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RÉSUMÉ 
 

Le virus de l’immunodéficience humaine ou VIH est l’agent qui cause le SIDA. 

Le VIH donne lieu à une dérégulation dans la production de certaines cytokines 

qui ont un rôle immunologique très important chez les patients infectés. L’IL-18, 

autrement nommé facteur inducteur d’IFN-γ, est une cytokine pro-inflammatoire 

qui affecte le système immunitaire de façon importante. Son activité est régulée 

par l’"IL-18 Binding Protein" (IL-18BP), une autre cytokine qui se lie avec l’IL-

18 et inhibe son activité biologique. Des études ultérieures ont montré des 

niveaux élevés d’Il-18 chez les patients infectés par le VIH par rapport aux 

personnes saines. Cependant, aucune étude n’a été réalisée concernant la 

production d’IL-18BP chez ces patients. Due à sa relevance dans la régulation de 

l’IL-18, nous avons étudié l’effet de l’infection par le VIH sur l’équilibre entre 

ces deux facteurs et l’impact de cet équilibre sur l’homéostasie des cellules NK. 

Nous avons mesuré les taux de l’IL-18 et de l’IL-18BP circulantes dans les 

sérums des patients infectés par le VIH en les comparants avec le même nombre 

de personnes saines et séronégatives. Nous avons aussi déterminé le nombre total 

des différents sous-types de cellules NK et analysé l’activité des cellules NK 

(Natural Killer). Finalement nous avons cherché à déterminer si l’IL-18 pouvait 

induire l’apoptose des cellules NK en activant l’expression de Fas ligand. Nos 

résultats nous démontrent que les patients infectés par le VIH ont trois fois plus 

d’IL-18 que les donneurs sains. Cependant les niveaux d’IL-18BP sont plus bas 

chez les patients infectés comparés aux donneurs sains. Alors, le ratio IL-18/IL-

18BP est augmenté chez les patients infectés, ce qui entraîne une grande quantité 

d’IL-18 libre et biologiquement active circulante dans leur organisme. Nos études 

démontrent que chez ces patients, les concentrations d’IL-18 sont en corrélation 

négative avec l’activité cytotoxique de leurs cellules NK. Nos études in vitro 

démontrent que le traitement des cellules NK par l’IL-18 induit de façon fratricide 

leur apoptose en augmentant l’expression de Fas ligand. Finalement, cette 

production non coordonnée de ces deux facteurs pourrait contribuer à une 
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immunopathologie induite par l’IL-18 en entraînant une apoptose fratricide des 

cellules NK qui possèdent un rôle important dans la réponse antivirale. Le 

dérèglement de l’homéostasie des cellules NK pourrait donc contribuer à la 

pathogenèse induite par le VIH. 

 

 

Mots-clés : HIV, Cellule NK, IL-18, IL-18BP, Fas, FasL, SIDA 
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ABSTRACT 
 

HIV-1, the causative agent of AIDS, induces a deregulated production of several 

immunologically important cytokines in the infected persons. One of these 

cytokines is IL-18: a powerful proinflammatory cytokine that can regulate both 

innate and adaptive immune responses. In vivo, its activity is tightly regulated by 

IL-18 Binding Protein (IL-18BP), another cytokine that specifically binds and 

neutralizes IL-18 with high affinity. Previous studies have shown that IL-18 

concentrations are significantly increased in the circulation of HIV-infected AIDS 

patients compared to those in healthy people. However, it is not yet clear how the 

increased levels of this cytokine affect the development of AIDS in HIV infected 

persons. Furthermore, little is known concerning the production of IL-18 

antagonist (IL-18BP) in these patients. These issues were addressed in the studies 

presented in this thesis. We measured levels of IL-18 and IL-18BP in the sera of 

HIV-infected patients by using commercial ELISA kits and compared them with 

the values obtained from a similar number of healthy HIV-seronegative persons. 

We also determined the absolute and total number of different NK cell subsets 

and NK cell activity in the peripheral blood mononuclear cells (PBMC) of these 

individuals. Finally we determined the effects of recombinant human IL-18 as 

well as of IL-18-rich sera from AIDS patients on cytolytic activity and survival of 

human NK cells. Our results show that sera from HIV- infected patients contain 

up to 3 fold higher levels of IL-18 compared to the sera from healthy people. 

However, levels of IL-18BP were lower in the infected individuals compared to 

the healthy ones. Consequently, IL-18/IL-18BP ratio is increased in the patients 

resulting in a further increase in the concentrations of biologically active IL-18 in 

the circulation of these patients. Our results show that the concentrations of IL-18 

correlated inversely with NK cell numbers as well as with their cytolytic activity 

in the infected persons. These results suggested the involvement of IL-18 in the 

disappearance of NK cells that prompted us to determine the potential cytocidal 
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effects of this cytokine on human NK cells. The results from our in vitro 

experiments show that recombinant human IL-18 and IL-18-rich sera from AIDS 

patients caused apoptosis in a human NK cell line as well as in primary human 

NK cells. Anti-FasL antagonist antibodies inhibited this cell death.  In a series of 

experiments, we found that IL-18 enhances expression of FasL but does not affect 

the expression of Fas on human NK cells. In vitro IL-18 also stimulated 

transcription from human FasL promoter. Furthermore, the cytokine also 

enhanced susceptibility of NK cells to Fas-mediated death, as it decreased the 

expression of an anti-apoptotic protein Bcl-XL. Our study shows that enhanced 

IL-18 bioactivity in HIV-infected patients may contribute to the pathogenesis of 

AIDS by disrupting NK cell homoeostasis. 
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1. CHAPITRE 1. INTRODUCTION ET REVUE 
DE LITTÉRATURE 

 

Ce mémoire comporte les études faites pour comprendre et investiguer le rôle de 

l’IL-18 dans l’immunopathogénèse du SIDA. 

 

1.1 INTRODUCTION 

 

L’IL-18 autrement nommé facteur inducteur d’IFN-γ est une cytokine 

pléiotropique qui appartient à la famille de l’IL-1. Comme d’autres membres de 

cette famille, ce dernier est fortement pro-inflammatoire. Elle est produite comme 

une protéine précurseur qui est inactive biologiquement. Elle a besoin d’être 

clivée par la caspase-1 pour acquérir sa forme active. L’augmentation de la 

concentration de cette cytokine dans les maladies chroniques ou lors de l’infection 

par le VIH a été bien documentée. Dans le contexte de l’infection par le VIH, le 

rôle potentiel de cette cytokine n’est pas bien connu et élaboré. Il n’est pas très 

clair, jusqu’à date, si l’augmentation de la concentration de cette cytokine 

améliore ou affecte l’immunité innée antivirale. Cependant le rôle potentiel de 

cette cytokine sur la réplication virale a fourni des données contradictoires entre 

différents groupes de recherche. Il faut noter qu’in vivo, cette cytokine est 

toujours contrôlée par son antagoniste, « IL - 18 Binding Protein » (IL-18BP). En 

pratique, il n’y a rien qui est connu à propos de la production de cet antagoniste 

dans l’infection virale. Ce problème est expliqué dans ce mémoire. Concernant 

l’effet de l’IL-18 sur l’immunité innée, l’effet de cette cytokine sur la réponse et 

la fonction des cellules NK a  été étudié. 



2 

 

1.2  REVUE DE LITTÉRATURE 

 

1.2.1 VIH et SIDA 

1.2.1.1 La découverte du SIDA 

     Le SIDA est l’acronyme du syndrome de l’immunodéficience acquise causé 

par une infection chronique du virus de l’immunodéficience humaine (VIH). 

C’est un phénomène qui a été reconnu au départ chez les homosexuels et les 

utilisateurs de drogues. L’été 1981, la CDC (Center for Disease Control) déclare 

l’infection des homosexuels par la bactérie PCP, la croissance des infections 

pulmonaires, l’apparition des tumeurs rares et la déplétion des lymphocytes T 

CD4 [1-3]. Ce virus a été découvert en 1983-1984 par deux groupes de chercheurs 

[1-3], et depuis ce temps le VIH est devenu une épidémie mondiale majeure. En 

2007, le nombre d’adultes et d’enfants infectés à travers le monde est estimé à 

32.3 millions, avec 2.5 millions d’individus qui ont été nouvellement infectés par 

le VIH et 2.1 millions de décès dus au  SIDA [4]. Ce virus se répand dans 

plusieurs pays sous-développés et en voie de développement, comme la Chine, 

l’Inde, et les pays de l’Est de l’Europe (www.unaids.org). Les pauvres nations 

sub-sahariennes en Afrique sont les plus affectées. Dans plusieurs de ces pays le 

SIDA est une grande menace pour le développement des villes [5]. Le haut taux 

de mortalité observé est dû à un accès limité à la prévention et au traitement [5, 

6].  

Malgré tous les traitements et les améliorations contre le VIH, notamment dans la 

réduction de la mortalité et la morbidité, il reste beaucoup de variabilité dans la  

progression de la maladie [7]. 
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1.2.1.2 Les sous-types ou Clades du VIH 

Le VIH est l’agent qui cause le SIDA. La mutation rapide du VIH le rend 

de plus en plus diversifié, et ceci nous permet de détecter plusieurs variantes chez 

un patient infecté. En se basant sur la similarité génétique, le virus peut  se diviser 

en types, groupes et sous types ou clades. En outre il existe deux types de VIH, le 

VIH-1 et le VIH-2 qui sont transmis par contact sexuel, par le sang et  la 

transmission mère enfant  [8, 9]. Le VIH-1 est l’agent le plus dominant et répandu 

dans le monde, aux États Unis, en Europe, en Afrique centrale et au Canada. 

Quant au VIH-2, il est moins virulent que le VIH-1. Il n’est pas transmis 

facilement et la période initiale entre l’infection et la maladie est plus longue. On 

le retrouve seulement en  Afrique de l’Ouest et dans les Caraïbes [8, 9]. La 

variante VIH-1 est divisée en trois groupes majeurs : le groupe M pour" Main ", le 

groupe O pour "Outlier", et le groupe N pour "New, non M, et non O". Le groupe 

M est le responsable de la majorité des épidémies et  il est divisé en neuf sous 

types ou "clades" A, B, C, D, E, F, G, H, K, et plusieurs CRFs "circulating 

recombinant forms" (Figure 1) [10, 11]. Cependant le groupe N qui est très rare a 

été découvert au Cameroun en 1998 et le groupe O apparaît seulement en Afrique 

de l’Est. Les CRFs sont des hybrides de deux ou plusieurs virus de différents sous 

types, comme exemple, CRFA/B est l’hybride des sous types A et B. Les CRFs 

sont nouvellement découverts et c’est le résultat d’une recombinaison génomique 

viral chez un individu infecté par de multiple sous-types  [12]. La forme pure de 

sous-type E n’a jamais était découverte, c’est pour cela le CRFA/E prend son 

nom, mais c’est plus correct de l’appeler CRF01-AE. La désignation I n’est plus 

utilisée [10]. Les sous-types et les CRF sont répartis inégalement dans le monde, 

mais les sous-types A et C sont les plus répandus, et la clade B est le plus répandu 

en Amérique du nord,  en Europe de l’Ouest, en Australie et au Japon. Cette 

dernière clade a été utilisée dans la découverte des médicaments antiviraux [8, 

11]. Il est certain que d’autre sous-types et CRFs vont apparaître et seront répartis 

dans d’autres régions dans le futur. Finalement la prolifération de ces formes 
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virales entraîne un problème majeur dans le développement des vaccins et dans 

l’élaboration de nouveaux traitements.  

 

 

 

 

 

 

 

Figure 1  Sous-Types ou Clades du VIH 

Ce diagramme illustre différents niveaux de la classification du VIH. Chaque type 
est divisé en groupe et chaque groupe est divisé en sous type ou clades et CRFs. 
CRFs. Circulating recombinant forms. Adapté de [13] 
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1.2.1.3 Organisation de la particule virale  

Le VIH appartient à la classe des rétrovirus et aux sous-groupes des 

lentivirus "virus lents". La particule virale est formée de deux copies d’ARN 

gnomiques simple-brin et identiques, de la reverse transcriptase, et de deux 

enzymes: la protéase et l’intégrase [14]. Sur chaque région terminale de chaque 

brin existe une région appelée LTR "Long Terminal Repeat". Cette région agit 

comme un région promotrice pour contrôler la production de nouveaux virions et 

peut être activée par des protéines virales ou cellulaires [9, 15]. Le virus est formé 

d’une capside composée de plusieurs copies de la protéine virale p24, qui entoure 

les deux brins d’ARN, dont chacun code pour neuf gènes. Parmi ces gènes, Gag, 

pol, et Env qui ont toutes les informations nécessaires pour la fabrication des  

protéines structurales, et six autres gènes régulateurs Tat, Nef, Rev, Vif, Vpr, et 

Vpu qui expriment des protéines qui contrôlent la capacité de l’infection 

cellulaire, la réplication ou qui causent la maladie [9]. Le gène Gag code pour une 

protéine précurseur, qui est clivée par la protéase virale en quatre petites 

protéines : p24 (capside), p17 (matrice), p7 (nucléocapside) et p6. L’organisation 

de la particule virale du VIH avec la localisation de ses protéines et de ses deux 

brins  d’ARN est démontrée à la Figure 2. Le gène Pol, code pour des 

précurseurs protéiques qui contiennent les quatre enzymes : la  protéase, la 

reverse transcriptase, l’intégrase et le RNaseH. APOBEC3G est une protéine de  

défense antivirale qui agit comme un facteur de restriction post-entrée. Vif 

interfère avec cette dernière et cause l’inactivation de son effet antivirale pour 

augmenter la réplication virale. Cette interaction peut servir comme une nouvelle 

cible pour les médicaments antiviraux. Lors du bourgeonnement, l’enveloppe 

externe du virion est formée de deux couches lipidiques qui proviennent de la 

membrane cellulaire de l’hôte.  Alors certains protéines sont d’origine cellulaire et 

d’autres des spicules (72 spikes) formés des glycoprotéines (gp), gp120 et gp41 

[16], à la surface de cette enveloppe. Env encode le précurseur gp160, qui est 

clivé par la  protéase virale en une unité cellulaire la gp120 et en une unité 

transmembranaire la gp41. Cependant gp120 est localisée à la surface des cellules 
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infectées et des virions à travers une interaction non covalente avec la protéine 

gp41 [17]. Le complexe gp120/41 existe sous forme de trimère à la surface du 

virion. Plusieurs chercheurs s’intéressent à ces protéines virales de l’enveloppe 

pour développer un vaccin contre le VIH [18]. Toutes les protéines encodées par 

le génome du VIH et leurs fonctions sont mentionnées brièvement dans le 

Tableau 1. Les protéines régulatrices comme la RT, la protéase et l’intégrase sont 

ciblées pour le développement des drogues contre le VIH.  
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Figure 2 . Organisation de la particule virale. 
 
CA. Capside, MA. Matrice,  RT. Reverse Transcription, SU. Protéine de surface, 
TM. Protéine transmembranaire, NC. Nucléocapside, IN. Intégrase 
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Tableau 1. Les protéines du VIH et leurs fonctions 

Gag p24   Capside (CA), protéine structurale 

 p17 Matrice (MA), protéine structurale     

 p6 Rôle dans le bourgeonnement viral 

 p7 Protéine de la Nucléocapside (NC) rôle dans la reverse transcription 

Protéase (PR)        p10 Clivage protéolytique des protéines virales (Gag et Gag-Pol) 

Polymérase (Pol) p66, 
p51 

Encode pour une variété d’enzymes virales, la reverse transcriptase et 
l’ARNase H, inclus P10 (PR), P32 (IN) 

Integrase (IN)        p32 Intégration de l’ADNc viral dans le génome de l’hôte 

Env, gp160            gp120 Protéine de surface (SU), initie le processus de l’infection  en se liant 
à CD4    

 gp41 Protéine transmembranaire (TM), rôle dans la fusion de  l’enveloppe 
et la membrane cellulaire             

Tat p14 Élongation du transcrit virale, présente dans le virion 

Rev p19 Exporter l’ARN du virion épissé et épissé partiellement du noyau 
cellulaire 

Nef p27 "Negatif effector". Régule l’expression virale et l’activation des 
cellules de l’hôte," down" régulation du CD 4 et CMH de Classe I, 
bloque l’apoptose. Augmentation de  la progression vers la maladie. 

Vif p23 Facteur  qui augmente l’infection virale ; Rôle dans la synthèse de 
l’ADN proviral et  l‘assemblage du virion.vif interagit avec 
APOBEC3G et inhibe son activité antivirale. 

Vpr p15 Protéine virale R aide dans la réplication virale, transport du complexe 
pre-intégration au noyau, présent  dans le virion, arrêt du cycle 
cellulaire en G2. Facilite l’infection des macrophages 

Vpu p16 Protéine virale U dissocie le complexe CD4/gp160; rôle dans le 
bourgeonnement,  la dégradation du CD4, influence la relâche virale 



9 

 

1.2.1.4 Cycle de la réplication du VIH 

Comme d’autres virus, le VIH peut se répliquer à l’intérieur de la cellule 

seulement. La première étape du cycle viral, est la liaison  de la protéine gp120 au 

récepteur CD4 qui se trouve sur les lymphocytes T, les monocytes et les cellules 

dendritiques. Cette dernière subit des changements conformationels qui lui 

permettent de s’attacher à d’autres molécules connues comme les co-récepteurs  

CCR5 et  CXCR4 qui sont très importants pour le processus de la fusion [17, 19]. 

Une fois que le virus fusionne avec les cellules, il  relâche l’ARN viral et ses 

enzymes dans le cytoplasme. À ce moment la transcriptase inverse transcrit 

l’ARN en ADN viral en  pleine longueur [20, 21]. Une fois l’ADN transporté  

dans le noyau, il sera intégré dans l’ADN génomique par l’intermédiaire de  

l’intégrase. Cette forme virale s’appelle provirus [20, 21] si les lymphocytes T 

CD4+ ne sont pas actifs, le virus reste en état de latence ou quiescent pendant 

plusieurs années [22]. La capacité du virus de rester latent complique tous les 

essais pour l’éradiquer. Alors les patients qui sont VIH –positifs doivent rester 

indéfiniment  sous traitement [22-24]. Une activation anormale de l’immunité 

pourrait être la cause majeure de la progression de la maladie. En outre, on 

remarque une corrélation positive entre le degré de cellules  CD8 activés et le 

risque de la progression vers le SIDA [23]. Une fois  que  les cellules CD4+ sont 

activées par les antigènes, les mitogènes et les cytokines, la réplication est activée. 

Alors, les cellules activées produisent des protéines virales par la transcription de  

l’ADN en ARN messager (ARNm), ceci est accompli en utilisant  la machinerie 

cellulaire [20, 21]. L’ARNm quitte le noyau et sera transporté  dans le 

cytoplasme. Une fois dans le cytoplasme, l’ARNm est traduite en des poly-

protéines  qui sont des précurseurs de la capside et de l’enveloppe. Finalement, la 

protéase clive  les poly-protéines en protéines utilisables pour l’assemblage de la 

nouvelle particule virale ou virion [21]. Cette protéase est une cible pour une 

classe de médicaments utilisés pour le traitement contre le VIH [18]. Alors, les 

protéines de l’enveloppe fusionnent avec celle de la membrane cellulaire de 

l’hôte, avec la capside, l’ARN et les enzymes. Finalement le virion bourgeonne et 
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quitte la cellule [20, 21]. Une cellule peut faire des milliers des particules virales, 

ce qui résulte en la mort cellulaire. Toutes les étapes impliquées dans le cycle de 

réplication du VIH, dès l’infection  du VIH et sa rentrée dans  la cellule, sa 

réplication et le relâchement  de nouveaux virions hors de la cellule sont 

démontrés schématiquement à la Figure 3.   

 

 

 
Figure 3.  Le cycle de réplication du VIH.                                                              
 
1. L’attachement, 2. La fusion, 3.Le relâchement et  la transcription par la reverse 
transcriptase, 4.Le transport de l’ADN dans le noyau, 5. L’intégration, 6. La 
transcription, 7. Le transport de l’ARNm vers le cytoplasme, 8.La traduction, 9. 
L’assemblage, 10.Le bourgeonnement, 11.La maturation.                                                                 
RT. Reverse Transcriptase, IN. Intégrase, SU. Unité de surface, TM. Protéine 
Transmembranaire.   [25]                                                                                           
Roger J. Pomerantz, David .L Horn, 2006 
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1.2.1.5 Infection et  transmission du VIH-1 

L’infection par le VIH dépend des cellules qui expriment le récepteur CD4 

à leur surface et des co-récepteurs  le CXCR4 ou le CCR5 (récepteur des 

chimiokines), comme les lymphocytes T CD4+ activés, les monocytes, les 

macrophages, les thymocytes, et les cellules dendritiques [19]. Le CD4 est une 

glycoprotéine de surface,  qui est membre de la superfamille des 

immunoglobulines. Ce récepteur assiste le TCR  pour activer les cellules T après 

l’interaction avec les cellules présentatrices d’antigène (htt://users.rcn.com). Le 

CD4 amplifie le signal en recrutant une tyrosine kinase lck. De même cette 

molécule interagit avec le domaine extracellulaire des molécules du CMH de 

classe II qui se trouve sur la surface des cellules présentatrices d’antigènes 

(htt://users.rcn.com). Il est formé de 4 domaines d’immunoglobuline, et c’est le 

récepteur primaire utilisé par le VIH (www.mcld.co.uk./hiv/). Finalement  la 

liaison du virus à ce récepteur crée un changement dans la conformation de gp120 

qui permet au virus de se lier à d’autres récepteurs de chimiokines selon le type 

cellulaire infectés (www.mcld.co.uk./hiv/). Le corécepteur CCR5 est un récepteur 

couplé aux protéines G (GPCR: "G protein coupled receptor" pour les 

chimiokines-β (RANTES, MIP-1 α, MIP β), et se trouve principalement à la 

surface des macrophages, des cellules dendritiques et les cellules T activés[26]. 

Cependant CXCR4 est aussi un GPCR, qui agit aussi comme un récepteur pour le 

SDF-1 (α-chemokine stroma-derived factor-1). Il est exprimé sur presque toutes 

les cellules hématopoïétiques et principalement à la surface des cellules T CD4+ 

[26]. Le VIH requiert que les cellules T soient activées lors de l’infection ce qui 

conduit à la mort cellulaire. Ainsi les virus utilisant CXCR4 émergent et infectent 

les cellules T CD4+ qui sont beaucoup plus nombreuses par rapport aux cellules 

effectrices exprimant CCR5 [27].  Il existe des souches virales qui infectent plus 

efficacement les lymphocytes T, et  sont appelées T-tropique, et normalement 

induisent des syncytiums (IS) [28]. Tandis que celles qui infectent plus 

efficacement les macrophages  sont macrophages tropiques (M-tropique) et 

n’induisent pas des syncytiums (NSI) [28]. Durant la phase précoce de la maladie, 
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le virus utilise le corécepteur CCR5 [28], tandis qu’il utilise le corécepteur 

CXCR4 [19] dans la phase tardive de l’infection. Généralement, dans la phase 

terminale de la maladie, les virus sont typiquement double tropique (R5X4) [29-

31] et peuvent utiliser ces deux types de co-récepteurs. Ceci est causé par la perte 

massive des cellules T, et la progression rapide vers la maladie de 

l’immunodéficience (SIDA) [32, 33]. Lors de la phase symptomatique de la 

maladie  (SIDA), le tropisme du VIH change du CCR5 (R5) au CXCR4 (R4). 

Dans une culture de cellules T à long terme, le virus de VIH isolé tend à s’adapter 

à la culture et évolue comme une souche T-tropique. Les infections par le VIH-1 

arrivent normalement avec les souches M-tropiques présentes dans l’inoculum 

naturel, et évoluent dans les dernières étapes de l’infection en des souches plus 

pathogènes T-tropique [27, 34]. Certaines souches utilisent le CD8 à la place de 

CD4 comme récepteur primaire durant l’infection [34]. Ces souches infectent les 

cellules T CD8+ de manière très efficace et productive. Il y a une corrélation 

positive entre le degré de l’activation des cellules CD8 et le risque de progression  

en SIDA [23] . Si les cellules T CD4 ne sont pas activées, il est possible pour le 

virus de rester dans un état de latence pour plusieurs années [22]. L’infection des 

macrophages et des cellules dendritiques permet la réplication et la propagation 

du virus mais ne conduit pas à la mort des cellules réservoirs. Par exemple, les 

macrophages et les monocytes infectés passent dans plusieurs organes et les 

infectent , par exemple le cerveau, où le virus se cache [24]. Ce pool représente la 

cause des dommages dans le système nerveux et les tissus lymphoïdes sont des 

sites majeurs de la réplication virale. 

Les facteurs qui influencent la charge virale et la progression de la maladie sont : 

le type de la réponse immunitaire, le patrimoine  génétique de l’hôte, la co-

infection avec d’autres maladies transmises sexuellement (MTS), l’âge et le 

changement de l’environnement [35, 36]. Les "non progresseurs à longs 

termes"(long-term non-progressors) sont des patients qui ont le virus depuis  plus 

de dix ans et n’ont aucun symptôme. Ils ne prennent aucune médication, et 

démontrent certaines caractéristiques qui expriment une réponse antivirale 
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bénéfique. De même, la progression de la maladie dépend aussi d’un nombre de 

facteurs psychologiques et physiologiques incluant l’utilisation de la drogue, un  

comportement sexuel à haut risque, le stress, et la dépression  [37-39] . 

On trouve le virus dans le sang, et dans les liquides ou les fluides corporels 

comme le sperme, et le fluide vaginal. L’infection par le VIH survient 

principalement à cause des relations sexuelles (orale ou anale) sans aucune 

protection avec des partenaires infectés [9, 40, 41]. Le virus présent dans le 

sérum, le sang et dans d’autres liquides biologiques peut entrer à travers des 

membranes muqueuses traumatisées du vagin et l’anus [42]. Il y a d’autres voies 

d’infection, comme par les aiguilles contaminées, la transfusion sanguine, et la 

transmission mère enfant (le fœtus, le nouveau-né durant la grossesse, 

l’accouchement ou l’allaitement) [41-43]. 

 

 

1.2.1.6 Phase clinique et les symptômes de l’infection au VIH 

L’infection primaire par le VIH présente normalement des symptômes de   

fièvre douce, douleur à la gorge, gonflement des ganglions lymphatique, des 

éruptions etc. et peut rester inaperçue [9, 15]. Ceci est suivi par une latence 

longue et variable. Quelques personnes infectées (environ 5%) peuvent rester 

asymptomatiques pour quinze ans ou plus sans aucun traitement. Ils sont référés 

comme des long termes non progresseurs (LTNP) et démontrent certaines 

caractéristiques pour une réponse  immunitaire bénéfique anti-VIH  [9, 36]. 

Durant cette période de latence clinique, le virus se réplique activement dans leurs 

organes lymphoïdes et les détruisent  lentement, il y a une détérioration du 

système immunitaire accompagné d’une déplétion progressive des cellules T 

CD4+ et une augmentation rapide de la charge virale dans le plasma prédit une 

progression rapide au SIDA [44]. Finalement les personnes infectées deviennent 

immunodéficients et développent la cachexie, des infections opportunistes des 
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tumeurs rares et/ou des dérangements du système nerveux central (SNC)[15]. Il 

est très important de noter que l’infection par le VIH ne signifie  pas SIDA. Mais 

les personnes infectées peuvent finalement développer le SIDA si elles restent 

non traitées. C’est pour cela que l’infection par le VIH est divisée en trois phases 

[45] : 

• Phase primaire aiguë : durant cette phase la réplication virale est massive 

dans le sang périphérique (une grande charge virale) [46]. Il y a une  

déplétion des lymphocytes T CD4+. Le système immunitaire est actif en 

produisant des anticorps et des lymphocytes cytotoxiques (CD4+ et CD8+). 

Le processus s’appelle séroconversion  [40, 47, 48]. 

• Phase chronique divisée en deux parties: 

a) Phase clinique asymptomatique: Elle a une durée variable et comme son 

nom l’indique, il n’y a aucun symptôme. Il y a une diminution de la charge 

virale [46]. A cette étape, l’infection est caractérisée par un faible 

réplication et un faible charge virale ainsi que le parasitage des nodules 

lymphatiques. Le taux des lymphocytes T se rétablit en périphérie et reste 

faible, mais l’activation du système immunitaire  augmente [18]. 

b) Phase clinique symptomatique : Durant des années, les nodules 

lymphoïdes et tissus deviennent endommagés, le virus devient plus varié 

et pathogène à cause des mutations produites. Le corps n’est plus capable 

de remplacer les lymphocytes  T CD4+ (TCD4+ < 500 cellules /mm3) et 

ceci mène à un système immunitaire très endommagé [18, 46]. Finalement 

il y a apparition des symptômes, la diarrhée, gonflement des ganglions 

lymphatiques, "cold sores", Candyloma,, symptôme dans le système 

gastro-intestinal, perte de poids rapide, perte d’appétit, une fatigue 

profonde, des symptômes respiratoires, une courte respiration, des toux 

sec, engourdissement,  une neuropathie périphérique, des picotements,  

des infections fongiques et une dépression [18]. 
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• Phase SIDA : C’est la phase de progression de l’infection du VIH vers 

l’immunodéficience. Le système immunitaire devient de plus en plus 

endommager et  la maladie devient de plus en plus sévère. Le taux des 

lymphocytes  T est plus petit que 200 cellules par mm3 [18, 46].  

L’activation du système immunitaire et la réplication virale augmente de 

façon marquée. Il y a souvent développement  d’un cancer ou d’une ou 

plusieurs infections opportunistes spécifiques qui causent la mort de 

l’individu [15]. 

 

1.2.1.7 La Réponse immunitaire  

L’infection par le VIH induit une forte réponse humorale et cellulaire chez 

les personnes infectées [49-51]. La réponse humorale comprend l’induction des 

anticorps qui peuvent neutraliser le virus, détruire les virions par l’activation de 

complément et tuer les cellules infectées par le phénomène de la neutralisation 

virale, et l’"ADCC-mediating antibodies "chez l’hôte. L’ " ADCC"  se réfère au 

« antibody-dependent cell-mediated cytotoxicity » [49]. Ces anticorps sont  

normalement spécifiques à la souche virale et ne reconnaissent  pas des souches 

virales hétérologues. En outre, les souches primaires de VIH-1 étaient très 

résistantes à la neutralisation par des anticorps [49]. Ceci a été attribué aux 

grandes mutations, et à une grande glycosylation N qui empêchent la fixation des 

anticorps neutralisant. [49, 52]. Le virus induit aussi chez l’hôte une très forte 

réponse du CTL. Les épitopes pour le CTL ont été décrits  dans presque toutes les 

protéines virales.[53]. On croit que les lymphocytes T CD8+ contrôlent la super 

infection des lymphocytes T CD4+ par le VIH (LTNP) in vitro, par un mécanisme 

indépendant de la productions des facteurs solubles, mais dépendant du contact de 

cellule à cellule et de la compatibilité HLA  [54]. Le déclin de la virémie dans une 

infection primaire coïncide avec l’apparition du CTL antiviral dans la circulation. 

En outre, in vivo, la déplétion du CTL par un anticorps anti-CD8 cause une 

croissance immédiate de la charge virale [54]. Les évidences cumulatives 
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suggèrent qu’une réponse antivirale polyclonale à large spectre ralentisse la 

progression vers le SIDA [51]. MIP-1α, MIP-1β, et RANTES produits par les T 

CD8+ en complexe avec les protéoglycanes sont des ligands de CCR5 qui limitent 

la réplication du VIH dans les cellules TCD4+ au niveau de l’entrée [55]. Le 

facteur antiviral produit par les cellules T CD8+ (CAF : CD8+  T cell Anti-viral 

Factor),  est non- cytotoxique et limite la réplication du VIH dans les cellules 

TCD4+ [56] . 

Cependant le CTL a échoué à contrôler la réplication virale [57-59]. Le taux élevé 

des mutants est une des raisons de cet échec, qui mène à l’apparition de leur 

évasion. Une autre  raison est attribuée au manque d’aide de la part des cellules T 

CD4+, ceci étant dû à leur déplétion progressive chez l’hôte infecté [58]. Elles ne 

sont pas totalement différenciées et il y a un manque dans  leurs fonctions 

effectrices [58]. Certains chercheurs ont rapporté une expression élevée, et 

aberrante des récepteurs inhibiteurs spécifiques au CMH Classe I qui se trouve à  

la surface des CTL des individus infectés par le VIH [60]. Des études in vitro et in 

vivo ont montré que ces récepteurs apparaissent pour inhiber la fonction du CTL. 

 

1.2.1.8 La production dérégulée des cytokines chez les personnes infectées par 

le VIH 

 Les cytokines et les chimiokines jouent un rôle important dans 

l’activation du système immunitaire, dans les fonctions des cellules immunitaires 

et dans la réponse inflammatoire contre les agents pathogènes. Ces cytokines sont 

impliquées dans la dérégulation, l’immunodéficience et dans le contrôle de la 

réplication virale. Dans la phase précoce, on remarque une augmentation rapide et 

transitoire  de l’INF-α, du TNF-α et de l‘IL-15 dont les cellules dendritiques 

plasmacytoïdes (CDp) sont la source principale [61]. Mais plus tard,  les cellules 

dendritiques  myéloïdes (CDm) seront responsables d’une sécrétion plus lente et 

prolongée de l’IL-18, du TNF-α, et de l’IL-10 [62]. En plus, la combinaison de 

l’IL-15 et l’IL-21 résulte en une expansion synergétique et une augmentation des 
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fonctions des cellules T CD8+ chez les patients séropositifs [63]. L’IL12 avec 

l’IL-18 induit la production de l’INF-γ et active les fonctions des lymphocytes T 

CD4+ [64]. De même,  dans la phase précoce, l’IL-15 et l’IL-18 peuvent médier 

des effets immunostimulatoires sur le système immunitaire inné et adaptatif [65]. 

Durant la phase tardive, la capacité de produire l’IL-2, l’IL-12, l’IL-15 et l’IL-21 

sera compromise, chez les personnes infectées par le VIH [66-70] . Toutefois, la 

production de  ces cytokines est aussi dérégulée par le virus et ces protéines. En 

plus, il y a plusieurs autres cytokines qui contrôlent l’infection du VIH [71]. Pour 

plus d’information voir tableau 2. 

Enfin  le rôle des cytokines  dans l’infection par le VIH devient une clé  et une 

cible dans le développement  des stratégies effectives pour la prévention contre le 

VIH et la reconstitution immunologique. 
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Tableau 2. Des cytokines qui se dérèglent lors d’infection par le VIH 

 

IL-7 

 

Augmente avec une haute virémie, et une diminution du nombre  
des cellules TCD4+. Augmente l’activité des cellules NK, et 
réduit l’apoptose des cellules TCD4+ et TCD8+. Augmentation de 
la réplication virale du VIH dans les thymocytes et les cellules T 

IL-4 Augmentation de sa concentration. Promouvoir  la réponse T de 
type 2. Échec de contrôler, et éliminer la charge virale  

IL-10, TGF-β Un niveau élevé, augmentation de la réplication virale 

IL-15 Un niveau élevé au début de l’infection, qui diminue  dans la 
phase tardive de la maladie. Réduit l’apoptose  chez les cellules 
TCD8+. Augmente les fonctions des neutrophiles 

IL-17 Une augmentation de la sécrétion  par les cellules TCD4+ 

IL-19, IL-20 Up régulé par Tat dans les cellules épithéliales 

IL-21 Il est réduit et il y a une  corrélation avec le nombre des cellules 
TCD4. Augmentation de la prolifération t le fonctionnement des 
cellules TCD8 

IL-23, IL-27 Augmente les fonctions des cellules dendritiques. Inhibition de la 
réplication du virus du VIH 
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1.2.1.9 Traitement et vaccination 

1.2.1.9.1  Thérapie antirétrovirale 

Plusieurs antiviraux ont été développés depuis plusieurs années et ont été 

approuvés pour le traitement du SIDA. Il y a six classes des médicaments utilisés 

dans la thérapie antirétrovirale, et qui arrête la réplication virale en l’affectant à 

différente phase de son cycle cellulaire [18]. Tous les renseignements concernant 

les classes des médicaments et leurs fonctions sont discutées dans le Tableau 3. 

Le traitement qui se donne par la combinaison de trois médicaments, qui  

appartiennent à deux classes d’agents antirétrovirales et  ceci inclut au moins un 

inhibiteur de PR [9, 72, 73]. Ceci consiste la thérapie antirétrovirale, " highly 

active antiretroviral therapy" (HAART).  Ce traitement  est très efficace dans 

l’inhibition de la réplication virale. Il augmente l’immunocompétence et, par 

conséquent, il ralentit la progression de cette infection vers le SIDA. Il a des effets 

bénéfiques directs sur les paramètres du système immunitaire inné et adaptatif 

[74]. C’est cette thérapie, qui a permis de nos jours,  à cette maladie de devenir 

une infection chronique maniable. Cependant, ces médicaments coûtent très chers, 

ils ont aussi de très sérieux effets secondaires. C’est très difficile de se conformer 

à la stringence de ce régime. En outre, l’émergence des souches  résistantes à ces 

médicaments reste un réel danger. Donc, la recherche pour des nouveaux 

médicaments plus efficaces ne s’arrête jamais.  
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1.2.1.9.2 Développement d’un vaccin 

Il n’y a aucun vaccin prophylactique efficace valable pour cette infection. 

Cependant, le développement du vaccin progresse lentement à cause de la 

variation des souches, aussi bien de la capacité du virus d’échapper  à la réponse 

immunitaire [9, 50]. Plusieurs concepts de vaccins se poursuivent, mais les essais 

n’ont montré aucune protection contre le virus. Jusqu’à présent, les études menées 

ont montrées que le vaccin augmentait le taux de l’infection par le VIH chez ces 

individus [75]. Finalement, le chemin reste assez long  pour avoir  un vaccin 

efficace. 
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Tableau 3  Médicaments antiviraux contre le SIDA  

Adapté de  Harris, A. and N.E. Bolus, HIV/AIDS: an update. Radiol Technol,    
                   2008. 79(3): p. 243-52. 
 

 

Classe des 
médicaments  

antirétroviraux 

 

Abréviations 

 

Première 
utilisation 

comme 
traitement 

 

 

Fonctions 

Inhibiteurs de la 
Reverse 

Transcriptase  
nucléosides / 
nucléotides 

NRTIs, 
  
 

 

1987 

 

Il interfère avec la 
Reverse Transcriptase 

Inhibiteurs de la 
Rverse 
Transriptase Non-
nucléosides 

NNRTIs, 
  
 

 

1997 

 

Ils inhibent la  Reverse 
Transcriptase 

Inhibiteurs de 
Protéase 

PIs 

 

1995 Il  inhibe la protéase, 
impliqué dans la 
réplication virale 

 

Inhibiteurs de 
fusion ou d’entrée 

  

2003 

Ils inhibent la fusion ou 
l’entrée, Il prévient le 
VIH de se lier ou d’entrer 
dans les cellules 
immunitaires. 

CCR5 Antagoniste  2009 Il inhibe l’entrée virale, 
en se liant au CCR5 

 

Inhibiteurs 
d’Intégrase 

  

2007 

Il inhibe l’Intégrasse, 
dont le VIH a besoin 
pour intégrer son 
matériel génétique dans 
le génome humain 
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1.2.2 IL-18 et IL-18BP 

 

Comme mentionné déjà, l’IL-18 est une cytokine  pléiotropique de 18 

kDa. Elle joue un rôle important dans l’induction des réponses immunitaires 

innées et adaptatives. IL-18 était connu précédemment comme un facteur 

induisant l’INF-γ [76] Cette cytokine a été découverte en 1989 [76, 77], et elle a 

été clonée et nommée IL-18 en 1995 [77, 78]. Elle est produite par une variété de 

type cellulaire et tissulaire, comme  les macrophages  activés, les cellules 

dendritiques, les cellules épithéliales, les cellules intestinales, et les kératinocytes 

[79]. Elle est exprimé aussi dans plusieurs tissus et organes comme le Foi, la rate, 

le placenta, le cœur, les reins, les os, le pancréas, et autre [80, 81]. La production 

de cette cytokine augmente constitutivement après une variété de stimuli et 

certaines infections virales et bactériennes [82].  

IL-18 appartient à la famille de l’IL-1 [83]. Comme l’IL-1β, et l’IL-33, 

l’IL-18 est exprimé comme une protéine précurseur inactive de 24kD dans le 

cytoplasme des cellules. Elle contient 192 aa et n’est pas secrété par les voies 

conventionnelles [84]. Cette protéine précurseur est clivée en une cytokine mature 

et active de 18 kD par l’enzyme "IL-1 converting enzyme"(ICE) [85] . 

Cette enzyme est une protéase cystéine  avec l’acide asparatique dans le 

site active, aussi bien connu comme caspase-1 [85, 86]. Il est à noter que la 

caspase I se produit aussi comme un précurseur inactif de 45kD  dans les cellules 

et elle  a besoin de son propre clivage et activation avant de procéder au clivage 

du  précurseur d’IL-18. Une fois que la  caspase I est clivée, elle est mature, 

active biologiquement et elle est facilement secrétée à la surface cellulaire [83, 85, 

87]. Il a été montré que le LPS peut activer aussi la caspase I dans les lignés 

cellulaires des macrophages chez la souris et l’humain [83, 87]. Dans certaines 
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cellules déficientes de la caspase I, d’autres protéases peuvent cliver le précurseur 

d’IL-18. Chez  les kératinocytes, la protéinase 3 est impliquée dans le processus 

du précurseur [88, 89]. Comme  la caspase I, la caspase 4 peut aussi cliver la 

forme du précurseur  en une forme mature et  secrété, mais ce processus est moins 

efficace [86]. La caspase 3 peut aussi cliver le précurseur et la forme mature de 

l’IL-18 en une protéine inactive biologiquement [88] . À noter que l’IL-18 et l’IL-

18β ont une structure " β-pleated folded". L’IL-18 se lie a un seul et unique 

récepteur heterodimérique qui appartient à la superfamille de l’IL-1 et comprend 

IL-18Rα et β [84, 90, 91]. La chaîne α a été précédemment appelée comme "IL-

1R relate protein"(IL-1Rrp) en considérant que la chaîne β a été connue comme 

"IL-1R accessory protein like protein"(IL- 1R-AcPL) [92, 93]. La chaîne α se lie 

avec une faible affinité à IL-18, cependant la chaîne β non, mais toute  les deux 

forment une forte affinité à ce récepteur et transmettent les signaux 

intracellulaires à travers des voies partagés avec le récepteur de l’IL-1 [92, 93]. La 

portion cytoplasmique de la chaîne  d’IL-18Rβ est homologue à ce qu’on appelle 

"toll like receptor" (TLR) qui reconnaît les  structures moléculaires associées aux 

pathogènes et active NF- κB, MAPK et traduit des signaux  via MyD88-IRAK-

TRAF-6 [81, 90, 94]. Des multiples effets biologiques de l’IL-18 sont exercés  sur 

les différentes cellules et tissues du corps. L’IL-18 potentialise la réponse 

immunitaire innée et adaptative contre les pathogènes bactériennes et virales [91, 

95-98]. Il augmente l’activité cytolytique des deux cellules les NK et les CTL. Il 

est recommandé pour les fonctions effectrices normales des cellules NK mais pas 

pour leur développement et leur différentiation. Les souris IL-18KO, ont un  

nombre normal des cellules NK mais ces cellules sont sévèrement compromises  

dans leur capacité de tuer  les cellules cibles sensible aux cellules NK [99]. IL-18 

aussi augmente l’expression de la perforine et FasL dans ces cellules cytolytiques 

[97]. L’IL-18 joue un rôle important dans  la régulation des réponses immune 

adaptative aux pathogènes. À cause de son habilité d’induire INF-γ à partir des 

cellules Th1, des cellules T non polarisés, des cellules NK, des cellules B et des 

cellules dendritiques, ceci est considéré pour induire la différentiation des cellules 
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T CD4+ naïves en Th1 [97]. Toutefois, il a été bien clair que  l’IL-18 et de l’IL-12 

sont nécessaires pour cet effet [97]. IL-12 induit l’expression des récepteurs de 

l’IL-18 sur les cellules T CD4+ naïves et les rend susceptible aux effets de l’IL-18. 

En retour, l’IL-18 augmente l’expression des récepteurs de l’IL-12, permettant  un 

mécanisme moléculaire  pour les  effets synergiques de ces deux cytokines [100]. 

En plus de l’induction de l’INF-γ, l’IL-18 aussi augmente la cytotoxicité médié 

par  FAS-L des cellules T CD4+ TH1. En absence de l’IL-12, elle peut induire la 

production de l’IL-4 et l’IL-13 à partir des cellules NK et T  et, ainsi actuellement 

l’IL-18 promouvait  la différentiation des cellules T CD4+ de type TH2 et 

l’induction des IgE et IgG1 [97, 101, 102]. Il est évident que les cellules T naïves  

expriment à leur surface IL-18Rα à bas niveau. L’INF-γ induit par les cellules B 

murines par l’IL-18  plus l’IL-12 prévient l’induction d’IgE et IgG1 par l’IL-4 à 

partir des cellules B et  plutôt  induit la production de l’IL-4, l’IL-13  et le 

relâchement des histamines à partir des basophiles et des mastocytes [103]. Ce qui 

est intéressant, c’est que l’histamine induit la production de l’IL-18 à partir des 

PBMC sans une induction concomitante avec l’induction de l’IL-12. Ainsi l’IL-18 

peut  stimuler les réponses médié par  les deux cellules TH1 et TH2  dépendant de  

la disponibilité de IL-12. Les cellules NK expriment constitutivement le récepteur 

IL-18R. L’IL-18 et l’IL-12 augmentent indépendamment l’activité des cellules 

NK. Les activités cytotoxiques des lymphocytes T et les cellules  NK sont 

augmentées par l’IL-18 à travers l’augmentation de l’expression de  la perforine et 

FasL sur ces cellules [97] . 

 

L’activité biologique de l’IL-18 est neutralisée par l’"IL-18 Binding 

Protein" (IL-18 BP) qui a été  découvert  Par  Dinarello en 1997 [104, 105]. C’est 

une protéine de 40kDa, qui est secrétée sous forme soluble, car il lui  manque un 

domaine transmembranaire. Elle est distincte des récepteurs de l’IL-18 et de la 

famille de l’IL-1 [106]. Elle n’a pas d’homologie avec aucune protéine 

transmembranaire et avec le domaine extracellulaire "extra cellular ligand binding 



25 

 

domain" du  récepteur de l’IL-18 [106]. Il est un antagoniste potentiel de l’IL-18. 

Le gène de l’IL-18BP code pour quatre isoformes distinct [106]. L’expression de 

l’IL-18BP est induite par l’INF-γ. L’IL-18 et L’IL-18BP sont deux compétiteurs 

dans le réseau des cytokines et  leurs concentrations déterminent les effets 

biologiques de l’IL-18 dans un contexte physiologique. Cette protéine bloque la 

liaison de l’IL-18 à son récepteur [107]. Ce qui est intéressant, c’est que plusieurs 

virus encode un homologue à l’IL-18BP pour bloquer l’effet antiviral de l’IL-18 

[107]. Étant déjà une cytokine qui stimule l’immunité, alors ce n’est pas 

surprenant que l’IL-18 joue un rôle important dans la défense  de l’hôte  contre les 

pathogènes intracellulaires incluant  les virus [84, 95, 98]. L’activation des 

lymphocytes T CD8+ par cette cytokine seule, peut jouer un rôle dans  la clairance 

virale. Le rôle protecteur de l’IL-18 dans les infections avec VHC et "vaccinia 

virus" a été démontré in vivo chez la souris [98, 108]. Cette protection a été 

entièrement attribuée  pour les réponses de l’immunité innée. Habituellement, 

l’hôte répond à des infections en induisant la production d’IL-18.  In vitro  le 

virus de l’influenza A et "Sendai virus" induisent IL-18 à partir de la culture  des 

monocytes-macrophages humaine [109, 110]. Afin d’éviter les effets antiviraux 

de l’IL-18, les virus se sont trouvés différentes stratégies, comme le poxivirus qui 

encode un homologue à IL-18BP qui peut neutraliser l’IL-18[107]. Étant  une 

cytokine jouant un rôle  anti  angiogenique pour stimuler plus l’immunité, l’IL-18 

réussit à supprimer la croissance tumorale. Différant de l’IL-12, la mort médié par 

l’IL-18 se fait par la voie Fas/FasL 

 Finalement l’IL-18 induit la production de TNF-α, GM-CSF (granulocyte-

macrophage colony stimulating), et certaines chimiokines. Il peut avoir des effets 

multifonctionnels sur la réponse immunitaire toute dépendante de 

l’environnement [90, 111-113] . En somme l’IL-18 contribue  à la défense 

cellulaire quand elle se produit en quantité optimale. Sa surproduction a été 

impliquée dans plusieurs maladies, le diabète dépendante de l’insuline, le multiple 

sclérose, l’arthrite rhumatoïde,  la greffe versus la maladie de l’hôte, et  la maladie 

de Crohn [97, 114-116]. À cause de sa capacité d’induire les réponses "TH2-like", 
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et promouvoir la synthèse d’IgE, l’IL-18 a été aussi impliqué dans les désordres  

allergiques, et  dans l’asthme [117]. 

Toute information détaillée se trouve dans l’article 1 inclus dans ce document. 

 

 

1.2.2.1   IL-18 et  l’infection par le VIH  

En dépit de l’habileté de l’IL-18 de renforcer les réponses immunitaires 

innées et adaptatives contre les infections virales, le rôle potentiel et la régulation 

de cette cytokine n’est pas bien étudié dans le contexte de l’infection par le VIH. 

Un cousin proche du VIH-1, le virus d’immunodéficience du simian (VIS) induit 

l’IL-18 in vivo et augmente l’activité des cellules NK dès la phase précoce de 

l’infection [118]. Tandis Kaizu el al démontre un taux élevé de l’IL-18 

accompagné d’un rapide déclin des lymphocytes T, suggérant que durant les 

premières stades de la maladie, l’IL-18 ne cause pas une protection effective de 

l’infection par le SVIHs (simian/human chimeric immunodeficeincy virus), qui est un 

virus chimérique, crée pour la recherche par la combinaison d’une partie des 

génomes du SIV et du VIH. Il mimique mieux le HIV que le SIV [119-121]. 

Donc, ceci peut être un bon indicateur pour une infection virale pathogénique 

active, mais son rôle demeure inconnu et reste à être élucider [121]. En 

considérant son habileté, IL-18 a été utilisé comme un adjuvant chez les souris 

vaccinées avec de l’ADN exprimant Nef, Gag/Tat/Nef ou Env du VIH-1 [122].  

Plusieurs expériences ont été effectuées  in vitro sur différents types cellulaires, 

d’une part elle joue un rôle inhibiteur [123] ou un rôle stimulateur [124, 125]. Il a 

été démontré récemment que le niveau d’IL-18 dans le sérum est comparable chez 

les LTNP (long-term non-progressors), et les patients malades. Cependant, des 

études ultérieures ont indiqué que le taux d’IL-18 est plus élevé chez les patients 

symptomatiques par rapport aux contrôles séronégatifs et les individus 

asymptomatiques VIH positifs, dont ceci est relié à une progression de la maladie 
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[70, 126, 127]. Sailer et collaborateurs ont montré une augmentation du taux de 

l’IL-18 durant les premières phases de l’infection par le VIH, et peut mener 

probablement à l’inhibition du VIH-1 en augmentant la réponse immunitaire du 

Th1 et la réduction de l’expression du co-récepteur CXCR4 [128]. Toutefois, les 

patients ayant une forte concentration de cette cytokine démontre une réduction 

dans  la capacité des PBMC stimulés ex vivo de sécréter cette cytokine. L’écart  

apparent entre ces deux rapports, l’augmentation du taux du  plasma, en plus d’un 

épuisement fonctionnel des PBMC est expliqué par le fait que l’IL-18 peut être 

secrété par les plaquettes [69, 129] et les tissus adipeux [130]. En plus de stimuler 

la réponse immunitaire innée et adaptative, il a été rapporté que l’IL-18 augmente 

la réplication virale du VIH-1 dans les monocytes et les lymphocytes T en 

activant le P38 MAPK, le NF-κB  et  en stimulant la production de TNF-α et l’IL-

6 provenant de ces types cellulaires. Ceci provoque la diminution de la réponse 

cytolytique et la réponse immunitaire de Th1 [124, 125, 131]. Cependant, quand 

on l’ajoute in vitro à une culture cellulaire des PBMC humaines infectés par le 

VIH, l’IL-18 probablement inhibe la réplication virale en augmentant l’activité 

cytolytique des cellules NK (down modulation des lymphocytes T CD4) et en 

induisant un état antiviral dans les cellules infectées à travers la production des 

cytokine pro inflammatoire comme l’INF-γ [123]. Cependant, ceci suggère que la 

variabilité de la réplication soit affectée par L’IL-18, qui dépend de plusieurs 

microenvironnements.  Il est probable qu’on remarque l’implication de  l’IL-18  

dans la phase tardive de l’infection par le VIH. Ceci est  causé par  une 

augmentation du taux  de l’IL -18 circulant et qui est  associé à une diminution du 

décompte des lymphocytes T CD4+ [127].  Finalement l’IL-18 joue un rôle à deux 

tranchants, d’un côté elle peut inhiber la réplication virale et jouer un rôle 

antiviral, et d’un autre côté elle peut avoir une activité pro virale en maintenant et 

aggravant l’infection de VIH-1 [132]. 
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L’ensemble des travaux réalisés et publiés jusqu'à récemment sur l’IL-18 

et l’IL-18P ont été révisé par notre groupe dans une nouvelle publication : " 

Potential role of IL-18 in the immunopathogenesis of AIDS, HIV associated 

lipodystrophy and related clinical conditions ".  

 

1.2.2.2 Article 1 

1.2.2.2.1 Potential role of IL-18 in the immunopathogenesis of AIDS, HIV associated 
lipodystrophy and related clinical conditions 

 

Iannello.A, Samarani.S, Debbech.O, Boulassel.MR, Tremblay.C, Toma.E, 
Routy.JP, and Ahmad.A. 2009. Accepté dans Current HIV Research. 

 

 

RÉSUMÉ 

L’IL-18 est une cytokine pro inflammatoire. Elle appartient à la famille 

d’interleukine-1. Elle est produite suite à une infection virale. Cette 

cytokine est capable de développer et différencier les cellules T CD4  

naïves en T helper de type 1 ou de type 2. Elle se lie à son récepteur, mais 

elle est neutralisée et contrôlée par son antagoniste l’IL-18BP. Comme 

déjà connue, la structure de son récepteur et de son antagoniste  se diffère. 

Ceci protège les cellules et les tissus  de son potentiel destructif et de ses 

effets pro inflammatoires. Selon plusieurs études y compris notre 

laboratoire, il y a une augmentation de la concentration et de l’activité 

biologique  de cette cytokine dans la circulation des personnes infectées 

par le VIH. Contrairement à son antagoniste dont sa concentration 

diminue chez les patients. Alors ceci peut contribuer au développement de 

la pathogénèse de la maladie chez ses personnes infectées.  De même, il y 
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a une  différentiation des cellules T naïves en T helper de type 2, causé par  

la diminution de la sécrétion de l’INF-γ, et l’augmentation de la 

concentration de l’IL-4. Cet effet peut être plus prononcé chez les 

personnes infectées  par le VIH dont la production de l’IL-12 et l’IL-15 est 

compromise. L’IL-18, augmente directement la réplication virale. À cause 

de son effet apoptotique, elle cause la mort de plusieurs  cellules 

immunitaires  et non immunes. Mais il y a toujours des affirmations,  

discutant de son rôle protecteur. Selon plusieurs études, incluant la notre, 

l’IL-18 cause une mort fratricide des cellules NK dans les maladies 

inflammatoires et chez les patients infectés par le VIH. Finalement cette 

revue couvre les effets de l’activité biologique de cette cytokine, et sa 

contribution dans l’immunopathogénèse de la maladie 

d’immunodéficience (SIDA). Tout en mentionnant l’association du VIH 

avec le syndrome de lipodystrophy, la démence, la sclérose en plaque et 

les problèmes métaboliques. En somme, ceci nous montre l’importance  de 

cette cytokine  comme cible thérapeutique. 
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Summary: 
IL-18 is a pleiotropic and multifunctional proinflammatory cytokine that is produced in 
response to a viral infection. The biological activities of the cytokine are tightly 
controlled by its natural antagonist IL-18 binding protein (IL-18BP) as well as by 
activation of caspase 1, which cleaves precursor IL-18 into its biologically mature form. 
The cytokine plays an important role in both innate and adaptive antiviral immune 
responses. Depending upon the context, it can promote TH1, TH2 or TH17 responses. 
Increased serum concentrations of IL-18 and concomitantly decreased concentrations of 
its natural antagonist have been described in HIV-infected persons as compared to HIV-
seronegative healthy subjects. We discuss in this review article how increased biological 
activities of IL-18 contribute towards immunopathogenesis of AIDS, HIV-associated 
lipodystrophy syndrome and metabolic disturbances. While the advent of potent anti-HIV 
drugs has significantly enhanced life-span of HIV-infected patients, it has increased the 
number of these patients suffering from metablic disrders. The cytokine may prove to be 
a useful target for therapeutic intervention in these patients. 
 
 
 
Key words:  
Adipokines, Adipose tissue, AIDS, Cytokines, HIV-1, IL-18, IL-18BP, Lipodystrophy.



   
 
Introduction: 
 
Viral infections usually induce production of several cytokines from the host cells. They 
do so by stimulating one or more so-called pattern recognition receptors (PRRs), which 
recognize certain pathogen-associated molecular patterns (PAMPs). The PRRs like Toll-
like receptors (TLRs) occur on the cell surface and/or intracellularly in endosomal 
membranes and monitor extracellular environment and endosomes for the presence of 
PAMPs  (reviewed in 1, 2). The PRRs like nucleotide-binding and oligomerization domain 
(NOD)-like receptors (NLR), and Dex/DH box and CARD containing RIG-1 like RNA 
helicases (RHL) occur mainly in the cell cytoplasm and act as intracellular sensors for the 
PAMPs that have gained access to the interior of the host cells (reviewed in 3, 4). A wide 
variety of bacterial and viral proteins, lipoproteins, nucleic acids, cell wall constituents, 
endo- and exotoxins, etc may act as PAMPs for one or more of the PRRs. After binding 
with their cognate PAMPs, the PRRs become activated and activate signaling cascades 
that culminate in the induction of several proinflammatory cytokines and chemokines 
from the host cells. The virus-induced cytokines and chemokines activate and 
chemoattract neutrophils, macrophages and natural killer (NK) cells in an attempt to kill 
and eliminate the infected cells. At the same time, they activate dendritic cells (DC) and 
initiate inflammatory and pathogen-specific immune responses (5, 6). If the host immune 
responses successfully eliminate the pathogen, the cytokine production falls back to their 
base levels. However, pathogens like Human Immunodeficiency Virus type 1 (HIV) have 
evolved many immune escape mechanisms. Consequently, the infection persists and the 
host continues to produce cytokines, which may cause chronic inflammation, tissue 
destruction and overactive but ineffective immune responses (reviewed in 7, 8). An 
optimal production of these cytokines is essential not only for the innate host resistance to 
pathogens but also for the induction, amplification and maintenance of the pathogen-
specific immunity. The type of the cytokines induced in the host also determines the 
qualitative nature of the pathogen-specific immune response. It may induce 
differentiation of naïve CD4+ T cells into predominantly TH1, TH2, TH17 or Treg type 
effector/memory cells (Figure 1; reviewed in 9). It has been well documented that the 
responses mediated by TH1 type cells are more effective in protecting the host from 
intracellular pathogens like viruses, whereas those mediated by TH2 type cells promote 
allergic responses to expel extracellular parasites and allergens. TH17 cells provide 
additional protection against extracellular bacteria and are potent inducers of 
inflammation, tissue destruction and autoimmunity.  
A predominance of TH2 type cytokines was observed in HIV-infected/AIDS patients 
long ago and was postulated to be responsible for the inability of the host to eliminate and 
control the viral infection. Recent studies at single cell level also are in conformity with 
these earlier observations (9, 10). It is believed that many of the immune abnormalities that 
occur in HIV-infected patients result from a dysregulated production of several 
immunologically important cytokines. For example, several researchers have reported 
decreased production of IL-12, IL-15 and IL-21, and increased production of TGF-β and 
IL-10 in HIV-infected/AIDS patients (11-14; reviewed in 15). Several researchers including 
us have reported increased concentrations of IL-18 in the sera of HIV-infected/AIDS 



patients (16, reviewed in 17). This review discusses potential implications of the increased 
concentrations of this cytokine for anti-viral immune responses, pathogenesis and 
immunotherapy in HIV-infected AIDS patients. The review will begin with an overview 
of the IL-18 immunobiology. 
 
IL-18, its production and secretion:  
IL-18 was first discovered in 1989 as the “IFN-γ-inducing factor” present in the serum of 
mice infected with the BCG strain of Mycobacterium bovis, and challenged with 
lipopolysaccharide (LPS). The factor induced IFN-γ production in IL-2-treated 
splenocytes taken from normal mice (18). The cytokine was rediscovered, cloned and 
named as IL-18 in 1995 (19, 20). It is a multifunctional and pleiotropic proinflammatory 
cytokine that is produced by activated macrophages, myeloid type dendritic cells, 
Kupffer cells, keratinocytes, articular chondrocytes, intestinal and airway epithelial cells, 
microglial and ependymal cells of brain as well as by certain neurons in the medial 
habenular neucleus. The gene is expressed in many tissues and organs including thymus, 
liver, lung, spleen, intestines, placenta, heart, kidney, brain, prostate, pancreas, adipose 
tissue, skeletal muscles, bone, cartilage, adrenal cortex and neurohypophysis (reviewed in 
21, 22). These cells and tissues usually express IL-18 gene and protein constitutively and 
increase their expression in response to infection, cold and LPS. Physical and mental 
stress can also stimulate IL-18 production via hypothalamus-pituitary-adrenal axis by 
releasing adrenal corticostimulating hormone (23). Dendritic cells produce this cytokine 
costitutively and increase its secretion when they interact with other cells involving 
CD40/CD40L (24).  
IL-18 belongs to the IL-1 family of cytokines (reviewed in 25). All members of the family 
fold into a similar β-pleated trefoil structure. Like IL-1β and IL-33, IL-18 is produced as 
an inactive 24 kD precursor protein containing 192 amino acids. It has an unusual signal 
peptide of 35 amino acids and hence is not secreted via conventional secretory pathway. 
Within the cytoplasm, the precursor is cleaved on the carboxyl side of its aspartate 36 by 
the IL-1β converting enzyme (ICE) into mature biologically active18 kD cytokine (26). 
ICE-KO mice synthesize but do not process IL-18 precursor (27). ICE is a member of a 
family of cysteine-aspartate proteases called caspases, and is more commonly known as 
caspase 1. The caspase itself is also produced in the cells as an inactive 45 kD precursor, 
which must be activated before it could cleave the cytokine precursor. In addition to ICE; 
certain other proteases produced by mast cells (chymase) and neutrophils (proteinase 3, 
elastase, MMP-9, etc) can also cleave the extracellular IL-18 precursor into biologically 
active forms. Some proteases (e.g., caspase-3) may cleave the precursor into biologically 
inactive components. Thus, the secretion of biologically active mature IL-18 from 
macrophages requires two signals emanating from two distinct families of PRRs. 
(reviewed in 28, 29). The first signal comes from TLRs upon binding with their cognate 
ligands, and enhances transcription and translation of the precursor form. The second 
signal comes from a variety of stimuli and results in the assembly of certain NLRs into a 
multiunit complex called “inflammosome”, which acts as platform for activating caspase-
1, processing of IL-18 precursor and its secretion from the cells (reviewed in 28, 29).  The 
requirement of the two distinct signals for the secretion of biologically active IL-18 is 
probably a safeguard mechanism to prevent excessive production of this cytokine that 
may cause tissue damage. A well-studied model of the second signal is binding of ATP to 



an adenergic receptor P2X7R, an ATP-gated ion channel, expressed on the surface of IL-
18 producing cells, e.g., macrophages (see below). The second signal also causes 
secretion of the cytokine from the cells in exosomes as mutivesicular bodies (30).  
A typical NLR (also known as Caterpiller, NOD, NOD-LRR or NACHT-LRR) is 
characterized by the presence of a C-terminal ligand-binding LLR, a centrally located 
nucleotide binding and oligomerization (NOD) domain, and an N-terminal effector 
(Pyrin, CARD or BIR) domain. To date more than twenty distinct members of the NLR 
family have been identified (reviewed in 3, 31). Only a few members of the family 
assemble into inflammosomes, while others form multiprotein complexes called 
apoptosomes to regulate ell death, and nodosomes to activate NF-κB. Still others may act 
as accessory proteins to scaffold the multiunit NLR complexes. Three NLR members, 
NALP-1, NALP-2 and NALP-3 assemble into inflammosomes and recruite precursor 
caspase-1 into these complexes via ASC and related proteins, which help in the 
oligomerization and protein-protein interactions within the complexes. Normally NLRs 
exist in auto-inhibited monomeric forms. A variety of stimuli cause their assembly into 
inflammosome accompanied by activation and auto-cleavage of caspase-1 into its mature 
form, which then cleaves the precursor forms of IL-18 and related cytokines (IL-1β and 
IL-33). It is not yet clear how NALP proteins recognize their ligands via their LRR 
domains and how these ligands get access to these receptors with the cytoplasm of the 
cells. Recent studies have shown that a diverse array of substanses, e.g., phagocytosed 
urate and silica crystals, aluminum compounds, amyloid β crystals viral DNA, 
intracellular bacteria and their products, bacterial and viral nucleic acids, etc can cause 
activation of caspase-1 and secretion of active IL-1β (32-36). Some pore-forming bacterial 
toxins, e.g., listeriolysin O, nigericin and maitotoxin can also cause activation of caspase-
1. It is believed that these toxins open channels within the plasma membrane of the cell 
giving access to various ligands to NLRs and/or cause efflux of K+ from the cells. The 
binding of extracellular ATP to P2X7R causes translocation of a protein pannexin-1 (a 
hemichannel) from the cytoplasm to the receptor. The channel provides access to 
extracellular ATP to the cell interior. It also allows efflux of K+ from the cell. NLRs are 
believed to sense this efflux. It appears that some infammosomes may sense cell integrity 
via rupture of lysosomal membranes, as the rupture may allow lysosomal constituents 
like cathepsin B to gain access to the cell interior.  Direct intracellular injection of 
cathepsin B and rupture of lysomal membranes have also been shown to cause 
inflammosome assembly and activation of caspase-1 (29, 32).  The recognition of a wide 
array of structurally diverse ligands via structurally similar LRR domains of various 
NALPs remains enigmatic. The assembly of certain “nodosomes” could also trigger 
oligomerization of certain “inflammosomes” and hene processing and secretion of mature 
IL-18 and relared cytokines. For example, muramyl dipeptide (MDP), derived from the 
bacterial cell wall proteaglycan, binds NOD-2 in the host cell cytoplasm and activates 
caspase-1 via an inflammosome that contains NALP-1 (37).  
The exact molecular mechanisms that couple the cleavage and secretion of the mature IL-
18 (and related cytokines) are not completely understood. It has been shown that cellular 
oxidation via NADPH oxidase plays an essential role in the ATP-mediated secretion of 
mature cytokines. Thus, the reactive oxygen and nitrogen species that increase NADPH 
oxidase activity also result in the processing and secretion of IL-18.  Antioxidants only 
partially block this oxidation. Since free ATP does not exist outside cells and only 



stressed and injured cells release it, IL-18-producing cells sense it as a “danger signal” 
and respond by secreting proinflammatory cytokines. It is noteworthy that along with the 
cleaved cytokine, some precursor cytokine is also secreted. This may be degraded or 
activated depending upon the type of the proteases present in the extracellular milieu. In 
the presence of inhibitors of caspase-1, ATP causes secretion of only precursor IL-18. 
Gain-of-function mutations in certain NALPs have been documented. As expected, the 
individuals with these mutations suffer from a variety of chronic autoinflammatory 
diseases (reviewed in 3, 22, 31). 
 
IL-18 Receptor:  
The cytokine exerts its biological effects on target cells via IL-18 receptor (IL-18R), 
which is expressed on a wide variety of body cells, e.g., vascular endothelial cells, NK, 
NKT, B, dendritic and TH1 type CD4+ T cells, basophils, mast cells, synovial fibroblasts, 
adipocytes, etc. The receptor comprises two units, α and β chains, whose extracelluar and 
intracellular regions contain Ig-like and Toll/IL-1R (TIR) domains, respectively. 
Extensive mutagenesis studies have shown that IL-18 has three binding sites for its 
receptor: Two bind with the IL-18Rα chain and the third binds with the IL-Rβ chain (38). 
Upon binding of IL-18 to the receptor, the TIR domains transduce signals via MyD88-
IRAK-TRAF-6, and activate NF-κB and MAPK (p38 and JNK; Figure 2; reviewed in 22). 
     
Control of IL-18 activity in the body:  
IL-18 is a powerful proiflammatory cytokine. Its biological activity is tightly controlled 
in the body by a natural antagonist, IL-18 binding protein (IL-18BP; 39, 40). The 
antagonist-bound IL-18 can bind to the α chain of the IL-18R but cannot recruit its β 
chain and transduce signals. The agonist is produced constitutively in the human body by 
a wide variety of cells and tissues. The protein is produced as a negative feed back 
mechanism in response to IL-18. In this regard, IL-18-induced IFN-γ acts as a powerful 
stimulus for the production of this protein. Gamma Interferon-activated sequences (GAS) 
and interferon regulatory factor-response elements (IRF-RE) are present in the promoter 
region of the gene for IL-18BP (41, 42), which exists in four isoforms designated “a”, “b”, 
“c” and “d”. The isoforms result from alternate splicing of the mRNA (39). Of these 
isoforms, only “a” and “c” bind with, and inactivate IL-18. Furthermore, the “a” isoform 
binds IL-18 with 10-fold higher affinity than the “c” isoform, and accounts for most of 
the IL-18 neutralizing activity in the circulation of human body. IL-18BP bears no 
homology with IL-18R. It binds with IL-18 with an affinity that is several orders of 
magnitude higher than that of IL-18 for its receptor, forming a high affinity (Kd=400pM) 
complex with a very low dissociation rate and 1:1 stoichiometry. At equimolar 
concentrations, the “a” isoform can neutralize 50% IL-18, reaching upto 95% at a molar 
excess of 2. The circulating levels of IL-18 increase sharply in sepsis; however, most of it 
exists in inactive state, bound with IL-18BP (43). In in vitro experiments, IL-18BP 
impairs TH1 responses by inhibiting IL-18-mediated production of IFN-γ and activation 
of NF-κB (40, 44). By inhibiting IL-18-induced IFN-γ production, IL-18BP promotes 
prostaglandin production from human PBMC. IL-18 may promote protect host from viral 
infections. Therefore, it is not surprising that human poxviruses, ectromelia, vaccinia and 
cowpox have usurped the IL-18BP gene and have incorporated it into their genomes. The 
gene acts as a virulence factor, as its expression inactivates host’s IL-18 response and a 



mutant virus becomes relatively avirulent in mice (45, 46). The viral IL-18BP is 
immunosuppressive and has anti-inflammatory properties (45). 
Another member of the IL-1 superfamily, IL-1F7, is also processed by casapse-1. Its 
splice variant, IL-1F7b, complexes with IL-18BP and enhances its IL-18-neutralizing 
activity. It can also bind the IL-18Rα chain weakly but cannot recruit the β chain and 
transduce signals (47;reviewed in 48). 
    
Biological activities of IL-18:  
IL-18 exerts many biological effects: it induces production of IFN-γ, TNF-α, IL-8, IL-1β, 
MIP-1α, NO and matrix metalloproteases from several cell types including T and NK 
cells; induces expression of adhesion molecules on vascular endothelial cells; promotes 
maturation of NK and T cells and increases their cytotoxicity via increased expression of 
FasL and perforin; regulates pathogen-specific immune responses; and plays a role in the 
homeostasis of energy (see Table 1). The cytokine increases expression of perforin 
without affecting expression of perforin mRNA. The neutralization of IL-18 prevents 
accumulation of neutrophils in the lungs and liver of mice in otherwise lethal 
endotoxaemia induced by LPS from Salmonella typhimurium and Escherichia coli (49). 
Professional antigen presenting dendritic cells (DC) produce IL-18 as well as express its 
receptors. IL-18 chemoattracts DC to the site of viral infection and induces their 
maturation directly and indirectly (50). IL-18 plays an important role in intercellular 
communication among DC, NK, T, B and endothelial cells. It induces expression of 
OX40L (CD134L) on DC. The CD134L-expressing dendritic cells induce differentiation 
and expansion of IFN-γ producing antigen-specific T cells (51). The cytokine is the most 
powerful stimulus for IL-12-induced production of IFN-γ from NK and T cells. A 
coordinate secretion of these two cytokines is very effective in invoking TH1 type 
immune responses. IL-18 and IL-12-induced IFN-γ causes expression of IL-12Rβ1 chain 
on naïve T cells and makes them responsive to IL-12 and differentiation into TH1 type 
CD4+ effector/memory T cells. Recent studies have shown that IFN-γ also prevents 
differentiation of TH17 type CD4+ T cells, which are the most powerful inducers of 
inflammatory conditions and tissue destruction in the host (reviewed in 52, 53). This may 
explain protective effects of IL-18-induced interferon from certain models of 
autoimmune and chronic inflammatory diseases. The interferon also induces antiviral 
state in the host cells. It can also induce apoptosis of virus-infected cells by modulating 
expression of TRAIL and TRAIL receptors on human cells (54). The protective effects of 
IL-18-induced IFN-γ have been demonstrated in mice from HSV-1 infection (55).   
IL-18 can effectively promote TH1 type responses by inducing proliferation of TH1 type 
CD4+ T cells. However, the cytokine per se does not induce differentiation of TH1 cells. 
Naïve T cells only express the ligand-binding IL-18Rα chain. The ability of IL-18 to 
amplify TH1 type responses depends upon IL-12, which induces expression of IL-18Rβ 
chain on naïve T cells during their differentiation into TH1 type CD4+ T cells (56). 
Interestingly, in the absence of IL-12, IL-18 promotes TH2 type immune responses. The 
cytokine does so by inducing production of IL-4, IL-5, IL-9 and IL-13 from basophils 
and mast cells (reviewed in 57). These cells constitutively express IL-18R and produce 
these cytokines in response to IL-18. It is noteworthy that IL-4 promotes differentiation 
and development of TH2 type CD4+ T cells. IL-13 induces goblet cell hyperplasia and 
mucus secretion, whereas IL-5 causes eosinophilia. IL-18 also induces secretion of IL-4, 



IL-9 and IL-13 from ligand-activated NKT cells. Even fully differentiated TH1 type 
CD4+ T cells secrete TH2 type cytokines in addition to IFN-γ, when they undergo 
antigen-specific stimulation in the presence of IL-18. Under these conditions, B cells 
undergo differentiation and produce IgE (57). Thus, IL-18 has the potential to induce TH2 
type responses, which promote allergic immediate hypersensitivity type responses needed 
for expulsion of multicellular parasites. These effects of IL-18 cannot be inhibited even 
by the presence of IL-12. This explains why viral infections are generally accompanied 
by both TH1 and TH2 type responses and exacerbate allergic diseases like asthma. The 
ability of IL-18 to promote both TH1 and TH2 type cytokine responses in a context-
dependent manner has earned it the name of a “switch” cytokine.  
Despite a protective role of IL-18 against viral, bacterial and fungal infections, chronic 
and excessive production of the cytokine may cause tissue destruction and contribute 
towards virus-induced immunopathology. It is important to note that increased levels of 
IL-18 have been reported in the circulation of patients suffering chronic inflammatory 
and autoimmune diseases like multiple sclerosis, hepatitis, Crohn’disease, graft versus 
host disease, psoriasis, rheumatoid arthritis, etc. The cytokine plays an important role in 
the etiopathogenesis of these diseases (reviewed in 58). 
As the cytokine is produced in brain, pituitary and adrenal glands in response to stress 
and cold, it mediates communication between CNS, endocrine and immune systems. The 
cells in the adrenal cortex that produce glucocortoids also produce IL-18. Furthermore, 
being produced in AT, IL-18 could play a role in energy and lipid homeostasis (see 
below).    
 
IL-18 production in HIV infection: 
As mentioned above, IL-18 is an integral part of the cytokine profile that is produced in 
response to a viral infection. Many viruses and intracellular pathogens induce its 
production from host cells and consequently increase IFN-γ production from NK and T 
cells (reviewed in 59, 60). This early induction of IFN-γ is important for inducing a TH1 
type antiviral response and inhibiting TH17 type strong inflammatory responses. The 
induction of IL-18, in response to a viral infection, is at least in part responsible for virus-
induced activation of NK cells in the host. It appears that like many other viruses, HIV-1 
also induces IL-18 response in the host. A close cousin of HIV-1, SIV, induces the 
expression of this and other cytokine genes in experimentally infected Rhesus monkeys 
(61). We could not find any study that investigated a direct effect of the virus on IL-18 
production from human PBMC, dendritic cells or macrophages. However several 
researchers have documented increased concentrations of this cytokine in the circulation 
of HIV-infected persons. Torre et al first described increased concentrations of IL-18 in 
the sera of HIV-infected symptomatic and AIDS patients but not in asymptomatic 
persons as compared with these levels in healthy subjects. Furthermore they found no 
correlation of the cytokine levels with viral load, CD4+ T cell counts or opportunistic 
infections in AIDS patients (62). These results have been verified and extended by several 
researchers including us (16, 63; reviewed in 17). We showed that the patient sera contained 
on the average three-fold higher concentrations of this cytokine as compared to their 
control counterparts. The increased IL-18 concentrations were associated with their 
increased biological activities when they were tested for their ability to induce IFN-γ 
from human T cells. We could not find any correlation of these elevated serum 



concentrations with CD4+ T cell counts, CD8+ T cell counts, the ratio between these two 
counts or with the plasma viral loads of these patients. However, Stylianou et al (63) 
found a significant correlation between the concentration of this cytokine and viral load 
of the patients. They also found that anti-retroviral therapy decreased viral load as well as 
the levels of this cytokine, however, they always remained above normal values. The 
workers suggested that increased concentrations of the cytokine despite ART might 
indicate treatment failure. Collectively, these results suggest that HIV, its gene products 
plays and/or nucleic acids may induce enhanced production of this cytokine in HIV-
infected individuals. In keeping with this notion, Sailer et al reported higher levels of the 
cytokine in HIV-infected persons early in the course of the infection (64). 
 
Source of IL-18 in HIV-infected persons: 
Despite increased levels of IL-18 in the circulation of HIV-infected persons, their PBMC 
were reported to produce less amounts of this cytokine constitutively as well as in 
response to LPS and Staphylococcal bacteria (16, 65, 66). The decreased production occured 
both at the protein and mRNA levels. David et al. noted correlation between the 
decreased IL-18 and IL-2 mRNAs in the PBMC of HIV-infected patients (65). 
Interestingly, the production of IL-18 from the PBMC in response to LPS correlated with 
the serum levels of the cytokine in HIV-seronegative healthy subjects but not in HIV-
infected individuals. The expression of caspse-1, which processes IL-18 precursor into its 
biologically active form, was also reduced in the PBMC of HIV-infected persons as 
compared to those in HIV-seronegative healthy control subjects (16). The reduction was 
seen both in the precusor and activated forms of the protease, and was not due to reduced 
numbers of monocyte-macrophages in HIV-infected persons. In this connection, we, and 
others have showed that a decreased production of IL-18 from the PBMC of HIV-
infected persons was due to high concentrations of TGF-β in the circulation of these 
patients (16, 66). We also found a significant negative correlation between IL-18 
production from the PBMC of HIV-infected persons and their serum TGF-β levels. 
Neutralizing this cytokine with cytokine-specific antibodies significantly augmented their 
ability to produce IL-18 constitutively as well as in response to LPS (16). It was also 
shown that IL-10 could play a similar role in suppressing IL-18 and IL-1 β production 
from the PBMC in these patients (66). Interestingly, mononuclear cells from the placenta 
of HIV-infected women were also compromised in their ability to produce this cytokine 
(67). It may be relevant to mention that the concentrations of both IL-10 and TGF-β1 are 
increased in the circulation of HIV-infected persons (15).  
Despite decreased production of IL-18 from the PBMC of HIV-infected persons, it is not 
clear what contributes to the increased concentrations of this cytokine in the circulation. 
In an attempt to find a source of increased IL-18 in the circulation of HIV-infected 
persons, we discovered that human platelets contain abundant amounts of this cytokine 
and release it upon activation into the circulation. Platelet activation occurs in HIV-
infected persons and this activation contributes to increased IL-18 levels present in the 
circulation of these individuals. In this regard, we observed a significant positive 
correlation between platelet activation and circulating IL-18 levels in HIV-infected 
persons (68). It is noteworthy that IL-18 is also induced in response to anxiety, physical 
and psychological stress via hypothalamus-pituitary-adrenal (HPA) axis in animal 
models. Given that HIV-infected persons undergo enormous amounts of emotional and 



psychological stress, these organs could potentially contribute to increased IL-18 levels in 
the circulation. Furthermore, intestinal epithelial cells also contain preformed IL-18 and 
release them in response to a variety of stimuli (58, 69). A wide spread infection of CD4+ T 
cells and macrophages present in the gastrointestinal tract could also stimulate the release 
of this cytokine from the intestinal epithelial cells. 
 
IL-18BP in HIV-infection:  
As stated above most of the circulating IL-18 is bound with IL-18BP and is biologically 
inactive. This protects the body from potentially harmful proinflammatory effects of the 
cytokine. We found a severe imbalance in the production of IL-18 and IL-18BP in HIV-
infected persons (101). The serum concentrations of these two soluble mediators correlate 
with each other in HIV-seronegative healthy subjects. However no such correlation 
existed between them in HIV-infected persons. Contrary to the concentrations of IL-18, 
those of IL-18BP were significantly decreased in HIV-infected persons as compared to 
their healthy counterparts. An increase in the serum concentrations of IL-18 was not 
accompanied by a corresponding increase in its antagonist. Rather the concentrations of 
the antagonist were decreased in these sera. Consequently, the concentrations of 
biologically active free IL-18 were further increased in the sera of HIV-infected persons. 
Indeed we have earlier reported increased biological activity of IL-18 in the sera of HIV-
infected AIDS patients (16). The caveat is that these results were based upon the 
measurement of only “a” isoform of IL-18BP. However, since this isoform is mainly 
responsible for neutralization of IL-18 in humans, it is reasonable to conclude that IL-
18BP is decreased in these patients. As mentioned above, this protein is produced as a 
negative feed back mechanism in response to IL-18-induced IFN-γ. Decreased 
production of IL-12, IL-15 and IL-21 has been reported in HIV-infected persons 
(reviewed in 15). In the absence/deficiency of these cytokines, IL-18 has little capacity to 
induce IFN-γ production. Indeed a decreased production of IFN-γ has been documented 
in the circulation of HIV-infected persons (). The decreased production of this interferon 
may be at least in part responsible for decreased production of IL-18BP in these patients. 
Imbalance in the production of IL-18 and its natural antagonist has also been reported in 
secondary haemophagocytic syndrome (SHS), hepatic cirrhosis, Crohn’s disease, Lupus 
Nephritis and sepsis in humans (43, 70-73). In these conditions, the levels of IL-18 increase 
in the circulation, but these increases are not accompanied by corresponding increases in 
the production of IL-18BP. Consequently, the levels of free biologically active cytokine 
are more increased than those indicated by measurements of the total cytokine. For 
example, Novick et al 43 have reported that the levels of IL-18 are increased by 20-fold as 
compared with a 10-fold increase in those of IL-18BP in sepsis patients. This imbalance 
in the production of these two soluble mediators results in increased levels of free 
biologically active IL-18.  
 
Effects on antiviral immunity: 
As mentioned above, the ability of IL-18 to promote TH1 responses depends upon IL-12, 
which induces expression of IL-18R on TH1 type CD4+ T cells. In the absence/deficiency 
of IL-12, IL-18 acts on mast cells, basophils, and NKT cells, and induces production of 
IL-4, which promotes TH2 type responses in the body (reviewed in 57). A decreased 
production of IL-12 has been well documented in HIV-infected persons. The defective 
production occurs early in the course of the infection (13, 15). In addition to IL-12, 



decreased production of IL-15 and IL-21 has been well documented in HIV-infected 
persons (11, 14, 15). These are the cytokines that work in synergy with IL-18 for inducing 
IFN-γ and other cytokines from NK and T cells. Therefore it is very unlikely that IL-18 
could promote increased IFN-γ production and consequently decrease HIV replication in 
these patients. Decreased numbers of IFN-γ producing, but not of IL-4-producing, T cells 
as well as decreased levels of IFN-γ observed in the circulation of HIV-infected persons 
(54, 74) support this notion. A decreased production of this interferon could also occur due 
to increased production of other immunosuppressive cytokines e.g., TGF-β and/or IL-10, 
in these patients (reviewed in 10, 15). A decreased production of IFN-γ and a predominance 
of TH2-like responses in this infection have been incriminated in the pathogenesis of 
AIDS (reviewed in 75). 
Increased IL-18 concentrations have been reported in the circulation of several chronic 
inflammatory conditions and infections. These conditions are often accompanied by 
decreased numbers of NK cells as well as by their reduced cytotoxic activities (73, 76). 
Interestingly, researchers have discovered an inverse correlation between serum IL-18 
levels and NK cell numbers in these patients. It appears that IL-18 somehow resulted in 
the depletion of NK cells in these patients (73, 76). We found a similar inverse correlation 
between serum IL-18 concentrations and NK cell numbers in HIV-infected persons (101). 
This correlation existed between the cytokine and all major subsets of NK cells: CD3-

CD56+, CD3-CD16+ and CD56+CD16+. Furthermore, we found that the cytokine induced 
fratricidal killing of NK cells by a mechanism that involved Fas-FasL interactions and 
TNF-α. Recombinant human IL-18 induced expression of FasL on the cell surface in 
primary human NK cells as well as in an established human NK cell line. The cytokine 
stimulates the FasL gene promoter and hence increases transcription from the gene. 
Furthermore, the cytokine increases sensitivity of human NK cells to apoptotic stimuli by 
decreasing expression of an anti-apoptotic protein Bcl-XL, without affecting the 
expression of Bcl-2. Although IL-18-treated cells may increase killing of Fas-expressing 
target cells, they may kill other NK cells, which constitutively express Fas on their 
surface. It is noteworthy that decreased NK cell numbers and their compromised 
functional activities have been well documented in HIV-literature (reviewed in 1). Thus, 
increased IL-18 concentrations may play a role in causing defects in the NK cell 
compartment. 
     
Effects on HIV replication: 
The effects of IL-18 on HIV replication remain controversial (see ref 17 for a review). The 
cytokine has been shown to enhance HIV replication in vitro in chronically infected 
human monocytic and T cell lines (77, 78) as well as in an acutely infected T cell line (79). 
The increased viral replication in the monocytic cell line was ascribed to the cytokine-
induced activation of NF-κB and p38 MAPK, and involved IL-6 and TNF-α 77, 79. 
Contrary to the results from these studies, one group of researchers reported that the 
cytokine inhibits, and its antagonist IL-18BP promotes HIV replication in human PBMC. 
The inhibition of the viral replication was reportedly due to increased production of IFN-
γ in the cell cultures 80. The authors also documented a decrease in the expression of CD4 
in IL-18-treated PBMC cultures. In this regard we have shown that in in vitro 
experiments recombinant human (rh) IL-18 alone has minimal effects on HIV replication 
in human PBMC and in purified CD4+ T cells. However, the cytokine increases HIV 
replication, in combination with TGF-β or IL-10 (101). These cytokine combinations are 



relevant to HIV infections, as increased levels of these two cytokines have been reported 
in HIV-infected persons 15, 16, 75, 81, 82. Although IL-18 could potentially decrease HIV 
replication via inducing IFN-γ from NK and T cells, it most likely does not happen in 
these persons. In a relatively more recent study (), the researchers noted a close 
association between IL-18 and IFN-γ levels of whole blood after stimulation with LPS in 
HIV-seronegative subjects. Despite observing enhanced levels of IL-18 in the whole 
blood in HIV-infected persons, they unexpectedly observed decreased levels of IFN-γ in 
the circulation of these patients as compared with those in HIV-seronegative healthy 
control subjects. These observations suggest that increased IL-18 concentration in the 
circulation of HIV-infected persons do not result in enhanced IFN-γ levels. The probable 
reasons could be decreased concentrations of IL-12, IL-21 and IL-15, and increased 
production of TGF-β and IL-10. Therefore IL-18-mediated inhibition of HIV replication 
via this interferon may be compromised in HIV-infected persons. The authors (64) have 
also observed that increased IL-18 levels correlated with decreased expression of CXCR4 
on the patients’ PBMC. The authors suggest an antiviral role of IL-18 due to its 
association with a decreased expression of the viral co-receptor CXCR4. However there 
is no direct experimental proof of the ability of IL-18 to decrease the expression of 
CXCR4 on human cells. In animal models of Rhesus macaques and Cynomolgous 
monkeys, pathogenic, but not non-pathogenic chimeric SIV/HIV-1 (SHIV) viruses 
caused increased IL-18 levels, which were associated with more rapid disease 
progression (loss of CD4+ T cells), and a higher viral load set point (83). Thus increased 
IL-18 concentrations in vivo seem to contribute towards disease progression. 
Nevertheless, it has been argued (84) that these increased levels of the cytokine represent 
a protective host response. They argue that neutralizing this IL-18 could have worsened 
the disease condition in these animals. Given that this response does not protect the 
infected animals, a counterargument that neutralizing IL-18 may benefit the host would 
seem more logical. Therefore, it would be reasonable to conclude that raised IL-18 
concentrations in HIV-infected persons contribute towards enhanced HIV replication. In 
line with this conclusion, raised serum levels of IL-18 in HIV-infected subjects have been 
associated with AIDS progression. The levels are higher in progressors but tend to remain 
stable in non-progressors 63. In this regard anti-retroviral therapy, especially HAART, 
decreases the cytokine concentrations. However the levels always remain above normal 
and do not correlate with CD4+ T cell counts. It may be interesting to note that a 
recombinant infectious clone of SIV that carried the simian IL-18 gene in the sense or 
anti-sense orientation had no effect on any virological or immunological parameters 
when injected in Rhesus macaques (85). The clone with the IL-18 gene in the sense 
orientation induced only a slight increase in serum IFN-γ levels in early phase of the 
infection. No effect of the IL-18 gene expression was observed on viral replication (85).  
Therefore the collective evidence suggests that increased IL-18 concentrations in the sera 
of HIV-infected persons may not inhibit HIV replication; they may rather enhance it both 
directly in combination with other immunosuppressive cytokines, and indirectly by 
blunting antiviral immunity. 
 
Before discussing the potential role of IL-18 in the pathogenesis of HIV-associated 
lipodystrophy syndrome, it would be important to describe some basic concepts about the 
biology of adipose tissue.  
Basic concepts in biology of adipose tissue: 



Depending upon their anatomical locations, AT tissues can be divided into subcutaneous 
(or peripheral) and visceral (or central) adipose tissues (SAT and VAT, respectively; 86). 
The latter occurs around our internal organs. The two tissues differ from each other in 
many biological characteristics: ability to produce cytokines, insulin-mediated 
suppression of adipolysis, mitochondrial activities, etc. The visceral fat releases more free 
fatty acids (FFA) and contributes more to lipidemia. It has more infiltration of 
macrophages and produces more pro-inflammatory mediators, e.g., TNF-α, IL-6, IL-18, 
and MCP-1. For this reason, visceral adiposity is more relevant to metabolic disorders, 
e.g., insulin resistance (IR), type 2 diabetes (T2D), hypertension and cardiovascular 
manifestations. In obesity, both VAT and SAT are enlarged due to an increase in the size 
of invidual adipocytes (hyperplasia) as well as in the number of adipocytes 
(hypertrophy).  
Adipocytes (fat cells), the main cellular elements of adipose tissue, belong to two 
functionally distinct types: white and brown adipocytes (reviewed in 86, 87). White 
adipocytes mainly store excess energy as lipids and produce a wide array of cytokines, 
chemokines and hormones often referred to as adipokines (see below) that affect 
functions of many other systems in the body. Each white adipocyte possesses a single 
large lipid vacuole (unilocular) and usually does not undergo proliferation. New 
adipocytes develop from the recruitment and differentiation of preadipocytes into fuly 
differentiated adipocytes. The preadipocytes are precursors of fat cells and reside in 
vascular stroma of adipose tissues. They undergo proliferation, secrete proinflammatory 
mediators before becoming adipocytes. Brown adipocytes specialize in burning lipids for 
the production of heat. Each cell has many small lipid vacuoles (multilocular) and often 
expresses markers of cell proliferation (e.g., PCNA). The cells are rich in mitochondria, 
whose iron-rich proteins confer characteristic brown apprarance to these cells. Another 
feature of these cells is expression of the mitochondrial uncoupling protein (UCP)-1 (also 
known as thermogenin), a proton transporter that short-circuits oxidative phosphorylation 
to energy production in the form of heat. BAT does not exist as a distinct mass in adult 
humans; however, brown adipocytes may be found scattered among white ones in the 
WAT depots. They may also occur as small pockets at defined anatomical locations in 
most, if not all, adult individuals (87). BAT has greater vascular supply as compared to 
WAT and produces more angiogenic factors (e.g., VEGF) and less pro-inflammatory 
mediators (e.g., IL-6, TNF-α, resistin, angiotensinogen, etc). It is noteworthy that WAT 
promotes, and BAT protects individuals from obesity and related metabolic 
abnormalities. Therefore, converting WAT into BAT may provide a cure from obesity 
epidemic in humans. 
It is noteworthy that an excess of fat (obesity) and a lack of it both lead to insulin 
resistance, dyslpidemia and metabolic disorders. An optimal amount of fat is necessary 
for energy and lipid homeostasis in the body. It provides the needed soluble mediators to 
regulate functions of other body systems (reviewed in 88).  
  
Differentiation of adipocytes:   
Most of our knowledge about differentiation of adipocytes has come from in vitro 
differentiation of 3T3-L1 preadipocytes. Two transcription factors, C/EBP-α and PPAR-
γ, act as master regulators of adipogenesis (reviewed in ref 89; see Figure 3). PPAR- γ is 
necessary for the development of both BAT and WAT. It is a ligand-activated receptor 



that heterodimerizes with the retinoid x receptor (RXR)-α. The heterodimer induces 
expression of several adipogenic genes. The ligands for PPAR-γ are produced 
endogenously. C/EBP-α is involved in terminal differentiation of adipocytes. It is 
essential for the development of WAT but not for BAT. Recent studies have shown that 
white and brown adipocytes arise from two distinct precursor cells. The BMP-2 and 4 
drive differentiation of white, and BMP-7 drives differentiation of brown adipocytes. The 
expression of a transcription factor PRDM-16 is crucial for the differentiation of brown 
adipocytes (87, 90, 91). In concert with PGC-1α, and β, it induces expression of BAT-
specific genes and suppresses the expression of several WAT-specific genes by 
interacting with CtBP-1 and -2. The forced expression of PRDM-16 in developing white 
adipocytes confers them characteristics of brown adipocytes. Silencing expression of 
PRDM-16 from the precursors of brown adipocytes promotes their development into 
muscle cells.  
 
HALS:  
HALS, first described in 1998 (92), is characterized by redistribution of fat, dyslipidemia, 
hypercholesterolemia, hyperlactatemia and systemic insulin resistance. The patients 
usually lose subcutaneous fat on face (“empty cheek syndrome”), arms, legs and upper 
trunk, and accumulate around viscera, breast and at ectopic locations, e.g., in the 
dorsocervial region giving rise to “buffalo hump” condition.  It has been estimated that 
more than one third of HIV-infected patients undergoing anti-retroviral therapy manifest 
HALS. The syndrome may occur in infected persons without receiving any therapy. 
However, anti-retroviral drugs especially reverse transcriptase inhibitors (RTI) and 
protease inhibitors (PI) hasten and exacerbate the condition (93; reviewed in 94). It is 
noteworthy that both SAT and VAT behave quite differently in HALS; the former 
undergoes atrophy whereas the latter becomes enlarged.  
Experimental studies have shown that wasting of the SAT (lipoatrophy) occurs in HIV-
infected patients with HALS due to inhibition of differentiation of pre-adipocytes as well 
as due to increased lipolysis in adipocytes (49, 94). The number of cells undergoing 
apoptosis is markedly increased in the SAT of HALS patients. Increased lipolysis causes 
release of glycerol and non-esterified free fatty acids (FAA) that causes hyperlipidemia. 
FAAs increase IR, induce production of proinflammatory mediators (e.g., IL-6 and TNF-
α) from macrophages, and inhibit lipoprotein lipase activity. They are also toxic to 
insulin-producing β-cells of pancreas. 
The expression of C/EBP-α and PPAR-γ, which are necessary for adipogenesis, is 
reduced in lipoatrophic adipose tissue in HALS. The expression of the PPAR-γ Co-
activator protein (PGC)-1, which regulates biogenesis of mitochondria, is also reduced in 
the adipose tissue in this syndrome. Furthermore, the respiratory chain in mitochondria of 
the adipose tissue becomes defective. Due to reduced expression of UCP-1 (a 
thermogenic protein) and UCP-2 (that controls ROS production), the mitochondria 
produce more reactive oxygen species (ROS), which cause oxidative stress to AT. ROS 
also induce increased production of proinflammatory mediators (see below).  
Studies have also shown that accumulation of fat at ectopic places, e.g., dorsal region of 
neck (the “buffalo hump” condition), pubis and trunk, represents a distinct disturbance of 
adipose tissue. It results from accumulation of adipocytes, which express markers of 
brown adipocytes, e.g., smaller size, multilocularity, expression of UCP-1 and PCNA 



(reviewed in 95). The “buffalo hump” adipose tissue, however, has lower levels of 
mitochondrial DNA and lack local inflammatory response. It is not yet clear whether this 
tissue develops from a selective amplification of pre-existing brown adipocytes or results 
from a “browning” of white adipocytes. If transplanted to other areas, these adipocytes 
give rise to fat pads. It is noteworthy that external signals associated with thermnogenic 
requirements cause enlarged brown AT in rodents (reviewed in 96). There is some 
evidence to suggest that certain PI drugs and defective mitochondrial function may 
induce expression of UCP-1 and development of “buffalo hump” in HIV-infected persons 
(95). It is also not yet known whether the adipocytes that accumulate in the VAT in HIV-
infected patients are of white, brown or mixed characteristics. 
   
Anti-retroviral drugs and HALS: 
As stated above anti-retroviral drugs hasten and exacerbate the development of HALS in 
HIV-infected patients. Both protease inhibitors (PI) and reverse transcriptase inhibitors 
(RTI) play a role in the development of this syndrome.  These drugs inhibit 
differentiation of pre-adipocytes, promote apoptosis of adipocytes and increase lipolysis 
within these cells. They do so by inhibiting expression of SERBP-1; a transcription factor 
needed for the expression of genes for several enzymes and factors involved in 
adipogenesis. PI may also induce expression of anti-adipogenic factors like Pref-1. 
Furthermore, Nelfinavir, a PI, has been shown to increase lipolysis by promoting 
proteasome-mediated degradation of perilipin, which is a droplet-associated protein (97).  
RTI drugs also promote HALS by a distinct mechanism; by inhibiting the activity of the 
mitochondrial DNA polymerase-γ. This inhibition results in the depletion of 
mitochondrial DNA and hence reduced biogenesis of mitochondria. The depletion of 
mitochondrial DNA has been documented in the patients receiving these drugs (98). 
Different RTI may vary in their inhibitory effect on the activity of the DNA polymerase 
(99, 100). It is noteworthy that AZT, an NRTI, causes loss of mitochondria, impairs 
oxidative capacity and induces site-specific changes in adipose tissues in rats (101, 102). 
 
Role of pro-inflammatory cytokines in HALS:   
Adipose tissue is considered as an active endocrine organ. It is infiltrated with 
macrophages, vascular endothelial cells, fibroblasts, and other types of cells. The tissue 
produces a wide variety of soluble mediators (cytokines, chemokines and hormones), 
which include IL-18, TNF-α, IL-6, IL-8, MCP-1, chemerin, PAI-1, angiotensinogen, 
leptin, resistin, visfatin, lipin, adiponectin, etc. They are often referred to as adipokines to 
underline their origin from the adipose tissue (reviewed in 103). Via these adipokines, 
adipose tissue has the ability to regulate body metabolism, inflammation, reproduction, 
immune responses and life span of an individual. 
A characteristic finding in HALS is the occurrence of increased levels of several 
proinflammatory cytokines (IL-6, TNF-α, IL-18) in the circulation as well as in the 
adipose tissue of the patients (94).  The patients also have increased levels of circulating 
CRP; a general indicator of inflammation. Furthermore, the levels of soluble(s) TNFR-I 
and sTNFR-II, which indicate overall activation of the TNF system, are also increased. In 
contrast to the levels of proinflammatory cytokines, the concentrations of adiponectin and 
lipin are decreased in the circulation of these patients. They correlate inversely with those 
of IL-18, IL-6 and TNF-α in these patients. It is noteworthy that adiponectin is an anti-



inflammatory cytokine that enhances insulin sensitivity, and lipin plays a role in 
adipocyte differentiation. The concentrations of leptin, a regulator of energy homeostasis, 
however, usually remain within physiological limits (49, 94, 104, 105). The increased levels of 
the proinflammatory cytokines may result also from direct effects of HIV and/or of its 
gene products on various human cells (106-108). Anti-HIV drugs also induce production of 
these cytokines from human cells and tissues including adipocytes.  It is widely believed 
that proinflammatory cytokines play an important role in the causation of HALS. They 
inhibit adipocyte differentiation and have catabolic effects on adipocytes. Furthermore, 
they inhibit lipoprotein lipase activity causing lipidemia. For example, increased levels of 
TNF-α in the circulation of HIV-infected HALS patients with HALS are accompanied 
with glycerol release and decreased ASP production (49). In vitro, the cytokine inhibits 
expression of several genes involved in adipogenesis, e.g., C/EBP-α and PPAR-γ. It also 
causes lipolysis, de-differentiation and apoptosis in adipocytes (109-111). The cytokine 
increases net oxidation of lipids, and attenuates insulin-mediated suppression of free fatty 
acids and glucose uptake via inhibiting expression of the glucose transporter GLUT-4 in 
HALS patients (112). Another proinflammatory cytokine IL-15 also reduces hepatic 
lipogenesis, promotes fat oxidation and decreases both brown and white adipose tissues 
without affecting food intake. The cytokine inhibits lipoprotein lipase activity and uptake 
of lipids by AT. Furthermore, it induces the expression of several genes, whose products 
are involved in thermogenesis, e.g., UPC-1 and UCP-3, PPAR-δ and PPAR-α (113). The 
cytokines with anti-inflammatory effects may antagonize the effects of pro-inflammatory 
cytokines. For example, IL-4 promotes adipogenesis, and increases lipid biosynthesis by 
increasing the expression of SERBP-1 in vascular endothelial cells (114, 115). 
 
Role of IL-18 in HALS: 
It is noteworthy that IL-18 is one of several pro-inflammatory cytokines, whose 
concentrations are increased in the circulation as well as in the adipose tissues in HIV-
infecred HALS patients. The potential role of this cytokine in the etiopathogenesis of 
HALS is beginning to emerge. IL-18 mRNA and protein as well as IL-18R transcripts 
have been detected in the adipose tissue, including adipocytes, and TNF-α increases this 
expression (116). As mentioned above, concentrations of IL-18 increase in the sera of 
HIV-infected persons. Interestingly, these levels are significantly higher in HALS 
patients as compared to those of the patients without HALS. These levels correlate with 
those of TNF-α, but not with those of IL-6.  Furthermore, an inverse correlation was 
found between IL-18 levels and the limb fat quantity, implicating this cytokine with 
lipoatrophy (117). IL-18 gene is expressed at higher levels in the adipose tissue of the 
patients with HALS as compared to the patients without HALS. The level of expression 
in the femoral gluteal adipose tissue correlated with the degree of lipoatrophy (118). It was 
also observed that in the subcutaneous tissue, from where fat disappears, IL-18 gene 
expression is increased. Taken together these studies suggest that IL-18 is implicated in 
the depletion of adipocytes from these areas. As mentionrd above, an important finding in 
the HLAS patients is decreased levels of adiponectin in their circulation. This anti-
inflammatory mediator is produced by adipocytes, but ironically its concentrations 
decrese in obese individuals probably due to biological effects of pro-iflammatory 
cytokines. In this regard, IL-18 has been shown to inhibit transcription and mRNA 
expression as well as protein secretion from adiponectin gene by phosphorylating NFAT-



c4 via EKR1 and 2 (119). Taken together these observations suggest that IL-18 plays an 
important role in ipoatrophy seen in HALS patients. 
 
IL-18 and insulin resistance: 
Production of proinflammatory cytkines from adipose tissues provides a link between 
obesity and metabolic disorders, e.g, insulin resistance (IR). In fact it is the inflammation 
induced by these cytokines rather than obesity per se that underlies obesity-associated IR, 
T2D and T2D-associated nephropathy and retinopathy (120). These cytokines may 
increase IR in many ways: They interfere with insulin-mediated signaling, induce 
expression of SOCS proteins that increase insulin resistance, disturb adipocyte 
metabolism and decrease ability of the adipose tissue to store lipids. Consequently, there 
is dyslipidemia and lipids start accumulating in ectopic places, e.g., liver, pacrease, heart 
and skeletal muscles and increase insulin resistance in these organs. Increased IL-18 
concentrations in HIV-infected individuals are likely to contribute to insulin resistance 
and metabolic disorders in all these fashions.  Hypercholesterolemia, dyslipidemia (low 
HDL, hypertriglyceridemia, decreased VLDL), insulin resistance, increased fasting levels 
of glucose and insulin in the blood, were reported in HIV-infected persons even before 
the advent of HAART era (121). The implication of IL-18 in these manifestations is 
supported by the reports that the serum levels of this cytokine are significantly higher in 
HIV-infected patients with hypertriglyceridemia as compared to the patients with normal 
triglyceride levels (122). It is noteworthy that increased concentrations of this cytokine 
have also been reported in the circulation of HIV-seronegative T2D patients either 
diagnosed recently or with a long history of the disease. The levels decrease with high 
high fiber diet (123). Increased levels of the cytokine predict nephropathy in these patients 
(124). These levels correlate with obesity, glucose intolerance and could predict the onset 
of T2D in obese patients. The levels decrease with weight loss in obese individuals (123, 

125, 126; reviewed in 127). Interestingly, the cytokine and its recptor are expressed in 
pancreas in humans. The cytokine, alone as well as in combination with IL-12, causes 
acute pancreatitis and destruction of insulin-producing cells (128, 129). Moreover, 
administration of exogenous IL-18 promotes development of diabetes in young NOD 
mice (130). The cytokine is also responsible for streptozotocin-induced diabetes in mice, 
and IL-BP alleviates the disease in these mice (131).   
 
Cardiovasculr (CV) Diseases:  
IL-18 has been implicated in the development and progression of atherosclerosis. 
Functional IL-18Rs are expressed in atheroma-associated vascular endothelial cells and 
smooth muscles, which are augmented by LPS, TNF-α, IL-1β and other proinflammatory 
stimuli (reviewed in 22). Mononuclear phagocytes in the lesions express mature IL-18. IL-
18 induces several biological effects in the vascular endothelial cells that are reminiscent 
of atherogenesis: induction of IL-6, IL-8, ICAM-1 and various matrix metalloproteinases 
(MMP). Unexpectedly the cytokine also induced IFN-γ in smooth muscle cells (132). 
Increased levels of IL-18 expression in atherosclerotic plaques have been associated with 
plaque instability that may lead to acute ischemic syndromes (133). Increased levels of the 
cytokine also occur in the circulation of atherosclerosis patients.  The serum levels of the 
cytokine correlate with thickness of the intima-media of coronary artery (134, 135). The 
thickness reflects overall burden of systemic atherosclerosis. Increased levels of the 



cytokine have also been reported in patients having unstable angina pectoris as well as in 
acute coronary disease (136, 137). More importantly, in vivo neutralization of IL-18 by its 
natural antagonist (IL-18BP) slows down the development of atherosclerosis in a mouse 
model of the disease (138). In a prospective study, Blankeberg et al (139) have shown that 
increased IL-18 levels predict poor prognosis and increased risk of deaths in the patients 
with established coronary heart disease.  IL-18 induces secretion of PAI-1 from 
adipocytes and promotes thrombogenic events (119). Increased levels of this thrombogenic 
mediator in the circulation of HALS patients have been documented (140). The IL-18-
induced secretion of PAI-1 suggests that IL-18 may be causally involved in the enhanced 
platelet activation. Indeed, we have demonstrated a positive correlation between serum 
IL-18 levels and platelet activation in HIV-infected persons (68).  Heart failures with 
increased IL-18 concentrations in the circulation cause more deaths than the heart failures 
with physiological levels of the cytokine (reviewed in 141). The cytokine is expressed in 
heart itself: many cell types in this organ e.g., cardiomyocytes, smooth muscle cells, 
endothelial cells, resident macrophages and infiltrated neutrophils, etc, produce this 
cytokine (141). CRP, which is produced in liver in response to IL-6 and whose 
concentrations increase in the circulation in iflammatotry conditions, induces IL-18 
production from vascular endothelial cells (103). 
More than 60% of the patients receiving anti-HIV drugs develop hyperlipidemia, 
hyperglycemia, and central obesity (142). Several studies have documented occurrence of 
increased carotid intima media thickness and biomarkers of cardiovascular risk 
(cholesterolemia, triglyceridemia, dyslipidemia, lower homocysteinemia, increased CRP 
levels, etc) in HIV-infected children and adults as compared to their HIV-seronegative 
counterparts (143-145). Occurrence of cardiovascular events is a real risk in HIV-infected 
patients undergoing ART.  Use of lipid-lowering treatments may have been useful in 
stabilising this risk. It is highly likely that increased IL-18 concentrations in the 
circulation of in these patients play a role in the development of this risk. Neutralizing 
these concentrations with IL-18BP could prove to be a beneficial strategy in these 
patients. 
   
HIV-associated dementia (HAD):  
HAD is a severe neurological complication in HIV-infected persons. It is characterized 
by development of sever cognitive, behavioral and motor dysfunctions. In the btain, both 
HIV-infected and non-infected macrophages and microglia produce proinflammatory 
cytokines like TNF-α, IL-1β and IL-18.   These proinflammatory cytokines are believed 
to play a major role the pathogenesis of HAD (reviewed in 146). These cytokines increase 
permeability of the blood-brain barrier that allows infiltration of HIV-infected 
macrophages into brain. The cytokines cause neuronal death by a variety of mechanisms, 
e.g., by overstimulating N-methyl-D-aspartate (NMDA) receptors, and inducing NO and 
RONS. Increased concentrations of IL-18 occur in the circulation and CSF in patients 
suffering from psychic disoerders. Gp120 induces caspase-1 activation and IL-1β 
secretion from microglia and astrocytes in the brain (146). These cells also express IL-18 
and likely to produce this cytokine in response to HIV infection. Indeed, increased levels 
of IL-18 occur in the CSF of HIV-infected persons suffering from opportunistic 
infections of the CNS (147). It is noteworthy that a significant correlation was found 
between IL-18 production and cognitive decline in Alzheimer disease patients (148). 



Given that HIV-infected patients have increased concentrations of biologically active IL-
18, the cytokine is likey to contribute towards the development of HAD in these patients. 
:  
HIV and IL-18 gene polymorphism: 
The human IL-18 gene is maps to chromosome 11q22.2 to 11q23.3. It contains 6 exons 
and 5 introns spread over 20.8 kb region in 11q23.1. Two TATA-less promoters, located 
upstream exons 1 (Promoter 1) and 2 (Promoter 2), have been described for the gene. The 
promoter 1 is constitutively active in cell lines like THP-1 and U937, while the promoter 
2 is induced by LPS and infectious agents (149). It has been shown that promter 1 is 
exclusively used in adrenal gland constitutively as well as in response to neurogenic 
stimuli, while promoter 2 is used by cells of the immune system (150).  Despite frequent 
sequencing of the gene in diverse human populations, no non-synonoymous SNP could 
be found in the exons, and exon-intron boundaries of the gene. Furthermore, no SNP 
could be detected in the mRNA splice sites. A limited degree of polymorphism has been 
reported in the promoter region, 3′ and 5′ untranslated regions (UTR) of the IL-18 gene 
(reviewed in 151). Three synonymous SNP have been described in the proximal prompter 
region of the IL-18 gene: G-656T, C-607A and G-137A. Of these SNP, replacing C at -
607 with A abrogates a cAMP response element-binding site, whereas replacing G at -
137 with C abrogates a DNA binding site for the nuclear factor H4TF1. The haplotype 
CG is associated with an increased production of IL-18 protein (152). Interestingly, -607C 
was recently shown to be a risk factor for vertical transmission of HIV infection in a 
cohort of Brazillian children born to HIV-infected mothers, who took no antiretroviral 
therapy during pregnancy and did not undergo Caesarian section (153). This study 
suggests that the children with genetic ability to produce more IL-18 may be at a higher 
risk of perinatal infection. However, it is noteworthy that –607C alone has not been 
associated with increased production of the cytokine. It would have been interesting to 
determine the IL-18 promoter genotype of the mothers. It is quite likely that the mothers 
may have a high IL-18 producer genotype of their IL-18 promoter. Such mothers may be 
simply having higher viral loads and hence may transmit HIV to their newborns more 
efficiently. 
Several studies have reported varying degrees of association of IL-18 gene SNP and their 
haplotypes with atherosclerosis, Multiple sclerosis, coronary heart disease, acute graft 
versus host disease, Crohn’s disease and ulcerative colitis. Unfortunately, no clear-cut 
correlations could be demonstrated between predisposing genotypes and enhanced IL-18. 
Furthermore, many of the results have been contradicted by other studies (reviewed in 
151). As mentioned above, the biological activity of this cytokine is mainly controlled by 
IL-18BP and activation of caspase 1. The genetic variations that lead to a diminished 
production of IL-18BP and/or enhanced activation of caspase 1 could result in enhanced 
biological activities of this proinflammatory cytokine, and hence may predispose humans 
to proinflammatory diseases.  
   
Conclusions and Future Directions: 
The fact that certain viruses have incorporated the genes for IL-18BP and ICE inhibitor 
(e.g., the Cytokine Response Modifier gene in certain Pox viruses)  into their genomes, 
suggests the importance of IL-18 and related cytokines as an impediment to viral 
replication. However, HIV has probably developed alternate strategies to evade antiviral 



effects of this cytokine. It compromises the production of other cytokines (e.g., IL-12, IL-
15, IL-21, etc) without which IL-18-induces responses blunt antiviral immune responses. 
Furthermore, increased production of immunosuppressive cytokines like TGF-β and IL-
10 attenuates IL-18-induced IFN-γ production. Indded, a large body of data collected 
from clinical studies suggests that increasing concentrations of biologically active IL-18 
in the circulation of HIV-infected individuals undermine innate and adaptive antiviral 
immune responses especially in later stages of the infection. They may also enhance HIV 
replication, especially in combination with other cytokines. Because of its ability to 
induce other inflammatory cytokines and amplify TH17 type CD4+ effector/memory T 
cells, it might be involved in tissue destruction in this infection.  
IL-18 is a cytokine produced by adipose tissue and it regulates lipid metabolism, energy 
homeostasis, insulin resistance and cardiovascular manifestations. It is noteworthy that 
studies in IL-18 and in IL-18R KO mice suggest a protective role of this cytokine in 
obesity, as these mice develop obesity, insulin resistance and atherosclerotic lesions with 
age (154). They also exhibit defective control of food intake by the hypothalamic satiety 
center and become hyperphagic. The plasma IL-6 levels are not affected in these mice. In 
accord with these results, IL-18BP-over-expressing mice also overate and became 
hyperglycemic. IL-18 deficiency caused decreased levels of constitutively activated 
STAT-3 in these mice (154). Interestingly, intracerebral but not intravenous or 
intraperitoneal injections of recombinant murine IL-18 reversed these effects (154). These 
data suggest that effects of IL-18 on insulin resistance and adiposity may be quite 
different depending upon its route of administration: it may promote insulin sensitivity 
and energy expenditures when acting on brain and may prote adiposity and insulin 
resistance when acting in the periphery (organs).  Similar results were reported for 
another proinflammatory cytokine IL-6. IL-6 KO mice develop mature-onset obesity, IR 
and diabetes. Its peripheral administration promotes insulin resistance and dyslipidemia, 
whereas its administration into CNS protects mice from these manifestations (88, 124). 
Clearly further studies are needed to learn more on the effects of IL-18 and its natural 
antagonist on energy and lipid homeostasis in animal models. Furthermore, while IL-18 
gene knock-out and transgenic mice provide valuable information, such studies must be 
verified by neutralization of the cytokine by siRNA or antagonist to avoid potential 
effects of compensatory mechanisms. It may be relevant to mention here that it has been 
argued that obese individuals as well as T2D patients develop resistance to IL-18, as their 
leukocytes respond poorly to this cytokine in ex vivo studies due to reduced expression of 
IL-18Rα and β chains on their surface (155). Due to a compromised production of IL-12, 
which induces expression of IL-18Rβ on naïve T cells, it is highly likely that the number 
of T cells responding to IL-18 may decline especially in later stages in the course of HIV 
infection. Unfortunately no studies have been reported on the expression of IL-18R or 
responsiveness of human cells to this cytokine in HIV-infected cells. Such studies are 
highly desirable for fully understanding the role of this cytokine in controlling HIV 
infection and its role in antiviral immunity and immunopathogenesis.    
In the context of HIV infection, increased concentrations of IL-18 in HIV-infected 
patients blunt antiviral immunity, contribute towards immunopathogenesis of AIDS and 
promote disturbances in fat metabolism, IR, atherogenesis and cardiovascular 
manifestations. Therefore targeting IL-18 may be a therapeutic option. Fortunately, a 
natural antagonist with strong neutralizing activity exists for this cytokine and may be the 



best option. Moreover, small molecular inhibitors of ICE have been developed. They 
inhibit ICE-mediated processing of IL-18 and IL-1β precursors into their biologically 
active forms. They may be used to reduce activities of these proinflammatory cytokines 
in chronic infectious and inflammatory conditions.  Still P2X7R may be another target. 
Small molecular inhibitors of the receptor may be used to modulate inflammatory 
responses mediated by IL-18 and related cytokines (IL-1β and IL-33). These therapeutic 
options may be exercised in HIV-infected patients under close monitoring for 
unpredictable side effects.       
Pro-inflammatory cytokines are known to regulate fat metabolism, induce IR and 
promote atherogenic process. Some of these effects are mediated by their direct effects on 
adipocytes. Little is known about potential effects of IL-18 on adipocytes and insulin-
mediated signaling in human cells. It is noteworthy that human adipocytes express this 
cytokine and its receptor as well. Future studies shoud address these issues. Given that 
brown and white adipocytes arise from distict precursors and undergo distict programs of 
differentiation, such studies should be conducted on both types of cells separately. A 
potential role of IL-18 or its antagonist in the differential behavior of SAT and VAT also 
needs to be carefully examined. The results may be important for understanding the 
etiopathogenesis of HALS. They will also have implications for obesity, diabetes and 
atherosclerosis. 
Experimental studies have shown that IFN-γ induces IL-12Rβ1 chain on naïve CD4+ T 
cells in an IRF-1 dependent pathway that is required for IL-12-mediated differentiation of 
these cells into TH1 type cells. An early production of IFN-γ, therefore, is important for 
inducing effective antiviral immune responses. By its ability to induce this cytokine, IL-
18 could serve as an efective adjuvant for anti-HIV vaccination. In vaccination studies, 
the injection of IL-18-encoding DNA as an adjuvant has been shown to induce protective 
TH1 type immunity. In this regard, co-injection of IL-18 and IL-12 encoding DNA may 
be more effective (reviewed in 58). Future studies on anti-HIV vaccination using this 
cytokine as an adjuvant are highly desirable.  
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Table 1. Biological effects of IL-18 
IL-18: 
1. Induces, togerher with IL-12, production of IFN-γ from NK and T cells. 
2. Plays a role in the interactions of DC with other cell types. 
3. With IL-12, suppresses, and without it promotes IgE synthesis. 
4. Induces proliferation of TH1 and TH17 type CD4+ effector/memory cells. 
5. Activates and induces production of IL-4, IL-13 and histamine from mast cells and 

basophils. 
6. Converts TH1 type CD4+ T cells into TH2 type cytokine-producing cells upon antigenic 

stimulation.  
7. Induces FasL expression on NK cells 
8. Enhances perforin expression in NK and T cells without affecting transcription. 
9. Induces TNF-α, IL-6, IL-1β, NO, MCP-1 and PAI-1 production from a variety of human 

cells. 
10. Induces ICAM-1, VCAM-1 on vascular endothelial cells and synovial membrane 

fibroblasts. 
11. Causes accumulation of neutrophils at inflammatory sites.  
12. Affects energy homeostasis and lipid metabolism.  
13. Stimulates production of matrix metalloproteinases and tumor metastasis.  
14. Plays a role in tissue destruction in chronic inflammatory conditions. 
15. Induces IL-4 from ligand-activated NKT cells. 
16. Induces HIF and modulates angiogenesis. 
17. Expands IFN-γ producing antigen-specific T cells via CD134 pathway.  
18. Promotes cartilage degradation but inhibits bone erosion.  
 
DC: Dendritic cells; HIF: Hypoxia-induced factor; NO: Nitric oxide; PAI-1: Type 1 
plasminogen activator inhibitor.  

 
 

 
 
 



Table 2. How IL-18 contributes towards AIDS pathogenesis  
1. By promoting TH2 type immune responses in the absence/deficiency of IL-12 
2. By amplifying TH17 cells and causing chronic inflammation and tissue destruction.  
3. By enhancing HIV replication especially in concert with other cytokines. 
4. By causing NK cell loss by fratricidal killing of NK cells via FasL and TNF-α 
5. By promoting the development of HALS and other metabolic disorders in HIV-infected 

patients  
 
 
 



  
Figure 1: Cytokines and immnune responses 
Figure 2: Signals needed for IL-18 production and secretion 
Figure 3: IL-18-mediated signaling in target cells  
Figure 4: Adipocyte differentiation scheme 
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1.2.3 Les cellules NK et l’infection par le VIH  

 

Les cellules "Natural Killer" (NK) constituent un élément bien 

reconnu et important du système immunitaire inné. Elle joue un rôle 

important dans la défense de l’hôte contre les pathogènes, les rejections 

des greffes, des tumeurs, et des cellules allogéniques [133-136]. C’est une 

population des lymphocytes de faible densité, de large granulosité, elles 

constituent 10 à 15% des cellules mononucléaires du sang périphérique 

(PBMC). Elles se trouvent, aussi bien, dans les tissus et  dans les organes 

[137-139]. Les cellules NK se distinguent des monocytes (CD14+), des 

cellules B (CD19+), et des cellules T (CD3+) par un phénotype CD3-, 

CD14-, CD19-, CD16+, CD56+[137, 138]. Les cellules NK tuent les 

cellules qui n’expriment pas à leur surface l’antigène du soi du CMH 

classe I, contrairement au CTL. Ces observations ont mené Karre et 

collaborateurs a proposé l’hypothèse du "missing self hypothesis", dans 

lequel ils ont postulé que les cellules NK reconnaissent les molécules du 

CMH du soi. La réduction ou la déficience de ces molécules du CMH du 

soi rend les cellules cibles plus  susceptible à l’attaque des cellules NK 

[140-144]. Comme c’est  déjà connu,  les molécules du CMH de classe I 

sont les  ligands des  récepteurs inhibiteurs. Une fois liée à leur ligand, ces 

récepteurs inhibent la cytotoxicité des cellules NK et la sécrétion des 

cytokines [140, 144]. Les cellules NK sont régulées par une balance entre 

les récepteurs inhibiteurs et activateurs qui reconnaissent et se lient à la 

fois aux molécules classiques et on classiques du CMH classe I, aussi à 

d’autre molécules [145-147]. Les cellules NK ont deux types de 

recepteurs: " Non-MHC Class–I Binding Receptors" dont la famille des 

"natural cytotoxicity receptors "(NCR) et les " MHC-Class-I Binding" 

dont il es divisé en trois groupes : la famille des NKG2-CD94, la famille 

des Immunoglobulines" like transcripts" (ILT) et la famille des "killer-cell 

immunoglobuline-like receptors" ou (KIR) [137-139, 147, 148]. 
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Finalement, les cellules NK peuvent médier la lyse de leur cible par un 

mécanisme qui implique la sécrétion des perforines et des granzymes, et 

elles peuvent causer l’apoptose par l’interaction Fas/FasL et TRAIL aussi 

[137, 138].  

D’autres informations bien détaillées sur les cellules NK et leurs 

fonctions dans l’infection par le VIH, ont été présentées dans deux articles 

de revue, qui ont été rédigés par notre équipe et sont déjà publiés dans le 

“Journal of Leukocyte Biology". Ces articles sont présentés dans les pages 

suivantes.  

 

1.2.3.1     Article 2:   

1.2.3.1.1 Antiviral NK cell responses in HIV infection: I. NK cell receptor genes as 
determinants of HIV resistance and progression to AIDS  

 

Alexandre Iannello, Olfa Debbech, Suzanne Samarani, and Ali Ahmad. 

2008. Journal of Leukocyte Biology, 84 (1):1-26. 

 

RÉSUMÉ 

Les cellules NK constituent un élément bien connu et important du 

système immunitaire. Elles jouent un rôle important dans la défense contre 

les pathogènes et les tumeurs. C’est une population de lymphocyte de 

faible densité et de forte granulosité. Elles constituent 10% à 15% des 

cellules mononuclées du sang périphérique. Elles ont été caractérisées par 

leur habileté de tuer les tumeurs et les cellules infectées par des virus. Leur 

cytotoxicité dépend d’un anticorps (ADCC) et sous la restriction du CMH. 

Elles attaquent les cellules cibles qui sont déficientes ou l’expression du 

CMH est réduite. Leur fonction est régulée par une délicate balance entre 
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les récepteurs activateurs et inhibiteurs et des corécepteurs dont leurs 

ligands sont exprimés à la surface des cellules cibles. Cet article élabore 

l’importance de la famille des récepteurs KIR et leur interaction avec les 

gènes du CMH classe I peut déterminer une résistance du système 

immunitaire innée de l’hôte en réponse à une infection virale,  ceci inclus 

l’infection par le VIH. Alors cet article de revue donne une idée sur 

l’immunobiologie, les récepteurs et leurs ligands. Finalement, il explique 

comment le polymorphisme des gènes qui codent pour les récepteurs KIR 

et leurs ligands  HLA déterminent la résistance ou la susceptibilité à 

l’infection par le VIH et le développement vers la maladie de 

l’immunodéficience  (SIDA).  

 

Contribution  

J’ai contribué dans la rédaction de cet article, de donner mes idées, à la 

recherche des nouvelles idées et informations et  finalement à chercher des 

nouvelles références. 

 

 

 

 

 

 

 

 

 



Antiviral NK cell responses in HIV infection: I. NK cell receptor
genes as determinants of HIV resistance and progression
to AIDS

Alexandre Iannello, Olfa Debbeche, Suzanne Samarani, and Ali Ahmad1

Laboratory of Innate Immunity, Center of Research Ste Justine Hospital, and Department of Microbiology and
Immunology, University of Montreal, Montreal, Quebec, Canada

Abstract: NK cells play an important role in con-
trolling viral infections. They can kill virus-in-
fected cells directly as well as indirectly via anti-
body-dependent, cell-mediated cytotoxicity. They
need no prior sensitization and expansion for this
killing. NK cells are also considered as important
regulators of antiviral immune responses. They do
so by secreting a multitude of soluble mediators
and by directly interacting with other immune
cells, e.g., dendritic cells. NK cells do not possess
a single well-defined receptor to recognize antigens
on target cells. Instead, they express an array of
inhibitory and activating receptors and corecep-
tors, which bind to their cognate ligands expressed
on the surface of target cells. These ligands include
classical and nonclassical MHC class I antigens,
MHC-like proteins, and a variety of other self- and
virus-derived molecules. They may be expressed
constitutively and/or de novo on the surface of
virus-infected cells. NK cell receptors (NKRs) of
the killer-cell Ig-like receptor (KIR) family, like
their MHC class I ligands, are highly polymorphic.
Several recent studies suggest that epistatic inter-
actions between certain KIR and MHC class I
genes may determine innate resistance of the host
to viral infections, including HIV. In the first part
of this review article, we provide an overview of the
current state of knowledge of NK cell immunobi-
ology and describe how NKR genes, alone and in
combination with HLA genes, may determine ge-
netic resistance/susceptibilty to HIV infection and
the development of AIDS in humans. J. Leukoc.
Biol. 84: 1–26; 2008.

Key Words: CD94/NKG2 � chemokines � cytokines � HIV-1 �

HLA � KIR � KIR haplotypes � MHC class I � MICA � MICB � NKG2D
� ULBP

INTRODUCTION

HIV is the causative agent of AIDS: a dreadful and socially
stigmatizing disease syndrome of the 20th century that inevi-
tably leads to death. The AIDS epidemic has killed more than
25 million humans since 1981. At present, close to 40 million

people are infected with the virus in the world. It has been
estimated that in 2006, more than 4 million new infections
occurred with the virus, and 3 million people died of AIDS in
the world. It is widely believed that the viral infection is
spreading in several underdeveloped and developing countries,
e.g., China, India, and Eastern European countries (www.
unaids.org). This situation underlines the need for developing
an effective anti-HIV vaccine. However, at present, the pros-
pects of developing an effective anti-HIV vaccine do not seem
very promising. Although, anti-HIV drugs have significantly
prolonged lifespans of HIV-infected patients and have reduced
deaths, they do not cure the infection. Furthermore, sooner or
later, the virus develops resistance to these drugs. Researchers
have made spectacular advances in studying and analyzing
immune responses to the virus. Most of these studies have
largely focused on virus-specific immunity, i.e., HIV-specific
antibodies, CD4� and CD8� T cell responses. It is noteworthy
that the inductive and effector mechanisms of these responses
depend on the recognition of small viral peptides by the
immune cells. Unfortunately, small RNA viruses (such as HIV)
are quite apt in neutralizing these responses by their remark-
able ability to mutate (reviewed in ref. [1]). On the other hand,
innate immune responses do not limit themselves to the rec-
ognition of small viral peptides. Instead, innate immune cells
recognize so-called molecular patterns associated with patho-
gens (e.g., dsRNA, CpG motifs in viral DNA), altered self
(reduced expression of MHC antigens), and/or induced self (de
novo expression of pathogen-induced host proteins) on the
body’s own cells. Activation of innate immune cells is also a
prerequisite for mounting an effective, pathogen-specific adap-
tive immunity. Understanding these responses may provide
better ways of controlling viral infections.

NK cells constitute an important component of the host’s
innate immune system. Once considered as relatively unim-
portant and nonspecific killers of tumor cells, NK cells are now
recognized as important cells with ready-to-go effector and
regulatory functions. For long, NK cells have been known to
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kill virus-infected cells, and NK cell-deficient individuals have
been known to suffer from repeated viral and bacterial infec-
tions [2, 3]. However, a lack of understanding of NK cell
immunobiology until recent years has been an impediment in
appreciating the role of these cells in controlling these infec-
tions. Today, scientists have made significant advances in
understanding how NK cells function and regulate innate and
adaptive immune responses. Consequently, we have learned a
lot about the role of these cells in HIV and other viral infec-
tions. The review focuses on NK cell responses in HIV infec-
tions and their relevance to anti-HIV resistance, immunother-
apy, and vaccination. We also underline some of the important
unresolved issues with respect to these cells in HIV infection
that need to be addressed in future research. Understandably,
it will have to begin with an overview of the current immuno-
biology of NK cells.

NK CELLS

NK cells are a population of low-density, large granular lym-
phocytes, which mainly develop and differentiate in bone mar-
row and then enter into the circulation. Significant numbers of
NK cells also develop and differentiate in thymus, spleen,
tonsils, and lymph nodes [4, 5]. As a result of their different
sites and pathways of development, NK cells are heterogeneous
with respect to their phenotypic characteristics and functional
capabilities. They make up 10–15% of the PBMC. In response
to proinflammatory stimuli, which may be induced by a viral
infection, NK cells migrate to various tissues and organs of the
body. Significant numbers of NK cells occur in thymus, lymph
nodes, gut, liver, peritoneum, and other organs and tissues of
the body. NK cells represent a cell lineage distinct from those
of monocytes, granulocytes, and B cells. They share a common
hematopoietic progenitor with T cells. However, they are less
specialized than T cells and retain certain ancestral charac-
teristics of plasticity and versatility. Phenotypically, NK cells
are CD3–, CD2�, CD16�, CD56�, CD14–, and CD19–. Unlike
T and B cells, they do not express a well-defined single antigen
receptor. They also do not express recombinase activating
genes (RAG) and retain their TCR and BCR genes in germ-line

configurations. See Table 1 for commonly used NK cell mark-
ers. It is noteworthy that most of these markers are not NK
cell-specific, as cells of other types may also express them.
However, NKp46 and NKp30 may be considered as NK cell-
specific markers, as non-NK cells rarely express them.

NK cells should not be confused with NKT cells. The two
cell types are quite distinct from each other with respect to
their origin, phenotype, antigen recognition, and certain effec-
tor functions (reviewed in refs. [6, 7]). As their name implies,
NKT cells share characteristics with NK and T cells; i.e., they
are CD3�, bear clonotypic �� TCR and certain NK cell
markers (CD56�, CD161�), and secrete IFN-� and/or IL-4.
They recognize self and foreign glycolipids in association with
a MHC class I-related glycoprotein CD1d. Activation of NKT
cells usually leads to activation of NK cells and dendritic cells
(DC) in the body.

Human NK cells can be divided into two major subsets
based on the level of expression of CD56 and the presence or
absence of CD16. The two markers are usually expressed
reciprocally on these cells. The two subsets CD56highCD16–

and CD56lowCD16� represent �10% and 90% of NK cells
present in the peripheral blood, respectively [8, 9]. The cells in
the two subsets differ in their proliferative potential, homing
characteristics, functional capabilities, and responses to dif-
ferent cytokines (listed in Table 2). The cells in the former
subset express high-affinity receptors for IL-2, proliferate in
response to picomolar concentrations of the cytokine, produce
mainly cytokines upon activation, and have low cytotoxic po-
tential. They express little KIR and preferentially migrate to
secondary lymphoid organs, e.g., lymph nodes, tonsils. Most of
the NK cells in lymph nodes are CD56high. The CD56low

CD16� NK cells express low-affinity IL-2Rs, proliferate in
response to nanomolar concentrations of IL-2, express KIR,
and are highly cytotoxic. These NK cells migrate to inflamed
tissues in response to chemotactic stimuli. By virtue of expres-
sion of CD16, they are also efficient mediators of ADCC. The
CD56high subset is less cytotoxic as compared with the CD56low

subset, probably as a result of their lower expression of perforin
and �-chain [9, 10]. The �-chain is a signal-transducing com-
ponent of the high-affinity receptor for IgE (FcεRI) and acts as
a signaling partner for several activating NK cell receptors

TABLE 1. Common Markers Used for Phenotypic Characterization of Human NK Cells

Marker Structure Ligand Prevalence Function

CD2 Ig-like CD58 All Adhesion, Conjugate formation
CD3 Ig-like TCR Absent –
CD19 Ig-like BCR Absent –
CD14 G-LRR LPS Absent –
CD16A Ig-like IgGa Subset ADCC, Degranulation
CD56 Ig-like Self Subset Homotypic adhesion
NKp46b Ig-like HA All Activation
NKp44b Ig-like HA All Activation
NKp30b Ig-like ? All Activation
CD161 C-type Lectin LLT-1 All Activation?
CD8 Ig-like MHC class I Subset Costimulation, Conjugate formation

Prevalence refers to whether all or a subset of NK expresses the marker. G-LRR, GPI-anchored leucine-rich repeat-containing glycoprotein; HA, hemagglutinin
of influenza virus; LLT-1, lectin-like transcript-1; ADCC, antibody-dependent, cell-mediated cytotoxicity. a IgG, IgG aggregated or found in immune complexes.
b The marker is specific to NK cells. ? indicates unknown or controversial.
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(NKRs), e.g., CD16a, NKp30, NKp46, etc. Both NK cell sub-
sets become potent killer cells upon incubation with cytokines
and are called lymphokine-activated killer cells. Some workers
also differentiate between CD16high and CD16dim subsets of
NK cells. Furthermore, NK cells expressing CD56 and CD16
have also been described. They may represent different acti-
vation and differentiation states of NK cells. It is noteworthy
that incubation with different cytokines may change pheno-
typic, functional, as well as homing characteristics of NK cells.
For example, IL-2, IL-12, and IL-15 can convert
CD56highCD16– and CD56lowCD16� NK cell subsets into
CD56brightCD16� cells. On the other hand, TGF-�1 converts
CD16� NK cells into CD16– NK cells [11–13].

NK CELL FUNCTIONS

Although NK cells have been traditionally known for their
ability to kill certain tumor and virus-infected cells, they also
perform other important roles (detailed in Table 3). Like
neutrophils, NK cells can kill bacteria by secreting �-de-
fensins: the antimicrobial peptides that can disrupt bacterial
cell walls. They act as important immunoregulatory cells by
secreting cytokines and chemokines. It is noteworthy that NK
cells are the only known source of IFN-� other than activated
T cells. The cytokine is known to activate macrophages and
drive CD4� T cell differentiation into type 1 (TH1) cells. It
also induces expression of TRAIL on T cells. An immediate
release of this cytokine from NK cells in early stages of an
infection is crucial for inducing virus-specific immunity. In
addition to IFN-�, NK cells have been documented to secrete
TNF-�, GM-CSF, IL-5, IL-13, IL-10, TGF-�, MIP-1�, MIP-
1�, RANTES, NO, etc. (reviewed in ref. [14]). In addition to

their immunoregulatory properties, IFN-� and TNF-� can in-
duce an antiviral state in the host cells and inhibit virus
replication by noncytopathic mechanisms. This virtual curing
of the infected cells is increasingly being appreciated in con-
trolling viral infections [15].

NK cells regulate immune responses by interacting physi-
cally with other cells in the body. Their interactions with
monocyte-macrophages, DC, and T, B, NKT, and vascular
endothelial cells are beginning to be understood. These inter-
actions bear important implications for viral infections, malig-
nancy, and autoimmunity. Under appropriate conditions, NK
cells can cause differentiation of monocytes into macrophages
[16]. They also interact with activated macrophages. These
interactions result into activation of interacting NK cells via
2B4 and CD48 interactions. NK cells also kill macrophages
that become overactive (with high doses of LPS) and express de
novo ligands for certain activating NKRs. They also kill mac-
rophages, which produce immunosuppressive, cytokine-like
TGF-� and IL-10. Consequently, NK cells promote TH1 re-
sponses needed for the induction of an effective immune re-
sponse against intracellular pathogens [17, 18]. Interestingly,
NK cells themselves have the potential to act as APC. It may
be relevant to mention here that a special kind of cell was
described in mice with DC and NK cell-type characteristics. It
was named as IFN-producing killer DC (IKDC), which kill
virus-infected cells as well as tumor cells, produce IFNs, and
present antigens to T cells [19–21]. The IKDC, in fact, repre-
sent a distinct activation stage of NK cells [22]. Such cells have
not been found in humans. However, it is argued that the
human immune system is more developed than that of mice,
and all human NK cells can act as APC under appropriate
conditions. Activated human NK cells express several mole-
cules, which enable them to interact with T cells, e.g., CD11c,
MHC class II, CD80, CD86, CCR7, CD70, etc. Incubation of
NK cells with IL-18 has been shown to enhance their helping
functions [23]. This NK cell “help” function is supported by
the reports that in the presence of activated NK cells, antigen-
specific CTL may be generated without help from CD4� T cells
[24].

NK cell–DC interactions are complex and are important for
innate and adaptive immune responses against viral infections.
They will be discussed in a later section in this article.

NK cell interactions with other immune cells are important
for the induction of effective immune responses. It has been
shown that NK cells can regulate adaptive CD4� memory T

TABLE 2. Characteristics of Two Major NK Cell Subsets

Characteristic CD56hiCD16low CD56lowCD16hi

IL-2R High affinity Low affinity
Cytotoxicity � ���
Perforin Low High
Cytokine productiona ��� �
Main location Lymph nodesb Blood
KIR Low High
NKG2 Expression High Low
ADCC Function Inefficient Efficient
LFA-1 Low High
CD62Lc High Low
CCR7d High Low
SHIP-1e High Low
CD3�-chainf Low High
IL-7R High Low
c-Kitg High Low
ICAM-3 High Low
Lysozyme production Yes No

High and low refer to levels of expression. a Cytokines include IFN-�,
TNF-�, TNF-�, IL-5, IL-13, and GM-CSF. b In T cell-rich areas of lymph
nodes and other secondary lymphoid organs and in body tissues and organs
such as liver. c,d Lymph node homing receptors. e Needed for IFN-� produc-
tion. f Signaling partner for activating receptors such as CD16a. g c-Kit recep-
tor tyrosine kinase needed for IL-mediated proliferation. KIR, killer-cell
Ig-like receptors; NKG2, NK cell group 2; CD62L, CD62 ligand.

TABLE 3. NK Cell Functions

1. Natural cytotoxicity against hazardous (infected or malignant)
cells.

2. ADCC against hazardous cells in the presence of antibodies.
3. Immune regulation via secretion of chemokines and cytokines.
4. Immune regulation via physical interaction with other immune

cells, e.g., monocyte/macrophages, T and B cells, and DC.
5. Regulate hematopoiesis via secreting GM-CSF.
6. Regulate angiogenesis via interaction with vascular endothelial

cells.
7. Uterine NK cells play a role in placentation and pregnancy.
8. Role in contact hypersensitivity.
9. Rejection of bone marrow allografts.
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cells. More specifically, adoptive transfer of CD4� memory T
cells specific for myelin oligodendrocyte glycoprotein (MOG;
an autoantigen) is able to expand and cause experimental
autoimmune encephalitis (EAE; a mouse model of multiple
sclerosis) in RAG-2-deficient mice, which lack T and B cells
but have functional NK cells. However, NK cells in these mice
are inhibited from killing the CD4� memory T cells, as the
latter expresses Qa-1 (the mouse equivalent of human HLA-E).
The transferred cells do not cause EAE in Qa-1 lacking mice.
NK cells kill MOG-specific CD4� memory T cells in these
mice. These results show that NK cells play an important role
in the homeostasis of memory T cells and may also eliminate
autoreactive CD4� memory T cells under appropriate condi-
tions. The results suggest that blocking Qa-1/NKG2A interac-
tions may represent a better clinical strategy to eliminate
autoreactive T cells than using anti-CD3 antibodies [25].

In certain mouse models, NK cell activation has been shown
to be indispensable for inducing antitumor antibody and CTL
responses [17, 26]. In addition to producing IFN-�, physical
interactions between NK cells and other immunocytes are
needed for these responses. For example, via CD40/CD40L
interactions, NK cells can induce transcription of activation-
induced cytidine deaminase and switch recombinations in B
cells [27].

NK cells are plastic and may differentiate themselves into
cell types that produce predominantly IFN-� or IL-5. It is not
known what causes this polarization in NK cells. It has also
been suggested that these differences in cytokine production
may result from their different differentiation states. Neverthe-
less, this polarized production of cytokines from NK cells may
be correlated with certain disease conditions. For example,
IL-5- and IFN-�-producing NK cells were shown to correlate
with remissions and relapses in multiple sclerosis in humans,
respectively [28]. The NK cells producing predominantly IL-5
also expand and play a role in asthma in humans [29].

In a provocative study, NK cells were shown to mediate
memory-type responses. In RAG�/� mice, which lack T and
B cells, O’Leary et al. [30] demonstrated NK cell-dependent,
anamnestic responses to a hapten in mediating contact hyper-
sensitivity. Although the molecular mechanisms behind this
NK cell-dependent memory are not clear, the results may have
important implications for development of vaccines.

NK cells play an important role in successful pregnancy and
reproductive efficiency. The KIR2DL4/HLA-G interactions
and consequent secretion of IFN-� from uterine NK cells are
needed for placentation [31, 32].

NK CELL ACTIVATION

NK cells exist in the body in a semi-activated state and are
ready to kill susceptible target cells. However, they may un-
dergo activation in vitro and in vivo, which enhances their
functional capabilities. Various stimuli that activate NK cells
are listed in Table 4. A variety of cytokines activates NK cells
and induces their proliferation as well. Activated NK cells
have increased expression of activating receptors, adhesion
molecules, and intracellular effector molecules, e.g., perforin.
They secrete higher amounts of cytokines and have higher

cytolytic potential and a reduced threshold to trigger their
killing mechanism. Virus-induced cytokines usually result in
activation of NK cells of the host. These cytokines include
IFN-�/�, IL-2, IL-12, IL-15, IL-18, IL-21, and others [14, 33].
Of these cytokines, IL-15, IL-21, and fms-like tyrosine kinase
3 ligand have been found to be essential for the development,
differentiation, and homeostasis of NK cells. IL-15 knockout
(KO) mice are deficient in NK cells. Furthermore, NK cells
from normal mice undergo apoptosis when transfused into
IL-15 KO mice (reviewed in ref. [34]).

NK cells also express TLRs. Therefore, they can undergo
activation upon binding with certain viral proteins and nucleic
acids via these receptors [35, 36]. However, NK cells require
accessory cell function (presence of CD14� monocytes or
plasmacytoid DC) for TLR-mediated activation [37–39]. Cer-
tain viral proteins may act as ligands for one or more activating
NKRs and therefore, may directly activate NK cells; e.g., HA
of the influenza virus activates NK cells via NKp46 and NKp44
[40]. NK cells also become activated when they contact a
susceptible target cell (e.g., K562, which has reduced expres-
sion of MHC class I and/or has increased expression of ligands
for certain activating NKRs) and trigger their cytolytic machin-
ery to kill the target cell.

NK cells mainly kill their target cells by releasing cytotoxic
molecules (perforin, granzymes, and granulysin), which are
normally contained in their granules. These molecules are
released within the immune synapse (IS) onto the surface of the
target cells. NK cells can also kill target cells by FasL, TRAIL,
and TNF-� if the target cells express appropriate receptors [41,
42]. NK-cell mediated lysis is usually determined in microcy-
totoxicity assays by measuring the release of 51chromium,
lactate dehydrogenase, or perforin in culture supernatants.
Individual NK cells mediating the lysis can be recognized and
counted by detecting the expression of lysosomal protein lyso-
some-associated membrane protein-1 (CD107a) on their sur-
face [43, 44].

REARRANGEMENT OF CYTOSKELETON IN
NK CELL-MEDIATED KILLING

As mentioned above, NK cells mainly kill their target cells via
releasing cytotoxic granules. To avoid unintended damage to

TABLE 4. How NK Cells Become Activated in Viral Infections

NK cells may become activated and undergo expansion in a viral
infection in several ways:
1. Recognizing viral proteins and/or virus-induced proteins in

the host cells via activating receptors.
2. Monitoring the expression of MHC or MHC-like ligands for

NKRs.
3. Recognizing viral proteins, DNA, or RNA via so-called

pattern recognizing receptors, e.g., TLR, but may require
accessory cell help.

4. Virus-induced cytokines from DC, monocyte-macrophages,
e.g., IFN-�/�, IL-12, IL-15, IL-18, IL-21, IL-23, etc.

5. By interaction with other cell types, e.g., DC, macrophages.
6. Recognizing genotoxic stress-induced, de novo-expressed

ligands for the NKG2D receptor.
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neighboring cells, NK cells release these effector molecules in
a well-defined and restricted area of contact with the target
cells (reviewed in ref. [45]). This area of contact between the
two cells is called IS. The synapse is an activating one if it is
formed between a NK cell and a susceptible target cell. The
formation of the synapse is initiated by interaction between
different activating receptors and adhesion molecules (e.g.,
CD2, LFA-1, CD11a, CD11b) on NK cells and their cognate
ligands on the target cell. The adhesion molecules aggregate in
the form of a ring at the periphery of the synapse (Fig. 1). The
engagement of integrins causes their activation and results in
talin-mediated actin polymerization. The close contact between
NK and target cell membranes induces reorientation of the
MTOC of the NK cell toward the synapse. The microtubule-
associated motor proteins (kinesins) shuttle granules contain-
ing cytotoxic mediators toward the center of the synapse.
Within the center of the synapse, different activating NKRs
interact with their cognate ligands on the target cell. The
glycosphingolipid-rich membrane microdomains (lipid rafts)
rapidly accumulate in the center of the synapse in a cytoskel-
eton-dependent manner. The lipid rafts are rich in effector
signaling molecules. Their recruitment to the synapse requires
activities of several kinases (Src, Syk, and the serine-threonine
kinase protein kinase Cε). A ring of F actin surrounds the
center of the synapse and prevents spillover of the cytotoxic
mediators from the synapse. Within the synapse, NK and target
cells interact with each other via membranous protrusions,
which end at coated pits on the surface of opposing cells [46].
The Src homology 2 (SH2) domain-containing phosphatase
(SHP)-1 is recruited to the periphery of the synapse within 1
min. It limits the activation event to the center of the synapse.
Actin polymerization and MTOC reorganization are key events
needed to trigger NK cell cytotoxicity (degranulation). The

pharmacological agents that inhibit actin polymerization also
inhibit NK cell-mediated killing [47]. Another phosphatase,
SHIP, is also recruited to the synapse within minutes to ter-
minate the triggering of the NK cell. After discharging its
cytotoxic mediators to the membrane of the target cell, the NK
cell separates itself and is ready to kill another target cell. A
single NK cell can kill several target cells in a sequence one
after the other. The inhibitory IS is formed between an NK cell
and a resistant target cell. Its formation is prevented at an early
stage by inhibitory receptor-recruited phosphatases. The in-
hibitory receptors cluster in discrete microdomains in the
center of the inhibitory synapse and interact with their cognate
ligands.

A characteristic feature of the activating IS is exchange of
membrane proteins (receptors, ligands, adhesion molecules,
etc.) between the interacting cells. For example, NK cells may
transfer inhibitory KIR to target cells. The latter cell types may
transfer MHC-class I chain-related protein A (MICA) to NK
cells, which in turn, may transfer these acquired proteins to
other NK cells via homotypic, intercellular contacts [48, 49].

NK cells, like other immune cells, can also communicate
with other cells at a distance by forming nanotubules and
transfer molecules and Ca�� fluxes to them (reviewed in ref.
[50]).

NKRs

NKRs and coreceptors regulate NK cell-mediated killing. They
include a variety of molecular structures expressed on the
surface of NK cells. They bind specific ligands on target cells.
NKRs can be divided into inhibitory and stimulatory types
depending on the nature of the signal they send to NK cells

Fig. 1. Formation of IS between NK and
target cells. Various NKRs interact with
their cognate ligands on the target cell in the
center of the synapse, which contains lipid
rafts and activating NKRs. The adhesion
molecules [CD2, LFA-1, membrane-acti-
vated complex 1 (MAC-1)] bind to their
cognate ligands on the target cell and ag-
gregate in the form of a ring. Activation of
integrins leads to talin-mediated actin poly-
merization. The close contact between NK
and target cell membranes induces reorien-
tation of the microtubule-organizing center
(MTOC) of the NK cell toward the synapse.
The microtubule-associated motor proteins
(kinesins) shuttle granules containing cyto-
toxic mediators toward the center of the
synapse. Within the center of the synapse,
different activating NKRs interact with their
cognate ligands on the target cells. A ring of
F actin surrounds the center of the synapse,
preventing the spillover of the cytotoxic me-
diators from the synapse. T and NK indicate
target cell and NK cell, respectively. C and
P represent center and periphery of the syn-
apse. WASP, Wiskott-Aldrich syndrome
protein; PTK, protein tyrosine kinase; SYK,
spleen tyrosine kinase; SRC, sarcoma ty-
rosine kinase.
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after binding to their specific ligands. Each NK cell expresses
inhibitory and stimulatory NKRs. Target cells may vary from
one another with respect to the level of expression of ligands for
different NKRs. According to the prevalent wisdom, triggering
of an NK cell depends on the balance between inhibitory and
stimulatory signals that it receives from the target cell via NKR
(see Fig. 2). A NK-sensitive target cell usually would express
one or more ligands for activating NKR, whereas a NK-resis-
tant target cell would express more ligands for inhibitory
receptors and/or may lack ligands for activating NKR. The
human NKR can be divided into MHC and non-MHC-binding
receptors.

MHC-binding receptors

They include KIR, NKG2, and Ig-like transcript (ILT) families.
They are discussed below.

KIR (CD158) family

The KIR are type I integral membrane glycoproteins that are
usually expressed as monomers on the cell surface [51–53]. At
present, 14 distinct KIR genes and two pseudogenes have been
described (see http://www.ebi.ac.uk/ipd/kir for an update on
KIR genes and alleles). They are located on human chromo-

some 19q13.4 in a tandem head-to-tail manner in a short,
150-kb region, called leukocyte receptor complex (LRC). KIR
genes show extensive allelic polymorphism. For example,
KIR2DL1 and KIR3DL1 genes have at least 14 and 47 alleles,
respectively. Their transcripts also undergo alternate splicing,
giving rise to distinct receptor variants. It has been estimated
that after MHC, KIR is the most polymorphic locus in humans.
KIR genes are not present in mice, suggesting their recent
evolution after divergence of the two species 5 million years
ago. They are undergoing rapid evolution in humans under
pressure from pathogens, malignancy, and autoimmunity. Two
human populations living next to each other and having similar
HLA genes frequently differ with respect to their KIR genes.
This observation suggests that the latter genes are evolving
faster than the former ones.

KIR structure. A typical KIR gene contains nine exons as
illustrated in Figure 3. The exons encode leader sequence
(exons 1 and 2), extracellular Ig-like domains (D0, D1, and D2;
exons 3–5), stem (exon 6), transmembrane region (exon 7), and
cytoplasmic tail (exons 8 and 9) of the KIR. The two-domain
KIR lack an extracellular domain (D0 or D1). The ones lacking
D0 (KIR2L1, KIR2DL2/3) are called type I KIR, whereas the
ones lacking D1 (KIR2DL4 and KIR2DL5; see below) are

Fig. 2. Model for NK cell-mediated killing of virus-infected cells. Normal
cells express ligands (usually MHC class I molecules) for inhibitory receptors
of NK cells and are resistant to NK cell-mediated killing (top panel). Viral
infections may reduce the expression of these inhibitory ligands on the infected
cells and make them susceptible to killing by NK cells (middle panel). They
may further induce expression of ligands for activating NKRs (e.g., for
NKG2D) and make them super-susceptible to the killing (bottom panel).

Fig. 3. Structure of a typical KIR gene and its encoded receptor. A typical
KIR gene comprises nine exons shown here on the right side of the figure.
Double horizontal lines in the gene indicate introns. The schematic structure
of the encoded receptor is shown on the left. The part of the receptor encoded
by each individual exon is also indicated. The scissor in the figure indicates
cleavage site for the signal peptide. The letters N and C designate N- and
C-terminals of the protein, respectively; not drawn to the scale. D0, -1, -2,
Extracellular Ig-like domains; TM, transmembrane region.
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called type II KIR. The structure of a typical KIR gene along
with the receptor is shown in Figure 3. The extracellular region
of the receptor binds with its ligand and consists of two or three
Ig-like domains. The cytoplasmic tail transduces receptor-
initiated signals. Depending on the length of the cytoplasmic
tail, a KIR could be short-tailed (S) or long-tailed (L). The L
forms are usually inhibitory KIR and have two ITIMs (with
canonical sequence I/VxYxxL) in their cytoplasmic tails, as
depicted in Figure 4. Upon binding to their ligands, the
tyrosine residues in the ITIMs become phosphorylated and
recruit SHP-1 and -2. These phosphatases dephosphorylate
several substrates involved in the NK cell activation cascade,
e.g., Vav, �-associated protein 70 (Zap-70), Syk, phospholipase
C (PLC)-�1, Shc, and SH2 domain-containing leukocyte pro-
tein of 76 kDa, and inhibit the NK cell from triggering its
cytotylic machinery and secreting cytokines. The receptors
with a short (S) cytoplasmic tail are stimulatory. They lack
ITIMs but possess a positively charged amino acid (lysine) in
their transmembrane regions. Via this amino acid, they asso-

ciate noncovalently with a dimer of an adaptor protein, killer
cell-activating receptor-associated protein (KARAP) or
DAP-12 [54]. Each DAP-12 carries ITAMs [with canonical
sequence D/Ex(0–2)YxxL/Ix(6–8)YxxL/I] in its cytoplasmic
tail. When an activating KIR binds to its ligand, the tyrosine
residues in the ITAMs are phosphorylated and recruit various
tyrosine kinases, e.g., Syk and Zap-70, and send activating
signals to NK cells to kill target cells and secrete cytokines.
The signals converge to phosphorylate Vav, which is a guanine
nucleotide exchange factor (GEF) and activates the Rho family
of small GTPases. Upon activation, the GTPases cause actin
polymerization, cytoskeleton rearrangement, and triggerring of
degranulation (reviewed in ref. [45]).

The KIR are named, depending on the number of Ig-like
domains (2 or 3) present in the extracellular region as well as
the length of the cytoplasmic tail (L or S). Each KIR gene and
its alleles are given different numbers. The KIR expressed in
humans, their signaling partners, and ligands are given in
Table 5.

Fig. 4. MHC-binding NKRs. The figure
shows the schematic structures of main
MHC-binding receptors: KIR, ILT-2, and
CD94/NKG2. The ligands for the receptors
are also shown on the top of each receptor;
not drawn to the scale. DAP-12, Dynax ac-
tivation protein 12.

TABLE 5. Human KIR (CD158) and Their Ligands

Receptor Signaling partner Distribution Ligand

A. Inhibitory KIR
1. KIR2DL1 (p58.1) SHP-1, 2 NK, CTL HLA-C II
2. KIR2DL2/3 (p58.2) SHP-1, 2 NK, CTL HLA-C I
3. KIR3DL1 (p70; NKB1) SHP-1, 2 NK, CTL HLA-B Bw4
4. KIR3DL2 (p140) SHP-1, 2 NK, CTL HLA-A3, A11
5. KIR2DL4a FcεR1�-chain NK HLA-G
6. KIR2DL5 SHP-2 NK, CTL HLA-G?

B. Activating KIR
1. KIR2DS1 (p50.1) DAP-12 NK HLA-C II, ?
2. KIR2DS2 (p50.2) DAP-12 NK HLA-C I, ?
3. KIR2DS4 (p50.3) DAP-12 NK HLA-Cw4, ?
4. KIR2DS3, 5 DAP-12 NK ?
5. KIR3DS1 (p70) DAP-12 NK HLA-Bw4-I, ?

All KIR are expressed clonally on overlapping subsets of NK cells except KIR2DL4, which is expressed on all NK cells. Inhibitory KIR are also expressed on
CTL of the effector/memory phenotype. Activating KIR may be expressed on CD4� T cells in some disease conditions but are rarely expressed on CTL. HLA-Bw4-I
designates Bw4 allotypes having isoleucine at position 80. The question mark (?) indicates unknown and/or controversial ligands. a Despite having an
ITIM-containing, long cytoplasmic tail, it functions as an activating receptor.
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Two-domain KIR and their ligands. KIR bind to su-
pertypic public determinants expressed by a subset of closely
related HLA or MHC class I antigens. The two-domain recep-
tors (e.g., KIR2DL1, KIR2DL2/3) bind to HLA-C antigens. It
is noteworthy that all HLA-C antigens show a dimorphism at
position (p)80 in the amino-acid sequences of their �-2 heli-
ces: They have asparagine or lysine. The HLA-C with an
asparagine at p80 (e.g., HLA-Cw2, -4, -5, -6, -17, and -18) are
called group I HLA-C, whereas the ones with a lysine at p80
(e.g., HLA-Cw1, -3, -7, -8, -13, and -14) are called group II
HLA-C. The KIR2DL1 binds group II HLA-C, and KIR2DL2
and its allelic variant (KIR2DL3) bind group I HLA-C [53,
55–58] (reviewed in refs. [53, 54]). Thus, each HLA-C allotype
is recognized by KIR2DL1 or by KIR2DL2/3. Interestingly, the
amino acid at p44 of the protein sequence of a KIR determines
its specificity for a given HLA-C group: If it is methionine (as
in the case of KIR2DL1), the KIR binds group II HLA-C, and
if it is lysine (as in the case of KIR2DL2/3), the KIR binds
group I HLA-C [56]. It may be relevant to mention here that
these ligand specificities are not absolute: KIR2DL1 and
KR2DL2/3 may bind to group I and group II HLA-C ligands,
respectively. However, they do so with tenfold lower affinities.

KIR2DL4 (CD158d) is unusual in several respects. First, it
binds HLA-G: a nonclassical HLA antigen. Second, it is ex-
pressed mainly in endocytic vesicles and binds internalized,
soluble HLA-G. Third, the receptor is expressed usually by all
human NK cells. Its expression can also be increased by
cytokines, e.g., IL-2. Fourthly, the receptor has an ITIM-
containing, long cytoplasmic tail (a typical feature of an inhib-
itory KIR) as well as a charged amino acid (arginine) in its
transmembrane region (a feature of an activating KIR). The
presence of a charged amino acid in its transmembrane region
allows it to associate noncovalently with the signaling adaptor
molecule � chain of the FcεRI. Cross-linking of the receptor
with HLA-G-expressing target cells induces secretion of IFN-�
from NK cells but does not trigger cytotoxicity [59–64]. It is
noteworthy that HLA-G is expressed in the female reproductive
tract, invading placental trophoblasts and thymic epithelial
cells. The HLA-G/KIR2DL4 interactions may be important in
generating local immune responses against invading pathogens
in the female reproductive tract. Uterine NK cells express
KIR2DL4, and secretion of IFN-� from uterine NK cells has
been shown to be crucial for vascularization of placenta (re-
viewed in ref. [65]). KIR2DL4 is expressed at lower levels on
uterine NK cells in women undergoing spontaneous, recurrent
abortions [32]. Gomez-Lozano et al. [66] have described a
multiparous woman lacking KIR2DL4 in her genome. It is
probable that a KIR2DL4-like receptor may have compensated
the function of this receptor in this woman.

The KIR2DL5A and KIR2DL5B were considered as allelic
forms of the same gene. However, now, it has become quite
obvious that they represent two closely related but distinct
genes, which are present in telomeric and centromeric halves
of the KIR gene cluster, respectively [67]. The KIR haplotypes
may have both, none, or one of the two genes. In fact, the KIR
genes are evolving so rapidly that our conventional ways of
distinguishing between alleles and genes are being challenged.
KIR2DL5A (previously known as KIR2DL5*001 allele) is ex-
pressed, like other clonally expressed KIR genes, as a mono-

mer on CD56low NK cells in a variegated manner. It is also
expressed on a subset of T cells [68]. Individuals (52–80%)
may express this receptor, depending on the population group.
KIR2DL5B is a hybrid gene that arose from recombination
between KIR2DL5A and KIR3DP1 genes. It has three alleles,
KIR2DL5B*002, *003, and *004, of which only *003 is ex-
pressed. The KIR2DL5 A and B genes have 99.58% sequence
similarity in their exons. Each KI2DL5 receptor has two ITIMs,
of which one is atypical. The receptor has inhibitory function
and preferentially recruits SHP-2 [69]. The ligand for
KIR2DL5 is not known. However, their extracellular regions
are similar to that of KIR2DL4. Therefore, it is believed that
KIR2DL5 receptors also bind HLA-G. Interestingly, KIR2DL5
genes are conserved among primates.

Three-domain KIR and their ligands. Of the three-
domain KIR, KIR3DL1 (p70) is expressed as a monomer on the
surface of NK cells. It binds to HLA-B and HLA-A allotypes
bearing the HLA-Bw4 serospecificity. It is noteworthy that all
HLA-B allotypes can be divided into two mutually exclusive
Bw4 or Bw6 serospecificities depending on residues 77–83.
About one-third of all HLA-B and some HLA-A allotypes are
Bw4�. The remaining two-thirds of the HLA-B allotypes is
Bw6�. It may be relevant to mention here that HLA-Bw4
allotypes also show dimorphism at p80 of their amino-acid
sequence: They may have isoleucine (HLA-Bw4-I) or threonine
(HLA-Bw4-T) at this position. It was demonstrated that
KIR3DL1 receptors bind the former HLA-Bw4 allotypes with
higher affinity [70, 71]. As mentioned above, the KIR3DL1
gene exists in 47 allelic forms, encoding 41 distinct allotypes,
which differ in their ability to bind their MHC ligands. Inter-
estingly, this binding is dependent on the peptide bound to the
peptide-binding groove of the MHC class I ligand [72–74].
Some KIR3DL1 allotypes (*001, *002, *008, *015, *009) are
expressed at relatively higher levels on the surface of NK cells,
and others (*005, *007) are expressed at lower levels. Epide-
miological data from Martin et al. [75] suggest that the highly
expressed KIR3DL1 allotypes bind HLA-Bw4-I allotypes with
high affinity, as their coinheritance gives the highest protection
from AIDS in HIV-infected individuals. Furthermore, it also
suggests that the lowly expressed KIR3DL1 allotypes bind with
HLA-Bw4-T allotypes better than with HLA-Bw4-I ones. This
assumption explains the better protection provided by these
KIR allotypes, when they are coinherited with HLA-Bw-T as
compared with HLA-Bw4-I allotypes. However, these findings
need to be tested by direct-binding assays. One KIR3DL1
allotype (*004) is not expressed on the cell surface and re-
mains intracellular. Still, it appears to be of some functional
significance [74–76].

Although KIR3DS1 encodes an activating KIR, it segregates
as an allelic variant of KIR3DL1. To date, 12 allelic variants
have been described, which encode 10 distinct allotypes of
KIR3DS1. It is noteworthy that KIR3DS1 and KIR3DL1 show
more than 95% sequence homology in their extracellular do-
mains. Genetic epidemiological data strongly suggest HLA-
Bw4-I allotypes as ligands for KIR3DS1 [77]. Nevertheless,
KIR3DS1 failed to bind HLA-Bw4 tetramers as well as HLA-
Bw4 ligands when expressed in EBV-transformed human cells
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[78]. It is likely that the receptor binds to HLA-Bw4 ligands
when the latter has bound a certain foreign peptide.

KIR3DL2 (NKAT4; p140) is expressed as homodimers on
the surface of NK cells. It binds different HLA-A antigens
when complexed with certain peptides derived from the viral
protein EBV nuclear antigen 1 (reviewed in ref. [53]). The
ligands for other KIR are not yet known (see Table 5).

Affinities of KIR for their ligands. It is important to note
that KIR differ in their affinities for their MHC ligands. For
example, the KIR2DL1 binds with group II HLA-C with higher
affinities than does KIR2DL2 for its respective MHC ligands
(group I HLA-C). Furthermore, KIR2DL2 has higher affinity
for its ligands than its allelic variant KIR2DL3. Similarly
different KIR3DL1 allotypes bind to HLA-Bw4 allotypes with
different affinities. These differences in affinities of different
KIR for their respective MHC ligands are important from the
functional point of view as they translate into different levels of
inhibition of the NK cells. The differences in affinities are more
pronounced between activating and inhibitory KIR.

The S KIR have activating functions. They may represent an
allelic variant of an inhibitory KIR gene (e.g., KIR3DS1 is an
allelic form of the KIR3DL1) or may represent a distinct
activating KIR gene (e.g., KIR2DS4). It is believed that acti-
vating KIR bind the same HLA antigens as do their inhibitory
counterparts but with several orders of magnitude lower affin-
ities. In fact, many authors believe that these receptors may
bind some unknown ligands expressed by human pathogens,
malignant cells, and/or they may bind their cognate MHC
ligands that have bound foreign pathogen-derived peptides [52,
53, 79]. It is noteworthy that KIR2DS4 was reported to bind an
unknown ligand present on the surface of melanoma cells [80].
The idea is supported further by the fact that certain activating
forms of LY49, which are functional homologues of KIR ex-
pressed on murine NK cells, bind certain viral proteins. For
example, an activating receptor LY49H, which is present on
NK cells in C57BL/6 mice, binds a murine CMV (MCMV)-
encoded glycoprotein m157 and protects the host from the
virus [81]. The virus-susceptible mouse strain 129/SvJ lacks
this receptor and instead expresses an inhibitory receptor
LY49I for the viral glycoprotein on NK cells. The viral glyco-
protein m157 is an MHC class I homologue encoded by MCMV
to evade the host’s NK cell responses [1]. Another activating
receptor LY49P recognizes MHC class I antigens (H-2DK) in
mice when bound with a viral peptide [82].

A functional consequence of the different affinities of the
inhibitory and activating KIR for their MHC ligands is that
under physiological conditions, inhibitory KIR act as domi-
nant-negative regulators for NK cell functions. They are the
main receptors that regulate NK cell functions in humans and
maintain tolerance of NK cells toward one’s own cells.

KIR-binding and MHC-bound peptides. The binding
of two-domain KIR to their MHC ligands is sensitive to the
nature of the bound peptide. Certain amino-acid side-chains at
p7 and p8 of the peptide may interfere with the binding [83].
Otherwise, these KIR do not distinguish between self and
nonself peptides bound to their MHC ligands. However, the
three-domain KIR are sensitive to the peptide bound to Bw4.
Usually, they can bind to their MHC class I ligands complexed

with endogenous peptides. This prevents NK cells from killing
the body’s own cells. The binding of a foreign peptide to their
MHC ligands may abrogate their binding with these KIR. This
may result in loss of the KIR-imposed inhibition on the NK
cell. For example, the binding of a neomycin-derived peptide
to HLA-B27 abrogates its recognition by KIR3DL1 [84]. Neo-
mycin-expressing cells are no longer recognized by NK cells
expressing this KIR and hence, may be killed. Such interfer-
ence with KIR recognition may have consequences for the
cell’s susceptibility to NK cell-mediated killing. In this re-
spect, the three-domain KIR behave as TCRs as far as recog-
nition of HLA molecules is concerned. However, the conse-
quences of the recognition are quite opposite to each other: T
cells recognize HLA via TCR and kill target cells, whereas NK
cells recognize HLA via KIR3DL1 and spare them from kill-
ing. As three-domain KIR may recognize several HLA ligands
in association with one or more pathogen-derived peptides,
they essentially remain pattern-recognizing molecules, and
TCRs recognize only a particular HLA in association with a
well-defined, single foreign peptide and are antigen-specific.

CD94/NKG2C killer lectin-like receptor (KLR)-C (NKG2/CD94
family)

They are also known as the NKG2/CD94 family of receptors.
The receptors of this family are type II, C-type, lectin-like
integral membrane glycoproteins. As shown in Figure 4, they
are expressed on the cell surface as heterodimers with CD94
(NKp43; KLR-D1), which is also a type II, C-type, lectin-like
polypeptide. CD94 lacks a cytoplasmic tail and cannot trans-
duce signals. However, it is essential for the cell surface
expression of NKG2 receptors. Members of this family as well
as other non-KIR human NKR are given in Table 6. There are
four receptors in the family: A/B (KLR-C1), C (KLR-C2), E/H
(KLR-C3), and F (KLR-C4). B and H represent splice variants
of A and E genes, respectively [52, 54, 85]. The genes for these
receptors are located on human chromosome 12p12.3–p13.2 in
a region called NK gene complex (NGC). Of these receptors,
CD94/NKG2A has inhibitory function, and it carries two ITIMs
in its long cytoplasmic tail. It is expressed in a subset of human
NK cells having the CD56high CD16low phenotype. It is also
expressed, albeit at lower levels, on the CD56low subset of NK
cells. NKG2C has a short cytoplasmic tail, associates nonco-
valently with a homodimer of DAP-12, and activates NK cells
upon binding with its ligands. NKG2E is also considered an
activating receptor. It has a charged amino acid (lysine) in its
transmembrane region, but it does not associate with DAP-12.
The NKG2A and NKG2C are expressed on overlapping subsets
of CD56� NK cells [54]. NKG2F has a truncated extracellular
domain comprising only 12 amino acids. It has a charged
amino acid (lysine) in the transmembrane region and two ITIMs
in its cytoplasmic tail. The protein is retained intracellularly. It
does not form heterodimers with CD94 but can complex with
DAP-12 [86]. Thus, it may sequester DAP-12 and regulate
functional activities of other receptors that use DAP-12 as a
signaling partner. Interestingly, DAP-12 has also been impli-
cated in myelination and bone resorption (reviewed in ref.
[87]).

The NKG2 receptors bind HLA-E: a nonclassical MHC
class Ib molecule [88–90]. HLA-E is expressed in two isoforms
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in humans, and both bind equally well to these receptors.
HLA-E binds a peptide, VMAPRTVLL, which is present in the
signal sequences of many classical MHC class I molecules
(HLA-A, -B, -C), and a nonclassical MHC class I molecule
HLA-G [89, 91, 92]. Without this peptide, HLA-E does not
fold properly and therefore, is not expressed on the cell sur-
face. Thus, NK cells have developed an elegant way to monitor
the overall expression of MHC antigens on the surface of target
cells by CD94/NKG2-mediated monitoring of HLA-E. Inter-
estingly, human CMV (HCMV) encodes a glycoprotein UL40,
which increases the expression of HLA-E on the surface of the
virus-infected cells by providing this peptide and hence, in-
creases their resistance to killing by NK cells [93]. HLA-E is
normally expressed as well as released by placental tropho-
blasts, vascular endothelial cells, and peripheral blood cells
(monocytes, DC, and T, B, and NK cells). Its expression is
increased on human cells by certain cytokines, e.g., IFN-�,
TNF-�, and IL-1� [94]. The expression of HLA-E on human
cells may protect them from NKG2A-bearing NK cells, and
soluble HLA-E may interfere with this protection.

The KLR family NKRs have nonclassical, lectin-like do-
mains. Therefore, they can bind nonsugar moieties on their
ligands [95] (reviewed in ref. [96]). It has been demonstrated in
vitro that NKG2A can bind efficiently to HLA-E produced in
bacteria.

ILT (CD85) family

The family has also been given other names: leukocyte Ig-like
receptor (LILR) and macrophage Ig-like receptors. It com-
prises 13 members. They vary in the number of Ig-like domains
present in their extracellular regions and may be inhibitory or
activating as in the case of KIR (reviewed in refs. [52, 54]).

They are mostly expressed on monocytes, macrophages, DC,
and certain subsets of B and T cells. One member of the family
ILT-2 (LILRB1; CD85j) is also expressed on a subset of NK
cells (Fig. 5 and Table 6). The receptor has four Ig-like
domains in its extracellular region and four ITIMs in its cyto-
plasmic tail. ILTs bind classical and nonclassical HLA mole-
cules (e.g., HLA-G). ILT-2 preferentially binds HLA-G [97]. It
interacts with the �3 domain of the MHC class I molecules and
competes with CD8 for binding to the MHC ligand [98]. ILT
genes are present on chromosome 19 close to the KIR gene
cluster.

CD160 (BY55)

It is a GPI-anchored, Ig-like molecule expressed on the
CD56dim subset of NK cells, �� TCR-positive T cells, and a
subset of CD8� T lymphocytes. It binds HLA-C, -G and other
HLA molecules. NK cell stimulation via CD160 leads to se-
cretion of a unique, proinflammatory profile of cytokines:
IFN-�, TNF-�, and IL-6. A soluble form of the molecule, shed
from activated human NK cells, can inhibit functions of
CD160� NK and T cells [99]. CD160-positive NK and CTL are
usually implicated in inflammatory conditions.

Non-MHC-binding receptors

NK cells also express several types of receptors, which recog-
nize different molecular structures (but not MHC antigens)
present on the surface of target cells. These receptors are as
below.

NKG2D receptor (KLR-K1; CD314)

Originally, this receptor was placed in the CD94/NKG2 family.
However, it differs from members of this family in many

TABLE 6. Non-KIR NKRs

Receptor Signaling partner Distribution Ligand (function)

1. NKp46 FcεR1�, CD3� chain NK HA (�)
2. NKp44 DAP-12 Activated NK HA (�)
3. NKp30 FcεR1�, CD3� chain NK ? (�)
4. Fc�RIIIa (CD16) FcεR1�, CD3� chain NK (s) IgG, IgE (�)
5. Fc�RIIc (CD32) FcεR1�, CD3� chain NK (s) IgG (�)
5. 2B4 (CD244) SAP, EAT-2, SHIP-1 NK (s), T (s) CD48 (�/–)
6. NKG2D DAP-10 NK, CTL, Mac SIP (�)
7. DNAM-1 Fyn NK (s) Nectin-2, PVR (�)
8. TACTILE (CD96) Fyn NK (s) Nectin-2, PVR (�)
9. NKR-P1A FcεR1� NK, NKT, CTL (s) LLT-1 (�/–)

10. NKG2C/CD94 DAP-12 NK and CTL (s) HLA-E (�)
11. CD94/NKG2A SHP-1, 2 NK (s) CTL (s) HLA-E (–)
12. ILT-2 (CD85j) SHP-1, 2 NK (s) B, Mac, DC HLA-G (–)
13. KLR-G1 SHP-1, 2 NK (s), CTL (s) Cadherens (–)
14. SIGLEC-7 SHP-1, 2 NK Sialic acid (–)
15. NKp80 ? NK AICL (�)
16. FcRL6 SHP-2 NK IgG complexes (–)
17. CD160 (BY55) PI-3K NK (s) HLA-C. G (�)
18. CEACAM-1 (CD66a) CD16? NK CEA and related proteins (�)
19. CD38 CD16 NK CD31 (�)

AICL, Activation-induced C-type lectin expressed on monocyte/macrophages; CEA, carcinoembryionic antigen; CEACAM-1, CEA-related cell adhesion
molecule; EAT-2, Ewing’s sarcoma-activated transcript-2; FcRL6, FcR-like protein 6; SAP, signaling lymphocyte-activating molecule (SLAM)-associated protein;
SIP, stress-induced proteins [MICA, MICB, UL16-binding protein (ULBP)]; PVR, Poliovirus receptor; DNAM-1, DNAX accessory molecule 1; TACTILE, T
cell-activated increased late expression; SIGLEC-7, sialic acid-binding Ig-like lectin 7. The designations (�), (–), and (�/–) indicate that the function is activation,
inhibition, and both, respectively. (s) indicates that expression is restricted to a subset of the cell population.
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respects. It does not form heterodimers with CD94 (see Fig. 5
and Table 6). It is expressed as homodimers, and each ho-
modimer associates noncovalently with a homodimer of an
adaptor protein DAP-10, which is a DAP-12-related protein
but does not contain ITAM motifs in its cytoplasmic tails [100].
Instead, DAP-10 carries a YxxM motif, which upon phosphor-
ylation of its tyrosine residues, can recruit the regulatory
subunit p85 of PI-3K and growth-factor receptor-bound protein
2. This motif is also present in the cytoplasmic tail of the T cell
costimulatory molecule CD28. However, there are important
differences between CD28- and NKG2D-transduced signals.
The engagement of NKG2D alone, but not of CD28, on NK as
well as on T cells allows formation of an IS with target cells
[101].

The NKG2D receptors do not recognize and bind HLA-E, as
do all members of the CD94/NKG2 family. Instead, they bind
MICA, MICB, and the HCMV ULBPs [102]. MIC genes are
located on human chromosome 6q25 outside the MHC locus.
Of the six distinct MIC genes, only MICA and MICB are
transcribed. Structurally, MIC proteins resemble MHC class I
heavy chain, and each has three (�1, �2, and �3) domains;
however, they do not bind antigenic peptides and do not
complex with �-2 microglobulin. The MIC genes are highly
polymorphic. At least 54 MICA and 19 MICB alleles have been
described. The MIC allotypes vary in their ability to bind
NKG2D (reviewed in ref. [103]). For example, MICA*01 and
07 allotypes bind strongly, and MICA*016 binds NKG2D
weakly. Some allotypes such as MICA*08 and *010 are de-
fective and are not expressed on the cell surface. Thus, an
individual’s capacity to mediate NKG2D-mediated killing may
depend on his/her inherited MIC genes. Under physiological
conditions, the expression of MICA and MICB is restricted to
the basolateral surface of intestinal epithelial cells and fibro-
blasts. However, they can be induced de novo on different host
cells by stress, transformation, and viral infections. More spe-
cifically, DNA damage response triggered by stalled DNA
replication, genotoxic drugs, irradiation, and hydroxyurea in-
duces expression of MIC and other NKG2D ligands. The

response is accompanied by activation of ataxia telangiectasia
mutated (ATM) and ATM and Rad-3-related (ATR) kinases.
The stimuli, which do not result in the induction of DNA
damage response and activation of ATM and ATR (e.g., heat
shock, hypoxia, inflammation, TNF-�, or IL-8), do not induce
expression of NKG2D ligands [104–107]. MIC proteins may be
cleaved via matrix metalloproteinases and shed from the cell
surface as soluble proteins, which bind to and down-regulate
the expression of NKG2D on NK cells. Tumor cells usually
shed these proteins as an immune evasion mechanism [108,
109].

The ULBPs were first discovered by their ability to bind
UL-16 of HCMV and appear to have ubiquitous expression at
the mRNA level. Five distinct ULBPs (1–5) have been iden-
tified. Of these, ULBP3 and -4 do not bind UL16. Structurally,
they resemble MIC proteins but lack �-3 domains and could be
GPI-anchored (ULBP1, -2, and -3) or have transmembrane
regions (ULBP4 and -5; reviewed in refs. [110, 111]). In the
mouse, NKG2D recognizes H-60 (a minor histocompatibility
antigen), the retinoic acid early inducible protein 1 (Rae-1),
and a murine ULBP-like transcript 1 (reviewed in ref. [96]).

NKG2D is an activating NKR. In addition to NK cells,
resting and activated human CD8� T lymphocytes express
NKG2D [112]. Both of these cell types can efficiently kill
NKG2D ligand-positive target cells. The CD8� T cells do so
without their TCR coengagement [113]. Certain cytokines, e.g.,
IL-12 and IL-15, can increase expression of NKG2D on these
cytotoxic cells, whereas cytokines such as TGF-� and IL-10
can decrease their expression. The cytokine-induced, in-
creased expression of NKG2D on CTL greatly enhances their
NK cell-like killing capabilities (reviewed in ref. [111]). NK
cells may play an anti-inflammatory role by killing overtly
activated macrophages, which start expressing ligands for
NKG2D [17]. It is noteworthy that stimulation of macrophages
via TLR induces NKG2DL in macrophages [114]. On the other
hand, certain cytokines such as IL-1� and TNF-� have been
shown to induce MIC and ULBP expression on oligodendro-
cytes and neurons. NKG2D-mediated killing of oligodendro-

Fig. 5. Non-MHC-binding NKRs. The re-
ceptors, their ligands, and signaling part-
ners are shown. ITSM, Immunoreceptor ty-
rosine-based switch motif; Col, collagens.
The YxxM motif, when phosphorylated, re-
cruits PI-3K; not drawn to the scale. The
question mark (?) indicates that the ligand is
unknown. NTB-A, NK-T-B (NK, T-B cell an-
tigen) antigen; LAIR-1, leukocyte-associated
Ig-like receptors.
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cytes has been shown to play a role in the development of
multiple sclerosis in humans [115].

Natural cytotoxicity receptors (NCRs)

Three NKRs, NKp46 (CD335), NKp30 (CD337), and NKp44,
are called NCRs (Table 6 and Fig. 5). They trigger NK cell-
mediated killing and secretion of IFN-� upon their engage-
ment. NKp46 and NKp30 are expressed on resting and acti-
vated NK cells, whereas NKp44 is expressed only on cytokine-
activated NK cells [116–118]. NCRs belong to the Ig
superfamily (IgSF). They have extracellular Ig domains and
associate noncovalently with DAP-12 (NKp44), �-� (NKp46),
and �-� chains (NKp30). The ligands for the NCR mostly
remain unknown. Two members of the group, NKp46 and
NKp44, are known to bind the sialic acid-binding glycopro-
teins, e.g., HA and HA-neuraminidase, of the influenza and
parainfluenza viruses, respectively [40]. � 2,6-Linked sialic
acid moieties and the sugar-carrying residue Thr 225 near the
membrane proximal region of the receptor play an important
role in binding to the ligands [119]. The NCR ligands may also
occur on normal hematopoietic cells. For example, NK cells
specifically use NKp30 to kill immature DC, suggesting that
these cells bear NKp30 ligands. NKp46-positive NK cells
protect host from influenza viruses, as the viruses cause lethal
infections in NKp46-deficient mice [120].

NKR-P1 (CD161; KLR-B1)

The receptors occur as s–s-bonded homodimers on the cell
surface. They were first described in mice as NKR-P1C or
NK1.1 antigen occurring on NK cells of C57BL/6 mice. In
rodents, five distinct genes (A, B, C, D, and F) have been
described. They encode activating receptors except for B and D
genes, which encode inhibitory versions of the receptor. The
humans have A gene. Its protein (CD161) is expressed on NK
cells, NKT cells, and a fraction of CD8� T cells. The human
CD161 binds LLT-1 and transmits activating signals via the
�-chain of the FcεRI. LLT-1 is usually expressed on mono-
cytes and T, B, and NK cells. IL-2 can induce its expression on
NK cells. The receptor differentially regulates NK and T cell
functions: It increases TCR-mediated IFN-� production in T
cells but inhibits cytotoxicity and IFN-� production in NK
cells [121]. Another study has shown that the receptor cross-
linking induces IFN-� production but not cytotoxicity in hu-
man NK cells [122]. Thus, the receptor may perform dual
functions. The occurrence of the receptor and its ligand on NK
and T cells suggests that the receptor may interact with its
ligand in cis.

SLAM-related receptors (SRRs)

The SLAM (CD150) is expressed in T cells and transmits its
signals via an adaptor protein called SLAM-associated protein
(SAP; or SH2D1A). The SRRs include 2B4 (CD244), NTB-A
(Ly108), and CD2-like receptor on activated cytoxic cells
(CRACC; CD139). These receptors are related to SLAM, as
they all use similar signaling molecules, SAP, or related mol-
ecules (see Table 6). The genes for SRR are located on human
chromosome1q22. They are expressed on NK cells, monocytes,
basophils, �� TCR-bearing T cells, and CD8� T cells of the
effector/memory phenotype (Fig. 5). The receptors bear so-

called ITSM (TIYxxV/I) in their cytoplasmic tails. These re-
ceptors transmit activating signals via SAP, which has a motif
in its SH2 domain centered on Arg 78. This motif binds the
SH3 domain of the src family kinase Fyn (reviewed in ref.
[123]). SAP-Fyn-mediated signaling is important for TH2-type
cytokine responses. Interestingly, SAP KO mice lack NKT
cells [124]. A distal tyrosine-based motif (TVYxxV/I) in the
cytoplasmic tail of the receptor can recruit SHIP, which can
dephosphorylate phosphatidyl 3,4,5-triphosphate to phosphati-
dyl 3,4-biphosphate. Another SAP-like adaptor protein, EAT-2
or SH2D1B, can replace SAP and associates with SRRs. How-
ever, EAT-2 cannot recruit Fyn. In the absence of SAP, 2B4
may act as an inhibitory receptor. As a result of this ability of
2B4 to act as an inhibitory as well as an activating receptor, it
is recognized as a receptor with dual functionality. Early in
ontogeny when NK cells become cytolytic but still have not yet
expressed KIR and NKG2A receptors, they do not express
SAP. 2B4 acts as an inhibitory receptor and prevents autoag-
gression from these developing NK cells. It has been demon-
strated that EAT-2 and SAP bind 2B4 in resting and activated
NK cells, respectively. The ligand for 2B4 is CD48, which is
widely expressed on human cells except plasmacytoid DC.
Interestingly, 2B4 in mice mainly acts as an inhibitory recep-
tor. 2B4 KO mice show increased cytotoxicity against CD48-
expressing target cells. The mouse NK cells also express a
EAT-2-related transducer, which like EAT-2, cannot recruit
Fyn. The gene for SAP is located on the X chromosome in
humans. It is noteworthy that genetic defects in SAP can cause
X-linked lymphoproliferative disease and fatal EBV infections
in humans [125, 126]. NTB-A, like 2B4, may bind SAP and
EAT-2. The two adapters seem to control cytokine production
and cytotoxicity in NK cells, respectively [127]. In resting NK
cells, CRACC binds EAT-2 but dissociates from it upon acti-
vation and recruits PI-3K and PLC-�. NK cells may interact
with macrophages, CTL, and other cells via 2B4/CD48 inter-
actions.

KLR-G1 or mast cell function-associated antigen

It is a type II lectin-like inhibitory receptor expressed as an
s–s-bonded dimer on the surface of mast cells. It is also
expressed on antigen-specific CTL of the effector/memory phe-
notype, a subset of CD56dim NK cells, and certain CD4� T
cells in humans as well as in mice [128]. Its cross-linking
inhibits cytokine secretion and cytotoxicity but not prolifera-
tion. It inhibits IgE-mediated activation of mast cells. The
receptors bind ubiquitously expressed endothelial (E), neural,
and retinal cadherins or junction proteins [129]. Interestingly,
E-cadherins are lost in epithelial tumors undergoing metasta-
sis.

FcRL

They make a growing family of molecules with homology to
Fc�RI. All FcRL are mainly expressed on B cells; however,
one member of the family, FcRL6, is expressed on the surface
of NK cells as well as on a subset of CD8� T cells of the
effector-memory phenotypes [130]. Its novel cytoplasmic, cys-
teine-rich motif can recruit SHP-2 and inhibit cellular func-
tions.
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NKp80 (KLR-F1)

It is a type II lectin-like molecule expressed as s–s-bonded
homodimers on the surface of NK and CD3�CD56� T cells.
The cytoplasmic tail has two E/KxYxxL/T tyrosine-based mo-
tifs. It is expressed on NCRdull and NCRbright NK cells. The
receptor binds AICL, which is a myeloid-specific activating
receptor [131]. Its gene is located in the NGC close to that of
CD69.

DNAM-1 (CD226)

The receptor belongs to the IgSF. It is expressed on the surface
of NK, T, and a subset of B cells in physical association with
LFA-1. Its gene is located on human chromosome 18q22.3
(Fig. 5). Its ligands include PVR (CD155), Nectin-2 (CD112),
and nectin-like molecules, which are widely expressed on a
variety of cells, e.g., endothelial, epithelial, and neuronal cells
and fibroblasts [113]. The receptor is implicated in transendo-
thelial migration, diapedesis, costimulation, and adhesion. A
receptor closely related to DNAM-1 is CD96 (TACTILE). It
bears 20% homology with DNAM-1 and also binds to nectins
and nectin-like molecules.

Four Ig-like B7 homologues (4IgB7H or B7H)

These receptors belong to the B7 family and are expressed on
NK and T cells. They may activate or inhibit the cell. One
member of the family, B7-H1 [also called programmed death
(PD) ligand-1], is expressed on NK cells. Its expression is
increased by certain chemokines (e.g., CXCL-9, -10, and -11)
on NK cells [132]. The receptor is also expressed and/or can be
induced on several cell types in the body. The receptor inter-
acts with its ligand PD-1 and causes premature activation of
naı̈ve T cells and inhibition/apoptosis of antigen-specific ef-
fector cells. It may be relevant to mention here that increased
expression of PD-1 on HIV-specific T cells has been impli-
cated in immunodeficiency in HIV-infected persons [133].

SIGLEC-7 [p75; adhesion receptor molecule-1; (AIRM-1);
CD328]

SIGLECs are a family of sialic acid-binding Ig-like lectins,
which belong to the superfamily of sialoadhesion proteins. Of
these molecules, SIGLEC-7 (or AIRM-1) is expressed on the

surface of human NK cells. Two other molecules, SIGLEC-9
(CD329) and SIGLEC-3 (CD33), are expressed relatively
weakly on human NK cells. The SIGLECs transduce inhibitory
signals upon binding with sialic acid moieties.

CEACAM-1 (CD66a)

It binds CEA and CEA-related antigens, which are expressed
on tumor cells. The binding inhibits NK cell-mediated func-
tions [134]. One of its ligands is PECAM-1 (CD31), which is
expressed on vacscular endothelial cells as well as on NK
cells. Cross-linking CD31 on NK cells activates LFA-1 [135].

LAIR

Two members of the family, LAIR-1 (CD305) and LAIR–2
(CD306), have been described [52, 54]. They are ubiquitously
expressed on all leukocytes including NK cells. LAIR-1 has
one Ig-like domain in its extracellular region and one ITIM in
its cytoplasmic tail. The receptors bind collagens, which are
abundantly expressed proteins in the body. Collagens are not
present in blood, so leukocytes are only exposed to the LAIR
ligands when they extravasate blood and enter tissues.

NK CELL CORECEPTORS

NK cells express several coreceptors, which bind to their
cognate ligands on target cells and send costimulatory signals.
These signals add to the overall strength of the activating
signal. Adhesion molecules, which include integrins, selectins,
and Ig-like molecules, usually act as coreceptors for NK cells
(listed in Table 7). The distinction between NKRs and core-
ceptors is not very clear. Some molecules considered as core-
ceptors (e.g., LFA-1) may trigger NK cell-mediated lysis under
appropriate conditions and hence, may qualify as activating
receptors.

Integrins are heterodimers of � and � chains and may be of
�1 and �2 types. LFA-1 is a �2 integrin (�L:�2; CD11a/
CD18), which is expressed by NK cells and other leukocytes.
It is involved in essential early steps in NK cell-mediated
killing [136]. It mediates contact and adhesion of NK cells with

TABLE 7. Human NK Cell Coreceptors

Name Ligand Expression Function

CD2 (LFA-2) D58 (LFA-3)
CD48 (weakly)

All NK Costimulation, adhesion

LFA-1 (CD11a/CD18) CD54 (ICAM-1–5) All NK Costimulation, adhesion
Cytoskeleton rearrangement

CD8 MHC class I Subset Costimulation, adhesion
CD69 unknown Activated NK Costimulation
CD56 (N-CAM) self Subset Homotypic adhesion
CD59 C8, C9 All NK Adhesion, costimulation
CD57 unknown Subset Marker of senescence
CD28 B-7 Fetal NK Costimulation
CD27 CD70 Subset Costimulation
CD44 Hyaluronic acid Activated NK Costimulation, adhesion
VLA-4 Fibronectin, VCAM-1 MAdCAM-1 Subset Adhesion, diapedesis
VLA-5 Fibronectin Subset Adhesion, diapedesis

N-CAM, Neural cell adhesion molecule; VCAM, vascular cell adhesion molecule; MAdCAM, mucosal adressin cell adhesion molecule.
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the target cell as well as polarization of cytoskeleton (actin and
microtubules) and granules in NK cells toward the target cell
[44]. It is noteworthy that certain chemokines and cytokines
(such as CCL-5, IL-2, and IL-15) as well as inside-out signal-
ing from certain activating receptors (such as CD31) can in-
duce conformational changes in LFA-1. These changes en-
hance affinity and avidity of the integrin for its ligands. Other
�2 integrins expressed by NK cells include type III comple-
ment receptor (CR3; Mac-1; �M:�2; CD11b/CD18) and CR4
(�X:�2; CD11c/CD18). The �1 integrins expressed by NK
cells include VLA-4 (�4�1; CD49d/CD29) and VLA-5 (�5�1;
CD49e/CD29). They were named so because of their late
expression in the course of T cell activation. Their ligands are
indicated in Table 7. NK cells use these molecules to interact
with vascular endothelial cells. These interactions are impor-
tant for NK cell extravasation and also regulate angiogenesis.
The costimulation of NK cells via integrins usually facilitates
their cytotoxicity and cytokine secretion. However, coligation
of �4:�1 has also been implicated in the inhibition of CD16-
mediated killing of NK cells [137].

CD56 is an isoform of the N-CAM and is involved in
homotypic cell adhesions. It is an IgSF member. The expres-
sion of CD56 on the surface of CD8� T lymphocytes coincides
with their acquisition of cytolytic potential [138]. Twenty per-
cent to 30% human (but not murine) NK cells express CD8 on
their surface. This coreceptor stabilizes interaction of NK cells
with target cells by binding with MHC [54]. CD69 is an early
marker of NK cell activation. Its expression correlates with the
cytotoxic potential of NK cells. CD25 represents the IL-2R�
chain. Its expression correlates with the proliferative capacity
of NK cells in response to picomolar concentrations of this
cytokine. CD27 is a member of the TNFR family. It binds
transferin receptor (CD70) on target cells. CD44 binds hyal-
uronic acid on matrix proteins and facilitates LFA-1-mediated
adhesion. CD59 is a GPI-anchored membrane glycoprotein,
which physically interacts with NKp30 and NKp46 on the
surface of NK cells. It is a complement regulatory protein and
protects cells from death as a result of complement activation.
It binds to the complement proteins C8a and C9. As a result of
its physical association with the NCR, it transduces positive
signals upon binding to its ligands and thus, acts as a core-
ceptor for NK cells.

Finally, resting fetal NK cells but not adult human NK cells
express CD28, CD80 (B7.1), and CD86 (B7.2) as coreceptors.

DIVISION OF LABOR AMONG NKRs

It has been demonstrated that no activating NKR alone is able
to kill insect (Drosophila) cells expressing its cognate ligands
[44]. The engagement of LFA-1 by its ligands expressed on
insect cells causes contact and adhesion as well as polarization
of NK cell granules and cytoskeleton. Nevertheless, it does not
result in degranulation of NK cells. On the other hand, the
engagement of CD16 by human IgG expressed on insect cells
causes contact and degranulation of NK cells but not polariza-
tion of their cytoskeleton. However, a simultaneous engage-
ment of CD16 and LFA-1 results in contact, adhesion, polar-
ization, and degranulation of NK cells resulting in secretion of

cytokines and killing of the target cells. Thus, activating sig-
nals emanating from these two distinct receptors complement
each other in NK cell-mediated killing of target cells. It has
been demonstrated that cross-linking of CD2, 2B4, or NKG2D
alone by specific mAb results in minor Ca�� fluxes in resting
human NK cells [44, 137]. These data suggest that there exists
a certain degree of division of labor among NK cell-activating
receptors. It is noteworthy that different activating receptors
and coreceptos may differ from each other in their signaling
pathways. Two activating receptors with disparate signaling
pathways may complement each other and trigger NK cell-
mediated killing. On the other hand, a simultaneous engage-
ment of two or more receptors with similar signaling pathways
(e.g., use of ITAMs) may not result in triggering NK cell
funtions. They may simply show functional redundancy and not
complementarity. Therefore, a combination of at least two
activating receptors with disparate signaling pathways must be
coengaged by target cells to provoke NK cell-mediated killing.
This implies that to be killed by a NK cell, it is compulsory for
the target cell to express cognate ligands for at least two
distinct activating NKRs. This provides a safety mechanism
against autoaggression by NK cells. The reductionist approach
of analyzing functions of activating NKRs in insect cells has
challenged traditional concepts of NKRs and coreceptors. In
the light of these observations, a reappraisal of the role of
various NKRs in the process of NK cell-mediated killing is
needed.

REGULATION OF NK CELL FUNCTIONS
BY NKRs

NK cell-mediated killing of target cells is tightly controlled by
inhibitory and activating receptors. This control ensures that
NK cells do not kill normal, healthy cells of the body and cause
tissue destruction (autoimmunity). As mentioned above, KIR
and NKG2A are the main NKRs that inhibit NK cell-mediated
killing. These receptors bind MHC class I antigens. Therefore,
the body’s healthy cells, which express normal levels of these
self-antigens, are spared from NK cells. The existence of MHC
class I antigen-specific inhibitory receptors was in fact pre-
dicted by the “missing-self hypothesis” proposed by Kärre’s
group in the mid-1980s [139]. These workers observed that NK
cells preferentially killed tumor cells, which lacked or have
reduced expression of MHC class I antigens. They also ob-
served that MHC-positive cells were resistant to killing by NK
cells (reviewed in ref. [139]). Their hypothesis was based on
these observations. It posited that NK cells sense the expres-
sion of MHC class I antigens on the surface of target cells and
kill those cells that lack these antigens. The discovery of MHC
class I-binding inhibitory receptors (e.g., KIR and LY49 on
human and mouse NK cells, respectively) proved validity of
their hypothesis. However, NK cells have also been found to
express a multitude of activating receptors and coreceptors,
which bind to various MHC and non-MHC ligands expressed
on the surface of target cells. The discovery of these receptors
was a surprise, as their existence was not predicted by the
missing-self hypothesis.
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The current model of NK cell function is based on the
engagement of its inhibitory and activating receptors by their
cognate ligands expressed on the surface of target cells. When
an NK cell comes in contact with a target cell, inhibitory and
activating receptors may bind with their cognate ligands ex-
pressed on the surface of the target cell. The balance between
inhibitory and activating stimuli received by the NK cell
determines whether it will kill or spare the target cell (Fig. 2).
Under physiological conditions, inhibitory signals usually re-
main dominant over activating ones. If for some reason, MHC
class I expression is reduced on body cells, it may turn the
balance of NK cell-received signals in favor of activating ones
(as a result of loss of MHC-mediated inhibition of NK cells)
and may make these cells susceptible to NK cell-mediated
killing. Viral infections and malignancy may cause a reduction
in the expression of MHC class I antigens on the surface of
infected cells. That may explain, at least in part, why NK cells
can kill virus-infected and cancer cells. However, it may be
noted that a MHC-deficient cell is only killed if it expresses
ligands for one or more activating NKRs. Furthermore, down-
regulation of MHC expression by a target cell is not a prereq-
uisite: It may become killed despite expressing normal levels
of MHC antigens if it increases the expression of ligands for
one or more activating receptors. Consequently, if target cells
express NKG2D ligands de novo, the engagement of KIR may
not be able to inhibit NK cell-mediated killing via NKG2D. If
target cells express de novo NKG2D ligands and/or increase
the expression of ligands for other NK cell-activating receptors
as well as down-regulate the expression of MHC antigens, they
would become super-susceptible to NK cell-mediated killing.
The ligands for the activating NKG2D receptor may be induced
on the body cells by viral infections, malignancy, or other
stimuli causing genotoxic stress. Thus, NK cells sense not only
the “missing or altered self” but also “induced self” to detect
hazardous cells and kill them. It is noteworthy that different
NK cell clones may vary in their ability to kill a given target
cell. This ability depends on the repertoire of its activating and
inhibitory receptors as well as its repertoire of signaling and
effector molecules (perforin, FasL, etc).

EXPRESSION OF NKRs

The expression of the main NKR genes, KIR, is controlled at
the transcriptional level. Once expressed, the expression re-
mains fairly stable. KIR genes are expressed clonally on over-
lapping subsets of NK cells in a cumulative and stochastic
manner, independently of each other. A developing NK cell
keeps on expressing its KIR genes at random one after another
until it has acquired an overall level of inhibition that is just
sufficient to make the cell tolerant to autologous cells. An
individual NK cell does not express all KIR genes present in
its genome. It expresses only a subset of these genes. This
mode of expression makes NK cells of an individual heteroge-
neous and variegated with respect to the expression of KIR
(reviewed in ref. [140]). All clonally expressed KIR genes have
more or less similar upstream regulatory regions (reviewed in
ref. [141]). These regions are characterized by the presence of
at least two promoters: a proximal (5	 to ATG codon) and a

distal (located 891–1347 bases upstream of the ATG) pro-
moter. The proximal promoter is composite and consists of
overlapping and bidirectional promoters, which work in oppo-
site directions. It can produce sense and antisense transcripts.
The sense transcripts from the promoter result in splicing and
expression of the KIR protein. The antisense transcripts from
the proximal promoter join sense transcripts from the distal
promoter, make dsRNA, and silence transcription through
RNase III-type nucleases (which cleave dsRNA into small,
uniform, 21 bp segments) and RNA-induced silencing kinase
(reviewed in ref. [142]). The ratio between forward and reverse
transcriptional activities of the proximal promoter of a KIR
gene determines whether the gene is expressed in an NK cell.
The promoter activities involve cell-specific and nonspecific
transcription factors. The bidirectional proximal promoters act
as probabilistic binary switches for turning on or off transcrip-
tion of individual KIR genes (reviewed in refs. [141, 143,
144]). The direction of the transcription, once selected, re-
mains fixed for the life of the cell. The presence of reverse
transcripts for a given KIR gene from its bidirectional promoter
represents lack of expression of the gene. The KIR genes, not
expressed in NK cells, are maintained silent, mainly by DNA
methylation of their promoter regions. The transcription start
sites in KIR genes are surrounded by CpG islands, which are
always methylated in nonexpressed genes. Consequently, treat-
ment of NK cells with demethylating agents, e.g., 5-aza-2
deoxycytidine, causes expression of all silenced KIR genes. It
was demonstrated that single base-pair mutations in the acute
myeloid leukemia-binding sites in the promoter regions of two
KIR2DL5 alleles (KIR2DL5.2 and KIR2DL5.4) result in their
transcriptional silence and nonexpression as a protein [145]. It
is noteworthy that the KIR2DL4 promoter is quite different
from those present in other clonally expressed KIR genes and
is not controlled by probabilistic transcriptional switches. This
explains why this KIR gene is expressed ubiquitously.

A consequence of the stochastic expression of KIR genes is
that each NK cell of an individual has a unique repertoire of
expressed KIR. On the average, three to four KIR genes (in-
hibitory and activating ones) are expressed in an individual NK
cell [146–148]. At least one of these receptors binds a self-
MHC class I ligand and induces tolerance to self. The KIR
genotype of an individual determines the repertoire of KIR
expressed on his/her NK cells. The HLA genotype of the
person affects this repertoire in a subtle way. The percent of
expression of a KIR on NK cells of an individual is slightly
increased if he/she also expresses an HLA ligand for that KIR
[149]. A higher number of copies of an individual KIR allele
also enhance its frequency of expression on NK cells. Further-
more, the number of other inhibitory KIR-HLA ligand pairs
expressed in an individual also affects the expression of a given
KIR on his/her NK cells; the higher the number, the lower the
frequency. Therefore, it is not surprising that KIR haplotype
identical sibling pairs with different MHC class I haplotypes
have significant differences in the frequencies of expression of
different KIR genes on their peripheral blood NK cells [150].

KIR and NKG2/CD94 receptors are usually expressed on
mutually exclusive subsets of NK cells and complement each
other (Table 2). In the course of NK cell development and
differentiation, NKG2/CD94 receptors are expressed earlier.
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Later in development, these receptors are replaced by KIR.
However, a small proportion of NK cells continues to express
NKG2/CD94 receptors and does not express KIR. In blood,
CD56highCD16low NK cells usually express NKG2/CD94 re-
ceptors.

Although an individual NK cell may express three to four
KIR genes, rarely does more than one of these receptors bind
to a self-MHC antigen. Consequently, each individual NK cell
can sense and respond to changes in individual MHC antigens
on autologous cells. It would not have to wait until there is a
global decrease in the expression of all MHC antigens. A
distinct advantage of the clonal and variegated pattern of
expression of KIR on NK cells is that different NK cells can
sense different MHC class I antigens on target cells. NK cells
in an individual may express certain KIR, which may not bind
to any HLA antigen expressed by him/her. The individual may
not have inherited HLA ligand genes for the receptor. For
example, an individual may have a KIR2DL1 gene but may
lack group II HLA-C genes, which encode its ligands. This may
happen, as KIR and MHC class I genes are located on two
separate chromosomes (12 and 6, respectively) and are as-
sorted independently of each other.

The expression of KIR genes on NK cells usually remains
stable and is least affected by cytokines. IL-21 plays a role in
the induction of these receptors on developing NK cells from
CD34� progenitor cells in in vitro cultures [151]. The cytokine,
however, does not affect KIR gene expression in mature NK
cells. In contrast to KIR, cytokines may regulate expression of
other NKRs. For example, IL-15, IL-10, and TGF-�1 were
shown to induce expression of CD94/NK2GA on developing
NK cells as well as on the TCR-stimulated CD8� T cells.
TGF-�1 also reduces expression of NKp30 and NKG2D on NK
cells. IL-21 increases the expression of NCR and 2B4 on NK
cells. The cytokine, however, decreases expression of NKG2D
on NK cells as well as on CTL. Glucocorticoids also decrease
NCR expression on NK cells [152–156]. These studies show
that changes in cytokine production, which usually accompany
viral infections and malignancy, may cause changes in the
expression of different receptors on NK cells as well as on T
cells. An altered expression of NKR has important implications
for the functional activity of NK cells; it may lead to the
emergence of autoimmune NK cell clones if inhibitory recep-
tors on NK cells are reduced, and/or activating receptors are
overexpressed. NK cells may also become immunodeficient if
inhibitory receptors to MHC antigens are overexpressed on
them. It has been demonstrated in the mouse model in vitro
and in vivo that blocking NK cell inhibitory receptors by small
molecular weight inhibitors or by receptor-specific antibodies
increases NK cell activity against tumors and results in their
regression [157]. The autoimmune cells may kill normal, au-
tologous cells, whereas the immunodeficient ones may not be
able to kill otherwise susceptible malignant or virus-infected
cells. A dysregulated in vivo expression of KIR genes has been
documented to cause immune deficiency in humans [120]. The
authors described the case of a person who expressed
KIR2DL1 on all of his NK cells. He was immunodeficient and
suffered from repeated viral and bacterial infections.

ROLE OF INHIBITORY RECEPTORS IN NK
CELL “EDUCATION”

It was proposed that each NK cell in an individual expresses at
least one inhibitory receptor (KIR or NKG2/CD94) capable of
binding to a self-MHC antigen. This ensures that NK cells do
not kill normal, autologous cells. However, it has been dem-
onstrated that some NK cells may not express any inhibitory
receptors (KIR or NKG2/CD94) specific to a self-MHC antigen.
These cells do not kill autologous target cells and are hypore-
sponsive [158]. According to one school of thought, these cells
have not been “licensed” to kill and therefore, are tolerant of
autologous target cells. According to the “licensing” hypothe-
sis, NK cells must express inhibitory receptors specific for
self-MHC class I antigens for acquiring killing capacity [159,
160]. This hypothesis implies that these NK cells are somehow
immature. Another group of researchers thinks that these NK
cells are fully mature and capable of killing but are “disarmed”
to kill autologous cells. They argue that as a result of persistent
activation of these cells, their signaling pathways become
attenuated [161]. The disarmed NK cells express all of the
phenotypic markers of fully differentiated, mature NK cells.
Upon activation with pharmacological activators, e.g., ionomy-
cin, they can release cytokines such as mature NK cells. In
conformity with the “disarming” hypothesis, NK cells from
Rae-1 transgenic mice are also hyporesponsive [162]. Further-
more, NK cells are chronically activated in transporter associ-
ated with antigen processing 2-deficient humans but are hypo-
responsive and tolerant to self. This self-tolerance could be
ascribed at least partially to their reduced expression of
NKG2D, �-chain, and NKp46 [10].

KIR HAPLOTYPES

As mentioned above, all KIR genes are tightly packed in a
head-to-tail manner in the LRC region (reviewed in refs. [163,
164]). Each KIR gene is �2.0 kb apart. The order of the genes
in the LRC region has been deduced from sequencing of the
KIR haplotypes as well from segregation analyses. KIR hap-
lotypes vary in humans with respect to the number of activating
and inhibitory genes as well as to their allelic forms. Because
of these variations, a large number of KIR haplotypes have
been identified. These haplotypes may be classified into two
broad types: A and B. The type A haplotypes usually contain
five inhibitory KIR genes. They also contain one S or activating
KIR gene (KIR2DS4). This activating KIR, however, is fre-
quently mutated and encodes a nonfunctional receptor as a
result of the presence of a 22-bp deletion in exon 5 of the gene.
About 80% of the Caucasians have this deletion [165]. There-
fore, type A haplotypes usually do not express a functional,
activating KIR. They have an inherent tendency to strongly
inhibit NK cells. Type B haplotypes are more diverse and may
contain more (up to 14) KIR genes, which may include as many
as five activating KIR (KIR2DS1,- 2, and -3, KIR2DS5, and
KIR3DS1 but not KIR2DS4). It is noteworthy that all human
KIR haplotypes contain KIR2DL4, which acts as an activating
receptor despite having a long cytoplasmic tail. Figure 6
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shows the prevalent KIR gene arrangements present in the
most common A and B types of KIR haplotypes. Four KIR
genes KIR3DL3, KIR3DP1, KIR2D4, and KIR3DL2 are present
in all KIR haplotypes. Of these, KIR3DP1 is a pseudogene.
These genes have been termed the “framework genes” [163,
166]. The frequencies of the two haplotypes vary significantly
in different human populations. For example, �60% Japanese,
30% Caucasians, and 2% Australian Aborigines are homozy-
gous for A haplotypes [166, 167]. It has been demonstrated that
overall, 12% humans have predominantly inhibitory KIR ge-
notypes (more inhibitory receptors than activating ones), and
36% have predominantly activating ones (more activating than
inhibitory receptors). The rest (52%) have neutral KIR geno-
types (equal number of activating and inhibitory KIR geno-
types). Furthermore, only less than 1% of unrelated humans
has the same KIR genes [168]. In a small percentage of people,
KIR may be truncated or unusually elongated. These inviduals
may lack or may have duplicated copies of certain KIR genes.
The KIR genotype of an individual greatly affects his/her NK
cell responses to viral infections.

KIR-HLA EPISTATIC INTERACTIONS AND
RESISTANCE TO VIRAL INFECTIONS

The KIR bind specific HLA antigens and regulate NK cells
functions. The two gene families are located on two different
chromosomes in humans. Therefore, they segregate indepen-
dently of each other in meiosis and may result in unique
KIR/HLA genotype combinations in humans. These unique
KIR/HLA combinations translate into unique interactions and
control over NK cell functions in humans. The degree of
inhibition mediated by interactions between coinherited KIR
and MHC class I gene products in an individual determines the
activation threshold for his/her NK cells. The differences in the
inhibition of NK cells result from different affinities of different
KIR for their cognate MHC ligands. Furthermore, individuals
may vary in the number of KIR/MHC inhibitory pairs as well as
in the number of inherited, activating KIR genes [163, 168].
Apart from playing a direct role in killing virus-infected cells,

NK cells effectively regulate several aspects of virus-specific,
adaptive immune responses. Moreover, KIR (especially the
inhibitory ones) are also expressed on virus-specific CD8� T
cells, and NKR/MHC interactions have been documented to
control the effector function of these cells. For this reason, the
effects of the KIR/MHC combinations may go beyond NK cells
and determine the overall immune efficiency of the individual.
For example, if a person X expresses KIR and MHC antigens
that interact strongly with each other, he/she would be rela-
tively immunodeficient as compared with person Y, whose KIR
and MHC antigens interact relatively weakly with each other.
From the point of view of a viral infection, the X may be at a
relative disadvantage to mount an effective antiviral immune
response and clear the infection as compared with the Y.
However, it has also been argued that X individuals may be
better than Y individuals in dealing with viral infections as a
result of enhanced licensing of their NK cells for killing by
high-affinity KIR [75]. This argument cannot explain the ex-
perimental findings that the individuals who are homozygous
for group I HLA-C and KIR2DL3 can more efficiently clear
needle-prick hepatitis C virus (HCV) infections as compared
with the individuals who are homozygous for KIR2DL1 and
group II HLA-C [79]. As mentioned above, KIR2DL1/group II
HLA-C interactions are stronger and mediate tighter inhibition
of NK cells as compared with that mediated by the KIR2DL3/
group I HLA-C. The implications of coinherited KIR and HLA
genotypes are not restricted to resistance to viral infections
(reviewed in ref. [51]). The individuals with relatively weakly
inhibited NK cells would not only better control viral infections
and other intracellular pathogens, but they would also be in a
better position to control malignancy. On the other hand, they
may be more susceptible to the development of various auto-
immune diseases. Indeed, persons suffering from type I diabe-
tes have been reported to carry a lower frequency of inhibitory
KIR/HLA gene pairs, a higher frequency of activating KIR
genes, and a higher frequency of KIR2DS2/ligand gene com-
binations [169, 170]. It is likely that a genetic imbalance
between KIR and their ligands may have resulted in increased
NK and CTL activities toward pancreatic antigens in these
patients. According to this paradigm, the persons susceptible

Fig. 6. Schematic representation of KIR
haplotypes in humans. A haplotypes contain
five inhibitory KIR and only one activating
KIR (2DS4), which is frequently mutated. B
haplotypes differ from A in having many
activating KIR genes. The framework genes
(3DL3, 3DP1, 2DL4, and 3DL2; in violet
color) are present in each haplotype. The
figure shows KIR genes present in the cen-
tromeric and telomeric halves of the fre-
quently found A and B haplotypes above
and below the framework genes, respec-
tively. Each box in the figure represents a
KIR gene. 3DP1 is a pseudogene.
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to developing autoimmune diseases may control viral infections
more efficiently. Consistent with this theme, it has been re-
ported that HIV infection progresses more slowly toward AIDS
in Zambian individuals suffering from the genetically deter-
mined, autoimmune spondylarthritis as compared with the
spondylarthritis-free, HIV-infected persons [171]. The fre-
quent presence of HLA-B27 in these patients may be a con-
tributing factor in slowing the progression to AIDS in these
patients.

KIR-HLA INTERACTIONS IN RESISTANCE TO
HIV INFECTION AND PROGRESSION TO AIDS

Role of Bw4-binding KIR

Several genetic and functional studies have associated certain
HLA allotypes with a rapid development of AIDS in HIV-
infected persons. For example, the HLA-B35 Px allele has been
associated with rapid progression toward AIDS, whereas HLA-
B57 and HLA-B27 alleles have been associated with delayed
progression. The HIV-infected persons carrying the protective
alleles have slower decline of CD4� T cell counts, lower viral
loads in their blood (viremia), and longer AIDS-free survival.
The protective HLA alleles are also over-represented in HIV-
infected persons, who can control HIV replication and do not
develop AIDS for long periods of time (so-called natural con-
trollers or long-term nonprogressors). The HLA-conferred pro-
tection from AIDS has been explained on the basis of the
ability of these HLA allotypes to present immunodominant
viral epitopes and induce broadly reactive polyclonal antiviral
CTL responses [172–175]. It is noteworthy that these protec-
tive allotypes are seropositive for the Bw4 determinant. Fur-
thermore, Bw4/Bw4 individuals have been shown to be rela-
tively resistant to the development of AIDS as compared with
Bw6/Bw6 individuals [75, 176]. As only Bw4-serospecific HLA
allotypes have been shown to bind three-domain KIR, the
question arises whether KIR/HLA-Bw4 interactions and NK
cells could be involved in the Bw4-mediated resistance to the
development of AIDS. Only a few studies have addressed this
question and investigated the impact of KIR polymorphism as
well as other HLA/KIR gene coinheritance on resistance to the
development of AIDS. In this regard, Martin et al. [77] con-
ducted investigations in a cohort of more than 1000 North
American HIV-infected persons. They reported that an acti-
vating allele of the KIR3DL1 gene, KIR3DS1, was associated
with delayed progression to AIDS in humans coinheriting the
HLA-Bw4-I alleles. In the absence of KIR3DS1, HLA-Bw4-I
alleles were not associated with the protection. More surpris-
ingly, KIR3DS1 alone without its HLA ligand was associated
with a relatively rapid progression of the disease. In a subse-
quent study, the group showed that coinherited KIR3DS1 and
HLA-Bw4-I alleles protected HIV-infected persons from viral
burden in early stages of the infection and from opportunistic
infections in late stages. Their coinheritance, however, af-
forded no protection from HIV-related malignancies [177]. As
mentioned above, KIR3DL1 receptors bind the HLA-Bw4-I
allotypes with higher affinity [70, 71]. Therefore, it can be
argued that a high-affinity interaction between KIR3DS1 and

HLA-Bw4-I allotypes may have resulted in more effective
immune responses (through enhanced activation of NK cells
and/or of T cells, were KIR3DS1 expressed on CTL in these
patients). The problem in this interpretation is that in in vitro
studies, although KIR3DL1 allotypes have been shown to bind
HLA-Bw4 antigens in a peptide-dependent manner, KIR3DS1
does not bind any Bw4 allotype, even when complexed with the
peptides that allow binding of KIR3DL1 allotypes [76, 78].
Alternately, a protein of viral or cellular origin, expressed de
novo on the surface of HIV-infected cells, may have acted as a
ligand for KIR3DS1. It is also possible that another unknown
genetic determinant, which may be in linkage disequilibrium
with KIR3DS1, may have been responsible for this protection.
Furthermore, reasons behind the reported association of
KIR3DS1 with rapid progression of AIDS in the absence of its
HLA ligand remain enigmatic. Another group of researchers
could not corroborate these results in an ethnically different
cohort of HIV-infected persons [178, 179]. They found no
protective effect of coinherited KIR3DS1 and HLA-Bw4-I genes
on AIDS progression. Instead, they found that inheritance of
two linked KIR genes (KIR2DL2 and KIR2DS2; see Fig. 6)
posed a greater risk of developing AIDS if their ligands were
also present, and the presence of the KIR2DL3 gene had a
moderating effect on this risk. They also found that coinher-
itence of the genes for Bw6 and group II HLA-C allotypes was
associated with rapid progression toward AIDS. The authors
concluded that HLA and KIR affect HIV progression indepen-
dently as well as synergistically. In another study on 88 HIV-
infected individuals, it was shown that KIR3DL1 had a pro-
tective effect on the development of AIDS when coinherited
with HLA-B*57 (an allotype with Ile at p80 [180]). An impor-
tant drawback of these studies is that they did not characterize
the KIR3DS1 allele in the patients and control subjects. It is
noteworthy that a mutant, nonfunctional form of KIR3DS1
(*049N) also exists [181, 182]. However, this mutant allele is
rare. Martin et al. [181] reported later that their disease asso-
ciation data were not affected when they adjusted them for the
presence of this allele. It may be relevant to mention here that
KIR3DS1-expressing NK cells as well as T cells expand in
viremic, HIV-infected persons [182]. These data suggest
strongly that KIR3DS1 expression is relevant to this infection.
Further studies are needed to pinpoint its exact role.

Role of KIR3DL1 alleles

It is noteworthy that KIR3DL1 has 59 alleles, 12 of which
encode the activating allotypes (KIR3DS1), and 47 encode
inhibitory (KIR3DL1) allotypes. Depending on their level of
expression on the cell surface, Martin et al. [75] have divided
the inhibitory allotypes into high expressors (KIR3DL1*001,
*002, *008, *015, *009), low expressors (KIR3DL1*005,
*007), and no expressor (KIR3DL1*004). The last one is
retained within cells as a result of its truncated, cytoplasmic
tail. They presumed that the affinities of these allotypes for
their MHC ligands correlated with their expression levels.
They further demonstrated that highly expressing KIR3DL1
alleles were protective when coinherited with HLA-Bw4-I al-
leles as compared with the low-expressing allotypes [75]. This
study also showed relative protection afforded by low-express-
ing KIR3DL1 alleles when coinherited with HLA-Bw4-T as
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compared with the individuals homozygous for Bw6 alleles.
More surprisingly, KIR3DL1*004 also provided protection,
despite the fact that this allotype is not expressed on the cell
surface. This shows that even an intracellularly retained
KIR3DL1 allotype may have functional significance. These
results from Martin et al. [75] suggest that the presence of a
pair of inhibitory KIR3DL1 and its HLA ligand in HIV-
infected persons affords protection from AIDS progression.
Furthermore, the strength of the inhibition between the recep-
tor-ligand pair correlates positively with the degree of protec-
tion. These results are not congruent with the paradigm that the
KIR/HLA combinations that favored NK cell activation pro-
vided protection from viral infections and from the develop-
ment of AIDS in HIV-infected individuals. The authors have
argued that if NK cells were more strongly inhibited by
KIR3DL1 receptor/ligand pairs, they would be more cytotoxic
once they were relieved of their inhibition. The argument
derives from the hypothesis that NK cells continue to express
inhibitory KIR one after the other until they acquire sufficient
inhibition to become self-tolerant. Thus, more tightly inhibited
NK cells would be inherently more cytotoxic once their KIR/
HLA-mediated inhibition is lost. The inhibition may be lost if
the expression of HLA-Bw4 decreases on the surface of the
virus-infected cells. Alternately, HLA-Bw4 may present a vi-
rus-derived peptide that may make it unrecognizable by the
KIR3DL1 receptor. However, this argument cannot explain
why coinheritence of KIR/HLA gene pairs, which inhibit NK
cells rather loosely, or the inheritance of KIR without the genes
for their HLA ligands protects humans from HIV and HCV
infections [79, 183]. The authors have put forward another
argument to explain their findings: In the presence of tightly
inhibited NK cells, only a virus-specific, immune response is
generated, avoiding a nonspecific, overall activation of the
immune system. This response is more effective in suppressing
HIV replication. Weakly inhibited NK cells may lead to a
generalized activation of the immune response, which may
cause immune-mediated pathology. However, there is no ex-
perimental evidence to support this argument. On the contrary,
enhanced NK cell activation has been shown to induce better
and stronger antigen-specific immune responses [184]. Fur-
thermore, it does not explain results from several other studies
in which relatively weakly inhibited NK cells (as a result of
weak-affinity KIR/HLA interactions) have been shown to pro-
vide protection from viral infections as well as from tumors [51,
79, 178]. Even in the case of HIV infection, it has been
reported that persons having weakly inhibited NK cells have
reduced risk of contracting the infection. The study, conducted
in African female sex workers, has shown that the inheritance
of inhibitory KIR genes was protective from contracting HIV
infection when the genes for their cognate MHC ligands were
not coinherited. More specifically, KIR2DL2/3 heterozygotes
without group I HLA-C and KIR3DL1 homozygotes without
HLA-Bw4 were relatively protected [183]. Furthermore, it has
also been reported that the persons with KIR genotypes having
more activating KIR genes were also relatively protected [183,
185]. In the case of i.v. drug users, stronger NK cell activities
as well as a predominantly activating KIR repertoire (high
KIR3DS1/KIR3DL1, NKG2C/NKG2A ratios, low expression of
KIR3DL1, coinheritance of weakly inhibiting KIR/MHC pairs,

i.e., KIR2DL3/HLA-C of group I) also protect from contracting
HIV infection [185, 186]. Taken together, these studies suggest
that weakly inhibited NK cells not only may slow progression
of HIV infection toward AIDS but also may protect from
contracting HIV infection. It is noteworthy that a hierarchy of
KIR3DL1 allotypes for HLA-Bw4 binding has been described
[149] that differs significantly from the one used by Martin et
al. [75].

Concerning the impact of KIR3DS1 and its HLA ligands,
Barbour et al. [187] have shown that the two genes affect AIDS
progression independently from each other. The researchers
analyzed viral load, CD4� T cell counts, and KIR3DS1 and
HLA-Bw4 genotypes of a cohort of 255 treatment-naı̈ve, HIV-
infected persons during the first 2 years of infection. They
found that the KIR3DS1 and HLA-Bw4-I genes had distinct but
independent effects on CD4� T cell counts and viral loads,
respectively. They noted that KIR3DS1-positive, HIV-infected
persons maintained CD4� T cells counts at higher levels as
compared with the KIR3DS1-negative persons, irrespective of
coinheritence of any Bw4-I alleles. The persons possessing
HLA-Bw4-I alleles maintained lower viral loads all along the 2
years of the study period, irrespective of their KIR3DS1 status.
In the persons having the receptor and the ligand genes, the
effects on CD4� T cell counts and viral load were simply
additive and not synergistic. This study suggests a direct
relationship between KIR3DS1 expression and CD4� T cell
counts in HIV-infected persons. It may be interesting to in-
vestigate potential interactions between KIR3DS1-positive NK
cells and CD4� T cells in humans. More recently, a direct role
for an activating KIR, KIR3DS1, has been demonstrated in
controlling HIV replication. In in vitro studies, KIR3DS1-
positive NK cells inhibited HIV replication in HLA-Bw4-I-
positive cell cultures in a contact and dose-dependent manner.
The inhibition was significantly more as compared with
KIR3DS1-negative NK cells [188]. Collectively, these studies
do suggest a role of activated NK cells in controlling HIV
infection. The caveat is that uncontrolled activation may con-
tribute to immunopathogenesis.

It is noteworthy that HIV infections in humans have arisen
relatively recently. The pathogen and its host have not had
sufficient time to coevolve and eliminate deleterious genes
from each other. Nevertheless, KIR and MHC antigens have
evolved in humans under pressure from infectious agents,
malignancy, and autoimmunity over millenia. Therefore, the
impact of KIR genes, especially in combination with coinher-
ited HLA genes on the susceptibility to HIV infection and
development of AIDS in human populations, should be forth-
coming. The studies conducted so far have yielded discordant
results. The reasons for these discordant results may include
variations in the pathogenicity of HIV viruses, treatment reg-
imens, sample sizes, variable frequency of different genes in
human populations, improper statistical models, etc. A part of
the problem in formulating a uniform hypothesis regarding the
impact of HLA/KIR interactions on the AIDS pathogenesis is
the heterogeneous nature of the KIR with respect to their
dependence on MHC-bound peptides. The two-domain KIR
bind HLA-C and are affected by certain amino-acid side-
chains at p7 and p8 of the MHC-bound nonamer peptides [83].
The three-domain KIR bind HLA-A and -B and are relatively
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more discriminating between the peptides bound to their MHC
ligand Bw4. Their recognition may have implications for anti-
viral CTL responses. For example, if an individual has HLA-
Bw4 alleles, he/she will be expressing KIR3DL1 on a subset of
his/her NK cells, which will recognize HLA-Bw4 complexed
with endogenous self-peptides and will be tolerant to them. If
the individual becomes infected, his/her cells may bind a
foreign (antigenic) peptide to its HLA. If the new peptide-
bound HLA is recognized by KIR3DL1, the cell still will be
protected from NK cells but may be killed by antiviral CTL. If
the new HLA-peptide complex is not recognized by KIR3DL1,
the cell will no longer be protected from KIR3DL1-positive NK
cells. The HLA-peptide complex may, however, be recognized
by the CTL, and the infected cell will also be killed by the
CTL. Thus, NK cells and CTL will eliminate the infected cell.
Thus, the person coinheriting KIR3DL1 and HLA-Bw4 may be
better equipped to eliminate HIV-infected cells compared with
the person who is homozygous for HLA-Bw6. It is noteworthy
that KIR and TCR bind their cognate MHC ligands with much
different kinetics and thermodynamic properties [189, 190].
Therefore, if CTL and the KIR3DL1-positive NK cell recognize
and bind the same Bw4-peptide complex, CTL may preclude
the NK cell binding to the complex.

No KIR has been described that could bind HLA-Bw6
allotypes. Individuals bearing this HLA may be killed only by
antiviral CTL (in the context of HLA-Bw6). It may explain why
HLA-Bw4 and KIR3DL1 have synergistic effects in slowing
down the progression of HIV toward AIDS (Fig. 7). As HLA-
Bw4 homozygous persons are not likely to lack KIR3DL1, this
may also explain why HLA-Bw4 homozygous individuals are
relatively resistant to the development of AIDS as compared
with HLA-Bw6 homozygous ones [75, 176]. Furthermore, more
protection may be afforded by high-affinity KIR3DL1 allo-
types, as they may be more sensitive to the peptide require-
ments and therefore, may be less likely to recognize the HLA
ligand if bound to a foreign peptide. However, at this point, it
remains a speculation and needs to be proved by experimental
data.

KIR3DS1 may be protective, as in normal uninfected per-
sons, this receptor does not recognize autologous cells; other-
wise, host NK cells may kill these autologous cells and would
cause autoimmunity. In HIV-infected persons, a viral peptide
may bind HLA-Bw4 and make it recognizable by the
KIR3DS1. Under these conditions, KIR3DS1-positive NK cells
will cause killing of the infected cell. Although KIR3DS1 and
KIR3DL1 allotypes have more than 95% sequence identity at
the amino-acid level in their ligand-binding, extracellular re-
gions, they may still differ from each other in their three-
dimentional structures. That is why a mAb DX9 binds
KIR3DL1 but not KIR3DS1 [191]. Thus, it may not be sur-
prising if KIR3DS1 and KIR3DL1 bind HLA-Bw4/peptide
complexes.

One should not overlook the fact that KIR are also expressed
on T cells, especially on the memory/effector phenotype. This
is an area that needs to be addressed in HIV immunology.
Furthermore, one should also keep in mind that Nef may be
attenuating the protective effects of KIR3DL1/Bw4 interactions
by down-regulating the expression of these MHC antigens.

Role of HLA-G-binding KIR

As stated above, nonclassical MHC class I antigens, HLA-G
and -E, also act as ligands for some NKRs. HLA-G binds
KIR2DL4, ILT-2, and possibly KIR2DL5. The gene for HLA-G
shows limited polymorphism. It was demonstrated that an
HLA-G allele, HLA-G*0105N, which codes for a nonfunctional
mutant HLA-G, provides protection from HIV infection in East
African female sex workers. On the other hand, inheritance of
functionally active HLA-G alleles increased the risk of the
infection in these workers [192]. It is noteworthy that HLA-G
is expressed in the mucosal tissues of the female genital tract
and may play a role in regulating local antiviral immunity. The
authors interpreted the data by concluding that the mutant

Fig. 7. NK cells with three-domain KIR behave like CTL in killing HIV-
infected cells. (A) KIR3DL1 on NK cells recognize HLA-Bw4 with a self-
peptide and are inhibited from killing normal, autologous cells. CTL do not
recognize the self-peptide bound to the HLA and also do not kill the cell. (B)
The virus-infected cell presents a virus-derived foreign peptide bound to
HLA-Bw4. KIR3DL1 on the NK cell may not recognize the HLA with foreign
peptide and is not inhibited from killing. The CTL may recognize the viral
peptide bound to HLA-Bw4 and kill the infected cells. So, HIV-infected cells
are more likely to be killed (from CTL as well as from NK cells). (C) KIR3DS1
expressed on NK cells does not bind to HLA-Bw4-I complexed with a self-
peptide. CTL also do not recognize self-endogenous peptides and therefore,
would not kill the healthy autologous cells. (D) A virus-infected cell presents
a virus-derived foreign peptide bound to HLA-Bw4. It may be recognized by
KIR3DS1 and be killed by KIR3DS1-positive NK cells. The CTL may also
recognize the foreign peptide bound to HLA-Bw4 and therefore, will also kill
the infected cell. Thus virus-infected, HLA-Bw4-positive cells are more likely
to be killed (by virus-specific CTL and NK cells).
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antigen protected women, as it could not inhibit their NK cells
in the reproductive tract of the HIV-exposed women. Of the
NKRs, which could bind HLA-G, KIR2DL4 is expressed on all
CD56� NK cells present in tissues in humans. However, as
mentioned above in the KIR section, this receptor is not an
authentic inhibitory KIR: It induces secretion of IFN-� but
does not trigger cytotoxicity upon binding with its ligand [60,
63, 64]. Two other receptors, ILT-2 and possibly KIR2DL5,
may also bind and inhibit NK cell functions. However, they are
only expressed on a minor subset of NK cells. Notably, mono-
cytes, macrophages, and DC abundantly express different ILT,
including ILT-2, which preferentially bind and are inhibited by
HLA-G [97]. Thus, in the persons having mutant HLA-G,
activated monocytes, macrophages, and DC may play a greater
role than NK cells. It has also been reported that the African
women having a mutant HLA-E allele (HLA-E*0103-G or HLA-
EG) have four times less risk of contracting HIV infection as
compared with the women with wild-type HLA-E [193]. It is
noteworthy that the mutant HLA-E allele is expressed at lower
levels and has decreased affinity for CD94/NKG2A receptors.
It has also been shown that the sex worker women with HLA-E
and HLA-G mutant genotypes (homozygous for HLA-EG as well
as heterozygous for HLA-G*0105N) had more than 12-fold
decreased risk of contracting HIV infection [193]. These re-
sults implied a synergistic interaction between mutant HLA-E
and HLA-G alleles in affording protection from HIV infection.
These studies also suggest that blocking HLA-G and HLA-E
interactions with NKR may enhance innate resistance to HIV.

Taken together, it can be postulated that coinheritance of
genes for any NKR/ligand pair that weakens NK cell inhibition
in the body and decreases activation threshold of NK and T
cells is likely to provide protection from HIV and other viral
infections. In this respect, the three-domain KIR behave as
TCRs in recognizing MHC-bound peptides. If they fail to
recognize the MHC-bound foreign peptide, they release the NK
cell from inhibition. The NK cell will kill the virus-infected
cell and so will do the virus-specific CTL. These two effector
cells will be more effective in controlling HIV infection and
delaying onset of AIDS in the persons who coinherit KIR3DL1/
HLA-Bw4 genes. If the three-domain KIR also recognize the
foreign peptide, then the NK cell will be inhibited from killing
the target cell. These results have implication for HIV vaccine
strategies. Viral peptides, which are recognized by CTL, but
not by KIR3DL1, may serve as better immunogens. They may
arouse NK and CTL responses for killing the infected cells.

PERSPECTIVE AND FUTURE DIRECTIONS

Advances made in understanding NK cell immunobiology have
enabled us to appreciate the role of NK cells in host resistance
to these infections. The functional activities of these cells are
controlled by a multitude of inhibiting and activating receptors
and coreceptors. Of these receptors, the genes encoding KIR
and their HLA ligands are highly polymorphic. Therefore, it is
not surprising that coinheritance of these genes and their
epistatic interactions is important in determining the status of

NK cell activation, overall immune reactivity, and innate ge-
netic resistance of humans to viral infections, malignancy, and
autoimmune diseases. Researchers have just begun unraveling
the role of these interactions in these diseases.

In the case of HIV infection and AIDS, few studies con-
ducted so far highlight the significance of HLA and KIR genes
as well as of their interactions in determining our innate
susceptibility to the infection and its progression to AIDS.
Many of these studies lacked adequate sample sizes and did
not take into account allelic variations. For example, all major
KIR genes have allelic variants that encode nonfunctional
receptors. Furthermore, different allotypes of a given KIR
differ widely in their affinities for MHC ligands. Future studies
should take into account the impact of these variants on the
susceptibility/resistance of humans to the infection as well as
on the rate of progression toward AIDS. The results could have
a profound impact on our understanding of the role of NK cells
in controlling HIV infection. In view of the large number of
KIR genes, their alleles, differences in gene doses, and lack of
knowledge about the ligands for activating KIR, the task of
investigating the impact of KIR/HLA interactions on HIV
infection is challenging but worth undertaking. The results
would have enormous implications for the immunotherapy,
prognosis, and vaccination of HIV infections. Such studies
would require larger sample sizes, accurate clinical data, and
proper stratification of study participants with respect to their
ethnic backgrounds. Furthermore, the researchers must use
models that include all KIR alleles and their ligand genes as
well as all other known genetic determinants that affect host
resistance to HIV infection.

In determining the role of genes for NKRs and those of their
ligands, researchers have ignored the potential involvement of
the ligands for KLR-D (NKG2D) receptors, i.e., MICA and
MICB proteins, which exist in more than 50 and 20 allotypes,
respectively. These allotypes vary in their affinity for NKG2D.
The nature of the allotype(s) carried by an individual could
greatly affect his/her NK cell ability to kill target cells. They
have been shown to play a role in autoimmune diseases such as
celiac disease, diabetes, etc.

Finally, research in this field is seriously hampered by lack
of appropriate mAb to identify individual NKR genes and their
allelic variants. Development of such reagents should be a
priority. This would allow determining the level of expression
of the genes at the protein level and supplement genetic data
with more relevant protein data. Furthermore, these antibodies
could serve as important tools for manipulating receptor/ligand
interactions for therapeutic purposes.

NOTE ADDED IN PROOF

A recent publication showed significantly enhanced frequency
of KIR3DS1 homozygotes but not of the combination of the
KIR3D gene with HLA-Bw4 or HLA-Bw4-I genes in HIV-
exposed uninfected individuals compared to HIV-infected ones
[194].
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171. López-Larrea, C., Njobvu, P. D., González, S., Blanco-Gelaz, M. A.,
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RÉSUMÉ 

Les cellules NK sont présentes dans la circulation, dans les ganglions 

lymphatiques, le foie et la rate. Elle peut atteindre toute place où il existe 

une infection virale et exécute une réponse anti inflammatoire. Après 

l’infection, le virus induit la production des cytokines, comme l’INF de 

type I, l’IL-12, l’IL-15, l’IL-18 etc… qui sont responsable de  l’activation 

des cellules NK,  et qui a leur tour induit  une réponse immunitaire 

adaptative contre les pathogènes intracellulaire. Les cellules NK peuvent 

tuer les cellules infectées directement ou indirectement par ADCC. Les 

fonctions cytolytiques et sécrétoires deviennent compromises, durant la 

progression de la maladie. Alors,  il y a une déplétion du nombre des 

cellules NK et expansion des cellules NK non fonctionnels. Alors dans 

cette revue, on discute les stratégies développer par le virus pour échapper 

à la réponse médié par les  cellules NK, la dérégulations des cytokines  qui 

induisait l’activation des cellules NK, et d’autre aspect qui touche à 

l’apoptose,  et l’effet de la thérapie anti virale. Finalement on discute des 

nouvelles approches qui impliquent  les cellules NK comme une 

immunothérapie contre le VIH et la vaccination. 
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Abstract: As is the case in other viral infections,
humans respond to HIV infection by activating
their NK cells. However, the virus uses several
strategies to neutralize and evade the host’s NK
cell responses. Consequently, it is not surprising
that NK cell functions become compromised in
HIV-infected individuals in early stages of the in-
fection. The compromised NK cell functions also
adversely affect several aspects of the host’s anti-
viral adaptive immune responses. Researchers
have made significant progress in understanding
how HIV counters NK cell responses of the host.
This knowledge has opened new avenues for im-
munotherapy and vaccination against this infec-
tion. In the first part of this review article, we
gave an overview of our current knowledge of
NK cell biology and discussed how the genes
encoding NK cell receptors and their ligands
determine innate genetic resistance/susceptibilty
of humans against HIV infections and AIDS. In
this second part, we discuss NK cell responses,
viral strategies to counter these responses, and
finally, their implications for anti-HIV immuno-
therapy and vaccination. J. Leukoc. Biol. 84:
27–49; 2008.

Key Words: ADCC � AIDS � CD94/NKG2 � chemokines � cytokines
� HIV-1 � HLA � KIR � KIR haplotypes � MHC class I � MICA � MICB
� NK cell receptors � NKG2D � ULBP

INTRODUCTION

This is second part of a review article on NK cell responses in
HIV infections. The first part gives an overview of our current
knowledge about NK cell immunobiology, receptors, and their
ligands. The part also describes how polymorphism in the
genes encoding killer-cell Ig-like receptor (KIR) and their
HLA ligands determines innate genetic resistance/susceptibil-
ity to HIV infection and development of AIDS. This second
part of the article deals with functional defects that occur in
NK cells in the course of HIV infection, viral strategies to
counter host’s NK cell responses, and their implications for
anti-HIV immunotherapy and vaccination. We recommend that
this article be read in conjunction with its first part.

NK CELL ACTIVATION IN HIV INFECTION

As mentioned earlier, NK cells are present in the circulation,
bone marrow, lymph nodes, spleen, lung, liver, omentum, etc.,
and can reach almost any place in the body where a viral
infection occurs and induces an inflammatory response. Viral
infections generally activate NK cells, especially in early
stages of the infection. Studies from animal models as well as
in individuals in acute stages of the infection suggest that HIV
is no exception to this rule. The infection also causes activa-
tion and expansion of NK cells. NK cell activation and expan-
sion have been observed in humans in primary HIV infections
and precede the appearance of virus-specific CTL responses.
The expansion usually occurs in the highly cytotoxic
CD56dimCD16� subset of NK cells [1]. Increased NK cell
activities were also observed in monkeys after experimental
infection with SIV [2]. This initial NK cell expansion and
activation probably result from direct and indirect effects of the
infection. Virus-induced cytokines, e.g., type I IFN, IL-12,
IL-15, IL-18, etc., are usually responsible for early NK cell
activation and expansion. Viral proteins and nucleic acids may
bind to TLRs and/or other receptors on a variety of host cells
including NK cells themselves, resulting in their activation. As
mentioned in the first part of this review, to become function-
ally competent, TLRs expressed on NK cells seem to require
help from accessory cells [3, 4]. Thus, it is not surprising that
a uridine-rich ssRNA derived from HIV-1 long-terminal repeat
has been shown to activate NK cells but requires the presence
and activation of plasmacytoid DC or CD14� monocytes [5].
Activated NK cells activate DC, secrete IFN-�, and act as
adjuvants by killing virus-infected cells and by causing release
of intracellular proteins from the killed cells. NK cell activa-
tion has been shown to be important in inducing an effective
adaptive immune response against intracellular pathogens in
several animal models. In the context of HIV infection, NK
cells may control the infection, not only by killing virus-
infected cells directly as well as indirectly by antibody-depen-
dent, cell-mediated cytotoxicity (ADCC), but also, they serve
as an important source of �-chemokines (MIP-1�, MIP-1�,
and RANTES) and undefined soluble factors, which can sup-
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press replication of M- and T-tropic HIV viruses [6–8]. NK
cell-secreted cytokines, especially IFNs, may induce the anti-
viral state in host cells and cure HIV-infected cells via non-
cytolytic mechanisms.

Many studies have shown that NK cells play an important
role in controlling HIV replication. The presence of NK cells
suppresses HIV replication in cell cultures [9–11]. It has been
demonstrated that i.v. drug users, who are at high risk of
contracting HIV infection, resist infection, as long as they have
elevated NK cell activities. In this regard, researchers have
shown that these uninfected but highly exposed drug users
have NK cells, which produce more chemokines and cytokines
in vitro with or without simulation and whose KIR repertoire is
predominantly of an activating type. They have high ratios of
KIR3DS1�/KIR3DL1� and NK cell group 2C� (NKG2C�)/
NKG2A� NK cells and coinherit the weakly inhibiting KIR-
MHC gene pair (KIR2DL3/HLA-C of group I). They also have
low expression of KIR3DL1 and an increased expression of
CD107a and CD69 on their NK cells [12, 13]. Apart from
protecting from HIV infection, high NK cell activities also
delay progression of the infection toward AIDS [14, 15]. It has
been demonstrated that decreases in NK cell cytotoxicity as
well as in NK cell counts in the circulation of the infected
persons were associated with their rapid CD4� T cell deple-
tions and rapid progression toward AIDS [14, 16]. However,
the infected persons who are able to maintain their NK cell
functions remain healthy, despite having decreased CD4� T
cell counts [15]. Animal models of HIV infection also support
a role of NK cells in controlling this infection. It has been
shown that our closest relatives, chimpanzees (Pan trogly-
dytes), can be infected with HIV-1 and SIVcpz. The viruses
replicate in this species but cause no AIDS-like disease. It is
noteworthy that NK cells are more abundant in this species
than in humans; they remain fully functional throughout the
course of infection and unlike humans, can up-regulate certain
natural cytotoxicity receptors (NCR; NKp30) in response to the
infection. As mentioned above, this receptor plays a role in NK
cell–dendritic cell (DC) interactions. Higher NK cell re-
sponses in chimpanzees are thought to be a factor in their
resistance to progression to an AIDS-like disease [17, 18].

Several workers have investigated NK cell responses in
HIV-infected humans. An exhaustive list of these studies,
along with their major findings, is given in Table 1. It is quite
evident from this table that NK cell functions (cytolytic and
secretory) become compromised in HIV-infected persons; de-
pletion of functional NK cell subsets and expansion of non-
functional NK cells occurs; the infection causes changes in the
expression of NKRs and their ligands; HAART tends to nor-
malize changes in the number and functional capabilities of
NK cells, but they never become normal. Few studies have
been undertaken to translate our current knowledge into ways
and means to invigorate NK cells and develop novel, anti-HIV
vaccines.

ADCC

NK cells not only can kill virus-infected cells alone, they can
also do so in combination with antibodies for which the antigen

is expressed on the surface of the infected cells. The process is
called ADCC. The antibodies bind through their variable an-
tigen-binding sites to the viral antigen on the surface of the
virus-infected cells and through their so-called crystallizable
fragments (Fc) to CD16 on NK cells [63, 64]. The antibodies
cross-link CD16 on NK cells and consequently, trigger their
cytolytic functions. This results in killing of the virus-infected
cells and secretion of cytokines and chemokines from NK cells
(Fig. 1). The ADCC is a classical example of cooperation
between innate and adaptive immune responses in protecting
host from viral infections and malignancies. CD16 is a type I
Ig-like integral membrane glycoprotein, which is expressed on
the surface of NK cells, monocyte-macrophages, Langerhan’s
cells, DC, etc. It is a low-affinity type III receptor for the Fc
part of IgG (Fc�RIII; CD16). It binds aggregated but not
monomeric human IgG1 and IgG3. The aggregated Ig are
present in immune complexes. NK cells express the CD16A or
Fc�RIIIA form of the receptor. This form associates nonco-
valently via its transmembrane region with signaling adaptors
(� and/or � chains) and can transmit signals intracellularly.
The receptor plays a predominant role in NK cell-mediated
ADCC. Therefore, it is also commonly referred to as the
“ADCC receptor.” Another form of the receptor (CD16B or
Fc�RIIIB) is anchored in the plasma membrane via GPI and
cannot transmit intracellular signals. This form acts as a sink
for antigen/antibody complexes and is expressed on neutro-
phils and eosinophils [64]. The level of expression of CD16 on
the surface of NK cells correlates with their functional ADCC
activity. CD16 interacts physically with CD38 on the surface of
NK cells. CD38 is a surface glycoprotein with ADP ribosyl
cyclase/cyclic ADP-ribose hydrolase activities. It regulates
cytoplasmic calcium and also acts as a receptor modulating
cell–cell interactions. It binds CD31 (PECAM-1), which is a
transmembrane Ig-like glycoprotein expressed on human vas-
cular endothelial cells, and plays a role in angiogenesis, cell
adhesion, and diapedesis. When cross-linked, CD38 transmits
activating signals to NK cells via CD16 [65]. Interestingly,
cells may shed CD16 upon activation, and cleaved sCD16
interferes with the ADCC process. Increased concentrations of
sCD16 have been reported in the sera of HIV-infected persons,
which correlate with disease progression. Interestingly, sCD16
seems to be shed from non-NK cells in these patients [66].

In addition to CD16, NK cells express an activating version
of the Fc�RIIC (CD32C), which also takes part in ADCC [67].
However, only 40–45% humans express this receptor on their
NK cells. It is noteworthy that CD32 is encoded by three
diferent genes: CD32A, -B, and -C. CD32A is an activating
receptor expressed on neutrophils, monocytes, and DC. CD32B
is an inhibitory receptor expressed on DC, monocytes, neutro-
phils, and B cells. An allelic variant of CD32A expresses
arginine at position 131 (R131) instead of histidine (H131).
The R131 variant responds vigorously to IgG and has been
implicated in the development of systemic lupus erythremato-
sus (for details, see ref. [67]).

The major FcR involved in ADCC may be mutated and
nonfunctional in some individuals. This happens as a result of
a deletion of a single base (adenine) in exon 4 at nucleotide
550, resulting in a premature stop codon and truncated protein
[68, 69]. Another mutation has been described that results in
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polymorphism at position 158 in the amino-acid sequence. The
amino acid at this position could be valine (V) or phenylalanine
(F). The V allotype has higher affinity with IgG than the F one.
The individuals with the V/V genotype are more efficient in
mediating ADCC [70]. Few studies have investigated the im-
pact of these mutations on the clinical course of HIV infection.
In this regard, one group of researchers has demonstrated that
HIV-infected persons bearing the Fc�RII RR genotype
progress more rapidly toward AIDS than those bearing HH or
HR genotypes [71].

The ADCC-mediated destruction of tumor cells as well as of
virus-infected cells can be readily demonstrated in vitro in the
presence of NK cells and tumor or virus-specific antibodies of
the appropriate IgG isotypes. The process also occurs in vivo.
Although macrophages and neutrophils can also mediate
ADCC, NK cells are the main cell type that mediates this
process. Their depletion, therefore, abrogates the ADCC-me-
diating ability of PBMC [64].

ADCC IN HIV INFECTION

NK cells may eliminate HIV-infected cells in combination with
HIV-specific antibodies via ADCC. The destruction of HIV-
infected cells can be readily demonstrated in in vitro ADCC
reactions in which HIV-infected cells are incubated with NK
cells in the presence of HIV-specific antibodies. The phenom-
enon has been demonstrated to occur in vivo in these infections
[26]. The antibodies specific to the viral envelope protein
gp120/41 have been shown to mediate ADCC against the
virus-infected cells. A prerequisite of the ADCC against HIV-
infected cells is that the virus must be replicating in the cells,
and the viral envelope proteins must be expressed on the
surface of these cells. Anti-HIV, ADCC-mediating antibodies
have been demonstrated in the sera of HIV-infected persons in
several studies [9, 33, 63].

Although HIV-specific ADCC eliminates HIV-infected
cells, it also has the potential to contribute to AIDS pathogen-
esis (Fig. 1). In in vitro experiments, uninfected CD4� T cells
may bind exogenous recombinant gp120 and be killed by NK
cells in the presence of gp120-specific antibodies of the IgG
isotype [72, 73]. Furthermore, anti-gp120 antibodies may com-
plex with the virus and facilitate uptake of the virus by mono-
cytes. They may also cause NK cell activation and hence,
excessive production of chemokines and cytokines. In fact, a
group has demonstrated a correlation between the presence of
HIV-specific ADCC antibodies and the development of AIDS
[74]. However, these studies have not been corroborated. On
the other hand, several researchers have demonstrated that
these antibodies correlate with better clinical condition and
better prognosis in HIV-infected children and adults [63, 75–
77]. The protective nature of anti-HIV ADCC antibodies could
also be demonstrated in in vitro experiments in which HIV-
specific antibodies or NK cells alone are not able to inhibit
replication of primary isolates of HIV-1 in human PBMC.
However, they do so efficiently via ADCC when added together
to these cultures [9]. Studies in animal models of HIV infection
have also shown a protective effect of ADCC against disease
progression [78]. Many researchers regard anti-HIV ADCC as

a reliable correlate of immune protection from HIV infection
[17, 63]. However, it remains to be tested in HIV vaccination
studies. It has been demonstrated that vaccines may elicit
ADCC antibodies, which could inhibit replication of clinical
strains of HIV in the presence of NK cells [9].

Although anti-HIV ADCC antibodies can be demonstrated
in HIV-infected individuals, even in late stages of the infec-
tion, the full host beneficial potential of this ADCC cannot be
realized in vivo, as NK cell functions become compromised in
a majority of these individuals [14, 27, 79, 80]. The decreased
ADCC effector function of NK cells in HIV-infected persons
could be a result of several reasons: decreased number of
CD16� NK cells, decreased expression of the signaling partner
� chain in NK cells, and overall decreased cytolytic capacity of
NK cells (see Table 1). It is noteworthy that the engagement of
CD16 alone cannot mediate killing of the target cells. For this
purpose, it needs simultaneous engagement of LFA-1 or 2B4
(reviewed in ref. [81]). The receptor activities may be neutral-
ized by increased concentrations of ICAMs and sCD16 in the
circulation of HIV-infected patients [66, 82]. Interestingly,
these concentrations increase with disease progression and
serve as prognostic markers. Increased expression of HLA-C
and -E on the surface of HIV-infected T cell blasts also
interferes with their killing by autologous NK cells via ADCC.
The blockage of interactions between KIR and HLA-C and
between NKG2A and HLA-E with specific antibodies en-
hances this immune effector mechanism against this virus [83].

Attempts to control HIV replication in HIV-infected patients
via passive immunotherapy (infusion of anti-HIV antibodies or
i.v. Igs) have not yielded desired results. Passively infused i.v.
Igs are known to have immunosuppressive effects (reviewed in
ref. [84]). The infused antibodies form multimeric IgG com-
plexes on DC. Such DC are killed by NK cells via ADCC or
become defective for their ability to activate NK cells and to
prime T cells. They decrease the expression of NKp30 and KIR
on interacting NK cells [85]. Therefore, they may aggravate the
defects, which already exist in an NK cell compartment in
HIV-infected patients. HIV-1 has developed myriad strategies
to evade a neutralizing antibody response of the host, e.g.,
mutation of epitopes, masking of epitopes by glycosylation and
trimerization of gp120/41 spikes, shedding of envelope pro-
teins, etc. (reviewed in ref. [86]). Nevertheless, the infusion of
a combination of HIV-specific neutralizing antibodies does
provide protection from infection in the animal models. How-
ever, it has been demonstrated that the antibodies require
binding to Fc�R for full efficacy [87, 88]. These results high-
light a beneficial role of ADCC for the host. Fc�R can also
mediate uptake of antibody-coated viruses by monocytes and
macrophages. The potentials and limitations of the i.v. use of
neutralizing antibodies in HIV-infected patients have been
demonstrated by the results of a small trial, in which a com-
bination of HIV-neutralizing antibodies was infused into HIV-
infected persons. Their HAART treatment was stopped 1 day
after the infusion, and HIV rebound was measured [89, 90].
The virus rebound was delayed in acutely infected persons.
However, this delay in the virus rebound was seen only in two
of the chronically infected persons. Escape mutants also ap-
peared for one of the three antibodies in the rebound viruses.
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TABLE 1. List of Published Research Papers and Their Major Findings on NK Cells in HIV-Infected Persons

Year Major Findings Reference

1986 Defective trigger and release of NKCF; partial restoration by IL-2. [19]
1986 Decreased NK cell activity as a result of decreased IL-2 production; in vitro IL-2 restores this activity. [20]
1986 IL-2 increases NK cell-mediated killing of HIV-1-infected cells; HIV-1 infects NK cells in vitro. [21]
1987 Defective natural cytotoxicity, normal ADCC. [22]
1987 Defective NK cell lysis in patients with AIDS and AIDS-related complex; increased number of CD8�CD57� and

CD16�CD57� cells.
[23]

1988 Normal actin polarization but defective tubulin rearrangement in NK cells from AIDS patients. [24]
1990 Defective inducibility of LAK activity in blood lymphocytes. [25]
1990 Defective ADCC effector functions of NK cells. [26]
1990 CD16� NK cells decrease in all stages of infection; specific depletion of CD3–CD8�CD16� cells. [27]
1992 NK cell activation and killing decreased, not restored by long-term in vitro culture with IL-2; defect at clonal level. [28]
1994 CD56� and KIR� NK cells decrease in AIDS patients; NK cell activity decreases, and EB6� GL183� (double-positive)

NK and T cells appear in all HIV-infected persons.
[29]

1994 Impaired NK and LAK activity; no effect of AZT therapy. [30]
1994 NK cell activity decreased with disease progression starting in CDC stage IVC2; Defect not corrected by in vitro culture

with IL-2.
[31]

1994 Decreased CD16�CD56� NK cells in primary and chronic HIV infections in children. [32]
1994 Defective ADCC effector function of NK cells from HIV-infected persons; IL-2 and IFN-� restore partially. [33]
1995 Decreased NK cell activity early in infection; CD16� decreased; CD16�CD56� percentage normal or elevated, reduced

response to IFN-�.
[34]

1995 CD16�CD56� subset decreases; expansion of less-cytotoxic CD16dimCD56– cells. [35]
1995 CD8�CD16�CD56� NK cells depleted. [36]
1996 Defective NK cell-mediated killing of gp120/41-expressing target cells. [37]
1997 CD16�, CD56� and CD16�CD56� NK cell percentage and concentration of CD16�CD56� NK cells decrease in

correlation with disease progression.
[38]

1997 AIDS patients have lower NK cell activity than HIV-infected asymptomatic and seronegative controls; at least in part as
a result of reduced IL-2 production.

[39]

1997 KIR� CD3� CD8� cells increase, masking KIR-increased cytotoxicity against HIV-infected cells. [40]
1999 Increased percentage of CD94�CD8�CD56� cells; no change in KIR, IL-10 implicated. [41]
1999 KIR increased transiently on T but not on NK cells; CD94 increases on both cell types. [42]
1999 Poor response to IFN-� and low LAK activity associated with poor prognosis and death. [43]
1999 Decreased expression of � chain in NK cells; defective, CD16-mediated lysis. [44]
2001 NK activity decreased with decrease in VL; decreased iKIR on CD56� but increased on CD8� cells; CD57 and CD94

expression increased.
[16]

2001 Decreased NK cell numbers with decrease in CD4� T cell counts; decreased CD16�CD56� NK cells; expansion of
CD8�CD38�DR� lymphocytes associated with low cytotoxicity.

[14]

2001 HAART normalizes expression of iKIR and NKG2A but not of ILT-2 on CTL; blocking of ILT-2 increases CTL activity. [45]
2002 CD56� cells coexpressing CD16, CD161, or CD94 become depleted; CD56– cells coexpressing CD16, CD161, or CD94

expand; defective differentiation.
[46]

2002 Defective modulation of CD69 and CD16 expression on NK cells. [47]
2002 Increased NK cell activity that decreases with HAART; more NK cells expressing CD158a and CD94 appear; IL-10

implicated.
[48]

2003 Decreased production of chemokines and viral suppression by NK cells from viremic patients. [11]
2003 Decreased expression of NCR on fresh and in vitro-activated NK cells. [49]
2003 Decrease in CD16–CD56bright subset in patients undergoing HAART; IL-12 plus IL-15 or HGH partially restore NK cell

number and IFN-� production.
[50]

2003 Expansion of CD56–CD16� dysfunctional NK subset; decreased expression of actNKR but not of NKG2D; stable or
increased KIR expression; impaired NK cell cytotoxicity; HAART normalizes NKR expression.

[51]

2004 Aberrant NK cell activation; NCR expression decreased; no NKp44 expression; decreased cytotoxicity in viremic
patients.

[52]

2004 Increased CCR5 and iKIR expression on NK in viremia; became normal after HAART; direct correlation of iKIR
expression with viral load.

[7]

2004 iKIR expression increases on NK in viremic patients; CD56�CD94� and CD56�CD161� NK decreased; NK cell
number decreased; overall NK activity and CD107a expression increased; NK produce more TNF-� and IFN-� in
viremic patients.

[1]

2005 Expansion of NKG2C� and loss of NKG2A� NK; no effect of HAART. [53]
2005 Expansion of dysfunctional CD56–CD16� subset in viremia; iKIR expression increased on NK; major activating NKR

decreased but not NKG2D; NK less cytotoxic, produce less chemokines and cytokines.
[54]

2005 Decreased CD94� NK cell numbers in viremic patients and advanced disease. [55]
2005 2B4� cells transiently decrease early in infection; decrease is related to VL and sTNFRII; later expression increases on

NK and T cells and normalizes with HAART.
[56]

2005 Increased NK cell numbers with early depletion of the CD56highCD16– subset and expansion of the CD56lowCD16�

subset in acute infection; the depletion of the CD56lowCD16� subset continues with a parallel increase in the anergic
CD56–CD16� subset.

[57]

2006 Decreased perforin and increased SHIP expression in NK cells in chronic infection. [58]
2007 Expression of inhibitory FcRL6 on all lymphocytes (NK, CD4�, CD8� effector memory cells). [59]
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As mentioned above, the CD16� NK cell subset is mainly
involved in mediating ADCC. NK cell therapy with or without
anti-gp120/41 antibodies may be more effective in restoring
ADCC and controlling HIV replication in HIV-infected pa-
tients. Finally, several cytokines are known to increase ADCC
against HIV-infected cells (reviewed in ref. [80]).

HIV STRATEGIES TO EVADE NK CELL
RESPONSES OF THE HOST

Viruses generally use multiple strategies to counter NK cell
responses of the host. HIV is no exception. The strategies
aimed at evading antiviral effects of the host’s NK cell re-
sponses are listed in Table 2 and are discussed below.

Changing the expression of MHC and non-MHC
ligands for NKRs

The down-regulation of MHC class I antigens on the surface of
infected cells is a common strategy used by a variety of viruses

to evade antiviral CTL responses of the host, as CTL recognize
viral peptides in association with these antigens (reviewed in
refs. [91–93]). A global decrease in the expression of MHC
antigens, however, makes virus-infected cells susceptible to
NK cell-mediated killing. Therefore, viruses have developed
various strategies to evade this NK cell-mediated killing. Two
HIV proteins have been shown to affect expression of MHC
class I antigens: Tat represses promoters of the MHC class I
and the �-2 microglobulin genes, and viral protein U (Vpu)
interferes with an early step in the biosynthesis of MHC
antigens [94, 95]. However, a global down-regulation of MHC
class I antigens has rarely been observed in HIV-infected
cells. Instead, several studies have documented that HIV dif-
ferentially down-regulates the expression of MHC class I an-
tigens on the surface of the infected cells. The viral protein Nef
recognizes certain motifs present in the cytoplasmic tails of
MHC class I antigens and causes their degradation. These
motifs are present mostly in the cytoplasmic tails of HLA-A
and -B but not of HLA-C and HLA-E antigens. Consequently,
the expression of HLA-A and -B but not of HLA-C and -E is
decreased on the surface of HIV-infected cells [96–98]. It is
noteworthy that HLA-A and -B predominantly present viral
peptides to CTL. Of these, only Bw4-serospecific HLA-A and
HLA-B allotypes act as ligands for KIR3DL1. On the other
hand, HLA-C and HLA-E present relatively fewer HIV-de-
rived. immunodominant peptides to CTL. Nevertheless, all
known HLA-C and HLA-E allotypes act as ligands for KIR and
CD94/NKG2, respectively. From the perspective of NK cell
functions, HLA-C and HLA-E are more important. The main-
tenance of these HLA molecules on the surface of HIV-in-

Fig. 1. Schematic representation of ADCC phenomenon. (A) NK cells kill
HIV-infected CD4� T cells expressing gp120 via gp120-specific antibodies.
The antibodies on one hand bind to gp120 and on the other hand, to CD16 on
NK cells via their Fc regions. By killing HIV-infected cells, ADCC may help
control the infection. (B) NK cells may also kill uninfected, gp120-bound
CD4� T cells. The process may not discriminate between HIV-infected and
gp120-bound, uninfected CD4� T cells.

TABLE 1. (Continued)

Year Major Findings Reference

2007 NK cell activation and expansion precede CTL response in acute infection; NK cell activity decreases with HAART; NK
and CTL respond with similar kinetics upon antigen exposure or upon discontinuation of therapy.

[60]

2007 CD56dim NK cell subset expanded in primary infection; partial normalization after 6 months HAART; CD27�CD70�

expression increased in chronic infection.
[61]

2007 KIR3DS1� NK and T cells increase in number in viremic HIV-infected persons. [62]

actNKR, Activating NK cell receptors (NKR); FcRL6, FcR-like protein 6; HGH, human growth hormone; iKIR, inhibitory KIR; LAK, lymphokine-activated
killer cell activity; NKCF, NK cell cytotoxic factor, HAART, highly active antiviral therapy; sTNFRII, soluble type II TNFR; VL, viral load; ILT-2, Ig-like transcript
2. EB6 and GL183 are mouse MAb (from Immunotech/Coulter, France) that bind to KIR2DL1 (p58.1) and KIR2DL2/3 (p58.2), respectively.

TABLE 2. How HIV Evades Host’s NK Cell Response

It does so by:
1. Differential down-regulation of MHC class I antigens via the

negative factor (Nef) protein.
2. Inducing and stabilizing the expression of HLA-E and -G in

the infected cells.
3. Directly infecting and eliminating NK cells.
4. Blocking NK cell-mediated killing.
5. Promoting apoptosis of NK cells.
6. Dysregulating the expression of NKRs.
7. Dysregulating the production of NK cell-activating cytokine.
8. Down-regulating the expression of adaptor molecules

involved in the signaling cascade of NK cell activation.
9. Modulating NK cell differentiation and maturation program.

10. Interfering with NK cell interactions with DC and other
immunocytes.
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fected cells protects them from NK cell-mediated lysis. A
decreased expression of HLA-A and -B makes them invisible
to most of the virus-specific CTL. However, it comes with some
price. The infected cells become susceptible to killing by the
NK cells expressing HLA-Bw4-specific KIR. By a differential
modulation of HLA antigens on the surface of infected cells,
virus evades most if not all CTL and NK cell-mediated killing.
Indeed. autologous NK cells do not kill HIV-infected T cell
blasts despite decreased HLA-A and -B antigens on their
surface [99].

In addition to classical MHC class I antigens, HIV modu-
lates expression of nonclassical MHC antigens. The infection
increases the expression of HLA-E on the surface of CD4� T
cells in in vitro experiments [55]. At least one potential mech-
anism of this increase is a peptide from the viral protein p24
(residues 14–22), which can bind and stabilize HLA-E on the
surface of HIV-infected cells [100]. In line with these results,
increased expression of HLA-E has been reported on the
surface of CD4� T cells in HIV-infected persons. The increase
was more pronounced in advanced stages of the infection and
correlated with peaks in viremia [55].

Conflicting results have been reported concerning the effect
of HIV infection on the expression of HLA-G. The infection
was reported to cause down-regulation of HLA-G on the sur-
face of HIV-infected cells in a Vpu-dependent manner [96,
101]. However, the molecule is expressed on monocytes and T
lymphocytes in HIV-infected persons, probably as a result of
HAART and increased concentrations of IL-10 in the circula-
tion [102, 103]. HLA-G is normally expressed on certain
immune-privileged sites, e.g., cornea, and on invading cytotro-
phoblasts in pregnancy and is believed to protect a developing
fetus from the mother’s immune responses (reviewed in ref.
[104]). Increased expressions of HLA-E and -G on the surface
of HIV-infected cells would increase their resistance to NK
cell-mediated killing as well as to macrophage activation.

Although exact ligands for NCR are not known, Vieillard et
al. [105] have reported increased expression of NKp44 binding
to HIV-infected CD4� T cells. They have shown that a peptide
(SWSNKS) derived from the transmembrane unit (gp41) of a
viral envelope protein induces the unknown NKp44 ligand on
CD4� T cells. It also suggests that the unknown ligand for this
receptor could be a peptide-binding MHC or MHC-like mole-
cule. The induction of NKp44 ligand on the HIV-infected cells
may promote their killing by cytokine-activated NK cells. The
increased expression of NKp44 ligands on the surface of HIV-
infected cells has been corroborated by Ward et al. [83], who
also reported increased expression of MHC class I chain-
related protein A (MICA), MICB, and the human CMV
(HCMV) glycoprotein UL16-binding protein 1 (ULBP-1), 2,
and 3 on T cell blasts infected with HIV. They also reported a
decrease in the expression of CD48 and NK-T-B antigen, and
no change was observed in the expression of NKp30 and
NKp46 ligands. As mentioned earlier, MICA, MICB, and
ULBPs serve as ligands for NKG2D, which is an activating
receptor expressed on all NK and CD8� T cells in humans. It
is not in the interest of a virus to induce expression of these
ligands on the surface of infected cells, as the virus-infected
cells would be killed by NK cells as well as by CD8� T cells

via NKG2D. Therefore, viruses have developed different strat-
egies to evade this NKG2D-mediated killing. For example,
HCMV encodes a glycoprotein UL-16, which can bind ULBPs
intracellularly and prevent them from reaching cell surface and
interacting with NKG2D [106]. Another protein from this virus,
UL142, binds MICA and prevents its interaction with NKG2D
[107]. Tumors may cleave and shed soluble MICA and MICB
to interfere with NKG2D-mediated killing of tumor cells [108,
109]. HIV uses its Nef protein to evade NKG2D-mediated
killing. The protein, in addition to down-regulating the expres-
sion of HLA-A, -B and CD1d, also binds to and degrades
MICA, and ULBP-1 and -2 [110].

It is noteworthy that NKG2DL are usually induced in human
cells upon genotoxic stress, which activates DNA damage
response (reviewed in ref. [111]). The response arrests cell
cycle until the damage is repaired. If the damage is not
repairable, the response induces apoptosis in the cells. The
response is initiated by two PI-3K-like kinases: ataxia telan-
giectasia mutated (ATM) and ATM and RAD-3-related (ATR).
The two kinases are activated by dsDNA and ssDNA breaks,
respectively. Stalled replication forks also activate ATR. The
induction of NKG2DL by HIV implies that the infection causes
genotoxic stress in the infected cells. It could be an unintended
consequence of the functional activities of the viral protein R
(Vpr). The protein is known to induce cell-cycle arrest by
recruiting DCAF-1/VprBP and an E3 ligase Cul4-DDB1 in
eukaryotic cells and activates ATM and ATR, which may result
in the induction of NKG2DL [112]. Figure 2 summarizes
HIV-induced changes in the expression of MHC ligands in
HIV-infected persons.

Changing the expression of NKRs

Viruses may evade NK cell-mediated killing by increasing the
expression of inhibitory and/or by decreasing the expression of
activating receptors on the surface of NK cells of the infected
host. There is sufficient evidence to suggest that HIV uses this
strategy to counter antiviral NK cell responses of the host.
Several workers have documented an increase in the expres-
sion of inhibitory receptors (e.g., iKIR) and a decrease in the
expression of activating receptors (e.g., NCR) in HIV-infected
individuals. Interestingly, these dichotomous effects on inhib-
itory and activating NKRs were mainly observed in viremic
patients and correlated with viral load. Only a transient de-
crease was observed in the expression of 2B4, whereas no
effect was observed on the expression of NKG2D on NK cells
from HIV-infected persons. These changes in receptor expres-
sion were often accompanied with decreased cytolytic activities
of NK cells [1, 16, 49, 51] (reviewed in ref. [113]). The
occurrence of these changes in viremic patients as well as their
correlation with viremia suggest that the virus might have
caused the receptor modulations. This is further supported by
the fact that a stabilizing effect of the HAART treatment on the
receptor expression was observed. However, the treatment was
able to restore the expression to normalcy after a long period of
administration, when it resulted in undetectable viral loads in
the patients [51, 56]. In addition to direct effects of the virus,
chronic activation of the immune system via antigens from
HIV-1 and/or from other coinfecting pathogens may have
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caused perturbations in the expression of NKR. Repeated
antigenic stimulations are known to induce expression of sev-
eral inhibitory receptors including KIR on immune cells [114].

With respect to the NKG2/CD94 family receptors, an ex-
pansion of CD94/NKG2C� and a marked depletion of CD94/
NKG2A� NK cells have been described in the peripheral
blood of HIV-infected persons [53]. HAART did not reverse
these changes despite reducing viremia to undetectable levels
in these patients. These changes are also not observed in the
individuals infected with HIV alone. It is noteworthy that
similar changes in the expression of the CD94/NKG2 family of
receptors have been reported in humans suffering from chronic
infections with HCMV. It seems more likely that HCMV in-
fection may be the real cause in driving these changes in HIV-
and HCMV-coinfected patients. Indeed, HCMV-infected fibro-
blasts cause proliferation of NKG2C� human NK (HNK) cells
in in vitro studies. However, the changes seem to be more
pronounced in the coinfected individuals [53, 115, 116]. These
observations suggest a possible role of HIV infection in these
NKR perturbations. It may be relevant to mention here that
NKG2A is an inhibitory and NKG2C is an activating NKR.
Both of them bind to HLA-E on target cells and regulate NK
cell functions. The two receptors usually occur on the
CD56highCD16low subset of NK cells, which express low levels
of KIR. It is believed that NKG2A may be important in
maintaining self-tolerance in NK cells that do not express
self-reactive KIR. It is noteworthy that a HCMV-encoded pro-
tein UL40 provides a peptide, which binds and stabilizes
HLA-E. The HLA-E is also stabilized by a peptide derived
from the HIV p24 protein [100, 117]. An increased expression
of HLA-E on CD4� T cells in HIV-infected individuals has
also been described [55]. The enhanced HLA-E expression
may have caused proliferation of NKG2C� and/or an early

depletion of NKG2A� NK cells. It is not clear how these
receptor changes could affect progression of HIV infection.
The fact that persons coinfected with HIV and HCMV progress
more rapidly toward AIDS [118] suggests that NKG2C� NK
cells may be involved in immunopathology. We speculate that
these CD56�NKG2C� NK cells may kill many different types
of cells including mature DC and CD4� T cells, which express
HLA-E [100, 117, 119]. However, it must be emphasized that
there is no direct experimental evidence at this point in time to
support this notion. The modulation of NKRs by HCMV pro-
vides an example of how this herpesvirus may affect the natural
course of HIV infection in coinfected individuals.

NKp44 is an activating receptor, which is not expressed on
resting NK cells. The receptor is induced on cytokine-activated
NK cells. A group of researchers has shown that freshly iso-
lated NK cells from HIV-infected viremic persons are aber-
rantly activated: They are CD69�, HLA-DR� but do not
express NKp44. Furthermore, they express relatively low levels
of other NCR [52].

As mentioned above, HIV or its products have been impli-
cated in the induction of changes in the expression of NKRs in
HIV-infected patients. It is noteworthy that the infection
causes a dysregulated production of many cytokines in the
human body. It is not surprising that these cytokines have been
implicated in this process. Two groups of researchers have
suggested the involvement of IL-10. This immunosuppressive
cytokine induces changes in the expression of NKRs in vitro
similar to those seen in HIV-infected patients in vivo, i.e.,
increased expression of CD94, CD161, and CD158a or
KIR2DL1 [41, 48]. It is noteworthy that concentrations of
IL-10 are increased in the circulation of HIV-infected persons.
The changes observed in the expression of NKRs in HIV-
infected persons are summarized in Figure 2.

Fig. 2. HIV-induced changes in the expression of NKRs and their ligands. (A) Changes in the expression of various NKR ligands. (B) Changes in the expression
of NKRs from HIV-infected persons. Collectively, these changes may protect HIV-infected cells from NK cell-mediated lysis. aKIR, Activating KIR; iKIR,
inhibitory KIR.
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Changing the expression of NKRs on
non-NK cells

Many NKRs are also expressed on non-NK cells. CD56 is
usually expressed on activated CD8� T lymphocytes. Its ex-
pression has been associated with the acquisition of cytotoxic
functions in these cells [120]. A decrease in the expression of
CD56 has been described on NK and CD8� T cells in HIV-
infected persons. Indeed, CD56� NK and CD8� T cell popu-
lations from HIV-infected persons express less perforin and are
less cytolytic compared with their counterparts from HIV-
seronegative, healthy subjects [10, 58, 121].

Normally, monocytes do not express CD16; they do so upon
activation. TGF-�1 has been shown to induce its expression on
monocytes in humans. Monocytes from HIV-infected AIDS
patients express this marker, and this expression correlates
with increased concentrations of this cytokine in the circula-
tion of these patients [122]. This expression has implications
for virus replication, as CD16� monocytes are highly permis-
sive to HIV replication [123]. Furthermore, these cells may
shed sCD16, which may interfere with killing HIV-infected
cells via ADCC.

CD57 (Leu-7; HNK-1) is a 110-kD glycoprotein expressed
on a subset of NK, CD8�, and CD4� T cells, which plays a role
in homotypic cell adhesion. It bears a sulfated carbohydrate
epitope (glycotope), which is also present on several other
glycoproteins and glycolipids expressed on the surface of dif-
ferent cell types. The epitope is regulated by two glucuronyl-
transferases (-P and -S) and a sulfotransferase (HNK-1; see ref.
[124] for a review). In the immune system, CD57 is expressed
on terminally differentiated effector cells. These cells can
neither proliferate nor circulate; however, they do migrate to
nonlymphoid tissues and secrete cytokines. In the case of
CD8� T cells, CD57 expression is restricted to effector/mem-
ory phenotype. The marker is also expressed on aberrantly
differentiated and clonally exhausted effector cells. Increased
numbers of CD57-expressing NK and CD8� T cells occur in
chronic viral infections including that of HIV [16, 124]. Re-
peated antigenic stimulation may lead to clonal exhaustion and
increased CD57 expression in HIV-infected persons. Further-
more, aberrant differentiation of these cells as a result of a lack
of CD4 help and/or dysregulated production of cytokines such
as IL-2, IL-7, IL-15, IL-21, IL-10, etc., may also lead to an
increased number of CD57� cells in this infection. Increased
numbers of CD57� T and NK cells represent immune dysfunc-
tion.

In the course of normal differentiation into terminally dif-
ferentiated effector cells, CD8� T cells acquire CD57 and lose
CD27. However, in the case of HIV infection, they acquire
relatively low levels of CD57 (compared with HCMV and
EBV-specific effector CTL) and do not lose CD27 expression
[125]. This suggests that HIV-specific CTL undergo aberrant
and incomplete course of differentiation. This defective differ-
entiation of HIV-specific CTL is further supported by their
decreased expression of perforin, lower cytotoxicity, and in-
creased expression of the inhibitory marker programmed death
(PD)-1 and other phenotypic markers [126, 127]. It has also
been proposed that in HIV infection, NK cells and CTL un-
dergo premature senescence without undergoing complete

physiological differentiation. This premature senescence has
been proposed as the main reason of inability of HIV-infected
persons to control the virus [128].

A subset of CTL has been shown to express KIR, NKG2/
CD94, killer lectin-like receptor (KLR)-G1, and ILT-2. These
markers are usually expressed at distinct stages in the course
of development and differentiation of naı̈ve CTL into effector/
memory cells. For example, KLR-G1� CD57� CTL represent
terminally differentiated effector CTL, and KLRG1�CD57–

CTL represent long-lived memory CTL [129]. Developing T
cells acquire these markers after completion of their TCR gene
rearrangements. Therefore, CTL with similar TCRV� genes
may have different repertoires of KIR, NKG2, and KLR-G1
receptors [130]. The level of expression of these receptors on
CTL determines their antigenic threshold for activation and is
“fine-tuned” to avoid autoimmunity and to mount an effective
immune response against invading pathogens [131, 132]. The
expression of KIR in humans (and of Ly49 in mice) seems to
confer survival advantage in CTL and prevents them from
undergoing activation-induced cell death in response to TCR
stimulation. KIR� CTL express higher levels of the antiapo-
ptotic protein Bcl-2 as compared with the ILT-2� CTL [133–
136]. It appears that KIRs are expressed on long-lived memory
T cells having monoclonal or oligoclonal expression of TCRV�
genes. ILT-2, on the other hand, are expressed earlier than
KIR in the course of differentiation of CTL. Consequently, they
are expressed on a larger percentage of antigen-specific CTL
with a broader use of TCRV� genes. Interestingly, ILT-2� but
not KIR�, HIV-specific CTL could be easily detected in HIV-
infected AIDS patients, which again suggests their defective
differentiation. KIR� CTL express perforin and secrete IFN-�,
whereas ILT-2� CTL can only secrete cytokines and contain
little perforin [133]. Expansions of CD8�T cells expressing
these receptors usually occur in viral infections, which subside
upon resolution of the infection. However, increased frequen-
cies of the cells bearing these receptors persist in chronic
infections [137–140]. The expression of inhibitory NKRs on
CTL may be essential for the development of virus-specific
memory responses. This expression raises the activation
threshold of CTL and prevents indiscriminate killing of host
cells but still allows killing of virus-infected cells. However,
coengagement of inhibitory receptors inhibits TCR-mediated
activation of CTL [141]. It has also been observed in in vitro
studies that a blockage of KIR markedly increases CTL-medi-
ated killing of HIV-infected, autologous cells [40]. In mice,
which do not have KIR genes but express their functional
orthologs (LY49 genes) on their NK cells and a subset of CTL,
it was also demonstrated that blockage of LY49 receptors
increases anti-tumor activities of NK cells resulting in tumor
regression [142, 143]. Interestingly iKIR, CD94/NKG2, and
KLR-G1 could also be detected but sparsely on CD4� T cells
in human peripheral blood. Percentage of these cells increases
with age.

It is noteworthy that many of the observations concerning the
expression of inhibitory receptors on CD8� T cells have been
verified in vivo in mice infected with chronic lymphochorio-
menengitis virus infection [144].

It has been well documented that HIV infection induces a
vigorous antiviral CTL response in the host (reviewed in ref.
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[145]). The frequency of virus-specific CTL in the circulation
of HIV-infected persons is usually higher as compared with
that seen in several other viral infections. Consequently, HIV-
specific CTL can be readily demonstrated in the peripheral
blood of HIV-infected individuals without prior stimulation
and expansion. Despite this, cellular immune response is un-
able to control HIV infection in humans. There could be
several reasons for the inability of the antiviral CTL responses
to clear HIV infections: high mutability of HIV-1, depletion of
CD4� T cells and consequent loss of CD4 help, incomplete
differentiation of CTL, increased expression of proapoptotic
molecule PD-1, impaired proliferative capacity of HIV-specific
CTL, decreased expression of CD3 on CTL, etc. (reviewed in
refs. [145–147]). An increased expression of inhibitory NKR
on these cells may also play a role in the ultimate failure of this
antiviral immune response in controlling HIV infection in
humans. This is supported by the facts that long-term, nonpro-
gressors do not express increased levels of these receptors on
their CD3�CD8� peripheral blood cells, and in vitro blocking
of these receptors causes increased killing of the CTL against
autologous, HIV-infected cells [45, 148].

Disturbing NK cell interactions with
other immunocytes

As mentioned earlier, NK cells interact intimately with DC.
These interactions have important implications for the ensuing
innate and adaptive immune responses against viral infections
and malignancy. During these interactions, the two types of
cells form an immune synapse with each other. NK cells
induce polarized secretion of IL-12, IL-18, and membrane-
bound IL-15 from DC. The polarized secretion from DC re-
quires tubulin rearrangement and activation of calcium-cal-
modulin-dependent kinase II (CAMK-II) [149, 150]. These
cytokines activate NK cells, which in return, secrete IFN-�,
TNF-�, and high mobility group box-1 (HMGB1), which cause
DC maturation [151, 152] (reviewed in ref. [153]). It is note-
worthy that HMGB1 is the most potent proinflammatory cyto-
kine that causes DC maturation. The DC-maturing capacity of
different NK cell clones depends on their ability to secrete this
cytokine [154, 155]. The physical contact between the two cell
types involves interactions among several receptor-ligand
pairs, which include LFA-1, NKp30, NKp46, 2B4, DNAX
accessory molecule 1 (DNAM-1), NKG2D, TNFRII, and
NKG2A [150, 156, 157]. NK cells also perform the task of
quality control and kill immature DC if they do not undergo
proper maturation. It has been demonstrated that NKp30,
DNAM-1, and LFA-1 are involved in the NK cell-mediated
killing of autologous, immature DC [158]. Mature DC are not
killed, as the maturation process induces expression of HLA
antigens, which protect them from NK cells. It is noteworthy
that it is the CD56highCD16dim NK cells that interact with and
cause maturation or killing of immature DC. These NK cells
express little KIR and express CD94/NKG2A as the main
inhibitory receptors. It is not yet fully understood how NK cells
choose between killing and causing maturation of immature
DC. It probably depends on the profile of expression of several
molecules on the surface of immature DC. If DC fail to express
HLA antigens upon maturation, they may be killed by NK
cells. The NK cell-activating potential of DC also depends on

the milieu in which they differentiate. For example, immature
DC, differentiated in the presence of IL-4, selectively activate
NK cells but not T cells. IL-4 induces the expression of
triggering receptor expressed on macrophage-2 on DC [159,
160]. The ratio between NK cells and their interacting DC is
also a factor: A greater ratio tends to favor the killing rather
than maturation.

After maturation, DCs express CCR7 and migrate to second-
ary lymph organs, e.g., lymph nodes, where they interact with
T cells as well as with activated NK cells, which control and
determine T cell-priming capabilities of DC. The DC generated
from monocytes in the absence of NK cells are unable to prime
CD8� T cells. The NK/DC interactions may allow DC to prime
T cells without help from CD4� T cells. The speculation is that
NK cells may themselves provide this help. As mentioned
earlier, properly activated NK cells express molecules that may
enable them to interact with T cells. The cross-talk also in-
volved cell–cell contact via CD161/Clr-b, 2B4/CD48, DNAM-
1/Poliovirus receptor, NKG2D/NKG2DL, as well as soluble
mediators, e.g., TNF-�, IFN-�, IL-12, and others [161–163].

Depending on these interactions, DC may emerge that could
prime naı̈ve CD4� T cells into TH1-type cells. The interac-
tions may also lead to the generation of DC, which may favor
the generation of immunosupressive regulatory T cells (Tregs).

As a result of the importance of NK/DC interactions in
mediating effective antiviral immunity, viruses may target
these interactions for immune evasion. For example, it has
been shown that monocyte-derived DC (MDDC) from hepatitis
C virus (HCV)-infected persons and their autologous NK cells
fail to induce reciprocal activation. This failure results from the
inability of these MDDC to express MICA and MICB in re-
sponse to IFN-�. The MDDC generated from the infected
persons produce more IL-10 and TGF-� [164, 165], and
TGF-� promotes induction of IL-10-secreting Tregs by induc-
ing forkhead box P3 (FoxP3) expression in CD4� precursor
cells [166].

The NK/DC interactions also become aberrant in HIV-
infected persons. The NK cell-editing function seems to be lost
in HIV-infected persons. Activated NK cells from viremic
persons are unable to kill autologous, immature MDDC [51,
167, 168]. This defect was more profound in the CD56–CD16�

NK cell subset, as it could not be overcome even after masking
NK cell inhibitory receptors. The mature DC from HIV-in-
fected persons produced less IL-12 and could not activate
interacting NK cells. Consequently, these NK cells produce
less IFN-�. Defective NKp30- and TRAIL-mediated killing
was blamed on the escape of the immature DC from NK
cell-mediated killing in HIV-infected persons [167]. Aberrant
NK cell/DC interactions may result from overall defective NK
cell functions, depletion of certain functional NK cell subsets,
and changes in the expression of NKRs and coreceptors.
Certain viral proteins have also been shown to interfere in
these interactions. It was demonstrated in in vitro studies that
LFA-1-mediated activation of CAMK-II and microtubule rear-
rangement are essential for NK cell activation by mature DC.
Tat inhibits this activation by interfering with Ca�� influxes
and activation of CAMK-II. More specifically, the C-terminal
domain of Tat was found to be responsible for this interference
[150]. In another study, Nef was shown to dysregulate DC/NK
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interactions. Nef-pulsed DC inhibit chemokine secretory ca-
pacity as well as the cytotoxic ability of NK cells, including the
CD56low CD16high subset, possibly by inducing TGF-� and
IL-10 [169].

NK cell/DC interactions determine T cell-priming charac-
teristics of DC. For example, IFN-�-activated NK cells induce
type 1 DC. These DC, which produce IL-12 upon stimulation
via CD40, are efficient in priming TH1-type CD4� effector T
cells. IFN-� is necessary for inducing this kind of helper
function in NK cells [170]. Treatment of NK cells with IL-2 or
polyinosinic:polycytidylic acid has similar effects [152, 171].
Improperly “helped” DC may induce tolerance in the interact-
ing T cells and/or may cause their differentiation into suppres-
sive Tregs. The DC, which fail to prime T cells, frequently
express tryptophan-catabolizing enzyme indoleamine 2,3-di-
oxygenase (IDO), which converts tryptophan (an essential
amino acid) into kynurenine and other catabolites [172, 173].
In the absence of tryptophan, T cells cannot proliferate. Fur-
thermore, tryptophan catabolites induce apoptosis in T cells
[174]. This results in decreased serum concentrations of tryp-
tophan. It has also been shown that individuals with increased
IDO activity are compromised in the production of 5-hydroxy-
tryptamine in their brains. This mediator is important for
signaling across neuron synapses. Its decreased production
leads to decreased cognitive abilities, loss of memory, depres-
sion, and other psychiatric abnormalities. In the case of HCV-
infected persons, it has been shown that decreased serum
concentrations of tryptophan correlate with psychiatric symp-
toms in these patients. Decreased serum concentrations of
tryptophan have also been reported in HIV-infected persons
[175]. These concentrations correlate with neoptrin as well as
with depression, psychiatric, and neurological symptoms. Ab-
normal NK/DC interaction could play a role in these manifes-
tations.

As mentioned above, NK cells also interact with macro-
phages. NK cell/macrophages could play an important role in
protecting host from pathogens (reviewed in ref. [176]). Nothing
is known about NK cell/monocyte interactions in HIV infec-
tions.

Tregs are CD4�CD25�FoxP3� and glucocorticoid-induced
TNFR-related protein� T cells known for their immunosup-

pressive properties. They can inhibit immune responses by
suppressing T and NK cell functions. Enhanced numbers and
functional activities of Tregs have been reported in the tissues
of HIV-infected persons (reviewed in ref. [177]). It has been
demonstrated that Tregs suppress NK cell functions. Activated
Tregs express membrane-bound, functionally active TGF-�. In
vitro incubation of Tregs with NK cells leads to down-regulated
expression, which is TGF-�-dependent, of NKG2D and other
activating receptors on NK cells (reviewed in ref. [178]). De-
pletion of Tregs may represent a novel way for enhancing NK
cell functions in HIV-infected persons. It also leads to en-
hanced, HIV-specific CTL activity [177].

Dysregulating production of NK cell-activating
cytokines in HIV-infected individuals

NK cells bear receptors for a variety of cytokines, e.g., IL-2,
IL-12, IL-15, IL-18, IL-21, TGF-�, type I IFNs (IFN-�/�), etc.
An optimum production of these cytokines is needed to main-
tain NK cell homeostasis and ready-to-kill state in the body.
Several studies have shown that hosts (including humans)
respond to a viral infection with the enhanced production of
several cytokines, e.g., IFN �/�, IL-12, IL-15, and IL-18 [179,
180]. A coordinated production of these cytokines is essential
for mediating an effective antiviral NK cell response of the
host. Immediate activation of NK cells following a viral infec-
tion is, to a large extent, a consequence of this virus-mediated
cytokine production. Each of these cytokines plays a distinct
role in NK cell activation and expansion following a viral
infection. In chronic viral infections, e.g., HIV-1, this coordi-
nated production of cytokines is dysregulated, which may be
responsible, at least in part, for defective NK cell responses.
Table 3 shows how these cytokines affect NK cell function and
what happens to their production in this viral infection. HIV
and its proteins play a role in the dysregulated production of
cytokines. For example, gp120 induces IL-10, IFN-�, and
TNF-�, and Tat induces TGF-�1 and IL-6 but inhibits IL-12
production in human PBMC [181–183]. The viral protein Nef
induces IL-15 and decreases IL-18 production in the human
cells [184, 185]. Overall, it has been well-documented that
HIV-infected persons become compromised in their ability to
produce IL-2, IL-12, IL-15, and IL-21 [179, 186–189]. Their

TABLE 3. Effects of Different Cytokines on Human NK Cells

Cytokine Development Maturation Cytotoxicity Survival Homeostasis Cytokine Production Proliferation Status in HIVa

IFN-�/� – 1 –/� 1 –/� 2
IL-1 – 1 –/� 1 –/� 2
IL-2 – 1 –/� 1 1 2
IL-7 – 1 � 1 1 2
IL-4 D2 –/� – –/� 1 1
IL-10 – 1 – 1 –/� 1
IL-12 D1 1 1 1 1 2
IL-15 � 1 1 1 1 2
IL-18 M F 1 1 1 1
IL-21 M 1, N 1 1 1 2
TGF-� – 2 2 2 2 1

It is noteworthy that cytokines usually act in synergism with each other; e.g., IL-2 and IL-12 act synergistically with IL-12 and IL-18, respectively.1, Increased
effect,2, decreased effect; –, no effect; –/�, the cytokine may have an enhancing effect in combination with another cytokine; D1, differentiation into NK1; D2,
differentiation into NK2; F, increased cytotoxicity as a result of increased expression of Fas ligand (FasL); N, decreased expression of NKG2D and decreased
cytotoxicity against NKG2DL-positive target cells; M, cytokine needed for full maturation of NK cells. aOverall production in HIV-infected persons.
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type I IFN-producing cells (pDC) also produce less of the
cytokine and are progressively depleted [190, 191]. A lack of
these cytokines affects differentiation, survival, and cytolytic
functions of NK cells. On the other hand, the concentrations of
some immunosuppressive cytokines, e.g., TGF-� and IL-10,
are increased in the circulation of HIV-infected patients [192,
193]. Parato et al. [48] have proposed that increased IL-10
induces similar changes in NK cells as observed in HIV-
infected persons. They observed a normalizing effect of
HAART on IL-10 and NK cell phenotypes in a limited number
of HIV-infected persons. Contrary to IL-12 and IL-15, whose
production decreases in HIV-infected persons, we and others
[194, 195] have reported increased concentrations of IL-18 in
the sera from HIV-infected persons. Interestingly, the PBMC
from these persons were found to produce less of this cytokine
with or without stimulation with LPS. Interestingly, cells other
than monocytes also produce the cytokine: Keratinocytes, ad-
renal cortex, and platelets also are rich sources of this cyto-
kine. We have shown that activated platelets contribute toward
increased concentrations of this cytokine in HIV-infected per-
sons [196]. It is noteworthy that IL-18 concentrations also
increase in chronic inflammatory conditions. The cytokine
increases FasL expression on NK cells, and FasL-positive NK
cells may be involved in fratricidal killing of other NK cells.
The cytokine appears to hasten NK cell death via Fas/FasL
interactions. In constrast to the concentrations of various cy-
tokines, little is known whether there is any change in the
expression of cytokine receptors on NK cells in HIV-infected
patients. In this regard, a group has shown decreased expres-
sion of the IL-7R on NK cells in HIV-infected persons [197].
IL-7 promotes proliferation of the CD56bright subset of NK
cells, which express this receptor. The viral protein Tat is
known to down-regulate this receptor in CD8� T cells [198]
and is probably also responsible for this effect in NK cells. The
protein is released from HIV-infected cells and is actively
taken up by other cells in the body. Another research group has
documented that NK cells from HIV-infected persons do not
respond to IFN-� [43]. The authors did not find out whether the
lack of response was a result of a decrease in the cytokine
receptor and/or a result of a defective signaling pathway of the
cytokine. The decreased expression of cytokine receptors may
adversely affect NK cell functions in a variety of ways: causing
aberrant expression of NKRs, inducing apoptosis, etc.

Altering NK cell-secreted cytokines and
chemokines in HIV infection

The profile of NK cell-secreted cytokines appears to be mod-
ified in HIV-infected persons. As stated above, NK cells are
known to secrete several cytokines and soluble mediators:
IFN-�, TNF-�, TNF-�, GM-CSF, IL-3, IL-4, IL-5, TGF-�1,
IL-10, IL-13, etc. They do so upon interaction with the target
cells, which trigger NK cell cytotoxicity as well as upon acti-
vation with an appropriate combination of other cytokines, e.g.,
IL-12 and IL-15. Interestingly, IL-15 appears to be required by
NK cells for their production of TH2-type cytokines [199–
203]. NK cells also express constitutive, but not inducible,
endothelial NO synthase (NOS) and secrete NO. Interestingly,
NOS inhibitors can significantly inhibit functions of HNK cells
[204]. Several studies have shown that the profile of NK

cell-secreted cytokines depends on the milieu in which they
develop and differentiate. In analogy to TH1- and TH2-type
CD4� T cells, NK cells could differentiate into type 1 or type
2 NK cells (NK1 or NK2). NK1 cells predominantly secrete
IFN-�, whereas NK2 cells predominantly secrete IL-5 and
IL-13 [205, 206]. It is noteworthy that existence of the two
types of NK cells has been demonstrated in vivo in humans,
and they may affect the course of certain disease conditions.
For example, NK1 and NK2 cells have been associated with
episodes of relapses and remissions in multiple sclerosis, re-
spectively [207]. It has also been shown that NK2 cells play a
role in the immunopathogenesis of asthma and in the mainte-
nance of normal pregnancy in humans [208, 209].

Surprisingly, we could not come across any study in litera-
ture about the profile of NK cell-secreted cytokines in HIV-
infected persons. However, Chan et al. [210] have shown that
NK cells from these persons are of type 2. Their study relied on
two cell surface markers belonging to the IL-1R superfamily,
IL-18R and ST2L, which are expressed on the surface of cells
producing TH1- and TH2-type cytokines, respectively [210,
211]. These results support earlier reports implicating TH2-
type cytokine responses in the immunopathogenesis of AIDS
[193, 212, 213]. NK cells may be contributing to the predom-
inance of TH2 cytokine responses in HIV-infected AIDS pa-
tients. However, studies are needed to investigate NK cell-
secreted cytokines in humans in the course of HIV infection.

In addition to cytokines, NK cells produce abundant
amounts of several chemokines, e.g., CCL3 (MIP-1�), CCL4
(MIP-1�), and CCL5 (RANTES), which play an important role
in initiating NK cell-mediated inflammation. These chemo-
kines are also important in the context of HIV infection, as they
bind to CCR5 and block entry of CCR5-using M-tropic HIV
strains from entering into human cells. It is important to note
that primary HIV infections usually result from M-tropic viral
strains. This may also explain why persons with high-activity
NK cells may be relatively protected from contracting HIV
infections [12, 13]. It has been demonstrated that NK cells
from HIV-infected individuals produce relatively less amounts
of these chemokines and may be less efficient in blocking
CCR5 and suppressing HIV replication [6, 8]. Not surprisingly,
culture supernatants of NK cells from HIV-infected persons
are less efficient in suppressing HIV replication than similar
supernatants obtained from the cells of HIV-seronegative,
healthy persons. Interestingly, viremia seems to directly sup-
press chemokine production from NK cells [11].

Infecting NK cells

Infecting the very immune cells that may inhibit viral replica-
tion is a clever strategy to evade host immunity. By infecting an
immunocyte, the virus could cripple its immune effector func-
tions. HIV-1 can infect many types of immune cells, e.g.,
CD4� T cells, macrophages, DC, etc. In vitro studies have
shown that the virus can also infect NK cells [214, 215]. The
CD8� NK cell subset was found to be more susceptible to HIV
infection than the CD8– subset. The two cell subsets varied in
the production of cytokines: the former producing more TNF-�
and the latter producing more IFN-�. This differential produc-
tion of the cytokines was shown to be responsible for the
differential susceptibility of the NK cell subsets to HIV infec-
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tion [214, 215]. This preferential infection of CD8� NK cells
with HIV-1 may also explain why the CD8�CD16� NK cells
are frequently depleted in the circulation of HIV-infected
individuals [14, 27, 216]. The infected NK cells become im-
paired in their cytolytic functions. Remarkably, NK cells can
also be infected with HIV with help from human herpesvirus 6
(HHV-6). The latter virus infects human NK cells and induces
the expression of CD4 in these cells, rendering them suscep-
tible to infection with HIV-1 [217]. It is noteworthy that
HIV-infected individuals suffer from frequent reactivations of
herpes viruses, and HHV-6 infection is considered an impor-
tant cofactor in the development of AIDS. Moreover, CD8-
tropic HIV-1 strains have also been isolated from HIV-infected
AIDS patients. Interestingly, these strains use CD8 and not
CD4 as a primary receptor in human cells and infect CD8� T
cells [218]. Little is known about these CD8-tropic HIV
strains. Theoretically, they could potentially infect CD8� NK
cells. It is noteworthy that in vivo infection of NK cells in
HIV-infected persons has also been demonstrated [219]. A
small percentage (0.3–6.5%) of circulating CD3–CD56� HNK
cells expresses CD4 and HIV coreceptors, CXCR4 and CCR5.
Proliferative activation of NK cells causes an increase in the
expression of CD4 and CCR5 on these cells. CD4� NK cells
can be infected in vitro with T- and M-tropic HIV-1 strains. A
more efficient way of infecting NK cells is their coculture with
HIV-infected cells. This suggests that in vivo, cell-to-cell
infection of NK cells may be more important. NK cells seem to
be relatively resistant to killing by HIV infection. The infected
NK cells may persist in vivo despite treatment of the infected
persons for several years with HAART [219–221]. Thus, NK
cells may provide a sanctuary to HIV, and the virus-infected
NK cells may represent important viral reservoirs. The virus
may persist in these cells even when HAART may have re-
duced viremia to very low or undetectable levels. It may be
relevant to mention here that NK cells express a higher level of
P-glycoprotein compared with other lymphocytes. Therefore,
HIV-infected NK cells may be relatively more resistant to
antiretroviral drugs, e.g., protease and RT inhibitors [219,
222]. These findings have implications for therapeutic strate-
gies being used for elimination of the virus from HIV-infected
persons.

Enhancing apoptosis in NK cells

NK cells from HIV-infected individuals have a reduced capac-
ity to proliferate upon in vitro culture. It is noteworthy that the
expression of a senescence marker CD57 is significantly in-
creased on the surface of NK cells in HIV-infected persons.
NK cells also undergo enhanced, spontaneous apoptosis as
compared with the cells from healthy, control subjects. The
enhanced apoptosis was ascribed to their relatively low expres-
sion of the antiapoptotic proteins Bcl-2 and Bcl-XL. It has been
shown that Tat induces TGF-� and apoptosis in NK cells. It
also down-regulates Bcl-2 expression in other hematopoietic
cells [183, 223]. IL-10 is known to enhance serum starvation-
induced apoptosis in human cells by decreasing transcription
of antiapoptotic proteins Bcl-2 and Bcl-XL. As mentioned
above, increased concentrations of this cytokine in the circu-
lation of HIV-infected persons have been well documented.
The viral glycoprotein gp120 from T-tropic viral strains has

also been shown to increase expression of proapoptotic genes
and decrease expression of antiapoptotic genes in NK cells
[224]. In this connection, another study has shown that gp120
interaction with the viral coreceptor CXCR4 induces cell death
via autophagy: a kind of programmed cell death in which large
chunks of cellular material and cytoplasmic organelles are
degraded in lysosomes [225]. NK cells constitutively express
this receptor, and its interaction with gp120, which is present
in virions and/or the circulation, may induce autophagic death
of NK cells. As mentioned above, recombinant gp120 has, in
fact, been shown to induce up-regulation of several proapo-
ptotic genes in NK cells [224]. So, it is not surprising that
viremia is associated with decreased NK cell numbers as well
as with decreased functional capability of NK cells in HIV-
infected persons [1].

Addition of the prosurvival cytokine IL-15 to in vitro NK cell
(and T) cell cultures increases their survival by up-regulating
the expression of Bcl-XL [226]. In normal NK cells, which
constitutively express high amounts of Bcl-2 and Bcl-2-like
proteins, IL-15 increases NK survival by down-regulating Bim
and maintaining antiapoptotic protein Mcl-1 [227]. Bim is the
only-BH-3 domain-containing, proapoptotic member of the
Bcl-2 family of proteins. It binds with and inactivates Mcl-1,
another member of the Bcl-2 family having antiapoptotic func-
tions (reviewed in ref. [228]). Recombinant human IL-15 may
represent a useful immunotherapeutic tool and vaccine adju-
vant for HIV-infected AIDS patients because of its prosurvival
and antiapoptotic effects on NK cells, less toxicity, and mini-
mal enhancement of HIV replication (reviewed in ref. [229]).

A small proportion of NK cells from normal, healthy persons
undergoes apoptosis when they are used as effector cells in in
vitro NK cell cytotoxicity or ADCC assays [230, 231]. It has
also been demonstrated that NK cells can undergo apoptosis
after activation, as in the case of T cells. For example, IL-2 and
IL-12-stimulated NK cells undergo apoptosis when they were
incubated with immobilized antibodies directed against CD16,
CD2, or CD94 [232–234]. It was also learned that incubation
of NK cells with high concentrations of certain activating
cytokines, e.g., IL-15 and IL-12, induced production of TNF-�,
which caused apoptosis of NK cells [235]. In fact, it is a
negative-feedback mechanism by which NK cells control and
limit self-activation and secretion of IFN-�. As mentioned
above, we and others [194, 195] have reported increased
concentrations of IL-18 in the sera from HIV-infected persons.
The cytokine induces FasL expression on NK cells, which
could lead to fratricidal killing of NK cells via Fas/FasL
interactions. This may explain a negative correlation between
serum concentrations of IL-18 and NK cell numbers reported
in patients suffering from chronic autoimmune disorders [236].
Indeed, we have also observed a significant negative correla-
tion between serum IL-18 concentrations and NK cell numbers
in these individuals (unpublished data). These studies suggest
that IL-18 may be associated with compromised NK cell func-
tions in HIV infections. The HIV protein Tat, secreted from
HIV-infected cells, has been shown to induce FasL expression
on NK cells and CTL [237]. It is tempting to speculate that Tat
and IL-18 may act in concert to induce FasL expression on NK
and CTL in HIV-infected persons. Fas/FasL interactions have
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been implicated in the immunopathogenesis of AIDS in HIV
infection (reviewed in ref. [238]).

NK CELL FUNCTIONS BECOME
COMPROMISED IN HIV-INFECTED PERSONS

Although humans respond to HIV infection with activation of
their NK cells, the virus uses many different strategies to
neutralize this host response. As a consequence, NK cell
function becomes compromised in these infections. Several
workers have reported that NK cell functions (killing of target
cells, ADCC effector function, editing of DC, and production of
cytokines and chemokines) become defective in HIV-infected
persons [26, 33, 34, 37, 38, 63, 239, 240]. The defects in the
NK cell compartment usually occur in early stages of the
infection. A decreased expression of LFA-1 on cells from
HIV-infected persons has been reported [241]. Furthermore, it
has also been shown that immune activation leads to an in-
crease in shedding of soluble ICAMs and CD16 in the circu-
lation of HIV-infected persons. The soluble forms of these
molecules interfere with their membrane-inserted forms. The
role of LFA-1 and its ligands in cell adhesion, conjugate
formation, and polarization of cytotoxic granules is crucial for
NK cell-mediated killing. Thus, NK cells from HIV-infected
persons may be impaired in their ability to form immune
synapses with target cells. Furthermore, the HIV protein Tat
was found to inhibit NK cell-mediated lysis by blocking L-type
Ca�� channels [242]. Ca�� infuxes are essential for activation
of CAMK-II, rearranging microtubules and triggering degran-
ulation of NK cells following activation of cells via LFA-1
[150]. Furthermore, gp120 binding to CD4 also inhibits LFA-
1-mediated cell–cell interactions by causing dissociation of
the integrin from its cytoplasmic partner cytohesin [243]. Few
studies have been undertaken to investigate functional capa-
bilities of NK cells from these persons for conjugate formation
and triggering their cytolytic machinery. It was demonstrated
that NK cells from the infected persons may form conjugates
with target cells but are defective in triggering their cytolytic
mediators onto the target cells [19, 24]. The inability of NK
cells from HIV-infected individuals to establish and maintain
an effective immune synapse and trigger its cytolytic mediators
may represent a fundamental reason for compromised NK cell
functions in HIV-infected persons.

It appears that absolute numbers and percentages of NK
cells decrease over time in HIV-infected persons. CD8�CD16�

and CD56�CD16� NK cell subsets have been reported to
decrease in percentages and in absolute numbers in these
individuals. These decreases are often accompanied by the
expansion of a functionally defective subset of CD16�CD56–

NK cells, which express KIR. It is noteworthy that it is the
CD16–CD56� subset of NK cells that expands in primary viral
infections. The changes in NK cells are more severe with the
onset of AIDS and correlate with clinical condition of the
patients [27, 32, 35, 216]. The decreases in NK cell subsets
correlate significantly with depletion of the CD4� T cells in
these patients [14, 16], suggesting that CD4� T cell-secreted
cytokines (e.g., IL-2, IL-21) may be important in vivo in
maintaining NK cell survival. Alternatively, the declines in the

numbers of these two types of immune cells may reflect im-
mune dysfunction independently of each other. It may be
relevant to mention here that CD56� NK cells develop and
differentiate in thymus and secondary lymphoid organs in T
cell-rich areas. A progressive destruction of the architecture of
these organs as well as depletion of CD4� T cells in HIV-
infected persons may result in depletion of this subset of NK
cells. Overall, NK cells from HIV-infected persons express
lower levels of perforin and higher levels of SHIP, which may
be responsible for their poor cytolytic and activating potentials
[58]. As mentioned elsewhere, the envelope glycoproteins of
HIV can up-regulate proapoptotic genes and reduce surviv-
ability and vigor of NK cells (see the next section). Recombi-
nant gp120 inhibits NK cell functions when added to in vitro
microcytotoxicity assays. Furthermore, certain peptides de-
rived from the protein also have NK cell inhibitory properties
[80, 244, 245]. The exact mechanism of inhibition of the
peptides remains unknown. Finally, stress could be a factor in
suppressing NK cell functions in HIV-infected persons. Cor-
tisol has been shown to act in synergism with HIV proteins in
mediating the suppressive effects on NK cells [244].

In vitro studies have shown that several exogenous cyto-
kines, e.g., IL-2, IL-12, IL-15, IFN-�, etc., increase cytolytic
and ADCC effector function of NK cells from HIV-infected
individuals. However, the responses were significantly lower in
HIV-infected individuals as compared with HIV-seronegative,
healthy controls [19, 34, 43, 239, 246]. These observations
suggest that NK cells from HIV-infected persons may have
decreased expression of cytokine receptors and/or may have
defects in cytokine-induced signaling pathways. This may ex-
plain why NK cells from these patients produce defective LAK
cells when they are incubated with cytokines, e.g., with IL-2
[25].

EFFECT OF HAART ON ANTIVIRAL NK
CELL RESPONSES

HAART suppresses HIV replication to undetectable limits in
the circulation of HIV-infected persons. Over time, this leads
to improvement in the NK cell functions. However, a prolonged
treatment is needed for tangible improvements in the NK cell
compartment. In most of cases, the recovery is only partial. NK
cells and the receptor expression tend to normalize in the
treated persons; however, certain NK cell functions, e.g., their
ability to produce IFN-� in response to IL-2 and IL-15, remain
compromised [50]. In one study, HAART reversed expression
of iKIR on NK cells after 2 years’ administration, but the
reduced expression of activating receptors persisted [51]. Sim-
ilarly, a normalizing effect of HAART was observed on the
expression of 2B4 on NK cells [56]. HAART, for more than 6
months, caused a differential disappearance of iKIR on virus-
specific CTL but usually had no effect on ILT-2 expression
[45]. HAART also does not have any effect on the expansion of
NKG2C on NK cells and CTL in HIV- and HCMV-coinfected
patients. As mentioned earlier, this can be ascribed to the fact
that HCMV and not HIV causes expansion of these cells [115,
116, 247]. In primary HIV infection, an early start of HAART
may normalize changes in the NK cell compartment within 6
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months [61]. The baseline activation of the immune system and
viral load determines the extent to which innate immune pa-
rameters could be reconstituted by HAART in HIV-infected
AIDS patients. Continued viral suppression and reduction in
immune activation for more than 1 year resulted in recovery of
pDC, better NK/DC interactions, and partial restoration of NK
cell numbers and functions [248].

If NK cells become infected, they may act as latent reser-
voirs for the virus, as the infection could persist in these cells
even after years of HAART [219, 221]. Thus, immunotherapy
should be considered for invigorating NK cell responses along
with chemotherapy.

NOVEL APPROACHES FOR ENHANCING
ANTI-HIV NK CELL RESPONSES

A better understanding of interactions between HIV and NK
cell responses of the host has led to novel, rational approaches
for boosting antiviral immunity in HIV-infected persons and for
designing more effective anti-AIDS vaccines. These ap-
proaches are listed in Table 4 and are discussed in the
following sections.

Blocking inhibitory NKRs

As stated above, KIR, NKG2A, and ILT-2 are the main inhib-
itory receptors that control NK cell activities in an individual.
They are also expressed on a subset of antigen-experienced
effector/memory CTL, in which they increase the antigen-
mediated activation threshold. Cumulative data have shown
that the expression of iKIR increases on NK cells and CTL in
HIV-infected persons, especially under viremic conditions [16,
40, 148]. Blocking the functional activities of these receptors
with receptor- or MHC-specific antibodies or with small mo-
lecular weight inhibitors increases cytolytic activities and cy-
tokine secretion from NK cells and CTL. Studies in animal
models have shown that blocking of the inhibitory NKR LY49
in vivo also augments the anti-tumor effects of NK cells and
CTL and results in tumor regression [143]. This strategy may
boost antiviral effects of NK cells and CTL in HIV-infected
individuals. In this regard, in vitro studies have shown that
masking of iKIR by mAb increases the cytolytic activities of
HIV-specific CTL from HIV-infected patients against autolo-
gous, virus-infected cells [40]. The receptors could also be
blocked by soluble MHC antigens. However, they are more
likely to bind TCR preferentially than KIR, and hence, they
may block CTL functions. Small molecular weight chemical
compounds could be synthesized to specifically block KIR–

MHC interactions. These immunotherapies will have to be
tailored individually, as the patients may differ in their KIR–
HLA combination repertoires. As the blocking of inhibitory
receptors on NK cells and CTL may promote killing of autol-
ogous cells and uncontrolled cytokine production, the treat-
ment could cause immunopathology. Furthermore, the strategy
may interfere with the development of long-term, virus-specific
memory and even may promote apoptosis of these effector/
memory cells. Admittedly, such treatments could be risky, and
the treated patients will have to be carefully monitored for any
untoward effects.

Novel ways of anti-HIV cell therapy

In the past, the infusions of the in vitro-expanded, autologous,
HIV-specific CTL have been used as immunotherapeutic tools
in HIV-infected AIDS patients without much success [249,
250]. A better strategy may involve expansion and infusion of
the CTL specific for HLA-C-restricted viral peptides, as the
virus does not down-regulate the expression of this MHC
antigen in the infected cells. Similarly, in vitro-expanded,
lymphokine-activated, autologous NK cell clones that express
inhibitory receptors for HLA-A or -B but not for HLA-C or -E
could be considered as immunotherapeutic tools in these pa-
tients. These cells should kill only HIV-infected cells that have
down-regulated HLA-A and -B but not HLA-C or -E. Similarly,
lymphokine-treated, heterologous NK cells that express one or
more iKIR specific for the recipient HLA-A or -B could also be
beneficial. Alloreactive NK cells are known to preferentially
kill hematopoietic cells in MHC-disparate recipients without
causing graft-versus-host disease (GvHD). The beneficial ef-
fects of alloreactive NK cells have been well documented in
leukemia patients receiving bone marrow transplants (reviewed
in refs. [251, 252]). The potential of alloreactive NK cells as
therapeutic tools for viral infections including HIV is worth
investigation.

Selecting epitopes for anti-HIV vaccination

As stated above, HIV-1 differentially down-regulates the ex-
pression of MHC class I antigens on the surface of infected
cells for evading NK and CTL-mediated killing. The viral
protein Nef causes degradation of most of the HLA-A, HLA-B,
and CD1d antigens but leaves HLA-C and HLA-E to intact on
the cell surface [96–98]. As HLA-C and -E act as ligands for
inhibitory receptors on NK cells, the virus-infected cells main-
tain their resistance to NK cells by maintaining their expres-
sion on the surface of infected cells. The virus, in fact, in-
creases the expression of HLA-E by providing a peptide
(within the viral protein p24) that can bind to this nonclassical
MHC antigen. It is noteworthy that HLA-C is not exclusively
used as ligands for NKRs. Several HIV peptides are presented
to T cells via this MHC antigen [253–255]. These peptides may
serve as better immunogens for inducing anti-HIV CTL, as
HLA-C are not degraded from the surface of the virus-infected
cells, and therefore, virus may not be able to hide from the
peptide-specific CTL. The notion is supported by the reported
association between the presence of HLA-C-restricted viral
peptides in HIV-infected individuals and their long-term non-
progression toward AIDS [256]. Furthermore, the existence of

TABLE 4. Novel Ways of Boosting Anti-HIV Adaptive
and Innate Immunity

1. By manipulating the activity of NKRs.
2. By adoptive transfer of autologous or alloreactive NK cells.
3. By the adoptive transfer of HLA-C- and HLA-E-restricted,

antiviral CTL.
4. Using HLA-C- and -E-restricted, immunogenic viral peptides.
5. Using NK cell activity-enhancing, novel adjuvants.
6. Targeting NK cells to HIV-infected cells.
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CTL, which recognize HLA-E-restricted viral peptides, has
also been demonstrated for different viruses [257]. We could
not find any study in literature about HLA-E-restricted HIV
peptides presented to CTL. These HIV peptides could also be
considered as immunogens for vaccination against HIV.

It is noteworthy that HLA-A and -B antigens mainly present
viral peptides recognized by HIV-specific CTL. Many studies
have shown that several “protective” HLA-B allotypes can
present broadly reactive, immunodominant peptides to CTL
[258, 259]. On the other hand, only a few HLA-C-restricted
HIV epitopes have been described [253–255]. In part, it could
be a result of the fact that this HLA antigen is expressed at
relatively lower levels on human cells [260]. CTL may not be
able to detect the peptide-complexed antigen. Using knowl-
edge-based algorithms, Tong et al. [261] have shown that
HLA-C-restricted peptides could be found in most HIV pro-
teins. Further studies are needed to evaluate the functional
significance of these epitopes.

Invigorating NK cells with cytokines/anticytokines

Use of cytokines for enhancing innate and adaptive immunity
of the host has been a cherished goal of immunologists since
the discovery of IL-2 in the early 1980s. However, the toxici-
ties associated with their use have always been prohibitive.
Potential cytokines that can be used to enhance NK cell
activity in vivo include IL-2, IL-15, IL-21, as well as ligands
for c-Kit and FMS-like receptor tyrosine kinases (Flt-3). It may
be relevant to mention here that IL-2 and/or IL-2-activated
killer cell infusions have not been promising as therapeutic
tools in cancer patients [262, 263]. In the context of HIV
infection, these immune enhancers may pose another compli-
cation. They may increase HIV replication and act as paracrine
growth factors in AIDS-related malignancies. In this regard,
IL-15 has been shown to be relatively less mitogenic and less
toxic and to have minimal effects on HIV replication. Further-
more, it inhibits spontaneous apoptosis in NK cells and CTL
from HIV-infected patients by increasing the expression of
antiapoptotic protein Bcl-XL (reviewed in ref. [229]). The cy-
tokine is an absolute necessity for normal development, differ-
entiation, and homeostasis of HNK cells. IL-21 is another
relatively recently discovered cytokine produced mainly from
activated CD4� T cells. It increases cytolytic potential of NK
cells and is even less mitogenic than IL-15. However, no data
are yet available about its effects on HIV replication and
cytotoxicity.

Enhancing immunogenicity of viral immunogens

NK cell activation in the beginning of a viral infection has a
strong adjuvant effect. Activated NK cells kill virus-infected
cells, whose products send a “danger signal” to the host for
initiating antiviral inflammatory and immune responses [264].
The role of NK cell-secreted IFN-� in this connection has been
well documented. The studies about interactions between ac-
tivated NK cells and DC interactions also testify to the role of
NK cells in the generation of adaptive immunity. DC pulsed
with tumor cell lysates are effective in mediating anti-tumor
immunity in vitro and in vivo in animal models. It has been
shown that these DC mediate these adjuvant effects by acti-

vating NK cells [265]. It was also demonstrated that the pres-
ence of IL-18 in in vitro cultures of NK cells, DC, T cells, and
tumor cells leads to rapid generation of tumor-specific CTL
[266]. These studies show that activating NK cells at or prior to
immunization may lead to effective antiviral immunity. This
activation may be achieved by cytokines and/or TLR agonists,
which also cause release of cytokines. �-Galactosyl ceramide
has also been used as an adjuvant. It is presented by APC via
CD1d to NKT cells, which in turn, activate NK cells [267,
268]. Based on our present understanding of NK cell biology,
inhibiting KIR–MHC interactions and/or inducing expression
of ligands for activating NKRs may produce better adjuvant
effects than our currently used adjuvant formulations in vac-
cination regimens. Indeed, better antigen-specific, immune
responses were induced when vectors expressing ligands for
NKG2D were used along with immunogen [269]. These novel
approaches should contribute to better and more effective
vaccine strategies against HIV infection and AIDS.

PERSPECTIVE AND FUTURE DIRECTIONS

Despite spectacular advances made in understanding NK cell
biology, there still remain unknown aspects of these cells,
which should be addressed in future research. For example, we
are still far from discovering all NKRs. An area that needs
immediate attention concerns finding ligands for aKIR and
NCR. Furthermore, we need to know better how the NKR
repertoire of the host is shaped and what effects the host MHC
has in shaping this repertoire. A lot has been learned about
interactions between NK cells and DC. It appears that NK cells
could also interact directly with T cells. This could be an
extremely productive area of research.

It is now evident from several studies that different NKRs,
particularly of the inhibitory type (e.g., KIR, ILT, KLR-G1),
are expressed frequently on antigen-experienced CD8� T cells
and less frequently on CD4� T cells. These receptors seem to
be expressed at distinct stages in the course of differentiation
and development of these cells. They may serve important
functions; e.g., they may prevent apoptosis and increase sur-
vival of the cells and/or may increase the activation threshold
of the effector cells to prevent autoaggression. These receptors
could serve as important markers to distinguish different de-
velopmental stages of these cells. This knowledge may allow us
to identify exact defects, which appear in these cells in viral
infections and malignancy.

Activating NKRs of the KIR family have been reported to
occur on CD4� T cells under certain disease conditions. Their
expression has been described on CTL in HIV-infected viremic
persons [62]. It is not known what triggers their expression and
what are the consequences of this expression—how the recep-
tor-positive cells differ from the receptor-negative cells in
terms of their proliferation, cytokine production, and interac-
tion with other cells in the body. It would also be of great
interest to see if and how HIV induces the expression of their
ligands on infected human cells.

In the context of HIV infections, future efforts should be
directed at knowing which of the NKRs are aberrantly ex-
pressed on the surface of NK cells as well as on other immu-

Iannello et al. HIV’s evasion of NK cell responses 41



nocytes, e.g., monocyte/macrophages, DC, and B and T cells
(CD4� and CD8� subsets). As mAb are not available for all of
these receptors, and the ones that exist may not distinguish
between the activating and inhibitory forms of these receptors,
therefore, one may have to use alternate methods. Fortunately,
the NKR genes, which have been studied so far, seem to be
regulated at the transcriptional level. This suggests that real-
time RT-PCR and/or oligonucleotide microarrays with appro-
priate controls may give a fair idea of the genes whose expres-
sion may be dysregulated in HIV-infected individuals.

As discussed above, modulation of interactions between
NKRs and their ligands may represent an important tool of
immunotherapy. Studies should be performed in animal models
to see the long-term effects of these interventions on the
resistance of the host to pathogens and development of tumors.
Small, antagonist chemical molecules, peptides, and human-
ized receptor-specific mAb should be developed for their po-
tential use in boosting innate and adaptive immunity in HIV-
infected individuals.

We also need to develop innovative means to target NK cells
toward HIV-infected cells. In this connection, fusion proteins
combining intracellular � chains with the extracellular region
of CD4 or with HIV-specific single-chain antibody have been
developed. Transduction of these fusion proteins into primary
human NK cells via retroviral vectors redirects their killing
toward HIV-infected cells [270]. Another group has made a
fusion protein combining gp120-specific antibodies of IgA and
IgG isotypes. It is meant to kill HIV-infected cells by linking
the viral envelope protein with FcR on NK and other immune
cells [271]. Finally, the potential of alloreactive NK cells as
therapeutic tools in viral infections, particularly with HIV, is
worth exploring. These cells have benefited leukemia patients
undergoing bone marrow transplantation and do not seem to
cause GvHD (reviewed in ref. [252]). Fortunately, now, the
technology exists for obtaining fully differentiated and func-
tional NK cells from human stem cells [272].

Invigorating and activating NK cells may benefit HIV-in-
fected persons in controlling the infection. However, it should
not be forgotten that activated NK cells are equipped with a lot
of destructive potential. Their excessive activation may cause
tissue destruction and contribute toward pathogenesis of the
disease. Therefore, NK cell activity-enhancing treatments will
have to be closely monitored for undesirable consequences.
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H. (1990) Decreased serum tryptophan in patients with HIV-1 infection
correlates with increased serum neopterin and with neurologic/psychiat-
ric symptoms. J. Acquir. Immune Defic. Syndr. 3, 873–876.

176. Roetynck, S., Baratin, M., Johansson, S., Lemmers, C., Vivier, E., Ugo-
lini, S. (2006) Natural killer cells and malaria. Immunol. Rev. 214,
251–263.

177. Chougnet, C. A., Shearer, G. (2007) Regulatory T cells (Treg) and
HIV/AIDS: summary of the September 7–8, 2006 workshop. AIDS Res.
Hum. Retroviruses 23, 945–952.

178. Ghiringhelli, F., Menard, C., Martin, F., Zitvogel, L. (2006) The role of
regulatory T cells in the control of natural killer cells: relevance during
tumor progression. Immunol. Rev. 214, 229–238.

179. Ahmad, A., Sharif-Askari, E., Fawaz, L., Menezes, J. (2000) Innate
immune response of the human host to exposure with herpes simplex
virus type 1: in vitro control of the virus infection by enhanced natural
killer activity via interleukin-15 induction. J. Virol. 74, 7196–7203.

46 Journal of Leukocyte Biology Volume 84, July 2008 http://www.jleukbio.org



180. Nguyen, K. B., Salazar-Mather, T. P., Dalod, M. Y., Van Deusen, J. B.,
Wei, X-q., Liew, F. Y., Caligiuri, M. A., Durbin, J. E., Biron, C. A. (2002)
Coordinated and distinct roles for IFN-{�}{�}, IL-12, and IL-15 regula-
tion of NK cell responses to viral infection. J. Immunol. 169, 4279–
4287.

181. Borghi, P., Fantuzzi, L., Varano, B., Gessani, S., Puddu, P., Conti, L.,
Capobianchi, M., Ameglio, F., Belardelli, F. (1995) Induction of inter-
leukin-10 by human immunodeficiency virus type 1 and its gp120
protein in human monocytes/macrophages. J. Virol. 69, 1284–1287.

182. Ito, M., Ishida, T., He, L., Tanabe, F., Rongge, Y., Miyakawa, Y.,
Terunuma, H. (1998) HIV type 1 Tat protein inhibits interleukin 12
production by human peripheral blood mononuclear cells. AIDS Res.
Hum. Retroviruses 14, 845–849.

183. Poggi, A., Zocchi, M. (2006) HIV-1 Tat triggers TGF-� production and
NK cell apoptosis that is prevented by pertussis toxin B. Clin. Dev.
Immunol. 13, 369–372.

184. Pugliese, A., Vidotto, V., Beltramo, T., Torre, D. (2005) Regulation of
interleukin-18 by THP-1 monocytoid cells stimulated with HIV-1 and
Nef viral protein. Eur. Cytokine Netw. 16, 186–190.

185. Quaranta, M. G., Camponeschi, B., Straface, E., Malorni, W., Viora, M.
(1999) Induction of interleukin-15 production by HIV-1 Nef protein: a
role in the proliferation of uninfected cells. Exp. Cell Res. 250, 112–
121.

186. Ahmad, R., Sindhu, S. T. A., Toma, E., Morisset, R., Ahmad, A. (2003)
Studies on the production of IL-15 in HIV-infected/AIDS patients. J.
Clin. Immunol. 23, 81–90.

187. Chehimi, J., Starr, S., Frank, I., D’Andrea, A., Ma, X., MacGregor, R.,
Sennelier, J., Trinchieri, G. (1994) Impaired interleukin 12 production in
human immunodeficiency virus-infected patients. J. Exp. Med. 179,
1361–1366.

188. Fan, J., Bass, H. Z., Fahey, J. L. (1993) Elevated IFN-� and decreased
IL-2 gene expression are associated with HIV infection. J. Immunol.
151, 5031–5040.

189. Saez, R., Echaniz, P., Juan, M. D. D., Iribarren, J. A., Cuadrado, E.
(2007) The impaired response of NK cells from HIV-infected progressor
patients to A-class CpG oligodeoxynucleotides is largely dependent of a
decreased production of IL-12. Immunol. Lett. 109, 83–90.

190. Feldman, S., Stein, D., Amrute, S., Denny, T., Garcia, Z., Kloser, P., Sun,
Y., Megjugorac, N., Fitzgerald-Bocarsly, P. (2001) Decreased interferon-
[�] production in HIV-infected patients correlates with numerical and
functional deficiencies in circulating type 2 dendritic cell precursors.
Clin. Immunol. 101, 201–210.

191. Hosmalin, A., Lebon, P. (2006) Type I interferon production in HIV-
infected patients. J. Leukoc. Biol. 80, 984–993.

192. Lotz, M., Seth, P. (1993) TGF � and HIV infection. Ann. N. Y. Acad. Sci.
685, 501–511.

193. Shearer, G. M., Clerici, M. (1998) Cytokine profiles in HIV type 1
disease and protection. AIDS Res. Hum. Retroviruses 14 (Suppl. 2),
S149–S152.

194. Ahmad, R., Sindhu, S. T. A., Toma, E., Morisset, R., Ahmad, A. (2002)
Elevated levels of circulating interleukin-18 in human immunodeficiency
virus-infected individuals: role of peripheral blood mononuclear cells
and implications for AIDS pathogenesis. J. Virol. 76, 12448–12456.

195. Torre, D., Speranza, F., Martegani, R., Pugliese, A., Castelli, F., Basilico,
C., Biondi, G. (2000) Circulating levels of IL-18 in adult and paediatric
patients with HIV-1 infection. AIDS 14, 2211–2212.

196. Ahmad, R., Iannello, A., Samarani, S., Morisset, R., Toma, E., Grosley,
M., Ahmad, A. (2006) Contribution of platelet activation to plasma IL-18
concentrations in HIV-infected AIDS patients. AIDS 20, 1907–1909.

197. MacPherson, P. A., Fex, C., Sanchez-Dardon, J., Hawley-Foss, N., Angel,
J. (2001) Interleukin-7 receptor expression on CD8(�) T cells is reduced
in HIV infection and partially restored with effective antiretroviral ther-
apy. J. Acquir. Immune Defic. Syndr. 28, 454–457.

198. Faller, E. M., McVey, M., Kakal, J., MacPherson, P. (2006) Interleukin-7
receptor expression on CD8 T-cells is downregulated by the HIV Tat
protein. J. Acquir. Immune Defic. Syndr. 43, 257–269.

199. Biron, C. A., Nguyen, K. B., Pien, G. C., Cousens, L. P., Salazar-Mather,
T. P. (1999) Natural killer cells in antiviral defense: function and
regulation by innate cytokines. Annu. Rev. Immunol. 17, 189–220.

200. Cooper, M. A., Fehniger, T. A., Turner, S. C., Chen, K. S., Ghaheri, B. A.,
Ghayur, T., Carson, W. E., Caligiuri, M. A. (2001) Human natural killer
cells: a unique innate immunoregulatory role for the CD56bright subset.
Blood 97, 3146–3151.

201. Hoshino, T., Winkler-Pickett, R. T., Mason, A. T., Ortaldo, J. R., Young,
H. A. (1999) IL-13 production by NK cells: IL-13-producing NK and T
cells are present in vivo in the absence of IFN-{�}. J. Immunol. 162,
51–59.

202. Mehrotra, P. T., Donnelly, R. P., Wong, S., Kanegane, H., Geremew, A.,
Mostowski, H. S., Furuke, K., Siegel, J. P., Bloom, E. T. (1998) Produc-
tion of IL-10 by human natural killer cells stimulated with IL-2 and/or
IL-12. J. Immunol. 160, 2637–2644.

203. Warren, H. S., Kinnear, B., Phillips, J., Lanier, L. (1995) Production of
IL-5 by human NK cells and regulation of IL-5 secretion by IL-4, IL-10,
and IL-12. J. Immunol. 154, 5144–5152.

204. Furuke, K., Burd, P. R., Horvath-Arcidiacono, J. A., Hori, K., Mostowski,
H., Bloom, E. T. (1999) Human NK cells express endothelial nitric oxide
synthase, and nitric oxide protects them from activation-induced cell
death by regulating expression of TNF-{�}. J. Immunol. 163, 1473–
1480.

205. Loza, M. J., Zamai, L., Azzoni, L., Rosati, E., Perussia, B. (2002)
Expression of type 1 (interferon �) and type 2 (interleukin-13, interleu-
kin-5) cytokines at distinct stages of natural killer cell differentiation
from progenitor cells. Blood 99, 1273–1281.

206. Peritt, D., Robertson, S., Gri, G., Showe, L., Aste-Amezaga, M., Trin-
chieri, G. (1998) Cutting edge: differentiation of human NK cells into
NK1 and NK2 subsets. J. Immunol. 161, 5821–5824.

207. Takahashi, K., Miyake, S., Kondo, T., Terao, K., Hatakenaka, M., Hashi-
moto, S., Yamamura, T. (2001) Natural killer type 2 bias in remission of
multiple sclerosis. J. Clin. Invest. 107, R23–R29.

208. Borzychowski, A. M., Croy, B. A., Chan, W. L., Redman, C. W., Sargent,
I. L. (2005) Changes in systemic type-1 and type-2 immunity in normal
pregnancy and pre-eclampsia may be mediated by natural killer cells.
Eur. J. Immunol. 35, 3054–3063.

209. Wei, H., Zhang, J., Xiao, W., Feng, J., Sun, R., Tian, Z. (2005) Involve-
ment of human natural killer cells in asthma pathogenesis: natural killer
2 cells in type 2 cytokine predominance. J. Allergy Clin. Immunol. 115,
841–847.

210. Chan, W. L., Pejnovic, N., Lee, C. A., Al-Ali, N. A. (2001) Human IL-18
receptor and ST2L are stable and selective markers for the respective
type 1 and type 2 circulating lymphocytes. J. Immunol. 167, 1238–
1244.

211. Carter, R. W., Sweet, M., Xu, D., Klemenz, R., Liew, F., Chan, W. (2001)
Regulation of ST2L expression on T helper (Th) type 2 cells. Eur.
J. Immunol. 31, 2979–2985.

212. Barker, E., Mackewicz, C., Levy, J. (1995) Effects of TH1 and TH2
cytokines on CD8� cell response against human immunodeficiency
virus: implications for long-term survival. Proc. Natl. Acad. Sci. USA 92,
11135–11139.

213. Romagnani, S. (1997) The Th1/Th2 paradigm. Immunol. Today 18,
263–266.

214. Chehimi, J., Bandyopadhyay, S., Prakash, K., Perussia, B., Hassan,
N. F., Kawashima, H., Campbell, D., Kornbluth, J., Starr, S. E. (1991) In
vitro infection of natural killer cells with different human immunodefi-
ciency virus type 1 isolates. J. Virol. 65, 1812–1822.

215. Toth, F. D., Mosborg-Petersen, P., Kiss, J., Aboagye-Mathiesen, G.,
Zdravkovic, M., Hager, H., Ebbesen, P. (1993) Differential replication of
human immunodeficiency virus type 1 in CD8– and CD8� subsets of
natural killer cells: relationship to cytokine production pattern. J. Virol.
67, 5879–5888.

216. Vuillier, F., Bianco, N., Montagnier, L., Dighiero, G. (1988) Selective
depletion of low-density CD8�, CD16� lymphocytes during HIV infec-
tion. AIDS Res. Hum. Retroviruses 4, 121–129.

217. Lusso, P., Malnati, M. S., Garzino-Demo, A., Crowley, R. W., Long,
E. O., Gallo, R. C. (1993) Infection of natural killer cells by human
herpesvirus 6. Nature 362, 458–462.

218. Saha, K., Zhang, J., Gupta, A., Dave, R., Yimen, M., Zerhouni, B. (2001)
Isolation of primary HIV-1 that target CD8� T lymphocytes using CD8
as a receptor. Nat. Med. 7, 65–72.

219. Valentin, A., Rosati, M., Patenaude, D. J., Hatzakis, A., Kostrikis, L. G.,
Lazanas, M., Wyvill, K. M., Yarchoan, R., Pavlakis, G. N. (2002)
Persistent HIV-1 infection of natural killer cells in patients receiving
highly active antiretroviral therapy. Proc. Natl. Acad. Sci. USA 99,
7015–7020.

220. Harada, H., Goto, Y., Ohno, T., Suzu, S., Okada, S. (2007) Proliferative
activation up-regulates expression of CD4 and HIV-1 co-receptors on NK
cells and induces their infection with HIV-1. Eur. J. Immunol. 37,
2148–2155.

221. Valentin, A., Pavlakis, G. (2003) Natural killer cells are persistently
infected and resistant to direct killing by HIV-1. Anticancer Res. 23,
2071–2075.

222. Chaudhary, P. M., Mechetner, E. B., Roninson, I. B. (1992) Expression
and activity of the multidrug resistance P-glycoprotein in human periph-
eral blood lymphocytes. Blood 80, 2735–2739.

223. Sastry, K. J., Marin, M., Nehete, P., McConnell, K., el-Naggar, A.,
McDonnell, T. (1996) Expression of human immunodeficiency virus type

Iannello et al. HIV’s evasion of NK cell responses 47



I tat results in down-regulation of bcl-2 and induction of apoptosis in
hematopoietic cells. Oncogene 13, 487–493.

224. Kottilil, S., Shin, K., Jackson, J. O., Reitano, K. N., O’Shea, M. A., Yang,
J., Hallahan, C. W., Lempicki, R., Arthos, J., Fauci, A. S. (2006) Innate
immune dysfunction in HIV infection: effect of HIV envelope-NK cell
interactions. J. Immunol. 176, 1107–1114.

225. Espert, L., Denizot, M., Grimaldi, M., Robert-Hebmann, V., Gay, B.,
Varbanov, M., Codogno, P., Biard-Piechaczyk, M. (2006) Autophagy is
involved in T cell death after binding of HIV-1 envelope proteins to
CXCR4. J. Clin. Invest. 116, 2161–2172.

226. Naora, H., Gougeon, M. (1999) Enhanced survival and potent expansion
of the natural killer cell population of HIV-infected individuals by
exogenous interleukin-15. Immunol. Lett. 68, 359–367.

227. Huntington, N. D., Puthalakath, H., Gunn, P., Naik, E., Michalak, E. M.,
Smyth, M. J., Tabarias, H., Degli-Esposti, M. A., Dewson, G., Willis,
S. N., Motoyama, N., Huang, D. C. S., Nutt, S. L., Tarlinton, D. M.,
Strasser, A. (2007) Interleukin 15-mediated survival of natural killer
cells is determined by interactions among Bim, Noxa and Mcl-1. Nat.
Immunol. 8, 856–863.

228. Kim, H., Rafiuddin-Shah, M., Tu, H-C., Jeffers, J. R., Zambetti, G. P.,
Hsieh, J. J. D., Cheng, E. H. Y. (2006) Hierarchical regulation of
mitochondrion-dependent apoptosis by BCL-2 subfamilies. Nat. Cell
Biol. 8, 1348–1358.

229. Ahmad, A., Ahmad, R., Iannello, A., Toma, E., Morisset, R., Sindhu, S.
(2005) IL-15 and HIV infection: lessons for immunotherapy and vacci-
nation. Curr. HIV Res. 3, 261–270.

230. Jewett, A., Bonavida, B. (1996) Target-induced inactivation and cell
death by apoptosis in a subset of human NK cells. J. Immunol. 156,
907–915.

231. Jewett, A., Cavalcanti, M., Giorgi, J., Bonavida, B. (1997) Concomitant
killing in vitro of both gp120-coated CD4� peripheral T lymphocytes
and natural killer cells in the antibody-dependent cellular cytotoxicity
(ADCC) system. J. Immunol. 158, 5492–5500.

232. Ida, H., Anderson, P. (1998) Activation-induced NK cell death triggered
by CD2 stimulation. Eur. J. Immunol. 28, 1292–1300.

233. Ortaldo, J. R., Mason, A., O’Shea, J. (1995) Receptor-induced death in
human natural killer cells: involvement of CD16. J. Exp. Med. 181,
339–404.

234. Yamauchi, A., Taga, K., Mostowski, H., Bloom, E. (1996) Target cell-
induced apoptosis of interleukin-2-activated human natural killer cells:
roles of cell surface molecules and intracellular events. Blood 87,
5127–5135.

235. Ross, M. E., Caligiuri, M. A. (1997) Cytokine-induced apoptosis of
human natural killer cells identifies a novel mechanism to regulate the
innate immune response. Blood 89, 910–918.

236. Shibatomi, K., Ida, K., Yamasaki, S., Nakashima, T., Origuchi, T.,
Kawakami, A., Migita, K., Kawabe, Y., Tsujihata, M., Anderson, P.,
Eguchi, K. (2001) A novel role for interleukin-18 in human natural killer
cell death: high serum levels and low natural killer cell numbers in
patients with systemic autoimmune diseases. Arthritis Rheum. 44, 884–
892.

237. Yang, Y., Dong, B., Mittelstadt, P. R., Xiao, H., Ashwell, J. D. (2002)
HIV Tat binds Egr proteins and enhances Egr-dependent transactivation
of the Fas ligand promoter. J. Biol. Chem. 277, 19482–19487.

238. Dianzani, U., Bensi, T., Savarino, A., Sametti, S., Indelicato, M., Mes-
turini, R., Chiocchetti, A. (2003) Role of FAS in HIV infection. Curr. HIV
Res. 1, 405–417.

239. Loubeau, M., Ahmad, A., Toma, E., Menezes, J. (1997) Enhancement of
natural killer and antibody-dependent cytolytic activities of the periph-
eral blood mononuclear cells of HIV-infected patients by recombinant
IL-15. J. Acquir. Immune Defic. Syndr. Hum. Retrovirol 16, 137–145.

240. Tanneau, F., McChesney, M., Lopez, O., Sansonetti, P., Montagnier, L.,
Rivière, Y. (1990) Primary cytotoxicity against the envelope glycoprotein
of human immunodeficiency virus-1: evidence for antibody-dependent
cellular cytotoxicity in vivo. J. Infect. Dis. 162, 837–843.
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CHAPITRE 2. HYPOTHÈSE ET OBJECTIFS 

 

2.1 HYPOTHÈSE 

 

Lors de cette étude nous avons proposé les hypothèses suivantes : 

1. Il existe une relation entre l’IL-18 et le nombre des cellules NK chez les 

personnes infectées par le VIH. 

2. Il y a une différente régulation de l’IL-18BP et de l’IL-18 circulant chez les 

patients infectés par le VIH.  

3. L’IL-18  joue un rôle important sur  l’homéostasie des cellules NK 

4. L’IL-18 cause l’apoptose des cellules NK par la voie Fas/FasL 
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2.2 OBJECTIFS 

 

L’objectif global de cette présente étude est d’approfondir les 

connaissances  sur le rôle de l’IL-18 dans les infections par le  HIV. Donc 

les objectifs spécifiques sont d’étudier : 

1. S’il existe une corrélation entre la concentration d’IL-18 et  le 

nombre et les fonctions des cellules NK chez les personnes 

infectées par le VIH. 

2. L’effet potentiel de l’IL-18 sur les cellules NK. 

3. L’effet potentiel de l’IL-18 sur  la réplication virale du VIH. 

4. La production de l’IL-18BP chez les personnes infectées par le 

VIH.  

En dépit de l’effet pro inflammatoire de l’IL-18 qui peut réguler les 

réponses immunitaires innées et adaptatives. Cette cytokine est contrôlée 

par son antagoniste IL-18BP. Relativement, à nos études qui ont démontré 

des niveaux élevés de l’IL-18 chez les patients infectés par le VIH. 

Cependant, aucune étude à ce jour n’a été réalisée concernant la 

production de l’Il-18BP chez ces patients. Due à sa relevance dans la 

régulation de l’IL-18 nous avons étudié l’effet de l’infection par le VIH  

sur l’équilibre entre ces deux facteurs et l’impact de cet équilibre sur 

l’homéostasie des cellules NK. En vue de  l’importance de l’équilibre IL-

18/IL-18BP, le déséquilibre de ce ratio peut contribue vers 

l’immunopathogénèse de la maladie de l’immunodéficience, tout en 

diminuant les fonctions des cellules NK, aussi bien en augmentant la 

réplication virale. 
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CHAPITRE 3. RÉSULTATS 
 

Les résultats obtenus de ces expériences sont présentés sous le format 

d’un article de recherche présenté dans les  pages qui suivent. 

 

3.1 Article 4: 

 
3.1.1 Potential role of IL-18 in the immunopathogenesis of AIDS: 

Involvement in fratricidal killing of NK cells and enhanced HIV replication. 

Iannello.A, Samarani.S, Debbech.O, Ahmad.R, Boulassel.MR, Tremblay.C, 

Toma.E, Routy.JP, and Ahmad.A. 2009. Journal of Virology. 83(12): 5999-6010                            

 

   

RÉSUMÉ 

Le virus de l’immunodéficience humaine ou VIH est l’agent qui cause le SIDA. 

Le VIH donne lieu à une dérégulation dans la production de certaines cytokines 

qui ont un rôle immunologique très important chez les patients infectés. L’IL-18 

est une de ces cytokines, qui a un effet pro inflammatoire très puissant, et qui peut 

réguler les deux systèmes immunitaires, innées et adaptatifs. Son activité est 

strictement régulée in vivo par "IL-18Binding Protein "(IL-18BP), une cytokine 

qui se lie spécifiquement et neutralise IL-18 dont elle a une très forte affinité. Des 

études ultérieures ont montré que la concentration d’IL-18 augmente de façon très 

significative dans la circulation des patients Sidéens infectés par le VIH comparé 

à un nombre similaire de personnes saines. Cependant, il n’est pas clair jusqu'à 

maintenant comment le niveau élevé de cette cytokine affecte le développement 
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de la maladie chez les patients infectés par le VIH. Concernant la production de 

l’antagoniste IL-18BP, jusqu’à date nos connaissances sont limitées chez ces 

patients. Alors, ces issues ont été abordées dans les études présentées dans ce 

mémoire. Nous avons mesuré le taux de l’IL-18 et de l’IL-18BP dans le sérum 

des patients infectés par le VIH, en utilisant des Kits d’ELISA commerciaux, puis 

en les comparants avec le même nombre des personnes en santé qui sont 

séronégatives. Nous avons déterminé aussi, le nombre total et absolu des 

différents sous-types des cellules NK (Natural Killer) et l’activité des cellules NK 

chez les cellules mononuclées du sang périphérique. Finalement nous avons 

déterminé les effets de l’IL-18 humaine recombinante, aussi bien que le sérum 

très riche en IL-18 provenant des patients sidéens, sur la survie et l’effet 

cytolytique des cellules NK humaines. Nos résultats démontrent que les patients 

infectés par le VIH ont trois fois plus de l’IL-18 que les donneurs sains. 

Cependant le niveau de l’IL-18 BP est plus bas chez les patients infectés 

comparés aux donneurs sains. Ce qui résulte d’une augmentation de l’IL-18 libre  

qui est biologiquement active. Nos résultats démontrent qu’il y a une corrélation 

négative entre la concentration de l’IL-18 et le nombre des cellules NK, aussi bien 

que leur activité cytotoxique. Donc, ces résultats suggèrent l’implication de l’IL-

18 dans l’apparition des cellules NK. Ceci nous incite à voir  l’effet cytocidal 

potentiel de l’IL-18 sur les cellules NK. Nos résultats in vitro montrent que l’IL-

18 humaine recombinante et le sérum de patients malades, causent l’apoptose 

dans la lignée cellulaire, aussi bien que les cellules primaires des cellules NK. 

L’anticorps antagoniste anti Fas Ligand peut inhiber cette mort cellulaire. De 

même, in vitro, L’IL-18 stimule la transcription du promoteur de Fas Ligand. 

Cette cytokine, augmente la susceptibilité de la mort des cellules NK mediés par 

Fas, et induisant l’expression de la protéine anti apoptotique Bcl-XL. Finalement, 

nos études nous permettent de conclure, que l’augmentation de la bio activité 

d’IL-18 chez les patients infectés cause le dérèglement de l’homéostasie des 

cellules NK qui pourrait donc contribuer à la pathogénèse du SIDA. 
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Contribution 

J’ai exécuté les expériences et analysé les résultats. J’étais également impliqué 

dans la rédaction de cet article. 

 

N.B : Une petite moitié des résultats fait désormais partie d’une autre 
publication (Iannello A et al. 2009, « HIV causes imbalance in production of 
interleukin-18 and its natural antagonist in HIV-infected AIDS patients: 
implications for enhanced viral replication »), qui a été soumise au Journal of 
Infectious Diseases et accepté provisoirement. L’article n’est pas inclut dans 
ce mémoire.  
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Abstract 
Interleukin-18 (IL-18) is a proinflammatory cytokine playing an important role in immune 

responses against viruses and is regulated by a neutralizing cytokine named interleukin-18 

binding protein (IL-18BP). In order to study the balance between these two factos in HIV-

infected AIDS patients, we measured IL-18 and IL-18BP in the sera of thirty-two HIV-infected 

AIDS patients and compared them with a similar number of sera from age-matched HIV-

seronegative healthy subjects. Confirming earlier results, our data show that sera from HIV-

infected patients had 2.5 to 3 fold higher levels of IL-18 as compared to the sera from healthy 

subjects. In contrast to this, the levels of IL-18BP were significantly decreased in the sera from 

HIV-infected persons as compared to healthy subjects. Consequently the mean ratio between IL-

18 and IL-18BP was significantly increased in the infected subjects leading to elevated 

concentrations of biologically active free IL-18.  We show here that in vitro infection of 

monocyte-derived macrophages with HIV resulted on elevated IL-18 production and reduced 

production of IL-18BP leading to increased IL-18/IL-18BP ratio and concentrations of 

biologically active free IL-18. We also demonstrate here the impact of cytokines treament on IL-

18BP production by monocyte-derived macrophages with or without in vitro infection with HIV. 

We further show that IL-18 had increasing effect on HIV replication in isolated human CD4+ T 

cells. This uncoordinated production of IL-18 and IL-18BP may contribute further to IL-18-

induced viral replication and increase the HIV-induced pathogenesis.  

 

 

Key words: Interleukin-18, Interleukin-18 binding protein, HIV, AIDS, innate immunity 

 

 

 

 

 

 

 

 



Introduction 
Interleukin-18 (IL-18), originally discovered and named as the IFN-g-inducing factor, is a 

multifunctional and pleiotropic cytokine, which acts in synergism with other cytokines (e.g. IL-

12 and IL-15) to induce IFN-g from T and natural killer cells [Dinarello, 1999]. This cytokine is 

mainly produced by activated macrophages but also by many other cell types like dendritic cells, 

Kupffer cells, keratinocytes, and enterocytes as well as by the adrenal cortex and 

neurohypophysis. In the circulation, IL-18 is bound specifically to a natural antagonist, IL-18 

binding protein (IL-18BP) and for the most part is functionally inactive. IL-18BP is constitutively 

produced from a wide variety of body cells and has much higher affinity for IL-18 than what IL-

18 has for its receptor (12-14). The protein exists in humans in four different isoforms, designated 

as “a”, “b”, “c” and “d”, that result from alternate splicing of the IL-18BP mRNA. Of these 

isoforms, the “a” isoform accounts for the major IL-18-neutralizing activity in the circulation in 

humans. Given that IL-18 is a proinflammatory cytokine, it is not surprising that increased 

concentrations of this cytokine have been reported in many chronic inflammatory conditions in 

humans, e.g., Rheumatoid Arthritis, Mutiple Sclerosis, Crohn’s disease, Graft-versus-Host 

disease, atherosclerosis, etc (4).  

Human Immunodeficiency Virus type 1 (HIV-1) is the etiological agent of AIDS in humans. The 

infections with this virus are usually accompanied by changes in the production of several 

immunologically important cytokines, e.g., IL-15, TNF-α, IL-4, IL-12, IL-10, TGF-β1, etc (15-

17); reviewed in (18-20)). These cytokine disturbances play an important role in the 

immunopathogenesis of AIDS in HIV-infected persons. Concerning IL-18, we and others have 

demonstrated increased concentrations of this cytokine in HIV-infected persons ((21-23); see ref  

(24) for a review). The Simian Immunodeficiency Virus (SIV), which is a close cousin of HIV-1, 

also induces IL-18 production in Rhesus monkeys (25). However no information exists 

concerning serum concentrations of IL-18BP in these patients. Since in the circulation, IL-18BP 

binds and inactivates IL-18, it would be important to know the status of its concentrations in the 

circulation of HIV-infected persons. A concomitant increase in its concentrations would offset 

the biological effects of the increased IL-18 concentrations observed in the sera of HIV-infected 

persons. On the other hand, if IL-18BP production decreases in these patients, this would 

translate in enhance concentrations of free and biologically active IL-18. We addressed this issue 

in this study and show that the two cytokines are quite differentially regulated in HIV-infected 



AIDS patients. We show here that IL-18 levels increase while those of IL-18BPa decrease in the 

sera from the infected persons. The serum levels of the two cytokines show significant positive 

correlation in the control subjects when this correlation was not observed in sera from HIV-

infected AIDS patients. Consequently the mean ratio between IL-18 and IL-18BP was 

significantly increased in the infected subjects leading to increased levels of free IL-18 in 

HIV/AIDS patients. We provide experimental evidences that in vitro infection of monocyte-

derived macrophages (MDM )with HIV results on increased IL-18 levels and reduced production 

of IL-18BP leading to increased IL-18/IL-18BP ratio and concentrations of free IL-18. We also 

show here the impact of cytokines treament on IL-18BP production by MDM infected or not with 

HIV. We finally show that IL-18 had increasing effect on HIV replication in isolated human 

CD4+ T cells. The increase in IL-18 production accompanied by a relative decrease in the 

production of IL-18BP represents a severe imbalance between these two soluble mediators in 

HIV-infected patients.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Materials and Methods 
 

Cell culture 

All cells used in this study were cultured at 37°C in 5% CO2 humidified atmosphere. The PBMC 

were obtained from the peripheral blood from HIV-seronegative healthy subjects. For this 

purpose, blood was collected in heparinized vacuum tubes and PBMC were isolated by 

centrifugation over Ficoll-Hypaque (Pharmacia, Montreal, Quebec, Canada) as described earlier. 

The buffy coat at the interface of Ficoll-Hypaque and plasma was collected, washed, and 

resuspended in RPM1-1640 medium containing 10% FCS, 2 mM L-glutamate, 100 µg/ml 

penicillin, and 100 µg/ml streptomycin as described previously. To generate monocyte-derived 

macrophages, monocytes present in total PBMC preparations were isolated by adherence to the 

plate and differentiated in macrophages in culturing them with RPMI 10% FCS, 5% human AB 

serum and 2 ng/ml GM-CSF for 5 days. 

  

Antibodies and recombinant cytokines 

The recombinant human cytokines used for this study were purchased: rhIL-2 from (), rhIL-18 

from Biosource Inc. (Camarillo, CA), rhIL-10 from (), rhTGF-β from (), rhIL-12 from (), rhGM-

CSF from (), Phytohemagglutinin (PHA) was purchased from Sigma-Aldrich (Saint-Louis, MI). 

 

Patients 

Peripheral blood was obtained for serum collection from 32 HIV-infected persons of both 

genders from local AIDS clinics after their written informed consent. All the patients had one or 

more AIDS-defining condition and were receiving HAART that comprised at least one protease 

inhibitor (saquinavir, ritonavir, or indinavir) and one or two reverse transcriptase inhibitors (D4T, 

3TC, AZT or didanosine). Blood samples from 32 age-matched HIV-seronegative healthy 

persons were used as controls. Serum was obtained from each blood sample after letting it clot at 

room temperature for 2 to 3 h. Each serum sample was aliquotted and stored at −80°C until used. 

 

 



Measuring IL-18 and IL-18BPa concentrations 

The concentrations of IL-18 and IL-18BPa were determined in serum samples and experimental 

samples by using commercial ELISA kits from Bender Medsystems (Burlingame, CA) and R&D 

Systems (Minneapolis, MN), respectively. The detection limits for these kits are 12 pg and 60 

pg/ml, respectively. The kit for IL-18 measures the total IL-18 (both free as well as IL-18BP-

bound forms).  

HIV-1 replication assay 

PBMC from healthy HIV-seronegative donors were activated with 100 U/ml IL-2 and 10 µg 

PHA/ml in the culture medium for 3 days at 37°C in humidified 5% CO2 atmosphere. CD4+ T 

cells were isolated by negative selection using a commercially available kit (Stem Cell 

Technology; Vancouver, British Columbia, Canada). The purity of the isolated cells was verified 

by fluorescence-activated cell sorting (FACS) analysis using FITC-conjugated anti-CD4 

antibodies (BD Biosciences), and was always more than 90% positive for CD4. The purified 

CD4+ T cells were infected in vitro with HIV-1 (NL4.3). The cells were infected for 2 hours at 

37°C with an m.o.i. of 1, and were extensively washed with the culture medium to remove the 

residual virus. Recombinant human cytokines were added for different lengths of time (detailed 

in individual experiments). Cell culture supernatants were harvested, clarified by centrifugation 

and stored at -20°C until they were analysed for their HIV-1 p24 contents by ELISA purchased 

from AIDS & Cancer Virus Program (NCI-Frederick, MD). 

Statistical analysis 

Standard statistical methods like Student's unpaired t test, Pearson's correlation and linear 

regression from GraphPad (Prism, San Diego, CA) were used for data analysis.  

 

 

 

 



Results 
 

Concentrations of IL-18 are increased but those of IL-18BPa are decreased in the sera of 

HIV-infected/AIDS patients 

It has been reported earlier that IL-18 concentrations increase significantly in the sera from HIV-

infected persons as compared to the sera from HIV-seronegative healthy subjects. However it is 

not known whether this increase is accompanied by any change in the levels of IL-18BPa in the 

circulation. In order to address this issue, we measured IL-18 and IL-18BPa in the sera obtained 

from the peripheral blood of 32 HIV-infected AIDS patients and from an equal number of age-

matched HIV-seronegative healthy subjects. As shown in Figure 1A, the sera from HIV-infected 

patients had increased levels of IL-18 as compared to the sera from healthy subjects (294 ± 38 vs. 

125 ± 25 pg/ml, respectively). The average concentration in the infected group sera was 

approximately 2.5 to 3 fold higher than that of the control sera and the difference between the 

two groups was statistically significant (p = 0.0006). The analysis of the same sera for their IL-

18BPa  contents is shown in Figure 1B. Surprisingly and unlike IL-18, the average concentration 

of IL-18BPa �was significantly lower (p = 0.0089) in the sera of HIV-infected persons as 

compared to the control sera (2.7 ± 0.09 vs. 3.8 ± 0.4 ng/ml, respectively).  

 

Absence of correlation between IL-18 and IL-18BPa in HIV-infected patients 

In view of the importance of IL-18BPa in regulating the biological activity of IL-18, we sought to 

determine whether the serum concentrations of the two cytokines were mutually correlated. As 

shown in Figure 2A, a positive correlation was found between the two parameters in healthy 

persons (p = 0.0014; r = 0.5407). These results are consistent with the idea that IL-18 activity is 

tightly controlled by its natural antagonist in the human body and therefore the production of 

these two cytokines may be coordinated. Interestingly, no significant correlation (Figure 2B; p = 

0.5880; r = -0.09949) was found between these two cytokines in the sera of HIV-infected 

patients. These data suggest that the coordination, observed in the production of the two 

cytokines in control subjects, is lost in HIV-infected patients.  

 

 

 



Imbalance between IL-18 and IL-18BP levels results in increased concentrations of free IL-

18 in HIV-infected patients  

We further determined ratios between IL-18 and IL-18BPa concentrations the sera of the patients 

and control subjects. As shown in Figure 3A, the average ratio increased 3 to 4 times in HIV-

infected patients as compared to healthy persons (p < 0.0001). These data suggest a decreased 

concentration of the IL-18BPa in the face of increased concentrations of IL-18 in the circulation 

of HIV-infected patients. A decrease in the concentrations of IL-18BP with concomitant increase 

in IL-18 concentrations in the circulation of HIV-infected persons could lead to increased 

concentrations of biologically active, free (not bound with IL-18BP) IL-18. To address this issue, 

we calculated concentrations of free IL-18 in the sera of our study participants using the law of 

mass action as described in Materials & Methods. As shown in Figure 3B, we observed an 

increase in the serum concentrations of free, biologically active IL-18 in HIV-infected patients as 

compared to healthy subjects. Consequently, the difference in free IL-18 concentrations between 

HIV/AIDS patients and healthy donors is more pronounced as compared to the concentrations of 

total IL-18.  

 

In vitro infection of monocyte-derived macrophages with HIV results in an imbalance 

production of IL-18 and IL-18BP 

 

 

 

Cytokines for which concentrations are elevated in HIV/AIDS patients decrease the levels 

of IL-18BP independently or in synergy with HIV infection 

 

 

IL-18 treatment of CD4+ T cells infected with HIV increases viral replication in vitro 

In accord with our earlier results, no significant correlation existed between total serum IL-18 

concentrations and viral load in HIV-infected persons (data not shown). Nevertheless, we were 

interested in determining the effect of IL-18 on HIV replication, since any replication-enhancing 

effects may have been suppressed in the HIV-infected patient by HAART. In order to determine 

the effect of rhIL-18 on HIV replication, we added the cytokine alone as well as in combination 



with IL-10 or TGF-β to microcultures of isolated human CD4+ T cells infected with HIV-1. 

These latter two cytokines were chosen because their concentrations are frequently increased in 

the circulation of HIV-infected patients (16, 21, 34). As shown in Figure 3B, we observed little 

effect of recombinant human IL-18 on HIV replication. However, it increases HIV replication in 

concert with equimolar concentrations of IL-10 and TGF-β1 (p < 0.001) (Figure 3B). These data 

suggest that increased biological activity of IL-18 may contribute towards increased HIV 

replication in concert with other cytokines. 

 

 

 

 

 

 

 

 

 

 

Discussion 
The results presented in this paper confirm earlier reports from this and other laboratories (21-

23); reviewed in (24)) showing increased expression of IL-18 in the sera of HIV-infected patients 

as compared to those of HIV-seronegative healthy subjects. These results further show that 

concomitant with an increase in IL-18 concentrations, IL-18BPa levels are reduced in these 

patients. Since the “a” isoform is responsible for almost all IL-18 neutralizing activity in the 

circulation in humans, we interpret these results as decreased production of IL-18BP in these 



patients. A practical consequence of the decrease in the levels of this IL-18 antagonist is that the 

concentrations of free, biologically active IL-18 become even more increased than total IL-18 in 

the circulation of these patients. To the best of our knowledge this is the first report about the 

levels of IL-18BP in HIV-infected patients. This further confirms our earlier results that it is not 

only total IL-18 levels, but its biological activities (e.g., its ability to induce IFN-γ from NK and 

T cells) are also increased in these patients (21). The increase in the biological activities is, at 

least in part, due to a decrease in the levels of IL-18BP. 

As mentioned in the Introduction section, the biological activities of IL-18 are controlled by IL-

18BP. IL-18 induces production of IL-18BP as a negative feed back mechanism and controls 

towards regulation of its biological effects. It does so indirectly via inducing IFN-γ production 

from NK and T cells. It is noteworthy that IFN-γ is a powerful stimulus for production of IL-

18BP. The gamma-interferon-activated sequences (GAS) occur in the promoter region of the IL-

18BP gene (36). In this connection, we observed a correlation between IL-18 levels and those of 

its antagonist in the sera from healthy persons. This suggests a coordinate production of these two 

soluble mediators under physiological conditions. However this coordinate production seems to 

be lost in HIV-infected patients, as we could not find a significant (p > 0.05) positive correlation 

between their levels in the sera of these patients. At least in part it could be due to a decreased 

ability of the PBMC from HIV-infected persons to produce IFN-γ in response to a variety of 

stimuli. Interestingly, the decreased production occurs despite an increase in the expression of the 

interferon receptors (37). Although IL-18 is a powerful IFN-γ inducer from NK and T cells, it 

does so only in combination with other cytokines, e.g., IL-12, IL-15, IL-2, etc. Alone IL-18 

induces little of this interferon. Since production of IL-12, IL-15 and IL-2 markedly decreases in 

HIV-infected persons (15, 19, 38), it is not surprisingly that the production of IFN-γ decreases in 

these patients. Furthermore, immunosuppressive cytokines like TGF-β and IL-10 also inhibit 

production of this interferon in response to IL-18 and other stimuli. The concentrations of these 

immunosuppressive cytokines are increased in HIV-infected persons (16, 19-21, 39).  Decreased 

production of TH1 type cytokines, of which IFN-γ is the representative one, has been implicated 

in the pathogenesis of AIDS. Taken together these observations suggest that decreased 

production of IFN-γ may be responsible for a decreased production of IL-18BP in HIV-infected 

patients. In addition to this, a direct inhibitory effect of immunosuppressive cytokines, e.g., IL-10 

and/or TGF-β1, on the production of IL-18BP could also play a role. 



An imbalanced production of IL-18 and IL-18BPa is not unique to HIV infections. It has been 

reported to occur in the patients suffering from secondary haemophagocytic syndrome (SHS) 

leading to four-fold increased concentrations of free IL-18 (26). Consequently, the SHS patients 

have decreased NK cell numbers, impaired NK cell-mediated cytotoxicity and activated 

macrophages. The levels of free biologically active IL-18 are also increased in chronic liver 

diseases (especially in cirrhosis), Crohn’s disease and Lupus Nephritis (40-42). Novick et al. (31) 

have shown that in septic patients the levels of total IL-18 increase 20 fold but those of IL-18BP 

increase only by 10 fold causing an increase in the levels of free IL-18. In these conditions 

recombinant human IL-18BP may have the potential to act as a therapeutic tool. Compared with 

these conditions, the serum levels of IL-18BP are decreased in HIV-infected persons.    

It is noteworthy that cytokines like IL-2, 12, 15 and 18 have the potential of enhancing innate and 

adaptive immunity against cancer and infectious diseases, and are being used or considered as 

adjuvants as well as prophylactic and therapeutic tools. Our results suggest that careful 

consideration should be given to the in vivo use of these cytokines either alone or in different 

combinations due to their negative feed back mechanisms and their effects on immune responses 

and viral replication.  

Conflicting results have been published in literature concerning the effects of IL-18 on HIV 

replication (24). It is not yet clear whether the cytokine has proviral or antiviral role. The 

cytokine stimulates HIV replication in vitro in chronically infected human monocytic and T cell 

lines but not in primary human cells (48, 49). In one study, IL-18 was reported to inhibit 

replication of both M- and T-tropic HIV-1  in human PBMC that was ascribed to IL-18-induced 

production of IFN-γ (50). The authors also noted a decrease in the expression of CD4 on IL-18-

treated PBMC. Sailer et al (51) have suggested that early in the course of HIV infection in 

humans, IL-18 suppresses viral replication by increasing TH1 responses (IFN-γ production) and 

by reducing the expression of CXCR4. Their suggestion was based upon the results, which 

showed increased levels of IL-18 in total blood from HIV infected persons early in the course of 

infection. The levels correlated with decreased expression of CXCR4 and unexpectedly also with 

decreased levels of IFN-γ in the circulation of these patients (51). Furthermore in animal models 

of the infection (simian/human chimeric immunodeficiency viruses; SHIV), high plasma levels of 

IL-18 were associated with more pathogenic viruses, rapid decline of CD4+ T cells and higher 

viral set points (52). Our present results show that rhIL-18 alone has minimal effects on HIV 



replication in human PHA blasts as well as in purified CD4+ T cells. However, the cytokine 

increases HIV replication, when added to these cell cultures in combination with TGF-β or IL-10. 

It is noteworthy that increased levels of these two cytokines have been reported in HIV-infected 

persons (16, 19, 21, 34, 39). Therefore, we conclude that IL-18 promotes HIV-replication in 

HIV-infected persons. For that reason, it is not surprising that some researchers have found 

association of AIDS progression with raised serum levels of IL-18 in HIV-infected subjects  (22, 

53, 54). They reported that the cytokine levels were higher in progressors but remained rather 

stable in non-progressors. HAART caused a decrease in viral load, increased CD4+ T cell counts, 

and decreased IL-18 levels in the therapy-responsive patients. However the levels never became 

normal and were not correlated with CD4+ T cell counts.   

Apart from increasing HIV replication, increased serum levels of IL-18 may also be adversely 

affecting HIV-specific adaptive immunity. It is noteworthy that the ability of IL-18 to induce 

IFN-γ production from T cells depends upon IL-12, which induces expression of IL-18R on TH1 

type CD4+ T cells (5). Consequently, TH1 type CD4+ T cells proliferate in response to IL-18 and 

secrete this interferon. In the absence/deficiency of IL-12, IL-18 acts on mast cells, basophils and 

NKT cells, and induces production of IL-4, which promotes TH2 type responses in the body 

(reviewed in (5, 6)). Naïve and TH2 type CD4+ T cells do not express IL-18R and are 

unresponsive to this cytokine. As mentioned above, IL-12 is also needed to induce production of 

this interferon from NK and T cells, as IL-18 alone induces little of it from these cells. 

Furthermore, it has been shown that in the presence of IL-18, antigen-specific memory TH1 type 

CD4+ T cells also produce TH2 type cytokines, when they encounter their specific target cells or 

are cross-linked via anti-CD3 antibodies (55). It is noteworthy that a marked deficiency of IL-12 

production occurs in HIV-infected persons (17-19). Therefore it is very likely that in the face of 

decreased IL-12 production in HIV-infected persons, IL-18 promotes TH2 type immune 

responses. TH2- type cytokine-skewed immune responses are known to control intracellular viral 

infections poorly. These types of immune responses have been shown to predominate in an 

overwhelming majority of HIV-infected persons and may be responsible for ultimate failure of 

the immune response to control and eliminate the viral infection (18, 19, 38, 55). Our results 

suggest that increased biological activity of IL-18 in the circulation of HIV-infected persons may 

play a role in inducing TH2 type immune responses in HIV-infected patients.  



HIV-associated lipodystrophic syndrome (HALS), which is characterized by redistribution of fat 

(wasting of subcutaneous fat at face, limbs and trunk and ectopic accumulation in places like 

dorsocervical region), dyslipidemia, and metabolic disturbances occur frequently in HIV-infected 

persons undergoing HAART (see ref (56) for a review). It has been observed that serum IL-18 

levels are often higher in the HIV-infected persons with HALS than in those not having this 

syndrome (8, 57). Furthermore, the levels were reduced in the subcutaneous tissue, where fat 

wasting had occurred (8, 57). These data suggest that along with other proinflammatory 

cytokines, e.g., TNF-α, IL-18 plays a role in lipolysis, depletion of adipocytes and the 

development of HALS.     

In summary our study advances our understanding about the mechanisms involved in the 

immunopathogenic role of IL-18 in the progression of HIV infection towards AIDS. Given that 

increases HIV replication, its increased biological activities could be a factor in the progression 

of HIV infection towards AIDS. Furthermore, the cytokine plays a role in the development of 

HALS in HIV-infected patients. Therefore it should be seriously considered as a molecular target 

for therapeutic intervention in AIDS patients. Fortunately, its natural antagonist is constitutively 

produced in human body and therefore could represent a relatively safe therapeutic agent. 
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Figure legends 
 

 

Figure 1. Concentrations of serum IL-18 and IL-18BPa in HIV-infected/AIDS patients. IL-

18 and IL-18BPa concentrations were determined in serum samples by using commercial ELISA 

kits. (A) Average ± standard error concentrations of IL-18 in the sera of HIV-infected/AIDS 

patients (P) and control subjects (N). The average concentrations differed significantly between 

the two groups of donors (p = 0.0006). (B) Average ± standard error concentrations of IL-18BPa 



in the same 32 sera used for IL-18 determinations. The average concentrations of IL-18BPa also 

differed significantly between the two groups of donors (p = 0.0089). 

 

Figure 2. Correlations between serum IL-18 and IL-18BPa in HIV-infected/AIDS patients. 

(A) Pearson correlation between concentrations of IL-18 and IL-18BPa in 32 sera of healthy 

persons. The two parameters showed a statistically significant correlation (p = 0.0014; r = 

0.6407). (B) Pearson correlation between concentrations of IL-18 and IL-18BPa in 32 sera of 

HIV-infected/AIDS patients. The two parameters did not show a statistically significant 

correlation (p = 0.5880; r = -0.09949). (C) IL-18/IL-18BPa ratios in the 32 sera of healthy 

persons (N) and AIDS patients (P). A dot indicates an individual IL-18/IL-18BPa ratio and the 

horizontal line in each column indicates group mean. The mean of ratios differed significantly 

between the two groups of donors (p < 0.0001).  

 

Figure 3. Increased concentrations of free IL-18 in HIV-infected/AIDS patients. (A) 

Concentrations of free IL-18 (nM) in the sera of healthy persons (N) and AIDS patients (P) 

calculated using the law of mass action as described in Materials & Methods. A dot indicates an 

individual free IL-18 concentration and the horizontal line in each column indicates group mean. 

The mean differed significantly between the two groups of donors (p < 0.0001). (B) Effect of 

rhIL-18 on HIV replication in human CD4+ T cells. Human CD4+ T cells were purified from the 

PBMC, infected in vitro with HIV and treated with 10 ng/ml IL-18, alone or in combination with 

equimolar concentrations of IL-10 and TGF-β1, for different lengths of time. The HIV-1 p24 was 

measured in the culture supernatants with a commercial ELISA kit.  
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CHAPITRE 4. DISCUSSION 
 

Comme d’autres maladies pro inflammatoires chroniques, nous avons 

observé qu’il existe une corrélation négative entre la concentration et le 

nombre des cellules NK chez les personnes infectées par le VIH. Ceci 

s’applique également à tous les sous types comme, les CD3- CD16+, les 

CD3- CD56+ et les CD16+ CD56+. De même, cette étude implique le rôle 

de l’IL-18 dans la perte de ces cellules  chez les personnes infectées par le 

VIH et éclaircit le mécanisme qui cause cette mort. Le traitement des 

cellules NK92 et des cellules NK primaires avec l’IL-18, induit la mort 

fratricide de ces cellules, tout en induisant l’expression de FasL et la 

production de TNFα. 

Il existe une expression constitutive de FAS, et sans aucun changement 

même après traitement de l’IL-18. Alors, ceci nous permet de déduire  une 

plus forte sensibilité des cellules NK, qui est dû probablement aux stimuli 

apoptotique. Tout en remarquant une diminution de l’expression de la 

protéine anti apoptotique Bcl-XL, qui peut être cruciale pour leur apoptose  

causé par FasL. C’est la première fois qu’on démontre la "down 

régulation" de cette protéine anti apoptotique chez les cellules NK 

humaines. Alors ce sera très intéressant et pertinent de démontrer si cette 

protéine  induit les mêmes effets sur d’autres types cellulaires.  

Il a été démontré que la mort des cellules NK dépend de l’augmentation 

du taux de l’IL-18. Pour confirmer cela, nous avons détecté une mort très 

significative chez les cellules NK  des patients infectés par Le VIH, dont  

la concentration est plus élevée ou égale à 500pg/ml. Tandis que chez les 

personnes dont la concentration est plus petite que 500pg/ml et chez les 

personnes saines, un faible taux de mortalité est détecté. Ceci nous mène à 

expliquer cette différence, tout en déduisant, la probabilité d’interférence  

d’autres facteurs, comme l’antagoniste l’IL-18BP, et les facteurs de 
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croissance. Après la neutralisation de TNF,  la combinaison de l’IL-15 et  

de l’IL-12, aussi bien que l’IL-2 et l’IL-12 causent la mort des cellules 

NK, mais sans aborder l’implication de l’interaction Fas/FasL [149]. La 

mort des cellules NK murins, se fait par l’intermédiaire de FasL, bien qu’il 

n’ait pas mesuré l’expression de FasL [150-152]. Notre étude démontre et  

pour la première fois que l’IL-18 induit l’expression de FasL, qui 

augmente la cytotoxicité de ces cellules. Ces cellules peuvent tuer toutes 

les cellules qui sont Fas positif, et causer des dommages tissulaires, 

comme une étude qui implique FasL et TNF-α pour causer des dommages 

dans le foie des souris [153, 154]. Alors, notre étude contredit celle de 

Kalina et collaborateur [157] en démontrant que les cellules NK  ne tuent 

pas les cellules cibles, K562, dont on remarque l’absence  de l’expression 

de Fas. Ceci est  probablement est dû à la différence des techniques 

utilisées dans ces deux études. Il  faut noter que l’IL-12, l’IL-15 et l’IL-18 

possèdent un potentiel pour augmenter la réponse immunitaire adaptative 

ou innée contre les maladies infectieuses ou contre le cancer, et elles 

étaient utilisées comme des outils thérapeutiques. Notre étude suggère la 

prudence avant l’utilisation de ces cytokines toutes seules ou en 

combinaison avec d’autres cytokines, dues à leur effet de supprimer la 

réponse immunitaire.  

Une  étude démontre l’effet positif de l’IL-18  sur les cellules NK, par la 

prévention de l’apoptose de ces cellules, tout en induisant TRAF et c-IAP 

[155]. Une autre étude montre  que l’IL-18 induit l’expression de  CD28, 

CCR7 et CD25 sur les cellules NK, et augmente leur migration vers les 

nodules lymphoïdes et permettent leur interaction avec d’autres 

immunocytes [156]. Alors  comment ne pas contredire leurs études, quand 

nos expériences démontrent une forte mortalité des cellules NK, après 

traitement de l’IL-18  
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Comme déjà mentionné, il y a une augmentation de la concentration de 

l’IL-18 [69, 70, 158], aussi bien qu’une diminution de son antagoniste 

l‘IL-18 BP. C’est déjà connu,  que chez l’humain,  l’activité de l’IL-18 est 

neutralisé par l’isoforme a de son antagoniste. Ce qui mène à une 

augmentation de la concentration de l’IL-18 libre biologiquement active 

plus que l’IL-18 total dans la circulation sanguine des patients et ceci est 

dû en partie à la diminution de la concentration de l’IL-18BP [69]. Par 

respect à d’autres laboratoires, nous sommes les premiers a mesuré et 

dévoilé le niveau de l‘IL-18BP chez les patients infectés par le VIH Il 

existe une corrélation entre le niveau de l’IL-18 et son antagoniste chez les 

personnes saines. Tandis que cette corrélation n’existe plus chez les 

personnes infectées et la cause sera la diminution de la production de 

l’INF-γ, mais on remarque une augmentation de l’expression du récepteur 

de l’INF-γ [159]. La production de l’IFN-γ n’est pas induite par l’IL-18 

seul, mais en combinaison avec d’autre cytokine comme l’IL-15, l’IL-2, et 

l’IL-12, à partir  des cellules T et NK. Toutefois, la diminution de la 

concentration de l’IL-2, de l’IL-15, et de l’IL-12  chez les personnes 

infectées, garde l’IL-18 seul, et la production de  l’IFN-γ est faiblement 

induite [138, 159, 160]. Cependant la concentration des cytokines 

immunosuppresseurs comme l’IL-10 et/ou TGF-β augmentent chez les 

patients infectés par le VIH [69, 138, 161, 162], et ceci inhibe aussi  la 

production de cet interféron en réponse à l’IL-18 et d’autres stimuli.  Il y a 

aussi une diminution de la production des cytokines de type Th1, et  qui 

sont représentés par l’IFN-γ. Alors, nous pouvons conclure, que la 

diminution de l’IFN-γ, et l’effet inhibiteur des cytokines 

immunosuppresseurs peuvent jouer  aussi un rôle dans la diminution de la 

production de l’IL -8BP, chez les personnes infectées par le VIH. Aussi 

bien, ce déséquilibre existe dans d’autre maladie, comme le SHS, dont on 

observe une forte concentration de l’IL-18 libre, accompagné d’une 

diminution du nombre et de l’activité des cellules NK. Bien que le niveau 
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de l’IL-18 libre active augmente dans la maladie chronique du foi,  et  la 

maladie de crohn [93, 163]. Finalement, la recombinante humaine IL-

18BP peut devenir un outil thérapeutique. D’après Torre [132,158], une 

grande exclamation existe si cette cytokine a un rôle pro viral ou 

antivirale. Cette cytokine stimule la réplication virale  in vitro chez les 

monocytes et les cellules T humains, mais pas chez les cellules T  

primaires [124, 125].  Il a été rapporté, par une seule étude, que l’IL-18 

inhibe la réplication du VIH dans les PBMC, en induisant la production de 

l’INF-γ, et une diminution de l’expression du récepteur CD4 [123]. Tandis 

que Sailer et collaborateurs [128] suggère que l’IL-18 supprime la 

réplication virale, durant la phase  précoce. Ceci est causé par 

l’augmentation de la réponse du type Th1 et la diminution de l’expression 

du corécepteur CXCR4 [128]. Tandis que dans le modèle animal 

SHIV (simian/human chimeric immunodeficeincy virus), un taux élevé de 

l’IL-18 dans le plasma est combiné avec une augmentation de la charge 

virale, accompagné d’une déclinaison rapide du nombre des cellules 

TCD4+ [121] . Alors notre étude montre que l’IL-18 recombinant humain 

seul a un faible effet sur la réplication virale, tandis que la réplication 

augmente en présence de l’IL-10 et TGF-β. De même, l’augmentation du 

niveau de ces deux cytokines a été rapportée  déjà chez les patients 

infectés [69, 138, 161, 162, 164]. Ceci conclut que l’IL-18 peut  

promouvoir la réplication virale chez ces patients. De plus, certains 

chercheurs ont trouvé une association entre la progression  de cette 

maladie et l’augmentation du taux de l’IL-18 dans le sérum des patients 

infectés par le VIH [165-167]. Le taux  cette cytokine est plus élevée chez 

les progresseurs et stable chez les non progresseurs. En plus d’agir sur les 

cellules NK et sur la réplication virale, cette cytokine agit sur la réponse 

immunitaire adaptative, spécifique au VIH. Elle induit la production de 

l’INF-γ en combinaison avec l’IL-12, ce qui induit l’expression du 

récepteur de l’IL-18 (IL-18R) sur les cellules Th de type 1 [97]. En 
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absence de l’IL-12, l’IL-18 agit sur les mastocytes, les NK, les basophiles, 

et induit la production de l’IL-4, qui va promouvoir la réponse Th de type 

2 [97, 152]. Les cellules T naïves et de type 2 n’expriment pas l’IL-18R et 

sans aucune réponse à cette cytokine. Cependant, on remarque une 

déficience de la production de l’IL-12 chez les personnes infectés [138, 

168]. Comme déjà connu, les cellules Th de type 2 ne contrôlent pas bien 

l’infection virale intracellulaire. Alors ce type de réponse peut être 

responsable de l’échec de la réponse immunitaire à contrôler et  à éliminer 

la charge virale [49, 138, 159, 169]. De même nos résultats suggèrent que 

l’augmentation de l’activité biologique de l’IL-18 dans la circulation des 

personnes infectées induit la réponse des cellules Th de type 2. 

Un autre point à soulever, c’est l’utilisation d’une forte concentration de 

l’IL-18 dans nos expériences. La concentration physiologique connue, 

c’est celle dans la circulation. On ne connaît pas le taux dans les tissus ou 

dans les zones inflammatoires, et elle est sûrement plus élevée. En plus 

durant des études de recherche concernant une cytokine, il n’est pas 

inapproprié d’utiliser une concentration plus forte que la concentration 

physiologique. Il y a plusieurs recherches qui utilisent des nano grammes 

par millilitre, voir référence 157. 

En somme cette étude, améliore nos connaissances dans l’immunobiologie 

de l’IL-18 et son agoniste et met le point sur un point, comment le taux 

élever de cette cytokine  trouvé, contribue dans la pathogenèse de la 

maladie de l’immunodéficience humaine. 
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CHAPITRE 5. CONCLUSIONS 
 

Nous avons réalisé des expériences pour comprendre le rôle de 

l’augmentation de la concentration d’IL-18 dans le sérum des patients 

sidéens dans le développement de cette maladie. En contraste de l’IL-18, 

la concentration de son antagoniste l’"IL-18 Binding Protein" diminue 

dans la circulation sanguine. Alors, ceci nous permet de conclure une nette 

augmentation de l’activité biologique d’IL-18 libre chez ces patients 

malades. De même, nous sommes les premiers à démontrer 

l’augmentation de la concentration d’IL-18BP chez les personnes sains et 

une diminution de la concentration de cet antagoniste chez les patients 

infectés par le VIH. Normalement, il y a une corrélation  entre l’IL-18 et 

son antagoniste dans la circulation des donneurs sains, mais cette 

corrélation n’existe pas chez les patients malades. 

Ce qui est intéressant, c’est notre résultat qui montre une corrélation 

négative entre la concentration d’IL-18 et le nombre et la cytotoxicité des 

cellules NK chez les patients. Ceci suggère que cette cytokine soit 

impliquée dans la disparition de ces cellules chez les patients et nous mène 

à voir l’effet direct d’IL-18 sur les cellules NK. Dans les expériences in 

vitro, cette cytokine cause la mort cellulaire de la lignée cellulaire NK92, 

aussi bien que chez les cellules NK primaires humaines. Cette mort 

cellulaire a été inhibée de façon significative par l’ajout de l’anticorps anti 

FasL et anti-TNFα. Cependant, nos résultats, montre que cette cytokine 

induit l’expression de FasL sur les cellules NK humaines, qui se tuent 

entre eux par l’interaction Fas/FasL. En plus, les sérums des patients 

malades et riches en IL-18, nous mènent aux-mêmes conclusions. De plus, 

cette cytokine, induit la transcription d’un gène rapporteur fusionné avec 

le promoteur humain FasL. En contraste de FasL il n’y a aucun effet  

observé sur l’expression chez ces cellules. IL-18 n’induit pas seulement 
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l’expression de FasL sur les cellules NK, mais il augmente la susceptibilité  

des cellules NK de mourir par FAS. Les cellules NK traités meurent en 

grand nombre par rapport aux cellules non traitées en présence de la même 

concentration d’un anticorps anti-Fas agoniste. Au moins, ceci peut être 

expliqué en partie qu’IL-18 diminue l’expression de la protéine anti 

apoptotique BCL-XL chez les cellules NK. Aucun effet de cette cytokine 

n’a été vu sur l’expression de BCL-2 dans ces cellules. De même, des 

résultats contradictoires ont été publiés regardant l’effet d’IL-18 sur la 

réplication virale du VIH dans les cellules humaines, nos résultats 

montrent que cette cytokine augmente  la réplication virale. Alors nos 

résultats nous permettent de suggérer qu’IL-18 puisse contribuer vers 

l’immunopathogénèse du SIDA en diminuant les fonctions des cellules 

NK, aussi bien en augmentant la réplication virale. 

En addition de ces résultats, une revue de littérature nous montre que 

l’augmentation de la concentration de cette cytokine a été impliquée dans 

le syndrome métabolique, la lipodystrophy, et la "démence" chez les 

personnes infectées. En outre, IL-18 est considéré comme une cytokine  

antivirale, qui peut augmenter  les réponses antivirales en induisant l’INF - 

γ des cellules NK et T. Cependant, l’IL-18 seul induit la production de cet 

interféron, en combinaison avec l’IL-12, l’IL-15 ou l’IL-21. Les 

concentrations de l’IL-12, l’IL-15 et l’IL-21 diminuent dans la circulation 

des personnes infectées par le VIH. En absence ou l’insuffisance de cette 

collaboration de cette cytokine, l’IL-18 est connu pour promouvoir les 

réponses du type Th2 en induisant IL-4 des cellules mastocytes et des 

basophiles. Ainsi, dans le contexte de l’infection par le VIH, l’IL-18 peut 

diminuer l’immunité anti virale, par la promotion de la réponse 

immunitaire de type 2. Finalement, on conclue, que l’augmentation de la 

concentration de l’IL-18 contribue dans la pathogénèse du SIDA chez les 

personnes infectées par le VIH. Alors cibler cette cytokine par son 
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antagoniste naturel, peut ralentir la progression de l’infection par le VIH 

vers la maladie, le SIDA 
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