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SOMMAIRE

Cette thése considére le probléme de la modélisation et 'estimation de la
fonction de covariance d’un processus aléatoire. Le travail est divisé en trois ar-
ticles. Le premier article introduit le modéle additif et ’estimateur par projection.
Les propriétés de l'estimateur par projection sont obtenues dans des contextes
asymptotiques. Différentes généralisations de ’estimateur sont aussi considérées.
Le deuxiéme article présente une classe importante de modéles additifs de la
fonction de covariance d’un processus isotrope, la classe de modéles additifs &
composantes spectrales. Les résultats théoriques du premier article permettent
d’établir les propriétés de 1’estimateur par projection appliqué aux modéles ad-
ditifs & composantes spectrales. On démontre aussi que la classe des modéles
additifs & composantes spectrales est dense dans ’ensemble des fonctions de co-
variance des processus isotropes ayant une densité spectrale. Le troisiéme article
propose des méthodes de sélection optimale du modéle pour des modéles additifs
a4 composantes spectrales. Des critéres pour choisir le nombre et la forme des

composantes spectrales sont obtenus et évalués par simulation. Enfin, un jeu de

données réelles est analysé par les méthodes développées dans les trois articles.
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INTRODUCTION

Cette thése traite de ’estimation du covariogramme d’un processus aléatoire.
Pour un processus aléatoire Y (z),z € D, ou D est un sous-ensemble de I'espace

euclidien de dimension d, le covariogramme est une fonction définie par

Cy(z1,x2) = cov(Y(zy), Y (z2)). (0.0.1)

Un probléme typique en géostatistique est celui de 'estimation de la fonction Cy
basée sur une réalisation du processus Y observé sur un nombre fini d’emplace-
ments T, ... , T, dans le domaine D. Un sommaire des méthodes traditionnelles
de lestimation du covariogramme d’un processus isotrope Y apparait dans Cres-
sie (1993). La procédure standard peut étre décrite comme suit. Premierement, le
variogramme ou le covariogramme empirique est estimé. Pour ce faire, les paires
d’observations sont divisées en classes de distance. Cette étape implique des déci-
sions concernant le nombre et la longueur des intervalles de distance. Ensuite un
modéle paramétrique est choisi parmi un nombre relativement petit de fonctions
positives définies connues. Finalement, les paramétres du modeéle sont estimés
par une méthode d’ajustement standard qui cherche & minimiser I’écart entre le
modéle et le covariogramme ou le variogramme empirique. Dans la plupart des
cas, la méthode d’ajustement est une variante de la minimisation de la somme
des différences au carré entre le variogramme ou le covariogramme empirique et

les valeurs données par le modéle. Dans presque tous les cas, cette procédure de



minimisation implique une fonction objective non linéaire. Pour effectuer la mini-
misation, il est nécessaire d’appliquer des méthodes numériques qui compliquent
le calcul et surtout rendent ’analyse théorique de I’estimateur difficile. Une autre
approche de I’estimation du covariogramme est la méthode MINQUE (minimum
norm quadratic unbiased estimator). On définit un modéle de covariance additif

par
Cop =) _0(3)C: (0.0.2)

ou les fonctions C; sont déterminées et connues, tandis que les paramétres 6(7)
sont & estimer. Le modéle Cy dépend des paramétres (i) de facon linéaire. La mé-
thode MINQUE s’applique seulement aux modéles additifs. Cependant, elle offre
certains avantages par rapport aux méthodes traditionnelles. Le besoin de choisir
le nombre et la longueur des intervalles de distance est éliminé. Les méthodes
d’algébre matricielle sont suffisantes pour calculer I’estimateur. Des expressions
relativement simples existent pour la moyenne et la variance de 'estimateur. En
plus, certains résultats asymptotiques ont été établis pour I'estimateur MINQUE
par Stein (1989). D’autre part, I’estimateur MINQUE présente des désavantages
considérables. Le calcul de I'estimateur, bien qu’utilisant seulement 1’agébre ma-
tricielle, exige le calcul des inverses et des décompositions spectrales de grandes
matrices (n X n, oi n est le nombre d’observations). Les jeux de données conte-
nant des centaines ou des milliers d’observations sont commun en géostatistique.
Le fardeau computationel est considérable et les difficultés liées a Vinstabilité
numérique peuvent se faire sentir avec des matrices de cette taille. La méthode
MINQUE comporte un probléme plus fondamental. Elle exige un point de départ

(un estimé préalable) Cy de la fonction Cy & estimer. Les résultats théoriques



obtenus par Stein (1989), ainsi que les résultats généraux concernant la métho-
de MINQUE (dont un sommaire se trouve dans Rao et Kleffe, 1988) exigent
des hypotheéses voulant que Cy et Cy soient “proches” dans un certain sens. Ces
hypothéses ne sont pas vérifiables en pratique. Par contre, une violation relative-
ment peu sévére de ces hypothéses peut produire une instabilité importante de
lestimateur (Powojowski, non publié).

Les difficultés de mise en oeuvre et de l'analyse théorique de ’estimateur
MINQUE ont mené au développement de I'estimateur par projection que j'intro-
duis dans cette thése. L’estimateur par projection emprunte tant aux approches
traditionnelles qu’a la méthode MINQUE. Tout comme dans 'approche tradi-
tionnelle, 'estimateur par projection résulte de la minimisation d'une certaine
distance entre certains moments expérimentaux et ceux du modéle. Tout comme
I'estimateur MINQUE, 'estimateur par projection s’applique aux modéles addi-
tifs. Bien que la dérivation de ’estimateur par projection, plutdt naturelle, n’exige
pas une familiarité avec la méthode MINQUE, on peut démontrer que ’estima-
teur par projection peut étre considéré comme un cas particulier de l'estimateur
MINQUE, avec un choix particulier de Cy. Ce choix de Cj n’est généralement
pas “proche” de Cy et donc les résultats asymptotiques de Stein (1989) et Rao et
Kleffe (1988) ne s’appliquent pas.

La theése est divisée en trois articles. Le premier article traite des résultats
généraux pertinents a la méthode d’estimation par projection qui est présentée
pour la premiére fois dans cette thése. Les méthodes standards de projections
orthogonales dans un espace vectoriel muni d’un produit scalaire sont utilisées
pour obtenir 'estimateur par projection 6, (ou n est le nombre d’observations).

Par définition, I’estimateur est sans biais pour le paramétre 6 si le vrai modéle



Cy est de la forme
q
Cy = _0(i)Cs. (0.0.3)
i=1

Différentes généralisations de I'estimateur sont considérées. Il est ensuite démon-
tré que l’estimateur par projection posséde certaines propriétés utiles. Consi-

dérons un processus Y qui aurait la forme
Y=X384+n (0.0.4)

otl X est une matrice connue, 3 est un vecteur inconnu et 7 est un processus dont
la moyenne est zéro. L’estimateur demeure sans biais méme si le parametre 3 de la
moyenne du processus Y n’est pas connu et doit étre estimé. Ceci est un avantage
par rapport aux méthodes traditionnelles, ot la nécessité d’estimer la moyenne
du processus introduit un biais dans I’estimation du covariogramme empirique
(Cressie, 1993). Le calcul du variogramme ou covariogramme empirique n’est pas
nécessaire. En plus, le calcul de lestimateur implique seulement des sommes et
produits, ainsi que le calcul des inverses de petites matrices (¢ x g, ol ¢ est le
nombre de composantes dans le modéle). Une expression simple existe pour la
moyenne de I’estimateur. Si le processus est gaussien, une expression simple existe
également pour la variance. Pour des processuus non gaussiens, une hypothése
supplémentaire produit une borne supérieure pour la variance de I'estimateur. De
plus, l’estimateur par projection n’exige pas d’hypothése de stationnarité de Y’
ni celle de Y — E[Y] et donc peut étre défini et calculé pour un processus non
stationnaire.

Les propriétés asymptotiques de I’estimateur par projection sont ensuite ex-
plorées dans le contexte asymptotique ol les observations sont placées dans un
domaine compact avec une densite croissante (in-fill asymptotics). Dans ce cas,

le processus Y est observé & une séquence infinie de points {z;}32, comprise dans



un domaine compact D. On démontre qu’avec des hypothéses de régularité plutot
faibles, lorsque le nombre d’observations n augmente, la moyenne de I'estimateur
par projection converge vers une expression simple impliquant la vraie fonction de
covariance Cy. De plus, on obtient une borne supérieure E(D) pour la variance
de I'estimateur. Ces résultats ont des conséquences pratiques car ils peuvent gui-
der le choix efficace du nombre d’observations dans un domaine compact donné.
Il est démontré que la moyenne du covariogramme estimé par l’estimateur par
projection est toujours le plus “proche” modéle dans sa classe en fonction de la
distance utilisée. On démontre aussi qu’il est généralement impossible d’estimer
le covariogramme de facon convergente & partir des observations comprises dans
un domaine compact.

Dans la derniére partie du premier article, I’attention est concentrée sur un
processus de la forme (0.0.4) ol 7 est un processus isotrope (et donc stationnaire).
On démontre que la taille du domaine D influence la borne E(D) de la variance
de I'estimateur par projection et que des hypothéses de régularité relativement
faibles sont suffisantes pour obtenir une convergence de E(D) vers zéro lorsque
le domaine D grandit indéfiniment. Cela ouvre la possibilité d’'une estimation
convergente du covariogramme & partir d'une séquence infinie d’observations qui
couvrent un domaine croissant avec une densité qui augmente. Le cas particulier
de I’échantillonnage uniforme d’un domaine croissant indéfiniment est considéré
en détail. On démontre que si le nombre d’observations augmente avec la taille
du domaine a un certain taux minimal, ’estimateur par projection converge en
probabilité vers la vraie valeur du parameétre 6.

Les résultats du premier article s’appliquent aux modéles additifs seulement.
Cependant, la plupart des modéles utilisés en géostatistique ne dépendent pas de

leurs parameétres de fagon linéaire. L’utilité de ’estimateur par projection va donc



dépendre de la disponibilité de modéles additifs adéquats. Le deuxiéme article
fournit une vaste classe de modéles additifs pour un processus de la forme (0.0.4)
ou 7 est isotrope. Pour différencier entre les fonctions de covariance Cy (21, %2),
Cy(z1, x2), Ci(z1,x2) et leur versions isotropes, ces derniéres seront dénotées par
Cr(p), Co(p) et Ci(p) ot Cy(p) = Cy(z1,%2), Cy(0) = Cy(z1,22) et Ci(p) =
Ci(z1,13) et oi p =|| 1 — 22 ||. La classe proposée est basée sur la représentation
spectrale de la fonction de covariance d’un processus isotrope. Le modéle s’écrit

comme suit :
Co(p) = Y _6(i)Ci(p) (0.0.5)
ol
b;
Cilp) = 9 [ AT p ORI T N, (0.06)

et ¥ est une fonction non négative intégrable quelconque, les intervalles [a;, b;]
sont finis et disjoints et .J, est la fonction de Bessel d’ordre v de la premiére
espéce. Les modéles de ce type seront nommés modéles additifs & composantes
spectrales. Ces modéles sont inspirés de ceux introduits par Shapiro et Botha
(1991). On démontre que les modéles proposés satisfont aux hypotheses de ré-
gularité nécessaires pour obtenir les résultats asymptotiques du premier article,
contrairement & ceux de Shapiro et Botha (1991). Ensuite on démontre que la
classe des modéles additifs & composantes spectrales est dense dans ’ensemble
des fonctions de covariance isotropes ayant une densité spectrale. Il s’ensuit que
pour n’importe quel modéle Cy ayant une densité spectrale, il existe un modéle
additif & composantes spectrales qui produit un estimé C; (ot 0 est trouvé par
Pestimateur par projection) dont le biais est arbitrairement petit. Cela se com-

pare favorablement avec I’approche paramétrique, ot un mauvais choix de modéle



peut introduire un biais important. On démontre que dans le cas de modéles ad-
ditifs & composantes spectrales, les expressions pour la moyenne et la variance de
I’estimateur par projection prennent des formes trés particuliéres, révélant ainsi
une connection avec la théorie spectrale. On démontre que 'estimateur par pro-
jection peut étre utilisé pour estimer la densité spectrale et les expressions pour
sa variance fournissent des expressions pour la variance de Uy = W;. 11 semble
que ce soit la seule méthode qui permette d’estimer la densité spectrale & partir
de données qui ne proviennent pas d’une grille réguliére. On démontre ensuite
que les corrélations asymptotiques des composantes én(z) de I'estimateur égalent
zéro si le processus est gaussien. Une autre connection utile avec la théorie spec-
trale est une expression équivalente pour la norme dans l’espace des fonctions de

covariance en terme des densités spectrales comme ceci :

[ v - cuaret o= [ -wmpaa 007)

Cette relation sera essentielle au traitement des questions liées & la sélection
optimale du modéle. Le restant du deuxiéme article a pour but d’illustrer la forme
des composantes spectrales et le biais trés faible qui résulte de ’ajustement d’un
modéle additif & composantes spectrales dans les cas ou le vrai modéle est un
modéle paramétrique tel que gaussien, exponentiel, sphérique ou “hole-effect”. Le
méme modéle additif est ajusté a des vrais modéles trés différents. Dans tous
les cas, le biais introduit par Papplication du modéle additif plutot que du vrai
modéle est négligeable.

Afin de construire un modéle additif & composantes spectrales, il faut choisir
I'ordre g du modéle, ainsi que les extrémités des intervalles de support [a;, b;],7 =
1,...,q. Le troisiéme article traite des méthodes de sélection du modéle. Une
méthode qui permet 'estimation approximative du support spectral est dévelop-

pée. Elle est elle-méme basée sur un estimateur par projection. Le support de



la densité spectrale ¥y peut étre considéré comme I’ensemble maximal qui doit
étre couvert par les intervalles [a;, b;],7 = 1,... ,q. La méthode est testée par si-
mulation dans deux études ot elle s’avére adéquate pour I'estimation du support
spectral de ¥y. Des critéres pour choisir les intervalles [a;, b;] lorsque 'ordre g et
le support spectral ont déja été choisis sont considérés dans une section subsé-
quente. Finalement, un critére est développé pour permettre la comparaison de
deux modéles. Le critére est congu pour minimiser 'erreur quadratique moyenne
(EQM) de I'estimateur par projection et il vise un équilibre entre des modéles avec
un nombre élevé de parameétres, un biais faible et une variance plus importante et
des modéles avec un faible nombre de paramétres, un biais plus important mais
une plus faible variance. Le critére est étudié par simulation et il s’avére adéquat.
Les méthodes de sélection du modéle sont ensuite appliquées afin de construire un
modéle pour le jeu de données de Davis (1973). L’estimateur par projection est
employé pour estimer les paramétres du modéle. L’estimé C; obtenu est comparé
avec les résultats obtenus par d’autres chercheurs.

L’ordre des articles refléte leur emplacement dans le développement de la
méthodologie présentée. Le premier article présente des résultats généraux. Le
deuxiéme propose une classe de modéles flexible. Lorsque les résultats du premier
article sont appliqués a cette classe de modéles, les représentations spectrales sont
obtenues. Elles sont essentielles pour le développement des critéres de sélection

du modéle, présentés dans le troisiéme article.



Chapitre 1

ADDITIVE COVARIOGRAM MODELS AND
ESTIMATION THROUGH PROJECTIONS

1.1. ABSTRACT

The paper considers the problem of estimating the covariogram of a station-
ary process. The main ideas explored are additive covariance models and their
estimation in terms of projections in the inner product space of sufficiently regu-
lar functions. Asymptotic properties of the resulting estimators are worked out,
without explicit assumptions about the functional form of model components or
that of the true covariogram. Expressions for bias of the estimator in misspecified
models, expressions for the estimator’s variance in the normal case and bounds
for variance of the estimator under relaxed assumptions are derived. It is demon-
strated through asymptotic analysis that the inclusion of drift and nugget effect
does not significantly affect the estimator’s performance. Both in-fill asymptotics
and expanding-domain asymptotics are considered. The approach can also be
applied to the estimation of non-stationary covariance structures and the in-fill

asymptotic results hold. The techniques are applied to a data set of Davis (1973).
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1.2. INTRODUCTION

For a random process Y (z),z € D, where D is a subset of a d-dimensional
Euclidean space, the covariogram is defined as C(z1,z2) = cov(Y (z1), Y(z2)),
the semivariogram is defined as y(zy,z2) = (1/2) var(Y (z1) — Y(z3)), and the
variogram is defined as 2y. These definitions do not require the process to be
stationary. For a second-order stationary process, the two are related through
¥(z1,22) = C(0,0) — C(x1,z2) (Cressie, 1993). A common problem in geostatis-
tics is one of estimating the functions C' and y based on one realisation of the
process Y observed at a finite number of locations x1,zs,...,z, in D. It is
important to note that the knowledge of function values C(z1, z,) for arbitrary
(z1,7) € D? is required, and not simply the covariances of ¥ at lags observed in
the sample. The fact of observing only one realisation forces one to make certain
assumptions about the process Y, which translate into restrictions on the form
of C and 7. There also exist theoretical reasons for restricting the function fam-
ilies considered. The covariogram has to be a positive definite function, whereas
the variogram has to be conditionally negative definite. Further restrictions may
be desirable. The process Y may be assumed second-order stationary, or even
isotropic, requiring C(zy, z2) and y(z1, z2) to depend only on z; — x5 or its length,
respectively. In a typical covariogram estimation problem it is supposed that the

observed process Y follows the model

Y=X8+n

The known regressor X usually contains terms corresponding to the mean of the
process and any trend that is modelled, while the parameter 3 is unknown and

the random term 7 is assumed to have zero mean and a covariogram Cy. The
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covariogram Cy is modelled by a covariance function Cp, known up to the value
of a finite-dimensional vector f, to be estimated.

The paper is organised as follows. Firstly the notation is introduced and some
notions of projections in inner product spaces are summarised. The projection
estimator and its extensions are then defined. Subsequently, the asymptotic in-
fill setting is defined, where observations of the process Y are collected on a
finite domain. In this setting, the projection estimator’s asymptotic properties
are investigated. It is shown that in general it is impossible to estimate the
covariogram consistently based on observations from a finite domain, but an
upper bound for the asymptotic variance of the projector estimator is obtained.
Subsequently, it will be shown that as the size of the domain increases indefinitely,
the upper bound for the variance of the estimator derived earlier converges to zero.
Finally, an application of the projection estimator is illustrated with a data set
of Davis (1973).

It should be noted that Sections 1.4 - 1.5.2 do not assume that 7 is a second-
order stationary process. Thus the estimator can be computed for more general
processes and its in-fill asymptotics are unaffected by non-stationarity.

Most technical proofs are given in Appendix A.

1.3. TRADITIONAL APPROACHES

A rather exhaustive discussion of the traditional methods of covariogram and
variogram estimation is contained in Cressie(1993). Two broad classes of methods
can be distinguished: methods requiring parametric distributional assumptions
concerning the underlying process, such as ML or REML methods, and methods
which avoid making such precise parametric hypotheses. Among the methods of

the latter category reviewed by Cressie, all but the MINQUE method involve the
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computation of the so-called empirical variogram or covariogram. The empiri-
cal covariogram can be meaningfully computed only for second-order stationary
processes, while the empirical variogram can be meaningfully computed only for
intrinsically stationary processes. For a second-order stationary process, the em-

pirical semivariogram is usually defined as the quantity J(h)

90) = 37 (@)~ Y(@)* (131)

N(h)
where
N(h) = [{(zi,z;) : 7 —3; =h;5,5 = 1,... ,n}],
while the empirical covariogram is defined as

C = 575 L (¥ (@)~ DY (x) - ), (132)

N(h)

where [i is some estimator of the mean of the process. In practice, the observa-
tions are usually not regularly spaced and the n(n—1)/2 lags h are binned in order
to obtain a sufficient number of observed lags falling into each bin. Since the ul-
timate goal of the (co)variogram estimation usually involves modelling variances
at unobserved lags, a parametric curve from some valid family of (co)variogram
functions is then fitted to the empirical (co)variogram. This last step may be
performed in a number of ways. For example, ordinary or weighted least squares
fitting may be applied. Usually this step involves optimisation of non-linear and
non-quadratic functions. There appears to be a preference among practitioners
for estimating the variogram rather than the covariogram. This is usually justi-
fied by the fact that the empirical variogram can be meaningfully defined for a
broader class of stochastic processes (intrinsically stationary stochastic processes)

than the empirical covariogram (which requires the process to be second-order
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stationary) and that the empirical variogram is unaffected by a constant non-
zero mean in Y, while the empirical covariogram is a biased estimate in this case.
It is also known that the empirical variogram is less sensitive to a linear trend
contamination (Cressie, 1993). It will be seen that the covariogram estimation
through projections eliminates the problems associated with the empirical covar-
iogram. The estimate makes sense even for non-stationary processes and for a
stationary process with any polynomial trend (of known order) the covariogram
can be estimated without bias.

Covariance function estimation based on empirical (co)variogram estimation
suffers from a number of drawbacks. Binning the observations introduces an
element of arbitrariness and is sometimes difficult to perform if the number of
observations is low or the process is not isotropic. The empirical covariogram
is meaningless if the observed process is non-stationary and the empirical vari-
ogram is sensitive to departures from intrinsic stationarity (Cressie, 1993). Fi-
nally, the fitting procedure is usually difficult to assess from a statistical point
of view. Most known theoretical results (whose comprehensive summary may be
found in Cressie, 1993), are concerned only with the properties of the empiri-
cal (co)variogram and not those of the fitted (co)variogram function. It appears
that the problem of obtaining the properties of the fitted (co)variogram function
from the empirical (co)variogram has not been extensively studied. In contrast,
the projection-based estimation yields the mean and variance expressions for the

parameters of the estimated covariance curve.
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1.4. COVARIOGRAM ESTIMATION THROUGH PROJECTIONS

This section describes the notation, reviews standard notions of inner product
spaces and introduces the model and the estimator considered in the remainder

of the paper, as well as some extensions of the estimator.

1.4.1. Notation

To avoid confusion which might arise due to the frequent occurrence of multi-
ple subscripts, the following notation will be used throughout the paper: if A is a
matrix, its entries will be denoted by A(%, 7), while A; ; may denote a matrix from
some (doubly) indexed set of matrices. Similarly, if 6 is a vector, its components
will be denoted by 6(z), while §; may denote a vector from some indexed set of
vectors. Given a set of scalars A(4,j),1 <i < n,1 < j < m the notation [A(Z, j)]
will denote the n x m matrix whose (7, j)-th entry is A(7, 7). This notation will
be used only in situations where the scalars A(7, j) and the ranges for 7 and j are
clearly defined. Similarly, given a set of scalars B(i),1 < i < n, [B(7)] will denote
a (column) vector whose i-th entry is B(i).

In the most general setting, one considers a random process ¥ on the domain
D, a subset of a d-dimensional Euclidean space. The process Y is observed at n
locations {z;},, z; € D. Let Y, = (Y (z1),...,Y(x,)) and Y, (i) = Y(z;),1 <
1 < n. It will be further assumed that

Y,=X.8+m (1.4.1)

with E[n,] = 0. It will be assumed that X,, has p columns corresponding to
different regression terms. Thus X, (1, k) = re(x;), 1 < k < p, 1 <1 < n, where
x; is the [-th location in the sample and 7} is a continuous function defined on

D and it is the k-th regression term in the mean of Y. If present, the term
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rp = 1 corresponds to the (non-zero) constant term in the mean of Y. The
term ri(x;) = z;(1), where z,(1) is the first component of the d-dimensional
vector z; € D, would correspond to a linear trend in the mean of Y(z) in the
direction of the first component of z. The matrix X, will always be known,
while the p x 1 vector 8 may have to be estimated. The function Cy(z1,zs) =
cov(Y(z1),Y (z2)) = cov(n(z1),n(xs)) is called the covariance function of the
process Y (and of the zero-mean process 7). Let Ky, = var(Y,). Thus Ky, is
a symmetric matrix whose entries are Ky, (i,j) = Cy(z;, z;). If Cg is a given
covariance function model, one defines the symmetric matrix Ky, in a similar
way, by putting Ky, (i,7) = Co(zs, ;). Thus Ky, is a fixed matrix depending
only on the model Cy and on the set of locations {z;}*,, z; € D.

The model Cy will always be assumed to be additive, that is of the form

Cy = zq: 0(:)C;, (1.4.2)

where the components C; are fully specified valid covariance functions and the
only parameters to be estimated are the 6(i). Throughout the paper the compo-
nents C; as well as Cy will be assumed continuous. In Section 1.5.2.3 a discontin-
uous component W will be introduced, which will result in (possibly discontinu-
ous) models of the form Cy g = YW + Y1, 8(:)C;. The difference in notation
is meant to emphasise the different nature of the functions involved. In all sec-
tions preceding 1.5.3 no stationarity or isotropy assumptions are made about the
processes Y or 1. In Section 1.5.3 and the remainder of the paper the process
n will be assumed isotropic (hence in particular second-order stationary). Thus
E[n(z)] = 0 for all z € D and the covariance function Cy of 5 (and Y) depends

only on p =|| £; — x5 ||. It will then be convenient to introduce explicitly isotropic
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versions of Cy, C; and Cy defined by Cy(p) = Cy(z1, 22), Ci(p) = Ci(x1,22) and
Co(p) = Co(x1,22).

Given a model Cy of the form (1.4.2), it will be said that the true covariance
function Cy is in the span of Cy (or, equivalently, in the span of the components

C;,1 <1 < q) if and only if there exists a vector 6y such that
q
Cy =Y by (i)Ci. (1.4.3)
=1

If A is a symmetric matrix, the shorthands A > 0 and A > 0 will mean that
A is positive definite and non-negative definite, respectively. Similarly if B is
another symmetric matrix of the same size as A, A > B and A > B will mean

A— B >0and A— B > 0, respectively.

1.4.2. Orthogonal projections and estimation with additive models

The goal of this section is to summarise the relationship between orthogo-
nal projections in inner product spaces and linear estimation. The discussion
will be rather general and the results presented are well known. However, fur-
ther sections will often use these results and it may be useful to establish the
notation and terminology before proceeding. Issues specific to the estimation of
covariogram models will be discussed later. Let V,, be the linear space of sym-
metric matrices of size n X n over the field of real numbers. (One could make this
discussion entirely general by considering any vector space.) Let Ki,..., K,
be fixed, linearly independent elements of V,,. In particular, it follows that
g < dim(V,) = n(n + 1)/2. Furthermore, one considers the vector subspace
span(Ky, ..., K,) of V,, (span(Kj,... , K,) denotes the space of linear combina-
tions of the elements K, ..., K;). Let

(K, J)y, KeVu,JeV, (1.4.4)
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be any inner product defined on the vector space V,,, thus making it into an inner

product space. The inner product (1.4.4) gives rise to a norm on V,, defined by
| K —J |lv= (K — J, K — Iy (1.4.5)

Let P(J) denote the orthogonal projection of J onto the subspace span (K7, ... , K,).

Thus P is a linear transformation satisfying

(K;,J — P(J))y =0, g2l use il (1.4.6)
Since P(J) € span(Kj,...,K,), one can write P(J) = >_7 , 8(i)K;. Together
with (1.4.6) one obtains
q
D (K, Kj)v =(K;, )y, i=1,...,q (1.4.7)
7=1

or, in matrix form
(K, Kj)v] 0 = [(Ki, J)v] (1.4.8)

where [(K;, K;)v] denotes a ¢ x ¢ matrix whose (i, j)-th element is (K, Kj)v,
[(K;, J)v] denotes a vector of length ¢ whose i-th element is (K;, J)y and 6
is a vector of length ¢ whose i-th element is (z). It is easy to see that the
matrix [(K;, K;)v] is invertible under the assumption of linear independence of
Ki,..., K, Thisimplies that the equation (1.4.8) has exactly one solution, given
by

0 = [(Ks, K;)v]  [(K, v, (1.4.9)

If Y is an n-dimensional random variable with E[Y] = 0 and var(Y) = E[YY"] =
Ky, let the subset Sy of V,, be defined by Sy = {YY’,Y € R"}. The random

process Y gives rise to a probability measure on Sy. Therefore,

0 = [(K;, K;)v]  [(Ki, YY")v] (1.4.10)
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is a random variable. One has
E[f] = [(K, K;)v] ' (K, BYY'l)y] = (K, K;)v] (K Ky)v] (1.4.11)

Therefore by the uniqueness of the solution of (1.4.8), one concludes that

P(Ky) =Y E[(i)]K;. (1.4.12)
i=1
On the other hand, if Ky € span(Kj, ..., K,), then for some vector fy one has
q
Ky =) 0y(i)K (1.4.13)
i=1

By elementary properties of projections, one immediately obtains P(Ky) = Ky
and, again by the uniqueness of the solution of (1.4.8) it follows that E[A(i)] =
Oy (3).

Summing up, it follows that for any choice of inner product (., .)y, the random
variable @ of (1.4.10) is the vector minimising || YY'—3"%_ a(i)K; ||v. The mean
vector E[f] is the vector minimising || Ky — >.%_, a(4)K; ||v. Furthermore, if Ky
is of the form (1.4.13), then E[f] = 6y. If on the other hand Ky is not of
the form (1.4.13), the vector # = E[f], given by (1.4.11) is still a meaningful

parameter, since it defines the orthogonal projection Y i, 8(i)K; of Ky onto

span(Ki, ..., K,).

1.4.3. The estimator

The goal is to estimate the unknown covariance function of the process Y
from the observations Y,. If 8 in the equation (1.4.1) is unknown, it may also
be necessary to estimate it, otherwise one can work directly with 7,. In this

sense, knowing 3 is equivalent to putting X = 0. To motivate the discussion, it
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is initially assumed that X = 0 and hence Y,, = n,. One observes that
E[Y,Y,] = Kypx. (1.4.14)

Furthermore, valid covariance functions C;,1 < ¢ < ¢ are assumed to be fully
specified. The functions C; give rise to the symmetric matrices K;,. One con-
siders the class of covariance function models in (1.4.2), which results in the

covariance matrix models
q
Kon =Y 0n()Kin, (1.4.15)
=1

where it will be assumed that the 6(:) are such that Cy is a valid covariance
function. A member of the class (1.4.2) is sought which will be in some way
closest to the unknown true covariance function Cy. The approach proposed
here is based on the observation that the symmetric n X n matrices form an

(n(n + 1)/2 - dimensional) inner product space with the inner product
(A, B) = tr(AB). (1.4.16)

The resulting norm || A— B ||= (A— B, A— B)'/? is the square root of the sum of
squares of elements of A — B. Following the general approach outlined in Section
1.4.2, in order to estimate the 8(3), the matrix Y,Y, is projected onto the linear
space spanned by the matrices K;,. Equivalently, the én(z) are selected so as to

minimise || ¥, Y7 — 3%, 6,()K;n ||. The resulting estimator is

0, = [tr( K n K )] [t (K n Yo Yo)] = [60(K n K )] Y Kin Ya) (1.4.17)

where 6, = (8,(1),... ,0,(¢))". (The notation [tr(K;,K;,)] denotes a gx g matrix
whose (4, 7) - th entry is tr(K;,K;,). Similarly, [tr(K;,Y,Y,.)] denotes a ¢ x 1
vector.) The expression (1.4.17) should be compared to the general form (1.4.10).

In particular, it follows that if the true covariogram Cy is of the form (1.4.3) for
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some Oy, then the estimator is unbiased for fy. Otherwise 4, is still a meaningful
parameter in the sense that S.7 | f,(¢)K; is the closest (in the sense of the norm
defined by the inner product (1.4.16)) matrix of the form 3 7 | ;K to the matrix
YY'. Similarly, 8, = E[f,] defines 37, 8,,(i)K;, which is the closest matrix of
the form Y 7, o;K; to the matrix Ky

In the more general case of unknown [, one considers the residuals e, =
Y, — X[ of the regression model (1.4.1), where /3 is the least-squares estimator
of 8. Denoting the orthogonal projection I,, — X, (X} X,,) ' X}, by P,, one obtains

the following expression as a generalisation of (1.4.14):
Elenel] = PoKynPa = Uy (1.4.18)
where
en = (I — Xa(XX,) I XL)Y,, = PY,.

Hence to estimate the 6(i), the matrix e,e;, is projected onto the linear space
spanned by the matrices U;, = P,K;,F,. Equivalently, the 9,-," are selected so

as to minimise || e e/, — 3., 0; nUin ||. The resulting estimator is
b, = [tr(UsnUju)] " tr(Usnenen)] = [tr(Uinlisn)] ™ [enUinen]- (1.4.19)

Again, if the true covariogram Cly is of the form (1.4.3) for some 6y, then the esti-
mator (1.4.19) is unbiased for fy, by an argument similar to that of Section 1.4.2.
The resulting estimate of the covariance function Cy based on the observations
Y, is Cp = 10, 6,(5)C:.

Brown (1978), Rao (1971), Rao and Kleffe (1988) and Verdooren (1988) con-
sidered the MINQUE (minimum norm quadratic unbiased estimator) estimator
in a somewhat more restrictive context than that defined by the combination of

(1.4.1) and (1.4.3).
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The MINQUE methods were designed for the purpose of estimation of vari-
ance components and have been studied quite extensively in the context of analy-
sis of variance . Their applications to the problem of estimating the covariogram
of a random process have been investigated from a practical point of view by
Kitanidis (1985), among others, and from a theoretical point of view by Stein
(1987, 1989). A MINQUE estimator of the covariance matrix Ky of the process
Y requires a tuning parameter Ky, which can be thought of as an initial guess of

the matrix Ky to be estimated. The estimator then has the form

s ,

Orirnoue = [tr(RL Ko s K Ko s Ru K n) 7 Vo Ry Ko MK o Ko 2 R Y]

where

Ry =1In— X, (X, Kot X)X Ky

It can be shown that the estimator (1.4.19) is a special case of MINQUE,
where Ky = I, the identity matrix. Existing theoretical results establishing prop-
erties of MINQUE estimators impose certain assumptions on the relationship
between the true covariance matrix Ky and the initial guess Ky (in some sense,
the two have to be close - for details the reader is referred to Rao and Kleffe, 1988
and Stein, 1989). In the practice of geostatistics, these hypotheses are difficult
to establish. Indeed, in the particular case of Ky = I it is not even clear that the
hypotheses can be satisfied for any random process Y. For such a choice of Kj
most available theoretical results for MINQUE do not apply. Kitanidis (1985)
considers the MINQUE estimator with Ky = I in a simulation study compar-
ing it to the MINQUE estimator with Ko = >_¢_, a(i)K; for some fixed values
(i) where the fitted model and the true model were of the form .7, 0(7)K;.
Not surprisingly, the latter model performed better under those circumstances.

However, this estimator can become quite unstable if the true model is not of



22

the form )7 | 0(¢)K; (Powojowski, unpublished) and establishing its theoretical
properties in such a case is quite difficult. On the other hand, the choice Ky = I
leads to an estimator which among models of the form Ky = Y7 | 6(i)K; gives
the one closest (in the sense of the sum of squares of elements of Ky — Kjy) to
the true model. In addition, the computation of MINQUE with K other than
involves inverting large matrices (n X n, where n is the number of observations),
while MINQUE with Ky = I, or the projection estimator, requires inverting only
small matrices (¢ X g, where ¢ is the number of components in the model).

As has been pointed out by many authors (for a review, see, for example
Rao and Kleffe, 1988), the problem at hand imposes certain constraints on the
values of 6(7) if the resulting estimate is to be a valid covariance function, namely
> 0(1)K; > 0 is required. In many situations even more severe constraints may
be necessary. It may be required that 6(i) > 0 for all ¢, and in the covariogram
estimation it is necessary that > 6(¢)Ci(z;, zx) be a positive definite function.
When these constraints are imposed, the optimisation may have to be carried out
in a convex cone and not the entire vector space. Possible ways of addressing these
difficulties include truncated estimators or quadratic optimization with linear
constraints. In general, such methods tend to introduce a bias, but they often
reduce the estimator’s MSE. These concerns are not relevant to the asymptotic
results derived in the remainder of this paper and will be ignored in the analysis.
However, to apply the estimator (1.4.19) in practice for a finite sample one will

have to address these issues.

1.4.4. A class of estimators

In the previous section it was seen that in the n(n + 1)/2-dimensional vector

space of symmetric matrices of size n, the expression tr(AB) amounts to an
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inner product and the element 7, §(i)U; , is the orthogonal projection of the
element ee’ onto the vector space spanned by the matrices Uy, Usp, - . , Ugn,
where the inner product is defined as (A, B) = tr(AB). This may be taken as the
definition of 6, and it suggests a possibility of extending the estimation method
to other inner products. In particular, the class of inner products considered can

be expressed as

n n

(A, B)y =Y > A(k,)B(k, )V (k,1) (1.4.20)

k=1 =1
where V' is an n X n symmetric matrix with positive entries. If V/(k,1) = 1 the
new inner product reduces to the old one. Throughout this paper (A, B) will

denote tr(AB) unless it is explicitly redefined. Moreover, one easily verifies that
(A,B)y =(A*xV,B) =(A,B*V)

where (A B)(k,l) = A(k,1)B(k,!) is the Hadamard matrix product. The result-

ing estimator may now be expressed as

0v. = [t ((Usn * Vi) Uy )] Htr (Ui * Vi) enel))

= [t (Ui * Vi) U ) "M € (Ui * Ve (1.4.21)

The element 32, fy.,(3)U; * V,, is the orthogonal projection of e’ onto the space
spanned by the elements Uy ,*V,,, Uz %V, . .., Ugn *V,, where the inner product
is (.,.) and this fact defines OAV,n. Equivalently, OAV,n may be defined by the fact
that >, . HAV,n(i)Ui is the orthogonal projection of ee’ onto the space spanned by
Uin,Uspn, ... ,Uygn, this time with the inner product (., .)y.

There may be very good reasons for considering such a modified inner prod-
uct. For example, in geostatistics the covariogram estimation is only an inter-

mediate step in some spatial prediction procedure such as kriging. In such cases
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it is often more important to estimate the covariogram more accurately at short
distances, while inaccuracies at greater distances may not be so important. Thus
the matrix V may be defined by V(k,1) = v(|| zx — z; ||) where v is some non-
increasing, positive function of distance.

Another reason for considering a modified estimator will become more ap-
parent later. Briefly, it will be seen that the asymptotic convergence properties
of the estimator may be improved by a careful choice of V.

The discussion in Section 1.4.2 shows that in the case where
Elee'| = Uy = Z o(i (1.4.22)

that is Cy is of the form (1.4.3), the estimator fy is unbiased for 8y regardless

of the choice of V.

1.4.5. The moments of éV,n
It is easy to see that the mean and variance of éV,n are given by
Elfv,n] = [tr((Ui * Vi) Uja)] 7 61 (Ui * Vi) Uyi)] (1.4.23)
and

var(0 n) = [6((Uin * Va)U; )] 7t var([el (Ui * Va)en)[tr (Ui * Vo) U )7
(1.4.24)

Later it will often be useful to make the assumption

var[Y, A, Y]
sup

= .4.25
n,An Otr(A KYnA KYn) €= o0 (1 )

where the matrices A, are symmetric. To ensure that the denominator does not

vanish, it will be assumed that Ky, is nonsingular for all n. In particular, the
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condition in (1.4.25) yields a bound for var(Y, A,Y5):
(1.4.25) = var(Y,A,Y,) < ¢ tr(AnKynAnKy,n)-

If Y is a Gaussian process, Y, is multinormal and ¢ = 2, in which case (1.4.25)

holds by the relation

var[Yy A, Y, = 2tr(An Ky nAn Ky p)

1.5. ASYMPTOTIC RESULTS

This section contains the main results of the paper. Firstly, the in-fill asymp-
totic setting considered throughout the paper is defined. Assuming in-fill sam-
pling on a finite domain, one obtains an expression for the asymptotic mean and
a bound for the asymptotic variance of the projection estimator. Subsequently,
the effect of varying the size of the domain on which the in-fill sequence is defined
on the obtained asymptotic variance bound is investigated. Finally, an example
is constructed in which observations are placed with an increasing density on a
growing domain in such a way as to produce an estimator which converges in
probability to the true covariance function. Various extensions are considered,
such as the presence of regression terms in the mean of the process (unknown 3

in (1.4.1)), or the presence of the so-called nugget effect.

1.5.1. Asymptotic settings

Various asymptotic settings are possible in geostatistics. In all cases it will
be assumed that (1.4.1) holds. The number of observations n will be allowed
to tend to infinity. However, additional considerations arise in defining a set-
ting for an asymptotic theory. These have to do with the relative locations of

the observations x; in the domain of the process, and the size and shape of the
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domain itself. Many authors (e.g., Cressie, 1993) have distinguished between
two basic asymptotic settings: the so-called in-fill asymptotics, in which the ob-
servations are placed within a compact domain D, and the expanding-domain
asymptotics, where the observations are spread over an increasing family of do-
mains {D;}i=1,., D; C D;4,. Clearly, even this does not fully define the problem.
In both settings the observations may be placed on some regular grid or in any
geometric arrangement whatsoever. Each such arrangement generally gives rise
to a different model as in (1.4.1), even though the underlying process Y is the
same.

Various precise definitions of asymptotic settings have been used by many
authors. Infill configurations have been considered, among others, by Stein (1987,
1989), Stein and Handcock (1989), and Lahiri (1996). Expanding-domain schemes
in which the minimal distance between observations remains bounded from below
by a positive value have been considered by Cressie and Grondona (1992) and
Cressie (1993) and others. Finally, schemes combining both in-fill and expanding-
domain properties in a sampling configuration have been considered by Hall and
Patil (1994) and Lahiri et al. (1999).

Precise meaning will now be given to the notion of in-fill asymptotics used in
subsequent discussion. The in-fill asymptotic context differs from that considered
by other authors in that it does not require the observations to be equally spaced
(as opposed to, for example, Stein, 1987) but nevertheless specifies a precise
limiting coverage (as opposed to Stein, 1989, where the limiting coverage is not
explicitly characterised). It will later be found that some naturally occurring
sampling schemes can be captured by this definition.

Let {z;}3°, € D denote a sequence of sampling locations within the domain.

The vector Y, = (Y(z1),...,Y(z,)) will be referred to as the sample of size
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n, while {zy,...,z,} will be called the sampling configuration of size n. The

following technical definition will facilitate further discussion.

Definition 1.5.1. For a given positive integer k, a collection Ay, = {A¥, ... A¥}
of measurable, disjoint, connected subsets of D with equal Lebesgue measure
w(A¥) = u(D)/k will be called a regular partition of D. A sequence of regular
partitions {Ax}32, satisfying

lim max{diam(4%), 1 <i<k} =0

k—o0

will be referred to as an in-fill partition sequence.
Now the in-fill asymptotic setting will be introduced.

Definition 1.5.2. Let D be a compact domain in R Let {z;}%2, be a sequence
of points in D. For any subset A of RY, let v,(A) = [{l: 1 <1< n and z;, € A},
that is, let v, be a counting measure with atoms at the points {z;}},. The se-
quence {Ij};?‘;l will be called an in-fill sampling sequence if there exists a con-
tinuous function f on D such that for any in-fill partition sequence {Ag}32, the
following condition holds:

for any positive integer k and any € > 0 there exrists N such that

foralll1 <i<k

Vn(Af)
n

n>N= <€ (1.5.1)

- f(u)du
Ak

The function f will be called the sampling intensity function. The triple
(D, {z;}52,, f) will be called an in-fill sampling domain.

Next, in-fill sampling and expanding-domains will be combined. The asymp-
totic setup here differs slightly from that considered by Hall and Patil (1994)

in that the sampling locations are not required to be a realisation of repeated
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sampling from a sufficiently regular random variable on D. However, at least in
some cases it can be shown that with probability one the sampling configuration
obtained by their construction will be a special case of the scheme considered
here. The following setup also differs from that of Lahiri et al. (1999) in that the
sampling locations are not placed on any regular grid.

One considers a sequence of in-fill sampling domains. Let D C R? be a
compact domain on which an in-fill sampling sequence with sampling intensity
f is defined. To simplify notation it will be assumed that p(D) = 1, where p is
the Lebesgue measure. Let {r,,}2°_; be an increasing and unbounded sequence
of real numbers with r; = 1. Let T},(z) = r»z, € R? be the dilation operator.

Furthermore, let

Dy, = T,,(D) (1.5.2)

{zm,i}721 = {Tm(=5)}721 (1.5.3)

fm(me) == T;ldf(fﬂ), T € D (154)

It is easily seen that for a fixed m = 1,2,..., the collection of sets A,x =

{AF . AR Y = {Tn(A4%),... , Ta(4F)} is a regular partition of Dy, and
{An r}32, is an in-fill partition sequence. Similarly, for a fixed m the sequence
{xm,j};-';l is an in-fill sampling sequence on D,, with the sampling intensity func-
tion f,,. The following definition will be useful in discussing situations where the

sampled domain is allowed to expand.

Definition 1.5.3. The sequence {(Dm, {Zm;}321, fm) ooe1, given by (1.5.2),
(1.5.8) and (1.5.4), will be called a sequence of expanding in-fill domains.
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The following example provides an easy way of constructing an in-fill sampling
sequence on a given compact, connected domain D. It is a special case of the

sampling scheme introduced by Hall and Patil (1994).

Theorem 1.5.1. If the sequence {:Ej}‘]?‘;l is a realisation of the sequence of in-
dependent random wvariables {Xj};-";l having the uniform density on D, then
with probability one the sequence {z;}52, is an in-fill sampling sequence with

f=pD)

The proof of the result follows from a d-dimensional version of the Glivenko-

Cantelli theorem (Parthasaraty, 1967).

1.5.2. In-Fill asymptotics

In this section the asymptotic properties of the estimators (1.4.17), (1.4.19)
and (1.4.21) are established in the in-fill asymptotic setting, in the sense described

in the previous section. The following lemmas will be useful.

Lemma 1.5.1. Let {z;}32, be an in-fill sampling sequence on D, with the inten-
sity sampling function f, and ¢, and ¢ be continuous functions on D x D. Then
the following convergence is uniform on D x D: for any (z,y) € D x D

lim Z L1 (@, 20 b2l 1) / (2, €)2(y, €) £ (£ dE. (1.5.5)

n—o0

Lemma 1.5.2. Let {z;}32, be an in-fill sampling sequence on D, with the in-

tensity sampling function f, and ¢, and @ be continuous functions on D x D.

Then

JLIEOZZ — &1(Tk, T1) P2 T, T1) // o1(€,m)d2(&,m) F(E) f(n)dEdn.

k=1 (=1

(1.5.6)
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Lemma 1.5.3. Let {z;}52, be an in-fill sampling sequence on D, with the in-
tensity sampling function f, and {¢1,} and {$an} be sequences of continuous
functions converging uniformly on D x D to the continuous functions ¢, and ¢q,

respectively. Then

T}H&;;%%,n(iﬂk,wl)@,n(ﬂik,ﬂ) :/D/D¢1(f,7l)¢2(f,ﬂ)f(f)f(n)dfdﬂ-
(1.5.7)

Lemma 1.5.4. Let {z;}32, be an in-fill sampling sequence on D, with the in-
tensity sampling function f, and ¢, @2, @3 and ¢4 be continuous functions on

D x D. Then

nlggo Z Z Z Z %gﬁl(xkla$k2)¢2(1"k27wk3)¢3(:€k3’xk4)¢4(xl€47$k1)

1 =1 k2—l ka_—l kl_]

(1.5.8)

where

m@mzﬁm@»@wmnWA

mmm=L@@M@mmﬂmu

1.5.2.1. Stationary process with known mean (case X =0)

This section explores the properties of the projection estimator as an increas-
ing number of observations from an in-fill sampling sequence on a finite domain
become available. It will be initially assumed that X = 0in (1.4.1) and the stan-
dard inner product will be used (V' (i,j) = 1) to obtain the estimator (1.4.17).



Let

A = (1) [ir(Kin K 0)),

My = (1/n?)[tr(KinKyn)]
and
B, = (1/n")[tr(KinKynKjnKyn)l.
Furthermore, let

E, = A;'diag(B,) 4!,
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(1.5.9)

(1.5.10)

(1.5.11)

(1.5.12)

where diag(B,,) is a matrix whose diagonal elements are the same as those of B,

while the off-diagonal elements are zero. Now (1.4.23) may be expressed as

E[f,] = A7 M,,

while (1.4.24) may be expressed as

var(6,) = A7 (1/n*) var([V (K; ) Ya)) A,

= A1 /nY)[cov(YiKinYn, YK 2 Yn)] AL

The following result follows:

Lemma 1.5.5. If (1.4.25) holds, then
var(én(i)) < qcE, (i, 1), =T s ok gy

where ¢ is given by (1.4.25).

(1.5.13)

(1.5.14)

(1.5.15)
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This result provides an upper bound for the variance of the components of
#,. Of course, in the case of a Gaussian process Y, one has a more precise

relationship, namely
var(f,) = 24 B, AL (1.5.16)

If the sequence of models in (1.4.1) originates from an in-fill sampling sequence
and the model component functions C;, as well as the true covariance function
Cy are all continuous, the following limits result from the lemmas of the previous

section:

- 1 R |
Al ) = nlggoﬁtr(Ki’“Kja”) = Jl_)ngozz ;éci(xkgxl)cj'(i'l,l'k)
k=1 I=1

- /D /D Ci(€1,£)C5(6, 6) (&) f(&)daady, (15.17)

T | e L
M%) = lim — tr(K; n Ky,) = nlggozz ﬁCi(xk,xl)Cy(a:l,wk)
k=1 1=1

:/D/DCi(fl,52)C'Y(§2,f1)f(€1)f(§2)d§1d§2 (1.5.18)

and similarly

B(i,j) = lim ~ tr(KinKynK;nKyn)

n—oo 14

= n}i)ngo Z Z Z Z %Ci(l'k, l‘l)Cy(l‘l, £L'm)Cj(IEm, -T'r)CY(mra mk)

k=1 =1 m=1r=1

B /D/D hi(€,m)hi(n,£) f(6) f (n)dédn  (1.5.19)
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where

m(en) = [ CHENCx () F()x
The following result is an easy consequence.

Theorem 1.5.2. Under the model (1.4.1), with known 3, or X = 0, for obser-
vations coming from an in-fill sampling sequence, if the matriz A of (1.5.17) is

invertible, the projection estimator defined by (1.4.17) has the limiting mean of

lim E[d,] = A™'M = 6. (1.5.20)

n—r00

In addition, the following limit exists:

lim E, = A~ ' diag(B)A™' = E (1.5.21)

n—oo
where the matrices B and M are given by (1.5.19) and (1.5.18). If, moreover,
(1.4.25) holds, the limiting variance of the estimator satisfies

~

lim var(6,(?)) < gc E(i,17). (1.5.22)

n—roo

If Cy is of the form (1.4.3), its parameter vector 8y is given by (1.5.20) (in
that case B[0,] = 0y for all n). The first part of this results follows from

E[f] = [tr(Kin Kjn)] BV, KinYa] = [tr(KinKjn)] " [tr(KinKyn)]

combined with earlier definitions, while assertion (1.5.22) is a consequence of
Lemma 1.5.5.

Thus it is seen that as the number of observations increases, the variance
of the components of 0, remains bounded by the diagonal entries of the matrix
E. Tt can also be easily seen that at least in the Gaussian case the variance of
6, cannot be made arbitrarily small by increasing the number of observations n.

The matrix B will generally not be zero. To see this, it is sufficient to consider a



34

case where the covariance functions Cy and C; are non-negative. The following

corollary follows from (1.5.16) and (1.5.21):

Corollary 1.5.1. Under the model (1.4.1), where the observations come from an
in-fill sampling sequence, the process Y is Gaussian and the matriz B in (1.5.19)
is not zero, the projection estimator of 0 (defined by (1.4.17)) is inconsistent (has

a positive limiting variance).

To see this, one recalls that in the Gaussian case lim,_,o, var(d,) = 2A"'BA~L.
Since A is invertible, A"'BA~! has the same rank as B and it is non-negative
definite, since it is a variance matrix. If it were possible to estimate 6, consis-
tently, this would imply B = 0. Corollary 1.5.1 is not particularly surprising and
it should be compared with the results of Matheron (1965), who shows the im-
possibility of consistent estimation of the empirical variogram based on complete
information about the process over a finite domain.

By construction, the estimator (1.4.17) is unbiased for 0y if Cy is of the
form (1.4.3). In this case, the resulting C; (71,%,) is an unbiased estimator of
Cy (1, x2) for all n. If, on the other hand, Cy is not of the form (1.4.3), then the
parameter 0 can still be defined as the limit of #,, = E[f,]. From earlier discussion

and from the discussion in Section 1.4.2 it follows that

q

Jim B[C;, (z,9)] = D_(lim Blf.()])Ci(w,y) = 29 (@)Cilz,y)  (1.5.23)

=1

viewed as a function of (x, %) is the orthogonal projection of the function Cy (z, y)
onto the space spanned by the functions C;(z, y), where the inner product between

two functions ¢;, ¢ on D? is defined by

i) = f f B1(E,m) o, €) £ (€) £ () delp. (1.5.24)
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This is somewhat comforting, since it means that if the functions C; are selected
so that the space they span is sufficiently rich to contain elements close to Cly,
the obtained estimator’s bias should be small.

The results of this section hold with slight modifications for the more general

estimator éV,n if the matrix V,, is of the form
Vn(k‘, l) = ’U(ZCk, :El) (1525)

where v is a continuous positive function on D?. It suffices to define the matrices
A, M and B as

A(i,7) = lim = tr((Kip * Vi) Kjz)

n—co 12

=fD/DC’i(fl,fz)cj(ﬁzafl)v(fhfz)f(fl)f({fg)dfld@, (1.5.26)

1

n—o0 T,

:/D/DCi(fl,52)Oy(§2,§1)v(§1,52)f(§1)f(§2)d§1d52 (1.5.27)

and similarly

1
B('L,]) = nli)r{olo H tI‘((Ki,n * Vn)KY,n(Kj,n * Vn)Ky,n)

N /D fD ha€, m)hs(n, €)£(€) f(n)dedn (1.5.28)

where

halE, ) = /D CilE, \Cr (A v, N) (N,

Theorem 1.5.2 holds and its proof is virtually unchanged.
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The remarks following Theorem 1.5.2 also hold, but the inner product in

(1.5.24) is replaced by

i i = /D /D b1 (€, ) o, €)0(€, m) £ () F (m) e, (1.5.29)

1.5.2.2. Process with unknown mean or a trend (X # 0)

This section extends the results of the previous section to the case of a process
with unknown mean. The presence of the unknown parameter [ results in the
estimator of the form (1.4.19). Let X, be as described in Section 1.4.1. Let
R, = (1/n)X! X, and S, = n(X.X,)™ . It follows from Lemma 1.5.1 that

- d 1 n
lim Rn(kl,kz) = lim — E ’I‘kl(xl)Tk2($l)
=1

n—00 n—oo N

= [ @@ (e = Rk k) (1530

for 1 < kq,ky; < p. If the functions r; are such that the matrix R is invertible,
then

lim S, = lim n(X'X,) '=R'=S.

n—oo n—00

If z; is a row vector of dimension d, representing a point in the domain D (and I-th
row in the matrix X,,), let @ denote the function Q(z,, x1,) = 1, S7;,, continuous
on D?. In order to generalise the results of the previous section to the case of a

process with unknown mean, auxiliary functions will be defined as follows:

Qsi(zh ’ wlz) = C; (:Ull ) J;lz)

B /D Qlaw,, €)Ci(E, 71,) £ (€)d — fD Q. €)Cilany, €) £ ()

& /D /D Q(1y, £)Qz1y, ) CH (€, ) F(€)f (m)dedn. (1.5.31)
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One defines ¢y by replacing C; by Cy in the equation above. These definitions
are rather technical in nature. Their precise role can be seen in the proofs of the
results of this section, but intuitively they arise from considering cov(Y (z1) —
Y(x1),Y (z2) — Y (x2)) instead of cov(Y (21), Y (22)), where ¥ = X 3. The terms
involving integrals can be associated with the covariances of the predictors v
with Y and with themselves. The following matrices will play a role similar to

that of the matrices A, M and B defined in (1.5.17), (1.5.18) and (1.5.19):

A1, §) = /D /D 6161, £2)05 (€2, 1) F(€1) F (€2)dErdt, (1.5.32)

M (i) = /D /D bilEn, E)by (0, EVFED F(E)dEVE,  (1.5.33)

and

Bi(i,j) = /D /D has €, Mo, €)F(€) () dedn (1.5.34)

with

hog(Em) = /D $i(6, Ny (A m) F(N)dA. (1.5.35)

The following result generalises Theorem 1.5.2 to the case of unknown £.

Theorem 1.5.3. Under the model (1.4.1), with X containing continuous regres-
sor functions and such that the matriz R of (1.5.30) is invertible, if the obser-
vations come from an in-fill sampling sequence with sampling density f and the
matriz Ay, of (1.5.82) is invertible, the projection estimator defined by (1.4.19)
has the limiting mean of

lim E[f,] = AT*M, = 6. (1.5.36)

n—od



38

In addition, the following limit exists:
lim F,, = AT diag(B,)A7! = E; (1.5.37)
n—o0

where My and B, are given by (1.5.33) and (1.5.84). If, moreover, (1.4.25) holds,
the limiting variance of the estimator satisfies

lim var(6,(i)) < gc Ey(i, ). (1.5.38)

n—00

Thus in the case of unknown g, the situation is similar to the previously
considered case of zero mean. If (1.4.25) holds, as n increases, the limit variance
of the estimator of 4(i) is bounded from above by the diagonal elements of the

matrix
gc B, = qcA7" diag(B;) A;? (1.5.39)

which may be compared with Lemma 1.5.5. An argument similar to that in
Corollary 1.5.1 shows that consistent estimation of # is in general impossible
based on observations drawn from a finite domain.

The discussion of Section 1.4.2 shows again that the estimator is unbiased if
Cy is of the form (1.4.3). If the term Xf is absent from (1.4.1) the functions
defined in (1.5.31) reduce to Ci(z,, z;,) and the matrices A;, M; and B, reduce
to A, M and B, respectively.

As in the previous section, nothing changes substantially if 0y is considered

instead of 6. It is only necessary to redefine

A6, ) = /D /D bulEr, €266, E)0(61, £ F(E) f(E)dEdEr,  (1.5.40)

Mi(i) = /D /D b6, )y (60, EV(EL BT (E)dEndE,  (15.41)
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and

hoi(€m) = /D Bi(E, Ny (0, mo(€, M) F(\)dA. (1.5.42)

1.5.2.3. The nugget effect

In the practice of geostatistics it is common to consider processes of the form
Y(z) =Y (z) + e(x) (1.5.43)

where Y(z) is as in previous sections and where €(z) is a zero-mean random
variable with a finite variance v and where for x; # x3 the random variables
€(z,) and €(zy) are uncorrelated. The processes Y (z) and ¢(z) are assumed
uncorrelated as well. The variance of the term e(z) is traditionally called the
nugget effect in geostatistics. This section reviews the effect of the presence of
a nugget effect in the model in the setting of the previous section. Firstly, one
observes that if (1.5.43) holds, but the model (1.4.2) is not modified to reflect
this, there is no effect on the asymptotic mean and variance of 6, . To see this,
one examines the formulae (1.5.17), (1.5.18) and (1.5.19). Clearly, (1.5.17) is
unaffected, while (1.5.18) yields

1
M(i) = lim — tr(K;,(Kypn +710))

n—o0 N2

= lim i (Z Z(Cz(axk, :L‘l)Cy((Bl, iL'k) -+ 'yCi(xk, xl)d(xl — 1‘k))>

2
n—00 1
k=1 I=1
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where 0(z; — zx) is a discontinuous function equal to one if z; = z; and zero

otherwise. Hence

] ) 1 T T n
M(@) = lim = (Z > Ci(wr, 21)Cy (@1, zx) +7 Y, Cilax, xk))
k=1 I=1 k=1
I B £
= nh—>n§o 3 (; %1‘ Ci(zk, 21)Cy (z1, $k))

and it is seen that the limit is unchanged. A similar argument shows that (1.5.19)
is also unaffected.

However, the estimation of the importance of the nugget effect is of interest in
its own right. To carry out this estimation, a discontinuous covariance component
is added to the model (1.4.2). This discontinuous component will be called the
nugget effect covariance component and it will be denoted by W in order to
differentiate it from the continuous components C;. The component W is defined
as

o
W=t 7 (1.5.44)

0 otherwise.

It will be assumed that the model (1.5.43) holds and hence the true covariance

function of Y, is
C’Y,e =Cy +9W (1.5.45)

where W is discontinuous as defined above, while Cy, the covariance function of
the process Y, is a continuous function as in the previous sections. The model to

be fitted will be of the form

q
Cyo =W + > _0()C; =W + C. (1.5.46)

=1
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The projection estimator is easily obtained:

-1

A'n, . t Uzn [ : i

B [tr(Uin)]  [tr(UsnUin)] lenUinen]

where p is the number of columns in the regression matrix X, [tr(U;,)] isa g x 1
matrix and [tr(U; ,U; »)] is a ¢ X ¢ matrix and where the matrices U;, are defined
as in (1.4.19). To extend the results of the previous section to the case with the

nugget effect, the following definitions will be useful:

1 o
Ape = (1.5.48)
0 A

where A, is a ¢ X ¢ matrix with entries given by (1.5.32) for 1 <i<¢q,1<75<¢q

and the vector a, of size ¢ has the entries:

ali) = /D Bi(E, €)1 (€)de (1.5.49)
with ¢; given by (1.5.31), while

m
Mp=1| " (1.5.50)
M,

where M; is a ¢ x 1 matrix with entries given by (1.5.33) with 1 < ¢, and

mo = [ Crde.0f©d
The matrix B, is defined as

be b
Bo=|" (1.5.51)
b B
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where the ¢ x ¢ matrix B; has entries given by (1.5.34). The ¢ x 1 matrix b has
entries defined by

bi) = /D /D ha(€, My (7, €) F (€) £ () dédn

with hy; as in (1.5.35), and

bo:/D/D¢Y(§,n)cby(n,é)f(f)f(n)dédn-

Finally, the matrix F,, , will be defined as
Ene = A7} diag(Bpe)(AL.) ™ (1.5.52)
The following result holds:

Theorem 1.5.4. Under the model (1.5.43) with Y as in (1.4.1), where X con-
tains continuous regressor functions and such that the matriz R of (1.5.30) is in-
vertible, if the observations come from an in-fill sampling sequence with sampling
density f and the matriz Ane of (1.5.48) is invertible, the projection estimator
defined by (1.5.47) has the limiting mean of

A my — a'f

lim E | | = A} M, = (1.5.53)

n—oo 0, ]
where 0 is given by (1.5.36). In addition, the following limil exists:
lm Epep = A-ldiag(Bpe)(AL) ™ = Epe (1.5.54)

where M,. and By, are given by (1.5.50) and (1.5.51). If, moreover, (1.4.25)

holds, the limiting variance of the estimator satisfies

lim var(¥,) < qc En.(1,1) (1.5.55)

n—oo

lim var(6,(i)) < qc Bpe(i +1,5+1), i=1,...,q.

n—ro0
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As in the case without the nugget effect, the limiting variance of the estimator
is finite and non-zero in general. For any finite n, the estimator is unbiased if
the model (1.5.46) is correct. It is easy to see that if the process is stationary,
my = var(Y.(z)).

It is a simple matter to generalise the results of this section to the estimator

fy-. In order to do so, one defines

ag a

Ape = (1.5.56)
0 A

where A; is a ¢ x ¢ matrix with entries given by (1.5.40) with 1 <i<¢,1<j<gq

and where
ai) = [ eile.OiE (e (1.5.57)
and
w= [ vle.c)(e)e (1.5.58)
while
TR (1.5.59)
M,

where M; is a ¢ X 1 matrix with entries given by (1.5.41), and

o /D Cy (&, €)v(€, €) F(€) .

The matrix B, is defined as

by U
Bpe=|" (1.5.60)
b B,
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where the ¢ X ¢ matrix B; has entries

B3, )= /D /D B o€, My (n, €) £ (€) f (n)dédn

with hy (€, 1) given by (1.5.42), while the ¢ x 1 matrix b has entries defined by

b(i)=/D/Dhl,i(ﬁ,n)cby(n,é)v(n,n)f(«f)f(n)dfdn

with hy; is as above, and

By /D /D oy (€, 1) by (n, E)u(&, €)v (1, 1) £(€) £ (n)ded.

With these changes Theorem 1.5.4 holds and its proof is essentially un-
changed. In most applications v(£, &) will be a constant and in that case there is
no loss of generality in assuming v(&, ) = 1, which simplifies the expressions for

Qg, My, b() and b.

1.5.2.4. The convergence rate for uniform random sampling sequence

If the true covariance function Cy is of the form (1.4.3), the mean of the
estimator @, in (1.4.19) is fy and does not depend on the sampling sequence.
Otherwise it depends on the matrices A, and M, of (1.5.9) and (1.5.10). The
elements of the matrices A, and M,, can be viewed as approximations of the ele-
ments of the matrices A and M defined by the integrals in (1.5.17) and (1.5.18).
In fact, for a fixed in-fill sampling sequence {z;}, the elements of M, and A,
are Riemann sums for the integrals in A and M. The rate of convergence will
in general depend on the in-fill sampling sequence. In the case of the sampling
sequence described in Theorem 1.5.1, one can view the elements of A, and B,
as a kind of quasi-Monte Carlo estimates - random variables, and it is possible

to establish the convergence rate for this approximation. Unlike in the previous
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sections, in this section the in-fill sampling sequence will be considered as a se-
quence of random variables taking values in D. These ideas are summarised in

the following lemma.

Lemma 1.5.6. Let {X,} be a sequence of independent random variables hav-

ing the uniform density on D. Let ¢, and ¢o be continuous functions and let

oi(z,y) = ¢i(y, ), for (z,y) € D*,i=1,2. Let

ZZ n—l b1 (Xx, Xi) 2 (X, Xi)

k=1 I=1
Then
tim B(Z,] = [ [ su(em)ontn. )7 (n)dan = n(D).
Moreover,
nl/ﬁ(g'—;?';(ﬂ) —4¢N(0,1) (1.5.61)
where

<1=/JJ(/D¢1(£,77)9252(77,€)f(€)f(n)d§)2f(77)d77—(K(D))Q-

To emphasise that the entries of A, and B, are now random variables de-
pending on the realisation of the process X = (X3, Xs,...), they will be denoted
by An(X)(i,7),1 < i < g,1 < j < g and Ma(X)(3),1 < i < g The following

result follows:

Theorem 1.5.5. Let {X;} be a sequence of random variables as in Lemma 1.5.6.

Then
nY (A (X) M, (X) — ATIM)

converges in distribution to a g-dimensional multinormal random variable with

ZETO mean.
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1.5.3. Asymptotics on expanding domains

In the previous sections it was shown that under some rather general condi-
tions, if the observations come from an in-fill sampling sequence on a compact do-
main, the variances of the components #() of the estimator (1.4.19) are bounded
by a multiple of the diagonal elements of the matrix F (where the precise defi-
nition of E may be given by (1.5.21), (1.5.37) or (1.5.54) depending on context).
It was also seen that those bounds are generally strictly positive and that even
in the simple case of a Gaussian process, var(f, (7)) remains bounded away from
7Z€ero.

In this section attention will be focused on isotropic processes and the effect
of the size of the finite domain on the limiting variance will be considered. The
limit matrix £ will be found to depend on the size of the domain D. The main
result derived in the subsequent sections states that under fairly mild regularity
conditions the entries of the matrix E converge to zero as the sampled domain D
is allowed to grow indefinitely. It will therefore follow that var(f,()) can be made
arbitrarily small by sampling a sufficiently large domain at a sufficient number of
locations.

It will be assumed that a sequence {(Dyn, {Zm,j}521, fm) Foee1 Of expanding in-
fill domains is given, as in Definition 1.5.3. The subscript m runs over domains
in the expanding sequence {D,,}. This will be the meaning of all subscripts m
in this section and it is different from the notation used in the previous sections
considering a fixed compact domain, where the subscript n ran over observations
in a sampling sequence.

The results obtained so far do not make the assumption of stationarity of n

in (1.4.1). Throughout the remaining sections it will be assumed that the ran-

dom process 7, as well as the component covariance models C;, are isotropic
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and therefore (second order) stationary. In the case of an isotropic process
the covariance functions C;(z1,z2), Ce(z1,22) and Cy(z1,z2) depend only on
p =|| 1 — z2 || and the following notation will be used along with the current
notation: C;(p) = Ci(x1,T2), Ce(p) = Cp(z1,22) and Cy(p) = Cy(z1,22). Thus
the model (1.4.1) will remain unchanged, but (1.4.2) will now have an equivalent

isotropic version
q
Cy =) _6(i)Cs. (1.5.62)
i=1
1.5.3.1. Isotropic fields

In the case of the isotropic field, the equations (1.5.17) and (1.5.18) take a
simplified form. The double integrals of (1.5.17) and (1.5.18) can be replaced by
single integrals if the general covariance forms Cy, Cy and C; are replaced by their
isotropic counterparts Cy, Cy and C;. These new expressions will be essential
in subsequent considerations deriving the limit of the matrix F as the size of the
domain D grows indefinitely. This section establishes some fairly technical details
necessary to obtain the new expressions.

One considers the measure

F,(B) = / 7€) (m)dedn (1.5.63)

where B is any Lebesgue-measurable subset of D2. The following defines a mea-

sure on [0, diam(D)]:

G(A) =F({(&n) :[| € —n |le A}) (1.5.64)

where A is any Lebesgue-measurable subset of [0, diam(D)]. (The fact that the
distance  function is  continuous  guarantees that the set

{(&,n) :|| € = n ||€ A} is measurable.) It is easily seen that if ¢5(&, 1) = ®;(p),i =
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1,2 are measurable and isotropic, then

diam(D)
/D /D $1(€, 1) bali1, E)AF(£, 1) = /0 8.(0)Br(p)dG(p).  (15.65)

The measure G will generally depend on the size and shape of D, as well as on

the nature of f, but the following lemma holds in general.

Lemma 1.5.7. If Fy is absolutely continuous (with respect to the Lebesgue mea-

sure) then so is G.

The non-negative function G(p), p > 0 will be defined by

G(p) =F2({(&,n) : € = n < p}) = G([0, p]). (1.5.66)

Examples of the function G for some regular domains for d = 2 can be found in
Bartlett (1964) or Diggle (1983).

Next one considers a sequence of expanding in-fill domains
{Dm} {zmj}521, fm}se=1 as in Definition 1.5.3, with constant sampling den-
sity functions f,,, which gives rise to the sequences of measures {Fs,,}5_, and
functions {G,,}52_,, where Fy,, is defined by (1.5.63) with f replaced by f,,, and
G, is given by (1.5.66) with Fy = Fy,,. The sequence {G,,}3%_, will play an
important role in the next lemma. The following definition will also be needed.

Let
B,(D)={zeD:jz—yll<p=>ye D} (1.5.67)

that is, B,(D) is the set of all points in D with the property that the interior of
the ball of radius p around the point is contained in D. Loosely speaking, the
following lemma decomposes the function G,, into two components: one which

depends only on the dimensionality d of the embedding space, and another, which
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depends on the geometry of the domain and which may be associated with the

edge effect.

Lemma 1.5.8. Let D C R? be a compact domain and {xj}?_‘;l be an in-fill sam-

pling sequence on D, with constant sampling intensity function f = p(D)~!. Let

{(Dm, {mm,j}?il’ fm) =1

be a sequence of expanding in-fill domains. Let D satisfy the following condition:

p(D\ B,(D)) _
il;](’,)) ~ @D 6% X (1.5.68)

where p is the Lebesque measure on R%, ¢ is a constant, 8D is the boundary of
D and v is the Lebesque measure in R%1. Then there exists a positive constant
«, determined entirely by D, such that

G():ﬂr—“—R() (1.5.69)
mP =Tz P T e o

where

0 < Rp(p) < ar,mtp™t

m

The last lemma gives bounds for the function G. In addition to these bounds
two other properties are easy consequences of the definition of G and will be of
interest. Firstly, G is non-decreasing. Secondly, if F5 is absolutely continuous,
G is continuous. As a result, the function G may be used to define a Stieltjes

integral. The following lemma will be useful

Lemma 1.5.9. Let ¢ be a measurable real function such that

lim f ' |6(p)|p%dp = 0. (1.5.70)
0

0T

Then

diam( D) o0
iim %, [ 6(6)dGnlp) = 0 | stwita (15.71)

Tm—+00
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where ag = (dr%?)/T(d/2 + 1).

1.5.3.2. Regularity conditions

This section summarises most important assumptions which will be made
about the observed process Y, its covariogram, the model, its components and the
sequence of expanding in-fill domains which will be considered. These restrictions
are mostly technical and are invoked to guarantee the existence of various limits
appearing in the subsequent results. The subsequent sections will make references
to the assumptions enumerated here. For an isotropic function ¢ defined on
R? x R? and function ® defined on R, such that ®(|| z; — 5 ||) = ¢(x1, z2), the

following two conditions are equivalent

/ |p(€,0)]Pdé < 00 <— /00 |®(p)Pp?tdp < 0. (1.5.72)
Rd 0

It will be assumed that the function v(z1,z3) of (1.5.25) is bounded by one and
isotropic. The function v(p) will be defined by

v(|| 21— 22 ||) = v(z1,22) < 1. (1.5.73)

In all of the results in the remainder of this paper, the following will be assumed.

Condition 1.5.1. The  sequence of ezpanding n-fill  domains
{Dm,{Zm;}321, fm} is such that fm = p(Dp)™" and the conclusion of Lemma
(1.5.8) holds.

Condition 1.5.2. The covariance function of the process Y, Cy satisfies (1.5.72)
with p = 1.

Condition 1.5.3. For all covariance component functions C; in the model, the

functions C;(p)v(p)}/? satisfy (1.5.72) with p = 2.
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The last two conditions impose some restrictions on the rate of decay of the
true covariance function and the covariance component functions in the model.
These restrictions are not very severe. In particular, they are satisfied if the true
model decays at the rate of p~(17¢) where ¢ > 0, v = 1, and the covariance
component functions decay at the rate of p~(/279), These rates are much slower
than those of most traditional covariogram models considered in practice. The
following conditions will be assumed in some, but not all, results of the following

sections.

Condition 1.5.4. For all covariance component functions C; in the model, the

functions C;(p) satisfy (1.5.72) with p = 2.

Clearly, the last condition implies Condition 1.5.3 with any choice of function
v(p)-
Condition 1.5.5. The functions C;(p)v(p) satisfy (1.5.72) with p = 1.

Clearly, the last condition implies Condition 1.5.3. If the components C;(p)

decay sufficiently fast, this last condition holds for any choice of function v(p).
Condition 1.5.6. The function v of (1.5.73) satisfies

v(p) < koo™
for some k, > 0 and somet > 0.

The last condition is not very restrictive, indeed setting v = 1 corresponds
to the case k, = 1, t = 0. A similar condition with respect to the functions C;

will also be considered.

Condition 1.5.7. For some a > 0 and z > d/2

|Ci(p)| < ap™®, S PR
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1.5.3.3. Process with known mean

This section considers the behaviour of the bound (1.5.22) for the variance
of the estimator (1.4.17) as the size of the domain increases. For an isotropic

process observed on the domain D,,, the expression (1.5.26) becomes

diam (D, )
Anid) = [ CHACH )G (o) (15.74)

while (1.5.27) becomes

~diam( D,y )
Mali) = | Ci(p)Cr(p)V()dGrm(). (1.5.75)
0
The limit vector 8 in (1.5.20) generalises to
B = AZIM,,. (1.5.76)

Definition (1.5.28) becomes

Bulii) = [ | ( [ aenevinmue N

([ ce NGO mule NinWA ) (€ nlrhdtn. (1577
The matrix E defined by (1.5.21) for the domain D,, becomes

E, = A ldiag(B,)A,. (1.5.78)

m

The following result describes the behaviour of the matrices A,,, M, Bn
and F,, as the domain size increases in the case where the mean of the process

Y is known (in which case it may be assumed to be zero).

Theorem 1.5.6. For an isotropic process with known (3, with a sequence of ex-
panding in-fill domains satisfying Condition 1.5.1, with the true covariance satis-

fying Condition 1.5.2 and with the model components satisfying Condition 1.5.3,
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the following limits exist

Jim rd AL = A, (1.5.79)
lim r¢ M, =M (1.5.80)
T — 00
and
lim r38B,. =B (1.5.81)
Ton —0O0

Moreover, if the matriz A is invertible then the following limits exist:

lim 8, = hm A;'M,=A"'M=20 (1.5.82)
Tm—>00 T —>00
and
lim r¢E,, = A"'BA™ =E. (1.5.83)
Ty —00

The entries of the matrices A, M and B of Theorem 1.5.6 are given by

Ai,j) = lim_réAn(i.d) = a0 [ CUAC ()0 dp

T —+00

M(@@) = lim 7 Mny(i, 7) ZGG/OOO Ci(p)Cy (p)v(p)p™ 'dp

Tm—0Q
and
BG.j) = lim r3B0) = e [ (o) (p)e" dp
Tm o0 0
where

Hz(” € -7 ”) = hz(ga 77) == /Rd 01(57 )\)C}()\,U)U(f,)\)d)\

i /Rd (€ —n— Ny (A)dA = G(€E—n)
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where (; is the convolution of the functions v; and ¥y defined by

d’z(‘f) = Cﬁ(ga 0)v(§, 0)
and
Yy (§) = Cy(§,0).

The convergence of r? E,, leads to the following result:

Corollary 1.5.2. The bound (1.5.22) for the variance of the estimator (1.4.17)

—d

¢, i.e. inversely proportional to the

on domain D, converges to zero at the rate r
linear size of the domain raised to the power of d, the dimension of the embedding

Fuclidean space.
The following corollary is a simple consequence of Theorems 1.5.2 and 1.5.6.

Corollary 1.5.3. Under the assumptions of Theorem 1.5.6, for a process satisfy-
ing (1.4.25), for any € > 0 there exist integers m. and n, such that if the process
Y is observed at the locations Zm, 1, Tm.2,--- Tm.n., the projection estimator
(1.4.17) computed from this sampling configuration, éme,ns satisfies

~

var(fm, ». (1)) <e, g=ilyina g (1.5.84)

This result states that even though in-fill sampling on a compact domain
leads to an estimator (1.4.17) whose limiting variance is positive, this limiting
variance vanishes as the size of the domain tends to infinity. Therefore, sam-
pling a sufficiently large domain sufficiently densely produces an estimator with
arbitrarily small variance. The value of m, may be obtained from Theorem 1.5.6
and the bound in Lemma 1.5.5. It suffices to take the smallest m, such that
qcr;l‘:Ei,z- <¢€1=1,...,q. The choice of n. depends on the rate of convergence
in (1.5.21) in Theorem 1.5.2 applied to the domain D,, , which ultimately de-

pends on the geometry of the in-fill sampling sequence. The case of the in-fill
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sampling described in Theorem 1.5.1 (uniform random sampling) is considered in
detail in Section 1.5.4. In that case it is shown how to obtain the number of obser-
vations n(m) required on the domain D,, in order to guarantee the convergence

in probability of ém,n.

1.5.3.4. Process with unknown mean

Theorem 1.5.6 can be extended to a process where the regression term X is
present. However, certain restrictions will be imposed to guarantee convergence.
Firstly, X will be assumed to contain homogeneous regression functions. Thus if
the k-th column of X contains elements r(x;),z; € D, it will be required that
ri(rz) = r’ri(z) for some constant v and for all z € R? and for all r > 0. In
particular, any monomial involving any number of components of z € R? is a
homogeneous function. This means that any polynomial trend can be modelled.
Secondly, the rate of convergence of the bound (1.5.21) for the estimator’s variance
may depend on the rate at which C;(p) decreases with increasing p. If this rate
is too slow, the convergence at the rate r.? may still be attained for a modified
estimator @y, for a suitable function v defined by (1.5.73). In the generalisation
of Theorem 1.5.6 to the case of Y with unknown mean, the matrices A,,, Mp,,
B,, and E,, will be replaced by their generalised counterparts A; ,,, Mim, Bim

and E ,,. The entries of the matrix A, ,, are given by

Al,m(i,j)Z/ . Gim (€15 £2)D1m (&2, 1)V (&1, €2) fm(&1) fm () dE1dE2  (1.5.85)
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where

¢i,m($ll ’ xlz) = CZ (mll ) xlz)

=i Q(z1,, &) Ci(&, 31,) frm (§) dE — i Q(z1,,&)Ci(T1,, €) fin (£)dE

+/ . Q(z1,, §)Q(z15, M) Cil €, 1) fin(§) frn(n)d€dn  (1.5.86)

and where one defines ¢y, by replacing C; by Cy in the equation above. The

entries of the matrix M, ,, are given by

Ml,m(i)Z/ i Gim (&1, &2)Pym (&2, &1)v (&1, &2) frn (1) fin(€2)dErdE2,  (1.5.87)

those of B, are given by

Bymlis ) = / | / him (€ b, €) € fm(mdedn  (15.88)

with

hl,i,m(f: 77) . 5 ¢i,m(£7 )‘)(ZSY,m()" 77)’“(5, )‘)f(’\)d’\v (1589)

and finally, the matrix F, ,, is given by
Eym = AL, diag(Bym) ALy, (1.5.90)

The following result generalises Theorem 1.5.6 to the case of a process with un-

known mean.

Theorem 1.5.7. For an isotropic process with X composed of homogeneous re-
gressors, with a sequence of expanding in-fill domains satisfying Condition 1.5.1,
with the true covariance satisfying Condition 1.5.2, the model components satis-

fying Condition 1.5.8, and with the matrices A, M, B and E defined in Theorem
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1.5.6 the following limits hold:

lim 72 A4, =A (1.5.91)
Tm—C0

lim &My, = M. (1.5.92)
Tm—+00

If one of the following conditions holds:
i) Condition 1.5.5 holds,
it) both Conditions 1.5.6 and 1.5.7 hold, with z +t > d

then
lim 3By m =B (1.5.93)

and
lim r&E,,, = A"'BA™' = E. (1.5.94)

Tm— 00

If neither i) nor i) holds, but both Conditions 1.5.6 and 1.5.7 hold, then

lim r24+*+p, . =0 (1.5.95)
P —+0Q
and
lim rZHE , = 0. (1.5.96)
Tm—>00

If (1.5.94) holds, the bound (1.5.38) for the variance of the estimator (1.4.21)
on domain D,, converges to zero at the rate r %, whereas if (1.5.96) holds, the
rate is 7,7 ~¢, which is slower since z + ¢ < d in this case. Thus Corollary 1.5.3

generalises to the case of a process with unknown mean in an obvious way.
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1.5.3.5. The nugget effect

The last result can be generalised to include the case where the nugget effect
is included in the model. Thus it will be assumed that the observed process Y, is
of the form (1.5.43) and the fitted model is of the form (1.5.45). To simplify the
notation it will be assumed that v(£,€) = 1. One defines

1 a,
Ane,m =

(1.5.97)
0 Al,m

where A, ,, is a ¢x ¢ matrix given by (1.5.85), and the entries of the (¢-dimensional)

vector a,, are

am(1) = Pim (&, €) frm(£)dE (1.5.98)

D

with ¢; ,,, defined as in (1.5.86), while
]\/[ne,m = i (1599)

M
with the entries of the ¢ x 1 matrix M, ,, given by (1.5.87) and
mom = CY',E(&) f)fm(g)dé. =7+ CY(O)
Dm

if frn = 1/u(D,y) for all m. The matrix B, , is defined as

bom b
Byggazs | 0 ™ (1.5.100)
bm Bl,m

where the ¢ X ¢ matrix By ,, is given by (1.5.88), while

bsld) = / / B s (€, 1) By €) Fin (E) Fon ()l (1.5.101)
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and

B / f Svm(E,1) By (11, ) Fn(€) Fon(m) dE . (1.5.102)

The matrix Ey.m 1s given by

Epem = AL, diag(Bnem) (Are m) (1.5.103)

ne,m ne,m

Let a be a vector of length ¢ with entries given by a(¢) = C;(0). The following

result generalises Theorem 1.5.7 to the case of a process with nugget effect.

Theorem 1.5.8. For a process Y, defined as in (1.5.43), where Y an isotropic
process with X composed of homogeneous regressors, with a sequence of erpand-
ing in-fill domains satisfying Condition 1.5.1, with the true covariance satisfying
Condition 1.5.2 and with the model components satisfying Condition 1.5.3, the
following limits hold, with the matrices A, M, B and E defined in Theorem 1.5.6

) 1 0 1 @l
lim - KIS (1.5.104)
rm=oo o pd I 0 A
10 +Cy (0
lim M| TR (1.5.105)
rmo |0 pd I M

If one of the following conditions holds:
i) Condition 1.5.5 holds,
ii) both Conditions 1.5.6 and 1.5.7 hold, with z +t > d

then
1 0 1 0 by b
lim r? Brem =" (1.5.106)
rmoeo ™ 1o pd [ 0 rdl, b B
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where by and the elements of the vector b are finite, and

-1 -1
1 d by V| |1 O
Hm 7% Epem = ° = Epe. (1.5.107)
rm =00 0 A b B||a A

If neither i) nor i1) holds, but both Conditions 1.5.6 and 1.5.7 hold, then

1 0 1 0
lim 7z Bimn =] (1.5.108)
Tm—$00 I ekl 0 75T,
and
lim 5 Epem = 0. (1.5.109)
Tm—r00

The implications for the limiting variance of the estimator fy are the same

as in the case without the nugget effect.

1.5.3.6. Improving the convergence properties of the estimator

This section discusses issues arising in situations where the covariance com-
ponent functions C; decay insufficiently fast for Conditions 1.5.3 and 1.5.5 to hold
for all choices of function v(p). In those cases, certain choices of function v(p)
will produce estimators for which Theorems 1.5.6, 1.5.7 and 1.5.8 apply, while
others will not. In particular, if Condition 1.5.4 is not satisfied, then Condition
1.5.3 is not satisfied when v(p) = 1 and Theorems 1.5.6, 1.5.7 and 1.5.8 do not
apply. Even if Condition 1.5.3 is satisfied, Condition 1.5.5 may not be satisfied, in
which case Theorem 1.5.6 applies, but Theorem 1.5.7 does not. Thus consistent
estimation of the covariogram would be possible if the mean of the process were
known, but perhaps impossible otherwise. It is obvious that for any covariance
components C;, one can always select a function v(p) such that both Conditions
1.5.3 and 1.5.5 are satisfied. It is not entirely clear how a particular choice of the

function v(p) affects the properties of the estimator.
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The remainder of this section considers a particular case where Condition
1.5.4 is satisfied, but Condition 1.5.5 with v(p) = 1 is not. In this case, if
one were to attempt to estimate the covariogram function while at the same
time estimating the unknown mean of the process, one might consider selecting
a function v(p) decaying sufficiently fast to guarantee that Condition 1.5.5 is
satisfied.

The limiting behaviour of the resulting estimator 6y is determined by the
matrices A, M and B given in Theorem 1.5.6. The choice of the function v(p)
affects the matrices A, M and B. It will be shown that it is possible to select v(p)
in such a way as to obtain an estimator whose limiting behaviour is arbitrarily
close, in a certain sense, to the behaviour of the estimator obtained with v(p) =1
applied to a process with known mean. With this choice of v(p), Theorems 1.5.7
and 1.5.8 will in fact apply while the matrices A, M and B can be made arbitrarily
close to those obtained with »(p) = 1.

In particular, the following family of functions v(z1,z2) (defining v(p) ac-
cording to (1.5.73)) will be considered

1 if |z1—22||I<R
vr(Z1,Z2) = vr(|| 21 — 22 ||) = (1.5.110)

g(|| z1 — z=2 ||) otherwise
where R > 0 and 0 < g(p) < 1 is a non-increasing continuous function with
g(R) = 1. Given any set of covariance components C; it is possible to choose g(p)
such that the functions C;(p)vg(p) satisty (1.5.72) with p = 1 for any positive R.
One such choice would be g(p) = exp(R — p). This will guarantee that Theorem
1.5.7 applies and (1.5.93) holds. The limiting matrices A, M and B of Theorem
1.5.7 will now depend on R

Antid) = ac [ Clo)Cipvlor*'dp (15.111)
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Mli) =as [ ClpIC(palp)s*dp (15.112)
and

Bai, j) = ac /0 " H (o) He (00 dp (1.5.113)
where

Hea(l € = 1) = hesl6,m) = | CHE MO mvale, ax
= [ nile=n= iy dr = Cae =) (L5114
where Cg; is the convolution of the functions ¢z; and 9y defined by
Bra(€) = CHl€, 0)va(&, 0)

and

Yy (§) = Cy(§,0).

Finally, let the matrix Er be given by
Er = Ay' diag(Bg)AR' (1.5.115)
while the vector fg is given by
0p = Az Mp. (1.5.116)

The following result holds
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Theorem 1.5.9. If Conditions 1.5.2 and 1.5.4 hold and for all R the functions
Ci(p)vr(p) satisfy Condition 1.5.5, then the following limits hold

R—00

lim Mp =M
R—o0
i

Jim 0n =

lim Er =F

R—o0

(1.5.117)

where A, B, M, 0 and E are defined in (1.5.79), (1.5.80), (1.5.81), (1.5.82) and
(1.5.83), respectively.

This result means that even if the components C; do not decay sufficiently
fast to guarantee the same behaviour of the estimator g for the case of known J
as for the case of unknown 3 to be estimated, a suitable choice of inner product
yields an estimator 0y with limiting properties under unknown £ arbitrarily close

to those in the case of known S.

1.5.4. Mixed in-fill and expanding-domain asymptotics with the

uniform random sampling sequence

The asymptotic context considered in this section may be viewed as a special
case of the sampling configuration of Hall and Patil (1994). Throughout this
section it will be assumed that the process Y is Gaussian with zero mean. To
consider a situation where both the number of observations and the domain size
vary, one considers the sequence {(Dp, {Zmn}oly, fm)} oo, of expanding domains,

in-fill sampling sequences and their sampling densities. Given the number of
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observations n on the domain D,,, one obtains the estimator @m,n. If the true
covariance function is in the set of valid covariance functions of the form (1.4.3),
the estimator ém,n is unbiased for fy, otherwise Theorem 1.5.2 gives, for any
fixed m, the expression for 6, = lim,_ o0 Omn(X) where 6,,,(X) = E[ém,n|X]
and where X denotes the (possibly random) in-fill sampling sequence on Dp,.
Theorem 1.5.5 shows that the stochastic convergence rate for this limit in the
case of the sampling sequence described in Theorem 1.5.1 is Op,(n"/2). Theorem
1.5.2 also shows that for a fixed m, var(fp, ()| X) < cm(i), 1 < i < g, that is, the
variance is bounded from above by positive constants. Theorem 1.5.6 shows that
cm = O(r-9) for some constant ¢, and that the limit 6 = lim, o0 0, exists. The
goal of this section is to construct a subsequence n(m) such that in some sense
ém,n(m) — 0 as m — o0. The mode of convergence considered will be convergence
in probability. Naturally, the dependence of n(m) on m will be affected by the
rate of growth of r, and the in-fill sampling sequences {,,,}22;. The case
considered here will be that of the sampling sequence described in Theorem 1.5.1.
Let {(Dm, {Zmn }o21, fm) }oo_, be a sequence of expanding domains with the in-fill
sampling sequences {Z,,}22; as in Theorem 1.5.1, let X,, = {Xmmn}ox, be the
random processes that generate them and let X = {X,,}%°_;. Let O nim (w, X)
be a random variable defined on the product space 2y x 2x of the probability
space §dy of Y (w)(z),z € R® and the probability space Qx of X, given by

ém,n(m) (w, X)
= [tr(Ki,m,n(m) (X)Kj,m,n(m) (X))]_l [Ym,n(m) (w, X)’Ki,m,n(m) (X)Ym,n(m) (wa X)]
(1.5.118)

where K n(m)(X) is an n(m) x n(m) matrix whose (I;,[,) element is the random

variable Ci(Xpm1,, Xmy,),1 < li,la < n(m) and Yy pumy(w, X) is an n(m) x 1
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vector whose I-th element is the random variable Y (w)(Xy1),1 <1 < n(m). The

random processes X and Y (w)(z),z € R? are assumed independent.

Theorem 1.5.10. If lim,,_o 73%n(m)~! = 0, then

Omn(m) (W, X) — 0 =pwx) O
as m — 0.

The required rate of increase in n{m) as r,, increases seems rather high. The
results presented here are meant to illustrate the principle rather than to provide
guidance in optimising the sampling configuration. In practice, the sampling
configuration will most often not be random. In those cases it should be possible

to come up with configurations requiring fewer sampling points.

1.6. SURFACE ELEVATION DATA

In this section a class of models suggested by Shapiro and Botha (1991) is used
to model the data of Davis (1973). The data consists of n = 52 measurements
of surface elevation and it was collected on a square. Thus the domain is two-
dimensional. The class of models suggested in Shapiro and Botha (1991) are of

the form
q

Co(p) = > 0(5)Jo(Aip) (1.6.1)

i=1

where J; is the Bessel function of order zero of the first kind and the A; are fixed
positive numbers, while the 0(i) are positive numbers to be estimated. Thus the
model is additive, hence there are no difficulties in applying the estimator (1.4.19)
to this model for a finite sample. However, the covariance component functions
in the model decay very slowly (on the order of p=/2). This is insufficient to

satisfy Condition 1.5.3 with v(p) = 1, which was seen to complicate asymptotic
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results (Theorems 1.5.6, 1.5.7 and 1.5.8 do not apply with v(p) = 1, where v is
defined in (1.5.73)). In order to illustrate how a different choice of inner product
may be used to obtain an estimator to which the asymptotic results of Theorems
1.5.6, 1.5.7 and 1.5.8 apply, the estimator (1.4.21) for non-constant V" will also
be computed. The matrix V;, of (1.4.21) will be computed using function v(p)
defined by (1.5.110) where the function g is given by g(p) = exp(R—p). The value
of R = 4 will be used, which roughly equals one half of the maximal distance
found in the dataset. The particular model (1.6.1) considered is defined by ¢ = 4,
with A; = 1, Ay = 2, A3 = 3 and Ay = 4. Criteria for choosing the model
parameters will not be discussed here. They are considered in greater detail by
Powojowski (1999). Since the mean of the sampled process Y is not known, it
needs to be modelled. Two separate models are used: one in which Y has a
constant unknown mean, leading to a regressor matrix X 4, and another allowing
for an arbitrary linear trend over the sampled square, yielding the regressor matrix
Xp. The resulting estimates are given in Table 1.1. Figures 1.1 - 1.4 show the
estimated covariograms. In all figures, the products of residuals are marked as
individual points with coordinates (|| zx — z; ||, e(k)e(l)), where 1 < k < 52,
1 <1< 52and e(k) =Y (k) — Y(k) is the residual computed as in (1.4.18). The
estimated models themselves are plotted in Figures 1.1 and 1.2 along with the
products of residuals. They are the curves (p, C4(p)) and (p, Gy (p)). While the
plots seem to indicate the estimated model follows the data fairly well, Figures
1.1 and 1.2 may be misleading. Let P denote the projection in (1.4.18). The
mean of e(k)e(l) is (PKyP)(k,l), rather than Ky (k,![), which may be estimated
by (PK,P)(k,1) rather than by Kj(k,1). It may therefore be informative to
plot the points (|| zx — i ||, (PKzP)(k,!)) along with the products of residuals.
The resulting plots are shown in Figures 1.3 and 1.4. This is done only for the
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model él éz 93 94
constant mean 3908.54 | 638.644 | 219.84 | 0.6702
constant mean (non-constant V) | 3892.6 |383.423 | 73.1235 | 6.98203
linear trend 1123.54 | 359.73 | 106.796 | 49.7274
linear trend (non-constant V) | 1173.14 | 388.69 | 96.827 | 63.0404

Table 1.1: Estimated coefficients for the two mean models.

estimator (1.4.19), where the matrix V' is constant. One observes that in this case
the message from the plots of fitted covariograms (Figures 1.1 and 1.2) and the
plots of estimated covariances of residuals (Figures 1.3 and 1.4) are similar. One
also observes that given a model for the mean, the different choices of matrix V
lead to estimated covariograms which are very similar.

Comparing the results of this section with models previously fitted to the
same data (e.g. Ripley, 1988, Wackernagel, 1995), one observes two main dif-
ferences. Firstly, the models for the mean of the process used by those authors
are linear trends or quadratic surfaces. It seems that the constant mean model
was not attempted. No reasons are given for this omission, but it appears that
the products of the residuals from the constant mean model are not very well
estimated by a covariance model which is positive everywhere, such as the ex-
ponential or the Gaussian model used by the authors. This leads to the other
major difference, namely the presence of negative covariances in the estimated
model. Visual examination of Figures 1.1 - 1.4 suggests that negative covari-
ances are plausible. The model given in (1.6.1) is capable of capturing negative

covariances, while the exponential or the Gaussian model is not.
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1.7. CONCLUSION

The paper proposes a new approach to the problem of estimating the covari-
ance function of a stochastic process. The approach combines two main ideas:
using additive models and estimation based on orthogonal projections. The ap-
proach may be viewed as a particular case of MINQUE estimation. The case is
presented that this approach offers many distinct advantages over traditional ap-
proaches involving the empirical (co)variogram, as well as over general MINQUE
estimation.

In comparison with traditional methods the need to estimate the empiri-
cal (co)variogram is eliminated and so is the arbitrariness of the bin selection.
Since the empirical (co)variograms are meaningless for non-stationary processes
and hard to compute for non-isotropic processes, the approach presented is more
generally applicable than the traditional procedures. The estimator by projec-
tion is unbiased if the mean of the process needs to be estimated from the data
(assuming that the model for the mean is correct and the true covariance func-
tion is in the class of models considered). The mean and trends in the mean
can be estimated simultaneously without much complication and usually with-
out compromising the estimator’s properties. The estimation procedure involves
only linear algebra, and thus all problems, both theoretical and practical, associ-
ated with non-linear, non-quadratic optimisation are avoided. The properties of
the estimator can be more easily understood than is the case in the traditional
approach.

In contrast with the general MINQUE estimation, (which is also unbiased and
requires only linear algebra to compute) the stability and asymptotic properties
of the projection estimator are not dependent on the relationship between the

initial guess K required by MINQUE and the true covariance matrix Ky. The
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linear algebra computations required for the projection estimator involve inverses
of much smaller matrices than those required for any other MINQUE estimator.

It is shown that in the in-fill asymptotic context (sampling of finite domain)
it is generally impossible to estimate the covariogram consistently. An upper
bound may, however, be obtained for the asymptotic variance of the estimator
in this context. Furthermore, it is shown that for isotropic processes this upper
bound can be made arbitrarily small if the sampled domain is sufficiently large.
Some additional results are given for the case where the process is observed at
points resulting from uniform random sampling of the domain.

The estimator is illustrated using a data set of Davis (1973), where the model
used is that proposed by Shapiro and Botha (1991) (who use a different estimation
procedure).

In order to apply the projection estimator in practice, an adequate class of
additive models is required. One such class is the class of Shapiro and Botha
(1991), as seen in Section 1.6. Other flexible classes of models will be explored

in a separate study.
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Chapitre 2

ESTIMATION OF THE COVARIOGRAM OF
AN ISOTROPIC PROCESS THROUGH
SPECTRAL COMPONENT ADDITIVE

MODELS

2.1. ABSTRACT

The main idea explored is that of spectral component additive models for
the covariance function of an isotropic random process. A class of such models is
proposed and it is shown to satisfy the conditions required by the projection esti-
mation methods of Powojowski (1999a). The application of projection estimation
methods is discussed and it is shown that when applied to spectral component
additive models, the moments of the estimator have convenient expressions in
terms of the spectral density of the covariance function of the process. It is also
shown that the class of spectral component additive models is dense in the set
of valid covariance functions and hence approximately unbiased spectral compo-
nent additive model exists for any covariance function. Theoretical results are
supported with simulation studies showing the approximate lack of bias of the
proposed method. In addition, it is seen how an estimate of the spectral density

of the covariance function may be obtained.
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2.2. INTRODUCTION

For a random process Y (z),z € D, where D is a subset of a d-dimensional
Euclidean space, the covariogram is defined as Cy(z1, z2) = cov(Y (z1), Y (22)). A
common problem in geostatistics is one of estimating the function Cy based on one
realisation of the process Y observed at a finite number of locations z,, z3, ... , Z,
in D. It is important to note that the knowledge of function values C(x, z2) for
arbitrary (z;,2) € D? is required, and not simply the covariances of Y at lags
observed in the sample. The fact of observing only one realisation forces one to
make certain assumptions about the process Y, which translate into restrictions
on the form of Cy. There also exist theoretical reasons for restricting the function
families considered. The covariogram has to be a positive definite function. Fur-
ther restrictions may be desirable. In a typical covariogram estimation problem

it is supposed that the observed process Y follows the model
Y=XB8+n.

The known regressor X contains terms corresponding to the mean of the process
and any trend that is allowed for, while the parameter 8 is unknown and the
random term 7 is assumed to have zero mean and an unknown covariogram Cy.
The process 1 will be assumed isotropic (and hence second-order stationary),
requiring Cy(z1,22) to depend only on || z1 — z2 ||. A covariance model Cy,
known up to the value of a finite-dimensional parameter 6, to be estimated, is to
be fitted to the observed data.

The traditional approaches to the modelling and estimation of the covari-
ogram function are described in Cressie (1993). Typically, the empirical covar-
iogram or variogram (the variogram of the process Y is defined as y(z1,2;2) =

(1/2) var(Y (z;) — Y (z2))) is computed and a parametric model is selected from
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a small set of commonly used curves. The parametric curve is then found by
some visual or optimisation technique which makes it pass close to the points of
the empirical (co)variogram. Usually the parametric curve to be fitted does not
depend linearly on the parameters which need to be estimated, which leads to
nonlinear optimisation problems. An alternative set of models was proposed by
Shapiro and Botha (1991). The models they propose are additive, that is they are
linear combinations of fully specified models, in this case Bessel functions. The
method of estimation they use is the traditional approach of fitting the curve to
the empirical (co)variogram.

This paper proposes a new, broad class of additive models motivated by the
spectral representation of the covariance function of an isotropic random process,
henceforth referred to as spectral component additive models. Furthermore, the
estimation techniques described by Powojowski (1999a) are applied to this new
class of models. The techniques are based on orthogonal projections of products
of residuals onto a linear space spanned by a finite set of valid covariance models.
To apply these techniques successfully, it is necessary to provide an adequate class
of additive covariance models. This paper demonstrates that the proposed class of
spectral component additive models is adequate under fairly broad circumstances,
namely, in the situation where the process 7 is isotropic and possesses a piecewise
continuous spectral density. In addition it is shown that projection estimators
applied to spectral component additive models reveal a theoretical connexion
with the spectral density of the covariance function of the process.

The paper is organised as follows: after defining the notation used throughout
the paper, the spectral representation of the covariance function of an isotropic
function is discussed to motivate the subsequent introduction of the spectral

component additive model. Basic properties of the model are then established and
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the application of projection estimation methods is discussed. Connexions with
the spectral theory of covariance functions are explored and they are subsequently
used to show that the class of spectral component additive models is dense in the
set of valid covariance functions possessing a spectral density. Finally, the model

is illustrated in a study comparing it to commonly used covariance models.

2.3. NOTATION

To avoid confusion which might arise due to the frequent occurrence of multi-
ple subscripts, the following notation will be used throughout the paper: if Ais a
matrix, its entries will be denoted by A(Z, j), while A4; ; may denote a matrix from
some (doubly) indexed set of matrices. Similarly, if # is a vector, its components
will be denoted by 6(z), while §; may denote a vector from some indexed set of
vectors.

In the most general setting, one considers a random process Y on the domain
D, a subset of a d-dimensional Euclidean space. The process Y is observed at n
locations {x;}* ., z; € D. Let Y, = (Y(z1),...,Y(zn)) and Y,(4) = Y(z;),1 <
1 < n. It will be further assumed that

Y, = X8 + (2.3.1)

where 7, = (9(x1),... ,n(x,))" and 7 is an isotropic random process with E[n] =
0. It will be assumed that X, has p columns corresponding to different regression
terms. Thus X,,(I, k) = ri(z;), 1 <k <p, 1 <1 < n, where z; is the [-th location
in the sample and 7, is a continuous function defined on D and it is the k-th
regression term in the mean of Y. If present, the term r; = 1 corresponds to
the (non-zero) constant term in the mean of Y. The term ry(z;) = z;(1), where
z;(1) is the first component of the d-dimensional vector z; € D, would correspond

to a linear trend in the mean of Y (z) in the direction of the first component of
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z. The matrix X,, will always be known, while the p x 1 vector  may have to
be estimated. The function Cy(x1,z2) = cov(Y (1), Y (22)) = cov(n(z1), n(z2))
is called the covariance function of the process Y (and of the zero-mean process
n). Let Ky, = var(Y,). Thus Ky, is a symmetric matrix whose entries are
Kyu(i,j) = Cy(zi,z;). If Cy or C; is a given covariance function model, one
defines the symmetric matrix Kj , or K, in a similar way, by putting Ky, (k, j) =
Co(zg, zj) or K;,(k,j) = Ci(zx, z;). Thus Ky, is a fixed matrix depending only
on the model Cy and on the set of locations {z;}~,, z; € D.

The model Cy will be called additive if it is of the form

Cy = Zq: 0(:)C;, (2.3.2)

where the components C; are fully specified valid covariance functions and the
only parameters to be estimated are the (). Throughout the paper the compo-
nents C; as well as Cy will be assumed continuous and isotropic. The process of
interest will also be assumed isotropic in R%. An isotropic process is stationary
and it will be convenient at times to switch between the covariance functions
Ci(z1,®2), Cy(x1,22), Co(x1,x2) and the isotropic versions of these functions
Ci(p), Cy(p) and Cy(p) where p =| z1 — z2 |.

Two intervals [a;,b;] and [as, by] will be called non-overlapping if their inter-

section is at most one point.

2.4. THE COVARIOGRAM AND THE SPECTRAL DENSITY OF AN

ISOTROPIC STOCHASTIC PROCESS

This section reviews standard results concerning the spectral representation of

an isotropic covariance function. The covariance function of an isotropic process
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in R? has the form (Schoenberg, 1938)

Cy(p) = p®~ 97 / AE=D2 J4 22 (Ap)dGy (A) (2.4.1)
0

where Gy () is a bounded non-decreasing function and J, is the Bessel function
of the first kind and v-th order. It will be assumed that Gy () is continuous and
piecewise differentiable with the derivative gy(A). Thus gy()) is nonnegative,

piecewise continuous and summable. Putting ¥y () = A~%2gy(A) one obtains
[0
Cy(p) = P(Q—d)/zf AWy (A) Ja—2)/2(Ap)dA (24.2)
0

with A%?¥y ()\) nonnegative and summable. The function Wy will be called the
spectral density of the covariance function Cy. If A}/2W(}) is piecewise continuous

and absolutely summable, the function

Alp) = Hy (T)(p) = / AL ()T (A (2.4.3)

will be called the Hankel transform of the function ¥ of order v. Details may be
found in Sneddon (1972). It thus follows that A(p) = p{®~2/2Cy(p) is the Hankel
transform of order (d — 2)/2 of the function ¥y. The Hankel inversion theorem

states that under those assumptions

/0 " oL (MDA = L@O-) + T ()). (2.4.4)

(The notation ¥(A—) denotes the left limit of ¥ at A. Similarly ¥(A+) denotes
the right limit.) Moreover, Parseval’s formula for Hankel transforms states that if
AL 2W;(N), 7 = 1,2 are piecewise continuous and absolutely summable functions,
then
| nomatade= [y (2.4.5)
0 0

and both integrals exist.
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This paper explores the possibility of modelling and estimating the covariance
function based on the expression (2.4.2). In addition to estimating the covariance
function, this approach will be seen to provide information about the spectral
properties of the process.

Before moving on, the general representation of the covariance function of a
stationary (not necessarily isotropic) process is briefly discussed. It follows from
Bochner’s theorem that a covariance function C whose spectral density exists

may be expressed as

Cla,0) = (20 | explile )1 (€)de (2.4:6)

where (,) denotes the standard inner product (dot product) in R% and f is a
non-negative, integrable function. It is a well known fact that if C' is a function
of || z ||, the function f is radially symmetric, and therefore putting p =[| = ||
one may define a function w(p) = f(z). With this notation, the following general

identity is obtained through change of variable

(27) %2 /R Lexp(i(z,€)f(§)dg = p2=d/2 /0 # AY2y(N) a2y 2(Ap)dA  (2.4.7)

(see, for example, Sneddon, 1972). Under isotropy (2.4.6) becomes (see, for ex-
ample, Adler, 1980)

C(z,0) = C(p) = P(z_d)/ 2 / x4 2U’()\)J(al—z)/z()\P)d)\
0

_ i) / AT(A) Tz (Ap)dA (2.4.8)
0

where ¥()\) = A#=2/24()), and ¥ is as in (2.4.2). The equation (2.4.8) connects
the spectral representation of the covariance function of an isotropic process with
its (more general) spectral representation resulting from the fact that it is also

the covariance function of a second-order stationary process.
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2.5. MODEL DEFINITION

The estimation of the covariance function requires a family of functions which
can be parametrised with a finite-dimensional vector. This section defines the
spectral component additive models, which will be the main focus in the remain-
der of the paper.

Shapiro and Botha (1991) suggested the following class of models

q

Colp) = Y 0(i)Jia—2)/2(Aep) (2.5.1)

i=1
where the \; are fixed positive numbers and @ is a vector with non-negative entries
to be estimated. This model, however, produces covariance functions which decay
very slowly - on the order of p~/2 - which may be too slow for many applications.
It is also seen in Powojowski(1999a) that slow decay rates complicate asymptotic
results of the projection estimators considered in the next section.

The general expression (2.4.2) suggests the following class of models for the

covariance function
q
Colp) = D _ 8(:)Ci(p) (2:5.2)
i=1
where

bi oo
Cilp) = p*1? / M a-2)2(Ap)T(N)dA = pC=972 / Aa—2)72(Ap) s(A)dA
a;i 0

(2.5.3)

where ¥ is a fully specified, non-negative, bounded function and
W;(A) = U(A) g, ;)(A). Thus the components C;(p)p'*~2/? have compactly sup-
ported spectral densities W(A)J[q, 5,1(2)-

Some basic properties of the component functions C; will now be established.
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Lemma 2.5.1. If a; and b; are positive numbers with a; < b;, the function ¥ is
continuous on the real line and C; is defined by (2.5.3), then C; is continuous,

bounded and

/ ICi(0) 2oL < oo. (2.5.4)
0

Proof:

From the definition of the C; one obtains

[ (cw) #tao= [7o( [ Mesntnnman) &
= /0 ) A(T;(A)2dA < oo

since Parseval’s identity may be used as the function A'/?¥;()) is piecewise con-
tinuous and absolutely summable.

If for d > 1 the function ¥ is taken to be
T(A) = AE-2/2 (2.5.5)

the integral in (2.5.3) has a closed form, which results in the following covariance

components

bd/2 a(.l/z
Cilp) = (P sa(i) - “alan)). (25.6)

Another reasonable choice would be ¥(A) = 1, which coincides with (2.5.5) for
d = 2. However, for d > 2 there may not be a convenient closed form for the

resulting covariance components.

For the function ¥ defined by (2.5.5) it follows that
Ci(p) = O(p™#+1/%), (2.5.7)

The formula (2.5.6) is a standard result and may be found in Sneddon (1972).
To show (2.5.7) one applies (2.5.6) together with the well known fact (see for
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example Sneddon, 1972) that A/2|.J,())] is bounded on the positive real line. It
follows from (2.5.7) that

/ C;(p)?p* tdp < oo (2.5.8)
0

This last result plays a role in convergence arguments related to the projection
estimator described in the next section. For details, see Powojowski (1999a).
In all situations considered in this paper the compact supports [a;, b;] of the

functions ¥; will be pairwise non-overlapping.

2.6. SPECTRAL COMPONENT ESTIMATION

The model components C; defined in the previous section (with any choice of
the ¥;) will be referred to as spectral covariance components, while the functions
W, will be referred to as spectral components. The rationale behind these terms

will soon become apparent.

2.6.1. Covariogram estimation through projections

The focus of this section is on the estimation of the parameters of the model
(2.5.2). Given the class of models (2.5.2), with the components C; fully specified
and ¢ fixed, the estimator described in Powojowski (1999a) may be used to find
estimates of the #(i). If the parameter § of (2.3.1) is known, it can be assumed
to be zero without loss of generality. The 6,(i) are selected so as to minimise
| Y, Y!—S2" 0,(:)Kip || where the norm is the square root of the sum of squares
of differences between the entries of the two matrices. The minimisation results

in 6, given by

O = [r(KinKin)| 7 [YaKinYa] (2.6.1)
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where 6, = (8,(1),...,0,(q))" and K, is the matrix whose (m,l) entry is
Ci(|| Zm — z1 ||)- (The notation [tr(K;,Kj,)] denotes a g X ¢ matrix whose (4, 7)
- th entry is tr{K; K, ,). Similarly, [Y,K;,Y,] denotes a ¢ x 1 vector.)

In the more general case of unknown 3, one defines the residuals
en = (In — Xo(X. X)) ' X))Y, = P,Y,

where P, is a projection matrix. The estimator (2.6.1) is then replaced by

b = [tr(UinU;n)] " e Ui nen] (2.6.2)
where
Uin = PoKinPy.
In (2.6.2) the vector §, minimises || ene!, — 32, 6,(D)Uin |-

Finally, the estimators (2.6.1) and (2.6.2) can be extended to the class of

estimators

Oy = [tr((Us * Va)Ujn)] 7 el (Uin * Va)en] (2.6.3)

n

where the n x n symmetric matrix V, (I, m) = v(|| n; — Znm ||), has entries given
by a fully specified positive function v, and (A * B)(k,l) = A(k,l)B(k,1) is the
Hadamard matrix product. The matrix V' can be thought of as weight factors
and the estimator (2.6.3) minimises a weighted sum of squares.

The properties of the estimators (2.6.1), (2.6.2) and (2.6.3) are described in
Powojowski (1999a), along with relevant asymptotic settings. For the purpose of
the current discussion, it will simply be assumed that for every positive integer
n, the sampling configuration {Zy1,...,Zn,} is located on a compact domain
D,, with Lebesgue measure u(D,) = g, with r; = 1. It will be further assumed

that the sequence {r,}2° is increasing and divergent. Under certain conditions
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(discussed in detail in Powojowski, 1999a) concerning the sizes of the domains

D,, and the sampling configuration {z,1,...,Znn}, if
/ Cy(0)p*1dp < o0, and (2.6.4)
0
| Icrettdp < o0 (2.6.5)
0

the following holds:
Proposition 2.6.1. The estimator (2.6.1) satisfies
0, =, 0 =AM asn — oo (2.6.6)

where A is a g X ¢ matriz whose entries are given by

Al =ae [ ClACH s (2.6.7)
and M is a g X 1 matriz whose entries are given by

M(i) = ac [ Culp)Cxlo)edp 268
and the constant ag equals dr®/? /T (d/2 + 1).

The condition in (2.6.4) will be assumed to hold. For the covariance com-
ponents defined by (2.5.3) with (2.5.5), the condition in (2.6.5) holds by (2.5.8).
(Incidentally, one observes that the components of the model described in (2.5.1)

do not satisfy (2.6.5).) Moreover, one has

Proposition 2.6.2. If the observed process Y s Gaussian, then

lim 7% var(d,) = 2A7'BA™! (2.6.9)

n—oo

where B is a ¢ X q matriz whose entries are given by

Bli,j) =ac [ HpH (90" ds (2.6.10)
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with ag defined as in Proposition 2.6.1, and

Hl€=n1) = h&.m = | Cile- MOy (3 A
= [ e =n= v Nir = Gl =)

where (; is the convolution of the functions 1; and Yy defined by

Yy (§) = Cy(£,0).

The last proposition gives the rate at which the variance of the estimator
converges to zero. A similar bound can be obtained for non-Gaussian process
under additional assumptions. For details and for extensions to the more general

estimators (2.6.2) and (2.6.3) the reader is referred to Powojowski (1999a).

2.6.2. Spectral additive components

This section examines the particular form assumed by the expressions in

Propositions 2.6.1 and 2.6.2 for the model defined in (2.5.2).

Theorem 2.6.1. Let Cy be as in (2.5.2) and let the intervals [a;, b;] be non-
overlapping. Then the matrices A, B of (2.6.7), (2.6.10) are diagonal and their

entries are given by
b;
A1) = ag / A(T(A))2dA (2.6.11)
and

B(i,i) = aG(27r)d/bi NI (A) Ty (A))2dA (2.6.12)

ag
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while the entries of M of (2.6.8) are given by

b;
M) = aG/ AU (A) Ty (A)dA. (2.6.13)
Thus the limiting ezpectation of the estimator is
b‘
. FAT(A) Ty (A)dA
E[6,(i)] — Jo 2 () Tedh (2.6.14)
fa,; A(T(N)2dA

Since A and B are diagonal, the components of 6, are asymptotically uncorrelated

if the process 1s Gausstan, by Proposition 2.6.2.

Proof:
The limit matrix A will be considered first. It follows that

Airg) = ac [ CloICi ()" dp
= aG/ / A (a—2)2(Ap)¥ d)\/ Aa-2),2(Ap)¥;(A)dAdp

by Parseval’s identity. If i # j the supports of the functions ¥; and ¥; are non-
overlapping and the integral equals zero. There is nothing substantially different
about the entries of M.

For the limit matrix B one considers
B(i,j) = ag / Hi(p pdp

where

Hi(lE=n) =G —n) = (i *by)(E —n)

and
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Yy (€) = Cy(£,0).

The Fourier transform of a function f will be denoted by F(f). Let f;(z) and
fy(z) be such that 1; = F(f;) and ¢y = F(fy). The existence of such represen-
tations, together with the fact that the functions f;(z) and fy(z) are nonnegative
for z € RY, follows from (2.4.6). By the isotropy, the functions f; and fy are
also radially symmetric, that is they depend only on || z |. Moreover, by the

convolution theorem,

(e * ¥y )(€) = @m)PPF ([ v (€)) = @) 2F (willl € Nwr (I €11)
where wy (|| € [|) = fv(€) and w;(|| € ||) = fi(€). Therefore
(€)= [ £@) (o) explife, €))ds
and, by (2.4.7)

Hi(p) = (2m)*%2p-9/2 / X2 (N wy (X) Ja—2)72(Ap)dA.
0

Therefore, by Parseval’s identity

/Uoo Hi(p)H;(p)p®'dp

—en* [ o[ A0S B3y ) T ya)d

0

/0 " AN 2, ( Ny (N)) Ja—2) /2(/\p)d)\> dp
= (27T)d /OOO )\)\d_z(wy()\))zwz()\)w]()\)d/\
= §;;(2m)° / " AWy (M) (V) 2dA

where d; ; equals one if ¢ = j and zero otherwise.
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The requirement for the covariance function to be positive-definite imposes
the constraint 6(¢) > 0 in (2.5.2). It follows from Theorem 2.6.1 that the limit
§ = A~'M in Proposition 2.6.1 has non-negative entries. This implies that from
an asymptotic point of view the constraints ¢(¢) > 0 do not pose any problem. It
is, however, possible that in a finite sample context the constraints (i) > 0 will

have to be dealt with.

2.7. APPROXIMATION PROPERTY OF THE SPECTRAL COMPONENT

MODELS

In this section the relationship between the covariance functions of isotropic
random fields and their spectral densities is applied to show that the models of
the form (2.5.3) can be used to approximate an arbitrary covariance function.
The following result shows that the class of models defined in (2.5.2) and (2.5.3)
is dense in the set of isotropic covariance functions satisfying (2.6.4) and whose

spectral density exists.

Theorem 2.7.1. Let Cy be an isotropic covariance function in R with a piece-
wise continuous spectral density and satisfying (2.6.4). Let ¥ be a non-negative,
continuous, bounded function. Then for any ¢ > 0 there ezists an inleger g,
and positive numbers a;, b;, fori = 1,...,q, such that the intervals [a;, b;] are

non-overlapping and the model defined by (2.5.2) and (2.5.3) satisfies

fom (Cy(p) = ie(i)ci(p)ypd—ldp e,

=1

Proof:
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By Parseval’s formula the following holds
[e's) q 2
[ (vt - o01cn) #ar
i=1
00 q 2
_ / (qu(,\) =" e(i)\pi(x)> AdA
0

=1

q

N Z/bi(‘I’Y(A) r 9(i)‘1f(/\))2AdA+/ (Ty(N)2AdA. (2.7.1)

=1 i ¢
The set S¢ is the complement (with respect to the positive real line) of the max-
imal support S of the function } 7 , 6(z)C;, which is the union of the intervals
[a;, b;]. It is easily seen that the last integral can be made arbitrarily small by

selecting S = [0, R], since

R—o0

Jim / Ty (0)2AdA = 0

by (2.6.4). It is also easy to see that the sum

q b;
>, / (Ty(3) — () T(X)*Md

can be made arbitrarily small by making the intervals [a;, b;] small.
Given an integer g, and non-overlapping intervals [a;, 8], ¢ = 1,... ,q, the

quantity

[ (v - 0000 o140 272)

i=1

is minimised by # = A7 M, given in (2.6.6). This follows from elementary prop-
erties of orthogonal projections in inner product spaces. For details, the reader
is referred to Powojowski (1999a). Hence, the asymptotic bias of the estimated
covariance function 37 #(i)C; can be made arbitrarily small by selecting ap-

propriate values of ¢ and [a;, b;],i=1,... ,q.
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Moreover, (2.7.1) shows that the same vector § = A~*M minimises the quan-

tity

/Doo (\Ify()\) = Eq:f)(i)\lli(/\))g)\d)\. (2.7.3)

i=1

Hence, the best approximation of the true covariance function Cy among covari-
ance models of the form Y 7, 6(:)C; in the sense of the norm (2.7.2) is also the
best approximation of the spectral density ¥y among the models of the form

?_,6(2)¥; in the sense of the norm (2.7.3).

2.8. APPROXIMATE LACK OF BIAS AND THE ESTIMATION OF THE

SPECTRAL DENSITY

This section illustrates two aspects of covariogram estimation where the ad-
ditive spectral component approach has a distinct advantage over traditional
approaches. One is the model flexibility, or approximate lack of bias, the other is

the estimation of the spectral density of the covariance function.

2.8.1. The bias of the spectral component additive models.

Traditionally, a parametric covariance model is selected from a small set of
known positive-definite functions. Some estimation procedure is then used to
determine the parameters. Among the most popular parametric families one
finds the exponential, Gaussian, spherical and hole-effect models. These will be
described shortly. It should be observed that each parametric family imposes
rigid constraints on the form of the covariogram. Since often there are no good
reasons for selecting one family over another, it seems likely that often models
will be misspecified. For example, if the data were produced from the hole-

effect model, but the exponential model is used for the covariogram, the resulting
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estimated covariogram will not reflect the form of the true covariogram. In this
numerical study, various traditional models are considered. A spectral component
additive model is used to estimate the true covariogram. The parameter ¢ and
the intervals [a;,b;],7 = 1,...,q are fixed. The spectral component model used
here has seven components of the form (2.5.6). Four parametric families are
considered: exponential, Gaussian, spherical and hole-effect. From each family,
two models are specified. In each of the resulting eight cases it is assumed that
the specified parametric model is the true covariogram Cy and that the spectral
component additive model Cy is used to estimate the covariogram. The domain
where the process is observed is a square with side of length eight (thus the
dimension d equals two). Eighty locations are initially drawn randomly on the
domain and in each of the eight cases the process is observed at those locations.

In each case, the mean of the covariogram estimate C; is computed from
q
E[C;] = ) EF()IC;
k=1
where from (2.6.1) one has
E[é] = [tI‘(Ki’nKj,n)]_l[Ki,nKy;n]. (281)

In each case the mean of the estimated covariogram is compared visually to the
true covariogram Cy. The departure between the two curves corresponds to the

bias introduced due to model misspecification.

2.8.2. The spectral density of the covariance function

Expression (2.7.1) suggests that approximating the true covariance function
Cy through spectral components implies approximating the spectral density ¥y
of the covariance function through a sum of elements ¥; of (2.4.2) whose spectral

supports are non-overlapping. In each of the eight cases considered, the true
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density function Uy is visually compared to the mean E[¥;] of the spectral density

of the estimate C; given by

E[¥;] =Y E[6(:)]

~

where E[0] is given by (2.8.1).
2.8.3. The spectral component additive model

The additive spectral component model will be given by (2.5.2) with the

components C; given by

Jai2 a?
Cz(p) — p(2——d)/2( 'Lp Jd/Q(bzp) — Lp—Jd/Q(a,“O)) (282)

with d = 2, ¢ = 7 and (a1, b1) = (0,1), (ag, b2) = (1,2), (a3, b3) = (2,4), (as,bs) =
(4,6), (as, b5) = (6,8), (as, bs) = (8,10), (a7,b7) = (10,16). The components are
scaled so that C;(0) = 1,1 <4 < 7 and they are shown in Figure 2.1.

The spectral density of the component C; is 2/(b? — a?) on the interval [a;, b;]

and zero elsewhere.

2.8.4. Parametric models

This section reviews the standard parametric models which will be compared

to the mean of the estimated spectral component additive model given next.

2.8.4.1. The ezponential model

The exponential model can be parametrised as follows (Cressie, 1993)

Cez(c,a) (p) == Cexp(_p/a’) (283)
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and it is the Hankel transform of

c 1\ %2
Uepea)(A) = = </\2 + —) ) (2.8.4)

a a?
Two exponential models are considered, (c,a) = (1,0.3) and (¢, a) = (1,1). Com-
parisons of the true and modelled covariogram are shown in Figures 2.2 and 2.3,

while comparisons of their spectral densities are shown in Figures 2.10 and 2.11.

2.8.4.2. The Gaussian model

The Gaussian model can be parametrised as
Coa(en) (p) = cexp(—p*/a) (2.8.5)
and it is the Hankel transform of
ca .
Wga(e.ay(A) = ?exp(—a)\ /4). (2.8.6)

The Gaussian models considered are (c,a) = (1,0.2) and (¢,a) = (1,2) and the
resulting covariances are shown in Figures 2.4 and 2.5. Their spectral densities

are compared in Figures 2.12 and 2.13.

2.8.4.3. The spherical model
The spherical model can be parametrised as
c(l + (2P — gg) ifp<a

0 otherwise.

Cuntea)(0) = (2.8.7)
The spectral density has a rather complicated form and is evaluated from the
definition through numerical integration instead. The spherical models considered
are (c,a) = (1,1) and (c,a) = (1,3) and the results for the covariance functions
are shown in Figures 2.6 and 2.7. Comparisons of the spectral densities are shown

in Figures 2.14 and 2.15.
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2.8.4.4. The hole-effect model
The hole-effect model can be parametrised as

aM (2.8.8)

Cho(ea)(p) = ¢
ho(c,)() P)

while the spectral density is given by

(H-AH)"Y2 ifo<Aa<t
\Ilho(c,a)(/\) = ca (289)
0 itl <A

It is seen that ¥ has a singularity at 1/a. It is easy to show that this model
does not satisfy the condition in (2.6.4), so Theorem 2.7.1 does not apply. It is,
however included here because it is a well-known model. It will be seen that in
the finite sample context this model can also be well approximated by the spectral
component additive model. The hole-effect models considered are (c,a) = (1,0.1)
and (c,a) = (1,0.5) and the resulting covariances are compared in Figures 2.8

and 2.9. Their spectral densities are compared in Figures 2.16 and 2.17.

2.8.5. Results

The real covariance functions are compared with the expectation of the esti-
mator of the model defined in Section 2.8.3 in Figures 2.2 - 2.9. In all cases the
bias seems minimal, which demonstrates the great flexibility of the spectral com-
ponent model. It should be stressed that the model (2.8.2) may have too many
components to give the best tradeoff between bias and variance when estimating
the covariance function with eighty observations. The issues involved in model
selection are addressed in detail in Powojowski (1999b). Here the emphasis is on

illustrating the model flexibility.
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The mean estimated spectral densities are shown in Figures 2.10 - 2.17, along

with the spectral densities of the true models. It is seen that in all cases the mean

of the estimate provides a fair approximation of the true spectral density.
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Figure 2.1: Spectral components of the additive model.
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Figure 2.15: Spectral density of the spherical model with (c,a) = (1, 3).
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2.9. CONCLUSION

The paper proposes a new class of covariogram models for isotropic random
processes, the spectral component additive models. The models have a natural
motivation in the spectral representation of the covariance function. They gener-
alise the ideas of Shapiro and Botha (1991), and possess some desirable properties,
such as faster rate of decay, as described in the discussion following Proposition
2.6.1. The proposed class is very flexible, indeed, it contains elements which are
arbitrarily close to any valid integrable covariance function possessing a spectral
density.

The projection estimation methods proposed in Powojowski (1999a) are ap-
plicable to the class of spectral component additive models and lead to partic-
ularly simple asymptotic results. It is seen that the asymptotic mean of the
projection estimator has a simple expression as a linear functional of the spectral
density of the true process. It is also shown that, at least in the case of Gaussian
process, the estimates of the individual covariance components are asymptotically
uncorrelated.

A numerical study compares the standard parametric models with the means
of the estimator obtained with a spectral component additive model of order seven
(same fitted model for eight different true models). The experiment demonstrates
that approximate lack of bias can indeed be achieved for a finite sample of eighty
observations.

In addition, the study illustrates how the spectral density of the true covari-
ance function may be estimated by the spectral density of the covariance estimate
obtained using the spectral component additive model. While the spectral meth-
ods have not been applied extensively in geostatistics, it has been suggested that

the reason for this is the requirement for the observations to be regularly spaced
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on a lattice (Chiles and Delfiner, 1999). Spectral component additive models

provide a way of estimating the spectral densities from irregularly spaced data.
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Chapitre 3

MODEL SELECTION IN COVARIOGRAM
ESTIMATION

3.1. ABSTRACT

The modelling and estimation of the covariance function of a second-order
stationary, isotropic random process involve a number of decisions in selecting the
right model. Techniques are proposed, which address the model selection issues
arising in applying the spectral component additive models described in Powo-
jowski (1999b). A data-driven procedure for determining the spectral support
is proposed. Another procedure is suggested for selecting the end-points of the
component support intervals. Finally, a criterion is derived for deciding between
competing models. The techniques are tested using synthetic data and are seen
to produce good results. Finally, they are applied to a real data set of Davis

(1973).

3.2. INTRODUCTION

For a random process Y (z),z € D, where D is a subset of a d-dimensional
Euclidean space, the covariogram is defined as Cy (z1, z2) = cov(Y (z1), Y (z2)). A
common problem in geostatistics is one of estimating the function Cy based on one

realisation of the process Y observed at a finite number of locations z;, xs,... ,Tn
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in D. It is important to note that the knowledge of function values C(z1, z2) for
arbitrary (x,,2) € D? is required, and not simply the covariances of Y at lags
observed in the sample. The fact of observing only one realisation forces one to
make certain assumptions about the process Y, which translate into restrictions
on the form of Cy. There also exist theoretical reasons for restricting the function
families considered. The covariogram has to be a positive definite function. Fur-
ther restrictions may be desirable. In a typical covariogram estimation problem

it is supposed that the observed process Y follows the model
Y=X84+mn

The known regressor X contains terms corresponding to the mean of the process
and any trend that is allowed for, while the parameter § is unknown and the
random term 7 is assumed to have zero mean and an unknown covariogram
Cy. Throughout the paper, the process n will be assumed isotropic, requiring
Cy (z1, z2) to depend only on || z; —z5 ||. Putting p =|| z; —z2 ||, the covariogram
of an isotropic process Y will be denoted by Cy(p) = Cy(z1,22). A covariance
model Cy(p), known up to the value of a finite-dimensional parameter , to be
estimated, is to be fitted to the observed data. Throughout the paper, the model
Cy(p) will be additive, that is, it will have the form

q
Co =) _0(i)C;,
=1

where the functions C; are fully specified valid isotropic covariance models. The
class of spectral component additive models for the covariance function of an
isotropic random process described in Powojowski (1999b) contains elements ar-
bitrarily close to the covariogram function of any isotropic process with absolutely
continuous (with respect to the Lebesgue measure) spectral measure. The pro-

jection estimator described in Powojowski (1999a) is well suited for parameter
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estimation in spectral component additive models. When attempting to use such
a model, one must decide on the number and shape of the additive components in
the model. This paper suggests methods of model selection based on the number
of observations, their locations and the observed values.

The paper is organised as follows: Firstly, notation is established, the spec-
tral component additive models are introduced and the methods of projection
estimation are reviewed. Next, a technique for determining the effective spectral
support of a covariance function is derived and tested with simulated data. The
issue of end-point selection for the spectral components is addressed next. Sub-
sequently, a criterion for model comparison is derived and tested in a simulation
study. Finally, all of the proposed techniques are applied to a data set of Davis
(1973).

3.3. SPECTRAL COMPONENT ADDITIVE MODELS AND THEIR ESTI-

MATION

This section defines the notation used throughout the paper, introduces spec-
tral component additive models and the projection estimation methods. For de-
tails on projection estimators the reader is referred to Powojowski (1999a). Spec-

tral component additive models are described in detail in Powojowski (1999b).

3.3.1. Notation

To avoid confusion which might arise due to the frequent occurrence of multi-
ple subscripts, the following notation will be used throughout the paper. If A is a
matrix, its entries will be denoted by A(%, j), while A; ; may denote a matrix from

some (doubly) indexed set of matrices. Similarly, if § is a vector, its components
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will be denoted by (i), while §; may denote a vector from some indexed set of
vectors.

In the most general setting, one considers a random process Y on the domain
D, a subset of a d-dimensional Euclidean space. The process Y is observed at n
locations {z;}2,, 7; € D. Let Y, = (Y (z1),...,Y(zn)) and Y, (i) = Y(=z),1 <
1 < n. It will be further assumed that

Y, = X8+ (3.3.1)

where 1, = (n(z1), ... ,n(z,))" and 7 is an isotropic (and hence also second-order
stationary) random process with E[n] = 0. It will be assumed that X, has p
columns corresponding to different regression terms. Thus X, (I, k) = rx(z1), 1 <
k <p, 1 <1 < n, where z; is the [-th location in the sample and 7 is a continuous
function defined on D and it is the k-th regression term in the mean of Y. If
present, the term 7; = 1 corresponds to the (non-zero) constant term in the
mean of Y. The term rx(z;) = z;(1), where z;(1) is the first component of the
d-dimensional vector x; € D, would correspond to a linear trend in the mean of
Y (z) in the direction of the first component of z. The matrix X, will always be
known, while the p x 1 vector 3 may have to be estimated. If Cy(p) denotes the
covariance function of the process Y (and of the zero-mean process 7), the matrix
Ky, = var(Y,,) is a symmetric matrix with entries Ky, (%,7) = Cy(|| z: — z; |)-
If Cy is a given covariance function model, one defines the symmetric matrix
Ky, in a similar way, by putting Ko, (2, 5) = Co(|| z; — z; ||). Thus Kp, is a
fixed matrix depending only on the model Cy and on the set of locations {z;}7;,

ﬂ?iED.
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If Cy is the covariogram of an isotropic random process Y on RY whose

spectral measure is absolutely continuous, it has the spectral representation

Cr(p) = o2 [N () Ja-aa(Np)iA (3.3.2)
0

where J, is the Bessel function of the first kind and v-th order and ¥y () is a
non-negative function such that A%2¥y ()\) is summable on the positive real line
(Schoenberg, 1938). The function ¥y will be referred to as the spectral density
of the covariance function Cy. The spectral density ¥y of the covariance model
Cy is defined by an expression similar to (3.3.2) with Cy replaced by C,.

Two intervals [a;, b;] and [as, by] will be called non-overlapping if their inter-

section is at most one point.

3.3.2. Spectral component additive models

For simplicity, it will initially be assumed that the isotropic random process
of interest, Y, has zero mean. Following the approach in Powojowski (1999b) the

class of models considered will be parametrised as

Colp) =3 0()Cilp) (3.3.3)
where
b;
Ci(p) = p*~9/? / AU (A) Jig-2)72(Ap)dA. (3.3.4)

a;

The functions C; will be referred to as the spectral components (as will their
spectral densities, the functions W; = W}, 5,1 when no ambiguity exists). The
intervals [a;, b;] are finite and non-overlapping. The function ¥(}) is a completely

specified, non-negative, piecewise continuous function. If d > 1, one convenient
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choice 1s
T(A) = Ad-2/2 (3.3.5)

since it results in the covariance functions with closed forms

b/ o/
Ci(p) = 0(2—‘1)/2( lp Jaya(bip) — '17Jd/2(aip))' (3.3.6)
Another choice would be
T(A) =1. (3.3.7)

For d = 2 the two are identical, otherwise the latter choice may result in expres-
sions for the spectral components without convenient forms. In any case, it can

be easily shown that

o@d-2)/2 b
- F(d/Q)/a TV

i

C;(0)

3.3.3. Projection estimators for additive covariance models

Assuming that the parameter g and the intervals (a;,b;),1 < 4 < g are given,
and that the process Y is observed at the locations (z1,%2, ... ,Z»)’, yielding the
sample Y, = (Y (z,),Y (z2),...,Y(z,))’, the coefficients (i) can be estimated

via
én = [tr(Ki,nKj,n)]_l[leLKi,nYn] (338)

where 6, = (é1,n,--- ,éq,n)’ and K, is the matrix whose (m,l)-th entry is
Ci(|| m — = ||). (The notation [tr(K;,kK,)] denotes a g x g matrix whose
(i,5) - th entry is tr(K;,K;,). Similarly, [Y,K;,Y,] denotes a ¢ x 1 vector.)
The estimator f, in (3.3.8) may equivalently be defined as the vector 6 which
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minimises the objective function

| Y, Y! — iz:;a(z')Ki,n &= tr((mf,; — é e(i)Ki,n)2). (3.3.9)

The properties of the estimator (3.3.8) and its extensions are described in Powo-
jowski (1999a) and Powojowski (1999b).

As is shown in Powojowski (1999b) if the process is observed on an increas-
ingly large domain at a sufficient number of uniformly placed locations, the func-

tion
E[C;(p)] = D_EIPIC:(p) (3.3.10)

converges to the orthogonal projection of the true covariance function Cy on the

linear space spanned by the functions C;, where the inner product is defined as

(¢1, b2) = /0 X é1(p)d2(p) " dp. (3.3.11)

The norm resulting from the inner product is

| 61— b2 ||= (B1 — ¢2, 61 — ¢2)'/%. (3.3.12)

Applying the definitions and Parseval’s formula (Sneddon, 1972), one obtains the

following expression for the norm of the squared bias
co q . 2
Il cv e = [ (vl - SEBICK) s
=1

_ /OOO (\IJY()\) — i E[éi]\lli(/\)) Y

=1

=§q: f " () — BN + f (Ty(X)AdX (3.3.13)

C

where S¢ is the complement (with respect to the positive real line) of the maximal

support S of the function Cy, which is the union of the intervals [a;, b;]. From
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the last expression, one gains the qualitative intuition that the bias is reduced by
making the support S cover more of the support of Uy (or at least the portions
of it where Wy takes high values) or by making the intervals [a;, b;] smaller, so
that the piecewise approximations of ¥y()) by the functions ¥;(\) are better.
A common complication in working with real data is the presence of unknown
mean in the process. More precisely, the observed process Y is of the form (3.3.1),

that is
Yn = Xnﬂ + 7

where X, is a fully specified regression matrix, 8 is an unknown vector parameter,
and 7, is a zero-mean, isotropic process. In such a case, one may compute the

regression residuals e, given by
en = (In — Xa(X. X)) 1X)Y, = P,Y,, (3.3.14)

where P, is a projection matrix. The estimator (3.3.8) extends to the case of a

process with unknown mean to take the form:
B = [6r(UinUsn)] " (Ui nen] (3.3.15)

where

The estimator 6, in (3.3.15) may equivalently be defined as the vector # which

minimises the objective function

I ntl, — iz:;e(zwi,n 2= t(( - Zeov)) (3:3.16)

Details may be found in Powojowski (1999a).
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3.4. SPECTRAL SUPPORT SELECTION

The model (3.3.3) has a compactly supported spectral density, whereas the
spectral density Wy of the process may have infinite support. The expression
(3.3.13) points out the potential bias that may be introduced by truncating the
spectral density — namely the last term corresponds to the contribution of the
frequencies which are not accounted for in the model Cy. Since the true spectral
density Uy satisfies the requirement that A%2W¥y()) be summable, if in addition

Uy is bounded, the term
(Ty(N)*AdA
Se

can be made arbitrarily small by selecting an appropriate compact support S.
Thus the issue is to select the support S sufficiently large to avoid introducing
a large bias. This S will be referred to as the effective support of the spectral
density function of the process. On the other hand, selecting a support larger
than necessary forces one to use larger intervals [a;, b;] for the fixed value of ¢, or
increasing the number of components ¢ to keep the size of the intervals down.

A data-driven procedure will now be proposed to determine the effective

support of ¥y. Given v > 0, the model

2 v
Co..(p) = o, ﬁp@-d)/? / A(a—2)/2(Ap)dA (3.4.1)
0

is a special case of (3.3.3), with ¥(\) = 2/v?, ¢ = 1 and [a1,b1] = [0,v]. It
is shown in Powojowski (1999a) that under certain assumptions concerning the

sampling configuration, as the number of observations n increases, one has

z A <CO v CY)
lim By, ] = ot ¥}
s Blfoun] = 7€, Con)

where @y, is the estimator given by (3.3.8) for the one-component model (3.4.1),

computed from the n available observations of the process Y. The inner product
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is that given by (3.3.11). Using the spectral representation of the last result, as

presented in Powojowski (1999b), one obtains

(CO,V: CY> i foy \Ily()\)\If()\))\d)\ B v
<CO,II300,V> - fOV(III(}\))2)\d>\ _—\/O ‘IJY(/\))\d)\

since the function ¥ is a constant chosen to satisfy the last equality. Thus for
a sufficiently large sampling domain, sampled sufficiently densely (in the sense

made precise in Powojowski, 1999a), one obtains

B[] ~ S0 ) _ f " Wy (M)A, (3.4.2)

<CU,U) CD,I/) 0
Hence, assuming that éu,y is a continuously differentiable function of v (which is

easily verified), one obtains

0 -
E[@@Q’y] "

0

E;E[HAO,,,] ~ v Uy (). (3.4.3)

The procedure comnsists of constructing a large number & of models of the form
(3.4.1) where the values v are taken to be

y; = %I/mm,, 1<j<k (3.4.4)
where v,,,; is a fixed value, believed to be high enough so that higher frequencies
must be irrelevant. (Some heuristics for the selection of v;,4, Will be given later.)
The estimator éo,,,j of (3.3.8) is computed for 1 < j < k. Plotting the values
(670,,,]. - HAO,,,J._I) /v; against the values v; for 1 < j < k provides an estimate \ily(yj)
of Uy (v;). The estimate is a function of v which can be examined to determine
whether there seems to be a point 4 beyond which ¥y (v) is essentially zero. The

interval [0, ;] will be used as the effective support of ¥y.
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The selection of v,., may be based on the availability of sampling locations.
The basic idea is that if the sampled locations (zy,. .. ,,) provide minimal non-
zero distance of p.;, between sampled locations, one is unlikely to be very suc-
cessful at fitting a model of type (3.3.3) containing components whose behaviour
on the interval [0, pmin] varies considerably, since there simply are no data for
it. Examining the representation (3.3.2) of the covariance function, one observes
that on any compact set Cy(p) may be approximated arbitrarily closely by a sum

of the form
Z cip T2 J a2y 2 (vip). (3.4.5)

The function p@=9/2J 44 5(p) has the value 2(¢-2/2/T'(d/2) at the origin and as
p increases, eventually hits its first zero at some value py;. It would seem futile
to include components in (3.4.5) which attain zero for values of p less than ppy,.
Since the first positive root of Jiz_2)/2(vip) is pa,1/vi, one may take the value of
Vinaz = Pd,1/ Pmin 8s a rough heuristic guess. While it is entirely possible that the
contribution of frequencies higher than pg1/pmin to the spectral density ¥y are
significant, the prospects for their adequate modelling and estimation given the
available data are slim. For d = 2 one has approximately ps; = 2.4048, the first
positive root of the Bessel function J;.

The procedure is illustrated by a simulation study. A square with side
of length two is sampled uniformly to select twenty locations which are fixed
throughout the study. Two covariance models are used to simulate zero-mean
Gaussian random processes on the square (hence the domain is two-dimensional).

Both models have the same parametric form:

Cy(p) = cexp(—p/a) (3.4.6)
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and their spectral densities are given by

Oy () =< <A2 + i) o (3.4.7)

a a?

In both cases ¢ = 1, with a = 0.3 for model A and a = 1 for model B. In
each case the process is observed at the fixed twenty locations and the spectral
density estimate Wy (v) is computed as described above. The number of discrete
v; considered is k = 200 and the minimal (non-zero) distance found in the sample
is 0.0450, thus producing v,.,; = 53.44. Thus for each realisation a curve is
obtained by plotting the values (90,,,1. — ég,,,j_l) /v; against the values v; for 1 <
j < k. To avoid excessive cluttering, only twenty simulations were performed.
The curves obtained are plotted, along with the true spectral density, in Figures
3.1 and 3.2. Since in both cases ¥y () becomes very nearly zero for values much
smaller than v,,.; = 53.44, the plots shown in Figures 3.1 and 3.2 are truncated
at Vmer = 25 and Ve = 12, respectively. While the procedure admittedly has
a subjective component (of having to choose the first point beyond which the
estimated spectral density becomes zero), it appears that the effective support of
the true density function is captured rather well by the estimates. It is seen from
Figure 3.1 that based on any one of the plotted realisations, the effective support
would likely be selected to be the interval starting at zero and ending somewhere
between 7 and 15, which seems reasonable given the shape of the true spectral
density function. Figure 3.2 implies that the effective support would likely be
selected to be the interval starting at zero and ending somewhere between 3 and
9, which again seems reasonable.

In practice the mean of the process Y is often not known. In this case
one attempts to model the mean of the process Y as in (3.3.1) and apply the

estimator (3.3.15) to estimate the covariance function of the process. To estimate
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the effective spectral support of the true covariance function, one modifies the
approach described above by using the estimator in (3.3.15), rather than that in
(3.3.8) to obtain Hﬂgy,,j. This approach is tried for models A and B described above.
Two choices of the mean model X, are considered. In one case the regressor
matrix X,, is assumed to contain just one column of ones (thus Y, has non-
zero, but constant mean). Hence in this case X, = X st has one column with
Xeonst(k, 1) = 1,1 < k < n. In the other, X,, contains three columns which allow
for any linear trend on a two-dimensional domain. In this case X, = X, has
three columns with the k-th row of the matrix X, being (1, zx(1), x(2)), where
(zx(1),2£(2)),1 < k < n are the coordinates of the k-th location in the sample.
The results of estimating Wy (v) are presented in Figures 3.3 and 3.4 for the
constant mean X, and in 3.5 and 3.6 for the linear trend Xy;,,. It appears that
the spectral density is underestimated when the residuals are used, particularly
for low frequencies. This is intuitively correct, since low frequency dependence
in the data will be indistinguishable from a linear trend on a sufficiently small
domain. Computing the residuals after fitting a linear trend will effectively filter
the low-frequency components out. The encouraging message from the figures is
that the effective support of the spectral density can still be inferred with the
described method.
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3.5. END-POINT SELECTION

Having selected the support for Wy (possibly by the methods described in
the previous section), one is faced with the problem of selecting the number of
components ¢ and the interval ends a; and b;, for 1 < i < ¢. This section deals
with selecting the end-points, assuming that both the support [0,7;] and the
order ¢ have been decided upon. For simplicity the class of models with ¥(X)
given by (3.3.7) is considered, though the principle can be applied generally.
Optimal selection of the end-points depends on the ultimate goals one wants to
achieve. Often the covariogram estimation is an intermediate step in a larger
study. This section discusses some possible approaches to end-point selection,
while recognising that different criteria of optimality may be dictated by the
broader objective of covariogram estimation.

As is seen in expression (3.3.13), the contribution to the squared bias from
the spectral component C; is

By = min{ / " Oy () - H(i))z)\d)\} (3.5.1)

0() \Ja;
and it is caused by the departure of the function ¥y (A) from being constant on
the interval [a;, b;]. To simplify the analysis, it will be assumed that the function

Ty () is approximately linear in that interval, hence
Uy (A) = o + BiA, A € [a;, bl (3.5.2)
If (3.5.2) holds exactly, it can easily be shown that

2 B — a3)?
h= 2 (000 -ty - 855250 ). (35.3)

Not surprisingly, higher absolute values of §; cause larger contribution to bias.
If some prior knowledge of the steepness of the function Wy (1)) is available, it

could be used to ensure that regions where ¥y () changes rapidly are divided
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into smaller intervals than flat regions. The estimated spectral density curve of
the previous section may give some indication of the derivative of Wy (A).

Assuming that nothing is known about the slope of ¥y ()), one may try to
select end-points in such a way that for equal values of |§;|, for all 1 < ¢ < g, the
contributions h; to bias from components C; are equal.

This may be compared to choosing equal length bins for probability density
estimation via histogram. Equal length bins are the optimal choice only if the
true density has constant slope over its entire support, which generally is not the
case. However, in the absence of knowledge about the slope of the true density
one usually chooses the equal bin sizes, which contribute equal error terms due
to approximation by a step function under the assumption that the slopes of the
density function are equal in each bin.

Assuming that the |f3;| are equal, it can easily be shown that in order to
construct ¢ adjacent intervals with equal values h;, together with a; = 0 and

by = b > 0, one puts
b = by f[vj, 1<i<gq (3.5.4)
a1 = b, 1<i<gq (3.5.5)
where the ; are defined recursively by
nh =1

and where ;4 is the smallest root of the equation
(’Y 1~
9(7;‘1+1 -1)- J+ H”Yz =0
'7_1+1
which exceeds 1. The recursive definition is used to compute the initial ten

values of +;, shown in Table 3.1. In order to construct ¢ intervals whose joint
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] 1] 2 3 4 5 6 7 8 9 10
o7 1]1.637(1.342|1.234|1.178|1.144 {1.121 | 1.104 | 1.091 | 1.081
{:1 v | 111.637|2.196 | 2.711 | 3.194 | 3.655 | 4.096 | 4.522 | 4.936 | 5.338

Table 3.1: Solutions of the recursive equation for optimal end-points.

support is [0, 2] it suffices to put b = v4/([1}-, 7). It is apparent that the above
construction of intervals [a;, b;] results in shorter intervals at higher frequencies.
This is a consequence of the weighting by A in the integral in (3.5.1). While this
is consistent with the definition of the inner product in (3.3.11), it downplays the
importance of good fit for low frequencies A and sometimes leads to covariance
models whose visual fit may seem inadequate. In geostatistical practice, the
short-range behaviour of the covariance model is usually most important, hence
the emphasis on high frequencies may be desirable.

However, for some applications one may be more concerned with accurate
estimation of low frequencies. This might be the case, for example, if one were
interested in the range over which the covariance function is considerably different
from zero. In such applications, it is possible to define an alternative inner product
to (3.3.11), giving rise to a norm (defined by (3.3.12) with the new inner product)
which is more sensitive to differences at lower frequencies. For example, on the

space of functions of the form

$i(p) = p=O"2 /0 ATi(A) J(a-2)/2(Ap)dA (3.5.6)

where the functions A%/?¥;()) are summable, one may define the inner product

(b1, o = fo G () BNV dp (3.5.7)
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where w(A) is any fixed, piecewise continuous, bounded function. The set of valid
covariance functions possessing spectral density is a subset of this inner product
space.

The natural interpretation of || Cy — E[Cy] ||, as the squared bias of C;
is not preserved, since Parseval’s formula no longer applies. Setting w(}) = 1
results in the following expression for the measure of departure due to the i-th

spectral component

hy; = mi_n{/:(\lly()\) — e(z'))?dA}. (3.5.8)

6()

In order to make these contributions equal under the assumptions of linearity of
Uy as in (3.5.2) and the equality of the |3;|, the lengths b; — a; of the intervals
must be equal.

Thus the optimal choice of the end-points may depend on one’s broader
objectives. In subsequent sections the first method described in this section will

be applied.

3.6. MODEL COMPARISON

So far the discussion of appropriate model selection has been concerned with
reducing the bias only. As is often the case, there is a tradeoff between construct-
ing richer models to reduce bias and keeping the number of parameters to be
estimated small in order to reduce the overall variance. The standard approach
is to minimise the mean squared error of the estimate. Let the process Y with
the true covariance function Cy be observed at the locations (x1, z2, ... ,Z,) and
let K; be the matrix whose (m,[)-th entry is C;(|| ,», — 2 ||), with the matrices
Ky and Kj defined in an analogous fashion. Thus Ky = Z=1 0(i)K; for any
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vector 8 = (6(1),6(2),...,0(q)). The quantity
Bler(Ky — K7)?)] (361)

is the total mean squared error between the true and the estimated values of the
covariance functions. The vector § minimising this quantity is the estimator in

(3.3.8). In particular, it follows that
(Ki(Ky — Kgg)) = tr(Ki(Ky — S EOE) =0, (362)

Putting K = Ky — Y 5_, [ ;) K, one obtains

q

E[tr((Ky — K;)*)] = E [tf((Z(E[g |- 6K + KR>2)]

=1
q q
—ZZcové 0,) tr(KK;) + tr(K2)
i=1 j=1
q 2
=" cov(f;,6; trKK)-I—tr((KY—ZE[é,-]KZ-))
i=1 j=1 i=1
q
=33 " cov(;, 4;) tr (K K;) ZZE 0,] tr(K; K;) + tr(K2).

i=19=1 i=1 j=1

The last term in the last expression does not depend on the model, so it can be
dropped for the purpose of comparing different models. Therefore, the goal is

to find the model (defined by the parameters ¢, a; and b; for 1 < ¢ < ¢) which
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minimises the criterion

q q

S = Z Z(cov(éi, éj) = [é ]E[é ]) tI‘(Kin)

( [cov(@z, 8;) — [éi]E[éj]} [tr(Kin)])

i(Zcov(éi, éj) == E[ézé]]) tI‘(K,;Kj)

:tr([,?cov(éi,éj) [éé]][tr(KK)]). (3.6.3)

In practice the values cov(f;, §;), E[f;], and E[f;0;] are not known and must be
estimated. Clearly, E[f;§;] can be estimated without bias by 8;4;. Constructing
an estimator of cov(éz-, éj) is harder. In the remainder of this paper, the process

Y will be assumed Gaussian. In that case one has
var(0,) = 2[tr(Ki n K )] [t (K n Ky n K n Ky o) |[tr(Kin K a8 (3.6.4)

which leads to the plug-in estimate

——

var(Bn) = 20br (Kin K )] [tr(Kin Ky, o KinKg, o)][r(KinKGa)] ™ (3.6.5)
The plug-in estimate, though biased, leads to a computable approximate criterion,
given by

S=tr (4[tr(Ki,nKj,n)]—1[tr(Ki,nK@mnKj,nKémn)] - [éiéj][tr(Kin)]). (3.6.6)

The use of the criterion is now illustrated in a simulation study. A ran-

dom Gaussian process in two dimensions is simulated on a square with side of

length two. The simulated process will have known zero mean and the covariance

function given by

Cy(p) = cexp(—p*/a) (3.6.7)
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model | (¢) | (a1,b1) (az,b2) (as, bs3) Sa20 Sso
A | 2 |(06111)| (6.111, 10) 2 -15.453 | -115.935
B | 3 |(0,6.830) | (6.830, 11.178) | (11.178, 15) | -14.651 | -126.633
C [ 2](0,9166)| (9.166,15) ; -17.561 | -133.55

Table 3.2: Three models to be fitted.

with spectral density given by
ca o
Ty (A) = Eexp(—a)\ /4). (3.6.8)

The parameters a and ¢ equal 0.2 and 1.0 respectively. The true model is assumed
unknown, and three different spectral component additive models are fitted to
the simulated data. The function ¥(A) in (3.3.4) is assumed constant. Model
orders considered are ¢ = 2 and ¢ = 3. The model parameters are given in
Table 3.2. Model A was constructed to have two components and the spectral
support [0,10], while models B and C were constructed to contain three and
two components, respectively, and to have spectral supports [0, 15] and [0, 10],
respectively. In all cases the end-points for the spectral components were selected
using the method described in Section 3.5. The entire procedure is repeated twice,
once with a sample of size twenty, once with a sample of size eighty. In both cases
the sampling locations are initially obtained by a random sampling on the square
and thereafter remain fixed throughout the study. Knowing the true covariance
function, it is possible to compute the exact criterion (3.6.3) for all three models.
Their values are given in the last two columns of Table 3.2, with S,, denoting
the criterion computed for the sample of size n. The model which minimises the

criterion would be considered optimal.
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In practice, the true covariance is unknown and one can only compute the
estimated criterion (3.6.6). To assess how well the estimated criterion performs,
for each model one hundred samples of size twenty were simulated and (3.6.6) was
computed. The same was repeated for samples of size eighty. In each simulation
the three models were then compared pairwise (A to B, B to C and A to C) using
the approximate criterion (3.6.6). Since the true model is known, the models
A, B and C can also be compared pairwise based on the exact criterion (3.6.3).
The frequency with which the pairwise comparisons based on the approximate
criterion agreed with the comparison based on the exact criterion was assessed.
The results are summarised in Table 3.3. The entries below the diagonal give the
number of simulations (out of a hundred), where model selection based on 5’20
would give the same result as selection based on the (unknown in practice) exact
criterion Syg, while the entries above the diagonal contain analogous information
for 5’80 versus Sgp. The agreement seems remarkably good.

For both sample sizes, model C is better than the other two. However, for
n = 80, model B is better than model A. Figures 3.7 - 3.9 compare the true
spectral density of the process with the mean spectral densities of the models A,

B and C, computed from

E[¥,(N)] = Z E[6(:)]¥:()) (3.6.9)
where
E[f] = [tr(K; nKjn)] e (KinKya)l, (3.6.10)

as follows from (3.3.8). As can be observed from Figures 3.7 - 3.9, a good portion
of the spectral density of the true covariance function extends beyond A = 10.
Truncating the spectral density to A < 10 introduces a large bias. For a large

sample, this bias contributes more to the mean squared error than the increase
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model A | model B | model C
model A - 93 98
model B 76 = 92
model C 97 100 -

Table 3.3: Percentages of accurate pairwise comparisons based on the estimated
criterion (comparison based on the frequency with which the approzimate criterion
agreed with that based on the exact criterion). Entries below the diagonal are for

n = 20, above the diagonal for n = 80.

in variance caused by the addition of another component to the model. Hence
model B becomes better than model A. However, model C has the same spectral
support as model B and one fewer component. Its lower variance makes it better
than model B. Figures 3.10 - 3.12 compare the true covariance function of the
process with the mean of the estimates of covariance functions from models A, B

and C, computed from
E[C;(p)] = Y E[@)ICi(p) (3.6.11)

where E[§] is given by (3.6.10). A visual inspection of Figures 3.10 - 3.12 reveals
that the mean of model B indeed seems closer to the true model than that of

model C, but the latter seems acceptable, particularly at small distances.
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Figure 3.10: Mean estimated covartance function with model A versus the true
model (n=80).
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3.7. CASE STUDY

The methods of the previous sections are now applied to the data set of
Davis (1973), representing 52 surface elevation measurements. The first step is
recognising the need for modelling the process mean. Two different models for
the mean will be used. In the first one, the mean of the process will be assumed
to be an unknown constant, which leads to the regressor matrix X s in (3.3.1).
In the other, the mean of the process is assumed to be an arbitrary unknown
linear trend, which leads to the appropriate regressor matrix Xj;,. The matrices

X.onst and Xj;, are obtained in the same way as described in Section 3.4.

3.7.1. Spectral support determination

The next step involves determining the support of the spectral density of the
process, as described in Section 3.4. The procedure is performed with both sets
of residuals — that resulting from X, ,,s:, as well as that resulting from using
Xiin- A grid of 200 values was used to estimate the spectral density and the
smallest non-zero distance found in the sample is p,,;, = 0.2, hence one obtains
Vmez = 12.024. The results are shown in Figures 3.13 and 3.14. It turns out
that the estimated spectral density is essentially zero for » much smaller than
Vmae = 12.024, and therefore the plots in Figures 3.13 and 3.14 are truncated at
v = 6. It appears that the spectral support for the residuals from fitting a linear
trend may be larger than that for the residuals from the constant mean model.
The former will be assumed to be adequately covered by the interval [0, 5], while

the interval [0, 2.5] will be used for the latter.
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model | (¢) | (a1,b1) (az, b2) (as, bs) (ag,by) | W
Al | 4 |(0,0.922) | (0.922, 1.509) | (1.509, 2.025) | (2.025, 2.5) | no
A2 | 3 [(0,1.138) | (1.138, 1.863) | (1.863, 2.5) : 1o
A3 | 2 | (0, 1.528) | (1.528,2.5) ; . 1o
A4 | 3 |(0,1.528) | (1.528,2.5) i . yes

Table 3.4: Four covariance models to be fitted together with the constant model

for the mean.

3.7.2. Model building

The next step is building a covariance model to be fitted. Four models are
considered for each model of the process mean. Table 3.4 describes the models
used together with the constant mean model, while Table 3.5 shows the models
used together with the linear trend mean model. The endpoint selection was
performed based on the procedure described in Section 3.5. The last columns in
Tables 3.4 and 3.5 indicate whether the nugget effect component is included in
the model. The nugget effect is a common modification in geostatistics (see, for
example Cressie, 1993), where a component of the form

L 1f p=0

Wi(p) = (3.7.1)
0 otherwise

is added, leading to a model of order ¢ + 1:
q
Co(p) =YW (p) + Y _ 0G)Ci(p). (3.7.2)
i=1

For details on projection estimation in models including the nugget effect com-

ponent, the reader is referred to Powojowski (1999a).
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model | (¢) | (ay,b) (ag, b2) (a3, b3) (ag,bs) | W
Bl | 4 | (0, 1.845) | (1.845, 3.019) | (3.019, 4.051) | (4.051, 5) | no
B2 | 3 |(0,2.277) | (2.277, 3.726) | (3.726, 5) : no
B3 | 2 |(0,3.055)| (3.055,5) , : 1o
B4 | 3 |(0,3.055) | (3.055,5) i - yes

Table 3.5: Four covariance models to be fitted together with the linear trend model

for the mean.

3.7.3. Estimation and model comparison

Since the mean of the process is not known and has to be estimated, the
estimator (3.3.15) will be used. Two different models for the mean of the process
Y will be applied. They will be the same models as in Section 3.4, that is X onst
which models a constant mean of Y and Xj;,,, which models any linear trend.

The estimates 6,,(i) will also be constrained to be nonnegative. This is neces-
sary for the estimated model to be a valid covariance function, that is a positive-
definite function. Thus in practice the estimator (3.3.15) will be computed for all
submodels (by excluding certain additive components) and the model minimising
the objective function in (3.3.16), while satisfying 8,(¢) > 0 for all its compo-
nents, will be retained. Thus the estimator g is the vector that minimises the

objective function
g
tr((eqe, — EO(@')UM)Q)
i=1

subject to the constraints 6(¢) > 0. In other words, the optimisation of the
function in (3.3.16) will be performed over the positive quadrant R%, rather than

over the entire space R?.
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model 91 éz ég §4 % S
Al |6130.81| 0 |358.062| 0 | - | 7.366e+09
A2 |5941.79| 0 | 158.11 | - | - | 1.878e+09
A3 |5604.31| 0 - - | - |-1.871e+09
A4 |5604.31| 0 - - | 0 |-1.780e+09

Table 3.6: Estimated parameters for the four covariance models fitted together

with the constant model for the mean.

model 91 92 §3 5’4 % S
Bl |1587.29 0 66.378 | 227.463 | - |-1.571e+08
B2 |1602.08 0 174.776 - - |-1.771e+08
B3 |1494.11 | 70.776 - - - |-1.335e+-08
B4 | 1494.11 | 70.776 - - 0 |-1.215e+08

Table 3.7: Estimated parameters for the four covariance models fitted together

with the linear trend model for the mean.

The results are shown in Tables 3.6 and 3.7. The resulting estimated co-
variance functions for models Al - A3 and Bl - B3 are shown in Figures 3.15
- 3.20. In those figures, the products of residuals are marked as individual dots
with coordinates (|| zr — z; ||, e(k)e(l)), where 1 < k£ < 52,1 < j < 52 and
e(k) = Y (k) — Y (k) is the residual computed as in (3.3.14). The curves plotted
in the figures are (p, C;(p)), where the estimated values of § are given in Tables
3.6 and 3.7. Table 3.6 indicates that for the constant mean model the optimal
covariance model is A3. However, only the first additive component has a nonzero

coefficient, which makes the best fit a single-component model. From Table 3.7
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one observes that the optimal model is B2, which also has one of its three terms
eliminated. In neither case did the inclusion of the nugget effect lead to a better
model. (The plots of the fits with nugget effect are not shown, since they are
identical to models A3 and A4.) It would seem that the curve obtained with
model Al may be a little too high. This may be due to the fact that this model
contains a very low-frequency component, which may be poorly estimated.

While the plots seem to indicate that the estimated model follows the data
fairly well, Figures 3.15 - 3.20 may be misleading. Let P denote the projection
in (3.3.14). The mean of e(k)e(l) is (PKyP)(k,1), rather than Ky (k,[), which
may be estimated by (PK;P)(k,[) rather than by Kj4(k,[). It may therefore be
informative to plot the points (|| zx — 2, ||, (PK;P)(k,1)) along with the products
of residuals. This is carried out for models A3 and B2 and the resulting plots
are shown in Figures 3.21 and 3.22. One observes that in those two cases the
plots of fitted covariograms (Figures 3.17 and 3.19) and the plots of estimated
covariances of residuals (Figures 3.21 and 3.22) are similar.

Comparing the results of this section with models previously fitted to the
same data (e.g. Ripley, 1988, Wackernagel, 1995), one observes two main dif-
ferences. Firstly, the models for the mean of the process used by those authors
are linear trends or quadratic surfaces. It seems that the constant mean model
was not attempted. No reasons are given for this omission, but it appears that
the products of the residuals from the constant mean model are not very well
estimated by a covariance model which is positive everywhere, such as the expo-
nential or the Gaussian model used by the authors. This leads to the other major
difference, namely the presence of negative covariances in the estimated model.
Visual examination of Figures 3.15 - 3.20 suggests that negative covariances are

plausible. Spectral component additive models are capable of capturing negative
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covariances, while the exponential or the Gaussian model is not. The flexibility of
spectral component additive models is illustrated in Powojowski (1999b), where
comparisons are made to a number of standard parametric models. The results
of this section further indicate that spectral component additive models can cap-
ture detailed features of the covariogram, which may be difficult to reproduce

with standard parametric models.
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3.8. CONCLUSION

The paper examines model selection issues involved in the modelling and es-
timation of the covariance functions of isotropic random processes. The class of
spectral component additive models, introduced in Powojowski (1999b), is con-
sidered in detail. A data-driven procedure for determining the spectral support
is proposed. Another procedure is suggested for selecting the end-points of the
component support intervals. Finally, a criterion is derived for deciding between
competing models. These techniques are tested using synthetic data and are seen
to produce good results.

The proposed techniques are applied to a real data set of Davis (1973). The
data set has been examined by a number of researchers, among others Ripley
(1988) and Wackernagel (1995). The spectral component additive models appear
to bring a few new elements to the analysis of the data set. One is their ability to
capture fine features of the covariogram, such as regions of negative covariance.
Another is the information about the spectral density of the covariogram, such
as its effective support and relative contributions of different frequencies. While
the spectral methods have not been applied extensively in geostatistics, it has
been suggested that the reason for this is the requirement for the observations to
be regularly spaced on a lattice (Chiles and Delfiner, 1999). Spectral component
additive models provide a way of estimating the spectral densities from irregularly
spaced data.

In addition, the implementation of the estimation and model selection proce-
dures is very straightforward and usually requires only linear algebra tools. The

model selection techniques presented here seem highly practical in working with
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real data. Additional work is required in establishing the impact of estimating the
mean of the process on the estimation of low-frequency covariance components.

In addition, criteria for selection of the mean model would be very useful.
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CONCLUSION

Cette thése présente une nouvelle approche a l’estimation de la fonction de
covariance. Elle propose une nouvelle classe de modéles de covariance pour des
processus isotropes, ainsi qu’un nouvel estimateur pour des modéles additifs. Les
trois articles traitent de la construction du modéle, la sélection du meilleur modéle
et I’estimation des paramétres. Des propriétés théoriques de I'estimateur sont ob-
tenues. La mise en oeuvre de I’approche est illustrée par une application aux don-
nées de Davis (1973). Cette nouvelle approche présente de nombreux avantages,
déja mentionnés dans le texte. En conclusion, on mentionne des généralisations
possibles de ’approche.

Une généralisation permettant 'estimation du variogramme plutdt que du

covariogramme est en principe possible. Le variogramme est défini par
¥(z1, T2) = var(Y (z1) — Y(z2)). (3.8.1)

Au lieu de considérer I’ensemble de matrices dont les éléments sont K(k,1) =
cov(Y(zx),Y(z;)), on peut considérer les matrices définies par

L(k,l) = v(Y(zx),Y(z;)). En définissant un produit scalaire dans I’espace de
matrices symétriques (possiblement le méme que dans le premier article) on peut

obtenir un estimateur par projection de paramétres d’un modéle de la forme

o= 0(i)v (3.8.2)

ou les 7y; sont des modéles de variogramme déterminés.
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Il n’est pas clair que les propriétés asymptotiques peuvent étre reproduites
pour cet estimateur. La difficulté provient du fait qu'un variogramme ne converge
pas vers zéro lorsque la distance augmente.

Une autre généralisation facile est Papplication de ’estimateur par projection
& des observations qui ne sont pas les valeurs du processus Y méme, mais plutot
une transformation linéaire Z = GY de Y. Si la matrice G' n’est pas inversible,
les valeurs de Y ne peuvent pas étre récupérées a partir de Z. De plus, Z peut
étre non stationnaire méme si Y est stationnaire. Si le covariogramme de Y peut

étre modélisé par

q
Ky =) 0(i)K; (3.8.3)
i=1
il s’ensuit que
q
Kz =Y 0()GEKG (3.8.4)
i=1

L’estimateur par projection peut étre employé avec des observations de Z afin
d’estimer les paramétres #() du modéle (3.8.4). Cela produit un estimé  ,; , (i) K;
de Ky.

Finalement, une généralisation aux modéles non additifs (non linéaires) est
possible. L’estimateur par projection peut étre défini comme la valeur 6 qui mi-

nimise la norme
| YY' — Ky || (3.8.5)

ot YY" est la matrice de produits des observations de Y ou de leurs résidus,
tandis que K, est une matrice de covariance obtenue par le modéle. Si Ky dé-
pend de 6 de facon linéaire et la norme est définie par un produit scalaire, on
obtient le cas considéré dans cette thése. Cependant, si Ky n’est pas additif, on

peut toujours définir un estimateur f comme le paramétre qui minimise (3.8.5).
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Certains avantages de I'estimateur par projection sont préservés, par exemple le
calcul du variogramme ou covariogramme empirique n’est pas nécessaire et 1’esti-
mateur n’exige pas que le processus soit stationnaire. D’autres propriétés ne sont
pas facilement retrouvées car des expressions simples ne sont pas généralement

disponibles pour la moyenne ou la variance de l’estimateur.



Annexe A

PROOFS OF THE RESULTS

Proof of Lemma 1.5.1:
Let € > 0. For any positive integers n and k, let {A¥, ... A%} denote the
partition of D as in Definition 1.5.2. Then

k

Zm z,2)ba(y, ) = ) P o1(2, ") ga(y, &)

i=1

where P* = |{l : 1 <l < nand z; € A*}| and £"* is a point in A¥. This is
a simple consequence of the continuity of ¢; and ¢, and the connectivity of A¥,

since there is a point £&"* € A¥ such that

1 (z, &) oy, ) = P-}l’k , ¢1(z, x1)da(y, 1)
v {I1<I<n and z;€AF}
Hence
~ 1
B = | S thiamdalu) - [ ¢1(w,€)¢z(y,§)f(€)d§l
=1

k
Z%;(k— (A¥)PPE gy (2, £7%) oy, £7F)
=1

(3

—Z [, #0000
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since j(A¥) = u(D)/k. Putting $(z,y,€) = ¢1(z, €)¢a(y, £) one obtains

EAR) ( Pkn(,y,ﬁi) $(@9,6)f )d&i

iwx, weh [ (ﬁ}’ - 1©))as

=1

k

)W, €5 — (z, v, €)de \

i

Since the function % is continuous on the compact domain D?, it is uniformly

continuous on D3. Thus there exists § > 0 such that

|| (901,241,21) = ($2,y2,Z2) ||< 0= |1/1(x1,y1,z1) = ¢($2,y2,2’2)1 <e€

for all (z1, 1, 21) and (2, Yo, 22) in D3. Since the diameters of the sets AF converge

uniformly to 0 as k — oo, for any § > 0 it is possible to find K such that
k> K = diam(A%) < ¢, t=alem ke

Hence it follows that for & > K

Wz .85 - ¥, y,f))dﬁl
<>/ f f(&)‘ (1, E5) — 920, £)) |d§

k
< e;A?f(f)d§=eLf(€)d£=e-
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It is important to note that the choice of K is not dependent on z, y or n, but

solely on €. This leaves the term

> e neh) [, (i - 10}

=1 A

k.n
Y(z,y, &) (PT = /Ak f(é)dﬁ) % MZ

k

=)

=1

n

k.n
(P" - f(é)dé) ‘
At

where M is a bound on |¢(z,¥, 2)| over D3, which exists by the continuity of ¥
and the compactness of D3. Thus the choice of ¢ determines K, and given any
k > K, by the definition of an in-fill sampling configuration, there is a positive

integer N such that n > N guarantees, forall:=1,... ,k

[{{:1<!<nandx € Af}|
n Ak

flu)du | < UE

It follows that for any € > 0, K and /N can be found such that
n> N, k> K = |Rj| < 2¢

which completes the proof.
Proof of Lemma 1.5.2:

The notation from the proof of the previous result will be used, except
for v(z,vy), which will denote ¢;(z,y)ds(z,y) and will be defined on D?. Let
Bf ,, = AF x Ak It follows that Bf ;, C D? is connected, u(Bf ;,) = u(D)/k?,

11,82 i1,i2
diam(BF

v i) — 0 uniformly (in 4; and 4) as k — co. Moreover, from elementary

properties of limits it follows that for any positive integer k, Ve > 0 3V such that
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V1<i <k1<iy<k

I{(ll,lg) 01 S l]_ S T ,1 S lQ S n and (I[1,$l2) € szl,iz}|
n

— [ flu)du [ fu)du

k k
Ai1 Ai2

n>N=

<e (A.0.6)

Putting PF? = |{(l1,ls) : 1 <l <n,1 <ly < nand (2,,7,) € BE,,}| one

11,22

obtains P*" Pz-’:’“PiIZ " Again, the following holds

i1,%2

k k
Z Z @1 xll,$12)¢2 mlnxlz) - Z Z 1 1.2 1,1,121 7721,12)¢2(£lnl, 127 77:1#2)

I1=113=1 i1=119=1

where (5“ i T 12) € AF x Ak,
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Let € > 0. One has

B 1= |33 o, m)alon, )
l1=11s=1
- [ [ semestemie sondean)
- : 1 k2 k .k n.k n.k
= HZ::]J; EmM(BiI,iZ)Pil,izw(Eh,lz77721 12)
k k
33, [, wen )€ tndedn]
211=113=1
k2 kn
Tty (e 12)—¢(§,n)f(§)f(£))d€d ]
N i :
< | S vt ( / O Fn )d&dn)\
i1=114s=1 Ak

"33 [, [, fOrmwet i - ve e |

i1=1122=1

Again, the continuity of the function ¢ on the compact domain D?, guarantees

uniform continuity on D?. Thus there exists § > 0 such that

| (z1, 1) — (@2, 92) 1< 6 = [W(21,91) — ¥(22, 1) | <€

for all (z1,%;) and (g, y2) in D?. Since the diameters of the sets Bf. ; converge

21,82

uniformly to 0 as & — oo, for any § > 0 it is possible to find K such that

k>K=>d1am(Bk ) 6, ilzl,...,k,ilzl,...,k.

1,22
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Hence it follows that for £k > K

355 [, [, ormuet it —vemica

i1=11i9=1

< Z Z / / ()] (€%, i) — (6, m) g
n e 4 Z E/ n)dédn =e.

t1=113=1

Again, one observes that K is not dependent on 7, but solely on e. This remaining

term is bounded as follows:

Zzw 11,12’7711,12 ( 11’12 / f )d§d77>’

i1=1143=1
(%, frorons)
A"c Al‘

Where M is an upper bound on |¢(z,y)|, (z,y) € D?. Since M and k are now
fixed, it is possible to find NV such that

n>N:>|(“’” //f&)f(ndfdn)’ e

which guarantees |R}| < 2e as required.
Proof of Lemma 1.5.3:
It suffices to show that

| Ry | = ZZ — P10 (Tk; T1) b2, (Ths T1) — b1 (Th, ) 2Tk, T1) | = O

k=1 1=1
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as n — 0o. One observes:

1Bl < 323 5l bunloe, 1) (B2 70) — (s, 2)

k=1 I=1

+ ¢a(@k, 1) (D10 (T, T1) — P1(Th, 71)) |
< M;}Q— (Z D (Son(@r, ) — oz @)+ D D |1l 72) — b1l xz))|)

k=1 =1 k=1 1=1

where M is a uniform bound on |@| and |¢y ,| on D?, which exists by the com-
pactness of D?, the uniform convergence of {¢;,} and the continuity of all the
functions involved. By the uniform convergence it follows that given an € > 0 a
number N can be found such that

€

n>N=|¢in(z,y) — ¢i(z,9) | < i

for i = 1,2 and any (z,y) € D?. This leads to |R,| < 2¢ as required.
Proof of Lemma 1.5.4:
One has

Z Z Z Z $¢1(xkl7mk2)¢2(mk2: $k3)¢3(mk3: xk4)¢4($k47xk1)

k1=1 ko=1 kz=1 ka=1

= Z Z % (Z %¢1($k1:xk2)¢2(xkzvxk3))
ko=1

k1=1k3z=1
(Z %¢3($k37 $k4)¢’4($k4, Sﬂkl)) .

ki=1

By Lemma 1.5.1

Z %él(mkla‘xkz)(bQ(mkz’xka) — /D¢l (xk1)'\)¢2()‘)zk3)f()\)d)‘

ko=1
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uniformly in (zy,, zg,) and

Z %¢1($k371"k4)¢2(xk47$k1) =7 A(bl(xks’)‘)d)Q()"xkl)f()‘)d)‘

ka=1

uniformly in (Zx,, Zx, ). Hence the result follows by Lemma 1.5.3.
Proof of Lemma 1.5.5:

Firstly, one observes that if A is a ¢ X ¢ symmetric non-negative definite
matrix, then ¢ diag(A) — A is non-negative definite. Indeed, there exists a ¢ X ¢
matrix R such that 'R = A. Hence, for any g-dimensional vector z one has

(Re)(5) = 2y B(j, 1)2(i) and

7'(q diag(A) — A)z = ¢ ' diag(R'R)z — (Rz)' Rz

Hence

q diag ([cov(Y,{Ki,nYn, Y,;Kj,nYn)]) —[ecov(Y K n Y, Yo K;nYn)] > 0.
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Moreover, since var(Y, K;,Y) < ¢ tr(K;nKynKinKy,y) one has

¢ diag([tr(Ki,nKy,nKi,nKxn)]) — diag ([COV(Y,{Ki,nYn,Y,:Kj,nYn)]> > 0.

It follows that
cq diag([tr(Ki,nKy,nKi,nKy,n)o — [cov (Yo K; oY, Yo K;nYn)] 2 0. (A0.7)

One obtains

~

var(6,(1)) = (Anl(l/n‘*)[cov(Y,:Ki,nYn,Y,{Kj,nYn)]A,jl) (3,1)
=da (1/nY[cov(Y K, Yn, Y K;,Y;)] a
where a is the i-th column of A~'. Hence by (A.0.7) one has
var(0,(4)) < cq o' (1/n*) diag([tr(KinKynKinKya)])
and finally

var(8, (1)) < ¢q (A‘l(l/n4) diag([tr(Ki,nKy,nKi,nKy,n)])A_l) (i,2) = cq E,(i,7)

which concludes the proof.
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Proof of Theorem 1.5.3:
Let Q, = X,SX! and P, = X,(X/X,)"'X]. Then

]Qn(lla lz) == nPn(ll, lz)|

| Z Z X (llykl) k17k2) (klka))X (k2)l2)|
k1=1 k=1
=) 1k (@) (S(ks, ko) — Sulkr, ka))7iy (215))|
k1=1 ka=1
< Z Z ’rkl (xll)rh(xlz)ns(klvk?) - Sn(kl’ k2)| —=0 (AOS)
k1=1k»=1

for 1 < ki, ko <p, 1 <1,l <n asn — oo, since the functions r; are continuous

and therefore bounded on D. The convergence is uniform in z; and z;. Let

P

Q(‘Z‘ll ’ xl?) Qn(lla l2 Z Z Tk :Ell Tky (wlz)s(kla kz) (AOQ)

ki1=1ko=1

Since the entries of S are constants, the function ¢ above can be defined for
all (z,y) € D? Tt is seen that Q(z,y) is a continuous function on D? and it is

independent of n. The variance of e is

Ui,n (lly 12) mlu xlz) Z P ll: tl :L'tl 3 $l2 Z P l21 t2 wlla xtz)

t1=1 ta=1

+ZZP(ll’tl)P (lg, t2)Ci(z1,, x1,).  (A.0.10)

ti=112=1
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Let

¢‘L n(xllumlz) — (-,L'll;mlg ZQ Ty, Tty C($t1,${2)

t11

{ 0
B E Z Q(mlmztz)ci(wll’ th)

ta=1

+ % Y Qlary, w)RQ(@iy, 31, )Cil(@1y, 71,). (A0.11)

t1=1ta=1

One obtains

i¢1,n(xl1axl2) 1n(l17l2)|

1 n
Sﬁtlz_l Q(xlﬂmtl)_ P(llatl) (Z’tl,l‘lz)
T Z $[2,$t2 P”(l27t2) Ci(xluxtz)

tz 1

$l17mt1 (xlz7xt2) - nzpn(lla tl)P'n.(l2a t2) — 0

Ci(xtl ) :Ctz)

53>l

t1=1t=1

as n — oo by (A.0.8) and by the boundedness of the function C; and the conver-

gence is uniform in (z;,, ;). Also, by Lemmas 1.5.1 and 1.5.2
éi(21,, 21,) = lim ¢; (1, 21,)
= Ci(z1,, 71,) — / Q(z1,,€)Cil§, 1,) f(£)dE —/ Q(x1,,8)Ci(m1,, &) f(£)dE
D D
+ [ [ 00 neie m1© fr)dsan (4012)
pJp

uniformly in (z;,,%,) € D?, 1 <l,l> < n. One defines ¢y by replacing C; by Cy

in the equation above.
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Proof of Theorem 1.5.4:
Clearly one has Kvy,n(ll, lg) = W(mll,mlz) = In(l]_, lg) Let UW,n - PnInPn If
in (A.0.11) C; is replaced by W, the uniform limit in (A.0.12) is simply W (zy,, z1,).

Hence and from the previous proof it follows that for 1 < 5 <g¢q
limn (Uil i = i) =1l ila( )
gy, & x(Uwinlsn) = litn Z0x(L V) = Ji 3, e

. /D 6,6, 67 (E)dE. (A.0.13)

Moreover, if U;, = Uw,, this last limit equals one. In a similar fashion
U(Y,e),n = PnK(Y,e),nPn = P'n,(KY,n == ’YIn)Pn = UY,n -+ ’YUW,n

One obtains

| .1
lim = tr(Uw Uy, nUwalr,en) = lim = tr(Uy,nUy,p)

n—oo N2 n—oo N2

= 7}5& Z Z %qby(ack, 1) by (1, Tk)

k=1 I=1

e /D fD by (€, 1) by (1, ) F(€) f(n)dedn = by (A.0.14)

and for 1 < 5 < q, the following holds

o1
lim — tr(Uwn Uiy, nUinUtvie)n)

n—oo 13

1
= lim —Str(InUY,nt,nUKn)

n—oo 1N,

= 1im S35 v (@, 2621, 5 (s 20)

n-—00
k=1 I=1 m=1

= /D /D a3 (6, m)dy (0, €)f(€) f (n)dédn = b(j) (A.0.15)
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where

hay(€,m) = /D oy (€, )50 ) F ()

Finally, one has

1
lim — tr(Us nUv,e)nUinUviepn)

n—oo nt

1
= lim — tr(U; nUynUj Uy )

n—oo Nt

_ /D /D ha,3(& )b (0, €) £ (€) F(mdédn = Bi(i, ). (A.0.16)

From the above remarks it follows that

2 o n—p [tr(U;,0)] . 1 'g _ i (A.0.17)
0 LI |[trUin)] [6r(Uinl;n)] 0 A

As before, it will be assumed that A; is invertible. Similarly,
L0
0 %I,

10
0 LI,
= B.. (A.0.18)

Moreover,

tI‘([]‘/V,n U(Y,e),n UW,nU(Y,e),n) [tr(Ui,nU(Y,e),n UVV,n U(Y,e),n)]l
[tr(Ui,n U(Y,e),n UVV,n U(Y,e),n)] [tr(Ui,n U(Y,e),n Uj,nU(Y,e),n)]

bo V
._>
b B,

1 tr(Uw Uy e)m
n r( W, (Y, )v — mo = Mne (AOlg)
0 &I| |tr(Uinlyen] M,

where the ¢ x ¢ matrix M and my are defined as follows

My (i) = /D /D by (€, m)u(1, €) F(€) f () ey

g /D Cye(€, €)f(€)de.
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It follows that

lim Eff] = lim | = © [tr(Uin)] h
n—00 nro0 | [t (U 1)] [tr(Ui,nt,n)]

tr(UwnUye)m
[tr(UinUy.e).n

n 0 % 0 tr(Uw,nU(y,e),n
0 n’I| |0 LI |trUinUie)m]

|1 a
0 Al

i | PP (6@ )
n=00 | [tr (U )] [tr(UinUjn)]

Ol = AT M., (A.0.20)
M,

Furthermore,

lim n—p [tr(Usa)] B
2N tr(Uin)]  [tr(UinU;n)]

tI'(U-VV,n U(Y,e),n UW,n U(Y,e),n) [tI‘ ( Ui,n U(Y,e),n UVV,n U(Y,e) ,n)],
[tr(Ui,'n U(Y,e),n UW,n U(Y,e) ,n)] [tr(Ui,n U(Y,e) R Uj,nU(Y,e) ,n)]

=i

n—op [tr(U;,))
[tr(Uin)]  [tr(UinlUjn)]

| m@r ][0
0 nQIq

" [tr(Uin)]  [tr(UinUsn)]
tr(UwnUr,gnUwnUyen)  WEUinUxegnUwnUy,en)]
[tr(UinUgnUwinUon)]  [rUinUy,gnUsnUy,e n)]

olln o n—p  [txUin)] -
aely [

0 n?ly| |[tr(Uin)] [tr(UinlUin)]|

—s = Ane BnCAne .
0 A'| [b Bi| |a Af'

-1

O Fe
3
[
o
o~
| I |

-1

O FE=
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Proof of Lemma 1.5.6:
Putting
n k—1
Up= > d1(Xe, X0)$a( X, X)

n—l
k=1 I=1

one has Z, = U, + ﬁ > ry 1( Xk, Xi)2( Xk, Xi) = Un + Vi, and since the
functions ¢; are bounded the V;, is O(n™!). It is easily seen that U, is a U-statistic
(Serfling 1980) whose kernel is h(X;, Xo) = ¢1(X1, X2)¢2(X1, X2). The it follows
directly from Theorem A of Section 5.5.1 in Serfling (1980) that

nlﬂ(U;—”(D)) —a N(0,1).

1/2
g/

The corresponding result for Z,, follows from Slutzky’s theorem.
Proof of Theorem 1.5.5:

Let the vector random variable E, (X) consist of all entries of A,(X) lying
on or above the diagonal, followed by the entries of M, (X), i.e.

EulX) = (An(X)(l, 1), 4,(X)(1,2),... A (X)(1, q),
An(X)(2,2), An(X)(Z, Bl ,AH(X)(Q,q),
- An(X) (g, ), Ma(X)(L), .. ,Mn<X>(q>) . (A021)

From the discussion following Theorem A of Section 5.5.1 in Serfling (1980) and
Lemma 1.5.6 it follows that the vector n'/?(E,(X) — E) is asymptotically multi-

normal with zero mean where F is defined by
B = (A(l, 1),4(1,2),...,A(1,q), A(2,2), A(2,3),...,A(2,9),... , A(g, 9),

MQ),. .. ,M(q)) . (A.0.22)
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For a non-singular square, ¢ x ¢ matrix B, it follows from the Cayley-Hamilton

theorem that
Bl=—(B" ' +eB7?+... +cp1)/e (A.0.23)
where the ¢; are the coefficients of the characteristic polynomial
det(A\] = B) =X +...+¢,.

(By non-singularity of B, ¢, = det(B) # 0.) The coeflicients c; are polynomials
in the entries of the matrix B. It follows that the i — th entry of the vector
(A, (X)) *M,(X) can be expressed as H;(E,(X)) = P(E.(X))/P(E.(X)), 1<
i < q, where P; and P are polynomials and P(E,(X)) = det(A4,(X)). Since A,
is positive definite, P(E,) = det(A4,) # 0, and H is differentiable at F,. Hence
the result follows.

Proof of Lemma 1.5.7: One seeks to show that p(A) = 0 implies G(A) =0
for any Lebesgue-measurable set A, where p is the Lebesgue measure. It suffices

to consider A = [0, a] for some positive real number a. One observes that

GA)= [ dh
()= [ dna
where

h(w)= I dz d

@=[ [ rofa+ene+ o
and where aB is the unit ball scaled by the factor a. Hence
o= [ [ 1@)f+&)nle+ s de
aB\bB JD

Since the function f(z)f(z + &)Ip(z + £) is bounded on D, the result follows.
Proof of Lemma 1.5.8:
For each m, let D, = T,,(D). It is easily seen that

Tm(Br,;lp(D)) = Bp(Tm(D))
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hence p(Dp, \ By(Dr)) < cprd . Let Fyp(A) = [, fm(€)dE for any measurable
subset A of D. Let s(d) = 7%?/I'(d/2 + 1). Therefore u({z € R:|| z ||< p}) =
s(d)p? and let D,, = T,,(D). By the hypotheses of Lemma 1.5.8 F;,,(A) =
u(A)/u(D,,) one observes

Fim(Dm) Fim({z € R?:| 2 |[< p}) > Gm(p)
=Fom({(&n) € D72l € =1 |I< p})
2> Fin(By(Dm)) Fim({z € RY:[| z [|< p})
= 1(Dpm)~? 1(Bo(D)) p({z € R 2| z || < p})
> (D)2 (D) — coryy )s(d)
= (D)2 r 2 (w(D) g, — cor )s(d)p® = s(d) p(D) r2p? — s(d)eryt p™t
Fim(Dr) Fim({z € RY:| 2 < p}) = s(d) u(D) %"

Hence

5(d) (D) 50" > Grm(p) 2 s(d) (D) ritp — s(d)eryt o

m

and putting = cn%?/T'(d/2 + 1) one obtains the required result.
Proof of Lemma 1.5.9:
By Lemma 1.5.8

d
Tm

by the hypothesis, whence the lemma follows.

Two other elementary results will be useful in the further development:
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Lemma A.0.1. For any real nonnegative function ¢ € L*(Ry)

lim ———/ d(p)pdp = 0.

Tm=00 Ty,

Lemma A.0.2. If ¢ is a real function satisfying

/O [6(p)[?p" " p < 00

for an integer d > 2, then

lim r d/2/ l6(p)|p4 tdp. < o0
Ty —00 0
Proof of Lemma A.0.1:

Let ¢m(p) = ;-To.rm) (p)qS(p)p. One observes that
1
= ¢ )pdp = / bm(p
Tm

and

lim_¢,(p) =0Vp >0,

T'yn —+0Q

moreover, ¢,, < ¢. Since ¢ is summable, by the dominated convergence theorem

lim Pm(p)dp = /0 ( im ¢m(p))dp =0

Tm—+0Q 0 Tm 00

Proof of Lemma A.0.2:
Without loss of generality, ¢ may be assumed nonnegative. The first step in

the proof is the case d = 2. Thus it is assumed that

/0 " (8(0))2pdp < 0.

One defines the function b(p) = ¢(p)p and the following measurable sets
S+ ={p:b(p) > 1}

= {p:b(p) < 1.
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It is seen that

/0 ¢(p)pdp = /S T ¢(p)pdp + [5 e B ¢(p)pdp.

The second term will be dealt with first:

lim 1”;11‘/ d(p)pdp < lim r;f/ dp
Tim 00 S_N[0,rm] Fierod 5_N[0,rm)

< lim T;lI/ dg=1.
0

T —0Q

To find a bound on the first term, one observes that from the hypothesis

/ " (6(0)0dp = / " (b))% dp < o0,

hence

/S oodp < [ ()P dp < o

St

which means that Is, (p)b(p)p™ € L1(R4), Lemma A.0.1 applies and thus

lim 7t / Is (p)b(p)p~ pdp =0
0

T'm—00

thus

lim 7‘;1/ d(p)pdp =0
Tm 300 S+N[0,rm]

which proves the case d = 2.
To show the result for an integer d > 2, one puts ¥(p) = ¢(p)p¢2/2. It is

seen that 1 satisfies
/ (%(p))*pdp < o0
0

and thus the case shown above (d = 2) applies. Thus

lim vzt [ g0 dp = tim vt [T wleipdp < .
0 TP 0

T'm—>00
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However,

o / d(p)p*?dp =)} / d(p) ™ p 21 pt = 2 dp
0 0

A / ¢(p)p™2p ¥ k2 dp = 12 / d(p)p*tdp
0 0

and Lemma A.0.2 is proved.
Proof of Theorem 1.5.6:

Initially it will be assumed that v = 1 and that the covariance components
C, satisfy Condition 1.5.3 with v = 1, which is equivalent to Condition 1.5.4.

The matrix A, can be expressed as

diam( D)
Ani, §) = / C:(p)C;(9)dGom(p)

= diam(Dim ) i diam(Dyn)
—aaryt [ CaCi e o= [ CUIC ()dR(e) (A021)
0

where

diam(D,, ) diam(Dpm)
[ ccoirae)| < [T 106G @R

diam(D,, )
<ar(d+ 0t [ IS (e
0
Since Cauchy-Schwarz and the hypothesis of the result imply
| 1e0c o)l o < o0 (A.0.25)
0

then by Lemma A.0.1

m

rm diam(D)
e IC:()C5(0)lodp — 0 (4.0.26)
0

as Ty, — 00, the second term in (A.0.24) becomes insignificant, and A,,(i, 7) is

proportional to 7,2
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If v(p) is not constant and Condition 1.5.3 holds, but Condition 1.5.4 does
not, it is sufficient to redefine C; to be C;(p)v(p)*/? and the proof remains un-
changed. While the functions C;(p)v(p)!/? may not be valid covariance functions,
the only important elements in the proof are convergence arguments, and those
are unaffected by this redefinition.

Next the entries of the matrix B,, are considered. Again, initially it will be
assumed that v = 1 and that the covariance components C; satisfy Condition

1.5.3 with v = 1, which is equivalent to Condition 1.5.4. One has

| By (i, )]

/m/m< , G /\)CY(/\aﬂ)fm()\)d)\>
( Cj(& A)Cy (A, Tl)fm()\)dA) 7€) f(n)dédn\

= }m /m(/Dm |CGi(€, A)Cy(/\,77)|fm(A)d,\)

( [ 1 )\)Cy(/\,n)\fm(/\)dA)fm(f)fm(n)didn- (A.0.27)

m

Supposing that f,, = p(D,,)~! one considers the integral

/R 1K NG O, )l (A.0.28)

Let ¥;(x) = Cj(z,0) and 9y (z) = Cy(z,0). Then by the stationarity of the

process
/ IC(E, Ny (A, mldA = / IC(E — 1 — A, 0)Cy (A, 0)]dA
R4 Rd

= [ (€= n= Aoyl = (wal+ i) (€ = m) = 0ue =)

where v; * 1y denotes the convolution of the two functions. If 9; € L? and

Yy € L' (and by its boundedness, also ¥y € L?) then the same applies to |¢;]
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and |y |. Firstly, the convolution integral converges:

il x ol = [ 1ite == Dl v ()lex
<3 [ (Wt —n=np+lp)ar< oo

Let F (1) be the Fourier transform of . It follows that F(|v;]) and F(|¢y|) exist

and are all in L?. Moreover, since |1y| € L', it follows that
|F(ley )] < M < 0. (A.0.29)
Furthermore
IF (il * v )| = IF (D) F 1oy D] < MIF(lil)] € L2,
Since for L? functions the Fourier transform is fully reciprocal, it follows that

(il * |y [)(€) = 0:(€) € L2, (A.0.30)

It is also clear that the 1J; are isotropic since v); and 1y are. Let x; be a function

defined on the positive real line such that

Vi(§) = wi(ll € 1])- (A.0.31)

Thus

[ 1©s(6)1de < o0
R4

and so

[ ool o < o0 (4.0.32
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and hence the expression (A.0.27) takes the form

Bai ) <uon [ [ ([ e neromia)

(/Rd IC5(& Ay (Am) |d)\) F(&)f(n)dédn
diam(Dm )
= TT:LM\/O‘ Ei(p)ﬁj(p)dam(p)

diam(D,) diam(Dx, )
< agryH / milo)ms{0) " dp — o8 / k:(0) 53 (0)dRon ()
(A.0.33)

where the last term can be bounded by

y diam(Dm)
it [ o))
diam(D,,)
<as(d+ D [ o) o),
0

From (A.0.32) it follows that the first term of the expression is bounded by a

multiple of 3¢, Furthermore, the term

B diam(Dpm) ,
- / s} (o)

converges to zero by Lemma A.0.1 and the last term in (A.0.33) is negligible.

If v(p) is not constant and Condition 1.5.3 holds, but Condition 1.5.4 does
not, it is sufficient to redefine C; to be C;(p)v(p) and to redefine v(p) = 1 and
the argument above remains unchanged. While the functions C;(p)v(p) may
not be valid covariance functions, the only important elements in the proof are

convergence arguments, and those are unaffected by this redefinition.
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If A is invertible, then

lim AS'B,AY = lim r % A,) " (r39B,,) (rd Ay) 7
T'm—$00 T'm —+00

= lim +"A~"BA =0

Tm—>00
where B is such that
lim r3¢B,(i,j) < B(i, j)

T'm—00

(the existence follows from earlier discussion). The expressions for the entries
of A follow directly from earlier arguments, while the expressions for the entries
of B follow from the dominated convergence theorem applied to the sequence of
functions {h; mhjm}2_, where
D,

and similarly for h; . The functions {h; n/,m}oe_; are dominated by a summable
function 9;9; as is shown in (A.0.33).

This concludes the proof of Theorem 1.5.6.
Proof of Theorem 1.5.7:

To prove the result, it would be sufficient if

Jim rélA1m — Am| =0 (A.0.34)
and for (1.5.93)
Jim 2 By — Bm| =0 (A.0.35)
while for (1.5.95)
Jim rldt+ztt| B, o — B| = 0. (A.0.36)

Clearly, if (A.0.36) holds and z + ¢ > d then (A.0.35) must hold. Let ¢;,,
denote the function ¢; of (A.0.12) for the domain D,,. (One should not confuse



177

the current notation ¢;,, with the ¢;, in the sections on convergence in a fixed
compact domain, where n is the number of observations for the fixed domain D.
In the current notation ¢;,, depends on the domain, and in the notation of the
previous sections is the limit of the ¢;, for the domain D,, as n — 00.) Let ¢y

be defined in a similar fashion with ¢y replacing ¢;. The following holds

Lemma A.0.3. If there exists a positive number o such that the condition
ICi(p)] < ap™* (A.0.37)
holds with z > d/2 then (A.0.34) holds and (A.0.35) holds. If, furthermore

/0 " 1CH0) () < oo (4.0.38)

then (A.0.84) holds and (A.0.86) holds.
Before proving the lemma, two other lemmas will be stated and proved:

Lemma A.0.4. If the function Q defined in (A.0.9) is bounded on R*® and the
condition in (A.0.37) holds with z > 0, the bound

|in (0, 1) — Cilmy, T)| < kv (A.0.39)

holds uniformly on D2 for 1 < i < q for some constant k. If the condition in
(A.0.38) also holds, the bound (A.0.39) holds with —z replaced by —d. The same

is true if ¢;m and C; are replaced by ¢y, and Cy, respectively.

Proof of Lemma A.0.4.

It is an easy observation that

diam(Drm)
/ ICi(E, ]dA < / ICi(0) o dp. (A.0.40)
0

m
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Assuming |@Q| < k; < oo from (1.5.31) one has

Iéi,m(mln 37!2) - Ci(mllaxh)l =

% Q(wll,f)ci(f, xlz)fm(g)df

+ Q($ZZ,§)01($11,§)fm(£)d£

Dm

[/ Q(wzué)Q(wzz,n)Ci(é,n)fm(é)fm(n)dMn’

<k ( / R GERTACT S / |ci<m,1,§)|fm<§>d§)

m

w2 [ 1CE I e

diam(D,,)
< (2hacrst + Bagrsd) / Ci(0) 6" dp.
0

Thus if (A.0.38) holds, the lemma holds. (In particular, this is the case if ¢;
and C; are replaced by ¢y, and Cy, respectively, by the hypothesis of the main
Theorem 1.5.7.)

Otherwise if (A.0.37) holds, one has

diam(D,, ) T diam(D)
/ IC(p)|p*dp < a/ p~p"dp
i 1

(87

% ((rm diam(D))%* — 1) :

Hence

diam(D»y, )
/ ICp)|p* " dp < korpy
0

for some constant k., and

|¢i,m(xl17 mlz) . Ci(xlla -'17l2)| < k?";f

for a certain constant k£ and thus Lemma A.0.4 follows.
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For the hypotheses of (A.0.39) to hold, it suffices to show that the function ¢
of (A.0.12) is bounded on R?® uniformly in m. The following lemma guarantees
the validity of the hypothesis if the regressors ry making up the matrix X are
homogeneous functions. The function 74(£) is homogeneous of degree vy, > 0 if
Te(r€) = 1y (&) for all real r, and all £ € D. If r¢(§) is a monomial involving
various powers of the components of &, it is homogeneous and its order equals the

sum of those powers.

Lemma A.0.5. If the regressors vy are homogeneous functions, then there exists

a finite bound k¢ such that

va(f,n)EDanm(ga T]) i kQ

where the function @Q,, is defined as in (A.0.9) for the domain Dy,.

Proof:

For the domain D,, one has

p )4

Qum(T1,, T1,) = Z Z Thy (21, )Thy (T1) S (K1, Ki2)
k1=1 ka=1
where
S = A
and

Rm(kh kZ) = / Tky (5)”72 (f)fm(f)df = /Dfrkl (ng)rkz(rmg)f(g)dg

m

=yt / e (€)7a (€) F(E)E.
D
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Thus

S = S . (A.0.41)

0 7"777,7? 0 7";1%

Hence

sup |Qm(&,n)| = sup |Qm(rmé, rmn)|

€7n€Dm E,UED
= sup [reiry, (E)rmrg (Mrm ™ ¥ S (hy, k)|
EmeD

= sup lrkl (f)r;m (77)5(]‘517 k?) |

&meD

which proves the lemma.
Proof of Lemma A.0.3:
If the bound (A.0.39) holds, one has

|fi.m (€1, £2) Djm (€2, §1) — Cil6r, €2)C(E2, &)
< kr 7 (|Ci(&1, &) | + |C5(&, &2)]) + kQT;LQZ (A.0.42)
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uniformly on D2, and hence

lim 72 |A;, — Al

T'm—00

< lim 7 / /
T — 00 . m

U(glvfQ)fm(gl)fm(é-E)d'Elng
diam(Dm )
< lim #% (kagr;dr;f (/0 |Ci(p)|v(p)p* dp

diam(Dm) diam(Dy,)
= [ oot e + i [ Vo) ~dp)
0 0

< lim 78 (2kk,aer;trd 7 f + B2 ) < lim kerd P =0

Tm—00 T'm—>00

Gim (&1, &) 0jm (&2, &) — Ci(&1,£2)C(62, &)

since z > d/2, which proves (A.0.34). This clearly also holds if C; satisfies (1.5.72)
with p = 1. From (A.0.42) it also follows that

lim r2z+t|h“m(§1,f2) him (&1, &)l

Tm—>

< lim TZZH/ | @i m (€1, APy m( X, &) — Ci(€1, A)Cy (A, &2)|v(&r, A) fm (A) dA

Tm—0Q

< lim TQZH(IW‘Z _d/ <|Ci(£1,)\)+Cy(§2,)\)|)v(§1,)\)d)\

e [ v(fl,x)fmmdA)

< lim r2H(2kkrtro ittt L B2 rs 2 e ) < kg < 0o (A0.43)
Tm =00
for some k3 and this bound is uniform in (£,&). If v(§,7) = 1 then ¢t = 0.
Clearly, if C; satisfies (1.5.72) with p = 1, the result above holds for ¢ = 0 with
z = d. It follows that
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lim &2 %y s (€1, E2)hajm (&2 €1) — him(€1,&2)hym (€2, €1)

Tm—00

d+2z+t
m

; Gisn (§15 A)Byim (A, €2)v(E1s A) fn(A)dA
A (rbj,m(gl: )‘)QSY,m()‘a 62)7}(517 )‘)fm()‘)d/\

— Ci(fl; )\)CY(/\,fz)U(fh /\)fm(/\)d/\

Dm

C;(&1, N)Cy (X, &)v(&1, A) frm(A)dA

Dm

< lim rd+2z+t ( |pim (&1, A) dym (A, €2)
Tm—>C0 D

— Ci(&, N)Cy (M, &) v (€, A) fm(A)dA

[ 1616 MOy e lv(6a, ) ()
+ s |6j.m (&1, A)dym(A, &) — C (&1, A)Cy (A, &) |v(€1y A) frn(A)dA
|Ci(&1, A)Cy (X, &) [v(&r, A) fm(A)dA

D,

a7 D |Bs.m (€1, N Dym (A, &) — Ci(&r, A)Cy (A, &) v (€1, A) fn(A)dA

[ 16361 \61m0 ) = G360 MO, )62, ) )dA)
< lim (r&ksrt(9: (6 — &) + 96 — &) + 15 P 7kS)

< ka(0:(& — &) +9;(& — &2))
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since z > d/2 and this bound also holds uniformly in (£;,&s) with
0 =) = [ |1C(Ele NCr(x I
= [ 166 == 2,0( = 1= A0)Cy (5 0)jdx

- /R (e = m = Ny V1A = (Il * [y D (E = .

It is easy to see that if (1.5.72) holds for C; with p = 1 or z + ¢t > d then the
function ); is in L;. Since by assumption ¥y € L; as well, by an elementary
property of the convolution, so is ¥;. In any case, by an earlier argument ¥; is at

least guaranteed to be in Ly, and by Lemma A.0.2 it follows that

lim r%? / I(& — n)dédn < oo.
m Dm

Tm —>00

Finally

lim r242%\ B, (i, 5) — Bn(i, )]

T —00

il

< lim ik, / / (946 — E2) + 0,(E1 — 0)) Fnl€1) fin(E2) dELdE

< lim ettt

— m
Tm—r00

him (€1, €2) P jm (&2, &) — Rigm (€1, §2) Py m 62y €1) | frm (&1) fin(§2) dE1dEs

Tm—00

diam(D,)
< tim et [ (o) + (00" dp
0

Tm—>00

< lim 752 kaksonr 22 =0
T'm —+00

where Lemma A.0.2 was applied to the functions x; and «; defined as in (A.0.31)
and z > d/2. This proves (A.0.35) and (A.0.36). Thus Lemma A.0.3 is proved.

Hence Theorem 1.5.7 follows.
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Proof of Theorem 1.5.8.
If the nugget effect is included in the model, most of the proof of Theorem

1.5.7 carries over directly. It is clear that

lim a,(i) = a(i) = C;(0).

M—r00

The only non-trivial parts are (1.5.106), (1.5.108), (1.5.107) and (1.5.109). Firstly,

one observes

. 2d
lim 7,

Tm—00

/m/mhj,m(f,n)Cy(n,f)fm(f)fm(n)dgdn‘

diam(Dm )
< agry / ICy (p)|ks(0)p™ 'dp < 00 (A.0.44)
0
and

. d
lim 7,

=00

[ [ orencrn & i@ mmdcan

diam(Dnm )
< agr;ﬁd/ (Cy(p))*p™dp < c0. (A.0.45)
0
Next one observes that
hl,j,m¢Y,m - hj,mCY
= (h1jm = hjm) (Bvm — Cy) + (h1jm — hjm)Cy + hjm(dym — Cy).

Since the assumptions of Theorem 1.5.8 are the same as those of Theorem 1.5.7

one has

[P jm €1, &2) — him(Er, &) < kyry 2o

for some k; by (A.0.43). Moreover

|by,m(€,m) — Cy (€, m)] < ko
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for some ks by Lemma A.0.4. Hence

lim 7‘3,?/ / |h1,5.m (&, M bym(E51) — B m (& 1) Cy (&, M) | fm(€) frn(n)dEdn

Tm—00

diam(Dy)
S kl k2r727;i—2z—t—d e ale,erTii—Qz—t—d / ICY (p) |pd—1dp
0

diam(Dm)
+agkr2 2 [T )t (1,040
0

where k; is defined as in (A.0.31). Since z > d/2 and by Lemma A.0.2 applied to
k;, the last limit is zero. Therefore
. 2d o
Tim_ 726 (7)

= lim rf,‘f
Tm—+0Q

/ f B s (€)1, €) Fin (E) () dil| < 0.

Similarly,

lim 1 / / (St (€, 1) bram(7, €) — Co(€,m)Cy (71, €)| FonlE) Fon(m) iy

Tm—0Q

< lim 74 / / (2K 581Cy (€, m)] + K2r2) fn(€) F(m) el = O

Tm—0Q

where Lemma A.0.4 is used for ¢y, and Cy with z = d. Hence

lim 7¢|b = lim r¢
T'm 00 mI 0,m| Tm—oo

[ [ brmle.nbrintn 5l fm(apictn| = 0

The above inequalities imply that the following limits exist

b(j) = lim 72, (5)

m—roQ

bo = lim ngbOm-
m—r00 d
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Together with Theorem 1.5.8 this shows (1.5.106) and (1.5.108). The limit
(1.5.107) is shown as follows

A 1 CL’m bO,m b’m 1 0
lim r
R 0 Aip| | om Bim| |om Aim
1 o 1 0 1 0 bom U 1 0
= lim r
net g ATL | (0 AR 10 AT [ B Bkl f0° rR,
1 0 1 0
0 T;zdfq am, Al_}n
1 d ( 411 0 bom b, 1 0)1 0
= lim r
0 ATl Aarbes 0 ¥3F| | b Bl,m_ 6 wil, a A7?
oo | [ w1 0
= e (A.0.47)
0 A1l |b Bl |la A

where Theorem 1.5.8 was applied. The limit (1.5.109) is shown in a similar way,
by applying Theorem 1.5.8 again.
Proof of Theorem 1.5.9:

The limit of Ag in (1.5.9) is straightforward

An(irf) = ac f "GP (o) rral)

o0

= a6 [ CUAIC ) o+ [ CUAC i) dp

it is clear that as R — oo the last term in the sum above converges to zero, while

the first one converges to A(%, 7). The limit of My is proved in the same way.
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The notation of the proof of Theorem 1.5.6 will be used. To prove the limit

for Bg one first observes

krilll € —=nll) = Cril€ —n) = hril&,n)
= / Bral€ — 17— Ay (\)dA = / dn = D
R4 Rd

= / BB (E = = Ayd+ / ey (€ — 71— NdX (A.0.48)
[IAI<R

[IAl>R
again, clearly the last term of the last sum approaches zero, while the first term

approaches h;(€,n). Next, one observes

sl E=n 1) =26 = [ 166 NCy (umldh > Das(6rn)

= [ Wrale == Aoy (I 2 Ihns(e,m)l

Finally, it is observed that

| 1ot dp < 00
0

as is shown in the argument leading to (A.0.32). Hence Lebesgue’s dominated

convergence theorem applies and

R—00

lim / Hpgi(p)Hr(p)p™%dp = / H;(p)H;(p)p™dp
0 0

as required. The proofs for 0z and Eg are trivial. Thus the proof of Theorem
1.5.9 is complete.

Before proving Theorem 1.5.10, the following lemma will be established:
Lemma A.0.6. Let Ay, 5m)(X) be an n(m) x n(m) matriz whose (i, j) element
18

n(m)_2 tI‘(Ki’m’n(m)(X)Kj,m,n(m)(X)) (A.0.49)
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and M, nm)(X) be an n(m) x 1 vector whose i-th element is
’I’l(TTL)_2 tr(Ki,m,n(m) (X)KY,m,n(m) (X)) (A.0.50)

(where Ky,m nm)(X) is defined analogously to K; mnm)(X)). Finally, let By, nmy(X)

be an n(m) x n(m) matriz whose (i,j) element is
(1)~ 40 (K nom) (X) Ky m) (K) K om) (K) K ) (X))
If limy, 0 78 n(m) ™1 = 0 then
T Am,n(m) (X) — A =px) 0 (A.0.51)
T Mo n(my (X) — M —p(x) O (A.0.52)

where A and M are given by Theorem 1.5.6 and hence

A ) (X) " M () (X) — 0 —px) O. (A.0.53)
Moreover, if limy, 00 r3¢n(m)~! = 0 then
73 B n(m)(X) = B —=px) 0 (A.0.54)
and hence
P32 | By (X) (i23) — VB(5,3) —pi) 0. (A.0.55)

Proof of Lemma A.0.6:
As is shown in the proof of Lemma 1.5.6,

Ao 3)53) = )" oy + Vi

where U, is a U-statistic whose kernel is hA(z1,z2) = Cj(21,22)Cj(z2, %) and

Vn(m) = O(n(m)‘l). Thus

EUpmy] = 17 /D fD Ci(€,m)C(n, €)dedy
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and from the proof of Theorem 1.5.6 it follows that

m—00

Moreover, by Lemma A of Section 5.2.1 of Serfling (1980), one has
var(Un(my) < 2n(m)~ ( ‘2‘1/ / i(€,m)Cy(n, €))*d€dn

([ [ ctemcng )dfdn) ) < contm) iz

for some constant ¢; (the last inequality follows by an argument similar to the
one in the proof of Theorem 1.5.6). Hence (A.0.51) of Lemma A.0.6 follows. In
a similar fashion one proves (A.0.52) of Lemma A.0.6. The proof of A.0.53 of
Lemma A.0.6 proceeds in the same fashion as that of proof of Lemma 1.5.6.
The proof of (A.0.54) is similar to that of (A.0.51). Firstly, it is sufficient to

consider only the diagonal elements of By, »(m)(X)

e _afn(m
By (i) = 1) (") Vst + Vi
where U, is a U-statistic whose kernel is

h(z1, 2, z3,24) = Ci(x1,22)Cy (T2, 23)Ci(T3, 24)Cy (T4, T1)

and Vi(my = O(n(m)™!). Thus

E[Unm)]
= [ [ ([ ctemeronan) ([ ciencyouman)dean
m m ™m Dm
and from the proof of Theorem 1.5.6 it follows that

lim r3E[Uym)] = B(i, i).

m—o0
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Moreover, by Lemma A of Section 5.2.1 of Serfling (1980), one has

var(Un(m)) < 4n(m)™ (7";1461/1“ /m (/Dm(C,-(g, A Cy (N, ﬂ))zd)\)

([ [ (] e reona)

( /D GENCY( n)d)\> dfdn> 2) < eyn(m)-1r="

for some constant ¢, (the last inequality follows by an argument similar to the one
in the proof of Theorem 1.5.6). Hence (A.0.54) follows. Given that B(%,7) > 0
the proof of (A.0.55) is straightforward.
Proof of Theorem 1.5.10:

Let the assumptions hold. It follows from (A.0.53) that

Ew[ém,n(m) (wv X)] — ¥ —p(w,X) 0
and therefore it is sufficient to show

ém,n(m) (wa X) — Ew[ém,n(m) (w7 X)] —*pw,x) 0.

By definition

~

Gm,n(m) (w, X) — Am,n(m) (X)_lzm,n(m) (wa X)

where Ay, n(m)(X) is as in (A.0.49) and Z,, n(m)(w, X) is an n(m) x 1 vector whose

i-th element is
n(m) "2 t1(Ki m n(m) (X) Yo m) (W, X) Yo oy (w0, X)) (A.0.56)
and

E[ém,n(m) (w7 X)] = Am,n(m) (X)_lwfm,n(m) (X)
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It follows from (A.0.51) that
(rmAmn(m) (X)) ™ = A7 —px) 0.

Thus by Slutzky’s theorem it would be sufficient to show that

T Zmn(m) (@5 X) = Tt Mo, n(m) (X) —¥p,x) 0.
By (1.4.25) one has the bound

Var, (7 Zm,n(m) (W, X)(0)|X = X) < erfi Bun,nm) (X) (2, 9)-
Let 6 > 0 and € > 0 and 6; > 0. The set Sx(m) will be defined so that
X € Sx(m) <= |78\ Bunnimy(X)(ir3) — VBG, D) | < 61

from (A.0.55) it follows that there exists M, such that

m > M; = Px(X € Sxm) >1— (A.0.57)

-
>

From Chebyshev’s inequality, one has for all X

P, (v;;zm,n(m) (W, X) = 18 My ) (X)| > /2¢/eTE, \/Bm,n(m) (X) (5, z'))

<=. (A.0.58)

£
5¢
Let the set SL(m, X) be defined by

w € SLm, X) <= |1 Znnmy(w, X) — 1M nim)(X)]

< v/2c/ert \/Bm,n(m) (X)(5,9).

Hence

P,(we Si(m,X))>1- (A.0.59)

-
5
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If X € Sx(m) one has

\/Bm,n(m) (X)(i,) < r392 (61 +/BG, i)).

Let the set S2(m, X) be defined by

w € Sf,(m, X) = lrgan,n(m)(wax) = TghMm,n(m)(X”

< f2c/er;i? (61 + \/B—(zz'))

Hence if X € Sx(m) one has S} (m, X) C S%(m, X). Let M, be such that

m > My = v/2c/er;%? ((51 + \/B(i,i)) <.

Now for m > max{M;, M>} one has
Px) (lTﬁzZm,n(m) (w, X) = 71 Mo n(omy (X)] > 5>
= 2. (o X) = 78 Mo ()| > 1 € Sx())
Px (X € Sx(m))
P Zmato ) = Mooy ()] > 61X € S )
Px (X € Sx(m)c)

<P, (w € S3(m, X)X € Sx(m)) +

[NON e

&Py <w € Sl(m, X)|X € Sx(m)> + % <e.

This concludes the proof of Teorem 1.5.10.
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