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SOMMAIRE 

Cette thèse considère le problème de la modélisation et l'estimation de la 

fonction de covariance d'un processus aléatoire. Le travail est divisé en trois ar-

ticles. Le premier article introduit le modèle additif et l'estimateur par projection. 

Les propriétés de l'estimateur par projection sont obtenues dans des contextes 

asymptotiques. Différentes généralisations de l'estimateur sont aussi considérées. 

Le deuxième article présente une classe importante de modèles additifs de la 

fonction de covariance d'un processus isotrope, la classe de modèles additifs à 

composantes spectrales. Les résultats théoriques du premier article permettent 

d'établir les propriétés de l'estimateur par projection appliqué aux modèles ad-

ditifs à composantes spectrales. On démontre aussi que la classe des modèles 

additifs à composantes spectrales est dense dans l'ensemble des fonctions de co-

variance des processus isotropes ayant une densité spectrale. Le troisième article 

propose des méthodes de sélection optimale du modèle pour des modèles additifs 

à composantes spectrales. Des critères pour choisir le nombre et la forme des 

composantes spectrales sont obtenus et évalués par simulation. Enfin, un jeu de 

données réelles est analysé par les méthodes développées dans les trois articles. 
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INTRODUCTION 

Cette thèse traite de l'estimation du covariogramme d'un processus aléatoire. 

Pour un processus aléatoire Y(x), x E D, où D est un sous-ensemble de l'espace 

euclidien de dimension d, le covariogramme est une fonction définie par 

Cy (xi , x2) -=-- cov(Y(xi), Y(x2)). 	 (0.0.1) 

Un problème typique en géostatistique est celui de l'estimation de la fonction Cy 

basée sur une réalisation du processus Y observé sur un nombre fini d'emplace-

ments xl , ... , x7 , dans le domaine D. Un sommaire des méthodes traditionnelles 

de l'estimation du covariogramme d'un processus isotrope Y apparaît dans Cres-

sie (1993). La procédure standard peut être décrite comme suit. Premièrement, le 

variogramme ou le covariogramme empirique est estimé. Pour ce faire, les paires 

d'observations sont divisées en classes de distance. Cette étape implique des déci-

sions concernant le nombre et la longueur des intervalles de distance. Ensuite un 

modèle paramétrique est choisi parmi un nombre relativement petit de fonctions 

positives définies connues. Finalement, les paramètres du modèle sont estimés 

par une méthode d'ajustement standard qui cherche à minimiser l'écart entre le 

modèle et le covariogramme ou le variogramme empirique. Dans la plupart des 

cas, la méthode d'ajustement est une variante de la minimisation de la somme 

des différences au carré entre le variogramme ou le covariogramme empirique et 

les valeurs données par le modèle. Dans presque tous les cas, cette procédure de 
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minimisation implique une fonction objective non linéaire. Pour effectuer la mini-

misation, il est nécessaire d'appliquer des méthodes numériques qui compliquent 

le calcul et surtout rendent l'analyse théorique de l'estimateur difficile. Une autre 

approche de l'estimation du covariogramme est la méthode MINQUE (minimum 

norm quadratic unbiased estimator). On définit un modèle de covariance additif 

par 

C9 = 	0(i)Ci 	 (0.0.2) 
i=1 

où les fonctions Ci  sont déterminées et connues, tandis que les paramètres 0(i) 

sont à estimer. Le modèle Co  dépend des paramètres 0(i) de façon linéaire. La mé-

thode MINQUE s'applique seulement aux modèles additifs. Cependant, elle offre 

certains avantages par rapport aux méthodes traditionnelles. Le besoin de choisir 

le nombre et la longueur des intervalles de distance est éliminé. Les méthodes 

d'algèbre matricielle sont suffisantes pour calculer l'estimateur. Des expressions 

relativement simples existent pour la moyenne et la variance de l'estimateur. En 

plus, certains résultats asymptotiques ont été établis pour l'estimateur MINQUE 

par Stein (1989). D'autre part, l'estimateur MINQUE présente des désavantages 

considérables. Le calcul de l'estimateur, bien qu'utilisant seulement l'agèbre ma-

tricielle, exige le calcul des inverses et des décompositions spectrales de grandes 

matrices (n x n, où n est le nombre d'observations). Les jeux de données conte-

nant des centaines ou des milliers d'observations sont commun en géostatistique. 

Le fardeau computationel est considérable et les difficultés liées à l'instabilité 

numérique peuvent se faire sentir avec des matrices de cette taille. La méthode 

MINQUE comporte un problème plus fondamental. Elle exige un point de départ 

(un estimé préalable) Co  de la fonction Cy à estimer. Les résultats théoriques 
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obtenus par Stein (1989), ainsi que les résultats généraux concernant la métho-

de MINQUE (dont un sommaire se trouve dans Rao et Kleffe, 1988) exigent 

des hypothèses voulant que Co  et Cy soient "proches dans un certain sens. Ces 

hypothèses ne sont pas vérifiables en pratique. Par contre, une violation relative-

ment peu sévère de ces hypothèses peut produire une instabilité importante de 

l'estimateur (Powojowski, non publié). 

Les difficultés de mise en oeuvre et de l'analyse théorique de l'estimateur 

MINQUE ont mené au développement de l'estimateur par projection que j'intro-

duis dans cette thèse. L'estimateur par projection emprunte tant aux approches 

traditionnelles qu'à la méthode MINQUE. Tout comme dans l'approche tradi-

tionnelle, l'estimateur par projection résulte de la minimisation d'une certaine 

distance entre certains moments expérimentaux et ceux du modèle. Tout comme 

l'estimateur MINQUE, l'estimateur par projection s'applique aux modèles addi-

tifs. Bien que la dérivation de l'estimateur par projection, plutôt naturelle, n'exige 

pas une familiarité avec la méthode MINQUE, on peut démontrer que l'estima-

teur par projection peut être considéré comme un cas particulier de l'estimateur 

MINQUE, avec un choix particulier de Co. Ce choix de Co  n'est généralement 

pas "proche" de Cy et donc les résultats asymptotiques de Stein (1989) et Rao et 

Kleffe (1988) ne s'appliquent pas. 

La thèse est divisée en trois articles. Le premier article traite des résultats 

généraux pertinents à la méthode d'estimation par projection qui est présentée 

pour la première fois dans cette thèse. Les méthodes standards de projections 

orthogonales dans un espace vectoriel muni d'un produit scalaire sont utilisées 

pour obtenir l'estimateur par projection 0,, (où n est le nombre d'observations). 

Par définition, l'estimateur est sans biais pour le paramètre 0 si le vrai modèle 



Cy est de la forme 
, 

Cy=E0(i)ci. 	 (0.0.3) 
i=t 

Différentes généralisations de l'estimateur sont considérées. Il est ensuite démon-

tré que l'estimateur par projection possède certaines propriétés utiles. Consi-

dérons un processus Y qui aurait la forme 

Y =X j31-7) 	 (0.0.4) 

où X est une matrice connue, e est un vecteur inconnu et ri est un processus dont 

la moyenne est zéro. L'estimateur demeure sans biais même si le paramètre ie de la 

moyenne du processus Y n'est pas connu et doit être estimé. Ceci est un avantage 

par rapport aux méthodes traditionnelles, où la nécessité d'estimer la moyenne 

du processus introduit un biais dans l'estimation du covariogramme empirique 

(Cressie, 1993). Le calcul du variogramme ou covariogramme empirique n'est pas 

nécessaire. En plus, le calcul de l'estimateur implique seulement des sommes et 

produits, ainsi que le calcul des inverses de petites matrices (q x q, où q est le 

nombre de composantes dans le modèle). Une expression simple existe pour la 

moyenne de l'estimateur. Si le processus est gaussien, une expression simple existe 

également pour la variance. Pour des processuus non gaussiens, une hypothèse 

supplémentaire produit une borne supérieure pour la variance de l'estimateur. De 

plus, l'estimateur par projection n'exige pas d'hypothèse de stationnarité de Y 

ni celle de Y — E[Y] et donc peut être défini et calculé pour un processus non 

stationnaire. 
Les propriétés asymptotiques de l'estimateur par projection sont ensuite ex-

plorées dans le contexte asymptotique où les observations sont placées dans un 

domaine compact avec une densite croissante (in-fill asymptotics). Dans ce cas, 

le processus Y est observé à une séquence infinie de points {xj}31  comprise dans 

4 
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un domaine compact D. On démontre qu'avec des hypothèses de régularité plutôt 

faibles, lorsque le nombre d'observations ri augmente, la moyenne de l'estimateur 

par projection converge vers une expression simple impliquant la vraie fonction de 

covariance Cy. De plus, on obtient une borne supérieure E(D) pour la variance 

de l'estimateur. Ces résultats ont des conséquences pratiques car ils peuvent gui-

der le choix efficace du nombre d'observations dans un domaine compact donné. 

Il est démontré que la moyenne du covariogramme estimé par l'estimateur par 

projection est toujours le plus "proche modèle dans sa classe en fonction de la 

distance utilisée. On démontre aussi qu'il est généralement impossible d'estimer 

le covariogramme de façon convergente à partir des observations comprises dans 

un domaine compact. 
Dans la dernière partie du premier article, l'attention est concentrée sur un 

processus de la forme (0.0.4) où n est un processus isotrope (et donc stationnaire). 

On démontre que la taille du domaine D influence la borne E(D) de la variance 

de l'estimateur par projection et que des hypothèses de régularité relativement 

faibles sont suffisantes pour obtenir une convergence de E(.13) vers zéro lorsque 

le domaine D grandit indéfiniment. Cela ouvre la possibilité d'une estimation 

convergente du covariogramme à partir d'une séquence infinie d'observations qui 

couvrent un domaine croissant avec une densité qui augmente. Le cas particulier 

de l'échantillonnage uniforme d'un domaine croissant indéfiniment est considéré 

en détail. On démontre que si le nombre d'observations augmente avec la taille 

du domaine à un certain taux minimal, l'estimateur par projection converge en 

probabilité vers la vraie valeur du paramètre O. 

Les résultats du premier article s'appliquent aux modèles additifs seulement. 

Cependant, la plupart des modèles utilisés en géostatistique ne dépendent pas de 

leurs paramètres de façon linéaire. L'utilité de l'estimateur par projection va donc 



où 

Ci(P) == W2-41)/2  r A4-2)/2(AeF(A)dA, j  
ai 

(0.0.6) 

6 

dépendre de la disponibilité de modèles additifs adéquats. Le deuxième article 

fournit une vaste classe de modèles additifs pour un processus de la forme (0.0.4) 

où n est isotrope. Pour différencier entre les fonctions de covariance Cy(x1, x2), 

Co (xi, x2), Ci(xi, x2) et leur versions isotropes, ces dernières seront dénotées par 

Cy(p), Co(p) et Ci(p) où Cy(p) = Cy(xi , x2), Cy(9) = Co(xi , x2) et Ci(p) = 

Ci(xi, x2) et où p =11 x1 — x2  11. La classe proposée est basée sur la représentation 

spectrale de la fonction de covariance d'un processus isotrope. Le modèle s'écrit 

comme suit : 

Co(p) = 	0(i)ci(P) 
i=1 

(0.0.5) 

et I est une fonction non négative intégrable quelconque, les intervalles [ai , hi ] 

sont finis et disjoints et J,, est la fonction de Bessel d'ordre v de la première 

espèce. Les modèles de ce type seront nommés modèles additifs à composantes 

spectrales. Ces modèles sont inspirés de ceux introduits par Shapiro et Botha 

(1991). On démontre que les modèles proposés satisfont aux hypothèses de ré-

gularité nécessaires pour obtenir les résultats asymptotiques du premier article, 

contrairement à ceux de Shapiro et Botha (1991). Ensuite on démontre que la 

classe des modèles additifs à composantes spectrales est dense dans l'ensemble 

des fonctions de covariance isotropes ayant une densité spectrale. Il s'ensuit que 

pour n'importe quel modèle Cy ayant une densité spectrale, il existe un modèle 

additif à composantes spectrales qui produit un estimé Cê (où Ô est trouvé par 

l'estimateur par projection) dont le biais est arbitrairement petit. Cela se com-

pare favorablement avec l'approche paramétrique, où un mauvais choix de modèle 
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peut introduire un biais important. On démontre que dans le cas de modèles ad-

ditifs à composantes spectrales, les expressions pour la moyenne et la variance de 

l'estimateur par projection prennent des formes très particulières, révélant ainsi 

une connection avec la théorie spectrale. On démontre que l'estimateur par pro-

jection peut être utilisé pour estimer la densité spectrale et les expressions pour 

sa variance fournissent des expressions pour la variance de Iîfy = Wb. Il semble 

que ce soit la seule méthode qui permette d'estimer la densité spectrale à partir 

de données qui ne proviennent pas d'une grille régulière. On démontre ensuite 

que les corrélations asymptotiques des composantes Ô7  (i) de l'estimateur égalent 

zéro si le processus est gaussien. Une autre connection utile avec la théorie spec-

trale est une expression équivalente pour la norme dans l'espace des fonctions de 

covariance en terme des densités spectrales comme ceci : 
00 

f °° ) (Cy(p) — Ce(p))2pd-1dp  _ f (y(.\) wo(A))2mA 	(0.0.7) 

Cette relation sera essentielle au traitement des questions liées à la sélection 

optimale du modèle. Le restant du deuxième article a pour but d'illustrer la forme 

des composantes spectrales et le biais très faible qui résulte de l'ajustement d'un 

modèle additif à composantes spectrales dans les cas où le vrai modèle est un 

modèle paramétrique tel que gaussien, exponentiel, sphérique ou "hole-effect". Le 

même modèle additif est ajusté à des vrais modèles très différents. Dans tous 

les cas, le biais introduit par l'application du modèle additif plutôt que du vrai 

modèle est négligeable. 

Afin de construire un modèle additif à composantes spectrales, il faut choisir 

l'ordre q du modèle, ainsi que les extrémités des intervalles de support [ai , bi], i = 

1, 	, q. Le troisième article traite des méthodes de sélection du modèle. Une 

méthode qui permet l'estimation approximative du support spectral est dévelop-

pée. Elle est elle-même basée sur un estimateur par projection. Le support de 
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la densité spectrale Wy peut être considéré comme l'ensemble maximal qui doit 

être couvert par les intervalles [ai, bi ], i = 1, . . . , q. La méthode est testée par si-

mulation dans deux études où elle s'avère adéquate pour l'estimation du support 

spectral de lIJy.  Des critères pour choisir les intervalles [ai, bi ] lorsque l'ordre q et 

le support spectral ont déjà été choisis sont considérés dans une section subsé-

quente. Finalement, un critère est développé pour permettre la comparaison de 

deux modèles. Le critère est conçu pour minimiser l'erreur quadratique moyenne 

(EQM) de l'estimateur par projection et il vise un équilibre entre des modèles avec 

un nombre élevé de paramètres, un biais faible et une variance plus importante et 

des modèles avec un faible nombre de paramètres, un biais plus important mais 

une plus faible variance. Le critère est étudié par simulation et il s'avère adéquat. 

Les méthodes de sélection du modèle sont ensuite appliquées afin de construire un 

modèle pour le jeu de données de Davis (1973). L'estimateur par projection est 

employé pour estimer les paramètres du modèle. L'estimé Cô obtenu est comparé 

avec les résultats obtenus par d'autres chercheurs. 

L'ordre des articles reflète leur emplacement dans le développement de la 

méthodologie présentée. Le premier article présente des résultats généraux. Le 

deuxième propose une classe de modèles flexible. Lorsque les résultats du premier 

article sont appliqués à cette classe de modèles, les représentations spectrales sont 

obtenues. Elles sont essentielles pour le développement des critères de sélection 

du modèle, présentés dans le troisième article. 



Chapitre 1 

ADDITIVE COVARIOGRAM MODELS AND 

ESTIMATION THROUGH PROJECTIONS 

1.1. ABSTRACT 

The paper considers the problem of estimating the covariogram of a station-

ary process. The main ideas explored are additive covariance models and their 

estimation in terms of projections in the inner product space of sufficiently regu-

lar functions. Asymptotic properties of the resulting estimators are worked out, 

without explicit assumptions about the functional form of model components or 

that of the true covariogram. Expressions for bias of the estimator in misspecified 

models, expressions for the estimator's variance in the normal case and bounds 

for variance of the estimator under relaxed assumptions are derived. It is demon-

strated through asymptotic analysis that the inclusion of drift and nugget effect 

does not significantly affect the estimator's performance. Both in-fill asymptotics 

and expanding-domain asymptotics are considered. The approach can also be 

applied to the estimation of non-stationary covariance structures and the in-fill 

asymptotic results hold. The techniques are applied to a data set of Davis (1973). 



1.2. INTRODUCTION 

For a random process Y(x), x E D, where D is a subset of a d-dimensional 

Euclidean space, the covariogram is defined as C(xi, x2) = cov(Y(xi), Y(x2)), 
the semivariogram is defined as 7(x1, x2) = (1/2) var(Y(xi ) — Y(x2)), and the 

variogram is defined as 27. These definitions do not require the process to be 

stationary. For a second-order stationary process, the two are related through 

7(xi , x2) = C(0, 0) — C(xi , x2) (Cressie, 1993). A common problem in geostatis-

tics is one of estimating the functions C and -y based on one realisation of the 

process Y observed at a finite number of locations xl , 12,... , xn, in D. It is 

important to note that the knowledge of function values C(xi , x2) for arbitrary 

(x1 , x2) G D2  is required, and not simply the covariances of Y at lags observed in 

the sample. The fact of observing only one realisation forces one to make certain 

assumptions about the process Y, which translate into restrictions on the form 

of C and 7. There also exist theoretical reasons for restricting the function fam-

ilies considered. The covariogram has to be a positive definite function, whereas 

the variogram has to be conditionally negative definite. Further restrictions may 

be desirable. The process Y may be assumed second-order stationary, or even 

isotropic, requiring C(xi , x2) and 7(xi, x2) to depend only on x1 —x2  or its length, 

respectively. In a typical covariogram estimation problem it is supposed that the 

observed process Y follows the model 

Y = Xe +17. 

The known regressor X usually contains terms corresponding to the mean of the 

process and any trend that is modelled, while the parameter e is unknown and 

the random term 77 is assumed to have zero mean and a covariogram Cy. The 

10 
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covariogram Cy is modelled by a covariance function Co, known up to the value 

of a finite-dimensional vector 0, to be estimated. 

The paper is organised as follows. Firstly the notation is introduced and some 

notions of projections in inner product spaces are summarised. The projection 

estimator and its extensions are then defined. Subsequently, the asymptotic in-

fill setting is defined, where observations of the process Y are collected on a 

finite domain. In this setting, the projection estimator's asymptotic properties 

are investigated. It is shown that in general it is impossible to estimate the 

covariogram consistently based on observations from a finite domain, but an 

upper bound for the asymptotic variance of the projector estimator is obtained. 

Subsequently, it will be shown that as the size of the domain increases indefinitely, 

the upper bound for the variance of the estimator derived earlier converges to zero. 

Finally, an application of the projection estimator is illustrated with a data set 

of Davis (1973). 

It should be noted that Sections 1.4 - 1.5.2 do not assume that ri is a second-

order stationary process. Thus the estimator can be computed for more general 

processes and its in-fill asymptotics are unaffected by non-stationarity. 

Most technical proofs are given in Appendix A. 

1.3. TRADITIONAL APPROACHES 

A rather exhaustive discussion of the traditional methods of covariogram and 

variogram estimation is contained in Cressie(1993). Two broad classes of methods 

can be distinguished: methods requiring parametric distributional assumptions 

concerning the underlying process, such as ML or REML methods, and methods 

which avoid making such precise parametric hypotheses. Among the methods of 

the latter category reviewed by Cressie, all but the MINQUE method involve the 
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computation of the so-called empirical variogram or covariogram. The empiri-

cal covariogram can be meaningfully computed only for second-order stationary 

processes, while the empirical variogram can be meaningfully computed only for 

intrinsically stationary processes. For a second-order stationary process, the em-

pirical semivariogram is usually defined as the quantity '5(h) 

1  
(h) = 	E( Y(x,)  — Y (x 3 ))2  , 

2N (h) N(h) 

where 

N(h) = I{(xi ,x j ) : xi  — xi  = h; j = 1, . ,n}, 

while the empirical covariogram is defined as 

(h) = N i(h) 	(Y(xi) - fixY(z,) - 

(1.3.1) 

(1.3.2) 

where ft is some estimator of the mean of the process. In practice, the observa-

tions are usually not regularly spaced and the n(n-1)/2 lags h are binned in order 

to obtain a sufficient number of observed lags falling into each bin. Since the ul-

timate goal of the (co)variogram estimation usually involves modelling variances 

at unobserved lags, a parametric curve from some valid family of (co)variogram 

functions is then fitted to the empirical (co)variogram. This last step may be 

performed in a number of ways. For example, ordinary or weighted least squares 

fitting may be applied. Usually this step involves optimisation of non-linear and 

non-quadratic functions. There appears to be a preference among practitioners 

for estimating the variogram rather than the covariogram. This is usually justi-

fied by the fact that the empirical variogram can be meaningfully defined for a 

broader class of stochastic processes (intrinsically stationary stochastic processes) 

than the empirical covariogram (which requires the process to be second-order 
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stationary) and that the empirical variogram is unaffected by a constant non-

zero mean in Y, while the empirical covariogram is a biased estimate in this case. 

It is also known that the empirical variogram is less sensitive to a linear trend 

contamination (Cressie, 1993). It will be seen that the covariogram estimation 

through projections eliminates the problems associated with the empirical covar-

iogram. The estimate makes sense even for non-stationary processes and for a 

stationary process with any polynomial trend (of known order) the covariogram 

can be estimated without bias. 

Covariance function estimation based on empirical (co)variogram estimation 

suffers from a number of drawbacks. Binning the observations introduces an 

element of arbitrariness and is sometimes difficult to perform if the number of 

observations is low or the process is not isotropie. The empirical covariogram 

is meaningless if the observed process is non-stationary and the empirical vari-

ogram is sensitive to departures from intrinsic stationarity (Cressie, 1993). Fi-

nally, the fitting procedure is usually difficult to assess from a statistical point 

of view. Most known theoretical results (whose comprehensive summary may be 

found in Cressie, 1993), are concerned only with the properties of the empiri-

cal (co)variogram and not those of the fitted (co)variogram function. It appears 

that the problem of obtaining the properties of the fitted (co)variogram function 

from the empirical (co)variogram has not been extensively studied. In contrast, 

the projection-based estimation yields the mean and variance expressions for the 

parameters of the estimated covariance curve. 



1.4. COVARIOGRAM ESTIMATION THROUGH PROJECTIONS 

This section describes the notation, reviews standard notions of inner product 

spaces and introduces the model and the estimator considered in the remainder 

of the paper, as well as some extensions of the estimator. 

1.4.1. Notation 

To avoid confusion which might arise due to the frequent occurrence of multi-

ple subscripts, the following notation will be used throughout the paper: if A is a 

matrix, its entries will be denoted by A(i, j), while Aii  may denote a matrix from 

some (doubly) indexed set of matrices. Similarly, if 0 is a vector, its components 

will be denoted by 0(i), while 0 may denote a vector from some indexed set of 

vectors. Given a set of scalars A(i, j), 1 < i < n, 1 < j < m the notation [A(i, j)] 

will denote the n x m matrix whose (i, j)-th entry is A(i, j). This notation will 

be used only in situations where the scalars A(i, j) and the ranges for i and j are 

clearly defined. Similarly, given a set of scalars B(i), 1 < i < n, [B(i)] will denote 

a (column) vector whose i-th entry is B(i). 

In the most general setting, one considers a random process Y on the domain 

D, a subset of a d-dimensional Euclidean space. The process Y is observed at n 

locations {xi}r_1, xi  e D. Let Yn  = (Y(xi ), 	, Y (x n )) and Yn  (i) = Y (x 2 ) , 1 < 

i < n. It will be further assumed that 

Yn — X nO 
	

(1.4.1) 

with E[77n] = O. It will be assumed that X„ has p columns corresponding to 

different regression terms. Thus Xn (/, k) = rk (xi ), 1 < k < p, 1 < l < n, where 

xi is the /-th location in the sample and rk  is a continuous function defined on 

D and it is the k-th regression term in the mean of Y. If present, the term 

14 
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r1 	1 corresponds to the (non-zero) constant term in the mean of Y. The 

term rk (zi) -= x1(1), where 41) is the first component of the d-dimensional 

vector x1  G D, would correspond to a linear trend in the mean of Y(x) in the 

direction of the first component of x. The matrix X r, will always be known, 

while the p x 1 vector e may have to be estimated. The function Cy(xi, x2) = 
cov(Y(x i ), Y(x2)) = cov(77(xi ), 77(x2)) is called the covariance function of the 

process Y (and of the zero-mean process 77). Let Ky,„ = var(Yn). Thus Ky,„ is 

a symmetric matrix whose entries are Ky,,i (i, j) = Cy(xi , xi ). If Co  is a given 

covariance function model, one defines the symmetric matrix Kom  in a similar 

way, by putting 	 j) = Co(xi , xi ). Thus Ko,„ is a fixed matrix depending 

only on the model Co  and on the set of locations Ixei , xi E D. 

The model Co  will always be assumed to be additive, that is of the form 

C0 
 =
E 0(i)ci, 
i=1 

(1.4.2) 

where the components Ci  are fully specified valid covariance functions and the 

only parameters to be estimated are the 0(i). Throughout the paper the compo-

nents Ci  as well as Cy will be assumed continuons. In Section 1.5.2.3 a discontin-

uons component W will be introduced, which will result in (possibly discontinu- 

ons) models of the form C(y,e)  = yW + 	0(i)Ci . The difference in notation 

is meant to emphasise the different nature of the functions involved. In all sec-

tions preceding 1.5.3 no stationarity or isotropy assumptions are made about the 

processes Y or 77. In Section 1.5.3 and the remainder of the paper the process 

77 will be assumed isotropic (hence in particular second-order stationary). Thus 

E[71(x)] = 0 for all x E D and the covariance function Cy of 77 (and Y) depends 

only on p .11 x1 — x2  11. It will then be convenient to introduce explicitly isotropic 
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versions of Cy, Ci  and Co  defined by Cy(p) = Cy(xi, x2), Ci(p) = Ci(xi , x2) and 

Ce(P) = Co(xi, x2). 
Given a model Co  of the form (1.4.2), it will be said that the true covariance 

function Cy is in the span of Co  (or, equivalently, in the span of the components 

Ci, 1 < i < q) if and only if there exists a vector ey such that 

cy =E Oy(i)Ci. 	 ( 1 . 4 . 3 ) 

If A is a symmetric matrix, the shorthands A> 0 and A > 0 will mean that 

A is positive definite and non-negative definite, respectively. Similarly if B is 

another symmetric matrix of the same size as A, A > B and A > B will mean 

A — B > 0 and A — B > 0, respectively. 

1.4.2. Orthogonal projections and estimation with additive models 

The goal of this section is to• summarise the relationship between orthogo-

nal projections in inner product spaces and linear estimation. The discussion 

will be rather general and the results presented are well known. However, fur-

ther sections will often use these results and it may be useful to establish the 

notation and terminology before proceeding. Issues specific to the estimation of 

covariogram models will be discussed later. Let Vr, be the linear space of sym-

metric matrices of size n x n over the field of real numbers. (One could make this 

discussion entirely general by considering any vector space.) Let 	, Kg  

be fixed, linearly independent elements of V. In particular, it follows that 

q < dim(Vn) = n(n -I- 1)/2. Furthermore, one considers the vector subspace 

span(Ki, 	, Kg ) of Vn  (span(Ki, 	, Kg) denotes the space of linear combina- 

tions of the elements K1, 	, Kg). Let 

(K,J)v, 	K eV,,,J EV„ 	 (1.4.4) 
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be any inner product defined on the vector space Vn, thus making it into an inner 

product space. The inner product (1.4.4) gives rise to a norm on Vn  defined by 

K 	(K — J, K — 	. 	 (1.4.5) 

Let P(J) denote the orthogonal projection of J onto the subspace span(Ki , 	, Kg ). 

Thus P is a linear transformation satisfying 

(K„ J — P(J))v = 0, 	i -= 1, • • 	 (1.4.6) 

Since P(J) E span(Ki, 	, Kg), one can write P(J) = 	 Together 

with (1.4.6) one obtains 

(K„ K3 )v  0(j) = (Ki, J)v, 	i = 1, • • • ,q 	(1.4.7) 
j=1 

or, in matrix form 

[(K„ K.1 )17] O = [(Ki, J)v] 
	

(1.4.8) 

where [(Ki , Ki)v] denotes aqx q matrix whose (i, j)-th element is (K„ KI ) v, 

[(Ki, J)v] denotes a vector of length q whose i-th element is (Ki, J)v and 0 

is a vector of leng-th q whose i-th element is 	Tt is easy to see that the 

matrix [(Ki, Ki)v] is invertible under the assumption of linear independence of 

K1 , ..., Kg. This implies that the equation (1.4.8) has exactly one solution, given 

by 

	

0 -= [(Ki , K)v][(Ki, J)v]. 	 (1.4.9) 

If Y is an n-dimensional random variable with E[Y] = 0 and var(Y) =- E[YY'] 

Ky, let the subset Sy of Vn  be defined by Sy = {YY', Y E Rn}. The random 

process Y gives rise to a probability measure on Sy. Therefore, 

= [(Ki , Ki )v ]-1 [(Ki ,YY 1 )v ] 	 (1.4.10) 
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is a random variable. One has 

E[0] = [(Ki , Ki)v]-1[(Ki , E[YY])v] = [(Ki , Ki)v]-1  [(Ki, Ky)v]. 	(1.4.11) 

Therefore by the uniqueness of the solution of (1.4.8), one concludes that 

P (Ky) =1: E[ô(i)]Ki . 	 (1.4.12) 

On the other hand, if Ky E span(K1 , 	, Kg ), then for some vector Oy one has 

Ky = E Oy(i)Ki . 	 (1.4.13) 

By elementary properties of projections, one immediately obtains P(Ky) = Ky 

and, again by the uniqueness of the solution of (1.4.8) it follows that E[0(i)] = 

Oy (i). 

Summing up, it follows that for any choice of inner product (., .)v, the random 

variable Ô of (1.4.10) is the vector minimising I  YY' —EL1  a(i)Ki  1v. The mean 

vector E[Ô] is the vector minimising l  Ky — 	c(i)K v.  Furthermore, if Ky 

is of the form (1.4.13), then 	= Oy.  . If on the other hand Ky is not of 

the form (1.4.13), the vector 0 = E[0], given by (1.4.11) is still a meaningful 

parameter, since it defines the orthogonal projection E_ 3.  0(i)Ki  of Ky onto 

span(Ki, • • • Kg). 

1.4.3. The estimator 

The goal is to estimate the unknown covariance function of the process Y 

from the observations Y,. If fi in the equation (1.4.1) is unknown, it may also 

be necessary to estimate it, otherwise one can work directly with rin  . In this 

sense, knowing fi is equivalent to putting X = 0. To motivate the discussion, it 



is initially assumed that X = 0 and hence 177, = nri. One observes that 

E[17 Y] = 	 (1.4.14) 

Furthermore, valid covariance functions Ci, 1 < i < q are assumed to be fully 

specified. The functions C give rise to the symmetric matrices Ki,n. One con-

siders the class of covariance function models in (1.4.2), which results in the 

covariance matrix models 

K9 ,72  E 	 (1.4.15) 

where it will be assumed that the 0(i) are such that Co  is a valid covariance 

function. A member of the class (1.4.2) is sought which will be in some way 

closest to the unknown true covariance function Cy. The approach proposed 

here is based on the observation that the symmetric n x n matrices form an 

(n(n + 1)/2 - dimensional) inner product space with the inner product 

(A, B) = tr(AB). 	 (1.4.16) 

The resulting norm A - B 11=- (A- B, A- B)112  is the square root of the sum of 

squares of elements of A - B. Following the general approach outlined in Section 

1.4.2, in order to estimate the 0(i), the matrix YnYni is projected onto the linear 

space spanned by the matrices Ki,n. Equivalently, the Ô(i) are selected so as to 

minimise 11 Ynn - EL &i(i)Ki, 11. The resulting estimator is 

ên = [tr(Ki,,Ki,n)]-1[tr(Ki,nYnY,D1 = [tr(Ki,nKi,n)]-1[Yr:Ki,.Y.1 	(1.4.17) 

where br, = (bn,(1), • • • ,Ôn(q)Y. (The notation [tr(Ki,nKim)] denotes a qxq matrix 

whose (i, j) - th entry is 	 Similarly, [tr(Ki,nYnYn')] denotes a q x 1 

vector.) The expression (1.4.17) should be compared to the general form (1.4.10). 

In particular, it follows that if the true covariogram Cy is of the form (1.4.3) for 
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some 0y, then the estimator is unbiased for Oy. Otherwise On  is still a meaningful 

parameter in the sense that 	bn(i)Ki  is the closest (in the sense of the norm 

defined by the inner product (1.4.16)) matrix of the form 	ai Ki  to the matrix 

YY'. Similarly, On  = E[Ô] defines EL 07,(i)Ki , which is the closest matrix of 

the form 	cei Ki  to the matrix K. 

In the more general case of unknown /3, one considers the residuals en  =-

Yn — Xniâ of the regression model (1.4.1), where T3 is the least-squares estimator 

of p. Denoting the orthogonal projection ln — Xn(Xn' Xn )-1Xn  by P„, one obtains 

the following expression as a generalisation of (1.4.14): 

E[eneln i — PnKY,nPn 
	 (1.4.18) 

where 

en  = (In  — Xn (X:2 X7i ) -1  X:1 ) ,Yn PnYn• 

Hence to estimate the 0(i), the matrix enen  is projected onto the linear space 

spanned by the matrices Ui,n = PnK4nPn. Equivalently, the bi,n  are selected so 

as to minimise 11 enen' 	-6i,nUi,n 11- The resulting estimator is 

	

ân, = [tr(ui,nui,n)]-1  [tr(ui,neng,i )] = [tr(Ui,nui,n)]-1[einui,nen]. 	(1.4.19) 

Again, if the true covariogram Cy is of the form (1.4.3) for some Oy, then the esti-

mator (1.4.19) is unbiased for Oy, by an argument similar to that of Section 1.4.2. 

The resulting estimate of the covariance function Cy based on the observations 

Yn iS 	= E(1-11-17/( i )Ci• 

Brown (1978), Rao (1971), Rao and Kleffe (1988) and Verdooren (1988) con-

sidered the MINQUE (minimum norm quadratic unbiased estimator) estimator 

in a somewhat more restrictive context than that defined by the combination of 

(1.4.1) and (1.4.3). 
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The MINQUE methods were designed for the purpose of estimation of vari-

ance components and have been studied quite extensively in the context of analy-

sis of variance . Their applications to the problem of estimating the covariogram 

of a random process have been investigated from a practical point of view by 

Kitanidis (1985), among others, and from a theoretical point of view by Stein 

(1987, 1989). A MINQUE estimator of the covariance matrix Ky of the process 

Y requires a tuning parameter K0, which can be thought of as an initial guess of 

the matrix Ky to be estimated. The estimator then has the form 

êMINQUE = [tr(RinKiml  Ki ,„Kj,„1  K 	1=?7,' KcTril  

where 

= I — Xn(X 	 Kci:n1  

It can be shown that the estimator (1.4.19) is a special case of MINQUE, 

where K0  = I, the identity matrix. Existing theoretical results establishing prop-

erties of MINQUE estimators impose certain assumptions on the relationship 

between the true covariance matrix Ky and the initial guess K0  (in some sense, 

the two have to be close - for details the reader is referred to Rao and Kleffe, 1988 

and Stein, 1989). In the practice of geostatistics, these hypotheses are difficult 

to establish. Indeed, in the particular case of K0  = I it is not even clear that the 

hypotheses can be satisfied for any random process Y. For such a choice of K0  

most available theoretical results for MINQUE do not apply. Kitanidis (1985) 

considers the MINQUE estimator with K0  = I in a simulation study compar- 

ing it to the MINQUE estimator with K0  = 	ce(i)Ki  for some fixed values 

ce(i) where the fitted model and the true model were of the form 	0(i)Ki. 

Not surprisingly, the latter model performed better under those circumstances. 

However, this estimator can become quite unstable if the true model is not of 
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the form jL1  0(i)K, (Powojowski, unpublished) and establishing its theoretical 

properties in such a case is quite difficult. On the other hand, the choice K0  = I 

leads to an estimator which among models of the form Ko  = EL 0(i)Ki  gives 

the one closest (in the sense of the sum of squares of elements of Ky — Ko) to 

the true model. In addition, the computation of MINQUE with K0  other than I 

involves inverting large matrices (n x n, where n is the number of observations), 

while MINQUE with K0  = I, or the projection estimator, requires inverting only 

small matrices (q x q, where q is the number of components in the model). 

As has been pointed out by many authors (for a review, see, for example 

Rao and Kleffe, 1988), the problem at hand imposes certain constraints on the 

values of 0(i) if the resulting estimate is to be a valid covariance function, namely 

E 0(i)K, > o is required. In many situations even more severe constraints may 

be necessary. It may be required that Ki) > 0 for all i, and in the covariogram 

estimation it is necessary that E 0(i)ci(xi , xk ) be a positive definite function. 

When these constraints are imposed, the optimisation may have to be carried out 

in a convex cone and not the entire vector space. Possible ways of addressing these 

difficulties include truncated estimators or quadratic optimization with linear 

constraints. In general, such methods tend to introduce a bias, but they often 

reduce the estimators MSE. These concerns are not relevant to the asymptotic 

results derived in the remainder of this paper and will be ignored in the analysis. 

However, to apply the estimator (1.4.19) in practice for a finite sample one will 

have to address these issues. 

1.4.4. A class of estimators 

In the previous section it was seen that in the n(n 4- 1)/2-dimensional vector 

space of symmetric matrices of size n, the expression tr(AB) amounts to an 



23 

inner product and the element 	i ô(i)ui,„ is the orthogonal projection of the 

element ee onto the vector space spanned by the matrices Ulm, U2,n7 • • • 7 Uq,n7 

where the inner product is defined as (A, 13) = tr(AB). This may be taken as the 

definition of Ôn, and it suggests a possibility of extending the estimation method 

to other inner products. In particular, the class of inner products considered can 

be expressed as 
n n 

(A, B) v  = E 	A(k , 1)B (k , 1)V (k , 1) 	 (1.4.20) 
k=1 1=1 

where V is an n x n symmetric matrix with positive entries. If V(k, 1) 	1 the 

new inner product reduces to the old one. Throughout this paper (A, /3) will 

denote tr(AB) unless it is explicitly redefined. Moreover, one easily verifies that 

(A, .13)1, = (A * V, B) = (A, B * V) 

where (A * B)(k , 1) = A(k, 1)B (k , 1) is the Hadamard matrix product. The result-

ing estimator may now be expressed as 

ÔV,n  = [tr((Ui,n  * Vn)Ui,n)]-1  [tr((Ui,„ * Vn)ene'n)] 

= [tr( 	* Vn )Ui,n )] -1[ein  (Ui,n  * Vre )enl. (1.4.21) 

The element 	,ôv,n(i)ui*vn is the orthogonal projection of ee' onto the space 

spanned by the elements Ui,n *Vn, U2,n  *Vn , • • • , Uq,n  * Vn, where the inner product 

is (., .) and this fact defines bv,n. Equivalently, bv,n  may be defined by the fact 

that Eqi 	is the orthogonal projection of ee' onto the space spanned by 

Ul,n U2,n, • • • Uq,n7 this time with the inner product (., .)v. 

There may be very good reasons for considering such a modified inner prod-

uct. For example, in geostatistics the covariogram estimation is only an inter-

mediate step in some spatial prediction procedure such as kriging. In such cases 
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it is often more important to estimate the covariogram more accurately at short 

distances, while inaccuracies at greater distances may not be so important. Thus 

the matrix V may be defined by V(k, /) v(M  xk  - x /  11) where v is some non-

increasing, positive function of distance. 

Another reason for considering a modified estimator will become more ap-

parent later. Briefly, it will be seen that the asymptotic convergence properties 

of the estimator may be improved by a careful choice of V. 

The discussion in Section 1.4.2 shows that in the case where 

E[ee] = U9 	 (1.4.22) 
i=1 

that is Cy is of the form (1.4.3), the estimator Ô is unbiased for Oy regardless 

of the choice of V. 

1.4.5. The moments of b17,n 

It is easy to see that the mean and variance of âvo., are given by 

E[Ô] = [tr((U,,n  * Vri ) U j,n )r 1  [tr( (Ui,n * Vn)UY,n)] 
	

(1.4.23) 

and 

var(êv,n) = [tr((Ui,n  * Vn)Ui,„)]-1varaein(Ui,„*Vn)en1)[tr((U,n  * 1/71)11 j,n)1-1  - 
(1.4.24) 

Later it will often be useful to make the assumption 

var[Yn'AnYn] sup 	A  ,  A 	 = < 00 

n,An00 
(1.4.25) 

where the matrices An  are symmetric. To ensure that the denominator does not 

vanish, it will be assumed that Ky,n  is nonsingular for all n. In particular, the 



condition in (1.4.25) yields a bound for var(Y7:AnYn): 

(1.4.25) = var(11,AY) < c tr(AnKy,nAnKy,n)- 

If Y is a Gaussian process, Yr, is multinormal and c = 2, in which case (1.4.25) 

holds by the relation 

var[Y,i'Ari177,] = 2 tr(.717,Ky,flAnKy,n) 

1.5. ASYMPTOTIC RESULTS 

This section contains the main results of the paper. Firstly, the in-fill asymp-

totic setting considered throughout the paper is defined. Assuming in-fill sam-

pling on a finite domain, one obtains an expression for the asymptotic mean and 

a bound for the asymptotic variance of the projection estimator. Subsequently, 

the effect of varying the size of the domain on which the in-fill sequence is defined 

on the obtained asymptotic variance bound is investigated. Finally, an example 

is constructed in which observations are placed with an increasing density on a 

growing domain in such a way as to produce an estimator which converges in 

probability to the true covariance function. Various extensions are considered, 

such as the presence of regression terms in the mean of the process (unknown 0 

in (1.4.1)), or the presence of the so-called nugget effect. 

1.5.1. Asymptotic settings 

Various asymptotic settings are possible in geostatistics. In all cases it will 

be assumed that (1.4.1) holds. The number of observations ri will be allowed 

to tend to infinity. However, additional considerations arise in defining a set-

ting for an asymptotic theory. These have to do with the relative locations of 

the observations xi  in the domain of the process, and the size and shape of the 
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domain itself. Many authors (e.g., Cressie, 1993) have distinguished between 

two basic asymptotic settings: the so-called in-fill asymptotics, in which the ob-

servations are placed within a compact domain D, and the expanding-domain 

asymptotics, where the observations are spread over an increasing family of do- 

mains {Di 	Di C Di+1. Clearly, even this does not fully define the problem. 

In both settings the observations may be placed on some regular grid or in any 

geometric arrangement whatsoever. Each such arrangement generally gives rise 

to a different model as in (1.4.1), even though the underlying process Y is the 

same. 

Various precise definitions of asymptotic settings have been used by many 

authors. Infill configurations have been considered, among others, by Stein (1987, 

1989), Stein and Handcock (1989), and Lahiri (1996). Expanding-domain schemes 

in which the minimal distance between observations remains bounded from below 

by a positive value have been considered by Cressie and Grondona (1992) and 

Cressie (1993) and others. Finally, schemes combining both in-fill and expanding-

domain properties in a sampling configuration have been considered by Hall and 

Patil (1994) and Lahiri et al. (1999). 

Precise meaning will now be given to the notion of in-fill asymptotics used in 

subsequent discussion. The in-fill asymptotic context differs from that considered 

by other authors in that it does not require the observations to be equally spaced 

(as opposed to, for example, Stein, 1987) but nevertheless specifies a precise 

limiting coverage (as opposed to Stein, 1989, where the limiting coverage is not 

explicitly characterised). It will later be found that some naturally occurring 

sampling schemes can be captured by this definition. 

Let Ixel  e D denote a sequence of sampling locations within the domain. 

The vector Yn =  (17(X1), 	Y(Xr1))1  will be referred to as the sample of size 
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n, while {x1 , 	, xn} will be called the sampling configuration of size n. The 

following technical definition will facilitate further discussion. 

Definition 1.5.1. For a given positive integer k, a collection Ak  = 	An 

of measurable, disjoint, connected subsets of D with equal Lebesgue measure 

= ¡t(Ð)/k will be called a regular partition of D. A sequence of regular 

partitions {Ak }, satisfying 

lim max{diam(Aik), 1 < i < k} = 0 
k—>co 

will be referred to as an in-fill partition sequence. 

Now the in-fill asymptotic setting will be introduced. 

Definition 1.5.2. Let D be a compact domain in Rd.  Let {xi }.71  be a sequence 

of points in D. For any subset A of Rd , let u(A) = 	: 1 < l < n and x1  E 

that is, let un  be a counting measure with atoms at the points Ix111/L1 . The se-

quence Ixei  will be called an in-fill sampling sequence if there exists a con-

tinuous function f on D such that for any in-fill partition sequence I.A.kY, the 

following condition holds: 

for any positive integer k and any e > 0 there exists N such that 

for all 1 < i < k 

n> N 
un (An  

f (u)du G c. 	 (1.5.1) 

   

The function f will be called the sampling intensity function. The triple 

(D, {xi } 1 , f) will be called an in-fill sampling domain. 

Next, in-fill sampling and expanding-domains will be combined. The asymp-

totic setup here differs slightly from that considered by Hall and Patil (1994) 

in that the sampling locations are not required to be a realisation of repeated 
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sampling from a sufficiently regular random variable on D. However, at least in 

some cases it can be shown that with probability one the sampling configuration 

obtained by their construction will be a special case of the scheme considered 

here. The following setup also differs from that of Lahiri et al. (1999) in that the 

sampling locations are not placed on any regular grid. 

One considers a sequence of in-fill sampling domains. Let D C Rd  be a 

compact domain on which an in-fill sampling sequence with sampling intensity 

f is defined. To simplify notation it will be assumed that p(D) =1, where is 

the Lebesgue measure. Let {rni} 1  be an increasing and unbounded sequence 

of real numbers with r1  = 1. Let 717),(x) = r mx, x e Rd be the dilation operator. 

Furthermore, let 

Dm  = Tm(D) 	 (1.5.2) 

= 
	 (1.5.3) 

f rri (rmx) = r.„72d  f(x), 	x E D 	 (1.5.4) 

It is easily seen that for a fixed m = 1, 2, ... , the collection of sets Arn,k = 
{Akrna, 	Am ,k) = {Tm (At. ), 	, Tm  (A)} is a regular partition of D, and 

is an in-fill partition sequence. Similarly, for a fixed m the sequence 

{xm J}Zi  is an in-fill sampling sequence on Dm  with the sampling intensity func-

tion fm. The following definition will be useful in discussing situations where the 

sampled domain is allowed to expand. 

Definition 1.5.3. The sequence {(Dm , 1x 17_1 , f m )},%°=1, given by (1.5.2), 

(1.5.3) and (1.5.4), will be called a sequence of expanding in-fill domains. 
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The following example provides an easy way of constructing an in-fill sampling 

sequence on a given compact, connected domain D. h is a special case of the 

sampling scheme introduced by Hall and Patil (1994). 

Theorem 1.5.1. If the sequence 	1  is a realisation of the sequence of in- 

dependent random variables {X j}.7 1  having the uniform density on D, then 

with probability one the sequence {x j}r± is an in-fill sampling sequence with 

f 	I-1(D)-1  • 

The proof of the result follows from a d-dimensional version of the Glivenko-

Cantelli theorem (Parthasaraty, 1967). 

1.5.2. In-Fill asymptotics 

In this section the asymptotic properties of the estimators (1.4.17), (1.4.19) 

and (1.4.21) are established in the in-fill asymptotic setting, in the sense described 

in the previous section. The following lemmas will be useful. 

Lemma 1.5.1. Let {x} 1  be an in-fill sampling sequence on D, with the inten-

sity sampling function f,  and çbi  and 02 be continuous functions on D x D. Then 

the following convergence is uniform on D x D: for any (x, y)EDxD 

n—>co 	n lim 	—1  01  (x, x i )02 (y , xi) =  
D 1=1 

Lemma 1.5.2. Let {x j}71  be an 	sampling sequence on D, with the in- 

tensity sampling function f,  and (bi  and 02  be continuous functions on D x D. 

Then 

liril 01 (Xk X/)02(Xkl Xi) = 	01(,77)02(e,n)f(e)f(77)ck-d77. 
n—> O0 	n2 	 D 13 k=1 1=1 

(1.5.6) 

(1.5.5) 
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Lemma 1.5.3. Let 	r=1  be an in-fill sampling sequence on D, with the in- 

tensity sampling function f,  and {04 } and{0,}  be sequences of continuous 2n 
functions converging uniformly on D x D to the continuous functions 01  and 02 , 

respectively. Then 
n n 

n—>oo 	n2  
lim E E — 

' n(xk, xi)02
'  n (Xk X/) = f f 01() 77)02(e, 77) f (e) f (77)d077. 

D D 
(1.5.7) 

Lemma 1.5.4. Let {xi }.Z1  be an in-fill sampling sequence on D, with the in-

tensity sampling function f,  and 01, 02 , 03  and ç54  be continuous functions on 

D x D. Then 

nn nn 
lim E E E 	, xk2 )02 (Xk2 Xk3 )03(1k3 , Xk4)04(Xk4IXkl) n—>co ki=1k 2=1k3=1 k4=1 

=  f f h1( 1  li)h2( 17) f (e) f ( 17)CM?) 
D D 

(1.5.8) 

where 

h1(07)= f 01(,A)02(A,77)f(A)dA 
D 

h2(171) = 	03(e, MOLOI n) f (A)dA. 
D 

1.5.2.1. Stationary process with known mean (case X = 0) 

This section explores the properties of the projection estimator as an increas-

ing number of observations from an in-fill sampling sequence on a finite domain 

become available. It will be initially assumed that X = 0 in (1.4.1) and the stan- 

dard inner product will be used (V(i, j) 	1) to obtain the estimator (1.4.17). 

k=-1 1=1 



Let 

 

An  = (1/n2)[tr(Ki,nKi,n)], 

Mn = (1/n2 )[tr(Ki,n1(y,n)] 

B =(1/n4 )[tr(Ki,nKy,nKi,n-KY,n)]• 

En  = A diag(Bn)An l , 

and 

Furthermore, let 

(1.5.11) 

(1.5.12) 

where diag(Bn ) is a matrix whose diagonal elements are the same as those of Bn, 

while the off-diagonal elements are zero. Now (1.4.23) may be expressed as 

E[Ô] = 	 (1.5.13) 

while (1.4.24) may be expressed as 

var(bn ) = An-1(1/n,4 ) var([11,(Ki,n )YnD An-1  

= AiV(1/n4 )[cov(Y,Wi,nYn,Y71-Ki,nYn)]A;;1. (1.5.14) 

The following result follows: 

Lemma 1.5.5. If (1.4.25) holds, then 

var(ên(i)) < qcE72 (i,i), 	i =1, ... ,g. 	 (1.5.15) 

where c is given by (1.4.25). 
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This result provides an upper bound for the variance of the components of 

Ôn• Of course, in the case of a Gaussian process Y, one has a more precise 

relationship, namely 

var(Ô) = 2.A7.7.1BA 1. 	 (1.5.16) 

If the sequence of models in (1.4.1) originates from an in-fill sampling sequence 

and the model component functions Ci, as well as the true covariance function 

Cy are all continuous, the following limits result from the lemmas of the previous 

section: 

A(i, j) 
n n , 1 	, r„ r, , 	 1 , , lim 	tr m. im.m. jo„) = lim E E _,_,i,xk, xoci  (xi, wk) n—>oo 	n2  k=1 1=1 

(1.5.17)  
D D 

n n , 

	

1 	 1 
M(i) = lim — tr(Ki,„Kym) = lim 	—Ci(xk , xi)Cy (xi, xk ) 

	

n—>oo 72,2 	n2  k=1 /=1 

and similarly 

=f Ci(el l  e2)CY(2, el) f (el) f (2)<lde2 
D D 

(1.5.18) 

B(i, j) = n1,1.r>no. 771  tr(Ki,nKy,nKi,nKY,n) 
nnnn 

= lim EEEE n—>oo 	
n4  Ci(xk , xi)Cy(xi, xm )Ci(x,n , xr )Cy 	xk ) 

k=1 1=1 nr=1 r=1 

=  f hz(,77)h3(7/,)f(e)f( 77)dech/ (1.5.19) 
D D 



where 

h(e0) =  
D 

The following result is an easy consequence. 

Theorem. 1.5.2. Under the model (1.4.1), with known e, or X = 0, for obser-

vations coming from an in-fill sampling sequence, if the matrix A of (1.5.17) is 

invertible, the projection estimator defined by (1.4.17) has the limiting rnean of 

lim E[ô] -= A-1M = O. 
n-->co 

In addition, the following limit exists: 

(1.5.20) 

lim En  = A-1  diag(B)A-1  = E (1.5.21) 
n—>co  

where the matrices B and M are given by (1.5.19) and (1.5.18). If, moreover, 

(1.4.25) holds, the lirniting variance of the estimator satisfies 

lim var(O.  n (i)) í qc E(i,i). 	 (1.5.22) 
n—>oo 

If Cy is of the form (1.4.3), its parameter vector Oy is given by (1.5.20) (in 

that case E[Ô] = Oy for all n). The first part of this results follows from 

E[Ô] = [tr(Ki,nKi,n)]-1E[YYi,,,Irn] = [tr(KimKj,n)]-1[tr(Ki,nKym )] 

combined with earlier definitions, while assertion (1.5.22) is a consequence of 

Lemma 1.5.5. 

Thus it is seen that as the number of observations increases, the variance 

of the components of bn  remains bounded by the diagonal entries of the matrix 

E. It can also be easily seen that at least in the Gaussian case the variance of 

cannot be made arbitrarily small by increasing the number of observations n. 

The matrix B will generally not be zero. To see this, it is sufficient to consider a 
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case where the covariance functions Cy and Ci  are non-negative. The following 

corollary follows from (1.5.16) and (1.5.21): 

Corollary 1.5.1. Under the model (1.4.1), where the observations corne from an 

in-fill sampling sequence, the process Y is Gaussian and the matrix B in (1.5.19) 

is not zero, the projection estimator of O (defined by (1.4.17)) is inconsistent (has 

a positive limiting variance). 

To see this, one recalls that in the Gaussian case limn,,, var(Ô) = 2A-SA-1. 

Since A is invertible, A-1BA-1  has the same rank as B and it is non-negative 

definite, since it is a variance matrix. If it were possible to estimate O cousis-

tently, this would imply B = O. Corollary 1.5.1 is not particularly surprising and 

it should be compared with the results of Matheron (1965), who shows the im-

possibility of consistent estimation of the empirical variogram based on complete 

information about the process over a finite domain. 

By construction, the estimator (1.4.17) is unbiased for Oy if Cy is of the 

form (1.4.3). In this case, the resulting Côn  (x1, x2) is an unbiased estimator of 

Cy (xi , x2) for all n. If, on the other hand, Cy is not of the form (1.4.3), then the 

parameter 0 can still be defined as the limit of On  = E[Ôn]. From earlier discussion 

and from the discussion in Section 1.4.2 it follows that 

lim E[Cân  (x, y)] = E( lim E[Ôn(i)])Ci (x, y) = E 0( i )ci ( x, y ) 	(1.5.23) 
n—>co 	 n--->oo 

i=1 	 i=1 

viewed as a function of (x, y) is the orthogonal projection of the function Cy(x, y) 

onto the space spanned by the functions C,(x, y), where the inner product between 

two functions 01, 02 on D2  is defined by 

(01,02) = f f 0102(77,w(W(71)deciri• 
D D 

(1.5.24) 
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This is somewhat comforting, since it means that if the functions Ci  are selected 

so that the space they span is sufficiently rich to contain elements close to Cy, 

the obtained estimator's bias should be small. 

The results of this section hold with slight modifications for the more general 

estimator bv,,, if the matrix Vn  is of the form 

l) = v(xk , x1) 
	

(1.5.25) 

where v is a continuous positive function on D2. It suffices to define the matrices 

A, M and B as 

A(i,j) 
1 =- lim 	tr((Ki,„ * Vn)Ki,n) 

= 	Ci(e17  e2)C1(e21 el)11  (el, e2) f (1) f (6)C*C*, (1.5.26) 
D D 

1 
M(i) = lim 	tr((Ki,n * Vn)Ky,n) 

c 	e2) cy 	fi)v (fi , 	f (el) f (2)(1ficK2 (1.5.27) 
D D 

and similarly 

B(i, i) = lim 	tr((-Ki,n Vn)-KY,n(K j,n Vn)KY,n) n—>co n4 

=  f hi(e,n)h,i(n,e)f(e)f(n)dechi (1.5.28) 
D D 

where 

h, 	= f 	)1 /4 )Cy(A, 71)v (e, A) f (A)c/A. 
D 

Theorem 1.5.2 holds and its proof is virtually unchanged. 
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The remarks following Theorem 1.5.2 also hold, but the inner product in 

(1.5.24) is replaced by 

(01,02)v = f f oi(e,77)02(n,e)v(e,n)f(e)f (77)<dri. 	(1.5.29) 
D D 

1.5.2.2. Process with unknown mean or a trend (X 0) 

This section extends the results of the previous section to the case of a process 

with unknown mean. The presence of the unknown parameter e results in the 

estimator of the form (1.4.19). Let Xn  be as described in Section 1.4.1. Let 

.R„ = (11n)X7 ,Xn  and Sn  = n(X:iXn)-1. It follows from Lemma 1.5.1 that 

1 n  
lim Rn(k k2) = 11M — E rki  (xt)rk, (xt) 

72-+00 	 n—>co 77, 

=  f rki(&k,(e) f ()< = R(ki , k2 ) (1.5.30) 
D 

for 1 <k1, k2  < p. If the functions rk  are such that the matrix R is invertible, 

then 

lim Sn = lim n(XX n )-1  = R-1  = S. 
n-->oo 	n--*co 

If x1  is a row vector of dimension d, representing a point in the domain D (and /-th 

row in the matrix Xn ), let Q denote the function Q(xil , x12 ) = x j15x 2 , continuous 

on D2. In order to generalise the results of the previous section to the case of a 

process with unknown mean, auxiliary functions will be defined as follows: 

= Ci(xi„ 

-
D 	 D 

xi,)f (e)ck-  — f Q(x12,)ci(xii,e)f(e)Cle 

Q(1111 )Q (X121 	e 71) f (e) f (n)ded71. (1.5.31) 
D D 

1=1 
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One defines ely by replacing C by Cy in the equation above. These definitions 

are rather technical in nature. Their precise role can be seen in the proofs of the 

results of this section, but intuitively they arise from considering cov(Y(xi) — 

Ý(x1), Y (x 2 ) — (x2 )) instead of cov(Y(xi ), Y(x2 )), where Ý = Xpâ. The terms 

involving integrals can be associated with the covariances of the predictors 

with Y and with themselves. The following matrices will play a role similar to 

that of the matrices A, M and B defined in (1.5.17), (1.5.18) and (1.5.19): 

and 

=  f e2)oi(6, J.)f(ei)f(e2)ckick2, 
D D 

Ml(i) = 	(bi(17 6)0Y (65 f ceiv(6)deide2 
13 D 

(i, 	= 	f 	71)hi,;(q, e)f 	(n)dedn 	(1.5.34) 
D D 

with 

n) = Loe,moy(A,,) (A)clA. 	 (1.5.35) 

The following result generalises Theorem 1.5.2 to the case of unknown /6. 

Theorem 1.5.3. Under the model (1.4.1), with X containing continuous regres-

sor functions and such that the matrix R of (1.5.30) is invertible, if the obser-

vations come from an in-fill sampling sequence with sampling density f and the 

matrix A1  of (1.5.32) is invertible, the projection estimator defined by (1.4.19) 

has the limiting mean of 

lim E[Ô] = AM1  = O. 
n--->oo 

(1.5.36) 



In addition, the following lirait exists: 

-1 ,• 	-1 lim = mag(Bi)A = 
n—>co 

(1.5.37) 

where Mi. and B, are given by (1.5.33) and (1.5.34). If, moreover, (1.4.25) holds, 

the limiting variance of the estimator satisfies 

lim var(bn(i)) < qc 	(i, i). 	 (1.5.38) 

Thus in the case of unknown p, the situation is similar to the previously 

considered case of zero mean. If (1.4.25) holds, as n increases, the limit variance 

of the estimator of b(i) is bounded from above by the diagonal elements of the 

matrix 

qc El  = qc.A.171  diag(Bi ) Al 1 
	

(1.5.39) 

which may be compared with Lemma 1.5.5. An argument similar to that in 

Corollary 1.5.1 shows that consistent estimation of 0 is in general impossible 

based on observations drawn from a finite domain. 

The discussion of Section 1.4.2 shows again that the estimator is unbiased if 

Cy is of the form (1.4.3). If the term xp is absent from (1.4.1) the functions 

defined in (1.5.31) reduce to Ci (xi l , x12 ) and the matrices A1, M1  and B1  reduce 

to A, M and B, respectively. 

As in the previous section, nothing changes substantially if Ôv is considered 

instead of Ô. It is only necessary to redefine 

Al (i,j) = f f 	e2)0i(e2, ei)v(ei, e2)f (6)f (6)d6d6, 
D D 

M1 (i) f f Oz (4-11 	 1)1) 	e2) f (el) f (6)«ide2 
D D 
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n-->oo n2 

1 (  

k=-1 1=1 

(Ci(xk, xi)Cy(xl, xk) + 'yCi(xk, 48(xi — xk))) = lim — 

and 

7)) = f 	A)0y(A, ri)v(e, A)f(A)ciA. 	(1.5.42) 

1.5.2.3. The nugget effect 

In the practice of geostatistics it is common to consider processes of the form 

If(x) = Y(x) + E(x) 
	

(1.5.43) 

39 

where Y(x) is as in previous sections and where c(x) is a zero-mean random 

variable with a finite variance 7 and where for x1 	x2  the random variables 

e(xi ) and e(x 2 ) are uncorrelated. The processes Y(x) and c(x) are assumed 

uncorrelated as well. The variance of the term e(x) is traditionally called the 

nugget effect in geostatistics. This section reviews the effect of the presence of 

a nugget effect in the model in the setting of the previous section. Firstly, one 

observes that if (1.5.43) holds, but the model (1.4.2) is not modified to reflect 

this, there is no effect on the asymptotic mean and variance of êr, . To see this, 

one examines the formulae (1.5.17), (1.5.18) and (1.5.19). Clearly, (1.5.17) is 

unaffected, while (1.5.18) yields 

M(i) = lim 	tr(Ki 7,(_Kyn + 74)) 
n—>oo n2 
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where 8(x/  — xk ) is a discontinuous function equal to one if x1  = xk  and zero 

otherwise. Hence 

M(i) = lim —2 	(Xk Xi)CY (X/1 Xk) 
n->co n 

1 (  n 	 

k=1 1=1 k=1 

12  ( 
i n_).ilnoo  

k=1 1=1 
Ci(Xk, Xey(Xi, X10 )) 

and it is seen that the limit is unchanged. A similar argument shows that (1.5.19) 

is also unaffected. 
However, the estimation of the importance of the nugget effect is of interest in 

its own right. To carry out this estimation, a discontinuous covariance component 

is added to the model (1.4.2). This discontinuous component will be called the 

nugget effect covariance component and it will be denoted by W in order to 

differentiate it from the continuous components C. The component W is defined 

as 

{1 if.•=71  
nW(, )= 	 (1.5.44) 

0 otherwise. 

It will be assumed that the model (1.5.43) holds and hence the true covariance 

function of Y, is 

cy,E = cy + 7w 
	

(1.5.45) 

where W is discontinuous as defined above, while Cy, the covariance function of 

the process Y, is a continuous function as in the previous sections. The model to 

be fitted will be of the form 

C,"9  = 	+ 	e(i)c, = 	H- Co. 	 (1.5.46) 
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The projection estimator is easily obtained: 

 

 

n — p 	 I 1 	en' en 

Ôn 	 [tr(Ui,„Ui,n )] 	[eUi,n,en ] 

 

 

(1.5.47) 

   

where p is the number of columns in the regression matrix X, [tr(Ui ,n )] is a q x 1 

matrix and [tr(Ui,„Ui,n )] is aqxq matrix and where the matrices Ui,n  are defined 

as in (1.4.19). To extend the results of the previous section to the case with the 

nugget effect, the following definitions will be useful: 

[1 a' 
Ane 

0A1  
(1.5.48) 

 

where A1  is aqxq matrix with entries given by (1.5.32) for 1 <i<q,1<j<q 

and the vector a, of size q has the entries: 

with Oi  given by (1.5.31), while 

a(i) = 
D 

= 7720 i 

M1  

(1.5.49) 

(1.5.50) 

where M1  is a q x 1 matrix with entries given by (1.5.33) with 1 < q, and 

mo =
D 

 CY,E(e, e)f(e)«. 

The matrix 13„, is defined as 

[bo  
Bne  = 

b 131  
(1.5.51) 
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where the q x q matrix B1  has entries given by (1.5.34). The q x 1 matrix b has 

entries defined by 

b(i) = f f hl,x(7 77)0Y (717 e) f (e) f (77)<C177 
D D 

with h1,i as in (1.5.35), and 

b0 = OY(e,77)0Y( 7/,W(e)f( 7007 ). 
D fD 

Finally, the matrix Ene,,, will be defined as 

En, = A7iel  diag(Brie )(A)-1. 

The following result holds: 

(1.5.52) 

Theorem 1.5.4. Under the model (1.5.43) with Y as in (1.4.1), where X con-

tains continuous regressor functions and such that the matrix R of (1.5.30) is in-

vertible, if the observations corne from an in-fill sampling sequence with sampling 

density f and the matrix An, of (1.5.48) is invertible, the projection estimator 

defined by (1.5.47) has the limiting mean of 

lim E 	= 
n-->oo 	ên  

Lno — aO 
ne 	e (1.5.53) 

  

where 0 is given by (1.5.36). In addition, the following limit exists: 

lim En, = A-1  diag(Bne) ( Aine) 1  = E ne ne (1.5.54) 

where Mn, and Bn, are given by (1.5.50) and (1.5.51). If, moreover, (1.4.25) 

holds, the limiting variance of the estimator satisfies 

lim var() < qc En,(1,1) 	 (1.5.55) 
n—>oo 

lim var(Ôn(i)) < qc Enc(i + 1, i + 1), 	i = i,... ,q. 
n-->oo 
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As in the case without the nugget effect, the limiting variance of the estimator 

is finite and non-zero in general. For any finite n, the estimator is unbiased if 

the model (1.5.46) is correct. It is easy to see that if the process is stationary, 

ino  = var(17,(x)). 

It is a simple matter to generalise the results of this section to the estimator 

bv• In order to do so, one defines 

Ane 
[a0 	a' 1 

0A1  
(1.5.56) 

where A1  is a qxq matrix with entries given by (1.5.40) with 1 <i<q,1<j<q 
and where 

and 

while 

a(i) = f Sbe,Ov( - ,W (Ode 
D 

ao =v(, 	()CK 
D 

mn, = [rniu°1 

(1.5.57) 

(1.5.58) 

(1.5.59) 

where is a q x 1 matrix with entries given by (1.5.41), and 

mo = f Cy(e, )v(e, e)f(e)de. 
D 

The matrix fine  is defined as 

[bo 	b' I 
Bne 

b 
(1.5.60) 



where the q x q matrix B1  has entries 

B1(i, j) = 	 ( 77, f (e) f Nein 

with 	given by (1.5.42), while the q X 1 matrix b has entries defined by 

b(i) = 	h1,i(,77)0Y(I7,)v(q,77)f (Of (77)(1077 
D D 

with h1,i is as above, and 

bo = f f 	(e5 77)0Y (7  15 	(e e)V (711 77) f f ( 77)d«177 
D D 

With these changes Theorem 1.5.4 holds and its proof is essentially un-

changed. In most applications v(e, e) will be a constant and in that case there is 

no loss of generality in assuming v(e, e) = 1, which simplifies the expressions for 

ao, mo, bo  and b. 

1.5.2.4. The convergence rate for uniform random sampling sequence 

If the true covariance function Cy is of the form (1.4.3), the mean of the 

estimator bn  in (1.4.19) is 6iy and does not depend on the sampling sequence. 

Otherwise it depends on the matrices An  and Mn  of (1.5.9) and (1.5.10). The 

elements of the matrices An  and Mn  can be viewed as approximations of the ele-

ments of the matrices A and M defined by the integrals in (1.5.17) and (1.5.18). 

In fact, for a fixed in-fill sampling sequence {xi}, the elements of Mn  and An  

are Riemann sums for the integrals in A and M. The rate of convergence will 

in general depend on the in-fill sampling sequence. In the case of the sampling 

sequence described in Theorem 1.5.1, one can view the elements of An  and Bn  
as a kind of quasi-Monte Carlo estimates - random variables, and it is possible 

to establish the convergence rate for this approximation. Unlike in the previous 
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sections, in this section the in-fill sampling sequence will be considered as a se-

quence of random variables taking values in D. These ideas are summarised in 

the following lemma. 

Lemma 1.5.6. Let {Xi } be a sequence of independent random variables hav-

ing the uniform density on D. Let 01  and 02  be continuous functions and let 

(bi(x, y) = q5i (y, x), for (x, y) E D2,i = 1,2. Let 

1 
Zn  — 	n(n 1)  01(Xk, Xt)02(X/, Xk) 

k-=1 1=1 

Then 

lim E[zn ] = 
.D D 

f 01(,77)02(71, f f (77)ddri = K(D). n—>co  

Moreover, 

n1/2 (Zn — K(D)) 	N(o, 
(1.5.61) 

2çi1/2  

where 
2 

çi  = fp 	01(el 77)02(17,)f (e) f (77)d) f (q)dll — (K(D))2  

To emphasise that the entries of An  and 13n, are now random variables de-

pending on the realisation of the process X = (X 1 , X2, . . . ), they will be denoted 

by An(X)(i, j), 1 	i < q,1 < j < q and Mn(X)(i), 1 < i < q. The following 

result follows: 

Theorem 1.5.5. Let {X3 } be a sequence of random variables as in Lemma 1.5.6. 

Then 

n1/2 pn(x)-1mn  (x) A-1m) 

converges in distribution to a q-dimensional multinormal random variable with 

zero mean. 



1.5.3. Asymptotics on expanding domains 

In the previous sections it was shown that under some rather general condi-

tions, if the observations come from an in-fill sampling sequence on a compact do-

main, the variances of the components â(i) of the estimator (1.4.19) are bounded 

by a multiple of the diagonal elements of the matrix E (where the precise defi-

nition of E may be given by (1.5.21), (1.5.37) or (1.5.54) depending on context). 

It was also seen that those bounds are generally strictly positive and that even 

in the simple case of a Gaussian process, var(ân(i)) remains bounded away from 

zero. 

In this section attention will be focused on isotropic processes and the effect 

of the size of the finite domain on the limiting variance will be considered. The 

limit matrix E will be found to depend on the size of the domain D. The main 

result derived in the subsequent sections states that under fairly mild regularity 

conditions the entries of the matrix E converge to zero as the sampled domain D 

is allowed to grow indefinitely. It will therefore follow that var(ân(i)) can be made 

arbitrarily small by sampling a sufficiently large domain at a sufficient number of 

locations. 

It will be assumed that a sequence {(Dm, 	fn2)}%1  of expanding in- 

fill domains is given, as in Definition 1.5.3. The subscript m runs over domains 

in the expanding sequence {Dm}. This will be the meaning of all subscripts m 

in this section and it is different from the notation used in the previous sections 

considering a fixed compact domain, where the subscript n ran over observations 

in a sampling sequence. 

The results obtained so far do not make the assumption of stationarity of 7/ 

in (1.4.1). Throughout the remaining sections it will be assumed that the ran-

dom process ri, as well as the component covariance models CE„ are isotropic 
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and therefore (second order) stationary. In the case of an isotropie process 

the covariance functions Ci(xi, x2), Co(xi , x2) and Cy(xi , x2) depend only on 

p =-11 x1  — x2  11 and the following notation will be used along with the current 

notation: Ci(p) = Ci(xi, x2), Co(p) = Co(xi, x2) and Cy (p) = Cy(xi, x2). Thus 

the model (1.4.1) will remain unchanged, but (1.4.2) will now have an equivalent 

isotropic version 

(1.5.62) 
i=1 

1.5.3.1. Isotropie fields 

In the case of the isotropic field, the equations (1.5.17) and (1.5.18) take a 

simplified form. The double integrals of (1.5.17) and (1.5.18) can be replaced by 

single integrals if the general covariance forms Cy, Co  and Ci  are replaced by their 

isotropic counterparts Cy, Co  and Ci. These new expressions will be essential 

in subsequent considerations deriving the limit of the matrix E as the size of the 

domain D grows indefinitely. This section establishes some fairly technical details 

necessary to obtain the new expressions. 

One considers the measure 

F 2(B) = f f 	(n)ckcin 	 (1.5.63) 

where B is any Lebesgue-measurable subset of D2. The following defines a mea-

sure on [0, diam(D)]: 

G(A) = F2({(,n) :Il e—n II G A}) 
	

(1.5.64) 

where A is any Lebesgue-measurable subset of [0, diam(D)]. (The fact that the 

distance function is continuous guarantees that the set 

{(e, 	—ij ME Al is measurable.) It is easily seen that if q5.i(e, 77) = (Di(p),i = 



1, 2 are measurable and isotropic, then 

fJ (1 li)02 (Ti, dF2 	Ti) f
diam(D) (1)1 

 (P)(1'2  (P)dG (P)- 
I3 

(1.5.65) 

The measure G will generally depend on the size and shape of D, as well as on 

the nature of f,  but the following lemma holds in general. 

Lemma 1.5.7. If F2 is absolutely continuous (with respect to the Lebesgue mea-

sure) then so is G. 

The non-negatiye function G(p), p> 0 will be defined by 

G(P) = F2({(, i) 	e — i 1 p}) = G([0, p]). 
	(1.5.66) 

Examples of the function G for some regular domains for d = 2 can be found in 

Bartlett (1964) or Diggle (1983). 

Next one considers a sequence of expanding in-fill domains 

{{Dm}, 	fr,i} =1  as in Definition 1.5.3, with constant sampling den- 

sity functions Ln , which gives rise to the sequences of measures {F2,„,} =.1  and 

functions 	where Farn  is defined by (1.5.63) with f replaced by fm , and 

Gm  is given by (1.5.66) with F2 = F2,711. The sequence {Gn-}m"=1  will play an 

important role in the next lemma. The following definition will also be needed. 

Let 

Bp(D)={xED:Ux — yil<igyED} 	(1.5.67) 

that is, B(D) is the set of all points in D with the property that the interior of 

the ball of radius p around the point is contained in D. Loosely speaking, the 

following lemma decomposes the function Gm  into two components: one which 

depends only on the dimensionality d of the embedding space, and another, which 
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depends on the geometry of the domain and which may be associated with the 

edge effect. 

Lemma 1.5.8. Let D c Rd  be a compact domain and {x} 1  be an in-fill sam-

pling sequence on D, with constant sampling intensity function f p(D)-1. Let 

{(Dm, {xm,i}7=' fm)}m"=-1 

be a sequence of expanding in-fill domains. Let D satisfy the following condition: 

p,(D \  B p(D))  
sup 	 = C c 00 	 (1.5.68) 
p>0 pv(aD) 

where p is the Lebesgue measure on Rd , c is a constant, 8D is the boundary of 

D and v is the Lebesgue measure in Rd-1. Then there exists a positive constant 

a, determined entirely by D, such that 
cbr d12 

Grn (p) = r(d/2±  1)  Trn—d pd  — Rrn  (p) 

where 

0 < Rm (p) < cer;Id—lpd+1  

The last lemma gives bounds for the function G. In addition to these bounds 

two other properties are easy consequences of the definition of G and will be of 

interest. Firstly, G is non-decreasing. Secondly, if F2 is absolutely continuous, 

G is continuous. As a result, the function G may be used to define a Stieltjes 

integral. The following lemma will be useful 

Lemma 1.5.9. Let q5 be a measurable real function such that 

lim —1  I r  10(p)Ipddp = 0. 
r—>oo r 0  

Then 
diam(Dm)co 

liM rd  rn 	0(P)dGm(P) = aG f 95 (P)Pd-i dP 0   

(1.5.69) 



where G = (d7rd12 )1F(d12 +1). 

1.5.3.2. Regularity conditions 

This section summarises most important assumptions which will be made 

about the observed process Y, its covariogram, the model, its components and the 

sequence of expanding in-fill domains which will be considered. These restrictions 

are mostly technical and are invoked to guarantee the existence of various limits 

appearing in the subsequent results. The subsequent sections will make references 

to the assumptions enumerated here. For an isotropic function ç5 defined on 

Rd  x Rd  and function defined on R+, such that 4.(11 xi  —x2  11) = 0(xi , x2), the 

following two conditions are equivalent 
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fR
10(e, 0)11)  < 00 < 

d Jj VD(p) Ip pd- 1 d p  < po.  (1.5.72) 

It will be assumed that the function v (xi , x2) of (1.5.25) is bounded by one and 

isotropic. The function v(p) will be defined by 

va x1  — x2 	11) = v(xi , x2) < 1. 	 (1.5.73) 

In all of the results in the remainder of this paper, the following will be assumed. 

Condition 1.5.1. The 	sequence 	of expanding 	in-fill 	domains 

{Dm , {xm ,i } 	fm } is such that f m , 	it(Dni )-1  and the conclusion of Lemma 

(1.5.8) holds. 

Condition 1.5.2. The covariance function of the process Y , Cy satisfies (1.5.72) 

with p =1. 

Condition 1.5.3. For all covariance component functions Ci  in the model, the 

functions Ci(p)v(p)1/2  satisfy (1.5.72) with p = 2. 
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The last two conditions impose some restrictions on the rate of decay of the 

true covariance function and the covariance component functions in the model. 

These restrictions are not very severe. In particular, they are satisfied if the true 

model decays at the rate of 19—(l+e) , where e > 0, v 	1, and the covariance 
1+E component functions decay at the rate of p-(/2).  These rates are much slower 

than those of most traditional covariogram models considered in practice. The 

following conditions will be assumed in some, but not all, results of the following 

sections. 

Condition 1.5.4. For all covariance component functions Ci  in the model, the 

functions Ci (p) satisfy (1.5.72) with p = 2. 

Clearly, the last condition implies Condition 1.5.3 with any choice of function 

v(p). 

Condition 1.5.5. The functions C i (p)v(p) satisfy (1.5.72) with p = 1. 

Clearly, the last condition implies Condition 1.5.3. If the components Ci (p) 

decay sufficiently fast, this last condition holds for any choice of function v(p). 

Condition 1.5.6. The function v of (1.5.73) satisfies 

v(p) ku p-t  

for some k, > 0 and some t> O. 

The last condition is not very restrictive, indeed setting v 	1 corresponds 

to the case k, = 1, t = O. A similar condition with respect to the functions Ci  

will also be considered. 

Condition 1.5.7. For some o> 0 and z > dI2 

I ci(P) I 	ap-z, 	i = 1, . 	, q 



1.5.3.3. Process with known mean 

This section considers the behaviour of the bound (1.5.22) for the variance 

of the estimator (1.4.17) as the size of the domain increases. For an isotropic 

process observed on the domain Dm , the expression (1.5.26) becomes 

13  diam(Dm ) 
Am(i, j) = 	Ci (p)Ci(p)v(p)dGm (p) 	(1.5.74) 

while (1.5.27) becomes 

jo.diam(D,,) 
Mm  (i) = 	 Ci (p)Cy(p)v(p)dGm(p). 	(1.5.75) 

The limit vector O in (1.5.20) generalises to 

orn 	A77111 mm 	 (1.5.76) 

Definition (1.5.28) becomes 

Bm (i, j) = 	 f 77)v(, A)f m(À)dA) 
D„, 

(10. 3  C 	A)Cy (A, 77)v(e, À) fm  (A)c/A) fm  ()f m  (q)d077. (1.5.77) 

The matrix E defined by (1.5.21) for the domain Dm  becomes 

Em  = 	diag(Bm )A2. 	 (1.5.78) 

The following result describes the behaviour of the matrices Am , Mm , Bm  
and Em  as the domain size increases in the case where the mean of the process 

Y is known (in which case it may be assumed to be zero). 

Theorem 1.5.6. For an isotropie process with known e, with a sequence of ex-

panding in-fill domains satisfying Condition 1.5.1, with the true covariance satis-

fying Condition 1.5.2 and with the model components satisfying Condition 1.5.3, 
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the following limits exist 

lim ru.id  Ar„ = A, 
rn, —> DO 

hm TIVIm =M 
rm +00 

and 

lim rm3d B„,= B. rm ->C0 

Moreover, if the matrix A is invertible then the following limits exist: 

(1.5.81) 

lim 60 , = lim A77,1 M„, = A-1M = O 	 (1.5.82) 
—>oo 	-400 

and 

lim rmd  Ern  = A-1BA-1  = E. 
rn,-400 — 

The entries of the matrices A, M and B of Theorem 1.5.6 are given by 
oc 

A(i, j) = lim r,̀/nAm (i, j) = G1 Ci(p)Ci(p)v(p)pd-l dp 

00 
M(i) = lim rMm(i, j) =

--> 	
Ci(p)Cy(p)v(p)pd-l dp 

co 	 0 

and 
oc) 

	

B(i, j) = lim rm3d Bm(i, j) = oG 	Ili(p)Hi(p)pd-l dp 
rm —>co 

where 

Hi(II - II) 	= f Ci(e, A)CY( ) ,77)v(, ))c/A 

(1.5.83) 
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where is the convolution of the functions ei  and ey defined by 

ei(e)= ci  (e, 	0) 

and 

(e)= C( ,O). 

The convergence of rEm  leads to the following result: 

Corollary 1.5.2. The bound (1.5.22) for the variance of the estimator (1.4.17) 

on domain D, converges to zero at the rate r 7Tr-id , i.e. inversely proportional to the 

linear size of the domain raised to the power of d, the dimension of the embedding 

Euclidean space. 

The following corollary is a simple consequence of Theorems 1.5.2 and 1.5.6. 

Corollary 1.5.3. Under the assumptions of Theorem 1.5.6, for a process satisfy-

ing (1.4.25), for any e > 0 there exist integers ni, and n„ such that if the process 

Y 	is observed at the locations X m€ ,1 , x rnE ,2, • • • Xme,nEe the projection estimator 

(1.4.17) computed from this sampling configuration, bm, satisfies 

var(bm,,„,(i)) < c, 	i = 1,... ,q. 	 (1.5.84) 

This result states that even though in-fill sampling on a compact domain 

leads to an estimator (1.4.17) whose limiting variance is positive, this limiting 

variance vanishes as the size of the domain tends to infinity. Therefore, sam-

pling a sufficiently large domain sufficiently densely produces an estimator with 

arbitrarily small variance. The value of m, may be obtained from Theorem 1.5.6 

and the bound in Lemma 1.5.5. It suffices to take the smallest m, such that 

qcrm—d,Ei ,i 	e, i = 1,. . . , q. The choice of n, depends on the rate of convergence 

in (1.5.21) in Theorem 1.5.2 applied to the domain Dm„ which ultimately de-

pends on the geometry of the in-fill sampling sequence. The case of the in-fill 
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sampling described in Theorem 1.5.1 (uniform random sampling) is considered in 

detail in Section 1.5.4. In that case it is shown how to obtain the number of obser-

vations n(m) required on the domain Dm  in order to guarantee the convergence 

in probability of âm,n . 

1.5.3.4. Process with unknown mean 

Theorem 1.5.6 can be extended to a process where the regression term Xe is 

present. However, certain restrictions will be imposed to guarantee convergence. 

Firstly, X will be assumed to contain homogeneous regression functions. Thus if 

the k-th column of X contains elements rk  (x1 ), x1  e D, it will be required that 

rk (rx) = r-Yrk (x) for some constant 7 and for all x E Rd  and for all r > O. In 

particular, any monomial involving any number of components of x E Rd  is a 

homogeneous function. This means that any polynomial trend can be modelled. 

Secondly, the rate of convergence of the bound (1.5.21) for the estimator's variance 

may depend on the rate at which Ci (p) decreases with increasing p. If this rate 

is too slow, the convergence at the rate rm-d  may still be attained for a modified 

estimator ()y, for a suitable function v defined by (1.5.73). In the generalisation 

of Theorem 1.5.6 to the case of Y with unknown mean, the matrices Am, Mm , 

Bm  and Em  will be replaced by their generalised counterparts 	 B1,771 

and Ei ,m . The entries of the matrix Ale, are given by 

i) 
=

fom  fp 	 (1.5.85) ni 	e2)0i, (e2, 6)v(ei, 6)fin(i)fni(e2)deicle2  



where 

= 

ff+ 
ID

(xl, e)Ci(e, xi,) fm(0 de — 	Q (xi, , e)Cz(xi„ e) fmW< 
, 	 Dm 

	e)(2(x12, 77)Ci(, fm(0 fm(q)ded77 (1.5.86) 
1:47, 

and where one defines ÇbY,m  by replacing C by Cy in the equation above. The 

entries of the matrix Mi ,m  are given by 

(i) =fijni  0i,rn 	6)95Y,m(e2, ei)v 	e2) fm(fi.) f m(6) <1(16, (1.5.87) 

those of /31,m  are given by 

j) = 	hi,i,,,n(,77)hi,),.( 71, fm(Ofm(u)ddri 
	(1.5.88) 

Ðm  1:),„ 

with 

hi,i,m(e, n) = 	0i,m(e, MOY,.(A, 71)v  ce, Av(A)dA, 	(1.5.89) 
Dm 

and finally, the matrix Ei,m  is given by 

-= A 	diag(Bi,m)A1,1n2• 	 (1.5.90) 

The following result generalises Theorem 1.5.6 to the case of a process with un-

known mean. 

Theorem 1.5.7. For an isotropie process with X composed of homogeneous re-

gressors, with a sequence of expanding in-fill dornains satisfying Condition 1.5.1, 

with the true covariance satisfying Condition 1.5.2, the model components satis-

fying Condition 1.5.3, and with the matrices A, M, B and E defined in Theorem 
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1.5.6 the following lirnits hold: 

lim rind  Al,,, = A 
rm  -->oo 

lim d Tg 
rrnIV11,M = M.  rm —> 00 

If one of the following conditions holds: 

i) Condition 1.5.5 holds, 

both Conditions 1.5.6 and 1.5.7 hold, with z + t > d 

then 

3d lim r •-• 	B m  — —  
Tm +00 

and 

lim rrnd Ei,m= 	= E.  
rm —>oo 

(1.5.93) 

(1.5.94) 

If neither 	nor 	holds, but both Conditions 1.5.6 and 1.5.7 hold, then 

and 

lim r2d-1-z-l-tppr 	n 
-"1,7n rm +00 

lim rniZ t Ei,rn  = 0 
Tra —>00 

(1.5.95) 

(1.5.96) 

If (1.5.94) holds, the bound (1.5.38) for the variance of the estimator (1.4.21) 

on domain Dm  converges to zero at the rate r7.7,d , whereas if (1.5.96) holds, the 

rate is 	which is slower since z t < d in this case. Thus Corollary 1.5.3 

generalises to the case of a process with unknown mean in an obvious way. 
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1.5.3.5. The nugget effect 

The last result can be generalised to include the case where the nugget effect 

is included in the model. Thus it will be assumed that the observed process Y is 

of the form (1.5.43) and the fitted model is of the form (1.5.45). To simplify the 

notation it will be assumed that 	= 1. One defines 

Ane,m = 
[1 a'm  

where Ai ,m  is a qxq matrix given by (1.5.85), and the entries of the (q-dimensional) 

vector a, are 
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(1.5.97) 

am(i) = f 	Mn(e)CK 
1:)„, 

with Ç5j,  defined as in (1.5.86), while 

11n0 m 
Mne  m 

A11,m 

with the entries of the q x 1 matrix Mi ,m  given by (1.5.87) and 

rno,rn = f Cy,e(e, e)fm()« = 'y + c(o) 

if f, = 1/µ(/),) for all m. The matrix Brie ,„ is defined as 

Drn  

(1.5.98) 

(1.5.99) 

Bne,172 = 
(1.5.100) 

where the q x q matrix Bi ,m  is given by (1.5.88), while 

b,(i) = 
D 	I) 

 hi,i,m(,77)0Y,m( 77, e) fm(e) fmMdedn 
Dm  , 

(1.5.101) 



and 

b0,m = f 	n)0Y,m( 7 ) f m(W m( 1))dC111 • 
E)m  I)m  

The matrix Ene,,n  is given by 

diag(Bne,m ) (A/ne,n7 )-1. 

(1.5.102) 

(1.5.103) 

Let a be a vector of length g with entries given by a(i) = Ci(0). The following 

result generalises Theorem 1.5.7 to the case of a process with nugget effect. 

Theorem 1.5.8. For a process Y, defined as in (1.5.43), where Y an isotropie 

process with X composed of homogeneous regressors, with a seguence of expand-

ing in-fill domains satisfying Condition 1.5.1, with the true covariance satisfying 

Condition 1.5.2 and with the model components satisfying Condition 1.5.3, the 

following limits hold, with the matrices A, M, B and E defined in Theorem 1.5.6 

If one of the following 

i) Condition 1.5.5 

both Conditions 

then 

d liM rn, 
—>00 — 

lirn 
rrn  —>oo 

lim 
--> co 

holds, 

1.5.6 

1 

0 	7. nig] 

conditions 

[1 

0 

Ù 

[1 

0 	rmd  

0 

7-/g  

and 1.5.7 

Bne 

holds: 

0 

/ g  

m 
[0 
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where 1)0  and the elements of the vector b are finite, and 

[1 1-1  [bo 111[1 01 1  
lim rmd  Ene,Tn — 	 — Ene• 	(1.5.107) 

rm—>cx) 	 0 A 	b B a A] 

If neither i) nor ii) holds, but bath Conditions 1.5.6 and 1.5.7 hold, then 

1 	0 	1 	0 I 
lim rz±t 	

Bne 	
— 0 	(1.5.108) 

rrn--°° m 	0 rIq 	'm   0 rd  4 

and 

lim rmz±tEneen  = 0. 	 (1.5.109) 
rm —>co - 

The implications for the limiting variance of the estimator êv are the same 

as in the case without the nugget effect. 

1.5.3.6. Improving the convergence properties of the estimator 

This section discusses issues arising in situations where the covariance com-

ponent functions Ci  decay insufficiently fast for Conditions 1.5.3 and 1.5.5 to hold 

for all choices of function v(p). In those cases, certain choices of function v(p) 

will produce estimators for which Theorems L5.6, 1.5.7 and 1.5.8 apply, while 

others will not. In particular, if Condition 1.5.4 is not satisfied, then Condition 

1.5.3 is not satisfied when v(p) 	1 and Theorems 1.5.6, 1.5.7 and 1.5.8 do not 

apply. Even if Condition 1.5.3 is satisfied, Condition 1.5.5 may not be satisfied, in 

which case Theorem 1.5.6 applies, but Theorem 1.5.7 does not. Thus consistent 

estimation of the covariogram would be possible if the mean of the process were 

known, but perhaps impossible otherwise. It is obvious that for any covariance 

components Ci, one can always select a function v(p) such that both Conditions 

1.5.3 and 1.5.5 are satisfied. It is not entirely clear how a particular choice of the 

function v(p) affects the properties of the estimator. 
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The remainder of this section considers a particular case where Condition 

1.5.4 is satisfied, but Condition 1.5.5 with v(p) 	1 is not. In this case, if 

one were to attempt to estimate the covariogram function while at the same 

time estimating the unknown mean of the process, one might consider selecting 

a function v(p) decaying sufficiently fast to guarantee that Condition 1.5.5 is 

satisfied. 

The limiting behaviour of the resulting estimator Ôv- is determined by the 

matrices A, M and B given in Theorem 1.5.6. The choice of the function v(p) 

affects the matrices A, M and B. It will be shown that it is possible to select v(p) 

in such a way as to obtain an estimator whose limiting behaviour is arbitrarily 

close, in a certain sense, to the behaviour of the estimator obtained with v(p) 1 

applied to a process with known mean. With this choice of v(p), Theorems 1.5.7 

and 1.5.8 will in fact apply while the matrices A, M and B can be made arbitrarily 

close to those obtained with v(p) 	1. 

In particular, the following family of functions v (xi, x2) (defining v(p) ac-

cording to (1.5.73)) will be considered 

{1 	 if11 x1 —x2  II< R  
vR(xi , X2) = VR(11 X1 — X2 	— 	 (1.5.110) 

.9(11 xi — x2 II) otherwise 

where R > 0 and 0 < g(p) < 1 is a non-increasing continuous function with 

g(R) = 1. Given any set of covariance components Ci  it is possible to choose g(p) 

such that the functions Ci(p)vR(p) satisfy (1.5.72) with p = 1 for any positive R. 

One such choice would be g(p) = exp(R — p). This will guarantee that Theorem 

1.5.7 applies and (1.5.93) holds. The limiting matrices A, M and B of Theorem 

1.5.7 will now depend on R 

AR(2, j) = ce G 	Ci(P)C3(P) IR(P)Pc1-1Ci p 
	 (1.5.111) 

0 



and 

00 
BR(i, = ac f HR,i(P)HR,i(P)Pd-l dP (1.5.113) 
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MR(i) = ceG 	Ci(P)CY(P)i)R(P)Pd-10 
	

(1.5.112) 

where 

HR,i(II - II) = hR,(, 77) = 	d  Ce, 	(7n)vR(e, A)c/A 

= fRd 
 eR,i ce - - moy(A)dA = 	- 77) ( L5.114)  

where (R,i is the convolution of the functions eR,i and ey defined by 

= 	(e, 0)ve, 0) 

and 

ey(e) = Cyc, 0). 

Finally, let the matrix ER be given by 

	

ER = Ai?1  diag(BR )A-R-1 
	

(1.5.115) 

while the vector OR  is given by 

OR ARMR. 	 (1.5.116) 

The following result holds 
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Theorem 1.5.9. If Conditions 1.5.2 and 1.5.4 hold and for all R the functions 

Ci (p)uR(p) satisfy Condition 1.5.5, then the following limits hold 

liM AR=A 
R—> oo 

liM M R = M R—> oo 

lim B R B 
R—>oo 

liM 0R  =- 0 
R—> oc 

liM E R = E 

(1.5.117) 

where A, B, M, 0 and E are defined in (1.5.79), (1.5.80), (1.5.81), (1.5.82) and 

(1.5.83), respectively. 

This result means that even if the components Ci  do not decay sufficiently 

fast to guarantee the same behaviour of the estimator ê for the case of known 

as for the case of unknown ß  to be estimated, a suitable choice of inner product 

yields an estimator ijv  with limiting properties under unknown e arbitrarily close 

to those in the case of known e. 
1.5.4. Mixed in-fill and expanding-domain asymptotics with the 

uniform random sampling sequence 

The asymptotic context considered in this section may be viewed as a special 

case of the sampling configuration of Hall and Patil (1994). Throughout this 

section it will be assumed that the process Y is Gaussian with zero mean. To 

consider a situation where both the number of observations and the domain size 

vary, one considers the sequence {(Dm , 	fm)},,,"=1  of expanding domains, 

in-fill sampling sequences and their sampling densities. Given the number of 
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observations n on the domain Dm , one obtains the estimator b‘„,„. If the true 

covariance function is in the set of valid covariance functions of the form (1.4.3), 

the estimator ij„,„ is unbiased for 0y, otherwise Theorem 1.5.2 gives, for any 

fixed m, the expression for 0m  = lim„,, 0m,„(X) where 0„,„(X) = E[Ô,,,n1X] 

and where X denotes the (possibly random) in-fill sampling sequence on Dm . 

Theorem 1.5.5 shows that the stochastic convergence rate for this limit in the 

case of the sampling sequence described in Theorem 1.5.1 is Op(n-1/2 ). Theorem 

1.5.2 also shows that for a fixed m, var(âni,n(i) 	< c„(i), 1 < i < q, that is, the 

variance is bounded from above by positive constants. Theorem 1.5.6 shows that 

Cm  = O(r) for some constant c, and that the limit 0 =- 	exists. The 

goal of this section is to construct a subsequence n(m) such that in some sense 

—› 0 as m —› oo. The mode of convergence considered will be convergence 

in probability. Naturally, the dependence of n(m) on m will be affected by the 

rate of growth of r„ and the in-fill sampling sequences {x„,n}n"_1. The case 

considered here will be that of the sampling sequence described in Theorem 1.5.1. 

Let {(Dm , {xm ,n} 1 , f„)}1  be a sequence of expanding domains with the in-fill 

sampling sequences lx„,„1 i  as in Theorem 1.5.1, let X, = 	be the 

random processes that generate them and let X = {X„1 =1. Let ii„,„,(,)(w, X) 

be a random variable defined on the product space ey x Qx  of the probability 

space Qy of Y(w)(x), x E Rd  and the probability space Qx  of X, given by 

êrn,n(m)(W , X) 

= [tr(Ki,m,n(m)(X)Ki,,,,n(„)(X))]-1[Y,,,n(m)(w, X)-Ki,..,n(m)(X)Y,,,n(m)(w, X)] 

(1.5.118) 

where K,,,,,„(,)  (X) is an n(m) x n(m) matrix whose (l1, 12) element is the random 

variable Ci(X,,,i„ Xm,/,), 1 < 11,12 < n(m) and Irni,n(m)(co, X) is an n(m) x 1 
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vector whose /-th element is the random variable Y(w)(X,,i ), 1 < / < n(m). The 

random processes X and Y (w)(x), x E Rd are assumed independent. 

Theorem 1.5.10. If 1im„„rm3dn(m)' = 0, then 

êm,n(m)(W, X) — —>p(,,,x) 0 

as m Do. 

The required rate of increase in n(m) as Tm  increases seems rather high. The 

results presented here are meant to illustrate the principle rather than to provide 

guidance in optimising the sampling configuration. In practice, the sampling 

configuration will most often not be random. In those cases it should be possible 

to come up with configurations requiring fewer sampling points. 

1.6. SURFACE ELEVATION DATA 

In this section a class of models suggested by Shapiro and Botha (1991.) is used 

to model the data of Davis (1973). The data consists of n = 52 measurements 

of surface elevation and it was collected on a square. Thus the domain is two-

dimensional. The class of models suggested in Shapiro and Botha (1991) are of 

the form 

C0(p) = E ocimo(Aip) 	 (1.6.1) 

where J0  is the Bessel function of order zero of the first kind and the Ai  are fixed 

positive numbers, while the 0(i) are positive numbers to be estimated. Thus the 

model is additive, hence there are no difficulties in applying the estimator (1.4.19) 

to this model for a finite sample. However, the covariance component functions 

in the model decay very slowly (on the order of p1/2).This is insufficient to 

satisfy Condition 1.5.3 with v(p) 	1, which was seen to complicate asymptotic 
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results (Theorems 1.5.6, 1.5.7 and 1.5.8 do not apply with v(p) -- 1, where v is 

defined in (1.5.73)). In order to illustrate how a different choice of inner product 

may be used to obtain an estimator to which the asymptotic results of Theorems 

1.5.6, 1.5.7 and 1.5.8 apply, the estimator (1.4.21) for non-constant V will also 

be computed. The matrix Vn  of (1.4.21) will be computed using function v(p) 

defined by (1.5.110) where the function g is given by g(p) = exp(R—p). The value 

of R = 4 will be used, which roughly equals one half of the maximal distance 

found in the dataset. The particular model (1.6.1) considered is defined by q = 4, 

with Ai  = 1, A2 = 2, 3 = 3 and )4 = 4. Criteria for choosing the model 

parameters will not be discussed here. They are considered in greater detail by 

Powojowski (1999). Since the mean of the sampled process Y is not known, it 

needs to be modelled. Two separate models are used: one in which Y has a 

constant unknown mean, leading to a regressor matrix XA, and another allowing 

for an arbitrary linear trend over the sampled square, yielding the regressor matrix 

XB. The resulting estimates are given in Table 1.1. Figures 1.1 - 1.4 show the 

estimated covariograms. In all figures, the products of residuals are marked as 

individual points with coordinates (11 xk  — xl  II, e(k)e(1)), where 1 < k < 52, 

1 < l < 52 and e(k) = Y (k) — Ý(k) is the residual computed as in (1.4.18). The 

estimated models themselves are plotted in Figures 1.1 and 1.2 along with the 

products of residuals. They are the curves (p,Câ(p)) and (p, Cb, (M. While the 

plots seem to indicate the estimated model follows the data fairly well, Figures 

1.1 and 1.2 may be misleading. Let P denote the projection in (1.4.18). The 

mean of e(k)e(1) is (P Ky P)(k , l), rather than Ky(k, l), which may be estimated 

by (PKbP)(k, l) rather than by Kb(k, l). It may therefore be informative to 

plot the points (II xk  — xi  11, (P KbP)(k , 1)) along with the products of residuals. 

The resulting plots are shown in Figures 1.3 and 1.4. This is done only for the 
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model êl 02 03 04 

constant mean 3908.54 638.644 219.84 0.6702 

constant mean (non-constant V) 3892.6 383.423 73.1235 6.98203 

linear trend 1123.54 359.73 106.796 49.7274 

linear trend (non-constant V) 1173.14 388.69 96.827 63.0404 

Table 1.1: Estimated coefficients for the two mean models. 

estimator (1.4.19), where the matrix V is constant. One observes that in this case 

the message from the plots of fitted covariograms (Figures 1.1 and 1.2) and the 

plots of estimated covariances of residuals (Figures 1.3 and 1.4) are similar. One 

also observes that given a model for the mean, the different choices of matrix V 

lead to estimated covariograms which are very similar. 

Comparing the results of this section with models previously fitted to the 

same data (e.g. Ripley, 1988, Wackernagel, 1995), one observes two main dif-

ferences. Firstly, the models for the mean of the process used by those authors 

are linear trends or quadratic surfaces. It seems that the constant mean model 

was not attempted. No reasons are given for this omission, but it appears that 

the products of the residuals from the constant mean model are not very well 

estimated by a covariance model which is positive everywhere, such as the ex-

ponential or the Gaussian model used by the authors. This leads to the other 

major difference, namely the presence of negative covariances in the estimated 

model. Visual examination of Figures 1.1 - 1.4 suggests that negative covari-

ances are plausible. The model given in (1.6.1) is capable of capturing negative 

covariances, while the exponential or the Gaussian model is not. 



68 

•x X 	x 	 Products of residuals x 

	

10000 x- 	x 	x ›i 	 Estimated covariance modal — - 
Estimated covariance reodel (nonconstant V) ----- 

x x  

	

x x x xx  x x 	
x 

	

x 	x 	 x 
8000 	 x>5<i- 	 x ‹  xx  

x xii1 xx  xxx x x x 	 x 

	

6000 - 	le, _er x  e x • xx - 
X 

	

x 	
8  x xx:e xx x 	 x 

	

X x x 	x 	x 
. X XX xx x 	

x 	 x 
4000 R---- 	x 	 x x xx 	

x 

	

4 	x x  
*- 	 x 	xgx  

	

M 	 x 	xxxx'x` >< > x  xx x x x  

	

2000 1 	 x  x x,xx 	x e  
"ersx >k x,ï x i 

xšx 
.. 

-6000 - 
0 

Figure 1.1: Products of residuals and estimated covariance function, constant 

mean model. 

xx 

-2000 - 

-4000 - 

x 
>0‘ x 

x  
x 

xxxxxxx 	x .xxx 
xxexxxx<xxxxxx 

x x 
x x x>?< 	YotsgxxiiekIx  x x 	xxxx,„ x 	x  x x 	x  

xxx xr 
'<x >çag 	x 	

xx 
x„ >5<X xxxteec xx xx ).,. 	xx 	 t - 

1 
	

2 	3 	4 	5 	6 	7 	8 
distance 



69 

x Producrs of resicluals x 
x  Estimatei qovarlance model — 

Ecernated comiance monel (nonconstant V) 

xx 	x 

x 

x xx 

X x xx  :xx xxxx xx x>:›i XX; x:x xxx x  x xx  

	

x„‹ 	x xx 	› x 

xxx „xx 
: aqc „ x 	>t< 	 e  >e x 	x  x 

x ec ›sofs,xx  . 	x x  xx„x - 
x
x 
xx . 

xx x x x  x 	 ex X x
x 
	x 

,x x:<, 	exesexix 	x xxxx: x 	x 	x 

'5,0< >ex x,% 
(xx >X '; e  x xx  x x  xxx x 	x  x 

x 	ecc 	te 	
,) 

	xx x  . xx . 

	

-s x>>,<.x. 1,xxn, 	
x

x x  x 
x 	x x x x>,), x 	x x 	x 

% 

	

X , 	xe. 	x . 
x . x 

1 	2 	3 	4 	5 	6 	7 	8 
distance 

Figure 1.2: Products of residuals and estimated covariance function, linear trend 

mean model. 

Products of residuals x 
Estimated covariances of residuals o - 

x x  
X 

xx 

xx  

0 

2000 

o 

-2000 - 

-4000 - 

-6000 - 
0 1 	2 	3 	4 	5 	6 	7 	8 

distance 

x 	x 	x 
x x 	x 

x 	. 
,4 _ 	x  x  X <  x Xx  

XXx X
x 
 X

x 	
. X 	), 	x x  
_ xx 

. 
_ 

x(X 
 x 	x 	x . 	x. „ 

* 	X It  ''' 4 x 

	

- 	x 
X 

- 
xx 	"` x  ic 	ete de e xxx 	x x 	_ % 8  

- 	 4( xx 
x 

x 

s 

e 	.•..,' 	 x › x 	x 
x 	x_ ,ex % >ex * >;4>c< 	x x.xxxx xx  e  

>se 	xlx x>e ,x«x*x 	x 	x 	x 
x 	 , 	xxxx,e4c tcxxxÀ< xx e x 

_ 	 , 	x e ,,,x, 	„ .. 	. xx 
- x ), xxx xxxe><>0<x xx x-  x X 

X 	xx 	X X X 	X x  

Figure 1.3: Products of residuals and estimated covariances of residuals, constant 

mean model. 



3000 

2000 

1000 

0 

-1000 

70 

x x x x 	x x 
x 	x x 

x X x  

x 

X Produds of restduals x 
EstOated covviapces of residuals 

X X xx  
x X X 

x XX x  
XX  xx 	x x  

O 	4 0x8xx 	x x 
° 	 x xxx x x   

x x  x sy,..,>•»&xx 	e<dc 
x xxe 	->pexvw,„exx x 

$ 0 	 
0 

•••• x x x 	x 	* X 	xx x xxxX Xx X x  
xx*,  x>b< 	%I.(xxx 

„,x x 	x 
>Sc * xx xx 	xx  x x‘le* 	 x 	 X  

X 	xX XX  X X X 	 X 

	

X 	
X 

X x 	 XX 
2 	 3 	 4 

	
5 
	

6 
	

7 
	

8 
distance 

Figure 1.4: Products of residuals and estimated covariances of residuals, linear 

trend mean model. 



1.7. CONCLUSION 

The paper proposes a new approach to the problem of estimating the covari-

ance function of a stochastic process. The approach combines two main ideas: 

using additive models and estimation based on orthogonal projections. The ap-

proach may be viewed as a particular case of MINQUE estimation. The case is 

presented that this approach offers many distinct advantages over traditional ap-

proaches involving the empirical (co)variogram, as well as over general MINQUE 

estimation. 

In comparison with traditional methods the need to estimate the empiri-

cal (co)variogram is eliminated and so is the arbitrariness of the bin selection. 

Since the empirical (co)variograms are meaningless for non-stationary processes 

and hard to compute for non-isotropic processes, the approach presented is more 

generally applicable than the traditional procedures. The estimator by projec-

tion is unbiased if the mean of the process needs to be estimated from the data 

(assuming that the model for the mean is correct and the true covariance func-

tion is in the class of models considered). The mean and trends in the mean 

can be estimated simultaneously without much complication and usually with-

out compromising the estimator's properties. The estimation procedure involves 

only linear algebra, and thus all problems, both theoretical and practical, associ-

ated with non-linear, non-quadratic optimisation are avoided. The properties of 

the estimator can be more easily understood than is the case in the traditional 

approach. 

In contrast with the general MINQUE estimation, (which is also unbiased and 

requires only linear algebra to compute) the stability and asymptotic properties 

of the projection estimator are not dependent on the relationship between the 

initial guess K0  required by MINQUE and the true covariance matrix K. The 
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linear algebra computations required for the projection estimator involve inverses 

of much smaller matrices than those required for any other MINQUE estimator. 

It is shown that in the in-fill asymptotic context (sampling of finite domain) 

it is generally impossible to estimate the covariogram consistently. An upper 

bound may, however, be obtained for the asymptotic variance of the estimator 

in this context. Furthermore, it is shown that for isotropic processes this upper 

bound can be made arbitrarily small if the sampled domain is sufficiently large. 

Some additional results are given for the case where the process is observed at 

points resulting from uniform random sampling of the domain. 

The estimator is illustrated using a data set of Davis (1973), where the model 

used is that proposed by Shapiro and Botha (1991) (who use a different estimation 

procedure). 
In order to apply the projection estimator in practice, an adequate class of 

additive models is required. One such class is the class of Shapiro and Botha 

(1991), as seen in Section 1.6. Other flexible classes of models will be explored 

in a separate study. 
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Chapitre 2 

ESTIMATION OF THE COVARIOGRAM OF 

AN ISOTROPIC PROCESS THROUGH 

SPECTRAL COMPONENT ADDITIVE 

MODELS 

2.1. ABSTRACT 

The main idea explored is that of spectral component additive models for 

the covariance function of an isotropic random process. A class of such models is 

proposed and it is shown to satisfy the conditions required by the projection esti-

mation methods of Powojowski (1999a). The application of projection estimation 

methods is discussed and it is shown that when applied to spectral component 

additive models, the moments of the estimator have convenient expressions in 

terms of the spectral density of the covariance function of the process. It is also 

shown that the class of spectral component additive models is dense in the set 

of valid covariance functions and hence approximately unbiased spectral compo-

nent additive model exists for any covariance function. Theoretical results are 

supported with simulation studies showing the approximate lack of bias of the 

proposed method. In addition, it is seen how an estimate of the spectral density 

of the covariance function may be obtained. 



2.2. INTRODUCTION 

For a random process Y(x), x e D, where D is a subset of a d-dimensional 

Euclidean space, the covariogram is defined as Cy(xi , x2) = cov(Y(x1), Y(x2)). A 

common problem in geostatistics is one of estimating the function Cy based on one 

realisation of the process Y observed at a finite number of locations xi , x2, 	xn 

in D. It is important to note that the knowledge of function values C(xi , x2) for 

arbitrary (xi , x2) E D2  is required, and not simply the covariances of Y at lags 

observed in the sample. The fact of observing only one realisation forces one to 

make certain assumptions about the process Y, which translate into restrictions 

on the form of Cy. There also exist theoretical reasons for restricting the function 

families considered. The covariogram has to be a positive definite function. Fur-

ther restrictions may be desirable. In a typical covariogram estimation problem 

it is supposed that the observed process Y follows the model 

Y 	+ 

The known regressor X contains terms corresponding to the mean of the process 

and any trend that is allowed for, while the parameter )6 is unknown and the 

random term î is assumed to have zero mean and an unknown covariogram Cy. 

The process î will be assumed isotropic (and hence second-order stationary), 

requiring Cy(xi , x2) to depend only on 11 x1  — x2  11. A covariance model 

known up to the value of a finite-dimensional parameter 0, to be estimated, is to 

be fitted to the observed data. 

The traditional approaches to the modelling and estimation of the covari-

ogram function are described in Cressie (1993). Typically, the empirical covar-

iogram or variogram (the variogram of the process Y is defined as ry(xi , x2) = 

(1/2) var(Y(xi) — Y(x2))) is computed and a parametric model is selected from 
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a small set of commonly used curves. The parametric curve is then found by 

some visual or optimisation technique which makes it pass close to the points of 

the empirical (co)variogram. Usually the parametric curve to be fitted does not 

depend linearly on the parameters which need to be estimated, which leads to 

nonlinear optimisation problems. An alternative set of models was proposed by 

Shapiro and Botha (1991). The models they propose are additive, that is they are 

linear combinations of fully specified models, in this case Bessel functions. The 

method of estimation they use is the traditional approach of fitting the curve to 

the empirical (co)variogram. 

This paper proposes a new, broad class of additive models motivated by the 

spectral representation of the covariance function of an isotropic random process, 

henceforth referred to as spectral component additive models. Furthermore, the 

estimation techniques described by Powojowski (1999a) are applied to this new 

class of models. The techniques are based on orthogonal projections of products 

of residuals onto a linear space spanned by a finite set of valid covariance models. 

To apply these techniques successfully, it is necessary to provide an adequate class 

of additive covariance models. This paper demonstrates that the proposed class of 

spectral component additive models is adequate under fairly broad circumstances, 

namely, in the situation where the process is isotropic and possesses a piecewise 

continuous spectral density. In addition it is shown that projection estimators 

applied to spectral component additive models reveal a theoretical connexion 

with the spectral density of the covariance function of the process. 

The paper is organised as follows: after defining the notation used throughout 

the paper, the spectral representation of the covariance function of an isotropie 

function is discussed to motivate the subsequent introduction of the spectral 

component additive model. Basic properties of the model are then established and 
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the application of projection estimation methods is discussed. Connexions with 

the spectral theory of covariance functions are explored and they are subsequently 

used to show that the class of spectral component additive models is dense in the 

set of valid covariance functions possessing a spectral density. Finally, the model 

is illustrated in a study comparing it to commonly used covariance models. 

2.3. NOTATION 

To avoid confusion which might arise due to the frequent occurrence of multi-

ple subscripts, the following notation will be used throughout the paper: if A is a 

matrix, its entries will be denoted by A(i, j), while Ai  may denote a matrix from 

some (doubly) indexed set of matrices. Similarly, if 0 is a vector, its components 

will be denoted by 0(i), while 0i  may denote a vector from some indexed set of 

vectors. 
In the most general setting, one considers a random process Y on the domain 

D, a subset of a d-dimensional Euclidean space. The process Y is observed at n 

locations 	xi  E D. Let Yn  = (Y(xi), 	, Y(xn)) and Y(i) = Y(xi),1 5_ 

i < n. It will be further assumed that 

Yn = Xne +I7n 	 (2.3.1) 

where 777, = (77(xi), 	, 7/(xii )) and 77 is an isotropic random process with E[77] = 

O. It will be assumed that Xri  has p columns corresponding to different regression 

terms. Thus 	k) = rk (xi ), 1 < k < p, 1 < l < n, where x1  is the 1-th location 

in the sample and rk  is a continuous function defined on D and it is the k-th 

regression term in the mean of Y. If present, the term r1 	1 corresponds to 

the (non-zero) constant term in the mean of Y. The term rk (xi) = x1 (1), where 

xi (1) is the first component of the d-dimensional vector xi  E D, would correspond 

to a linear trend in the mean of Y(x) in the direction of the first component of 
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x. The matrix Xn  will always be known, while the p x 1 vector may have to 

be estimated. The function Cy(xi , x2) = cov(Y(xi), Y(x2)) = cov(77(x1), 7/(x2)) 
is called the covariance function of the process Y (and of the zero-mean process 

ri). Let Ky,„ = var(Y7z ). Thus Kye, is a symmetric matrix whose entries are 

j) = Cy(Xi, xi). If Co  or Ci  is a given covariance function model, one 

defines the symmetric matrix Kom  or 	in a similar way, by putting Ko,n(k, j) =  

Ce(xk , xi ) or Ki,n(k, j) = Ci(xk ,xj). Thus Ko,„ is a fixed matrix depending only 

on the model Co  and on the set of locations 	xi  E D. 

The model Co  will be called additive if it is of the form 

Co = EO(i)C, 	 (2.3.2) 
i=1 

where the components Ci  are fully specified valid covariance functions and the 

only parameters to be estimated are the Ki). Throughout the paper the compo-

nents C as well as Cy will be assumed continuous and isotropic. The process of 

interest will also be assumed isotropic in Rd. An isotropic process is stationary 

and it will be convenient at times to switch between the covariance functions 

Ci(xi , x2), Cy(xi, x2), Ce(xl, x2) and the isotropie versions of these functions 

Ci  (p), Cy(p) and Co(p) where P = xi — x2 J. 
Two intervals [ai, 	and [a2 , b] will be called non-overlapping if their inter- 

section is at most one point. 

2.4. THE COVARIOGRAM AND THE SPECTRAL DENSITY OF AN 

ISOTROPIC STOCHASTIC PROCESS 

This section reviews standard results concerning the spectral representation of 

an isotropic covariance function. The covariance function of an isotropie process 
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in Rd has the form (Schoenberg, 1938) 
00 

cy (p) 	 (2_d)/2 	)1/4(2-d)/2 J(d-2)/2 (AP)dGy (A) 
o 

(2.4.1) 

where Gy(A) is a bounded non-decreasing function and J, is the Bessel function 

of the first kind and v-th order. It will be assumed that Gy(A) is continuons and 

piecewise differentiable with the derivative gy(A). Thus gy(A) is nonnegative, 

piecewise continuous and summable. Putting 	(A) = A-d/2gy ) one obtains 

C(  p) = p(2-d)/2 f 
oo 

AWy(MJ(d-2)/2(AP)dA 
	

(2.4.2) 

with Ad/21Ify(A) nonnegative and summable. The function Iy  will be called the 

spectral density of the covariance function Cy. If A1/211f (A) is piecewise continuous 

and absolutely summable, the function 

A(p) = 7-1,(W)(p) = 	AJ„(Ap)ilf(A)d)t 	 (2.4.3) 

will be called the Hankel transform of the function IF of order v. Details may be 

found in Sneddon (1972). It thus follows that A(p) = p(d-2 )/2c(p) is the Hankel 

transform of order (d - 2)/2 of the function Tl,. The Hankel inversion theorem 

states that under those assumptions 

L 
oo 	 1 

PL(AP)A(P)dP = -2 (11(À- ) + W(A+)). (2.4.4) 

(The notation 11(A-) denotes the left limit of IP at À. Similarly 111(A-P) denotes 

the right limit.) Moreover, Parseval's formula for Hankel transforms states that if 
A1/2 (À),  = 1, 2 are piecewise continuous and absolutely summable functions, 

then 

L 
00 

pAi(p)A2(p)dp = f A i(A)‘112(A)e 	(2.4.5) 
0 

and both integrals exist. 
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This paper explores the possibility of modelling and estimating the covariance 

function based on the expression (2.4.2). In addition to estimating the covariance 

function, this approach will be seen to provide information about the spectral 

properties of the process. 

Before moving on, the general representation of the covariance function of a 

stationary (not necessarily isotropie) process is briefly discussed. It follows from 

Bochner's theorem that a covariance function C whose spectral density exists 

may be expressed as 

C(x, 0) = (27r)-d/2  f exp(i(x, .))f (e)de 	 (2.4.6) 
Rd 

where (, ) denotes the standard inner product (dot product) in Rd  and f is a 

non-negative, integrable function. It is a well known fact that if C is a function 

of 11 x 11, the function f is radially symmetric, and therefore putting p =Il x 11 

one may define a function w(p) = f (x). With this notation, the following general 

identity is obtained through change of variable 

co p 	\ (27r) —(1/2  f 	 f exp(i(x, e))  f (e)de  . (2—d)/2 	
A 

d/2w 
(À) 4-2) 12 (Ap)dA (2.4.7) 

Rd 	 o 
(see, for example, Sneddon, 1972). Under isotropy (2.4.6) becomes (see, for ex- 

ample, Adler, 1980) 

oo 
C(X, 0) = C(p) = p(2-61)/2  f Adi2w(A)J(d_2)/2 (Ap)dA 

o 
_ 

DO 
(2—d)/2 f — P 	AW()J(d-2)/2 (AP)dA (2.4.8) 

o 

where W(A) = P-2)/2w (À), and W is as in (2.4.2). The equation (2.4.8) connects 

the spectral representation of the covariance function of an isotropic process with 

its (more general) spectral representation resulting from the fact that it is also 

the covariance function of a second-order stationary process. 



2.5. MODEL DEFINITION 

The estimation of the covariance function requires a family of functions which 

can be parametrised with a finite-dimensional vector. This section defines the 

spectral component additive models, which will be the main focus in the remain-

der of the paper. 

Shapiro and Botha (1991) suggested the following class of models 

C0(p) = 	O(i)J(d-2)/2(p) 
	

(2.5.1) 
i=1 

where the Ai  are fixed positive numbers and 0 is a vector with non-negative entries 

to be estimated. This model, however, produces covariance functions which decay 

very slowly - on the order of p-1/2  - which may be too slow for many applications. 

It is also seen in Powojowski(1999a) that slow decay rates complicate asymptotic 

results of the projection estimators considered in the next section. 

The general expression (2.4.2) suggests the following class of models for the 

covariance function 

Co(p) = 	0(i)C i (p) 	 (2.5.2) 
i=1 

where 

bi 	 co 
C(p) = p ( 2 — d ) / 2 f AJ(d _2)12 (4)111(A)clA = p(2—d)/2  f AJ(d_2)/2 (Ap)Ti  

ai 	 0 
(2.5.3) 

where 	is a fully specified, non-negative, bounded function and 

(A) = ‘1,(A)/[„,,b,](A). Thus the components Ci  (p)P(d-2)/2  have compactly sup-

ported spectral densities 41(A)/[a i ,b,](A)• 
Some basic properties of the component functions Ci  will now be established. 
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Lemma 2.5.1. If ai  and bi  are positive numbers with ai  < b, the function I is 

continuous on the real line and Ci  is defined by (2.5.3), then C i  is continuous, 

bounded and 
00 

ci  ( p)12pd- 1 d p  < co. 	 (2.5.4) 

Proof: 

From the definition of the Ci  one obtains 

00 2 

°° (ci (p)) 2 Pd-1.4 /c.°  P 	AJ(d_2)/2(Ap)Wi(A)c/A) dp 
o 	o 

00 
= 	A((A))2clA < 00 

since Parseval's identity may be used as the function À1/2 (À) is piecewise con-

tinuous and absolutely summable. 

If for d >1 the function I is taken to be 

(A) A(d-2)/2 
	

(2.5.5) 

the integral in (2.5.3) has a closed form, which results in the following covariance 

components 

	

bd/2 	a1/2 
Ci(P) = P(2-(1)12 

7 
	 Jd12(bzP) — 2  .1.(112(aiP)) • 

Another reasonable choice would be 	1, which coincides with (2.5.5) for 

d = 2. However, for d > 2 there may not be a convenient closed form for the 

resulting covariance components. 

For the function I defined by (2.5.5) it follows that 

	

Ci(p) = 
	 (2.5.7) 

(2.5.6) 

The formula (2.5.6) is a standard result and may be found in Sneddon (1972). 

To show (2.5.7) one applies (2.5.6) together with the well known fact (see for 
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example Sneddon, 1972) that A1/21J)1 is bounded on the positive real line. It 

follows from (2.5.7) that 

foc°  
c d 	.co i (p)2pd-i -p  < (2.5.8) 

This last result plays a role in convergence arguments related to the projection 

estimator described in the next section. For details, see Powojowski (1999a). 

In all situations considered in this paper the compact supports [a, b] of the 

functions I will be pairwise non-overlapping. 

2.6. SPECTRAL COMPONENT ESTIMATION 

The model components Ci  defined in the previous section (with any choice of 

the ‘If i) will be referred to as spectral covariance components, while the functions 

will be referred to as spectral components. The rationale behind these terms 

will soon become apparent. 

2.6.1. Covariogram estimation through projections 

The focus of this section is on the estimation of the parameters of the model 

(2.5.2). Given the class of models (2.5.2), with the components Ci  fully specified 

and q fixed, the estimator described in Powojowski (1999a) may be used to find 

estimates of the 0(i). If the parameter of (2.3.1) is known, it can be assumed 

to be zero without loss of generality. The Ô, (i) are selected so as to minimise 

Y —  > , 	the norm is the square root of the sum of squares 

of differences between the entries of the two matrices. The minimisation results 

in -07, given by 

Ôn = [tr(Ki,nKime[11,Ki,nYn] 	 (2.6.1) 
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where Ô = (Ôn(1), • • • , Ôn (q)) and Ki,n  is the matrix whose (m, l) entry is 

Ci (11 x,, — X j  11). (The notation [tr(Ki,nKj,n)] denotes a q xq matrix whose (i, j) 

- th entry is tr(Ki,nKi,n). Similarly, [Yn'Ki,nYn] denotes a q x 1 vector.) 

In the more general case of unknown e, one defines the residuals 

en, = — Xn(ZXn)-1  XOYn — PnYn 

where P is a projection matrix. The estimator (2.6.1) is then replaced by 

Ôfl  = [tr(Ui,nUi,n)r[ein Ui,nen] 	 (2.6.2) 

where 

U i,n — PnK i,nPn • 

In (2.6.2) the vector Ôn  minimises 11 enein 	(i) Ui,n 
Finally, the estimators (2.6.1) and (2.6.2) can be extended to the class of 

estimators 

bv,n  = [tr( ((Jim, * Vn )Ui,n )] [ein  (U,,n * Vn) 	 (2.6.3) 

where the n x n symmetric matrix V(/, m) = v(11 	— xn ,m, 11), has entries given 

by a fully specified positive function v, and (A * B)(k, l) = A(k 1)B (k l) is the 

Hadamard matrix product. The matrix V can be thought of as weight factors 

and the estimator (2.6.3) minimises a weighted sum of squares. 

The properties of the estimators (2.6.1), (2.6.2) and (2.6.3) are described in 

Powojowski (1999a), along with relevant asymptotic settings. For the purpose of 

the current discussion, it will simply be assumed that for every positive integer 

n, the sampling configuration f ,In,11 • • • xn,n} is located on a compact domain 

Dn  with Lebesgue measure p(Dn ) = rnd , with r1  = 1. It will be further assumed 

that the sequence {rn};),° is increasing and divergent. Under certain conditions 
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(discussed in detail in Powojowski, 1999a) concerning the sizes of the domains 

Dm  and the sampling configuration {xn,i, • • • , x}, if 

L 
00 

ICy(p)l iod-l dp < oc, and 

C (p) 
12pd-1 	 _ < oo 

(2.6.4) 

(2.6.5) 

the following holds: 

Proposition 2.6.1. The estimator (2.6.1) satisfies 

Ôn  ---> p O = A-1M as n —› oo 

where A is a qx q matrix whose entries are given by 
00 

A(i, j)= aG 	Ci(p)Ci(p)pd-l dp 

and AI is a q x 1 matrix whose entries are given by 
«, 

= 	
r 

ckG 	Ci(P)CY(P)Pd-i dP 

and the constant aG  equals ed/2 /F(d/2 + 1). 

(2.6.6) 

(2.6.7) 

(2.6.8) 

The condition in (2.6.4) will be assumed to hold. For the covariance coin-

ponents defined by (2.5.3) with (2.5.5), the condition in (2.6.5) holds by (2.5.8). 

(Incidentally, one observes that the components of the model described in (2.5.1) 

do not satisfy (2.6.5).) Moreover, one has 

Proposition 2.6.2. If the observed process Y is Gaussian, then 

liM 	Var(Ôn) = 2A-1BA-1  
ri-->o0 

where B is aqxq matrix whose entries are given by 
00 

B(i, j) =aG 	Ili(P)Hj(P)Pci—l dP 
0 

(2.6.9) 

(2.6.10) 



with aG  defined as in Proposition 2.6.1, and 

— 	11) = 	= Ld 	A)CY(, 71)e 

where is the convolution of the functions Oi  and ey defined by 

7h() = Ci(e,0 ) 

ey() = cy(, 0). 

The last proposition gives the rate at which the variance of the estimator 

converges to zero. A similar bound can be obtained for non-Gaussian process 

under additional assumptions. For details and for extensions to the more general 

estimators (2.6.2) and (2.6.3) the reader is referred to Powojowski (1999a). 

2.6.2. Spectral additive components 

This section examines the particular form assumed by the expressions in 

Propositions 2.6.1 and 2.6.2 for the model defined in (2.5.2). 

Theorem 2.6.1. Let C o  be as in (2.5.2) and let the intervals [a, b] be non-

overlapping. Then the matrices A, B of (2.6.7), (2.6.10) are diagonal and their 

entries are given by 

bi 

A(i, i) = ac f A(W(A))2c/À 	 (2.6.11) 
ai 

and 

b, 

B(i,i) = cyG(27r)d  f A3—d  (A)Ilfy(A))2dA 	(2.6.12) 
a, 
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while the entries of M of (2.6.8) are given by 
bi  

M(i) = ŒG 	 AW(A)111y(À)dA. 	 (2.6.13) 
ai  

Thus the limiting expectation of the estimator is 

f b.z  Aili(A)Wy (Me 
E[On  (i)] ---> 	az 6. 	 (2.6.14) 

A(W(A))2cDt 

Since A and B are diagonal, the components of br,, are asymptotically uncorrelated 

if the process is Gaussian, by Proposition 2.6.2. 

Proof: 

The limit matrix A will be considered first. It follows that 

A(i,i) = cïG 	Ci(P)Ci(P)Pci-l dP 
00 

= 	Tc'  p f cc  A4-2)/2(AP)ii(A)c/A f AJ(d_2)/2(4)111j(A)dA dp 
o 	o 

00 
= ŒG 	AW,POW (A)c/A 

0 
by Parseval's identity. If i j the supports of the functions Wi  and Wi  are non-

overlapping and the integral equals zero. There is nothing substantially different 

about the entries of M. 

For the limit matrix B one considers 
œ 

B(27 = 	

f 

 IMP)1/3(P)Pd-idP 

where 

— 	II) = (i(e — 	=  

and 



ey(o= cy(e,o). 

The Fourier transform of a function f will be denoted by F(f). Let h (x) and 

fy(x) be such that /Pi  = .F(fi) and IPy = fy . The existence of such represen-

tations, together with the fact that the functions f  (x) and fy(x) are nonnegative 

for x E Rd, follows from (2.4.6). By the isotropy, the functions fi  and fy are 

also radially symmetric, that is they depend only on x j. Moreover, by the 

convolution theorem, 

(0i * zPy)(e) = (27r) il2F(fi(e)fy (e)) = (27e2F(wi(11 e 11)wy(II e ID) 

where wy e 	 fy(e) and wi (11 e 11) 	(e). Therefore 

Ci(e) = 
Rd f

i (x) fy(x) exp(i(x, e))dx 

and, by (2.4.7) 
00 

(p) = (2'7)d / 2  p(2-d)12  f 	(A)Wy (A)J(d-2)/2 (4) dA 

Therefore, by Parseval's identity 

fo cc  11,(p)113(P)Pd—'dp 
00 	00 

= (27r)d  f p(f A(À(d-2)12 w imwy(A)) 4_2)/2  (Ap)d),  

0 
00 

Pt(d-2)/2wi MwY (A)) J(d-2)/2 (AP)c/A) d P 
00 

-= (27i-Y1  f  Mtd-2  (Wy (À) )2Wi (A)wi(À)dA 

00 

-= 	 d 	A3-d (Ty(A)W,(A))2dA 
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where öj,j  equals one if i = j and zero otherwise. 
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The requirement for the covariance function to be positive-definite imposes 

the constraint 0(i) > 0 in (2.5.2). It follows from Theorem 2.6.1 that the limit 

0 = A-1M in Proposition 2.6.1 has non-negative entries. This implies that from 

an asymptotic point of view the constraints 	> 0 do not pose any problem. It 

is, however, possible that in a finite sample context the constraints 0(i) > 0 will 

have to be dealt with. 

2.7. APPROXIMATION PROPERTY OF THE SPECTRAL COMPONENT 

MODELS 

In this section the relationship between the covariance functions of isotropie 

random fields and their spectral densities is applied to show that the models of 

the form (2.5.3) can be used to approximate an arbitrary covariance function. 

The following result shows that the class of models defined in (2.5.2) and (2.5.3) 

is dense in the set of isotropic covariance functions satisfying (2.6.4) and whose 

spectral density exists. 

Theorem 2.7.1. Let Cy be an isotropic covariance function in Rd  with a piece-

wise continuous spectral density and satisfying (2.6.4). Let I be a non-negative, 

continuous, bounded function. Then for any > 0 there exists an integer q, 

and positive numbers a, b, for i = 1, ... ,q, such that the intervals [a, b] are 

non-overlapping and the model defined by (2.5.2) and (2.5.3) satisfies 

fo"(cy(p)— 
i=1 

2 
0(i)Ci(p)) pd-l dp < €. 

Proof: 



By Parseval's formula the following holds 

2 

Cy (p) — E 0(i)Ci(p)) pd-l dp 

2 

f: (Wy (A) — E 0(i)xIii(A)) AdA 
7:=1 

b, 

	

= E f (Wy (À) — 0(i)III( ) )2ÀdA + 	(A))2MA. (2.7.1) 
2=1 az 	 5'c 

The set SC is the complement (with respect to the positive real line) of the max- 

	

imal support S of the function 	O(i)Ci , which is the union of the intervals 

bi ]. It is easily seen that the last integral can be made arbitrarily small by 

selecting S = [0,4, since 

	

lim 	(illy(A))2AdÀ = 0 
R—oa 

by (2.6.4). It is also easy to see that the sum 

E  f
bi 

(Illy(A) — 0(i)W(A))2MA 
j=1 az 

	

can be made arbitrarily small by making the intervals 	bi ] small. 

	

Given an integer q, and non-overlapping intervals 	i = 1, 	, q, the 

quantity 
2 

Cy (p) — E 0(i)Ci(p)) pd-l dp 	 (2.7.2) 
i=1 

is minimised by O = A-1M, given in (2.6.6). This follows from elementary prop-

erties of orthogonal projections in inner product spaces. For details, the reader 

is referred to Powojowski (1999a). Hence, the asymptotic bias of the estimated 

covariance function 	â(i)C, can be made arbitrarily small by selecting ap- 

propriate values of q and [ai , 	= 1,... ,q. 
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Moreover, (2.7.1) shows that the same vector 0 = A-1M minimises the quan- 

tity 

(2.7.3) 

Hence, the best approximation of the true covariance function Cy among covari-

ance models of the form j 1  Ki) Ci  in the sense of the norm (2.7.2) is also the 

best approximation of the spectral density Iy among the models of the form 

EL 0(i)11/i  in the sense of the norm (2.7.3). 

2.8. APPROXIMATE LACK OF BIAS AND THE ESTIMATION OF THE 

SPECTRAL DENSITY 

This section illustrates two aspects of covariogram estimation where the ad-

ditive spectral component approach has a distinct advantage over traditional 

approaches. One is the model flexibility, or apprœdmate lack of bias, the other is 

the estimation of the spectral density of the covariance function. 

2.8.1. The bias of the spectral component additive models. 

Traditionally, a parametric covariance model is selected from a small set of 

known positive-definite functions. Some estimation procedure is then used to 

determine the parameters. Among the most popular parametric families one 

finds the exponential, Gaussian, spherical and hole-effect models. These will be 

described shortly. It should be observed that each parametric family imposes 

rigid constraints on the form of the covariogram. Since often there are no good 

reasons for selecting one family over another, it seems likely that often models 

will be misspecified. For example, if the data were produced from the hole-

effect model, but the exponential model is used for the covariogram, the resulting 
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estimated covariogram will not reflect the form of the true covariogram. In this 

numerical study, various traditional models are considered. A spectral component 

additive model is used to estimate the true covariogram. The parameter q and 

the intervals 	bi], í = 1, 	, q are fixed. The spectral component model used 

here has seven components of the form (2.5.6). Four parametric families are 

considered: exponential, Gaussian, spherical and hole-effect. From each family, 

two models are specified. In each of the resulting eight cases it is assumed that 

the specified parametric model is the true covariogram Cy and that the spectral 

component additive model Co  is used to estimate the covariogram. The domain 

where the process is observed is a square with side of length eight (thus the 

dimension d equals two). Eighty locations are initially drawn randomly on the 

domain and in each of the eight cases the process is observed at those locations. 

In each case, the mean of the covariogram estimate CO  is computed from 

E[q] = 	E[Ô(i)]Ci  
k=1 

where from (2.6.1) one has 

E[b] = 	 (2.8.1) 

In each case the mean of the estimated covariogram is compared visually to the 

true covariogram Cy. The departure between the two curves corresponds to the 

bias introduced due to model misspecification. 

2.8.2. The spectral density of the covariance function 

Expression (2.7.1) suggests that approximating the true covariance function 

Cy through spectral components implies approximating the spectral density 

of the covariance function through a sum of elements I of (2.4.2) whose spectral 

supports are non-overlapping. In each of the eight cases considered, the true 
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density function Wy is visually compared to the mean E[I]  of the spectral density 

of the estimate C ô given by 

E[b(i)]%If i  
k=1 

where E[b] is given by (2.8.1). 

2.8.3. The spectral component additive model 

The additive spectral component model will be given by (2.5.2) with the 

components Ci  given by 

id/2 	1/2  (2_d)/2 (b 	jd ,2 (bip) 	a,   jd ,2 (aip)) 
P 	 P 

(2.8.2) 

with d = 2, q =- 7 and (ai , bi) = (0,1), (a2 , b2) = (1, 2), (a3, b3) = (2,4), (a4, b4) = 

(4, 6), (a5, b5) = (6, 8), (a6, b6) = (8, 10), (a7, b7 ) = (10, 16). The components are 

scaled so that Ci(0) = 1, 1 < i < 7 and they are shown in Figure 2.1. 

The spectral density of the component Ci  is 2/(q - e on the interval [az , bd 

and zero elsewhere. 

2.8.4. Parametric models 

This section reviews the standard parametric models which will be compared 

to the mean of the estimated spectral component additive model given next. 

2.8.4.1. The exponential model 

The exponential model can be parametrised as follows (Cressie, 1993) 

Cex(c,a) (p) = eexp(—pl a) 	 (2.8.3) 
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and it is the Hankel transform of 

c 	 1  es(c,a)(À 	(12 	y " 
= —

a2 
• a \ 

(2.8.4) 

Two exponential models are considered, (c, a) = (1, 0.3) and (c, a) = (1, 1). Com-

parisons of the true and modelled covariogram are shown in Figures 2.2 and 2.3, 

while comparisons of their spectral densities are shown in Figures 2.10 and 2.11. 

2.8.4.2. The Gaussian model 

The Gaussian model can be parametrised as 

C ga(c,a)(P) — C exp(— p2  a) 

and it is the Hankel transform of 

W ga(") (A) = —cc21  exp(—aA2/4). 

(2.8.5) 

(2.8.6) 

The Gaussian models considered are (c, a) = (1, 0.2) and (c, a) = (1, 2) and the 

resulting covariances are shown in Figures 2.4 and 2.5. Their spectral densities 

are compared in Figures 2.12 and 2.13. 

2.8.4.3. The spherical model 

The spherical model can be parametrised as 

{

c (1 + CD' — -- ea) if p < a 

0 	 otherwise. 

The spectral density has a rather complicated form and is evaluated from the 

definition through numerical integration instead. The spherical models considered 

are (c, a) = (1, 1) and (c, a) = (1, 3) and the results for the covariance functions 

are shown in Figures 2.6 and 2.7. Comparisons of the spectral densities are shown 

in Figures 2.14 and 2.15. 

esP(c,a)(p) = (2.8.7) 



le ho(c,a)(A) = ca {  
_ A2)-1/2 if 0 < A < 1  a (2.8.9) 

0 	 if 1  < A. a 
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2.8.4.4. The hole-effect model 

The hole-effect model can be parametrised as 

sin(pla)  
Cho(c,a)(p) — ca  P 

(2.8.8) 

while the spectral density is given by 

It is seen that IF has a singularity at 1/a. It is easy to show that this model 

does not satisfy the condition in (2.6.4), so Theorem 2.7.1 does not apply. It is, 

however included here because it is a well-known model. It will be seen that in 

the finite sample context this model can also be well approximated by the spectral 

component additive model. The hole-effect models considered are (c, a) = (1, 0.1) 

and (c, a) = (1, 0.5) and the resulting covariances are compared in Figures 2.8 

and 2.9. Their spectral densities are compared in Figures 2.16 and 2.17. 

2.8.5. Results 

The real covariance functions are compared with the expectation of the esti-

mator of the model defined in Section 2.8.3 in Figures 2.2 - 2.9. In all cases the 

bias seems minimal, which demonstrates the great flexibility of the spectral com-

ponent model. It should be stressed that the model (2.8.2) may have too many 

components to give the best tradeoff between bias and variance when estimating 

the covariance function with eighty observations. The issues involved in model 

selection are addressed in detail in Powojowski (1999b). Here the emphasis is on 

illustrating the model flexibility. 
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The mean estimated spectral densities are shown in Figures 2.10 - 2.17, along 

with the spectral densities of the true models. It is seen that in all cases the mean 

of the estimate provides a fair approximation of the true spectral density. 

o 	 1 	 2 
	 3 

	 4 

distance 

Figure 2.1: Spectral components of the additive model. 
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Figure 2.2: Exponential model with (c, a) = (1,0.3). 
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Figure 2.3: Exponential model with (e, a) = (1,1). 
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Figure 2.4: Gaussian model with (e, a) = (1,0.2). 
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Figure 2.5: Gaussian model with (e, a) = (1,2). 
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Figure 2.6: Spherical model with (c, a) = (1,1). 
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Figure 2.7: Spherical model with (c, a) = (1,3). 
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Figure 2.8: Hole-effect model with (c, a) = (1,0.1). 
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Figure 2.9: Hole-effect model with (c, a) -= (1,0.5). 
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Figure 2.10: Spectral density of the exponential model with (c, a) = (1,0.3). 
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Figure 2.11: Spectral density of the exponential model with (c, a) = (1,1). 
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Figure 2.12: Spectral density of the Gaussian model with (c, a) = (1,0.2). 
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Figure 2.13: Spectral density of the Gaussian model with (c, a) = (1,2). 



0 
Tm9 — 

0.09 

0198 

0.07 

0.05 - 

0.03 - 

002 - 

0.01 

freqrency 
	 15 	 20 

Figure 2.14: Spectral density of the spherical model with (c, a) = (1,1). 
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Figure 2.15: Spectral density of the spherical model with (c, a) = (1,3). 
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Figure 2.16: Spectral density of the hole-effect model with (c,a) = (1,0.1). 
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Figure 2.17: Spectral density of the hole-effect model with (c, a) = (1,0.5). 



2.9. CONCLUSION 

The paper proposes a new class of covariogram models for isotropic random 

processes, the spectral component additive models. The models have a natural 

motivation in the spectral representation of the covariance function. They gener-

alise the ideas of Shapiro and Botha (1991), and possess some desirable properties, 

such as faster rate of decay, as described in the discussion following Proposition 

2.6.1. The proposed class is very flexible, indeed, it contains elements which are 

arbitrarily close to any valid integrable covariance function possessing a spectral 

density. 

The projection estimation methods proposed in Powojowski (1999a) are ap-

plicable to the class of spectral component additive models and lead to partic-

ularly simple asymptotic results. It is seen that the asymptotic mean of the 

projection estimator has a simple expression as a linear functional of the spectral 

density of the true process. It is also shown that, at least in the case of Gaussian 

process, the estimates of the individual covariance components are asymptotically 

uncorrelated. 

A numerical study compares the standard parametric models with the means 

of the estimator obtained with a spectral component additive model of order seven 

(same fitted model for eight different true models). The experiment demonstrates 

that approximate lack of bias can indeed be achieved for a finite sample of eighty 

observations. 

In addition, the study illustrates how the spectral density of the true covari-

ance function may be estimated by the spectral density of the covariance estimate 

obtained using the spectral component additive model. While the spectral meth-

ods have not been applied extensively in geostatistics, it has been suggested that 

the reason for this is the requirement for the observations to be regularly spaced 

107 



108 

on a lattice (Chiles and Delfiner, 1999). Spectral component additive models 

provide a way of estimating the spectral densities from irregularly spaced data. 
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Chapitre 3 

MODEL SELECTION IN COVARIOGRAM 

ESTIMATION 

3.1. ABSTRACT 

The modelling and estimation of the covariance function of a second-order 

stationary, isotropic random process involve a number of decisions in selecting the 

right model. Techniques are proposed, which address the model selection issues 

arising in applying the spectral component additive models described in Powo-

jowski (19994 A data-driven procedure for determining the spectral support 

is proposed. Another procedure is suggested for selecting the end-points of the 

component support intervals. Finally, a criterion is derived for deciding between 

competing models. The techniques are tested using synthetic data and are seen 

to produce good results. Finally, they are applied to a real data set of Davis 

(1973). 

3.2. INTRODUCTION 

For a random process Y (x), x E D, where D is a subset of a d-dimensional 

Euclidean space, the covariogram is defined as C(  x1, x2) = cov(Y (xi ), Y (x2)). A 

common problem in geostatistics is one of estimating the function Cy based on one 

realisation of the process Y observed at a finite number of locations x1 , x2, • • • , x. 
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in D. Tt is important to note that the knowledge of function values C(xl , x2) for 

arbitrary (x1, x2) G D2  is required, and not simply the covariances of Y at lags 

observed in the sample. The fact of observing only one realisation forces one to 

make certain assumptions about the process Y, which translate into restrictions 

on the form of Cy. There also exist theoretical reasons for restricting the function 

families considered. The covariogram has to be a positive definite function. Fur-

ther restrictions may be desirable. In a typical covariogram estimation problem 

it is supposed that the observed process Y follows the model 

Y = X3 + 77. 

The known regressor X contains terms corresponding to the mean of the process 

and any trend that is allowed for, while the parameter ß  is unknown and the 

random term 77 is assumed to have zero mean and an unknown covariogram 

Cy. Throughout the paper, the process will be assumed isotropic, requiring 

Cy(xi , x2) to depend only on x1 — x2  Putting p =x1 — x2  11, the covariogram 

of an isotropic process Y will be denoted by C (  p) = Cy(xi , x2). A covariance 

model Co (p), known up to the value of a finite-dimensional parameter 0, to be 

estimated, is to be fitted to the observed data. Throughout the paper, the model 

Co (p) will be additive, that is, it will have the form 

Co =E ci, 
i=1 

where the functions Ci  are fully specified valid isotropic covariance models. The 

class of spectral component additive models for the covariance function of an 

isotropic random process described in Powojowski (1999b) contains elements ar-

bitrarily close to the covariogram function of any isotropie process with absolutely 

continuous (with respect to the Lebesgue measure) spectral measure. The pro-

jection estimator described in Powojowski (1999a) is well suited for parameter 
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estimation in spectral component additive models. When attempting to use such 

a model, one must decide on the number and shape of the additive components in 

the model. This paper suggests methods of model selection based on the number 

of observations, their locations and the observed values. 

The paper is organised as follows: Firstly, notation is established, the spec-

tral component additive models are introduced and the methods of projection 

estimation are reviewed. Next, a technique for determining the effective spectral 

support of a covariance function is derived and tested with simulated data. The 

issue of end-point selection for the spectral components is addressed next. Sub-

sequently, a criterion for model comparison is derived and tested in a simulation 

study. Finally, all of the proposed techniques are applied to a data set of Davis 

(1973). 

3.3. SPECTRAL COMPONENT ADDITIVE MODELS AND THEIR ESTI-

MATION 

This section defines the notation used throughout the paper, introduces spec-

tral component additive models and the projection estimation methods. For de-

tails on projection estimators the reader is referred to Powojowski (1999a). Spec-

tral component additive models are described in detail in Powojowski (1999b). 

3.3.1. Notation 

To avoid confusion which might arise due to the frequent occurrence of multi-

ple subscripts, the following notation will be used throughout the paper. If A is a 

matrix, its entries will be denoted by A(i, j), while 	may denote a matrix from 

some (doubly) indexed set of matrices. Similarly, if 0 is a vector, its components 
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will be denoted by 	while Oi  may denote a vector from some indexed set of 

vectors. 
In the most general setting, one considers a random process Y on the domain 

D, a subset of a d-dimensional Euclidean space. The process Y is observed at n 

locations 	xi  G D. Let Yn  = (Y(xi), 	, Y(xn)) and Y(i) = Y(xi), 1 < 

i < n. It will be further assumed that 

Yn = Xn0 + 77n 	 (3.3.1) 

where 77n = (77(x1), • • • , 77(x))' and 71 is an isotropic (and hence also second-order 

stationary) random process with E[77] = O. It will be assumed that Xn  has p 

columns corresponding to different regression terms. Thus X(/, k) = rk (xi), 1 < 

k < p, 1 < l < n, where X j  is the /-th location in the sample and rk  is a continuous 

function defined on D and it is the k-th regression term in the mean of Y. If 

present, the term r1 	1 corresponds to the (non-zero) constant term in the 

mean of Y. The term rk (xi) = xi(1), where xi (1) is the first component of the 

d-dimensional vector x1 E D, would correspond to a linear trend in the mean of 

Y(x) in the direction of the first component of x. The matrix Xn  will always be 

known, while the p x 1 vector ,3 may have to be estimated. If C(p) denotes the 

covariance function of the process Y (and of the zero-mean process 	the matrix 

= var(Yn) is a symmetric matrix with entries Ky,n(i, = CY(11 xi — xi 1D• 

If C0  is a given covariance function model, one defines the symmetric matrix 

1(0,n  in a similar way, by putting 	= C0 (11 xi  — xi  11). Thus Kem  is a 

fixed matrix depending only on the model C0  and on the set of locations Ixi lTiL1, 

xi  e D. 
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If Cy is the covariogram of an isotropic random process Y on Rd, whose 

spectral measure is absolutely continuous, it has the spectral representation 

CO 

Cy  (p) = p(2-d)/2 
J 

y (A) J(d_2)/2 (A/9)CM 
o 

(3.3.2) 

where J„ is the Bessel function of the first kind and v-th order and Ty(A) is a 

non-negative function such that Adi2 1y(A) is summable on the positive real line 

(Schoenberg, 1938). The function 	will be referred to as the spectral density 

of the covariance function Cy. The spectral density lIf o  of the covariance model 

Co  is defined by an expression similar to (3.3.2) with Cy replaced by Ce• 

Two intervals [ai , b1] and [a2, b] will be called non-overlapping if their inter-

section is at most one point. 

3.3.2. Spectral component additive models 

For simplicity, it will initially be assumed that the isotropic random process 

of interest, Y, has zero mean. Following the approach in Powojowski (1999b) the 

class of models considered will be parametrised as 

9(i)C(p) 	 (3.3.3) 
i=1 

where 

C(p) = p(2—d)/2 
J 

	
4_2)/2 (Ap)c/A. 	 (3.3.4) 

The functions Ci  will be referred to as the spectral components (as will their 

spectral densities, the functions \Fi  = 111/[a„,b,] when no ambiguity exists). The 

intervals 	bi] are finite and non-overlapping. The function IP(A) is a completely 

specified, non-negative, piecewise continuous function. If d > 1, one convenient 



choice is 

(A) = ( d— 2)/ 2 

since it results in the covariance functions with closed forms 

bd/2 d/2  
Cz(P) = P(2-61)12  HJd12(4) 

a 
	 Jd12(aiP)) • 

Another choice would be 

(3.3.5) 

(3.3.6) 

1. 	 (3.3.7) 

For d = 2 the two are identical, otherwise the latter choice may result in expres-

sions for the spectral components without convenient forms. In any case, it can 

be easily shown that 

2(d-2)/2 fb, 
Ci (0) = r(ci/2) 	1P(A)MA. 

3.3.3. Projection estimators for additive covariance models 

Assuming that the parameter q and the intervals 	bi ), 1 < i < q are given, 

and that the process Y is observed at the locations (xi , x2 , 	, 	, yielding the 

sample Yn = (Y(xi), Y(x2), 	, 	the coefficients 0(i) can be estimated 

via 

Ôn, =[tr(K,,,Ki,n,,nYn] 	 (3.3.8) 

where ên = 01,n, • • • 7 q,n) f  and Ki,„ is the matrix whose (m, l)-th entry is 

C(l Xm  — Xj  11). (The notation [tr(KimKim )] denotes a qxq matrix whose 

(i,i) - th entry is tr(Ki,„Ki,n ). Similarly, [Y,11(4,,Y„] denotes a q x 1 vector.) 

The estimator br, in (3.3.8) may equivalently be defined as the vector 0 which 
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minimises the objective function 
2 

ljnyrit 	0(i)Ki ,„ 11 2= tr (YY71 - E O(i)K,) ) • (3.3.9) 

The properties of the estimator (3.3.8) and its extensions are described in Powo-

jowski (1999a) and Powojowski (1999b). 

As is shown in Powojowski (1999b) if the process is observed on an increas-

ingly large domain at a sufficient number of uniformly placed locations, the func-

tion 

E[Cô(p)] = E EPi]Ci(p) 
	

(3.3.10) 
i=l 

converges to the orthogonal projection of the true covariance function Cy on the 

linear space spanned by the functions Ci, where the inner product is defined as 
00 

(01,952) = f 01(p)02(p)pd-ldp. (3.3.11) 

The norm resulting from the inner product is 

_ 11 01 - 02 11= (01 - 	02)1/2. 021 01 

Applying the definitions and Parseval's formula (Sneddon, 1972), one obtains the 

following expression for the norm of the squared bias 

	

oo 	 2 
11 Cy - 	11 2= f (Cy(p) 	EPi]Ci(p)) pd  - dp 

i=1 
co 	 2 

	

= f 	(IFy (A) - 1:Eg]Ili,(A)) AdA 

q 	19, 

(Wy (A) - EgiT(A))2AD1/ 4  ± f (Wy(MA A))2 	(3.3.13) 
i-1 az 

where SC is the complement (with respect to the positive real line) of the maximal 

support S of the function Co, which is the union of the intervals 	bi]. From 

(3.3.12) 
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the last expression, one gains the qualitative intuition that the bias is reduced by 

making the support S cover more of the support of Ilfy (or at least the portions 

of it where 	takes high values) or by making the intervals 	smaller, so 

that the piecewise approximations of 	(A) by the functions Wi(A) are better. 

A common complication in working with real data is the presence of unknown 

mean in the process. More precisely, the observed process Y is of the form (3.3.1), 

that is 

Yn = Xß +77 

where Xn  is a fully specified regression matrix, ß  is an unknown vector parameter, 

and nn  is a zero-mean, isotropie process. In such a case, one may compute the 

regression residuals en  given by 

en  = 	— Xn(XX,i)-1X:en  = PnYn, 	 (3.3.14) 

where Pr , is a projection matrix. The estimator (3.3.8) extends to the case of a 

process with unknown mean to take the form: 

ân = [tr(Ui,nUj,n)1 1  [ein Ui,n en} 
	

(3. 3.15 ) 

where 

— Pn-Ki,nPn• 

The estimator Ôn  in (3.3.15) may equivalently be defined as the vector 0 which 

minimises the objective function 

11 en,e'n t9(i)Ui,n 112= tr (ene'n 
2 

0(i)Ui ,a ) ). 	(3.3.16) 

 

i=1 i=1 

Details may be found in Powojowski (1999a). 



3.4. SPECTRAL SUPPORT SELECTION 

The model (3.3.3) has a compactly supported spectral density, whereas the 

spectral density 1Py of the process may have infinite support. The expression 

(3.3.13) points out the potential bias that may be introduced by truncating the 

spectral density — namely the last term corresponds to the contribution of the 

frequencies which are not accounted for in the model Co. Since the true spectral 

density Wy satisfies the requirement that Ad/21111,N be summable, if in addition 

Illy is bounded, the term 

Isc  (IFy(A))2AdA 

can be made arbitrarily small by selecting an appropriate compact support S. 

Thus the issue is to select the support S sufficiently large to avoid introducing 

a large bias. This S will be referred to as the effective support of the spectral 

density function of the process. On the other hand, selecting a support larger 

than necessary forces one to use larger intervals [ai, bi ] for the fixed value of q, or 

increasing the number of components q to keep the size of the intervals down. 

A data-driven procedure will now be proposed to determine the effective 

support of Iliy . Given v> 0, the model 

Co,v(p) = 00 ,, 2 p(2-d)12  f i)  AJ( d _2 )12 (Ap)dÀ 
y 

2 
o 

is a special case of (3.3.3), with W(A) 	2/v2, q = 1 and [al , bi ] = [0, v]. It 

is shown in Powojowski (1999a) that under certain assumptions concerning the 

sampling configuration, as the number of observations n increases, one has 

(CO3  Cy) 
lim ES , ,,„] = , ' , , 

n—>oc, 	 (CO3v)  Lio,v) 

where bo,,,,n  is the estimator given by (3.3.8) for the one-component model (3.4.1), 

computed from the Ti available observations of the process Y. The inner product 
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is that given by (3.3.11). Using the spectral representation of the last result, as 

presented in Powojowski (1999b), one obtains 

 

iify(A)11f(A)AdA 
C0,1,) 	fov(4/(A))2 AdA 

Lu 
Illy(A)AdA 

 

since the function I is a constant chosen to satisfy the last equality. Thus for 

a sufficiently large sampling domain, sampled sufficiently densely (in the sense 

made precise in Powojowski, 1999a), one obtains 

E[éjo,v] 
(CO3 v,  

= f Wy(A)MA. 	 (3.4.2) 
(CO3,, ‘-)0,v) 	0 

Hence, assuming that Ô0 ,1, is a continuously differentiable function of v (which is 

easily verified), one obtains 

a 
E[—

a ôo v ] = —E[âo  y]  (3.4.3) 

The procedure consists of constructing a large number k of models of the form 

(3.4.1) where the values v are taken to be 

= — V k  TriGtX 1<j<k 	 (3.4.4) 

where vmax  is a fixed value, believed to be high enough so that higher frequencies 

must be irrelevant. (Some heuristics for the selection of vmax  will be given later.) 

The estimator tjo,„, of (3.3.8) is computed for 1 < j < k. Plotting the values 

— bowi _ i )/vi  against the values vi  for 1 < j < k provides an estimateÎ (v) 

of Wy(vi). The estimate is a function of v which can be examined to determine 

whether there seems to be a point vt  beyond which 	(V) is essentially zero. The 

interval [0, vt] will be used as the effective support of Ty. 
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The selection of vmax  may be based on the availability of sampling locations. 

The basic idea is that if the sampled locations (x1, 	, xn,) provide minimal non- 

zero distance of prnin  between sampled locations, one is unlikely to be very suc-

cessful at fitting a model of type (3.3.3) containing components whose behaviour 

on the interval [0, pmin] varies considerably, since there simply are no data for 

it. Examining the representation (3.3.2) of the covariance function, one observes 

that on any compact set Cy (p) may be approximated arbitrarily closely by a sum 

of the form 

czp(2-d)/2 
d (d-2)/2 (ViP)• 
	 (3.4.5) 

The function p(2—d)/24_2)/2 (p) has the value 2(d-2)/2 /F(d/2) at the origin and as 

p increases, eventually hits its first zero at some value pd ,i. It would seem futile 

to include components in (3.4.5) which attain zero for values of p less than prnin . 

Since the first positive root of J(d_2)/2(viP) is pd,i/vi, one may take the value of 

Vmax = Pd,11 Pmin as a rough heuristic guess. While it is entirely possible that the 

contribution of frequencies higher than Pd,1 I Prnin to the spectral density Ty are 

significant, the prospects for their adequate modelling and estimation given the 

available data are slim. For d = 2 one has approximately p2,1  = 2.4048, the first 

positive root of the Bessel function Jo. 

The procedure is illustrated by a simulation study. A square with side 

of length two is sampled uniformly to select twenty locations which are fixed 

throughout the study. Two covariance models are used to simulate zero-mean 

Gaussian random processes on the square (hence the domain is two-dimensional). 

Both models have the same parametric form: 

Cy(p) = cexp(—pla) 	 (3.4.6) 



and their spectral densities are given by 

-3/2 

a 
	 (3.4.7) 

In both cases c = 1, with a = 0.3 for model A and a = 1 for model B. In 

each case the process is observed at the fixed twenty locations and the spectral 

density estimate 11'17(V) is computed as described above. The number of discrete 

considered is k = 200 and the minimal (non-zero) distance found in the sample 

is 0.0450, thus producing vmax  = 53.44. Thus for each realisation a curve is 

obtained by plotting the values (bc,,,,i  — 	against the values vi  for 1 < 

j < k. To avoid excessive cluttering, only twenty simulations were performed. 

The curves obtained are plotted, along with the true spectral density, in Figures 

3.1 and 3.2. Since in both cases 4y(v) becomes very nearly zero for values much 

smaller than vmax  = 53.44, the plots shown in Figures 3.1 and 3.2 are truncated 

at vmax  = 25 and vm„. = 12, respectively. While the procedure admittedly has 

a subjective component (of having to choose the first point beyond which the 

estimated spectral density becomes zero), it appears that the effective support of 

the true density function is captured rather well by the estimates. It is seen from 

Figure 3.1 that based on any one of the plotted realisations, the effective support 

would likely be selected to be the interval starting at zero and ending somewhere 

between 7 and 15, which seems reasonable given the shape of the true spectral 

density function. Figure 3.2 implies that the effective support would likely be 

selected to be the interval starting at zero and ending somewhere between 3 and 

9, which again seems reasonable. 

In practice the mean of the process Y is often not known. In this case 

one attempts to model the mean of the process Y as in (3.3.1) and apply the 

estimator (3.3.15) to estimate the covariance function of the process. To estimate 
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the effective spectral support of the true covariance function, one modifies the 

approach described above by using the estimator in (3.3.15), rather than that in 

(3.3.8) to obtain Ô0,,,i  . This approach is tried for models A and B described above. 

Two choices of the mean model X„ are considered. In one case the regressor 

matrix X, is assumed to contain just one column of ones (thus Y has non-

zero, but constant mean). Hence in this case Xr, = Xconst has one column with 

X con st (k , 1) = 1, 1 < k < n. In the other, X„ contains three columns which allow 

for any linear trend on a two-dimensional domain. In this case X7, = Xun, has 

three columns with the k-th row of the matrix X j  being (I, xk(1), xk  (2)), where 

(xk  (I), xk  (2)), 1 < k < n are the coordinates of the k-th location in the sample. 

The results of estimating f y(V) are presented in Figures 3.3 and 3.4 for the 

constant mean Xconst , and in 3.5 and 3.6 for the linear trend X 1 . It appears that 

the spectral density is underestimated when the residuals are used, particularly 

for low frequencies. This is intuitively correct, since low frequency dependence 

in the data will be indistinguishable from a linear trend on a sufficiently small 

domain. Computing the residuals after fitting a linear trend will effectively filter 

the low-frequency components out. The encouraging message from the figures is 

that the effective support of the spectral density can still be inferred with the 

described method. 
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Figure 3.1: Estimates of the spectral density of model A. 
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3.5. END-POINT SELECTION 

Having selected the support for I (possibly by the methods described in 

the previous section), one is faced with the problem of selecting the number of 

components q and the interval ends ai  and b , for 1 < i < q. This section deals 

with selecting the end-points, assuming that both the support [0, vi] and the 

order q have been decided upon. For simplicity the class of models with IF(A) 

given by (3.3.7) is considered, though the principle can be applied generally. 

Optimal selection of the end-points depends on the ultimate goals one wants to 

achieve. Often the covariogram estimation is an intermediate step in a larger 

study. This section discusses some possible approaches to end-point selection, 

while recognising that different criteria of optimality may be dictated by the 

broader objective of covariogram estimation. 

As is seen in expression (3.3.13), the contribution to the squared bias from 

the spectral component Ci  is 
bj 

hi  = min ff (y ()t) — 0(i))2AdA 	 (3.5.1) 
Ki) 	a, 

and it is caused by the departure of the function Ty (À) from being constant on 

the interval 	bd. To simplify the analysis, it will be assumed that the function 

is approximately linear in that interval, hence 

lify (À)7:.%a + eiA, 	A E 	bi }. 	 (3.5.2) 

If (3.5.2) holds exactly, it can easily be shown that 

hi 	eî 	
( 

(9 	a4, 8 	_ aDv,\ 	
3.5.3) 

36 	") 	— aî ) • 

Not surprisingly, higher absolute values of 0, cause larger contribution to bias. 

If some prior knowledge of the steepness of the function Wy (À) is available, it 

could be used to ensure that regions where Illy(A) changes rapidly are divided 
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into smaller intervals than flat regions. The estimated spectral density curve of 

the previous section may give some indication of the derivative of Ty(A). 

Assuming that nothing is known about the slope of ‘Ify(A), one may try to 

select end-points in such a way that for equal values of 	for all 1 < i < q, the 

contributions hi  to bias from components Ci  are equal. 

This may be compared to choosing equal length bins for probability density 

estimation via histogram. Equal length bins are the optimal choice only if the 

true density has constant slope over its entire support, which generally is not the 

case. However, in the absence of knowledge about the slope of the true density 

one usually chooses the equal bin sizes, which contribute equal error terms due 

to approximation by a step function under the assumption that the slopes of the 

density function are equal in each bin. 

Assuming that the lei  are equal, it can easily be shown that in order to 

construct q adjacent intervals with equal values hi, together with al  = 0 and 

b1 	b> 0, one puts 

	

bi  = bi 	1 < i < q 	 (3.5.4) 

ai+1. = 	1 < i < q 	 (3.5.5) 

where the -xi  are defined recursively by 

— 1, 

and where y  is the smallest root of the equation 

	

- 1) 8 	32 	 1171) = 

_1)2 	3 	- 4 

1=1 

which exceeds 1. The recursive definition is used to compute the initial ten 

values of -yj, shown in Table 3.1. In order to construct q intervals whose joint 
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j 1 2 3 4 5 6 7 8 9 10 

ryi  1 1.637 1.342 1.234 1.178 1.144 1.121 1.104 1.091 1.081 

Iti 7/ 1 1.637 2.196 2.711 3.194 3.655 4.096 4.522 4.936 5.338 

Table 3.1: Solutions of the recursive equation for optimal end-points. 

support is [0, vt] it suffices to put b = vt l(M171). It is apparent that the above 

construction of intervals 	bi] results in shorter intervals at higher frequencies. 

This is a consequence of the weighting by À in the integral in (3.5.1). While this 

is consistent with the definition of the inner product in (3.3.11), it downplays the 

importance of good fit for low frequencies A and sometimes leads to covariance 

models whose visual fit may seem inadequate. In geostatistical practice, the 

short-range behaviour of the covariance model is usually most important, hence 

the emphasis on high frequencies may be desirable. 

However, for some applications one may be more concerned with accurate 

estimation of low frequencies. This might be the case, for example, if one were 

interested in the range over which the covariance function is considerably different 

from zero. In such applications, it is possible to define an alternative inner product 

to (3.3.11), giving rise to a norm (defined by (3.3.12) with the new inner product) 

which is more sensitive to differences at lower frequencies. For example, on the 

space of functions of the form 

00 

(p) 	 f)(2—d)/2 f uji(A) j(d  2)/2(AMA 

Cl 
(3.5.6) 

where the functions A 1/2111,(A) are summable, one may define the inner product 

(01, 02) w = f 111  J.(A)W 2(A)w (Md p 
	 (3.5.7) 
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where w (À) is any fixed, piecewise continuous, bounded function. The set of valid 

covariance functions possessing spectral density is a subset of this inner product 

space. 

The natural interpretation of 11 Cy — E[C] 	as the squared bias of Cê 

is not preserved, since Parseval's formula no longer applies. Setting w(A) 	1 

results in the following expression for the measure of departure due to the i-th 

spectral component 

bi 
= min{/ (y (À) — 0(i))2c/Al. 

Ki) 
(3.5.8) 

In order to make these contributions equal under the assumptions of linearity of 

as in (3.5.2) and the equality of the lei ', the lengths b — ai  of the intervals 

must be equal. 
Thus the optimal choice of the end-points may depend on one's broader 

objectives. In subsequent sections the first method described in this section will 

be applied. 

3.6. MODEL COMPARISON 

So far the discussion of appropriate model selection has been concerned with 

reducing the bias only. As is often the case, there is a tradeoff between construct-

ing richer models to reduce bias and keeping the number of parameters to be 

estimated small in order to reduce the overall variance. The standard approach 

is to minimise the mean squared error of the estimate. Let the process Y with 

the true covariance function Cy be observed at the locations (x1, x2, 	, xn ) and 

let Ki be the matrix whose (m, 0-th entry is Ci (11 xn, — x1  ), with the matrices 

Ky and K0  defined in an analogous fashion. Thus K0  = ELi  0(i)Ki  for any 



vector 0 = (0 (1) , 0 (2) , . . , (q))' . The quantity 

E[tr((Ky — KI; )2 )] 	 (3.6.1) 

is the total mean squared error between the true and the estimated values of the 

covariance functions. The vector Ô minimising this quantity is the estimator in 

(3.3.8). In particular, it follows that 

tr(Ki  (Ky — KE[b] )) = tr(Ki  (Ky — 	E[bi ]l( i )) = O. 	(3.6.2) 

Putting K R  = Ky — EL E[Ô]K, one obtains 

2 
E[tr((Ky - K)2)] = E [tr (E(E0i1 — bi )Ki  + KR) )] 

i=1 

= E E cov(Ôi, bi)  tr(KiKi ) + tr(4) 
i=1 j=1 

> cov 	tr(KiKi ) + tr (Ky — 	E[Ô]Ki
)2) 

i=1 j=1 	 i=1 

tr(KiKi ) — 	>2,  E[bi ]E[Ôi ] tr(KiKi ) + tr(Ke). 
i=1 j=1 	 i=1 j=1 

The last term in the last expression does not depend on the model, so it can be 

dropped for the purpose of comparing different models. Therefore, the goal is 

to find the model (defined by the parameters q, ai  and bi  for 1 < i < q) which 
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minimises the criterion 

s,E>:( cov( Ôi,Ôi ) — E[Ô]gbi]) tr(KiKi ) 
j=1 j=1 

= tr [cov(bi , bi) - E[Ôi ]E[iji ]] [tr(KiKi )]) 

q 
,EE(2cov0i, - Egbil) tr(KiKi ) 

i=1 j=1 

= tr [2cov (bi , Ô.J ) - EWA] [tr(KiKi )]) . (3.6.3) 

In practice the values cov(bi , 	E[ô], and E[ôâi ] are not known and must be 

estimated. Clearly, Egâil can be estimated without bias by 	Constructing 

an estimator of cov(âi , bi ) is harder. In the remainder of this paper, the process 

Y will be assumed Gaussian. In that case one has 

var(Ô) = 2[tr(Ki,„K3,,,)]-1[tr(Ki,nKy,.K3,nKy,n)][tr(Ki,„Ki,„)]-1 	(3.6.4) 

which leads to the plug-in estimate 

var(ô) = 2[tr(Ki,„Ki,„)]-1[tr(Ki,„KiiK3  Kb )][tr(K,,,Ki ,„)]-1. 	(3.6.5) 

The plug-in estimate, though biased, leads to a computable approximate criterion, 

given by 

= tr (4[tr(Kz,„Ki,n )]_1 	 - 	[tr(KiKi )]) . (3.6.6) 

The use of the criterion is now illustrated in a simulation study. A ran-

dom Gaussian process in two dimensions is simulated on a square with side of 

length two. The simulated process will have known zero mean and the covariance 

function given by 
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C(p) = c exp(- p2  la) 	 (3.6.7) 
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model (q) (ai, bi) (a2, b2) (a3, b3) S20 S80 

A 2 (0, 6.111) (6.111, 10) - -15.453 -115.935 

B 3 (0, 6.830) (6.830, 11.178) (11.178, 15) -14.651 -126.633 

C - 	2 (0, 9.166) (9.166, 15) - -17.561 -133.55 

Table 3.2: Three models to be fitted. 

with spectral density given by 

Wy(A) = —
ca exp(—aA2/4). 
2 

(3.6.8) 

The parameters a and c equal 0.2 and 1.0 respectively. The true model is assumed 

unknown, and three different spectral component additive models are fitted to 

the simulated data. The function Ilf(A) in (3.3.4) is assumed constant. Model 

orders considered are q = 2 and q = 3. The model parameters are given in 

Table 3.2. Model A was constructed to have two components and the spectral 

support [0, 10], while models B and C were constructed to contain three and 

two components, respectively, and to have spectral supports [0, 15] and [0, 10], 

respectively. In all cases the end-points for the spectral components were selected 

using the method described in Section 3.5. The entire procedure is repeated t-wice, 

once with a sample of size twenty, once with a sample of size eighty. In both cases 

the sampling locations are initially obtained by a random sampling on the square 

and thereafter remain fixed throughout the study. Knowing the true covariance 

function, it is possible to compute the exact criterion (3.6.3) for all three models. 

Their values are given in the last two columns of Table 3.2, with Sn, denoting 

the criterion computed for the sample of size ri. The model which minimises the 

criterion would be considered optimal. 
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In practice, the true covariance is unknown and one can only compute the 

estimated criterion (3.6.6). To assess how well the estimated criterion performs, 

for each model one hundred samples of size twenty were simulated and (3.6.6) was 

computed. The same was repeated for samples of size eighty. In each simulation 

the three models were then compared pairwise (A to B, B to C and A to C) using 

the approximate criterion (3.6.6). Since the true model is known, the models 

A, B and C can also be compared pairwise based on the exact criterion (3.6.3). 

The frequency with which the pairwise comparisons based on the approximate 

criterion agreed with the comparison based on the exact criterion was assessed. 

The results are summarised in Table 3.3. The entries below the diagonal give the 

number of simulations (out of a hundred), where model selection based on 520 

would give the same result as selection based on the (unknown in practice) exact 

criterion S20, while the entries above the diagonal contain analogous information 

for :980 versus S80. The agreement seems remarkably good. 

For both sample sizes, model C is better than the other two. However, for 

n = 80, model B is better than model A. Figures 3.7 - 3.9 compare the true 

spectral density of the process with the mean spectral densities of the models A, 

B and C, computed from 

E[IPii (A)] 
	

E[â(i)]Ilf i (A) 	 (3.6.9) 
i= 

where 

E[ê] = [tr(KimK3,n)]-11tr(K2,„Ky,„)], 	 (3.6.10) 

as follows from (3.3.8). As can be observed from Figures 3.7 - 3.9, a good portion 

of the spectral density of the true covariance function extends beyond A = 10. 

Truncating the spectral density to A < 10 introduces a large bias. For a large 

sample, this bias contributes more to the mean squared error than the increase 
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model A model B model C 

model A - 93 98 

model B 76 - 92 

model C 97 100 - 

Table 3.3: Percentages of accurate pairwise comparisons based on the estimated 

criterion (comparison based on the frequency with which the approximate criterion 

agreed with that based on the exact criterion). Entries below the diagonal are for 

n = 20, above the diagonal for n = 80. 

in variance caused by the addition of another component to the model. Hence 

model B becomes better than model A. However, model C has the same spectral 

support as model B and one fewer component. Its lower variance makes it better 

than model B. Figures 3.10 - 3.12 compare the true covariance function of the 

process with the mean of the estimates of covariance functions from models A, B 

and C, computed from 

E[Câ (p)] = 	Er6 (i)1C (p) 	 (3.6.11) 

where E[ô] is given by (3.6.10). A visual inspection of Figures 3.10 - 3.12 reveals 

that the mean of model B indeed seems closer to the true model than that of 

model C, but the latter seems acceptable, particularly at small distances. 
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model (n=---80). 



3.7. CASE STUDY 

The methods of the previous sections are now applied to the data set of 

Davis (1973), representing 52 surface elevation measurements. The first step is 

recognising the need for modelling the process mean. Two different models for 

the mean will be used. In the first one, the mean of the process will be assumed 

to be an unknown constant, which leads to the regressor matrix Xconst in (3.3.1). 

In the other, the mean of the process is assumed to be an arbitrary unknown 

linear trend, which leads to the appropriate regressor matrix Xun . The matrices 

)(cime and Xun  are obtained in the same way as described in Section 3.4. 

3.7.1. Spectral support determination 

The next step involves determining the support of the spectral density of the 

process, as described in Section 3.4. The procedure is performed with both sets 

of residuals — that resulting from )(cone, as well as that resulting from using 

A grid of 200 values was used to estimate the spectral density and the 

smallest non-zero distance found in the sample is pmin  = 0.2, hence one obtains 

vmax  = 12.024. The results are shown in Figures 3.13 and 3.14. It turns out 

that the estimated spectral density is essentially zero for v much smaller than 

1)rnar = 12.024, and therefore the plots in Figures 3.13 and 3.14 are truncated at 

v = 6. It appears that the spectral support for the residuals from fitting a linear 

trend may be larger than that for the residuals from the constant mean model. 

The former will be assumed to be adequately covered by the interval [0, 5], while 

the interval [0, 2.5] will be used for the latter. 
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model (q) (ai , bi) (a2, b2) (a3, b3) (a4,b4) W 

A1 4 (0, 0.922) (0.922, 1.509) (1.509, 2.025) (2.025, 2.5) no 

A2 3 (0, 1.138) (1.138, 1.863) (1.863, 2.5) no 

A3 2 (0, 1.528) (1.528, 2.5) - - no 

A4 3 (0, 1.528) (1.528, 2.5) - yes 

Table 3.4: Four covariance models to be fitted together with the constant model 

for the mean. 

3.7.2. Model building 

The next step is building a covariance model to be fitted. Four models are 

considered for each model of the process mean. Table 3.4 describes the models 

used together with the constant mean model, while Table 3.5 shows the models 

used together with the linear trend mean model. The endpoint selection was 

performed based on the procedure described in Section 3.5. The last columns in 

Tables 3.4 and 3.5 indicate whether the nugget effect component is included in 

the model. The nugget effect is a common modification in geostatistics (see, for 

example Cressie, 1993), where a component of the form 

147(p) =
{1 if p =0 

0 otherwise 

is added, leading to a model of order q +1: 

(3.7.1) 

Co(P) = 	(P) + 
	8(i)C,(p). 	 (3.7.2) 
i=1 

For details on projection estimation in models including the nugget effect com-

ponent, the reader is referred to Powojowski (1999a). 
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model (q) (ai, bi) (a2 , b2) (a3, b3) (a4, b4) W 
B1 4 (0, 1.845) (1.845, 3.019) (3.019, 4.051) (4.051, 5) no 

B2 3 (0, 2.277) (2.277, 3.726) (3.726, 5) - no 

B3 2 (0, 3.055) (3.055, 5) - no 

B4 3 (0, 3.055) (3.055, 5) - - yes 

Table 3.5: Four covariance models to be fitted together with the linear trend model 

for the mean. 

3.7.3. Estimation and model comparison 

Since the mean of the process is not known and has to be estimated, the 

estimator (3.3.15) will be used. Two different models for the mean of the process 

Y will be applied. They will be the same models as in Section 3.4, that is X„fist  

which models a constant mean of Y and Xun, which models any linear trend. 

The estimates Ô, (i) will also be constrained to be nonnegative. This is neces-

sary for the estimated model to be a valid covariance function, that is a positive-

definite function. Thus in practice the estimator (3.3.15) will be computed for all 

submodels (by excluding certain additive components) and the model minimising 

the objective function in (3.3.16), while satisfying ô(i) > 0 for all its compo-

nents, will be retained. Thus the estimator Ô is the vector that minimises the 

objective function 

tr((ene'n  — 
i=i 

subject to the constraints 0(i) > 0. In other words, the optimisation of the 

function in (3.3.16) will be performed over the positive quadrant Rd+, rather than 

over the entire space Rd. 
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model bi 02 63 6.4 W :9 

Al 6130.81 0 358.062 0 - 7.366e+09 

A2 5941.79 0 158.11 - - 1.878e+09 

A3 5604.31 0 - - - -1.871e+09 

A4 5604.31 0 - - 0 -1.780e+09 

Table 3.6: Estimated parameters for the four covariance models fitted together 

with the constant model for the mean. 

model 01 62 03 64 W Š 

B1 1587.29 0 66.378 227.463 - -1.571e+08 

B2 1602.08 0 174.776 - - -1.771e+08 

B3 1494.11 70.776 - - - -1.335e+08 

B4 1494.11 70.776 - - 0 -1.215e+08 

Table 3.7: Estimated parameters for the four covariance models fitted together 

with the linear trend model for the mean. 

The results are shown in Tables 3.6 and 3.7. The resulting estimated co-

variance functions for models Al - A3 and B1 - B3 are shown in Figures 3.15 

- 3.20. In those figures, the products of residuals are marked as individual dots 

with coordinates (il xk  — xi II, e(k)e(/)), where 1 < k < 52, 1 < j < 52 and 

e(k) = Y (k) — Ý(k) is the residual computed as in (3.3.14). The curves plotted 

in the figures are (p, C9  (p)) , where the estimated values of Ô are given in Tables 

3.6 and 3.7. Table 3.6 indicates that for the constant mean model the optimal 

covariance model is A3. However, only the first additive component has a nonzero 

coefficient, which makes the best fit a single-component model. From Table 3.7 
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one observes that the optimal model is B2, which also has one of its three terms 

eliminated. In neither case did the inclusion of the nugget effect lead to a better 

model. (The plots of the fits with nugget effect are not shown, since they are 

identical to models A3 and A4.) It would seem that the curve obtained with 

model A1 may be a little too high. This may be due to the fact that this model 

contains a very low-frequency component, which may be poorly estimated. 

While the plots seem to indicate that the estimated model follows the data 

fairly well, Figures 3.15 - 3.20 may be misleading. Let P denote the projection 

in (3.3.14). The mean of e(k)e(1) is (PKyP)(k,l), rather than Ky(k, l), which 

may be estimated by (PK e)(k,l) rather than by Kb(k, l). It may therefore be 

informative to plot the points (11 xk  —X, (PK t,P)(k, l)) along with the products 

of residuals. This is carried out for models A3 and B2 and the resulting plots 

are shown in Figures 3.21 and 3.22. One observes that in those two cases the 

plots of fitted covariograms (Figures 3.17 and 3.19) and the plots of estimated 

covariances of residuals (Figures 3.21 and 3.22) are similar. 

Comparing the results of this section with models previously fitted to the 

same data (e.g. Ripley, 1988, Wackernagel, 1995), one observes two main dif-

ferences. Firstly, the models for the mean of the process used by those authors 

are linear trends or quadratic surfaces. It seems that the constant mean model 

was not attempted. No reasons are given for this omission, but it appears that 

the products of the residuals from the constant mean model are not very well 

estimated by a covariance model which is positive everywhere, such as the expo-

nential or the Gaussian model used by the authors. This leads to the other major 

difference, namely the presence of negative covariances in the estimated model. 

Visual examination of Figures 3.15 - 3.20 suggests that negative covariances are 

plausible. Spectral component additive models are capable of capturing negative 
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covariances, while the exponential or the Gaussian model is not. The flexibility of 

spectral component additive models is illustrated in Powojowski (1999b), where 

comparisons are made to a number of standard parametric models. The results 

of this section further indicate that spectral component additive models can cap-

ture detailed features of the covariogram, which may be difficult to reproduce 

with standard parametric models. 
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Figure 3.22: Products of residuals and estimated covariances of residnals (model 

,B2). 



3.8. CONCLUSION 

The paper examines model selection issues involved in the modelling and es-

timation of the covariance functions of isotropic random processes. The class of 

spectral component additive models, introduced in Powojowski (1999b), is con-

sidered in detail. A data-driven procedure for determining the spectral support 

is proposed. Another procedure is suggested for selecting the end-points of the 

component support intervals. Finally, a criterion is derived for deciding between 

competing models. These techniques are tested using synthetic data and are seen 

to produce good results. 

The proposed techniques are applied to a real data set of Davis (1973). The 

data set has been examined by a number of researchers, among others Ripley 

(1988) and Wackernagel (1995). The spectral component additive models appear 

to bring a few new elements to the analysis of the data set. One is their ability to 

capture fine features of the covariogram, such as regions of negative covariance. 

Another is the information about the spectral density of the covariogram, such 

as its effective support and relative contributions of different frequencies. While 

the spectral methods have not been applied extensively in geostatistics, it has 

been suggested that the reason for this is the requirement for the observations to 

be regularly spaced on a lattice (Chiles and Delfiner, 1999). Spectral component 

additive models provide a way of estimating the spectral densities from irregularly 

spaced data. 

In addition, the implementation of the estimation and model selection proce-

dures is very straightforward and usually requires only linear algebra tools. The 

model selection techniques presented here seem highly practical in working with 
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real data. Additional work is required in establishing the impact of estimating the 

mean of the process on the estimation of low-frequeney covariance components. 

In addition, criteria for selection of the mean model would be very useful. 

REFERENCES 

ADLER R.J. (1980). The Geometry of Random Fields. John Wiley & Sons. 

CHILES, J.P., DELFINER, P. (1999). Geostatistics: modeling spatial uncertainty. 

John Wiley & Sons. 

CRESSIE, N.A.0 (1993). Statistics for Spatial Data. Revised edition. John Wiley 

& Sons. 

DAVIS, J.C. (1973). Statistics and Data Analysis in Geology. John Wiley & 

Sons. 

POWOJOWSKI, M. (1999a). Additive Covariogram Models and Estimation through 

Projections. In preparation. 

POWOJOWSKI, M. (199913). Estimation of the Covariogram of an Isotropie Pro-

cess through Spectral Component Additive Models. In preparation. 

RIPLEY, B.D. (1988). Statistical Inference for Spatial Processes. Cambridge 

University Press. 

SCHOENBERG, I. J. (1938). Metric spaces and completely monotone functions. 

The Annals of Mathematics 39 811-841. 

SNEDDON, I.N (1972). The Use of Integral Transforms. McGraw-Hill. 

WACKERNAGEL, H. (1995). Multivariate geostatistics. Springer-Verlag. 



CONCLUSION 

Cette thèse présente une nouvelle approche à l'estimation de la fonction de 

covariance. Elle propose une nouvelle classe de modèles de covariance pour des 

processus isotropes, ainsi qu'un nouvel estimateur pour des modèles additifs. Les 

trois articles traitent de la construction du modèle, la sélection du meilleur modèle 

et l'estimation des paramètres. Des propriétés théoriques de l'estimateur sont ob-

tenues. La mise en oeuvre de l'approche est illustrée par une application aux don-

nées de Davis (1973). Cette nouvelle approche présente de nombreux avantages, 

déjà mentionnés dans le texte. En conclusion, on mentionne des généralisations 

possibles de l'approche. 
Une généralisation permettant l'estimation du variogramme plutôt que du 

covariogramme est en principe possible. Le variogramme est défini par 

7(xi., x2) = var(Y(xi) — Y(x2))• 	 (3.8.1) 

Au lieu de considérer l'ensemble de matrices dont les éléments sont K(k, /) = 

cov (Y (xi,), Y (xi )), on peut considérer les matrices définies par 

L(k, /) = (Y (x k ), Y (xi )). En définissant un produit scalaire dans l'espace de 

matrices symétriques (possiblement le même que dans le premier article) on peut 

obtenir un estimateur par projection de paramètres d'un modèle de la forme 

761 
	 (3.8.2) 

où les yi  sont des modèles de variogramme déterminés. 
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Il n'est pas clair que les propriétés asymptotiques peuvent être reproduites 

pour cet estimateur. La difficulté provient du fait qu'un variogramme ne converge 

pas vers zéro lorsque la distance augmente. 

Une autre généralisation facile est l'application de l'estimateur par projection 

à des observations qui ne sont pas les valeurs du processus Y même, mais plutôt 

une transformation linéaire Z = GY de Y. Si la matrice G n'est pas inversible, 

les valeurs de Y ne peuvent pas être récupérées à partir de Z. De plus, Z peut 

être non stationnaire même si Y est stationnaire. Si le covariogramme de Y peut 

être modélisé par 

Ky = 	0(i)Ki 	 (3.8.3) 
i=1 

il s'ensuit que 

Kz = 	0(i)GKiG 	 (3.8.4) 
i=1 

L'estimateur par projection peut être employé avec des observations de Z afin 

d'estimer les paramètres O(i) du modèle (3.8.4). Cela produit un estimé EL Ô(i)Ki  

de K. 

Finalement, une généralisation aux modèles non additifs (non linéaires) est 

possible. L'estimateur par projection peut être défini comme la valeur 0 qui mi-

nimise la norme 

/7111 	Ko II 
	

(3.8.5) 

où Ylri  est la matrice de produits des observations de Y ou de leurs résidus, 

tandis que Ko est une matrice de covariance obtenue par le modèle. Si Ko dé-

pend de 0 de façon linéaire et la norme est définie par un produit scalaire, on 

obtient le cas considéré dans cette thèse. Cependant, si Ko  n'est pas additif, on 

peut toujours définir un estimateur Ô comme le paramètre qui minimise (3.8.5). 
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Certains avantages de l'estimateur par projection sont préservés, par exemple le 

calcul du variogramme ou covariogramme empirique n'est pas nécessaire et l'esti-

mateur n'exige pas que le processus soit stationnaire. D'autres propriétés ne sont 

pas facilement retrouvées car des expressions simples ne sont pas généralement 

disponibles pour la moyenne ou la variance de l'estimateur. 



Annexe A 

PROOFS OF THE RESULTS 

Proof of Lemma 1.5.1: 

Let e > O. For any positive integers n and k, let {Ail, 	, An denote the 

partition of D as in Definition 1.5.2. Then 

= E Pirt'k  01(X, e7il' k )02(y ek) E 	 çbi (x, xi)02(y, xi)  
i=1 

where  pin,k = : 1 < / < n and xi E An1 and ek  is a point in e This is 

a simple consequence of the continuity of 01 and 02 and the connectivity of e 

since there is a point e'k E A such that 

01(x,n,kezn,k\ qmx, xi)02(y, xo• ) pn,k 

	

z 	11:1<1<n and xiEAn 

Hence 

Rine'  = x )02(y, X1) — f 01(X e)02(y e) f (e)de 
1=1 D 

p(kDyLl(AnPin'k 01(X eilje ) 2(y,)0 

- E 	oi (X e)o2(y,e)f(e)ck 
i=1 



since p(A) = ,u(D)/k. Putting (x, y, = ol(x, )02(y , e) one obtains 

  

L
k  	 

i ,( ja(D)riz 	(x e) '0(x, Y , e)f (e))de Rn = 
2= 

 

  

'Élp(x,y,d) fD) 	n (  k Pi!"  
i=1 	

f (e)) de µ (  

+E 	 f (0(0(x, e)  

Since the function î is continuous on the compact domain D3 , it is uniformly 

continuous on D3. Thus there exists ê > 0 such that 

Il (xi, 	— (x2, y2, z2) 11< 	( — '0(x2, Y2, z2)I < c 

for all (x1, Yi, zi) and (x21 Y21 z2) in D3 . Since the diameters of the sets ie converge 

uniformly to 0 as k ---> Do, for any å > 0 it is possible to find K such that 

k > K 	diam(Aik ) < Ô, 	i = 1, 	, k. 

Hence it follows that for k > K 

E 	— 

  

(0(x, y, e) - 0(x y, e)) de 
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_EEf =ef f(e)de=E. 
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It is important to note that the choice of K is not dependent on x, y or n, but 

solely on c. This leaves the term 

f 	k  P!" 
jAi:11(D)  in 	f ())< 

pk,n 

E o(x, e) 	 
r 
 f (e)<JA 	) 

i-1 

where M is a bound on Io (x, y, z)1 over D3, which exists by the continuity of 

and the compactness of D'. Thus the choice of c determines K, and given any 

k > K, by the definition of an in-fill sampling configuration, there is a positive 

integer N such that n > N guarantees, for all i = 1, 	, k 

1{/:1</<nandx/ EA,}1 
JAk 

f (u)du 

  

It follows that for any c > 0, K and N can be found such that 

ri> N,k>K==R 2c 

which completes the proof. 

Proof of Lemma 1.5.2: 

The notation from the proof of the previous result will be used, except 

for e(x, y), which will denote 01(x, y)02(x, y) and will be defined on D2. Let 

Z1,02 = A 1  x At. It follows that ./3/442  C D2  is connected, 	=  

diam(B1i,i2 ) —› 0 uniformly (in il  and i2) as k —› oo. Moreover, from elementary 

properties of limits it follows that for any positive integer k, V E > 0 3N such that 

pk ,n 

f ()de) n JA 

 



V 1 <i1 < k, 1 < i 2  < k 

  

1{(11 , 12) : 1 < /1  < n ,1 < l < n and (x11 , x 12 )  E r 211  n > N 

 

  

   

fA f (u)du f f (u)du 
k 	 At 

< c. (A.0.6) 

 

Putting : 1 < /1  < n ,1 < /2  < n and (x11 , x12 ) E ./314,i211 one 
= 	,

ij 	
ik2,n obtains 	np 	Again, the following holds 

n n 	 k k 
pn k 	( en,k 	n,k ,?, E E 	x12)02(x11 , x12 ) = E 	\ 

lçini:,ki2  nini:,ki2 ) 
11 112 i 	 i1=1i2=1 

where 	 c A X At. 
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Let E> O. One has 

, 
E E 	 x12 ) 
11=1 121 n  

1(e 
D fD 	

77)02( 7i) f (W (77)C1017 
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Dfl 

n n 

k k 	k2 
n2 p(D) 	1 ,Z2 	1,2,2 	

) 
E E 	/-1(giç • )Pin'k- 

i2=1 
k k 

fAi,,(e, 

	

i2=1 	t2  

	

Li,(„k(D 2 	  
"1 	'2 

k k 	 pk,n E 	rin,k )( 	
f f (71)de dn) ,z2 il 	n2 	fg fg 

21 il =1 i2=1 2 2 

/kr.' '2 
7771' ,ki2 ) — 	71))de 

Again, the continuity of the function ti) on the compact domain D2, guarantees 

uniform continuity on D2. Thus there exists õ > 0 such that 

(xi , Yi) — (x2 , Y2) 11 < õ 	(xi , Yi) — (x2 , Y2) < E 

for all (x1, yi ) and (x2, Y2) in D2. Since the diameters of the sets 	converge 

uniformly to 0 as k —> oc), for any S > 0 it is possible to find K such that 

k > K 	diam(Bik ,i2 ) < (5, 	il =1, • • • ,k, i1  = 1, . . . ,k. 



k 	k 

Hence it follows that for k > K 
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(ez,ki2  , 7/r1,'ki,) — 77))de 

f (e) f (77)1 7771',2) — 	ce, 77)) 1 	(177 

k k 
< e 	 f 	(77)de 

il 	i2=1 f fAt 

Again, one observes that K is not dependent on n, but solely on e. This remaining 

term is bounded as follows: 

k k  

E 	e(e,1,77Z',/c-22)
Ak 
 Ak f (e)f (77)de d„ 

i1=1 i,=, il 	'2 

k 	k 	pk n 
i •  

< E 
( 2 	

f 	 f (q)ck dr)) 
n1'2  fg fg 2 '1 	' 2:1=1  i2=1 

Where M is an upper bound on kb(x, y)1, (x, y) e D2. Since M and k are now 

fixed, it is possible to find N such that 

 

( pkn 

2  f () f (77)de n 	fg fg 21 	22 

  

n > N 

 

E 

 

M k 2  

   

which guarantees 1R1 < 2€ as required. 

Proof of Lemma 1.5.3: 

It suffices to show that 

n n 

EE xi)02 ,„( xk, xi) _ 01(xk,x,)02(xk, Xi) 
k=1 1=1 n  

-+o 



as n --> oo. One observes: 

1Rn1 < 
k=1 1=1 

1 	f  
n2 1 (P1,72Xk X1)(02,n(Xk, x1) — 02(Xk, x1)) 

± 02(X X1)(01,n(Xk, Xi) — 01(Xk, X1)) 

n n 
< M -  

1 ( i: 2 n  
2 	102,72(Xkl Xi) 02(Xk, 	E E 101,„(xk, xi) — oi(xk,x,))1) 

where M is a uniform bound on 1021 and 10i ,n1 on D2, which exists by the com-

pactness of D2 , the uniform convergence of 101,n1 and the continuity of all the 

functions involved. By the uniform convergence it follows that given an e > 0 a 

number N can be found such that 

n> N= 0,(x, — 0i(x,y))1 < 

for i = 1,2 and any (x, y) E D2. This leads to 1Rn1 < 26 as required. 

Proof of Lemma 1.5.4: 

One has 

, EEEE ,„1 ,x,,xk2)02(X k2 , Xk3 )03(X ka , X k4 )04(X k4 , X ki ) 
ki=1 k2=1k3=1k4=1 n  

n n 	n 

L" 
v 

n 	
, xk2 )02(xk2, xic3) n2 	

", 

 ki=1 k3=1 	k2=1 
1 , —03Vk3 , Xk4)04(X k4 X ki) • 

k4=1 

By Lemma 1.5.1 

E_
n

Oi(xic ,, X k2 ) 02(X k2  , X k3 ) —› çbi  (xki  , A) 02 (À, xk3 )f(A)clA 1 
D k2=1 

159 

k=1 1=1 	 k=1 1=1 



uniformly in (xk„ xk3) and 

E (xk3 , xk4)02(Xk4 Xki ) 
	

0].(xk3, A)02(A, xki )f(A)e 
k4=1 

uniformly in (xk3 ,xk1 ). Hence the result follows by Lemma 1.5.3. 

Proof of Lemma 1.5.5: 

Firstly, one observes that if A is aqxq symmetric non-negative definite 

matrix, then q diag(A) — A is non-negative definite. Indeed, there exists a qx q 

matrix R such that Ri R = A. Hence, for any q-dimensional vector x one has 

(Rx)(j) = 	R(j, i)x(i) and 

x'(q diag(A) — A)x = q x' diag(RS)x — (Rx)/  Rx 
2 

i))2 (X(i))2  - 	
( E E Ru, ,)x(i)) 

j=1 i=1 	 j=1 i=1 
( = E q E(R(j, i))2  (x(i))2  - 	RU, i)x(i))

2  

E (RU, 0)2  (x(i))2  - E E R(j, i)x(i)R(j , k)x(k)) 
i=1 	 j=1 k=1 

E 	E(R(j, i))2(x(i))2 

i=1 k=1 
	i))2 (x(i))2  + (R(j,k))2(x(k))2 )) = O. 

Hence 

	

q diag ([cov (YYi,n1fn, IfYi,nYn)]) — [cov(yyi,nYn, 	> o. 
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Moreover, since var(YI,Ki,„Y) < c tr(Ki,„Ky,nKi,„Ky,„) one has 

c diag ([tr(Ki,„Ky,,,Ki,,,Ky,„)]) - diag ([cov(YKi,nljn, 	 0 . 

It follows that 

cq diag([tr(Ki ,„Ky,„Ki,„Ky,„)]) - [cov(11,Ki,nYri,YY3  Yn)1> O. 	(A.0.7) 

One obtains 

var(Ôn  (0) = (Ar7,1  (1/n4 ) [cov(YrIKi,nYn, 1r911/( Yn)]A 1)(i,i) 

= a' (1/n4 )[cov(ITT:Ki  Y YK Y 11 ,n 	n 7 - - - 	, a 

where a is the i-th column of A. Hence by (A.0.7) one has 

var(Ôn(i)) < cq a (1/n4 ) diaggtr(K,,nKy,„Ki,,,Ky,„)]) a 

and finally 

var(ân(i)) < cq (A-1(1/n4 ) diagntr(Ki,„Ky,nKi,„Ky,n )DA-1) (i, = cq En(i, i) 
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which concludes the proof. 



Proof of Theorem 1.5.3: 

Let Qn = X„SX:, and Pn  = Xn (XXn )-1- X7 ,. Then 

I C2. (Il, 12) — nPn (lu 12)1 

=j 	xn  (11, ki)(S(ki, k2) — Sn (ki, k2))X.(k2, 12)1 
k1=1 k2=1 

P P 

= IEE rk1 (X11)(S(kl, k2) Sn(kl, k2))T k2 (Xi2 )1 

ki=1 k2=1 
P 	P E E Irk1(x11)rk2(x12)11S(ki, k2) — Sn(ki, k2)1 	0 (A.0.8) 

k2-1. 

for 1 < kl , k2  < p, 1 < 11 ,12  < n as n —› oc, since the functions rk  are continuous 

and therefore bounded on D. The convergence is uniform in xi  and xi . Let 

Q(xi„, xi,) = 	/2) = E 
	 ,x/ 2 , S(ki, k2)• 	(A.0.9) 

k1=1 k2=1 

Since the entries of S are constants, the function Q above can be defined for 

all (x, y) E D2. It is seen that Q(x, y) is a continuous function on D2  and it is 

independent of n. The variance of e is 

12) = C(  x11, x12) E 	xi2) — E Pn (121 t2)Cz 	Xt2) 
ti=1 	 t2=1 

n n 

+ E E pn(11,4)pn(i2,t2)ci(xt1,xt2 ). (A.0.10)  
= 1 t2=1 

162 



0i,n(Xlil X12) — 	 X12 ) — Q (x , xt ,)Ci(xti , x12 ) 

Q (x12 , xt 2 )Ci(xl1 , xt2) 
t2=1 
n n 

Let 

± 	E >2. Q(xi l ,xt i )Q(x12 ,xt 2 )Ct(sti,xt2). (A.o.ii) 
t,.=1 t 2=1 
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One obtains 

10i,n(X11 1 X12) — 	(111 12)1 

1 ll  
< n 	(2(x11  xti ) — nPn(ii, t1) 

ti =1 
(Xti  X12) 

1 	 
+ 

t2=1 
— C2(x12 Xt2) 	nP71(12,t2)  

  

(Xil 7 Xt2 ) 

    

1 n  
± 	E 	jj Q(x11,xt,)(2(x/2,x,2) - n2Pn(i1, ten(12, t2) 

ti=it2=1 

 

(Xt1 Xt2 ) -+O 

   

as n ---> œ by (A.0.8) and by the boundedness of the function Ci  and the conver-

gence is uniform in (x11 , x12 ). Also, by Lemmas 1.5.1 and 1.5.2 

(Xii 7 X/2) — liM 0i,n(X11, X12) 
n—>co 

= 	x12 ) —  

+  f D 	
(x12 , n)Ci (e,77)f (e) f (n)dedri (A.0.12) 

D  

uniformly in (x11 , x12 ) E D2,  1 < 11 , 12  < n. One defines çby by replacing C by Cy 

in the equation above. 
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Proof of Theorem 1.5.4: 

	

Clearly one has 	/2) = W(xci , xt 2 ) = 	/2). Let Uw,,, = PninPn . If 

in (A.0.11) C is replaced by W, the uniform limit in (A.0.12) is simply W(xi „ x12 ). 

Hence and from the previous proof it follows that for 1 < j < q 

1 1 1 
lim — tr(Uw,n,Uj n ) = lim — tr(In Uj,n ) 	lim 

n—>oo n 	 n-}00 n 	 n-i00 	n 

= 

	

	(A.0.13) 
D 

Moreover, if U3 ,n  =- Uw,n  this last limit equals one. In a similar fashion 

U-(y,€ ),71  = Pn-K(Y,E),nPn = Pn(KY,n ± ir)Pn = UY,n YUW,n • 

One obtains 

	

1 /TT Tr 	 iz  1 frr T  \ 
ii111 	tr w,ne (Y,E),nUW,nU(Y,E),n) = ni_).11/100  —n2  tiwy,n,--, Y,n) n->00 n- 

n n 
= limnco 

	

	••77,1  9Sy (Xk Xi)(by (Xi Xk) 
k=1 /=1 

=  f f Oy (e, 71)0y (77, e)f (W(77)(kchi = bo  (A.o.14) 
D D 

and for 1 < j < q, the following holds 

1 ,, lim — tIV.Jw,nU(y,€),nUli,nU(Y,E),n) 
n—>oo n3 

1 
= lim — t(/ U ry U. Uy ) n ,n 2 ,n ,n n—>co n3 

n n n 

= lim EE E ±3_0 y(xk, Xi)45.1(Xl,z7n)0Y (Xm I k) n-->oo 
k=1 1=1 m=1 

= f h1,3( ", 77)0Y ( 711 e) f 	(71)Ckdil 	b(i) 
D D 

(A. 0.15) 



where 
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) 17) = D OY  

Finally, one has 

1 
lim — tr(Ui  

n—>co n4 	' 
1 ,. 

= 	trwi,nuy,nui,nuy,n) 

=hu(e, ii)hi,i(n, W(0 f (77)dedn B1(i, 	(A.0.16) 
D D 

From the above remarks it follows that 

a' n — p [-tr(Ui,n )]` 0 [1 [1. I 
= Ane. 

0 1 T 
n2  [tr(U)] [tr(Ui,n Ui,n)] 0 Al  

As before, it will be assumed that A1  is invertible. Similarly, 

(A.0.17) 

[1. 

O 

n 

L'T 

tr (Uw,,,,U(Y,E),n U-W,nU(Y,e),n) 

ri- 	(TT 	ri 	TT 	 )1  

	

(y,e ),n — 	(Y,Ehn 

[tr(Uj,nU(y,€ ),nUw,nU(y,€ ),n )] 

[tr ((Jim  tf(y,e),n  Lij,n[1(Y,e),n )] 7°  -7-1iI  

[bo  b'l 
-->  = B,. (A.0.18) 

Moreover, 

b 

[1 0 î [tr(Uw,nU(y,01 

0 j--" 	r ( ri Ir 	1  n2  - 	Ltr 	(Y,€),n, 
ne (A.0.19) 

  

where the q x q matrix M and mo  are defined as follows 

M1 (i) =f f 	W(W(71)dedn 
D D 

MO = f CY,e( 	( - )Ck • 
D 



It follows that 

Iim E[â] = Iim 
[n — p 	[tr(Ui ,n )] 1 1  [tr(Uvv,nU(y,E)1 

[tr(Ui,n)] [tr(Ui,n  Upi)] 	[tr(Ui,nU(Y,E),n] 
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= liM 
n—>oo [

-1 
n — p 	[tr(Ui,n )] 

[tr(U,,n)] [tr(U,,nUi,)]  

0 I [tr(Uw,nU(Y,€)1 

n1214 	[tr(Ui,n,U(Y,€),ni 

[Moi  
A M  ne. (A.0.20) 

M1 

Furthermore, 

[ 1  n — p 	[tr(Ui,)]' 1  

[tr(Ui,n)] [tr(Ui,nUi,n)] 

[

tr(UwmU(y,€ ),nUw,nU(y,€ ),„) [tr(Ui,nU(y,e),.Uw,nU(y,c),.)]' 

[tr(Ui,„U(y,,),nUw,nU(y,,),n)] 	[tr(Ui,nU(y,E),nUi,nU(y,c),n)] _ 

[ 1  n — p 	[tr(Ui ,n )r 1 

[tr(Ui ,n )] [tr(Ui,nUi,n)] 

[ n —p 	[tr(Ui ,n )] 1 1  LI, 	
0 	 o 

[tr( Ti,n )] [tr(ii,nUi,n)] 	0 n24 	4 0 

I [ 71,._,   

[

tr(Uiv,72U(y,E ),nUw,nU(y,e),n ) [tr(Ui,nU(Y,E),nUW,nU(Y,€),n)11  

[tr(Ui mU(y,E ) nUvv,nU(y,E ),n )1 	[tr (Lii,nU(Y,f),nU 3 ,nU(Y,E) ,n)1 _ 

liM 
n-->oo 

liM 
n—>oo 

0 

0 

n24 

I n — p 

[tr(U,n)] 

[tr(U,n )] i11  

[tr(Ui,nUi,n)] 

1 a 1[1)0 	[1 	0 
An  1  -ne ne ' 

0 	b 131  a Al = -e 
Al 

 



Proof of Lemma 1.5.6: 

Putting 

2 

	

Un = 	01(Xk, X1)02(Xl, Xk) 
n(r)  — ) k=1 1=1 

	

one has Zn  = Un + n (n2 	1)E7ki=i 01(Xk, Xk )02 (Xk, Xk) = Un  + i/n, and since the 

functions 0i, are bounded the Vn  is 0 (n-1 ) . It is easily seen that Un  is a U-statistic 

(Serfling 1980) whose kernel is h(Xi, X2) = 01(Xi, X2)02(X1, X2). The it follows 

directly from Theorem A of Section 5.5.1 in Serfling (1980) that 

ni/2(

U.  — k(D))  _ ci N(0, 1).  

2ç11/2  

The corresponding result for Zn  follows from Slutzky's theorem. 

Proof of Theorem 1.5.5: 

Let the vector random variable En (X) consist of all entries of An (X) lying 

on or above the diagonal, followed by the entries of Mn (X), i.e. 

En (X) = (An (X)(1,1), An (X)(1, 2),... , An (X)(1, q), 

A, (X) (2, 2), An (X)(2, 3), ...  
1 

. . . , An (X)(q, q), .11/In (X)(1), . . . , Mn (X)(q)) . (A.0.21) 

From the discussion following Theorem A of Section 5.5.1 in Serfling (1980) and 

Lemma 1.5.6 it follows that the vector n1 /2 (En (X) — E) is asymptotically multi-

normal with zero mean where E is defined by 

E= (A(1, 1) , A(1, 2) , . . . , A(1, q), A(2, 2), A(2, 3), ... , A(2, q), . . . , A(q, q), 
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I 

M (q)) . ( A.0.22) 
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For a non-singular square, q x q matrix B, it follows from the Cayley-Hamilton 

theorem that 

B-1  = —(Bg-1  + ci Bg-2  + . . . + cq_1) I cq 	(A.0.23) 

where the ci  are the coefficients of the characteristic polynomial 

det(A/ — B) = Ag + . . . + cg. 

(By non-singularity of B, cg  = det(B) 	O.) The coefficients ci  are polynomials 

in the entries of the matrix B. It follows that the i — th entry of the vector 

(A,i(X))-1Mn(X) can be expressed as Hi(En(X)) = P(Eri(X))1 P(En,(X)), 1 < 

< q, where Pi  and P are polynomials and P(En(X)) = det(An (X)). Since An 

is positive definite, P(En ) = det(An) 	0, and H is differentiable at E. Hence 

the result follows. 

Proof of Lemma 1.5.7: One seeks to show that p(A) = 0 implies G(A) = 0 

for any Lebesgue-measurable set A, where p is the Lebesgue measure. It suffices 

to consider A = [0, a] for some positive real number a. One observes that 

G(A) = f d h(a) 
A 

where 

h(a) =
a 
 f f (x) f (x +)ID(x + 0dx de 
B El 

and where aB is the unit ball scaled by the factor a. Hence 

G([b, a]) =f 	 f f (x) f (x + 01D(x + )dx de 
B\bB 1:J 

Since the function f (x) f (x + I D(x + is bounded on D, the result follows. 

Proof of Lemma 1.5.8: 

For each m, let Dm  = Tm(D). It is easily seen that 

Tm(B e(D)) = Bp(Tm(D)) 
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hence p(Dm \ Bp(D,,)) < cprc,17,-1. Let Fi,m(A) = fA  fmwde for any measurable 

subset A of D. Let s(d) = rd/ 2  /F (d/2 + 1). Therefore p(Ix e Rd  :11 x 11< pl) = 
s(d)pð and let D, = Tn,(D). By the hypotheses of Lemma 1.5.8 Fi,,,(A) 

p(A)/p(Dm ) one observes 

Fi,m(Dm)Fi,m(Ix E Rd :11 X  11-- 191) 	G m(P) 

= F2,m({(17 )) e -E)„ :11 - e PD 

> Fi,,,,(Bp(Dm)) Fi,max e Rd  X e 

= g(Drn)-2 	P(Dm)) Pal  C Rd X 115- PD 

> p(Dm ) -2  (p(Dni ) - cp7 1 )s(d)pd  

= p(D)2 re(p(D)  ran - cpr l )s(d)pd  - s(d) p(D)r.7.7id  pd  - s(d)cr,,,d  pd+1  

while 

Fi ,m (Dm )Fimi (tx e Rd  x II< pl) = s(d) p(D)r„,,d  pd  

Hence 

s(d) p(D)r;_td  pd  > Gm(p) s(d) p(D) Tiid pd s(d)cr;jd-i pd+1 

and putting c = cw-d12  IF(d12 + 1) one obtains the required result. 

Proof of Lemma 1.5.9: 
By Lemma 1.5.8 

L

diam(Dm) 	 diam(Dm) 

95(P)dGm(P) aG 	95(P))9(1-1dP 
Jo 

 ra f)

diam(Dm) 

10(P)1Pci dP 	° 

d 
Tm  

by the hypothesis, whence the lemma follows. 

Two other elementary results will be useful in the further deyelopment: 



Lemma A.0.1. For any real nonnegatiye function E (R+ ) 

lim —
1 Tm 

0(p)pdp = 0. 
Trn-÷00 rrn 0 

Lemma A.0.2. If 5 is a real function satisfying 

lop° 10(P)12  Pd-1  P < 00 

for an integer d> 2, then 

lim rrn-d/2 
fr, 

J0  
10(p) Ipd-1 ap. < oo 

Proof of Lemma A.0.1: 

Let 0,i (p) = r+n  ./[ 0 ,rm ] (p)0(p)p. One observes that 

1 fr'n oo  
— 	0(P)PdP 	Om(P)dP r r y, 0  

and 

lim 	0m(p) = OV p > 0, 
Tm  —TCO 

moreover, 0m  < 0. Since çb is summable, by the dominated convergence theorem 

lim 
ti 

C>0 	 00 

0m(p)dp = 	( lim 0m(p))dp = 0 
Tm —>00 	 CJ 	

rm  -->oo 

Proof of Lemma A.0.2: 

Without loss of generality, may be assumed nonnegative. The first step in 

the proof is the case d = 2. Thus it is assumed that 

fo cc  (95(P))2 PdP < 00. 

One defines the function b(p) = 0(p)p and the following measurable sets 

S+  =- {p: b(p)> 1} 
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S_ = 	:b(p) <11. 



00 

Jf 

It is seen that 

O 

Tm 	

( p) p d p = 
fs÷n[o,rmj 

( P) pdp + fs_  [0 r 	( p)pdp. 

The second term will be dealt with first: 

lim r 1  771 	 0(p)pdp < lim r -1 	dp 
Tm -+00 fS_ r1[0,rm] 	 Tzn->00 	

fS-n[O,Ted 

rm 

 < lim r-1  f dp = 1. rn 
0 

To find a bound on the first term, one observes that from the hypothesis 

	

( 	( 	) Pd P = f ( b ( P) ) )9-  dp < oo , 
0 

hence 

	

b(p)p-l dp < 
i 	

f 
,
(b(p))2  p-ldp < oo 

s, 	 s 

which means that /s+  (p)b(p)p E Li (RF ), Lemma A.0.1 applies and thus 
Tm  

lim
oo 	0  r;n-1  f Is+ (p)b(p)p-1  pdp = 0 

rm —>  

thus 

lim r-1 	0 	= ° 
Tm  -5,00 	fS-Fn[O,Tm] 

(P)PdP 

which proves the case d = 2. 
o  To show the result for an integer d > 2, one puts ( = (p)p(d-2)/2.  p) 	 Tt is 

seen that iP satisfies 

(P))2PdP <oc 

and thus the case shown above (d = 2) applies. Thus 

lim 7' -1  fo  rm  cb(p)pd/2 7 ap = lim rm-1  0(P)PdP < oe• rm —>oo 	 rm-->oo 

f: 
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r-1  
J f j 

772 

Tm diam(D) 

(P)Ci (P)1Pd dP —› (A.0.26) 

However, 

r_1 
Tm 	 Tm  

( p ) pd/2d p  r7721 (p) pd/2 pd/ 2-1 pl-d/2dp  
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< r-i 
— m 

Tm PTm 
(p)pd/2pd/2-1 rrnl-d/2cip  = rr7,1d/ 2 	( p ) pd- 1 dp  

o 

and Lemma A.0.2 is proved. 

Proof of Theorem 1.5.6: 

Initially it will be assumed that v 	1 and that the covariance components 

C, satisfy Condition 1.5.3 with v 	1, which is equivalent to Condition 1.5.4. 

The matrix Am  can be expressed as 

diam(Dm) 

	

Am(i, = 
	

Ci (p)Ci  (p)dGm(p) 

diam(Dm ) 	 diam(Dm ) 

= acrm-d 	
Ci (P)Ci (P)fid-i dP — 

	
C i (p)C • (p)dR,n(p) (A.0.24) 

o 

where 

	

diam(Dm ) 	 diam(Dm ) fo 

	 o 
Ci (p)Ci(p)dRm(p) 	J 	Ci(P)C3(P)IdRm(P) 

diam(Dm  ) 

2(d + 	 Ci (P)Ci (P)1Pdc/P .  5_ ct  

Since Cauchy-Schwarz and the hypothesis of the result imply 
00 

Ici(Mci(P)1Pd- lcip < 00 
	 (A.0.25) 

then by Lemma A.0.1 

as rm  —> co, the second term in (A.0.24) becomes insignificant, and Am(i, j) is 

proportional to rr-nd. 
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If v(p) is not constant and Condition 1.5.3 holds, but Condition 1.5.4 does 

not, it is sufficient to redefine Ci  to be Ci(p)v(p)1/ 2  and the proof remains un-

changed. While the functions Ci(p)v(p)1/2 may not be valid covariance functions, 

the only important elements in the proof are convergence arguments, and those 

are unaffected by this redefinition. 

Next the entries of the matrix 13n, are considered. Again, initially it will be 

assumed that v 	1 and that the covariance components Ci  satisfy Condition 

1.5.3 with v 1, which is equivalent to Condition 1.5.4. One has 

IB.(i,i)1 

f),10„,(Ium 

UD—Ci(e, MCY 77)fm(À)dA)  

1,,10„,(L)m 2 A)Cy(A, 77)1 fn,(À)dA) 

(fon, A)cy(), 77)1f,,(À)dA) fra(e)f m,(77)ddr). (A.0.27) 

Supposing that fm, p(13,,)-1  one considers the integral 

L dIC i(e A)CY (A 11)1CIA 	 (A.0.28) 

Let ei  (x) = 	(x, 0) and 1,by (x) -= Cy(x, 0). Then by the stationarity of the 

process 

— —  
Lt d 	 Rd 

= 
 f d hbi(-7/-A)7Py(A)IdA= 	*loyl)( - 77) 79e - 7i) 

R 
where 	denotes the convolution of the two functions. If 'th G L2  and 

2/)y E L1  (and by its boundedness, also 1Py E 	then the same applies to 



and I/Py.  I. Firstly, the convolution integral converges: 

f 	- 	- A)1 ley()IdA 

1 
_< 2  Ltd 	- A)I2  + 10Y(A)12)dA < 00. 

Let F(0) be the Fourier transform of . It follows that F(I/Pi  I) and .7(10y1) exist 

and are all in L2. Moreover, since 	E Li, it follows that 

IF(10y1)1 < M < 00 
	 (A.0.29) 

Furthermore 

1.9kbil*I0y1)1 = 1.7.(leiDney1)1 < mlF(leil)1 e L2. 

Since for L2  functions the Fourier transform is fully reciprocal, it follows that 

(10iI*10y1)() = 19i(e) e L2. 	 (A.o.30) 

It is also clear that the Di  are isotropic since 	and '017 are. Let ki be a function 

defined on the positive real line such that 

(A.0.31) 

Thus 

fRd lei(ebt(e)Ide<oe 

and so 
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(A.0.32) 



and hence the expression (A.0.27) takes the form 

j)1 < ,u(Drn)-1 
.D 
 (1 	mcy(A, 77)1a) 

Dm m  Rd 

Und 	
(7 À)C (, ri) I clA) f f (n)clecin 

diam(Dni ) 
—2d = r ni(P)n )(P)dGm(P) 

< rrn-3d 
diam(Dm ) 

(p) ki  ( p ) pd—ld p  _ r2d f
diam(Dm) 

j 	Ki(P)gi(P)dRin(P) 

(A.0.33) 

where the last term can be bounded by 
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rn  /3  
dr-2d 	 (P)Ni (P)d-Rm(P) 

diam(Dm ) 
< ce2(d + 1)r-3d-1 

I ni (P)ki (P) Pd dP. 

From (A.0.32) it follows that the first term of the expression is bounded by a 

multiple of r2d  Furthermore, the term 

-1 
	diam(Dm) 	

(P)k j (P)1Pd  

converges to zero by Lemma A.0.1 and the last term in (A.0.33) is negligible. 

If v(p) is not constant and Condition 1.5.3 holds, but Condition 1.5.4 does 

not, it is sufficient to redefine Ci  to be Ci(p)v(p) and to redefine v(p) a> 1 and 

the argument above remains unchanged. While the functions Ci(p)v(p) may 

not be valid covariance functions, the only important elements in the proof are 

convergence arguments, and those are unaffected by this redefinition. 



and for (1.5.93) 

while for (1.5.95) 

rm—Y00 

lim rd  Ai Tri  — Arril = 
rm—>oo m  

3d  lim rIB—  Bm1= 0 
Tm —>co m  

11111 T m  2d+ z I 	Bmi = O. 

(A.0.34) 

(A.0.35) 

(A.0.36) 

If A is invertible, then 

lim 	 = lim 7.77n-d (rmd Am  ) —1 (rm3dBm) (rrnd Am  ) —1 
rm —>00 	 Tm 00 

r-dA-1BA-1 _ 
Tm --> oc m  

where B is such that 

lim 	rn .,3d  Bm (i, j) < B(i, j) r,n -›. - 
(the existence follows from earlier discussion). The expressions for the entries 

of A follow directly from earlier arguments, while the expressions for the entries 

of B follow from the dominated convergence theorem applied to the sequence of 

functions {iti,mhi,m}m".„1  where 

hi ,m (e, ri) = f Dm 	(e, )1 /4 )Cy(t, 7/)d)t 

and similarly for hi,m. The functions {hi,mhi,m}, are dominated by a summable 

function Det as is shown in (A.0.33). 

This concludes the proof of Theorem 1.5.6. 

Proof of Theorem 1.5.7: 

To prove the result, it would be sufficient if 
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Clearly, if (A.0.36) holds and z + t > d then (A.0.35) must hold. Let 

denote the function Oi  of (A.0.12) for the domain Dm. (One should not confuse 
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the current notation 	with the 0i,,, in the sections on convergence in a fixed 

compact domain, where n is the number of observations for the fixed domain D. 

In the current notation Çbifin  depends on the domain, and in the notation of the 

previous sections is the limit of the 0i , for the domain Dm  as n —› oo.) Let (by,,, 

be defined in a similar fashion with Oy replacing Oi . The following holds 

Lemma A.0.3. If there exists a positive number c such that the condition 

ICi(P)1 cei9-z 
	

(A.0.37) 

holds with z > dI2 then (A.0.34) holds and (A.0.35) holds. If, furthermore 

(fi)) Iii(p)pd- 1  dp < oc 
	 (A.0.38) 

then (A.0.34) holds and (A.0.36) holds. 

Before proving the lemma, two other lemmas will be stated and proved: 

Lemma A.0.4. If the function Q defined in (A.0.9) is bounded on R2d  and the 

condition in (A.0.37) holds with z > 0, the bound 

10i,m(xii , x12 ) — 	x12 )1 < kr 
	 (A.0.39) 

holds uniformly on Dn.,2  for 1 < i < q for some constant k. If the condition in 

(A.0.38) also holds, the bound (A.0.39) holds with —z replaced by —d. The same 

is true if bi ,m  and Ci  are replaced by Oy,,„, and Cy, respectively. 

Proof of Lemma A.0.4. 

It is an easy observation that 

diam(D,i ) fo  
A)1c/A 	 1C2(P)1Pd-idP• 	(A.0.40) 



Assuming 1(21 < k1 < oo from (1.5.31) one has 

, x12 ) — 	(x11 , x12 )1 = 1,3 	Q 	e)Ci(e, x 12) frn (e)< 
m 

 

+ f (2 	e)Cz(xti, fin(e)d 

C2(x j1 , e)C2 (x12, 77)Ci(e, 71) fmW (n)(kch
Dm Dm 

 

<  k1(1. 1Ce7  X12)1 f rn()< 	 e)1 frn(e)Ck) 
D,,, 	 D„, 

qf f 

< (2ki ceGrm-d  + ki2aGr) fo

diam(Dm) 

Ci (P) 1Pd-1  dP• 

Thus if (A.0.38) holds, the lemma holds. (In particular, this is the case if 

and C, are replaced by g5y,„, and Cy, respectively, by the hypothesis of the main 

Theorem 1.5.7.) 

Otherwise if (A.0.37) holds, one has 

f diam(D,i ) 	 Tm  diam(D) 
(P) 1/11-1C/P < 	

p—z pd-1 d p  
Jl 

 — d— z
((r, diam(D))d-z — i). 

Hence 

Ij diam(Dm ) 
IC(p)Ipci-l dp <kr 

for some constant k z , and 

I 	(xi, , xi,) — 	(xii  , xi2 )1 < kr 

for a certain constant k and thus Lemma A.0.4 follows. 
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77)1 fni()f,,,(71)ddu 
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For the hypotheses of (A.0.39) to hold, it suffices to show that the function Q 

of (A.0.12) is bounded on R2d  uniformly in m. The following lemma guarantees 

the validity of the hypothesis if the regressors rk  making up the matrix X are 

homogeneous functions. The function rk (e) is homogeneous of degree ,yk  > 0 if 

rk(re) = r7krk (e) for all real r, and all e e D. If rk(C)  is a monomial involving 

various powers of the components of e, it is homogeneous and its order equals the 

sum of those powers. 

Lemma A.0.5. If the regressors rk  are homogeneous functions, then there exists 

a finite bound kQ  such that 

VmV(e,77)ED„ Qm (el 77) 	k(2 

where the function Qm  is defined as in (A.0.9) for the domain Dm. 

Proof: 

For the domain Dm  one has 

P P 

Qm(Xli X12) = E E rki (xdrk2 (x12 )Sm(ki,k2) 
k1=1 k 2=1 

where 

Sm  R„,i1  

and 

Rm(ki , k2 ) = 1.0,n  rki(e)rk2(Mn()d = f D r ki  (rmOrk2(rmW(ock 

=r;),',c1±7 k2 f rki(&k2(0 f (e)de. 



0 r rn 

srn = (A.0.41) 

o 

0 

0 -7p Tm 

Thus 
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Hence 

sup 	n)1= sup 	r m ri)1 
e,neD 

I 7 k1 	7 k2 	- (71c1±7 k2 ) 	\ = sup I Tm r ( )rm, k2 0 ) r„, 	 k2 
emED 

= 	sup 	(e)r 1,2( 77) S (k k2)1 
,71ED 

which proves the lemma. 

Proof of Lemma A.0.3: 

If the bound (A.0.39) holds, one has 

C i(el 2)el  j(e2, el)1 

< 	( i , 2 )1 + 	2)1) + k2  re (A.0.42) 



uniformly on Dm2  and hence 

lim rrnd  1.4107 ,, - Arn l r rn ->00 

  

<1imr frnd 	fpn.,  
— Tm +0O  

 

e 2) , (e2, 	- 	 2)C(2,e 	el) 

  

  

v 	e2) f m(ei) f 	clficK2 
diam(Dm ) 

	

< 	(kaGr—dr—z 	 I C i(P)1P(P)Pc1-1  dP M 	 M M 
Tm  -3.00 

	

diam(Dm) 	 diam(Dm) 	
) 

	

(P)1P(P)pd—lCip 
	k2r7,77.2z v  (p) pd-1 dp  

< 	lim 	(2kkz aGr —dr d—z—t r 77n-z 	—2z —t ) < lim k2rmd-2z-t  = 0 in 	rn rn 	rn 

	

r„,->oo 	 r m  -3.00 

since z > d/2, which proves (A.0.34). This clearly also holds if C, satisfies (1.5.72) 

with p = 1. From (A.0.42) it also follows that 

	

lim 2z+tiL . te- 	(e e\I 

	

r m 	Ç2 	ti,m (.1 (,2) rm  —>oo 

	

<lim 71,f+t 	10,,m 	Mg5y,m(A, 	— 	(e 1 A) C Y (A e2) (11 )‘) f m (A) Cl A 

	

rm—>oo 	JDm 

<lim 7*-Ft  (kr;izr,-nd 	(c( 1 ) 
--> cc 

+ k2r7-n2z 	v(ei, )1 /4 )fm()1 /4 )d)1 /4 ) 
Dm 

	

< 	lim rm2z+t(2kkzrm-zrm-drmd-z-t  k2  kvrm-2z  rrn—dr rnd—t ) < k3 c oo (A.0.43) 

for some k3  and this bound is uniform in (Ci,  e2 ). If v(e, 77) 	1 then t = O. 

Clearly, if C, satisfies (1.5.72) with p = 1, the result above holds for t = 0 with 

z = d. It follows that 
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liM 	Tm 	I hl,i,rn (eh 6)hi ,m(e2, el) — hi,rn(ei,6)hi,rn (6, fi.)1 
rm—>oo 

lim rd-I-2z-Ft 
rm-->oo m  L 0i,rn (el À) OY,m (À, e2)V (ei , A) Ln (A)d)t 

   

Lm 
 çbj,m(1.5 OY,m(A e2)Z ,  ( 17 A) f rn(A)CIA 

Cx(el MCY (A, e2)V(11 À) rn(A)CIA 
.D m  

ij  f rn C j (6, )1/ 4 ) CY Pt, 6)v 	À) frn (A)c/A 

rniltro..*2z+t  (./ 	)017,7n(), e2) 

— 	(el, A)CY(A, 6)1v (fi., 

fDin 	(e15A)CY(A, 6) Iv(ei, A)frn(A)c/A 

103,m(fi, MOY,m(A, 6) — Ci (el, MCY (À, 	iv(el, frn(A)dA 

Lm I 	A)Cy (A, 6) I v(C1, )‘) frn (À)dA 

	

Ipm 	
À) Oyei (A , 6 ) — 	A)Cy (A, 6)Iv(Ci,A) fm(MdA 

Oifin (fi, MOY,m (À,  6) — C (  e1, A)CY(A, 6) lv (fi., À) fm(A)e) 

	

< 	lim (rd k3r-d (19i(L — 	+ 1.9 j (el e2)) 711-2z—tq) 
Tm +00 

k4 (Di (el 6) ± 1.51 j (el 6)) 



lim 	 z  kelkGrm  —d 
rn 

diam(Dm  
(Ki (P) 	içi(P))Pel—i dP 

Tm --->C0 
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since z > d/2 and this bound also holds uniformly in 	2) with 

= Ld C vCy dÀ (A, 

= 	— 	— A, 0)v( -  — — A, 0)Cy(A,0)1dA 
fRd  

= Rd l'çbz( 	A)7P170‘)IdA = 	*1'00)(e n)• 

It is easy to see that if (1.5.72) holds for Ci  with p = 1 or z + t > d then the 

function 	is in L1. Since by assumption 1hr E L1  as well, by an elementary 

property of the convolution, so is Di. In any case, by an earlier argument t9i  is at 

least guaranteed to be in L2, and by Lemma A.0.2 it follows that 

lim r 2 	/9( — 7i)dedii < oo. 
rn ,—>oo — fr,m. !Dm 

Finally 

lim r2d+z-l-t 	i) Bm (i,  
T.,n —>oo m  

<lim  r2d+z-Ft 
Tm +O0 m  

— 6)17i,m(6, el) fr..(1.)fm(e2)deicie2 

   

11111 rmd—zk4 fjrn jrn  Pi (el — 2) + 	 2)) frn (el Vin (e2)d id 2 
T 	—} CXD 

< 11111 rniti—zk4k5alrm—drmd/2 
Tm —>00 — 

where Lemma A.0.2 was applied to the functions ki  and i , defined as in (A.0.31) 

and z > d/2. This proves (A.0.35) and (A.0.36). Thus Lemma A.0.3 is proved. 

Hence Theorem 1.5.7 follows. 



f, ,  

< ckGrr-nd  d fo 
diam(Dm) 

(Ciy  (p) )2 pd— 1 dp  < oo.  

lim r Tm +00 — 

(A.0.45) 
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Proof of Theorem 1.5.8. 

If the nugget effect is included in the model, most of the proof of Theorem 

1.5.7 carries over directly. It is clear that 

lim am (i) = a(i) = C,(0). m--›00 

The only non-trivial parts are (1.5.106), (1.5.108), (1.5.107) and (1.5.109). Firstly, 

one observes 

lim rm2d 
Tm  —›.00 — f, 	 n)cy (77 , ).f.Tn() f.(77)dd77 , f,, 

 

aGr  —2d 
m 	

fo diam(Dm) 
< Cy ( JO) (p)pd-  dp < oo (A.0.44) 

and 

Next one observes that 

h1j,m0y,rn, 

= 	— 	— Cy) + 	— 	+ 	— Cy). 

Since the assumptions of Theorem 1.5.8 are the same as those of Theorem 1.5.7 

one has 

2) — 	2)1 < kirrn-2z-t 

for some k1  by (A.0.43). Moreover 

OY,m(e, 77) — CY(, 77) l 5_ k2rm-d 



for some k2  by Lemma A.0.4. Hence 

lim rm2d  
r rn 	/Dm fpn, 

1 111,3,m(e 1))175Y,m(1 7 )) 	, (el ri)CY 	77)1fm() frii(17)dc17) 

< ki k2rn, 2d-2z—t—d aGk1 rm2d-2z—t—d cy  ( o) I pd—ld p  

diam(Dm ) 
aGk2rni2d—d--2d 	 (p) pd-1 d p  (A.0.46) 

where 1£ 2  is defined as in (A.0.31). Since z > d/2 and by Lemma A.0.2 applied to 

kz , the last limit is zero. Therefore 

lim 7..1147.,(j) —> 00 

 

lim r2d 
r m—>oo m  fDm Lm h1,i (e,77)0y,m(77,e) fm() fm(17)<d77 < oo. 

Similarly, 

   

lim 717., f 	kby,m(,77)0y,.(77,) — cy(,n)cy(17,e)Ifm()f.(71)ddrl rrn—›00 	arn  

< lim T rnd 	f (2krry(e,77)1+ k 2r2d )fm  f m (77)(kd77 = 0 
rm.—>co 	Dm .Dm  

where Lemma A.0.4 is used for Oym, and Cy with z = d. Hence 
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d lim rmd  Ibo m1 = lim rm  
rm --->oo 	 rm —>oo OY,m (e 7I)0Y,m(71, e) fm() fm(71)clech7 =O. 

   

The above inequalities imply that the following limits exist 

b(j) = lim rm2dbm(j) 
M -4 00 

bo  = lim rmd 
Tri —3. 00 
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Together with Theorem 1.5.8 this shows (1.5.106) and (1.5.108). The limit 

(1.5.107) is shown as follows 

• d rm.  
n—o —ro  

lim 
n—>co 

1 [ 	a 

0 A 

— 

'rn  

1 

0 

[ 

[

17,7121 	bn, 

Ain' 

bc,, , 

a'm  

U ni  

Bi,, 

1 

0 	r7.7,d/q  

1 [ 

r/g.1  

0 

0 

1 

am  

1 

_ 
0 

Aii,_ 

1 	0 

0 	r rnd  

1 

am  

4 

0 

Ai:,. -n  

bo ,,, 	Ilin  

bm 	Bi ,,, 

] 1 	0 

0 	rrnd  4 

( 1.71  rnid [1 	0 1 [bo ,,, 	b1,1[1 	0 1 	[1. 	0 

r4rnd 	bn, Bi,, 	0 rrnd iq  l a 0 A-1 

 

1 	a' 1 

0 A' 

[13,0 	b'l 

b 	B 

	

[1 	0 

	

a 	A-1  
(A.0.47) 

where Theorem 1.5.8 was applied. The limit (1.5.109) is shown in a similar way, 

by applying Theorem 1.5.8 again. 

Proof of Theorem 1.5.9: 

The limit of AR in (1.5.9) is straightforward 

AR 	 j) = aG f Ci (P)Ci (P)VR,t(P)pd-l dp 

rR cc 
= CeG 	Cz(P)Ca(P)Pe1-1  dP + oicf Ci(P)C3(P)vR,t(P)Pd-i dP 

Jo 

it is clear that as R -› oc the last term in the sum above converges to zero, while 

the first one converges to 	 j). The limit of /V/R  is proved in the same way. 
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The notation of the proof of Theorem 1.5.6 will be used. To prove the limit 

for BR one first observes 

KR,i(11 	— 77 11) = (R,i(e 	1)) = 11R,i(111) 

Rci R,i(e — — AWY()CIA = 
Rd 

 eR,i(A)Y( 	MCIA 

= f 	ei(AWYK — - A)dA + f 	OR,i(AWY( — — A)c/A (A.0.48) 
ip,11>R 

again, clearly the last term of the last sum approaches zero, while the first term 

approaches h,(,77). Next, one observes 

11) = Me, 11) = f 
d 
ri(e A )CY (À, 71)1dA > 	77) 

R 

= f 	 Mey(A)1c/A 	1hR,i(, 77)1. 

Finally, it is observed that 
00 

1Ki(P)ki(P)Iff'dp < 00 

as is shown in the argument leading to (A.0.32). Hence Lebesgue's dominated 

convergence theorem applies and 
oo 	 oo 

liM f H R ,2(p)H R ,3(p)p—ddp = 	Hi (p)II )(p)p-ddp 
R-->oo 0 

as required. The proofs for R and ER are trivial. Thus the proof of Theorem 

1.5.9 is complete. 

Before proving Theorem 1.5.10, the following lemma will be established: 

Lemma A.0.6. Let Am,„(7,)(X) be an n(m) x n(m) matrix whose (i, j) element 

is 

n(m)-2  tr(Ki,m,n(.)(X)K3,,,,,,(m)(X)) 	 (A.0.49) 
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and Mm ,„( m )(X) be an n(m) x 1 vector whose i-th element is 

n(m)-2  tr(Ki,m,n(m)(X)Kyf in,n(n) (X)) 	 (A.0.50) 

(where Ky,rn,n(m) (X) is defined analogously to Ki,m,n(m)(X)). Finally, let B,,,,i(m)  (X) 

be an n(m) x n(m) matrix whose (i, j) element is 

n(m)-4  tr(Ki,m,n(m)(X)KY,m,n(m)(X) K ,m ,n( m ) (X) K Y,m,n(m)(X)) 

If limm,r,nd  n(m)-1  -= 0 then 

rmd  A,,,n(m) (X) - A ->p(x)  0 	 (A.0.51) 

rn.id  Mm,n(m)  (X) - M ->p(x)  O 	 (A.0.52) 

where A and M are given by Theorem 1.5.6 and hence 

Ani ,n( m )(X)-1Mm ,n( m )(X) - 0 -->p(x) O. 	(A.0.53) 

Moreover, if 	rn(m)-1  = 0 then 

rld Bm ,n( m )(X) - B ->p(x) 0 	 (A.0.54) 

and hence 

r3d/2 	 (A.0.55) m 	\/Bm,n(m) (X) 	- /13 i) ---> p(x) 0. 

Proof of Lemma A.0.6: 

As is shown in the proof of Lemma 1.5.6, 

Ani,n(m) (X) (i, ./) n(m)-2  (n(2m)) Un(m) Vn(m) 

where U is a U-statistic whose kernel is h(xi , x2) = 	(xi, x2)Ci(x2, xi) 

Vn(m) = 0(n(m)-1). Thus 

E[Un(m)1 = T;L2d  f 	C 	71)C (71, CkCITI 
D, D, 

and 



and from the proof of Theorem 1.5.6 it follows that 

lim rmd  E[Un(m)1 = A(i) .1) • m->co 

Moreover, by Lemma A of Section 5.2.1 of Serfling (1980), one has 

var(Un(m)) < 2n(m) 1  
()ni  L)m 

	

(rei 	f (C i ( 07)C ) (71, .))2  del171 

2 

	

— r-4d ( 	 jm Ci(, 71)C j (71, Od077) 	< cin(m)-ir
Dm 	

m-d 

for some constant cl  (the last inequality follows by an argument similar to the 

one in the proof of Theorem 1.5.6). Hence (A.0.51) of Lemma A.0.6 follows. In 

a similar fashion one proves (A.0.52) of Lemma A.0.6. The proof of A.0.53 of 

Lemma A.0.6 proceeds in the same fashion as that of proof of Lemma 1.5.6. 

The proof of (A.0.54) is similar to that of (A.0.51). Firstly, it is sufficient to 

consider only the diagonal elements of Brn,n(in)(X) 

Brn ,n(m)  (X)(i) ri(m)-4  (n(47n)) Un( m ) + Vn(m) 

where Un  is a U-statistic whose kernel is 

«Xi, X2, X3, X4) 	X2)Cy(X2, X3)Ci(X3, X4)Cy(X4, Xi) 

and Vn( m) = 0(n(m)-1 ). Thus 

E[Un(n) ] 

r —rn4d  /Dm  f (j'am 	MCy(A,77)clA)dectri 
1)„, 

and from the proof of Theorem 1.5.6 it follows that 

lim r7n3dE[Un(ni)] = B(i , i). 
771,-->00 
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Moreover, by Lemma A of Section 5.2.1 of Serfling (1980), one has 

var(Un(m) ) < 4n(m)-1 (7,77a4d /Dm  ID,.  (f pni  (Ci (e, À) Cy (À, n))2e) 

(fDrn  (Ci A)Cy n))2e) ckdn 

— r77L —8(1  (Lin  Ipm  (f)m.  Ci (el  A)CY(A, 71)C1A) 

(foyn
(e A)Cy(À, n)dA) dedn) 2 ) < c2n(m)-1r2d  

for some constant c2  (the last inequality follows by an argument similar to the one 

in the proof of Theorem 1.5.6). Hence (A.0.54) follows. Given that B(i, > 0 

the proof of (A.0.55) is straightforward. 

Proof of Theorem 1.5.10: 

Let the assumptions hold. It follows from (A.0.53) that 

E,,[b„,,n(m)(w, X)] — O—>x„,x)  0 

and therefore it is sufficient to show 

ijni,„(m)(0), X) — 	 X)] --->x,,,x)  0. 

By definition 

âm,n(m)(w, X) = Am,n(m)(X)-1Z,-,„n(m)(à), X) 

where .11,,,„(m)(X) is as in (A.0.49) and Z,,,,,i ( m )(w, X) is an n(m) x 1 vector whose 

i-th element is 

n(m) 2  tr(Ki,m,n(rn) (X)Yrn,n(m) (CL), X)Yrn,n(m)P, XY) 
	

(A.0.56) 

and 
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Erè,,,„(772)(w, X)] = Am,n(m) (X)-1Mninn(m) (X). 



It follows from (A.0.51) that 

(rmd  Am,n(rn)(X))-1  A-1 —>p( ,i,x) O. 

Thus by Slutzky's theorem it would be sufficient to show that 

r 	Zni ,„( m )(w , X) — r rnd  M,,,,i ( m ) (X) —> p(„,x) O. 

By (1.4.25) one has the bound 

var, (r md 	X)(i) X = X) 5.  cr d 	i). 

Let õ > 0 and c> 0 and 61  > O. The set Sx(m) will be defined so that 

X E Sx(M) <> T 2 JBm ,n( rn )(X)(i,j) — B(i, 	< õi 

from (A.0.55) it follows that there exists M, such that 

m > 	Px(X E 	> 1 — 

From Chebyshey's inequality, one has for all X 
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(A.0.57) 

P, (171„Z 	, X) — rM,,,,i ( m )(X)1 > 2c I E r7̀1„ \ Bm,„(,)(X)(i, i)) 

< -
2
. (A.0.58) 

Let the set Sl(m, X) be defined by 

CÀ) G So,l (rn, X) < 	> Irmd  Z,,,,i(m) (w, X) — rmd  /V/,,,„,(m) (X)1 

-12c/E 7-crin 	 i). 

Hence 

P,(w E S(m, X)) > 1 — 	 (A.0.59) 



If X E Sx(m) one has 

	

\./Bm,„(m)(X)(i, i) 	r2c1/2  (81 

Let the set S3(m, X) be defined by 

CiJ E S3(m, X) < 	> 1rZni ,„(m)(w, X) — rMm,n(m) (X)1 

< -2c/e r77,d12  (61 ± B(i,i)) - 

Hence if X E Sx(m) one has 	X) C S(m, X). Let M2 be such that 

m > M2 	V2C I E T;77,d12  (81 	B(i,i)) < 6. 

Now for m > max{Mi, M2} one has 

P(w,x) (YZm,„(,)(w, X) — iliMm,„(m) (X)1 > 

= 	(jrZ7n,n(m)(w, X) — r.igm,n( m )(X)1 > 81X E Sx (m)) 

Px (X e Sx(m)) 

+ PÛ, (171„Zm ,n (m )(w, X) — 71„Mm,n(m) (X) I > SIX e sx(m)c) 

Px (X e Sx(m)c) 

< 	(à) e S3(m,X)c1X G Sx (m)) ± 

	

< 	E 	Xr1X E Sx(M)) 

This concludes the proof of Teorem 1.5.10. 
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