
 

 

Université de Montréal 

 

 

MODELING HETEROTACHY IN PHYLOGENETICS 

 

 

 

 

par 

YAN ZHOU 

 

 

Département de Biochimie 

Faculté de Médecine 

 

 

 

Thèse présentée à la Faculté des études supérieures 

en vue de l’obtention du grade de Doctorat 

en Bio-informatique 

 

 

 

April, 2009 

 

 

 

© Yan Zhou, 2009 

  



 

 



 

 

Université de Montréal 

Faculté des études supérieures 

 

 

 

 

Cette thèse intitulée : 

 

MODELING HETEROTACHY IN PHYLOGENETICS 

 

 

 

 

présentée par : 

YAN ZHOU 

 

 

 

 

a été évaluée par un jury composé des personnes suivantes : 

 

 

Sylvie Hamel, président-rapporteur 

Hervé Philippe, directeur de recherche 

B. Franz Lang, membre du jury 

Nicolas Galtier, examinateur externe 

Miklos Csurös, représentant du doyen de la FES 

  



 

 

  



 

 

iii

 

Résumé 

Il a été démontré que l’hétérotachie, variation du taux de substitutions au cours du 

temps et entre les sites, est un phénomène fréquent au sein de données réelles. Échouer à 

modéliser l’hétérotachie peut potentiellement causer des artéfacts phylogénétiques. 

Actuellement, plusieurs modèles traitent l’hétérotachie : le modèle à mélange des longueurs 

de branche (MLB) ainsi que diverses formes du modèle covarion. Dans ce projet, notre but 

est de trouver un modèle qui prenne efficacement en compte les signaux hétérotaches 

présents dans les données, et ainsi améliorer l’inférence phylogénétique. 

Pour parvenir à nos fins, deux études ont été réalisées. Dans la première, nous 

comparons le modèle MLB avec le modèle covarion et le modèle homogène grâce aux test 

AIC et BIC, ainsi que par validation croisée. A partir de nos résultats, nous pouvons 

conclure que le modèle MLB n’est pas nécessaire pour les sites dont les longueurs de 

branche diffèrent sur l’ensemble de l’arbre, car, dans les données réelles, le signaux 

hétérotaches qui interfèrent avec l’inférence phylogénétique sont généralement concentrés 

dans une zone limitée de l’arbre. Dans la seconde étude, nous relaxons l’hypothèse que le 

modèle covarion est homogène entre les sites, et développons un modèle à mélanges basé 

sur un processus de Dirichlet. Afin d’évaluer différents modèles hétérogènes, nous 

définissons plusieurs tests de non-conformité par échantillonnage postérieur prédictif pour 

étudier divers aspects de l’évolution moléculaire à partir de cartographies stochastiques. 

Ces tests montrent que le modèle à mélanges covarion utilisé avec une loi gamma est 

capable de refléter adéquatement les variations de substitutions tant à l’intérieur d’un site 

qu’entre les sites. 

Notre recherche permet de décrire de façon détaillée l’hétérotachie dans des 

données réelles et donne des pistes à suivre pour de futurs modèles hétérotaches. Les tests 

de non conformité par échantillonnage postérieur prédictif fournissent des outils de 

diagnostic pour évaluer les modèles en détails. De plus, nos deux études révèlent la non 

spécificité des modèles hétérogènes et, en conséquence, la présence d’interactions entre 
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différents modèles hétérogènes. Nos études suggèrent fortement que les données 

contiennent différents caractères hétérogènes qui devraient être pris en compte 

simultanément dans les analyses phylogénétiques. 

 

Mots-clés : Hétérotachie, covarion, MLB, postérieur prédictif, non-conformité, non-

spécificité, hétérogénéité, AIC, BIC, validation croisée. 
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Abstract 

Heterotachy, substitution rate variation across sites and time, has shown to be a frequent 

phenomenon in the real data. Failure to model heterotachy could potentially cause 

phylogenetic artefacts. Currently, there are several models to handle heterotachy, the 

mixture branch length model (MBL) and several variant forms of the covarion model. In 

this project, our objective is to find a model that efficiently handles heterotachous signals in 

the data, and thereby improves phylogenetic inference.   

 In order to achieve our goal, two individual studies were conducted. In the first 

study, we make comparisons among the MBL, covarion and homotachous models using 

AIC, BIC and cross validation. Based on our results, we conclude that the MBL model, in 

which sites have different branch lengths along the entire tree, is an over-parameterized 

model. Real data indicate that the heterotachous signals which interfere with phylogenetic 

inference are generally limited to a small area of the tree. In the second study, we relax the 

assumption of the homogeneity of the covarion parameters over sites, and develop a 

mixture covarion model using a Dirichlet process. In order to evaluate different 

heterogeneous models, we design several posterior predictive discrepancy tests to study 

different aspects of molecular evolution using stochastic mappings. The posterior 

predictive discrepancy tests demonstrate that the covarion mixture +Γ model is able to 

adequately model the substitution variation within and among sites.  

 Our research permits a detailed view of heterotachy in real datasets and gives 

directions for future heterotachous models. The posterior predictive discrepancy tests 

provide diagnostic tools to assess models in detail. Furthermore, both of our studies reveal 

the non-specificity of heterogeneous models. Our studies strongly suggest that different 

heterogeneous features in the data should be handled simultaneously. 

Keywords : Heterotachy, covarion, MBL, posterior predictive, discrepancy, non-

specificity, heterogeneity, AIC, BIC, cross validation 
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Introduction 

1 Phylogeny 

Phylogenetics (Greek: phūlon: race, class; -geneia: born, origin) is the study of 

relationships among species based on their evolutionary history. It is widely accepted that 

the diversity of life is the result of heredity and variation (Darwin, 1859). Heredity means 

that living organisms obtain genetic information from their ancestors and pass it onto their 

descendents. Variation means that different species exist in the world due to natural 

selection, wherein favorable mutations are preserved and unfavorable mutations will be 

eventually lost, or due to the neutral theory of evolution, wherein mutated genes could be 

preserved without impacting their critical functions. The concept of heredity and variation 

has become the basis for constructing phylogeny.  

1.1 Morphological phylogeny 

The phylogenetic relationships among organisms were initially studied based on the 

morphology and embryology of the organisms. Based on the similarities and dissimilarities 

of external appearances and manors of giving birth among species, cladists reconstruct 

phylogeny hierarchically (Hennig, 1965): domain, kingdom, phylum, class, order, family, 

genus, and species. However, such morphological information can mislead biologists on 

phylogenies (Adoutte, et al., 2000; Stevens, 1984) especially for prokaryotes (Woese, 

1987). 

1.2 Molecular Phylogeny 

With recent advances of modern molecular technologies, a great amount of molecular 

datasets (i.e. nucleotide and amino acid sequences) have become available, providing 

systematists an unprecedented chance to study phylogenies at the molecular level. 

Molecular phylogenies have confirmed or corrected morphological phylogenies in 

numerous cases (Adoutte, et al., 2000; Hayasaka, et al., 1996). Figure 1 (Adoutte, et al., 

2000) illustrates how molecular phylogeny has changed the classical view of the animal 

phylogeny. 
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Figure 1. Metazoan phylogenies.  

(A) The traditional phylogeny based on morphology and embryology. (B) The new molecule-based 

phylogeny.  

Adapted from (Adoutte, et al., 2000) 

 

Although molecular phylogeny has achieved great success, with different data and 

methods, researchers often obtain incongruent phylogenetic results (Delsuc, et al., 2005; 

Jeffroy, et al., 2006; Philippe, et al., 2005a; Phillips, et al., 2004; Rokas, et al., 2003). 

Inconsistent phylogenies are mainly caused by systematic and stochastic errors (Phillips, et 
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al., 2004). During my Ph.D studies, I have been working on heterotachy, one of the causes 

of systematic errors in phylogenetic inference. In the introduction part of this thesis, I 

briefly introduce methods for inferring phylogenies, problems in phylogenetic inference 

and current improvement efforts; thereafter, I focus on heterotachy and current models 

handling heterotachy. 

2 Short introduction to phylogenetic analysis 

2.1 Defining a phylogenetic tree 

The bifurcating rooted phylogenetic tree presented in Figure 2 consists of seven nodes 

(species): A, B, C, D, E, F and G; D, E, F and G are leaf nodes, which represent the extant 

species; A, B, and C are internal nodes, which represent ancestral species and their 

sequences normally are not available; node A is the common ancestor of all other species. 

For a general rooted tree with S extant species (leaf nodes), there are a total of 2S-1 nodes 

and 2S-2 branches. 

 

Figure 2.  A bifurcating rooted phylogenetic tree.  

Node A has two descendents B and C, such that A’s left node is B, denoting A->left=B; A’s right 

node is C, denoting A->right=C; B’s branch is b, and C’s branch is c. 
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The molecular clock hypothesis assumes that substitution rates are constant across lineages. 

When substitution rates change across lineages, the molecular-clock tree, in which the 

branch length stands for the evolutionary time, is not valid. In order to reflect variation of 

substitution rates across lineages, the length of a branch stands for the expected number of 

substitutions per site (Felsenstein, 2004). 

2.2 Alignments 

An alignment, which is used to infer a phylogenetic tree, is a set of sequences such that all 

residues with the same site position (column) are assumed to have originated from a 

common ancestral residue. Supposing we have S species and N sites, the alignment can be 

presented as shown:  

 

Species Site 1 Site 2       Site N 

Species 1 y11 y12 . . . . . . . . . . . . y1N 

Species 2 y21 y22 . . . . . . . . . . . . y2N 

: : :       : 

: : :       : 

Species S yS1 yS2 . . . . . . . . . . . . ySN 

 

2.3 Synapomorphy vs symplesiomorphy 

Synapomorphy refers to a derived character state which is shared by a few taxa and is 

inherited from their last common ancestor. Cladists reconstruct phylogenetic trees based on 

synapomorphies. Symplesiomorphy, on the other hand, is the derived character state which 

is shared by a few taxa and is inherited from ancestors older than their last common 

ancestor. Therefore, a symplesiomorphy does not convey the last ancestor’s information 

and cannot constitute evidence to infer the phylogenetic relationships. However, 

symplesiomorphy can impede phylogenetic inference if it is not appropriately handled and 

is instead interpreted as a synapomorphy.  
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A B 

Figure 3. Synapomorphy and symplesiomorphy.  

(A) Character state A is a synapomorphy for species 1 and 2. (B) Character state D is a 

symplesiomorphy for species 2 and 3. 

 

2.4 Phylogenetic artefacts 

The Long Branch Attraction (LBA) artefact either can group unrelated fast evolving 

species together during the reconstruction of phylogenetic trees or can lead to 

overestimations/underestimations of certain branch lengths due to the presence of fast-

evolving species. The Felsenstein zone is the area in which two unrelated long branches are 

always clustered together, and is a special case of the general LBA artefact (Figure 4A ) 

(Swofford, et al., 2001). 

 In contrast, Long Branch Repulsion (LBR) is another reconstruction artefact that 

fails to group two related long branches together during the reconstruction. The Farris zone, 

which is also referred to as “inverse-Felsenstein” zone (Swofford, et al., 2001), is the area 

in which two related long branches are always grouped together, and is the positive effect 

of the LBA artefact. However, the Farris zone could be affected by the LBR artefact 

(Figure 4B) (Swofford, et al., 2001). 

 

D 
1: A
 

2: D 

3: D

A 
1: A
 

2: A 

3: D

D → A D → A  
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A 

 

B 

Figure 4 Felsenstein zone and Farris zone. 

(A) An LBA artefact is caused by grouping two unrelated long branches in the Felsenstein zone. 

(B). An LBR artifact is caused by failing to group two related long branches together in the Farris 

zone. 

 

2.5 Phylogenetic methods 

Three major types of methods have been applied to the reconstruction of molecular 

phylogenies: maximum parsimony, distance and probabilistic methods. With the advances 

made in computer technology, researchers are able to use more complicated and 

computationally intensive models. 
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2.5.1 Maximum parsimony 

The first attempt at molecular phylogenetic analysis is the maximum parsimony method 

(Camin and Sokal, 1965). Based on the principle of Occam's razor, a phylogenetic tree 

inferred by the maximum parsimony method has the minimum number of substitutions 

(Felsenstein, 2004).  The initial parsimony methods consider a homogeneous substitution 

rate along lineages and across sites, yet in real data heterogeneities exist across lineages, 

sites and time (Jeffroy, et al., 2006; Lartillot, et al., 2007; Philippe, et al., 2003; Yang, 

1996b). Alternative maximum parsimony methods have been proposed to improve 

phylogenetic inference (Farris, 1969; Fitch and Margoliash, 1967; Fitch, 1973; Sankoff and 

Cedergren, 1983). For instance, weighted parsimony (Sankoff and Cedergren, 1983) tries to 

distinguish sites by giving them different weights.  

However, over long periods of evolutionary time, one site might undergo multiple 

substitutions, without them being immediately apparent from extant sequences. Sometimes, 

saturation, in which a site has been substituted more than once and flips back to its original 

state, can happen. Since maximum parsimony is based on the minimum number of changes, 

it may not be able to take such situations into account and would assume fewer or even no 

substitutions for this site. Moreover, for complicated evolutionary patterns found in real 

data, maximum parsimony methods are only able to allow for some simple model 

assumptions but not sophisticated ones.  

As a result, phylogenetic inference based on the assumption of a minimum number 

of substitutions would incur systematic errors. Felsenstein (Felsenstein, 1978) 

demonstrated that parsimony methods are likely to be more inconsistent than maximum 

likelihoods due to the LBA artefact. On the contrary, it has been shown that maximum 

parsimony methods perform better than likelihood methods in the Farris zone (Swofford, et 

al., 2001). 
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2.5.2 Substitution model based methods 

Parsimony methods are essentially a type of non-parametric method, and therefore are not 

able to allow for explicit evolutionary models. Unlike parsimony methods, model-based 

methods do not assume that evolution has unfolded with the minimum number of changes; 

however, they assume that character states are substituted with certain probabilities. One 

advantage of model-based methods is their allowing for explicit model assumptions.  

2.5.2.1 Substitution Matrix 

Markov process 

A first order Markov chain consists of a sequence of variables Xi (i=1,…K), of which the 

current state is only dependent on its most immediate previous state, but not dependent on 

other previous states, such that: 𝑃(𝑋௜|𝑋௜ିଵ, 𝑋௜ିଶ, 𝑋௜ିଷ, … , 𝑋ଵ) = 𝑃(𝑋௜|𝑋௜ିଵ) . 

The Markov chain has its state frequency vector λ and transition probabilities P  

between states. The transition probabilities P can be displayed with a matrix. Supposing 

there are four states A, B, C and D in a Markov chain, the transition matrix 𝑃 would be: 

𝑃 = ൦𝑃஺→஺ 𝑃஺→஻𝑃஻→஺ 𝑃஻→஻ 𝑃஺→஼ 𝑃஺→஽𝑃஻→஼ 𝑃஻→஽𝑃஼→஺ 𝑃஼→஻𝑃஽→஺ 𝑃஽→஻ 𝑃஼→஼ 𝑃஼→஽𝑃஽→஼ 𝑃஽→஽൪ ,    ∑ 𝑃௜→௝௝ = 1 ,                      (1) 

where 𝑃஺→஻ stands for the transition probability from state A to B, and 𝑃஺→஺ stands for the 

probability of A staying at A. If there are two events occurring: transition from state A to 

state B and from state B to C, then the probability of the two events is  𝑃஺→஻ × 𝑃஻→஼ . If we 

don’t know the exact path through which the transitions have been, we can summarize all 

possible transition events. The probability matrix of substitutions for K events is the 

product of the matrices P with K times, such that 

𝑃𝑟(𝐾) = 𝑃 × 𝑃 × 𝑃 × … × 𝑃ᇣᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇥ௄ = ൦𝑃஺→஺ 𝑃஺→஻𝑃஻→஺ 𝑃஻→஻ 𝑃஺→஼ 𝑃஺→஽𝑃஻→஼ 𝑃஻→஽𝑃஼→஺ 𝑃஼→஻𝑃஽→஺ 𝑃஽→஻ 𝑃஼→஼ 𝑃஼→஽𝑃஽→஼ 𝑃஽→஽൪௄
.         (2) 
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 One interesting property of the Markov chain is that after an infinite number of 

transitions, the state frequency vector λ will be remaining the same. Therefore, λ is also 

called stationary distribution. Since 

            𝜆𝑃 = 𝜆 ,                 (3) 

 λ is the eigenvector of the transition matrix P with the eigenvalue being 1. 

 In a continuous time Markov chain, the transition events can be modeled with a 

Poisson distribution (Stewart, 1995). Let 𝜇 be the expected number of events per time unit 

in a Poisson distribution. Thus, the probability of K events in the Poisson distribution along 

time 𝑡 is: 𝑓(𝐾 𝑒𝑣𝑒𝑛𝑡𝑠) = (ఓ௧)಼௘షഋ೟௄! .                                                     (4) 

Hence, 𝑃𝑟(𝑡), the probability matrix of a Markov chain along time 𝑡, is: 𝑃𝑟(𝑡) = ෍ 𝑃௄ஶ
௄ୀ଴ 𝑓(𝐾 𝑒𝑣𝑒𝑛𝑡𝑠) = ෍ 𝑃௄ஶ

௄ୀ଴
(𝜇𝑡)௄𝑒ିఓ௧𝐾!  

  = 𝑒ିఓ௧ ∑ 𝑃௄ஶ௄ୀ଴ (ఓ௧)಼௄! = 𝑒ିఓ௧𝑒௉ఓ௧ = 𝑒(௉ିூ)ఓ௧,                            (5) 

where 𝑃 is the transition matrix, and I is the identity matrix. Let Q=P-I, so 

  𝑃𝑟(𝑡) = 𝑒ொఓ௧.                                                                  (6) 

Q is called the instantaneous rate matrix. 

Substitution matrix 

The substitution process of molecular data along the phylogenetic tree can be modeled with 

a continuous time Markov process, thus for the nucleotide sequence with A, C, G, and T 

states, the transition probability matrix is 

𝑃 = ൦𝑃஺→஺ 𝑃஺→஼𝑃஼→஺ 𝑃஼→஼ 𝑃஺→ீ 𝑃஺→்𝑃஼→ீ 𝑃஼→்𝑃 →஺ 𝑃 →஼𝑃்→஺ 𝑃்→஼ 𝑃 →ீ 𝑃 →்𝑃்→ீ 𝑃்→்൪ ,      (7) 
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where in the P Matrix, the sum of each row is 1. Since Q=P-I, the sum of each row in the Q 

matrix is 0. The Q matrix is normalized for the off-diagonal such that the length of the 

branch stands for the expected number of substitutions per site. 

The instantaneous rate matrix Q can be written as: 𝑄 = 𝑅𝛬,      (8) 

where Λ is a diagonal matrix, and its diagonal values λ1, λ2, λ3, λ4 are the stationary 

probabilities of states: 

𝛬 = ൦ 𝜆ଵ 00 𝜆ଶ 0 00 00 00 0 𝜆ଷ 00 𝜆ସ
൪ ;     (9) 

R is the instantaneous rate exchange substitution matrix:    

𝑅 = ൦ − 𝛼ଵ𝛼ଶ − 𝛽ଵ 𝛾ଵ𝛿ଵ 𝜀ଵ𝛽ଶ 𝛿ଶ𝛾ଶ 𝜀ଶ − 𝜂ଵ𝜂ଶ −൪ .     (10) 

 Let species E have two descendent species B and C, and there are n expected 

substitutions (𝑛 = 𝜇𝑡) occurring from E to B for a given site (Figure 5). According to the 

equation 6, the probability matrix of the substitutions from species E to species B is: 𝑃𝑟(𝑩|𝑬, 𝑛) = 𝑒ொ௡.                                                           (11) 

The exponential of the matrix Q is obtained by diagonalization of the matrix Q 

(Felsenstein, 2004). The diagonalization of a substitution matrix is a time-consuming 

process in the likelihood calculation of the phylogenetic tree.  

 

Figure 5. An illustration for a site: n substitutions occurring from species E to species B. 
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Time reversible model 

Most current phylogenetic substitution models are time reversible. Therefore, the 

probability of being substituted by its descendant state for an ancestral state drawn from the 

stationary distribution is the same as the one of being substituted by the ancestral state for 

the descendant state drawn from the stationary distribution (Adachi and Hasegawa, 1996; 

Felsenstein, 1981; Jones, et al., 1992; Kimura, 1980; Lanave, et al., 1984; Le and Gascuel, 

2008; Rodriguez, et al., 1990; Tavare, 1986; Whelan and Goldman, 2001). Supposing an 

internal state is A and its descendant state is C, we have 𝜆஺ ∗ 𝑃𝑟(𝐴 → 𝐶) = 𝜆஼ ∗ 𝑃𝑟(𝐶 → 𝐴).    (12) 

Since 
𝑄 = 𝑅𝛬 = ൦ − 𝛼ଵ𝜆ଶ𝛼ଶ𝜆ଵ − 𝛽ଵ𝜆ଷ 𝛾ଵ𝜆ସ𝛿ଵ𝜆ଷ 𝜀ଵ𝜆ସ𝛽ଶ𝜆ଵ 𝛿ଶ𝜆ଶ𝛾ଶ𝜆ଵ 𝜀ଶ𝜆ଶ − 𝜂ଵ𝜆ସ𝜂ଶ𝜆ଷ − ൪,    (13) 

when the general time reversible model is assumed, the R matrix will be symmetric, such 

that α1=α2, β1=β2, γ1=γ2, δ1=δ2, ε1=ε2, η1=η2. 

2.5.2.2 Distance methods 

Phylogenetic trees can be constructed based on matrices of pair-wise distances among 

sequences (Fitch and Margoliash, 1967). A straightforward distance was first suggested as 

simply summarizing the differences between two sequences. Later more sophisticated 

distances based on substitution models (Jukes and Cantor, 1969; Kimura, 1981) have been 

used in distance methods. The advantage of model-based distances is that they allow for 

explicit model assumptions such as multiple substitutions and heterogeneities of 

substitution probabilities among character states.   

Criteria, such as least square (Cavalli-Sforza and Edwards, 1967; Fitch and 

Margoliash, 1967) and minimum evolution (Kidd and Sgaramella-Zonta, 1971), can be 

used to infer phylogenetic trees in distance methods. However, searching the optimal tree 
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with a criterion in a large tree space is a heavy computational task. Using clustering 

algorithms to infer a phylogenetic tree is much faster than using criteria. Some well-known 

algorithms include UPGMA (Unweighted Pair Group Method with Arithmetic mean), 

neighbour joining (Saitou and Nei, 1987), and Bionj (Gascuel, 1997). 

Compared with parsimony methods, substitution model based distance methods are 

more flexible to take heterogeneities of the data into account and correct for the multiple 

substitutions (Jukes and Cantor, 1969; Kimura, 1980; Tamura and Nei, 1993). However, 

distance methods using pair-wise sequences fail to recognize the substitutions among the 

internal nodes, thus consequently the necessary evolutionary information along the whole 

tree will be lost. Therefore, although distance methods have relative fast computational 

speeds, they are not optimal for phylogenetic reconstructions (Felsenstein, 2004).  

2.5.2.3 Probability based methods 

Both maximum likelihood and Bayesian methods involve calculating the likelihoods of the 

phylogenetic trees, and they belong to the probability based methods. 

Likelihood calculation 

The likelihood is the probability of the data y given the tree (τ) and parameters 𝜃 of the 

model. The likelihood function 𝐿(𝜃, 𝜏) is 𝐿(𝜃, 𝜏) = 𝑃𝑟(𝑦|𝜃, 𝜏).                                  (14) 

Assuming sites 𝑦௜, i=1,...N,  are independent, 𝑃𝑟(𝑦௜|𝜃, 𝜏), the likelihood of the tree (τ) and 

parameters (θ) over the whole data (y), is the product of the likelihood  for each site: 𝑃𝑟(𝑦|𝜃, 𝜏) = ∏ 𝑃𝑟(ே௜ୀଵ 𝑦௜|𝜃, 𝜏).    (15) 

A phylogenetic tree with extant species D, E, F, G and their ancestors A, B, C is shown in 

Figure 6.  
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Figure 6.  A rooted tree containing six nodes with its root at node A. 

Suppose that a site consists of character states for species A, B, C, D, E, F, and G. The 

likelihood of the tree with branches t1, t2, t3, t4, t5, t6 for this site is Pr(𝐀, 𝐁, 𝐂, 𝐃, 𝐄, 𝐅, 𝐆|tଵ, tଶ, tଷ, tସ, tହ, t଺, τ)= Pr(𝐀)Pr(𝐁|tଵ, 𝐀)Pr(𝐃|tଶ, 𝐁)Pr(𝐃)Pr(𝐄|tଷ, 𝐁)Pr(𝐄)Pr(𝐂|tସ, 𝐀) Pr(𝐅|t଺, 𝐂)Pr(𝐅)Pr(𝐆|tହ, 𝐂)Pr(𝐆) .     (16) 

The states of external nodes D, E, F and G are observed, so their likelihoods are either 1 or 

0 given a specific state s (for DNA data, s∈(A, C, G, T)) . Since the states of the internal 

nodes A, B and C are unknown, we have to summarize all possible states theses internal 

nodes: Pr(𝐀, 𝐁, 𝐂, 𝐃, 𝐄, 𝐅, 𝐆|tଵ, tଶ, tଷ, tସ, tହ, t଺, τ) = ∑ ∑ ∑ Pr(𝐀)Pr(𝐁|tଵ, 𝐀)Pr(𝐃|tଶ, 𝐁)Pr(𝐃)Pr(𝐄|tଷ, 𝐁)Pr(𝐄)Pr(𝐂|tସ, 𝐀)Pr(𝐅|t଺, 𝐂)Pr(𝐅)Pr(𝐆|tହ, 𝐂)Pr(𝐆)𝐂𝐁𝐀  . (17) 

Here, for 3 internal nodes with the nucleotide data, there are a total of 43=64 combinations 

of possible internal states. When the number of species increases, the calculation will 

become tremendous for combining all the possibilities.  

 Felsenstein thus proposed the pruning algorithm (Felsenstein, 1981) by using the 

conditional likelihood vector of each node: 
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 ෍ ෍ ෍ Pr(𝐀)Pr(𝐁|tଵ, 𝐀)Pr(𝐃|tଶ, 𝐁)Pr(𝐃)Pr(𝐄|tଷ, 𝐁)Pr(𝐄)Pr(𝐂|tସ, 𝐀)Pr(𝐅|t଺, 𝐂)Pr(𝐅)Pr(𝐆|tହ, 𝐂)Pr(𝐆)𝐂𝐁𝐀= ෍ Pr(𝐀)[෍[Pr(𝐃|tଶ, 𝐁)Pr(𝐃)][Pr(𝐄|tଷ, 𝐁)Pr(𝐄)]Pr(𝐁|tଵ, 𝐀)][෍ Pr(𝐂|tସ, 𝐀)[Pr(𝐅|t଺, 𝐂)Pr(𝐅)][Pr(𝐆|tହ, 𝐂)Pr(𝐆)]]𝐂𝐁𝐀  

           (18) L𝐁(𝑠) = [Pr(𝐃|tଶ, 𝐁 = 𝑠)Pr(𝐃)][Pr(𝐄|tଷ, 𝐁 = 𝑠)Pr(𝐄)] is the partial likelihood vector for 

node B conditional on the situation when node B has a character state s. 

 Hence, the calculation for a tree with three internal nodes is almost equal to 

calculating 12 combinations of possibilities other than 64. The pruning program greatly 

saves the computational time and renders likelihood methods feasible for current 

computational capacities. 

Maximum likelihood estimation (MLE) 

A tree topology with its branch lengths as well as other parameters in the substitution 

model can be inferred by maximizing the likelihood. However, when the number of 

parameters increases, the parameter space will become more complicated; and thus the 

estimate might be more easily stuck into a local maximum, as illustrated in Figure 7. 
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Figure 7.  An illustration of the parameter space. 

 

Tree topologies 

The number of possible tree topologies is extremely large in comparison with the number 

of species (Felsenstein, 2004); moreover, when the topology is changed, the optimal branch 

lengths will also be changed. Even if the topology is fixed, the change of a single branch 

length will also influence the optimal lengths of other branches. Considering the huge 

topology space, the influence of topologies on branch lengths, and irregular likelihood 

space, the maximum likelihood method confronts a big computational challenge. It is 

unrealistic for the current computer to explore all the possible topologies in order to infer a 

phylogenetic tree. One way to overcome this problem is using the Branch and Bound 

searching algorithm (Hendy and Penny, 1982): initially obtaining a reasonably tree by 

some heuristic methods (Branch section), then improving the tree by adding more branches 

(Bound section).  One can also attempt to obtain the optimal tree using heuristic searches. 

For instance, first an initial star decomposition tree is obtained, then branches are added 
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stepwise and the tree is improved with different methods, e.g. NNI (nearest neighbor 

interchanging), SPR (Subtree Pruning and Regrafting),TBR (Tree Bisection and 

reconnection) (Felsenstein, 2004). 

Branch lengths and Substitution rates 

The branch lengths (b) and instantaneous exchange rate vector 𝜓 ( i.e., α1, β1, γ1, α2, 

β2, γ2, in the R matrix) could be optimized by maximizing the likelihood under a fixed 

topology. Two major methods have been applied in the current software for maximum 

likelihood based phylogenetic inference. 

 Newton-Raphson method 

Finding maximum likelihood estimates can be achieved by letting the first 

derivative of the likelihood be zero. For the maximum likelihood estimate of branch length 

(b), we have:  డ୪୬௅డ௕ = 0.                 (19) 

We can solve this as a root finding problem using the Newton-Raphson method 

with the first and second derivatives of the likelihood. 

 Expectation Maximization method 

Let 𝑦 be the character state for the extant species (leave nodes), 𝑦ത be the character state for 

the ancestors (internal nodes).  So 𝑦 is the observed data and 𝑦ത is the unobserved data. In 

the phylogenetic analyses, we only know the leaves’ states (𝑦), but not the states of any 

internal nodes (𝑦ത). In other words, the dataset is incomplete. If 𝑦ത was known, then it would 

be easy to obtain the maximum likelihood estimates of 𝜃 (e.g. the branch lengths as well as 

the other parameters) in the evolutionary model. One way to handle the incomplete data in 

the MLE is using an expectation maximization (EM) iterative algorithm (Dempster, et al., 

1977). From its name, the EM consists of two steps: expectation and maximization. For 

instance, Hobolth & Jensen have used the EM to obtain the instantaneous exchange rates 

(Hobolth and Jensen, 2005).  
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 In the nth iteration of expectation step (E-step), one first estimates G(𝜃; 𝜃௡ିଵ), the 

expectation of 𝑓(𝜃; 𝑦) regarding 𝑦ത: G(𝜃; 𝜃௡ିଵ) = 𝐸௬ത|ఏ೙షభ,௬𝑓(𝜃; 𝑦),         (20) 

where 𝑓(𝜃; 𝑦) is the likelihood function in the case of Hobolth’s study, and 𝑦ത is obtained 

conditioned on previous iteration estimation of 𝜃௡ିଵand y. 

 In the maximization step (M-step), 𝜃௡ is obtained by maximizing G(𝜃; 𝜃௡ିଵ): 𝜃௡ = argmax G(𝜃; 𝜃௡ିଵ).           (21) 

The maximum likelihood estimation of θ is converged, if the difference between 𝜃௡ିଵand 𝜃௡ିଵ is sufficiently small. 

However, if the parameter space is not regular and the initial point we select is close 

to a local rather than global maximum, the estimations by the Newton-Raphson and EM 

method could be easily getting stuck at a local maximum (Figure 8). This is because the 

above methods lack mechanisms to explore the entire parameter space.  
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Figure 8. An illustration of the local optimum problem. 

Convergence to the global maximum depends on a lucky initial point as illustrated for the Newton-

Raphson and EM methods. 

  

Simulated annealing via Markov Chain Monte Carlo (MCMC) 

When the surface of the parameter space is not regular, simulated annealing via MCMC is 

more efficient in finding a global maximum in comparison with the Newton-Raphson d and 

EM methods (Granville, et al., 1994; Kirkpatrick, et al., 1983).  

Markov Chain Monte Carlo (MCMC) 

 Markov Chain Monte Carlo (MCMC) employs random walks along the Markov 

chain to sample values from probability distributions. In order to get through the barrier to 

access the desired distribution, Metropolis algorithm is designed to allow accepting non-

optimal values with some probabilities (Metropolis, et al., 1953), such that the probability 

of accepting the proposed 𝜃′ is: 
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 𝛼 = min(௅൫ఏᇲ൯௅(ఏ) , 1).     (22) 

Here 𝐿(𝜃) refers to the likelihood of 𝜃. One requirement for the Metropolis algorithm is 

that the transition probabilities from 𝜃′ to 𝜃 and from 𝜃 to 𝜃′ are equal: 𝑃𝑟(𝜃|𝜃ᇱ) = 𝑃𝑟(𝜃ᇱ|𝜃).     (23) 

The improved Metropolis-Hasting algorithm allows Markov chain walk through different 

densities of θ with an adjustment (Chib and Greenberg, 1995; Hastings, 1970), i.e. Hasting 

ratio 
௉(ఏ|ఏᇱ)௉(ఏᇱ|ఏ) , so the probability of accepting the proposed 𝜃ᇱ is: 𝛼 = min(௅൫ఏᇲ൯௉௥(ఏ|ఏᇱ)௅(ఏ)௉௥(ఏᇱ|ఏ) , 1) .         (24) 

Gibbs sampling (Geman and Geman, 1984; Tanner and Wong, 1987) is a special case of 

the Metropolis-Hasting algorithm. When a series of parameters have to be deduced, it is 

hard to converge due to the high dimensional parameter space (Tanner and Wong, 1987). 

Gibbs sampler guarantees a convergence in a multivariate parameter space. The idea 

behind the Gibbs sampler is that at each iteration, all parameters except one are fixed, and 

conditioned on these temporarily fixed parameters, the optimal variable parameter can be 

easily sampled; thus, after a sufficient number of iterations we can achieve the aimed 

distribution.  

 Assuming that we have n parameters 𝜃ଵ, 𝜃ଶ, … , 𝜃௡, to be sampled, the algorithm of 

Gibbs sampling is: 

For k=1,...m iteration 
 For i=1, ...., n, 
   𝜽𝒊𝑲~𝜽𝒊|𝜽𝟏𝑲, … 𝜽𝒊ି𝟏𝑲, 𝜽𝒊ା𝟏𝑲ି𝟏, … . 𝜽𝒏𝑲ି𝟏, 𝒚 

 

Simulated Annealing via MCMC 

The Boltzmann distribution (Costantini and Garibaldi, 1997) describes the energy 

distribution: 𝑃𝑟(𝑖) = ே೔ே = 𝐴𝑒ି ℇ೔಼೅,      (25) 
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where 𝑃𝑟(𝑖) is the proportion of the molecules being at state i, T is the temperature, ℇ௜ is 

the energy of state i and K is a constant. When the temperature is high, molecules have 

high probabilities of being at states with high energy; when the temperature is low, 

molecules have high probabilities of being at states with low energy. Based on this theory, 

in the mining industry, the annealing process is preformed to extract crystal from rocks.  

First, the material is heated to a high temperature, resulting in a high proportion of high 

energy. Next, the material is gradually cooled down so that the unwanted residues are 

filtered away (Verhoeven, 1975).  This process is iterated for many times until the pure 

crystals are extracted. The simulated annealing algorithm is inspired by this procedure. One 

first heats the Markov chain, so the MCMC with high energy is able to traverse the entire 

parameter surface; and then gradually decreases the temperature, so the MCMC is able to 

direct itself towards the global maximum and eventually reach it. The probability of 

accepting new states is: 𝛼 = min(௅൫ఏᇲ൯೎೙௉௥(ఏ|ఏᇱ)௅(ఏ)೎೙௉௥(ఏᇱ|ఏ) , 1),     (26) 

where 𝑐௡  is the inverse of the temperature for the nth iteration. There are two kinds of 

cooling schedules, one is the linear schedule: 𝑐௡ାଵ = 𝑐௡ + 𝛽.          (27) 

The other is the exponential schedule: 𝑐௡ାଵ = 𝑐௡ × 𝛽.      (28) 

The choice of the cooling schedule depends on the properties of the dataset.  

 Figure 9 shows that with the temperature dropping down, the MCMC chain 

eventually gets frozen at the maximal point: the –log likelihood value does not change any 

more after the 600th iteration.  
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Figure 9. Plot of the –log likelihood along the MCMC chain in the simulated annealing. 

 Confidence interval 

When the topology is fixed and only branch lengths or the substitution matrix are 

estimated, the MLE confidence interval can be obtained analytically using the Fisher 

information (Rice, 1995).  

 However, when the topology is not fixed, the likelihood surface would be 

unpredictable and thus the variance of the estimate could not be obtained analytically. One 

can obtain the variance via resampling of the original dataset. To estimate the variance of 

the MLE in phylogeny, Felsenstein proposed a non-parametric bootstrap method, which 

samples sites from the original dataset with replacement to obtain a set of datasets each 

sharing the same size as the original one (Efron, 1979; Felsenstein, 1985). Theoretically, 

the variance obtained from the bootstrap should be asymptotically identical to the variance 

estimated with analytical methods (e.g. using the Fisher information). A consensus tree can 

be obtained by summarizing all the inference trees from bootstrap with a consensus rule 

(e.g. strict rule (Rohlf, 1982), majority rule (Margush and McMorris, 1981), semi-strict 

rules (Bremer, 1990), Nelson rules (Nelson, 1979)). A bootstrap value in a phylogenetic 
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tree is a probability for two branches to be clustered together given a phylogenetic 

reconstruction method. Hedges showed that at least 2,000 bootstrap datasets are required to 

obtain a highly precise result (Hedges, 1992). However, inferring phylogenetic trees from a 

large amount of bootstrap datasets demands huge computational resources. When several 

candidate trees need to be compared, we can use the resampling estimated log-likelihood 

(RELL) method (Kishino, et al., 1990), in which the likelihood of a candidate tree on the 

bootstrap data is the product of each site’s likelihood of the tree on the original dataset. 

This approximate method saves a large amount of time to infer other parameters (e.g. 

branch lengths) of the candidate trees for bootstrap datasets, yet it is reported as robust 

(Kishino, et al., 1990). However, what we should be aware of is that all bootstrap methods 

cannot correct the bias of the model (if it exists), and in fact, bootstrap methods only give 

information of the variance of the phylogenetic inference due to the uncertainty of the data. 

Bayesian method 

Inferring posterior estimation via MCMC 

The maximum likelihood estimation (MLE) tries to find a single optimal value for the 

parameter of the model given the data. However, Bayesian statisticians argue that 

parameters of interest have uncertainties given the other unknown parameters as well as the 

nuisance parameters (Gelman, et al., 2003). Hence, Bayesian statisticians are interested in 

exploring the parameter space using posterior probabilities.  

 The Bayes’ theorem gives: 𝑃𝑟(𝜃|𝑦) = ௉௥(௬|ఏ)௉௥(ఏ)∫ ௉௥(௬|ఏ)௉௥(ఏ)ഇ  ,     (29) 

where 𝑦 is the data, θ is the model’s parameter vector of interest. The posterior probability 

of the model 𝑃𝑟(𝜃|𝑦) is the product of the likelihood 𝑃𝑟(𝑦|𝜃) and the prior 𝑃𝑟(𝜃), and 

thereafter divided by a normalized factor, which is integrated over all 𝜃. 

Computing posterior expectations requires the calculation of high-dimensional 

integrals, which is often not analytically available. One way is to use the Marko chain 
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Monte Carlo walking to simulate θ to obtain this integral. Metropolis-Hasting algorithm, 

which we have introduced in the simulated annealing, is used to construct the MCMC 

walking. A starting point is randomly picked, and after sufficient number of iterations, the 

Markov chain would converge to the posterior distribution. When the chain is converged, 

all the parameters (e.g. branch length, posterior probabilities, etc) should have stable 

variations, and several independent chains with different random starting points should 

reach the same area of the parameter estimates. In the MCMC walking, the samples 

between the starting point and the posterior distribution are referred to as “burn-in” and 

should be discarded during the analyses (Figure 10).  

 

 

Figure 10. Plot of the log likelihood along the MCMC chain in the Bayesian analysis. 

The posterior estimates of the parameters are the expectations of samples drawn 

from the posterior distribution. The consensus tree, which consists of the most frequently 

visited clustering pattern during the MCMC, is the inferred tree of the Bayesian MCMC 

method.  
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In a Bayesian study, we need to specify a prior distribution for the interested 

parameter. The prior is a probability distribution which is known or believed a priori. The 

posterior distribution is a compromise between the likelihood and the prior distribution 

(Gelman, et al., 2003). If we don’t have strong assumptions about the distribution of the 

parameters, we normally have a non-informative prior (flat). Figure 11 shows that the 

posterior distribution is both determined by the likelihood and the prior, which is specified 

as an exponential distribution with the mean being 0.1.  

 

Figure 11. An illustration of the relationship between likelihood and posterior distribution. 

 Adapted from (Gascuel, 2005) 

 The prior distribution can be hierarchally controlled with a hyper-parameter. For 

instance, a parameter x follows a gamma distribution with unknown mean μ, and μ is 

referred to as the hyper-parameter. 

Pros and Cons of the Bayesian MCMC 

Bayesian MCMC has recently been gaining popularity in phylogenetic research 

(Blanquart and Lartillot, 2006; Huelsenbeck and Ronquist, 2001; Huelsenbeck, et al., 2001; 

Huelsenbeck, et al., 2004; Lartillot and Philippe, 2004; Rodrigue, et al., 2008a; Rodrigue, 

et al., 2008b; Ronquist and Huelsenbeck, 2003; Smedmark, et al., 2006).  
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Maximum likelihood estimation (MLE) is almost impossible when it comes to a 

complicated model with a large number of unknown parameters. In order to estimate the 

parameters of interest, one needs to integrate over all the other unknown parameters. 

However, the computation of the integral over a large number of parameters in MLE could 

be prohibitive. Due to the irregular parameter space, such integration could not be obtained 

analytically. One advantage of the Bayesian MCMC is that it allows for uncertainties of the 

parameters of interest due to nuisance parameters, which are not of interest. Supposing that 

we have parameters θ and v, we are only interested in θ, and v is the nuisance parameter, 

we have: 𝑃𝑟(𝜃|𝑦) = ∫ 𝑃𝑟(𝜃, 𝑣|𝑦) 𝑑𝑣.                                                (30) 

 This equation can be presented as 𝑃𝑟(𝜃|𝑦) = ∫ 𝑃𝑟(𝜃|𝑣, 𝑦) 𝑃𝑟(𝑣|𝑦)𝑑𝑣.                                         (31) 

Bayesian MCMC could construct this integration by first drawing v from their posterior 

distribution, and then drawing θ conditionally on v. With the help of Bayesian MCMC, a 

number of sophisticated models in phylogenetic inference became possible (Huelsenbeck 

and Suchard, 2007; Lartillot and Philippe, 2004; Pagel and Meade, 2004). 

Furthermore, Bayesian MCMC walk can explore among different model spaces. For 

instance, the reversible jump mechanism (Green, 1995) allows MCMC to transit between 

different dimensional spaces. The most frequently visited model would be the optimal 

model, thus avoiding the model selections in MLE, e.g. likelihood ratio tests (Huelsenbeck, 

et al., 2004; Pagel and Meade, 2008). This asset makes it possible to infer the phylogenetic 

tree and evolutionary models simultaneously, thus saving the computational time. 

Bayesian MCMC gives uncertainties about parameter estimations, which MLE 

cannot offer. Although the variations of parameters obtained from the posterior distribution 

are not the same as the one from the bootstrap process (Yang and Rannala, 2005), the 

bootstrap is usually not necessary for the Bayesian analyses. 

However, prior distributions affect the Bayesian parameter estimation. Yang and 

Rannala pointed out that estimation of the posterior distribution is sensitive to the branch 



 

 

26

 

lengths’ priors, and misspecification of the priors could incorrectly estimate the posterior 

probabilities (Yang and Rannala, 2005). Since the prior is very important, the specification 

of the prior should be practiced carefully.   

2.6 Model evaluations 

We can compare the fitness among models to see which model best explains the data, and 

possibly, further explore the nature of the real data, e.g. how species evolve, etc. 

2.6.1 Likelihood ratio test 

The likelihood value is increased when a model has more parameters. The model is 

improved when the likelihood value is significantly increased compared with the increase 

of the number of parameters. When two models to be compared are nested in the 

framework of the maximum likelihood estimation, likelihood ratio test (LRT) can be used. 

Suppose  𝜃௉ is the parameter vector for the model 𝑀௣ and 𝛩௣ is the parameter space for  𝜃௉. If model 𝑀ଵ is nested in model 𝑀ଶ (𝜃ଵ ∊ 𝛩ଵ, 𝜃ଶ ∊ 𝛩ଶ, 𝛩ଵ ⊂ 𝛩ଶ), then ௅(ఏభ෢)௅(ఏమ෢) < 1,                            (32) 

where   𝜃௉෢ is the maximum likelihood estimate of 𝜃௉ for model 𝑀௉  and 𝐿(𝜃௉෢)  is its  

likelihood value. It has been shown that the difference between the logarithm of likelihood 

of model 𝑀ଵ   and model 𝑀ଶ  asymptotically follows a 𝜒ଶ  distribution with 𝑛  degrees of 

freedom: 𝛥 = 2(ln𝐿൫𝜃ଶ෢൯ − ln𝐿൫𝜃ଵ෢൯) ~  𝜒ଶ(𝑛),    (33) 

where 𝑛 is the difference of the number of parameters between model 𝑀ଵ and model 𝑀ଶ. 

The null hypothesis assumes model 𝑀ଵ, and the alternative hypothesis assumes model 𝑀ଶ. 

When the null hypothesis holds, 𝛥 is not significantly large. When model 𝑀ଶ is superior 

over model 𝑀ଵ , i.e. the extra parameters of the model 𝑀ଶ  improve the model fitness 

considerably, 𝛥 will be significantly large. 

2.6.2 Bayes factor 
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In the framework of Bayesian studies, likelihood ratio tests are not valid. However, one can 

compare two models using the Bayes factor, which is the ratio of two models’ marginal 

likelihood. Supposing two models M1 and M2, the Bayes factor B12 is defined as 𝐵ଵଶ = 𝑃𝑟(𝑦|𝑀ଵ)𝑃𝑟(𝑦|𝑀ଶ) 

                             = ∫ ௉௥(௬|ఏభ,ெభ)௉௥(ఏభ|ெభ)ௗఏభഇభ∫ ௉௥(௬|ఏమ,ெమ)௉௥(ఏమ|ெమ)ௗఏమഇమ ,                                     (34) 

where 𝑃𝑟(𝑦|𝑀௉) is the marginal likelihood for model 𝑀௉ over all the values of parameter 

vector 𝜃௉ , which includes ones in both posterior and non-posterior distribution. If 𝐵ଵଶis 

greater than 1, then M1 is better than M2 for data y; otherwise, M2 is superior over M1.  

 Bayesian models can be compared using Bayes factor. However, 𝑃𝑟(𝑦|𝑀௉), the 

integral of the likelihood over the parameters of the model, is difficult to obtain. Several 

methods have been applied to obtain the integral, nevertheless each method has its own 

pros and cons.  

 Bayes factor can also be obtained with the posterior harmonic mean estimator 

(Newton and Raftery, 1994), which only samples 𝜃௞ in the posterior distribution, such that 𝑃𝑟(𝑦|𝑀௉) = ଵாഇೖ( భುೝ(೤|ഇು)).                                                 (35) 

However, it has been shown that harmonic mean estimator tends to over-estimate the 

marginal likelihood, thus resulting in a higher-dimensional model (Lartillot and Philippe, 

2006).  

 Lartillot and Philippe (Lartillot and Philippe, 2006) applied thermodynamic 

integration (Gelman and Meng, 1998) for the Bayes factor in phylogenetic cases (Lartillot 

and Philippe, 2006). Suppose 

Z=𝑃𝑟(𝑦|𝑀) = ∫ 𝑃𝑟(𝑦|𝜃, 𝑀)ᇩᇭᇭᇪᇭᇭᇫ௟௜௞௘௟௜௛௢௢ௗ 𝑃𝑟(𝜃|𝑀)ᇩᇭᇭᇪᇭᇭᇫ௣௥௜௢௥ 𝑑𝜃ఏ .                              (36) 

Similar to the thermodynamic system, when heated, the chain is able to move towards all 

directions and thus explore the entire parameter space; when cooled down, the chain would 

go towards the posterior distribution. Heating the chain is equal to reducing the weights on 
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the likelihood, thus the chain is more dependent on the prior and able to explore the entire 

parameter space with ease; cooling down the chain is equal to putting more weights on the 

likelihood, thus the chain is moving towards the posterior distribution. Therefore, in order 

to obtain the integral of the likelihood over the whole parameter space; the chain is running 

from high temperatures to low temperatures. Let β be a series of continuous numbers from 

zero to 1: 𝛽 = 0, … . ,1ᇩᇭᇪᇭᇫ௞
, thus  

Z=∫ 𝑃𝑟(𝑦|𝜃, 𝑀)ఉ𝑃𝑟(𝜃|𝑀)𝑑𝛽ఉ .                                          (37) 

Despite the accuracy of this method, the equilibration of the MCMC chain for a series of 

temperatures in the thermodynamic integration demands a heavy computational time. 

 If 𝑃𝑟(𝑦|𝜃௉, 𝑀௉)𝑃𝑟(𝜃௉|𝑀௉) is normally distributed, Laplace approximation can also 

be used for the integration (Kass and Raftery, 1995). However, such a requirement (normal 

distribution) is hard to satisfy for phylogenetic data. 

 Furthermore, (Schwarz, 1978) proposed the Bayesian Information Criterion (BIC) 

for the approximation of Bayes factor (see Information criteria below). 

2.6.3 Information criteria 

When the models under comparison are not nested, one can use information criteria, which 

give penalties to the likelihood for the increase of the number of parameters. 

2.6.3.1 Akaike information criterion (AIC)  

Assuming 𝑓(𝑦)  is the true distribution of 𝑦 , the Kullback-Leibler distance (Bonis and 

Kullback, 1959; Kullback and Leibler, 1951) gives a true distance between the two 

distributions  𝑓(𝑦) and 𝑔(𝑦): 𝐼(𝑓; 𝑔) = ∫ ln ቂ௙(௬)௚(௬)ቃ 𝑓(𝑦)𝑑𝑦.    (38) 

When two models 𝑀ଵ and 𝑀ଶ with their respective parameter vectors 𝜃ଵand 𝜃ଶ  are 

compared, we have distance between two models: 𝑤(𝜃ଵ, 𝜃ଶ) = −(𝐸௬ln𝑃𝑟(𝑦|𝜃ଵ) − 𝐸௬ln𝑃𝑟(𝑦|𝜃ଶ)),   (39) 
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where ln𝑃𝑟൫𝑦ห𝜃௣൯  is the logarithm likelihood function of 𝜃௣ , and 𝐸௬ln𝑃𝑟൫𝑦ห𝜃௣൯  is the 

expectation of  ln𝑃𝑟൫𝑦ห𝜃௣൯ regarding the data y. However, for model 𝑀௉, 𝐸௬𝑙𝑜𝑔𝑃𝑟(𝑦|𝜃௉) 

is not equal to the ln𝑃𝑟൫𝑦ห𝜃௉෢൯, where 𝜃௉෢ is the maximum likelihood estimate of 𝜃௉ for a 

single dataset y. ln𝑃𝑟൫𝑦ห𝜃௉෢൯ is biased towards overestimation of 𝐸௬ln𝑃𝑟(𝑦|𝜃௉), because 

the data used to infer the 𝜃௉  are also used to obtain the likelihood value ln𝑃𝑟൫𝑦ห𝜃௉෢൯. 

Akaike deduced that when the number of observations is large enough, the bias is 

asymptotic to K, the dimensionality of the model (Akaike, 1973): 𝐴𝐼𝐶 = −2ln𝐿(𝜃௉෢) + 2𝐾.     (40) 

When the number of observations is small, we could use the corrected AIC (AICc) 

(Burnham and Anderson, 2002) for model 𝑀௉ : 𝐴𝐼𝐶௖ = −2ln𝐿(𝜃௉෢) + ଶ௄(௄ାଵ)ேି௄ିଵ  ,    (41) 

where 𝑁 is the number of the observations. 

 Although AIC is believed to be asymptotic to the Kullback-Leibler distance, it has 

been widely reported that AIC prefers higher dimensional models (Hiroshi, 2000). 

2.6.3.2 Bayesian information criterion (BIC) 

Bayesian information criterion (BIC), which is an approximation of the Bayes factor, is 

another likelihood penalty method (Schwarz, 1978). 

The Bayes factor for two models 𝑀ଵ, 𝑀ଶ is: 𝐵ଵଶ = ௉௥(௬|ெభ)௉௥(௬|ெమ) ,     (42) 

where 𝑃(𝑦|𝑀௉) is the marginal likelihood of model 𝑀௉, and 𝑃𝑟(𝑦|𝑀௉) = ∫ 𝑃𝑟(𝑦|𝑀௉)𝑃𝑟( 𝜃௉|𝑀௉)𝑑𝜃௉.     (43) 

For exponential family distributions, this integration could be approximated using the 

Laplace method (Davies, 2002):   𝑃𝑟(𝑦|𝑀௉) = −ln𝐿(𝜃௉෢) + ଵଶ 𝐾ln(𝑁).     (44) 

Thus BIC can be 𝐵𝐼𝐶 = −2ln𝐿(𝜃௉෢) + 𝐾ln(𝑁).         (45) 
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We see BIC imposes a harsher penalty to the maximum likelihood estimation than AIC 

when 𝑁 > 8. Therefore, in general BIC favors a lower dimensional model than AIC (Xiang 

and Gong, 2005).  

2.6.4 Cross validation 

As we have introduced, the Kullback-Leibler distance between two models 𝑀ଵ  and 𝑀଴ , 

with respective parameters 𝜃ଵ and 𝜃଴, is: 𝐼(𝜃଴; 𝜃ଵ) = ∫ ln ቂ௉௥(௬|ఏబ)௉௥(௬|ఏభ)ቃ 𝑃𝑟(𝑦|𝜃଴)𝑑𝑦 = −(𝐸௬ln𝑃𝑟(𝑦|𝜃ଵ) − 𝐸௬ln𝑃𝑟(𝑦|𝜃଴)), (46) 

If we take 𝑀଴ as the reference model, −𝐸௬ln𝑃𝑟(𝑦|𝜃ଵ) can be the measurement of the fit for 

model 𝑀ଵ, since for the same dataset 𝐸௬ln𝑃𝑟(𝑦|𝜃଴) is always a constant. Hence the cross 

validation (CV) value for 𝑀௉ is defined as (Smyth, 2000): 𝐶𝑉௉ = −𝐸(ln𝑃𝑟൫𝑦ห𝜃௉෢൯) .     (47) 

 As we said, if we use the same dataset to obtain 𝜃௉෢ and ln𝑃𝑟(𝑦|𝜃௉෢), ln𝑃𝑟(𝑦|𝜃௉෢) will be 

biased towards overestimation. Therefore, we should use different datasets for estimating 𝜃௉෢ and calculating ln𝑃𝑟(𝑦|𝜃௉෢).  However, in real situations, the number of datasets is very 

limited. So, one solution is to split the data into two partitions. One partition is used as the 

learning dataset, which is used to infer the parameters of 𝜃௣, and the other partition is the 

testing dataset, which is used to compute ln𝑃𝑟൫𝑦ห𝜃௉෢൯. In order to obtain the expectation of ln𝑃𝑟൫𝑦ห𝜃௉෢൯, the same dataset can be reused several times by being split into different 

random partitions. There are several ways to split the data. N-fold is one way to split the 

dataset: divide the data into N parts, each time, take one part as the learning dataset, and 

take the rest of the dataset (N-1) parts as the testing dataset. Compared with AIC and BIC, 

CV is more accurate (Smyth, 2000), however, it takes more computational time. 

2.6.5 Posterior predictive test 

2.6.5.1 Posterior predictive data 
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Posterior predictive data 𝑦௣௣ are simulated with the parameters drawn from the posterior 

distribution for data y and model M, such that the distribution of 𝑦௣௣ is: 𝑃𝑟(𝑦௣௣|𝑦, 𝑀) = න 𝑃𝑟(𝑦௣௣|𝜃, 𝑦)𝑃𝑟(𝜃|𝑦, 𝑀)𝑑𝜃 = ∫ 𝑃𝑟(𝑦௣௣|𝜃)𝑃𝑟(𝜃|𝑦, 𝑀)𝑑𝜃.  (48) 

The second line of equation 48 shows that the posterior predictive data 𝑦௣௣ and the real 

data 𝑦 are independently conditional on 𝜃. If the model accurately reflects the real data, 

then the posterior predictive dataset would be virtually identical to the real data. Based on 

this assumption, one can examine the similarity between the posterior predictive dataset 

and the original dataset (Gelman, et al., 2003) using different statistics. For instance, mean 

diversity is the mean of the number of observed states per column (site), and can be used to 

check the similarity between the posterior predictive data and the real data (Lartillot, et al., 

2007).  

2.6.5.2 Posterior predictive test 

Posterior predictive discrepancy tests use generalized parameter-dependent statistics. I will 

first introduce classical statistical tests, and then posterior predictive discrepancy tests using 

parameter-dependent test statistics. 

 Model assessment using classical statistics  

Model assessments can be performed using classical statistical tests, such as the χ2 test for a 

contingency table, the χ2 goodness-of-fit test, etc. Let T(y) denote a test statistic. For the χ2 

test, we have: 𝑇(𝑦) = ∑ (ை೔ିா೔)మா೔ே௜ୀଵ  ,                                                    (49) 

where 𝑂௜  is the observed value, 𝐸௜  is the value expected by the model. In the null 

hypothesis 𝐻଴, ∑ (ை೔ିா೔)మா೔ே௜ୀଵ   follows a 𝜒ଶ distribution with N-R degrees of freedom and R 

is the reduction in the degree of freedom. If the model is significantly far from the real data, 
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then  ∑ (ை೔ିா೔)మா೔ே௜ୀଵ  will be large. Let the p value of the test statistic 𝑇 be the tail probability. 

The test then is constructed as 𝑝(𝑦) = 𝑃𝑟(𝑇(𝑌) ≥ 𝑇(𝑦)|𝐻଴) ,    (50) 

where data Y  are under the null hypothesis, y is the observed data. In the case of our 

example, 𝑇(𝑌) follows a 𝜒ଶ  distribution. In the classical statistic test, we only need to 

calculate 𝑇(𝑦), then we can locate 𝑇(𝑦) in the distribution of  𝑇(𝑌) with a 𝜒ଶ table. In the 

context of MLE, the statistic 𝑇(𝑦) does not depend on any unknown parameters and is well 

defined, since all the parameters have already been inferred by maximizing the likelihood. 

 Posterior predictive assessment using discrepancy 

Posterior predictive tests can be used to assess Bayesian models, which classical 

test statistics cannot be applied to. 

In order to perform the model assessment using a test statistic, the null distribution 

should be known a priori. However, sometimes, due to the existence of nuisance 

parameters υ, the statistic 𝑇  is parameter-dependent. Moreover, in the context of the 

Bayesian study, the parameter estimations are obtained by marginalizing over the posterior 

distribution. Therefore, the test statistic T is parameter dependent, and thus its null 

distribution is difficult to estimate. Furthermore, due to the small size of the dataset, or 

irregular parameter space, the null distribution of the statistic is not easily obtained in most 

cases. 

One solution is to make simulations of the null distribution. However, due to the 

presence of unknown nuisance parameters in the model, simulation of the null distribution 

is difficult. Since posterior predictive data 𝑦௣௣|(𝑀, 𝑦) are generated based on the posterior 

distribution of the model M, the posterior predictive data already consider the nuisance 

parameters and the priors of the parameters. Therefore, Rubin proposed using the posterior 

predictive distribution as the reference (Null) distribution for testing the null hypothesis 

model 𝐻଴ (Rubin, 1984). Gelman et.al, used a discrepancy D(y,φ) to denote the parameter-

dependent statistic, and generalized the classical statistical assessments with posterior 
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predictive discrepancy tests (Gelman, et al., 1996). The key to the posterior predictive 

discrepancy test is using the posterior predictive distribution as a null distribution. The p 

value for the posterior predictive test is: 𝑝(𝑦௣௣|𝑦௢௕௦) = ∫ ∫ 𝑃𝑟(𝐷(𝑦௣௣) ≥ 𝐷(𝑦௢௕௦)|𝜃, 𝜐)𝑃𝑟(𝜃, 𝜐|𝑦௢௕௦, 𝐻଴)𝑑𝜃𝑑𝜐.   (51) 

The posterior predictive p value can be directly obtained by counting the frequency. Similar 

to the p value of a classical statistical test, a low posterior predictive p value suggests a low 

risk if we reject the model under the null hypothesis. 

 The generalized parameter-dependent statistics are no longer restricted to the MLE 

context and can be used for any applications, such as goodness of fit tests, likelihood ratio 

tests (LRT) (Protassov, et al., 2002), etc.  

2.7 Data 

Nucleotide sequences are three times longer than amino acid sequences if they contain the entire 

protein-coding information. Nevertheless, the computational time used for inferring 

phylogenetic trees with nucleotide sequences is much less than the one with amino acid 

sequences given a small substitution matrix [4×4] for nucleotides and a large substitution 

matrix [20×20] for amino acids, since the computational time largely depends on the size of 

the matrix. However, the nucleotide data with four characters have a higher chance than the 

amino acid data of experiencing multiple substitutions and saturation, which might impede 

phylogenetic inference. 

Nevertheless, phylogenetic analyses of amino acid data also have their own 

problems. For instance, synonymous substitutions, which change the nucleotide character 

but do not change the character of amino acid, also contain phylogenetic information (Muse 

and Gaut, 1994). Thus, using amino acid data might truncate the necessary phylogenetic 

signals. Recently, researchers developed codon models, in which every three nucleotides 

are transformed into one codon state; in total there are 61 codon states in the codon model 

(Goldman and Yang, 1994; Muse and Gaut, 1994). As a result, codon models dramatically 

increase the computational time considering the large size of the substitution matrix 
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[61×61], but are biologically more realistic and should be preferred (Ren, et al., 2005; 

Whelan, 2008). The choice of the data type is the consequence of a tradeoff among 

computational time, phylogenetic signals, and the biological reasoning.  

3 Challenges of inferring phylogeny and their solutions 

Most inconsistent phylogenies result from either stochastic or systematic errors. Other 

reasons causing incorrect phylogenies include erroneously interpreting paralogous genes as 

orthologous data, or taking genes affected by horizontal gene transfer (HGT) events, etc. In 

this section, only stochastic and systematic errors will be introduced. 

3.1 Stochastic errors 

When a dataset is not large enough, stochastic noise may overwhelm the genuine 

phylogenetic signal and thus reduces the resolution of phylogenetic inference or causes 

stochastic errors. One major outcome of the stochastic error is that nodes in the tree cannot 

be completely resolved with low statistical supports (e.g. low bootstrap values). One way to 

reduce the stochastic error is to employ a large scale dataset (Eisen, 1998; Philippe and 

Telford, 2006) assuming that a dataset with an infinite number of sites would eventually 

receive 100% statistical support. For instance, 106 genes, which are distributed throughout 

all 16 chromosomes of Saccharomyces.cerevisiae genome and represent about 1% of the 

genomic sequence, are used to establish the phylogenetic tree of the genus Saccharomyces 

(Rokas, et al., 2003).  The separate analyses of these 106 genes yield 20 different 

phylogenetic trees, among which 6 topologies receive strong bootstrap (>70%). In contrast, 

the concatenated data with all the 106 genes receive a 100% bootstrap support (Rokas, et 

al., 2003). Thus it was concluded that the stochastic errors have been largely diminished by 

the concatenation of the data.  
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3.2 Systematic errors 

A systematic error/bias occurs when the data violate the assumptions of the model, and 

may yield inconsistent phylogenetic inference. The systematic error is a major impediment 

to phylogenetic inference (Brinkmann, et al., 2005; Felsenstein, 1978; Philippe, et al., 

2004; Phillips, et al., 2004; Rodriguez-Ezpeleta, et al., 2007a). 

 As we have introduced in section 2.5.2.3, 100% bootstrap support does not 

guarantee a true topology. Increasing the size of dataset can only reduce stochastic errors 

(Rokas, et al., 2003), but cannot reduce systematic errors caused by model violations. On 

the other hand, increasing the size of dataset might amplify the systematic errors. Phillips et 

al., (Phillips, et al., 2004) observed a strong compositional bias existing in the data of the 

106 genes analyses (Rokas, et al., 2003). They suggested that the topology inferred by the 

data concatenated with 106 genes (Rokas, et al., 2003) actually is the artefact of the 

compositional bias accumulated in the dataset, and such accumulation of compositional 

bias itself is able to make a tree even without any phylogenetic signals (Phillips, et al., 

2004). Systematic bias obstructs phylogeny not only in large-scale genome datasets, but 

also in single gene or small datasets (Lockhart, et al., 1996; Phillips, et al., 2004). 

 Most systematic biases are caused by the deviations of the over-simplified models 

from the heterogeneous data. In this section, I will briefly introduce various types of 

heterogeneities in real data, followed by various models handling these heterogeneities. 

Heterotachy, also a type of heterogeneity, will be introduced in detail in the next section.  

3.2.1 Heterogeneities in real datasets 

Heterogeneities of the evolutionary process, e.g. substitution rate, stationary probabilities, 

etc., manifest themselves in various ways: across sites and genes, along branches or 

throughout time, or both - across sites and time. 

3.2.1.1 Heterogeneities among states 
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Under selective pressure, different amino acid states have different substitution rates partly 

correlated with their physicochemical properties. For instance, Isoleucine has a high 

substitution rate with Valine because of their common hydrophobic properties (Whelan and 

Goldman, 2001). For the DNA sequences, because of different structures between purines 

(A, G) and pyrimidines (C,T), the transitions, substitutions between the same type of bases 

(e.g. A↔G, C↔T), happen much more frequently than the transversions, substitutions 

between different types of bases (i.e. purines↔pyrimidines). 

3.2.1.2 Heterogeneities across sites 

One of the well-known heterogeneities is the variation of the substitution rates across sites 

(RAS) (Uzzell and Corbin, 1971). Due to functional and structural restriction, some sites 

(e.g. active sites) evolve slowly, while other sites evolve fast; in other words, the 

substitution rates are heterogeneous among sites. It is shown that RAS signals are widely 

distributed in real data, and failing to model the rate variation across sites would impair 

phylogenetic inference (Yang, 1996b).  

 Moreover, heterogeneities across sites present not only in the form of substitution 

rates (RAS), but also in other evolutionary patterns. For instance, amino acids which are on 

the surface of a protein are more likely substituted by hydrophilic amino acids than by 

other types of amino acids due to physicochemical reasons (Goldman, et al., 1998). For 

nucleotide data, synonymous substitutions, which don’t modify the amino acid in a protein 

sequence, would have higher probabilities of occurring than non-synonymous substitutions 

on the sites with strong functional constraints. However, in the case of sites under positive 

selection, non-synonymous substitutions occur more frequently than synonymous 

substitutions. Hence, the ratio of the number of substitutions between non-synonymous and 

synonymous (ω=dN/dS) can be an evidence of different evolutionary mechanisms for DNA 

sequence (Miyata and Yasunaga, 1980). It has been observed that the ratios of non-

synonymous/synonymous (ω) are heterogeneous across sites (Huelsenbeck, et al., 2006; 

Nielsen and Yang, 1998). For example, Hughes and Nei observed that ω is bigger than 1 in 

the region of the major histocompatibility complex (MHC), and ω is much smaller and 
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close to zero in other regions of the gene (Hughes and Nei, 1988). In the codon context, 

sites with different codon positions are also observed with different substitution patterns, 

e.g. different transition/transversion rates (Huelsenbeck and Nielsen, 1999). 

3.2.1.3 Heterogeneities across time 

Substitution rates also vary across lineages. Felsenstein first observed that fast 

evolving species, which have long branches, are easily grouped together in phylogenetic 

reconstructions, even if they are not related (Felsenstein, 1978). This phylogenetic artefact, 

LBA, has been blamed for many incorrect phylogenetic inferences (Brinkmann and 

Philippe, 1999; Felsenstein, 1978). Failure to handle evolutionary rate variation across 

lineages might lead to the LBA artefact (illustrated in Figure 12) (Felsenstein, 1978).  As 

introduced before, parsimony is sensitive to LBA, however, it has been shown that 

likelihood methods are also sensitive to the LBA (Brinkmann and Philippe, 1999; 

Gajadhar, et al., 1991; Leipe, et al., 1993; Philippe, 2000; Philippe, et al., 2000; Philippe, et 

al., 2005a; Sogin, et al., 1989; Stiller and Hall, 1999).  
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Figure 12. An illustration of the LBA artefact. 

Tree A represents the true topology; tree B is the inferred topology caused by the LBA artefact. In 

tree A, Species cc and dd are sister groups; species dd evolves much faster than species cc. If a 

phylogenetic method fails to recognize that species dd evolves much faster than species cc,  species 

dd will be considered far related with cc and might be placed at the base of the tree together with 

the outgroup. 

 

Moreover, compositional bias, in which G and C contents vary widely across 

lineages, can cause strong incongruence with different reconstruction methods (Hasegawa 

and Hashimoto, 1993; Jeffroy, et al., 2006; Lockhart, et al., 1994; Phillips, et al., 2004). 

The reason of the incongruence of the tree reconstruction methods is that compositional 

bias violates the assumption of Markov model that the state frequencies are “stationary” 

along the Markov chain. 

3.2.2 Current phylogenetic models handling heterogeneities 

In order to reduce systematic errors caused by heterogeneities of the data, more realistic 

models (Felsenstein, 1981; Hasegawa, et al., 1985; Kimura, 1980; Lartillot and Philippe, 

2004; Pagel and Meade, 2004; Yang, 1993) considering different types of heterogeneities 

have been developed in phylogenetics. 
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3.2.2.1 Different substitution models handling heterogeneities among states 

In the preliminary Jukes-Canter model, all the substitution rates in the instantaneous 

exchange rate matrix and the stationary probabilities are equal (Jukes and Cantor, 1969), 

such that 

𝑅 = ൦ − 𝛼ଵ𝛼ଶ − 𝛽ଵ 𝛾ଵ𝛿ଵ 𝜀ଵ𝛽ଶ 𝛿ଶ𝛾ଶ 𝜀ଶ − 𝜂ଵ𝜂ଶ −൪,  

αଵ = βଵ = γଵ = δଵ = εଵ = ηଵ = αଶ = βଶ = γଶ = δଶ = εଶ = ηଶ, 

λ =[ λ1, λ2, λ3,λ4],  λଵ = λଶ = λଷ = λସ .                                (52) 

Felsenstein proposed another model (model Felsenstein 81), which relaxes the assumption 

of equal stationary probabilities (λ1=λ2=λ3=λ4) (Felsenstein, 1981). Whereas considering 

different substitution rates between transitions and transversions, Kimura proposed Kimura 

2-parameter model (model K80) allowing for different transition and transversion rates (i.e. 

α=β=ε=η≠γ=δ) but assuming equal stationary probabilities (Kimura, 1980). Furthermore, 

various more realistic models have been proposed to relax the constraint of substitution 

rates and stationary probabilities for better model fits to the real data (Hasegawa, et al., 

1985; Lanave, et al., 1984; Rodriguez, et al., 1990; Tamura and Nei, 1993; Tavare, 1986). 

Ultimately, a general time reversible model (GTR), which allows for different substitution 

rates (i.e.α≠β≠γ≠δ≠ε≠η) and different stationary probabilities (i.e.λ1≠λ2≠λ3≠λ4), was 

proposed (Lanave, et al., 1984; Rodriguez, et al., 1990; Tavare, 1986),  

 Unlike nucleotide data which only consist of four states, amino acid sequences 

contain twenty states, thus the number of parameters for the substitution rate matrix reaches 

190 in the GTR model.  Inferring such a large number of parameters could be unrealistic if 

the dataset is not big enough. For small amino acid datasets, empirical substitution 

matrices, which were already inferred from a collection of real datasets, are normally used. 

Currently, there are several empirical matrices generated with different types of data and/or 

different methods. For instance the JTT matrix can be used for a nucleotide dataset (Jones, 
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et al., 1992); the Adachi and Hasegawa’s matrix is special for mitochondrial sequence 

(Adachi and Hasegawa, 1996); the WAG matrix was obtained with a maximum likelihood 

method (Whelan and Goldman, 2001); unlike the WAG matrix, the LG matrix was 

generated with a larger dataset and by taking substitution rates varying across sites into 

account (Le and Gascuel, 2008). 

 

3.2.2.2 Models handling heterogeneities across sites 

We can handle heterogeneities across sites by partitioning the data according to their gene 

functions, or codon positions (Nielsen, 1997; Ronquist and Huelsenbeck, 2003; Yang, 

1996a), etc. However, in general, the variations across genes/codon positions are not 

apparent, or the solution to the partition of the data is not yet clear. In particular, 

substitution rates also vary within genes. An alternative way is to fit the heterogeneous data 

into a known distribution, e.g. gamma distribution (Huelsenbeck and Nielsen, 1999; Yang, 

1993; Yang, 1994). Moreover, Gu et al., presented an invariant+gamma model, which 

consists of two parts, one is for the invariant sites, and the other is for the variant sites 

following a gamma distribution (Gu, et al., 1995). However, if the distribution of the 

heterogeneity is unknown or hard to deduce, one can fit the heterogeneous data with a 

mixture model (Huelsenbeck and Suchard, 2007; Lartillot and Philippe, 2004). Assuming 

that substitution rates are dependent on the adjacent sites, Felsenstein and Churchill 

suggested a Hidden Markov Model (HMM) to handle substitution rate variation across sites 

(Felsenstein and Churchill, 1996). This model allows for interdependence between 

neighboring sites, however, it does not assume any distributions of the substitution rates. 

Rate across sites model 

Yang suggested a rate across sites (RAS) model, in which each site has its own substitution 

rate (Yang, 1993). However, the exact site-specific substitution rate (r) is unknown, 

therefore the likelihood of a site 𝑦௜ is the likelihood integrated over all possible rates: 𝑃𝑟(𝑦௜|𝜃) = ∫ 𝑃𝑟( 𝑦௜|𝑟)𝑓(𝑟)𝑑𝑟,                                                (53) 
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where 𝑃(𝑦௜|𝑟)  is the likelihood conditional on rate 𝑟 ;  𝑓(𝑟)  is the probability density 

function of the substitution rate. As we have introduced, the probability matrix from node j-

1 to node j for site i with n expected substitutions (i.e. branch length=n) is 𝑃𝑟(𝑦௜,௝|𝑦௜,௝ିଵ) = 𝑒௡ொ.                                                       (54) 

When a site is assigned to a substitution rare r, we have 𝑃𝑟(𝑦௜,௝|𝑦௜,௝ିଵ, 𝑟) = 𝑒௡௥ொ.                                                  (55) 𝑃𝑟(𝑦௜|𝑟) can be obtained using the pruning program (equation 18). 

Yang suggested a gamma distribution for the heterogeneities of substitution rates (Yang, 

1993), such that 𝑓(𝑟) = 𝛽ఈ𝛤(𝛼)ିଵ𝑒ିఉ௥𝑟ఈିଵ.                                                 (56) 

Let α=β, thus the mean and the variance of the gamma distribution are 1 and 1 𝛼ൗ  

respectively. Therefore, the heterogeneity of the data is controlled by the hyper-parameter 

α, such that the smaller α is, the more heterogeneous the data are in respect to substitution 

rates (Figure 13).  
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Figure 13.  Gamma distributions. 

The gamma distribution has a shape parameter α and a scale parameter β, with mean α/β and 

variance α/β2. Since the rate is a proportional factor, β is fixed to be equal to α so that the mean of 

the distribution is 1 and the variance is l/α. The single parameter α is then inversely related to the 

extent of rate variation. The distribution with α ≤1 is L-shaped, meaning that most sites have very 

low substitution rates or are virtually 'invariable', while a few sites exist (substitutional 'hot spots') 

with very high rates. The distribution with α > 1 is bell-shaped, meaning that most sites have 

intermediate rates while few sites have very low or very high rates. When α approaches ∞, the 

model reduces to the case of a constant rate for all sites. By adjusting α, the gamma model can 

account for different levels of rate variation in real data. (Yang, 1996b) 
 

 Since it is difficult to integrate over all possible rates because of the computational 

time, Yang suggested a model (Yang, 1994), in which substitution rates follows a discrete 

gamma distribution with N categories of equal probabilities. The mean of the discrete 
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gamma distribution is one, and the rate of each category is its median. Thus, the likelihood 

of a given site i is the average likelihood of all categories rate (k=1,…,N): 𝑃𝑟(𝑦௜|𝑟, 𝜃) = ∑ ଵே 𝑃𝑟ே௞ୀଵ (𝑦௜|𝑟௞, 𝜃).                                                (57) 

Furthermore, based on its each category’s posterior probability: 𝑃𝑟(𝑟௞|𝑦௜, 𝜃) = భಿ ௉௥(௬೔|௥ೖ,ఏ)∑ భಿ ௉௥(௬೔|௥ೖ,ఏ)ೖಿసభ  ,                                                 (58) 

site i would be assigned to the category that has the highest posterior probability.  

 Currently, most model-based phylogenetic analyses are using the discrete gamma 

rate model. It is widely accepted that RAS models perform much better than the non-RAS 

models and improve the quality of phylogenetic inference (Yang, 1996b). 

Mixture model 

If we don’t know the distribution of the heterogeneous data, we can use a mixture model. A 

mixture model consists of several components, and each component has its own set of 

values for heterogeneous variables (McLachlan and Peel, 2000). Mixture models can be 

categorized into finite and infinite mixture models.   

Finite mixture model 

 In the finite mixture model, the number of components is defined a priori. If we 

don’t know which component a site is allocated to, the likelihood of site i is obtained by 

summarizing the likelihood of all components weighted by their probabilities 𝑊௞:  𝑃𝑟(𝑦௜|𝜃) = ∑ 𝑊௞𝑃𝑟(𝑦௜|𝜃௞)ே௞ୀଵ ,                                                  (59) 

where ∑ 𝑊௞ = 1ே௞ୀଵ . 

Similar to the discrete gamma rate model, the posterior probability of site i in the k 

component is: 𝑃𝑟(𝜃௞|𝑦௜) = ௐೖ௉௥(௬೔|ఏೖ)∑ ௐೖ௉௥(௬೔|ఏೖ)ೖಿసభ   .                                            (60) 

Site i will be allocated in the component that has the highest posterior probability. 
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 Finite mixture models have been widely used in phylogenetic analyses. For 

instance, Yang developed a mixture model, which accounts for the heterogeneities of the 

non-synonymous/synonymous ratio (i.e. dN/dS) across sites (Yang, et al., 2000). Pagel and 

Meade developed a mixture model for the heterogeneities of the substitution matrix across 

sites (Pagel and Meade, 2004). 

 We can determine the number of components in the mixture model by selecting the 

best-fit model from a set of candidate models with different number of components 

(Kolaczkowski and Thornton, 2008; McLachlan and Peel, 2000; Steel, 2005). Several 

model selection methods could be employed to determine the number of components, as we 

have introduced earlier, Bayes factor, AIC, BIC, cross-validation, posterior predictive test 

(Gelman, et al., 1996), etc. However, determination of the number of components in the 

finite mixture model could be a challenge, especially in phylogenetic analyses 

(Kolaczkowski and Thornton, 2008). 

 One difficulty for the finite mixture model is the change of dimensions for the 

parameter space (i.e. the change of the number of components in mixture model) during the 

inference of phylogeny. In the MCMC-based Bayesian model, a reversible jump algorithm 

is introduced to allow MCMC traverse among different parameter spaces using a Hasting 

ratio, which integrates the density ratio between two different dimensions of parameter 

spaces (Green, 1995). Thereby, such a mixture model is a fully Bayesian model, in which 

the number of components and the parameters of mixture model can be jointly estimated. 

Infinite mixture model 

An infinite mixture model can be an alternative way to avoid determining the number of 

components in the mixture model. Moreover, the infinite mixture model allows for a more 

realistic situation than a finite model, which only allows a few components. One popular 

infinite mixture model is using a Dirichlet process prior (Antoniak, 1974; Blackwell and 

MacQueen, 1973; Escobar and West, 1995; Ferguson, 1973; Neal, 2000).  

 In phylogenetic analyses, infinite mixture models based on the Dirichlet process 

have been developed to account for various heterogeneities across sites: e.g. the amino acid 
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replacement process with respect to stationary frequencies(Lartillot and Philippe, 2004); 

the non-synonymous/synonymous ratio (i.e. dN/dS) (Huelsenbeck, et al., 2006; Rodrigue, 

et al., 2008a), substitution rates (Huelsenbeck and Suchard, 2007), etc. 

An Infinite Mixture model via a Dirichlet process 

Supposing a measurable space (W, B), Bk , k =1,... K; ƩBk =W, a Dirichlet process 

(Antoniak, 1974) generates a random probability measure D on the measurable space (W, 

B), such that   ൫𝐷(𝐵ଵ), … , 𝐷(𝐵௄)൯~𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛(𝛼𝐷଴(𝐵ଵ), … , 𝛼𝐷଴(𝐵௄)),             (61) 

where 𝐷଴(𝐵௞) is a base distribution, α is a hyper-parameter to control the shape of the 

Dirichlet distribution. 

The Dirichlet process can be realized with a Pόlya urn scheme (Blackwell and 

MacQueen, 1973). Suppose we have observations i=1,…N with its variable 𝜃௜ , When 

integration over D in equation 61 , we obtain  𝜃௜|𝜃ଵ, … . , 𝜃௜ିଵ~ ଵ௜ିଵାఈ ∑ 𝛿൫𝜃௝൯௜ିଵ௝ୀଵ + ఈ௜ିଵାఈ 𝐷଴,                             (62) 

where 𝛿൫𝜃௝൯ is the distribution concentrated at  𝜃௝ . This formula shows that 𝜃௜  is likely 

sampled with a given value which has already been sampled in the past. The Dirichlet 

process can also be easily understood via the example of the famous Chinese restaurant 

process. Supposing we already have i customers taking k tables in a Chinese restaurant, the 

probability for the i+1th customer sharing a table with current customers or having his/her 

own table depends on the number of customers of the current tables and the capacity of the 

restaurant with a hyper-parameter α. 

 The Dirichlet process has been used as a non-parametric prior for the infinite 

mixture model (Escobar and West, 1995; Neal, 2000). By integrating over the mixing 

proportion and letting the number of components K go to infinity, we have the prior for 

observation i being assigned to a components c 𝑃𝑟(𝑐௜ = 𝑐|𝑐ଵ … , 𝑐௜ିଵ) = ௡೔,೎ାఈ ௄ൗ௜ିଵାఈ ,                                               (63) 
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where 𝑛௜,௖ is the number of observations assigned to the component c which site i belongs 

to. When the hyper-parameter α is high, site i tends to have its own components; when α is 

low, site i tends to share a component with others. Thus the number of components is 

dependent on the hyper-parameter α.  Moreover, whether a site is assigned to a component 

depends on assignments of other sites. In the context of maximum likelihood estimation, 

the integration over other sites is difficult. Bayesian MCMC makes it possible for the 

infinite mixture model to be implemented with a Dirichlet process. For instance, Neal 

provided algorithms for the Dirichlet process mixture model using Gibbs sampling in the 

frame of Bayesian MCMC and showed that the Dirichlet process mixture model is an 

efficient method to account for heterogeneities of the data (Neal, 2000). 

CAT model 

Due to functional restrictions or physicochemical effects of the environment, some 

sites might strongly favor some particular states, or there are more multiple substitutions at 

some sites than other sites. Therefore, different sites might experience different stationary 

probabilities. Thus, applying a single stationary frequency vector for all sites might lead to 

phylogenetic artefacts (Lartillot, et al., 2007). Lartillot and Philippe used a Dirichlet 

process to model the heterogeneities of the amino acid replacement across sites by having 

different stationary frequencies for different sites in a Bayesian MCMC framework 

(Lartillot and Philippe, 2004). The model fit assessments showed that the CAT model 

performs better than the standard models (Lartillot, et al., 2007). Moreover the CAT model 

has shown an improved capability to detect multiple substitutions in comparison with 

standard homogeneous matrix based methods and thereby has a trend to reduce the Long 

Branch Attraction artefact (Lartillot, et al., 2007).   

3.2.2.3 Model handling heterogeneities along the time 

Homogeneous Markov models assume that state frequencies are constant along the 

tree, however, this model assumption impedes phylogenetic inference due to compositional 

bias in the data (Jeffroy, et al., 2006; Phillips, et al., 2004). A series of models have been 



 

 

47

 

developed to consider the composition change over the time (Blanquart and Lartillot, 2006; 

Blanquart and Lartillot, 2008; Foster, 2004; Galtier and Gouy, 1995; Galtier and Gouy, 

1998; Yang and Roberts, 1995). In this context, we use the term “base/state frequencies” 

instead of “stationary frequencies” to respect the changing of base composition in the 

model. Aiming at compositional bias, in the framework of distance methods, Galtier and 

Gouy presented a new way to calculate the evolutionary distance, which assumes base 

frequencies differ over species (Galtier and Gouy, 1995). In the framework of the 

likelihood method, a non-homogeneous Markov model, in which each branch has its own 

set of base frequencies (Galtier and Gouy, 1998; Yang and Roberts, 1995), was also 

proposed. Such a model is no longer time reversible, and its likelihood is dependent on the 

location of the root. However, this model consists of 2S-1 sets of base frequencies (S: the 

number of species in the tree). However, in real situations, compositional heterogeneity 

may not necessarily exist across all lineages. Foster developed another non-homogeneous 

Markov model, which allows for base frequencies changing at a predefined internal node 

(Foster, 2004). Nevertheless, determining the predefined internal node, at which base 

frequencies change, requires advanced knowledge or additional tests. Later, Blanquart and 

Lartillot proposed a breakpoint (BP) model in which the occurrence of the breakpoint, i.e., 

the change of base frequencies, follows a Poisson distribution along the tree (Blanquart and 

Lartillot, 2006; Blanquart and Lartillot, 2008). They showed that the CAT+BP model, 

which is a combination of the BP and the CAT model, is able to allow for base frequencies 

variation across time and sites, and recover the true topology, for which the CAT model 

fails when used alone. 

4 Heterotachy models 

4.1 Heterotachy phenomenon 

Substitution rates vary not only across sites and lineages, but also across both sites and time 

simultaneously. Heterotachy (Greek: héteros: different; táchos: speed), is a term to 
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generally describe such substitution rates varying across sites and time (Lopez, et al., 

2002).  

4.1.1 Covarion hypothesis 

Heterotachy was first suggested with covarion hypothesis (Fitch, 1971). The covarion 

(COncomitantly VARIable codON) hypothesis suggests that at a given time point along an 

evolutionary tree, due to structural and physicochemical properties, some sites are free to 

be substituted while others are not; however, at other time points, some sites, which were 

unable to change earlier, are able to be substituted, while other sites become temporarily 

constant (Fitch, 1971). More specifically, this hypothesis suggests the existence of four 

types of sites in a dataset at a particular evolutionary time point: temporary variable sites, 

which currently are able to be substituted but were/will be invariant before/in the future; 

permanently variable sites, which are able to be substituted all the time; invariable sites, 

which are not free to be substituted temporally but were/might be able to be substituted 

before and/or in the future; permanently invariant sites, which are constant along the whole 

tree. In the covarion hypothesis, due to functional and structural restrictions, sites are 

concomitantly into several functional and structural groups; in other words, sites are not 

independent. The phenomenon described in the covarion hypothesis can be observed. For 

example, site 39 of the bovine ribonuclease A sequence is invariable when site 38 is 

negatively charged; once site 38 is substituted into a non-negatively charged amino acid, 

site 39 is free to vary (Fitch and Markowitz, 1970).  

4.1.2 Heterotachy 

The covarion phenomenon can be viewed as a special case of heterotachy. For instance, if a 

site stays in the variable state of the covarion process longer than other sites along one part 

of the tree, this site would be considered evolving faster in this part of the tree; if a site 

stays in the variable state shorter than other sites along one part of the tree, this site would 

be considered evolving more slowly along this part of the tree. 
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 However, heterotachy is not merely restricted to concomitantly variable codons 

(covarion) which are due to the functional and structural shift. The causes of heterotachy 

are complicated, and many cannot be totally explained. For instance, using 2,038 sequences 

of vertebrate mitochondrial cytochrome b, Lopez and his coworkers observed that a large 

proportion of this dataset (about 95% of the variable positions) is heterotachous, and some 

heterotachy is unlikely caused by the functional shift (Lopez, et al., 2002). Moreover, 

defined by the heterotachy, substitution variations within site are not necessarily correlated 

among sites. 

 A lot of evidence has supported the existence of heterotachy. It has been shown that 

the covarion hypothesis is able to explain the evolution of Cu, Zn superoxide dismutase 

(SOD) in mammals and plants (Fitch and Ayala, 1994a; Fitch and Ayala, 1994b; Miyamoto 

and Fitch, 1995). Moreover, compared with the one-parameter model (Jukes and Cantor, 

1969) and the gamma version of the one-parameter model (Nei and Gojobori, 1986), 

simulated data based on the covarion model are much closer to the real data with respect to 

the proportions of the unvaried codons within the two monophyletic groups (mammals and 

plants) (Miyamoto and Fitch, 1995). A new statistical test on large scale plastid genomes 

has shown evidence of covarion drift in 26 out of 57 genes (Ane, et al., 2005). Based on 

different functions, Rodriguez-Ezpeleta et al., divided the plastid dataset (Lockhart, et al., 

2006) into three datasets: translation, RNA polymerase, and photosynthesis datasets; with 

three sub datasets, they obtained three trees with extremely different branch lengths 

(Rodriguez-Ezpeleta, et al., 2007b). Figure 14 illustrates the heterotachy existing in a 

dataset of animal mitochondrial (116 species and 1,858 sites). 
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Figure 14. Variation of substitution rates across time and sites.  

Animal mitochondrial data (116 species and 1,858 sites), which consist of three monophyletic 

groups: arthropods, sponges, and deuterostomes, have been analyzed. The substitution rate of each 

site in different groups is estimated. A three dimensional plot of rates for the three groups shows 

that substitution rates do not perfectly follow a RAS model: for a given site, substitution rates are 

not proportional among arthropods, sponges and deuterostomes. Sites that evolve slowly in one 

subgroup can evolve quite fast in other subgroups. For example, one site (indicated by the arrow) 

evolves very slowly, almost constant, in sponges and deuterostomes, however, it evolves quite fast 

in the arthropod group, in which the rate goes up to about 42. 

 

 

Heterotachy is observed not only in orthologous but also in paralogous genes. For 

instance, in the anciently duplicated paralogous genes of the Elongation factors, amino 

acids in the position 351 of the EF-2 subgroup are constant, while the corresponding ones 
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in the EF-1α subgroup accumulate many substitutions. A modified chi-square test shows 

that substitutions are not evenly distributed among sites and taxa (Lopez, et al., 1999). 

4.2 Impacts of heterotachy on phylogenetic inference 

Lockhart demonstrated that an uneven distribution of invariant sites along the tree could 

mislead the phylogenetic reconstruction (Lockhart, et al., 1996). Oxygenic 

photosynthesizers use chlorophyll (Chl) as their major photosynthetic pigment, while all 

known anoxygenic eubacteria use bacteriochlorophyll (BChl), which corresponds to two 

separate genes, bchL and bchX. Burke used the maximum likelihood method to test 

whether the evolution of Chl preceded BChl (Burke, et al., 1993). Since nifH is widely 

distributed in archaebacteria and eubacteria, nifH should be the ancestor; so the test is to 

find out where the outgroup nifH is posited in the tree relative to Chl and BChl. Possible 

placements of nifH are shown in Figure 15. nifH in position 1 implies that BChl arises 

earlier than Chl; nifH in position 2 implies that Chl could occur as early as BChl.  

 

 

Figure 15.  Unrooted tree describing the relationship between biosynthetic genes.  

Two of five possible placements for attachment of the nifH outgroups are shown as (1) and (2). 

(Lockhart, et al., 1996) 

 

Their results showed that bchX is the earliest divergent gene (position 1) (Burke, et al., 

1993). However, Lockhart observed that invariant sites are unevenly distributed among the 

genes: most invariable sites are concentrated in chlL and bchL(Table 1) (Lockhart, et al., 

1996). They suspected that such an uneven distribution of invariant sites may cause nifH to 

group together with bchX irrespective of the phylogenetic signals. Furthermore, when only 
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sites that vary in chlL/bchL are included in the analyses, Burke’s topology is no longer 

significantly supported. Burke’s topology becomes significant only when a large number of 

invariant sites are included. Lockhart (Lockhart, et al., 1996) argued that in maximum 

likelihood estimation, sites are supposed to be independently and identically distributed 

(i.e. i.i.d.) for the substitution pattern. However, the invariant sites in this dataset are 

apparently not independently distributed due to functional restrictions. Therefore, including 

such a large number of unevenly distributed invariant sites in the current model which only 

accounts for substitutions will not provide a comparable true phylogenetic signal, on the 

other hand these invariant sites might mislead phylogenetic analyses. 

 

 

Table 1. Estimates of the number of codons free to vary in an alignment of biosynthetic and 
nitrogenase reductase genes. 
(Lockhart, et al., 1996) 
  

 Kolaczkowski and Thornton (KT) studied the impact of heterotachy on the 

phylogeny with different reconstruction methods: maximum parsimony (MP), maximum 

likelihood and Bayesian MCMC (Kolaczkowski and Thornton, 2004). 
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Figure 16. An illustration of simulated heterotachous data in the KT test. 

 A heterotachous dataset is generated by concatenating two datasets with trees having different 

branch lengths.  

 Adapted from (Kolaczkowski and Thornton, 2004) 

 

 For simplicity, all datasets in this simulation study consist of four species (A, B, C 

and D). A simulated heterotachous dataset was generated by concatenating two datasets 

which were simulated with the same topology but different branch lengths, i.e. one external 

branch is short in one component, and the corresponding branch in the other component is 

long (Figure 16). The level of heterotachy is therefore indicated by the ratio of lengths 

between the long branch (p) and the short one (q). To create conditions that are difficult for 

phylogenetic inference, they designed the branch lengths in such a way that if one external 

branch is long, then its sister branch would be short (Felsenstein zone). When the internal 

branch r is long enough, the correct topology could be recovered. Therefore, the minimal 

length of the internal branch is an indicator of the sensitivity of the methods towards the 

inconsistency. KT shows that the systematic error caused by heterotachy has seriously 

impaired the phylogenetic inference with current phylogenetic methods. Moreover, based 

on the results of their simulations, they concluded that MP is superior over the parametric 

methods (i.e. maximum likelihood and Bayesian MCMC) against systematic errors when 

heterotachy is present in the dataset. They argued the reason parametric methods are more 

sensitive to the heterotachy than the MP for the heterotachous dataset is that heterotachous 

data violate the assumption of the model that evolution is homotachous. When the data 
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violates the model’s assumptions, the model will fail to be robust against this systematic 

error. Nevertheless, since the maximum parsimony is not a model-based method, the model 

violation is not an issue for the maximum parsimony.  

 However, all of their simulated data, which consist of two partitions with highly 

different branch lengths, are unrealistic. Philippe et al., analyzed different levels of 

heterotachous datasets with different values of τ, a parameter indicating the levels of 

heterotachy (Philippe, et al., 2005b). Their results show heterotachy decreases the accuracy 

of both maximum likelihood and parsimony methods; moreover, the maximum likelihood 

methods outperform the parsimony methods except for the extreme cases of heterotachy, 

which are used by KT and seem almost impossible in the real world. Moreover, simulations 

and analyses in the KT study do not consider variation of substitution rates across sites, 

which exists virtually in all datasets. Thus they ignore the facts that using RAS models, 

which are applied in most probability-based methods, might be capable of handling the 

heterotachous process although with limited abilities (Wang, et al., 2008). 

 Recently, Ruano-Rubio and Fares analyzed the impacts of heterotachy using 

simulations inspired by the covarion process (Ruano-Rubio and Fares, 2007). The original 

covarion process is a continuous time Markov-modulated Markov model allowing within-

site substitution rate variation across time and the switches among substitution rates could 

happen several times along one branch (Galtier, 2001) (see section  4.3.2). However, they 

believe that within-site substitution variation across time does not necessarily cause 

systematic errors, while the within-site substitution variations across lineages might have 

higher chances of causing systematic errors. Therefore their model for simulation only 

allows substitution variation across lineages (i.e. branches) and the internal nodes are the 

divergent points for the switches of rates, so one branch has only one single substitution 

rate. Variable substitution rates across sites and branches follow a discrete gamma 

distribution Γ(α) with k number of equal probability rate categories. If the data only contain 

the RAS process, one site will belong to a rate category along the entire tree. For the 

heterotachy process, a site can switch to another rate category at an internal node. A 
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coefficient θ is used to indicate the level of correlation between substitution rates transiting 

at an internal node (a divergent point) (Figure 17). The value of θ indicates the proportion 

of sites whose rate category is unchanged at the internal node, whereas (1 − θ) indicates the 

proportion of sites that might change to another rate category. A high value of coefficient θ 

(close to one) suggests a high conservation for substitution rates around an internal node. 

 

 

 

A 
 

B 

Figure 17. Covarion-like model used for the study.  

(A). Site relative rate categories may change across the two innermost nodes of the tree. 

Conservation coefficients θnα, θnβ , and θnγ represent the rate category transition probabilities 

between the node (n) and each branch and beyond. (B) The resulting overall model is a quartet, 

with four resolved RAS processes and six conservation coefficients. We collapsed coefficients at 

the inner branch into one, θab, being θai and θib equal to θ ½ab for simplicity. 

(Ruano-Rubio and Fares, 2007) 

  

All simulated data are generated with trees consisting of four subgroups of taxa. The 

simulation setting is illustrated in Figure 17. A maximum likelihood method with discrete 

gamma rates is applied to infer the topology. The proportion of RELL (Kishino and 

Hasegawa, 1989) for the interested topology is used to indicate the support of the topology. 
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Three simulations were made to study the impacts of the coefficients and the distribution of 

α along a tree on the phylogenetic inference.  
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B 

 

C 
 

D 

Figure 18. Simulation settings for the Ruano-Rubio and Fares paper (2007).  

A tree consists of four subgroups, of which a1 and a2 are the sister groups, b1 and b2 are the sister 

groups. θ1, θ2  and θab are coefficients described in Figure 17. For figure A, B, and C, the lengths of 

a1, b1, a2 and b2 are set to 1. 

(A). The first simulations, where θab =1, θ1 and θ2 are variable.  (B). The second simulations, where 

θ1= θ2= θ12, θab is variable. (C). The third simulations, where θ1= θ2= θ12, θab=1, Γ(α1) and Γ(α2) are 

the shapes of discrete gamma RAS for the subgroups a1and a2 respectively. (D). An example of 

simulations for LBA, where the lengths of a1 and b1 are set to 2, and the lengths of a2 and b2 are set 

to 0.5, θab=1, α1 and α2 variable. When α1>α2, an LBA artifact ((a1,b1),a2,b2) will have a high  RELL 

support. 

(Ruano-Rubio and Fares, 2007) 
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 The purpose of the first set of simulations is to examine the impact of conservation 

between two sister groups (e.g. a1 and a2). As illustrated in Figure 18A, θab  is fixed at 1. If 

θ1 = θ2, the sister groups will share the same degree of covariance. A close value between 

θ1 and θ2 indicates that there are similar evolutionary effects on these two sister groups. As 

expected, the simulations show that a large difference between θ1 and θ2 leads to a high 

probability of the wrong topology. α is the shape of discrete gamma distribution for the 

substitutions. The simulations also indicate that a high level of heterogeneity of the data 

(small value of α) would exacerbate the systematic error caused by heterotachy, while a 

low level of heterogeneity of data (large value of α) would alleviate the bias. Furthermore, 

it was observed that adding more taxa will also reduce the bias.  

 In the second set of simulations (Figure 18B), θ1 is set to be equal to θ2. When the 

non-sister group coefficient θab is decreased and both θ1 and θ2 are increased, there will be 

a higher value of the RELL support for the right topology. 

 In the third set of simulations (Figure 18C), the impacts of subgroup discrete RAS 

gamma shape α on the phylogenetic inference are examined. As illustrated in Figure 18C, 

each subgroup has its own value of α, which describes the rate variation across sites. 

Simulations show that when θ12 is high (close to 1) and the level of subgroup rate variation 

across sites is high/medium (α<1), the LBA and LBR artefacts can occur, and the 

occurrence depends on the branch lengths. For instance, when α1>α2, the branch lengths for 

simulation are illustrated in Figure 18D (Felsenstein zone), an LBA artefact ((a1,b1),a2,b2) 

will have a high  RELL support. 

 The simulations (Ruano-Rubio and Fares, 2007) indicated that likelihood gets 

strongly influenced if heterogeneity differs over lineages. Moreover, different situations of 

heterotachy might induce different types of phylogenetic artefacts, LBA or LBR, when a 

maximum likelihood homotachous model is applied. However, the conditions under which 

the data cause phylogenetic artefacts are complex, depending on particular circumstances.   

 Moreover, Wang (Wang, et al., 2008) simulated heterotachous datasets using the 

original covarion process (Galtier, 2001). In order to examine the impacts of the covarion 
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process in the real data, two types of datasets were simulated: one is simulated under trees 

with the Felsenstein zone, the other is with the Farris zone. Their simulations showed that 

the covarion process does not apparently induce strong LBA artefacts when a RAS model 

is applied. One explanation is that the RAS model can take into account part of the 

covarion signal.  However, they found out that inferring phylogeny on a simulated tree 

under the covarion process has a significant trend to incur LBR than LBA under the RAS 

model. They suspect that the RAS model may only take into account part of covarion 

signals but not the whole covarion signals. Their results suggest that researchers be 

cautious about using classical models because of the potential LBR caused by the covarion 

process in real data. 

4.3 Current heterotachy models 

4.3.1 Tuffley & Huelsenbeck’s covarion model  

Based on the covarion hypothesis (Fitch, 1971), Fitch and Markowitz proposed the 

covarion model (Fitch and Markowitz, 1970), in which there are two states: “on” and “off”; 

In ON state, sites are free to be substituted; in OFF states, sites are not free to be 

substituted; moreover, sites can switch between ON and OFF states. Later, Tuffley and 

Steel mathematically formulized this covarion model with a Markov-modulated Markov 

process (Tuffley and Steel, 1998). So this covarion model actually consists of two levels of 

the Markov processes. In the first level Markov process, there are two states: ON and OFF. 

The switch rates between ON and OFF are S10 (the rate from ON to OFF) and S01 (the rate 

from OFF to ON), and the transition matrix for the Markov process between ON and OFF 

is: 𝑆 = ൤−𝑆଴ଵ 𝑆଴ଵ𝑆ଵ଴ −𝑆ଵ଴൨.                                                    (64) 

The stationary probabilities for ON and OFF states are: 𝜋ைே = ௌబభௌబభାௌభబ , 𝜋ைிி = ௌభబௌబభାௌభబ. 

Parameters S10 and S01 could be transformed into another set of two parameters: 𝜋ைே =
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 ௌబభௌబభାௌభబ and 𝑋 = ଶௌభబௌబభௌభబାௌబభ, where 𝜋ைே is the probability of staying in ON, 𝑋 is the expected 

number of switches between ON and OFF per branch length unit. If we have a branch with 

length t, then the expected number of switches between ON and OFF along the branch is ଶௌభబௌబభௌభబାௌబభ 𝑡. 𝜋ைே and 𝑋 describe the distribution of ON and OFF along a tree. For instance, if 

ON states take place in a large part of the tree, 𝜋ைே will be large; if the occurrence of ON 

states disperses, then X, the switch number between ON and OFF will be large.  

 In the ON state, sites are free to be substituted and follow the second level Markov 

process with instantaneous substitution matrix Q and stationary probability vector 𝜆.  

Hence the transition matrix R for this doubly Markov model is 𝑅 = ൤−𝑆଴ଵ𝐼 𝑆଴ଵ𝐼𝑆ଵ଴𝐼 𝑄 − 𝑆ଵ଴𝐼൨ ,                                                   (65) 

where I is m×m matrix, thus R is a matrix of 2m×2m (m is the number of states, for 

nucleotide data, m=4). The stationary frequencies for this doubly Markov model is 

[𝜋ைிிλ, 𝜋ைேλ]. 

 In order to handle variation of substitution rates across sites, Huelsenbeck 

implemented the covarion with RAS model (Huelsenbeck, 2002). To avoid the influence of 

site specific substitution rates on the switches between ON and OFF, the Q matrix is 

adjusted by a site specific substitution rate before being incorporated into the R matrix. 

Hence, 𝑅 = ൤−𝑆଴ଵ𝐼 𝑆଴ଵ𝐼𝑆ଵ଴𝐼 𝑄௥ − 𝑆ଵ଴𝐼൨ ,                                               (66) 

where the off-diagonal of 𝑄௥ is multiplied with a site-specific rate r. 

4.3.2 Galtier’s covarion model 

Galtier incorporated the discrete gamma rate into the covarion model (Galtier, 2001). This 

version of the covarion model is also a Markov-modulated Markov model. In this model, 

substitution rates can change along the tree. Assuming substitution rates follows a discrete 

gamma distribution with g categories, substitution rates can switch among different 
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categories across time and sites. So, unlike the Tuffley & Huesenbeck’s model, the first 

level Markov process in Galtier’s covarion model does not consist of ON and OFF states, 

but g states, each corresponding to a substitution rate of one discrete gamma category. 

Substitution rate of a site can switch from one state into another with a certain transition 

probability 𝜈: 

𝑅 = 12⋮𝑔
1      2 ⋯ 𝑔቎ ∗𝜈 𝜈∗ …⋯ 𝜈𝜈⋮𝜈 ⋮… ∗⋯ ⋮∗቏ ,                                                      (67) 

where 𝜈 is the “rate variation rate” and it determines the amount of rate variation along the 

tree. The stationary probabilities of this Markov process are (1/g, ..., 1/g). In the simple 

RAS model, there is no variation along the tree, and 𝜈 reduces to zero. In each substitution 

rate state, sites follow a classical substitution Markov process (section.2.5.2.1). Thus, R is 

the matrix with dimension of m*𝑔 × m*𝑔. 

4.3.3 Wang’s general covarion model 

In Galtier’s covarion model (Galtier, 2001), there are no OFF states, and sites can always 

be substituted. However, many observations (Fitch, 1971; Lockhart, et al., 1996; Miyamoto 

and Fitch, 1995) indicate that sites can temporarily be unavailable to change during specific 

periods of time. Thus Wang combined Galtier and Tuffley’s models, and developed another 

covarion model (Wang, et al., 2007). Wang’s covarion model actually is a triply Markov 

model, which consists of three levels of Markov processes. In the first level Markov 

process, there are ON and OFF states, sites can switch between ON and OFF with 

transition probabilities S10 and S01; in ON states, sites can transit among various 

substitution rate states with the transition probability 𝑣; in each substitution rate state, sites 

follow the third Markov process, the classical substitution: 
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.                  (68) 

For Wang’s covarion model, the dimension of the R matrix is 2*m*𝑔 × 2*m*𝑔, and is 

much bigger than the one for the classical substitution process (m×m). For an amino acid 

dataset (m=20) with four substitution rate categories (g=4), the R matrix has a dimension of 

160×160, hence the computational time would be enormous. 

4.3.4 Covarion models 

All the covarion models introduced so far are Markov-modulated Markov processes, which 

involve large size transitional matrices. Even using a fast algorithm for the diagonalization 

(Galtier and Jean-Marie, 2004), the computational time of covarion models is still longer 

than the one for the classical substitution models.  

 Wang et al., compared the classical RAS model and three variant covarion models 

(Huelsenbeck’s covarion model +RAS, Galtier’s model and Wang’s general model) for 23 

protein datasets (Wang, et al., 2007). They showed that for all datasets, the maximum 

likelihood values of the covarion models are increased compared with the RAS model, the 

likelihood ratio tests show that all covarion models are significantly better than the RAS 

model. Using the information criteria (e.g. AIC, BIC), it was shown that Huelsenbeck’s 

model is better than Galtier model for 16 out of the 23 data sets. Likelihood ratio tests 

showed that Wang’s general covarion model is significantly better than Huelsenbeck model 
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for 19 datasets (p<0.05), and significantly better than Galtier’s model for all 23 data sets 

(p<0.05).  

4.3.5 Mixture Branch Length (MBL) model  

Heterotachy, in which substitution rates vary along time and sites, can be modeled as 

different sites having different sets of branch lengths since the branch length represents the 

expected number of substitutions per site. Kolaczkowski and Thornton (KT) suggested a 

finite mixture model for branch lengths, in which there are several components with 

different sets of branch lengths (Kolaczkowski and Thornton, 2004). Spencer later 

corrected the formula (Kolaczkowski and Thornton, 2004) for calculating the likelihood of 

the mixture model (Spencer, et al., 2005). Since it is difficult to infer which component a 

site belongs to, the likelihood of one site is obtained by summarizing the likelihoods of all 

components weighted by each component’s proportion.  

 Using the minimal internal branch length required for recovering the correct 

topology for a four taxa tree as a criterion (introduced in section 4.2), KT showed that the 

MBL model is superior to the homotachous model and Tuffley & Huelsenbeck’s covarion 

model on the simulated data (Kolaczkowski and Thornton, 2008). However, their 

simulations are limited. For instance, they do not consider various problematic 

heterotachous conditions (Ruano-Rubio and Fares, 2007). Moreover, most simulations 

might be predisposed. Since KT’s simulations are generated under partitioned models with 

only a few partitions. Actually, partitioned models are a special case of the mixture models; 

therefore it is not surprising that the MBL model would perform better than the covarion 

model on the simulated datasets. Yet, the way heterotachy exists in real data may be 

different from the partitioned model.  

 The MBL model is a parameter-rich model. If there are S species in an unrooted 

tree, then for an MBL model with k components, there will be (2*S-3)*k branch lengths to 

infer (k: number of components). For real datasets, the number of components in the MBL 

model is unknown. A mixture model with a large number of components is not necessarily 

a good model. Steel commented that ‘better, more realistic models’ should not mean ‘more 
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parameter-rich models’ (Steel, 2005).  He suggested biological information (e.g. functional 

or structural properties of the sequences or DNA-repair mechanisms) and statistical model 

selection methods could be helpful to determine the quality of the model.    

4.4 Potential problems of current heterotachy models 

Heterotachy exists at several levels. 1). Low levels of heterotachy, in which within-site 

substitution rate variation occurs across time but not across lineages. In this situation, for a 

given site, the number of substitutions along branches is proportional to the branch lengths. 

2). Medium levels of heterotachy, in which within-site variation occurs across time but 

unevenly distributes across some lineages. For instant, for a given site, the number of 

substitutions along branches is not proportional to the branch lengths at a small area of the 

tree. 3). High levels of heterotachy, in which within-site rate change across all lineages.  

 Low levels of heterotachy might not necessarily mislead phylogenetic inference 

(Ruano-Rubio and Fares, 2007). However, the medium and high levels of heterotachy (i.e. 

within-rate across some or all lineages) might mislead phylogenetic inference, causing 

LBA or LBR artefacts depending on different situations (Felsenstein zone or Farris zone). 

Moreover, a good model should use fewer parameters to present more information in the 

data. Different levels of heterotachy can be modeled with different models. For instance, 

within-site rate change across some lineages can be modeled with a breakpoint model (Gu, 

2001). The MBL model is designed for a high level of heterotachy (Kolaczkowski and 

Thornton, 2004; Spencer, et al., 2005). It is of interest to know which level of the 

heterotachy exists in real data and which heterotachous model fits the real data the best.  

 An alternative model is the covarion model, which is designed for all levels of 

heterotachy. However, the recent covarion models (Huelsenbeck, 2002; Tuffley and Steel, 

1998; Wang, et al., 2007) have their own limitations. For instant, the covarion parameters 

are assumed to be constant across sites and time by the current models. However, the 

proportion πைே (% Varied) is observed to vary across sites due to different function among 

sites (Table 2) (Miyamoto and Fitch, 1995). For example, as expected, sites free to vary 
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only account for 14% in the active-site channel, which is functionally important (shaded, 

Table 2); while, for β-barrel and all other regions, varied sites account for more than 50% 

(shaded, Table 2).  

 

 

Table 2. Distributions of varied and unvaried codons in mammals and plants among the active-site 

channel, β-barrel, and all other regions of Cu, Zn SOD. 

* Positions in the mammal/plant alignment included among the three structural categories of SOD 

(Getzoff, et al., 1983; Tainer, et al., 1983). Four of the seven metal-liganding residues of the protein 

(marked with asterisks) are assigned to the active-site channel, even though they are part of the β-

barrel too. 

* Observed and (expected assuming all sites are equally variable) frequencies of varied and 

unvaried codons between mammals and plants. Abbreviations: FMP, frequency of codons changed 

in both mammals and plants: FMp, frequency of positions varied in mammals but not plants; FmP, 

frequency of codons changed in plants but not mammals; and Fmp, frequency of positions unvaried 

in both. 

* Summary statistics for the observed frequencies: % Varied = (FMP + FMp + FmP)/total sequence 

length; and % FMP = FMP/(FMP + FMp + FmP) 

(Miyamoto and Fitch, 1995) 

  

 Moreover, it has been implied that the 𝜋ைே can differ among evolutionary lineages 

(Figure 19) (Lockhart, et al., 2006). For instance, the RpoB genes (square in Figure 16)  in 
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different lineages have different values of 𝜋ைே(Pvar): about 0.67 in green algae, about 0.48 

in red algae, about 0.34 in cyanobacteria, and about 0.64 in non-PS bacteria 

(nonphotosynthetic bacteria). Although it has been shown that the parsimony and the least 

square distance method are susceptible to LBA induced by this form of heterotachy, the 

authors cautioned that this kind of LBA can also happen when homogeneous maximum 

likelihood methods are used (Lockhart, et al., 2006). 
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Figure 19.   Plot of the summed branch lengths and pvar for different proteins.  

The estimates of pvar and summed branch length were made on four-taxon data sets for different 

individual proteins (RpoB, RpoC, TufA, AtpA, AtpB) using the capture-recapture method 

implemented in SplitsTree3.2 (Huson, 1998) (http://www-ab.informatik.uni-

tuebingen.de/software/welcome.html). For instance, four green algae RpoB sequences were used to 

estimate the branch lengths and pvar for the green algae RpoB gene. 

Adapted from (Lockhart, et al., 2006) 

   

The above facts imply that the current covarion model (Huelsenbeck, 2002; Tuffley and 

Steel, 1998; Wang, et al., 2007), which assumes constancy of covarion parameters along 

time and among sites, might not be sufficient to overcome the artefacts caused by 

heterotachy. 
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 Moreover, if one site spends more time on the “off” state and less time on the “on” 

state along the tree, the RAS model would assume that this site is a slowly evolving site; on 

the other side, if one site spends more time in the “on” state and less time in the “off” state, 

the RAS model would assume that this site is a fast evolving site. Therefore, it is interesting 

to see whether the current covarion model (Huelsenbeck, 2002; Tuffley and Steel, 1998) 

and the RAS model interact with each other. 
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Definition of the project  

Heterotachy has shown to impede phylogenetic inference (Inagaki, et al., 2004; 

Kolaczkowski and Thornton, 2004; Lockhart, et al., 1996; Philippe and Germot, 2000; 

Ruano-Rubio and Fares, 2007; Wang, et al., 2008). The main purpose of the project is to 

handle heterotachy in phylogenetic inference.  

 We are interested in the nature of heterotachy in real datasets, and whether the 

current models, e.g. the covarion and the MBL model, are appropriate to handle the 

heterotachy in real datasets. Therefore, we implement Huelsenbeck’s covarion model and 

an MBL model on the base of maximum likelihood estimation with simulated annealing. 

We compare Huelsenbeck’s covarion model with the mixture branch length model for three 

large amino acid datasets, animal, plastid and mitochondrial mammal datasets using AIC, 

BIC and cross validation. In addition, we discuss the properties of these three model 

evaluations. 1 

 In order to address the heterogeneities of the covarion parameters across sites, a 

mixture covarion model using a Dirichlet process has been developed in the framework of a 

Bayesian MCMC. We also investigate the interaction between two heterogeneous models: 

the RAS and the covarion models. Finally we develop three posterior predictive 

discrepancy tests to assess the fitness of models in respect to RAS signals and 

heterotachous signals. We report our results for five amino acid datasets including both 

nuclear and mitochondrial sequences.2 

                                                 
1  This work has been published in BMC Evol Biol, 7:20(2007) “Evaluation of the models handling 
heterotachy in phylogenetic inference”. 
2  This work has been accepted with minor changes. 
 



 

CHAPTER I: Evaluation of the models handling 

heterotachy in phylogenetic inference 

 

It has been demonstrated that heterotachy has impeded the phylogenetic inference. 

Currently, there are two types of models handling heterotachy. One is the covarion model, 

which handles within-site substitution rate variation using a Markov-modulated Markov 

process. The other is the Mixture Branch Length (MBL) model, which is a non-parametric 

version of the covarion model. In order to better understand heterotachy in the data and 

have a good insight for future heterotachous models, we made comparisons among 

different models using AIC, BIC and cross validation.  
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Background: The evolutionary rate at a given homologous position varies across time. When
sufficiently pronounced, this phenomenon – called heterotachy – may produce artefactual
phylogenetic reconstructions under the commonly used models of sequence evolution. These
observations have motivated the development of models that explicitly recognize heterotachy, with
research directions proposed along two main axes: 1) the covarion approach, where sites switch
from variable to invariable states; and 2) the mixture of branch lengths (MBL) approach, where
alignment patterns are assumed to arise from one of several sets of branch lengths, under a given
phylogeny.

Results: Here, we report the first statistical comparisons contrasting the performance of covarion
and MBL modeling strategies. Using simulations under heterotachous conditions, we explore the
properties of three model comparison methods: the Akaike information criterion, the Bayesian
information criterion, and cross validation. Although more time consuming, cross validation
appears more reliable than AIC and BIC as it directly measures the predictive power of a model
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proteins of mammals, and plastid proteins of plants), and find the optimal number of components
of the MBL model to be two for all datasets, indicating that this model is preferred over the
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MBL model.

Conclusion: We demonstrated, using three large datasets, that the covarion model is more
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across sites.
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Background
Probabilistic methods for phylogenetic inference are
based on mathematical models of sequence evolution [1].
In the last 20 years, several approaches have been pro-
posed for developing more sophisticated models,
accounting for various properties of substitution proc-
esses [2-8]. One of the most well-characterized example of
such an improvement is provided by the Rate Across Sites
(RAS) model [2], which relaxes the assumption that all
sites of a protein or a nucleotide sequence evolve at the
same rate. More specifically, the RAS model includes site-
specific substitution rates, modeled as random variables
following a gamma distribution. It generally has a better
fit to the data, and it allows to circumvent certain artefacts
in phylogenetic inference [9]. It has been implemented in
most maximum-likelihood and Bayesian phylogenetic
software, and is now widely used for routine phylogenetic
inference. More sophisticated distributions of substitu-
tion rates, such as mixtures of gamma distributions [10],
further increase the fit of the model to alignments, sug-
gesting that improvements of the RAS model are still pos-
sible.

Functional and structural restrictions operating at a given
residue may be subject to change over time [11,12], which
should be reflected by substitution rates varying not only
across sites, but also across time. In this line of thought,
Fitch and Markowitz [13] proposed the covarion hypo-
thesis: due to functional restrictions, some codons (the
concomitantly variable codons or covarions) can accept
substitutions at a given time, while others (invariant sites)
cannot. Importantly a site can shift from being variable to
being invariable (and vice versa) over time. More gener-
ally, Philippe and Lopez [14] proposed, instead of cov-
arion-like expression, the term heterotachy (from Greek,
meaning "different speed") to describe the fact that sites
evolve at different rates across time.

Heterotachy was shown to be frequent in both nucleotide
and amino acid sequences [6,15-22]. For instance, up to
95% of the variable sites of cytochrome b have a heterota-
chous behavior within vertebrates [23]. Importantly, both
simulation [24,25] and empirical [26,22,16,27,28] stud-
ies demonstrate that heterotachy may impede phyloge-
netic inference. This is expected because probabilistic
methods are inconsistent when the underlying assump-
tions of their models are seriously violated. Models that
handle heterotachy are thus of prime interest, particularly
as larger and larger datasets are used [29].

The initial covarion hypothesis, as formulated by [13],
makes an explicit link between site interdependencies and
rate shifts, and for that reason, is not easy to implement.
As a more tractable alternative, Tuffley and Steel [30] pro-
posed a site-independent mathematical version of the

covarion idea, which was later implemented in a Bayesian
framework [6]. In Tuffley and Steel's covarion model, the
substitution history at each site unfolds according to a
doubly stochastic process: a classical first-order Markov
process of substitution among the 4 nucleotide bases, or
the 20 amino-acids, whose substitution rate is itself time-
modulated in an on-off fashion. In Huelsenbeck's model,
evolutionary rates of sites, when in the on state, are mod-
eled by a gamma distribution. Galtier [5] proposed a var-
iant of this model, by merging the covarion-like random
effects with the site-specific random-effects introduced by
the RAS model: sites can take more than two rates ("on"
and "off"), i.e. the off category plus, e.g., the four rates of
a discretized gamma distribution. More recently, Wang et
al. [31] propose a more general model in which evolu-
tionary rates can switch among different rate classes when
they are in a variable state.

One merit of Tuffley and Steel's version of the covarion
model is that it aims at capturing the dynamic heterota-
chous scenario by using only two additional global sta-
tionary parameters: s01, the switching rate from the off to
the on state, and s10, the rate from on to off.  Note that
these two parameters are both assumed to be stationary
over time. On the other hand, this model assumes that
rate-shifts occur in a strictly site-independent fashion,
whereas, in principle, it is possible to imagine more gen-
eral scenarios, in which groups of sites undergo collective
rate shifts at very specific time-points, due to a sudden
change of the selection pressure (this type of situation is
precisely supposed to create the misplacement of micro-
sporidia [28,27]).

Recently, Kolaczkowski and Thornton [24] proposed a
'mixture of branch lengths' (MBL) model that could han-
dle this kind of collective rate shifting. In this finite mix-
ture model, which was later mathematically corrected
[32], each observation is assumed to arise from one of sev-
eral components (the number of components being pre-
defined), each specifying a distinct and independent set of
branch lengths, onto the same topology. Loosely speak-
ing, each site can "choose" among the available compo-
nents that which best describes its pattern of changes
along the tree. In practice, as there is no a priori knowl-
edge of which site belongs to which component, the like-
lihood at each site is a weighted sum over all components
[33,32]. The kind of heterotachy assumed in the MBL
model [24] can appear artificial at first sight, but is theo-
retically able to capture collective rate shifts, rather than
the purely site independent on-off processes of the cov-
arion model. In principle, the MBL model could thus pro-
vide a useful device for detecting singular and collective
rate shift events.
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However, the potential gain of the MBL over the covarion
model is statistically expensive, because of the serious
increase of the number of parameters implied (the
number of additional branch lengths, (Nc-1)*(2s-3), and
the weights of the components, Nc-1): (Nc-1)*(2s-2),
where Nc is the number of components in the mixture,
and s is the number of taxa. The MBL model poses practi-
cal challenges as well. For instance, in the Bayesian
Markov chain Monte Carlo framework, the complicated
structure of a single tree with several valuations (several
sets of branch lengths) makes it difficult to propose
update mechanisms that would be efficient for mixing in
tree space, or, in a reversible-jump perspective, for averag-
ing over the number of components. As a result, jointly
estimating the phylogeny and the number of components
will be a computational challenge.

A common statistical practice when facing computational
difficulties is to make simplifying assumptions (e.g., a
known phylogenetic tree), and to contrast the merit of dif-
ferent model configurations based on their statistical fit.
Note that model comparisons based on likelihood ratio
tests are not directly applicable here, as the set of models
of interest do not all form a nested hierarchy. (Even eval-
uating the number of components would be difficult,
because of the irregular parameter space in the mixture
model [34,35], the logarithm of the likelihood follows a
complicated mixture of chi-square distributions [36]). An
alternative is to use likelihood penalty methods, such as
the Bayesian Information Criterion (BIC; [37]), or Akaike
Information Criterion (AIC; [38]). When the number of
observations (here aligned sites) is sufficiently large, BIC
is asymptotically equivalent to the Bayes factor, and AIC
to the expected relative Kullback-Leibler information [38]
Although easy to compute, these two measures rely on
many assumptions to estimate the penalty for the
increased number of parameters. Moreover, as for AIC, it
further assumes that the models being tested are 'not too
far' from the true model [38]. In addition, AIC seems to
overestimate the number of parameters when there are
many parameters compared to the sample size [39,40].
Contrary to AIC, BIC has a tendency to under-estimation,
given sparse data and results [41]. Furthermore, in the
context of mixture models, the regular assumptions for
the AIC and BIC are no longer valid [42,43]. In any case,
Djuric [44] argued that the penalty for over-parameteriza-
tion should strongly depend on the model structure, i.e.,
the types of unknown model parameters. Although BIC
works reasonably well at the practical level [45], Djuric
[44] suggested a careful examination before applying AIC/
BIC.

Another evaluation of model fitness is the cross-valida-
tion (CV) method [46]: it measures the predictive power
of a model fitted to a first, randomly drawn, part of the

dataset, when applied to the remaining (set aside) part of
the data. Here, the portion of data set aside plays the role
of 'future' observations. Accordingly, the best model is
naturally the one that best predicts these future data.
Compared to AIC and BIC, CV is computationally much
more demanding, but also more reliable in principle: (1)
this is an operational test, in which one measures the pre-
dictive power on data that have not been seen during the
learning step, which guarantees the 'honesty' of the meas-
ure. In particular, it implies that there is no need to
account for a dimensional penalty. (2) the expectation of
cross-validated likelihood is an unbiased estimate of the
Kullback-Leibler (KL) distance between the "true" distri-
bution of column patterns, and the distribution implied
by the model [47], and (3) in fairly general settings (not
including the leave-one out testing scheme), cross valida-
tion is asymptotically consistent, i.e. is able to choose the
true model among identifiable alternatives [48]. In addi-
tion to these theoretical guarantees, there is no specific
requirement on the compared models (e.g. nested).

In this work, we explore the use of AIC, BIC and CV for the
comparison of covarion and MBL models. We first vali-
date and examine properties of the MBL model using sim-
ulations. Second, we contrast the conclusions of AIC, BIC
and CV to the problem of determining the number of
components of the MBL model, and to general compari-
sons with the covarion model. Third, we extend our
model comparisons to three real data sets from nuclear,
plastid and mitochondrial compartments, and show that
the covarion model is always favored over the optimal
MBL model.

Results
Simulated data
We first implemented the mixture branch length model in
the phylobayes package [49]. Simulations allowed us to
explore the performance of the MBL model when the true
number of components as well as other parameters are
known. Various levels of heterotachy can be easily
obtained by tuning a single parameter, τ, without affecting
the average branch length (see Methods for details) of the
tree topology displayed on Figure 1. In addition, the
degree of rate variation across sites was modulated by
using several values of α, the shape parameter of the
gamma distribution. A total of 16 data sets of 5,000 sites
each were synthesized under the two-component MBL
model and analyzed using the MBL model with number
of components varying from one to four.

When the simulated data are analyzed with the exact
number of components (two), the inferred values of the
parameters are generally close to their true values (Table
1). For instance, the value of α is always inferred with an
error smaller than 5%. The branch lengths and the weights
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are also well recovered, although only when the level of
heterotachy is pronounced (τ>= 0.4, Table 1). Interest-
ingly, when weakly heterotachous datasets (τ = 0.2) are
analyzed under the two-component model, the weight for
one of the two components shrinks to almost zero, and
the corresponding branch lengths become meaningless,
taking on extremely large or small values.

Inferring the number of components followed a similar,
but more complex, pattern (Table 2). When the dataset
contains a strong heterotachous signal (τ = 0.8), AIC, BIC
and CV recover the expected number of components
(two). In contrast, as the level of heterotachy gets weaker
(τ = 0.2), all criteria almost always choose the one-com-
ponent model. The amount of heterotachous signal is
simply insufficient in these 5,000 positions. Interestingly,
under these conditions, when the MBL model with two
components is used, the weight of one of them tends to be
extremely small (Table 1), which is consistent with the
higher fit of the one-component model. For intermediate
level of heterotachy (τ = 0.4 and 0.6), AIC supports 2 and
3 components and BIC 1 or 2, suggesting that AIC might
tend to overestimate, and BIC might underestimate, the
number of components, (Table 2). In contrast, in both
cases, CV recovers the correct value.

We next extended the comparisons by including the cov-
arion model (Table 3). As expected because sequences

were simulated using an MBL model, the covarion model
is never favored. However, under a low level of hetero-
tachy (τ = 0.2), the covarion model performs slightly bet-
ter than the two-component model, in spite of the fact
that the dataset is indeed a mixture of two components.
This could be due to the fact that the covarion model
requires less parameters than the 2-components MBL
model.

Real data
When applied to three real datasets from nuclear, mito-
chondrial and plastid compartments, CV and BIC always
supports the covarion model (Table 4), while AIC favors
parameter-rich MBL model. In the selection of the opti-
mal number of components of the MBL model, CV always
favors the two-component model (Table 4). In contrast,
BIC favors one component, except for mitochondrial
alignment in which four or six components are virtually
indistinguishable (44,416.88 versus 44,416.75), and AIC
three or four components.

We also studied the branch lengths of the two partitions
detected by the MBL model (mitochondrial, Fig. 2;
nuclear, see Additional File 1; plastid, see Additional File
2). Interestingly, in the case of mitochondrial alignment,
the branch lengths of the two partitions mainly differ for
catarrhinian primates, i.e. they evolved much faster in
component I. To know whether particular genes are
involved in this heterotachous behavior, we computed the
posterior probability of each site belonging to either com-
ponent (see Method, formula 9), and then averaged these
posterior probabilities over the sites, separately for each
gene. The sites belonging to the cytochrome oxidase
(cox1-3) and cytochrome b (cytb) genes show a signifi-
cantly different posterior probability of belonging to com-
ponent I than the sites from other genes (P < 0.0001, Fig.
3). A chi-square test was also performed, showing that the
two partitioning of the sites, into the cox/cytb or the non-
cox/cytb gene groups, and into the 2 components of the
model, are not independent (P < 0.001, Table 5). Simi-
larly, for plastid alignment, the two components are bio-
logically relevant. The branch lengths of one component

Topology used for computer simulationsFigure 1
Topology used for computer simulations. The tree 
under the newick format is: ((((A:0.375, B:0.3):0.25, 
C:1):0.08, D:0.32):0.8,((E:0.42, 
F:0.31):0.24,(G:0.27,(H:0.2,(I:0.5, J:0.5):0.25):0.12):0.25):0.26). 
Scale bar indicates the expected number of changes per site.
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Table 1: Inferred values of α, the parameter of the discrete gamma distribution of the rates across sites, inferred weight of one of the 
two components (w) and Pearson correlation (r) of the inferred tree branch lengths with the true ones of their respective component, 
for sequences simulated with various values for τ and α.

α/w/r τ = 0.2 τ = 0.4 τ = 0.6 τ = 0.8

α = 0.5 0.51/0.028/n.a. 0.52/0.42/0.976 0.49/0.46/0.993 0.52/0.50/0.998
α = 1.0 1.06/0.033/n.a. 1.04/0.43/0.993 1.00/0.47/0.993 1.02/0.49/0.998
α = 1.5 1.51/0.07/n.a. 1.56/0.50/0.993 1.56/0.48/0.997 1.46/0.49/0.998
α = 2.0 2.01/0.005/n.a. 2.04/0.41/0.979 1.89/0.49/0.999 1.99/0.50/0.998

Note that the correlation between the true branch lengths of the two components are 0.86, 0.52, 0.19 and -0.16 with τ = 0.2, 0.4, 0.6 and 0.8, 
respectively. Two components were used for the inference. When τ = 0.2, the partition identity cannot be recovered, so the branch lengths cannot 
be compared with the true ones.
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are relatively clock-like whereas for the other one all green
plants except Mesostigma showed a highly accelerated rate.
Interestingly, RNA polymerases show a significantly
higher posterior probability of belonging to component II
than the sites from ribosomal proteins (P < 0.0001, see
Additional File 3) in agreement with recent studies
[50,22].

Discussion
Model comparisons: CV is more reliable than AIC and BIC
The maximum likelihood value is always improved when
more parameters are added to the model. The widely used
likelihood penalty information criteria, AIC and BIC,

evaluate the fitness of models by heuristically adjusting
the likelihood score. Based on asymptotic arguments
[37,38], they compensate for the automatic increase of the
likelihood merely due to the increase in number of
parameters, using simple (and distinct) formulae for the
dimensional penalty. By construction, AIC gives a milder
dimensional penalty than BIC. In many practical cases,
the difference may be overwhelmed by the difference in
log-likelihood between the two models. However, in the
present case, and on both real and simulated data sets,
AIC and BIC do not always reach the same conclusions
(Tables 2 and 4).

Table 2: Optimal numbers of components determined by AIC, BIC or cross-validation (CV) on the simulated data with different levels 
of heterotachy (τ) and with different rate across sites heterogeneity (α).

AIC/BIC/CV τ = 0.2 τ = 0.4 τ = 0.6 τ = 0.8

α = 0.5 1/1/1 2/1/2 2/2/2 2/2/2
α = 1.0 1/1/1 2/1/2 3/2/2 2/2/2
α = 1.5 2/1/1 2/2/2 2/2/2 2/2/2
α = 2.0 1/1/1 2/2/2 3/2/2 2/2/2

Table 3: Cross-validation for the simulated datasets (α = 0.5)

One component 
(homotachy)

Two-component Three-component Four-component Covarion

α = 0.5

τ = 0.2 0 10.5 ± 5.5 18.6 ± 7.9 20.6 ± 10.9 0.8 ± 2.4
τ = 0.4 2.0 ± 8.7 0 4.7 ± 9.4 14.7 ± 8.7 2.0 ± 8.6
τ = 0.6 84.5 ± 12.4 0 10.0 ± 7.2 21.9 ± 10.1 85.2 ± 12.9
τ = 0.8 359.5 ± 30.0 0 8.1 ± 6.5 15.9 ± 9.3 359.6 ± 29.4

α = 1

τ = 0.2 0 9.6 ± 4.3 18.5 ± 9.1 23.8 ± 9.0 0.6 ± 1.9
τ = 0.4 13.0 ± 5.9 0 10.6 ± 4.4 17.3 ± 8.1 14.6 ± 5.3
τ = 0.6 101.4 ± 8.6 0 11.0 ± 6.0 18.1 ± 9.2 101.7 ± 8.4
τ = 0.8 472.0 ± 13.9 0 10.2 ± 5.5 13.6 ± 5.6 453.4 ± 14.0

α = 1.5

τ = 0.2 0 11.7 ± 6.3 7.4 ± 4.4 18.4 ± 12.1 0.7 ± 1.8
τ = 0.4 36.6 ± 5.9 0 12.1 ± 7.1 18.9 ± 9.2 34.9 ± 5.4
τ = 0.6 136.7 ± 12.8 0 7.7 ± 6.3 15.9 ± 9.6 135.3 ± 12.7
τ = 0.8 505.6 ± 23.8 0 10.8 ± 7.6 19.1 ± 8.8 490.9 ± 24.5

α = 2

τ = 0.2 0 11.2 ± 5.3 17.7 ± 10.4 26.1 ± 9.9 1.7 ± 2.4
τ = 0.4 37.5 ± 17.5 0 9.3 ± 11.6 18.6 ± 15.7 39.2 ± 18.5
τ = 0.6 173.9 ± 12.6 0 10.6 ± 4.6 12.4 ± 5.3 169.5 ± 12.0
τ = 0.8 596.1 ± 22.2 0 8.0 ± 1.5 15.1 ± 6.9 588.0 ± 23.0

The mean (± SD) of the difference between the CV log likelihood of the current model and the model with the highest CV log likelihood is given. 
Five random runs were performed for this two-fold CV.
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Cross-validation methods are much more expensive in
terms of CPU time than these information criteria. How-
ever, they are conceptually more trustworthy, since they
consist in a true blind test, i.e. instead of relying on a heu-
ristic dimensional penalty, they measure the predictive
power of the model on data that have not been seen dur-
ing the parameter optimization step. In addition, they are
valid even far from the asymptotic regime, i.e. when the
number of sites is small. From comparisons among AIC,
BIC and CV, we observe that BIC and CV generally agree,
while AIC overestimates the fit of parameter-rich models.
These observations are consistent with the reports that
AIC seems to have an inherent bias in favor of overly
parameterized models [51-53,41,39,40],.

Properties of the mixture branch length (MBL) model
The MBL model is able to detect heterotachous signals
and recover the true number of components, sets of
branch lengths, weights for the components, as well as the
alpha parameter for the RAS gamma distribution, when
datasets are simulated with a strong level of heterotachy
(Tables 1 and 2). In contrast, when the level of hetero-
tachy is weak (e.g. τ = 0.2) and the alignment size is in the

order of magnitude of the currently used ones (5,000
amino acids), the homotachous (one component) model
is preferred. This is consistent with the observations that
the performance of the homotachous model is weakly
affected under weakly heterotachous datasets (τ = 0.2),
and that it starts to get devastating only when the level of
heterotachy gets higher (τ = 0.4) [54,32,55,56,24]. It
seems therefore that, at least on these simulated cases,
when heterotachy does not impair phylogenetic infer-
ence, the classical non-mixture model is indeed found to
be the optimal by standard model selection methods.

Estimating the adequate number of components can be
viewed as a limitation of MBL models. On the one hand,
we have shown that only the computationally demanding
CV is able to provide an accurate estimate of the optimal
number. On the other hand, it appears that, when the
number of components is too high, the weights of these
useless components are small (below 0.05, except for
plastid -0.08- and nuclear -0.20- alignments). In other
words, the over-parameterized model naturally reduces,
but does not abolish, the effect of useless parameters, but
is logically penalized in model comparison.

Table 4: Comparison of the covarion model and MBL models with different number of components for three real datasets

-LnL AIC BIC CV

Animal dataset (5,000 sites and 20 species)

one-component 86468.5 86506.5 86630.3 82.1 ± 7.9
two-component 86302.7 86378.7 86626.4 37.8 ± 13.5
three-component 86222.7 86336.7 86708.2 47.9 ± 10.7
four-component 86167.6 86319.6 86814.9 69.0 ± 17.2
five-component 86126.8 86316.8 86936.0 82.2 ± 21.2
Six-component 86087.1 86315.1 87058.1 NC
covarion 86300.7 86340.7 86471.0 0

plastid dataset (3,754 sites and 22 species)

one-component 78225.2 78267.2 78398.0 75.3 ± 8.8
two-component 78056.4 78140.4 78402.1 34.2 ± 24.5
three-component 77996.7 78122.7 78515.2 49.8 ± 15.6
four-component 77925.8 78093.8 78617.2 60.3 ± 21.0
five-component 77926.2 78136.2 78790.4 72.4 ± 22.0
six-component 77900.4 78152.4 78937.5 NC
covarion 78070.9 78114.9 78252.0 0

mitochondrial mammal dataset (3,591 sites and 17 species)

one-component 44285.9 44317.9 44416.9 45.9 ± 3.7
two-component 44154.8 44218.8 44416.8 16.6 ± 7.5
three-component 44127.6 44223.6 44520.5 34.2 ± 12.3
four-component 44081.2 44209.2 44605.1 38.2 ± 15.4
five-component 44071.9 44231.9 44726.8 NC
six-component 44072.3 44264.3 44858.2 NC
covarion 44187.1 44222.1 44330.4 0

For CV, standard deviation can be easily computed and is thus indicated.
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Branch lengths for the two partitions in the case of the mitochondrial alignment of mammals (3591 sites, 17 species)Figure 2
Branch lengths for the two partitions in the case of the mitochondrial alignment of mammals (3591 sites, 17 
species). The shape parameter of the Γ distribution was estimated to be 0.4. The weights are 0.40 for component I (B) and 
0.60 for component II (A).

0.1

Ornithorhynchus anatinus

Didelphis virginiana

Macropus robustus

Dasypus novemcinctus

Choloepus didactylus

Tarsius bancanus

Lemur catta

Hylobates lar

Pongo pygmaeus

Homo sapiens

Macaca mulatta

Colobus guereza

Hippopotamus amphibius

Balaenoptera physalus

Equus caballus

Felis catus

Phoca vitulina

B

0.1

Ornithorhynchus anatinus

Didelphis virginiana

Macropus robustus

Dasypus novemcinctus

Choloepus didactylus

Tarsius bancanus

Lemur catta

Hylobates lar

Pongo pygmaeus

Homo sapiens

Macaca mulatta

Colobus guereza

Hippopotamus amphibius

Balaenoptera physalus

Equus caballus

Felis catus

Phoca vitulina

A



BMC Evolutionary Biology 2007, 7:206 http://www.biomedcentral.com/1471-2148/7/206
Interestingly, in the case of mitochondrial and plastid
alignments, heterotachy detected by the MBL model is
meaningful (Figs. 2 and S2). For instance, the most
important heterotachous signal detected by the MBL
model on the mitochondrial data set consists in a collec-
tive rate-shift, preferentially concerning the positions of
cox and cytb gene. This acceleration of the multisubunit
respiratory complex cytochrome c oxidase in primates is
well documented and co-evolution implies genes
encoded in the nucleus and in the mitochondrion [57].
Thus, the MBL model seems to be indeed able to detect
collective behavior, corresponding to real biological
events.

How to model heterotachy?
However, and in spite of the considerable interest received
by the MBL model recently [24,22,55,56,54,58,32], both
BIC and cross-validation indicate that the covarion model

performs significantly better than the MBL model on all
real data sets we have analyzed so far. This considerably
reduces the relevance of Kolaczkowski and Thornton
(2004) observations, concerning the failure of current
models and methods, including covarion, to correctly
infer phylogenetic trees under heterotachous conditions,
as it further confirms how artificial the simulation condi-
tions were.

An obvious explanation for MBL's failure is that it is too
parameter-rich ((Nc-1) *(2s-2), s is the number of species
and Nc the number of components). Indeed, a completely
new set of branch lengths has to be inferred for each com-
ponent, which may be too expensive, as heterotachy may
manifest itself only on a subset of the branches. Accord-
ingly, branch lengths of the two components are relatively
well correlated (R between 0.57 and 0.63, Fig. 4), illustrat-
ing a parametric redundancy. The difference in the behav-
ior of the covarion model and the MBL model on the real
datasets and the simulation datasets implies that the real
dataset might not have such global rate shifts (i.e. all the
corresponding branch lengths in different categories
would be drastically different) as designed in the simula-
tion datasets.

When multiple genes are analyzed, a separate model [59]
is aimed at capturing heterotachous signal among genes.
The only difference with the MBL model is that the
number of components and their structures are defined a
priori. The separate model may therefore probably suffer
from the same weaknesses as the MBL model, an inherent
over-parameterization due to the fact that branch lengths
are well correlated among genes, with few exceptions [60].
On the other hand, it may lead to more accurate phyloge-
netic inference, in case where the covarion model failed
[50]. This indicates that both the separate model and
MBL-like approaches still deserve further studies.

Mixture models generally imply numerous additional
parameters. Improved fitness is obtained only if most of
these additional parameters are natural, i.e. have a great
explanatory power. This is for example the case for the
CAT model [7] in which components reflect the amino
acid spectrum allowed by structural and functional con-
straints. Unfortunately, the combinatorial effect is too
important for MBL modeling to be efficient for instance,
assuming only 2 independent collective rate shifts on two
distinct branches, involving two intersecting groups of
sites, will create 4 distinct site patterns, describing all pos-
sible ways a given site may have 'responded' to the first
and/or to the second rate shift. In this situation, the MBL
model will need 4 components to explain every site cor-
rectly. More generally, with S independent collective rate
shifts, 2S components will be needed to describe all possi-
ble combinations that will all be likely to occur across the

Table 5: Contingency table for the mitochondrial alignment

Cox+Cytb Other genes

Component 1 142/278 583/447
Component 2 1237/1101 1629/1765

Observed/expected numbers of positions are indicated.

Whiskers plot for the average posterior probabilities of com-ponent I for the two-component MBL model on the mito-chondrial mammal datasetFigure 3
Whiskers plot for the average posterior probabilities 
of component I for the two-component MBL model 
on the mitochondrial mammal dataset. A Kruskal-Wal-
lis non-parametric test shows the means of posterior proba-
bilities for genes are significantly different (p < 0.0001)
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alignment. This combinatorial argument may explain the
failure of the MBL model in practice, in spite of its ability
to detect collective behaviors.

Conclusion
The covarion model, in spite of its better fit, is a purely
site-independent model. As such, it may not be optimally
efficient at capturing collective rate shifts, such as those
that we can detect using MBL, and may instead be meant
for the background of "stationary" heterotachy present at
every site. This suggests that an explicit model accounting
for collective events, in the spirit of MBL, albeit more par-
simonious in terms of parameterization, would be an
interesting direction to take. A natural approach to do this
would be a divergence point model [61-63], where, due to
the functional and/or structural shift, some sites evolve
differently from other sites in the different areas of the
phylogeny defined by the divergence points.

In another direction, the covarion model, in the version
that we test here [6], can also be improved. Wang et al.
[31] introduced a more general model, in which rate can
not only switch from on to off but also from a given rate
to another and demonstrated a slight, but generally signif-
icant, improvement. Yet, this model remains homogene-
ous over positions, a constraint that could be released by
considering a mixture model in which the parameters of
the covarion process are component specific.

Methods
The mixture branch length (MBL) model

The mixture model assumes several components with dif-
ferent sets of branch lengths. When sites are assumed to be
independent, the likelihood for the data D in the mixture
model is the product of N site-specific likelihoods, and
each site's likelihood is the sum of likelihoods over all Nc
components, weighted by the components' probabilities

w 

Where l is Nc sets of (2s-3) branch lengths (s is the
number of species); τ is the topology; θ is the rest of
parameters (such as rate matrix, stationary probability);
and Ci is the alignment column at site i. The MBL model
is implemented based on a homemade software, which
uses a Bayesian Markov chain Monte Carlo (MCMC) sam-
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Comparison of branch lengths from the two partitions for the nuclear (A), plastid (B) and mitochondrial (C) alignmentsFigure 4
Comparison of branch lengths from the two parti-
tions for the nuclear (A), plastid (B) and mitochon-
drial (C) alignments. R = 0.63, 0.63 and 0.57 respectively.
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pler [7]. Maximum likelihood was calculated via simu-
lated annealing.

The covarion model
The covarion model corresponds to a doubly stochastic
process The   process of rate switching is described as:

where s01 is the rate of switching from off to on; s10 is the
rate of switching from on to off. Thus, two parameters are
necessary for this process, the rates of switching between
the two states, off and on. When a site is in the on state, it
undergoes substitutions among the 20 amino-acids
according to a first   order Markov process, described by a
rate matrix Q. Here, for both the   covarion and MBL mod-
els, this substitution process was described by a   JTT+Γ
model with four discrete categories..

The rate matrix can be

where I is the identity matrix (r × r, r is the number of
states, for a protein data set, r = 20). For more details on
the implementation, see refs. [30] and [6].  Therefore, R is
40 × 40 rate matrix for the covarion in the Markov process.
For both the MBL and covarion models, the substitution
process was described by a JTT+Γ model with four discrete
categories.

Maximum likelihood estimation using simulated annealing
We use simulated annealing, within our MCMC sampler,
to obtain the maximum likelihood estimation. Simulated
annealing is a straightforward generalization of the
MCMC algorithm, especially for high-dimensional mod-
els such as MBL [64]. In a normal MCMC run, at each
cycle, a new parameter value (x'), slightly different from
the current one (x), is proposed according to a stochastic
kernel q(x, dx'), and accepted according to the Metropolis-
Hastings rule, i.e. with probability

where L(x) is the likelihood for the current state; L(x') is
the likelihood for the proposed state; q(x', dx) is the prob-
ability of proposing from x' to dx state; q(x, dx') is the
probability of proposing from x to dx' state. The only addi-
tional feature to be implemented for simulated annealing
is to replace this Metropolis Hastings version by its ther-
mal version:

Here, β is analogous to an inverse temperature. If β<1, the
Markov chain is heated up (the equilibrium distribution
is flatter than the posterior distribution), and if β>1, it is
cooled down (the equilibrium distribution is more
peaked around its mode). At the reference temperature (β
= 1), it reduces to the posterior distribution.

Based on this modification of the Metropolis principle,
one can mimic the process of a thermodynamic annealing
to obtain the maxima: we start at a high temperature (β =
1), whereby the posterior distributions are extensively vis-
ited; then, as the temperature decreases (as β increases),
the distribution explored by the MCMC gets progressively
more peaked around the mode, until, at a sufficiently low
temperature, the Markov chain "freezes" at the ML esti-
mate. Our cooling schedule consists in starting with β = 1,
and increasing its value geometrically (i.e. β = 1.01* β),
until β = 50000. To check whether the chain gets stuck in
local maxima, several independent runs with random
starting points are performed, and compared with each
other. All the independent runs were found to converge at
the same maximal point.

Model evaluations
The BIC [37] is defined as:

where  is now the overall set of parameters maximizing

the log-likelihood lnp(D| ), K is the number of parame-

ters that have been adjusted in , and N is the number of
sites. The penalty depends both on the number of param-
eters and on the number of sites; the smaller the BIC, the
better the fitness of the model. Another criterion similar
to the BIC, but less strict, is the Akaike Information Crite-
ria (AIC; [38]), for which the penalty only depends on the
number of parameters:

A second order correction for the AIC [65] has a negligible
impact in the present context, and so is not reported here.

We also compared models by the cross-validation (CV).
Briefly, for a given model, we first optimize parameters on
a portion of the dataset, i.e. the learning set (DL), then use
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these parameters ( L) to compute the likelihood of the

testing set (DT). Thus, the CV score is obtained by sampling

the learning set and the testing set several times, and taking
the expectation of the likelihood over these replicates
(parameters being inferred from the training tests):

By averaging over replicates, one gets rid of sampling
errors in the partitioning of the dataset into a learning set
and a test set. In particular, one smoothes out possible
(albeit unlikely) uneven repartitions in which sites corre-
sponding to distinct components of the mixture would be
partially segregated.

The learning set (DL) and the testing set (DT) can be created
in various ways. One method is the so-called v-fold cross-
validation. The original data set is partitioned into v dis-
joint subsets of equal size; then each partition is succes-
sively used as the testing set (DT), the union of all other v-
1 partitions being used as the learning set (DL). The overall
procedure is repeated until a total of v tests have been per-
formed. In this work, we used the most currently used 2-
fold cross-validation schemes. The random sampling of
half data set was performed ten times, which yielded a
precision of CV score sufficient to discriminate among the
models under study. This small value is therefore a good
compromise between computational time and accuracy.

Identifying the optimal component for each site
Since we do not know exactly which component a given
site belongs to, the likelihood for one site is the weighted
sum of likelihoods conditional on each possible alloca-
tion of the site to the available components. We can, how-
ever, calculate the posterior probability of a site (i)
belonging to a given component (k):

These posterior probabilities were then averaged over the
sites, for each gene of the alignment. Alternatively, each
site was affiliated to the component of higher posterior
probability, and a chi-square test of the independence
between the affiliations to the component, and the affili-
ation to each of the genes, was performed.

Simulations
All the simulations were done with the JTT replacement
matrix, rate across site heterogeneity being modeled by a
Γ distribution (four discrete categories). Heterotachous
data were simulated by concatenating two alignments

generated under the same tree topology, but with different
branch lengths [24,54]. Briefly, a reference tree, with
branch lengths specified, is chosen (Fig. 1). Next, each
branch length of the two partitions is adjusted by multi-
plying the length of the reference tree either with (1 + τ),
or with (1 - τ), where τ ∈ [0,1] is a parameter tuning the
extent of heterotachy. The choice between the two oppo-
site multipliers ((1 + τ) and (1 - τ)) is made at random,
independently for each branch while under two con-
straints: a) the corresponding branch in the two partitions
should be adjusted with opposite multipliers; b) in one
partition, sister branches should be adjusted with oppo-
site multipliers also; i.e., if one branch length in one par-
tition is increased by a factor (1 + τ), then the same branch
in the other partition is decreased by a factor (1 - τ) and
also the sibling branch length in the same partition is
decreased by a factor (1 - τ). In this way, the average length
over the alignment remains equal to the reference length
[54] and the branch length heterogeneity strictly followed
the strategy by Kolaczkowski and Thornton [24], i.e., the
branch lengths in each component tend to behavior in a
Felsenstein zone. Totally, 16 simulated datasets are gener-
ated with different discrete α (0.5,1,1.5,2) and different
τ(0.2,0.4,0.6,0.8).

Real Datasets
Three protein datasets were used to examine the fitness of
the covarion model, the mixture branch length models,
and the homotachous model (one-component model):

• Nuclear alignment: a subsample was obtained from the
dataset of 133 nuclear genes and 57 animal species [66].
The twenty most complete species were selected. For com-
puting time reason, only the first 5000 sites were used.

• Plastid alignment: the dataset was created by concate-
nating plastid ribosomal proteins (rpl14, rpl20, rpl2,
rpl33, rps12, rps16, rpl16, rpl22, rpl32, rpl37, rps19, rps3,
rps7, rps11, rps14, rps18, rps2, rps4 and rps8) and RNA
polymerase proteins (rpolA, rpolBp, and rpolB) from
green plants, glaucophytes, red algae, cryptophytes, stra-
menopiles and haptophytes. The ambiguously aligned
regions were removed using Gblocks [67]. The final align-
ment contains 22 species and 3754 sites.

• Mitochondrial alignment: we used a concatenation of
12 mitochondrial genes (atp6, atp8, cox1, cox2, cox3,
cytochrome b, nad1, nad2, nad3, nad4, nad4L and nad5)
totally 3591 sites from 17 mammals.

The computing times for a CV replicate (on Pentium P4,
3.2 GHz) are approximately 80 and 190 (MBL 2 compo-
nents and covarion), 40 and 110, and 35 and 80 hours for
nuclear, plastid and mitochondrial datasets, respectively.
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CHAPTER II: A Dirichlet process covarion mixture model 

and its assessments using posterior predictive discrepancy 

tests  

 

The comparisons between two heterotachous models show that the covarion model has a 

better model fit than the MBL model. However, the covarion model has its own limitation: 

it assumes that the switch rates between ON and OFF are homogeneous across sites. In 

order to address the heterogeneities of the covarion parameters across sites, we developed a 

covarion mixture model using a Dirichlet process. Furthermore, we assessed the models 

using posterior predictive discrepancy tests with different heterogeneous aspects.         
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Abstract 

Heterotachy, the variation of substitution rates at a site across time, is a prevalent 

phenomenon in nucleotide and amino acid alignments, which may mislead probabilistic-

based phylogenetic inferences. The covarion model is a special case of heterotachy, in 

which sites change between the "ON" state (allowing substitutions according to any 

particular model of sequence evolution) and the "OFF" state (prohibiting substitutions). In 

current implementations, the switch rates between ON and OFF states are homogeneous 

across sites, a hypothesis that has never been tested. In this study we developed an infinite 

mixture model, called the covarion mixture (CM) model, which allows the covarion 

parameters to vary across sites, controlled by a Dirichlet process prior. Moreover, we 

combine the covarion mixture model with other approaches. We use a second independent 

Dirichlet process that models the heterogeneities of amino acid equilibrium frequencies 

across sites, known as the CAT model, in addition the general rate-across-site heterogeneity 

which is modeled by a gamma distribution. The application of the CM model to several 

large alignments demonstrates that the covarion parameters are significantly heterogeneous 

across sites. We describe posterior predictive discrepancy tests, and use these to 

demonstrate the importance of these different elements of the models. 

 

 

 

Introduction 

The ability to infer accurate phylogenies is becoming more and more important as 

the flow of genomic data produced increases. Bayesian Markov chain Monte Carlo 

(MCMC) methods to address this problem are now popular, as they more readily allow the 

development of sophisticated models of sequence evolution. This is particularly important 

because the accuracy of phylogenetic inference heavily depends on the quality of the 

underlying models (Lanave et al., 1984; Lartillot et al., 2007; Phillips et al., 2004; Whelan 

and Goldman, 2001; Yang, 1996). For instance, the Long Branch Attraction (LBA) artefact 
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(Felsenstein, 1978) is reduced through the use of the CAT model (Delsuc et al., 2008; 

Lartillot et al., 2007; Philippe et al., 2007). This model allows for a heterogeneous 

substitution process across sites (in addition to the heterogeneity of rate across sites) using 

a Dirichlet process prior (Antoniak, 1974; Ferguson, 1973; Lartillot and Philippe, 2004; 

Neal, 2000). Dirichlet process priors are convenient non-parametric devices for modeling 

site-specific effects, while relaxing the strict assumptions about the underlying statistical 

law that would be implied by a more classical parametric prior (Richardson and Green, 

1997), since Dirichlet process priors can only be efficiently implemented using Bayesian 

MCMC (Neal 2000; Escobar and West, 1995). 

 Heterotachy (Lopez et al., 2002; Philippe and Lopez, 2001), which describes the 

fact that substitution rates vary not only across sites but also across time, has drawn the 

attention of many researchers (Galtier, 2001; Huelsenbeck, 2002; Kolaczkowski and 

Thornton, 2004; Lockhart et al., 1996; Spencer et al., 2005; Tuffley and Steel, 1998; Wang 

et al., 2007; Zhou et al., 2007). Heterotachy was first characterized by Walter Fitch and 

coworkers (Fitch, 1971; Fitch and Markowitz, 1970; Miyamoto and Fitch, 1995) and was 

then shown to be frequent (e.g. 95% of the variable cytochrome b positions are 

heterotachous in vertebrates (Lopez et al., 2002)). It has been shown that heterotachy 

potentially impedes phylogenetic inference (Inagaki et al., 2004; Kolaczkowski and 

Thornton, 2004; Lockhart et al., 1996; Lopez et al., 2002; Lopez et al., 1999; Philippe et 

al., 2000). For instance, an uneven distribution of invariant sites can positively mislead 

phylogenetic reconstruction (Lockhart et al., 1996). Based on their observations, Fitch and 

Markowitz proposed the covarion model of sequence evolution (Fitch, 1971; Fitch and 

Markowitz, 1970). The covarion hypothesis states that, at a given time, due to functional 

constraints, some sites are free to vary and other sites are not; and at a later time, due to 

changes in functional constraints, some sites that were free to vary earlier no longer accept 

substitutions (and vice-versa). The covarion hypothesis naturally creates heterotachous 

patterns of evolution. 



 

 

89

 

 Several models have been proposed to handle heterotachy. Based on the covarion 

hypothesis, Tuffley & Steel (1998) proposed a Markov-modulated Markov model, in which 

a stochastic process describes the ON/OFF state changes along the tree, whereas another 

stochastic process describes the substitution process when sites are in the ON state. In a 

context with m observed states (m =4 for nucleotide data, m=20 for amino acid data), the 

overall process is defined over 2*m states, since a given position can be either in the ON or 

OFF state. 

Huelsenbeck implemented an improved variant of this covarion model that allows 

for substitution rate variation across sites (Huelsenbeck, 2002). Galtier (2001) relaxed the 

constraint of ON and OFF states and proposed another form of Markov-modulated Markov 

covarion model: sites freely transit along the tree among different rate categories following 

a discrete gamma distribution. In each discrete gamma rate category sites then follow the 

classical Markovian substitution process. However, this model does not allow for the OFF 

state. Wang and coworkers (Wang et al., 2007) recently combined Tuffley and Steel's and 

Galtier’s models and proposed a triply Markovian process: sites are not only able to transit 

between ON and OFF states; in the ON state they are also allowed to transit between 

different rate categories; in each rate category they follow a classical Markov transition 

process for substitutions. The likelihood ratio tests demonstrated that this model has a 

better fit than all other covarion models (Wang et al., 2007). Nevertheless, the large size of 

the transition matrix (2*g* m ×2*g* m, g is the number of rate categories) for this triply 

Markov process implies a heavy computational burden. 

On the other hand, since the branch length is the expected number of substitutions, 

heterogeneity of substitution rates across branches and across sites can be modeled with 

different sites having different sets of branch lengths. Accordingly, Kolaczkowski and 

Thornton (2004; 2008) proposed a Mixture Branch Length (MBL) model to handle 

heterotachy: the MBL model consists of a mixture of components with different sets of 

branch lengths. However, given a large number of species, the number of parameters 

increases rapidly with each a new component. Indeed, the covarion model has been shown 
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to have a better fit than the MBL and the homotachous models on several large real datasets 

(Zhou et al., 2007). One explanation for the poor performance of the MBL model is that 

most branches of the different MBL components are correlated, rendering them redundant 

except for a few branches. To address this issue, Pagel and Meade (2008) proposed to use a 

reversible jump MCMC technique in order to detect which branches requires a set of 

different lengths; as expected, only the most heterotachous regions of the tree require extra 

branch lengths to adequately describe the data. An alternative to the MBL model would be 

a breakpoint model in which all sites share the same branch lengths except for some 

branches in which a fair amount of sites have drastic changes in substitution rate (Dorman, 

2007; Gu, 2001). Nevertheless, determination of breakpoints along the branches demands 

heavy computations and has its own technical difficulties (Blanquart and Lartillot, 2008; 

Dorman, 2007; Gu, 2001). 

The elegance of the covarion model is that it has only two parameters that try to 

recover heterotachous signals by integrating the history of transitions (or switches) between 

ON and OFF states over branches and sites. For instance, sites having less substitutions in 

one part of the tree can be assumed to stay there longer in the OFF state; site having more 

substitutions in another part of the tree would be interpreted as staying more time in the ON 

state. The current covarion model assumes that the switch rates between the ON and OFF 

are homogenous across sites and stationary along the tree (Huelsenbeck, 2002; Tuffley and 

Steel, 1998). However, due to variations in functional requirements along the sequences, 

some sites might stay in the ON state much longer than other sites, or switch between ON 

and OFF with frequencies different from other sites, such that the switch rates between ON 

and OFF and the mean time spent in the ON state could be significantly heterogeneous 

across sites. Moreover, using large datasets resulting from the concatenation of genes with 

divergent function increases the chance of heterogeneities across sites in phylogenetic 

inference (Rodriguez-Ezpeleta et al., 2007). One might therefore question whether applying 

a single set of covarion parameters on a heterogeneous dataset might constitute a serious 
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model violation. Therefore, testing whether the transition rates between ON and OFF vary 

among sites is of great interest. 

Our aim was to develop a model having different sets of covarion parameters (i.e. 

the switch rates between ON and OFF) for different sites. One possible solution is a 

mixture model with a number of components each possessing their own covarion 

parameters. Mixture models can be finite or infinite. For finite mixture models, the number 

of components is given a priori. Several finite mixture models have recently been proposed 

in phylogenetic analyses, e.g. mixtures of substitution matrices (Pagel and Meade, 2004), 

or the MBL model (Kolaczkowski and Thornton, 2004; Spencer et al., 2005; Zhou et al., 

2007). With finite mixture models, the number of components can be estimated by model 

comparison in the maximum likelihood framework (Kolaczkowski and Thornton, 2008; 

McLachlan and Peel, 2000; Steel, 2005; Zhou et al., 2007) or by a posterior sampler using 

reversible jump MCMC to sample through different dimensions of model-space in the 

context of Bayesian methods (Green, 1995). However, this estimation is difficult even 

under a fixed topology (Zhou et al., 2007), considering the changing of dimension for the 

parameter space (Kolaczkowski and Thornton, 2008). As an alternative to determining the 

number of components, an infinite mixture model can be applied. The most common 

approach to an infinite mixture model is using the Dirichlet process (Ferguson, 1973; Neal, 

2000). The Dirichlet process is a non-parametric method to group observations that have 

similar behaviors and has been shown to successfully handle various heterogeneity 

problems in phylogenetic analysis (Huelsenbeck and Andolfatto, 2007; Huelsenbeck et al., 

2006; Huelsenbeck and Suchard, 2007; Lartillot and Philippe, 2004; Rodrigue et al., 

2008a). 

In this study, we develop the Covarion Mixture (CM) model, which is an infinite 

mixture model utilizing a Dirichlet process to handle the heterogeneities of the covarion 

parameters across sites in a Bayesian MCMC framework. We first study the heterogeneities 

of covarion parameters in real datasets. We then investigate the impact of the coexistence 

of different heterogeneities (rate of ON/OFF switch versus rate of substitution) on the 



 

 

92

 

inference of parameters. Finally, we assess the fit of models using posterior predictive 

discrepancy tests (Gelman et al., 1996; Rubin, 1984). 

 

 

 

Materials and Methods 
 

Datasets 

Five amino acid alignments covering a wide range of site- and taxon-number were 

analyzed: (1) an opisthokont nuclear dataset consisting of 17,912 sites and 63 species; (2) 

an animal nuclear dataset consisting of 13,529 sites and 36 species; (3) an animal 

mitochondrial dataset consisting of 2,373 sites and 116 species; (4) a vertebrate 

mitochondrial dataset consisting of 3,478 sites and 136 species; and (5) a mammalian 

mitochondrial dataset consisting of 3,559 sites and 53 species. The first two datasets are 

sub-samples of the alignment of Lartillot and Philippe (2008) made to reduce the 

percentage missing data. The three other datasets are extracted from a large in-house 

alignment of complete holozoan proteomes and the unambiguously aligned regions were 

detected using GBlocks (Castresana, 2000). Datasets are available on TREEBASE. For all 

the datasets, constant sites are not included allowing to significantly reduce the 

computation time of the CAT part of the model. 

 Furthermore, to perform posterior predictive discrepancy tests DH (see below), 

several subgroups have been defined in four datasets: Arthropoda (36 species), 

Deuterostomia (45) and non-Bilateria (35) for animal mitochondrial data; Eutheria (24) and 

Metatheria (29) for mammal mitochondrial data; Teleostei (86), Gymnophiona (7), Caudata 

(26), Archeobratrachia (5) and Neobratrachia (12) for vertebrate mitochondrial data; 

Holozoa (33) and Fungi (30) for opisthokonts nuclear data. 
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Standard covarion model 

For a given site i, the transition matrix 𝑅 for the Markov-modulated Markov process is 

(Huelsenbeck, 2002; Tuffley and Steel, 1998): 𝑅 = ൤−𝑆଴ଵ𝐼 𝑆଴ଵ𝐼𝑆ଵ଴𝐼 𝑄 − 𝑆ଵ଴𝐼൨ ,    (1) 

where I is the m×m identity matrix (m being the number of states; m=20 for amino acids), 

Q is the m×m instantaneous rate matrix for substitution, S01 is the switch rate from OFF (0) 

to ON (1), and S10 is the switch rate from ON (1) to OFF (0). The stationary probabilities 

for ON and OFF respectively are πON = S01/(S01+ S01), πOFF = S10/(S01+ S01). The stationary 

probability vector for the 2*m states is (πOFFλ, πONλ), where λ
 

denotes the stationary 

frequency vector for m states. 

When the rates are not uniform across sites and are assumed to follow a Γ 

distribution, the Q matrix, instead of the R matrix, is adjusted multiplicatively with a site 

specific rate (i.e. RAS rate) (Huelsenbeck, 2002). In this way, the number of switches 

between ON and OFF is not proportional to the substitution rate. 

The two parameters (S10 and S01) specific to the covarion process can be 

transformed into another set of two parameters: the expected proportion of sites being the 

ON state πON (πON = S01/(S10+S01)) along the tree and the average switch rate X 

(X=2S10S01/(S10+S01)), which is the total number of switches between ON and OFF per 

branch length unit. This alternative set of parameters is useful to monitor the behavior of 

the covarion model and to make biological interpretations. 

 

Infinite mixture model using a Dirichlet process 

The Dirichlet process is a stochastic process, with which a number of distributions are 

dispensed under a Dirichlet distribution (Antoniak, 1974; Escobar and West, 1995). 

Supposing that observation i (i=1,…, N) is drawn from a mixture distribution over θ, the 

Dirichlet process can be realized with the following formula (Blackwell and MacQueen, 

1973):  
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 𝜃௜|𝜃ଵ, … . , 𝜃௜ିଵ~ ଵ௜ିଵାఈ ∑ 𝛿൫𝜃௝൯௜ିଵ௝ୀଵ + ఈ௜ିଵାఈ 𝐺଴,   (2) 

where δ(θ) is the distribution centered at θ, α is a hyper-parameter that controls the 

dispersion of the Dirichlet process, and G0 is the base distribution. One application of the 

Dirichlet process is the prior for the infinite mixture model. The mixture model consists of 

K components which share the same base distribution G0. By integration, the prior for ci, 

with which site i is assigned to one component c, is  𝑃(𝑐௜ = 𝑐|𝑐ଵ, … 𝑐௜ିଵ) = ௡೔,೎ାഀ಼௡ିଵାఈ,    (3) 

where ni,c is the number of sites in the component c to which site i is assigned (Neal, 2000). 

The hyper-parameter α influences the number of components. When the hyper-parameter α 

is large, site i has a high probability to have a new component of its own; when α is small, 

site i is likely to be grouped with others. 

 

Covarion mixture model 

In the case of the covarion mixture model, the Dirichlet process is defined on the 

parameter θ=(S10, S01), and the base distribution G0 is a joint of two independent 

exponentials of mean being 1. To extensively explore the nature of the CM model, we 

define the prior for the hyper-parameter α of the Dirichlet process as uniform in [0, 1000]; 

therefore, the number of components in the covarion mixture model largely depends on the 

heterogeneities of the data. 

 

Overall models 

The CAT model (Lartillot and Philippe, 2004) is a mixture model allowing site-

specific stationary probabilities using a Dirichlet process. In this paper, all the models are 

combined with the CAT model, because this model has generally a better fit than site-

homogeneous models and is computationally relatively rapid (Lartillot and Philippe, 2004; 

2008). 
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We use the abbreviation COV for the standard one component covarion model; CM 

for the covarion mixture model; +Γ for models with gamma distributed rates discretized 

with four categories. Covarion model generally refers to both COV and CM models. 

Therefore, the CAT+CM+Γ model actually consists of two Dirichlet processes and handles 

three different site-specific heterogeneities (amino acid stationary probabilities, switch rates 

between ON and OFF, as well as the substitution rates in the ON state). 

We recode states such that all non-observed amino acids at a given column are 

treated as a single state (Lartillot and Philippe, 2004). This recoding does not influence the 

likelihood calculation, i.e. the likelihood is numerically identical to that obtained without 

the recoding. A fast algorithm (Galtier and Jean-Marie, 2004) is used for the 

diagonalization of the matrix of a doubly Markov process. 

 

Posterior estimation by MCMC 

The parameters’ posterior probability for data y is:  𝑃(𝑧, 𝜃, 𝑣|𝑦) = ௉(௬|௭,ఏ,௩)௉(௭)௉(ఏ)௉(௭)∫ ௉(௬|௭,௩,ఏ)௉(௭)௉(௩)௉(ఏ)೥,ೡ,ഇ ,    (4) 

where z is the allocation vector z (c1,c2,…, cn) that assigns site (1, …, n) to covarion 

components; θ is the switch rates S10 and S01; v is the rest of the parameters, such as branch 

length, etc. P(z) and P(θ) have been introduced in the covarion mixture model setting; 

other priors setting can be found in (Lartillot and Philippe, 2004). 

We assume all sites are independent, so that the likelihood of the parameters for 

data y is the product of the likelihood at each site. A site-specific likelihood is conditional 

on a covarion component of which a site is assigned to: 𝑃(𝑦|𝑧, 𝜃, 𝑣) = ∏ 𝑃(𝑦௜|𝑐௜, 𝜃, 𝑣ே௜ୀଵ )     (5) 

  MCMC is applied to obtain the posterior distribution over the parameters. In order 

to obtain a quick convergence, Gibbs sampling is applied with the help of auxiliary 

components for the Dirichlet process mixture model according to algorithm 8 in (Neal, 

2000). 
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Two independent chains are run to check the convergence of the chains. The 

MCMC chains are considered to reach convergence when the plots for all variables (e.g. 

likelihood value, number of covarion components, etc.) from different independent chains 

show the same posterior distributions. The posterior estimations of the parameters are the 

expectations of these parameters under the posterior distribution. For instance, the posterior 

estimation of site-specific S01 and S10 in the CM model is the mean of S01 and S10 for each 

site in the posterior distribution. 

 

Events mapping along the tree 

The substitutions and switches between ON and OFF can be studied using stochastic 

mapping. We use the data augmentation method for the stochastic mapping described in 

Rodrigue et al. (2008b). Briefly, applying uniformization, the Markov process is 

transformed into a Poisson process that allows for virtual substitutions (from one state to 

itself), and the waiting time for a substitution event no longer depends on the current state 

of the process. In the case of our study, the “events” for mapping refer to amino/nucleotide 

substitutions and switches between ON and OFF. Therefore, the size of the Markov matrix 

on which we apply the uniformization procedure is 2*m×2*m (for amino acid, m=20), and 

we map events among 2*m states. After removing the virtual events, we have the 

information about the number of substitutions in ON states, the number of switches 

between ON and OFF, and the time spent in ON and OFF states, for each site and each 

branch. These mappings are then used for constructing posterior predictive discrepancy 

tests. 

 

The posterior predictive distribution 

Supposing φ is the parameter vector of the model, a series of posterior predictive datasets ypp are simulated with values of φ drawn from the posterior distribution (i.e., conditional 

on the observed dataset yobs), such that the marginal probability of the posterior predictive 

data ypp is: 
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 𝑃(𝑦௣௣|𝑦௢௕௦, Model) = ∫ 𝑃(𝑦௣௣|𝜑)𝑃(𝜑|𝑦௢௕௦, Model)𝑑𝜑   (6) 

For the double Dirichlet processes model, i.e. the CAT+CM model, a site would be 

simulated simultaneously with both the CAT component and the CM component to which 

this site belongs in the posterior distribution. Therefore, the simulation would reflect any 

interactions between the two different mixture models, if such interactions exist. 

Multiple replications are generated for each φ. Here, 200 data points in the posterior 

samples are collected for each MCMC chain, and for each data point 5 replications were 

applied to generate the posterior predictive datasets. In the following, the posterior 

predictive distribution will be taken as our null distribution (Rubin 1984, Gelman 1996). 

 

The posterior predictive discrepancies assessments 

The classical p value of a statistic T test for data y is defined as 𝑝(𝑦, 𝑀𝑜𝑑𝑒𝑙) = 𝑃(𝑇(𝑌) ≥ 𝑇(𝑦)|𝑀𝑜𝑑𝑒𝑙)    (7) 

where T is a pivotal statistic, which is  not dependent on any unknown parameters; and the 

data Y are sampled under the null (here, posterior predictive) distribution. 

 In the presence of nuisance parameters or in the context of Bayesian estimation, the 

parameter φ is not known or “fixed”. Therefore the p value is defined as 𝑝(𝑦, 𝑀𝑜𝑑𝑒𝑙, 𝜑) = 𝑃(𝑇(𝑌) ≥ 𝑇(𝑦)|𝜑, 𝑀𝑜𝑑𝑒𝑙)   (8) 
where the test statistic T is dependent on the unknown parameter φ. In this case, the null 

distribution T(Y)|φ is difficult to know. 

 Since ypp are simulated under the posterior distribution, the distribution of T(ypp) can 

be taken as a null distribution (Rubin, 1984). More specifically, Gelman et al. (1996) 

introduced posterior predictive discrepancy variable D(y, φ), which is a parameter-

dependent statistic to measure the distance between the data y and the posited model. The 

posterior predictive discrepancy variable D(y, φ) is actually a function of both the data and 

the parameters of the model. We are interested in the location of D(yobs, φ) in the 

distribution of D(ypp, φ) (null distribution). Therefore, the p-value is defined as the 

probability that D(ypp) ≥ D(yobs) in the posterior distribution: 
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 𝑝(𝑦௢௕௦, 𝑀𝑜𝑑𝑒𝑙) = ∫ 𝑃((𝐷(𝑦௣௣) ≥ D(𝑦௢௕௦)|𝜑) 𝑃(𝜑|𝑦௢௕௦, 𝑀𝑜𝑑𝑒𝑙)𝑑𝜑  (9) 

The p-value of the posterior predictive discrepancy based on MCMC could be obtained 

straightforwardly by counting how many D(yPP) are larger than D(yobs). A low p-value 

indicates a poor fit of the model to the data. 

 In order to check model fit with different aspects, different discrepancy variables 

can be constructed. In this study, we construct three discrepancy variables DR, DH and DO, 

based on three different aspects with variables R, H and O that are devised to study 

substitution rate across sites, within-site substitution rate variation and the proportion of 

time for sites spent in the ON state, respectively. All the posterior predictive discrepancy 

variables in this study are constructed according to the formula (10). Supposing a 

discrepancy variable Dv regarding the variable v, Dv is: D୴(y, φ) = ଵN ∑ ൫୴౟ౣ ି୴౟౛൯మ୴౟౛N୧      (10) 

where the 'observed' value (vi
m) of variable v for site i is computed on a mapping, whereas 

the expected value vi
e is analytically derived based on the model. 

 

1. The discrepancy variable  DR for rate heterogeneity  

We construct a discrepancy variable DR based on the difference between the number of 

observed substitutions along the tree and the number of substitutions expected by the 

model. Hence, DR(y, φ) = ଵN ∑ ൫R౟ౣ ିR౟౛൯మR౟౛N୧       (11) 

where Ri
m is the total number of substitutions at site i, which is directly available from a 

mapping; Ri
e is the number of substitutions expected by the model for site i, and its value is  

equal to πON,i*B*ri, the product of the site-specific proportion of being ON (πON) (for non-

covarion model, πON,i =1), the tree length (B) and site specific substitution rate ri (for non-

RAS model, ri=1).  
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2. The discrepancy variable  DH for heterotachy  

Heterotachy can be revealed as heterogeneity of within-site substitution rates in different 

monophyletic groups (Lopez et al., 1999; Miyamoto and Fitch, 1995). We therefore assess 

models using the discrepancy statistic DH: DH(y, φ) = ଵN ∑ ∑ ቀH౟ౠౣ ିH౟ౠ౛ ቁమH౟ౠ౛P୨N୧     (12) 

where Hij
m is the number of substitutions mapped in monophyletic group j for site i; Hij

e is 

the number of substitutions expected by the model in monophyletic group j for site i, and 

its value is πON,i*Bj*ri, of which Bj is the tree length of group j. 

 
3. The discrepancy variable DO for the “on” state behaviour 

To refine the assessment of various covarion models, we focus on a third statistic, DO, 

which considers the relative time a site spent in the ON state: DO(y, φ) = ଵN ∑ ൫O౟ౣ ିO౟౛൯మO౟౛N୧ୀ଴  ,      (13) 

where Oi
m is (time in ON state)/(time in ON state + time in OFF state) obtained by the 

mapping, Oi
e is πON,i which is estimated by the model.  
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Results 

Covarion mixture model 

The CM model was applied on the five real datasets. Virtually identical posterior 

estimations from two independent chains show a good convergence of the MCMC on the 

Dirichlet process (Figure S1, Table S1). For instance, the posterior estimates of covarion 

parameters (i.e., S10 and S01) for a given site are comparable. 

Figure 1 shows the histogram of the number of components (Kcov) in the posterior 

distribution for the opisthokont nuclear dataset. Although Kcov is variable (from 5 to 21), it 

is never equal to 1 in the posterior distribution. So the standard covarion model, which is a 

special case of the CM model with Kcov = 1, is quite unlikely a posteriori. This is 

confirmed by all datasets we have analyzed so far, which have an average number of 

components from 8 to 28 (Table 1). 

The distributions of the opisthokont data for the posterior estimate of site-specific 

S10 and S01 are shown in Figure 2. As expected, there is a great heterogeneity across sites. 

S01 varies from ~0.4 to ~1 and S10 varies from ~0.5 to ~2.5. The other four datasets confirm 

that the covarion parameters significantly vary across sites (Table 2, Figure S2). 

 

Comparisons of real datasets and their COV and CM simulated counterparts 

To further validate the CM model, datasets were simulated under COV and CM models 

using the parameters estimated from real datasets (see “posterior predictive datasets” in 

Materials and Methods). The CM model was then applied on these two types of simulated 

datasets to compare the results with the original real datasets. 

Datasets simulated under CM yield similar posterior distributions for the number of 

components of the mixture with those obtained under the original real datasets (Figures 1 

and S2). The average number of components for simulated CM data and for real data are 

always much higher than ones for simulated COV data, of which the values of Kcov are 

close to 1 and generally less than three (Table 1). 
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The distributions of the CM and the COV simulated data for site-specific S10 and 

S01 were also studied (Figure S3, Table 2). For the simulated CM dataset, S01 and S10 varied 

widely and their mean and variance are quite similar to the ones obtained from the original 

real datasets. In contrast, for the simulated COV datasets, most sites were concentrated in a 

narrow strip around the COV original simulated values, and variances of covarion 

parameters are more than ten times smaller than ones for real datasets. These simulations 

demonstrate that the CM model is efficient in detecting the heterogeneity of the covarion 

parameters when data are heterogeneous and does not artificially inflate it when data are 

homogeneous. 

 

Interactions between discrete gamma rate model and the covarion model 

For the animal nuclear dataset, we compared the estimated α value of the discrete gamma 

distribution for rates across sites under different models (Table 3). Interestingly, when the 

covarion process is introduced, the discrete gamma rates become less heterogeneous across 

sites than under a non-covarion model: the shape parameter α for the discrete gamma rates 

increases from 1.58 to 2.65. When the heterogeneity of the covarion process across sites is 

considered, the estimated heterogeneity of rates becomes even less pronounced: the value 

of α increases further to 3.35. Such interactions are expected since a covarion process can 

mimic rate variation across sites by letting each site spend a longer or shorter time in the 

ON and OFF state (e.g. a site with a long time spent in the OFF state can be assumed as a 

very slow evolving site). On the other hand, taking the heterogeneities of substitution rate 

across sites into account influences the inference of the covarion parameters (Table 4). 

 Since the covarion and RAS modeling approaches interact with each other, one 

would be interested in 1) whether covarion signals and/or the heterogeneities of substitution 

rates across sites can be recovered under different models; 2) how the estimations of 

covarion and/or substitution rates across sites signals are affected under different models. 

For simplicity, the results are shown only with the one component covarion model for the 

animal nuclear alignment. Similar results were obtained with the CM model. Briefly, 
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datasets were simulated with parameter values drawn from posterior distributions of the 

animal nuclear data for the three models: CAT+Γ, CAT+COV, and CAT+COV+Γ 

respectively. Subsequently, each simulated dataset was analyzed with all these three 

models (Table 5). 

 

A. Simulated CAT+Γ dataset 

The CAT+Γ model recovered the original value of α for the discrete Γ distribution. With 

the CAT+COV+Γ model, the original α value was also recovered, however, S10 became 

extremely small and πON was close to one. In other words, sites spent most of the time in 

the ON state, and no covarion signal was detected. In the absence of the RAS model, the 

CAT+COV model captured part of the RAS signal (S01: 0.71, S10: 0.30). 

 

B. Simulated CAT+COV dataset 

The CAT+COV model recovered the original value for the covarion parameters. With a 

CAT+COV+Γ model, the covarion model parameters were also recovered, and as expected, 

the RAS signal became very weak with α reaching 25. However, if a discrete gamma rate 

model is applied on the data which only contain covarion signal, the covarion signal would 

be considered as a RAS signal by the CAT+Γ model: α =2.0. 

 

C. Simulated CAT+COV+Γ dataset 

The CAT+COV+Γ model recovered the value of α for the discrete gamma rate distribution 

as well as the covarion parameters. This critically suggests that the two types of signals can 

in principle be identified apart. When the CAT+Γ model was applied, α was estimated at 

1.48, below the true value (2.49), suggesting that the discrete Γ model takes both RAS and 

covarion signals as RAS signal. Similarly, when the CAT+COV model was applied on the 

dataset, the estimation of the covarion parameters was influenced by the RAS signal 

contained in the data: S10 was increased from 0.43 to 0.61. 
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Altogether, these experiments suggest that the RAS and heterotachy signals are strongly 

influenced each other in practice, while they are in principle identifiable. 

 

Posterior predictive discrepancy assessments of the rate heterogeneity across sites 

Posterior predictive discrepancy was used with the DR statistic, which measures the 

ability of a model to handle the heterogeneity of rate across sites (Table 6). As expected, 

the CAT model, which assumes uniform substitution rate across sites is rejected (p<0.01). 

The CAT+Γ model is not rejected for the animal/opisthokont nuclear and mammal 

mitochondrial datasets (p≥0.05), but is slightly rejected for the other two datasets 

(animal/vertebrate mitochondrial datasets, 0.01<p<0.05). Yet CAT+Γ has a better fit than 

CAT with the respect to substitution rate variation across sites. The CAT+COV and 

CAT+COV+Γ models are rejected for all the datasets (p<0.01). Interestingly, the CAT+CM 

and CAT+CM+Γ models show a good fit with all the datasets (p≥0.05). Remarkably, the 

CAT+CM model fully handles an evolutionary property (RAS signal) for which it has not 

been designed to (i.e. being designed to handle heterotachy signal). Results of DR tests 

suggest that the discrete gamma model is outperformed by the CM model for handling the 

heterogeneities of rate across sites. 

 

Posterior predictive discrepancy assessments of heterotachy at the level of 

monophyletic groups  

The DH test indicates how well a model reflects heterotachy at the level of the 

monophyletic groups (Table 7). As expected, the non-covarion models (i.e. CAT/CAT+Γ) 

are rejected for all the datasets (p<0.01). Surprisingly, the CAT+COV model is also unable 

to deal with heterotachy (p<0.01). Except for the mammal mitochondrial data (p=0.14), the 

DH test shows that the CAT+COV+Γ cannot reflect heterotachous properties observed in 

the alignments (p<0.01). However, it shows that the CM/CM+Γ models cannot be rejected 

for all the real datasets we analyzed (p≥0.05). This demonstrates that all the analyzed 
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models in our study, except for the CM and CM+Γ models, are unable to reflect 

heterotachous signals at the level of monophyletic groups. 

 

Posterior predictive discrepancy assessments of the ON state behavior 

The CAT+CM and CAT+CM+Γ models appear indistinguishable for the DR and DH 

tests. However, the Γ model seems necessary, otherwise, the estimated α value of the Γ 

distribution for CAT+CM+Γ model, which is currently only 3.36 (Table 3), would be as 

high as for the simulated CAT+COV data, about 25 (Table 5). To further investigate this 

point, the discrepancy tests DO were designed based on the average time a given site spent 

in the ON state along the tree (Table 8). 

Both CAT+COV and CAT+CM models with uniform substitution rate are rejected 

(p<0.05). However, the CAT+COV+Γ model is not rejected (p≥0.05) for all real datasets 

except for the vertebrate mitochondrial alignment (p<0.01). Furthermore, CAT+CM+Γ 

model has a good fit for all the five alignments (p≥0.05), and the p values are always higher 

than those for CAT+COV+Γ model. This implies that in contrast to the discrete gamma 

rate models, the uniform substitution rate models show poor fit when assessed with the 

discrepancy statistic DO. One possible explanation for the poor fit is that the covarion with 

uniform substitution rate models try to deal with RAS signals in the data with covarion 

parameters, and consequently, the covarion parameters are likely to be misestimated. 

 

 

 

Discussion 

 

Posterior predictive tests 

In the classical statistical tests, the test statistics are completely free of unknown 

variables. Thus the null distribution (e.g. X2, F distribution) is a well-defined distribution, 

say without any uncertainty. However, sometimes, due to the presence of nuisance 
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parameters, the statistics are dependent on parameters of unknown value; or due to a small 

sample size, the assumed distribution is not valid anymore; or in the Bayesian framework, 

estimations are not a single set of optimal values but a posterior distribution. Therefore, the 

corresponding statistical tests for assessing models are conditional on the parameters of 

unknown values. In all of these cases, their distributions are hard to track with analytical 

ways, sometime, people used simulations to obtain the null distribution. For instance, 

instead of taking X2 distribution as the null distribution, a null distribution is simulated for 

small datasets (Roff and Bentzen, 1989). 

In the case of our study, the number of substitutions along different subgroups 

depends on the branch lengths of the groups, site-specific substitution rates, stochastic 

mapping with the ON and OFF states along the tree, etc. Posterior predictive data naturally 

give a solution to the simulation of the null distribution on the unknown parameters since 

the statistic for posterior predictive data and the observed data share the same distribution 

of unknown parameters. The advantage of posterior predictive discrepancy tests is that they 

relax the restriction on the distribution under the null hypothesis for the statistical tests, and 

allow any parameter-dependent statistics. For instance, Gelman et.al (1996) extended the 

classical model goodness of fit to the Bayesian framework, and introduced the posterior 

predictive discrepancy, which is a parameter-dependent version of the classical statistic, to 

assess models. Protassov et al. (2002) suggested posterior predictive likelihood ratio tests to 

compare nested models. 

Like the classical p value, the posterior predictive p value gives the risk information 

if we reject the null hypothesis. Thus, a high p value does not automatically imply the 

model is accepted; rather, it implies that there is no evidence to reject the model. Therefore, 

one should apply as many discrepancy tests with various aspects as possible to exclude 

unfit models. However, the statistic applied should be critical to reflect the difference 

between the data and the model. For instance the DR statistic, which accounts for the site-

specific substitution rate, indicates the poor fit of the uniform substitution model, while it is 

unable to indicate the poor model fitness due to heterotachy. 
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Compared with other model selection methods in the Bayesian framework (e.g. 

cross validation [Aki and Jouko, 2002; Blanquart and Lartillot, 2008; Lartillot et al., 2007], 

Bayes factor using thermodynamic integration [Lartillot and Philippe, 2006], etc.), the 

posterior predictive test is affordable for the current computational system. Yet one cannot 

rank models globally based on posterior predictive discrepancy tests, which actually take a 

role of analytical tools on the fitness of the model. Nevertheless, in the case of our study, 

since the COV model and the CM model are nested, the posterior distribution of Kcov, well 

above one, allows rejecting the COV model in favor of the CM model. 

 

Coexistence of rate variation across site and heterogeneities of covarion parameters 

Our studies show that the covarion parameters across sites are significantly heterogeneous. 

For instance, contrary to datasets simulated under the COV model, covarion parameters 

vary a lot in real datasets (Figure 2, Table 2, Figure S3). Considering this heterogeneity, 

relaxing the homogeneity of covarion parameters over sites improves the model fit. The 

posterior predictive discrepancy tests with respect to the heterotachy signal (i.e. DH test and 

DO test) show that the CM models, which allow for heterogeneities of S10 and S01 across 

sites, have better fits than COV models. 

In real datasets, heterogeneities exist not only in covarion parameters but also in 

many other parameters, e.g. substitution rates, stationary probabilities, etc. Different 

models have been developed to specifically handle different types of heterogeneities. 

However, we see that heterogeneous models also attempt to handle other types of 

heterogeneities, which are not their original targets (Table 5). For instance, the CM model 

can non-specifically deal with substitution rate across sites in the absence of the RAS 

model by allowing various values of πON among sites: slow sites would have high πOFF (or 

high S10), and fast sites would have high πON (high S01). However, the covarion parameters 

are not particularly devised for site-specific substitution rates, and thus they might not be 

able to recover such heterogeneities of the substitution rate efficiently. Figure 3 shows that 

the πOFF is negatively correlated with the substitution rate only when substitution rates are 
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small (<1), but slightly positively correlated when rates are high (>1). Moreover, in 

attempting to address both RAS and heterotachy signals simultaneously, inferences under 

the pure CM model may be misleading. The posterior predictive discrepancy test DO 

suggested a poor model fit for the CM with a uniform rate model. In the CM+Г model, 

each site is assigned to a substitution rate mainly aiming at representing the average 

selective pressure over the whole tree; the CM part of the model then functions as an 

adjustor to distribute the variation of the substitutions along the tree via two parameters, 

πON (the proportion of being in ON) and X (the scattering level of switches along the tree). 

A straightforward way to combine the RAS and covarion model is using Galtier’s 

version of the covarion model (Galtier, 2001). However, assuming four categories of rates, 

the dimension of the transition matrix in the Markov chain would be 4*m × 4*m (m=20 for 

amino acid data), which is very difficult to handle currently in terms of computation time, 

but might be helpful in the future with the advance of computer technology. 

In phylogenetic analyses, different models have been developed to handle different 

types of heterogeneities. In this paper, we caution that different models handling different 

types of heterogeneities might interact with each other, and that these interactions might 

impair inferences if not appropriately handled. 

 

Application of the Dirichlet process 

The non-parametric mixture model using a Dirichlet process is an efficient method 

to handle heterogeneities in the data (Escobar and West, 1995; Huelsenbeck et al., 2006; 

Huelsenbeck and Suchard, 2007; Lartillot and Philippe, 2004; Neal, 2000; Rodrigue et al., 

2008a). We verified that the Dirichlet process is able to handle both homogeneous and 

heterogeneous data. For simulated homogeneous data, most sites share a similar value of 

the covarion parameters, and the number of components is very low. For simulated 

heterogeneous data, the Dirichlet process mixture model is able to recover the shape of the 

heterogeneous distribution, and the numbers of components are close to the ones for the 
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real data. From that we can conclude that the CM model is much better than the one-

component covarion model for real data.  

As discussed above, the CM model can generally take care of RAS signals when the 

RAS model is not available. More interestingly, CAT+CM model even performs better 

than the CAT+Γ for the R test for some datasets. This is because the Dirichlet process is 

more efficient to handle heterogeneities of data across sites than the four category discrete 

gamma distribution. We expect that the site-specific substitution rate model using the 

Dirichlet process will have a much better fit than the classical discrete gamma rate model 

(Huelsenbeck and Suchard, 2007). 

The posterior predictive discrepancies tests confirm that the CAT+CM+Γ model is 

able to model the RAS signals as well as heterotachous signals. However, we are unable to 

show a better phylogenetic inference due to convergence problems when treating the 

topology as a free parameter; when several MCMC are independently run, all the nuisance 

parameters converge to similar values, and the topologies are highly similar, except a few 

nodes, which are precisely the ones of interest (unpublished results). Convergence 

problems may have several causes. One possible reason is the inefficiency of the MCMC 

sampling. For instance, we observed that sometimes two components have similar values of 

the covarion parameters. One solution to improve the MCMC for the Dirichlet process 

mixture model is using a “split-merge” algorithm (Jain and Neal, 2000), which allows 

merging similar components, and splitting a heterogeneous component into several 

components. This might be insufficient since strong correlations may exist between tree 

topology and preferred CM configurations. In fact, the covarion mixture model, being more 

flexible than currently available heterotachy models, may lead to situations of lack of 

identifiability with respect to the tree topology, such as demonstrated on theoretical 

grounds under more general heterotachy settings (Matsen and Steel, 2007). 
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Heterotachous models 

The switch rates between ON and OFF for a given site could also change along 

time. In the current CM model, the values of these switch rates are assumed constant over 

the entire tree. Therefore, if in a tree the variation across time is only present in a few 

branches, the CM model might not be able to infer these variations solidly. One solution to 

this problem is trying to improve the taxon sampling, such that the variation signal is 

becoming large enough for the CM model. The other possibility is to have a model which 

allows switch rates between ON and OFF to vary across sites and time, using for instance a 

breakpoint approach (Blanquart and Lartillot, 2008; Huelsenbeck, Larget and Swofford, 

2000). Nevertheless, such a complex model would result in a heavy computational burden. 

In this context, the CM model can be combined with a mixture branch length model, where 

reversible jump techniques are used to reduce the number of branch lengths to infer (Pagel 

and Meade, 2008). In such a case, some sites can have different branch lengths due to 

drastic, but rare, changes of substitution rates and follow a uniform CM model for most of 

the time. Implementing all of these approaches in a single encompassing statistical 

framework, allowing for contrasting their relative performance, would constitute a worthy 

direction for future work. 
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Table 1: Number of components for covarion parameters inferred by the CM model 
(mean ± SD). 
 

 
 
 
Table 2: Covarion parameter values (mean ± SD) for real and simulated datasets 
inferred by the CM model. 

  Opisthokont 
Nuclear 

Animal 
Nuclear 

Animal 
Mitochondrial 

Vertebrate 
Mitochondrial 

Mammal 
Mitochondrial 

Original 
data 

S10 
S01 

1.34±0.89 
0.64±0.14 

1.06±0.50 
0.67±0.14 

0.83±0.24 
0.91±0.31 

1.46±0.42 
1.07±0.42 

0.76±0.14 
0.78±0.12 

CM 
simulated 

S10 
S01 

1.72±1.31 
0.70±0.13

0.96±0.35 
0.65±0.13

0.77±0.23 
0.89±0.27

1.26±0.32 
1.16±0.45 

0.85±0.27 
0.76±0.08 

COV 
simulated 

S10 
S01 

0.60±0.01 
0.64±0.004 

0.48±0.02 
0.57±0.01 

0.50±0.01 
0.69±0.02 

0.65±0.01 
0.79±0.01 

0.59±0.02 
0.77±0.02 

 
 
 
Table 3: Posterior estimation of α value for the discrete gamma rates by various 
models for the animal nuclear dataset. 

Model α value for the Discrete gamma rate (±SD) 
CAT+Г 1.58(±0.04) 

CAT+COV+Г 2.65(±0.11) 
CAT+CM+Г 3.36(±0.25) 

  

 Opisthokont 
Nuclear  

Animal 
Nuclear 

Animal 
Mitochondria

l  

Vertebrate 
Mitochondria

l  

Mammal 
Mitochondria

l  
Original data 9.6±2.8 8.6±4.1 14.3±5.0 28.7±8.3 9.9±5.2 
CM simulated 11.0±4.2 6.7±2.4 13.2±5.8 24.5±11.1 7.5±4.1 

COV 
simulated 

3.1±2.3 3.6±2.2 2.50±1.71 2.6±2.2 2.5±1.7 
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Table 4: Posterior estimation of S10 and S01 by various covarion models for the animal 
nuclear dataset. 

Model S10(±SD) S01(±SD) 
CAT+COV 0.56(±0.02) 0.54(±0.01) 

CAT+COV+Г (α=2.65±0.11) 0.45(±0.02) 0.57(±0.01) 
 
 
Table 5: Posterior estimation of α value for the Discrete gamma rate, S10 and S01 for 
the three simulated datasets. The original value of the parameters for the simulated 
datasets: 
CAT+Г simulated dataset: α=1.57  
CAT+COV simulated dataset:  S01: 0.52, S10: 0.55 
CAT+COV+Г simulated dataset: α=2.49, S01: 0.55, S10: 0.43 
Simulated Data Model α of discrete 

Г(±SD) 
S01(±SD) S10(±SD) 

CAT+Г CAT+Г 1.53(±0.03) NA NA 
CAT+COV+Г 1.53(±0.03) 1.14 (±0.98) 0.01(±0.02) 

CAT+COV NA 0.71(±0.02) 0.30(±0.01) 
CAT+COV CAT+COV NA 0.56(±0.01) 0.59(±0.02) 

CAT+COV+Г 25.18(±0.08) 0.55(±0.01) 0.59(±0.02) 
CAT+Г 2.0(±0.04) NA NA 

CAT+COV+Г  CAT+COV+Г 2.7(±0.10) 0.58 (±0.01) 0.44±(0.01) 
CAT+COV NA 0.57(±0.01) 0.61(±0.02) 

CAT+Г 1.48(±0.03) NA NA 
 
 
 
Table 6: The p-value of the posterior predictive discrepancy test DR considering the 
number of substitutions along the entire tree. 

Model/Data Opisthokont 
Nuclear 

Animal 
Nuclear 

Animal 
Mitochondrial 

Vertebrate 
Mitochondrial 

Mammal 
Mitochondrial 

CAT <0.01 <0.01 <0.01 <0.01 <0.01 
CAT+Γ 0.11 0.05 0.04 0.04 0.1993 

CAT+COV <0.01 <0.01 <0.01 <0.01 <0.01 
CAT+COV+Γ <0.01 <0.01 <0.01 <0.01 <0.01 

CAT+CM 0.29 0.41 0.40 0.77 0.65 
CAT+CM+Γ 0.73 0.56 0.32 0.83 0.46 
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Table 7: The p-value of the posterior predictive discrepancy test DH considering the 
number of substitutions in different monophyletic groups. 

Model/Data Opisthokonts 
Nuclear 

Animal 
Mitochondrial 

Vertebrate 
Mitochondrial 

Mammal 
Mitochondrial  

CAT <0.01 <0.01 <0.01 <0.01 
CAT+Γ <0.01 <0.01 <0.01 <0.01 

CAT+COV <0.01 <0.01 <0.01 <0.01 
CAT+COV+Γ <0.01 <0.01 <0.01 0.14 

CAT+CM 0.51 0.71 0.88 0.76 
CAT+CM+Γ 0.66 0.39 0.86 0.52 

 
 
 
Table 8: The p-value of the posterior predictive discrepancy test DO considering the 
proportion of time per site in the ON state of the covarion process. 

Model/Data Opisthokonts 
Nuclear 

Animal 
Nuclear 

Animal 
Mitochondrial 

Vertebrate 
Mitochondrial 

Mammal 
Mitochondrial 

CAT+COV <0.01 <0.01 <0.01 <0.01 <0.01 
CAT+COV+Γ 0.24 0.24 0.06 <0.01 0.07 

CAT+CM <0.01 <0.01 <0.01 <0.01 <0.01 
CAT+CM+Γ 0.64 0.48 0.56 0.55 0.30 

 
 
 
Figure legends 

 

Figure 1. Histograms of the number of CM components (Kcov) inferred by the Dirichlet 

process from the posterior distributions of the Opisthokont alignment and the 

corresponding datasets simulated with COV and CM models. 

 

Figure 2. The distributions the posterior estimate of site-specific S01 (A) and S10 (B) for the 

15,435 sites of the opisthokont nuclear alignment and its CM and Covarion simulated 

counterparts. 

 

Figure 3. Plot of site-specific continuous rate inferred by CAT+Γ model against the site-

specific πoff inferred by the CAT+CM model for the opisthokont nuclear dataset. 
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Figure 1 
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Figure 2 
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Figure 2B 
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Figure 3 
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Table S1 

 

Chain -LnL (±SD) Tree Length 
(±SD) 

α for the 
Discrete Γ 
rate (±SD) 

Number of 
categories in 
Cat model 

(±SD) 

Number of 
Covarion 

components 
(±SD) 

A 363157±378.26 13.14±0.20 3.36±0.26 379.51±15.82 7.80±2.89 
B 363251±322.24 13.02±0.15 3.36±0.25 387.88±12.40 9.72±3.26 

 

Table S1. For the Animal nuclear dataset (13529 sites, 30 species), the -loglikelihood as 

well as the posterior estimations for tree length, α for the Discrete Γ rate, number of 

categories in Cat model, number of Covarion components from two independent chains. 
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Figure S1 

  
 

 
 
 

Figure S1. Plots of S10 (A) and S01 (B) for each site of two independent chains of the 
animal nuclear dataset (13529 sites, 30 species) using the CM +Г model. The posterior 
estimations for S01  and S10 over all sites from the two chains are highly correlated (S01 : 
r=0.86, S10: r=0.83). 
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Figure S2 

 
 

 

 
A. Animal nuclear data 

 

 
 

B. Animal Mitochondrial data 
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C. Veterbrate Mitochondrial data 

 
 
 

 
 

D. Mammal Mitochondrial data 
 
 

 

Figure S2. Histograms of the number of CM components in the posterior distributions 

inferred by the Dirichlet process under the CM+Γ model. A). Animal nuclear data (13529 
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sites, 30 species); B). Animal mitochondrial data (1,858 sites, 116 species); C). Vertebrate 

mitochondrial data(3,478 sites, 136 species); D). Mammal mitochondrial data (1,794 sites, 

53 species). 
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Figure S3 

 

 
 

Figure S3A animal nuclear data 
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Figure S3B Animal mitochondrial data 
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Figure S3C Vertebrate mitochondrial data 
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Figure S3D Mammal mitochondrial data 
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Figure S3. The distribution of posterior estimations of S01 and S10 under the CM+Γ model 

in the original, the CM simulated, and the COV simulated datasets. A). Animal nuclear 

data; B). Animal Mitochondrial data; C). Vertebrate mitochondrial data; D). Mammal 

mitochondrial data. 
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Conclusion 

1 Non-specificity of the heterogeneous models  

Heterogeneities are widely distributed in real data in many different forms. Failure to 

model these heterogeneities can potentially impede the phylogenetic inference. Currently, 

several heterogeneous models have been developed (Huelsenbeck, 2002; Kolaczkowski 

and Thornton, 2004; Yang, 1994; Zhou, et al., 2007). It is interesting to evaluate whether 

there are interactions among different heterogeneous models. In both of my articles, we 

show that heterogeneous models can interact with each other.  

 Our studies indicate the non-specificity of the heterogeneous models, which tend to 

handle other types of heterogeneities in the dataset. For instance, when the RAS model is 

absent, the covarion model will try to handle the RAS signal present in the data; on the 

other hand, when the covarion model is absent, the RAS model will also nonspecifically 

handle the heterotachous signals in the data. Moreover, our unpublished results showed that 

the RAS model non-specifically takes into account the heterogeneities of the amino acid 

replacement process across sites when the CAT model is absent. However, such non-

specific behaviors can possibly impair the real function of the model. Therefore, a good 

model needs to allow for every major heterogeneous signal, e.g. combining the features of 

several heterogeneous models (e.g.  RAS+CAT+covarion model). 

 However, if the setup of the combined model is not appropriate, interactions among 

models can happen. For instance, the MBL model catches the RAS signal, even in the 

presence of the RAS model, by letting the lengths of most branches in one component be 

highly correlated to the corresponding ones in the other component. Moreover, our 

unpublished studies show that the covarion and the RAS models can interact with each 

other when both models are applied on the dataset. For instance, when the priors of S01 and 

S10 are set as non-informative priors in the covarion+RAS model (Huelsenbeck, 2002), the 

MCMC chain converges slowly. During the burn-in period, the RAS model interprets the 
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covarion signal as a RAS signal, so the covarion model can only detect weak covarion 

signals and the consequence is that S01 is very large and S10 is very small. However, the 

convergence time can be significantly reduced if the priors of S01 and S10 are set as 

exponential distributions with the mean being 1.  

 Similar observations have also been discussed by Rannala (Rannala, 2002).  

Rannala demonstrated that correlation of parameters can cause an over-parameterized 

model and thus has a likelihood identifiable problem (Rannala, 2002). Indeed, the 

correlation of heterogeneous parameters can be explained with the non-specificity of 

heterogeneous parameters. 

 Currently, there are several models to handle different heterogeneities in the data 

(Felsenstein, 1981; Huelsenbeck and Suchard, 2007; Kimura, 1980; Lartillot and Philippe, 

2004; Pagel and Meade, 2004; Whelan and Goldman, 2001; Yang, 1994). In order to obtain 

an accurate phylogenetic inference, one needs to apply a combined model with different 

heterogeneous features. However, we should be careful with the correlation of different 

heterogeneous parameters. One good example of the combined models is Galtier’s covarion 

model, which simultaneously treats the RAS signals and the covarion signals as one single 

issue (Galtier, 2001). At present, the covarion mixture model is implemented with the CAT 

model. Therefore, it will be interesting to further explore whether the CAT model interacts 

with the covarion mixture model, and to study the consequences of the model interactions. 

2 Model evaluation and selection 

Modelling heterogeneities requires more realistic models, which might consist of a large 

number of parameters. However, a large number of parameters incur large variance of the 

estimate and also increase the computational burden. Therefore, a parameter-rich model is 

not necessarily a good model. A good model is defined in a way that it uses the smallest 

possible number of parameters to capture the most significant signals in the data. As a 

result, we would expect an improved model, of which a major increase of the likelihood is 

due to a small number of the additional parameters.  
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 Model selection methods can be used to choose a good model which efficiently 

represents the data, and can also be used to determine the number of components in the 

mixture model.  

2.1 Model selections using AIC, BIC and cross validation 

 There are several different popular model selection methods; it is interesting to 

compare their performance in the context of phylogenetic analyses. Both AIC and BIC are 

approximate methods. Cross validation is the true estimation of the Kullback-Leibler 

distance. In the framework of maximum likelihood estimation, using simulated data, we 

compared three methods of model selection: AIC, BIC, and cross validation. We observed 

that AIC is likely to over-estimate the number of parameters (i.e. to favour parameter rich 

models); BIC gives a more stringent penalty than AIC for the increase of parameters; cross 

validation is more reliable than AIC and BIC, although its calculation takes much more 

computational time. Moreover, when data consist of a small number of sites, a corrected 

AIC, which gives more harsh parameter penalties, should be used. For instance, in the 

recent study of Kolaczkowski and Thornton (Kolaczkowski and Thornton, 2008), their data 

contain only 349 sites and 24 species. Using the normal AIC, they concluded that a six-

component MBL model is the best model. However, using the corrected AIC, based on our 

calculations, a much smaller number of components for the MBL should be chosen. 

Currently, many phylogenetic studies have used AIC and BIC as model selection criteria 

for non-nested models (Kolaczkowski and Thornton, 2008; Posada and Buckley, 2004). 

Our studies advise researchers using AIC and BIC with caution due to their inherent bias. 

2.2 Posterior predictive discrepancy tests 

 Classical statistics, e.g. χ2, are used to assess models in the framework of maximum 

likelihood estimation, but they cannot be used for Bayesian models, for which the statistics 

are parameter-dependent. Posterior predictive discrepancies are a parameter-dependent 

version of classical statistics and can be used to assess Bayesian models. Another important 
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advantage of the posterior predictive discrepancies over the classical statistics in 

phylogenetics is that it allows us to compare different models under free topologies. In the 

Bayesian framework, we successfully apply posterior predictive discrepancies on the model 

assessments. Compared with other Bayesian goodness of fit tests, such as Bayes factor and 

cross validation, the posterior predictive test takes much less computational time. 

Moreover, unlike Bayes factor and cross validation, which simply determine whether the 

model fit the data, the posterior predictive discrepancy test gives the information of a 

specific aspect in which the model fits the data or not. Therefore, posterior predictive 

discrepancy tests can help us diagnose what is “wrong” with the model. Moreover, in order 

to extensively explore models, different aspects of models should be assessed with 

posterior predictive discrepancy tests. 

 Currently, a lot of phylogenetic analyses are performed in the framework of 

Bayesian MCMC. Posterior predictive discrepancies tests represent valuable alternatives to 

the Bayes factor and cross validation for the model fit. Different discrepancy tests could be 

applied to assess models or topologies in the phylogenetic analyses with different aspects, 

e.g. the likelihood value, the base frequency, the transition probability in the substitution 

matrix, etc. Thereby a good model or topology could be determined based on the 

behaviours of different posterior predictive discrepancy tests. 

3 Mixture models 

Failure to model heterogeneities of the data might result in systematic errors 

(Kolaczkowski and Thornton, 2004; Lockhart, et al., 1996; Phillips, et al., 2004). 

Heterogeneities can be modeled with finite or infinite mixture models. 

3.1 Finite mixture models 

One difficulty of the finite model is that the number of components in the mixture model 

needs to be known in advance. In the framework of maximum likelihood estimation 

(MLE), if we want to compare models using AIC, we need first to calculate the AIC value 
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for each model and then compare the different models with their AICs. This method is 

extremely time consuming and might not be applicable under a free topology. It may also 

give misleading results, if not appropriately handled. For instance, in the recent study of 

Kolaczkowski and Thornton (Kolaczkowski and Thornton, 2008), they intended to 

compare two topologies using the MBL model. They first optimized the number of the 

components for the MBL model under topology A. Next they compared the two topologies 

(topology A, topology B) using the MBL model with the number of components that was 

previously optimized with topology A. Finally they drew the conclusion that topology A is 

the optimal topology. However, their method is biased. If they would have made a global 

comparison of AIC among models with different number of components under the two 

different topologies, they would come to a conclusion with different results. However, in 

the framework of MLE, simultaneous selection of the model and the topology is not trivial 

considering the large number of candidate topologies and the large number of models with 

different numbers of components. Therefore, a finite mixture model using maximum 

likelihood estimation is not realistic in phylogenetic analyses. 

 One alternative method is the Bayesian MCMC, which allows for different 

dimensionalities of the model space along the MCMC chain. Moreover, in the Bayesian 

MCMC, one can obtain the model and topology simultaneously from the posterior 

distribution, thereby simplifying the procedure and avoiding the “chicken or the egg” 

problem. For instance, the reversible jump algorithm allows the MCMC chain to traverse 

among different dimensionalities of the parameter space (Green, 1995). Pagel et al. 

successively applied the reversible jump of Bayesian MCMC to determine the number of 

components for a breakpoint mixture model in phylogenetics (Pagel and Meade, 2008). 

3.2 Infinite mixture models 

The determination of the number of components in a finite mixture model is quite difficult 

(Zhou, et al., 2007). In contrast, the determination of the “correct” number of components 
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is not required for an infinite mixture model. Moreover, the infinite model is more realistic 

for real datasets, since it is more flexible to allow for large number of components. 

 Bayesian MCMC has its own distinctive advantages in the case of infinite mixture 

models. An infinite mixture model using the Dirichlet process can easily be implemented 

with Bayesian MCMC, but not with the maximum likelihood estimation method. 

 The covarion mixture model is an infinite mixture model using a Dirichlet process 

prior in the framework of Bayesian MCMC. In our model, a Gibbs sampling algorithm is 

used to implement the Dirichlet process mixture model. However, the MCMC chains often 

converge slowly under certain conditions. For instance, sometimes there are two 

components with similar values of the covarion parameters. This situation might cause an 

inflation of the number of components and a high value of the hyper-parameter α for the 

Dirichlet process. So, the MCMC chain might get stuck into a local mode, thus causing an 

incorrect clustering. This can also explain why data containing constant sites take much 

longer to converge for the current mixture models in PhyloBayes. The covarion mixture 

model and CAT model can be improved using a new algorithm “split-merge” to prevent the 

inefficiency of sampling in the Dirichlet process mixture model (Jain and Neal, 2000). The 

split-merge algorithm allows splitting a heterogeneous component into several components 

and merging different components with similar behaviors into one component, along the 

Markov chain, and thereby a local mode can be avoided and a faster convergence is likely. 

 Currently, researchers tend to combine different Dirichlet processes to handle 

different heterogeneities in the data (Rodrigue, et al., 2008a). It is interesting to examine 

the changes of their MCMC behaviors (e.g. the number of components, length of burn-in, 

etc.) due to the co-existing of multiple independent Dirichlet processes. Checking the 

MCMC chain of multiple Dirichlet processes also provides us an opportunity to explore the 

nature of heterogeneities in the real data. Nevertheless, a simple combination of different 

Dirichlet processes might take a chain longer to converge and might not be a good model. 

For instance, if the heterogeneous parameters of two independent Dirichlet processes are 

correlated, a convergence problem might occur. In the future, based on the observations of 
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the heterogeneities in the data, we should devise an improved infinite model which uses 

fewer Dirichlet processes to handle different heterogeneities.  

 

4 Bayesian MCMC 

We experienced a convergence problem for the covarion mixture model under free 

topologies. One reason is the extremely large number of candidate topologies in the tree 

space and thus a complicated parameter space for the mixture model. Moreover, the 

unpublished results show that the CAT model also has a convergence problem when it is 

applied on a large size dataset. We believe that when the parameter space is large and 

complicated, it is necessary to use a good MCMC mechanism so that the MCMC chain can 

efficiently explore the parameter space and thus enter the area of the posterior distribution 

faster. There are several MCMC mechanisms that the covarion mixture model can adopt to 

assure a fast MCMC convergence in the future. 

4.1 Bayesian MCMCMC 

In order to obtain a fast convergence of phylogenetic analyses with the software Mr.Bayes, 

Altekar et al., introduced a variant MCMC: parallel Metropolis-Coupled Markov chain 

Monte Carlo (MCMCMC) (Altekar, et al., 2004). The Metropolis-coupled MCMC allows 

several parallel MCMC chains to run simultaneously, and some of the chains are heated 

such that the heated chains have opportunities to explore the parameter space; during their 

running, chains exchange their state information with each other according to the 

Metropolis-Hasting ratio. The final posterior distribution is obtained with the cold chains. 

The software Mr.Bayes has adopted this algorithm and has shown that the MCMCMC is 

efficient to avoid local maxima (Altekar, et al., 2004).  
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4.2 Data augmentation 

In phylogenetic analyses, due to the presence of unobserved data or latent variables (e.g. 

character states of the internal nodes, the substitution history along the tree, the proportion 

time of a site staying in the ON state (πON), etc.), the convergence time heavily depends on 

the integration of those unobserved data. When the integral is difficult to obtain, we can use 

the data augmentation, which iteratively samples the unobserved data/latent variables 

(Hobolth and Jensen, 2005; Lartillot, 2006; Mateiu and Rannala, 2006; Rodrigue, et al., 

2008b; van Dyk and Meng, 2001). For instance, Lartillot introduced the conjugate Gibbs 

sampling (Lartillot, 2006), which is a Bayesian MCMC sampling mechanism and consists 

of two steps. In the first step (data augmentation), a substitution history along the whole 

tree is sampled for all sites with the current value of the model parameters. In the second 

step, with appropriate conjugate priors, the parameters of the model are then updated with 

the Gibbs sampling procedure, conditional on the current substitution history. In the current 

covarion mixture model, we observed that the covarion parameters take long to converge. 

We expect that conjugate Gibbs sampling can improve the convergence rate for the 

covarion parameters over the current setting of the covarion mixture model. 

5 Handling heterotachy 

Heterotachy can exist in real datasets with different extents: within-site substitution rate 

variation across a few lineages (locally) or across most lineages (globally). Importantly, 

different levels of heterotachy in real datasets can cause different types of phylogenetic 

artefact and can be handled with different models (Pagel and Meade, 2008; Ruano-Rubio 

and Fares, 2007; Zhou, et al., 2007). Therefore, it is necessary to find a suitable model to 

properly handle heterotachous signals in the real data. 

 The heterotachous process can be modeled with variant covarion models, which are 

Markov-modulated Markov processes. Tuffley and Huelsenbeck’s covarion model 

(Huelsenbeck, 2002; Tuffley and Steel, 1998) handles within-site rate variation with two 
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states: ON and OFF. If a site evolves fast along part of the tree, it would have a high 

probability of being in ON along this part of the tree, if a site evolves slowly along part of 

the tree, it would have a high probability of being in OFF along this part. The states of ON 

and OFF along the tree are unknown, thus the likelihood is obtained through the integration 

of the ON and OFF over the whole tree. The heterotachous process can also be modeled 

with the MBL model (Kolaczkowski and Thornton, 2004). The MBL model is a non-

parametric version of branch-wise covarion model. The MBL model could potentially lead 

to a huge number of parameters considering a large number of branches in each 

component. The use of a huge number of parameters would incur a heavy computational 

burden. A model with a large number of parameters is not necessary a good model. If 

heterotachous signals in real data are at a low or medium level, e.g. substitution rate 

variation across a few lineages, then the MBL model will be a very expensive and 

redundant model. Using BIC and the cross validation, we showed that the covarion model 

performs better than the MBL model on the three real datasets that we have analyzed so far. 

Moreover, the cross validation method shows that the one-component model is better than 

the two-component MBL model for most datasets. Our analyses show that most 

corresponding branch lengths in different components are highly correlated (Zhou, et al., 

2007), except for only a few branches. This implies that only a small portion of the tree 

shows a significant heterotachous signal, and that the evolutionary signal of most portions 

of the tree detected by the MBL model is simply the RAS signal. A similar result is also 

obtained with a reversible jump model (Pagel and Meade, 2008). Using different methods, 

both studies (Pagel and Meade, 2008; Zhou, et al., 2007) concluded that the MBL model is 

too expensive for modeling heterotachous signals in most of the real datasets.  

5.1 A Breakpoint mixture model 

 Based on the study of the MBL model (Zhou, et al., 2007), we suggest that a 

breakpoint mixture model would be an improvement of the MBL. In the breakpoint mixture 

model, there can be several breakpoints, where the number of components for branch 
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length is changed. As a result, in the breakpoint mixture model, sites can share the same 

lengths for most branches except for only a few branches, which might have two or more 

components. 

 A good model should reflect important biological information (Steel, 2005). The 

breakpoint mixture model is able to detect the critical evolutionary process such that at a 

certain time (i.e. breakpoint), due to environment or physicochemical property changes, 

some sites drastically change their substitution patterns. For instance, the results of the 

Gnetales data with the breakpoint model help researchers to identify that two protein 

coding genes involved in energy transfer (rbcl and atpB) have greatly accelerated their rate 

of evolution in the lycopods, ferns and equisetum (Pagel and Meade, 2008). However, it is 

difficult for the MBL model to detect such an important change of the evolutionary pattern, 

since in the MBL model sites have different branch lengths at the range of the entire tree 

and most different branch length components are due to the RAS signal. Moreover, the 

need for a breakpoint mixture model can also be explained by the current situation of 

molecular phylogeny: the evolutionary positions of most species in the phylogenetic trees 

are believed resolved except for a few species or a few taxonomic groups. For instance, the 

LBA artefact, in which some species evolve very fast and consequently are positioned in 

the wrong place of the tree, is nevertheless limited to a rather small area of the tree, 

whereas the vast majority is robust. 

 The situation of phylogenetic inference looks so frustrating. For instance, in the 

case of the LBA artefact, due to their high substitution rates, the fast evolving species are 

often assumed a distant species by a homotachous model. However, we don’t believe that 

such a situation is completely hopeless, since there are always some sites that are slowly 

evolving in those fast evolving species. The breakpoint mixture model targets this feature 

exactly, and thereby we believe that the “true” phylogenetic tree would have a higher 

probability to be sampled by the breakpoint mixture model than by the homotachous model 

in the MCMC chain. 
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 The breakpoint in the breakpoint mixture model can be modeled with two 

alternative ways: one possibility is that the breakpoint can occur at any place along the 

branches. In this case, we can locate breakpoints along a tree using a Poisson stochastic 

process (Blanquart and Lartillot, 2006). However, it might be difficult for an MCMC chain 

to converge considering the length and the number of branches. The other possibility is that 

breakpoints can occur only at the nodes. This branch-wise breakpoint should have a much 

better convergence than the first proposal. Currently, this branch-wise breakpoint mixture 

branch length model has been developed using the reversible jump MCMC (Pagel and 

Meade, 2008). Compared with the MBL model, the breakpoint model requires much less 

parameters and is less interactive with the RAS model (the correlation coefficient of branch 

lengths between two components is as low as 0.11) (Pagel and Meade, 2008). However, at 

present there are no breakpoint mixture branch length models that allow for free topologies. 

We hope that a free topology breakpoint model will soon be available to improve the 

phylogenetic inference. 

5.2 A general covarion model 

The covarion model has an advantage of requiring only a few additional parameters for the 

modeling of the within-site rate variation across time. The posterior predictive studies show 

that the covarion mixture model using the Dirichlet process is able to reflect the within-site 

substitution rate variation. However, approximation of rate variation using ON and OFF in 

the covarion mixture model might not be efficient. Moreover, modeling the variation of 

substitution rate within and among sites using the combination of the two different models 

(RAS+covarion model) (Huelsenbeck, 2002) might have the potential model interaction 

problem. On the other hand, although Galtier’s model (Galtier, 2001) allows for within-site 

substitution variation, it does not allow for ON and OFF states which apparently exist in the 

real data (Lockhart, et al., 1996). One possibility is a general covarion model which has 

features of both Galtier’s (Galtier, 2001) and Tuffley’s covarion model (Tuffley and Steel, 

1998). Wang’s covarion model (Wang, et al., 2007) combines both Galtier’s and Tuffley’s 
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covarion models, but it is a triply Markov model and contains a very large size of transition 

matrix (for amino acid, four category discrete gamma rate, the size of transition matrix is 

160×160).  

 We expect another version of the general covarion model that can be an 

improvement over current covarion models. This Markov-modulated Markov model 

assumes the variation of substitution rates within and among sites follows a g-category 

discrete gamma distribution plus a category for invariant sites. Therefore, the first level 

Markov process consists of g states plus one invariant state, in total g+1 states. The variant 

states include g states (1,..., g), each corresponding to the substitution rate of one category 

in the discrete gamma distribution; and in the invariant state, sites cannot be substituted 

(i.e. the OFF state). Hence, the transition matrix can be displayed as: 

,             (1) 

where v1 is the switching rate among the discrete gamma rate states; v2 is the switching rate 

from one of the variant states to the invariant state (OFF) ; v3 is the switching rate from the 

invariant state (OFF) to one of the variant states.  

 Since it is a time reversible process, we have 

v3*𝜋ைிி = v2*𝜋ைே.       (2) 

Given that for each rate category, 𝜋ைே = ଵିగೀಷಷ௚ ,  so  

  v3*𝜋ைிி = v2*
ଵିగೀಷಷ௚ .       (3) 
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From equation (3), we can obtain the probability of staying in the invariant state (OFF) 𝜋ைிி = ௩మ௚∗௩యା௩మ, and the probability of staying in the variant states (ON) 𝜋ைே = ௚∗௩య௚∗௩యା௩మ. 

The stationary probabilities for these g+1 states are: (
ଵିగೀಷಷ௚ , … , ଵିగೀಷಷ௚ᇣᇧᇧᇧᇧᇤᇧᇧᇧᇧᇥ௚  , 𝜋ைிி). 

 The size of the transition matrix for this general covarion model is 

(g+1)*m×(g+1)*m (for amino acid (m=20) and four category discrete gamma rate (g=4), 

the size is 100×100), and it is smaller than Wang’s general covarion model. We expect that 

this model is able to catch the variation of substitution rates both within and among sites, 

and takes less time to converge than Wang’s general covarion model. 

5.3 The covarion mixture model 

In the covarion mixture model, there are three parameters (S10, S01, α) to handle the 

variation of substitution rates within and among sites. However, we observe that these three 

parameters are somehow correlated: if a site has a high substitution rate, then its πON would 

also have a high probability of being large. However, this correlation is not universal 

among all sites. Such correlation might bring a potential over-parameterization problem to 

the covarion mixture model. One alternative model could only consider the heterogeneities 

of X, the switch rate between ON and OFF, across sites, but not the πON, i.e. sites having 

different switch rate X, but sharing the same πON. 

 In our unpublished analyses, unlike the posterior predictive discrepancy test DH, 

which aims at within-site variation across monophyletic groups, we have designed another 

posterior predictive discrepancy test that aims at within-site variation across branches. In 

this test, all the results are not significant. This implies that within-site rate variation 

obtained by the integration over the whole tree is not efficient to capture the variation 

signals associated with single branches. Thus the CM model might not be able to infer the 

correct phylogenetic tree. One possibility for substitution variation across branches is a 

breakpoint mixture covarion model, which allows different switch rate between ON and 

OFF across branches. However, this monster model would be impractical considering 
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computational time and convergence issue. The other possibilities include: 1) using a 

breakpoint mixture branch length model, which is a non-parametric covarion model (Pagel 

and Meade, 2008); 2) or amplifying the weak signal of problematic branches by including 

closely related species. 

5.4 Taxon sampling 

The simulations show that a phylogenetic artefact caused by heterotachy can be influenced 

by many factors in the data (Ruano-Rubio and Fares, 2007). For instance, a great difference 

of the within-site rate variations between two sister-groups would have a high probability 

of inferring a wrong topology (Ruano-Rubio and Fares, 2007). It also has been shown that 

when data are chosen adequately, the RELL support for the wrong topology will 

significantly decrease (Ruano-Rubio and Fares, 2007). Moreover, as we have discussed 

earlier, one can amplify the weak phylogenetic signals of problematic nodes by including 

their closed related species to prevent phylogenetic artefacts. Therefore, if possible, one 

should do careful taxon sampling so that the phylogenetic artefact can be avoided (Hillis, et 

al., 2003). However, a large number of species will inevitably increase the computational 

burden and also cause convergence problems. 

6 Future work 

6.1 Breakpoint mixture model with a free topology 

 Our current study has given a general review of heterotachous models and the 

nature of heterotachy in real data. Moreover, our study proposes a new covarion mixture 

model, which handles heterogeneities of within-site variation across sites. The posterior 

predictive discrepancy tests show that this new model has a better fit than classical 

covarion models. However, the covarion mixture model hasn’t shown to improve the 

phylogenetic inference. It is possibly because within-site variation is not homogeneous 

across the tree, and using a Markov-modulate Markov model might not be so efficient to 

catch the with-in site variation. Moreover, in the real world, most phylogenetic positions 
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have been solved except for a few species. So, a new heterotachous model could be focused 

on these problematic species, but not at the level of a whole tree. The breakpoint model for 

branch length, which is a non-parametric version of the covarion mixture model, could be a 

good solution for the heterotachous artefact. In the near future, a breakpoint model that 

allows some sites having different branch lengths at some branches with a free topology 

will be developed in a Bayesian MCMC framework. We expect that such a model is able to 

improve the phylogenetic inference. In this model, some of the MCMC moves for topology 

and branch length would follow the algorithms proposed by Larget (Larget and Simon, 

1999). The reversible jump MCMC algorithm can be implemented for the MCMC moves 

in the case of parameter dimensionality changing (Green, 1995; Pagel and Meade, 2008), 

such as adding or deleting a branch at a node, or changing the topology.  

6.2 A combined phylogenetic model 

In current phylogenetic analyses, using different phylogenetic models, we always obtain 

different phylogenies. However, such situations sometime are complicated and cannot be 

totally explained. A phylogenetic artefact can be a consequence of multiple systematic 

errors, such as heterotachy, compositional bias (Jeffroy, et al., 2006), inter-dependencies 

among sites (Rodrigue, et al., 2006), etc; or simply only one of these systematic errors.  

Sometimes, such systematic errors are not obvious to researchers. So it is not surprising if a 

model that aims at only one systematic error is unable to obtain correct phylogenetic 

inference.  

 Therefore, in order to improve phylogenetic inference, in the long term of the study, 

we will implement a combined model, which has features of different models (e.g.  CAT 

model, heterotachous model, etc) and thus is able to handle different systematic errors. 

 One might wonder whether using a combined model would be a waste if one of the 

model features is not necessary for the data. The Bayesian MCMC can allow the combined 

model to detect the nature of the data automatically and thereafter fit the data. For instance, 

if the covarion parameters are not heterogeneous across sites in the data, the number of 
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components in the mixture model obtained by the reversible jump MCMC would be close 

to one. Thus model selection is avoided in the framework of Bayesian MCMC and thus the 

combined model is applicable on all datasets. However, a combined model is not simply a 

hodgepodge. The increased complexity could potentially lead to an over-parameterized 

model, which can be observed as some parameters are correlated (Rannala, 2002). The 

over-parameterized model can cause a slow convergence. During the development of the 

model, one should be very careful about the model over-parameterization and the unknown 

parameters should be selected with caution. 

6.3 A fully Bayesian method 

In the short term of the study, we will implement a combined model with a fully Bayesian 

method, which simultaneously estimates the topology, the model parameters (e.g. 

substitution rate matrix), and the branch lengths etc.  

 One problem of the current phylogeny is a high degree of substitution saturation in 

molecular sequences (Felsenstein, 2004). However, due to functional restrictions, close-

related species share more similar protein/nucleotide structure than far-related species, and 

some of 3-D sequence structures are relatively more conserved than sequence characters. 

For highly saturated sequences, a 3-D structure can be used in phylogenetic reconstruction 

(Balaji and Srinivasan, 2001). Moreover, structure-based phylogeny can help us identify 

the important structure of sequence (Agarwal, et al., 2009). In the long term study, we 

expect a fully Bayesian method can be developed to locate functionally important 3-D 

structures, construct phylogenies, and align sequences simultaneously in the future, thus 

eventually improve the phylogenetic inference. 
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discrepancy tests, made all the computations, and wrote the first draft of 
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HB offered regularly advice on the study, participated in writing, and helped 

with the datasets.  

NR helped with the implementation and participated in writing. 

NL conceived the covarion mixture model, helped with the implementation, and 

participated in writing.   

HP conceived the covarion mixture model, provided the datasets, participated in 

writing, and supervised the study. 
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Supplement 2: An algorithm for fast estimation of the branch 

lengths. 

The time reversible model implies that the root can be everywhere in the tree. The 

pruning program gives a recursive formula, such that  

node->likelihood = (node->left->likelihood)*(node->right->likelihood) 

So we can save conditional likelihoods for all the nodes’ and we don’t need to apply 

the pruning program on the whole tree if just few branches’ lengths or part of topologies 

have been changed. When one branch length is changed, we can move the root to the node 

where the branch length has been changed; we only need to calculate the probability of the 

changed branch length, and thereafter obtain the likelihood of the whole tree since the 

conditional likelihoods of the rest nodes have already been stored (Felsenstein, 1981). This 

algorithm saves a lot of computational time especially when a large amount of branches 

need to be inferred.  

Three types of conditional probabilities: left, right and up for each node are 

calculated and stored as illustrated: 

 

Three types of conditional likelihoods for node B: left, up and right have been shown with red 

arrows. 
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L B[up] is the conditional likelihood matrix of node B for the up direction; Pr(B) is the 

stationary probabilities vector. The conditional likelihood vectors of node B for the three 

directions up, left and right are defined as: 

L B [up] = (L D[up]* Pr(B|D,t2))*(L E[up]* Pr(B|E,t3)); 
L B[left] = (L A[left] * Pr(B|A,t1)) *(L E[up]) * Pr(B|E,t3)); 

L B[right] = (L D[up]* Pr(B|D,t2)) *(L A[left]) * Pr(B|A,t1)); 

 

Suppose the root is moved to the node B, the likelihood of the whole tree is:  

Likelihood of the tree= (L B [up] * Pr(B|A, t1) *L A[right] )* Pr(B); 

 

The Up conditional likelihood of a node is obtained by a post-order traverse with the 

function Lup(node): 

Lup(node) { 
 Return Lup(node->left)* P(node|node->left, node->left->branch)* (Lup(node->right)* 
P(node|node->righr, node->right->branch); 
} 

 

Lengths of branches in the tree can be optimized one by one following a pre-order with the 

function Preorder (node):  

Preorder (node)  {  
 If (node != root) { 
  Optimise node->branch ; 
 } 

If (node!= leaf) {  
calculate L[left] for node; 
Preorder (node->left); 
calculate L[right] for node; 
Preorder (node->right); 
 calculate L[Up] for node; 

} 
} 

 

This preorder (node) is very useful when there are intensive branch lengths to be inferred, 

e.g. the mixture branch length model(see introduction of MBL model in Heterotachy 

models) .  
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Abstract.—In the context of exponential growing molecular databases, it becomes increasingly easy to assemble large multi-
gene data sets for phylogenomic studies. The expected increase of resolution due to the reduction of the sampling (stochastic)
error is becoming a reality. However, the impact of systematic biases will also become more apparent or even dominant. We
have chosen to study the case of the long-branch attraction artefact (LBA) using real instead of simulated sequences. Two
fast-evolving eukaryotic lineages, whose evolutionary positions are well established, microsporidia and the nucleomorph
of cryptophytes, were chosen as model species. A large data set was assembled (44 species, 133 genes, and 24,294 amino
acid positions) and the resulting rooted eukaryotic phylogeny (using a distant archaeal outgroup) is positively misled by an
LBA artefact despite the use of a maximum likelihood–based tree reconstruction method with a complex model of sequence
evolution. When the fastest evolving proteins from the fast lineages are progressively removed (up to 90%), the bootstrap
support for the apparently artefactual basal placement decreases to virtually 0%, and conversely only the expected place-
ment, among all the possible locations of the fast-evolving species, receives increasing support that eventually converges to
100%. The percentage of removal of the fastest evolving proteins constitutes a reliable estimate of the sensitivity of phylo-
genetic inference to LBA. This protocol confirms that both a rich species sampling (especially the presence of a species that
is closely related to the fast-evolving lineage) and a probabilistic method with a complex model are important to overcome
the LBA artefact. Finally, we observed that phylogenetic inference methods perform strikingly better with simulated as
opposed to real data, and suggest that testing the reliability of phylogenetic inference methods with simulated data leads to
overconfidence in their performance. Although phylogenomic studies can be affected by systematic biases, the possibility of
discarding a large amount of data containing most of the nonphylogenetic signal allows recovering a phylogeny that is less
affected by systematic biases, while maintaining a high statistical support. [Distant outgroup; eukaryotic tree; long-branch
attraction; microsporidia; multigene data sets; nucleomorph; rooting; species sampling; systematic biases.]

Single-gene phylogenies are generally poorly resolved
because the number of informative positions is limited
and stochastic (random) noise yields contradictory, yet
often poorly supported, results. Phylogenomics, that is
the use of a large number of genes, or ultimately of
complete genomes, in phylogenetic inference, is of great
promise to overcome stochastic errors and to furnish sta-
tistically significant results. Recently, the analysis of sev-
eral large data sets has allowed enhanced insight into
long-term outstanding questions such as relationships of
placental mammals (Madsen et al., 2001; Murphy et al.,
2001) and angiosperms (Qiu et al., 1999; Soltis et al.,
1999). However, conflicting results have also emerged.
For example, the monophyly of Ecdysozoa (nematodes +
arthropods) is strongly rejected by some phylogenomic
analyses (Blair et al., 2002; Philip et al., 2005; Wolf et al.,
2004) and strongly supported by others (Delsuc et al.,
2005; Philippe et al., 2005).

The use of large data sets reduces the impact of the
stochastic error (which will disappear only with infi-
nite samples); however, it can exacerbate systematic er-
rors, which can eventually become dominant. System-
atic errors occur when the real evolutionary process
differs from our oversimplified models (Phillips et al.,
2004). They may also be found in the case of single
genes, but are usually hidden by sampling errors. Al-
though probabilistic methods like maximum likelihood
(ML) or Bayesian approaches are known to be more ro-
bust to model violations (Hasegawa and Fujiwara, 1993;
Sullivan and Swofford, 2001), heterotachy, defined as the

heterogeneity of the evolutionary rate of a given position
throughout time and compositional bias, can lead to in-
consistency (Foster and Hickey, 1999; Inagaki et al., 2004;
Kolaczkowski and Thornton, 2004; Lockhart et al., 1996;
Philippe and Germot, 2000). For example, the minimum
evolution method is inconsistent in the case of a large
yeast data set of Rokas et al. (2003) because two unre-
lated species share a similar nucleotide composition. This
can be corrected, however, by RY coding (Phillips et al.,
2004).

Variable evolutionary rates among lineages constitute
an important source of systematic bias. The long-branch
attraction (LBA) artefact posits that the two longest
branches will cluster together under certain conditions,
irrespective of the true relationships of the sequences
under study (Felsenstein, 1978). In the case of a dis-
tant outgroup (representing a long branch), LBA leads
to the artefactual early emergence of the fast-evolving
lineages of the ingroup (Philippe and Laurent, 1998). Al-
though LBA artefacts were suspected to be present in var-
ious phylogenies (Bapteste et al., 2002; Dacks et al., 2002;
Huelsenbeck, 1997; Nozaki et al., 2003; Qiu et al., 2001;
Sanderson et al., 2000; Simpson et al., 2002; Stiller and
Hall, 1999), they are difficult to discover and overcome
(see the case of glires, Douzery et al., 2004). The most
obvious way would be the use of a tree reconstruction
method that is not sensitive to this artefact, but, unfor-
tunately such a method does not yet exist. Probabilistic
methods fail because the current models (even the most
complex ones) do not reflect all facets of biological reality,

743

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
C
a
n
a
d
i
a
n
 
R
e
s
e
a
r
c
h
 
K
n
o
w
l
e
d
g
e
 
N
e
t
w
o
r
k
]
 
A
t
:
 
2
0
:
3
1
 
1
8
 
J
a
n
u
a
r
y
 
2
0
0
9



744 SYSTEMATIC BIOLOGY VOL. 54

not because of the method per se (Felsenstein, 2004; Lock-
hart et al., 1996). Simulation studies (Guindon and Gas-
cuel, 2003; Huelsenbeck, 1998; Kuhner and Felsenstein,
1994; Qiu et al., 2001; Swofford et al., 2001; Wolf et al.,
2004) have revealed that maximum parsimony (MP) is
generally more sensitive than distance-based methods,
whereas probabilistic methods are generally more ro-
bust. The different sensitivity of MP and probabilistic
methods can help to detect if the LBA artefact is playing
a major role (Germot et al., 1997; Huelsenbeck, 1998).

However, if all methods yield trees where long
branches, such as fast-evolving species and outgroup,
are clustered, the situation becomes much more complex.
One possibility is to modify the taxonomic sampling
so that only the slowest evolving species are included
(Aguinaldo et al., 1997). Alternatively, the addition of
species can alleviate the LBA artefact by dividing long
internal branches (Hendy and Penny, 1989). In this case,
the addition of slowly evolving species is much more
efficient, whereas the addition of fast-evolving species
makes things worse (Kim, 1996; Poe, 2003). Although
the most efficient conditions of species addition are
not known (Hillis et al., 2003; Rosenberg and Kumar,
2003), several cases of LBA were revealed by adding
species (Anderson and Swofford, 2004; Dacks et al., 2001;
Inagaki et al., 2004; Philippe, 1997).

Finally, when the species sampling is reasonable for
a given phylogenetic problem, the removal of sequence
positions can be an effective method. The fast-evolving
positions, which are saturated by multiple substitutions,
have lost much, if not all, of their phylogenetic signal
and are especially sensitive to any systematic bias. The
slow/fast (SF) method (Brinkmann and Philippe, 1999),
which starts by selecting the slowest evolving positions,
and then progressively adding faster evolving positions,
can reveal a transition between a topology in which
the long branches are not grouped and a topology dic-
tated by the LBA artefact (Brinkmann and Philippe, 1999;
Brochier and Philippe, 2002; Busse and Preisfeld, 2003;
Delsuc et al., 2005; Hampl et al., 2004; Philippe et al.,
2000b).

Rooting deep level phylogenies is of fundamental
importance in understanding the origin of numerous
groups, eukaryotes in particular (Forterre and Philippe,
1999; Lake and Rivera, 1994; Lopez-Garcia and Moreira,
1999; Martin and Müller, 1998; Poole et al., 1999). Because
many groups only have a distantly related outgroup
(e.g., marsupials versus placental mammals, gnetales/
gymnosperms versus angiosperms, Archaea versus eu-
karyotes), the probability of the erroneous early emer-
gence of fast-evolving lineages is high when multiple
genes are used. One can therefore legitimately ask the
question: is it possible to confidently root deep level
trees in a phylogenomic analysis, or in other words, to
eschew the LBA artefact in the presence of a distant
outgroup?

In this article, we tackle this question by studying
a situation in which the phylogenetic position of two
fast-evolving lineages is well-established a priori. We se-
lected the eukaryotic phylogeny (Fig. 1) because the ar-

FIGURE 1. Eukaryotic tree, rooted according to Philippe et al.
(2000b) and Stechmann and Cavalier-Smith (2002), showing the ex-
pected position of the two fast-evolving eukaryotic species, the mi-
crosporidia Encephalitozoon and the nucleomorph of the cryptophyte
algae Guillardia, in the presence of the distantly related outgroup Ar-
chaea. The topology of the tree is a consensus emerging from sev-
eral multigene analyses (Baldauf et al., 2000; Lang et al., 2002; Philippe
et al., 2004). This tree illustrates our working hypothesis, which we will
test, and the high evolutionary rate of nucleomorph and microsporidia.
The branch lengths were inferred by Tree-Puzzle (WAG+F+�4) based
on the complete data set with 41 species and 24,294 amino acid po-
sitions. The scale bar corresponds to 0.1 amino acid substitutions per
site.

chaeal sequences represent a distantly related outgroup
that should strongly attract any fast evolving eukary-
otes. Two fast-evolving eukaryotes, the nucleomorph of
the cryptophyte Guillardia theta, and the microsporid-
ium Encephalitozoon cuniculi, were selected because their
complete genomes had been sequenced (Douglas et al.,
2001; Katinka et al., 2001). The nucleomorph originated
in a secondary endosymbiotic event in which an en-
tire red alga was engulfed by a flagellate host cell, and
corresponds therefore to the remnant of the former red
algal nucleus, which is now highly reduced. This in-
terpretation is supported by phylogenetic data from
the corresponding chloroplast genome (Douglas et al.,
2001; Yoon et al., 2002) and by morphological charac-
ters (Gibbs, 1981). The position of microsporidia has
been more controversial, but now a large body of ev-
idence argues that microsporidia are closely related to
fungi (Keeling and Fast, 2002), although their exact po-
sition within fungi remains uncertain (Keeling, 2003).
To include the chytridiomycetes, an important group
of fungi, we sequenced ∼1000 ESTs from Neocallimas-
tix patriciarum. N. patriciarum is an anaerobic fungus
that can be found in the digestive tract of herbivorous
mammals, in both ruminants and nonruminants (Te-
unissen and Op den Camp, 1993). Interestingly, this
organism does not possess classical aerobic mitochon-
dria, but rather hydrogen-producing organelles called
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hydrogenosomes. Hydrogenosomes are modified mito-
chondria that completely lost their genome and respi-
ratory functions (reviewed in Embley et al., 2003). The
group chytridiomycetes, to which this organism belongs,
is characterized by the presence of a flagellum, a unique
property within fungi. For this reason, it is generally
assumed that chytridiomycetes have a basal position
within fungi (James et al., 2000). We assembled a large
data set of 133 nuclear encoded genes from six archaeal
outgroup and 33 slow- and 2 fast-evolving eukaryotic in-
group species, including the microsporidium Encephali-
tozoon cuniculi and the nucleomorph of the cryptophyte
Guillardia theta. Because the two fast-evolving species
were misplaced in preliminary analyses, four different
approaches were used to study LBA artefacts: (1) the re-
moval of the fastest evolving proteins, (2) the use of var-
ious tree reconstruction methods, (3) the use of diverse
taxon samplings, and (4) phylogenetic inference without
the distant outgroup.

MATERIALS AND METHODS

Neocallimastix ESTs

Sequences were obtained from a previously con-
structed Neocallimastix patriciarum ZAP II cDNA library
(Xue et al., 1992). An aliquot of this library containing
a random collection of clones was excised by superin-
fection with helper phages according to the manufac-
turer’s instructions (Stratagene). One thousand clones
were randomly selected and subsequently analyzed by
sequencing. A detailed description of the sequences will
be provided elsewhere.

Assembling the Alignment

We added to the aligned data sets of 174 proteins used
by Philippe et al. (2004) the amino acid sequences avail-
able in Genbank (nonredundant section) on December
2003, using a BLASTP search with a cutoff e-value
corresponding to the highest value of the orthologous
proteins in Archaea. We then added to the alignments the
EST sequences from the chytridiomycete N. patriciarum,
and EST, as well as genomic sequences, from several
ongoing sequencing projects. We retrieved most of the
sequences from GenBank through NCBI (http://www.
ncbi.nlm.nih.gov) except for Cryptococcus neoformans
(C. neoformans cDNA Sequencing Project at http://
www.genome.ou.edu/cneo.html; and C. neoformans
Genome Project, Stanford Genome Technology Center
and the Institute for Genomic Research, at http://
baggage.stanford.edu/group/C.neoformans/download.
html), Dictyostelium discoideum (Genome Sequencing
Center Jena website at http://genome.ibm-jena.de/
dictyostelium), Thalassiosira pseudonana (http://genome.
jgi-psf.org/thaps1/thaps1.download.ftp.html), Phyto-
phthora sojae (http://genome.jgi-psf.org/sojae1/sojae1.
download.ftp.html), Tetrahymena thermophila (ftp://ftp.
tigr.org/pub/data/Eukaryotic Projects/t thermophila/),
and Monosiga brevicollis (http://projects.bocklabs.wisc.
edu/carroll/choano/, King et al., 2003).

The sequences were added as described in Philippe
et al. (2004). To deal with the problem of nonortholo-
gous sequences, we constructed amino acid based phy-
logenies (MP and ML) starting with the original 174
proteins, of which the 133 proteins used to assemble
our final phylogenomic data set represent a conserva-
tive subsample. At this step we also eliminated all pro-
teins that had either too few species or too much missing
data. The reliability of orthology assignment was greatly
improved due to the use of numerous species. Genes
for which orthology relationships were difficult to es-
tablish (e.g., EF-1α or cytosolic HSP70) were completely
discarded from the analyses. When recent gene duplica-
tions were detected (almost exclusively for vertebrates),
the slowest evolving gene copy was selected. We did not
find in our individual gene data sets any case in which
horizontal gene transfers would provide a reasonable
explanation.

To assemble a data set rich in both species and genes,
sequences can be missing or partial for some proteins
from some species, because we compiled the sequences
mainly from cDNA sequencing projects. To decrease the
amount of missing data, we created chimerical sequences
between closely related taxa (see Appendix 1, available
at www.systematicbiology.org). We retained only species
for which a sufficiently large number of amino acid
residues were available (larger than 5000). Simulation
studies have shown that under these conditions the im-
pact of missing data is negligible (Philippe et al., 2004;
Wiens, 2003). Moreover, the removal of the most incom-
plete taxa has no visible effect on the phylogenetic infer-
ence (Philippe et al., 2005).

In order to extract only unambiguously aligned por-
tions and to eliminate divergent regions of the align-
ment, we used Gblocks (Castresana, 2000) with the
following parameter settings: a minimum of 50% of the
sequences per position identical for a conserved posi-
tion, a minimum of 75% of the sequences identical for
a flanking position, a maximum of five contiguous non-
conserved positions, and a minimum of five positions
for a block. This selection was manually verified; in
particular, a few conserved regions with some amount
of missing data, for which Gblocks was too stringent,
were reintroduced into the dataset. A data set com-
prising 44 species (six Archaea, 33 slowly evolving eu-
karyotes, a microsporidium, a nucleomorph, and three
kinetoplastids) and 133 genes (displaying a mean of
∼24% of missing data per species, Appendix 2, avail-
able at www.systematicbiology.org) was constructed. In
a few cases the amount of missing data is quite high,
with a maximum of 80% for the brown alga Lami-
naria. However, there are only seven species with less
than 10,000 amino acid positions, and they are always
closely related to almost complete species, so that no ma-
jor eukaryotic lineages are only represented by highly
incomplete taxa. The alignments are available upon
request and nexus files of the two basic data sets (includ-
ing two trees each; expected and LBA) were also sub-
mitted to TREEBASE under the study accession number
SN2312.
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Phylogenetic Analyses

Phylogenetic analyses were performed at the amino
acid level. Various models of sequence evolution were
considered. We used Poisson (the same probability for
all pairs), WAG (Whelan and Goldman, 2001), or JTT
(Jones et al., 1992) amino acid replacement matrices with
and without gamma-distributed rates across sites (Yang,
1993). Two different models were applied: (1) the sep-
arate model (Yang, 1996) where branch lengths and
the α parameter are free to vary for all genes, and (2)
the concatenated model that considers all genes as a
“super-gene.”

Two important limitations for finding the best tree be-
come prominent when a large number of positions and
a large number of species are used: (1) pronounced local
minima and (2) computing time and memory require-
ments. The height of the potential barriers separating lo-
cal minima increases with the number of positions used
(Salter, 2001). The probability that the heuristic search is
trapped in a local minimum is therefore much higher. As
a consequence, we used mainly exhaustive tree searches
for the ML analyses. Since the number of possible topolo-
gies is too large for an exhaustive search (1053 for 39
species), we proceeded in two steps.

First, for the data set comprising the 33 slowly evolving
eukaryotic species and the six Archaea, several heuris-
tic searches were performed. The methods used were
MP implemented in PAUP∗ (Swofford, 2000), ML using
PHYML (Guindon and Gascuel, 2003) with a concate-
nated JTT+F+� 4 model, and Bayesian inference in Mr-
Bayes (Ronquist and Huelsenbeck, 2003) with a concate-
nated WAG+F+�4 model (150,000 generations, burn in
of 14,500 generations, 4 chains). The parameter F (fre-
quency) corresponds to the use, as equilibrium frequen-
cies, of the amino acid frequencies observed in the data
sets under study, instead of the ones obtained for the
original data set used to infer the amino acid replacement
matrix (WAG or JTT). The high memory requirements of
the probabilistic analyses based on the concatenated data
sets limited the modeling of among site rate variation to
the use of four discrete gamma categories (�4). Distance
methods were not used to infer trees, because they are
sensitive to the presence of missing data in the alignment.
All MP analyses were always performed without con-
strained trees and applied the following options: heuris-
tic search with TBR, 10 random species additions, and
1000 Bootstrap replicates. All Bayesian inferences were
performed three times independently and always con-
verged towards the same posterior distributions. In the
PHYML analyses, the starting tree was obtained using
ML-based distance estimates and the algorithm BIONJ
(Gascuel, 1997), the ML tree is subsequently obtained
by nearest neighbor interchange (NNI). Given the high
number of positions, most of the nodes were as expected
highly supported by all methods and were thus con-
strained in the subsequent analyses. Only the relation-
ships among the six main eukaryotic lineages and among
the four main fungal lineages were left unconstrained
(Appendix 4, available at www.systematicbiology.org).

These constraints define 14,175 topologies, which were
analyzed with a concatenated JTT+F model by PROTML
(Adachi and Hasegawa, 1996b). We then retained the
1000 best topologies for further analyses, as in Bapteste
et al. (2002) and Philippe et al. (2004). These topologies
were analyzed with a separate WAG+F+� model with
the program Tree-Puzzle (Schmidt et al., 2002).

Second, we tried to locate the three fast-evolving
lineages one at a time, namely the microsporidium
Encephalitozoon, the nucleomorph of the cryptophyte
Guillardia theta, and three kinetoplastids (Leishmania ma-
jor, Trypanosoma brucei, and T. cruzi). Their possible loca-
tions in the phylogeny were analyzed exhaustively by
adding them to all 75 branches of the 39 species tree
(six Archaea and the 33 slowly evolving eukaryotes).
However, because the topology of this tree is not known
with certainty, we retained the 25 best topologies ob-
tained with a separate WAG+F+� model. At first sight,
25 topologies may seem to be a small number compared
to the 1053 possible topologies. However, the two best
topologies received together 99% of the RELL bootstrap
support and the 26th topology is less likely than the best
one by ten orders of magnitude (�lnL = 221). A total of
1875 different topologies (25 × 75) was thus analyzed to
locate each fast evolving lineage.

Because the computation of bootstrap values is the
most demanding task, we used the RELL method
(Kishino et al., 1990). More precisely, the likelihood val-
ues of each tree for each gene and the correspond-
ing branch lengths were computed using Tree-Puzzle.
The likelihood of each position for each tree was then
computed using CodeML of the PAML package (Yang,
1997b). The site-wise likelihood values were used by a
home-made program to compute the RELL bootstrap
values of each topology based on 1000 replicas. The boot-
strap values (BVs) for the placement of the fast-evolving
lineages should not be underestimated by the RELL pro-
cedure, since, despite the fact that we analyzed only 1875
(25 × 75) topologies, all possible positions of the fast lin-
eages in the tree were studied. This approach allowed us
to perform all computations in a reasonable time (about
3 months on a cluster with 30 Xeon 2.8 GHz processors).

The fit of models to data was evaluated using the
Akaike Information Criterion (AIC) (Akaike, 1973). Ac-
cording to Burnham and Anderson (2003), a delta
AIC value greater than 10 means that the compet-
ing model receives no support. Tree comparisons
were performed using the approximate unbiased (AU)
and the Shimodaira-Hasegawa (SH) (Shimodaira and
Hasegawa, 1999) tests as implemented in the program
CONSEL (Shimodaira and Hasegawa, 2001).

Removal of Fast-Evolving Proteins

To test whether LBA affects phylogenetic inference,
we devised a method coined Removal of Fast-evolving
Proteins (RFP). The fastest evolving proteins were de-
tected and selectively eliminated in a protein specific
way (Fig. 2). The distances were estimated by ML us-
ing the program Tree-Puzzle with the same model as

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
C
a
n
a
d
i
a
n
 
R
e
s
e
a
r
c
h
 
K
n
o
w
l
e
d
g
e
 
N
e
t
w
o
r
k
]
 
A
t
:
 
2
0
:
3
1
 
1
8
 
J
a
n
u
a
r
y
 
2
0
0
9



2005 BRINKMANN ET AL.—PHYLOGENOMICS AND LONG-BRANCH ATTRACTION ARTEFACTS 747

FIGURE 2. Schematic illustration of the RFP method. The mean distances per protein between Archaea and the nucleomorph (in this example)
are divided by the mean distances obtained for the complete data set. The quotient obtained is used to sort the proteins as a function of their
relative evolutionary rate; for values >1 the nucleomorph sequence (gene) is evolving faster than the mean of the total data set. Subsequently,
each time 10% of the fastest evolving proteins are removed from the analysis, up to a maximum of 90%. The removed proteins of the nucleomorph
are replaced by question marks and the rest of the data set remains unchanged. The complete as well as the nine new data sets with a reduced
number of nucleomorph proteins are then analyzed and bootstrap values are computed.

for ML tree inference. They were calculated for the con-
catenation of all proteins as well as separately for each
protein. The mean distances between the Archaea and
the fast evolving eukaryotic lineages under study (like
Encephalitozoon) were then calculated for both the con-
catenation and each of the proteins. Thereafter, the genes
were sorted according to the quotient obtained by the fol-
lowing formula: [dmean,gene (Fast,Archaea)]/[dmean,concat
(Fast,Archaea)]. The greater the value, the faster the evo-
lutionary rate for this protein in comparison to the mean
value obtained for all concatenated proteins. As shown
in Figure 2, the fastest evolving proteins from the fast-
evolving lineage were selectively eliminated for a given
protein and replaced by question marks, the sequences
of all other species remaining unchanged. This selective
elimination of proteins was performed by steps of 10%,
up to 90%.

The RFP method does not assume an a priori knowl-
edge of the “correct” phylogeny and is therefore topol-
ogy independent. We remove up to 90% of the fastest
evolving proteins (a limit that allows conserving suf-
ficient phylogenetic information). The topology may
change as a function of protein elimination or remain the
same. We chose cases in which we expect that a certain
change will eventually occur; however, this is mainly a
control. The only a priori knowledge required by the RFP
method is the nature of the outgroup. Here, Archaea are
fairly undisputed outgroup of eukaryotes.

Simulation Studies

We generated 100 matrices of 40 taxa and 24,294 amino
acid positions under PSeq-Gen (Grassly et al., 1997) us-

ing the model topology shown in Figure 1, except that the
nucleomorph was not considered. A separate model was
used for simulations. More precisely, empirical amino
acid frequencies, alpha parameter, and branch lengths
were estimated for each protein separately. Then, for each
protein, sequences of the size of this protein were simu-
lated using the protein-specific parameters. The phyloge-
nies were then inferred using the same protocol as for real
data. With MP, heuristic search with 10 random species
additions and TBR swapping was performed. With ML,
all positions of the fast-evolving lineage were consid-
ered, but only the 10 best topologies connecting the 33
slow-evolving species, instead of 25, were retained, for
computing time reasons. Simulation studies were also
performed using a concatenated model, and the results
were virtually identical to the separate model (data not
shown). It should be noted that for the species rich data
sets (32 taxa or more), only 10 replicates were analyzed
with ML because of computing time limitations. How-
ever, because we obtained 100% for all 10 replicates, it is
unlikely that the analysis of more replicates will funda-
mentally change the results.

RESULTS AND DISCUSSION

Removal of the Fastest Evolving Microsporidial
and Nucleomorph Proteins

To simplify the study, the two fast-evolving species
were analyzed separately. Beginning with microsporidia,
a ML tree based on 133 genes (24,294 positions) in-
ferred using either a separate WAG+F+� model or
a concatenated JTT+F+� is shown in Figure 3. The
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FIGURE 3. Apparently artefactual basal phylogenetic position of microsporidia inferred by the ML method based on 24,294 positions. The
tree was inferred with a separate WAG+F+�8 model (using the exhaustive + constraints approach described in Materials and Methods). The
phylogeny was also constructed with the concatenated JTT+F+�4 model using PhyML without any constraints. Bootstrap values were only
indicated when below 100% (in bold for the separate WAG+F+�8 model and in italic for the concatenated JTT+F+�4 model). In the PhyML
analyses a strong preference for the artefactual placement of the fast-evolving ciliate Tetrahymena in a basal position next to Microsporidia was
supported by bootstrap values of 93%.

tree is in excellent agreement with previous studies
of eukaryotic phylogeny (Baldauf et al., 2000; Philippe
et al., 2004). In particular the monophyly of all major
phyla, for example Fungi, Metazoa plus Choanoflag-
ellata (Holozoa), Conosa, green plants, stramenopiles,
and Apicomplexa are recovered. Moreover, the mono-
phyly of Opisthokonta (Fungi + Holozoa), Alveolata
(Apicomplexa + ciliates), and Plantae (red algae + green
plants) is found. However, the monophyly of Chrom-
alveolata (alveolates and stramenopiles) (Cavalier-
Smith, 2000; Fast et al., 2001) is not recovered. Within
fungi, the grouping of ascomycetes and basidiomycetes,

to the exclusion of chytridiomycetes and glomales, is
supported by a bootstrap value (BV) of 100%. The early
emergence of chytridiomycetes, until now only con-
firmed by a multigene phylogeny based on the mito-
chondrial genome (Bullerwell et al., 2003), is recovered,
but not significantly supported. BVs are 86% and 66% for
the separate and the concatenated analyses, respectively.

The microsporidium Encephalitozoon emerges at the
base of eukaryotes with a high support (BV around
100%). An LBA artefact between the distantly related
Archaea and the fast-evolving microsporidium likely ex-
plains this result. In fact, systematic biases constitute a
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serious issue when large data sets are used, even with a
ML method and a reasonable species sampling (Philippe
et al., 2005). However, the 133 genes of our data set do
not all evolve at the same evolutionary rate in the mi-
crosporidial lineage. Therefore, in an attempt to over-
come systematic biases, we assumed that the proteins
that evolved the most slowly in microsporidia display
a higher phylogenetic/nonphylogenetic signal ratio. We
use the RFP method that progressively eliminates the
fastest evolving proteins for microsporidia and stud-
ied the effect on phylogenetic inference (see Fig. 2 and
Material and Methods for a detailed description). Only
proteins of the fast-evolving species were removed, in
order to maintain a large data set, given the difficulty in
resolving the eukaryotic phylogeny with significant sup-
port (Philippe et al., 2000a; see Appendix 5 for the list of
genes eliminated, available at www.systematicbiology.
org).

As shown in Figure 4A, the application of the RFP
method has a profound impact on the phylogenetic
position of microsporidia. The removal of 50% of the

FIGURE 4. Relationship between bootstrap values and the percent-
age of removal of the fastest evolving proteins for microsporidium (A)
and nucleomorph (B). The expected position (microsporidia with fungi
and nucleomorph with red algae) is indicated with a close triangle and
the apparently artefactual one (the fast-evolving lineage at the base of
eukaryotes) with a close square. The trees were inferred with a separate
WAG+F+�8 model, based on the same exhaustive + constraint search
approach as in Figure 3.

fastest microsporidial proteins leads to a slight decrease
of the BV for the early emergence of this group (from
97% to 78%). The removal of more proteins decreases
these BVs much more rapidly, converging to 0% for a
removal of 80% and 90%. This decrease could be simply
due to the fact that too many proteins are removed and
no phylogenetic signal remains. However, BVs for the
grouping of microsporidia with fungi shows exactly
the complementary trend, eventually converging to
100%. More precisely, the sum of the BVs for these two
alternative positions of microsporidia (at the base of
eukaryotes or with fungi) is always 100%. Therefore,
our analysis strongly suggests that only two mutually
exclusive signals exist for microsporidia: a nonphy-
logenetic signal due to LBA pulling them towards
Archaea, and a genuine phylogenetic signal attracting
them towards fungi. It should be noticed that both
signals are strong. For example, with only 10% of the
microsporidial proteins remaining (3709 positions), the
grouping with fungi is supported by a BV of 100%. Even
with a probabilistic tree reconstruction method using a
complex model and a reasonable taxonomic sampling,
it is necessary to remove an important fraction of the
proteins, corresponding to the noisiest data, in order
to avoid the LBA artefact. Interestingly, this also allows
recovery of the expected phylogeny.

We also applied the RFP method in the case of the
nucleomorph (Fig. 4B). Exactly the same tendency is ob-
served: the support for the apparently artefactual posi-
tion (nucleomorph at the base of eukaryotes) decreases
with sequence removal. Nevertheless, analysis of the
complete dataset recovers the expected position of the
nucleomorph (sister-group of red algae), but only with
a BV of 58%. The support for this position rises to 95%
at the removal of only 60% of the fast evolving nucleo-
morph proteins. The increase continues to a BV of 99%
when additional proteins are removed. The difference be-
tween Figures 4A and 4B suggests that either the genuine
phylogenetic signal is higher for nucleomorph than for
microsporidia or the nonphylogenetic signal due to LBA
is lower. Wiens (1998) shows that missing data may en-
hance the LBA artefact, because this mimics poor species
sampling. However, our study shows that increasing the
amount of missing data up to 90% allows the reduction
of the LBA artefact, simply because the proteins that
evolved the fastest in the lineage affected by the LBA
have been removed. The relationships between LBA and
missing data are thus complex and deserve further stud-
ies. Very recently, by using simulations, Wiens (2005)
demonstrates the ability of incomplete taxa to reduce
LBA when they break the long branches, in particular
for model-based methods.

Relative Efficiency of Diverse Tree Reconstruction Methods

In order to evaluate the sensitivity of various tree re-
construction methods to the LBA artefact, we applied MP
and ML methods to both the microsporidium (Fig. 5A)
and the nucleomorph (Fig. 5B) data sets. In the case of
the ML method, we compared the efficiency of mod-
els that deal with three kinds of heterogeneity in the
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FIGURE 5. Efficiency of recovery of the position of microsporidia
(A) and nucleomorph (B) with different tree reconstruction methods.
Only the bootstrap values for the expected position of the fast-evolving
species are indicated. All remaining 39 species were used and the pro-
tocol described in Figure 2 was applied with different models. For MP
analyses, a heuristic search with TBR swapping and 10 random species
addition was used. All ML based methods were using the exhaustive
+ constraint search approach. The evolutionary distances used for the
rate specific elimination of proteins (RFP method) were always com-
puted based on the same model as used in the corresponding analyses,
with the only exception of the MP method for which a WAG+F model
was used.

evolutionary process: (1) the heterogeneity of amino
acid replacement rates by comparing the Poisson, which
assumes that all substitutions are equally likely, and
the WAG replacement matrices (Whelan and Goldman,
2001); (2) the heterogeneity of replacement rates among
positions (uniform or �-distributed rates); (3) the hetero-
geneity of evolutionary rates between genes and species
by comparing a concatenated model and a separate
model that allows branch lengths and alpha parameter
to vary from gene to gene (Yang, 1996). The evaluation
of the relative efficiency is straightforward based on Fig-
ure 5: the better a given tree reconstruction method, the
sooner (with a lower number of removed proteins) it
will allow the recovery of a phylogeny not affected by
the LBA artefact.

The only nonprobabilistic method applied, the MP
method, performed poorly in both cases with BV of 0%
for the expected solution (Fig. 5) and for all data sets
up to 80% of protein removal. The BVs were different
from 0% (up to 6% for microsporidia) only when 90% of
the proteins were removed. The ML method with a sim-
ple and unrealistic model (separate Poisson+F without
gamma) performs much better, recovering for example
the monophyly of fungi + microsporidia with a BV of

94% when 90% of the fast proteins are removed. These
results, obtained with real sequences, confirm previous
results based on simulations (Anderson and Swofford,
2004; Huelsenbeck, 1998; Kuhner and Felsenstein, 1994;
Qiu et al., 2001; Swofford et al., 2001). When some of the
lineages evolve at markedly different rates, the use of
probabilistic methods should be preferred over MP. A
recent study (Kolaczkowski and Thornton, 2004) have
demonstrated that MP outperforms ML when the level
of heterotachy is extreme. However, this conclusion was
based on simulation studies assuming a molecular clock
and this does not hold when evolutionary rates vary con-
siderably among lineages (unpublished results).

Considering the models of amino acid replacement,
the Poisson model appears to be always less efficient than
the WAG model (Fig. 5). For example, in the case of the
nucleomorph with a � distribution, it is necessary to re-
move 90% of the nucleomorph proteins to obtain a BV of
95% with a Poisson model, whereas the same BV is ob-
tained through the removal of only 60% of the proteins
with the WAG model (Fig. 5B). Taking the among site
rate variation into account by the use of a � distribution
is also much more efficient against the LBA artefact both
under Poisson and WAG matrices. These results demon-
strate that ignoring the heterogeneity of the evolutionary
process (for amino acid replacements and among posi-
tions) drastically reduces the accuracy of ML-based tree
reconstruction methods.

Allowing for the possibility that different species
evolve at different rates for different proteins produced
less clear-cut results. For example, in the case of mi-
crosporidia, the concatenated WAG+F model is more
sensitive to LBA than the separate WAG+F model,
its performance being similar to that of the separate
Poisson+F model (Fig. 5A). However, when a � dis-
tribution is used, the concatenated and the separate
models have similar efficiency. Indeed, in the case of
the nucleomorph and a WAG+F+� model, the concate-
nated analysis performs slightly better than the separate
model, except when more than 80% of the proteins were
removed.

Fit of the Model to the Data and Phylogenetic Accuracy

Because systematic errors occur when simplified mod-
els of sequence evolution used by the ML method are
in conflict with the real evolutionary process, we evalu-
ated how well the various models fit the data. We com-
puted the AIC of each model for the nucleomorph data
set (Table 1); the results are virtually identical for mi-
crosporidia (data not shown). As expected, the Poisson
amino acid replacement matrix performs more poorly
than JTT and WAG, whereas the WAG matrix has a
slightly better fit to the data than JTT. The gamma dis-
tribution also improves greatly the fit of the model
to the data (e.g., with separate model lnL = −744,406
WAG+F and lnL = −715,969 WAG+F+�). Despite a se-
rious increase in the number of parameters (12,804 ad-
ditional parameters), the separate model has a better fit
than the concatenated model (Table 1), according to the
AIC. Therefore, taking into account the heterogeneity in
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TABLE 1. Comparison of various models based on the Akaike Infor-
mation Criterion (AIC). The separate model is always favored (lower
AIC value) despite a serious increase in the number of free parameters.

Number of
Model lnL parameters AIC

Concatenated
Poisson+F

−838,834.20 96 1,677,860

Separate
Poisson+F

−822,546.94 12768 1,670,630

Concatenated
Poisson+F+�

−806,698.49 97 1,613,591

Separate
Poisson+F+�

−793,000.19 12901 1,611,802

Concatenated
JTT+F

−772,175.66 96 1,544,543

Concatenated
WAG+F

−760,934.65 96 1,522,061

Separate
WAG+F

−744,405.63 12768 1,514,347

Concatenated
JTT+F+�

−736,962.69 97 1,474,119

Concatenated
WAG+F+�

−729,985.32 97 1,460,165

Separate
WAG+F+�

−715,968.52 12901 1,457,739

the evolutionary process always improves the fit of the
model to the data, albeit to noticeably different extents.

The comparison of Table 1 and of Figure 5 confirms
the hypothesis that using better models produces gen-
erally better phylogenies, in other words, that model
misspecifications are the reason of the inconsistency of
ML approaches. However, this relationship does not
always hold (see Yang, 1997a), because the concate-
nated model sometimes performs better than the sep-
arate model, despite the fact that the separate model
has a better fit. A possible explanation is that the esti-
mation of branch lengths for each protein using a sepa-
rate model is difficult, because only a limited number
of positions are available. In contrast, this estimation
is easier under the concatenated model. As a result,
the microsporidial/nucleomorph branch is recognized
as being very long, this allows the ML approach with a
concatenated model to correct more efficiently for LBA
artefacts.

Even the most complex models that we investigated
(i.e., those readily available in current software packages)
are sensitive to the LBA artefact; therefore the need for
developing better tree reconstruction methods, in partic-
ular probabilistic ones with improved models of molec-
ular evolution, is obvious. The protocol proposed here
(Figs. 2 and 5) can be used as a way of assessment: a
new method (model) will perform better if less data from
fast-evolving species have to be removed in order to ob-
tain the same BVs in favor of the grouping not affected
by LBA. In particular, this benchmark could be used to
test the efficiency of recently proposed methods with
improved models, which deal with intrasite rate het-
erogeneity (i.e., heterotachy, Galtier, 2001; Huelsenbeck,
2002; Kolaczkowski and Thornton, 2004) and with the
heterogeneity of the substitution process across sites
(Lartillot and Philippe, 2004; Pagel and Meade, 2004).

Species Sampling and Sensitivity to LBA Artefacts

In phylogenomic studies, alignments contain often
few taxa (Blair et al., 2002; Lerat et al., 2003; Philip et al.,
2005; Rokas et al., 2003; Wolf et al., 2004). However, the
accuracy of phylogenetic inference based on species-
poor data sets is the subject of a long-standing con-
troversy (Graur and Higgins, 1994; Hillis et al., 2003;
Philippe and Douzery, 1994; Rosenberg and Kumar,
2003). To study the effect of species sampling, we
progressively reduced the number of ingroup as well
as outgroup species (see Appendix 3, available at
www.systematicbiology.org, for the list of species used),
while maintaining the number of positions (24, 294) and
the method (ML with a separate WAG+F+� model)
constant.

In the case of the nucleomorph, the sensitivity to LBA
generally increases as the number of species decreases
(Fig. 6B). However, the performance obtained with 15

FIGURE 6. Taxon sampling and the phylogenetic position of mi-
crosporidia (A) and nucleomorph (B). Only the bootstrap values (com-
puted with a separate WAG+F+�8 model) for the expected position
of the fast-evolving species are indicated. The highly reduced taxon
sampling (six and nine species) corresponds to three eukaryotic in-
group species (microsporidia + Homo + Schizosaccharomyces or nucle-
omorph + Arabidopsis + Porphyra) and three or six archaeal species.
For the sample of 14 and 15 species, six Archaea and the main eukary-
otic lineages are present. For a detailed list of the species used, see
Appendix 3 (available at www.systematicbiology.org).
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species (six Archaea, the nucleomorph, and eight eukary-
otic species representing the major lineages; open dia-
mond) is virtually identical to 40 species (open square),
suggesting that the use of a single representative per
major group is sufficient in this case. Nevertheless, the
removal of a single additional eukaryotic species (14
species, open triangle) noticeably diminishes the effi-
ciency. More significantly, when only a green plant and a
red alga are used as representatives of the slowly evolv-
ing eukaryotes (close triangle), BVs for the expected po-
sition of the nucleomorph were always below 64%. With
only three archaeal outgroups (close diamond), BVs were
always below 30%, suggesting that the use of six out-
group species improves the inference.

The curves of the BVs for the grouping of nucleomorph
with red algae are not perfect monotonous increasing
functions of the percentage of proteins removed (Figs. 5B
and 6B). For example, there is a slight decrease of BV
when the first 10% proteins are removed. Two reasons
probably explain the complexity of the curves. First, the
RFP method is far from being perfect, one problem is
that the fastest evolving proteins are not optimally de-
tected by this method, because the power of the relative
rate test is limited. (Bromham et al., 2000; Philippe et al.,
1994). Second, after the removal of 90% of the proteins,
1885 amino acid positions were remaining for the nu-
cleomorph. This low number of positions implies an in-
creasing influence of the sampling error, rendering the
curves irregular.

The results for microsporidia are similar (Fig. 6A).
With six or nine species, even when 90% of the fast-
evolving proteins are removed, the BVs for the grouping
of Encephalitozoon with fungi remain below 10%. One of
the most efficient tree reconstruction method used in this
study (a separate WAG+F+� model) is unable to over-
come the LBA artefact, if only a few species are consid-
ered. Therefore taxa-poor phylogenomic studies should
be regarded with great caution when species evolve at
heterogeneous rates, in agreement with earlier studies
(Adachi and Hasegawa, 1996a; Philippe and Douzery,
1994). For example, the paraphyly of Ecdysozoa ob-
served in the analyses based on 100 genes/4 species
(Blair et al., 2002), 500 genes/6 species (Wolf et al., 2004),
and 780 genes/10 species (Philip et al., 2005) is most
likely an artefact due to the high evolutionary rate of ne-
matodes. This interpretation is in agreement with a study
based on much wider taxon sampling, 146 genes/49
species (Philippe et al., 2005). It should be noticed that
the species sampling used in this study can be easily im-
proved, in particular by including several microsporidia
and nucleomorphs in order to break their long branches.
We predict that the quantity of data that have to
be removed in order to overcome LBA will diminish
accordingly.

However, the effect of taxon sampling is not based
solely on the number of species, but also depends on the
identity of the species (Lecointre et al., 1993). For exam-
ple, for the nucleomorph (Fig. 6B), the LBA artefact is
less marked when 15 species (open diamond) are used
instead of 14 species (open triangle), whereas the con-

trary is observed for microsporidia (Fig. 6A). The na-
ture of the outgroup can also have a great influence. The
LBA is more pronounced in the case of the nucleomorph,
when only Pyrococcus (open circle) instead of all six ar-
chaeal species (open square) is used as outgroup; this
sample with 35 species is even worse than the samples
with 14 or 15 species (Fig. 6B). However, in the case of mi-
crosporidia (Fig. 6A), the results with one or six Archaea
are quite similar, demonstrating that the effect of taxon
sampling on phylogenetic inference can be tremendously
difficult to predict.

The analyses in which the closest sister-group of the
fast-evolving lineages is discarded, corresponding to red
alga for nucleomorph and fungi for microsporidia (indi-
cated by close squares), are particularly interesting. In
theory, the fast species should remain at the same po-
sition in the tree: they are expected to be a sister-group
of green plants and of animals, respectively. Unfortu-
nately, for the nucleomorph, even with the removal of
90% of the fast evolving proteins, the BVs for the ex-
pected position remain below 5% (Fig. 6B). Contrary
to all previous analyses, there are now more than two
alternative positions for the nucleomorph, because the
sum of the BVs for the expected and the basal positions
is sometimes less than 100%. Nevertheless, the support
for the nucleomorph as first emerging eukaryotes is al-
ways greater than 85%, indicating that it is not possible
to overcome LBA. For microsporidia (Fig. 6A), the sit-
uation is less drastic since the expected position, as a
sister-group of animals, is recovered with a BV of 78%
if the sequence removal is maximal (90%). This differ-
ence between nucleomorph and microsporidia is at first
sight surprising, because it represents the only case in
which the inference is easier for microsporidia. This is
likely due to the fact that the recovery of the monophyly
of opisthokonts, in this case microsporidia and animals,
is less difficult than the one of Plantae, represented by
the nucleomorph and green plants. Indeed, in another
study using only slowly evolving species (Rodrı́guez-
Ezpeleta et al., 2005), we have shown that it is necessary
to use 5000 and 25,000 positions for obtaining a BV of
95% for the monophyly of opisthokonts and of Plantae,
respectively.

An important conclusion can be drawn from the lat-
ter analyses: even when a large number of species and
positions and an efficient tree reconstruction method are
used, it turns out to be almost impossible to locate the
fast-evolving lineages in the absence of closely related
species in the data set. This probably explains why we
were unable to place kinetoplastids (Leishmania major,
Trypanosoma brucei, and T. cruzi) when we applied the
RFP method. When the fast proteins are removed, the
support for their early emergence decreases more quickly
than in the case of the nucleomorph without red alga
(from 100% with the complete alignment to 18% with
80% of kinetoplastid proteins removed). However, kine-
toplastids do not cluster strongly with any group present
in our dataset, the best BV being 34% for their grouping
with Plantae (data not shown). Locating the fast-evolving
eukaryotic groups such as kinetoplastids, diplomonads,
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TABLE 2. Comparison of the expected or LBA-related placement of
the fast-evolving lineages nucleomorph and microsporidia (analyzed
separately and without Archaea) according to AU (SH) test. Significant
values in bold are below the 5% confidence level.

Expected topology LBA topology

Separate WAG+F Nucleomorph
All eukaryotes 1.000 (1.000) 2e−8 (0.000)
Red algae removed 0.002 (0.002) 0.998 (0.998)

Separate WAG+F+�

All eukaryotes 1.000 (1.000) 2e−6 (0.000)
Red algae removed 0.163 (0.163) 0.837 (0.837)

Separate WAG+F Microsporidia
All eukaryotes 1.000 (0.995) 4e−4 (0.001)
Fungi removed 0.945 (0.935) 0.055 (0.065)

Separate WAG+F+�

All eukaryotes 1.000 (1.000) 2e−4 (0.000)
Fungi removed 0.998 (0.997) 0.002 (0.003)

or trichomonads with an archaeal outgroup will thus be
a difficult and long-lasting task. The most straightfor-
ward approach would be to identify a slowly evolving
and closely related group to these taxa. Thus, it is ex-
pected that several fast-evolving eukaryotic groups will
artefactually remain at the base of the eukaryotic tree
with a strong support, when numerous genes are used
(Bapteste et al., 2002), until both improved species sam-
pling and methodologies become available.

Phylogenetic Analyses in the Absence of the Distant
Outgroup Archaea

To overcome the strong attraction between the dis-
tant archaeal outgroup and the fast-evolving ingroup,
we have shown the need for good species sampling, an
efficient tree reconstruction method and the removal of
an important part of the fastest evolving proteins. As an
alternative, the removal of the outgroup could allow the
placement of problematic species, even if the question
of the location of the root in the tree remains unsolved.
The data sets without Archaea were analyzed separately
with MrBayes and PHYML for both microsporidia and
the nucleomorph. The results are strikingly different: the
expected position of the fast-evolving species was re-
covered by MrBayes in both analyses with and without
gamma-distributed rates, whereas either ciliates or alve-

TABLE 3. Comparison of the expected and LBA related placements for both fast-evolving lineages nucleomorph and microsporidia without
Archaea according to the AU (SH) test. Significant values in bold are below the 5% confidence level.

((Rho,Nm), (Nm,(Rho,(Mic, (Mic,((Rho,Nm), ((Mic,Nm),
(Fun,Mic),Others) Fun)),Others) Fun,Others)) (Rho,Fun,Others))

All eukaryotes
Separate WAG+F 0.467 (0.703) 1e−4 (0.023) 0.017 (0.133) 0.560 (0.778)
Separate WAG+F+� 1.000 (1.000) 0.001 (0.004) 6e−70 (0.000) 4e−5 (0.000)

Red algae removed
Separate WAG+F 5e−5 (1e−4) 6e−89 (0.000) 0.014 (0.022) 0.987 (1.000)
Separate WAG+F+� 0.632 (0.873) 4e−5 (0.000) 0.333 (0.618) 0.004 (0.005)

Fungi removed
Separate WAG+F 0.043 (0.044) 0.034 (0.082) 1e−88 (8e−5) 0.974 (0.998)
Separate WAG+F+� 0.995 (1.000) 0.005 (0.024) 2e−5 (0.001) 0.010 (0.010)

Red algae and Fungi removed
Separate WAG+F 1e−64 (0.000) 2e−7 (0.000) 8e−6 (0.000) 1.000 (1.000)
Separate WAG+F+� 0.472 (0.600) 9e−5 (0.036) 0.205 (0.431) 0.640 (0.844)

olates and the fast-evolving species grouped together
in the PHYML analyses. To verify that this difference
is due to problems of the heuristic search (and not to a
difference between ML and Bayesian approaches), var-
ious topologies were compared by LRT tests (Table 2).
The expected position of both microsporidia and nucle-
omorph corresponds to the best ML tree and the LBA
tree is always significantly rejected. The heuristic search
of PHYML remains therefore trapped in a local min-
imum, illustrating the difficulty of heuristic searches
when large data sets are considered. This argues in favor
of our approach that combines topological constraints
and an exhaustive search. However, when the closest
sister-group of the fast-evolving species is eliminated (ei-
ther the rhodophyte or fungi), the results of the analyses
without outgroup are much less encouraging (Table 2).
Nevertheless, our results confirmed the validity of the
outgroup removal strategy for studying difficult phylo-
genetic questions.

However, the removal of the outgroup is not neces-
sarily the panacea: instead of being attracted by the out-
group, the fast-evolving lineage can be attracted by the
longest ingroup branch (Philippe et al., 2005). To study
this possibility, we have analyzed simultaneously nucle-
omorph and microsporidia (Table 3). Both fast-evolving
species are at the expected position in the ML tree. How-
ever, the three alternative LBA artefact-based topolo-
gies are only significantly rejected with a � model and
when a closely related and slowly evolving sister group
is present. We have also tested the heuristic search of
MrBayes and of PHYML and confirmed that MrBayes
always recovered the ML tree and PHYML the LBA tree.
Finally, the MP analyses invariably group the two fast-
evolving species together with a 100% bootstrap support.
They formed a sister-group to ciliates, the fastest of the re-
maining eukaryotic species. The same highly supported
sister-group relationship was also found by MP analy-
ses including only one of the fast species. These analyses
confirm the high sensitivity of the MP approach to LBA
artefacts.

To gain insights regarding the position of the mi-
crosporidium Encephalitozoon within fungi, analyses in
the absence of Archaea and more distantly related
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FIGURE 7. Phylogenetic position of microsporidia inferred with a close outgroup. The tree was inferred with a separate WAG+F+�8 model
when 80% of the fastest evolving microsporidial genes were removed. The nodes which were constrained in the analysis are indicated by an∗.
All possible positions of Encephalitozoon were tested starting from the three possible alternative topologies.

eukaryotes were carried out. Therefore, fungi and the
microsporidium, together with animals, choanoflagel-
lates, and the Conosa as outgroup sequences, were an-
alyzed, using the RFP method with a separate WAG+
F+� model. When 80% of the fastest proteins are re-
moved (Fig. 7), the microsporidium is no longer in a
basal position with respect to the fungi, but emerges
after the chytridiomycete Neocallimastix, although only
weakly supported by a BV of 55%. This analysis suggests
that microsporidia emerge within fungi, but our limited
sample of chytridiomycetes and glomales and their in-
completeness (8309 and 5490 amino acid positions, re-
spectively) reduces the efficiency of our approach. The
absence of Entomophthorales and Zoopagales, groups
that have been proposed to be closely related to mi-
crosporidia (Keeling, 2003) is problematic, but EST se-
quencing of additional fungi (http://amoebidia.bcm.
umontreal.ca/public/pepdb/agrm.php) will soon al-
low us to address this problem with an adequate species
sampling.

TABLE 4. Bootstrap support values for the correct location of the
fast-evolving species in the case of simulated data sets, species sam-
pling as in Figure 6. The 32 species analyses are corresponding to the
40 sister-groups (microsporidia data set without the closely related
fungi). The detailed species sampling for all seven data sets is given in
Appendix 3 (available at www.systematicbiology.org).

Number of species

Method, model 6 9 14 15 32 35 40

MP 0 0 100 100 99.5 100 100
ML, separate Poisson+F 51.4 65.8 100 100 100 100 100
ML, separate WAG+F 80.6 89.2 100 100 100 100 100
ML, separate Poisson+F+� 98.5 99.5 100 100 100 100 100
ML, separate WAG+F+� 99.8 99.9 100 100 100 100 100

Comparison of Simulated and Real Sequences

Our analyses demonstrate that the accuracy of current
phylogenetic inference approaches are rather limited
vis à vis LBA artefacts. However, simulation studies
suggest that most methods are rather robust with re-
spect to variable evolutionary rates among lineages
(Guindon and Gascuel, 2003; Huelsenbeck, 1998; Kuhner
and Felsenstein, 1994; Qiu et al., 2001; Swofford et al.,
2001; Wolf et al., 2004). To gain further insights into this
conundrum, we performed simulations to mimic the dif-
ficult case of microsporidia. Sequences were simulated
with a complex model (separate JTT+F+�) and trees
were inferred by MP and by ML using various models.
As shown in Table 4, even without any data removal, all
methods, including MP, perform well, except when only
three eukaryotic species are used (six and nine species).
In these cases, ML requires the use of a � model to re-
cover the correct tree with high support. However, even
an unrealistic model (Poisson+F instead of JTT+F+�)
recovers an important signal for the correct position of
the fast evolving species (BV close to 50%) when so few
species are used. Table 4 also clearly illustrates that in-
consistency of the ML approach is due to model misspec-
ifications, because the correct tree is always recovered
when the correct model is used. It should be remem-
bered that, with real data, even with the most complex
model and the removal of 90% of the noisiest proteins,
the expected position of microsporidia was virtually un-
supported when few species are used (BV below 10%,
Fig. 6A).

CONCLUSION

All our analyses demonstrate that tree reconstruc-
tion methods are robust to the LBA artefact only when
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using simulated data. This suggests that simulation stud-
ies should be used with great care to evaluate whether a
result is due to an LBA artefact. More importantly, exper-
iments based on simulations had lead to overconfidence
in the accuracy of tree reconstruction methods. We there-
fore believe that systematic errors, in particular due to
LBA, constitutes a problem that should not be neglected
in phylogenomics studies (Delsuc et al., 2005). To reduce
their impact, we have shown that it is fundamental to (1)
use probabilistic methods with complex models, (2) use
a rich species sampling (including slowly evolving taxa
closely related to the fast-evolving ones), and (3) remove
a large proportion of the fast-evolving data.

In fact, a promising avenue in phylogenomics is to
take advantage of the large number of positions avail-
able through the use of a subset of the data representing
the most reliable characters, in order to obtain a phy-
logeny that minimizes systematic errors while remaining
statistically significant. The fact that the RFP method is
eliminating entire proteins from fast-evolving lineages
(Fig. 2) does not mean that fast-evolving proteins are
completely devoid of phylogenetic signal. A positional
approach (Brinkmann and Philippe, 1999; Burleigh and
Mathews, 2004; Pisani, 2004) could provide a better per-
formance because it would more specifically remove the
positions that mainly contain nonphylogenetic signal.
We are currently evaluating the performance of these re-
fined methods on the data sets used here.
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Abstract
Background: Probabilistic methods have progressively supplanted the Maximum Parsimony (MP) method for
inferring phylogenetic trees. One of the major reasons for this shift was that MP is much more sensitive to the
Long Branch Attraction (LBA) artefact than is Maximum Likelihood (ML). However, recent work by Kolaczkowski
and Thornton suggested, on the basis of simulations, that MP is less sensitive than ML to tree reconstruction
artefacts generated by heterotachy, a phenomenon that corresponds to shifts in site-specific evolutionary rates
over time. These results led these authors to recommend that the results of ML and MP analyses should be both
reported and interpreted with the same caution. This specific conclusion revived the debate on the choice of the
most accurate phylogenetic method for analysing real data in which various types of heterogeneities occur.
However, variation of evolutionary rates across species was not explicitly incorporated in the original study of
Kolaczkowski and Thornton, and in most of the subsequent heterotachous simulations published to date, where
all terminal branch lengths were kept equal, an assumption that is biologically unrealistic.

Results: In this report, we performed more realistic simulations to evaluate the relative performance of MP and
ML methods when two kinds of heterogeneities are considered: (i) within-site rate variation (heterotachy), and
(ii) rate variation across lineages. Using a similar protocol as Kolaczkowski and Thornton to generate
heterotachous datasets, we found that heterotachy, which constitutes a serious violation of existing models,
decreases the accuracy of ML whatever the level of rate variation across lineages. In contrast, the accuracy of MP
can either increase or decrease when the level of heterotachy increases, depending on the relative branch lengths.
This result demonstrates that MP is not insensitive to heterotachy, contrary to the report of Kolaczkowski and
Thornton. Finally, in the case of LBA (i.e. when two non-sister lineages evolved faster than the others), ML
outperforms MP over a wide range of conditions, except for unrealistic levels of heterotachy.

Conclusion: For realistic combinations of both heterotachy and variation of evolutionary rates across lineages,
ML is always more accurate than MP. Therefore, ML should be preferred over MP for analysing real data, all the
more so since parametric methods also allow one to handle other types of biological heterogeneities much better,
such as among sites rate variation. The confounding effects of heterotachy on tree reconstruction methods do
exist, but can be eschewed by the development of mixture models in a probabilistic framework, as proposed by
Kolaczkowski and Thornton themselves.
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Background
The long-branch attraction (LBA) artefact was first dem-
onstrated to affect maximum parsimony (MP) [1,2], and
subsequently all main types of tree reconstruction meth-
ods [3-5]. In the typical 4-taxa LBA case [1], two unrelated
taxa (A and C) evolved significantly faster than their sister-
groups (B and D); the inferred tree artefactually groups
together the fast evolving taxa, because numerous conver-
gent changes along the two long branches are interpreted
as false synapomorphies (Fig. 1a). It should be noted that
LBA could be alternatively named short-branch attraction,
since the close resemblance of the two slow evolving taxa,
due to symplesiomorphies, lead to their artificial attrac-
tion. In case of the LBA artefact, tree reconstruction meth-
ods are inconsistent, i.e. they converge towards an
incorrect solution as more data are considered. Numerous
computer simulations have shown that MP is the most
sensitive method to the LBA artefact, whereas probabilis-
tic methods, namely Maximum Likelihood (ML) and
Bayesian Inference (BI) are more robust [3,4,6-9]. Since
rate variation across lineages is almost invariantly
observed in real data sets, often very pronounced, LBA
artefacts have regularly been found to mislead phyloge-
netic inference [5,10-13]. As a result, the majority of phy-
logeneticists consider inferences made with probabilistic
methods as the most reliable [8,14-16].

In 1998, Siddall argued that in certain cases MP outper-
forms ML when lineages evolved at markedly different

evolutionary rates [17]. Instead of considering the so-
called "Felsenstein zone" [3] where two unrelated taxa
have long branches (Fig. 1a), Siddall [17] considered what
he called the "Farris zone" where the two fast-evolving
taxa are related (Fig. 1b). In this configuration, simula-
tions based on sequences of 1,000 nucleotides demon-
strated that MP recovered the correct tree more frequently
than ML. The poor performance of ML relative to MP in
the Farris zone, and the fact that MP "imposes the fewest
assumptions about process", led Siddall to encourage the
preferential use of MP over ML [17]. However, it was not
demonstrated that ML was inconsistent in the Farris zone,
since only short sequences were considered. Indeed, when
sufficiently long sequences were used, ML recovered the
correct tree [8]. In the Farris zone, ML is simply more cau-
tious than MP for grouping the two long branches
together because this method acknowledges the fact that
many false synapomorphies uniting these branches are
the result of convergence [8]. In contrast, the literal inter-
pretation of substitutions made by MP leads to the group-
ing of the two long branches even if the internal branch
length, i.e. the number of true synapomorphies is zero [8].
Swofford et al. [8] conclude that "most scientists would
prefer to use methods that are honest about how strongly
a result is [i.e. ML] than to use a method that pretends that
a result is strongly supported when the majority of that
support is a consequence of bias [i.e. MP]". In addition,
since, under various simulation conditions, ML is always
more accurate than MP in face of across-lineage rate vari-
ation, investigators continued to prefer ML for analysing
real data.

It should nevertheless be noted that most early simula-
tions demonstrating the higher accuracy of ML methods
were made using a very simple model of evolution, often
the Jukes and Cantor model [18]. Substitution properties
vary from one position to another, with respect to rates
[19] as well as to the type of substitution propensity
[20,21]. Simulation studies have therefore been under-
taken in order to investigate the effect of across-site rate
variation [4,22] and compositional heterogeneity [9].
However, the evolutionary rate of a given position can
also vary throughout time [23], a phenomenon called het-
erotachy (different speed in Greek) [24]. Heterotachy has
been shown to be widespread [25,26] and to affect the
performance of phylogenetic reconstruction methods in
empirical datasets [27-32].

In a recent simulation study, Kolaczkowski and Thornton
(hereafter referred as KT) found that, when the level of
heterotachy is sufficiently high, MP is more accurate than
ML, i.e. recovers the correct tree with infinite sequences
under conditions where ML does not [33]. More precisely,
KT used a simple but clever approach to simulate hetero-
tachy (Fig. 2a). Two sets of sequences are simulated using

Illustration of the branch length heterogeneity conditions commonly referred as the Felsenstein zone (a) and the Farris zone (b)Figure 1
Illustration of the branch length heterogeneity conditions 
commonly referred as the Felsenstein zone (a) and the Farris 
zone (b). The Felsenstein zone [3] is characterised by two 
long branches that are not adjacent in the model topology, a 
situation where most phylogenetic methods fall into the long-
branch attraction artefact [1]. Conversely, in the Farris zone 
[17], also called the inverse-Felsenstein zone [8], the two 
long branches are adjacent in the model topology. This last 
condition strongly favours MP over ML because of the intrin-
sic bias of parsimony towards interpreting multiple changes 
that occurred along the two long branches as false synapo-
morphies [8].
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the same model topology, but under two totally different
sets of branch lengths (e.g. p and q for the branch length
leading to A and B, respectively). These two heterogene-
ous sets of sequences are then combined and analysed
using standard tree reconstruction methods (ML and MP).
Under this scheme, the level of heterotachy can be modi-
fied by changing the values of p and q (Fig. 2a in [33]) or
the relative weight (w) of the partitions (Fig. 2b in [33]).

The difference in accuracy between two methods can then
be evaluated as the value of the internal branch length (r),
for which the correct tree is inferred in more than 50% of
the simulation replicates (a value called BL50). Even when
sequence length is limited (1,000 nucleotides), BL50 pro-
vides a good estimate to the boundary value r0 for which
tree reconstruction becomes inconsistent when r < r0 (see
Fig. 1 and Fig. S2 of [33]). For high levels of heterotachy
(w = 0.5 and p/q > 2.2), it appears that ML is less accurate
than MP with higher values of BL50 [33]. Consequently,
KT "recommend reporting nonparametric analyses along
with parametric results and interpreting likelihood-based
inferences with the same caution now applied to maxi-
mum parsimony trees" [33].

The simulation results reported by KT and the authors'
conclusions on the relative performance of MP and ML
[33] prompted the publication of more simulations
aimed at exploring heterotachy more widely [34-36].
Spencer et al. [35] performed simulations on all 15 possi-
ble combinations of two different edge-length partitions
with two long and two short terminal edges and showed
that ML performs better or at least as well as MP on the
majority of combinations [35]. Moreover, they also dem-
onstrated that when accounting for both substitution and
across-site rate heterogeneities, the performance differ-
ence between the two methods is largely alleviated [35].
These authors further demonstrated that the correct
implementation of a mixture model dealing with hetero-
tachy, first proposed by KT [33], renders ML largely supe-
rior to MP under conditions where standard ML was
outperformed [35].

In the simulations of KT [33], the terminal branch lengths,
averaged over the two partitions, were kept equal to (p +
q)/2. Therefore, although heterotachy is accounted for,
these simulations largely ignored a major kind of hetero-
geneity: rate variation across lineages. Neglecting across-
lineage rate heterogeneity is problematic because it is the
main reason motivating the preference of ML over MP by
most investigators. One way of simultaneously altering
the level of heterotachy and across-lineage rate variation is
to change the relative weight (w) of the two partitions, as
in KT's Fig. 2b. In this case however, the averaged terminal
branch lengths become heterogeneous in a complex man-
ner and KT reported only the performance of ML [33].
More recently, KT's simulations were expanded by explor-
ing a wider range of w and it was demonstrated that ML in
fact outperforms MP over the majority of the parameter
space [34,36].

In this report, we define a single parameter controlling the
level of heterotachy without modifying the relative
weights of the two partitions (w = 0.5). We present com-
puter simulations that simultaneously account for

Schematic presentation of the protocol used to simulate het-erotachous alignmentsFigure 2
Schematic presentation of the protocol used to simulate het-
erotachous alignments. Sequences were generated similarly 
as in ref. [33] under two different sets of branch lengths of 
equal weight (w = 0.5). In ref. [33], the branch lengths were 
altered by swapping the values of p and q (a). In our case (b), 
a single parameter (τ) allows to adjust the level of hetero-
tachy from fully homotachous (τ = 0) to extreme heterota-
chous (τ = 1) conditions, while keeping the averaged branch 
length constant. Our branch lengths are (1 + τ) p and (1 - τ) q 
for the first partition and (1 - τ) p and (1 + τ) q for the sec-
ond partition. 100 replicates of 5,000 nucleotide positions 
were simulated for each partition assuming a uniform JC69 
model [18] using SeqGen [51] and were concatenated before 
phylogenetic inference using PAUP* [52].
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heterotachy and across-lineage rate variation. We show
that the known superiority of ML methods over MP when
rates vary across lineages still holds in the presence of a
realistic level of heterotachy.

Results
First, we introduce a new parameter (τ) that allows for the
adjustment of varying levels of heterotachy, while keeping
the averaged branch lengths constant. As shown on Figure
2b, terminal branch lengths leading to A and C are equal
to (1 + τ) p and (1 - τ) p for the two partitions respectively.
Using a weight w of 0.5 allows having a branch length of
p, whatever the level of heterotachy. We varied τ from 0
(no heterotachy, homogeneous evolutionary rate) to 0.9
(high level of heterotachy, the evolutionary rate differing
by a factor of 19 between the two partitions). Note that a
different value of τ could be applied to each branch. For
simplicity, we chose the same value of τ for all terminal
branches of the model topology and therefore our simu-
lations explore only a specific form of heterotachy.

The first simulations were realised using model topologies
belonging to the Felsenstein zone, from severe (q = 0.15
and p = 4.5q) to moderate (q = 0.15 and p = 2q) rate vari-
ation among lineages. When p = 4.5q (Fig. 3a), ML (black
circles) is much more accurate than MP (red squares),
except for extreme heterotachy (τ = 0.9). For example, for
τ = 0.5, the internal branch length r for which ML recovers
the correct tree in more than 50% of the simulations
(BL50) is equal to 0.068 whereas BL50 = 0.146 for MP.
Interestingly, the performance of both ML and MP is neg-
atively affected by increasing the level of heterotachy.
However, the effect is much more pronounced for ML,
going from BL50 ≈ 0 without heterotachy to BL50 ≈ 0.196
when τ = 0.9, whereas MP goes from 0.126 to 0.188.
Therefore, for extreme heterotachy, MP is slightly more
accurate than ML.

The results are very similar when across-lineage rate varia-
tion is less extreme with p = 3q (Fig. 3b) or p = 2q (Fig. 3c).
With increasing values of τ, the accuracy of both methods
decreases, however the decrease is faster for ML than for
MP. Since, without heterotachy, the difference in BL50
between MP and ML is lower when the rate heterogeneity
is reduced, MP becomes more accurate than ML for lower
values of τ (τ > 0.8 when p = 4.5q, τ > 0.7 when p = 3q and
τ > 0.5 when p = 2q). Nevertheless, at levels of rate heter-
ogeneity often observed in real data sets (two-fold to four-
fold differences) ML is more accurate than MP even in the
presence of a significant level of heterotachy (τ = 0.5). In
fact, when τ = 0.5, the difference of evolutionary rates
between the two partitions is already three-fold.

Finally, we also studied the impact of heterotachy when
going from the Felsenstein zone to the Farris zone. We
chose a more extreme case of rate heterogeneity (p = 0.75
and q = 0.05). The transition was performed by transfer-
ring a part of the length of the branch leading to A to the
branch leading to D. For instance, we moved from (A:
0.75, B: 0.05, (C: 0.75, D: 0.05): r) to (A: 0.65, B: 0.05, (C:
0.75, D: 0.15): r). As found previously [3,4,6-9,22], in the
Felsenstein zone and in the absence of heterotachy (τ = 0),
ML is more accurate than MP until the two longest
branches become the adjacent ones (Fig. 4). After entering
the Farris zone, the values of BL50 are close to 0 for the two
methods because the number of simulated nucleotides
used here is large (10,000). As in Fig. 3, the accuracy of ML
always decreases with increasing values of τ. In contrast,
with increasing levels of heterotachy, the accuracy of MP
sometimes increases or is not affected, but generally also
decreases, albeit less rapidly than ML. As a result, hetero-
tachy only slightly modifies the relative behaviour of ML
and MP. When the two longest branches are not adjacent,
ML outperforms MP, except when τ is high. When the two
longest branches are adjacent, MP always outperforms
ML. The only difference is that when heterotachy is

Performance of maximum parsimony (MP) and maximum likelihood (ML) phylogenetic methods for varying levels of heterotachy (τ) and increasing rate variation among species in the Felsenstein zoneFigure 3
Performance of maximum parsimony (MP) and maximum 
likelihood (ML) phylogenetic methods for varying levels of 
heterotachy (τ) and increasing rate variation among species 
in the Felsenstein zone. For three combinations of p and q (a, 
b, c), the performance of MP and ML in the Felsenstein zone 
(i.e. p > q) [8] was evaluated under varying levels of hetero-
tachy. The accuracy was calculated as in ref. [33] with BL50, 
i.e. the estimated internal branch length that allows recover-
ing the true tree 50% of the time in 100 simulations using 
PAUP* [52].
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present, the poorest performance of ML is not limited to
its efficiency (the number of characters necessary to
recover the correct tree) but also to its consistency.

Discussion
Our results (Fig. 3 and 4) confirmed previous studies
[27,33-36] that heterotachy renders probabilistic meth-
ods inconsistent. In contradiction with KT who stated that
MP "is not additionally hampered by evolutionary heter-
ogeneity" [33], we found that MP is also affected by heter-
otachy, its performance being generally degraded, but
sometimes also improved depending on the branch
length combination considered. In fact, KT's observation
of MP being not affected by heterotachy is due to a very
specific simulation design. By modifying the relative
weight of the two partitions, they simultaneously modi-
fied the level of heterotachy and the average terminal
branch length. For instance, with w = 0, there is no heter-
otachy and terminal branch lengths are p and q; with w =
0.2, medium heterotachy and terminal branch lengths are
0.2p + 0.8q and 0.2q + 0.8p; with w = 0.5, strong hetero-
tachy and terminal branch lengths are of equal size, (p +

q) / 2 (see also [36]). The lack of sensitivity of MP to het-
erotachy observed by KT is therefore due to an extremely
peculiar combination of branch lengths and heterotachy
level. When the effect of heterotachy is explored with a fix
set of branch lengths, MP is affected by heterotachy, often
to a great extent (BL50 varying from ~0 to 0.238 in Fig. 4e).

Interestingly, the accuracy of MP does not always decrease
with increasing heterotachy (Fig. 4a), illustrating a rather
complex behaviour over the parameter range here covered
(Fig. 4). The explanation is that, with an increasing level
of heterotachy, the branch lengths of one or two partitions
can shift from the Felsenstein in the direction of the Farris
zone, and vice versa. For instance, when the average
branch length is well in the Felsenstein zone (Fig. 4a) and
τ = 0.9, the first partition is entirely in the Felsenstein zone
[model topology (A: 1.425, B: 0.005, (C: 1.425, D: 0.005):
r)], whereas the other partition is only on the border of
this zone [model topology (A: 0.075, B: 0.095, (C: 0.075,
D: 0.095): r)]. Therefore only the first partition contains a
large number of convergences that mislead MP, in con-
trast with the homotachous situation where the two parti-
tions are in the Felsenstein zone. This explains why the
accuracy of MP increases in the case of Fig. 4a. In contrast,
for the opposite case of Fig. 4e, one starts from (A: 0.4, B:
0.05, (C: 0.75, D: 0.4): r) and goes to (A: 0.76, B: 0.005,
(C: 1.425, D: 0.04): r) and (A: 0.04, B: 0.095, (C: 0.075,
D: 0.76): r) when τ = 0.9. Here, one of the partitions is
clearly in the Felsenstein zone when τ = 0.9, whereas the
starting point is exactly in-between the Felsenstein and
Farris zones, explaining the decreased accuracy of MP. In
summary, contrary to the claim of KT [33], MP is also
affected by heterotachy, often to a great extent. However,
there is no simple rule to predict whether heterotachy will
improve or decrease the accuracy of MP.

Nevertheless, under extreme heterotachy (τ = 0.9), MP
almost always outperforms ML whereas ML is generally
more accurate when τ < 0.5. But, as noted by Swofford et
al. [8], the better performance of MP in the Farris zone
(Fig. 4f–i) is due to an intrinsic bias of MP (i.e. misinter-
pretation of convergences as synapomorphies) and can-
not be used as an argument in favour of MP. To guide the
choice of investigators in analysing real data, we evaluated
the extent of heterotachy in real data sets by developing a
Bayesian mixture model that assumes k partitions and
estimates the k sets of associated branch lengths and the
relative weights of the k partitions, as proposed by KT [33]
and corrected in Spencer et al. [35]. For the sake of com-
parability with our simulations, we assumed two parti-
tions. The values of τ for each branch were calculated for
several large alignments of amino acid sequences from
various taxonomic groups (133 nuclear proteins from
eukaryotes [37], 146 nuclear proteins from animals [38],
45 proteins from Archaea [39], 57 proteins from Bacteria

Performance of maximum parsimony (MP) and maximum likelihood (ML) phylogenetic methods for varying levels of heterotachy (τ) while going from the Felsenstein zone to the Farris zoneFigure 4
Performance of maximum parsimony (MP) and maximum 
likelihood (ML) phylogenetic methods for varying levels of 
heterotachy (τ) while going from the Felsenstein zone to the 
Farris zone. Nine combinations of p and q (a-i) were 
explored by realising a morphing from one zone to the other 
by transferring a part of the length of the branch leading to A 
to the branch leading to D. The accuracy was calculated as in 
ref. [33] with BL50, i.e. the estimated internal branch length 
that allows recovering the true tree 50% of the time in 100 
simulations using PAUP* [52]. As in the classical case [8], ML 
is more accurate than MP in the Felsenstein zone and the sit-
uation reverts when entering the Farris zone were MP is less 
affected than ML by increasing the level of heterotachy. How-
ever, the accuracy of ML always decreases with increasing 
value of τ, whereas the effect of heterotachy on MP is more 
complex, sometimes it increases but generally it also 
decreases its accuracy.
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[40], 13 mitochondrial proteins from deuterostomes [41]
and 50 proteins from plastids and cyanobacteria [42]).
We confirmed that heterotachy exists in real data [25], but
the averaged observed value of τ is rather low, 0.17 (Yan
Zhou, unpublished results). According to these empirical
observations, a realistic level of heterotachy can be consid-
ered to fall within the parameter range (0 < τ < 0.4) with
evolutionary rate varying between a two to three fold dif-
ference across lineages. Under these conditions, ML is
always more accurate than MP and we therefore strongly
recommend preferential use of ML over MP for inferring
phylogenetic trees from real data.

In fact, it is not surprising that the influence of the level of
heterotachy on the performance of phylogenetic methods
when analysing real data is less important than across-lin-
eage rate variation. Variation of evolutionary rates is
indeed widespread and can easily be observed for any
gene, with clock-like genes being the exception. In con-
trast, detecting heterotachy is much more difficult, as
demonstrated by a short historical overview of its discov-
ery and characterisation. Fitch recognized early on that
invariable sites are not identical in cytochrome c of ani-
mals and plants [43]. However, several other heterogenei-
ties such as rate variation across sites [19], across lineages
[1], across substitution types [44,45], as well as composi-
tional biases [46], appear to be more prominent in the
evolutionary process. Indeed, a larger amount of data is
necessary to detect heterotachy [25,28] relative to other
evolutionary heterogeneities. All other kinds of evolution-
ary heterogeneities have been successfully and naturally
addressed in a probabilistic framework [47], whereas var-
ious attempts to decrease the sensitivity of MP to these
problems are far from being efficient and widely accepted.
The case study in which MP outperforms ML under heter-
ogeneous conditions [33] is unrealistic in the sense that
no evolutionary heterogeneity except a very strong heter-
otachy (0.36 < τ < 0.75) was considered. We have shown
here that taking into account across-lineage rate variation
reverses the MP / ML accuracy ratio.

Heterotachy has been proposed as a cause of tree recon-
struction artefact in the case of fast evolving lineages such
as chloroplasts [48] or microsporidia [30,31]. It was pro-
posed that model violations due to heterotachy render
probabilistic methods inaccurate [27]. Contrary to the
claims of KT [33], we have found that MP is not a valuable
alternative to ML for dealing with heterotachy, as it is too
sensitive to LBA. For example, microsporidia represent a
phylogenetic problem where the occurrence of both
strong evolutionary rate variations and heterotachy have
been demonstrated to affect tree reconstruction [30,31].
In agreement with the simulations performed here, we
recently showed on a phylogenomic dataset that MP is

unable to correctly locate microsporidia among eukaryo-
tes whereas ML can [37].

Conclusion
Phylogenetic reconstruction is rendered difficult by the
occurrence of numerous evolutionary heterogeneities in
molecular sequence data. KT [33] have judiciously
pointed out that heterotachy seriously affects probabilistic
methods. The reason is that the averaged branch length,
which is fundamental for detecting convergent changes
along long branches, no longer represents an accurate esti-
mate when heterotachy is strong. However, from the
extremely specific design of their simulations, KT found
that MP would be unaffected by heterotachy and therefore
suggested to consider with equal caution the results of MP
and ML [33]. Here, we have found that MP can be affected
by heterotachy and that it is much less efficient than prob-
abilistic methods in dealing with all other evolutionary
heterogeneities. We therefore strongly urge the continued
preference of probabilistic methods for inferring phyloge-
nies from real sequences (see also [35,36,49]). Indeed,
heterotachy, as well as other kinds of heterogeneities
[20,21], can be handled properly in a probabilistic frame-
work using mixture models [33,35,50].

Methods
We followed a similar protocol as in [33], with the only
difference being in the branch lengths of the model topol-
ogy. Briefly, DNA sequences of 10,000 nucleotides each
were simulated under the Jukes and Cantor [18] model
with Seq-Gen version 1.2.7 [51]. Modelling rate heteroge-
neity across sites using a Gamma distribution (α = 0.5 and
1) gave similar results (data not shown). Considering a
transition/transversion ratio greater than 1 (2, 5 or 10)
rendered ML more accurate than standard MP (see also
[35]), but when a weighted MP is used the same results as
with a ratio of 1 were obtained (data not shown). As
described in Fig. 2b, a single parameter, τ, allows for the
adjustment of the level of heterotachy from fully homota-
chous (τ = 0) to extreme heterotachous (τ = 1) conditions.
We varied τ from 0 to 0.9 by a step of 0.1. The two parti-
tions were always of the same size (w = 0.5). As detailed
in the main text, various values of p and q are used. The
internal branch r was varied from 0 to 0.4 with a step of
0.01. One hundred simulations were performed for each
combination of p, q, r and τ. Phylogenies were inferred by
MP and ML (with a Jukes and Cantor model) using
PAUP* version 4.0b10 [52]. Finally, to estimate the accu-
racy for both methods, BL50 (i.e. the value of r for which
50% of the simulations recover the correct tree) was com-
puted through nonlinear regression using the R software
version 2.0.0 [53]. When r < BL50, increasing sequence
length decreases tree reconstruction method accuracy
[33], which corresponds to the definition of
inconsistency.
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