chairs or cars.
Because of this, we only compare with these methods on those
objects (Fig. 15, 14). The method of Delanoy et al. [2019] can accept
one or more views of an object as input. Since we reconstruct the
object from a single view, for fairness, we run their method with a
single image as input.
Participants preferred our results over those of Delanoy et al.

[2019] 93% of the time, and preferred the alternative only 1% of
the time. Precisely, on the ‘camera’ input (Fig. 14 top), one person
preferred the result of Delanoy et al. [2019], and four participants

1We do not compare to [Zhong et al. 2022], since despite having their code available,
their pretrained models are not available, and training together with precomputation
takes 7 weeks according to their measurement.
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judged our results both accurate. For the ‘bearing’ input (Fig. 14,
bottom), two participants answered ‘neither’. Nobody preferred
any of the results of Guillard et al. [2021] to ours. This outcome
is consistent with the expectation that human observers treat the
artist strokes as meaningful in the specification of a concrete 3D
object.

For completeness, we also qualitatively compare results of meth-
ods that produce normals [Hudon et al. 2018] or shading [Zheng
et al. 2020] with the normals or shading of our 3D reconstruc-
tions (Fig. 17). Both of these methods were trained on natural
shapes, so for machine-made shapes we notice that they tend to
predict smoothly varying normals, even on planar faces. Our sys-
tem, however, produces precise normals and shading characteristic
of piecewise-smooth machine-made shapes with sharp ridges and
occlusions.
Finally, we qualitatively compare our algorithmic results with

those of Guo et al. [2022], which takes a point cloud as an input.
While we do not have the complete point cloud, we run their method
with our predicted depth map, converted into a point cloud, as
an input. The comparison is presented in Fig. 16. Their method
targets complete point clouds with some noise, and is unable to
process partial point clouds with heavily distorted shapes, which
is typical for natural sketches. Our method successfully alleviates
these imprecisions despite starting from the same predicted depth.
We ran their code with the default parameters; note that their official
implementation does not fully implement their method, skipping
primitive trimming [Guo 2023].

Quantitative Comparisons. Our algorithm aims to reconstruct
the 3D machine-made object perceived by the viewer, as the artist-
intended it from a sketch. To validate this, we asked each of three
3D modeling experts to manually model seven of our input sketches
in a CAD software of their choice. The experts took roughly from 5
to 45 minutes to model each object, while our algorithm inferred
each shape in less than two minutes on average (Sec. 7).

The manual modeling results are visually similar to ours (Fig. 13
and Supplementary). We have furthermore measured chamfer dis-
tance from our 3D models to the 3D objects modelled by experts, as
well as chamfer distance between 3D models of different experts, to
highlight the natural variation in interpretation. Since our method
only reconstructs the visible surface of the object, we compute the
one-sided chamfer distance, i.e., from points on the reconstruction
to the manual model. We normalize all the distances by the shape
diameter.
Over the seven models, the average chamfer distance from our

algorithmic results to the models created by artists is 0.0476%, which
is very close to the average chamfer distance between different
artists’ interpretations, 0.0428%.

7.2 Ablation study
Parameter Sensitivity. We show (Fig. 21) that our method pro-

duces plausible results for a range of parameters. Varying𝑤occlusion
controls how many edges are identified as occlusion contours; an
extremely large number may make the final shape more flat. For
a large range of parameter values, however, the changes in the re-
sult are insignificant. Varying𝑤fit controls how much we trust the

Expert 1 Our result
bitmap sketch original view alternative vieworiginal view alternative view

Fig. 13. Compared to manually created models from the same sketches,
our algorithmic results are similar both visually and quantitatively. Input
images: bin [Eissen and Steur 2011], camera [Delanoy et al. 2019].

Table 1. Performance statistics for our pipeline in seconds. We separately
include the timings for the vectorization algorithm of Puhachov et al. [2021].

Name Fig. Vect. Our time Total
armchair 22 52 85 137

bin 20 32 83 115
building 20 24 54 78
camera 13 50 105 155
car 20 42 76 118

chair30 20 32 75 107
chair37 15 36 76 112
cylinder 16 17 69 86
goblet 21 24 61 85
hexnut 9 22 81 103
house 10 35 72 107

machine 1 100 97 197
nut 20 29 69 98

pulley 14 43 147 190
train 20 40 72 112
wagon 2 47 86 133

primitives, so a higher weight would prioritize refining the shared
boundaries. Finally, varying𝑤depth controls how much we trust the
predicted depth.

Performance. We implemented our system in Python using Py-
Torch for neural networks in Sec. 4.1, and Pyomo 6.5.0 [Bynum et al.
2021; Hart et al. 2011] for optimization in Sec. 5.2. All the results
presented in the paper were computed with the default parameters
presented in the text. On our desktop machine (Intel® Core™ i7-
9700K CPU @ 3.60GHz with NVIDIA® GeForce® RTX 2080Ti), the
results take 82 seconds on average, not including vectorization. Full
statistics are in Table 1. Most of the time is spent in the boundary
shape optimization (Sec. 5.2). Training the depth network took 9
hours; training the segmentation network took 30 hours.

Ablation Study. We perform an ablation study of our method
(Fig. 19). We demonstrate results on a few examples, each time skip-
ping one stage or a constraint in our pipeline. Skipping the boundary
optimization stage (Sec. 5.2) by simply projecting the 2D strokes
onto the primitives fitted independently, yields the final shape with
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(a) (b) (c)

Fig. 14. Compared to the smooth results of [Delanoy et al. 2019] (b, orange),
our results (c, blue) are piecewise smooth surfaces that are explicitly con-
trolled by the drawn strokes (a). Input images: camera [Delanoy et al. 2019],
bin [Eissen and Steur 2011], pulley [Manda et al. 2021].

(b)(a)(a) (c)

Fig. 15. Even on a fixed shape category, typical end-to-end learning pipelines,
such as Sketch2Mesh [Guillard et al. 2021] often produce shapes (b) that
only roughly resemble the input sketch (a). Our result (c). Input images: car
[Delanoy et al. 2019], chair [Eissen and Steur 2011], armchair [Guillard et al.
2021]. Note that the armchair image is a non-photorealistic rendering, not
a natural sketch.

(b) (c) (d)(a)

Fig. 16. State-of-the-art approaches reconstructing machine-made shapes
from point clouds, such as [Guo et al. 2022], often target complete or almost
complete point clouds with, perhaps, some noise. Our depth, inferred from
a sketch (a) and converted into a point cloud (b), only contains depths of
the visible part of the shape and thus is incomplete. Moreover, the small
distortions in the sketch get propagated into the 3D shape, impeding the
use of these approaches (c). Our framework is designed to alleviate these
distortions (d). Here we visualize only 4% of the points in the point cloud.
Input image [Manda et al. 2021].

(a) (b) (c)

Fig. 17. Shading prediction methods, such as [Zheng et al. 2020], are typi-
cally trained on images of natural shapes with smoothly varying normals.
For sketches of machine-made shapes (a), these methods often produce un-
realistic, smoothly varying shading (b). Our reconstruction result rendered
in a similar style (c). Input images: building [Gryaditskaya et al. 2019], chair
[Eissen and Steur 2011].

(b) (c)(a)

Fig. 18. Normal prediction methods, when trained on natural objects, typi-
cally fail to predict correct normals on machine-made shapes, e.g., (b) shows
results when trained on characters [Hudon et al. 2018]. Our 3D results, ren-
dered in the same style (c). Input images: nut (top), pulley (bottom) [Manda
et al. 2021], and bin (middle) [Eissen and Steur 2011].

gaps at the strokes (Fig. 9c). Removing the regularity constraint
(Eq.8) leads to misaligned primitives (Fig. 19a). Performing a naïve
projection instead of Sec. 6.2 leads to artifacts whenever the drawn
shape disagrees with the fitted primitives (Fig. 19b) and produces
suboptimal shapes of non-parametric patches (Fig. 19b, pink).

Segmentation Study. To verify our hypothesis that human ob-
servers can consistently segment and classify sketches of man-made
shape into different geometric primitives, we performed a smaller
user study, where we asked five participants with normal color
vision to color the sketch into different colors corresponding to
different geometric shapes. The exact task was: "In each drawing,
using the colors below, draw the regions depicting the following
geometrical shapes: cylinder, sphere, cone, plane, and torus. If none
of those fit a region, please mark it as ‘other’. Keep the regions
outside the shape white.". The results are presented in Fig. 3 and
Supplementary. In general, the participants consistently segment
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(a) (b)input our results

Fig. 19. Ablation study: (a) Omitting regularity constraints (Eq. 8) produces misaligned primitives. (b) Skipping Sec. 6.2 leads to artifacts whenever the drawn
shape disagrees with the fitted primitives, or produces inaccurate non-parametric patches (pink). Input images: bin [Eissen and Steur 2011], cylinder [Manda
et al. 2021], armchair [Delanoy et al. 2019].
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Fig. 20. A gallery of additional results with coloured patches. Input images: car, train [Delanoy et al. 2019], bin, chair [Eissen and Steur 2011], building
[Gryaditskaya et al. 2019].

Fig. 21. Our pipeline is robust to a wide range of parameter values. An ex-
tremely high value of 𝑤occlusions may prohibit occlusions altogether, leading
to a flatter reconstruction (top). Input images: goblet [Delanoy et al. 2019],
chair [Eissen and Steur 2011], hexnut [Manda et al. 2021].

and classify the regions. The only disagreement was between a small
torus or a sphere (Supplementary). We also note that almost always
the drawn boundaries of the regions align with the drawn strokes.
For the region where the correct segmentation would create a new
boundary, one participant drew that boundary, others marked the
region as ‘other’ (Supplementary, chair).

(a) (b) (c) (d)

Fig. 22. When artists do not fully delineate primitives (a, rightmost region
on the chair’s back), our pipeline may produce a suboptimal surface (b,
arrow). If desired, artists can complete the delineation (c, the right region
now separated in two), which improves the reconstruction (d), in this case
making the light-green region planar, as perhaps intended. Furthermore,
we only reconstruct the visible part of the surface, so the reconstruction
of the invisible parts may disagree with the artist’s intent (d, upper arrow).
Input image [Delanoy et al. 2019].

8 CONCLUSIONS
We have presented and validated a novel system to infer a 3D
machine-made shape from a single natural bitmap sketch. Our sys-
tem is based on the segmentation and a vectorization of the input
sketch, allowing us to reconstruct piecewise smooth shapes with
ridges and occlusion contours that are precisely aligned with the
drawn strokes. Our system can process sketches of different level
of roughness, distorted shapes, and extra strokes.
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(a)

(b)

(c)

(d)

Fig. 23. Limitations: On complex drawings, the typical imprecision in neural
networks’ outputs (a) can lead to inaccuracies in the final results (b). We do
not estimate the perspective in the sketch, always assuming orthographic
projection (c.f. c and d). Input image [Gryaditskaya et al. 2019]

8.1 Limitations
Some of our limitations stem from our use of a line drawing algo-
rithm that produces rather clean drawings: Our system does not
handle input sketches with significant shading, as it leads to artifacts
in the vectorization. Furthermore, our system only targets presenta-
tion sketches that contain very few extra strokes, such as scaffolds
or other auxiliary construction lines. When artists do not draw some
of the boundaries of primitives, such as on the back of the chair in
(Fig. 22a), our pipeline may produce a suboptimal surface (Fig. 22b).
If desired, artists can complete the boundaries (Fig. 22c, a new stroke
on the back), improving the final result (Fig. 22d, lower arrow).
Our pipeline is driven by depth prediction and segmentation

networks; both can produce noisy outputs (Fig. 3b, 9b). Small patches,
abundant in complex shapes, have fewer pixels and thus contain
less depth and segmentation information, leading to potential errors
down the pipeline and suboptimal results (Fig. 23 (top)). We account
for possible segmentation mistakes by fitting all the other primitive
types and picking the primitive with the smallest error. For our
inputs, it only happened with 2 patches on Fig. 20 (train, car). These
standard drawbacks can be addressed by using advanced neural
architectures and training procedures or a target-specific dataset.

Finally, our system targets drawings with orthographic projection
or weak perspective. To support stronger perspective one may need
to retrain the neural networks and modify the projection transfor-
mations. We show the effect of perspective in Fig. 23 (bottom).

8.2 Future work
One clear avenue for future work is the prediction of a piecewise
smooth hidden surface of the object that connects with the visible
surface we output (Fig. 22f, upper arrow). One might use ideas

similar to work of Yao et al. [2020] or use multiple viewpoints.
Another interesting direction is to combine cues from segmentation
and drawn strokes with rudimentary shading because some artists
use this to capture fine variation of the depicted surfaces.
Our system can also be extended to incorporate additional user

annotations (e.g., correcting primitive types and enforcing orthogo-
nality or alignment), or enable patch-based shape manipulation.
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A DATASET GENERATION
We render a subset of shapes from ABC dataset [Koch et al. 2019].
The dataset contains 3D shapes along with shape decomposition
into primitives and labeled curves connecting those primitives.
We discard the shapes with multiple connected components. To

help balance the primitive distribution in the dataset, we also remove
the shapes consisting solely of planes.

Rendering. Given a shape and corresponding geometric informa-
tion from ABC dataset, we render the training image via Blender
Freestyle, and generate the corresponding depth and segmentation
images. We normalize each object preserving its ratio to fit into
(−1, 1)3 box and translate the object’s barycenter to the origin. Fol-
lowing [Zhong et al. 2022] we sample camera locations uniformly
on a sphere of radius 5; each shape is rendered from four differ-
ent viewpoints. We rescale the depthmap values from the range of
[3.5, 6.5] to [0, 1]. We perform the same augmentation procedure
for the rendered images as in Puhachov et al. [2021] to make our
networks robust to the different stroke styles and widths.

We used 3,900 shapes for training, 150 shapes for validation, and
50 for testing. In total, our dataset contains 16,400 labeled image
triplets.

B ARCHITECTURE AND TRAINING
We use SegmentationModels PyTorch framework for image segmen-
tation models [Iakubovskii 2019] and PyTorch Lightning to build
and train the neural networks. The depth estimation network uses
MobileNetV2 encoder [Sandler et al. 2018] with U-Net architecture
[Ronneberger et al. 2015].We use masked RMSE loss, calculated only
for foreground pixels. Segmentation network uses EfficientNet-B0
encoder [Tan and Le 2019] with feature pyramid architecture [Lin
et al. 2017a]. We use focal loss [Lin et al. 2017b] for balancing. Both
networks were trained using Adam optimizer. Depth estimation net-
work was trained for 60 epochs, the best checkpoint scoring 0.002
masked RMSE on our test set. Segmentation network was trained
200 epochs. It terminated with 99.60% IoU score on our test set.

C FITTING GEOMETRIC PRIMITIVES
The energies we minimize are similar to the ones used by Eberly
[2018] and Romanengo et al. [2022]. Below, we define 𝑋𝑖 ∈ R3, 𝑖 =
1, . . . , 𝑁 as the set of points that we are fitting to each primitive.

Plane. We minimize the sum of squared distances to the plane,
parameterized by its normal 𝑛 ∈ R3, ∥𝑛∥ = 1 and a scalar 𝑑 ∈ R:

𝐸plane (𝑛,𝑑) =
𝑁∑︁
𝑖=0

∥𝑛 · 𝑋𝑖 + 𝑑 ∥2 . (11)

To fit a single plane, we use a singular value decomposition.

Sphere. We minimize the sum of squared distances between the
points and the sphere, which is parameterized by its center 𝐶 ∈ R3

and radius 𝑟 > 0:

𝐸sphere (𝐶, 𝑟 ) =
𝑁∑︁
𝑖=1

(∥𝑋𝑖 −𝐶 ∥2 − 𝑟2)2 .
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To fit a single sphere, we solve an over-determined linear system
via QR decomposition.

Cylinder. A cylinder is defined by its axis, parameterized by a
point𝐶 ∈ R3 and a direction𝑊 ∈ R3, ∥𝑊 ∥ = 1, and its radius 𝑟 > 0.
We then minimize

𝐸cylinder (𝐶,𝑊 , 𝑟 ) =
𝑁∑︁
𝑖=1

(𝑑axis (𝑋𝑖 ) − 𝑟 )2 , (12)

where the unsigned distance to the axis is computed as

𝑑2
axis (𝑋𝑖 ) =

��(𝑋𝑖 −𝐶)⊤ (𝐼 −𝑊𝑊 ⊤) (𝑋𝑖 −𝐶)
�� . (13)

We use an interior point solver Ipopt 3.11.1 using their default
parameters.

Cone. Cone is defined by its apex 𝑉 ∈ R3, axis 𝑈 ∈ R3 and angle
𝜃 ∈ (0, 𝜋2 ). We use the standard least-squares fitting, as in [Shakarji
1998]. Please refer to their paper for details.

Other primitives. For all the other classes of primitives, we di-
rectly use the predicted 3D pixel depths as an estimate of their local
geometry.
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