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Abstract— Attenuation map or measurements based on local 

attenuation coefficient slope (ACS) in quantitative ultrasound 

(QUS) has shown potential for diagnosis of liver steatosis. In liver 

cancers, tissue abnormalities and tumors detected using ACS are 

also of interest to provide new image contrast to clinicians. 

Current phantom-based approaches have the limitation of 

assuming comparable speed of sound between the reference 

phantom and insonified tissues. Moreover, these methods present 

the inconvenience for operators to acquire data on phantoms as 

well as on patients. The main goal was to alleviate these drawbacks 

by proposing a methodology for constructing phantom-free 

regularized (PF-R) local ACS maps and investigate the 

performance in both homogeneous and heterogeneous media. The 

proposed method was tested on two tissue mimicking media with 

different ACS constructed as homogeneous phantoms, side-by-

side and top-to-bottom phantoms, and inclusion phantoms with 

different attenuations. Moreover, an in-vivo proof-of-concept was 

performed on healthy, steatotic and cancerous human liver 

datasets. Modifications brought to previous works include: a) a 

linear interpolation of the power spectrum in log-scale; b) the 

relaxation of the underlying hypothesis on the diffraction factor; 

c) a generalization to nonhomogeneous local ACS; and d) an 

adaptive restriction of frequencies to a more reliable range than 

the usable frequency range. Regularization was formulated as a 

generalized LASSO, and a variant of the Bayesian Information 

Criterion (BIC) was applied to estimate the Lagrangian multiplier 

on the LASSO constraint. In addition, we evaluated the proposed 

algorithm when applying median filtering before and after 

regularization. Tests conducted showed that the PF-R yielded 

robust results in all tested conditions, suggesting potential for 

additional validation as a diagnosis method. 

 

Index Terms— Compression wave attenuation imaging, local 

attenuation coefficient slope, quantitative ultrasound, 

regularization, system independent tissue characterization, 

ultrasound attenuation coefficient estimation. 

I. INTRODUCTION 

EPATOCELLULAR carcinoma (HCC) is 

responsible for between 85% and 90% of primary 

liver cancers [1, 2], and they are the fourth most 

common cause of cancer-related mortality [3]. The 
mortality rate of HCC is increasing 3% per year due to late 

diagnosis [4, 5]. Early detection of HCC is critical to increase 

the opportunity for curative treatment and to improve survival. 

Ultrasound (US) is used clinically for HCC surveillance due to 

its wide availability, cost-effectiveness and noninvasiveness 

compared to other methods such as biopsy, magnetic resonance 

imaging (MRI) and computed tomography [6, 7]. However, US 

has a lower sensitivity [8, 9] for detecting focal lesions, 

especially in the presence of concomitant liver steatosis, 
fibrosis, or cirrhosis [10, 11]. To overcome this limitation, one 

may extract additional information from US not available on B-

mode, Doppler, or elastography images, such as attenuation 

coefficient slope (ACS) maps estimated using quantitative 

ultrasound (QUS) [12-15]. 

QUS attenuation has been used in several clinical studies to 

assess the degree of liver injury and specifically of liver 

steatosis [16-19]. This feature is used by radiologists to detect 

and assess the severity of fatty liver disease. The accumulation 

of fat in liver can progress to fibrosis, cirrhosis, and eventually 

to HCC [20]. The presence of moderate-to-severe liver steatosis 
constitutes a diagnostic challenge as it may obscure tumors in 

attenuated portions of the liver [21]. US attenuation is more 

economical than MRI for screening and surveillance [22], 

mainly due to clinical successes of the controlled attenuation 

parameter (CAP) to grade liver steatosis [17]. Notice that no 

images are produced with the CAP parameter. 

The loss of ultrasonic energy when an acoustic wave 

propagates through soft tissues is referred to as ultrasonic 

attenuation [23]; it is due to scattering and absorption 

(conversion of ultrasonic to thermal energy) [24]. Clinicians 

performing conventional B-mode assessment can detect 
attenuation qualitatively [25, 26]. The attenuation is related to 

the interaction of propagating compression waves within 

tissues, resulting in a decrease in the echo intensity along the 

wave propagation path, loss in B-mode detectable image 

features, and shadowing [27]. While attenuation was 

traditionally considered as an imaging artifact, it can be 

leveraged as a specific feature with diagnostic value [12]. 

Indeed, attenuation depends on the underlying nature and 

structure of a tissue [28]. To clarify this concept, several 

parameters can be defined as attenuation in the US literature. 

The total attenuation coefficient (total AC) is defined as the 

attenuation-to-depth ratio, which depends on intervening 
tissues along the whole propagation path [12, 23]. The local AC 

can be defined as the partial derivative of attenuation with 

respect to depth, which depends on tissues at a given position 

[29]. By assuming a linear dependency on frequency, the slope 

of AC (attenuation coefficient slope - ACS) is most often used 

in the literature [23, 25, 30-35]. 

Constructing attenuation images is an approach that can be 

used to assist the detection of lesions and abnormalities of the 

liver. Popular methods to estimate ACS using clinical US 

scanners in backscattering mode [15, 36, 37] are the spectral 

difference [38, 39] and spectral shift [40] methods. Both 
spectral-based approaches estimate the local ACS (dB cm-1 

MHz-1) inside a pre-specified region-of-interest (ROI) [23]. The 

spectral difference method uses the reduction of the echo signal 
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power with depth to determine the local attenuation coefficient, 

whereas the spectral shift method utilizes the downshift in the 

center frequency of the backscatter echo with depth to obtain 

frequency-dependent attenuation [15, 40]. The spectral log-

difference method [23, 34] and a hybrid method [32] are two 

other variants of these techniques. 
With these methods, scattering properties (i.e., the 

backscatter coefficient) are assumed to be constant over depth 

within the ROI. Furthermore, to compensate for the US beam 

diffraction and other system-dependent effects, such as gain, 

filtering, and the piezoelectric acoustical transfer function at 

emission and reception, echo signals from a reference phantom 

whose acoustic properties are known (through calibration) is 

required [41]. It is worth mentioning that these echo signals 

must be acquired using the same equipment and system settings 

as the clinical exam, and that the speed of sound of the reference 

phantom needs to be close to the one of acquired tissues’ 

samples [12, 23]. The ratio of power spectra from tissues’ 
samples and reference phantom, at two different depths, yields 

the local attenuation coefficient of the scanned organ at the 

frequency and depth of interest [14]. The availability of a well-

calibrated reference phantom can thus be considered as a 

limitation of these methods [42]. 

Recent studies proposed system independent methods as an 

alternative for estimating local attenuation without the need of 

a reference phantom [42, 43]. This strategy cancels system 

dependent effects using spectral normalization in adjacent 

frequency components and is known as the reference frequency 

method (RFM). This method has some limitations such as the 
need of a pre-defined frequency range and of a large computing 

window (a square with side lengths of 2.5 cm), which make the 

use of this method limited to the case of homogeneous media 

preventing cancer lesions detection. Thus, a method is needed 

to overcome these limitations to provide parametric maps for 

cancer diagnosis purposes. In our preliminary study [43], 

reconstructions of attenuation images using a system 

independent method showed promising results close to the 

ground truth (through-transmission substitution method) [36], 

in the case of homogeneous and side-by-side phantoms. The 

current study provides additional validations with top-to-

bottom phantoms, and is also focusing on differentiating lesions 
with different attenuation and geometrical properties than 

surrounding tissues. More specifically, we present the 

development and validation of a phantom-free attenuation 

mapping method with parametric regularization to reduce 

image artifacts for applications in liver steatosis grading, and 

liver cancer detection and characterization. 

The remaining part of this paper is organized as follows. 

Section II introduces the theoretical framework and governing 

equations for estimating the attenuation coefficient slope 

(ACS). Section III describes experimental configurations and 

acquisitions. Section IV presents results acquired on phantoms 
with the phantom free (PF) and the spectral log-difference 

(SLD) methods before and after regularization (R). Section V 

discusses advantages and future directions, followed by Section 

VI on conclusions. 

II. THEORETICAL FRAMEWORK 

The ACS can be evaluated using a methodology that involves 

radiofrequency (RF) data acquisition without the need of 

acquiring RF signals from a reference phantom. The method is 

based on spectra normalization at different frequencies [43]. 

Specific contributions are: 1) a linear interpolation of the power 

spectrum in log-scale; 2) the relaxation of the underlying 

hypothesis on the diffraction factor within an ROI; and 3) a 

generalization to nonhomogeneous local ACS. Moreover, we 

provide a regularized local attenuation map based on the 

selected ROI. 

A. Power spectrum modeling 

Within the ROI, a computing window (CW) centered at 

depth z  (cm) (the lateral position is dropped in the equations 

for simplicity of notation) is considered. The power spectrum 

( , )S f z  at depth z of backscattered RF signals in the time 

domain ( ( )zx t ) after removing the time gain compensation 

(TGC) of the US system, which was automatically recorded as 

a function of depth, can be computed as in Eq. (1): 
2

( , ) ( )zS f z X f    (1) 

where f (MHz) is the frequency, ( )zX f  is the Fourier 

transform of ( )zx t  over a scan line centered at z , ( )zX f

denotes the complex modulus of ( )zX f and    represents the 

averaging operator over scan lines. Power spectra were 

estimated by computing Fourier transforms of RF signals after 

applying a rectangular window with zero padding, and 

averaging over 25 adjacent scan lines (see [44]). 

The power spectrum can be modeled as a function of the US 

frequency and depth according to previous studies [31, 42], in 

the form of the following equation: 

, ,( , ) ( ) ( ) ( ) ( , )i k i i k i i kkS zf z G f D f z BSC f A f z ,  (2) 

where S is the power spectrum as a function of frequency if  (

i is the frequency component index) and depth 
kz ( k  is the 

depth index), G is the transducer’s response in transmit and 

receive modes at a given frequency, D represents combined 

effects of focusing, beamforming, and beam diffraction, BSC  

(cm-1. sr-1) is the backscatter coefficient, and A is the 

attenuation component, which is assumed to be in the form 

,exp( 4 )
ktotal z k iz f , where , ktotal z  (Nepers cm-1 MHz-1) is 

the total ACS at depth kz , assuming a linear dependency with 

frequency. 

The first modification to [43] was to consider a Gaussian fit 

in log-scale to power spectra for improving robustness of ACS 

maps. Next, according to [42], the power ratio ( , )i kRS f z  (no 

unit) between adjacent frequency components ( , )i kS f z  and 

1( , )i kS f z  can be expressed as: 

1

( , )
( , )

( , )

i k

i k

i k

S f z
RS f z

S f z

   
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( ) ( , ) ( , ) ( , )
.

( ) ( , ) ( , ) ( , )

i i k i k i k

i i k i k i k

G f D f z BSC f z A f z

G f D f z BSC f z A f z   

 

 (3)  

We assume that beamforming and diffraction effects between 

two adjacent frequencies 
if  and 

1if 
 are related linearly in the 

form 
1( , ) ( , )i k i i kD f z c D f z , where the unknown constant 

of proportionality ci depends only on frequencies 
if  and 

1if 
. 

With this assumption, Eq. (3) simplifies to: 

1 1 1

( ) ( , ) ( , )
( , ) .

( ) ( , ) ( , )

i i i k i k

i k

i i k i k

G f c BSC f z A f z
RS f z

G f BSC f z A f z  

  (4) 

To obtain a linear equation, the natural logarithm is applied to 

Eq. (4) yielding: 

1log ( , ) log ( ) log ( ) log ( , )i k i i i kRS f z G f G f BSC f z  

1 , 1log ( , ) 4 ( ) log .
ki k total z k i i iBSC f z z f f c         (5) 

By taking the difference in the expression log ( , )i kRS f z  at 

two different depths 
kz  and 

rz  yet at same frequencies, the 

terms for transmit and receive transducer’s responses and the 

backscatter coefficient can be cancelled from Eq. (5) by 

assuming ( , ) ( , )i k i rBSC f z BSC f z . Furthermore, upon 

considering the relation , ,k rtotal z k total z rz z  

, ( )local z k rz z  , where ,local z is the local ACS for a CW 

centered at depth z, Eq. (5) yields after simplifications: 

 

, 1log ( , ) log ( , ) 4 ( )( ).i k i r local z k r i iRS f z RS f z z z f f     

   (6) 

To lighten notation in Eq. (6), the normalized ratio of power 

spectra ( , , )nor i k rRS f z z is defined as:  

( , , ) ( , ) ( , ).nor i k r i k i rRS f z z RS f z RS f z   (7) 

With this definition, Eq. (6) now reads as:  

, 1log ( , , ) 4 ( )( ).nor i k r local z k r i iRS f z z z z f f       (8) 

Another modification to Gong et al. [42] was restricting the 

frequency range within the usable frequency range (UFR) as 

follows. First, the log-power spectrum ratio at a given 

frequency f  as a function of depth z was approximated by a 

linear function ( ) ( )a f z b f   using the line fitting described in 

Section II.B. The frequency *f  at which the y-intercept ( )b f  is 

maximal was selected. This procedure yielded the frequency 

with overall maximal power spectrum. The quantity 
*( )a f  

represents an approximate estimate of the local ACS at 

frequency *f ; see Eq. (2). The frequency range was then 

restricted to those frequencies 𝑓𝑖 for which the ratio (obtained 

from Eq. (8)) lies within 25% of 
*( )a f : 

* *

1

log ( , , )
(1 0.25) ( ) (1 0.25) ( )

4( )( )

nor i k r

k r i i

RS f z z
a f a f

z z f f 

   
  

     (9) 

The final local ACS estimate was obtained by performing a 

linear regression on Eq. (8) within the obtained restricted 

frequency range, which is ROI-dependent. Based on data 

inspection, the frequency range turned out to be continuous. 

This is a new alternative to the procedure that was proposed by 

Gong et al. [42], where the frequency range was selected by 

considering the top of the histogram of the estimated parameter. 

The new method was applied to small CWs within the ROI to 

obtain a local ACS map, as shown in Fig. 1. In this illustrative 

example of an arbitrary ROI, height and width of CWs were 

approximately 8 mm (10 pulse lengths) by 7 mm (25 scan lines), 

respectively, with 70% and 75% overlapping in lateral and axial 

directions, respectively. These window dimensions and 

overlaps remained constant for all results presented in this 

study. 

 

Fig. 1. Schematic of a ROI (black box); one computing window (CW) (red box); 

and center positions of CWs included into the blue box in dashed line. Overlaps 

of CWs in lateral and axial positions are 70% and 75%, respectively. 

B. Line fitting method 

The purpose of this method is to find a linear relation 

between the depth (z) and the logarithm of power spectra ratio 

( log RS ). Under the random sample consensus (RANSAC) 

approach, outlier values (i.e., points too far away from the 

regression line) in experimental data are being removed from 

the line fitting [45]. A second issue is the boundary between 

two different media in the tissues’ samples. In presence of two 

media, there might be two lines with different slopes. It should 

be mentioned that points used for the line-fitting method are 

denoted as inliers in the RANSAC approach. The following 

algorithm, displayed in Fig. 2, was used to find the slope based 

on the number of points per line (inliers), after outliers’ 

rejection. 

In Fig. 2 (a), we considered three possible cases to find 
inliers. In the first case, there is no change in slope’s sign among 

fitted lines through consecutive depths ( kz ). If there is a single 

slope, which represents the case of a homogenous sample with 

a single medium, then all points are considered for line-fitting. 

If there are two different slopes, but with same sign (second 

case), we assume a piecewise linear curve consisting of two 

segments. We chose the largest slope in absolute value, i.e. arg 

max {(log ( 1) log ( )) ( ( 1) ( ))}abs RS i RS i z i z i    , to 

determine the location of the change in segments. Inliers are 

then the points belonging to the segment comprising the most 

points. In case of tie, the first segment was selected as set of 

inliers. In the third case, there is a change in slope’s sign among 

fitted lines through consecutive depths. As in the second case, 

inliers are then the points of the segment comprising the most 

points (taking the segment occurring first in case of tie). 

In Fig. 2 (b), RANSAC line fitting was applied to selected 

inliers, as in [45, 46]. Two modifications were brought to 

RANSAC original formulation. The first one is to examine all 
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combinations of two points instead of selecting randomly two 

points, which is convenient due to the limited number of points 

in this context (less than 10 points based on the size of 

segments, see Fig. 2). As for the second modification, instead 

of considering an acceptable number of inliers based on a fixed 

threshold and choosing a pair of points with maximal number 
of inliers, the selection of pairs of points was based on both the 

number of inliers and the proximity of other points to the fitted 

line, using no fixed threshold. Therefore, all combinations of 

two points (i and j) among inliers were being considered. An 

initial threshold (Tnew) was set such that half of the remaining 

points were within the threshold. As a result, at least half of the 

points (including the pair that defined the line) has been 

considered as inliers. This threshold was updated by iterations 

on all combinations of two points (M in Fig. 2(b)). Finally, the 

line with the lowest threshold that contained more than half of 

points was selected as the result of the line fitting. 

C. Regularization 

1. Linear regression formulation and data fidelity term 

In the context of regularization of parametric maps in which 

each pixel represents a CW, a linear regression formulation of 
the following form can be defined: 

r r r ry X       (10) 

where r denotes a CW, 1( ( )) FreqN

r r i iy y f   represents the 

observed spectral data expressed at each frequency 
if  (MHz) 

of the discretized UFR. Moreover, the matrix 
rX  represents 

the model’s predictors, while 
r  corresponds to the vector of 

regression coefficients. Here, 
r  is the residual noise, assumed 

to be zero-mean with variance 2 . Assuming independent 

identically distributed residual noise over all CWs, one is led to 

the following data fidelity term (i.e., the residual “res”, which 

expresses the least mean squared error (LMSE) between the 

observed data and the fitted model): 

2
2

1 2

1
res( , )

2

CWN

r r r rr
y w y X 


  ,  (11) 

where 
CWN  is the number of CWs for parameters estimation, 

rw is a positive weight assigned to the CW indexed by r, and 

2
  denotes the 

2
-norm. The likelihood 2( | , )y  L    is 

then of the form: 2exp( res( , ) / )y   . 

The data fidelity term is detailed as follows in the case of the 

proposed phantom-free local attenuation model, whilst this 

term in the case of the SLD model used for comparison is 

described in Appendix. The observed spectral data is the left-

hand side of Eq. (8) and is then given by (viewed as a vector): 

1(log ( , , )) FreqN

r nor i k k iy RS f z z  .  (12a) 

The predictors’ matrix (a vector in this case) and the regression 
coefficient (a scalar in this case) are then of the form:  

1 1
( 4( )( )) Freq

N

r k n i i i
X z z f f

 
   , and   (12b) 

,r r local  .   (12c) 

To determine the weights 
rw  appearing in Eq. (11), we first 

solved this LMSE problem with initial weights set to 1. Then, 

Fisher tests [47] were applied to each underlying linear 

regressions and the resulting p-values were adopted as weights 

in that equation. In case of a numerically vanishing p-value, it 

was replaced by the small quantity 10-5. 

2. Regularization term 

In LASSO framework, the 
1

-norm regularization term 

imposed on linear regression coefficients   is of the form [48]: 

Slope’s sign among the fitted 

lines through consecutive depths

If there is change 

in sign

Yes

Yes

No

No
If there is one 

slope

It is assumed that there are 

two slopes:

Find the   where

     
     𝑖         𝑖 

 𝑖     𝑖 
  

is maximal

Segments are:

 
                

                 

N is the total number of points

Seg = max(     ,     )

                

Segment is:

               

N is the total number of points

(a) (b)

If     

          < T

N  = Number of all points

M  = Number of non-repetitive two-point selections

    
           

 
k = 1

Select kth two points

Di = Distance of i th point from the line 
(The two line constituent points are excluded )

Dsi = Sort of Di in ascending order

      
= Dsj ,                   

T = Tnew

y = mx + b

slope  =  m
intercept = b

The line passes through two points

Yes

No

Yes

No No

Yes

k =  k + 1(a)

(b)

z, log RS

[inliers]=

Find Inliers (z, log RS)

Remove outliers

zinliers= z (inliers)

log RSinliers= log RS (inliers)

[slope, intercept]=

Line fitting(zinliers, log RSinliers)

Fig. 2. Algorithm for approximate estimation of the local ACS at a given frequency, by line fitting the logarithm of power spectra ratio (log RS) at a given 

frequency as a function of depth z. (a) The algorithm consists of finding inliers (i.e., the points to be considered for line fitting), and (b) the slope of the 

fitted line on the inliers based on a RANSAC approach. 
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1 , ,1 1 ( )
reg ( , )

CWN d

r m s mr m s N r
    

  
    , (13a) 

where   is the Lagrange multiplier (LM), which weights the 

strength of the constraint with respect to the data fidelity term, 

1d   for the phantom-free attenuation method or 2d   for 

the SLD attenuation model (see Appendix A), where d is the 

number of model parameters being estimated, and ( )N r  

denotes the set of previous (adjacent) CWs to a given CW, one 

along the axial direction, the other along the lateral direction. 
This constraint favors naturally identical regression coefficients 

on adjacent CWs, and hence causes CWs to get fused (i.e., to 

share the same regression coefficients). In the LASSO 

formalism, Eq. (8) may be recast in the form:  

1 1
reg ( , ) D    ,   (13b) 

where D represents the constraint matrix, ( )r  is the vector 

of regression coefficients, and 
1|| ||  denotes the 

1
-norm. 

However, to address adjacent CWs belonging to different 

tissues, the links between adjacent CWs were assessed based on 

Nakagami goodness-of-fit tests along axial and lateral 

directions. Namely, the Kolmogorov-Smirnov goodness-of-fit 

test [49] was applied to the data corresponding to the US echo 

envelope encompassing the two adjacent CWs, with Nakagami 

distribution [50] as the underlying statistical model. When the 

goodness-of-fit failed between two adjacent CWs (with a 

confidence level of 0.1), the corresponding link was removed 

in the constraint matrix D (i.e., the corresponding entry was set 

to 0). 
The corresponding prior on regression coefficients is of the 

form: 
1( | ) exp( reg ( , ))      . For a given LM value  , 

one seeks the vector of coefficients ˆ( )   that minimizes the 

corresponding energy functional:  

1res( y, )+reg ( , )   .  (14) 

Notice that in principle the LASSO constraint favors sparsity 

in differences of regression coefficients, even more so than the 

2
 -norm regularization constraint. From Tibshirani and Taylor 

[48], the curve expressing ˆ ˆres(y ( ))+reg( ( ) , )       as a 

function of  can be described as a piece-wise linear curve, 

based on finitely many values of  , which are obtained 

efficiently with the path algorithm [48]. In the current work, we 

used our own implementation of the path algorithm on Matlab 

(version R2018a, The MathWorks, Natick, MA). 

3. Model’s selection 

The Bayesian Information Criterion (BIC) [51] yields in 

LASSO framework [48] the expression:  

2ˆ ˆBIC ( )=-2log ( | ( ), ) ( ) logy C N    L ,  (15) 

Where 
2( | , )y  L  represents the likelihood of the data 

based on parameters   and 2 , ˆ( )   are the regression 

coefficients based on the LM  , 2̂  is the maximum 

likelihood estimator of the variance 2 , dim( )rN y  is the 

total sample size in the linear regression problem, and ( )C  is 

the resulting model’s complexity. In this work, ( )C   was 

considered as the degrees of freedom df of the solution to Eq. 

(14) times the number of windows within one CW, i.e. the 

number of depths 
kz  considered in Eq. (12a), since each 

coefficient 
r  intervenes on these distinct windows, albeit with 

values already fused to a single one. For the SLD attenuation 

method (Appendix), ( )C   was taken as df  times 2 (i.e., the 

number of regression coefficients). Thus, having fixed  , 

hence ˆ ( )r  , one obtains under stated hypotheses on the 

observed spectral data noise: 

2
2 2

1 2

1 ˆˆ ( )
CWN

r r r rr
w y X

N
  


  .   (16) 

This yields the log-likelihood term for some irrelevant additive 

constants (const.): 

2

2
2 2

2 1 2

ˆ ˆ2log ( | ( ), )

1 ˆˆlog(2 ) ( )
ˆ

ROIN

r r r rr

y

N w y X

  

  
 

 

  

L   
    

ˆlogres( , ( )) .N y const      (17) 

According to the above equations (Eq. 15 to Eq. 17), the BIC 

criterion is formulated as choosing the value of  that 

minimizes the BIC curve [51]. This is equivalent (as N tends to 

infinity) to choosing the model (represented here by the fused 

CWs) for which the data likelihood ( | ) ( | )y d    L  is 

maximal (notice that the larger data likelihood corresponds to 

the smaller BIC value), where ( | )    denotes the prior on 

regression coefficients implied by the LM. 

To favor a greater number of fused CWs within local 

attenuation maps, we adopted in this work a “strong BIC” 

criterion [31, 43], which is defined by selecting the largest value 

of  for which the condition ( ) (0)BIC BIC   remains valid. 

This is equivalent to selecting the model that offers the same 

likelihood as the model without any regularization, but with as 

much regularization as allowed under this condition. Thus, the 

LM was maximized as to yield a BIC value no worse than that 

of the maximum likelihood. 

III. MATERIALS AND METHODS  

A. Phantom experiments description 

1.  Phantoms fabrication 

Two media were made with a mixture of agar (2% (w/w) ), 

glycerol (10%) and graphite powder (mixture #1, 4.5%; mixture 

#2, 12%) to investigate the performance of ACS methods in the 

case of homogeneous and heterogeneous samples [52]. Three 

categories of phantoms with homogeneous, side-by-side and 

top-to-bottom homogeneous media, and heterogeneous samples 

with inclusions were made using these two gel preparations. 

a) Homogeneous, side-by-side, and top-to-bottom phantoms 

Two homogeneous phantoms were made using mixture #1 

(model A) and mixture #2 (model B). A side-by-side phantom 
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(model C) was also made by cutting half of one homogeneous 

phantom in its mold after jellifying and pouring the other 

mixture into the mold. The other orientations of model C (top-

to-bottom) in which mixture #2 was on top and mixture #1 at 

the bottom resulted in model D, and vice versa for model E. 

b) Heterogeneous phantoms with inclusions 

Inclusion phantoms with different characteristics were made 

into a single container. Three cylindrical molds with diameters 

of 10, 15 and 20 mm were glued to the bottom of the container. 

Each cylindrical mold was made of acrylonitrile butadiene 

styrene (ABS) and was fabricated by 3D-printing (Dimension 

Elite, Stratasys Inc., Eden Prairie, MN, USA). The mixture #1 

was poured in the container with ABS cylindrical molds in it, 

and molds were removed after jellification. Resulting holes 

were filled with mixture #2. 

2. Data acquisition and post-processing 

A Verasonics Vantage 256 scanner (Redmond, WA) 

equipped with an ATL L7-4 probe (Philips, Bothell, WA) 

driven at 5 MHz was used to perform US acquisitions. Coherent 

compounding was done with 21 angles (-10° to 10°) and one 

hundred frames were acquired for each phantom. The f-k 

migration method was used for beamforming RF data [53]. To 

allow comparing results obtained with the proposed PF 

attenuation method with those of the SLD method using the 

same LASSO regularization approach, acquisitions with the 

same settings were made on a reference phantom (117GU-101 

CIRS, Norfolk, VA). For the subset of results with inclusion 

phantoms, a median filter (MF) with a window size 5×5 pixels 

was applied on PF attenuation images to compare with results 

using regularization. 

3. Gold-standard attenuation measurements 

ACS ground truth values (dB cm-1 MHz-1) were estimated on 

pieces of the same phantoms made with mixtures #1 and #2, 

using a planar reflection method, with the same probe and 

system settings as for acquisitions on gel samples [36]. A cubic 

piece of each phantom was put onto a glass reflector in distilled 

water and attenuation was estimated by measuring the 

amplitude difference of the US signal reflected by the glass 

plate, with and without the sample in the path. 

B. In-vivo liver data description 

Four human liver US datasets were used to test the 

effectiveness of ACS methods. In-vivo data included a healthy 

liver, a steatotic liver, a liver with a primary HCC, and another 

with a metastatic cancer. Clinical protocols were approved by 

the institutional review board of the Centre hospitalier de 

l’Université de Montréal. All recruited participants gave 

written informed consent. 

1. Nonalcoholic fatty liver disease (NAFLD) 

Non-alcoholic in-vivo human liver datasets with different 

pathological conditions were investigated in two participants. 

The magnetic resonance imaging (MRI) proton density fat 

fraction (PDFF) was used to grade liver steatosis [54, 55]. The 

Achieva TX 3T MRI system (Philips Healthcare, Best, 

Netherlands) was used and the protocol consisted in using a 

two-channel body coil for transmission and a 16-channel 

surface array coil for signal reception with a 3D chemical-shift 

encoded multi-echo gradient-echo sequence using 6 echoes 

(mDixon Quant). The water/fat separation was performed in the 

complex-domain using a multi-frequency spectral fat model 

and a T2* correction. A low flip angle was used to avoid T1 

bias. The liver biopsy was also available to assess the whole 

spectrum of the disease. The first participant had a histological 

steatosis grade of zero (S0) indicating the absence of steatosis. 

The second patient had a steatosis grade 2 (S2) indicating 

moderate steatosis. 

2. Liver cancers 

Two in-vivo human liver cancers were studied. The diagnosis 

was made using MRI as the reference standard. One patient had 

a circular 15-mm HCC mass, and the other one had one lesion 

corresponding to a colorectal liver metastasis (oval mass of 20 

× 49 mm). 

3. Data acquisition and post-processing 

The same Verasonics US system as for phantom experiments 

was used to collect 30 frames of data for each liver using a 

curvilinear array transducer (ATL C5-2, Philips, Bothell, WA, 

USA) driven at 3.1 MHz. Coherent compounding was done 

with 21 angles (-10° to 10°) using the f-k RF data migration 

[53]. The same probe and system settings were used to acquire 

US data on a reference phantom for the SLD method. 

C. Parameter settings of ACS algorithms 

For phantom experiments, all computations were done in the 

Cartesian domain (x-z). To compare the performance of the 

phantom-free regularization approach, the SLD method was 

implemented according to our previous work [31], and the 

equations are provided in Appendix. The power spectra of the 

proposed PF and SLD methods were averaged over 25 scan 

lines, each spanning 10 pulse lengths on overlapping windows. 

For in-vivo liver datasets, computations were done in the polar 

domain ( -r  ). To compare performance of ACS methods, 

all parameters were set to the same values as for phantom 

experiments. 

As an extra comparison for homogenous phantoms, the RFM 

was used with a CW with size equal to 2.5 × 2.5 cm, and within 

the range of frequency of 4-6 MHz, in accordance with [42]. No 

attenuation maps were provided for this method because the 

size of the CW was much larger than for PF and SLD methods. 

D. Data analysis 

To compare experimental results on phantoms, biases were 

calculated as the difference of mean values with the ground 

truth. Also, the normalized root-mean-squared errors (NRMSE) 

were computed as follows: 

2

1
ˆ( )1

NRMSE

N

i ii
x x

x N







,   (19) 

where 𝑥̅ represents the mean attenuation among N datasets, ix

is the ground truth value at the ith position, and ˆ
ix  represents 



7 

the estimated value at the same position. For both biases and 

NRMSEs, standard deviations (SDs) were also calculated. 

The contrast-to-noise ratio (CNR) for attenuation coefficient 

maps in the case of side-by-side, top-to-bottom and inclusion 

phantoms, and liver cancers was computed as: 

1 2

2 2

1 2

| |
CNR m m

m m

x x

 





,   (20) 

where x  and   are mean and SD of ACS values within the 

medium #1 (m1) and medium #2 (m2), corresponding to both 

tissues present or expected (i.e., either side-by-side or top-to-

bottom media, gel surrounding or within the phantom inclusion, 
or liver parenchyma versus tumor, respectively). 

A one-way analysis of variance (ANOVA) with repeated 

measures was performed on mean values of the two ACS 

methods evaluated on phantoms, with the presence or not of 

regularization as the co-factor. In the case where the Shapiro-

Wilk normality test failed, the Friedman test was used as the 

non-parametric analogue. In these tests, the sample size was 55, 

including 10 homogeneous phantom acquisitions, 3 side-by-

side phantom acquisitions, 6 top-to-bottom phantom 

acquisitions, and 36 inclusion phantom acquisitions. For CNRs, 

the sample size of the ANOVA test was 45 (homogenous 
phantoms were excluded). The Sigmaplot software (version 

11.0.0, Systat, Palo Alto, CA) was used to perform statistical 

analyses. 

For in-vivo NAFLD data, as there was no ground truth, the 

comparison of ACS methods with and without regularization 

was done by comparing mean values and coefficients of 

variation (CV = SD / mean) within the ROI. For in-vivo cancer 

data, mean values and CNRs were used for comparison. The 

positions of lesion and background tissues were found by an 

expert radiologist based on MRI. CNRs for cancer data were 

computed based on one rectangle within the lesion and two 

rectangles within the liver parenchyma, on top and bottom of 
the lesion (see Fig. 8). One can compute a single CNR value 

based on the whole rectangle. In order to compute the SD for 

this value, two other CNRs values were also computed based 

on 2 smaller rectangles within predefined rectangles. The SDs 

were computed based on these three CNR values. 

IV. RESULTS 

A. Experimental phantoms 

Local ACS maps obtained with both PF and SLD methods 

for models A - E are presented in Fig. 3 and Fig. 4. Maps 

without regularization are presented first, and then compared 

with those obtained with regularization (indicated with -R). In 

the bottom row of Fig. 3 and Fig. 4, mean ACS values for 

different axial positions are compared with ground truth (±SD) 

measurements obtained with the planar reflection method, 

which are 0.56 ± 0.07 dB cm-1 MHz-1 (for 4.5% graphite powder 

concentration, medium #1) and 1.15 ± 0.10 dB cm-1 MHz-1 (for 

12% concentration, medium #2), respectively. 

Biases and NRMSE obtained by PF and SLD methods for 

phantom models A - E are presented in Table I. The bias in dB 

cm-1 MHz-1 for the first homogeneous phantom (model A) with 

three acquisitions was close in absolute value for PF, PF-R, 

SLD, SLD-R, and RFM at -0.06 ± 0.03, 0.04 ± 0.07, -0.09 ± 

0.06, -0.06 ± 0.05, and -0.15 ± 0.07, respectively. Same trends 

were emphasized for the second more attenuating homogeneous 

phantom (model B). Biases for the PF, PF-R, SLD, SLD-R, and 

RFM were 0.26 ± 0.12, -0.07 ± 0.02, -0.32 ± 0.11, -0.10 ± 0.05, 

and -0.23 ± 0.18, respectively. As indicated in Table I, trends in 

favor of the PF-R method were confirmed when analyzing 

NRMSEs. Results show that the PF-R method yielded lower 

NRMSEs compared with SLD-R and RFM, and those 

differences were emphasized without regularization for SLD. 

The largest mean of biases and NRMSEs were obtained with 

the SLD method that was used in this study for comparison. 

 
Fig. 3. Local attenuation maps obtained with phantom free (PF) and spectral 

log-difference (SLD) methods for experimental phantoms with medium #1 

(model A) and medium #2 (model B). The first and second rows show 

attenuation maps without and with regularization (R), respectively. The bottom 

row presents the comparison of mean ACS estimated with PF, PF-R, SLD and 

SLD-R methods for the two models. Green regions in graphs of bottom row 

show means and standard deviations for ground truth measurements with the 

planar reflection method. 
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With side-by-side and top-to-bottom media (models C, D and 

E), each based on 3 acquisitions, biases and NRMSEs were 

either smaller, similar or higher than for homogeneous 

phantoms (Table I). Biases and NRMSEs obtained with the PF-

R method were generally less for both media. The PF-R had the 

highest CNR compare to the other methods. Furthermore, 

according to the bottom row of Fig. 4, the PF with 

regularization made a distinct differentiation at the boundary of 

both media, whereas the SLD method with regularization had a 

smoother transition. 

   

B. Phantoms with inclusions 

Local ACS maps given by PF and SLD methods, without and 

with regularization, are presented graphically in the first and 

second rows of Fig. 5, respectively. Inclusions are visually 

emphasized with black dashed line circles on attenuation maps. 

The PF method has smoother maps than the SLD method, and 

inclusions are visually more detectable. After regularization, 

inclusions are identifiable with both PF-R and SLD-R methods. 

According to Table II, in the case of smaller inclusions of 10 

and 15 mm diameters, the biases within inclusions were larger 

and the NRMSE were less with the PF method compare to SLD. 

On the other hand, the PF had a better estimation of ACS 

outside inclusions (lower biases and NRMSEs), i.e. within 

homogeneous regions of phantoms. For the largest inclusion of 

20 mm, the bias of the PF method is higher than for the SLD 

method within the inclusion. However, it is the other way 

around in the surrounding tissue. The average of absolute bias 

values of both regions of phantoms with the PF and PF-R 

methods are generally less than with the SLD and SLD-R 

methods. The same trend was observed with NRMSE values. 

After regularization, the bias and NRMSE in all regions are 

decreased; PF-R with regularization had the lowest mean biases 

and NRMSEs over all inclusion phantoms. It shows that the 

regularization increased CNR values for both PF and SLD 

methods. Higher CNRs were obtained for bigger inclusions 

with the PF-R method. PF-R and SLD-R had similar CNRs in 

the case of the 10 mm diameter inclusion. 

According to the bottom row of Fig. 5, the SLD-R method 

has smoother transitions between the surrounding tissue and the 

inclusion, thus reducing the lesion detectability but improving 

the size detection compared with the proposed method. 

Differences tend to disappear for the larger inclusion of 20 mm. 

In general, ACS results with the proposed regularized method 

(PF-R) are closer to ground truth values. 

PF PF-R SLD SLD -R RFM

Model Medium #1 Medium #2 Medium #1 Medium #2 Medium #1 Medium #2 Medium #1 Medium #2 Medium #1 Medium #2

A

Bias
(dB/cm/MHz)

-0.06  0.03 - 0.04  0.07 - -0.09  0.06 - -0.06  0.05 - -0.15  0.07 -

NRMSE

(%)
15.1  2.1 - 8.9  3.6 - 51.2  5.1 - 19.2  5.1 - 62.0  10.6 -

B

Bias
(dB/cm/MHz)

- 0.26  0.12 - -0.07  0.02 - -0.32  0.11 - -0.10  0.08 - -0.23  0.18

NRMSE

(%)
- 13.5  1.0 - 7.0  1.6 - 42.6  8.2 - 18.85  6.1 - 34.9  9.6

C

Bias
(dB/cm/MHz)

0.09  0.07 0.10  0.06 0.05  0.01 -0.01  0.07 -0.07  0.23 0.23  0.23 -0.07  0.18 -0.11 0.12 - -

NRMSE

(%)
35.1  2 44.3  1.2 11.3  1.0 21.2  5.0 45.6  4.9 49.2  6.3 19.2  4.3 25.3  8.1 - -

CNR 1.74  0.07 3.54  0.41 0.86  0.04 1.75  0.09 - -

D

Bias
(dB/cm/MHz)

0.06  0.08 0.07  0.03 0.04  0.06 0.01  0.05 -0.08  0.31 0.18  0.11 -0.06  0.13 -0.14  0.11 - -

NRMSE

(%)
30.3  3.2 38.4  0.2 10.1  3.2 17.4  0.02 41.7  5.2 45.2  2.1 17.2  3.4 20.3  5.1 - -

CNR 1.72  0.08 2.66  0.31 0.70  0.09 2.09  0.14 - -

E

Bias
(dB/cm/MHz)

0.05  0.09 0.09  0.08 0.05  0.02 0.08  0.05 -0.13  0.12 0.11  0.13 -0.11  0.07 -0.08  0.13 - -

NRMSE

(%)
30.3  3.2 45.4  7.2 9.3  2.2 22.4  8.6 43.9  7.2 49.2  6.3 27.3  5.4 24.2  7.1 - -

CNR 1.72  0.12 3.41  0.6 0.79  0.13 2.12  0.35 - -

TABLE I 

COMPARISON OF BIASES, NORMALIZED ROOT-MEAN-SQUARED ERRORS (NRMSE), AND CONTRAST-TO-NOISE RATIOS (CNR) FOR 

ATTENUATION MAPS OF PHANTOMS CORRESPONDING TO MODELS A - E OBTAINED WITH THE PROPOSED PHANTOM FREE (PF), 

SPECTRAL LOG-DIFFERENCE (SLD), AND REFERENCE FREQUENCY METHOD (RFM), BEFORE AND AFTER REGULARIZATION (R). 
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Fig. 4. Local attenuation maps obtained with phantom free (PF) and spectral 

log-difference (SLD) methods for experimental phantoms with side-by-side 

medium #1 on the right and #2 on the left (model C), top-to-bottom medium 

#1 on the bottom and #2 on the top (model D), and vice versa (model E). The 

first and second rows show attenuation maps without and with regularization 

(R), respectively. The bottom row presents the comparison of mean ACS 

estimated with PF, PF-R, SLD, and SLD-R methods for the three models. 

Green regions in graphs of the bottom row show means and standard deviations 

for ground truth measurements with the planar reflection method. 
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Overall, the mean of absolute biases from the 55 

experimental datasets including homogeneous, side-by-side, 

top-to-bottom, and inclusion phantoms were 0.17 ± 0.06, 0.14 

± 0.05, 0.23 ± 0.07 and 0.20 ± 0.07 dB cm-1 MHz-1 (p < 0.001) 

for PF, PF-R, SLD, and SLD-R methods, respectively. Mean 

NRMSEs of PF, PF-R, SLD, and SLD-R methods from all 55 

datasets were 41.7 ± 10.2, 32.9 ± 12.9, 76.0 ± 27.5 and 46.1 ± 

19.4 % (p <0.001), respectively. Also, mean of CNRs from 45 

experimental datasets including side-by-side, top-to-bottom, 

and inclusion phantoms were 1.18 ± 0.49, 1.69 ± 0.95, 0.51 ± 

0.21 and 1.37 ± 0.62 (p <0.001) with PF, PF-R, SLD, and SLD-

R methods, respectively. This comparison shows that the PF 

method with regularization had the lowest biases and NRMSEs, 

and highest CNRs.  

The PF and PF-R methods were also investigated with a 

median filter; the biases and NRMSEs are provided in Table III. 

Results with median filtering of ACS maps are given in Fig. 6. 
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Fig. 6. Local attenuation maps for experimental phantoms with inclusions of 

10 mm, 15 mm, and 20 mm using the phantom free (PF), the same method after 

applying a median filter (PF & MF), the PF method with regularization (PF-R), 

and results with PF-R and median filtering (PF-R & MF) 
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Fig. 5. Local attenuation maps for experimental phantoms with inclusion 

diameters of 10 mm, 15 mm, and 20 mm with phantom free (PF) and spectral 

log-difference (SLD) methods. The first and second rows show attenuation 

maps without and with regularization (R), respectively. The bottom row 

presents the comparison of mean ACS estimated with PF, PF-R, SLD, and 

SLD-R methods for the three inclusion sizes. Green regions in graphs of bottom 

row show means and standard deviations for ground truth measurements with 

the planar reflection method. 

PF  with median filter PF–R with median filter

D Inclusion Tissue Inclusion Tissue

10 mm

Bias
(dB/cm/MHz)

-0.30  0.05 -0.06  0.04 -0.21  0.06 -0.08  0.05

NRMSE

(%)
29.0  6.5 25.7  4.2 22.0  2.1 25.4  6.1

CNR 0.87  0.21 1.29  0.35

15 mm

Bias
(dB/cm/MHz)

-0.23  0.08 -0.10  0.05 -0.15  0.06 -0.06  0.06

NRMSE

(%)
23.2  7.5 34.2  7.3 14.1  5.02 21.2  0.04

CNR 0.92  0.45 1.15  0.47

20 mm

Bias
(dB/cm/MHz)

-0.06  0.2 -0.09  0.09 -0.04  0.07 -0.01  0.04

NRMSE

(%)
17.0  2.2 21.7  1.1 10.2  3.4 14.2  6.01

CNR 1.44  0.44 1.69  0.59

TABLE III 

COMPARISON OF BIASES, NORMALIZED ROOT-MEAN-SQUARED 

ERRORS (NRMSE), AND CONTRAST-TO-NOISE RATIOS (CNR) 

FOR ATTENUATION MAPS OF PHANTOMS WITH INCLUSION 

DIAMETERS OF 10 MM, 15 MM, AND 20 MM OBTAINED AFTER 

APPLYING A MEDIAN FILTER ON RESULTS OF THE PHANTOM FREE 

METHOD (PF) OR PHANTOM FREE METHOD WITH 

REGULARIZATION (PF-R). 

PF PF-R SLD SLD -R

D Inclusion Tissue Inclusion Tissue Inclusion Tissue Inclusion Tissue

10 mm

Bias

(dB/cm/MHz)
-0.20  0.06 -0.10  0.04 -0.16  0.07 -0.04  0.05 -0.07  0.18 -0.25  0.12 -0.08  0.21 0.11  0.09

NRMSE

(%)
33.1  6.7 26.2  5.1 22.0  6.2 25.4  8.1 53.1  9.1 63.2  5.3 42.7  5.6 32.7  9.4

CNR 0.86  0.24 1.26  0.38 0.59  0.17 0.91  0.13

15 mm

Bias

(dB/cm/MHz)
-0.26  0.08 -0.13  0.04 -0.14  0.12 -0.05  0.09 -0.17  0.15 0.26  0.21 -0.08  0.21 0.19  0.17

NRMSE

(%)
31.2  6.3 36.3  16.1 15.1  5.0 21.2  7.1 47.2  9.3 90.3  25.2 32.18  6.4 59.7  15.1

CNR 0.87  0.41 1.05  0.50 0.37  0.24 0.92  0.47

20 mm

Bias

(dB/cm/MHz)
-0.11  0.03 -0.12  0.01 -0.03  0.1 -0.01  0.07 -0.07  0.23 0.23  0.23 -0.09  0.14 0.12  0.14

NRMSE

(%)
25.2  2.2 24.1  1.1 11.7  0.03 16.2  1 40.3  8.2 106.0  29.2 13.1  7.5 82.5  41.7

CNR 1.40  0.46 1.63  0.63 0.38  0.23 1.37  0.24

Table II 

COMPARISON OF BIASES, NORMALIZED ROOT-MEAN-SQUARED ERRORS (NRMSE), AND CONTRAST-TO-NOISE RATIOS (CNR) FOR 

ATTENUATION MAPS OF PHANTOMS WITH INCLUSION DIAMETERS OF 10 MM, 15 MM, AND 20 MM OBTAINED WITH THE PROPOSED 

PHANTOM FREE (PF) AND SPECTRAL LOG-DIFFERENCE (SLD) METHODS, WITHOUT AND WITH REGULARIZATION (R). 
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According to Table III, the NRMSE for the PF method with 

median filtering in both regions of phantoms are smaller in 

comparison with the PF method (based on Table II), and 

absolute values of biases are also smaller, except in the case of 

the smallest inclusion (diameter of 10 mm). Moreover, the PF 

with regularization has smaller biases and NRMSEs, and also 

larger CNRs, compared with the median filtered PF method. 

With median filtering on PF-R results, absolute values of biases 

and CNRs are larger compared with the proposed PF-R method, 

but NRMSEs are smaller. 

C. In-vivo human livers 

In this section, as for phantom experiments, results of PF and 

SLD methods are compared based on mean values and CVs 

within tumors and surrounding tissues. Also, CNRs are 

compared for attenuation maps obtained in the case of liver 

cancers. 

1. Nonalcoholic steatohepatitis 

The left columns of Fig. 7(a) and Fig. 7(b) display the B-

mode image and the ROI under investigation (red box) for 

livers with MRI fat fractions of 0.61% and 15.01%, 

respectively. For the healthy liver, means ± standard deviations 

in dB cm-1 MHz-1 obtained for PF and SLD methods are 0.45 ± 

0.28 and 0.51 ± 0.47 without regularization, and 0.47 ± 0.20 and 

0.67 ± 0.11 with PF-R and SLD-R, respectively. The smallest 

variability was obtained with the SLD-R method (CV of 

16.4%). Similarly, local attenuation maps of the steatotic grade 

2 liver provided ACS values for PF and SLD methods of 0.92 

± 0.19 and 1.14 ± 0.41 dB cm-1 MHz-1, and after regularization 

these values are 0.91 ± 0.08 and 1.06 ± 0.15 for PF-R and SLD-

R, respectively. The PF-R method resulted in the smallest CV 

(8.8%) but differences in mean values are small. 

 

2. Liver cancers 

Local attenuation maps without regularization estimated by 

PF and SLD methods for the human liver with a HCC cancer 

are shown in the top row of Fig. 8(a). The detection and 

diagnosis of the lesion based on MRI was visually registered on 

US images. Yellow boxes on B-mode images show the position 

of the ROI within the liver, which includes the lesion.  

For CNR computations in Fig. 8, the position of the lesion 

and liver parenchyma on attenuation maps are displayed with 

black and white dashed-line rectangles, respectively. Means ± 

standard deviations in dB cm-1 MHz-1, and CNRs obtained for 

PF, PF-R, SLD and SLD-R methods are provided in Table IV. 

The lesion could be deduced from the ACS map produced by 

the PF method (localized spot with high attenuation) but in the 

case of the SLD method, several scattered areas with varying 

attenuations could be suspected as being a lesion. After 

regularization (bottom row of Fig. 8(a)), the lesion is visible on 

the PF map as a homogeneous area with the highest attenuation 

but detectability on the regularized SLD map is less apparent. 

This could be also deduced from computed CNRs.  

Both PF-R and SLD-R methods underestimated the size of 

the tumor compared with the B-mode counterpart. Maximum 

ACS values within the ROI containing the HCC lesion are 1.41 

and 1.37 dB cm-1 MHz-1 for PF-R and SLD-R methods, 

respectively. The position of the maximum attenuation 

coefficient within the map did not coincide between methods. 

Fig. 8(b) shows the second in-vivo human liver dataset 

corresponding to a metastatic liver cancer. Maps produced by 

the PF method whether regularization was used or not allow to 

clearly detect a lesion with high attenuation in the middle of the 

ROI, whereas detectability is more difficult on SLD maps. 

Maximum ACS values within the ROI with PF-R and SLD-R 

methods are 1.74 and 1.29 dB cm-1 MHz-1, respectively. The 

PF-R method had the highest CNR compared to other methods. 

 

 

 

 

 

 

 

 

 

V. DISCUSSION 

In this work, we demonstrated the theoretical basis for 

estimating local ACS without the need of a calibration phantom 
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Fig. 7. ACS results for two in-vivo human NAFLD datasets with MRI-

determined proton density fat fractions of 0.6% (corresponding to a histological 

grade S0) (A, woman of 25 years old) and 15.0% (corresponding to a 

histological grade S2) (B, woman of 52 years old), respectively. For each 

participant, the B-mode image and the ROI (red box) under investigation are 

presented, along with local attenuation maps within the ROI for phantom free 

(PF) and spectral log-difference (SLD) methods (without and with 

regularization in the first and second rows, respectively). 



11 

in the context of heterogeneous media, thus extending the work 

of Gong et al. [42], which was considering homogeneous 

structures. We also integrated the proposed PF method into a 

theoretical framework yielding regularized local ACS maps. 

A method such as the SLD can be quite cumbersome for 

clinical trials because a phantom acquisition is necessary after 

the clinical US exam using the same probe and system settings. 

As mentioned, the proposed method was inspired from the 

RFM of Gong et al. [42], with the following novelties: a linear 

interpolation of the power spectrum in log-scale was used, the 

underlying hypothesis on the compression wave US probe 

diffraction factor was relaxed, a generalization to 

heterogeneous local ACS was made, and an adaptive restriction 

on usable frequencies was implemented to consider a more 

reliable range than the usual -20 dB frequency range. Moreover, 

the framework of the regularization scheme proposed in our 

preliminary reports [31, 43] was better documented and also 

implemented in the framework of the SLD method. We could 

demonstrate equivalent or even smaller biases and NRMSEs 

than the classical SLD method on the in-vitro dataset, and 

equivalent or larger CNRs on the in-vivo liver data. The 

addition of regularization to both proposed PF and classical 

SLD methods further allowed appreciating the performance of 

the phantom-free algorithm. Furthermore, applying a median 

filter could also further reduce image variability, but it showed 

limitation in the case of small inclusion phantoms as filtering 

blurred boundaries. The overall procedure for constructing 

local ACS maps in this work is schematized in Fig. 9. 

ACS estimates on both homogeneous and heterogeneous 

tissues represented a specific challenge, rarely addressed in the 

scientific literature [30]. The implementation of strategies listed 

in Fig. 2 allowed obtaining promising phantom and proof-of-

concept clinical results. Results based on the PF-R method on 

homogeneous, side-by-side, and top-to-bottom phantoms 

indicated that the proposed method could estimate ACS close 

to ground truth values, and in all cases, NRMSEs decreased 

with regularization, which allowed differentiating visually the 

two media. CNRs also increased with regularization. The 

comparison of PF with the SLD algorithm showed that the 

proposed method had a better prediction at the border between 

two media. Producing phantoms with top-to-bottom designs 

was of particular interest as it could mimic the more attenuating 

superficial thick layer of fat in patients with obesity (model D), 

or the accumulation of low-attenuating fluid in the liver of 

patients with ascites (model E). 

The performance of the proposed method for detecting 

lesions in experimental phantoms with diameters varying from 

10 to 20 mm was also investigated. Results showed that the 

PF PF-R SLD SLD -R

Liver Cancer Lesion Tissue Lesion Tissue Lesion Tissue Lesion Tissue

(a)

Mean

(dB/cm/MHz)
0.95  0.33 0.59  0.19 1.01  0.21 0.57  0.10 1.12  0.34 0.48  0.39 1.08  0.17 1.13 0.24

CNR 1.73  0.76 2.31  0.37 1.72  0.58 2.02  0.31

(b)

Mean

(dB/cm/MHz)
1.53  0.23 0.67  0.42 1.40  0.26 0.56  0.19 0.84  0.48 0.47  0.34 0.91  0.22 0.72  0.13

CNR 2.34  0.92 3.41  1.14 0.95  0.43 1.73  0.82

TABLE IV  

COMPARISON OF MEANS AND CONTRAST-TO-NOISE RATIOS (CNR) FOR ATTENUATION MAPS OF TWO IN-VIVO HUMAN LIVER 

DATASETS WITH CANCER. (A) LIVER HEPATOCELLULAR CARCINOMA IN THE RIGHT LOBE OF A 55-YEAR-OLD MAN; (B) 

COLORECTAL LIVER METASTASIS IN THE LEFT LOBE OF A 67-YEAR-OLD WOMAN. MEANS AND CNRS ARE COMPUTED BASED ON 

RECTANGLE AREAS WITHIN THE LESION AND PARENCHYMA TISSUES. 
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Fig. 8. Results for two in-vivo human liver datasets with cancer: (a) liver 

hepatocellular carcinoma in the right lobe of a 55-year-old man; (b) colorectal 

liver metastasis in the left lobe of a 67-year-old woman. For each participant, 

the B-mode image is presented on the left with the identified ROI (red box) 

including the lesion. On the right is shown local attenuation maps with phantom 

free (PF) and spectral log-difference (SLD) methods without (top row) and with 

regularization (bottom row). The lesion positions are indicated with red dashed-

lines. The lesion and parenchyma tissue regions used for computing CNRs are 
indicated with black and white dashed-line rectangles, respectively. 



12 

proposed method could detect all lesions. Regularization 

increased the CNRs by reducing variances in both the inclusion 

and its surrounding. Since the CNR depends on mean values 

and variances within the inclusion and surrounding tissues, we 

do not expect a trend of CNR with the inclusion’s size. This can 

be observed in the values reported in Table II. 

We also examined the influence of a median filter on 

attenuation maps of the PF method without and with 

regularization. The regularization had lower biases and 

NRMSEs compared with a simple median filtering. Applying 

filters on regularized attenuation maps could further improve 

results due to the smoothening effect on ACS maps and increase 

in CNRs, which is a common task in image processing [56]. 

Notice that in the case of small inclusions, a median filter can 

increase the bias and blur boundaries, which are not desirable. 

The proposed method was also tested on two in-vivo human 

NAFLD data. Results obtained were in the range of values 

reported in the literature [57-59]. The proposed method 

provided smaller variability than SLD for each clinical case. 

Coefficients of variation showed reduction after regularization. 

Differences between both datasets in terms of local ACS were 

observed, and the liver with a steatosis grade 2 showed a higher 

attenuation. This is in line with recent clinical reports using 

clinical systems where ACS could correlate with the MRI-

PDFF or biopsy staging. According to recent works, attenuation 

had increasing trends with higher steatosis grades [60, 61]. 

Therefore, this method may be utilized as a biomarker for 

diagnosis of liver steatosis. 

Finally, the proposed method was evaluated in the case of 

two in-vivo human livers with cancer. Lesions were detectable 

with both PF and SLD methods with regularization. The higher 

attenuation coefficient on liver images of patients with 

secondary cancer than primary HCC (as seen in Fig. 8) was also 

recently observed in therapeutic US applications; in this report, 

however, no attenuation images were provided [62]. 

To our knowledge, ACS imaging has not yet been used for 

detecting and characterizing liver cancer. In addition to the fact 

that the proposed method does not use a reference phantom for 

ACS estimation, our proof-of-concept on liver cancer datasets 

is opening the opportunity to use this new imaging contrast for 

the diagnosis of liver cancer. 

One of the limitations of this work is that only one 

computation window size was consider to reconstruct 

attenuation maps for both PF and SLD methods. There is 

always a trade-off between resolution and accuracy of 

estimation. Hence, additional studies are needed to find the 

optimum CW’s size for a specific clinical application without 

affecting too much the resolution of attenuation maps. There are 

also other types of regularization that may improve the 

reconstruction of parametric maps [34, 35]. Moreover, the size 

of CWs could affect the Nakagami model, especially in the case 

of long CWs. Also, overlapping of CWs could prevent the 

assumption of independent identically distributed residual noise 

to hold, although it is common to make this assumption in the 

case of overlapping windows [34, 63]; this potential issue 

should be investigated in future studies. Furthermore, although 

the power spectrum of backscattered RF signals is assumed 

approximately Gaussian in many medical ultrasound 

applications [64], there are nonetheless cases where this 

assumption would not hold. However, other models could be 

adopted to fit power spectra [65], an avenue which could be 

investigated in future studies. 

Finally, based on obtained in-vivo results, the proposed 

method may certainly provide additional information to 

clinicians for the diagnosis of liver steatosis and detection of 

suspected cancerous lesions visible on B-mode US. The 

ultimate goal would be to improve the detection of HCC in early 

stages when it is not visible on B-mode images. 

VI. CONCLUSION 

A method, inspired by the work of Gong et al. [42], was 

presented for estimating local ACS based on frequency and 

depth normalization without the need of a calibration phantom. 

The proposed method was tested on homogeneous, side-by-

side, top-to-bottom, and heterogeneous phantoms with 

inclusions. Also, the performance of the proposed method was 

assessed in the case of four in-vivo human livers consisting of 

one normal case, one stage 2 steatotic liver, one liver with a 

primary hepatocellular carcinoma and one with a secondary 

metastatic cancer. The proposed method uses linear 

interpolation of the power spectrum in log-scale, the relaxation 

of the underlying hypothesis on the wave diffraction factor, and 

an adaptive restriction of frequencies to a more reliable range 

than the usual -20 dB usable frequency range. Moreover, a 

generalization to nonhomogeneous local ACS has been 

proposed. Furthermore, a regularization procedure, which was 

Fig. 9. Summary of the proposed procedure for constructing local ACS maps with PF and PF-R methods on in-vitro and in-vivo data. 
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formulated as a generalized LASSO, and a variant of the 

Bayesian Information Criterion were applied to estimate the 

Lagrangian multiplier on the LASSO constraint. It was shown 

that applying regularization overall improved local ACS maps. 

In future works, further validation on larger in-vivo datasets 

should be conducted, and the performance of the proposed 

method with different beamforming approaches should also be 

investigated. 

APPENDIX A 

The data fidelity term and constraint matrix of Section II.C 

are explained in the case of the SLD model in this appendix. Let 

us recall that in the SLD method, one considers two non-

overlapping windows within the CW at proximal and distal 

depths pz  and 
dz , respectively. Attenuation factors at depths 

pz  and 
dz , for either samples or the reference phantom, are of 

the form: 

( , ) exp( 4 )p total pA f z z f  ;  (A-1a) 

( , ) exp( 4( ) )d total p localA f z z z f     ,   (A-1b) 

where 
total  and 

local  denote the total and local ACS, 

respectively, and d pz z z   . Furthermore, one assumes that 

backscatter coefficients at two depths within an ROI are 

proportional, which under the Gaussian scattering model means 

that the effective scatterers’ radius remains fixed within the 

ROI, but that the acoustic concentration might vary [15]. One 

then computes the relation [15]: 

( , ) ( , )
log log

( , ) ( , )

S p ref p

S d ref d

PS f z PS f z

PS f z PS f z
   

4 local zf const   ,  (A-2) 

where local  is the difference in local ACS between samples 

and the reference phantom. Thus, the observed spectral data in 

the left-hand side of (A-2) are: 

1

( , ) ( , )
log log

( , ) ( , )

FreqN

S p ref p

r

S d ref d i

PS f z PS f z
y

PS f z PS f z


 
  
 

.  (A-3a) 

The predictors’ matrix and regression coefficients are finally of 

the form: 

1(4 1) FreqN

r i r iX f z   ;   (A-3b) 

,1 ,2( )T

r r r   ;   (A-3c) 

,1 ,r r local   .   (A-3d) 

The weights rw  in Eq. (11) were kept to 1. 

Since, in the case of the SLD model, the vector of regression 

coefficients has dimension d greater than 1 ( 2d  ), its 

components might be of different order of magnitude. Thus, the

1 -norm regularization term in Eq. (13a) was replaced with 

1 , ,1 1 ( )
( , ) | |

CWN d

m r m s mr m s N r
reg a    

  
    ,  (A-4a) 

where 
ma , 1,2m  , are the weights of the regression 

coefficients. The LMSE problem was first solved without 

regularization, and then the weights were set to 

,1 1

1

,1 ,21 1

1

( )

1 1

( ) ( )

r ref

r ref r

a
 

  







;   (A-4b) 

,2 1

2

,1 ,21 1

1

( )

1 1

( ) ( )

r

r ref r

a


  






,   (A-4c) 

where ,1 ,2( , )r r   denotes the initial LMSE solution. In 

particular, sum up to 1, the terms in Eq. (A-4a) are now of 

comparable order of magnitude. 

APPENDIX B 

In this section, the comparison between RFM and the 

proposed method is provided by considering each modification 

brought to the RFM (see the impact of each step 

implementation in Table B-I). As mentioned in [42, 66], the 

RFM has been used only in the case of a homogeneous medium, 

and a square computation window of about 2.5 cm side length 

was considered. 

The most important innovations in our work can be 

summarized into the following features: A) the smaller CW’s 

size; B) the usable frequency range (UFR); C) the log-scale 

Gaussian fit; D) the adaptive frequency sub-range of the UFR, 

and E) the modified RANSAC line fitting. 

In the initial state of the method (Gong et al., 2019, [42]), the 

CW was a square with sides of 2.5 cm and the frequency range 

was fixed between 4 to 6 MHz. With this configuration in Table 

B-I, the RFM had a good estimation of attenuation on the first 

TABLE B-I 

COMPARISON OF RFM AND PF METHODS ON TWO 

HOMOGENEOUS PHANTOMS AND INVESTIGATION OF THE 

EFFECT OF EACH MODIFICATION 
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phantom (bias of -0.15) but a larger underestimation on the 

second phantom (bias of -0.23).  

In the second state (condition A), the CW size was decreased 

(as in our implementation of PF and SLD methods). It can be 

observed that the RFM failed with such a small window’s size 

and even the estimated attenuation for medium #2 was less than 

for medium #1, which should be the opposite trend. In the third 

state (condition A+B), by changing the frequency range used in 

RFM (4-6 MHz) to the UFR, the biases for both phantoms 

decreased, and the attenuation estimated for medium #2 was 

slightly higher than medium #1, but the biases were still large. 

In the fourth state (conditions A+B+C), a log scale Gaussian fit 

was applied to the previous improvements. It can be observed 

that although the bias for medium #2 was increased, the 

difference in estimated attenuation for the two media was 

nevertheless larger. In the fifth state (conditions A+B+C+D), 

by considering the adaptive frequency range within the URF, 

the biases were much smaller in both cases and the trend of 

estimated attenuations was correct in both media. For the final 

improvement considered with the proposed method (the sixth 

state, conditions A+B+C+D+E), by adding the proposed 

modified RANSAC line fitting criterion, the biases were much 

reduced. 

We also considered comparing the RFM and the proposed 

method with regularization. However, it was not applicable 

with the large CW size recommended by Gong et al. [42, 66] 

due to a resulting lack of memory, as this implies several sub-

windows. Nonetheless, regularization was performed on the 

RFM with small CWs (state 2). The resulting absolute biases 

were larger than those obtained with the proposed method either 

with or without regularization. 
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