
Université de Montréal

Algorithmic authority in music creation: the beauty of

losing control / De l’autorité algorithmique dans la

création musicale : la beauté de la perte de contrôle

par

Tiago Bortoletto Vaz

Faculté de Musique

Mémoire présenté à la Faculté des études supérieures

en vue de l’obtention du grade de

Maîtrise en musique (M. Mus)

option composition

Janvier 2023

L M U

Tiago Bortoletto Vaz

Université de Montréal

Ce mémoire intitulé

Algorithmic authority in music creation: the beauty of

losing control / De l’autorité algorithmique dans la

création musicale : la beauté de la perte de contrôle

présenté par

Tiago Bortoletto Vaz

a été évalué par un jury composé des personnes suivantes :

Myriam Boucher

(président-rapporteur)

Pierre Michaud

(directeur de recherche)

Dominic Thibault

(membre du jury)

Résumé

De plus en plus de tâches humaines sont prises en charge par les algorithmes dans le domaine

des arts. Avec les nouvelles techniques d’intelligence artificielle (IA) disponibles, qui reposent

généralement sur le concept d’autoapprentissage, la frontière entre l’assistance informatique

et la création algorithmique proprement dite s’estompe.

À titre de mise en contexte, je présente, à l’aide d’exemples récents, un aperçu de la

manière dont les artistes utilisent des algorithmes sophistiqués dans leur travail - et comment

cette nouvelle forme d’art piloté par l’IA pourrait différer des premières formes d’art générées

par ordinateur. Ensuite, sur la base de théories récentes issues d’une société post-humaniste

et la montée de ce que certains auteurs appellent le dataisme, j’aborde des questions liées à

l’autonomie, à la collaboration, aux droits d’auteur et au contrôle de la composition sur la

création sonore et musicale.

D’un point de vue pratique, je présente les logiciels libres et open source (FLOSS, de

l’anglais Free/Libre and Open Source Software) qui ont pris une place constante dans mon

processus de composition ; et je discute de la façon dont leur écosystème, principalement dans

le domaine de l’IA, a façonné mon travail au fil des ans, tant d’un point de vue esthétique

que pratique.

Une série de trois pièces mixtes produites dans le cadre de ce projet de recherche-

création est ensuite analysée. Je présente les différentes dimensions dans lesquelles le concept

d’autorité algorithmique a pris part à mon processus de composition, des approches tech-

niques aux choix esthétiques. Enfin, je propose des stratégies de notation musicale, basées

sur des standards ouverts, visant à assurer la lisibilité, et donc la pérennité de mon travail.

Mots-clés : musique mixte, composition assistée par ordinateur, IA, logiciel libre

i

Abstract

Algorithms have taken over an increasing number of human tasks in the realm of the arts.

With newly available AI techniques, typically relying on the concept of self-learning, the line

separating computer assistance from actual algorithmic creation is blurring.

To contextualize, through recent illustrative examples I elaborate an overview of ways

in which artists are making use of sophisticated algorithms in their work – and how this new

form of AI-driven art might differ from early computer-generated art. Then, based on recent

theories concerning a post-humanist society and the rise of what some authors call dataism, I

discuss issues related to autonomy, collaboration, authorship and compositional control over

the creation of sound and music.

From a practical perspective, I present the Free/Libre and Open Source Software

(FLOSS) that have been a consistent presence in my compositional process; and discuss how

their ecosystem, mainly in the domain of AI, has shaped my work over the last decade from

both aesthetic and practical standpoints.

A series of three mixed pieces produced as part of this research-creation project is then

analyzed. I present the different dimensions in which the concept of algorithmic authority

took part in my composition process, from technical approaches to aesthetic choices. Finally,

I propose some strategies for music notation, based on open standards, aiming to assure the

readability, and therefore the perpetuity of my work.

Keywords : mixed music, computer-assisted composition, AI, FLOSS

iii

Contents

Résumé . i

Abstract . iii

List of Tables. ix

List of Figures. xi

List of Acronyms . xv

Acknowledgments . xvii

Introduction . 1

Chapter 1. Artificial Intelligence and the arts . 3

1.1. Is AI art art? . 7

Chapter 2. FLOSS and the arts . 15

2.1. An overview of available FLOSS for music creation . 18

2.1.1. Operating system (OS) . 18

2.1.2. Coding . 20

2.1.3. Live performance . 21

v

2.1.4. Sound design and DSP. 27

2.1.5. Mapping and integration . 30

2.2. Further comments . 34

Chapter 3. Creation project: Detaching . 37

3.1. Disklavier . 38

3.1.1. The role of the player piano in Detaching . 39

3.2. A few words about AI terminology . 39

3.3. Composing with Magenta . 41

3.4. AI-driven text production with GPT-2 . 47

3.5. The generative aspect of Detaching . 50

3.6. Analysis of Control (taking) / Control (losing) . 51

3.6.1. Technical notes . 52

3.6.2. Installation workflow. 54

3.6.3. Recording. 56

3.7. Analysis of You’re thinking I’m a good person . 57

3.7.1. Scene 1 . 59

3.7.2. Scene 2 . 61

3.7.3. Scene 3 . 63

vi

3.7.4. Rehearsals and recording. 65

3.8. Analysis of You can’t un-neighbor your neighbor . 66

3.8.1. Rehearsals and recording. 67

3.8.2. Scene 1 . 70

3.8.3. Scene 2 . 72

3.8.4. Scene 3 . 74

Conclusions . 75

Bibliography . i

Appendix A. List of additional files . vii

Appendix B. Score of Control (taking) / Control (losing) ix

Appendix C. Score of You’re thinking I’m a good person xliii

Appendix D. Score of You can’t un-neighbor your neighbor lxv

vii

List of Tables

3.1 Control (taking) / Control (losing): description of recordings and script files 56

3.2 PerformanceRNN models with respective parameters as used in the recording of

You can’t un-neighbor your neighbor. 68

ix

List of Figures

1.1 “The Next Rembrandt”, unveiled to media and enthusiasts in the Netherlands –

photo from https://nos.nl/artikel/2097253-the-next-rembrandt-3d-en-pixels

(accessed on Nov 30, 2022). 9

1.2 Computer-generated works in Landscape Past Future, Adam Basanta, 2019. 11

2.1 Artist Onyx Ashanti plays his wearable musical instrument built using FLOSS

and open hardware. 17

2.2 A few tools for music creation running in a Debian GNU/Linux distribution: Calf

Studio Gear, Guitarix, Ardour, Cecilia5 and Musescore. 19

2.3 An illustration of Q-Live, a cue-based software to help the creation of mixed music. 22

2.4 Implementation of an audio object in Q-Live. 23

2.5 MEI output generated by Q-Live. 24

2.6 Excerpt from Trois miniatures (2017), Q-Live cues noted in the score. 25

2.7 Carla patchbay view, hosting audio LV2 plugins such as Calf Reverb. 26

2.8 RadioPyo, free music written in Python, at http://radiopyo.acaia.ca/. 28

2.9 Cecilia, an audio signal processing environment. 29

2.10 Soundgrain, granular synthesis tool. 30

xi

https://nos.nl/artikel/2097253-the-next-rembrandt-3d-en-pixels
http://radiopyo.acaia.ca/

2.11 PyMapperGui, a graphical interface for libmapper. Two accelerometers controlling

sound parameters over a network. 32

2.12 Chataigne: artist-friendly modular machine for art and technology. 33

3.1 Excerpts of text generation with GPT-2. 49

3.2 Stage organization of Control (taking) / Control (losing). 52

3.3 Wearing the MindWave Mobile 2, an EEG headset from NeuroSky. 53

3.4 NeuroPy and Pyo integration. 54

3.5 Graphic timeline of Control (taking) / Control (losing). 55

3.6 A recorded performance of You’re thinking I’m a good person. 58

3.7 Stage organization of You’re thinking I’m a good person. 59

3.8 "You’re thinking I’m a good person", Disklavier plays live algorithmic music in

scene 1. 60

3.9 Graphic notation of Scene 1 in You’re thinking I’m a good person. 61

3.10 You’re thinking I’m a good person, randomly picked empathic statements rule the

performance.. 62

3.11 Graphic notation of Scene 2 in You’re thinking I’m a good person. 63

3.12 Graphic notation of Scene 3 in You’re thinking I’m a good person. 64

3.13 Live electronics setup using Carla, Jack, Pyo and a MIDI controller in “You’re thinking

I’m a good person”. 65

xii

3.14 Stage organization of You can’t un-neighbor your neighbor. 67

3.15 Live electronics setup using Carla, Pyo and a MIDI controller in You can’t un-

neighbor your neighbor. 69

3.16 Prepared piano in “You can’t un-neighbor your neighbor”. 71

3.17 Scene 2 of “You can’t un-neighbor your neighbor”. 72

3.18 MIDI pattern with Pyo. 73

xiii

List of Acronyms

AI Artificial Intelligence

AGI Artificial General Intelligence

ANN Artificial Neural Networks

BCI Brain-computer interface

DL Deep Learning

DSP Digital Signal Processing

EEG Electroencephalogram

FLOSS Free/Libre and Open Source Software

GPT-2 Generative Pre-trained Transformer 2

GUI Graphical User Interface

HCI Human-Computer Interaction

MIDI Musical Instrument Digital Interface

ML Machine Learning

NLP Natural Language Processing

OSC Open Sound Control

RNN Recurrent Neural Network

TTS Text-to-Speech

XML Extensible Markup Language

xv

Acknowledgments

I first thank my long-time partner Tássia who, besides her tireless moral support, has been

a gifted mentor in programming and LATEX for many years already.

I also thank everyone who participated in one way or another in this project: my

supervisor Pierre Michaud for his open-mindedness and human approach throughout my

master’s program; Hippolyte Vendra for his support with recordings; Daniel Áñez for ac-

cepting the challenge of playing with me and my algorithms, keeping an incredible energy

during the entire process.

Finally, I cannot help but thank all the Free/Libre and Open Source Software devel-

opers who, by dedicating countless hours of voluntary work, open the doors to this kind

of experimental work. To name one, Olivier Belanger, who has for many years already

developed one of the best audio engines currently available, Pyo.

xvii

Introduction

...then the answers, instead of coming from my likes
and dislikes, come from chance operations, and that has
the effect of opening me to possibilities that I hadn’t
considered.

John Cage [Montague, 1985]

Humans have a deep desire for control. Feeling that we are in control lets us believe

that we can shape our work to our liking, or to what we think will be somewhat appreciated

by others. Studies suggest that achievements that we feel are under our control boost our

morale, therefore improving our well-being [Ryan and Deci, 2000]. This alone could be

enough to explain one’s desire for exercising personal autonomy on any aspect of one’s life,

yet evidence from many areas of research has supported the idea that our need for control

might also be biologically motivated. [Leotti et al., 2010]

The sense of control also brings comfort because it creates the perception that we are

not under someone else’s control [Raghunathan, 2021], and this is closely related to our evo-

lutionary survival mechanisms. Not surprisingly, this constant pursuit for self-determination

is no different in the realm of the arts. Approaching the subjects of autonomy and control

in a creative process, however, is a challenging task – after all, as well noted by researcher

Alan Chamberlain, “what is perceived as autonomous, may be viewed as control in another

setting, in the same way that one might see order and patterns in chaos, while another person

may interpret the same phenomena as truly random and devoid of meaning” [Chamberlain,

2017].

Yet, such perceptual blurring opens up compelling creative possibilities in an era

where the advancement of algorithms is redefining the idea of human autonomy over human

decisions. Indeed, over the last decades, the very idea of control has been creatively con-

fronted in the realm of music composition: aleatory music, generative music, intuitive music,

open form, stochastic music, and indeterminacy are just a few examples of now-established

approaches closely related to the subject.

Greatly inspired by these concepts, I elaborate in the next sections how my attempts

to shift authority away from the composer have been at once revealing and disconcerting. By

making use of the most recent Machine Learning (ML) techniques, I seek a sense of maximal

liberation from the constant control we are used to exercising in artistic activity. In a back

and forth exchange process between composer, interpreters and algorithms, I explore the

glitchy side of AI in music, as well as making its weaknesses and downsides the theme of my

pieces. The result leads me to a challenging state of equanimity in the appreciation of the

generated musical outcome, which, in my view, has its own peculiar beauty in the midst of

what appears to be a lack of order.

In chapter 1, to offer some context and thoughts that have influenced this work, I

discuss how our understanding of AI has evolved over recent years, and how it has affected

the way we produce and perceive some forms of art. On a more practical level, in chapter 2

I present, through objective examples, some FLOSS that have significantly shaped my work

over the last decade. In chapter 3 I discuss the creation process of three mixed pieces

conceived in the context of my masters project, followed by a review where my experiments

towards finding a collaborative approach integrating composer, performers, listeners and

algorithms have perhaps succeeded, and what could be improved upon.

2

Chapter 1

Artificial Intelligence and the arts

Man is losing his humanity and becoming a thing amongst
the things he produces.

Aman Khanna

Our resistance to the idea that algorithms can autonomously create art is often based

on the assumption that non-sentient creatures lack the necessary understanding of socio-

historical contexts. This thought is well expressed in the article “Creativity is, and always

will be, a human endeavor”1 by philosopher Sean D. Kelly. Here, the author cites Schoenberg

as a notable example of a creative innovator “not just because he managed to create a new

way of composing music but because people could see in it a vision of what the world should

be.”. Going further, he claims that “...his innovation was not just to find a new algorithm

for composing music; it was to find a way of thinking about what music is that allows it

to speak to what is needed now”. Such sophisticated features found in Schoenberg’s work

(such as a vision of what the world should be and what is needed now) are used by the author

to reinforce his proposition, widely supported in both artistic and academic circles, that

human creative achievement is in some way socially embedded, therefore will not succumb

to advances in artificial intelligence.
1https://www.technologyreview.com/2019/02/21/239489/a-philosopher-argues-that-an-ai-can-never-be-an-artist/
(accessed on Dec 01, 2022).

https://www.technologyreview.com/2019/02/21/239489/a-philosopher-argues-that-an-ai-can-never-be-an-artist/

Another supposedly inherent human skill that is also regarded as indispensable to

the creative process is the social awareness, or the ability to recognize the perspectives

of others and apply this understanding to interactions with them. After all, how could

a bunch of circuits be able to ingeniously manipulate shapes, lines and colors in order to

produce sensations of volume, space and movement? Or, how could a thing incapable of

perceiving and experiencing be able to compose a refined orchestral work provoking the

deepest emotional responses from its listeners? How could a secret algorithm, which has

never faced the consequences of oppression, climate change or police brutality, be apt to

compose a cathartic, provocative and yet melodic hip-hop song? Indeed, such reluctance

towards pure AI-driven art production has been advocated by notable thinkers over the last

decades. The following excerpt from the book L’Immatériel illustrates the reasoning behind

this sentiment:

Le sentiment de manquer, le besoin de se dépasser vers
la satisfaction de ce manque sont constitutifs de la con-
science vivante. L’intelligence se développe sur cette base
et en tire l’impulsion première de vivre. La conception
machinique de l’intelligence la présuppose comme étant
toujours déjà là, programmée dans le cerveau, prête à
être mobilisée. Mais l’intelligence n’est précisément pas
un programme déjà écrit : elle n’existe que vivante comme
capacité de se produire selon ses propres intentions ; et
cette capacité de se faire manque, qui est au fondement de
la capacité de créer, d’imaginer, de douter, de changer,
bref de s’autodéterminer, n’est pas programmable dans
un logiciel. Elle n’est pas programmable parce que le
cerveau n’est pas un ensemble de programmes écrits et
transcriptibles : il est l’organe vivant d’un corps vivant,
un organe qui ne cesse de se programmer et de se repro-
grammer lui- même.

[Gorz, 2010]

André Gorz was a social philosopher who worked closely with Sartre, being strongly

influenced by existentialism and phenomenology. He believed that intelligence cannot exist

without a body attached to it and his reasoning is closely related to the absence of con-

sciousness of the machine. Later in the same book, he affirms:

4

Or, si l’intelligence doit exister, évoluer dans l’espace
et le temps, être capable d’apprendre, de s’enrichir par
l’expérience, elle a besoin d’un corps vivant. Mieux : elle
a besoin de se donner, de créer son corps, de créer sa vie,
à sa mesure. Pour créer l’intelligence artificielle, il faut
donc créer la vie artificielle.

Nonetheless, a point to ponder in Gorz’s and many other bright minds’ observations

lies in the traditional characterization of AI, which has for a long time been pictured as “the

science and engineering of making intelligent machines”. This definition was proposed by

John McCarthy, the scientist who coined the term AI itself in 1969 – and its resemblance to

Gorz’s views is clearly stated in the following conclusion, still from L’Immatériel:

L’ambition des pionniers de l’ia et de la VA [vie ar-
tificielle] se révélera autrement plus grande : il s’agit
pour eux d’abolir la nature et le genre humain pour
créer une « super-civilisation » robotique, un « au-delà
de l’humanité » qui façonnera l’univers à son image et
« transformera l’être humain en quelque chose de com-
plètement différent ».

Through McCarthy’s perspective, Gorz’s response to the AI and Artificial Life (AL)

pioneers is precise and correct. However, though such assumptions were followed by respected

writers such as physicist Stephen Hawking and philosopher Nick Bostrom, the dystopic sce-

nario where AI rebels against humans and turns into something out of control has been

radically reviewed by contemporary thinkers such as historian Yuval Harari and computer

scientist Jaron Lanier (who is also a skilled musician). These younger authors will, unsur-

prisingly, rethink AI through a new viewpoint – as something something closer to “the study

and design of intelligent agents” where an intelligent agent can be seen as a system that

perceives its environment and takes actions that maximize its chances of success. [Russell

and Norvig, 2009]

Yuval Harari is a historian and philosopher who became a reference in debates about

the future of technology and its impacts in humankind. He elaborates a far less romanticized

definition of AI, as presented in his article Why Technology Favors Tyranny [Harari, 2018]:

5

AI frightens many people because they don’t trust it to
remain obedient. Science fiction makes much of the pos-
sibility that computers or robots will develop conscious-
ness — and shortly thereafter will try to kill all humans.
But there is no particular reason to believe that AI will
develop consciousness as it becomes more intelligent. We
should instead fear AI because it will probably always obey
its human masters, and never rebel. AI is a tool and a
weapon unlike any other that human beings have devel-
oped; it will almost certainly allow the already powerful
to consolidate their power further.

According to him, the most powerful algorithms are currently controlled by a small

tech elite, and have achieved great power over humankind mostly due to the generosity

(or naiveness) of humans themselves, who deliberately provide such algorithms with the

raw material they need in an unquestioning fashion. This phenomenon, often referred to

as “data colonialism”, is considered analogous to other processes of colonialism throughout

history. However, this new format, rather than being based on exogenous domination, aims

for the “reconfiguration of human life around the maximization of data collection for profit”,

therefore pushing humanity to “a large-scale social, economic and legal transformation based

on the massive appropriation of social life through data extraction” [Couldry and Mejias,

2019].

This Big Data revolution, leading to an inevitable transformation of our social lives –

including the way we produce and appreciate art – has inspired Harari to predict a new age in

human history, dominated by an emerging ideology known as dataism2: an inflection point in

human history at which the authority to make the most important decisions of our lives shifts

from ourselves to algorithms – therefore marking the end of the current era of humanism.

This concept, which envisions such a dramatic transformation in human behavior, along with

its consequences for artistic creation, is what I try to explore in the pieces presented later in

this work.
2The term was firstly used by David Brooks in his article “The Philosophy of Data” from 2013 available at https://www.
nytimes.com/2013/02/05/opinion/brooks-the-philosophy-of-data.html (accessed on Dec 01, 2022).

6

https://www.nytimes.com/2013/02/05/opinion/brooks-the-philosophy-of-data.html
https://www.nytimes.com/2013/02/05/opinion/brooks-the-philosophy-of-data.html

1.1. Is AI art art?

The question of whether a computer can think is no more
interesting than the question of whether a submarine can
swim.

Edsger Dijkstra

Our transcendence adorns,
That society of the stars seem to be the secret.

PoemPortraits algorithm3

A few decades ago, algorithms were already capable of assisting artists in many do-

mains, being mostly supported by complex, yet deterministic sets of rules. Such algorithms

could easily play with geometry, serial music, tonal counterpoint or use natural language in

order to produce interesting outputs. Not surprisingly, they have evolved, and now they are

able to process a much greater amount and variety of data. Furthermore, algorithms became

capable of learning.

As elaborated by Wang, “with the use of machine learning4 and algorithmic tech-

niques, programming compositional algorithms has been largely substituted by program-

ming machines that extract patterns or rules from musical examples.” [Wang et al., 2016].

That being said, let’s still consider the fact that these “programming machines” lack the

understanding of complex social contexts required to create music. But is context truly a

requirement? Well, if we take a materialist view – and accept that mind and consciousness

are merely byproducts of biochemistry – why would algorithms not be able to create music

that provokes the emotional reactions some composers do? It has been widely revealed that

algorithms are getting to the point of knowing – and manipulating – human behavior much

better than humans (so human composers!) themselves. A Cambridge and Stanford Univer-

sity study from 2015 shows that by tracking 300 Facebook likes, an algorithm can predict

your personality as well as your spouse [Youyou et al., 2015]. The conclusion of this and
3https://artsexperiments.withgoogle.com/poemportraits (accessed on April 26, 2022)
4Machine learning (ML) is a subfield of artificial intelligence, based on the idea that a machine can learn and imi-
tate intelligent human behavior. An interesting article explaining how ML works is available at https://deepai.org/
machine-learning-glossary-and-terms/machine-learning (accessed on Dec 20, 2022).

7

https://artsexperiments.withgoogle.com/poemportraits
https://deepai.org/machine-learning-glossary-and-terms/machine-learning
https://deepai.org/machine-learning-glossary-and-terms/machine-learning

many other studies is that it takes very little for algorithms to know us better than we know

ourselves, especially considering that we keep feeding them with data more sophisticated

than Likes. They can also learn and predict our daily habits by consensually tracking our

voice5.

Apparently, we seem to enjoy providing algorithms with high-precision biometric

data such as pulse rate, pressure, sweat composition, dilation of the pupils6, or even real-

time orgasm data7. Even more stunning, algorithms are able to measure our stress level by

detecting micro pulses of blood in our face when we use a camera8, eliminating the need for

any kind of extra biometric gadgets. Thus, the end of the poker face.9

In this direction, Harari offers the following observation:

Art is often said to provide us with our ultimate (and
uniquely human) sanctuary. [...] Yet it is hard to see
why artistic creation will be safe from the algorithms.
Why are we so sure computers will be unable to better
us in the composition of music? According to the life sci-
ences, art is not the product of some enchanted spirit or
metaphysical soul, but rather of organic algorithms rec-
ognizing mathematical patterns. If so, there is no reason
why non-organic algorithms couldn’t master it.

[Harari et al., 2018]

A visually captivating example of (art?)work produced by “non-organic algorithms

recognizing mathematical patterns” was “The Next Rembrandt”, released in 2016 by Mi-

crosoft in collaboration with public and private institutions.

“The Next Rembrandt” is a painting resulting from the analysis of more than 300

works produced by Dutch painter Rembrandt between 1632 and 1642. This analysis was

performed by a deep learning (DL) system capable of processing enough features to finally
5https://www.washingtonpost.com/technology/2019/05/06/alexa-has-been-eavesdropping-you-this-whole-time/
(accessed on April 26, 2022)
6https://www.npr.org/sections/13.7/2018/02/28/589477976/biometric-data-and-the-rise-of-digital-dictatorship
(accessed 26 April 2022)
7https://www.forbes.com/sites/janetwburns/2016/01/20/wearables-may-soon-track-heartbreak-orgasms-in-real-time/
(accessed 26 April 2022)
8https://www.wired.com/story/artificial-intelligence-yuval-noah-harari-tristan-harris/ (accessed 26 April 2022)
9https://www.ted.com/talks/poppy_crum_technology_that_knows_what_you_re_feeling (accessed 26 April 2022)

8

https://www.washingtonpost.com/technology/2019/05/06/alexa-has-been-eavesdropping-you-this-whole-time/
https://www.npr.org/sections/13.7/2018/02/28/589477976/biometric-data-and-the-rise-of-digital-dictatorship
https://www.forbes.com/sites/janetwburns/2016/01/20/wearables-may-soon-track-heartbreak-orgasms-in-real-time/
https://www.wired.com/story/artificial-intelligence-yuval-noah-harari-tristan-harris/
https://www.ted.com/talks/poppy_crum_technology_that_knows_what_you_re_feeling

produce a 3D-printed portrait of a “Caucasian male with facial hair, between the ages of

thirty and forty, wearing black clothes with a white collar and a hat, facing to the right.”

mimicking Rembrandt’s style.10

The significant attention that this project received by the media, as well as by the

AI and arts communities, may reveal a trend in the current AI discourse which author

and artist Joanna Zylinska defines as a “curatorial fascination with what we may call ‘AI

imitation work’, also known as ‘style transfer”’ [Zylinska, 2020].

When looking for AI techniques for my own music creation I faced a similar scenario:

the available AI algorithms were indeed mostly built to learn and imitate styles, i.e. to

artificially generate Debussy or Bach. Yet such algorithmic audacity can also be inspiring,

as it has certainly influenced the work discussed in chapter 3.

Figure 1.1. “The Next Rembrandt”, unveiled to media and enthusiasts in the Netherlands –
photo from https://nos.nl/artikel/2097253-the-next-rembrandt-3d-en-pixels (ac-
cessed on Nov 30, 2022).

In a more nuanced position, Zylinksa argues that “...this supposedly scientific notion

of perception, tied as it is to the expert idea of art, is precisely what tends to rile the general
10https://www.nextrembrandt.com/ (accessed 26 April 2022)

9

https://nos.nl/artikel/2097253-the-next-rembrandt-3d-en-pixels
https://www.nextrembrandt.com/

public. Imitation art thus encourages populist sneering at experts, who may end up being

‘taken in’ by an artificially generated van Gogh or Bacon.” 11.

Evidently, AI can also be used for producing non-imitative art. Distancing himself

from this “style transfer” trend, Montreal-based artist Adam Basanta made use of similar

deep learning techniques in the development of his Landscape Past Future (2019), a “re-

thinking of landscape paintings through the lens of data-aggregation technologies.”12.

By extracting and processing photographic data from the permanent collections of

major Museums, Basanta created new original canvases that “reveal both specific details

of historically significant works as well overarching statistical features”. Thus, unlike The

Next Rembrandt, his work is devoid of the mimetic jargon too often present in today’s forms

of AI-driven art. Having worked as a software developer for this project, I admit to being

influenced by his perspective on the application of AI to arts – in a hope that I am not

mimicking his style too much in my musical creation.
11Zylinska’s book “AI Art: Machine Visions and Warped Dreams” (2020) is an open access book licensed under Creative
Commons. This book presents an enlightening critical view of AI applied to arts, including deep discussions on recent AI-
driven works, which can also be individually consulted via its (Art) Gallery of Links. Its digital version is available at
http://openhumanitiespress.org/books/titles/ai-art/ (accessed 26 April 2022)
12http://adambasanta.com/landscapepastfuture (accessed 26 April 2022)

10

http://openhumanitiespress.org/books/titles/ai-art/
http://adambasanta.com/landscapepastfuture

Figure 1.2. Computer-generated works in Landscape Past Future, Adam Basanta, 2019.

Back to Harari’s position on the subject, he might agree with Zylinska that, regardless

of considering such AI-based work as art, a huge impact in the world of arts production is

to be expected:

Will all this result in great art? That depends on the
definition of art. If beauty is indeed in the ears of the lis-
tener, and if the customer is always right, then biomet-
ric algorithms stand a chance of producing the best art
in history. If art is about something deeper than human
emotions, and should express a truth beyond our biochem-
ical vibrations, biometric algorithms might not make very
good artists. But nor do most humans. In order to enter
the art market and displace many human composers and
performers, algorithms won’t have to begin by straight-
away surpassing Tchaikovsky. It will be enough if they
outperform Britney Spears.

[Harari, 2019]

It is inevitable that broader questions are raised once we face such a scenario: “What

does it mean to be fascinated by realistic imitations?” [Jackson, 2017]. “Is there an onto-

logical difference between early computer-generated art, net art and the more recent forms

11

of AI-driven art?” [Zylinska, 2020]. “What is art creation? What do we mean by art? And,

what do we mean by machines creating art?” [Coeckelbergh, 2017].

In order to address some of these questions (and certainly to raise new ones!), there

have been many experiments using the Turing Test13 (TT) in the field of AI-driven art.

Paintings and music are often the content selected for evaluation, and tests are performed in

many formats, from academic studies to popular competitions. Findings have been at once

interesting, diverse and... contradictory. [Daniele et al., 2021] Such experiments are usually

focused on the participants’ ability to distinguish AI-driven art to art made by humans

– actually the first condition to pass the TT. A second condition, as proposed by Boden

[Boden, 2010], lies in the art to be considered as having as much aesthetic value as one

produced by a human being.

A recent study, however, intended to push the Turing Test one step further, by asking

participants how their reception of a piece of art changed once knowing its creator’s identity:

“Rather than asking participants (as in the original parlor game) whether the concealed

figure is a man or a woman, it asks the fundamentally more important question of how their

evaluation of the individual changes on the basis of that information.” [Hong and Curran,

2019]

For this study, 288 participants were asked to evaluate visual artworks by rating over

eight criteria: originality, composition, personal style, expression, experimentation, degree of

improvement, aesthetic value and successful communication of idea. For the evaluation, four

groups were created based on the identity of artists (AI or human). Through a rigorous

method, this study concluded that the evaluation coming from participants who knew the

creator’s identity did not present a discrepancy with those who did not know. And also, that

there is a clear difference between the blind evaluation of AI-driven art and human-created

art, where human-created artworks were given a substantial higher rating in composition,

degree of expression and aesthetic value. The authors then argue that “these variables can
13https://plato.stanford.edu/entries/turing-test/ (accessed on April 26, 2022)

12

https://plato.stanford.edu/entries/turing-test/

be seen as either strengths of human artists or alternatively the goals that AI art generators

should fulfill to produce worthy art products.”

Ultimately, are these (composition, degree of expression and aesthetic value) the miss-

ing features for machines to create “great art”? So that, beyond outperforming Britney

Spears, algorithms can surpass the mastery of Tchaikovsky, as in Harari’s observations? As

suggested by [New Scientist, 2017.], perhaps we should flip the question: if it is in fact pos-

sible to break down the style of most original composers into algorithms, so perhaps human

artists are more machine-like than we would like to think?

13

Chapter 2

FLOSS and the arts

The interaction between FLOSS philosophy and digital
art should not be seen as yet another category of art,
but as an added layer. It acts as another dimension on
top of existing fields of digital art and enriches the way
artists and collectives can work by adding another degree
of freedom in the creative process.

[Mansoux and Valk, 2008]

FLOSS is a term commonly used to designate a software which is considered Free/Li-

bre or Open Source, or rather, that anyone is freely licensed to use, copy, study, and change

in any way. The source code of a FLOSS is openly shared so that people are encouraged to

voluntarily learn and improve it. [Goossens et al., 1994]

Many factors have contributed to the popularization of Free/Libre and Open Source

Software in the artist’s practice. First, the degree of flexibility intrinsic to FLOSS enables

endless possibilities for creators, avoiding the artistic process from being limited by the

predefined features of a commercial tool. As elaborated by Lee [Lee, 2008], “such a de-

gree of flexibility in software re-use and modification is non-existent and strictly prohibited

with proprietary software”. Moreover, due to its distribution at no charge and its frequent

compatibility with outdated/modest hardware, FLOSS extends possibilities for those with

limited access to modern and expensive equipment. Also, FLOSS communities usually de-

pend on motivated volunteers dedicated to internationalization (preparing the software to be

translatable) and localization (actual translations to specific languages), commonly known as

i18n and l10n14; this taskforce is essential to making the software accessible in less privileged

regions of the globe.

It is true that, for some artists, software is no more than a means for the production

of art. For others, however, software is an essential part of their creative work, occupying

a space far beyond pragmatism, at once revealing and being itself the result of the artist’s

aesthetical and ethical beliefs. Either way, a given software will significantly shape one’s art.

In this direction, Lee [Lee, 2008] goes further by affirming that “...for instance, given the same

hardware, artists who employ commercially packaged programs and those who develop their

own software would often have contrasting ideology and aesthetics”. FLOSS communities are

indeed frequently associated with issues related to “Technology Ethics” (or “Technoethics”)

such as digital rights, freedom of information, censorship, privacy, transparency, copyright,

e-waste, and so forth. Thus, it is not unusual to identify these concerns in the work of artists

who value and use FLOSS. An example that well illustrates such an affinity is the work of

afrofuturist maker Onyx Ashanti, who is also a “musician, geek and open-source advocate”.15

Ashanti works with cheap micro-controllers and a homemade 3D printer built from recycled

electronics that he uses to develop kinetic modular digital synthesizers. In one of the “Far Off

Sounds episodes”, called “Onyx Ashanti Programs Himself”16, Onyx Ashanti energetically

talks about his aesthetic choices:

This version, you know, it’s bulky and I... because I tell
you one thing: [what] I have noticed in the [inaudible]
year wearing this and all that, is the number of people
who want it to be so... want to be cute! They want to
oh... “can you make that less bulky, less... you know...
and I’m like: “neither you or I even know what it is yet...
We don’t know what it is! Why, WHY does it have to be
cute NOW?”

The “bulky” interface that he refuses to make cute is one of his wearable musical

instruments, showed in Figure 2.1. It is not hard to spot some influence of the issues
14https://plato.stanford.edu/entries/turing-test/ (accessed on April 26, 2022)
15https://howlround.com/commons/onyx-ashanti (accessed 26 April 2022)
16https://www.youtube.com/watch?v=qdizFnpp2oI (accessed 26 April 2022)

16

https://plato.stanford.edu/entries/turing-test/
https://howlround.com/commons/onyx-ashanti
https://www.youtube.com/watch?v=qdizFnpp2oI

previously listed in Ashanti’s work. Yet it is difficult to conceive such machinery being built

over a layer of expensive hardware and commercial software.

Figure 2.1. Artist Onyx Ashanti plays his wearable musical instrument built using FLOSS
and open hardware.

Revealing a little of his creative process, Ashanti engages in a conversation with Miller

Puckette (the author of Max and Pure Data), in which both emphasize the importance of

FLOSS in the realm of the arts.17. In that conversation, published under the title “Write

the Software and Let the World Have It”, Puckette goes so far as to say, from a developer’s

perspective, that:

The way to spread a thing quickly and efficiently, and also
to the widest possible population, was simply to make it
open-source. That way, you don’t have to do 90 percent
of the work, which is wrapping the sucker up, and you can
just do 10 percent of the work, which is the kernel. That
appealed a hell of a lot to me – writing the software and
letting the world have it, as opposed to trying to squeeze
money out of anyone.

Adding to this, Ashanti makes his point as a FLOSS user and artist, claiming that

“people who would potentially be programmers have given away a lot of their autonomy to
17https://howlround.com/write-software-and-let-world-have-it

17

https://howlround.com/write-software-and-let-world-have-it

pre-designed [proprietary] systems and the idea of ease of use. It’s not that the other thing

[FLOSS] is harder, it’s just that it’s slightly more abstract.”.

In the next section I present a plethora of free/libre and open-source software, then I

briefly discuss how they have served me in creating music over the years. The main reason

I decided to dedicate a full section to the subject is, above all, the fact that I strongly share

the belief that “by understanding the tools artists use, one can gain greater insight into both

their practice and artistic ideology” [Lee, 2008]; and also because, regrettably, at least in

my academic circle, only very few colleagues are aware of the existence of FLOSS, let alone

understand its ramifications in one’s artistic practice.

2.1. An overview of available FLOSS for music creation

In 1957, the first computer program built for composing sounds was developed. It was

called Music I. Engineer Max Matthews kept improving it up to his Music V. Meanwhile, a

few composers were already on the track of creating computer-assisted musical works, such

as “The Illiac Suit for String Quartet”, by Lejaren Hiller. Since then, software technology has

quickly evolved, becoming more and more accessible for domestic use. FLOSS like CSound,

Puredata, and SuperCollider have provided musicians with a great range of possibilities and

new creative approaches over the last decades. These and other classic tools remain in use

nowadays, depending on a huge online community and being extensively documented.

In the next section, however, through an informal categorization I discuss the usage

of more “modern” FLOSS in which I see the potential to become the new classic.

2.1.1. Operating system (OS)

Anyone who decides to move to a free OS nowadays will probably end up using a

GNU/Linux distribution18. Distributions normally supports a great range of hardware and

count on a helpful online community prompt to assist newcomers. Also, due to an enormous
18As defined in https://www.howtogeek.com/132624/htg-explains-whats-a-linux-distro-and-how-are-they-different/
(accessed 26 April 2022).

18

https://www.howtogeek.com/132624/htg-explains-whats-a-linux-distro-and-how-are-they-different/

number of tools available for GNU/Linux systems, many of the current major distributions

feature a sophisticated and user-friendly way to manage software installation.

Currently, the most popular distributions are directly or indirectly derived from De-

bian GNU/Linux; a distribution itself first launched in 1993 and still highly active today,

with over a thousand developers around the planet.19 Some distributions derived from De-

bian, such as Ubuntu Studio and AVLinux, are designed for digital artists and offer certain

advantages, for instance realtime kernel, lightweight desktop environments, pre-installed spe-

cialized software, and a complete JACK 20 audio setup.

Figure 2.2. A few tools for music creation running in a Debian GNU/Linux distribution:
Calf Studio Gear, Guitarix, Ardour, Cecilia5 and Musescore.

Most of the use cases mentioned in the present work were performed in a Debian

GNU/Linux system, which makes the instructions also compatible with trendy derivatives

such as Ubuntu, Mint, Raspberry Pi OS (formerly Raspbian) and many others. My per-

sonal preference for Debian comes from a long time ago. I have been using and voluntarily

contributing to Debian since 1999. In 2009 I officially became a developer and soon later I

started packaging a variety of software related to music creation21.
19https://www.debian.org/ (accessed 26 April 2022)
20https://jackaudio.org/ (accessed 26 April 2022)
21https://qa.debian.org/developer.php?login=tiago (accessed 26 April 2022)

19

https://www.debian.org/
https://jackaudio.org/
https://qa.debian.org/developer.php?login=tiago

2.1.2. Coding

A computer code can be seen as a form of notational language.22 Coding has been

extensively used in the realm of the arts to create generative systems, allowing artists to shift

away from predetermined structures and to construct algorithms which “actively take part

in the creative process with or without human intervention” [Lee, 2008]. Mainly focused on

the impact of computer code for music creation, Magnusson states that “the linear timelines

of staff notation or digital audio workstations seem to be slightly incongruous with code, as

the former encourages deterministic and fixed approach to composition, whereas the latter

opens up for indeterminacy, non-linearity and liveness” [Magnusson, 2014].

Naturally, terms such as indeterminacy, non-linearity and liveness are closely asso-

ciated with the subject currently guiding my composition work. And to experiment with

such possibilities I often produce code in a general-purpose programming language named

Python. [Van Rossum and Drake Jr, 1995]

In an attempt to emphasize code readability and reuse, I tend to either program

my own tools in pure Python or make use of third-party code libraries which sufficiently

fit my needs. For instance, if I need to generate a random musical excerpt based on a

collection of baroque corpus, or to randomly pick a scale among a set of options, I will

mainly use Music21 [Cuthbert, 2021]. Music21 not only offers a generous database of corpus,

but also an enormous collection of high-level methods (or functions) to manipulate them.

Furthermore, this library provides a great integration with standard digital music formats,

such as MusicXML, Humdrum, ABC, Musedata and MIDI4. If I just need to do some

calculation using musical primitives such as notes and duration, or perform operations such

as transposition, retrograde, and inversion, I will certainly be well served by the Pyknon

music library. Pyknon is a Python library provided as a resource for the (freely available)

book “Music for Geeks and Nerds” by composer Pedro Kroger.23

22Curiously, as in music, a computer code is often performed by what we technically call interpreters.
23https://www.pedrokroger.net/mfgan (accessed 26 April 2022)

20

https://www.pedrokroger.net/mfgan

Not surprisingly, a Python code which uses either Music21 or Pyknon for specific

tasks can be later integrated with other external libraries in order to meet the composer’s

needs. This means that, by coding in a single language, a composer could use Music21

to organize the core material of her piece, Pyknon to perform custom musical operations,

TensorFlow to apply some AI to it, then Pyo to construct synthetic instruments or to create

a time-based score to be live-performed.

Many factors may influence one’s decision when choosing a programming language

for a project. A previous familiarity with Python certainly had a weight on my choice.

However, I am more and more convinced that the ultimate benefit of using Python for music

composition lies in the notable ecosystem of music-oriented libraries orbiting around it.

2.1.3. Live performance

A live performance, in the context of mixed/electronic music, usually involves low-

latency signal processing, integrating and controlling external devices, and triggering events

over time. Once again, the Python programming language happens to be a versatile option

for achieving this goal.

For pieces that require a precise management of events I tend to use a Python-based

FLOSS called Q-Live24. Q-Live is a software designed and developed at the Faculté de

musique of the Université de Montréal which aims to address two issues commonly present

in mixed music works: technological obsolescence (mostly on the software side); and the

considerable amount of time required for the composer to master the basics of computer pro-

gramming [Michaud et al., 2015]. Therefore, Q-Live provides users with a friendly graphical

interface, while still remaining highly powerful and flexible through its modular architecture.
24Q-Live’s source code is available at https://github.com/belangeo/qlive (accessed 26 April 2022)

21

https://github.com/belangeo/qlive

Figure 2.3. An illustration of Q-Live, a cue-based software to help the creation of mixed
music.

Q-Live offers a series of built-in live effects which can be combined in chains and in

tracks along with any external recorded material. The event management feature in Q-Live

is provided through the concept of cues, which are supposed to be activated/deactivated

in a time-based sequence during the performance. Each cue keeps information about all

parameters previously set, being able to also trigger other events. Cues are numbered and

can be directly managed via the computer hosting the software or through external MIDI

devices.

With Q-Live being released as a FLOSS, anyone with some understanding of Python

can add new audio objects to it. The excerpt in Figure 2.4 shows the basic code needed for a

standard reverb effect using the Pyo Freeverb class, followed by a custom synth object built

over a chain of Phasors and a fourth-order lowpass filter.

22

1 class FxFreeverb(BaseAudioObject):
2 def __init__(self, chnls, ctrls, values, interps):
3 BaseAudioObject.__init__(self, chnls, ctrls, values, interps)
4 self.reverb = Freeverb(self.input, self.size.sig(), self.damp.sig(), 1, mul=self.

gain.sig())
5 self.process = Interp(self.input, self.reverb, self.dryWet.sig())
6 self.output = Sig(self.process)
7
8 class MSTB303In(MidiSynth):
9 def __init__(self, chnls, ctrls, values, interps):

10 MidiSynth.__init__(self, chnls, ctrls, values, interps)
11 self.factor = MToT(self.transpo.sig() + 60)
12 self.phase = Phasor(self.pitch * self.factor)
13 self.phase2 = Phasor(self.pitch * self.factor * 1.005)
14 self.square = Sig((self.phase < self.duty.sig()) * 2 - 1, mul=self.envelope)
15 self.square2 = Sig((self.phase2 < self.duty.sig()) * 2 - 1, mul=self.envelope)
16 self.stereo = Mix([self.square.mix(1), self.square2.mix(1)], voices=2)
17 self.process = MoogLP(self.stereo, self.freq.sig(), self.res.sig())
18 self.output = Sig(self.process, mul=self.gain.sig())

Figure 2.4. Implementation of an audio object in Q-Live.

On the development side, there has been an ongoing effort to improve the file storage

process, in order to simplify as much as possible the reconstitution of a composition which

makes use of Q-Live. Currently, the software is able to save all media files in a platform-

independent format, along with text files containing the audio objects (effects, algorithms)

and a description of the events triggered (including parameters, automations and descrip-

tions).

Being myself part of the Q-Live development team, I have contributed with some

code for integrating it with a machine-readable structure proposed by The Music Encoding

Initiative (MEI):

The Music Encoding Initiative [...] brings together spe-
cialists from various music research communities, includ-
ing technologists, librarians, historians, and theorists in a
common effort to discuss and define best practices for rep-
resenting a broad range of musical documents and struc-
tures. The results of these discussions are then formal-
ized into the MEI schema, a core set of rules for recording
physical and intellectual characteristics of music notation

23

documents expressed as an eXtensible Markup Language
(XML) schema.

[MEI, 2021]

An example of a MEI structured file generated by Q-Live is illustrated in Figure 2.5

(left), followed by the actual output to be used in a score of a mixed piece (right).

Figure 2.5. MEI output generated by Q-Live.

24

Figure 2.6. Excerpt from Trois miniatures (2017), Q-Live cues noted in the score.

I used to make exclusive use of Q-Live to control cues and effects in my past com-

positions, together with Musescore notation software25 and Inkscape26 to produce my scores.

An example of how I usually notate Q-Lives cues in my scores can be seen in Figure 2.6,
25https://musescore.org/en (accessed 26 April 2022)
26https://inkscape.org/ (accessed 26 April 2022)

25

https://musescore.org/en
https://inkscape.org/

which presents an extract of Trois miniatures, a piece that I composed in 2017 and was first

performed in 2018 by the Ensemble de Musique Contemporaine de l’UdeM. In this excerpt

we can see the indication of when the live electronics performer should trigger cue 3. The

parameters for cue 3 are illustrated in Figure 2.3, which is also a fragment from the Trois

miniatures score.

Another piece of software serving a similar purpose, and that I’ve been exploring

lately, is Carla. Carla is a “fully-featured modular audio plugin host, with support for many

audio drivers and plugin formats. It has some nice features like transport control, automation

of parameters via MIDI CC and remote control over OSC”.27 Carla certainly lacks some of the

cue-related features found in Q-Live. Nonetheless, for my recent work – in which I approach

music in a much more free form – I felt that tweaking with unfamiliar/obscure open-source

effects would better match my intentions than controlling cues in a precise manner. Unlike

Q-Live, Carla supports a range of standards for audio plugins, such LADSPA, DSSI, LV2,

VST2 and VST3. Also, I highly appreciate the excellence of the audio effects provided by

the Calf Studio Gear 28 project. Such effects were also made available as LV2 plugins by Calf

developers, so that I could easily host them in my Carla setup, as illustrated in Figure 2.7.

Figure 2.7. Carla patchbay view, hosting audio LV2 plugins such as Calf Reverb.
27https://kx.studio/Applications:Carla (accessed 26 April 2022)
28http://calf-studio-gear.org/ (accessed 26 April 2022)

26

https://kx.studio/Applications:Carla
http://calf-studio-gear.org/

That being said, although I continue to use Q-Live for more deterministic pieces, for

the creation project presented in chapter 3 I decided to adopt Carla instead.

2.1.4. Sound design and DSP

The existing sound generators and signal processors are a vast resource. In most

scenarios, a composer will likely be well served by these audio plugins without the need to

programme audio objects by themself. In some cases, however, coding either in a visual

language such as Pure Data or in traditional scripting languages such Python, might open

a new level of possibilities that would be hard to explore through pre-programmed tools.

Evidently, FLOSS plugins can be modified to the composer’s taste; however, the time it

takes to understand a third-party code to the point where you are ready to improve it can

easily become a limiting factor. A library, on the other hand, can offer the composer the

best of both worlds. In the Python world, one of the most complete and advanced libraries

in this regard is Pyo.

Pyo was created by Olivier Belanger and has been used for many years as a pedagog-

ical tool in his classes at the Faculté de musique of the Université de Montréal. An online

community around Pyo has grown over the years, becoming a helpful space for discussion,

mostly through a public mailing list.29

Pyo is so complete that it can be used as a standalone solution for creating music.

It provides an extensive set of signal generators, effects, filters, triggers, random generators,

and much more. Users can build a rich setup of synthetic instruments, while at the same time

benefiting from event sequencing classes provided for the production of time-based scores.

Composers from many countries and from different backgrounds are already using

Pyo to make music. Some of their pieces can be listened to throught a dedicated online

radio called Radio Pyo.30 I am currently the person behind Radio Pyo, which is built over a

set of tools deployed in a web server which processes and streams audio from Python scripts
29The Pyo mailing list is public and available at https://groups.google.com/g/pyo-discuss (accessed 26 April 2022)
30http://radiopyo.acaia.ca (accessed 26 April 2022)

27

https://groups.google.com/g/pyo-discuss
http://radiopyo.acaia.ca

submitted by composers. Music written in Pyo often happens to be a generative product,

meaning that it will never sound the same way twice. Pieces from Radio Pyo are at once

software and music. Released under a free license, they could be seen as a kind of FLOSS

music, available for anyone who would like to read, learn or remix. Listeners can connect to

the streaming source using their preferred player, or embed it in their websites. Source code

(or scores?) of those pieces playing on Radio Pyo are available in a public git repository.31.

Figure 2.8. RadioPyo, free music written in Python, at http://radiopyo.acaia.ca/.

Pyo also offers its own Open Sound Control (OSC) and MIDI classes, making it easy

to integrate digital instruments, time sequencing and external devices.

Although being a convenient library for sound design purposes, Pyo requires some

degree of programming competence which composers may lack at first. Fortunately, Pyo

developer Olivier Belanger has released two notable FLOSS offering intuitive and greatly

flexible GUIs: Cecilia5 (initially developed by composer Jean Piché in the 90’s) and Sound-

grain.

31https://github.com/tiagovaz/radiopyo (accessed 26 April 2022)

28

http://radiopyo.acaia.ca/
https://github.com/tiagovaz/radiopyo

Cecilia is an audio signal processing environment aimed
at sound designers which mangles sound in ways unheard
of. It lets you create your own GUI using a simple syntax.
Cecilia comes with many original built-in modules and
presets for sound effects and synthesis.32

Figure 2.9. Cecilia, an audio signal processing environment.

Compared to Cecilia, Soundgrain is a simpler tool focused on the creation of new

sounds through granular synthesis, by drawing and editing trajectories in an interesting

graphical interface.33 Both software use Pyo as their audio engine.
32http://ajaxsoundstudio.com/software/cecilia/ (accessed on 26 April 2022).
33http://ajaxsoundstudio.com/software/soundgrain/ (accessed 26 April 2022)

29

http://ajaxsoundstudio.com/software/cecilia/
http://ajaxsoundstudio.com/software/soundgrain/

Figure 2.10. Soundgrain, granular synthesis tool.

2.1.5. Mapping and integration

Another feature of software as a medium that is often un-
necessarily blocked, is the freedom to mix and match dif-
ferent applications without bumping into incompatibility
issues, making it possible to use system and software as
a creative toolbox in which all parts can be used together
and in different configurations.

[Van Nort and Castagné, 2007]

Mixed pieces and electronic installations are commonly built over a range of input

data from different sources, which are to be processed and transformed in order to generate

the desired output. Generally speaking, this is what we call mapping. In this context, “the

mapping stage is responsible for filling the ontological gap between the gestures performed by

the user (or more precisely the gesture signals), and the parameters of the sound processes.”

[Van Nort and Castagné, 2007]. Mapping can become an extremely complex process, and

often plays a significant role in the artist’s work.

30

Technically speaking, mapping implies communication between different devices, ei-

ther real or virtual, such as MIDI controllers, amplified instruments, a wide variety of sensors,

stage lighting, digital synthesizers, and so on. Not only might this process require advanced

programming skills, but also a deep understanding of the communication protocols involved.

Adopting open standards is a practice that is a great help during the implementation

of mapping strategies. Nowadays, artists will most likely use Open Sound Control (OSC)

under a wireless setup (for instance, the Éponge from Montreal-based composer Martin

Marier [Marier, 2017]). Others will prefer the Bluetooth Low Energy protocol, as seen in

the Augmented Harp [Sullivan et al., 2018]. Both technologies have been natively supported

by major music production software and therefore have become the de facto standards for

communication between multimedia devices.

Certainly, one could use a programming language such as Python to develop an entire

mapping code. This can easily become an arduous task, though, as mapping usually requires

a time consuming tweaking of parameters and connections. I would argue that adding some

layers on top of OSC can make this task easier. In this sense, two projects have recently

caught my attention: libmapper and Chataigne.

libmapper: a library for connecting things

libmapper is an open-source, cross-platform software li-
brary for declaring data signals on a shared network and
enabling arbitrary connections to be made between them.
libmapper creates a distributed mapping system/network,
with no central points of failure, the potential for tight col-
laboration and easy parallelization of media synthesis.34

By using libmapper artists can dynamically experiment with many different mappings

without touching any code whatsoever. A few user interfaces are available nowadays. At

the time I started using libmapper, only one UI was fully functional – however, it was

developed over Max/MSP, which does not run on GNU/Linux systems. Since libmapper is

a FLOSS project with a documented API, I was able to develop a cross-platform UI called
34http://libmapper.org/ (accessed 26 April 2022)

31

http://libmapper.org/

Figure 2.11. PyMapperGui, a graphical interface for libmapper. Two accelerometers con-
trolling sound parameters over a network.

PyMapperGUI35. Currently, a web UI named Webmapper is actively being developed and

seems to support the most recent libmapper versions.36 Libmapper is currently in a stable

release and has been successfully used as the core mapping environment for the T-Stick

digital music instrument [Nieva et al., 2018].

Chataigne: artist-friendly modular machine for art and technology

Chataigne is a free, open-source software made with one
goal in mind : create a common tool for artists, tech-
nicians and developers who wish to use technology and
synchronize software for shows, interactive installations
or prototyping. It aims to be as simple as possible for
basic interactions, but can be easily extended to create
complex interactions.

[Kuperberg, 2021]

Chataigne supports an extensive range of hardware, software, and protocols, and can

be easily expanded. It can work as a state machine, “which means you can create different

states, each one being a group of rules that you can activate or deactivate as you wish”. Users
35https://github.com/tiagovaz/pyMapperGUI (accessed 26 April 2022)
36https://github.com/libmapper/webmapper (accessed 26 April 2022)

32

https://github.com/tiagovaz/pyMapperGUI
https://github.com/libmapper/webmapper

can also create transitions between states, allowing all kinds of automation and autonomous

interactions between those states.

Figure 2.12. Chataigne: artist-friendly modular machine for art and technology.

Chataigne states can be seen as analogous to the previously mentioned Q-Live cues,

although states are able to control a wider set of parameters from different devices on a net-

work, rather than being limited to its own audio objects. Another core concept of Chataigne

is its capacity to work as a time machine, which, as documented, “will let you create timeline-

based sequences and create triggers and parameter animations over time”37. Chataigne can

be easily integrated with libmapper, Pyo, Q-Live, Carla and so forth, thus allowing artists

to benefit from the best of what each tool may offer.

37Taken from “The Amazing Chataigne Documentation” available at https://bkuperberg.gitbook.io/chataigne-docs/
the-time-machine-sequences/introduction-to-the-time-machine (accessed on Nov 30, 2022).

33

https://bkuperberg.gitbook.io/chataigne-docs/the-time-machine-sequences/introduction-to-the-time-machine
https://bkuperberg.gitbook.io/chataigne-docs/the-time-machine-sequences/introduction-to-the-time-machine

2.2. Further comments

NASA cannot rely on software unless they have control
over every line of code in it, and although musicians and
artists don’t usually shoot billions of dollars into space,
they do need control over the tools they work with.

[de Valk, 2009]

This quotation by artist and researcher Marloes de Valk is particularly interesting

here because it talks about control. It may seem contradictory to the title of this thesis,

but in reality, allowing yourself to lose control, or delegating it to another entity (be it a

musician, or a software), involves trust.

For instance, when I work with a performer in a collaborative setting, I expect a

certain openness from her. I expect her to agree, disagree, argue, be open to changing

her mind, but not to come with a End-User License Agreement (EULA) violation notice

whenever I ask her to play her instrument in a weird way that she has never played before.

I also believe that she would not appreciate having to wait for the next “bug fixes”

from the manufacturer of her instrument in order for it to be ready to play at the next

concert. Nor does she want to wait for an approval from their legal department before

she can replace a defective component. On the contrary, she certainly wants to deeply

understand how her tool works, and to be able to choose the luthier of her preference to

repair and adjust it to her liking, at the time she needs it. Or rather, she might want to have

some fun repairing, modifying, improving or augmenting her instrument by herself, following

her musical aspirations.

I also tend to agree with de Valk when she says that “there is a need for tools that

match an artist’s needs, instead of tools that match what an industry determines an artist

needs.”. Actually, it would be naive, or dishonest, to declare that in the domain of digital

arts, all proprietary software is absolutely limiting. This is not true, as there are also closed

source tools with a myriad of parameters and settings available. However, deprived of the

34

source code, there will always be a boundary somewhere. And the moment the artist needs

to cross this boundary to achieve an artistic goal, it will be very frustrating.

For example, in the pieces discussed in chapter 3, I present a situation in which I

needed a feature that was supposed to be unavailable in a given Python library. I managed

to reach its developer in a public mailing-list, and he pointed me to the source code where

I could find what I was looking for, and what modifications I should perform to achieve my

goal.

In another case, I was able to use an older version of an EEG device thanks to an old

available library, not developed by the manufacturer, but by a third-party FLOSS developer

who managed to learn the device’s communication protocol. This library was deprecated, so

again, thanks to its openness I was able to work it out by myself and discard the need for a

newer device. Otherwise, not only would the company determine that I needed a new device,

but also that the software to use would be that which they had a monopoly on developing.

These apparently minor benefits of using FLOSS end up making a huge difference in

my creative process. Perhaps a negative point of all this is precisely the inherent fascination

present in the DIY culture, which can often seduce us to the point of depriving us of making

art in order to create all the components that are supposed to serve our artistic creation.38

38This discussion is well covered in the second part of the cited article by Marloes de Valk.

35

Chapter 3

Creation project: Detaching

Detaching is a series of three mixed pieces which explores the scenario of a new post-human

ideology referred as dataism. This exploration, although being mostly thematic, embraces a

concrete element of this philosophy: the disproportionate use of self-learning algorithms to

accomplish tasks which were, not long ago, solely the domain of humans.

The first of three pieces, Control (taking) / Control (losing), was conceived as an

interactive installation. It is structured in 2 parts and does not require a dedicated human

performer. This algorithm-oriented experiment presents an uncensored cooperation between

a machine and a human brain. Control (taking) / Control (losing) makes extensive use of

AI for both musical and textual output. A non-invasive brain-computer interface (BCI) is

used to translate brainwaves into sound.

The second piece, You’re thinking I’m a good person, was written for two performers,

electronics, and Disklavier. It uses texts generated by AI and modern Text-to-Speech (TTS)

techniques in order to directly affect the performance, intending to subvert the sense of a

well-known collection of empathic statements.

In the third piece of the series, the performer (a human pianist) engages in a trou-

bled mix of fighting and cooperation with the machine (a prepared Disklavier controlled by

algorithms) in order to keep control of his music. This piece is structured in 3 scenes and

depends on human improvisation skills, both in music and in life, that, as the performance

proposes, have become increasingly scarce.

In the next lines, before delving into the pieces, I describe how and why each of the

afore mentioned elements (AI, TTS, Disklavier, BCI etc) has served this experiment.

Worth noting that, given the restrictions related to the COVID-19 pandemic, the

three pieces presented here could not be live-performed for the general public, and were

therefore recorded in studio. The available media files are listed in Appendix A.

3.1. Disklavier

The three pieces of this series make use of a player piano. The one I had access to for

the recording sessions was a Yamaha Disklavier, which is today the most widespread brand

of self-playing pianos. Such instruments were originally based on a pneumatic mechanism

which read music from perforated paper or metallic rolls. Currently, a player piano by

Yamaha is equipped with electronic sensors for recording and electromechanical solenoids

for the playback feature. The musical information is manipulated throughout a Standard

MIDI File (SMF). Some models, such as Mark IV, are built on an embedded Linux and run

on a FLOSS-based system, maintained by an independent programmer.39

Modern self-playing pianos have been widely used in music education and research.40

Not surprisingly, composers have also explored the artistic possibilities of such instruments.

Given that the most notable feature of a Disklavier lies in its capacity to play “impos-

sible music” (or, music unplayable by a human pianist), they are, in the words of Disklavier

composer Hans Tammen, “often used to present the ‘superhuman’ capabilities of these ma-

chines”. Tammen recorded in 2015 the album “The Choking Disklavier”, in which the piano,

“remotely controlled by the composer/performer, [...] produces constantly rumbled and
39http://dkvbrowser.sourceforge.net/ (accessed on 26 April, 2022)
40At least by those able to afford one. Although a second-hand old model Disklavier can be found for less than $30,000 USD,
a newer version might easily be prohibitive for some. As of April 2022, a DC3X ENPRO is priced around $90,000 USD. The
cost can go further: a special model released in 2000 had a retail price of $333,000 USD (https://www.cbc.ca/news/science/
yamaha-shows-off-333-000-piano-of-the-future-1.218381, accessed on 26 April, 2022)

38

http://dkvbrowser.sourceforge.net/
https://www.cbc.ca/news/science/yamaha-shows-off-333-000-piano-of-the-future-1.218381
https://www.cbc.ca/news/science/yamaha-shows-off-333-000-piano-of-the-future-1.218381

crackled noises [...]”.41 Other creative uses of a Disklavier have been documented, for in-

stance in “The Editing and Arrangement of Conlon Nancarrow’s Studies for Disklavier and

Synthesizers” [Willey, 2014], and the experience of an improviser “playing on and with the

system at the same time” [Dahlstedt, 2014].

3.1.1. The role of the player piano in Detaching

Technically speaking, a player piano is an automaton. In other words, “a moving

mechanical device made in imitation of a human being [...], that performs a function ac-

cording to a predetermined set of coded instructions, especially one capable of a range of

programmed responses to different circumstances” [Hobson, 2001]. As such, the player piano

fits remarkably well the subject I happened to explore in my creation. My approach towards

such a machine, though similar to Tammen’s (given that I too emphasize the richness of noise

produced by its internal mechanisms), is mostly focused on the level of autonomy granted

to the algorithms controlling it.

In the next sections I present the algorithms that controls the Disklavier in my work,

and how they interact with the audience in Control (taking) / Control (losing), with a duo

of performers in You’re thinking I’m a good person, and finally with a pianist in You can’t

un-neighbor your neighbor.

3.2. A few words about AI terminology

Understanding and classifying the technical elements of an AI system is not straight-

forward. Given the fast and ongoing evolution in this domain, assimilating its many layers

of concepts and acronyms (such as NLP, ML, DL, ANN, RNN, AGI and so forth) can be

overwhelming. The correct use of these terms is a challenge by itself, even for experts. Thus,

in the next lines I attempt to explain a few concepts which I see as necessary (and sufficient)

to understand the creation process that will be discussed later in this thesis.
41https://tammen.org/CD-Choking-Disklavier (accessed 26 April 2022)

39

https://tammen.org/CD-Choking-Disklavier

Firstly, we can safely consider Artificial Intelligence as the broad term relating to

this discussion. Although at this point in history AI no longer needs an introduction, it is

nonetheless important to keep in mind that there are many different forms of learning that

can be applied to it. One of these forms is based on learning through experience; and one of

the possible methods to achieve this is using the machine learning (ML) method.

In summary, ML algorithms build models by processing sample data, also known as

training data, in order to make predictions. From this point of view, ML is considered a

subset of AI. However, ML is itself a broad subject and can make use of many different

approaches. Currently, the dominant approach used in ML is called deep learning (DL),

which is based on artificial neural networks (ANNs).

For instance, one of the models that I trained is based on a long short-term memory

(LSTM) algorithm. LSTM is used to extend its Recurrent Neural Network (RNN) algorithm,

which is a special type of ANN. ANN is the core component of its DL algorithm, which is a

subset of the broader concept of ML. Ultimately, in this work a particular ML method was

used to make a computer perform a task that is usually carried out by humans (composing

music) – all these concepts considered, the result can (perhaps) be called AI.

In addition to this theoretical terminology, there is also a range of terms related to

the implementation of those algorithms, which includes programming languages, libraries,

frameworks, datasets, etc. Just as one should not expect a composer to master all the

technical bits behind the scenes (which I myself do not), for the purpose of appreciating my

creation process, it might be enough to keep the following in mind:

• The tools that I developed for my pieces were built using Python as a programming

language, including many of its libraries, with emphasis on Pyo.

• In my pieces I used ML techniques to generate music (MIDI data) and text.

• For text generation, I fine-tuned a pre-trained model from OpenAI called Generative

Pre-trained Transformer 2 (GPT-2).

40

• For music generation, I trained a few different models using the Performance RNN

algorithms from the Magenta project.

• Both GPT-2 and Performance-RNN make use of a Python library called Tensorflow,

an “end-to-end open source platform for machine learning”42, therefore are easily

integrated into my own Python code.

3.3. Composing with Magenta

Magenta is distributed as an open source Python library,
powered by TensorFlow. This library includes utilities for
manipulating source data (primarily music and images),
using this data to train machine learning models, and
finally generating new content from these models.

[Waite et al., 2016]

My first question when facing such a complex system for generating musical sequences

was: what kind of musical elements can I make use from this intricate framework? Ulti-

mately, these models generate nothing more than MIDI data. Therefore, tone color was

not a trivial choice. Also, most of the available models have been developed with tradi-

tional melody/harmony generation in mind – and I was certainly not looking for structured

melodies or harmonies for my pieces. Furthermore, Magenta models do not understand mu-

sical form. To make things harder, I quickly realized that silence is virtually absent from the

generated pieces. Finally, I found that texture and expressivity were the only elements that,

once enriched by some piano preparation, I could seriously consider for the kind of music I

was willing to create.

Currently, there are eighteen models available in Magenta’s git repository.43 For the

present work I tested a few of them, such as ImprovRNN, MelodyRNN and PolyphonyRNN.

As their names suggest, they are supposed to generate melodies (MelodyRNN), improvise

melodies over a series of chords (ImprovRNN) and produce polyphonic music, mostly focused
42https://www.tensorflow.org/ (accessed 26 April 2022)
43Models for creative work, such as painting, music score and audio synthesis: https://github.com/magenta/magenta/tree/
main/magenta/models (accessed 26 April 2022)

41

https://www.tensorflow.org/
https://github.com/magenta/magenta/tree/main/magenta/models
https://github.com/magenta/magenta/tree/main/magenta/models

on counterpoint (PolyphonyRNN). Unhappy with those (they did not provide the level of

texture and expressivity that I was looking for), I decided to try out a model called Perfor-

manceRNN, a “LSTM-based recurrent neural network designed to model polyphonic music

with expressive timing and dynamics”.44 Fortunately, with this model I was able to mimic

gestural expressions in a much more interesting way than the others could offer.

PerformanceRNN is capable of generating polyphonic performances with more natu-

ral timing and dynamics compared to other Magenta models. It produces a standard MIDI

file output, replacing explicit durations with note-on and note-off events, as explained by

its developers: “In order to support expressive timing, the model controls the clock with

time-shift events that move forward at increments of 10 ms, up to 1 second. All note-on and

note-off events happen at the current time as determined by all previous time shifts in the

event sequence” [Simon and Oore, 2017].

This means that, to take advantage of the full potential of this model, I would need

a MIDI dataset in which note timings were based on human performance, rather than being

extracted from a score. After some research, I found an article introducing the GiantMIDI-

Piano, a “large-scale MIDI dataset for classical piano music”. [Kong et al., 2020]. This

dataset contains 10,854 unique piano pieces by 2,789 composers. It has been transcribed

using a high-resolution piano transcription system and is considered the largest piano MIDI

dataset produced to date [Kong et al., 2020.]. Although not publicly available, the dataset

was kindly provided by its authors through a simple email request. I then started training

the PerformanceRNN model using different subsets of the GiantMIDI-Piano MIDI dataset.

Training a PerformanceRNN model

The following steps summarize how someone with little knowledge of machine learning

concepts and techniques can still train their own Magenta model and generate interesting

MIDI material for their pieces.
44https://magenta.tensorflow.org/performance-rnn (accessed 26 April 2022)

42

https://magenta.tensorflow.org/performance-rnn

PerformanceRNN provides the composer with command line tools (or scripts) in

order to simplify the basic tasks. For further flexibility, programming proficient composers

might want to make direct use of the Python library instead. General instructions can be

found at the Magenta developers’ repository [Simon and Oore, 2017]. My custom code is

available in a public git repository [Vaz, 2021].

For one of the pieces to be discussed later, I used a subset of 147 works by J.S. Bach.

In addition, to generate AI sequences supposed to sound like “glitchy Bach”, I was hoping

to produce musical material presenting lower dynamics and pitch range. My intention was

to create contrasting sequences to those generated from most of the available subsets, where

original performances come from more modern music featuring full piano power.

The first step for training such a model is to convert the collection of MIDI files

into NoteSequences which, as the name implies, are just sequences of notes taken from the

original musical material. NoteSequences provide a serialized structured data in binary form,

so that they become smaller and faster to be processed than a regular XML format. These

NoteSequences are stored in a single TFrecord file, the one used by Tensorflow – the open

source library performing the machine learning tasks behind Magenta.

The command bellow will process as input the MIDI files located in

bach_midi_dataset directory in order to produce the TFrecord file note_sequences_bach.tfrecord:

1 $ convert_dir_to_note_sequences \
2 --input_dir=./bach_midi_dataset \
3 --output_file=./note_sequences_bach.tfrecord \
4 --recursive

The next step is to extract sequences from NoteSequences and save them as Se-

quenceExamples. At this point, two collections of SequenceExamples will be created. These

are used to be fed into the model for training and evaluation. They contain a sequence

of inputs and labels that represent, in this instance, the piano track. By default, 90% of

43

the sequences are generated for training and 10% for evaluation. This ratio can be re-

defined by adjusting the eval_ratio parameter. Similarly to NoteSequences, SequenceEx-

amples are also stored in TFrecord files (named training_performances.tfrecord and

eval_performances.tfrecord).

The lines to generate SequenceExamples are the following:

1 $ performance_rnn_create_dataset \
2 --config=multiconditioned_performance_with_dynamics \
3 --input=note_sequences_bach.tfrecord \
4 --output_dir=./training/bach \
5 --eval_ratio=0.10

The training/evaluation process uses the previously generated SequenceExamples files

as input. This step can take days to reach a good level of accuracy, depending on the available

computer resources. For instance, using an old Nvidia GTX 1070ti GPU, it took me about

72 hours to complete a training job using 147 MIDI files with accuracy > 0.71 and loss <

0.79. These are just a few of many metrics that can be monitored during the process, using

for instance the TensorBoard tool.45

Training can be performed through the following command, which will execute a

3000-step task:

1 $ performance_rnn_train \
2 --config=multiconditioned_performance_with_dynamics \
3 --run_dir=./checkpoints/bach/logdir/run1 \
4 --sequence_example_file=./training/bach/training_performances.tfrecord
5 --num_training_steps=3000

After training a model, one is ready to generate musical material. At this

point the algorithm becomes the core creator of musical sequences (from now on

I will refer to such sequences as performances-rnn, or performance-rnn in its sin-

gular form). Nevertheless, we are still able to partially influence the results. For

instance, given that this model was trained in a multi-conditional configuration (as

set by the –config=multiconditioned_performance_with_dynamics), it can generate
45https://www.tensorflow.org/tensorboard/ (accessed 26 April 2022)

44

https://www.tensorflow.org/tensorboard/

performances-rnn conditioned to a desired note density and pitch class distribution.

Furthermore, PerformanceRNN models can receive a list of pitches, a melody, or a MIDI file

as a “priming track”. In other words, we can provide our AI system with a musical phrase

and tell it to continue the performance; then we ask the system to limit the generated notes

to a set of X pitches, where notes are played Y times per second, for a given duration Z.

Another interesting input parameter supported by this model is called “tempera-

ture”, which determines the level of “creativity” permitted to the machine. The higher the

temperature, the more a performance-rnn sounds “random” – and so increase the chances

to be surprised. For instance, the following command generates three (line 4) 2-minute

performances-rnn (line 5), where notes are played, on average, 5 times per second (line 6),

mostly limited to the G major scale (line 7), with a level of “creativity” of 0.7 (line 8):

1 $ python3 custom_generator.py \
2 --output_dir=/tmp/ \
3 --config=multiconditioned_performance_with_dynamics \
4 --num_outputs=3 \
5 --num_steps=12000 \
6 --notes_per_second=5 \
7 --pitch_class_histogram=’[1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1]’ \
8 --temperature=0.7 \
9 --run_dir=./checkpoints/bach/logdir/run1

The above command also specifies the previously generated checkpoint dir as input

(line 9). This contains the necessary data for generating performances (checkpoint, meta-

graph, and metadata about the model). However, we might want to replace such complex

structure with a bundle file, which is a convenient way of combining the model’s data into a

single file for greater portability and simplicity. As an example, the command bellow creates

the bundle file performance_rnn_bach.mag. This file can be called using the –bundle_file

parameter rather than –run_dir the next time we want to generate a performance-rnn.

1 $ python3 custom_generator.py \
2 --config=multiconditioned_performance_with_dynamics \
3 --run_dir=./checkpoints/bach/logdir/run1 \
4 --bundle_file=./performance_rnn_bach.mag \
5 --save_generator_bundle

45

By following these steps as described, we can generate performances-rnn that last as

long as we want, by setting the num_steps parameter. An important constraint is that, as

already mentioned, Magenta models will not learn musical form. There is no beginning, no

preparations, no ending. Motifs are not developed. Sections, variations and modulations are

nonexistent. Such free-form structure might still be musically expressive and end up being

an inspiring source of musical material for the creation process. It is however extremely

limiting in the case where we want, to a great extent, to avoid human manipulation of the

final musical product – which was my goal for this project.

To get around this limitation, I looked for an option to modify a few parameters during

the performance-rnn generation process, rather than before it. By asking the model developer

about such a feature, I realized that it is already there, though undocumented.46 This means

that, surprisingly, PerformanceRNN allows density and pitch changes over time. This hidden

feature allowed me to give some form to the generated music, which was especially useful in

the first piece of the series, Control (taking) / Control (losing).

As a final and more comprehensive example, the command bellow generates 3

performances-rnn.

1 $ python3 custom_generator.py \
2 --output_dir=/tmp/ \
3 --config=multiconditioned_performance_with_dynamics \
4 --num_outputs=3 \
5 --num_steps=30000 \
6 --notes_per_second=’[1, 3, 3, 5, 1]’ \
7 --primer_melody=’[60, -2, 60, -2, 67, -2, 67, -2]’
8 --pitch_class_histogram=’[[0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0], \
9 [0, 0, 0, 0, 0, 1, 0, 3, 0, 1, 0, 0], \

10 [0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1], \
11 [0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0], \
12 [0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0]]’ \
13 --temperature=1.2 \
14 --bundle_file=./performance_rnn_debussy.mag

46https://groups.google.com/a/tensorflow.org/g/magenta-discuss/c/aEhG_auKVPE/m/ENpVvuP4DQAJ (accessed 26 April
2022)

46

https://groups.google.com/a/tensorflow.org/g/magenta-discuss/c/aEhG_auKVPE/m/ENpVvuP4DQAJ

3.4. AI-driven text production with GPT-2

The first two pieces of Detaching make use of an AI-based text-generation model

called Generative Pre-trained Transformer 2 (GPT-2), which was fine-tuned for the purpose

of providing textual material matching the respective themes of the pieces.

GPT-2 is a language model composed of 1.5 billion parameters, trained on a dataset

of more than 8 million web pages. “GPT-2 uses deep learning to translate text, answer

questions, summarize passages, and generate human-readable text output on a level that is

often indistinguishable from that of humans. It is a general-purpose learner [...]” [Radford

et al., 2019.].

Just like PerformanceRNN, GPT-2 is a deep learning model, though implementing

a Transformer architecture rather than recurrence/convolution-based models (such as the

previously mentioned RNN).

Unlike Performance RNN, GPT-2 did not require me to perform a training from

scratch. OpenAI, the company behind GPT-2, has released four pre-trained models to date:

the “small” 124M parameter model, the “medium” 355M model, the “large” 774M model

and finally the “extra-large” 1558M model. They use an amount of 500MB, 1.5GB, 3GB

and 12GB of disk, respectively. These are much larger than the Magenta’s PerformanceRNN

models that I trained to produce MIDI data. The initial GPT-2 training was performed by

OpenAI itself using a huge corpus based on linked Reddit47 posts in the English language

that had received at least 3 upvotes before December 2017.

Thus, we are not required to train a GPT-2 model from our own dataset in order to

generate text with a near-perfect grammatical syntax and punctuation. But we can benefit

from the possibility of finetuning those existing models on custom datasets48. This allows

us to generate style-oriented or thematic output such as poetry, song lyrics, news, novels,

etc. Such a feature is made possible thanks to a fork of original GPT-2 implementation by
47https://reddit.com (accessed 26 April 2022)
48Although I prefer to use the term finetuning, some people may refer to this process as retraining or even – certainly inaccurate
– training.

47

https://reddit.com

an independent FLOSS developer.49 Additionally, on the top of this fork, a library called

gpt-2-simple50 makes the whole process simpler, delivering extra features, such as the ability

to provide a prefix to specify how you want your text to start (a feature similar to the

priming track from PerformanceRNN, and particularly used in You’re thinking I’m a good

person). Again, the complicated machine learning code behind all these layers is provided

by the Tensorflow project.

Among the three pre-trained GPT-2 models available, the “small” 124M and the

“medium” 355M models can be easily finetuned in a consumer machine equipped with a

powerful GPU. The larger ones require GPU power which is usually not available in personal

computers. Looking for faster results, I performed this step using a remote computer instance

by Google Colab51 instead. The free versions of colab instances offer either a Nvidia T4 GPU

or a Nvidia K80 GPU, either one being faster than anything a composer could normally

afford for such an experiment.

The full-version programs that I coded to generate the texts in my pieces are available

in a public git repository [Vaz, 2021]. They are extensive and composed of several auxiliary

functions less important for the context of this text. The code below, however, built from

excerpts of my main code, summarize the steps from finetuning to generating text using the

“medium” 355M GPT-2 model through the gpt-2-simple Python library.

49https://github.com/nshepperd/gpt-2 (accessed 26 April 2022)
50https://github.com/minimaxir/gpt-2-simple (accessed 26 April 2022)
51https://colab.research.google.com/ (accessed 26 April 2022)

48

https://github.com/nshepperd/gpt-2
https://github.com/minimaxir/gpt-2-simple
https://colab.research.google.com/

1 import gpt_2_simple as gpt2
2
3 FINETUNE = False
4 GENERATE = True
5
6 if FINETUNE:
7 # Download a light model in case there is none
8 model_name = "124M"
9 if not os.path.isdir(os.path.join("models", model_name)):

10 gpt2.download_gpt2(model_name=model_name)
11
12 # Sample text for finetuning
13 file_name = "source/Ten-Arguments-For-Deleting-Your-Social-Media-Accounts-Right-Now-

by-Jaron-Lanier.txt"
14
15 # Start gpt2 session
16 sess = gpt2.start_tf_sess()
17
18 # Finetune the model
19 gpt2.finetune(sess, dataset=file_name, restore_from=’fresh’, \
20 print_every=10, sample_every=200, save_every=500, \
21 model_name=model_name, steps=3000)
22
23 if GENERATE:
24 # (Re)start gpt2 session
25 sess = gpt2.start_tf_sess()
26
27 # GPT2 generator
28 gpt2.load_gpt2(sess, run_name=vars.GPT2_RUN_NAME, checkpoint_dir=vars.

GPT2_CHECKPOINT_DIR)
29
30 # Setting random parameters
31 GPT2_TEMPERATURE = random.uniform(1, 1)
32 GPT2_TOP_K = random.randint(0, 0)
33 GPT2_TOP_P = random.uniform(0.9, 0.9)
34
35 # Setting a prefix
36 prefix="Our destiny is "
37
38 output_text = gpt2.generate(sess,
39 run_name=vars.GPT2_RUN_NAME,
40 return_as_list=True,
41 length=vars.GPT2_LENGTH,
42 temperature=GPT2_TEMPERATURE,
43 nsamples=vars.GPT2_N_SAMPLES,
44 batch_size=vars.GPT2_BATCH_SIZE,
45 prefix=prefix,
46 include_prefix=vars.GPT2_INCLUDE_PREFIX,
47 top_k=GPT2_TOP_K,
48 top_p=GPT2_TOP_P,
49)[0]

Figure 3.1. Excerpts of text generation with GPT-2.
49

3.5. The generative aspect of Detaching
But the day came, when I, myself, invented confusion! (I
could not get a copyright on it, because somebody else had
invented it a few thousand years earlier.)

Herbert Brün [Brün, 1961]

Before delving into the analysis of the pieces, it is worth giving some thought to how

this work relates to the notion of generative music, a term that has gained great popularity

among contemporary composers over the last years.

It might be that most of the time I dedicate to my composition is devoted to designing

systems to make music. Such systems comprise a series of principles and procedures that

will be later adjusted for my musical intentions. Once the whole setup is loaded, the system

runs by itself. This process is not new in music creation, as we can find exactly the same

concept being explored back in 1965, in a mechanical phasing system built for the piece “It’s

Gonna Rain” by Steve Reich. It is also seen in “Music for Airports” (1978) by Brian Eno –

who coined the term generative music in the 90s.

These two pieces are known for using generative methods, yet they do not retain their

generative nature over time. Or, whenever performed, they sound the same. Nonetheless,

generative music may also retain its generative nature in a performance, so that we could see

them as a generative product. [Parviainen, 2021] Two notable examples of this concept are

present in “Available Forms” (1961) by Earle Brown and “In C” (1964), by Terry Riley, both

featuring a form of generative social system where the composer trust the spontaneity and

the awareness of performers to the extent of making each performance sounding completely

different from any other.

For most of my creation I made use of these two approaches mentioned above, by

designing generative methods which will often produce a generative product. Randomness

– a convenient and effective generative technique – is also regularly used in the three pieces

of Detaching, being it produced from algorithms or from human improvisation; generated in

a more or in a less constrained form.

50

3.6. Analysis of Control (taking) / Control (losing)
Control (taking) / Control (losing) is a mixed work presented as an interactive in-

stallation. It is structured in two sections. In this piece, I was in particular seeking to

explore a generative system from two different perspectives. For the first section, Control

(taking), I adopted a generative method to obtain a musical result which does not retain

its generative nature. In other words, it does not present any substantial variation with

each new performance – or, every time you listen to this piece, you hear (almost) the same

result. The “almost” here is due to the fact that Control (taking) only finishes when a human

brain, connected through a Brain-Computer Interface (BCI), reaches a certain threshold of

“attention”.

For the second section, Control (losing), I wanted the algorithms to be previously fed

by brainwaves, so that the system generates the musical material required for the piece’s

execution. Like in In C (as discussed in section 3.5), this section takes on a new form

every time it is performed. However, unlike In C, the path it takes is not a result of human

will, but comes from disorderly brainwaves and a sophisticated neural network controlled by

algorithms.

The generative system applied to both sections is based on Magenta PerformanceRNN

models. The BCI adopted for the recordings was the MindWave Mobile 2, an affordable EEG

(electroencephalograph) headset from NeuroSky. Control (losing) also makes use of a deep

neural network system for text generation, the Generative Pre-trained Transformer 2 (GPT-

2), from OpenAI.

51

Figure 3.2. Stage organization of Control (taking) / Control (losing).

3.6.1. Technical notes

In Control (taking) / Control (losing) I wanted to use biological signals to create a

generative system which we have little control over. At first I considered monitoring vital

signals such as body temperature, heart rate and blood pressure. A few sensors and a single-

board computer (SBC) were used in the very beginning of this creation, in a mixed music

seminary offered by the Faculté de musique of the Université de Montréal. At that time I

was also able to access a BCI, the MindWave Mobile 2, produced by NeuroSky.52

MindWave Mobile 2 is a lightweight EEG headset able to detect brainwaves and

send the collected data to another system. Connection is possible via bluetooth, which

makes it easier to communicate with standard computer devices, single board computers,

and microcontroller units.
52https://store.neurosky.com/pages/mindwave (accessed 26 April 2022)

52

https://store.neurosky.com/pages/mindwave

Figure 3.3. Wearing the MindWave Mobile 2, an EEG headset from NeuroSky.

The device can report five types of brainwave from different parts of the brain:

Gamma waves (oscillating from 24 Hz to 40 Hz, related to states of high attention and

concentration), Beta waves (between 12 Hz and 30 Hz, associated with normal waking con-

sciousness), Alpha waves (8 Hz to 12 Hz, relaxed but conscious), Theta waves (lower fre-

quency, between 4 Hz and 7Hz, associated with dreaming) and Delta waves (high amplitude,

low frequency waves, associated with a state of dreamless sleep cycles). In addition to the

12-bit raw-brainwaves, MindWave Mobile 2 also calculates levels of Attention and Meditation

using a NeuroSky proprietary eSense meter, in a 0-100 range. [Morshad et al., 2020]

Integrating MindWave Mobile 2 into my system was a bit of a challenge. NeuroSky

only provides closed source and stand-alone software for this product. Nonetheless, I was

able to find a third-party Python library distributed under a free license, called NeuroPy53.

However, the available code is deprecated, which required me to perform a few changes in

order to run it over the most recent Python releases. The modified working version of this

library is distributed in the same git repository as the source code and scores of my work.

Once I was able to get data from the device, I used Pyo’s OSC features in order to

convert, scale and transfer the processed data to my own piece of software, as illustrated in

the following code:
53https://pythonhosted.org/NeuroPy/ (accessed 26 April 2022)

53

https://pythonhosted.org/NeuroPy/

1 from pyo import *
2 from NeuroPy import NeuroPy
3 import time
4
5 # localhost for testing purpose
6 OSC_RECEIVER = ’127.0.0.1’
7
8 # Pyo initial setup
9 s = Server(audio=’jack’).boot()

10
11 # EEG initial setup
12 bw = NeuroPy("/dev/rfcomm0")
13 bw.start()
14
15 # Convert to audio stream
16 bw_input = SigTo([bw.attention, bw.meditation, bw.poorSignal])
17
18 # Send OSC data to receiver
19 bw_stream = OscSend(bw_input, port=10001, address=[’/attention’, ’/meditation’, ’/

poorSignal’], host=OSC_RECEIVER)
20
21 # Start Pyo audio server
22 s.start()
23
24 # Main loop
25 while True:
26 # Update data values
27 bw_input.setValue([bw.attention, bw.meditation, bw.poorSignal])
28 time.sleep(0.01)

Figure 3.4. NeuroPy and Pyo integration.

3.6.2. Installation workflow

In section 1, the Disklavier plays a quasi-deterministic algorithm-generated music.

It starts with a recurrent theme extracted by a selected performance-rnn. Visitors are en-

couraged to sit on the piano bench, wear the EEG device and read the “music sheet” which

is placed on the music desk. The music sheet here is a series of live-generated texts by

another AI system, projected in a digital display. In the case where nobody wears the de-

vice, the system will complete its cycle of musical events. Such events include variations

of simple patterns, a recurring theme, sounds generated via synthesis, and short periods of

54

silence. Also, at a given moment, the system randomly chooses one of the previously gen-

erated performances-rnn. Thus, each cycle will present visitors with something new, while

retaining its form. A graphic notation that represents this cycle is presented in Figure 3.5.

Figure 3.5. Graphic timeline of Control (taking) / Control (losing).

Anytime in the piece, once the first brainwaves are processed, the music being played is

immediately affected: brainwaves now take control of a few musical parameters. Additionally,

a TTS-generated voice asks the visitor to keep their attention at a high level, and as a result

a new piece will be created and performed to her. The attention level must be consistently

kept for a little while. At this point, a few stress factors may arise, making focusing harder.

One of them comes from the AI-driven texts themselves, which, by lacking a clear direction

(due to their imperfect AI creator) can easily undermine the visitor’s attention.

In the case that the visitor gives up, the system is reset and the Disklavier starts over

the piece from the beginning. In the case that the visitor succeeds, the system congratulates

them and starts generating a new music based on the collected data. Technically speaking,

for about 60 seconds, the algorithm collects their brainwaves data and transfers the average

of attention level to a PerformanceRNN generator. There is an audible feedback during the

feeding period, reflecting the visitor’s levels of attention in real-time. This element should,

as intended, disturb their pursuit.

55

Once a performance-rnn is generated, the visitor is asked to leave the piano and to

listen to their brain music right away. When the music ends, the system returns to its initial

state (section 1) and is ready to host the next visitor. Each new AI-driven performance is

added to the queue, becoming one of the available performances to be randomly chosen in

section 1.

3.6.3. Recording

To date, a recording using Disklavier has not been possible for this piece. However,

I was able to make an audio recording in conjunction with a video at the time of using the

EEG device. The piano samples used do not accurately represent the expected musical result,

since for this piece I prepare the piano, making it sound more like a percussion ensemble.

The recorded audio, video, and each Python script used in this piece are described in

table Table 3.1.

File Description
AUDIO.wav Home-recorded audio demonstrating one cycle of the piece.
VIDEO.mkv Home-recorded video from the same demonstration above,

highlighting the moment when I wear the EEG device and
reach the attention level required.

GPT2_daemon.py This script calls GPT-2 algorithms in a loop and generates
new lines of text to be displayed.

display.py This script displays in fullscreen the texts being generated
by “GPT2_daemon.py.

Control_EEG_daemon.py This script connects to the EEG device. It collects the brain-
waves data and sends them to the main program via OSC,
over a network. The IP address of the OSC receiver should
be set at the beginning of the code.

Control_part1.py This script opens a Pyo GUI which gives you the option to
start the piece. It is the main code for this piece, and will
call other scripts such as custom_generator.py which uses
Magenta to generate the new performance-rnn files.

carla_patch.carxp A XML file containing the configuration of audio objects
and MIDI assignments. This file is to be used by Carla
audio plugin host software.

Table 3.1. Control (taking) / Control (losing): description of recordings and script files

56

All the resources needed to run the piece are available in the project’s git repository54,

including the fine-tuned GPT-2 model for text generation and the trained Magenta models

for generating the performances-rnn in MIDI format.

3.7. Analysis of You’re thinking I’m a good person
There will be an inevitable apathy alternating with short
periods of resistance, leading the actors towards mostly
robotic movements – although still trying to find some
human sense (and control) within their micro-universe
of gestures and sounds [...]

excerpt from the score

You’re thinking I’m a good person is a 15-minute piece for 2 instruments, a Disklavier

and live electronics. The theme of this piece is related to social awareness, more specifically

to its most well-known feature: empathy. Here, two opposing currents are confronted against

each other by algorithms in order to inspire the composition and the performance itself.

A set of 44 empathetic statements55 which have been extensively publicized on self-

improvement websites is given as input to a modern TTS engine provided by Google’s

Wavenet Text.
54https://github.com/tiagovaz/detaching
5544 Empathy Statements That Will Make you the Greatest Listener at https://www.couples-thrive.com/blog/
couples-therapy-fort-lauderdale/44-empathy-statements-that-will-make-you-the-greatest-listener/ (accessed
26 April 2022)

57

https://github.com/tiagovaz/detaching
https://www.couples-thrive.com/blog/couples-therapy-fort-lauderdale/44-empathy-statements-that-will-make-you-the-greatest-listener/
https://www.couples-thrive.com/blog/couples-therapy-fort-lauderdale/44-empathy-statements-that-will-make-you-the-greatest-listener/

Figure 3.6. A recorded performance of You’re thinking I’m a good person.

The audio output of each statement is randomly picked by an algorithm to be played

during a few parts of the piece, seeking to encourage unplanned reactions from the performers.

Such reactions – which are musical reactions – require some promptitude and improvisation

skills from the musicians.

The same set of 44 empathetic statements was also used to fine-tune a GPT-2 model,

so that a few algorithm-elaborated paragraphs are played (also using the TTS engine) during

the performance. Some of the generated paragraphs are also directly used in the recording,

as illustrated in Figure 3.10.

By fine-tuning the GPT-2 model with texts related to empathy, my goal was to

generate semantically correct, yet confusing/contradictory paragraphs as output. For this

purpose I used a diverse collection of sources, including supportive content as well critical

and provocative material, such as the entire book “Against Empathy: The Case for Rational

Compassion” from psychologist and writer Paul Bloom.

The 44 empathetic statements and the gpt2-generated texts are listed in the score

(see Appendix C). The stage is organized as illustrated in Figure 3.7.

58

Figure 3.7. Stage organization of You’re thinking I’m a good person.

You’re thinking I’m a good person is structured in 3 scenes. Technically, each scene is

controlled by a computer code to be sequentially triggered by the live electronics performer56,

as discussed in the next sections.

3.7.1. Scene 1

Performers are guided to stand side-by-side in front of the Disklavier. They remain

quiet; no reaction is expected. A synthetic voice introduces the piece by proclaiming the

gpt2-generated text 1, as follows:

Empathy works by increasing the activation of your em-
pathic awareness in others, which literally increases the
effort of positive empathy work on their part. Thus, if
you activate empathy near others, empathically speaking,
this will help them feel more closely and empathically at-
tached to you. It shouldn’t be surprising then, that empa-
thy interactions also have a direct relationship to empathy
intensity.

56The live-electronics performer role in all pieces mentioned in this work was played by myself.

59

Figure 3.8. "You’re thinking I’m a good person", Disklavier plays live algorithmic music in
scene 1.

Right after, the Disklavier starts playing a musical progression generated by an algo-

rithm performing in real-time. The only human reaction expected here comes from the live

electronics performer, who manipulates the effects by following a crescendo, as described in

the score. Figure 3.9 illustrates the actual notation reflecting this scene.

60

Figure 3.9. Graphic notation of Scene 1 in You’re thinking I’m a good person.

3.7.2. Scene 2

After the first scene has ended, and given some silence, gpt2-generated text 2 is recited,

followed by a reprise of gpt2-generated text 1, repeatedly. This time, however, the first

continuous sound arises and the voice is suddenly interrupted by the piano. From now on,

each time the piano plays a new note, it triggers a synthetic continuous sound of a slightly

different frequency, leading to noticeable beatings. Such sounding experience produces a

cloudy, yet contrasting effect, intended to – metaphorically – present the idea of a blurry

line between the natural and artificial worlds.

61

Figure 3.10. You’re thinking I’m a good person, randomly picked empathic statements rule
the performance.

During this entire scene, performers are asked to musically react to the piano (or, the

Disklavier controlled by algorithms), as well as to the voiced statements. Once this scene

reaches its second half, all three performers have very little control of what lies ahead. The

oral statements are randomly picked overtime by the algorithm, building new contexts, telling

new stories, and therefore encouraging new reactions and original interpretations whenever

a new performance takes place. The musicians’ unpredictable reactions to this game are a

substantial part of the piece.

Scene 2 ends with gpt2-generated text 3 over the empathic statement 34 as a prefix

input to the algorithm, intended to motivate an infuriated reaction. The graphic score for

this scene is illustrated in Figure 3.11.

62

Figure 3.11. Graphic notation of Scene 2 in You’re thinking I’m a good person.

3.7.3. Scene 3

In Scene 3, for the first time musicians establish a dialogue. So far, they have been

reacting to the sounds generated by the piano, and to the voiced statements. Now they face

each other and play a short piece together. This time the piano plays aside, totally ignored,

left on the second plan.

However, the potential human interaction is now disturbed by the music sheet placed

in between. Performers apathetically focus on their score rather than on the produced sound.

A set of effects are triggered and intensified, which make performers get lost in their music.

The effects were programmed to break tone and rhythm. The musicians then realize they

can just stop performing; but still the music continues playing on its own for a few minutes.

63

A final speech is then triggered, reciting the last gpt2-generated text, again using statement

34 as input:

I see. Let me summarize: What you’re thinking here is
that I’m not so bad. No. You’re thinking I’m a shit-stain.
You’re thinking I’m a terrible person. You’re thinking
I’m a creep. You’re thinking I’m a monster. You’re
thinking I’m a fucking lunatic. You’re thinking I’m a
dumbass. No. You’re thinking I’m a good person. You’re
thinking I’m a good person. You’re thinking I’m a good
person.

The graphic notation for Scene 3 is illustrated in Figure 3.12.

Figure 3.12. Graphic notation of Scene 3 in You’re thinking I’m a good person.

64

3.7.4. Rehearsals and recording

A performance of “You’re thinking I’m a good person” was recorded in studio, and

a video has been produced aiming to visually reflect the artistic intentions. This process

happened during a residence with the Ensemble de musique contemporaine (EMC) at the

Faculté de musique of the Université de Montréal between October and December 2020.

Due to the pandemic situation at that time, a live performance with an audience was not

an option.

Figure 3.13. Live electronics setup using Carla, Jack, Pyo and a MIDI controller in “You’re
thinking I’m a good person”.

Two skilled musicians were appointed to work with me on this piece: Louise Gagnac

(flute) and Mélissa Tremblay (oboe). I was not willing to have control over the instrumenta-

tion. In fact, a few days preceding the first meeting I still did not know which instruments

would be available, as I intentionally asked in the residence application. At the time I had

just requested some sounding qualities and an extra motivation on the part of the musicians

to join a collaborative composition process:

This piece is highly flexible in terms of instrumentation,
as it is strongly based on a continuous sound approach
together with some theatrical performance. [...] Instru-
ments for this piece should be capable of producing a con-
tinuous sound in a great range with very little attack (ex.:
using techniques such as circular breathing, continuous
bowing, or sustained by digital effects). [...] Performers

65

will be encouraged to share responsibilities and collabo-
rate with the composer in terms of musical ideas, nota-
tion, scenography etc. The piece has many improvised
sections. Performers with some interest in free improvi-
sation will certainly be a better match to this experience.

In the end, working with a flute/oboe duo for this piece was an enlightening experi-

ence, mostly due to the fact that the musicians were mainly classically trained and had little

to inexistent experience with free improvisation, mixed music, instrument amplification, and

acting out on stage. Such circumstances pushed me to improve my communication skills

with performers – after certainly failing in the first encounters! Also, I had no choice but

to work more efficiently in the rehearsals, given the time constraints usually present in a

traditional residence format.

3.8. Analysis of You can’t un-neighbor your neighbor
Most personalized filters are based on a three-step model.
First, you figure out who people are and what they like.
Then, you provide them with content and services that
best fit them. Finally, you tune to get the fit just right.
Your identity shapes your media. There’s just one flaw
in this logic: Media also shape identity. And as a result,
these services may end up creating a good fit between you
and your media by changing. . . you.

[Pariser, 2011]

The above quotation relates to a phenomenon called “filter bubble”, which has been

directly or indirectly affecting us all for more than a decade now. 57 Such experience has

inspired the theme of this piece, in which I intended to musically represent a social outcome

through a scenario in which we have lost our most basic conflict resolution skills. There is

no direct character representation in the performance, although Parisier’s three-step model

had influenced the resulting macro structure.

The title comes from a subject-related discussion between historian Yuval Harari and

Facebook CEO Mark Zuckerberg. This conversation is part of a series of “public discussions
57Filter bubble: https://fs.blog/filter-bubbles/ (accessed 26 April 2022)

66

https://fs.blog/filter-bubbles/

about the future of technology in society”, featured by Zuckerberg himself. The video is

publicly available on Harari’s Youtube channel.58

Figure 3.14. Stage organization of You can’t un-neighbor your neighbor.

The resulting collaborative work ended up as a 15-minute piece composed in 3 scenes,

which requires a prepared Disklavier, a computer, a pair of speakers, a pianist, and a live elec-

tronics performer. The piano is simultaneously controlled by a live-generated performance-

rnn and by a live electronics performer manipulating a set of algorithms. The pianist follows

a minimal set of instructions for preparing and playing the piano, together with the algo-

rithms, all throughout the performance. The parameters used by the AI system to generate

the performances-rnn are presented in table Table 3.2. Figure 3.14 shows how the stage

should be set for this piece.

3.8.1. Rehearsals and recording

You can’t un-neighbor your neighbor was composed in collaboration with pianist

Daniel Áñez, an experienced improviser and open-minded musician based in Montreal. He
58Mark Zuckerberg & Yuval Noah Harari in Conversation (Apr 27, 2019): https://www.youtube.com/watch?v=Boj9eD0Wug8
(accessed 26 April 2022)

67

https://www.youtube.com/watch?v=Boj9eD0Wug8

Scene 1 Scene 2 Scene 3
Magenta model PerformanceRNN PerformanceRNN PerformanceRNN

Model type MPD MPD MPD
Input composer(s) Claude Debussy J. S. Bach Claude Debussy

N input performances 29 147 29
Input prime – BWV802 –

Training steps 23785 303140 23785
Accuracy 0.7370561 0.71957767 0.7370561

Loss 0.78055185 0.790744 0.78055185
Training time 8.3h 72.4h 8.3h

Output pitch distribution [0, 1, 0, 0, 2, 1, 0, 1, 1, 0, 1, 1] [10, 1, 3, 10, 15, 1, 10, 10, 1, 10, 2, 10] [0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0]
Output temperature 1.4 1.3 0.7

Output notes per second 5 5 20
MIDI duration (num_steps) 120min 300min 120min

Table 3.2. PerformanceRNN models with respective parameters as used in the recording
of You can’t un-neighbor your neighbor.

accepted the challenge of musically facing such a self-playing machine surrounded by unex-

pected events. Endowed with greater time flexibility, we could dedicate more time to sharing

impressions about the piece’s background and intentions.

This piece is intended to depend on a reduced set of instructions. The final score was

supposed to be produced throughout the creation process, as a product of our observations.

During the rehearsal sessions I worked with Daniel using a back-and-forth approach, where

each performance became itself the object for further discussion and the generation of new

(or removal of) instructions for the next.

I coded my own Python tool to control sequence-time events while using Carla as the

audio effects host. For the live electronics performer, a similar workflow was designed to be

followed all across the piece: just trigger the provided Python code and then manipulate an

interface in order to control the effects and the MIDI data sent to the Disklavier. This setup

is visually represented in Figure 3.15.

68

Figure 3.15. Live electronics setup using Carla, Pyo and a MIDI controller in You can’t
un-neighbor your neighbor.

My intention was also to observe our own reactions when facing such a lack of au-

thority over the creation attempts. Further, we were supposed to avoid as much as possible

our natural desire for control. With that in mind, Daniel was told at first to freely play,

either over the keys or inside the instrument. He was also encouraged to prepare the piano

at his will while a performance-rnn was autonomously running. This was basically the first

set of instructions provided.

Evidently, his musical interactions should happen with our thematic discussions in

mind, contrasting acceptance to confrontation, conviction to confusion, and so on. As ex-

pected, after a few sessions we felt the need to apply further control. Although we agreed

we had succeeded in producing some interesting musical gestures along with the algorithms,

the music clearly lacked form, dynamics, and definitely needed some rest.

Concerns started to be raised by Daniel after each new attempt: “Would you be able

to stop the algorithm for a while?”, “Can I have a similar performance being played each

69

time so that I can better predict how to react?”, “Can I use the sustain pedal to manipulate

a bit what’s being played?”, “Can we be positioned in a way we can look at each other in

order to develop some gestures together?”, and so on.

Gradually we were agreeing to increase our authority, but no more than necessary.

“Necessary” here meaning something close to a blurry imaginary space where we tried to

shape the minimal requirements to reach a product that we could call music. In light of these

considerations, although this piece remained to a great extent conducted by algorithms, both

the pianist and the live electronics performer were provided with a fair share of control over

the resulting sounds.

A recording session took place in December 2021 and a 30 minute video has been

released, featuring two takes for each of the three scenes. This format gives the audience a

better idea about what is fixed and what is actually improvised in this piece.

3.8.2. Scene 1

first, you figure out who people are and what they like

This scene starts with a performance-rnn generated from a model trained against a

dataset of 29 pieces from Claude Debussy. It plays on average 5 notes per second, has a

temperature of 1.4 – being the most “creative” among the three scenes in that sense – and

follows a pitch distribution represented as [0, 1, 0, 0, 2, 1, 0, 1, 1, 0, 1, 1] (or

C × 0, C \× 1, D × 0, D\× 0, E × 2, F × 1, F \× 0, G × 1, G\× 1, A × 0, A\× 1, B × 1).

70

Figure 3.16. Prepared piano in “You can’t un-neighbor your neighbor”.

The MIDI data is close to being entirely generated by AI. The live electronics per-

former focuses on the manipulation of a chain of effects instead. As intended, the pianist

follows a minimal set of instructions that later became the score (see Appendix 3). Those

instructions are mostly written in a descriptive manner and leave room for a good deal of

improvisation.

In Take 1 of Scene 1, the pianist is asked to avoid direct manipulation over the keys

in order to privilege the internal acoustic features of the instrument. In the second take,

the same intentions should be represented by instead using chords along with the algorithm.

Instructions to gradually move towards a continuous sound were given, reached through a

pair of eBows over middle-range strings.

71

3.8.3. Scene 2

...then, you provide people with content and services that
best fit them

The performance-rnn which guides this scene was generated by a model trained

against 147 pieces of J. S. Bach. Like Scene 1, it plays on average 5 notes per second,

and has a little less “creativity”, with temperature set to 1.3. Its pitch distribution is rep-

resented as [10, 1, 3, 10, 15, 1, 10, 10, 1, 10, 2, 10]. Unlike the other scenes,

the performance-rnn for Scene 2 is additionally fed with with a primer, which is the theme

of Duetto in E minor (BWV 802). This theme is then first played while the pianist just

observes, getting ready to react a few bars later.

Figure 3.17. Scene 2 of “You can’t un-neighbor your neighbor”.

In Scene 2, most of MIDI data sent to the Disklavier is manipulated by the live

electronics performer, who triggers and controls algorithms that generate pseudo-random

motives. The excerpt in Figure 3.18 shows, for instance, how the performer generates and

72

sends musical motives to the instrument. Here, pitches are chosen through a noise distri-

bution (“drunk” with looped segments) object where the maximum step is defined by a

continuous Phasor stream (lines 1 and 2). A MIDI controller knob defines min and max

values for velocity (lines 11 and 15), while another knob controls the tempo of the events

(line 19). Random generators are used all over the code in order to further “humanize” the

outcome (see Appendix D for the full program). An example of this output can be seen in

[00:09:28] where the pianist develops a dialogue in crescendo with the generated motives.

1 ph = Phasor(.4)
2 pitch = XnoiseMidi(12, freq=8, x1=1, x2=ph, scale=0, mrange=(21, 108))
3
4 count = 0
5
6 def midi_event():
7 if pattern_play == True:
8 global count
9 pit = int(pitch.get())

10 if count == 0:
11 vel = random.randint(int(ctl_pattern_velocity.get()), \\
12 int(ctl_pattern_velocity.get()) + 30)
13 dur = 500
14 else:
15 vel = random.randint(int(ctl_pattern_velocity.get()), \\
16 int(ctl_pattern_velocity.get()) + 10)
17 dur = 125
18 count = (count + 1) % random.randint(2,5)
19 pat.setTime(float(ctl_pattern_time.get()))
20 s.makenote(pitch=pit, velocity=vel, duration=dur)
21
22 pat = Pattern(midi_event, time=0.125).play()

Figure 3.18. MIDI pattern with Pyo.

73

3.8.4. Scene 3

finally, you tune to get the fit just right

This scene, certainly the most aggressive among the three, is based on performances-

rnn generated in extremis, comprising an unusual pitch distribution of [0, 0, 0, 0, 2,

0, 0, 0, 0, 0, 0, 0] at 20 notes per second on average. The level of creativity is lower

than seen in previous scenes (0.7). This means that notes marked with low probability are

more unlikely to be played, as one can verify in [00:20:00]. Also, for Scene 3 I use a higher

number of effects, as well as an extra incitement material for the performance, in the form

of audible excerpts extracted from the discussion which inspired the piece (as described in

section 3.8).

The pianist was instructed to be influenced by – and musically match – the discussion,

by making use of repetitive patterns and extrapolating the dynamics in his gestures. The

musical outcome of this can be heard, for instance, in [00:30:15].

74

Conclusions

Through the creation of Detaching, I aimed to better understand the roles and bound-

aries between actors (composer, coder, performer, listener and algorithms) participating in

a human-machine collaborative work. Consequently, a significant portion of my work was

dedicated to balance this fluid social system, by shifting authority from myself to perform-

ers, from performs to algorithms, from algorithms to listeners and so forth; and by leaving

artistic decisions unmade, thus constantly giving up control – then struggling not to claim

it back. Such a cyclical adventure, even though quite challenging at times, has turned out

to be a fascinating generative exercise by itself.

Regarding the music notation present in my pieces, I have tried to merge several tech-

niques (graphic score, descriptive instructions, and technical documentation) in an attempt

to clearly communicate my intentions. The scores of Detaching include all the material nec-

essary to execute the performances (i.e. source code, media files, trained models, etc). I

also provide the effects patches in a XML scheme (generated by Carla) so that the audio

objects and chains could be reproduced using any other same-purpose software – given the

human/computer-readability aspect of this format. How outdated will these instructions be

in a few years? Hard to predict. However, I see the use of FLOSS and open standards as a

good starting point to avoid obsolescence – or at least to delay it.

I would like to highlight one reservation regarding the reproduction of this work: in a

few occasions I mentioned affordability as a feature of FLOSS. However, in its current format,

Detaching depends on a mechanical device which portrays the antithesis of affordability. As

discussed in section 3.1, a player piano such as a Disklavier is hardly accessible to musicians

without institutional ties. My hope is – and this is a true motivation for future work – that

this series of pieces evolves to become a more accessible project, not only on the software

side, but also with regard to hardware. This would imply in keeping its core concepts, but

moving from a player piano to a more accessible DIY instrument. Thanks to the use of open

standards, I am confident that this work could easily accommodate other musical devices,

such as a hacked piano59, or even a hacked piano toy, i.e. based on cheap microcontrollers,

solenoids and some FLOSS.60

On a less technical note, this work has given me the opportunity to reflect on larger

and future-facing questions concerning AI and its implications, not only in the art world,

but in the future of our societies. In this sense, I feel lucky to have encountered authors of

much-needed clarity, capable of stripping away the mystical layers that tend to surround our

imagination on this subject. Some of them being brave enough to face head on and defy the

discourses imposed by the big AI industry. Surrounded by so many captivating readings, at

certain moments it became hard to open an editor and write computer code (which pushed

me to learn a little more about discipline).

Having finished this step of my work, many questions, like those listed in chapter 1,

are probing my thoughts and imagination. In the end, I have the impression that, although

no big answer has calmed my spirit, I have perhaps succeed to de-dramatize the questions I

originally had, giving some room for others to derive from them.

Ultimately, I hope that the resulting material from this work, whether in the form

of code, thesis, image, or sound, has managed to capture the essence of this somewhat

unmanageable experiment.

59Here is a well documented 700$ DIY Disklavier build by the young maker Brandon Switzer, based on Arduino: https:
//brandonswitzer.squarespace.com/player-piano (accessed 26 April 2022)
60An example of a hacked piano toy which simulates a player piano using MIDI: https://hackaday.com/2019/08/13/
itty-bitty-midi-piano-sings-with-solenoids/ (accessed 26 April 2022)

76

https://brandonswitzer.squarespace.com/player-piano
https://brandonswitzer.squarespace.com/player-piano
https://hackaday.com/2019/08/13/itty-bitty-midi-piano-sings-with-solenoids/
https://hackaday.com/2019/08/13/itty-bitty-midi-piano-sings-with-solenoids/

Bibliography

[Boden 2010] Boden, Margaret A.: The Turing test and artistic creativity. In: Ky-

bernetes 39 (2010), Mai, Nr. 3, S. 409–413. – URL https://doi.org/10.1108/

03684921011036132

[Brün 1961] Brün, Herbert: Music and Existentialism. 1961. – URL https://sites.

evergreen.edu/arunchandra/. – (accessed on Aug 26, 2021)

[Chamberlain 2017] Chamberlain, Alan: Are the Robots Coming? Designing with

Autonomy; Control for Musical Creativity; Performance. In: Proceedings of the 12th

International Audio Mostly Conference on Augmented and Participatory Sound and Music

Experiences. New York, NY, USA : Association for Computing Machinery, 2017 (AM ’17).

– URL https://doi.org/10.1145/3123514.3123568. – ISBN 9781450353731

[Coeckelbergh 2017] Coeckelbergh, Mark: Can Machines Create Art? In: Philosophy

& Technology 30 (2017), Sep, Nr. 3, S. 285–303. – URL https://doi.org/10.1007/

s13347-016-0231-5. – ISSN 2210-5441

[Couldry and Mejias 2019] Couldry, Nick ; Mejias, Ulises A.: Making data colonialism

liveable: how might data’s social order be regulated? In: Internet Policy Review 8 (2019),

Juni, Nr. 2. – URL https://doi.org/10.14763/2019.2.1411

[Cuthbert 2021] Cuthbert, Michael S.: music21: a Toolkit for Computer-Aided Musicol-

ogy. https://web.mit.edu/music21/. 08 2021. – (accessed on Aug 26, 2021)

[Dahlstedt 2014] Dahlstedt, Palle: Circle Squared and Circle Keys Performing on and

with an Unstable Live Algorithm for the Disklavier. In: Caramiaux, Baptiste (Hrsg.) ;

Tahiroglu, Koray (Hrsg.) ; Fiebrink, Rebecca (Hrsg.) ; Tanaka, Atau (Hrsg.): 14th

https://doi.org/10.1108/03684921011036132
https://doi.org/10.1108/03684921011036132
https://sites.evergreen.edu/arunchandra/
https://sites.evergreen.edu/arunchandra/
https://doi.org/10.1145/3123514.3123568
https://doi.org/10.1007/s13347-016-0231-5
https://doi.org/10.1007/s13347-016-0231-5
https://doi.org/10.14763/2019.2.1411
https://web.mit.edu/music21/

International Conference on New Interfaces for Musical Expression, NIME 2014, London,

United Kingdom, June 30 - July 4, 2014, nime.org, 2014, S. 114–117. – URL http:

//www.nime.org/proceedings/2014/nime2014_534.pdf

[Daniele et al. 2021] Daniele, Antonio ; Di Bernardi Luft, Caroline ; Bryan-Kinns,

Nick: “What Is Human?” A Turing Test for Artistic Creativity. In: Romero, Juan

(Hrsg.) ; Martins, Tiago (Hrsg.) ; Rodríguez-Fernández, Nereida (Hrsg.): Artificial

Intelligence in Music, Sound, Art and Design. Cham : Springer International Publishing,

2021, S. 396–411. – ISBN 978-3-030-72914-1

[Goossens et al. 1994] Goossens, M. ; Mittelbach, F. ; Samarin, A.: The LATEX

companion. New-York : Addison-Wesley, 1994

[Gorz 2010] Gorz, André: The Immaterial. University of Chicago Press, Febrero 2010

(University of Chicago Press Economics Books 9781906497613). – URL https://ideas.

repec.org/b/ucp/bkecon/9781906497613.html. – ISBN ARRAY(0x46896880)

[Harari 2019] Harari, Y.N.: 21 Lessons for the 21st Century. Random House Publish-

ing Group, 2019. – URL https://books.google.ca/books?id=MSKEDwAAQBAJ. – ISBN

9780593132814

[Harari et al. 2018] Harari, Yuval N. ; Harari, Yuval N. ; Harari, Yuval N.: Homo

deus: a brief history of tomorrow. Harper Perennial, 2018

[Harari 2018] Harari, Yuval N.: Why Technology Favors Tyranny. 2018. – URL https://

www.theatlantic.com/magazine/archive/2018/10/yuval-noah-harari-technology-tyranny/

568330/. – (accessed on Dec 01, 2022)

[Hobson 2001] Hobson, Archie: The Oxford dictionary of difficult words. Oxford , Eng.: :

Oxford University Press, 2001

[Hong and Curran 2019] Hong, Joo-Wha ; Curran, Nathaniel M.: Artificial Intelligence,

Artists, and Art: Attitudes Toward Artwork Produced by Humans vs. Artificial Intelli-

gence. In: ACM Trans. Multimedia Comput. Commun. Appl. 15 (2019), Juli, Nr. 2s. –

URL https://doi.org/10.1145/3326337. – ISSN 1551-6857

ii

http://www.nime.org/proceedings/2014/nime2014_534.pdf
http://www.nime.org/proceedings/2014/nime2014_534.pdf
https://ideas.repec.org/b/ucp/bkecon/9781906497613.html
https://ideas.repec.org/b/ucp/bkecon/9781906497613.html
https://books.google.ca/books?id=MSKEDwAAQBAJ
https://www.theatlantic.com/magazine/archive/2018/10/yuval-noah-harari-technology-tyranny/568330/
https://www.theatlantic.com/magazine/archive/2018/10/yuval-noah-harari-technology-tyranny/568330/
https://www.theatlantic.com/magazine/archive/2018/10/yuval-noah-harari-technology-tyranny/568330/
https://doi.org/10.1145/3326337

[Jackson 2017] Jackson, Tony E.: Imitative Identity, Imitative Art, and "AI: Artificial

Intelligence". In: Mosaic: An Interdisciplinary Critical Journal 50 (2017), Nr. 2, S. 47–63.

– URL http://www.jstor.org/stable/45158927. – ISSN 00271276, 19255683

[Kong et al. 2020.] Kong, Qiuqiang ; Li, Bochen ; Chen, Jitong ; Wang, Yuxuan:

GiantMIDI-Piano: A large-scale MIDI dataset for classical piano music. 2020.

[Kong et al. 2020] Kong, Qiuqiang ; Li, Bochen ; Song, Xuchen ; Wan, Yuan ; Wang,

Yuxuan: High-resolution Piano Transcription with Pedals by Regressing Onsets and Off-

sets Times. In: CoRR abs/2010.01815 (2020). – URL https://arxiv.org/abs/2010.

01815

[Kuperberg 2021] Kuperberg, Benjamin: Meet Chataigne. Artist-friendly Modular Ma-

chine for Art and Technology. https://benjamin.kuperberg.fr/chataigne/en. 08

2021. – (accessed on Aug 26, 2021)

[Lee 2008] Lee, Chun: Art Unlimited: An investigation into contemporary digital arts

and the free software movement. (2008)

[Leotti et al. 2010] Leotti, L. ; Iyengar, S. ; Ochsner, K.: Born to choose: the origins

and value of the need for control. In: Trends in Cognitive Sciences 14 (2010), S. 457–463

[Magnusson 2014] Magnusson, Thor: Scoring with Code: Composing with algorithmic

notation. In: Organised Sound 19 (2014), Nr. 3, S. 268–275.

[Mansoux and Valk 2008] Mansoux, A. ; Valk, M. d.: FLOSS+ART. GOTO10, 2008

[Marier 2017] Marier, Martin: Musiques pour éponge : la composition pour un nouvel

instrument de musique numérique. (2017). – URL https://papyrus.bib.umontreal.

ca/xmlui/handle/1866/20810

[MEI 2021] MEI: What is MEI? https://music-encoding.org/about/. 08 2021. –

(accessed on Aug 26, 2021)

[Michaud et al. 2015] Michaud, Pierre ; Bélanger, Olivier ; Paris, Lucas: LE PROJET

Q-LIVE. In: Journées d’Informatique Musicale. Montréal, Canada, Mai 2015. – URL

https://hal.archives-ouvertes.fr/hal-03104607

iii

http://www.jstor.org/stable/45158927
https://arxiv.org/abs/2010.01815
https://arxiv.org/abs/2010.01815
https://benjamin.kuperberg.fr/chataigne/en
https://papyrus.bib.umontreal.ca/xmlui/handle/1866/20810
https://papyrus.bib.umontreal.ca/xmlui/handle/1866/20810
https://music-encoding.org/about/
https://hal.archives-ouvertes.fr/hal-03104607

[Montague 1985] Montague, Stephen: John Cage at Seventy: An Interview. In: American

Music 3 (1985), Nr. 2, S. 205–216. – URL http://www.jstor.org/stable/3051637. –

ISSN 07344392, 19452349

[Morshad et al. 2020] Morshad, Sarwar ; Mazumder, Md ; Ahmed, Fahad: Analysis

of Brain Wave Data Using Neurosky Mindwave Mobile II, 01 2020, S. 1–4.

[New Scientist 2017.] New Scientist: Machines that think : everything you need to know

about the coming age of artificial intelligence. London, England : John Murray, 2017.

[Nieva et al. 2018] Nieva, Alex ; Wang, Johnty ; Malloch, Joseph W. ; Wanderley,

Marcelo M.: The T-Stick: Maintaining a 12 year-old Digital Musical Instrument. In:

18th International Conference on New Interfaces for Musical Expression, NIME 2018,

Blacksburg, VA, USA, June 3-6, 2018, nime.org, 2018, S. 198–199. – URL http://www.

nime.org/proceedings/2018/nime2018_paper0042.pdf

[Pariser 2011] Pariser, Eli: The Filter Bubble: What the Internet Is Hiding from You.

1st ptg. Penguin Press HC, The, 2011. – ISBN 1594203008,9781594203008,9781101515129

[Parviainen 2021] Parviainen, Tero: How Generative Music Works: A Perspective. 2021.

– URL https://teropa.info/loop/. – (accessed on Dec 01, 2022)

[Radford et al. 2019.] Radford, A. ; Wu, Jeffrey ; Child, R. ; Luan, David ; Amodei,

Dario ; Sutskever, Ilya: Language Models are Unsupervised Multitask Learners, 2019.

[Raghunathan 2021] Raghunathan, Raj: Why Losing Control Can Make You Hap-

pier. 2021. – URL https://greatergood.berkeley.edu/article/item/why_losing_

control_make_you_happier. – (accessed on Dec 01, 2022)

[Russell and Norvig 2009] Russell, Stuart J. ; Norvig, Peter: Artificial Intelligence: a

modern approach. 3. Pearson, 2009

[Ryan and Deci 2000] Ryan, Richard M. ; Deci, Edward L.: Self-determination theory and

the facilitation of intrinsic motivation, social development, and well-being. In: American

Psychologist 55 (2000), Nr. 1, S. 68–78. – URL http://doi.apa.org/getdoi.cfm?doi=

10.1037/0003-066X.55.1.68. – ISSN 1935-990X, 0003-066X

iv

http://www.jstor.org/stable/3051637
http://www.nime.org/proceedings/2018/nime2018_paper0042.pdf
http://www.nime.org/proceedings/2018/nime2018_paper0042.pdf
https://teropa.info/loop/
https://greatergood.berkeley.edu/article/item/why_losing_control_make_you_happier
https://greatergood.berkeley.edu/article/item/why_losing_control_make_you_happier
http://doi.apa.org/getdoi.cfm?doi=10.1037/0003-066X.55.1.68
http://doi.apa.org/getdoi.cfm?doi=10.1037/0003-066X.55.1.68

[Simon and Oore 2017] Simon, Ian ; Oore, Sageev: Performance RNN: Generat-

ing Music with Expressive Timing and Dynamics. https://magenta.tensorflow.org/

performance-rnn. 2017. – (accessed on Dec 01, 2022)

[Sullivan et al. 2018] Sullivan, John ; Tibbitts, Alexandra ; Gatinet, Brice ; Wan-

derley, Marcelo M.: Gestural Control of Augmented Instrumental Performance: A

Case Study of the Concert Harp. In: Proceedings of the 5th International Conference on

Movement and Computing. New York, NY, USA : Association for Computing Machin-

ery, 2018 (MOCO ’18). – URL https://doi.org/10.1145/3212721.3212814. – ISBN

9781450365048

[de Valk 2009] Valk, Marloes de: Tools to Fight Boredom: FLOSS and GNU/Linux for

Artists Working in the Field of Generative Music and Software Art. In: Contemporary

Music Review 28 (2009), S. 89–101.

[Van Nort and Castagné 2007] Van Nort, Doug ; Castagné, Nicolas: Mapping, in

digital musical instruments. In: Enaction and enactive interfaces : a handbook of terms.

Enactive Systems Books, 2007, S. 191–192. – URL https://hal.archives-ouvertes.

fr/hal-00977538

[Van Rossum and Drake Jr 1995] Van Rossum, Guido ; Drake Jr, Fred L.: Python

tutorial. Centrum voor Wiskunde en Informatica Amsterdam, The Netherlands, 1995

[Vaz 2021] Vaz, Tiago B.: The Beauty of Loosing Control (source code). 2021. – URL

https://github.com/magenta/magenta/tree/main/magenta/models/performance_

rnn. – (accessed on Dec 01, 2022)

[Waite et al. 2016] Waite, E. ; Eck, D. ; Roberts, A. ; Abolafia, D.: Magenta:

Music and art generation with machine intelligence. 2016. – URL https://github.com/

magenta/magenta. – (accessed on Dec 01, 2022)

[Wang et al. 2016] Wang, Cheng-I ; Hsu, Jennifer ; Dubnov, Shlomo: Machine Impro-

visation with Variable Markov Oracle: Toward Guided and Structured Improvisation. In:

Comput. Entertain. 14 (2016), Nr. 3. – URL https://doi.org/10.1145/2905371

v

https://magenta.tensorflow.org/performance-rnn
https://magenta.tensorflow.org/performance-rnn
https://doi.org/10.1145/3212721.3212814
https://hal.archives-ouvertes.fr/hal-00977538
https://hal.archives-ouvertes.fr/hal-00977538
https://github.com/magenta/magenta/tree/main/magenta/models/performance_rnn
https://github.com/magenta/magenta/tree/main/magenta/models/performance_rnn
https://github.com/magenta/magenta
https://github.com/magenta/magenta
https://doi.org/10.1145/2905371

[Willey 2014] Willey, Robert: The Editing and Arrangement of Conlon Nancarrow’s

Studies for Disklavier and Synthesizers. In: Music Theory Online 20 (2014)

[Youyou et al. 2015] Youyou, Wu ; Kosinski, Michal ; Stillwell, David: Computer-

based personality judgments are more accurate than those made by humans. In: Pro-

ceedings of the National Academy of Sciences 112 (2015), Nr. 4, S. 1036–1040. – URL

https://www.pnas.org/doi/abs/10.1073/pnas.1418680112

[Zylinska 2020] Zylinska, Joanna: AI Art. Open Humanities Press, 2020 (Media: Art:

Write: Now)

vi

https://www.pnas.org/doi/abs/10.1073/pnas.1418680112

Appendix A. List of additional files

Additional files

The following files are a complementary part of this thesis and therefore should be

made available along with the present document:

Vaz_Tiago_2022_audio_simulation_01_Control_Taking_Control_Losing.wav

Vaz_Tiago_2022_video_capture_02_Youre_Thinking_Im_a_Good_Person.mp4

Vaz_Tiago_2022_video_capture_03_You_Cant_Un-neighbor_Your_Neighbor.mp4

viii

Appendix B. Score of Control (taking) / Control (losing)

Control (taking) / Control (losing)
mixed media installation controlled by algorithms

Tiago Vaz

Introductory notes

Control (taking) / Control (losing) is a mixed work presented as an interactive installation. It is
structured in two sections and keeps running by itself once set as described in the next lines.

Scene

The figure below illustrates how the stage should be organized for the execution of this
installation, as described in the next section.

A timeline representation of this piece, taken from its main algorithm, is illustrated bellow:

Setup requirements

Hardware

• Two computers and one audio/MIDI interface
• A pair of speakers
• A digital player piano (i. e. a Disklavier)
• Two microphones to amplify the player piano (on the soundboard)
• Two contact microphones to amplify the mechanical structure under the player piano

Software

• GNU/Linux distribution (might also run on other systems)
• Python version 3 and libraries installed as documented in the git repository located

at https://github.com/tiagovaz/ detaching
• Carla or similar audio plugins host with a similar effects chain as illustrated in the next

section, item 5.

General instructions

Once all hardware and software are set up according to the instructions provided in the
repository (https://github.com/tiagovaz/ detaching), the following steps should be done for the
installation:

1. On the main computer, open a terminal and run the Python script “GPT2_daemon.py”. This
script will be in charge of generating new lines of text to be displayed to visitors.

2. Open a terminal and run the Python script “display.py”. This script will display in
fullscreen the texts being generated by “GPT2_daemon.py”. The screen will be placed on
the music desk.

3. In the NeuroPy computer, run the Python script “Control_EEG_daemon.py”. This script
will connect to the Mindwave device and be in charge of collecting the brainwaves data and
sending them to the main program via OSC, over a network. The IP address of the OSC
receiver should be set at the beginning of the code.

4. Back to the main computer, run the Python script “Control_part1.py”. This script will open a
Pyo GUI which gives you the option to start the piece.

5. A XML file containing the configuration of audio objects and MIDI assignments is provided
in the repository (“carla_patch.carxp”). This file is to be used by Carla audio plugin host
software. Any other similar software can be used as long as the following chain of effects is
respected:

Control_part1.py

1 import subprocess
2 from pyo import *
3 import mido
4 import random
5 import os
6
7 # Pyo initial setup
8 s = Server(audio=’jack’, duplex=0).boot()
9

10 # Dev purpose, use a virtual MIDI port (for mido)
11 DEV = True
12
13 if DEV is True:
14 # Open virtual MIDI device
15 port = mido.open_output(’Midi Through:Midi Through Port-0 14:0’)
16 else:
17 # Open my actual MIDI hardware
18 port = mido.open_output(’io|2:io|2 MIDI 1 28:0’)
19
20 ########################### OSC RECEIVER ################################
21
22 # OSC receiver IP address
23 IP_RECEIVER = ’127.0.0.1’
24
25 osc = OscReceive(port=10001, address=[’/attention’])
26
27 tab_m = HarmTable([1,0,0,0,0,.3,0,0,0,0,0,.2,0,0,0,0,0,.1,0,0,0,0,.05]).normalize()
28 tab_p = HarmTable([1,0,.33,0,.2,0,.143,0,.111])
29
30 class Ring:
31 def __init__(self, fport=250, fmod=100, amp=.3):
32 self.mod = Osc(tab_m, freq=fmod, mul=amp)
33 self.port = Osc(tab_p, freq=fport, mul=self.mod)
34
35 def out(self):
36 self.port.out()
37 return self
38
39 def sig(self):
40 return self.port
41
42 res_mul = SigTo(Scale(osc[’/attention’], 0, 100, 0, .05, exp=0), time=0.1)
43 res_amp = Fader(fadein=5, fadeout=5, mul=res_mul).stop()
44
45 lf = Sine(.03, mul=.5, add=1)
46 rg = Ring(fport=[random.choice([62.5, 125, 187.5, 250]) * random.uniform(.98, 1.02) for i

in range(8)],
47 fmod=lf * [random.choice([25, 50, 75, 100]) * random.uniform(.98, 1.02) for i

in range(8)],

1

2

48 amp=res_amp)
49
50 res = Waveguide(rg.sig(), freq=[30.1, 60.05, 119.7, 181, 242.5, 303.33, 599.8], dur=30,

mul=res_amp).out()
51
52 ################# SYNTH INSTRUMENTS CLASSES ##
53
54 # Need to call an external py in background to loop over the performance-rnn midi file
55 # no need to play with threads
56 class Performance():
57 def __init__(self, cmd, arg):
58 self.cmd = cmd
59 self.arg = arg
60
61 def play(self):
62 p = subprocess.Popen([sys.executable, self.cmd, self.arg], stdout=subprocess.PIPE

, stderr=subprocess.STDOUT)
63
64 class LowDrone():
65 # Generated with Calf monosynth (avoid another live effect)
66 def __init__(self):
67 self.amp = Fader(fadein=20, fadeout=10, mul=.2)
68 self.sf = SfPlayer("drone_part1.wav", loop=True, interp=2, mul=self.amp).out()
69
70 def play(self):
71 self.amp.play()
72 return self
73
74 def stop(self):
75 self.amp.stop()
76 return self
77
78 class Speech():
79 def __init__(self, soundfile=[], loop=False, mul=.5, fadein=.01, fadeout=.01,

duration=0, chnl=0, inc=1):
80 self.amp = Fader(fadein=fadein, fadeout=fadeout, dur=duration, mul=mul)
81 self.chnl = chnl
82 self.inc = inc
83 self.soundfile = soundfile
84 self.soundfile_to_play = random.choice(soundfile)
85 self.player = SfPlayer(self.soundfile_to_play, mul=[self.amp/2., self.amp/1.95],

loop=loop).stop()
86 self.player_rev = Freeverb(self.player, size=[.3,.25], damp=.6, bal=.4, mul=.8).

out(chnl=self.chnl, inc=self.inc)
87
88 def setDur(self, dur):
89 self.amp.dur = dur
90 return self
91
92 def play(self):
93 self.player.setSound(random.choice(self.soundfile))

3

94 self.player.play()
95 self.amp.play()
96 return self
97
98 def stop(self):
99 self.amp.stop()

100 return self
101
102 def getOut(self):
103 return self.amp
104
105 class CustomPattern():
106 """
107 Instruments is a dict instrument:beats (pyoObj:[list of int])
108 """
109
110 def __init__(self, instruments={}, time=.25, beats=32):
111 self.current_beat = 1
112 self.time = time
113 self.instruments = instruments
114 self.beats = beats
115 self.p = Pattern(self.pat, time).stop()
116
117 def pat(self):
118 for k, v in self.instruments.items():
119 if self.current_beat in v:
120 k.play()
121 if self.current_beat == self.beats:
122 self.current_beat = 0
123 self.current_beat += 1
124
125 def play(self):
126 self.p.play()
127
128 def stop(self):
129 self.p.stop()
130
131 class HighFreq():
132 def __init__(self, freq=[11200, 11202], dur=.4, mul=.5):
133 self.amp = Fader(fadein=.01, fadeout=.01, dur=dur, mul=mul)
134 self.sine = SineLoop(freq=freq, mul=self.amp * .05).out()
135 self.rev = Freeverb(self.sine, size=.84, damp=.87, bal=.9, mul=self.amp * .2).out

()
136
137 def setDur(self, dur):
138 self.amp.dur = dur
139 return self
140
141 def play(self):
142 self.amp.play()
143 return self

4

144
145 def stop(self):
146 self.amp.stop()
147 return self
148
149 def getOut(self):
150 return self.amp
151
152 class SmoothNoise():
153 def __init__(self, dur=1.3, mul=.5):
154 self.amp = Fader(fadein=.1, fadeout=.01, dur=dur, mul=mul)
155 self.noise = PinkNoise(self.amp * .01).mix(2).out()
156
157 def setDur(self, dur):
158 self.amp.dur = dur
159 return self
160
161 def play(self):
162 self.amp.play()
163 return self
164
165 def stop(self):
166 self.amp.stop()
167 return self
168
169 def getOut(self):
170 return self.amp
171
172 def setInput(self, x, fadetime=.001):
173 self.input.setInput(x, fadetime)
174
175 class BigPhasor():
176 def __init__(self):
177 self.amp = Fader(fadein=.1, fadeout=.01, dur=0, mul=.03)
178 self.freq = Phasor(freq=1, mul=100, add=100)
179 self.inst = Sine(freq=self.freq, mul=.2)
180 self.outsig = STRev(self.inst, mul=self.amp*.1).out()
181
182 def play(self):
183 self.amp.play()
184
185 def stop(self):
186 self.amp.stop()
187
188 ############ MIDI EVENTS CLASSES ###
189
190 class MidiEvent1():
191 def __init__(self):
192 # self.pitch = XnoiseMidi(’walker’, freq=0.125, scale=0, mrange=(0, 127))
193 self.pitch_range_freq = Randi(0.01, 0.5)
194 self.pitch_range = Randi(-10, 100, freq=self.pitch_range_freq)

5

195 self.pitch = Randi(21, 25, freq=125, add=self.pitch_range)
196 self.velocity = Randi(10, 30, freq=Randi(1, 7))
197 self.duration = 100
198
199 def send_midi(self):
200 # self.pitch = random.randint(21, 88)
201 s.makenote(pitch=int(self.pitch.get()), velocity=int(self.velocity.get()),

duration=self.duration)
202 # print("playing", self.pitch)
203
204 # Add similar to the piece with daniel (repetition/minimalist)
205 class MidiEvent2():
206 def __init__(self):
207 pass
208
209 ################# MIDI EVENT OBJECTS ###
210
211 m = MidiEvent1()
212
213 ################# INSTRUMENTS OBJECTS ###
214
215 big_phasor = BigPhasor()
216 snoise = SmoothNoise(mul=.15)
217 high = HighFreq(mul=.05)
218 low_drone = LowDrone()
219 noise_pattern = CustomPattern({high: [3, 30], snoise: [15, 31]}, time=.25, beats=64)
220
221 # Pick the theme
222 theme = Performance(’./play_midi.py’, ’theme’)
223
224 # Pick a random PerformanceRNN
225 performance = Performance(’./play_midi.py’, ’rnn’)
226
227 # Patterns won’t work inside the the classes, so here they are:
228 r = Randi(0.1, 0.125, freq=Randi(.1, .5))
229 midi_pat = Pattern(m.send_midi, time=r)
230
231 # Voices
232 wearing = Speech([’voice_wearing.wav’]).stop()
233 level1 = Speech([’voice_01.wav’]).stop()
234 level2 = Speech([’voice_02.wav’]).stop()
235 level3 = Speech([’voice_03.wav’]).stop()
236 level4 = Speech([’voice_04.wav’]).stop()
237 level5 = Speech([’voice_05.wav’]).stop()
238
239 ################# MAIN SCORE ###
240
241 # Main counter
242 time_count = -1
243
244 # Initial level

6

245 level_next = 0
246
247 # Counter which determines how long a high level of attention has been reached
248 high_attention_counter = 0
249
250 # Global attention counter, to calculate attention average
251 attention_counter = 1
252
253 # Attention sum, used to calculate average
254 attention_sum = 0
255
256 # Attention samples counter, to calculate attention average
257 attention = 1
258
259 # Send a value to the MIDI player so it can stop playing once a high
260 # level of attention is reached
261 stop_midi_osc = OscDataSend("i", 10003, "/stop_midi")
262
263 # Attention average, used to generate the next performance-rnn
264 attention_average = 0
265
266 attention_done = False
267 attention_init = True
268
269 # To calculate delay between attention levels and allow voice to finish playing
270 attention_timestamp = 0
271
272 # After playing
273 compliments_list = [’breathtaking.wav’, ’brilliant.wav’, ’fabulous.wav’, ’magnificent.wav

’]
274 compliment = Speech(compliments_list).stop()
275
276 def score():
277 global \
278 time_count, \
279 level1, level2, level3, level4, level5, wearing, level_next, \
280 m, \
281 mainScore, \
282 attention_counter, \
283 attention_sum, \
284 attention_average, \
285 stop_midi_osc,\
286 attention_done,\
287 attention_init,\
288 attention_timestamp,\
289 high_attention_counter
290
291 time_count = time_count + 1
292 attention = int(osc.get(’/attention’))
293
294 print("---")

7

295 print("MAIN COUNTER: ", time_count)
296 print("ATTENTION:", attention)
297 print("NEXT LEVEL:", level_next)
298
299 # Someone wears the EEG device
300 if attention != 0:
301 if attention_init is True:
302 print("WEARING EEG")
303 attention_init = False
304 level_next = 1
305 wearing.play()
306 attention_timestamp = time_count
307
308 # Average of attention level at the beginning will impact the next performance

generation
309 attention_sum = attention_sum + attention
310 attention_counter = attention_counter + 1
311 if attention_counter == 31:
312 attention_average = attention_sum / 30
313
314 # Audible feedback from attention
315 if attention_done is False:
316 res_amp.out()
317
318 # Good level of attention reached
319 if attention > 40 and attention_done is False:
320 print("ATTENTION TIMESTAMP:", attention_timestamp)
321 if level_next == 1 and time_count > (attention_timestamp + 11):
322 high_attention_counter = high_attention_counter + 1
323 print("HIGH ATTENTION COUNTER:", high_attention_counter)
324
325 if high_attention_counter == 1 and level_next == 1 and time_count > (

attention_timestamp + 11):
326 attention_timestamp = time_count
327 level_next = 2
328 print("LEVEL 1 REACHED")
329 level1.play()
330 high_attention_counter = high_attention_counter + 1
331 print("HIGH ATTENTION COUNTER:", high_attention_counter)
332
333 elif high_attention_counter == 2 and level_next == 2 and time_count > (

attention_timestamp + 12):
334 attention_timestamp = time_count
335 level_next = 3
336 print("LEVEL 2 REACHED")
337 level2.play()
338 high_attention_counter = high_attention_counter + 1
339 print("HIGH ATTENTION COUNTER:", high_attention_counter)
340
341 elif high_attention_counter == 3 and level_next == 3 and time_count > (

attention_timestamp + 8):

8

342 attention_timestamp = time_count
343 level_next = 4
344 print("LEVEL 3 REACHED")
345 level3.play()
346 high_attention_counter = high_attention_counter + 1
347 print("HIGH ATTENTION COUNTER:", high_attention_counter)
348
349 elif high_attention_counter == 4 and level_next == 4 and time_count > (

attention_timestamp + 10):
350 attention_timestamp = time_count
351 level_next = 5
352 print("LEVEL 4 REACHED")
353 level4.play()
354 high_attention_counter = high_attention_counter + 1
355 print("HIGH ATTENTION COUNTER:", high_attention_counter)
356
357 # If visitor reaches a good level of attention a few times, stop and go to part 2
358 if high_attention_counter == 5 and level_next == 5 and time_count > (

attention_timestamp + 10):
359 level_next = 0
360 level5.play()
361 attention_done = True
362 print("HIGH ATTENTION LEVEL REACHED")
363
364 # Stop MIDI player via OSC
365 stop_midi_osc.send([1])
366 high_attention_counter = 0
367 attention_counter = 0
368 midi_pat.stop()
369
370 print("EXECUTING PART 2...")
371
372 # Jump like a coda
373 time_count = 1000
374
375 else:
376 # No visitor wearing the EEG device
377 res_amp.stop()
378
379 if time_count == 5:
380 # Start drone
381 low_drone.play()
382
383 if time_count == 15:
384 # Start main PerformanceRNN theme
385 theme.play()
386
387 if time_count == 30:
388 # Open sustain pedal in the second part of the theme
389 s.ctlout(64, 127)
390

9

391 if time_count == 40:
392 # Close pedal after a few seconds, preparing for the semi-random pattern
393 s.ctlout(64, 0)
394
395 if time_count == 50:
396 # MIDI pattern starting slowly
397 r.setMin(.5)
398 r.setMax(1)
399 midi_pat.play()
400 low_drone.stop()
401
402 if time_count == 60:
403 # Add some drama
404 big_phasor.play()
405 # Pattern goes crescendo
406 r.setMin(.1)
407 r.setMax(.125)
408
409 if time_count == 100:
410 # Stop noise pattern
411 noise_pattern.play()
412
413 if time_count == 120:
414 # Open sustain and go decrescendo
415 s.ctlout(64, 127)
416 r.setMin(.25)
417 r.setMax(.5)
418
419 if time_count == 150:
420 # Stop noise and midi patterns
421 midi_pat.stop()
422
423 if time_count == 155:
424 # Stop noise
425 noise_pattern.stop()
426 # Too much drama
427 big_phasor.stop()
428
429 if time_count == 170:
430 low_drone.play()
431 # Close sustain
432 s.ctlout(64, 0)
433
434 if time_count == 175:
435 # Start brainwave-driven past performance (will last 2 min)
436 performance.play()
437
438 if time_count == 220:
439 # Reopen sustain
440 s.ctlout(64, 127)
441

10

442 #if time_count == 230:
443 # Back to the beginning
444 #time_count = -1
445
446 # 2 minutes after part 2
447 if time_count == 1000:
448 s.ctlout(64, 0)
449 print("LOOP X SECONDS DURING PART 2")
450 res.stop()
451 #TODO: add TTS instruction to remove the device
452 #TODO: do mapping, pick better scales etc
453
454 if time_count == 1010:
455 temperature = random.uniform(0.7, 1.4)
456 notes_per_second_mul = int(attention_average / 10)
457 notes_per_second = [notes_per_second_mul - 1, notes_per_second_mul + 2,

notes_per_second_mul + 10, notes_per_second_mul - 2, 1]
458
459 # Choose performance RNN based on attention average
460 if attention_average < 40:
461 bundle_file = ’bundles/custom_model.mag’
462 if attention_average >= 40 and attention_average < 60:
463 bundle_file = ’bundles/magenta.mag’
464 if attention_average >= 60 and attention_average < 80:
465 bundle_file = ’bundles/bach.mag’
466 if attention_average >= 80:
467 bundle_file = ’bundles/debussy_rnn.mag’
468
469 cmd = ’python3 custom_generator.py --output_dir=./midi/ ’ \
470 ’--config=multiconditioned_performance_with_dynamics ’ \
471 ’--num_steps=12000 ’ \
472 ’--notes_per_second="’ + str(notes_per_second) + \
473 ’" --pitch_class_histogram="[[0, 1, 3, 0, 1, 1, 0, 1, 0, 2, 1, 0],’ \
474 ’[0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1],’ \
475 ’[0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1],’ \
476 ’[1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0],’ \
477 ’[0, 0, 1, 0, 0, 0, 0, 3, 0, 0, 0, 0]]"’\
478 ’--temperature=’ + str(temperature) + \
479 ’--num_outputs=1 --bundle_file=’ + str(bundle_file)
480
481 print(cmd)
482 # Calls the RNN generator
483 p = subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.

STDOUT)
484
485 # Open sustain in the end of the performance-rnn
486 if time_count == 1050:
487 s.ctlout(64, 127)
488
489 if time_count == 1070:
490 attention_done = False

11

491 attention_init = True
492
493 # Compliments after playing generated music
494 compliment.play()
495
496 if time_count == 1080:
497 # Start over
498 time_count = -1
499
500 # Cloudy seconds counter
501 mainTime = Cloud(density=1).play()
502 mainScore = TrigFunc(mainTime, score)
503
504 mainScore.play()
505
506 s.gui(locals())

Control_EEG_daemon.py

1 from pyo import *
2 from NeuroPy import NeuroPy
3 import time
4
5 # OSC receiver IP address
6 IP_RECEIVER = ’127.0.0.1’
7
8 # Simulate EEG signal rather than getting it from an actual device (for dev purpose)
9 # True or False

10 SIMULATE_OSC = False
11
12 # Pyo initial setup
13 s = Server(audio=’jack’)
14 s.boot().start()
15
16
17 # EEG initial setup
18 if SIMULATE_OSC is False:
19 bw = NeuroPy("/dev/rfcomm0")
20 bw.start()
21 # Send audio stream instead
22 bw_input = SigTo([bw.attention, bw.meditation, bw.poorSignal])
23 # Send OSC signals to receivers
24 bw_stream_part1 = OscSend(bw_input, port=10001, address=[’/attention’, ’/meditation’,

’/poorSignal’],
25 host=IP_RECEIVER)
26 bw_stream_midi_player = OscSend(bw_input, port=10002, address=[’/attention’, ’/

meditation’, ’/poorSignal’],
27 host=IP_RECEIVER)
28 # Update values
29 while True:
30 print([bw.attention, bw.meditation, bw.poorSignal])
31 bw_input.setValue([bw.attention, bw.meditation, bw.poorSignal])
32 time.sleep(0.01)
33
34 else:
35 r = Randi(.05, .1)
36 bw_input = Sine(freq=[r, 1.5, 1], mul=[50, .1, 1], add=50)
37 bw_stream_part1 = OscSend(bw_input, port=10001, address=[’/attention’, ’/meditation’,

’/poorSignal’],
38 host=IP_RECEIVER)
39 bw_stream_midi_player = OscSend(bw_input, port=10002, address=[’/attention’, ’/

meditation’, ’/poorSignal’],
40 host=IP_RECEIVER)

play_midi.py

1 import os
2 from random import choice
3 import mido
4 import sys
5 import time
6 from pyo import *
7 s = Server(audio=’jack’, duplex=0).boot().start()
8
9 # Dev purpose, use a virtual MIDI port (for mido)

10 DEV = True
11
12 if DEV is True:
13 # Open virtual MIDI device
14 port = mido.open_output(’Midi Through:Midi Through Port-0 14:0’)
15 else:
16 # Open my actual MIDI hardware
17 port = mido.open_output(’io|2:io|2 MIDI 1 28:0’)
18
19 # Stops the play when someone reaches a given level of attention
20 def stop_now(address, *args):
21 print(address, args)
22 if args[0] == 1:
23 exit(0)
24
25 osc = OscReceive(port=10002, address=[’/attention’])
26 osc_stop_midi = OscDataReceive(10003, "/stop_midi", stop_now)
27
28 if sys.argv[1] == ’theme’:
29 mid = mido.MidiFile(’theme_tassia.mid’)
30 else:
31 mid = mido.MidiFile(’midi/’ + choice(os.listdir(’midi’)))
32 for message in mid.play():
33 if message.type == ’note_on’ or message.type == ’note_off’:
34 delay = osc.get(’/attention’) / 50
35 print(delay)
36 time.sleep(delay)
37 port.send(message)

custom_generator.py

1 #!/usr/bin/python3
2 #
3 # Copyright 2021 The Magenta Authors.
4 # Modified by Tiago Bortoletto Vaz <tiago@acaia.ca>, 2022
5 #
6 # Licensed under the Apache License, Version 2.0 (the "License");
7 # you may not use this file except in compliance with the License.
8 # You may obtain a copy of the License at
9 #

10 # http://www.apache.org/licenses/LICENSE-2.0
11 #
12 # Unless required by applicable law or agreed to in writing, software
13 # distributed under the License is distributed on an "AS IS" BASIS,
14 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15 # See the License for the specific language governing permissions and
16 # limitations under the License.
17
18 # Lint as: python3
19
20 """Generate polyphonic performances from a trained checkpoint.
21
22 Uses flags to define operation.
23 """
24 import ast
25 import os
26 import time
27
28 from magenta.models.performance_rnn import performance_model
29 from magenta.models.performance_rnn import performance_sequence_generator
30 from magenta.models.shared import sequence_generator
31 from magenta.models.shared import sequence_generator_bundle
32 import note_seq
33 from note_seq.protobuf import generator_pb2
34 from note_seq.protobuf import music_pb2
35 import tensorflow.compat.v1 as tf
36
37 import mido
38
39
40 # This will change the way it names the output files
41 LIVE = True
42
43
44 FLAGS = tf.app.flags.FLAGS
45 tf.app.flags.DEFINE_string(
46 ’run_dir’, None,
47 ’Path to the directory where the latest checkpoint will be loaded from.’)
48 tf.app.flags.DEFINE_string(
49 ’bundle_file’, None,

15

50 ’Path to the bundle file. If specified, this will take priority over ’
51 ’run_dir, unless save_generator_bundle is True, in which case both this ’
52 ’flag and run_dir are required’)
53 tf.app.flags.DEFINE_boolean(
54 ’save_generator_bundle’, False,
55 ’If true, instead of generating a sequence, will save this generator as a ’
56 ’bundle file in the location specified by the bundle_file flag’)
57 tf.app.flags.DEFINE_string(
58 ’bundle_description’, None,
59 ’A short, human-readable text description of the bundle (e.g., training ’
60 ’data, hyper parameters, etc.).’)
61 tf.app.flags.DEFINE_string(
62 ’config’, ’performance’, ’Config to use.’)
63 tf.app.flags.DEFINE_string(
64 ’output_dir’, ’/tmp/performance_rnn/generated’,
65 ’The directory where MIDI files will be saved to.’)
66 tf.app.flags.DEFINE_integer(
67 ’num_outputs’, 10,
68 ’The number of tracks to generate. One MIDI file will be created for ’
69 ’each.’)
70 tf.app.flags.DEFINE_integer(
71 ’num_steps’, 3000,
72 ’The total number of steps the generated track should be, priming ’
73 ’track length + generated steps. Each step is 10 milliseconds.’)
74 tf.app.flags.DEFINE_string(
75 ’primer_pitches’, ’’,
76 ’A string representation of a Python list of pitches that will be used as ’
77 ’a starting chord with a quarter note duration. For example: ’
78 ’"[60, 64, 67]"’)
79 tf.app.flags.DEFINE_string(
80 ’primer_melody’, ’’, ’A string representation of a Python list of ’
81 ’note_seq.Melody event values. For example: ’
82 ’"[60, -2, 60, -2, 67, -2, 67, -2]". The primer melody will be played at ’
83 ’a fixed tempo of 120 QPM with 4 steps per quarter note.’)
84 tf.app.flags.DEFINE_string(
85 ’primer_midi’, ’’,
86 ’The path to a MIDI file containing a polyphonic track that will be used ’
87 ’as a priming track.’)
88 tf.app.flags.DEFINE_string(
89 ’disable_conditioning’, None,
90 ’When optional conditioning is available, a string representation of a ’
91 ’Boolean indicating whether or not to disable conditioning. Similar to ’
92 ’control signals, this can also be a list of Booleans; when it is a list, ’
93 ’the other conditioning variables will be ignored for segments where ’
94 ’conditioning is disabled.’)
95 tf.app.flags.DEFINE_float(
96 ’temperature’, 1.0,
97 ’The randomness of the generated tracks. 1.0 uses the unaltered ’
98 ’softmax probabilities, greater than 1.0 makes tracks more random, less ’
99 ’than 1.0 makes tracks less random.’)

100 tf.app.flags.DEFINE_integer(

16

101 ’beam_size’, 1,
102 ’The beam size to use for beam search when generating tracks.’)
103 tf.app.flags.DEFINE_integer(
104 ’branch_factor’, 1,
105 ’The branch factor to use for beam search when generating tracks.’)
106 tf.app.flags.DEFINE_integer(
107 ’steps_per_iteration’, 1,
108 ’The number of steps to take per beam search iteration.’)
109 tf.app.flags.DEFINE_string(
110 ’log’, ’INFO’,
111 ’The threshold for what messages will be logged DEBUG, INFO, WARN, ERROR, ’
112 ’or FATAL.’)
113 tf.app.flags.DEFINE_string(
114 ’hparams’, ’’,
115 ’Comma-separated list of ‘name=value‘ pairs. For each pair, the value of ’
116 ’the hyperparameter named ‘name‘ is set to ‘value‘. This mapping is merged ’
117 ’with the default hyperparameters.’)
118
119 # Add flags for all performance control signals.
120 for control_signal_cls in note_seq.all_performance_control_signals:
121 tf.app.flags.DEFINE_string(
122 control_signal_cls.name, None, control_signal_cls.description)
123
124
125 def get_checkpoint():
126 """Get the training dir or checkpoint path to be used by the model."""
127 if FLAGS.run_dir and FLAGS.bundle_file and not FLAGS.save_generator_bundle:
128 raise sequence_generator.SequenceGeneratorError(
129 ’Cannot specify both bundle_file and run_dir’)
130 if FLAGS.run_dir:
131 train_dir = os.path.join(os.path.expanduser(FLAGS.run_dir), ’train’)
132 return train_dir
133 else:
134 return None
135
136
137 def get_bundle():
138 """Returns a generator_pb2.GeneratorBundle object based read from bundle_file.
139
140 Returns:
141 Either a generator_pb2.GeneratorBundle or None if the bundle_file flag is
142 not set or the save_generator_bundle flag is set.
143 """
144 if FLAGS.save_generator_bundle:
145 return None
146 if FLAGS.bundle_file is None:
147 return None
148 bundle_file = os.path.expanduser(FLAGS.bundle_file)
149 return sequence_generator_bundle.read_bundle_file(bundle_file)
150
151

17

152 def run_with_flags(generator):
153 """Generates performance tracks and saves them as MIDI files.
154
155 Uses the options specified by the flags defined in this module.
156
157 Args:
158 generator: The PerformanceRnnSequenceGenerator to use for generation.
159 """
160 if not FLAGS.output_dir:
161 tf.logging.fatal(’--output_dir required’)
162 return
163 output_dir = os.path.expanduser(FLAGS.output_dir)
164
165 primer_midi = None
166 if FLAGS.primer_midi:
167 primer_midi = os.path.expanduser(FLAGS.primer_midi)
168
169 if not tf.gfile.Exists(output_dir):
170 tf.gfile.MakeDirs(output_dir)
171
172 primer_sequence = None
173 if FLAGS.primer_pitches:
174 primer_sequence = music_pb2.NoteSequence()
175 primer_sequence.ticks_per_quarter = note_seq.STANDARD_PPQ
176 for pitch in ast.literal_eval(FLAGS.primer_pitches):
177 note = primer_sequence.notes.add()
178 note.start_time = 0
179 note.end_time = 60.0 / note_seq.DEFAULT_QUARTERS_PER_MINUTE
180 note.pitch = pitch
181 note.velocity = 100
182 primer_sequence.total_time = note.end_time
183 elif FLAGS.primer_melody:
184 primer_melody = note_seq.Melody(ast.literal_eval(FLAGS.primer_melody))
185 primer_sequence = primer_melody.to_sequence()
186 elif primer_midi:
187 primer_sequence = note_seq.midi_file_to_sequence_proto(primer_midi)
188 else:
189 tf.logging.warning(
190 ’No priming sequence specified. Defaulting to empty sequence.’)
191 primer_sequence = music_pb2.NoteSequence()
192 primer_sequence.ticks_per_quarter = note_seq.STANDARD_PPQ
193
194 # Derive the total number of seconds to generate.
195 seconds_per_step = 1.0 / generator.steps_per_second
196 generate_end_time = FLAGS.num_steps * seconds_per_step
197
198 # Specify start/stop time for generation based on starting generation at the
199 # end of the priming sequence and continuing until the sequence is num_steps
200 # long.
201 generator_options = generator_pb2.GeneratorOptions()
202 # Set the start time to begin when the last note ends.

18

203 generate_section = generator_options.generate_sections.add(
204 start_time=primer_sequence.total_time,
205 end_time=generate_end_time)
206
207 if generate_section.start_time >= generate_section.end_time:
208 tf.logging.fatal(
209 ’Priming sequence is longer than the total number of steps ’
210 ’requested: Priming sequence length: %s, Total length ’
211 ’requested: %s’,
212 generate_section.start_time, generate_end_time)
213 return
214
215 for control_cls in note_seq.all_performance_control_signals:
216 if FLAGS[control_cls.name].value is not None and (
217 generator.control_signals is None or not any(
218 control.name == control_cls.name
219 for control in generator.control_signals)):
220 tf.logging.warning(
221 ’Control signal requested via flag, but generator is not set up to ’
222 ’condition on this control signal. Request will be ignored: %s = %s’,
223 control_cls.name, FLAGS[control_cls.name].value)
224
225 if (FLAGS.disable_conditioning is not None and
226 not generator.optional_conditioning):
227 tf.logging.warning(
228 ’Disable conditioning flag set, but generator is not set up for ’
229 ’optional conditioning. Requested disable conditioning flag will be ’
230 ’ignored: %s’, FLAGS.disable_conditioning)
231
232 if generator.control_signals:
233 for control in generator.control_signals:
234 if FLAGS[control.name].value is not None:
235 generator_options.args[control.name].string_value = (
236 FLAGS[control.name].value)
237 if FLAGS.disable_conditioning is not None:
238 generator_options.args[’disable_conditioning’].string_value = (
239 FLAGS.disable_conditioning)
240
241 generator_options.args[’temperature’].float_value = FLAGS.temperature
242 generator_options.args[’beam_size’].int_value = FLAGS.beam_size
243 generator_options.args[’branch_factor’].int_value = FLAGS.branch_factor
244 generator_options.args[
245 ’steps_per_iteration’].int_value = FLAGS.steps_per_iteration
246
247 tf.logging.debug(’primer_sequence: %s’, primer_sequence)
248 tf.logging.debug(’generator_options: %s’, generator_options)
249
250 # Make the generate request num_outputs times and save the output as midi
251 # files.
252 date_and_time = time.strftime(’%Y-%m-%d_%H%M%S’)
253 digits = len(str(FLAGS.num_outputs))

19

254 for i in range(FLAGS.num_outputs):
255 generated_sequence = generator.generate(primer_sequence, generator_options)
256
257 # Save MIDI files using parameters in the name
258 print(FLAGS.pitch_class_histogram)
259 duration_in_sec = int(FLAGS.num_steps / 100)
260 bundle = FLAGS.bundle_file.split(’/’)[-1].split(’.’)[0]
261 primer = FLAGS.primer_midi.split(’/’)[-1].split(’.’)[0]
262
263 if LIVE is True:
264 midi_filename = ’%s.mid’ % (date_and_time)
265 else:
266 midi_filename = ’%s_%s_%s_%s_%s_%s_%s_%s.mid’ % \
267 (date_and_time, str(bundle), str(FLAGS.temperature),
268 str(duration_in_sec), str(FLAGS.notes_per_second),
269 str(FLAGS.pitch_class_histogram), str(primer),
270 str(i + 1).zfill(digits))
271 midi_path = os.path.join(output_dir, midi_filename)
272 note_seq.sequence_proto_to_midi_file(generated_sequence, midi_path)
273
274 tf.logging.info(’Wrote %d MIDI files to %s’,
275 FLAGS.num_outputs, output_dir)
276 # Play MIDI after generating performance
277
278 DEV = True
279
280 if DEV is True:
281 # Open virtual MIDI device
282 port = mido.open_output(’Midi Through:Midi Through Port-0 14:0’)
283 else:
284 # Open my actual MIDI hardware
285 port = mido.open_output(’io|2:io|2 MIDI 1 28:0’)
286
287 mid = mido.MidiFile(midi_path)
288
289 for message in mid.play():
290 if message.type == ’note_on’ or message.type == ’note_off’:
291 port.send(message)
292
293 def main(unused_argv):
294 """Saves bundle or runs generator based on flags."""
295 tf.logging.set_verbosity(FLAGS.log)
296
297 bundle = get_bundle()
298
299 config_id = bundle.generator_details.id if bundle else FLAGS.config
300 config = performance_model.default_configs[config_id]
301 config.hparams.parse(FLAGS.hparams)
302 # Having too large of a batch size will slow generation down unnecessarily.
303 config.hparams.batch_size = min(
304 config.hparams.batch_size, FLAGS.beam_size * FLAGS.branch_factor)

20

305
306 generator = performance_sequence_generator.PerformanceRnnSequenceGenerator(
307 model=performance_model.PerformanceRnnModel(config),
308 details=config.details,
309 steps_per_second=config.steps_per_second,
310 num_velocity_bins=config.num_velocity_bins,
311 control_signals=config.control_signals,
312 optional_conditioning=config.optional_conditioning,
313 checkpoint=get_checkpoint(),
314 bundle=bundle,
315 note_performance=config.note_performance)
316
317 if FLAGS.save_generator_bundle:
318 bundle_filename = os.path.expanduser(FLAGS.bundle_file)
319 if FLAGS.bundle_description is None:
320 tf.logging.warning(’No bundle description provided.’)
321 tf.logging.info(’Saving generator bundle to %s’, bundle_filename)
322 generator.create_bundle_file(bundle_filename, FLAGS.bundle_description)
323 else:
324 run_with_flags(generator)
325
326 def console_entry_point():
327 tf.disable_v2_behavior()
328 tf.app.run(main)
329
330 if __name__ == ’__main__’:
331 console_entry_point()

NeuroPy.py

1 ##Copyright (c) 2013, sahil singh
2 ##Deprecated code fixed by Tiago Bortoletto Vaz, 2021, 2022
3 ##
4 ##All rights reserved.
5 ##
6 ##Redistribution and use in source and binary forms, with or without modification,
7 ##are permitted provided that the following conditions are met:
8 ##
9 ## * Redistributions of source code must retain the above copyright notice,

10 ## this list of conditions and the following disclaimer.
11 ## * Redistributions in binary form must reproduce the above copyright notice,
12 ## this list of conditions and the following disclaimer in the documentation
13 ## and/or other materials provided with the distribution.
14 ## * Neither the name of NeuroPy nor the names of its contributors
15 ## may be used to endorse or promote products derived from this software
16 ## without specific prior written permission.
17 ##
18 ##THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 ##"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 ##LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 ##A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
22 ##CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
23 ##EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
24 ##PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
25 ##PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
26 ##LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
27 ##NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
28 ##SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29
30 import serial
31 import time
32 import sys
33 import struct
34 import _thread as thread
35
36
37 SYNC = b’\xaa’
38 POOR_SIGNAL = b’\x02’
39 ATTENTION = b’\x04’
40 MEDITATION = b’\x05’
41 BLINK_STRENGTH = b’\x16’
42 RAW_VALUE = b’\x80’
43 ASIC_EEG_POWER = b’\x83’
44
45 class NeuroPy(object):
46 __attention=0
47 __meditation=0
48 __rawValue=0
49 __delta=0

22

50 __theta=0
51 __lowAlpha=0
52 __highAlpha=0
53 __lowBeta=0
54 __highBeta=0
55 __lowGamma=0
56 __midGamma=0
57 __poorSignal=0
58 __blinkStrength=0
59
60 srl=None
61 __port=None
62 __baudRate=None
63
64 callBacksDictionary = {} # keep a track of all callbacks
65 running = True #here we mark it start running
66 def __init__(self, port, baudRate=57600):
67 platform = sys.platform
68 print(platform)
69 self.__port,self.__baudRate=port,baudRate
70 self.__packetsReceived = 0
71
72 def __del__(self):
73 if self.running == True:
74 self.running = False
75 self.srl.close()
76
77 #need stderr in python
78 def eprint(*args, **kwargs):
79 print(*args, file=sys.stderr, **kwargs)
80 # disconnect function should be no longer needed as long as we stop the srl
81 ’’’def disconnect(self):
82 self.__srl.write(DISCONNECT) ’’’
83 # connect function no longer needed, we will do it in the start function
84 ’’’def connect(self):
85 self.__connected = True
86 return # Only connect RF devices
87 self.__srl.write(’’.join([CONNECT, self.__devid.decode(’hex’)])) ’’’
88
89 def start(self):
90 # Try to connect to serial port and start a separate thread
91 # for data collection
92 self.running = True
93 print ("Mindwave has already started!")
94 try:
95 self.srl=serial.Serial(self.__port)
96 except serial.serialutil.SerialException:
97 eprint ("Mindewave could not start due to Serial Exception")
98 thread.start_new_thread(self.__packetParser,(self.srl,))
99 self.__packetsReceived = 0

100

23

101
102 def __packetParser(self, srl):
103 "packetParser runs continously in a separate thread to parse packets from

mindwave and update the corresponding variables"
104 while self.running:
105 p1 = srl.read(1).hex() # read first 2 packets
106 p2 = srl.read(1).hex()
107 while (p1 != ’aa’ or p2 != ’aa’):
108 p1 = p2
109 p2 = srl.read(1).hex()
110 else:
111 if self.running == False:
112 break
113 # a valid packet is available
114 self.__packetsReceived += 1
115 payload = []
116 checksum = 0
117 payloadLength = int(srl.read(1).hex(), 16)
118 for i in range(payloadLength):
119 tempPacket = srl.read(1).hex()
120 payload.append(tempPacket)
121 checksum += int(tempPacket, 16)
122 checksum = ~checksum & 0x000000ff
123 if checksum == int(srl.read(1).hex(), 16):
124 i = 0
125
126 while i < payloadLength:
127 code = payload[i]
128 if (code == ’d0’):
129 print("Headset connected!")
130 elif (code == ’d1’ or code == ’d2’ or code == ’d3’ or code == ’d4

’):
131 eprint("Headset connection failed")
132 elif(code == ’02’): # poorSignal
133 i = i + 1
134 self.poorSignal = int(payload[i], 16)
135 elif(code == ’04’): # attention
136 i = i + 1
137 self.attention = int(payload[i], 16)
138 elif(code == ’05’): # meditation
139 i = i + 1
140 self.meditation = int(payload[i], 16)
141 elif(code == ’16’): # blink strength
142 i = i + 1
143 self.blinkStrength = int(payload[i], 16)
144 elif(code == ’80’): # raw value
145 i = i + 1 # for length/it is not used since length =1 byte

long and always=2
146 i = i + 1
147 val0 = int(payload[i], 16)
148 i = i + 1

24

149 self.rawValue = val0 * 256 + int(payload[i], 16)
150 if self.rawValue > 32768:
151 self.rawValue = self.rawValue - 65536
152 elif(code == ’83’): # ASIC_EEG_POWER
153 i = i + 1 # for length/it is not used since length =1 byte

long and always=2
154 # delta:
155 i = i + 1
156 val0 = int(payload[i], 16)
157 i = i + 1
158 val1 = int(payload[i], 16)
159 i = i + 1
160 self.delta = val0 * 65536 + val1 * 256 + int(payload[i], 16)
161 # theta:
162 i = i + 1
163 val0 = int(payload[i], 16)
164 i = i + 1
165 val1 = int(payload[i], 16)
166 i = i + 1
167 self.theta = val0 * 65536 + val1 * 256 + int(payload[i], 16)
168 # lowAlpha:
169 i = i + 1
170 val0 = int(payload[i], 16)
171 i = i + 1
172 val1 = int(payload[i], 16)
173 i = i + 1
174 self.lowAlpha = val0 * 65536 + val1 * 256 + int(payload[i],

16)
175 # highAlpha:
176 i = i + 1
177 val0 = int(payload[i], 16)
178 i = i + 1
179 val1 = int(payload[i], 16)
180 i = i + 1
181 self.highAlpha = val0 * 65536 + val1 * 256 + int(payload[i],

16)
182 # lowBeta:
183 i = i + 1
184 val0 = int(payload[i], 16)
185 i = i + 1
186 val1 = int(payload[i], 16)
187 i = i + 1
188 self.lowBeta = val0 * 65536 + val1 * 256 + int(payload[i],

16)
189 # highBeta:
190 i = i + 1
191 val0 = int(payload[i], 16)
192 i = i + 1
193 val1 = int(payload[i], 16)
194 i = i + 1

25

195 self.highBeta = val0 * 65536 + val1 * 256 + int(payload[i],
16)

196 # lowGamma:
197 i = i + 1
198 val0 = int(payload[i], 16)
199 i = i + 1
200 val1 = int(payload[i], 16)
201 i = i + 1
202 self.lowGamma = val0 * 65536 + val1 * 256 + int(payload[i],

16)
203 # midGamma:
204 i = i + 1
205 val0 = int(payload[i], 16)
206 i = i + 1
207 val1 = int(payload[i], 16)
208 i = i + 1
209 self.midGamma = val0 * 65536 + val1 * 256 + int(payload[i],

16)
210 else:
211 pass
212 i = i + 1
213
214
215 def stop(self):
216 # Stops a running parser thread
217 if self.running == True:
218 self.running = False
219 self.__srl.close()
220
221 def setCallBack(self, variable_name, callback_function):
222 """Setting callback:a call back can be associated with all the above variables so

that a function is called when the variable is updated. Syntax: setCallBack("
variable",callback_function)

223 for eg. to set a callback for attention data the syntax will be setCallBack("
attention",callback_function)"""

224 self.callBacksDictionary[variable_name] = callback_function
225
226 # setting getters and setters for all variables
227 # packets received
228 @property
229 def packetsReceived(self):
230 return self.__packetsReceived
231
232 @property
233 def bytesAvailable(self, srl):
234 if self.running:
235 return srl.inWaiting()
236 else:
237 return -1
238
239 # attention

26

240 @property
241 def attention(self):
242 "Get value for attention"
243 return self.__attention
244
245 @attention.setter
246 def attention(self, value):
247 self.__attention = value
248 # if callback has been set, execute the function
249 if "attention" in self.callBacksDictionary:
250 self.callBacksDictionary["attention"](self.__attention)
251
252 # meditation
253 @property
254 def meditation(self):
255 "Get value for meditation"
256 return self.__meditation
257
258 @meditation.setter
259 def meditation(self, value):
260 self.__meditation = value
261 # if callback has been set, execute the function
262 if "meditation" in self.callBacksDictionary:
263 self.callBacksDictionary["meditation"](self.__meditation)
264
265 # rawValue
266 @property
267 def rawValue(self):
268 "Get value for rawValue"
269 return self.__rawValue
270
271 @rawValue.setter
272 def rawValue(self, value):
273 self.__rawValue = value
274 # if callback has been set, execute the function
275 if "rawValue" in self.callBacksDictionary:
276 self.callBacksDictionary["rawValue"](self.__rawValue)
277
278 # delta
279 @property
280 def delta(self):
281 "Get value for delta"
282 return self.__delta
283
284 @delta.setter
285 def delta(self, value):
286 self.__delta = value
287 # if callback has been set, execute the function
288 if "delta" in self.callBacksDictionary:
289 self.callBacksDictionary["delta"](self.__delta)
290

27

291 # theta
292 @property
293 def theta(self):
294 "Get value for theta"
295 return self.__theta
296
297 @theta.setter
298 def theta(self, value):
299 self.__theta = value
300 # if callback has been set, execute the function
301 if "theta" in self.callBacksDictionary:
302 self.callBacksDictionary["theta"](self.__theta)
303
304 # lowAlpha
305 @property
306 def lowAlpha(self):
307 "Get value for lowAlpha"
308 return self.__lowAlpha
309
310 @lowAlpha.setter
311 def lowAlpha(self, value):
312 self.__lowAlpha = value
313 # if callback has been set, execute the function
314 if "lowAlpha" in self.callBacksDictionary:
315 self.callBacksDictionary["lowAlpha"](self.__lowAlpha)
316
317 # highAlpha
318 @property
319 def highAlpha(self):
320 "Get value for highAlpha"
321 return self.__highAlpha
322
323 @highAlpha.setter
324 def highAlpha(self, value):
325 self.__highAlpha = value
326 # if callback has been set, execute the function
327 if "highAlpha" in self.callBacksDictionary:
328 self.callBacksDictionary["highAlpha"](self.__highAlpha)
329
330 # lowBeta
331 @property
332 def lowBeta(self):
333 "Get value for lowBeta"
334 return self.__lowBeta
335
336 @lowBeta.setter
337 def lowBeta(self, value):
338 self.__lowBeta = value
339 # if callback has been set, execute the function
340 if "lowBeta" in self.callBacksDictionary:
341 self.callBacksDictionary["lowBeta"](self.__lowBeta)

28

342
343 # highBeta
344 @property
345 def highBeta(self):
346 "Get value for highBeta"
347 return self.__highBeta
348
349 @highBeta.setter
350 def highBeta(self, value):
351 self.__highBeta = value
352 # if callback has been set, execute the function
353 if "highBeta" in self.callBacksDictionary:
354 self.callBacksDictionary["highBeta"](self.__highBeta)
355
356 # lowGamma
357 @property
358 def lowGamma(self):
359 "Get value for lowGamma"
360 return self.__lowGamma
361
362 @lowGamma.setter
363 def lowGamma(self, value):
364 self.__lowGamma = value
365 # if callback has been set, execute the function
366 if "lowGamma" in self.callBacksDictionary:
367 self.callBacksDictionary["lowGamma"](self.__lowGamma)
368
369 # midGamma
370 @property
371 def midGamma(self):
372 "Get value for midGamma"
373 return self.__midGamma
374
375 @midGamma.setter
376 def midGamma(self, value):
377 self.__midGamma = value
378 # if callback has been set, execute the function
379 if "midGamma" in self.callBacksDictionary:
380 self.callBacksDictionary["midGamma"](self.__midGamma)
381
382 # poorSignal
383 @property
384 def poorSignal(self):
385 "Get value for poorSignal"
386 return self.__poorSignal
387
388 @poorSignal.setter
389 def poorSignal(self, value):
390 self.__poorSignal = value
391 # if callback has been set, execute the function
392 if "poorSignal" in self.callBacksDictionary:

29

393 self.callBacksDictionary["poorSignal"](self.__poorSignal)
394
395 # blinkStrength
396 @property
397 def blinkStrength(self):
398 "Get value for blinkStrength"
399 return self.__blinkStrength
400
401 @blinkStrength.setter
402 def blinkStrength(self, value):
403 self.__blinkStrength = value
404 # if callback has been set, execute the function
405 if "blinkStrength" in self.callBacksDictionary:
406 self.callBacksDictionary["blinkStrength"](self.__blinkStrength)

Appendix C. Score of You’re thinking I’m a good person

You’re thinking I’m a good person
For two instruments and electronics (~15min)

Introductory notes

You’re thinking I’m a good person is a 15-minute piece for two instruments, a player piano and
live electronics. The theme of this piece is related to social awareness, more specifically to its most
well-known feature: empathy. Here, two opposing currents are confronted against each other by
algorithms in order to inspire the composition and the performance itself.

This piece is highly flexible in terms of instrumentation, as it is strongly based on a
continuous sound approach together with some theatrical performance. Instruments, however,
should be capable of producing a continuous sound in a great range with very little attack (i.e. using
techniques such as circular breathing, continuous bowing, or sustained by digital effects).

Musicians with interest in free improvisation will certainly be a better match to this
experience.

Scene

The figure below illustrates how the stage should be organized for the execution of this
piece. The unnamed connections are all audio signals, except the MIDI communication coming from
the computer to the Disklavier. Although not explicitly indicated in the diagram, the live electronics
performer is encouraged to use an external audio device and a MIDI controller to manipulate the
effects as described in the next section.

Setup requirements

Hardware

• A computer with an audio/MIDI interface
• A pair of speakers
• Stage spotlights
• A digital player piano
• Two microphones to amplify instruments 1 and 2
• Two microphones to amplify the player piano

Software

• GNU/Linux distribution (might also run on other systems)
• Python version 3 and a libraries installed as documented in the git repository located

at https://github.com/tiagovaz/ detaching
• Carla or similar audio plugins host with a similar effects chain as illustrated in the

table bellow

Performance instructions

The piece is structured in 3 scenes. Each scene is controlled by a computer code to be
executed by the live electronics performer operating the computer. It’s recommended to open 3
terminals, one for each Python script. Each script can be run through the command “python3
sceneX.py” (where X is 1, 2 and 3). This command opens a simple interface in which the Start/Stop
button should be called sequentially for each scene, as presented in the picture bellow:

The live electronics performer also controls the live effects applied to instruments and to
the piano, as described in the attached score. A patch file containing the enchained audio objects
and MIDI assignments is provided in the repository. This file (carla_patch.carxp) is to be used
by Carla audio plugin host software. Any other similar software can be used once the following chain
is respected (details of each of these effects are present in the table following the image) :

The instructions in the next lines are to be presented to – and assimilated by – all musicians
and the lightning operator. Musicians 1 and 2 won’t be provided with a score during the
performance of scenes 1 and 2. Gesture-based cues by musician 3 (the live electronics performer in
the picture) can be an option for them, if necessary. In Scene 3, a music sheet is provided for
musicians 1 and 2 and should be followed as described bellow.

Note: as in May 2022, a video recording is available at the Music Faculty of Université de Montréal’s Youtube
channel and can be used as a reference for the reproduction of the piece: https://www.youtube.com/watch?
v=47xVxk-pEM4

Scene 1

• Lights off. The TTS-driven voice introduces the piece by proclaiming the Speech #1
• Musicians 1 and 2 stand side-by-side in front of the Disklavier. They remain quiet; no

reaction is expected.
• Speech #2 is played.
• After about 10 seconds, lights progressively on the piano spot.
• Piano plays an algorithmic music and go crescendo for about a minute. Musicians stay

seated looking at void audience.
• Speech #3

Scene 2

• Speech #2 restarts: “Empathy works...”
• Regular lights on musicians during the speech.
• Same speech is presented 3 times and gets interrupted. After the third time (about

1min15s), musicians wait for a few seconds and start playing an air sound, as if they were
trying to perform a proper sound. They play as if the other didn’t exist.

• At some point (about 2min30s) the first empathy statement is presented. Musicians start
to improvise, keeping no musical dialogue between them. They can play short, noisy, and
contrasting sounds, as well as give some time to silence or degrading little phrases from
classical repertoire, as if trying to succeed a performance to the audience.

• At some point, after about 5min, a loud piano note is be played. From this time on,
musicians stand up and play more intensively, trying to overlap the other musicians’
sound, as a subtile competition.

• Once voices (Speech #4, #5 and #6) start overlapping each other, musicians stop playing and
leave the scene.

Scene 3

• Low lights spot the musicians. After about 10 seconds, regular lights spot the piano.
• Speech #7: “You must be so helpless, think of Mary...”
• When speech starts, musicians slowly bring their music stands with scores and place

them backing each other (so that musicians face each other).
• After the speech, the piano starts playing short notes. Musicians start getting ready to

play.
• Hight lights towards musicians as soon as they seem to be ready to play.
• At some point, the piano opens the sustain pedal. From that time on, musicians wait

about 10 seconds, quickly look at each other, then start playing their score.
• Right after they finish playing their parts, they leave the scene, put their instruments

aside, come back, take the score off the stand, take the stand with another hand and
leave the scene with them. This whole process should suggest a total indifference to the
music, and to each other; despite the fact that the music is kept playing due to the digital
effects.

• Speech #8
• About 10 seconds after musicians leave the scene, musicians lights slowly go off,

followed by piano lights going off.
• After another 10 seconds, all sound goes off.

“44 empathy statements that will make you the greatest listener”

Statement # Statement

01 You’re making total sense. 23 You are in a lot of pain here. I can feel it.

02 I understand how you feel. 24 It would be great to be free of this.

03 You must feel so hopeless. 25 That must have annoyed you.

04 I just feel such despair in you when you talk about this. 26 That would make me mad too.

05 You’re in a tough spot here. 27 That sounds frustrating.

06 I can feel the pain you feel. 28 That is very scary.

07 The world needs to stop when you’re in this much pain. 29 Well I agree with most of what you’re saying.

08 I wish you didn’t have to go through that. 30 I would have also been disappointed by that.

09 I’m on your side here. 31 That would have hurt my feelings also.

10 I wish I could have been with you in that moment. 32 That would make me sad too.

11 Oh, wow, that sounds terrible. 33 POOR BABY!

12 You must feel so helpless. 34 Wow, that must have hurt.

13 That hurts me to hear that. 35 I understand what you’re feeling.

14 I support your position here. 36 You are making a lot of sense to me.

15 I totally agree with you. 37 Okay, I think I get it. So what you’re feeling is…

16 You are feeling so trapped! 38 Let me try to paraphrase and summarize what you’re saying.

17 You are making total sense. 39 You’re saying…

18 That sounds like you felt really disgusted! 40 I would have trouble coping with that.

19 No wonder you’re upset. 41 What I admire most about what you’re doing is…

20 I’d feel the same way you do in your situation. 42 That would make me feel insecure.

21 I think you’re right. 43 That sounds a little frightening.

22 I see. Let me summarize: What you’re thinking here is… 44 Tell me what you see as your choices here.

AI-generated texts used in the piece (in order of appearance)

Text TTS wav file

01 The first nearly reliable way that emotions can arise is from direct experience with others. You’ll
remember the emotion you’re feeling in this session if you experienced the same emotion in a
previous session. Activation of your empathic awareness—and possible neurologic and neurological
effects—in others can affect your ability to quality-quantify comebacks for others in your life.

None
(text used in the video only)

02 Empathy works by increasing the activation of your empathic awareness in others, which literally
increases the effort of positive empathy work on their part. Thus, if you activate empathy near
others, empathically speaking, this will help them feel more closely and empathically attached to
you. It shouldn’t be surprising then, that empathy interactions also have a direct relationship to
empathy intensity.

intro.wav

03 You’re making total sense, note me. Let’s begin again, shall we? restart.wav

04 Oh, wow, that sounds terrible. Don’t waste your time learning style by imitating Beyoncé or learn to
enliven yourself with sensory terms like great’Ease, Adorable, Mellonicious! — because these styles
don’t exist yet. There will always be trouble on the underground level — even within the own
organization, and nobody with CREEPY IS BOYS (okay, so maybe Beyoncé isn’t some do-it-right
revolutionary self).

beyonce.wav

05 You must feel so helpless. Think of Mary, whom she will hold most dear: Action, noise, retreat,
purpose, right and wrong, fear, wonder, grief, gratitude, devotion, status, perverted idealism,
boundary usage, guilt, wrongdoing, beautiful imaginations, planned states, imaginal behavior, finds
ahead, offered knowledge, dietary patterns with dear remembering, ancestors, grandchildren,
singing, drama, fencing (fat cats killed babies’s babies completely uncountably), attacks.
Victimization. Victimization. Victimization.

mary.wav

06 I see. Let me summarize: What you’re thinking here is that you can make money from doing nothing,
and the only way to make money is to sell your services to companies. You have a very good point.
The problem is that your idea is an idea that is not particularly interesting. It's an idea that does not
make any money. It's a bad idea. That's why you're not getting rich, and that's why you're not doing
anything interesting.

money.wav

07 Another way that emotions can happen in a crowd is from previously unspecific empathic
reactions to stimuli. Annie, an 18-year-old classically trained musician, got her first emergency beat
early, spooked by the sounds.

18.wav

08 I see. Let me summarize: What you’re thinking here is that I'm not so bad. No. You're thinking I'm a
shit-stain. You're thinking I'm a terrible person. You're thinking I'm a creep. You're thinking I'm a
monster. You're thinking I'm a fucking lunatic. You're thinking I'm a dumbass. No. You're thinking
I'm a good person. You're thinking I'm a good person. You're thinking I'm a good person.

insult.wav

Proposed score for Scene 3 (can be adapted as needed)

0" 15'2'30" 8'30"

You're thinking I'm a good person Tiago Vaz, 2020

s
i
l
e
n
c
e

noise

s
i
l
e
n
c
e

s
i
l
e
n
c
e

speech #2

speech #1

speech #4

speech #3

speech #5

1
scene1.py

2
scene2.py

3
scene3.py

SCENE 1 SCENE 2 SCENE 3

40"

2'

Musicians 1 and 2 stand side-by-side
in front of the Disklavier. No reac�on is expected.

speech #2
speech #8

speech #2

Empathic statements all accross this act, provoking reac�ons from musicians 1 and 2

2'30"

5'

a�er 3rd piano sound,
start playing con�nous,
airy sound, pp -> mp

Speech interrupted
by the piano (x 3)

2'45"

PIANO INPUT pitched delay
crescendo together with the
Disklavier...

Disklavier play single notes
followed by synth resonance

INST 1/2 and PIANO Pitched delay
crescendo un�l a total cloudy sound...

speech #7

speech #6

evolve to short, noisy, and contras�ng
sounds, giving some �me to silence or
degrading li�le phrases from classical
repertoire, as if trying to succeed a
performance to the audience.

...more intensively, trying
to overlap the other
musicians’ sound, as a
sub�le compe��on.

overlapping
speeches: leave
the scene.

Resonance + bea�ngs

INST 1/2 INPUT pitched delay
crescendo together with the
instruments dynamics...

Sustain pedal, then in 10
seconds, quickly look at
each other and start
playing the provided
music sheet.

A�er speech #8,
close all effects,
then close GAIN

scene1.py

1 import random
2 from pyo import *
3 from instruments import Speech
4 import subprocess
5
6 pm_list_devices()
7
8 s = Server(audio=’jack’, duplex=0, nchnls=2)
9

10 # Open all MIDI output devices.
11 s.setMidiOutputDevice(99)
12
13 # Then boot the Server.
14 s.boot()
15
16 speech_intro = Speech([’intro.wav’], loop=0)
17 speech_intro.play()
18
19 # close pedal
20 s.ctlout(64, 0)
21
22 # set random-ish pattern time
23 pat_time = XnoiseDur(dist=11, min=15, max=20)
24 speech = Speech([’restart.wav’])
25
26 time_counter = 0
27 def time_events():
28 global s, time_counter, pat_time, pat
29 time_counter = time_counter + 1
30 print(time_counter)
31 print((pat_time.min, pat_time.max))
32
33 d = random.choice([0,1])
34 if d == 1:
35 s.ctlout(64, 0)
36 else:
37 s.ctlout(64, 127)
38
39 if time_counter == 10:
40 pat_time.max = 10
41 pat_time.min = 5
42
43 if time_counter == 20:
44 pat_time.max = 5
45 pat_time.min = .5
46
47 if time_counter > 50 and pat_time.min > .1:
48 pat_time.max = pat_time.min
49 pat_time.min = pat_time.min - .05

1

2

50
51 if time_counter == 50:
52 s.ctlout(64, 127)
53
54 if time_counter == 80:
55 pat_time.max = 100
56 pat_time.min = 100
57 vel = 50
58 dur = 2000
59 # Mega chord to end
60 s.makenote(pitch=20, velocity=vel, duration=dur, channel=1)
61 s.makenote(pitch=21, velocity=vel, duration=dur, channel=1)
62 s.makenote(pitch=22, velocity=vel, duration=dur, channel=1)
63 s.makenote(pitch=23, velocity=vel, duration=dur, channel=1)
64 s.makenote(pitch=24, velocity=vel, duration=dur, channel=1)
65 s.makenote(pitch=25, velocity=vel, duration=dur, channel=1)
66 s.makenote(pitch=26, velocity=vel, duration=dur, channel=1)
67 s.makenote(pitch=27, velocity=vel, duration=dur, channel=1)
68 s.makenote(pitch=28, velocity=vel, duration=dur, channel=1)
69 s.makenote(pitch=29, velocity=vel, duration=dur, channel=1)
70 s.makenote(pitch=40, velocity=vel, duration=dur, channel=1)
71 s.makenote(pitch=81, velocity=vel, duration=dur, channel=1)
72 s.makenote(pitch=82, velocity=vel, duration=dur, channel=1)
73 s.makenote(pitch=83, velocity=vel, duration=dur, channel=1)
74 s.makenote(pitch=84, velocity=vel, duration=dur, channel=1)
75 s.makenote(pitch=85, velocity=vel, duration=dur, channel=1)
76 s.makenote(pitch=86, velocity=vel, duration=dur, channel=1)
77 s.makenote(pitch=87, velocity=vel, duration=dur, channel=1)
78 s.makenote(pitch=88, velocity=vel, duration=dur, channel=1)
79 s.makenote(pitch=89, velocity=vel, duration=dur, channel=1)
80
81 if time_counter == 85:
82 speech.play()
83
84 if time_counter == 90:
85 s.ctlout(64, 0)
86 pat.stop()
87
88 # Actual time counter
89 global_time = Pattern(time_events, 1).play()
90
91 pitch = Phasor(freq=1, mul=48, add=40)
92
93 count = 0
94 mul_count = 0
95 freq_count = 0
96
97 def midi_event():
98 global count, mul_count, pitch, freq_count, s
99

100 pit = int(pitch.get())

3

101
102 # each 23 seconds
103 mul_count = mul_count + 1
104 if mul_count == 23:
105 pitch.add = pitch.add + 1
106 print("MUL: ", pitch.mul)
107 mul_count = 0;
108
109 # each 35 seconds
110 freq_count = freq_count + 1
111 if freq_count == 35:
112 pitch.freq = random.randint(1,30)
113 print("FREQ: ", pitch.freq)
114 freq_count = 0;
115
116 if count == 0 and random.randint(0,1) < .5: # half chance
117 vel = random.randint(40, 70)
118 dur = random.randint(9,2000)
119 #chord
120 s.makenote(pitch=pit+12, velocity=vel, duration=dur, channel=1)
121 s.makenote(pitch=pit+14, velocity=vel, duration=dur, channel=1)
122 s.makenote(pitch=pit+16, velocity=vel, duration=dur, channel=1)
123 else:
124 vel = random.randint(50, 80)
125 dur = random.randint(50, 80)
126 s.makenote(pitch=pit, velocity=vel, duration=dur, channel=1)
127
128 count = (count + 1) % random.randint(12,13)
129
130 print("pitch: %d, velocity: %d, duration: %d" % (pit, vel, dur))
131
132 def start_pat():
133 global pat
134 pat.play()
135
136 # Generates a MIDI event every 125 milliseconds.
137 pat = Pattern(midi_event, pat_time)
138 a = CallAfter(start_pat, 30)
139
140 s.gui(locals())

scene2.py

1 from pyo import *
2 import random
3 import os
4 from instruments import *
5
6 s = Server(audio=’jack’, duplex=0, nchnls=2)
7 s.setMidiOutputDevice(99)
8 s.boot()
9

10 m = MyFreezing()
11 m2 = MyFreezing()
12 m3 = MyFreezing()
13 m.stop()
14 m2.stop()
15 m3.stop()
16
17 # Open pedal
18 s.ctlout(64, 127)
19
20 ################# BEGIN GESTURE 00 ##################
21
22 intro_speech = Speech([’intro.wav’])
23 sines = IntroSines()
24
25 def g00():
26 global intro_speech
27 intro_speech.play()
28
29 g00Time = Metro(time=Randi(31, 39)).stop()
30 g00Func = TrigFunc(g00Time, g00)
31
32 ################# BEGIN GESTURE 01 ##################
33
34 piano_flag = True
35
36 def g01():
37 global piano_flag
38 sines.play()
39 intro_speech.stop()
40 if piano_flag == True:
41 s.makenote(pitch=22, velocity=random.randint(30, 45), duration=20000)
42 s.makenote(pitch=79, velocity=random.randint(60, 70), duration=20000)
43 s.makenote(pitch=91, velocity=random.randint(70, 90), duration=20000)
44 m.pvb.setPitch(random.uniform(0.90, 1.1))
45 m.refresh()
46
47 g01Time = Metro(time=Randi(20, 35)).stop()
48 g01Func = TrigFunc(g01Time, g01)
49

5

50 ################# BEGIN GESTURE 02 ##################
51
52 high = HighFreq(mul=.05)
53
54 def g02():
55 global high
56 high.play()
57
58 g02Time = Metro(time=Randi(10, 30)).stop()
59 g02Func = TrigFunc(g02Time, g02)
60
61 ################# BEGIN GESTURE 03 ##################
62
63 snoise = SmoothNoise(mul=.25, dur=0.8)
64
65 def g03():
66 global snoise
67 snoise.play()
68
69 g03Time = Metro(time=Randi(10, 30)).stop()
70 g03Func = TrigFunc(g03Time, g03)
71
72 ################# BEGIN GESTURE 04 ##################
73
74 def g04():
75 s.makenote(pitch=22, velocity=random.randint(60, 70), duration=20000)
76 s.makenote(pitch=79, velocity=random.randint(70, 90), duration=20000)
77 s.makenote(pitch=91, velocity=random.randint(90, 100), duration=20000)
78 m.pvb.setPitch(random.uniform(0.9, 1.1))
79 m2.pvb.setPitch(random.uniform(0.9, 1.1))
80 m3.pvb.setPitch(random.uniform(0.9, 1.1))
81 m.refresh()
82 m2.refresh()
83 m3.refresh()
84 # send midi note
85
86 g04Time = Metro(time=Randi(20, 25)).stop()
87 g04Func = TrigFunc(g04Time, g04)
88
89 ###################### SCORE ########################
90
91 time = -1
92
93 # Random speech to be called
94 speech_random = Speech(soundfile=os.listdir("44_statements"))
95 speech_random_time = Metro(time=Randi(25, 40)).stop()
96 speech_random_func = TrigFunc(speech_random_time, speech_random.play)
97
98 # Random speech to be called 2
99 speech_random2 = Speech(soundfile=os.listdir("44_statements"))

100 speech_random_time2 = Metro(time=Randi(10, 23)).stop()

6

101 speech_random_func2 = TrigFunc(speech_random_time2, speech_random2.play)
102
103 # GPT2 texts right before interlude
104 interlude_text = Speech(os.listdir(’texts_speech’))
105 interlude_text_time = Metro(time=Randi(25, 40)).stop()
106 interlude_text_func = TrigFunc(interlude_text_time, interlude_text.play)
107
108 def score():
109 global time, m, m2, m3, interlude_text, piano_flag, g01Time
110 time += 1
111 high.setDur(random.uniform(0.5, 1.5))
112 snoise.setDur(random.uniform(0.5, 1.5))
113
114 if time == 1:
115 print(time)
116 m.play()
117 g00Time.play()
118
119 if time == 50:
120 print(time)
121 m2.play()
122 g01Time.play()
123
124 if time == 80:
125 print(time)
126 g00Time.stop()
127
128 if time == 120:
129 print(time)
130 piano_flag = False
131
132 if time == 140:
133 print(time)
134 speech_random_time.play()
135
136 ## Two minutes no piano only flute and voice
137 if time == 200:
138 print(time)
139 g04Time.play() # starts new piano with low notes
140 g01Time.stop() # stops initial piano
141 speech_random_time.stop()
142 m3.play()
143
144 if time == 260:
145 print(time)
146 g02Time.play() # high pitch
147
148 if time == 270:
149 print(time)
150 interlude_text_time.play()
151

7

152 if time == 280:
153 print(time)
154 g04Time.stop() # stops all piano
155 g03Time.play() # snoise
156 speech_random_time.setTime(Randi(5, 10)) # overlapping voices
157 speech_random_time.play() # overlapping voices
158
159 # stop everything but high/snoise and call the serial (part3) script
160 if time == 300:
161 speech_random_time2.play()
162
163 if time == 315:
164 vel = 50
165 dur = 2000
166
167 s.ctlout(64, 127)
168
169 s.makenote(pitch=20, velocity=vel, duration=dur, channel=1)
170 s.makenote(pitch=22, velocity=vel, duration=dur, channel=1)
171 s.makenote(pitch=24, velocity=vel, duration=dur, channel=1)
172 s.makenote(pitch=26, velocity=vel, duration=dur, channel=1)
173 s.makenote(pitch=28, velocity=vel, duration=dur, channel=1)
174 s.makenote(pitch=80, velocity=vel, duration=dur, channel=1)
175 s.makenote(pitch=82, velocity=vel, duration=dur, channel=1)
176 s.makenote(pitch=84, velocity=vel, duration=dur, channel=1)
177 s.makenote(pitch=86, velocity=vel, duration=dur, channel=1)
178 s.makenote(pitch=88, velocity=vel, duration=dur, channel=1)
179
180 print(time)
181 m2.stop()
182 m3.stop()
183 m.stop()
184 sines.stop()
185 g01Time.stop()
186 g02Time.stop()
187 g03Time.stop()
188 speech_random_time.stop()
189 speech_random_time2.stop()
190 interlude_text_time.stop()
191
192 mainTime = Metro(time=1).play()
193 mainFunc = TrigFunc(mainTime, score)
194
195 s.gui(locals())

scene3.py

1 import random
2 from pyo import *
3 from instruments import *
4 import time
5
6 pm_list_devices()
7
8 s = Server(audio=’jack’, duplex=0, nchnls=2)
9

10 # Open all MIDI output devices.
11 s.setMidiOutputDevice(99)
12
13 # Then boot the Server.
14 s.boot()
15
16 s.ctlout(64, 127)
17 speech_start = Speech([’mary.wav’], loop=True)
18 speech_start.play()
19
20 # Kinderstuck serial sequence
21 notes_seq = [3, 4, 0, 11, 10, 1, 2, 9, 8, 7, 6, 5]
22
23 index = 0
24 index2 = 0
25 index3 = 0
26 pedal_flag = True
27
28 def intro_event():
29 global s, pat, speech_start
30 # close pedal
31 s.ctlout(64, 0)
32 pat.play()
33 speech_start.stop()
34
35 def midi_event():
36 global notes_seq, index, pat2, pat, s
37
38 index = index + 1
39 n, d = divmod(index, 12)
40 print(index, n, d)
41
42 vel = random.randint(25, 35)
43 dur = random.randint(20, 1000)
44
45 octave = random.choice([48, 60])
46 s.makenote(pitch=notes_seq[d]+octave, velocity=vel, duration=dur, channel=1)
47 if n == 1:
48 s.makenote(pitch=notes_seq[d]+octave+12, velocity=vel, duration=dur, channel=1)
49

9

50 print("pitch: %d, velocity: %d, duration: %d" % (notes_seq[d], vel, dur))
51
52 if n == 2:
53 pat2.play()
54 final_event2Time.play()
55
56 event2_part2 = 0
57 event2_flag = False
58
59 def midi_event2():
60 global notes_seq, index2, pat2, pat, event2_part2, event2_flag, pedal_flag
61 if pedal_flag == True:
62 s.ctlout(64, 127)
63 pedal_flag = False
64
65 vel = random.randint(20, 30)
66 dur = 100
67
68 octave = random.choice([60, 72])
69 s.makenote(pitch=notes_seq[index2]+octave, velocity=vel, duration=dur, channel=1)
70 if event2_flag == True:
71 s.makenote(pitch=notes_seq[index2]+octave-14, velocity=vel, duration=dur, channel

=1)
72
73 print("pitch: %d, velocity: %d, duration: %d" % (notes_seq[index2], vel, dur))
74
75 index2 = index2 + 1
76 if index2 == 12:
77 final_eventTime.play()
78 index2 = 0
79 event2_flag = True
80
81 event2_part2 = event2_part2 + 1
82 if event2_part2 == 48:
83 pat3.play()
84
85 speech_final = Speech([’insult.wav’])
86 def midi_event3():
87 global notes_seq, index3, pat3, speech_final
88
89 vel = random.randint(20, 30)
90 dur = 100
91
92 octave = random.choice([24, 84, 96])
93 s.makenote(pitch=notes_seq[index3]+octave, velocity=vel, duration=dur, channel=1)
94 s.makenote(pitch=notes_seq[index3]+octave-14, velocity=vel, duration=dur, channel=1)
95 s.makenote(pitch=notes_seq[index3]+octave-16, velocity=vel, duration=dur, channel=1)
96 print("pitch: %d, velocity: %d, duration: %d" % (notes_seq[index3], vel, dur))
97
98 index3 = index3 + 1
99 if index3 == 12:

10

100 index3 = 0
101 pat.stop()
102 pat2.stop()
103 pat3.stop()
104 speech_final.play()
105
106 snoise = SmoothNoise(mul=.25, dur=0.3)
107 high = HighFreq(mul=0.5)
108
109 def final_event():
110 global high
111 high.setDur(random.uniform(0.3, 0.6))
112 high.play()
113
114 final_eventTime = Metro(time=Randi(10, 20)).stop()
115 final_eventFunc = TrigFunc(final_eventTime, final_event)
116
117 def final_event2():
118 global snoise
119 snoise.setDur(random.uniform(0.3, 0.6))
120 snoise.play()
121
122 final_event2Time = Metro(time=Randi(10, 20)).stop()
123 final_event2Func = TrigFunc(final_event2Time, final_event2)
124
125 # set random-ish pattern time
126 pat_time = XnoiseDur(dist=11, min=.1, max=8)
127 pat = Pattern(midi_event, pat_time)
128
129 # set random-ish pattern time
130 pat_time2 = XnoiseDur(dist=11, min=0.5, max=10)
131 pat2 = Pattern(midi_event2, pat_time2)
132
133 # set random-ish pattern time
134 pat_time3 = XnoiseDur(dist=11, min=.1, max=4)
135 pat3 = Pattern(midi_event3, pat_time3)
136
137 a = CallAfter(intro_event, random.randint(30,40))
138
139 s.gui(locals())

instruments.py

1 import random
2 from pyo import *
3
4 ########### INSTRUMENTS ##########################
5
6 class Speech():
7 def __init__(self, soundfile=[], loop=False, mul=.5, fadein=.01, fadeout=.01,

duration=0, chnl=0, inc=1):
8 self.amp = Fader(fadein=fadein, fadeout=fadeout, dur=duration, mul=mul)
9 self.chnl = chnl

10 self.inc = inc
11 self.soundfile = soundfile
12 self.soundfile_to_play = random.choice(soundfile)
13 self.player = SfPlayer(self.soundfile_to_play, mul=[self.amp/2., self.amp/1.95],

loop=loop).stop()
14 self.player_rev = Freeverb(self.player, size=[.3,.25], damp=.6, bal=.4, mul=.8).

out(chnl=self.chnl, inc=self.inc)
15
16 def setDur(self, dur):
17 self.amp.dur = dur
18 return self
19
20 def play(self):
21 self.player.setSound(random.choice(self.soundfile))
22 self.player.play()
23 self.amp.play()
24 return self
25
26 def stop(self):
27 self.amp.stop()
28 return self
29
30 def getOut(self):
31 return self.amp
32
33 class IntroSines():
34 def __init__(self, freq=[3000, 3000.01, 3000.03], harms=400, mul=.8):
35 self.amp = Fader(fadein=10, fadeout=10, dur=0, mul=mul)
36 self.sines = Blit(freq=freq, harms=harms, mul=self.amp * .01).out()
37 self.rev = Freeverb(self.sines, size=.84, damp=.87, bal=.9, mul=self.amp * .2).

out()
38
39 def setDur(self, dur):
40 self.amp.dur = dur
41 return self
42
43 def play(self):
44 self.amp.play()
45 return self

12

46
47 def stop(self):
48 self.amp.stop()
49 return self
50
51 def getOut(self):
52 return self.amp
53
54
55 class HighFreq():
56 def __init__(self, freq=[11200, 11202], dur=.4, mul=.4):
57 self.amp = Fader(fadein=.01, fadeout=.01, dur=dur, mul=mul)
58 self.sine = SineLoop(freq=freq, mul=self.amp * .05).out()
59 self.rev = Freeverb(self.sine, size=.84, damp=.87, bal=.9, mul=self.amp * .2).out

()
60
61 def setDur(self, dur):
62 self.amp.dur = dur
63 return self
64
65 def play(self):
66 self.amp.play()
67 return self
68
69 def stop(self):
70 self.amp.stop()
71 return self
72
73 def getOut(self):
74 return self.amp
75
76 class SmoothNoise():
77 def __init__(self, dur=1.3, mul=.4):
78 self.amp = Fader(fadein=.1, fadeout=.01, dur=dur, mul=mul)
79 self.noise = PinkNoise(self.amp * .01).mix(2).out()
80
81 def setDur(self, dur):
82 self.amp.dur = dur
83 return self
84
85 def play(self):
86 self.amp.play()
87 return self
88
89 def stop(self):
90 self.amp.stop()
91 return self
92
93 def getOut(self):
94 return self.amp
95

13

96 def setInput(self, x, fadetime=.001):
97 self.input.setInput(x, fadetime)
98
99 class MyFreezing():

100 def __init__(self, mul=1):
101 global s
102 f = ’sound_bank/444166__cloe-king__wine-glass-ring.wav’
103 f_len = sndinfo(f)[1]
104 #s.startoffset = f_len
105
106 self.globalamp = Delay(Fader(fadein=100, dur=0).play(), delay=f_len, maxdelay=

f_len)
107
108 src = SfPlayer(f, loop=True, mul=0.8)
109
110 # When this number increases, more analysis windows are randomly used.
111 spread = Sig(0.1, mul=0.1)
112
113 # The normalized position where to freeze in the sound.
114 index = Sig(0.25, add=Noise(spread))
115
116 self.pva = PVAnal(src, size=4096, overlaps=8)
117 self.pvb = PVBuffer(self.pva, index, pitch=1.02)
118 self.pvv = PVVerb(self.pvb, revtime=0.999, damp=0.995)
119 self.pvs = PVSynth(self.pvv, mul=0.3)
120 self.rev = STRev(self.pvs, roomSize=1, revtime=1)
121 self.outsig= Delay(self.rev, delay=.1, feedback=0.2, mul=self.globalamp * mul).

stop()
122
123 def play(self):
124 self.pvb.play()
125 self.outsig.out()
126
127 def stop(self):
128 self.outsig.stop()
129
130 def refresh(self):
131 self.play()

Appendix D. Score of You can’t un-neighbor your neighbor

You can’t un-neighbor your neighbor
For player piano and electronics (~15min)

Introductory notes

“Most personalized filters are based on a three-step model. First, you figure
out who people are and what they like. Then, you provide them with content
and services that best fit them. Finally, you tune to get the fit just right. Your
identity shapes your media. There’s just one flaw in this logic: Media also
shape identity. And as a result, these services may end up creating a good fit
between you and your media by changing. . . you.”

“The Filter Buble”, Eli Parisier, 2011

You can’t un-neighbor your neighbor is a 15-minute piece composed in 3 scenes. The piece
requires a prepared piano player (i. e. A Disklavier), a computer, a pair of speakers, a pianist, and a live
electronics performer. The player piano is simultaneously controlled by a live-generated
performance-rnn and by a live electronics performer manipulating a set of algorithms. The
performance-rnn is generated through a provided Python script which uses a pre-trained Magenta
PerformanceRNN model to produce the MIDI files.

The pianist follows a minimal set of instructions for preparing and playing the piano together
with the algorithms, all throughout the performance.

Scene

The figure below illustrates how the stage should be organized for the execution of this
piece. Although not explicitly indicated in the diagram, the live electronics performer is encouraged
to use an external audio device and a MIDI controller to manipulate both the player piano and the
effects, as described in the next section.

Setup requirements

Hardware

• A computer with an audio/MIDI interface
• A MIDI controller
• A pair of speakers
• A digital player piano (i. e. a Disklavier)
• Two microphones to amplify the player piano (on the soundboard)
• Two contact microphones to amplify the mechanical structure under the player piano

Software

• GNU/Linux distribution (might also run on other systems)
• Python version 3 and libraries installed as documented in the git repository located

at https://github.com/tiagovaz/ detaching
• Carla or similar audio plugins host with a similar effects chain as illustrated in the

table bellow

General instructions

Once all hardware and software are set up by the instructions provided in the repository,
two steps should be followed for the performance to take place:

1. Generate the performance-rnn MIDI sequences to be played on the piano. In this step, all
the needed MIDI files are generated through the pre-trained models available in a bundle
format (“bach.mag” and “debussy.mag”). The Python script which generates these files is
the “performance_generator.py” and should be called without parameters. It will
generate 10 performances-rnn for each scene. The characteristics of each model used by this
script (and how they are used to generate sequences for each scene) is illustrated in the
table bellow:

2. Run the performance code. A parameter indicating the number of the scene (1, 2, or 3) should be
provided to the script “performance.py”. For instance, for scene 1: “python3
performance.py 1”. Once the code starts running, the live electronics performer controls
the effects and, to some extent, the MIDI data being sent to the piano, according to the
attached score. A XML file containing the configuration of audio objects and MIDI

assignments is provided in the repository (“carla_patch.carxp”). This file is to be used
by Carla audio plugin host software. Any other similar software can be used as long as the
following chain of effects is respected:

The audio effects in Carla can be assigned to a MIDI controller through its graphical
interface. The MIDI manipulation can be assigned by editing the “performance.py” script,
as documented in the code, by attributing the CC values to the variables listed in the above
table.

The following picture and table might be useful as a guidance for this configuration,
which supports a nanoKONTROL2 controller by Korg and was used in the video-recorded
performance available in https://archive.org/details/you-cant-uneighbor-your-neighbor.

Label Source Var name / plugin name Action

P ON Python code PEDAL_ON Disklavier sustain pedal ON

P OFF Python code PEDAL_OFF Disklavier sustain pedal OFF

WOBBLE Carla Wobble Juice Plugin Piano mechanics Wobblejuice effect gain

DL WET Carla Calf Vintage Delay Piano soundboard delay dry/wet

REV Carla Calf Reverb Piano soundboard reverb gain

DL FEED Carla Calf Vintage Delay Piano soundboard delay feed

FL RES Carla Calf Filter Piano mechanics filter resonance

FL FREQ Carla Calf Filter Piano mechanics filter frequence

DL SPEECH Carla Calf Vintage Delay Speech (scene 3 only) delay dry/wet

SPEECH VOL Carla Carla Input Gain Speech volume (scene 3 only)

PAT VOL Python code PATTERN_VOL Controls the MIDI velocity average of algorithmic
musical patterns sent to the Disklavier

PAT SPEED Python code PATTERN_SPEED Controls the density (or tempo) of MIDI data of
algorithmic musical patterns sent to the Disklavier

CHAOS Python code CHAOS Adds chaos (random notes) to the performance-rnn
sequence being played on the Disklavier

PIANO GEN Python code PIANO_GEN Skips notes (replaces by silence) from the
performance-rnn sequence being played on the
Disklavier

Per scene instructions

This is a highly improvised piece, where both the pianist and the live electronics performer
follow very little instructions in order to accompany the AI-driven part being played. A sub-theme
taken from the quotation in the beginning of this score reflects the composer’s intentions and
should be kept in mind as inspiration.

The following instructions are nothing more than an open guide for the execution of the piece. This
comes from a collaborative work between composer Tiago Vaz and pianist Daniel Áñez, during
rehearsals and the performance recorded in December 2021 (https://archive.org/details/you-cant-
uneighbor-your-neighbor).

Scene 1 (3-4 min)

“First, you figure out who people are and what they like.”

This scene starts with a performance-rnn generated from a model trained against a dataset
of 29 pieces from Claude Debussy. It plays on average 5 notes per second, has a temperature of 1.4
– being the most “creative” among the three scenes – and follows a pitch distribution represented
as [0, 1, 0, 0, 2, 1, 0, 1, 1, 0, 1, 1]. This distribution is structured as a Python list, in wich numbers
represent the probability of a note being played, from C to B. In this scene C = 0, C# = 1, D = 0, D#
= 2 and so forth. Given the hight level of “creativity”, these numbers are approximative. So, C = 0
doesn’t necessary mean “C is not to be played”. Instead, it can be read as “C is much less likely to be
played than D# - but still possible to be played”.

This scene is resonant, slow tempo and rich in wide-range chords. The musicians are
encouraged to attentively observe the sounds and try to extend them rather than adding new
sounds. A natural direction to long/continuous sounds should be followed. In the recorded video,
this was accomplished with the aid of e-bows resonating piano strings on the soundboard. The
whole scene shouldn’t go over a mezzo-forte dynamics.

During Scene 1, the live electronics performer mostly improvises with “PIANO GEN” and
“CHAOS” generators as described in the table above.

Scene 2 (6-7 min)

“Then, you provide them with content and services that best fit them.”

The performance-rnn which guides this scene was generated by a model trained against 147
pieces of J. S. Bach. Like Scene 1, it plays on average 5 notes per second, and has a little less “creativity”,
with temperature set to 1.3. Its pitch distribution is represented as [10, 1, 3, 10, 15, 1, 10, 10, 1, 10, 2,
10]. Unlike the other scenes, the performance-rnn for Scene 2 is additionally fed with with a primer, which
is the theme of Duetto in E minor (BWV 802). A music sheet with the first page of this piece should be on
the music desk.

Once the code starts running, the theme of BWV 802 is automatically played. The pianist just
observes, getting ready to react only a few bars later. This reaction might come from an attempt to create
a dialogue with the machine. A flawed counterpoint results from this attempt. Little by little, the gestures
develop toward another musical universe. This evolution reveals itself initially through modulations, then
moving toward new sonorities on the prepared piano's soundboard.

Except for the very beginning of this scene, most of MIDI data sent to the Disklavier is
manipulated by the live electronics performer, who triggers and controls algorithms that generate
pseudo-random motives. This is achieved using “PAT VOL” and “PAT SPEED” parameters. Compared to
Scene 1, here the musicians are encouraged to increase the dynamics to forte or even fortíssimo, yet
avoiding aggressive gestures and, like in Scene 1, ending the piece exploring resonance and continuous
sounds. Also, in this scene, the live electronics performer is encouraged to make further use of
“WOBBLE” and “DL WET” effects.

Scene 3 (5-6 min)

“Finally, you tune to get the fit just right.”

This scene, certainly the most “aggressive” among the three, is based on performances-rnn
generated in extremis, comprising an unusual pitch distribution of [0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0] at
20 notes per second on average. The level of creativity is lower than seen in previous scenes (0.7).
This means that notes marked with low probability are more unlikely to be played. Also, for Scene 3
the musicians should use a higher amount of effects, as well as an extra incitement material for the
performance, in the form of audible excerpts extracted from a conversation which inspired the
piece.

This conversation comes from a discussion between historian Yuval Harari and Facebook
CEO Mark Zuckerberg, and is part of a series of “public discussions about the future of technology
in society”, featured by Zuckerberg himself. The video is publicly available on Harari’s Youtube
channel.1

The scene starts with Zuckerberg’s proclaiming “Hey everyone, this year I’m doing a series of
public discussions on uh... the future of the Internet and Society and some of the big issues around that...”,
followed by the generated performance-rnn. From its very beginning, this scene reveals a certain
anxiety, insistence, and lack of direction. Musicians are encouraged to musically represent these
intentions through repetition, contrast and mechanical/powerful gestures. Audio excerpts from the
same conversation are played all over the piece, motivating immediate reactions from the musicians.

The only direction this scene takes is toward a dramatic crescendo in the end, when it goes
back down to a non-dramatic repetitive gesture, which should somewhat represent that we
ultimately have been tuned to fit just right.

1 Mark Zuckerberg & Yuval Noah Harari in Conversation: https://www.youtube.com/watch?v=Boj9eD0Wug8

main.py

1 from pyo import *
2 import mido
3 import random
4 import time
5
6 ####### MIDI CC variables ##########
7
8 PEDAL_ON = 43
9 PEDAL_OFF = 44

10 PATTERN_ON = 37
11 PATTERN_OFF = 53
12 PATTERN_VOL = 21
13 PATTERN_SPEED = 5
14 CHAOS = 6
15 RNN_ON = 39
16 RNN_OFF = 55
17 PIANO_GEN = 7
18
19 ####################################
20
21 # DEV means using internal midi ports
22 DEV = True
23
24 s = Server(audio=’jack’, duplex=0)
25
26 # Randomly set the midi file to be picked from a subset
27 midi_pick = str(random.randint(1, 5))
28
29 # Set the movement to be played:
30 mov = 1
31
32 # 1)
33 mov_01_midi_file = ’MIDI/01/’ + random.choice(os.listdir("MIDI/01/"))
34
35 # 2)
36 mov_02_midi_file = ’MIDI/02/’ + random.choice(os.listdir("MIDI/02/"))
37
38 # 3)
39 mov_02_midi_file = ’MIDI/03/’ + random.choice(os.listdir("MIDI/03/"))
40
41 s.setMidiOutputDevice(99)
42 s.setMidiInputDevice(99)
43 s.boot().start()
44
45 if DEV is True:
46 port = mido.open_output(’Midi Through:Midi Through Port-0 14:0’)
47 else:
48 port = mido.open_output(’io|2:io|2 MIDI 1 28:0’)
49

1

2

50 conversation = "conversation.flac"
51 sf = SfPlayer(conversation, speed=1, loop=True, mul=0).stop()
52
53 midi_play = False
54 pattern_play = False
55
56 def midi_scanner(ctlnum, midichnl):
57 global midi_play
58 global pattern_play
59 if ctlnum == RNN_ON:
60 midi_play = True
61 elif ctlnum == RNN_OFF:
62 midi_play = False
63 elif ctlnum == PATTERN_ON:
64 pattern_play = True
65 elif ctlnum == PATTERN_OFF:
66 pattern_play = False
67 elif ctlnum == PEDAL_ON:
68 s.ctlout(64, 127)
69 elif ctlnum == PEDAL_OFF:
70 s.ctlout(64, 0)
71 elif ctlnum == 42:
72 sf.setMul(0)
73 elif ctlnum == 41:
74 sf.out()
75 sf.setMul(0.02)
76
77
78 # Listen to controller input.
79 midi_in = CtlScan2(midi_scanner, toprint=True)
80
81 counter = 0
82 counter_tick = 0
83
84 velocity = Randi(min=50, max=100, freq=1)
85
86 ctl_skip_notes = Midictl(ctlnumber=[PIANO_GEN], minscale=0, maxscale=10, init=0)
87 ctl_chaos = Midictl(ctlnumber=[CHAOS], minscale=0, maxscale=10, init=0)
88
89 ########################## PATTERN ###################################
90
91 ctl_pattern_time = Midictl(ctlnumber=[PATTERN_SPEED], minscale=0.05, maxscale=1, init

=0.125)
92 ctl_pattern_velocity = Midictl(ctlnumber=[PATTERN_VOL], minscale=0, maxscale=70, init=21)
93
94 l = Phasor(.4)
95 pitch = XnoiseMidi(12, freq=8, x1=1, x2=l, scale=0, mrange=(21, 108))
96
97 # Global variable to count the down and up beats.
98 count = 0
99

3

100 def midi_event():
101 if pattern_play == True:
102 global count
103 pit = int(pitch.get())
104 if count == 0:
105 vel = random.randint(int(ctl_pattern_velocity.get()), int(

ctl_pattern_velocity.get()) + 30)
106 dur = 500
107 else:
108 vel = random.randint(int(ctl_pattern_velocity.get()), int(

ctl_pattern_velocity.get()) + 10)
109 dur = 125
110 count = (count + 1) % random.randint(2,5)
111 pat.setTime(float(ctl_pattern_time.get()))
112 s.makenote(pitch=pit, velocity=vel, duration=dur)
113
114 pat = Pattern(midi_event, time=0.125).play()
115
116 ###################### MAIN LOOP #####################################
117
118 while True:
119 if mov == 1:
120 mid = mido.MidiFile(mov_01_midi_file)
121 for message in mid.play():
122 if (counter_tick % 100) == 0:
123 tick = mido.Message(’note_on’, channel=0, note=random.choice([10, 99,

101]), velocity=80, time=6.2)
124 tick_off = mido.Message(’note_off’, channel=0, note=99)
125 counter_tick = 0
126
127 if not message.is_meta:
128 # PAUSE
129 if midi_play is True:
130 # SKIP NOTES
131 if random.randint(0, int(ctl_skip_notes.get())) == 0:
132 print(’CONTROLLER IN %d’ % int(ctl_skip_notes.get()))
133 if random.randint(0, int(ctl_chaos.get())) == 0:
134 print(’CONTROLLER IN %d’ % int(ctl_skip_notes.get()))
135 port.send(message)
136 else:
137 # CHAOS
138 s.makenote(pitch=random.randint(48,82), velocity=random.

randint(20,50), duration=random.randint(1,1000))
139 else:
140 while midi_play is False:
141 print(’wating for resume...’)
142 time.sleep(1)
143 counter = counter + 1
144 counter_tick = counter_tick + 1
145 print(counter_tick)
146

4

147 elif mov == 2:
148 mid = mido.MidiFile(mov_03_midi_file)
149 for message in mid.play():
150 if counter == 500:
151 delay = random.choice([10,12,15])
152 time.sleep(delay)
153 if (counter_tick % 100) == 0:
154 tick = mido.Message(’note_on’, channel=0, note=random.choice([10, 99,

101]), velocity=80, time=6.2)
155 tick_off = mido.Message(’note_off’, channel=0, note=99)
156 port.send(tick)
157 port.send(tick_off)
158 counter_tick = 0
159
160 if not message.is_meta:
161 if message.type == ’note_on’:
162 message.velocity = max(0, message.velocity + int(velocity.get()))
163 if counter > 50: # modulate
164 if message.note == 69:
165 message.note = 70
166 if counter > 100: # modulate
167 if message.note == 74:
168 message.note = 75
169 if counter > 150: # do not play
170 if message.note == 76:
171 continue
172 port.send(message)
173 # print(message)
174 counter = counter + 1
175 counter_tick = counter_tick + 1
176 print(counter_tick)
177
178 elif mov == 3:
179 mid = mido.MidiFile(mov_03_midi_file)
180 for message in mid.play():
181 if midi_play is True:
182 if message.type == ’note_on’ or message.type == ’note_off’:
183 port.send(message)
184 else:
185 while midi_play is False:
186 print(’wating for resume...’)
187 time.sleep(1)

	Résumé
	Abstract
	Contents
	List of Tables
	List of Figures
	List of Acronyms
	Acknowledgments
	Introduction
	Chapter 1. Artificial Intelligence and the arts
	1.1. Is AI art art?

	Chapter 2. FLOSS and the arts
	2.1. An overview of available FLOSS for music creation
	2.1.1. Operating system (OS)
	2.1.2. Coding
	2.1.3. Live performance
	2.1.4. Sound design and DSP
	2.1.5. Mapping and integration

	2.2. Further comments

	Chapter 3. Creation project: Detaching
	3.1. Disklavier
	3.1.1. The role of the player piano in Detaching

	3.2. A few words about AI terminology
	3.3. Composing with Magenta
	3.4. AI-driven text production with GPT-2
	3.5. The generative aspect of Detaching
	3.6. Analysis of Control (taking) / Control (losing)
	3.6.1. Technical notes
	3.6.2. Installation workflow
	3.6.3. Recording

	3.7. Analysis of You're thinking I'm a good person
	3.7.1. Scene 1
	3.7.2. Scene 2
	3.7.3. Scene 3
	3.7.4. Rehearsals and recording

	3.8. Analysis of You can’t un-neighbor your neighbor
	3.8.1. Rehearsals and recording
	3.8.2. Scene 1
	3.8.3. Scene 2
	3.8.4. Scene 3

	Conclusions
	Bibliography
	Appendix A. List of additional files
	Appendix B. Score of Control (taking) / Control (losing)
	Appendix C. Score of You're thinking I'm a good person
	Appendix D. Score of You can't un-neighbor your neighbor

