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Sommaire

Dans l'industrie de l'assurance, plusieurs éléments affectent les primes versées par

les assurés. Basé sur un grand nombre de contrats d'assurance, une compagnie

d'assurance désire bâtir un modèle prédictif des réclamations. Ce modèle pourrait

par la suite être utilisé pour décider des primes à charger. Plusieurs méthodes de

modélisation telles que les modèles linéaires, les modèles linéaires généralisés et

les réseaux de neurones peuvent être utilisées. Un critère pour juger de la qualité

d'un modèle est la comparaison de la moyenne des réclamations et de la prévision

moyenne dans chacun des nombreux sous-ensembles des variables explicatives.

Nous nous concentrons dans ce mémoire sur l'analyse des résidus, utilisée afin

de comparer différents modèles. Des tests basés sur la normalité sont effectués sur

chaque sous-ensemble disjoint. Puisque certaines réclamations sont très élevées, la

distribution des résidus pour tous les modèles possédera des queues épaisses. Même

si les tailles échantillonnales sont très grandes, les méthodes de rééchantillonnage

seront aussi utilisées. Finalement, puisque beaucoup de sous-ensembles sont étudiés,

un grand nombre de tests seront effectués. Les ajustements de Bonferroni seront

utilises pour tenir compte des comparaisons multiples.

Mots clés: Primes d'assurance, test d'hypothèses, bootstrap, ajustement à la

Bonferroni, valeurs aberrantes, asymétrie, aplatissement.
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Summary

In the insurance industry, many factors affect premiums. Based on a large nuinber

of previous contracts, they want to come up with a model to predict claims and

therefore decide on the premiums to charge. Many methods can be used, such as

linear models (LM), generalized linear models (GLM), and neural networks (NN).

One criterion to judge the quality of a model is to compare the average claim to the

average prediction in each of a large number of disjoint subsets of the explanatory

variables.

This thesis concentrates on data analysis of residuals for comparing different

models. We perform traditional normal tests on each disjoint subset. Since some

claims are extremely large, the distribution of the residuals of any model will have

heavy tails. Even though the sample sizes are very large, bootstrapping will also

be used. Finally, we are facing a series of tests as many subsets are involved. Bon-

ferroni adjustments will be made to account for the multiple comparisons.

Keywords: Insurance premium, hypothesis test, bootstrap, Bonferroni adjust-

ment, outliers, skewness, kurtosis.
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Chapter 1

Introduction

In the automobile insurance industry, predicting premiums accurately is the most

important part in pricing automobile insurance contracts. Automobile insurance

companies need to use the predictions to evaluate their current pricing structure

in order to come up with an improved pricing methodology.

Generally, the development of a model that predicts premiums should consider

two basic criteria as follows:

• Minimum MSE: The Mean-Squared Error of a model should be as small

as possible;

• Fairness: The mean residual of a model within any subset should be close

to zero.

0

Finding a model with small MSE is well documented and is the subject of many

books and papers in regression. This will not be the subject of this thesis. Sat-

isfying the criterion of fairness, however, is complicated due to several factors,

including:
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• Possibly interesting subsets of insured are numerous. It is difficult to simul-

taneously test for fairness of all possible subsets;

• Extremely large claims exist and they are hard to predict. This leads to

a distribution of residuals of a model having a heavy tail. Therefore, the

normal distribution might not provide a good reference for test statistics;

• When more than one subset of insured is involved, differences might incor-

rectly be declared significant simply due to the number of tests being per-

formed. So we have to take into account the multiple comparisons aspect to

correctly conclude about the fairness of the model.

This thesis concentrates on data analysis to evaluate, in data mining context,

whether a model is fair or not, that is to evaluate whether the mean residual of a

model for each subset is close to zero. As an example, our discussions will be based

on a data set from a major North-American insurance company-Université de

Montreal study of the pricing of automobile insurance contracts. More information

about the joint project will be found in Chapter 2.

1.1 Evaluation of the fairness of a model

0

The evaluation of the fairness of a model consists of testing that the mean residual

for each subset of a model is zero.

There are various ways to split the data into subsets. We can split the data

according to explanatory variables as well as dependent variables. Since we can

not cover all possible subsets, the evaluation of the fairness of a model will be
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mainly focused on certain meaningful subsets.

In the case where the subsets are based on the dependent variables, the subsets

and the observations are dependent and the variances in each subset might differ

considerably. It may therefore be difficult to analyse the data through an ANOVA

model. Therefore, we will instead use t-tests for each subset and correct for multiple

comparisons.

1.2 Contributions of this thesis

First of all, Bonferroni adjustments are used. The Bonferroni procedure (Miller,

1985), is an old statistical tool which depends solely on this simple probability

inequality,

P(UA')<EP(A-)- (Ll)

The procedure concerns adjusting downward the level of each individual hypothe-

sis test of a particular study to ensure that the probability of incorrectly rejecting

at least one of the hypotheses is at most alpha. Because many subsets are involved

in evaluating the fairness of a model, hence, we are facing a series of tests, and

we will make Bonferroni adjustments to account for multiple comparisons (Hsu,

1996).

Secondly, the bootstrap method is used (Efron &; Tibshirani, 1993). The dis-

tribution of claims has some very large values which are hard to predict leading to

a skewed distribution of residuals, which is far from a normal distribution. Gen-

erally, even if the distribution of the observations is not normal, when the sample

size is large, we could approximate the distribution of the t-test by the normal

u
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distribution because of the central limit theorem. In this study, the total available

sample size is 7 418 681, which is really very large. But is it large enough to com-

pensate for the extreme skewness of the distribution of the residuals? Therefore,

we will also use the bootstrap to take into account the skewness.

Thirdly, because of the very large sample size, the tests have very high power so

that hypotheses of a zero mean residual can easily be rejected without being wildly

wrong. We will compute confidence intervals to see just how far from zero is the

mean residual of each subset to judge on the fairness of a model. There are also

other things that we have learned working in a data mining context. The residuals

have very strange distributions: millions of data point are centred on zero while

a few points are very large and positive. Many standard graphical methods may

not work well to visualize the situation. QQplots work better. Handling data of

such extremely high dimension is beyond the ability of some standard statistical

software. Therefore, we chose to implement all computations in PLearn, a set

of powerful functions in C++, developed by Pascal Vincent, Yoshua Bengio and

other members of Lisa lab in Université de Montreal.

1.3 Overview of thesis

u

The next chapter describes the data and provides information about the model that

was selected. Chapter 3 introduces bootstrap methodology for both hypothesis

testing and confidence intervals. Chapter 4 provides the necessary background for

understanding the Bonferroni procedure and describes Bonferroni adjustment for

hypothesis testing, and confidence intervals. The experimental results are reported

in Chapter 5.
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Chapter 2

Data from the joint project

Based on information from particular insurance contracts between 1990 and 1998,

the joint project between a major North-American insurance company and Uni-

versité de Montréal mainly focused on evaluating and comparing several statistical

models for pricing automobile insurance contracts to help the company evaluate its

current pricing methodology by comparing it with the pricing structure obtained

with these statistical learning algorithms.

Several models were investigated in this study including: a model with a con-

stant, linear model (Draper & Smith, 1998), generalized linear model (McCullagh

fe Nelder, 1989), greedy multiplicative model, CHAID decision tree, a combination

of CHAID and linear model, neural network (Bishop, 1998), softplus neural net-

work (Dugas, Bengio, Belisle, Nadeau &: Garcia, 2001), regression support vector

machine, and a mixture model. The best model was this mixture model.

We will describe the best model in section 2.2. In the next section, we first

describe the data set. Since the goal of this thesis is not the comparison of dif-

ferent statistical learning algorithms, we do not go into all details of the model

description and data set preparation.

u
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2.1 Data information

2.1.1 Data preprocessing

The data being studied came from eleven raw data files supplied by the company.

We filtered the data in order to suit model development. The preprocessing was

based on the following points:

1. Keeping only policies that lasted from the year 1991 to 1998, to ensure that

we kept only policies that correspond to similar conditions.

2. Filtering out certain categories of contracts, such as commercial vehicles.

3. Eliminating the policies containing missing values (i.e. the value of some of

the input variables was not specified in the data files), to avoid developing

complicated learning algorithms.

4. Keeping only policies whose duration was close to one year, to simplify the

minimization of the MSE criterion.

After preprocessing, there was a total of 7 418 681 remaining policies, 32 explana-

tory variables and 5 dependent variables.

Table 2.1 gives the list of explanatory variables; their detailed definitions are

in Appendix A

(J



n 2.1 Data information 7

Table 2.1: List of explanatory variables

leaseJndicator

rate-class

third-party-ext-limit

loss-oLuse

limited-depreciation

vehicle-color

drv-class

drv-sex

drv-last -p enalty-pts

ageJast-accident

drv-num-suspensions

policy-start-date

claim-rated-scale

collision-deductible

specified-perils

replacement -cost

drvJs-owner

drv_exam-status

nyears-since-original-lic

drv-num-convictions

drv-num-accidents

drv-suspension-days

territory

fleet-discount

comp-deductible

roadstar-indicator

vehicle-model-age

nyears-since-exam

drv_age

ageJast-conviction

drv-total-penalty-pts

ageJast -susp ension-end

2.1.2 Dependent variables

The dependent variables in this study are 6 Kind Of Loss groups, abbreviated KOL

groups, including bodily injury, property damage, accident death, collision L.O.U.,

comprehensive, and roadstar. We did not consider the 6th KOL group roadstar

as it represents very small amounts and displayed unexplained and very peculiar

temporal non-stationarities.

The description of the five dependent variables is as follows:

• Bodily injury: Claim amount for bodily injury coverage of the other driver;

0
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• Property damage: Claim amount for property damage coverage of the

other driver;

• Accident death: Claim amount for accident and death benefits coverage

for the insured;

• Collision L.O.U.: Claim amounts for collision and loss of use insurance

coverage.

• Comprehensive: Claim amounts for comprehensive insurance coverage,

i.e., loss or damage to the insured vehicle not covered by collision insurance.

For each dependent variable, the values represent the incurred ainount for a par-

ticular contract. In principle, the values should be positive, or zero if there was no

claim. In fact, there are a few cases of very large positive claims, but for most poli-

cies, there was no claimed amount leading to lots of zero in the data set. However,

due to accounting practices, there were a few cases of negative values meaning that

money was reimbursed to the company.

Figure 2.1 presents the histogram of the distribution of incurred amount for

the KOL group bodily injury for a subset of size 1 854 670, randomly chosen con-

tracts from the whole population. Because of the size of the data set, it is hard

to see that there are extreme values. But consider the QQplot in Figure 2.2. A

QQplot(quantile-quantile plot) is a plot of the ordered observations versus the

quantités of a standard normal distribution. If the data are normal, the points

should lie close to a line. We notice that there is a very heavy tail to the right side

of the distribution.

(J



0 2.1 Data information 9

Figure 2.1: Histogram of incurred amount for bodily injury
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Figure 2.2: QQplot of incurred amount for bodily injury
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2.1.3 Data splitting by incurred amount

Due to the peculiar distribution of the incurred amounts, namely mostly zeroes,

many small positive amounts, a few large positive amounts, and very few negative

values, it turned out that it was a good idea to train separate models on each of

those incurred amount "ranges" and to later combine them.

In order to do this, we had to split the data into these four "ranges", whose
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definition is made a bit tricky as there are 5 different KOL groups (and dependent

variables). Specifically, the split was done as follows:

• The negative category contains all policies that have at least one negative

incurred amount in one of the KOL groups, and all others are 0.

• The zero category contains all policies where incurred amounts in all KOL

groups are 0.

• The small positive category contains policies that have at least a positive

incurred amount in one KOL group, but the incurred amounts in all KOL

groups are all less than 10 000$.

• The large positive category contains all policies that have at least one

incurred amount in one KO L group over 10 000$.

The proportion in each category is approximately as follows:

Proportion in the category <

83.1% Zero category

0.03% Negative category

16.3% Small category

0.57% Large category

u

2.1.4 Training, validation and test set

We previously mentioned that the basic criteria to evaluate candidate models are

minimum MSE and Fairness. Is a fair model with low MSE on a sample which

was used to estimate the parameters of the model a good model? Most of the
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time, we cannot say yes since we do not know the out of sample performance yet.

Unfortunately, the out of sample performance, that is the MSE measured outside

the sample, would be much worse as the selected model is sometimes far from the

true model. This means that we cannot rely on the MSE that was obtained from

the sample used to fit the model to choose the best model. We need one more

sample to estimate the true MS E.

On the other hand, any class of models has variants inside the class, for example

which subset of variables to use. It can be shown that the more variables are used,

the more complex the model will be, the more examples (cases) it can fit perfectly

(or very well). In statistical learning terminology, the model is said to have more

capacity. Too much capacity usually leads to overfitting, i.e., very good estimated

MSE within the sample, but a large MSE out of sample. We really need another

sample to control the capacity among variants within a class of models.

Therefore, the whole population is split between training set, validation set and

test set. The training set is used to estimate the parameters of a particular model

in the class, the validation set, a different subset of the data not used to fit the

model, is used to select a particular model in the class of models, and the test set,

the observations of the data set not used so far, is then used for a final unbiased

estimate of performance.

Half of the preprocessed data goes in the training set (3 709 341 policies), a

quarter goes in the validation set (1 854 670 policies) and another quarter goes in

the test set (1 854 670 policies).

u
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2.2 Model description

As the result of the data preprocessing step previously mentioned, we already ob-

tained a set of size 7 418 681 numerical information of 32 explanatory variables and

five dependeiit variables, bodily injury, property damage, accident death, collision

L.O.U., and comprehensive. We wish to use these data to develop an empirical

predictive model for premiums with low bias and low variance.

We define X to be the n x p matrix of the form:

Xïi ••• Xip

-nxp —
^21 • • • Xîp

^nl " ' ' ^n'np

where n is the sample size and p is the number of explanatory variables. Let

Xi = (rca, a;i2, • • • , Xip) z = 1,2, ••• , n (2.1)

represent the ith vector of explanatory variables associated with ith policy from a
sample 5', and define

Ynxi=(yi,y2,---,yn)' (2.2)

to be the vector of size n representing the incurred claim amounts for one dependent

variable and yi is the value of the variable associated with the itb policy in the same
sample S.

The above notations will be used throughout the following chapters.

u
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Figure 2.3: Neural network
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2.2.1 Neural network

Neural networks constitute a large class of learning algorithms remotely inspired by

the way the brain computes (Bishop, 1998). They are best known for representing

non-parametric models made of non-linear smooth functions. An ordinary neural

network consists of the clever combination and simultaneous training of a group

of units or neurons that are individually quite simple.

Figure 2.3 illustrates a general ordinary neural network.

Initially, the values of each input variable are linearly combined. Each hidden

unit receives a different linear combination of the variables. Within each unit,

a non-linear transformation (called a transfer function) is applied to the linear

combination. Finally, the results of all hidden units are linearly combined and

sent as the output of the network. There could be more than one hidden layer, but
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for most applications a single one suffices. The output of a neural network can be

written in the following form:

Y=Çtanh{Xâ))'(3 (2.3)

i.e.,

nh n

y{xi)= po+^Pj-ta.iih^âjft+^a^kXik] i=l,2,---,n (2.4)
\ k=l )J=l

where /3 is a, vector parameters with n/i + 1 elements, a is an n xn/i matrix

of parameters, n/i is the number of hidden units, and the function tanh(-), the

hyperbolic tangent, is the non-linear transfer function.

The procedure to estimate the parameters of a neural network is similar to

that for a Linear model, but with more complexity and is usually performed by

a specific neural network algorithm (Hastie, Tibshirani & Friedman, 2001). Like

a linear regression, this model can potentially yield negative premiums in some

cases.

A new type of neural network, called softplus neural network, was recently

introduced by Dugas et al. (2001) and includes a softplus unit as the final transfer

function to ensure that the predicted premium is positive. The output of a softplus

neural network can be expressed as follows:

Y=F((tanhÇXà))'f3} (2.5)

i.e.,

^L / ^L
y{xi) = F ( ^0+^/3,- • tanh ( âj,o + ^ o'^fc^fc j

j=î. \ k=l J }
î=l,2,...,n (2.6)
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where F(-) is the softplus function which is actually simply the primitive (integral)

function of the sigmoid function, that is:

F(a) = log(l+ea)
l

and sigmoidÇa) =
l + exp (—a)

The softplus function is convex and monotone increasing with respect to its

input and is always strictly positive.

2.2.2 Mixture Models

Mixture models are created by splitting the regression task in a two stage process.

The idea is that "large claims" are much less predictable than "small claims" and

furthermore because of the heavy tails of their distribution, they would make the

estimation of the premium for small claims less stable. In a first stage we thus

train separate sub-models (that we call experts) for the records associated with

different groups of claims grouped by the level of incurred amount, as explained

in Section 2.1.3. In the second stage, we have to predict to which group a record

belongs, in order to combine the predictions from each of the experts.

One of the advantages of the mixture models proposed here is that each expert

can be trained with less data. In fact, no expert needs to be trained for the special

group corresponding to zero incurred amount which represents about 83% of the

records!

We can write the prediction for the mixture model as follows:

u
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y{xi)=^yç{x,-)P[Ç\x,}
G

(2.7)

where yçÇxi) is the prediction associated with the i policy Xi from a sub-model

trained only on data belonging to group G-

This type of inodel is sometimes called a conditional mixture or a mixture of

experts (Jacobs, Jordan, Nowlan fe Hinton, 1979).

We devise a reliable probabilistic classifier to estimate the conditional class

probabilities (P[Ç|-V]),

G < (2.8)

u

1, if A < 0 (negative incurred amount)

2, if A ==0 (no claim)

3, if 0 < A <0 (small incurred amount)

4, if A > 0 (large incurred amount)

In practice the split is a bit more complex because A is a vector with the values

of the inciirred amounts for 5 different dependent variables. The actual split was

described in Section 2.1.3.

The value of the threshold 6 was set to 10 000$ so that roughly 50% of the

total expenses were incurred in class 4 and the remaining 50% in the other classes.

Negative amounts are due to accounting adjustments often related to accidents

incurred in previous years, however their impact is negligible because there are

very few of them and the values are very small. In the best performing model,

we have actually set their posterior probability to zero, without any measurable

deterioration in MSE, thus guaranteeing that all premiums predicted by the model

are positive.

For the sub-models, i.e., the experts, any of the models mentioned in the be-

ginning of this chapter could be used. However, for the probabilistic classifier, we
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u

need a different kind of model, one that can estimate the class probabilities, i.e.,

P[Ç = g\Xi]. Since Ç can take 4 values, the output of the probabilistic classi-

fier consists of 4 probabilities (that always sum to 1). For this purpose we have

considered two alternatives: a constant model and a neural network model.

Constant Class Probability Model

This model assigns a constant probability P[G = g\Xi] = pg to each of the 4 amount

levels (p = l to4). These probabilities are trivially estimated from the average

proportions of cases for which G=g (5= 1 to 4). This is a reference model.

Neural Network Class Probability Model

This model assigns a probability P[G = g\Xi] = pg(xi) to each of the 4 amount

levels (p = 1 to 4) according to Xi using a neural network formula (2.4). These

Pg(xi) were required to satisfy:
4

^Pg(Xi) = l
ff=l

and pg(xi) > 0 for these to represent probabilities. This is achieved by using

on the last layer of the neural network a softmax transformation which exactly

gives us these guarantees. The calculation performed by the neural network is the

following:

eî/î(a:i)
Pg{^i} E^ie^^)

where

"h (n

Vg(xi) = % +^ 0g j tanh ( â^o + ^ â^fc^fe

(2.9)

(2.10)
3=1 fc=l
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and the different 7, /3, and a are the estimated parameters.

We don't want to train this inodel to minimize a MSE, but instead we want it

to maximize the log-likelihood of the correct class Q given xi. It means that we are

looking for the model that computes probabilities that are as "close" as possible

to the "true" probabilities, where closeness is defined in the information-theoretic

sense (by the so-called Kullback-Leibler divergence). The parameters 7, /3, and a

in the above formula are thus obtained by maximizing the log-likelihood criterion:

Y^ÏOgPg,(Xi)
t

where the sum runs over the records in the training set, with policy 2:1, and gi is

the associated amount level group which depends on the level of the incurred claim

amount, as discussed above and in Section 2.1.3. The optimization procedure is

similar to that of the ordinary neural network and softplus neural network, and is

based on stochastic gradient descent.

The mixture model can produce negative premiums if and only if the experts

can do so. In the model that was finally selected, the experts are softplus neural

networks, so the premiums are always positive.

2.3 Computational aspects

Because our data sets are extremely large, it can be quite difficult to use ordinary

statistical software, such as Splus. The main problem is memory management,

and the need to do some sophisticated modelling (sophisticated at least from a

computational point of view), such as neural network.

Also, we need to bootstrap these large data sets about a thousand times to get
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some of the necessary results. So, we have to consider the computational time,

which should be acceptable and as small as possible. The set of programs PLearn

has been created to solve these problems.

PLearn is a C++ library, developed by Pascal Vincent and Yoshua Bengio from

the LISA lab of Université de Montreal. It uses the object-oriented and operator

overloading capabilities of the C++ language to allow library users to express their

functions and their optimization as a standard C++ program.

PLearn incorporates many design advantages for large data sets. The most

exciting one is its memory allocation design implemented by VMat. All compu-

tations in this thesis, including bootstrapping, are done in PLearn through the

bridge VMat. This has saved us time and energy. Without PLearn, it is hard to

imagine where and how we could have obtained our results.

u
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Chapter 3

Bootstrap methodology

This chapter introduces some theoretical background and methodology surround-

ing bootstrap procedures.

3.1 Introduction

u

Efron (1979) introduced the bootstrap and established a new framework for

simulation-based statistical analysis. It enables statisticians to pull more infor-

mation out of data than any other previously developed statistical method.

The bootstrap addresses the following problem in statistics: how to infer the

truth from a finite sample data that is by no means complete. More specifically,

it is a technique for estimating sampling distributions conditional on the observed

data and generally for use in computing confidence intervals and for making tests

of significance.

The basic idea of the bootstrap (Efron & Tibshirani, 1993) or (Davison & Hink-

ley, 1999), consists of resampling with replacement B times from the observed data

bootstrap samples of the same size as the observed data set, to compute the statis-
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tic of interest on each bootstrap sample, and then to consider these statistics as

a collection of possible values of the statistic of interest. So the essential of the

bootstrap consists of using the empirical distribution of the bootstrap replications

of a statistic in lieu of the actual distribution of the statistic. In this thesis, the

statistic on which the bootstrap will be applied is the mean.

3.2 Bootstrap sampling

0

Suppose we have an observed data set x = (a;i,a;2,--- ,^n)i from an unknown

probability distribution F, i.e.,

i.i.d
2;1,2;2,--- ,^n r^j F,

we then generate a bootstrap sample x* = (x:[,x^,- • • , x^) of size n by randomly

drawing observations x^ with replacement from the empirical distribution F of the

data,

•î T; . .. T* l"^L
-l; •x/2' ' ' ' '-''n "' -t • (3.1)

The empirical distribution function F is a simple estimate of the distribution F and

is defined to be the discrete distribution that puts probability 1/n on each value

Xi. In other words, F assigns to a set A in the sample space of x its empirical

probability

Probp{A} = #{x,çA}/n.

The hat symbol indicates quantities calculated from the observed data. We can

thus obtain a large number of independent bootstrap samples each of size n,

.*! ^.*2 _ . ^.*B
•l -^ l ~ ) (3.2)
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where B is around 1000 and referred to as the number of bootstrap samples.

Suppose that the statistic of interest is

0=s(x).

Corresponding to a bootstrap sample x* = (x:[,x^,- • • , x^), the bootstrap replica-
tion of 6 is

e* = s(^), (3.3)

i.e., the value of the statistic 0 computed from x*.

For example, if 0 is the sample mean 0 = x, its bootstrap replication 0* = s{x*)

will be the mean of the bootstrap sample,

^=s(^)=^4/".
2=1

For B bootstrap samples a;*l,3;*2, • • • ,a;* , there will be B bootstrap replica-

tions of 6,

^l,^2,...,rB. (3.4)

Its empirical distribution is the basis to compute a bootstrap hypothesis test or

constructing bootstrap confidence intervals.

3.3 Bootstrap hypothesis test

0

Generally, the bootstrap samples as constructed above can be used to construct

bootstrap confidence intervals as we shall see in section 3.4. However, in the sit-

uation of a bootstrap hypothesis test, the bootstrap sampling procedure needs to
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be adjusted. This is because, for a hypothesis test, the statistic must be computed

from a distribution which satisfies the null hypothesis HQ. The empirical distri-

bution F is not an appropriate estimate of F for an hypothesis test, since it does

not generally obey HQ. Instead, we have to find an estimate of the distribution of

the population that obeys HQ. This could easily be done by transforming the em-

pirical distribution F to ^rans so t''lat ^'o is satisfied. The way to transform the

empirical distribution F into a distribution F^^^g depends on the null hypothesis

HQ. In our problem, we will be testing that the mean of a distribution is 0, i.e.,

Ho : IJ.Q = 0. Since the mean of the sample is x, subtracting that mean from each

observation will lead to a new distribution F^^^g which satisfies HQ, i.e., its mean
is 0.

So let yi = xi— x and F^a^g be the empirical distribution of the yi's. The

bootstrap samples y* = (y^, y^- • • , y^) can thus be generated from cyans' l-e-'

i.i.d
y^y^,--- ,y^ F,trans • (3.5)

We are assuming that the test statistic 0 is such that if the null hypothesis HQ is

true, its value will be close to 0, and if it is not true, then 6 will usually be far

away from 0, either positive or negative. For instance, to test the hypothesis that

the mean of a distribution is p., the test statistic 6 will be ^ —^ so that 0 will be

close to zero if HQ is true. For a two-sided hypothesis test, if the null hypothesis

Ho is not true, we expect to observe large values of the absolute value of 0. To

quantify how far from 0 is 0 from the original sample x, the Achieved Significance

Level, abbreviated ASL as in Efron & Tibshirani (1993), is computed as follows.

Suppose that we have observed \0\, the ASL is then equal to the probability of

u
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observing at least that large a value when the null hypothesis Ho is true,

ASL ProbH.m ^ \0\}

In practice, the ASL is usually approximated by the Monte Carlo method as
follows:

ASL = ^{\è^\>\6\}/B b=l,2,---,B (3.6)
where 0*b is the bootstrap replication of 0 for the bootstrap sample y .

The smaller the value of ASL, the stronger the evidence against HQ, the larger

the value of ASL, the less evidence we have against HQ, e.g. given a significance

level a, we reject Ho if ASL is less than a, and do not reject it if ASL is greater

than Cf.

For convenience, in the following chapter we treat ASL as a bootstrap p-value

for our experiments, i.e.

bootstrap p-value = ASL

= #{\yb\>\6\}/B. (3.7)

Note that if the alternative hypothesis is one-sided, then the evidence against HQ

is measured differently. For instance, if the alternative hypothesis HA '• ^ <

fio is satisfied, then we expect small (i.e., negative) values of 0, and the ASL is

ProbHo{8* <. G}- The other one-sided alternative is treated similarly.

3.4 Bootstrap confidence intervals

0

A confidence interval gives an estimated range of values which is likely to include

an unknown population parameter 0. To construct a confidence interval with ex-
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act confidence level l — cr, we usually need to know the true distribution of 6,

say Jn{x, F) where F is the distribution function of the observations. In practice,

F is usually unknown, therefore, Jn(x,F) will be replaced by various acceptable

estimated versions.

There are several different approaches for constructing confidence intervals for a

statistic of interest 6 using bootstrap techniques, including the bootstrap-t, boot-

strap percentiles, and BCa methods. We begin by introducing the approximate

normal confidence interval.

u

3.4.1 Approximate norinal confidence interval

Consider a sample of size n from a population with unknown distribution F,

i.i.d
Xi,X^,--- ,Xn rs^ F

From a;i,a;2, • • • ,Xn~we get the empirical distribution F, the estimate of F. Let

6p be the estimate of the parameter Op, se? be the estimate of standard error for

6p. For many statistics, when the sample size n is large enough, the distribution

of OF becomes more and more normal, 6^N(6, se ), i.e. Jn{x, F) is approximately
equal to the cumulative distribution function of a normal distribution with mean

OF and variance é'ep. We have,

OP-ÔFz=
sep

~ N{0,Ï) when n 00 (3.8)

In the limit, we can obtain the approximate normal confidence interval with

coverage probability 1—20; for 6p as follows,

ProbF{ÔF 6 [OF - -^(l-a) • sep, 6p - z(a) • sep}} = l - 2a
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which can be written as

[e^-z^-^-se^ èp-z^-sep} (3.9)

where z^ is the 100 • ath percentile point of the standard normal distribution

7V(0,1).

The approximate normal confidence interval will be better the larger the sam-

pie size n is. But how large is large? This depends on the particular statistic and

the distribution of the observations F. In the case of interest, the mean, this is

inextricably linked to how nonnormal F is (Miller, 1985). This can be evaluated

by two statistics: the skewness and the kurtosis of the distribution F. For a fixed

sample size (even very large), the nonnormality of F may be so important that the

approximate normal confidence interval will not have a confidence level anywhere

close to the claimed one.

3.4.2 Bootstrap-t confidence interval

Bootstrap-t methods estimate the distribution of Z defined in (3.8), directly from
the data.

This procedure is based on generating B bootstrap replications of Z to build

a table of ordered bootstrap replications. This will estimate the distribution of Z

rather than assuming that it is normal. Then it picks up the relative percentile

points of the distribution of the B ordered bootstrap replications to construct a

bootstrap-t confidence interval similar to the approximate normal confidence in-

terval previously introduced for Op- This is done by simply replacing the quantités

u
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of the standard normal distribution za by the corresponding quantiles of the boot-

strap versions of Z as follows:

step 1 Generate B bootstrap samples

"*1 -r.*2 _ . ^B
î *A/ î ^ (3.10)

each of size n from F, as in (3.2).

step 2 Calculate

z^b =
Q^_Q

se*& (3.11)

for each bootstrap sample, where 0*b is the value of 0 for the bootstrap sam-

pie x*b, se*(b~) is the estimate standard error of O* for the bootstrap sample x^.

u

step 3 Sort Z*b such that

-^(1) ^ -^(2) ^ •• • ^ •^(B) (3.12)

step 4 Estimate the ath percentile z^ of Z*6 from the empirical distribution of Z^

by

#{Z^^z^}/B = a (3.13)
Note:

l. ifB- ce is an integer, the empirical a quantile is z^x) = Z^^ and the

empirical (l — a) quantile is i(l-Q) = Z^_g^y
For example, if B = 1000, a = 5%, then i(a) = Z^, the 50^ largest value
of Z^, and z(a) = Z^, the 950th largest value of Z^.
2. if-B • a is not an integer, let k == [(B + I)Q!J, the largest integer which

is less than or equal (B + l)a, the empirical a quantile is z<<a) == Z^, the
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empirical (1 — a) quantité is â(l-a) = Z^ fc)-

step 5 Construct the (1 — 2o;) bootstrap-t confidence interval as follows:

[e - ê(l-a). se, e - zw • se} (3.14)

Of course, in the case of the mean 6 = x and an estimate of the standard error is

easy to obtain: se == s/v/n where s is the sample standard deviation and n is the

sample size. But when 0 is a more coinplicated statistic, its estimated standard er-

ror is difficult to obtain. This is a disadvantage of the bootstrap-t procedure. One

option is to use the bootstrap itself to compute an estimate of the standard error

of the statistic; this leads to a double bootstrap procedure, one level to compute

an estimate of the standard error and a second level to compute the quantités of

the bootstrap distribution of the studentized statistic.

3.4.3 Percentile interval

0

To conveniently describe the bootstrap percentile interval, we first look at the

normal interval in another way. Suppose that 6 is distributed according to a

normal distribution,

6 - N{6, se2)

i.e.,

6-0
se

r^f N(0, l).
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The standard normal confidence interval for 6 based on 0 is:

[6normal,lo, Ôn^malw} = [0 - ^~ol} • 56, 6 - Z^ • Se} (3.15)

where, z(~a) and z^~a) are the 100 • ccth and 100 • (1 - Q;)th percentile points of the
standard normal distribution N(0,1). This means that 0normai,io = 0 — z^-~a} • se
and 0normal,up = 0 — Z^ • se are the 100 • ctth and 100 • (1 — o;)th percentiles of the
distribution of 0, i.e.,

ffnormal,lo = 0^ = 100 • ath percentile of the distribution of 6

6normal,up = ^(l-a) == 100 • (l - Oi)th percentile of the distribution of 0.
Let G be the cumulative distribution function of 9, i.e., N(0, se2} according to

our assumption, then (3.15) can be written as:

[Onarmal^ Qnarmal,up} = [G~v{a\ G'"1 (l - 0;)]. (3.16)

Inspired by this analogy, let G be the cumulative distribution function of 0*,

when the number of bootstrap samples B is infinite. We define the l-2a ideal

bootstrap percentile interval of the parameter 9 by the a and l— a percentiles of

G:

[^,ia, 0oo,np}=[G-\a), G-\l-a)] (3.17)

If we define 0*^ = G~l{a) the lOO-ath percentile of the cumulative distribution

of 6*, like in (3.16), we might write the percentile interval as:

L-")1
'00,;0ï l/00,UpJ — Ll/ " ' (3.18)

where

6* is the bootstrap replication of the statistic 0

0*W == 100 • ath percentile of the empirical distribution of 0*
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^(1-a) ^ 100 • (l - a}th percentile of the empirical distribution of O*.

Since we can only take a finite B in practice, the percentile interval (3.18) is

computed by taking the ath and (1 — Ot}th quantiles of the empirical distribution

function of the bootstrap replications 6*.

3.4.4 BCa interval

In many cases, there exists a monotone transformation m(-) such that on the new

scale, (f) = m(6) is more closely approximated by a normal distribution than 0 is.

That is

^-4>
se^,

7V(-^o,l) (3.19)

where

se^ = se^(l+a(<f)-(f>o)).

and (f)Q = m(0o), with OQ the true value of the parameter. In this case, when ZQ ^ 0

and/or a 7^ 0, the percentile interval will not do well.

The BCa interval is an improved version of the percentile interval. Its end-

points also depend on percentile of the bootstrap distribution. However, two more

parameters, ZQ and a, bias-correction and acceleration are imported in the BCa in-

terval. They adjust the bias of the estimator 6 and correct the bias of the standard

error of 6 to suit all 0. Specifically, the bias-correction parameter ZQ measures the

discrepancy between the median of 0* and 0, in normal units. The acceleration

constant a refers to the rate of change of the standard error of 6 with respect to

the true parameter value 6.

Again, we let G be the cumulative distribution function of 0*, the bootstrap

u
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u

replication of the statistic of interest 6. The 1 — 2o: BCa interval for 6 is given by:

[0BCa,lo, ëBCa,np]=[{G-\a,), G-\a,)} (3.20)

It also depends on the percentiles of the distribution of 6*. If we define 0*^
G~l(a), (3.20) becomes:

[OBCa^ èBCa^} = [ô^\ ^(a2)] (3.21)

where

ai = ^> ( io +

02 = ^{ZQ+

ZQ + Z^
l-a(io+-z(°))

ZQ +Z^-a^

(3.22)

l-a(io+^l-a))J (3'23)
^>(-) is the standard normal cumulative distribution function, z^ is the 100 • ath
percentile point of the standard normal distribution. As for the constants ZQ and

a, they are the bias-correction and acceleration adjustments.

The calculation for ZQ is easy. It is based on the proportion of bootstrap repli-

cations 6*b less than the original estimate Q,

^(W<eY
êo=^~

B (3.24)

where, ^>-1(-) is the inverse function of a standard normal cumulative distribution.

There are several ways to calculate the acceleration adjustment a. One of the

simplest way is through the use of delete-one versions of the statistic 0 as follows:

à
EF=i(^.)-^))3

6{E^(0(.)-^))2}3/2
where, 6j(,) is the ith delete-one statistic of 0,

6>(t) = 5(2:1, a;2,- • • , ^i-i, ^î+lï • • • ) 2;n-l, 2;n)

(3.25)

(3.26)
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and0(.)=E^^)/n.

For the mean, the formula for calculating zy is as follows,

^(#{^b<xr
ZQ = ^~

B (3.27)

As for the parameter a, in fact we do not need to actually compute the delete-

one statistic, thus considerably speeding up the computations for large n. Indeed,

(3.25) is equivalent to,

Xi((^-^)/^-i))3
à =

Y^n
Z^t=i' (3.28)6{E^((^-^)/(n-l))2}3/2-

To compute the BCa intervals, we sort the B bootstrap replications 0*b of 0,

â*l û*2 Û*B

such that

0^,6^, ••• ,0

^(*1) < ^(*2) ^ • •• < ^(*B)

then,

^ai ^ ^ ^ 5^^h largest value of 6*b for 6= 1,2, • •
^0-2 ^ y ^ p^th largest value of è*b for fc = 1,2,- •

-,B

• ,B.

u

3.4.5 Some properties of the confidence intervals

Before discussing some properties of the confidence intervals that we have intro-

duced in the previous sections, we begin by discussing the notion of transformation

respecting and the accuracy of confidence intervals.

Consider a parameter 0, and m(-), a monotone function. Then 4> = m(0), the

transformation of 0, is the parameter in the new scale.
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We say that a confidence interval is transformation respecting, if the endpoints
of the interval for the parameter cf) are simply those for the confidence interval for
0 mapped by m(0). That is:

parameter: 0

confidence interval: [Qio, Oup]

(j) = m(0)

[m(^o), m{0up)}- (3.29)

Now we discuss the accuracy of a confidence interval. Theoretically, a (1 — 2o;)
confidence interval should satisfy

Prob{9 < ^} = Prob{e > ^p} = a. (3.30)

For an approximate confidence interval, it is impossible to reach (3.30). There-
fore, it is necessary to evaluate its accuracy. Here, we introduce two grade levels
as in Hall (1992). We say that a confidence interval is first-order accurate if

Prob{e<èio}=a+0(n~l/2) and Prob{e > 0^} == a+0(n~~l/2) (3.31)

where n represents the sample size. A confidence interval is second-order accurate
if

Prob{6 < Oio} == a + 0(n~ï) and Prob{6 > 0np} == a+0(n~i). (3.32)

Obviously, the error of a second-order accurate confidence interval goes to zero
at a faster rate than a first-order accurate interval in terms of the sample size n.

We now shortly comment on the properties of the confidence intervals that we
described. First of all, the approximate normal interval requires the computation
of a standard error estiniate. It is first-order accurate and is not transformation
respecting.
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The bootstrap-t method is particularly applicable to location statistics. It has a

good theoretical coverage probability. However, it is difficult to perform bootstrap-

t procedure when 0 is a complicated statistic, for which there is no simple standard

error formula and, in small-sample situation, it tends to be erratic by giving in-

tervals which are too wide and fall outside of the allowable range for a parameter.

The bootstrap-t method is not transformation respecting, but is second-order ac-

curate.

The bootstrap percentile interval is less erratic in practice, but has less satisfac-

tory coverage properties since it is only first-order accurate. But it is transforma-

tion respecting. Its improved version is the bias-corrected and accelerated interval,

abbreviated as the BCa interval.

The BCa interval is a substantial improvement over the percentile method in

both theory and practice. They come close to the criteria of goodness, i.e., they

closely match exact confidence intervals in the special situations where statistical

theory yields an exact answer, but they also give dependably accurate coverage

probability being second-order accurate, though their coverage accuracy can still

be erratic for small sample size. They are transformation respecting. They are

recommended for general use in constructing bootstrap confidence interval, espe-

cially for nonparametric problems.

In this study, we are going to construct bootstrap-t intervals, BCa intervals,

and approximate normal confidence intervals.

0
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Chapter 4

Bonferroni methodology

4.1 Multiple coinparison

0

When there is more than one hypothesis test being carried out in a single study,

we are facing the problem of multiple comparisons as in Miller (1980) and Hsu

(1996). On top of the probability of making an error for each individual test, there

is also the possibility of making an error in the family of tests. We now consider

a family of multiple comparisons consisting of k hypothesis tests. Let A, be the

event that an error of type I occurs for the ith hypothesis test. Assume that

P(A)=Q; i=l,2,---,k. (4.1)

Then U^^Ai represents the event that at least one hypothesis test is erroneously
declared significant among the k tests. We call this the family error. Clearly, the

probability of an error of type I for the family will be inflated.

For example, in the case of k = 1Q independent hypothesis tests in a family, if we
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set a = 0.05, the probability of getting no significant difference among the 10 tests

when the null hypothesis is true for each of them is (l — o;)10 = 0.9510 = 0.5987.

So the inflated a for the family is 1- (1 -o;)10 = 0.4013. That is, there is a 40%

chance to make a type I error in the family rather than the "expected" 5%.

Generally, for a family consisting of k independent hypothesis tests, the proba-

bility that no significant difference is detected when the null hypothesis is true is

(l — a)k for tests at the level a, and the inflated a is:

inflated a= l-(l-a)k (4.2)

To correct for the multiplicity effect, we would like to keep inflated a to be 0.05

for the family. To do that, we might adjust the original a for each test downward.

If we make a small enough, the probability that none of the k independent tests

is significant will be equal to 0.95, i.e. the inflated a is 0.05. In that case oc is very

small, and (1 — a)k == l — ka. Therefore, the approximate formula for the inflated

os. is:

inflated a=l - {l-a)k = ka. (4.3)

So taking

a =
inflated a

k (4.4)

would lead to an approximate inflated a. If we hope to reach inflated a = 0.05, we

might choose o; = 0.05/fc. For example, if A; = 10, we choose a = 0.05/10 = 0.005,

then, inflated a = 1— (1 —a) = 0.0489, which is very close to an overall a of

0.05.

This is the simple idea of Bonferroni adjustment procedure for multiple com-

parisons.
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4.2 Bonferroni's inequality

u

The discussion in the previous section assumed that the hypothesis tests involved

in the multiple comparison procedure were independent. But usually they are not

since they usually are based on the same subjects (Miller, 1985), and based on

different variables which may not be independent. Hence (4.2) can not be applied

exactly.

Let Ai,A2, • • • , Afc be k{k > 2) random events, we have the well-known Boole's
formula:

P (U^A) = ^ P(A,) - ^ P(A)P(A,) + ... + (-l)fc-lP(nt,A,) (4.5)
1=1 Ki<j^k

^fcby taking the upper bounds $^^i P(-^i) for (4-5), we get the inequality:
k

P(U^A,)<^P(A) (4.6)
1=1

equal if and only if Ai,A2,--- ,Ak are disjoint. This is known as Bonferroni's

inequality.

According to Bonferroni's inequality (4.6), a family consisting of k hypothesis

tests will have a probability of type I error of

P(uLA)<^P(A,)=Â;a (4.7)
i=l

equal if and only ifAi,A2, • • • , A^ are disjoint.

The probability that none of the family members is significant when the null

hypothesis is true for all of them becomes l — P (U^iAi), which satisfies:
k

1-P(U^A,)>1-^P(A,) (4.8)
i=l
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Bonferroni's inequality (4.6) does not take into account the joint probabilities of

errors of the hypothesis tests in the family of tests considered. So when the num-

ber of members in the family increases, the Bonferroni procedure might generate

spurious conclusion. That is to say that the accuracy of Bonferroni's inequality

(4.6) is affected by the number of family members. The larger the number of family

members is, the larger the difference between the bound of the inequality (4.6) and

the actual probability will be. Therefore the accuracy of Bonferroni's adjustment

procedure will diminish.

Often, we do have a choice about the number of members that should be

treated as a single family when dealing with multiple comparisons using Bon-
ferroni's method.

In general, it is recommended to use less than 20 members in a family.

Suppose that there are k hypothesis tests in a single study, and that we wish

to have a family error equal to at most a,

P(utiA,) < a.

Then, using Bonferonni's inequality, we can safely reject a single hypothesis if its

p-value is less than a/k, thereby ensuring that the family wise test is significant
at most at the a level.

More specifically, for a multiple comparison family of k members, let Pi (i =

1,2, ••• , A;) be the observed p-value in the ith hypothesis test. At level a, we reject
the hypothesis that all null hypotheses in the family are true if,

min{Pi} < a/k i =1,2,- • • ,k. (4.9)

u

Alternatively, we can do the same thing by multiplying the observed p-values

from the hypothesis tests by the number of family members k, then compare them
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0

with family error ex. directly. For the ith hypothesis test, k x observed p-value ==
kxPi î=l,2,.--,fc, andif

mm{k*Pi,l}<a i=l,2,---,k (4.10)

the multiple comparison is significant, i.e., we reject the hypothesis that all null

hypotheses in the family are true.

According to (4.9) and (4.10), we might define a Bonferroni p-value for the ith
hypothesis test in a multiple comparison as follows:

Bonferroni p-value = min{A; x observed p-value, 1}

= mm{kxPi,l} î=l,2,-..,fc. (4.11)

From the previous discussion, we have seen that Bonferroni s Method corrects

the multiplicity effect through adjusting the type I error of an hypothesis test

downward proportionally to the number of family members in the multiple com-

parison. The same approach can be applied for constructing confidence intervals

in a multiple comparison procedure.

The Bonferroni method for adjusting confidence intervals in a multiple com-

parison procedure is to adjust the percentile points of the distribution of the test

statistic. We assume that there are k members in the multiple comparison family

in the following discussion.

For the approximate normal confidence interval in section 3.4.1, we adjust the

percentile point of the standard normal distribution N(0,1) from z^ to z(-oi^k\
Then (3.9) becomes,

[^ _ ^(i-t) . se^, èp - z^ • sep] (4.12)

For the bootstrap-t confidence interval of section 3.4.2, we adjust the empirical

a percentile point of statistic Z*b in (3.11) from Z^^ to Z^^^y Thus, (3.14) is
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changed to:

[0-é(l-t).se, 0-t^.se] (4.13)

where, t(ï) = Z*B.c,^
•~k~-

For the BCa interval of section 3.4.4, we adjust a for the two parameters Q;i

and Q;2 defined by (3.22) and (3.23). The formulas are as follows,

CCBonfl = ^ [ Zo+

^[zo+

^+^(a/fc)
^-â{zoTz(aW)^

^+^(l-"/fc)
O'Bon/2 = ^^0+l_â(êo+^-"A))

The BCa interval in (3.21) is adjusted to:

[OBCO^ OBCa^}=[6<aBonn\ 6^^~\

(4.14)

(4.15)

(4.16)

0
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Chapter 5

Experimental results

In this chapter, we only work with residuals of the test set based on the mixture

model explained in Section 2.2, which was constructed from the train and validation

data sets. We will present the experimental results for the test set.

In the first two sections, we examine distributions for incurred claim amounts

and residuals, in Section 5.3, subsets are discussed in more details, Section 5.4

and 5.6 introduce hypothesis tests, Sections 5.5 and 5.7 give the results concerning

confidence intervals.

5.1 Claim distribution

u

We first examine the distribution of the dependent variable. Figure 5.1, the QQplot

of the distribution of claims for bodily injury, shows that most of the claims are

small. This means that there are very small incurred claim amounts for bodily

injury associated with most of the policies. The heavy tails at the right-end side

tell us that some claims are extremely large. We observe that in the test set, a few

claims have very small negative values, due to accounting conventions.
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The QQplots of the distribution of claims for the other dependent variables of

the test set are listed in Appendix B. Similar behaviours were observed.

5.2 Residual distribution

Residuals are of the form:

;thresidual of ît" policy = yi — yi (5.1)

Figure 5.2 shows the QQplot of the distribution of residuals from the mixture

model for the test set of the variable Bodily injury. The distribution is positively

skewed to the right side, like the distribution of claims, again, due to the presence

of extremely large claims. Obviously, the distribution is far from normal.

Table 5.1 gives the skewness and kurtosis statistics for the residuals of the

different dependent variables from the test set data fitted to the mixture model. If

the distributions were normal, the skewness and kurtosis parameters should both

be close to 0 (Miller, 1985).

The QQplots of residual distribution for other dependent variables of mixture

model test set are placed in Appendix B.

u
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Figure 5.1: QQplot of claim for bodily injury mixture model test set
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Figure 5.2: QQplot of residual for bodily injury nuxture model test set
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Table 5.1: Skewness and kurtosis statistics for mbrture model test set

u

skewness kurtosis

bodily-injury

property-damage

accident-death

coUisionJou

comprehensive

sum

214

29

309

14

27

195

71273

2749

152859

2333

1942

61468
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5.3 Subsets

5.3.1 Subset definition

Here, we talk in more detail about the subsets which are used for evaluating model

fairness in our study.

For a given model, the mean residual could be quite different across different

subsets. However, a fair model should such that the mean residual does not vary

significantly across different subsets compared with the whole population. This

means that the average predictions for a dependent variable within each subset

should be statistically close to the average incurred claim amount in that subset

for the same dependent variable, i.e. the mean residual of each subset should be

close to zero.

There are many ways to split a population into subsets. One might choose

explanatory variables to split the data into subsets, such as territory, driver's sex,

etc. One might also choose dependent variables to construct subsets. In an ideal

situation, the mean residual should be close to zero across all possible subsets.

In this project, we have chosen the predictions of five dependent variables as

well as the sum of the five dependent variables to construct different sets of subsets.

We split the population corresponding to the location of the decile of the distri-

bution of predictions. The ith decile of the distribution of predictions is the point

immediately above 10z% of the prediction. For example, the 8 decile is the point

such that 80% of the predictions are above it. Specifically, the first subset contains

the 10% of the customers who are given the lowest predictions by the model, the

second subset contains the range 10%-20%, ..., the last subset contains the range

0
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Table 5.2: Subset ranges for bodily injury mixture model test set

Left end mght end

subset 1

subset 2

subset 3

subset 4

subset 5

subset 6

subset 7

subset 8

subset 9

subset 10

0.02861

0.09087

0.11225

0.13260

0.15389

0.17749

0.20548

0.24181

0.29605

0.39558

0.0909

0.1122

0.1326

0.1539

0.1775

0.2055

0.2418

0.2961

0.3956

2.9893

90%-100%.

In the thesis, we continue to split the data into the same train, validation, and

test subsets that were used in the modelling step of the study. Hence, the test set

is of size 1,854,670. Therefore, the ten subsets of the test set is each of size 185,467

exactly.

The subsets ranges obtained from the distribution of predictions of the depen-

dent variable bodily injury for the mixture model test set are shown in Table 5.2.

The subset ranges for the other dependent variables as well as their sum are

given in Appendix B.

u
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5.3.2 Subset residual distribution

Since we are going to test the fairness of a model through testing that the mean

residual of its subsets is zero, it is necessary to examine the distribution of the

residuals for each subset.

The QQplots of the distribution, for each subset, of the residuals of the obser-

vations of the test set data computed from the mixture model for bodily injury are

shown in Figure 5.3. All of the distributions are extremely skewed to the right.

This means that the subset residuals have similar distributions to the residuals for

bodily injury of the whole test set.

The Qqplots for the subset residuals of the other dependent variables are in

Appendix B.

5.4 Norinal test

Table 5.3 shows the mean residual for each subset of the mixture model test set.

From previous results we have seen that the residual distribution for the whole

test set and also for each subset is skewed, so that they are far from the normal

distribution. Table 5.4 and Table 5.5 give us the skewness and kurtosis statistics

for the whole test set and each subset of the six dependent variables for the mixture

model test set.

The test of model fairness for the ith subset can be expressed as follows:

Ho: E^) = 0 (5.2)

u
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(J

Figure 5.3: Subset residual distributions for bodily injury mbcture model test set
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Table 5.3: Mean residuals for mixture model test set

0

Bodily

Injury

Property

Damage

Accident

Death

Collision

L.O.U.

Comprehensive Sum

subset 1

subset 2

subset 3

subset 4

subset 5

subset 6

subset 7

subset 8

subset 9

subset 10

0.0074

-0.0029

0.0140

0.0173

-0.0117

0.0089

-0.0109

-0.0031

-0.0403

0.0198

0.0005

-0.0006

-0.0016

0.0007

-0.0010

-0.0026

0.0012

-0.0015

0.0023

0.0039

0.0003

0.0003

0.0009

-0.0007

-0.0015

0.0100

-0.0057

-0.0027

0.0010

-0.0069

-0.0024

-0.0054

-0.0087

-0.0059

-0.0029

-0.0018

-0.0003

-0.0002

0.0016

0.0206

-0.0019

-0.0029

-0.0017

-0.0002

-0.0006

-0.0032

-0.0018

-0.0001

-0.0020

0.0084

0.0147

-0.0404

0.0088

0.0078

0.0050

-0.0260

0.0038

0.0024

-0.0026

0.0100

all -0.0002 0.0001 -0.0005 -0.0005 -0.0006 -0.0017

The test statistic for the hypothesis HQ on the ith subset for the test set takes the

form:

(5.3)t = -^-v'185467
sdi

where the standard deviation sdi is defined as follows:

sdi ^
185467

^ (Vj - fri)2 /185467 for test set (5.4)
J=l

Since the sample size is large, the normal distribution is used to compute the

p-value.

Table 5.6 shows the normal test results for bodily injury of mixture model test

set.

We mentioned earlier in Chapter 4 that when there is more than one hypoth-
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Table 5.4: Skewness statistics for subsets of mixture model test set

Bodily

Injury

Property

Damage

Accident

Death

Collision

L.O.U.

Comprehensive Sum

subset 1

subset 2

subset 3

subset 4

subset 5

subset 6

subset 7

subset 8

subset 9

subset 10

202.925

108.424

248.135

225.290

141.639

104.104

99.004

109.658

52.266

152.636

30.739

22.349

33.112

45.321

44.387

17.789

59.675

25.291

18.429

10.975

197.113

179.518

130.388

288.510

193.311

250.163

82.717

168.708

122.263

104.764

0.182

284.396

29.249

3.040

14.418

15.226

13.274

-1.739

3.066

12.100

130.317

51.639

23.910

18.707

20.966

22.229

16.816

20.078

23.930

15.394

239.791

144.380

110.869

99.785

124.155

102.963

238.176

154.143

232.815

168.684

all 214.172 28.677 308.775 14.342 26.836 194.942

Table 5.5: Kurtosis statistics for subsets of mixture model test set

Bodily

Injury

Property

Damage

Accident

Death

Collision

L.O.U.

Comprehensive Sum

subset 1

subset 2

subset 3

subset 4

subset 5

subset 6

subset 7

subset 8

subset 9

subset 10

54399.7

17278.0

75249.5

58571.3

27171.1

14740.5

13027.6

18755.9

3986.8

30978.8

1667.0

760.7

2366.5

5418.2

5273.3

503.3

10240.8

1499.6

747.0

197.3

53772.0

37035.6

21573.5

101450.0

49735.5

70748.5

10749.0

37901.5

18926.0

14430.2

-0.98

101498.8

2607.7

3118.0

358.9

498.0

257.7

1894.4

2955.9

330.0

23551.7

5757.0

1073.3

625.0

955.3

1147.0

548.8

868.2

2540.4

395.3

77117.5

36429.8

16550.5

15135.5

24035.0

16373.1

77106.0

34269.2

75918.9

37420.3

all

u
71272.5 2748.8 152858.7 2332.9 1941.5 61468.1
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Table 5.6: Normal test for bodily injury of mixture model test set

Mean residual s.d. t statistic Normal p-value

subset 1

subset 2

subset 3

subset 4

subset 5

subset 6

subset 7

subset 8

subset 9

subset 10

all

0.0074

-0.0029

0.0140

0.0173

-0.0117

0.0089

-0.0109

-0.0031

-0.0403

-0.0002

-0.0001

4.8067

3.7882

9.1977

9.5340

5.3591

6.5395

6.3609

7.0470

5.4024

15.455

8.0163

0.6622

-0.3312

0.6541

0.7820

-0.9398

0.5846

-0.7358

-0.1889

-3.2129

0.5517

-0.0259

0.5078

0.7405

0.5131

0.4342

0.3473

0.5588

0.4618

0.8502

0.0013

0.5812

0.9793

esis test involved in a single study, it is necessary to adjust for the multiplicity

effect, using e.g. the Bonferroni procedure. We are facing exactly this situation

here. However, the question is which hypothesis tests should we consider as a

single family for which we would like to control the family level? By considering

the accuracy of the Bonferroni inequality (4.6), we can not take the entire sbrty

hypothesis tests as a single family, i.e., six dependent variables (five KOL groups

and their sum) for each of ten subsets. Instead, we consider the ten hypothesis

tests for one dependent variable as a family, i.e., there are ten family members for

each dependent variable.

Table 5.7 presents the p-values of the tests for the mixture model test set.

Table 5.8 gives the results of their Bonferroni adjustment. Taking a = 0.05, we

highlight the significant p-values with a box in Table 5.7 and Table 5.8. For three

dependent variables, bodily injury, collision L. 0. U. and sum, the normal tests
u
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Table 5.7: Normal p-value for mbcture model test set

Bodily

Injury

Property

Damage

Accident

Death

Collision

L.O.U.

Comprehensive Sum

subset 1

subset 2

subset 3

subset 4

subset 5

subset 6

subset 7

subset 8

subset 9

subset 10

0.5078

0.7405

0.5131

0.4342

0.3473

0.5588

0.4618

0.8502

0.0013

0.5812

0.4803

0.4692

0.0977

0.5322

0.4110

0.0294

0.4393

0.3278

0.2052

0.0888

0.8167

0.8752

0.6404

0.8025

0.4428

0.1324

0

0.3488

0.7795

0.0492

0

0

0

0

0.0026

0.1528

0.8192

0.9124

0.4618

0

0

0

0

0.7066

0.3495

0

0.0448

0.9195

0.1349

0

0.5759

0.0035

0.6364

0.6482

0.7767

0.0743

0.8730

0.9144

0.9048

0.6708

Table 5.8: Bonferroni normal p-value for mixture model test set

subset 1

subset 2

subset 3

subset 4

subset 5

subset 6

subset 7

subset 8

subset 9

subset 10

Bodily Property Accident Collision Comprehensive Sum

Injury Damage Death L.O.U.

l

l

l

l

l

l

l

l

0.0131

l

l

l

0.9774

l

l

0.2935

l

l

l

0.8876

l

l

l

l

l

l

0.0002

l

l

0.4924

0

0

0

0

0.0263

l

l

l

l

0

0

0

0.0002

l

l

0.0001

0.4476

l

l

0.0002

(J
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and their Bonferroni adjustment lead to the same qualitative conclusion. For the

reinaining three dependent variables property damage, accident death and compre-

hensive, the Bonferroni adjustment leads to one subset becoming non-significant.

We may draw the conclusion that for dependent variables bodily injury, prop-

erty damage, accident death, and sum over five KOL groups, the mixture model

is approximately fair. For collision L.O.U and comprehensive, however, more than

half of the subsets are significant; this implies that mixture model gave poor pre-

dictions for many subsets of observations.

5.5 Normal confidence interval

Along with point estimators of the mean residuals, we also computed confidence

intervals. From (3.9), the l-2a normal confidence interval for the mean of the

residuals of the ith subset is given by:

[A. - z(l~a) • se,, /li - z^ • sei] (5.5)

where p.i is the point estimator of mean residual and sci is its standard error of ith

subset of test set, defined in (5.6),

sdi ^
185467

^(y,-Âz)2/185467
J=l

u

se, = s^/\/185467 (5.6)

z(-a^ is the lOOath percentile point of the standard normal distribution Ar(0,1).

Table 5.9 shows the 90% normal confidence intervals of bodily injury for the
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Figure 5.4: 90% Confidence interval for bodily injury of test set
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mixture model test set.

We also report normal confidence intervals based on the Bonferroni procedure.

The formula for calculating l-2a Bonferroni normal confidence interval for a

statistic 6 was given in (4.12). For the mean residual of the ith subset, the formula

becomes:

[fii - z(l-^) • se,, îii - z(^) • sei} (5.7)

The 90% Bonferroni normal confidence intervals for bodily injury of mixture

model test set are listed in Table 5.10.

Figure 5.4 shows the comparison between the normal confidence intervals and

the Bonferroni normal confidence intervals for bodily injury of the mixture model

test set.

The comparison between the normal confidence intervals and the Bonferroni
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Table 5.9: 90% Normal confidence interval for bodily injury of test set

Mean residual Left endpoint Right endpoint

subset 1

subset 2

subset 3

subset 4

subset 5

subset 6

subset 7

subset 8

subset 9

subset 10

0.0074

-0.0029

0.0140

0.0173

-0.0117

0.0089

-0.0109

-0.0031

-0.0403

-0.0002

-0.0110

-0.0174

-0.0212

-0.0191

-0.0322

-0.0161

-0.0352

-0.0300

-0.0609

-0.0392

0.0258

0.0116

0.0491

0.0537

0.0088

0.0339

0.0134

0.0238

-0.0197

0.0788

Table 5.10: 90% Bonferroni normal interval for bodily injury of test set

subset 1

subset 2

subset 3

subset 4

subset 5

subset 6

subset 7

subset 8

subset 9

subset 10

Mean residual Left endpoint

0.0074

-0.0029

0.0140

0.0173

-0.0117

0.0089

-0.0109

-0.0031

-0.0403

-0.0002

-0.0215

-0.0257

-0.0410

-0.0397

-0.0437

-0.0302

-0.0489

-0.0452

-0.0726

-0.0726

Right endpoint

0.0361

0.0197

0.0690

0.0743

0.0204

0.0480

0.0272

0.0391

-0.0080

0.1122

u
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confidence intervals for the other dependent variables can be found in Appendix B.

5.6 Bootstrap hypothesis test

u

We have discussed bootstrap resampling procedures in Section 3.2. For a bootstrap

hypothesis test, we need to translate the empirical distribution from F to Ffrans

such that Ffrans satisfies the null hypothesis. For evaluating model fairness, as

mentioned in (5.2), the hypotheses to be tested are,

E{fti)=0 i== 1,2,---,10

where /t, is the mean residual of the ith subset.

To construct Ffrans, we just need to subtract the observed mean residual p,i

from each residual in the i subset of size 185467 of the test set,

j central residual î=l,2,-.. ,10, (5.8)y j - y j - ^i

where, y, and yj represent the jth observation and prediction in the ith subset,

j = 1,2,--- , 185467. We resample with replacement from the centred residuals

B = 999 times for each subset of the test set. We take the size of each bootstrap

sample to be the same as the subset, that is 185,467 for the test set.

We compute p,^ and se^ for each subset. The test statistic defined in (5.3),

using bootstrap sample b of the ith subset becomes

(5.9)
".*

/^i
*br" = —V 185467.

se;

We obtain 999 t* statistics for each subset,

i.*l ^*2 4*999
î ~ ' ' Ï t> (5.10)
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According to the definition of bootstrap p-value in (3.7), the bootstrap p-value
for our two sided hypothesis test is:

bootstrap p-value = #{|t|*° > |eo|}/999 (5.11)

where to is the absolute value of the observed t statistic of a subset. We compare
the 999 absolute values of the above bootstrap t statistics with \to\ for a subset,
and we get the bootstrap p-value for this subset. The bootstrap p-values for the
mixture model test set are presented in Table 5.11. The significant p-values are
marked with boxes.

Bonferroni bootstrap p-values can be obtained by multiplying the bootstrap
p-value with the number of family members and taking the minimum between this
number and 1 according to (4.11), i.e.,

Bonferroni bootstrap p-value = min(10 x bootstrap p-value, 1) (5.12)

Table 5.12 shows the Bonferroni bootstrap p-values for the mixture model test
set. Comparing Table 5.11 and Table 5.12, we observe that the significant results
are not changed too much: there is only one significant difference, on subset 2 for
the sixth dependent variable sum.

5.7 Comparing normal and bootstrap tests

0

In this section, we compare the normal and bootstrap hypothesis test procedures.
Comparing Table 5.7 and Table 5.11, we can split the sixty p-values into two
groups. Group 1 contains combinations of subsets and dependent variables for
which the normal p-value and bootstrap p-value are both not significant, or both
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Table 5.11: Bootstrap p-value for mixture model test set

Bodily

Injury

Property

Damage

Accident

Death

Collision

L.O.U.

Comprehensive Sum

subset 1

subset 2

subset 3

subset 4

subset 5

subset 6

subset 7

subset 8

subset 9

subset 10

0.5225

0.7287

0.5485

0.4384

0.3644

0.5506

0.4394

0.8649

0.0020

0.6016

0.5045

0.4424

0.1051

0.5415

0.4144

0.0240

0.4384

0.3233

0.1982

0.0871

0.8338

0.8699

0.6426

0.8048

0.4595

0.2102

|0|

0.3544

0.7678

0.0651

0

0

0

0

0.0050

0.1481

0.8298

0.8979

0.4424

0

|0

0.6997

0.3604

10

0.0521

0.9209

0.1361

loi

0.6166

0.0150

0.6236

0.6537

0.7888

0.0821

0.8899

0.9319

0.9229

0.6747

Table 5.12: Bonferroni bootstrap p-value for mbrture model test set

subset 1

subset 2

subset 3

subset 4

subset 5

subset 6

subset 7

subset 8

subset 9

subset 10

Bodily Property Accident Collision Comprehensive Sum

Injury Damage Death L.O.U.

l

l

l

l

l

l

l

l

0.0200

l

l

l

l

l

l

0.2402

l

l

l

0.8709

l

l

l

l

l

l

l

l

0.6507

|0|

|0|

|0|

|0|

0.0501

l

l

l

l

0|

0|

|0|

l

l

0.5205

l

l

loi

l

0.1502

l

l

l

0.8208

l

l

l

l

u
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zero p-value, which is highly significant. There is a total of 54 p-values in group 1.

For the cases in group 1, no matter which hypothesis test we use, it always leads

to the same qualitative result.

The other combinations form group 2. Their normal p-values are significant,

but not too small. They are subset 9 of bodily injury, subset 6 of property damage,

subset 10 of accident death, subset 5 of collision L.O.U, subset 7 of comprehensive

and subset 2 for sum with normal p-values of 0.0013, 0.0294, 0.0492, 0.0026, 0.0448,

and 0.0035 respectively. Among them, the bootstrap p-values for subset 9 of bodily

injury, subset 6 of property damage, subset 5 of collision L.O.U. and subset 7 of

comprehensive are similar with normal p-value. However, for subset 10 of accident

death, and subset 2 of sum, the bootstrap p-values are quite different from the

normal p-values. We list the p-values of subsets in group 2 in Table 5.13.

To investigate what caused the difference between the normal hypothesis test

and the bootstrap hypothesis test, we calculate the skewness and kurtosis of the

mean of the residuals of the subsets in group 2. The formulas are as follows:

•S'/sewness (mean residual) = 5'À;ewness(residual)/V^185467 (5.13)

Kurtosis(mea,D. residual) = JCurtosîS (residual) /185467 (5.14)

Table 5.13: Skewness and Kurtosis for some subsets

Bodily Property Accident Collision Comprehensive Sum

Injury Damage Death L.O.U.

subset

N p-value

b p-value

skewness

kurtosis

9

10.00131

10.00201

0.1214

0.0215

6

10.02941

10.02401

0.0413

0.0027

10

l 0.0492 ]

0.0651

0.2433

0.0778

5

10.0026

l 0.0050 l

0.0335

0.0019

7

10.0448]

0.0521

0.0390

0.0030

2

10.00351

10.0150]

0.3353

0.1964

u
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The skewness and kurtosis are also presented in Table 5.13. If the distribution

of the mean of the residuals was normal, then both the skewness and the kurtosis

of the distribution of the mean would be 0.

Figures 5.5 through Figure 5.10 contain the normal quantile plots of the boot-

strap t statistics for those six subsets. A line is added to each plot for the conve-

nience to see how non-normal the distributions of the bootstrap t statistics are.

We notice in Table 5.13 that when the normal p-value and the bootstrap p-

value are very similar, the corresponding skewness and kurtosis are not too big,

such as subset 6 of property damage, subset 5 of collision L.O.U, and subset 7

of comprehensive. This indicates that the non-normality of the distribution of

the mean residuals is not too important, i.e. the approximate normal distribution

works well for these subsets. This can be confirmed by Figure 5.5, Figure 5.6 ,

Figure 5.8 and Figure 5.9. They all approximately show a straight line.

On the other hand, consider subset 10 of accident death and subset 2 of sum in

Table 5.13. Their normal p-value and bootstrap p-value are quite different, they

are 0.0492 and 0.0651 for subset 10 of accident death, 0.0035 and 0.0150 for subset

2 of sum. These two subsets have a larger value of the skewness and kurtosis of the

distribution of the mean, i.e., 0.2433 and 0.0778 for subset 10 of accident death, and

0.3353 and 0.1964 for subset 2 of sum. The corresponding normal quantile plots

of the bootstrap t statistics for the two subsets are in Figure 5.7 and Figure 5.10.

These two plots are bent up to the left, which means that the distributions are

significantly skewed and have longer tails than the normal distribution. Therefore,

the bootstrap p-value is more trustworthy than the normal p-value for these two

subsets.

Actually, for all subsets in group 2, the bootstrap p-value is more appropriate

0
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than the normal p-value since the skewness of these subsets is clearly different from

zero (given the sample size), the value corresponding to the normal distribution.

u
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Figure 5.5: QQplot of bootstrap t statistics for bodily injury subset 9
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Figure 5.6: QQplot of bootstrap t statistics for property damage subset 6
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Figure 5.7: QQplot of bootstrap t statistics for accident death subset 10
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Figure 5.8: QQplot of bootstrap t statistics for collision L.O.U subset 5
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Figure 5.9: QQplot of bootstrap t statistics for comprehensive subset 7
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Figure 5.10: QQplot of bootstrap t statistics for sum subset 2
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5.8 Bootstrap confidence interval

5.8.1 Bootstrap-t interval

To compute bootstrap-t confidence intervals, the bootstrap samples can be ob-

tained by directly resampling residuals from each subset. Like in bootstrap hy-

pothesis testing, we resample residual B = 999 times, each of size 185,467.

To construct l-2a bootstrap-t confidence intervals for the mean of the resid-

uals of the ith subset, we first need to calculate bootstrap replications of p,i, and

sei for each bootstrap sample. We thus obtain,

n*1 n*2 ... iV999
1 p 1' ' ' •I

,*1 ^*2 *999syl,se*2,..-,se+9yy.

Then we compute the test statistics Z* defined in (3.11),

^ _ ^6-Az
zw='~^
•*1 '7*2 '7*999

Ordering the 999 Z* statistics, we obtain

2(^1) ^ ^(*2) ^ • •• ^ -^(*999) (5.15)

Without resorting to a specific residual distribution for the ith subset, as dis-

cussed in Section 3.4.2, by setting a = 0.05, the 0.05 and 0.95 percentile points of

the Z*b distribution, z(-°-0^ and z(-°-9^ are only decided by:

u
k=[ÇB+ l)aj = 1.1000 x 0.05J = 50 (5.16)
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that is:

z(") z(0.05)

z

Z(*k) = -^(*50)

(1-a) _ -.(0.95) _ '7, ,„ , .„ _
Z'""' = Z^ç^B+1-k)) = ^(*950)

We construct a 90% bootstrap-t confidence interval for the mean of the resid-

uals of the ith subset as follows:

(/t, - Z(*950) • Sei, p.i - Z(*5o) • se,) (5.17)

where p,i and sOi are the mean residual and its standard error for the ith subset.

The Bonferroni procedure for the bootstrap-t confidence interval is to adjust

the a percentile point of Z*b distribution from z(a) to z^\ 10 is the number of

tests that we consider in the family. That is to say the order statistic that must

be computed is for

k=[ÇB+l)- a/lOj = [1000 x 0.005J = 5. (5.18)

We thus obtain the a/lO and (l—a;/10) percentile points of the Z*b distribution:

z(^) = Z(k) = Z(5)

-Z(l-^) = Z(B+l-k) = Z (̂995)

The Bonferroni adjusted 90% bootstrap-t confidence interval is:

u
(^ - ^(^995) • Sëi, fti - Z(*5) • SCi) (5.19)
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Table 5.14: 90% bootstrap-t and Bonferroni bootstrap-t of bodily injury test set

bootstrap-t

Mean residual Left end Right end

Bonferroni bootstrap-t

Left end Right end

subset 1

subset 2

subset 3

subset 4

subset 5

subset 6

subset 7

subset 8

subset 9

subset 10

0.0074

-0.0029

0.0140

0.0173

-0.0117

0.0089

-0.0109

-0.0031

-0.0403

0.0198

-0.0076

-0.0151

-0.0135

-0.0114

-0.0291

-0.0129

-0.0320

-0.0264

-0.0602

-0.0323

0.0390

0.0157

0.0768

0.0846

0.0148

0.0407

0.0160

0.0304

-0.0187

0.0966

-0.0157

-0.0217

-0.0261

-0.0261

-0.0375

-0.0246

-0.0467

-0.0371

-0.0715

-0.0596

0.0625

0.0265

0.1563

0.1348

0.0372

0.0595

0.0360

0.0488

-0.0055

0.1470

0

Figure 5.11: 90% Bootstrap-t and Bonferroni bootstrap-t of bodily injury test set
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The resulting bootstrap-t confidence intervals and their Bonferroni adjustments

for the bodily injury mixture model test set are presented in Table 5.14.

Figure 5.11 gives the errorbar plot of the confidence intervals in Table 5.14. It

shows that the bootstrap-t confidence intervals and Bonferroni bootstrap-t confi-

dence intervals have a similar structure.

The errorbar plots of bootstrap-t and Bonferroni bootstrap-t confidence in-

tervals for the other dependent variables of the mixture model test set listed in

Appendix B.

5.8.2 BCa interval

The formulas and parameters for calculating BCa intervals are introduced in Sec-

tion 3.4.4, e.g., formulas(3.21), (3.27) and (3.25). We are going to construct a

(l — 2a;) BCa interval for mean of the residuals of the ith subset. The statistic
0 here is p.i, the mean residual of the ith subset. The BCa bootstrap confidence
interval (3.21) becomes

(P'iBCa,lo, ftiBCa,up) == (AÎ(al\ ÂÎ(a2)) (5.20)

where p,] represents the Q;ith percentile point of the distribution of the bootstrap

replicates p,^b for ^. The parameter ZQ of (3.24) becomes:

ZQ
-̂i (#W > ÂJ'
Y B

while (3.22) and (3.23) remain the same:

) (5.21)
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QI ^( -§0+
zo + z^

02 = ^ ( -So +

and (3.25) is now:

a =

l-â(io+-z(a)).
ZQ + -Z(l-a)

l-a(-go+^(l-a)),

E,ïi467((^ - ^)/(185466))3
'185467, (5.22)6{ES467((^-Â.)/(185466))2}3/2-

Table 5.15 shows the 90% BCa for bodily injury of the mixture model test set.

Like for bootstrap-t intervals, the Bonferroni adjustment for the BCa interval

consists of transforming the aith and a^tb. percentile points of the distribution of

bootstrap replications for p,i to 0'Bon/ith and aBonfî^ percentile points defined m

(4.14).

The 90% Bonferroni BCa intervals for bodily injury of the mixture model test

set are also listed in Table 5.15.

Figure 5.12 shows the comparison between the the BCa and Bonferoni BCa

confidence intervals for the other dependent variables.

Appendix B lists the errorbar plots of BCa and Bonferroni BCa intervals for

other dependent variables for the mixture model test set.

5.9 Comparing confidence intervals

0

In this section, we compare the normal, bootstrap-t and BCa intervals in more

detail. Figures 5.13 through 5.18 show the comparison of the three confidence

intervals for each of the six dependent variables. Because skewness and kurtosis

have a strong effect on the inference procedures, we present in Table 5.16 and
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Table 5.15: 90% BCa and Bonferroni BCa for bodily injury of test set

BCa

Mean residual Left end Right end

Bonferroni B Ça

Left end Right end

subset 1

subset 2

subset 3

subset 4

subset 5

subset 6

subset 7

subset 8

subset 9

subset 10

0.0074

-0.0029

0.0140

0.0173

-0.0117

0.0089

-0.0109

-0.0031

-0.0403

0.0198

-0.0062

-0.0163

-0.0106

-0.0100

-0.0291

-0.0119

-0.0316

-0.0267

-0.0583

-0.0254

0.0342

0.0133

0.0684

0.0705

0.0135

0.0392

0.0158

0.0283

-0.0172

0.1003

-0.0131

-0.0218

-0.0199

-0.0206

-0.0371

-0.0230

-0.0422

-0.0379

-0.0692

-0.0455

0.0496

0.0236

0.0851

0.1023

0.0288

0.0603

0.0407

0.0445

-0.0048

0.2163

0

Figure 5.12: 90% BCa and Bonferroni BCa bodily injury of test set
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Table 5.17 the skewness and the kurtosis of the distribution of the mean residual

for the sixty subsets. The boxed values in these two tables are examples mentioned

below.

It is noticeable that the three confidence intervals for most of the sixty subsets

are similar, especially when the skewness and the kurtosis of the distribution of the

mean are small. For example, subset 6 of property damage has skewness 0.04131

and kurtosis 0.00271, and the normal, bootstrap-t, and BCa intervals are all very

similar. This confirms that even though the residual distributions are extremely

skewed, the approximate normal distribution for the mean residual which was used

to test model fairness is reasonable and acceptable for most of the sixty subsets

due to the very large sample size. But when skewness and kurtosis are large, the

normal interval is different from the bootstrap-t and BCa intervals. For example,

subset 4 of accident death has skewness 0.66993 and kurtosis 0.547, and the three

confidence interval are quite different, bootstrap-t interval and BCa interval are

skewed strongly, see Figure 5.15.

We also notice that the intervals for bodily injury and sum are much wider

than for property damage, accident death, collision L.O.U, and comprehensive,

indicating that the variation of the mean residuals in the test set for bodily injury

and sum are larger than for the other four dependent variables as illustrated in

residual distribution in section 5.3.2. Therefore, the estimated mean residuals for

these four dependent variables are more accurate than for bodily injury and sum.

0
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Table 5.16: Skewness of mean residual for subsets of mixture model test set

Bodily

Injury

Property

Damage

Accident

Death

Collision

L.O.U.

Comprehensive Sum

subset 1

subset 2

subset 3

subset 4

subset 5

subset 6

subset 7

subset 8

subset 9

subset 10

0.4712

0.2518

0.5762

0.5231

0.3289

0.2417

0.2299

0.2546

0.1214

0.35444

0.0714

0.0519

0.0769

0.1052

0.1031

0.0413

0.1386

0.0587

0.0428

0.0255

0.4577

0.4169

0.3028

0.6699

0.4489

0.5809

0.1921

0.3917

0.2839

0.2433

0.0004

0.6604

0.0679

0.0071

0.0335

0.0354

0.0308

-0.0040

0.0071

0.0281

0.3026

0.1199

0.0555

0.0434

0.0487

0.0516

0.0391

0.0466

0.0556

0.0358

0.5568

0.3353

0.2574

0.2317

0.2883

0.2391

0.5531

0.3579

0.5406

0.3917

Table 5.17: Kurtosis of mear residual for subsets of mixture model test set

subset 1

subset 2

subset 3

subset 4

subset 5

subset 6

subset 7

subset 8

subset 9

subset 10

Bodily

Injury

Property

Damage

Accident

Death

Collision

L.O.U.

Comprehensive Sum

0.2933

0.0932

0.4057

0.3158

0.1465

0.0795

0.0702

0.1011

0.0215

0.1670

0.0090

0.0041

0.0128

0.0292

0.0284

0.0027

0.0552

0.0081

0.0040

0.0011

0.2899

0.1997

0.1163

0.5470

0.2682

0.3815

0.0580

0.2044

0.1021

0.0778

-5.3e-06

0.5473

0.0141

0.0168

0.0019

0.0027

0.0014

0.0102

0.0159

0.0018

0.1270

0.0310

0.0058

0.0034

0.0052

0.0062

0.0030

0.0047

0.0137

0.0021

0.4158

0.1964

0.0892

0.0816

0.1296

0.0883

0.4157

0.1848

0.4093

0.2018

u
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Figure 5.13: Comparison of 90% confidence intervals for bodily injury of test set
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Figure 5.14: Comparison of intervals for property damage mixture test set
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Figure 5.15: Comparison of intervals for accident death mixture test set
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Figure 5.16: Comparison of intervals for collision L.O.U mixture test set
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Figure 5.17: Comparison of intervals for comprehensive mixture test set
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Figure 5.18: Comparison of intervals for sum mixture test set
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Chapter 6

Conclusion

In this thesis, we studied the influence of skewness and kurtosis of the residual dis-

tribution upon hypothesis testing for evaluating model fairness. We implemented

two kinds of hypothesis tests, approximate normal tests and bootstrap tests, fol-

lowed by Bonferroni adjustments to take into account the multiplicity of tests

considered. In conclusion, we summarize our experimental results in two points:

l. Bonferroni procedures showed that the model fairness is adequate for some

dependent variables. For others, it is not. For example, for bodily injury, subset 9,

the Bonferroni BCa interval for the mean residual is [—0.0692, -0.0048], meaning

that on average, each insured in this group would overpay by an amount between

4 and 69 dollars.

2. In large sample circumstances, approximate normal tests could give accept-

able results in the middle of the distribution. However, in the tails of the distribu-

tion, due to the large skewness and kurtosis, the approximate normal test is not

appropriate even in this case where the sample size is close to 200, 000. Bootstrap

procedures would give better performance regardless of the residual distribution,

especially the BCa interval.
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Appendix A

Explanatory variables definition

The definitions of explanatory variables are presented in this appendix. Most

of the definitions are easy to understand. However, some of them defined by the

company, are measured in some unknown way.
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• leaseJndicator : identifies whether the vehicle is leased or not.

• policy-start-date: identifies policy start date.

• territory: identifies where the vehicle came from. The company divides the
geographic area into territories based on geography and population. Vehicles
driven to and from work or school or for pleasure use must be rated in the
territory in which they are primarily located when not in use. This is usually
the home address.

• rate-class: an insurance category, based on how the vehicle is used, to and
from work, pleasure use only, business, delivery, etc., which partly determines
what the insurance will cost.

• claim-rated-scale: shows how daims against the driver's record affect the
premium. The place on the Claim-Rated-Scale is a major factor in deter-
mining the premiums one pays.

• fleet-discount: a scale of discounts and surcharges which takes the com-
bined loss experience of all vehicles in the fleet into consideration.

• third-party-extjimit: identifies Extended Third Party coverage limit amount.
Extended Third Party liability gives additional protection if one is sued or
found responsible for injuries to others or damage to property as a result of
a motor vehicle crash. One can increase his coverage from Third Party Legal
liability $200,000 limit to amount ranging from $300,000 to $15 million.

• collision_deductible: Collision insurance pays to repair or replace the ve-
hide if it is damaged as a result of upset or a collision with another vehicle,
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a person, or an object, including the ground or highway, or impact with an

object on or in the ground. When buying collision insurance, one has to

choose a deductible. The deductible is the amount one must pay before the

insurance kicks in to pay for the remainder of the repairs.

• comp-deductible: comp means comprehensive. Comprehensive insurance

covers loss or damage to the vehicle by any cause except loss or damage

covered by collision insurance. When buying comprehensive insurance, one

has to choose a deductible. The deductible is the amount one must pay

before the insurance kicks in to pay for the remainder of the repairs.

• specified-perils: this form of insurance provides specific coverage only

against fire, lightning, theft(except by an employee or member of the house-

hold), windstorm, earthquake, hail, explosion, riot, civil commotion, falling

or forced landing of an aircraft or portion of it, rising water or the stranding,

sinking, burning, derailment, or collision of a corveyancy transporting the

vehicle on land or water. Losses which are not covered include vandalism,

malicious mischief or rockchip damage to windshields.

• loss_of_use: if one has Collision, Comprehensive or Specified Perils insur-

ance, one can buy a Loss of Use policy to pay for the costs (up to limits

chosen by the insured) of substitute transportation while the vehicle is being

repaired as the result of an insurable claim.

• roadstarJndicator: identifies whether motorists have maintained a 40%

discount with the company for more than five years in a row.
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• limited-depreciation: one can purchase a Limited Depreciation Policy if

the vehicle is not more than three model years old, for example, for the

calendar year 1997, the following model years are eligible: 1997, or 1998(first

model year), 1996 (second model year) and 1995 (third model year), even if

one is not the first owner of the vehicle.

• replacement _cost: this is for RoadStar only. If one has a claim on a newer

vehicle, RoadStar Replacement Cost coverage protects the insured from los-

ing money due to depreciation. Replacement Cost coverage can be purchased

for any vehicle that is three model years old or less.

• vehicle-model-age:

• vehicle_color: identifies the color of the vehicle as stated by the insured

when the policy was originally created, or as changed by insured.

• drvJs-owner: identifies whether the driver is the owner of the vehicle.

• nyears_since_exam: identifies years since the driver passed exam.

• drv-class:

• drv-exam-status:

• drv_age: identifies the age of the driver.

• drv-sex: identifies the sex of the driver.

• nyears-since-original-lic: identifies years since obtaining original licence.

• age-last-conviction: identifies age at the last conviction.

(J



0 A Explanatory variables definition 80

drv_last_penalty-pts: identifies last penalty points of the driver.

drv_num-convictions: identifies times of conviction of the driver.

drv_total_penalty-pts: identifies total penalty points of the driver.

age-last-accident: identifies driver âge at last accident.

drv_num_accidents: identifies accident times of the driver.

ageJast-suspension-end: identifies driver âge at the end of last suspen-

sion.

drv_num_suspensions: identifies suspension times of the driver.

drv_suspension-days: identifies suspension days of the driver.
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Appendix B

Detailed experimental results

This appendix reports most experimental results in details, including tables

and figures already mentioned in Chapter 5. Please note that the residuals were

obtained by subtracting predictious from observed claim amounts. In tables with

boxes, the boxed values refer to significant results under level Cf == 0.05. The

residuals and relative quantities are measured in thousands of dollars.
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Figure B.l: QQplot of claim for property damage test set
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Figure B.2: QQPlot of claim for accident death test set
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Figure B.3: QQplot of claim for collision L.O.U test set
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Figure B.4: QQplot of claim for comprehensive test set
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Figure B.5: QQplot of residual for property damage mixture model test set
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Figure B.6: QQplot of residual for accident death mbrture model test set
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Figure B.7: QQplot of residual for collision L.O.U mbrture model test set
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Figure B.8: QQplot of residual for comprehensive mbrture model test set
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Figure B.9: QQplot of residual for sum mbcture model test set
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Figure B.10: Subset residual distributions for property damage mixture test set
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Figure B. 11: Subset residual distributions for accident death mixture test set
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Figure B.12: Subset residual distributions for collision L.O.U mbcture test set
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Figure B. 13: Subset residual distributions for comprehensive mixture test set
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Figure B. 14: Subset residual distributions for sum mixture test set
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Table B.l: Subset ranges for property demage mixture model test set

Left end Right end

subset 1

subset 2

subset 3

subset 4

subset 5

subset 6

subset 7

subset 8

subset 9

subset 10

0.0107

0.0293

0.0363

0.0434

0.0512

0.0600

0.0700

0.0826

0.1009

0.1339

0.0293

0.0363

0.0434

0.0512

0.0600

0.0700

0.0826

0.0101

0.0134

0.7990
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Table B.2: Subset ranges of mixture model test set

Accident death

Left end Right end

Collision LOU

Left end Right end

subset 1

subset 2

subset 3

subset 4

subset 5

subset 6

subset 7

subset 8

subset 9

subset 10

0.0025

0.0099

0.0125

0.0150

0.0176

0.0207

0.0244

0.0291

0.0358

0.0472

0.0099

0.0125

0.0150

0.0176

0.0207

0.0244

0.0291

0.0358

0.0472

0.3058

0.0004

0.0037

0.0078

0.0207

0.0369

0.0509

0.0651

0.0814

0.1037

0.1439

0.0037

0.0078

0.0207

0.0369

0.0509

0.0651

0.0814

0.1037

0.1439

1.3464

Table B.3: Subset ranges of mixture model test set

subset 1

subset 2

subset 3

subset 4

subset 5

subset 6

subset 7

subset 8

subset 9

subset 10

Comprehensive

Left end Right end

0.0005

0.0035

0.0178

0.0313

0.0440

0.0575

0.0720

0.0882

0.1091

0.1441

0.0035

0.0178

0.0313

0.0440

0.0575

0.0720

0.0882

0.1091

0.1441

0.9866

Sum

Left end Right end

0.0490

0.1692

0.2202

0.2682

0.3169

0.3705

0.4321

0.5104

0.6242

0.8289

0.1692

0.2201

0.2682

0.3169

0.3705

0.4321

0.5104

0.6242

0.8289

5.7483
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Figure B. 15: Confidence interval for property damage mixture model test
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Figure B. 16: Confidence interval for accident death mixture model test
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Figure B. 17: Confidence interval for collision L.O.U mixture model test
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Figure B. 18: Confidence interval for comprehensive mixture model test
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Figure B. 19: Confidence interval for sum mixture model test
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Figure B.20: Bootstrap-t and Bonferroni bootstrap-t for property dam. mix test
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Figure B.21: Bootstrap-t and Bonferroni bootstrap-t for accident death mix test
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Figure B.22: Bootstrap-t and Bonferroni bootstrap-t for collision L.O.U mix test
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Figure B.23: Bootstrap-t and Bonferroni bootstrap-t for comprehensive mix test
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Figure B. 24: Bootstrap-t and Bonferroni bootstrap-t for sum mix test
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Figure B.25: BCa and Bonferroni BCa for property dam. mixture test set
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Figure B.26: BCa and Bonferroni BCa for accident death mixture test set
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Figure B.27: BCa and Bonferroni BCa for collision L.O.U mixture test set
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Figure B.28: BCa and Bonferroni BCa for comprehensive mixture test set
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Figure B.29: BCa and Bonferroni BCa for sum mixture test set
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