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Abstract

J

More than two decades of extensive research and clinical experience with

cyclosporine A (CsA) immunosuppression has significantly contributed to improve
transplant survival rates and overall clinical outcome. Wide CsA inter- and intra-

individual biopharmaceutic and pharmacokinetic variability has complicated the

relationship between dose, blood levels, and outcome, making it difficult to achieve the

desired therapeutic response. Several approaches can be used in order to overcome

these potential complicating factors, one of which is to optimize the CsA dosage

regimen to reach a target blood CsA concentration. In doing so, it is crucial to choose

the best kinetic model, which provides a good description of the pharmacokinetic

behavior of CsA. In fact, a good description of the kinetic process is essential for proper

account of the variability. Hence, it has to be decided which compartmental model is

best suited to minimize the discrepancy between the data and our mathematical

predictions. This model can then reliably describe the time-concentration profile
yielding accurate PK parameters to optimize the CsA dosage regimen, as CsA

pharaiacokinetics have been documented as one- [Anderson JE et al., 1994], two- [Wu

G et al, 1996], and three-compartment models [Karlsson MO, Lindberg-Freijs A, 1990

and Anderson JE et al., 1994] and even a physiological pharmacokinetic model

including 14 tissue and two blood compartments [Bernareggi B, Rowland M,1991].

The objective of this study is to compare three models of Cyclosporine A (CsA)

population phaiTnacokinetics using two methods of analysis to elucidate which model
describes CsA pharmacokinetics most accurately and which method is the most suitable

for this purpose. Clinical data of 52 bone marrow transplant recipients were gathered for

estimation of CsA phannacokinetics. The blood CsA concentration-time profile in each
of 52 adult bone marrow transplant patients taking the first course of CsA treatment was
fitted by one-, two-, and three-compartment open models to obtain relevant

pharmacokinetic parameter estimates. Population pharmacokinetic parameters were
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estimated using the standard two-stage (STS) and nonlinear mixed-effects modeling

(NONMEM) methods. The predictions of blood CsA concentrations by one-, two-, and

three-compartment open models using the maximum likelihood estimation (MLE)

method were evaluated employing STS andNONMEM methods.

In the STS method, for each patient, the residual sum of squares was determined

for each one of the three investigated pharmacokinetic models. Afterwards, the method

of minimum Akaike information criterion estimation (AIC) was used to determine the

model that most adequately describe the pharmacokinetic data, based on the number of

blood levels, the residual sum of squares of the specific pharmacokinetic model, and the

number of parameters in the same model. While the Akaike's information criterion

(AIC) favored the two-compartment model to describe CsA concentration-time profiles,

the predictive performance analyses (bias and precision) showed that both two- and

three-compartment models were better than the one-compartment for prediction.

Furthermore, the three-compartment model was slightly superior to the two-

compartment model in terms of prediction of CsA blood levels, however, the test of

redundancy rejected its use. The same procedure was carried out for the NONMEM

method, which confirmed the use of a two-compartment open model in describing the

kinetic profile of CsA after considering the diagnostic test of redundancy and model

selection criterion (likelihood ratio).

In conclusion, based upon AIC values, bias and precision, a two-compartment

model best describes CsA population pharmacokinetics, as built by NONMEM and

STS, and it is able to predict CsA levels equally well in our population of bone marrow

transplant patients. Furthermore, the NONMEM and the STS methods appeared to be

suitable methods of population pharmacokinetic analysis for the rich data and for this

purpose they can equally offer reliable and accurate results.

3

Keywords : Population pharmacokinetics, Cyclosporine A, Sandimune, Immunosuppression,

Bone Marrow Transplantation, Compartmental Modeling, Standard Two-Stage (STS),

Nonlinear mixed-Effects Modeling, NONMEM, Model Comparison.
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Résumé

Après plus de deux décennies de recherches étendues et d'expériences cliniques

sur la cyclosporine A (CsA), l'utilisation de cet immunosuppresseur a considérablement

amélioré le taux de survie des greffés. Toutefois, l'énonne variabilité inter- et intra-

individuelle de la biopharmaceutique et pharmacocinétique de la CsA complique la

relation entre la dose, les concentrations sanguines, et les prévisions de la réponse

thérapeutique ciblée. Plusieurs approches sont utiles afin de surmonter ces

complications, par exemple l'optimisation du schéma posologique de la CsA pour

atteindre une concentration sanguine ciblée. Le choix du modèle cinétique est alors

crucial pour fournir une prédiction précise du comportement pharmacocinétique du

médicament.

Le modèle compartimentai est souvent utilisé en PK pour son adéquation entre

les données observées et ses prévisions mathématiques. Ce modèle peut alors décrire le

profil de temps-concentration en donnant des paramètres précis de PK pour optimiser le

schéma posologique de la CsA. La pharmacocinétique de la CsA a été modélisée par

une approche à un- [Anderson JE et autres, 1994], deux- [Wu G et autres, 1996], et

trois-compartiments [Karlsson MO, Lindberg-Freijs A, 1990 et Anderson JE et autres,

1994] et même par un modèle pharmacocinétique physiologique comprenant 14

compartiments tissulaires et sanguins [Bernareggi B, Rowland M., 1991].

L'objectif de cette étude de population est de comparer deux approches pour

déterminer le modèle compartimentai qui décrit le mieux la phannacocinétique de la

CsA administrée en perfusion chez des patients avant une greffe de moelle osseuse.

Nous avons modélisé les profils temps-concentrations sanguines de la CsA chez 52

patients par des modèles ouverts à un-, deux-, et trois-compartiments. Les paramètres

pharmacocinétiques de population ont été estimés en utilisant la méthode standard à

deux étapes (STS) et la méthode à effets mixtes nonlinéaires ÇNONMEM). Les

0
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performances des 3 modèles testés dans cette étude sont comparées par le critère

d'Akaike (AIC), l'erreur résiduelle, et la redondance des paramètres.

Les deux méthodes montrent que le modèle à deux-compartiments décrit le

mieux la phannacocinétique de la CsA. Ce modèle peut prévoir avec précision les

concentrations sanguines de la CsA dans une population de patients avant

transplantation. La méthode STS se révèle être aussi une méthode appropriée d'analyse

de pharmacocinétique de population pour les conditions de données riches présentes

dans cette étude. Les deux méthodes déterminent qu'elles peuvent également offrir des

résultats fiables et précis.

]\/tots clés : Pharmacocinétiques de population, cyclosporine A, Sandimune, greffe de moelle

osseuse, modèle compartimentai, méthode standard à deux étapes (STS), méthode à effets

mixtes nonlinéaires, NONMEM, comparaison de modèle.

J
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Introduction

Cyclosporine A (Sandimune ) is a member of a family of drugs that possess
immunosuppressive activity. Since the introduction of cyclosporine A (CsA) into
clinical practice in the early 1980's, it has been shown that this drug is widely used to
prevent the prophylaxis of organ transplantation and to treat some autoimmune diseases,
increasing the survival rate in patients. Unfortunately, the phannacokinetic profile of
CsA is characterized by great variations in blood concentration levels afiter oral or
intravenous administration [Ptachcinski RJ, 1986], and it differs from patient to patient.
It is then essential to permanently maintain the CsA residual blood concentrations in a
narrow therapeutic window in order to preserve the optimal relationship between
tolerance and effectiveness of the drug. Serious clinical consequences are associated
with CsA narrow therapeutic range and its high inter- and intra-individual variability.
Low blood concentrations (underexposure) of CsA may contribute to an increased
incident of acute rejection and subsequent graft loss, whereas high blood concentrations
(overexposure) can result in nepl-u-otoxicity, hepatotoxicity, and other malignancies
[Meyer MM, 1993; Dantal J, 1998]. Therefore, it has been recommended that dosing
schedules should be guided by routine phamiacokinetic monitoring for individualized
therapy [KahanBD, 1990].

One of the clinical applications of CsA is to prevent graft rejection following
bone marrow transplantation (BMT) and also in prevention or treatment of graft-versus-
host disease (GVHD). Initially used by Powles [Powles, 1978], CsA has been used as
the main immunosuppressive treatment to prevent GVHD after BMT for decades in
order to improve survival rates. Despite long experience with CsA in a clinical setting
for decades and many publications regarding its use, the application of CsA in the
treatment ofBMT patients is not optimal. This is due to the lack of proper definition of
the variability of this important drug.

u
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Several approaches can be used in order to overcome these potential
complicating factors, one of which is to optimize the CsA dosage regimen to reach a
target blood CsA concentration through population approach. In doing so, it is crucial to
choose the best kinetic model which best describes the pharmacokinetic behavior of
CsA and accounts for the variability. Indeed, selecting a model that well describes CsA
kinetic process and estimates the population characteristics is the major challenge of
achieving optimal immunosuppression. This can improve the accuracy of CsA dosing
guidelines.

The objectives of the current study were to:

estimate cyclosporine population pharmacokinetic parameters, using
standard two-stage (STS) and nonlinear mixed-effects modeling

(NONMEM), and quantify the interindividual variability found with such
experimental (rich) data;

compare mean PK parameter estimates and interindividual variability
obtained by the STS and NONMEM methods, and to determine which
method is more appropriate for this data rich situation.

Experimental data of 52 adult candidates of bone marrow transplantation were
gathered for estimation of CsA pharmacokinetics. The blood CsA concentration-time
profile in each of these pretransplant candidates, taking the first course of CsA
treatment through infusion, was fitted by one-, two-, and three-compartment open
models to obtain relevant pharmacokinetic parameter estimates. From the best model
selected, population parameters (mean, interindividual variability) were estimated using
the STS and NONMEM methods maximizing the likelihood function.

In the first chapter, a background of pharmacokinetics and pharmacokinetic
modeling in an individual and a group of individuals (population) is presented. We also
distinguish between experimental and routine (clinical) pharmacokinetic data as
requiring different approaches for data analysis. In the second chapter. Methodology,
the method of maximum likelihood (ML) estimation is presented. Emphasis is placed

0
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on population methods, by which mean population parameters and pharmacokinetic
variability can be measured. Finally in the third chapter, Application, we will focus on
the estimates of the mean population parameters and the relative interindividual
variability of CsA in a group of pretransplant candidates of BMT, in the context of
regression models relating pharmacokinetic parameters to the measured observations
(blood levels). Comparison of the estimation methods are then considered to show the
specificity of the estimation methods from the point of view of data analysis for this
essential but highly variable drug.

u
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Preface

The use of pharmacokinetic principles in clinical practice has partly evolved as a
result of advances in clinical phannacology and biopharmaceutics. Clinical
pharmacology, which is the study of the selective biological activity of drugs on living
organisms, offers the unique opportunity to carefully investigate pharmacotherapy in
human subjects. When relevant dosage regimens are administered, a drug with potential
biological activities causes a response in the living organism. However, this response
varies from one individual to another; and as in all biological phenomena, the
pharmacotherapy of a group of individuals results in considerable differences in
response to the same stimulus. By implementing pharmacokinetic and pharmacological
studies, one can demonstrate this large interpatient variability. This variability is
expressed at the same time in an experimental context (in healthy volunteers) [Sheiner,
1984; Fhuler et al., 1984] and in a clinical context (in patients) [Grasela and Sheiner,
1991; Steimer et al., 1994]. Nature, amplitude and duration of the effect of a drug with
standardized dosage regimen vary in different individuals. To analyze this variability of
response, one can distinguish three levels of interactions in the relationship between the
organism and the drug. These relationships are tightly interconnected and can be
expressed as:

Biopharmaceutics, encompassing the study of the relationship between the
nature and intensity of biological effects and the various formulation factors
such as the rate of drug delivery. These effects are generally proportional to the
total amount ofdmg made available to the body (dmg input).

Pharmacokinetics, the action of the organism on drugs, i.e. the time course of
dmg absorption, distribution, metabolism, and excretion.

0
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Pharmacodynamis, the effect of drugs (therapeutic effects or side-effects) on

the organism.

Many factors: morphological, physiological, genetic, pathological and

environmental, specific for each individual interact with all these stages and generate a

variability of response in the total population. In extreme cases, a standardized amount

of a drug could induce a wide variability in response in a group of individuals, from
inefficacy to toxic effects [Follath et al., 1983J. This situation is frequently seen with

anti-cancer agents. To compensate for this therapeutic variability, our main activity is

focused on the input of the system, i.e. the choice of the route of administration, the

galenic form and the amount of dose. For example, the adjustment of dosage regimen in

a group of individuals where anti-cancer agents are used, one seeks to provide the

optimal dosage regimen for each individual in order to reach the target concentration
and decrease the adverse effects. When the route and the amount of administration are

selected, it is the quantitative knowledge of the variability in pharmacokinetic (and in

some cases pharmacodynamic) processes within a population which allows an

improvement toward individual treatment.

Feasibly, population pharmacokinetic studies [Steimer et al., 1986] are thus

necessary to quantify this variability. Today, therefore, such studies are applied at

different phases of (new) drug development (usually phase II and III). This information,

provided by a group of subjects, is analyzed by statistical methods. It provides a

quantification of the variability, which makes it possible for example to detect

subpopulations at the risk starting from the knowledge of demographic variables (age,

weight, sex, etc...). Mathematical modeling is employed to copy the functional

properties of a real system (the organism) from an artificial mechanism (the

mathematical model). It, in vivo, allows a simulation of new protocols of administration

without experimentation. To found these developments, we present in this chapter a

recall on the modeling of the individual kinetics, which is the basis of all

pharmacokinetic studies. The principal population approaches will be later exposed in

the following sections.
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Background l

Pharmacokinetics

Pharmacokinetics, which is the study of time course of physiological transport

processes (i.e. absorption, distribution, elimination, and excretion) and metabolism of
drugs and chemicals (ADEM), has traditionally been used to describe the concentration-

time profile of drugs (and/or metabolites) in living organisms. It also concerns the

relationship of these processes to the intensity and time course of pharmacologie

(therapeutic and toxicologie) effects of drugs and chemicals. To achieve this goal,

competence in mathematics at least through calculus and pharmacokinetic modeling are

essential to describe, predict and, in some cases, understand the fate of drugs in the

body. Used to describe the kinetic processes, mathematical models are identified

through observational data and they supply estimates of the PK parameters in a given

mathematical structure. After a short outline of types of pharmacokinetic approaches,

we will recall the population methods used for the present study.

0

Types of Pharmacokinetic Studies

Pharmacokinetic modeling is implemented based on two different approaches:
Compartmental and Noncompartmental.

l. Compartmental Pharmacokinetics

The most commonly employed approach to the pharmacokinetic

characterization of a drug or a metabolite is to represent the body as a homogeneous
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well-stirred system of compartments into which the drug is distributed unifomily, and to
assume that the rate of transfer between and from compartments follow first-order or
linear kinetics [Jacquez JA, 1996]. It means that the rate of change of drug
concentration in the compartment(s) reflects quantitatively the change in drug
concentrations throughout the body, even though it has no physiologic or anatomic
reality [Jacquez JA, 1985]. In fact, the main purpose of using compartmental approach
is to define the entire system of a living organism throughout pharmacokinetic
parameters based on curve fitting of individual(s) data.

2. Noncompartmental Pharmacokinetics

On the other hand, noncompartmental methods do not require the assumption of
a specific compartmental model for either drug or metabolite. In fact, these methods can
be applied to virtually any compartmental model, provided that we can assume linear
pharmacokinetics. Noncompartmental methods are used to estimate certain
pharmacokinetic parameters without specifically referring to them as such. Usually
based on the estimation of the area under the concentration-time curve, these methods

are mostly used to estimate bioavailability, clearance, apparent volume of distribution,
and the fraction of a dose of a drug that is converted to a specific metabolite. These
methods are also used to predict the average steady-state concentration of a drug and its
metabolites after a single dose administration, and the time required to reach that point
when a fixed dose of a drug is given at regular intervals [Gibaldi M, Perrier D, 1982].

0

Pharmacokinetic Modeling

Mathematical modeling has been used as a tool to understand various kinetic
processes for centuries. Over the last few decades great strides have been made in our
understanding of these kinetic processes particularly those governing the fate of drugs
in man and animals, pharmacokinetics. This growth has come with the advent of
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analytical techniques capable of specific measurement of minute quantities of drugs and
their metabolites in biological fluids, and in computational techniques required to
analyse the resultant data. In fact, the use of computer technology in pharmacokinetic
modeling has recently allowed researchers to investigate problems that were once
described as impossible and frivolous tasks. Pharmacokinetics has thus graduated from

being an essentially theoretical subject to one of vital practical interest to all those
involved in the design, evaluation and administration of drugs. The ability to study
pharmacokinetics with elegance, speed, and accuracy has been a great benefit for the
advancement of scientific research in the field of clinical pharmacology.

In pharmacokinetics, the data are analyzed using a mathematical representation
of a part or the whole of an organism. Broadly then, the purposes of pharmacokinetic
modeling are, on one hand, to reduce and simplify data to a number of meaningful
parameter values and on the other hand, to use the reduced data to predict either the
results of future experiments or the results of a host of studies which would be too
costly and time-consuming to complete (Wagner, 1968 and 1975). While mathematics
is undoubtedly a powerful tool, its power must be meticulously handled when used in
pharmacokinetic modeling. To use models properly, it requires not only an
understanding of mathematics, but also a fundamental knowledge of the kinetic process
under study, which reflects the physiological reality. Once a pharmacokinetic model is
developed for a particular drug or a kinetic system, this does not constitute the end of
the problem. In fact, modeling can be thought of as an iterative process. The
accumulated knowledge in a field should provide some justification for the use of a
pharmacokinetic model and the structure, and parameters of the model should have
meaning in terms of known processes and the structure of the real system. Otherwise a
model description may be of little relevance to the real data.

In the majority of the PK studies, the observations are defined by plasma (or
blood) concentrations measured after drug administrations. After considering the
judicious choice of model assumptions, it is the series of observations y and the

knowledge of dmg administration u(t) that enable one to model the real process. The

0
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optimal mechanistic model will provide the greatest simplifications while providing an
adequately accurate representation of the processes affecting phenomena of interest.

Fig. 1.1 presents the functional diagram of modeling through stages of the data

collection, the mathematical model, the choice of estimation method, and the

optimization criterion. The following paragraphs summarize these four stages by
specifying some methods available for this purpose. We limit our presentation to the
models most studied in pharmacokinetics.

Mode of

administration

Real System
ADME

^

-> Mathematical

Model

Data Collection
Measurement ErrorJ

Observation y

Criteria
Function

Predictions ym

Optimization

Figurel.l - Four stages of modeling.

Data Collection

From a modeling perspective it is extremely important that the actual dosing and

sampling times are recorded and used in the analysis. An integral part of the data
collection process is the measurement of the dependent variable. This might involve a
careful determination of a pharmacological effect or the accurate analysis of drug (or

metabolite) concentrations in a biological sample (usually plasma or blood), in order to

acquire the time course of drug concentration or effect. Basically, the plasma (or blood)
concentration of a drug decreases until total elimination is reached. Fig. 1.2 represents
the kinetics of a drug intravenously administered.

u
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Figure 1.2 - The time course of a hypothetical drug concentrations.

Not only do we need to collect these data as accurately as possible, but we

should also keep in mind the precision with which these data are measured. The
information about the precision of the data should be used in developing an appropriate
weighting scheme to use during the modeling.

Sampling

To observe the pharmacological phenomenon, one should collect the drug
effects or concentrations through a definite time series, since it continuously evolves in
time. Once the data have been collected, one can begin considering which models may
be most useful. Based on the data collection and models used, one may suggest that
improvements should be made in the data collection scheme. Additional samples or a
different type of sampling schedule may be needed for a better representation of the
drug kinetics. Moreover, it is necessary to take into account the high cost and ethical
issues involved in patient care, which limits the establishment of a sampling protocol.

0
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The Measurement

Samples are then analyzed for determination of the drug concentrations and/or

its metabolites based on a (more or less) reliable technique. It is thus necessary to
associate each measurement an uncertainty which results from an accumulation of small
experimental errors. One can thus apply the theorem of the central limit and assume that
the total error is distributed according to a Gaussian law (Fig. 1.3). According to this

law, the observations jj at times ^ are assumed to be independently distributed

following Gaussian (Normal distribution) errors £ , with mean zero and variance Oj. In
order to propose a model to calculate Cj, one should study the reproducibiiity of
measurements of central limit theorem [Efron B, 1982]. In the majority of cases, this
study establishes a proportionality (relative error) between the standard deviation and
the measured concentration (Fig. 1.4) of the form

CTj =a.yj+c

where a and c are constant. When the range of measured concentrations is close to the
limit of quantification, the linearity becomes less evident and a polynomial regression
model must be applied.

CTj - a.y^ + e

0

Even though, significant effort may be needed to incorporate uncertainties into
the modeling process, this could potentially result in providing usefiil information that
can aid in decision-making. Uncertainty analysis provides insights into the level of
confidence and credibility of measurements, and model estimates as well. Further, it can
lead to the identification of the key sources of uncertainty which merit further research,
as well as the sources of uncertainty that are not important with respect to a given
response.
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Mathematical model

Mathematical modeling are necessarily simplified descriptions of certain aspects of

reality by mathematical means y,,, (.), thereby allowing one to concentrate on the factors
believed to be important in the description of the observed data.

Modeling strategies consist of four basic steps [Edwards D & Hamson M, 1990]:
clearly stating the problem or purpose of modeling,

clearly stating the assumptions in model building,

providing the rationale for model selection, and

validating the model using internal or external data.

In the case of PK modeling, the biological processes involved in the elaboration
of the observed daig concentration are regarded with the overall purpose of allowing a
quantitative description of the real system, and even more important, a prediction
beyond the existing data. Therefore, the choice of the model is a key stage as a whole,
which can describe a biological phenomenon. For instance, the kinetic process of two
individuals receiving the same drug can be described by means of a uniqzie model
structure >'„,(.). However, they differ in numerical values of their parameters p.

Before continuing with modeling techniques, we should briefly review a type of
models which can well define the kinetic processes studied in pharmacokinetics. In
general, Compartmenfal Modeling can well describe distribution and elimination of
the molecules (Fig. 1.5) [Rowland and Tucker, 1986]. This general class of models is a
system which is made up of a finite number of interconnected subsystems, called
compartments. The number of compartments defining the model structure rarely
exceeds three compartments, often limited by the technique of drug detection in the
samples. All compartments are considered as homogeneous and well-mixed, and the
compartments interact by exchanging materials. Because the interactions between
compartments are transfers of material, some type of mass conversion condition holds
for all transfers between compartments and, to and from the environment [Jacquez JA,

0
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1985]. These may be inputs from the environment into one or more of the
compartments and there may be outputs (excretion) from one or more compartments
into the environment. Represented by arrows in Fig. 1.5, these rate constants are called

microconstants. If there are no exchanges with the environment the system is said to be
closed, otherwise it is an open system. The rate of change of concentration within the

compartment is a function of the concentration in that compartment and in
compartments to which it is connected. Thus it could be said that the forces driving the
dynamics are local.

Another characteristic of compartmental models, most often used in

pharmacokinetics and in their standard form, is that the differential equations are linear
and follow first-order kinetics, thus ensuring that an analytical solution can be obtained.

These are the main characteristics of compartmental models and the mathematical

theory of the behavior of such systems is called compartmental analysis or the theory of

compartmental systems. The simplest compartmental model in pharmacokinetics is a

model comprising only a single compartment, which includes the systemic blood

circulation and frequently called central compartment. Into this central compartment the

drug enters from the site of administration, which can be from different influx pathways

(i.e. bolus administration, infusion, oral route, etc...). In most PK investigations, a two-

compartment model can adequately describe the kinetic processes.

D "(t)

ffîêîi^llSB k12

k21

Re

1*S^9SI k 13

k31"

sa

Figure 1.5 - Compartmental Structure: a 3-compartment model, V and k represent the
volume of distribution and constant rate of transfer, respectively.
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There are two major topological families (i.e., mathematical groups involving
properties unaltered under a homeomorphism) of compartment models, the catenary
and the mammillary type of model [Holz M & Fahr A, 2001]. A catenary model
consists of a chain of interconnected compartments while a mammillary model
comprises a central compartment interacting with a number of peripheral compartments
around it. If all rate constants ose first order, the time course of the concentrations in the
compartments will always follow a sum of exponentials. The solutions for any y,,, (t)

function are (almost) easily calculated by a mathematical procedure called "inverse
Laplace transformation'", which is briefly explained in the following section.

u

Solution of The Kinetic Equations

To obtain the concentration versus time profiles of a compartment, the
differential equations for the compartment system must be solved. The most promising

way to solve such systems is to apply Laplace transformation which transforms the set
of differential equations into a set of simple algebraic equations. Solutions of a set of
algebraic equations can be easily found with the help of computer software using matrix
inversion. The final step is the back-transfonnation from the Laplace domain to the
natural time domain. Only for systems including first order rates this back-
transformation is straightforward since it does always lead to a sum of exponentials
[Rowland and Tucker, 1986], often generalized by the equation

-"£-

y^)=^A,.e-"*(

k=l

In the most traditional case, y^, (/) represents the blood concentration at time /.
The number of exponential terms is equal to the number of compartments in the

structure. Thus, for any compartment, the coefficient-exponent couples (A^, a^) are the
parameters of the model called macroconstants of the system. They are a function of the
microconstants previously defined. In a more physiological context, one prefers to use
the clearance, the volume of distribution and the elimination half-life to describe
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kinetics. All these parametrizations are used to characterize individuals' kinetics, and
some simple rules controlling their inter-relationship [Rowland, 1984].

For instance, for an instantaneous intravenous administration and a single
compartment disposition, the model becomes

/"(')=[^;Jexp[-^7-'J

where Dose represents the input u(/), and Clearance and Volume are parameters that
can be interpreted physiologically. Note that y^,(t) is proportional to the dose
administered (above equation).

Having specified the structure of the model, it is necessary to determine the

numerical values of A^ and a^ (or clearance and volume) where the predictions y^,(t)
are close enough to the observations y. In the following section, we will describe the
method used for this estimation.

For more complicated systems the back-transformation to closed time functions
might be impossible and numerical integration algorithms must be applied. A great
advantage of the Laplace transformation technique is that the compartment system may
always be split into an input and a disposition part. The input system represents the drug
delivery system and the disposition system describes what happens to the drug once it
has reached the input compartment. The input might be an exponentially decaying flux
(e.g. first order absorption from the gut) and the disposition system might be a one- or
two-compartment system with elimination representing the central compartment. By
choosing the appropriate input function and disposition model, one can simply calculate
the time courses of drug concentrations in any of the compartments and then fit these
curves to any given data according to the least-squares principle. Table la shows some
basic inputs and table Ib some disposition functions for the central compartment.

u
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Table 1.1 - Holz M , Fahr A. Compartment Modeling.

(Advanced Drug Delivery Reviews. 2001; 48: 249-264, p.260.)

Table 1.1

Basic compartment model composition, (a) Input functions, (b) System disposition functions.
Input type

^(a)
i.v. bolus dose

K=D/T

Constant Rate

ko\
First Order

(b)
Disposition type

Itefêiïl k
10

^
One companment

Laplace transform Time function (input rate)

D

^-•(1-^)
T-s

f-D-k,
s+k,01

Laplace transform

Dirac's 5-pulse with area = D

\D- for Q<t<.T
T

0 t>T

f.D-e~kM'1

Time function (8-response)

l

s+k^o

,-*•'
eï6

15

ml'ïS
:®1:%
l j-.;

k10^

k12.

k21

S181
!ÎK Wi

Two compartments

with central elimination

s+ ÎL

(^+a)-(s+P)

with a+P=^+^21+^10
and a-P=A:2r^io

^•21-P -P( k^~a c-
a-P a-P

a/

®i8
MSS^
ÈI'Iiffll

k12.

k21

M
^k20

Two compartments

with peripheral elimination

s+k^ +^20
(s+a)-(s+Ç)

^21+^20-P -P/ ^i+^Q-a ^-g,
a-P a-P
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Population Pharmacokinetics

Developed during the end of the Seventies, population pharmacokinetics finds

today more and more applications. Its objective, in a statistical sense, is " to describe

quantitative information on the interindividiial variability of drugs in organisms, as \vell

as evaluate target population dose relative to route of administration" [Steimer et al.,

1983]. More precisely, population pharmacokinetics is the study of the sources and

correlations of variability in dnig concentrations in biological fluids between

individuals in a target population. Since the pioneering work of Sheiner et al. in 1972,

more and more evidence has been gained that knowledge only of average

pharmacokinetics is insufficient to determine appropriate dosage for individual patients.

Certain patient pathophysiological demographical, and therapeutic features (called

covariates) can regularly alter dose-concentration relationships. Population

pharmacokinetics seeks to discover which measurable factors cause changes in the

dose-concentration relationship and to what degree so that the appropriate dosage can
be recommended.

Based on the raw subject data and the assay error, population PK modeling

seeks to evaluate the contributions of interindividual and intraindividual variability and

to describe the findings in terms that are useful both for research and for optimal patient

care. Population PK modeling can be carried out based on two different approaches:
Parametric and Nonparametric .

1. Parametric Approach

In parametric population modeling, the probability distribution of the parameters

is itself described by these other single-valued parameters such as parameters' mean, for
instance. These other parameters impart an assumed shape to each pharmacokinetic
parameter distribution, usually a Gaussian or lognormal distribution (hypothesis). The
parameter values found are the single point parameter estimates such as measures of
central tendency - means, medians, or modes, which are felt to be the best estimators of
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each parameter. It is also capable of providing population standard deviations,
covariances, and ranges. The main strength of this approach is the ability to separate
"mter^" from "mtra^" individual variability and from assay variability which provides
the opportunity for testing the hypothesis. Parametric modeling can also provide
confidence limits and the opportunity to implement significant tests, however, its
behaviour is not consistent. Examples of such population parametric modeling
approaches are the standard two-stage—STS [Rowland M, Sheiner LB, and Steimer JL
et al., 1985], and nonlinear mixed-effects modeling—NONMEM [Beal S, Sheiner LB,
1979] which are the main methods being used in the present study.

2. Nonparametric Approach

First introduced independently by Lindsay and Mallet, nonparametric models,
on the other hand, have a different flavor. This approach describes that the most likely
parameter estimates are actually found to be in a discrete, not continuous, collection of
sets of individual parameter values. This approach estimates essentially one set of
parameter values for each subject, along with an estimate of the probability of that
particular set of values. Nonparametric approach makes no parametric assumptions
(such as normality or unimodality) about the actual shape of the population parameter
distribution. The richness of the method is in the ability to obtain not simply a single
estimate for the central tendency and one for the dispersion (i.e., means, SD's, etc.), but
rather to estimate the entire population parameter joint density (Discrete Joint Density)
with consistent behaviour. Using nonparametric modeling enables one to evaluate
expected therapeutic precision and to discover unsuspected subpopulations. However,
confidence limits or tests of significance will yet be accomplished in future by a
validation method such as bootstrapping. No fiirther explanation would be given on this
approach for it is beyond the scope of this paper.

u
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Aim of Population Pharmacokinetics

Briefly, the population pharmacokinetic approach encompasses some or all of
the following features:

1. It seeks to obtain relevant pharmacokinetic information in patients who are
representative of the target population to be treated with a drug;

2. It recognizes variability as an important feature that should be identified and
measured during drug development or evaluation;

3. It seeks to explain variability by identifying factors of demographic,

pathophysiological, environmental, or drug-related origin that may influence the
phannacokinetic behaviour of a drug;

4. It seeks to quantitatively estimate the magnitude of the unexplained part of the
variability in the patient population.

The magnitude of the unexplained (random) variability is important because the

efficacy and safety of a drug may decrease as unexplainable variability increases. In
addition to interindividual variability, the degree to which steady state drug
concentrations in individuals typically vary about their long-temi average is also
important. Concentrations appear to vary due to inexplicable day-to-day or week-to-
week kinetic variability and due to errors in concentration measurement. Estimates of
this kind of variability (residual, intrasubject, and interoccasion variability) are
particularly important for therapeutic drug monitoring (TDM).

u

Applications

1. Industry: At a fundamental level, population pharmacokinetics is a tool to
optimize the design of biological experiments with drugs. It has become increasingly
important in the design and development of new drugs and in the reassessment of old
drugs. Conducted during the course of drug development, these studies serve as a useful
marker for the safety of the dmg, provide integrated information that might be decisive
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for future experiments. Population pharmacokinetics, hence, has been integrated into
drug development and regulatory process.

2. Clinical Context: Furthermore, population pharmacokinetics, in a clinical
context, have resulted in improvements in utilization and direct benefits to patients. The
clinical applications of pharmacokinetics should end up not only with therapeutic
advances, but also with guidelines for the optimal use on the drug in each patient which
provide the desired pharmacological response without inducing toxicity. The knowledge
of the relationship between concentrations, response, and physiology is essential to
design dosing strategies for rational therapeutics that may not necessarily require
therapeiitic drug monitoring.

Study Design

The subjects of pharmacokinetic studies are usually healthy volunteers or highly
selected patients. Traditionally, the average behaviour of a group (i.e., the mean plasma
concentration-time profile) has been the main focus of interest. Moreover.
interindividual variability in pharmacokinetics is incorrectly viewed by many as a
nuisance factor that has to be overcome, often through complex study designs and
control schemes. However, this variability can be reduced through restrictive inclusion
criteria. Study design and selection of volunteers, that are rigidly standardized so that
they are as homogeneous as possible, are typical features of pharmacokinetic
investigations. These studies, therefore, are often performed under artificial conditions
that do not represent the intended clinical use of the dmg.

u
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Population Pharmacokinetic Data

Since the last two decades, there has been much interest in population

pharmacokinetic modeling to recognize drug characteristics in a group of healthy
volunteers (experimental studies) or in a group of patients (observational studies).

The problem of describing and estimating interindividual variability can be more
precisely stated with regard to the commonly available data from drug studies. In a
broad sense, "population pharmacokinetic data" must express the evident
interindividual variability in dmg kinetics. It is obvious that one can expect very
accurate inferences from sample population, which includes a significant number of
individuals. The observed kinetics result mainly from two major sources of
investigation: experimental studies in animals and human subjects on one hand, and
routine monitoring of patients—clinical studies—on the other hand. The distinction
between experimental and clinical data is important because the pharmacokinetic
methods presently available differ depending on the nature of the data. Some methods
are restricted to analysis of kinetic data from experimental studies, while others are
designed for clinical studies. Two-Stage Methods are good examples for analyses of
experimental data, however, One-Stage Methods are dedicated to data analysis from
clinical studies. These methods have general applicability, as will be described later.

l. Pharmacokinetic Data From Experimental Studies

Experimental pharmacokinetic (EP) data arise from studies under controlled
conditions of drug dosing and extensive blood sampling. Example of such data is phase
I (and partly phase II) of drug development which serye to define the initial parameters
of toxicity, tolerance, and general pharmacokinetic characteristics of a dmg. For
analysis of these data, two-stage approaches are proposed and seem promising.

Since they provide valuable basic information about drug disposition and
absorption kinetics, EP studies are often implemented on normal volunteers, and
sometimes on patients with diseases likely to cause pathological and therapeutic

u
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problems (e.g., renal failure). Measurements in each individual include numerous blood

samples and/or urine collections that are assayed for unchanged drug and/or
metabolite(s). Short-term (often single) administration is the rule. The number of

individuals in a study is generally small for practical, economic, and ethical reasons.
The goal of EP studies is to establish a kinetic model for the distribution and the

elimination of the active ingredient in the body. These kinetics are characterized by:

Homogeneous time of sampling, i.e. according to a strictly respected protocol

qualitatively and quantitatively, between the individuals;

Data are obtained through frequent and extensive sampling per individual which

allows the estimation of the individual kinetic parameters using the criterion of
the Maximum Likelihood;

Few individuals studied for ethical and economical reasons;

Recording of demographic and/or physiopathological characteristics of the
individuals (age, weight, sex, renal and hepatic functions...) and experimental
conditions are well controlled to decrease any other kinetic variability. The

problems of bioavailability or genetic polymorphism, particularly in

metabolism, are often revealed on this level of the development.

At a first glance, the information content of EP data regarding pharmacokinetic

variability appears very limited. Usually, a sample composed of healthy volunteers is
far from being representative of a patient target population. The typical sample size for

a given study is, from a statistical point of view, small (always less than 30, often less
than 15). However, one should notice that kinetic differences may be striking even in

normal healthy volunteers, because individual variations in pharmacokinetics may result
not only from biological or environmental differences but also from clearly defined
pathophysiological alterations. Even in a subpopulation of nonnal healthy volunteers,
accurate description and estimation of variability is of interest.

0
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2. Pharmacokinetic Data From Clinical Studies

Clinical (observational) pharmacokinetic data, however, arise from
investigations in patients with variable amount of data collected from each patient, i.e.,
different conditions of drug dosing and small number of measurements per patient.
These data are usually collected during the final stages of drug development (Phase III)
or sometimes when the drug is already released on the market (Phase IV—routine
therapeutic drug monitoring). The analysis of these data is possible only in a single
stage and it requires an explicit mathematical model, including both pharmacokinetic
and statistical features (Pharmacostatistical Mode?), in order to describe variability and
to detect the influential covariates. The data obtained during clinical studies exhibit
certain characteristics:

The time of sampling may occur randomly with respect to the time of dosing.

Also, the number of individual obseryations may be highly variable between
subjects.

Unbalanced data from clinical studies contain less "pure" kinetic information
than the data from carefully designed EP studies. The number of samplings in a
given patient is less than the number of parameters; hence, the model is actually
unidentifiable and causes problems in estimation.

A significant number of individuals included in the study.

Many additional sources of variability are obser/ed. Because the data are
routinely collected, the level of "noise" is likely to be higher than in carefully
controlled studies, incorporating:

i. all inaccuracy related to routine collection, manipulation, and assay of the

samples at the hospital and the laboratory, and that due to mistakes in the
recording of the data;

ii. patients noncompliance, leading to errors in the amount(s) of drug taken in
previous administrations or errors in the timing of the blood sample relative
to the previous dose(s).

0
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Despite the difficulties involved, the observational pharmacokinetic data are
worth the effort because they arise from patients receiving the drug for therapeutic

purposes. If relevant a priori selection criteria are applied, and if the data are collected

with reasonable accuracy, such a sample of patients may provide a fairly good picture
ofphamiacokinetic variability in the target population.

Population Pharmacokinetic Methods

There can be significant variability in dose-response in human populations.

Conceptually, variability in dose- and concentration-response are caused by variability
in pharmacokinetic and pharmacodynamic responses. Pharmacokinetics pertains to
variability in tissue concentration-time profiles. In practice, pharmacokinetic parameters
cannot be directly measured in a population of interest. The "measurement device"

provides indirect data, namely levels of drugs and/or metabolites in some easily
accessible biological fluids (i.e., typically plasma or blood and/or urine). This is often

fulfilled as serial measures at different times after drug intake. Accordingly, the
principal difficulty of the kinetic data is the heterogeneity between the individuals (a
number of different sampling time, different routes of administration).

To solve this problem, one should describe the population pharmacokinetics in
terms other than the raw data in order to get redticed, standard, and hence more useful

information. The basic requirement is to produce some mathematical transformation of

the original data to the attributes of interest, the parameters. The connection between
the original data and the parameters is made through the pharmacokinetic modeling. A

model is useful for a simplified and global description of drug pharmacokinetics. PK
modeling is used to transpose the pharmacokinetic variability expressed in
observational context in more homogeneous space of the kinetic parameters.

The methods used in this study are based on parametric population approach. These

methods can provide estimates of central tendency and dispersion (e.g., the first two
moments of the parameter distribution):

0
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l. Two-stage method

When individuals provide sufficient information of comparable quality across

subjects, it is often preferable to use the two-stage method to estimate kinetic
parameters. In other words, it is one of the most applicable methods when there is a
significant number of observations (kinetic points) per individual. In asymptotic
conditions, one can assume that 'inter-1' and 'intra-' variability are independent.

In this method, individual data are fitted in a first stage, and individual estimates
are combined to derive population characteristics and statistically describe
interindividual variability in a second stage. The latter can be performed through simple
averaging (standard two-stage, STS), through optimization of an extended least-squares
objective function (global two-stage, GTS), or may imply repeated fittings of individual
data (iterated two-stage, ITS). Generally, the two-stage approach:

allows the identification of certain aspects of the data or underlying process
through parameter estimates, or competing models.

allows individual modeling to be well implemented because it estimates the
measurement error and the uncertainty associated to each parameters, which
enables one to evaluate the respective credibility of the estimation;

facilitates the development of the regression models with the knowledge of the
kinetic parameters;

allows any types of parameterization, for example, one can also study the
variability of area under the curve (AUG) or of the maximum concentration
(Cmax). However, these methods are often criticized because they require a
significant number of observations per individual (8 to 20 based on the
complexity of the dmg disposition).

0
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2. One-stage method

When crucial measurements are missing, or in sparse sampling that provide

insufficient information to obtain adequate individual parameter estimates, the data set

will need to be analyzed as a whole. In this way, information may be shared across

subjects taking the relative contribution of each individual into account. In this method,

the population characteristics are estimated in a unique stage through global analysis of
all data. The nonlinear mixed-effects modeling (NONMEM) is the application of this
method used in this memoir. Some of the most important and useful features of
NONMEM are as follow [SheinerLB, Beal SL. NONMEN Users Guides, 1994]:

It can provide estimates for both the individuals and the population.

Has a menu of pharmacokinetic models from which the most appropriate one
can be chosen.

The user specifies the relationship of pharmacokinetic parameters to
independent variables, selecting "population" parameters that will be estimated.
The user also specifies which parameters vary between individuals, and the form
(model) for this variability, as well as the form (model) for the differences
between observations from an individual and their predictions for this
individual.

It estimates parameters describing both inter- and intra- variability.

It provides estimates (standard errors) of the precision of its parameter estimates,
including those describing variability.

Provides a means of deciding whether one model (e.g., that including weight's
effect on CL and V) fits the data better than another using the minimum
objective function value, a goodness-of-fit statistic.

Provides (limited) graphics, useful in judging the adequacy of the model
currently fit to the data.

u
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Comparison of Methods: STS vs. NONMEM

The traditional approach for estimating population pharmacokinetic parameters
is the two-stage approach. In this approach, the pharmacokinetic parameters of an
individual are estimated on the basis of the data for the individual. Population averages

and standard deviations are estimated from the sample of individual parameters using
standard statistical methods. Although this approach has been shown to give relatively
unbiased estimates of population averages of pharmacokinetic parameters, estimates of
variability have been shown to be biased towards higher values. The two-stage

approach is strictly applicable to data from balanced experiments with repeated
measurements, as in this study, and sufficient data from each individual (rich data) are
needed to estimate the pharmacokinetic parameters of the individual. This approach
cannot therefore utilize the often significant amount of sparse, unbalanced data that is
routinely collected in clinical settings.

Alternative methods, one-stage analysis, however proposed in recent years to
address the limitations of traditional population pharmacokinetic analysis methods, one
of which is NONMEM CNonlinear Mixed Effects Model). This method employs some
form of maximum likelihood estimation. In NONMEM, the statistical model is

specified by defining a parametric relationship between measured covariates (such as
weight, height, and age) and the pharmacokinetic parameters to be estimated. One-stage
method allows the analysis of data from a variety of unbalanced designs as well as from
studies that are normally excluded from regular PK analysis because they do not lend
themselves to the usual forms of PK analysis. This method is designed for
implementing pharmacokinetic analysis on retrospective and sparse data particularly on
data from therapeutic drug monitoring (TDM).

In the following chapter, we will present the appropriate methods for both
individual and population estimations.

0
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Methodology 2

Estimation Criterion

Pharmacokinetic models are and have been very successftil although the basic
ideas behind them like transfer into, between and out of compartments with immediate

mixing, can only approximate the actual physiology [Rowland M and Tozer TN 1995].
The previous chapter has shown how a model-based approach is an important tool for
the description, transformation, and analysis of phannacokinetic data analysis. Once an
explicit PK model has been specified, it is necessary to assign values to each of the
parameters in order to make the model representative of the given data. This process is
known as Parameter estimation.

Given a set of observations, one often wants to condense and summarize the data

by fitting it to a "model" that depends on adjustable parameters, by which the closest
predictions would be generated. Basically, the model is simply a class of functions, such
as polynominals or Gaussians, and the fit supplies the appropriate coefficients. After
selecting a mathematical model, one should choose or design an optimization function
(figiire-of-merit function) that measures the agreement between the data and the model
with a particular choice of parameters. In other word, we need a criterion to measure the
goodness-of-fit between the observations and the model predictions. This criterion—a
function measuring the error between observations and predictions—can be defined by

ej(tj,p)=yj-ym(tj'p)

0
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where we can find the prediction error for each observation yj at time tj. The
optimization function is conventionally arranged so that small values represent close
agreement. The parameters of the model are then adjusted to achieve a minimum in this
function, yielding best-fit parameters.

The exact structure of the model being proposed, when the parameters p of the

model approach the tme values of the parameters p* resulting optimal fit where

ej(tj,pl:) tend towards Sj (Fig. 2.1). The estimation function must take into account

these modeling errors expressed as e^tj.p"), at all time instants (j = 1, •••, n,).

; Real Structure

u(t)

Ym(p*)

<

•»
ADME

Processes

Ym(j»)

Ej

/ ;
'j(p.t)

Figure 2. l— Illustration of measurement nuisance g^ & Cj between the model and the real process.

Several optimization methods have been developed for estimating PK

parameters. The choice of the optimization method depends upon the problem being

considered and the required execution efficiency. In this section, different modeling
techniques are described which provide a flexible framework for parameter estimation

and the comparison of different candidate models. Model selection is an important part

of the data modeling as it allows one to assess the ability of different models to describe
the data whilst favoring economy above over-fitting. Here, we will present the
optimization method used in our PK analysis: The Maximum Likelihood (ML)
Estimation.

u
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The Maximum Likelihood Estimation

Maximum likelihood is the most important and widespread method of

estimation. Many well-known estimators such as the sample mean, the least-squares,

and the extended least-squares estimators in regression are maximum likelihood

estimators. Maximum likelihood is very useful in practice and tends to give more

precise estimates than other methods of estimation (e.g.. Least Squares method).

In particular cases where the number of observations in individuals under study

are sufficiently large to identify all the parameters, the method of the maximum

likelihood [Fisher, 1912] is the most appropriate choice. Based on this method, one

wants to identify the maximum probability Tty of the observations y given the

parameters p, as the likelihood of the parameters given the data. Hence, one must obtain

PML, by finding the values of the parameters p that produce a close approximation to the

data (in other words, maximize the probability Tiy of the observations to be occurred).

This is important since knowledge of these parameters enables one to recreate the data,

make further inferences about its characteristics, or perhaps transform the data by

manipulation of the parameters. Therefore, we can define the maximum likelihood by

p^ =argmax7i/y/p)

If p is being fixed, Tiy would be the probability density function (pdf) of the

random vector y associated with a model parameters p. Contrary, in estimation

problems, y is usually known or measured (observations) and p is required. We then

define the likelihood function L (p) by which one wants to maximize

p^ =argmaxZ/p)

0

For a data sample yj at time instant tj, the model produces y m that is a function of
the parameters p*. As the model is deterministic and the structure is supposed to be
exact, the error term bj in the reconstruction can be expressed as
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£j=yj-ym(tj,p*)

therefore the error Ej is a function of the true value p* being searched. Naturally, it is

desired to reduce the error in the model's approximation by finding the set of values,
which minimizes this error or, more specifically, the sum of the squares of the error
terms over the length of the data. Introducing a vector notation to represent the
sequence of values over the analysis interval, it is required to minimize the expression

(^j)2=(yj-yn,(tj,p*))2

with respect to all possible values of the model parameters p*,

pLs=argmin(sj)2

The least-squares parameter produced by this criterion is unsatisfactory in many

situations. Success is measured solely by the model's proximity to the observation. The

model is therefore susceptible to over fitting by allowing more parameters to be added
to the model in order to reduce the error term. In the extreme case, when the number of

parameters is equal to p, the data can be represented with zero error.

Over-fitting is undesirable for several reasons:

Errors in the data are modeled (e.g., measurement error) and so sensitivity to
noise is increased;

The model loses the ability to generalize since minor variations in the data
are modeled;

The model produced is much larger (and therefore more expensive to

represent and calculate) than the 'tme' underlying model.

To obtain better parameter estimation criteria, the task is posed in a probabilistic

framework. Suppose that each data point y has a measurement error bj that are
independently random and identically distributed as a normal (Gaussian) distribution

0
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around the "true" model ym(.}. Then the conditional probability density of Ej knowing
p* can be written as

7Ig(s/p'!!)=7Tg(Ei,S2,.,£^ /P*)=n7Iej(Sj/P*)=n7Tsj[yj-ym(tj.P*)]
J=l J=l

where ni is the number of measurements and Usj is the conditional probability (pdf) of Ej
given p*. The preceding relationship shows that TT (s/p*) is also the conditional pdf

7Ty(y/P*) °f observations y given p*. The conditional pdf of the observations
knowing p* is thus written as

7iy(y/p*)=n"Ej [yj-ym(tj,p*)]
J=l

Let's recall that Sj. is the limit of ej, the goodness-of-fit between the model and

the observations, when p tends towards p*. The pdf 7Ty(y/ pl;)ofy for all the values p
close to the true value p* can be written as

7ty(y/p)=n^ej[yj-ym(tj,p)]
J=l

The likelihood expression is sometimes written as Ly(p), to emphasize that it is
a function of the parameters. The maximizing values of p, indicated as the maximum
likelihood estimates p* also maximize the probability that the measurement sequence

will actually occur. In fact, strictly speaking, the interpretation is that it is a function of

the observations. In estimation process, instead of maximizing Ly(p), usually In Lyi
is maximized, resulting in most cases in an easier optimization problem. Maximizing

this expression is equivalent to maximizing its logarithm, or minimizing the negative of

its logarithm, because the logarithm is a monotonie function. Eventually

PML = arê max ln [Ly (P)] = arg max ^ In {71^ [y j - y^ (tj, p)] }
J=l

û
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and the log-likelihood becomes a sum of terms of which each one is associated with the
measurement error observed for each time tj.

Now, we have to define the structure of the probability distribution n^ of the

associated error (noise). There are different type of distribution. However, based on the
fact that the probability distribution of the sum of a very large number of very small
random deviations almost always converges to a normal distribution and also according
the central limit theorem, the Gaussian distribution seems most plausible and thus

)2

^j[yj-yJtj,p)]=(27ia;)-l/2exp -^ yj-ym(tj'p)
CT:

Since the variance o'j" is unknown and heteroscedastic (it means non-stationary

in the sense that the local variance and to a lesser extent the local mean undergo
changes on a time scale that is long compared to the fluctuations of the series itself), we

could think of including l\ variance c?j in the parameter vector p. Under these
conditions, the estimate of all the parameters becomes impossible since the dimension
of p is higher than the total number of data. An alternative way exist where the variance
is expressed in the form of a model function of the observations [Box and Hill, 1974],
such that

CTj =a-y^(tj,p)

In this model, a represents a proportionality constant, and a is an exponent
element allowing the choice of error model most adapted to the experimental
conditions. More particularly, if a = 0 the error is absolute and if a = 1 the error is

relative. Therefore, this model can adapt various forms of o'j, previously discussed in
"Data Collection" section.

The estimate of p in terms of the maximum likelihood estimation gives,

pML ^gn,ax(-2»,'"-2"î'°y.(t,,P)4i[y':4:(t;rt]21
F' ' a ^T Ym ^lj'

0
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which is equivalent to minimizing the criterion JML(P)

J"Lj^(p) = 2n, lna+ 2aâlny.(.,,p) 4l [y':J-/t:p)]2
F" " a" •j:r yn,"(,ij,.

From this expression, we realize that when the partial derivative of this criterion

in tenns of a is equivalent to zero:

ôj,,,(p)_2n< 2^[y,-yjtj,p)]2
a a3^ yia(t^p)ôa

:0

One can then define az as2

^-^hïêê
J=l Jm<<uj']

8

By introducing this expression into the likelihood criterion and eliminating a

term which does not depend on the parameters, JMc(p) [the maximum likelihood
objective function] becomes

J«.(P)=".l°j^âMt^(yl}^«âlny»(,,p)
n À—l

t J=l J=l

This choice of the error model can be verified a posteriori by the study of

residuals in the observation space [D'Agostino and Stephens, 1986]. When the optimal

values of parameters PML are determined, the value for constant a is calculated by

±V^irym(tLPML)T,2aML(PML.«)
n, ^ y^a(tppML)

u

If the error is associated mainly to measurements, the comparison of this
constant with the value provided by the dosing method enables one to evaluate the
modeling process.
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Maximum Likelihood estimates are asymptotically unbiased, as well as
asymptotically efficient (non-skewed), i.e. when Pmy tends to being distributed

according to a Gaussian law N [p^,F-l(p*)] when n,, -^ co. An error bound on the
estimation errors can be derived from the so-called Fisher information matrix, where

F . is given by

7î>t ~ lLy/p ^-ln Tiy (y / p)-,^-ln Tty (y / p) -E
y/p

p=p*

Q2

9p9p
-i-ln7iy(y/p)

p=p*

Q . . . ^ - ô2
where —]n7i^(y/ p) and „ "„ ^ ln.7i^(y/p) are the gradient and the Hessian (H;)

ôp ^- • -- ôp9p1

matrix of the log-Likelihood [Gill et al., 1981, p. 47-52]. The Fisher matrix F. is of

particular interest, for its inverse matrix provides a lower limit of the precision matrix

of the estimator PML. The latter, shortly called the precision matrix, makes it possible
in turn to calculate the standard deviation of the estimate, square root of the k diagonal
element of the matrix pmv.

The maximum likelihood estimation provides the optimal values for the

parameter estimation, as well as their perspective precision. One can define the
precision of the estimation in terms of the Covariance-Correlation Matrix.

u
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where a pn is the variance of the estimated parameter pn and a pipn is the covariance of

the estimated parameters pi and pn. The correlation between the parameters are
expressed as
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0

Pplp2
CT-plp2

CTPICTP2

Numerical Aspects

Among the numerical approaches to the minimization of the objective function,

approximate solutions have been used. The Simplex algorithm [Nelder, Mead, 1965]is

based on the geometry of the parameter space. Gradient methods require the first

derivatives as e.g., the Gauss-Newton method. Second derivatives are used by Quasi-

Gauss-Newton [Goldfarb, 1970] type methods, which is used in our calculations.

It is the optimization algorithm which allows, starting from available

information, to obtain the parameter values p. In all cases, optimization leads to

numerical values of p, but it is misleading to believe that this result corresponds to the

best possible model. Even in the ideal case where the structure of the model is exact, the

uncertainty of the observations causes an uncertainty on the parameters. It is thus
desirable to add a confidence interval to these numerical values. The minimization is

implemented on all dimensions of the parameters' vector p.

In principle, any numerical optimization scheme may be applied for the solution
of the maximum likelihood problem. In the Newton-Raphson algorithm, a sequence of
steps Ap is calculated according to the following equation until a stationary value of p*
is reached.

Ap=-
ô2

ôp9p
T-lnTi^y/p)

-l

p=p*

^-ln7Ty(y/p)

It is very time consuming to exactly evaluate the Hessian matrix of second

derivatives in this expression. A good approximation results when the Fisher
information matrix is substituted instead, resulting in the well-known Gauss-Newton
algorithm:

Ap=F;.-ln^(y/p)
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Now only fîrst-order derivatives are required for the calculation of the

information matrix F *, as well as of Ap. The convergence of this method towards the

minimum value is very fast but it requires an initial estimate close to the final result.

Where the iteration must necessarily start from a bad initial guess of p or when the

information matrix is ill conditioned, the algorithm may not converge. This method can

be applied on one-dimensional minimization.

In this thesis, a similar approximation to that of Gauss-Newton is used, called

Quasi-Gauss-Newton method that can be well applied to multi-dimensional

minimization problem. The difference is that the second derivatives are used for this

type of approximation. This method has many advantages:

The inversion matrix is not needed ;

If Hi (Hessian) is a positive definite matrix, so will be H;,... ;

Only gradients of functions must be evaluated at each iteration.

0

Model Selection Criterion

A need for model selection techniques arises from the need to compare several

candidate models and assess their suitability in a manner consistent with Occam s razor:

where model parsimony is traded off against the goodness-of-fit. This principle states

that one should not make more assumptions than the minimum needed and entities are

not to be multiplied beyond necessity. In this thesis, model order selection will be used

to describe the selection between models of the same type which differ in the number of

parameters. A model is chosen so that, based on the then available knowledge, it can

best eliicidate the relevant phenomena in the simplest way.

In pharmacokinetics, sum of exponentials are often used to provide

compartmental descriptions of concentration-time profiles. When sums of exponentials
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are applied, one is often confronted with choosing between two or more possible
descriptions, for example, a bi- vs. a tri-exponential equation. Among different methods
available, the method of minimum Akaike information criterion (AIC) [Yamaoka K,
1978] was used to determine the model that most adequately describe the kinetic data in
our data analysis. This criterion is based on the number of blood levels, the residual sum
of squares of the specific pharmacokinetic model, and the number of parameters in the
same model. The AIC numerically expresses the amount of information in a group of
experimental data. It can be defined as

AIC=(N.lnR+2p)

where N is the number of designed points (i.e., blood levels), R is the mean residual
sum of squares, and p is the number of estimated parameters in the model.

In fact, AIC is a function of the likelihood with some modifications that penalize

model complexity by adding terms, which are dependent on the number of parameters
in the model. It can hence be written as

AIC =- 2 log (maximum likelihood) + 2p

When AIC applied, the model producing the lowest value is selected. This
measure when considered in a probabilistic setting, however, appear to make restrictive
assumptions about the nature of the parameters. Principally, that is all model order
coefficients carry equal weight and the cost of a model is function only of the number of
terms.

The performance ofAIC is evaluated using

u

1. percentage of correct model selection. That is how frequent the model is
being chosen among alternative models;
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2. mean (parameter estimation) error (ME) and mean absolute (parameter
estimation) error (MAE) expressed as a percentage of the true value of
the parameters such as clearance (CL), steady state volume of

distribution (Vss), mean residence time (MRT), ... etc.; and

3. prediction error as measured by the mean overall sampling times of the
squared deviations between natural logarithms of the predicted and true
concentration values.

In this thesis, the evaluation of model selection criterion (AIC) is mainly based
on percentage of correct model selection in our data analysis.

u



0 39

Estimation of Population Pharmacokinetics

As stated in the precedent chapter, population pharmacokinetics is perfonned to
estimate population characteristics (i.e., mean and variance) of PK parameters, and to
discover the sources and correlations of the variability in response. Difficulties in
population estimation arise mainly from the heterogeneity of the kinetic data between
individuals (i.e., different sampling schedules and routes of administration). It is thus
necessary, using modeling, to transpose this variability expressed in space of the
observations in more homogeneous space of the kinetic parameters. This transposition
is not easily performed for, on the one hand, the equation ym(b,p) which binds the two
spaces is nonlinear; and on the other hand, the often sparse nature of data
(observational) makes it difficult to assess the kinetic parameters.

To overcome these problems, various methods were developed for the
determination of population characteristics during the last years. In all cases, the
description of variability comprises three levels:

the choice of a pharmacokinetic model y^-) of the drug, which is generally
selected at the time of early phases of the development. The model's
structure is common to all individuals;

development of a statistical model to describe the variability of the kinetic
parameters;

to find the correlations between the parameters p and the characteristics
associated with demographic, physiopathological and enviromnental factors.
It is usually assumed that the population under study is made up of more
homogeneous subpopulations (where the variability is smaller), so that one
can discover these correlations by using these characteristics called
covariates, q, such as age, weight, gender, or creatinine clearance.. .

In the next sections, we will present methods widely used in population
phaiTnacokinetics to estimate these characteristics, and to express sources of variability
in parameters' space in terms of parametric modeling. The essence of parametric
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modeling is that a common regression model is usually applied between the kinetic
parameters and the covariates.

To estimate the variability of the kinetic parameters in the simplest case where

the covariates are missing, it is assumed that all the parameters p are independent

random variables following the same distribution law ïip(p) in 9înp (n-dimensional
Euclidean space). For example, in the case of a Gaussian distribution, we restrict our

concern to the estimation of the first two moments calculation, the mean vector po,

which accounts for the central tendency in the population, and the variance 0. If the

covariates q are present, one can express po as a ftinction of the covariates by traditional
methods of linear regressions of the type

po=0q+6o

where © and 9 g are the regression parameters.

Examples of such population parametric methods are the Standard Two-Stage

(STS) that is adapted to the experimental data and is primarily used to identify the
individual kinetic. paranieters, and NONlinear Mixed-Effects Modeling (NONMEM)

where po and 0 are simultaneously estimated from the observations of all individuals.

Particular emphasis, in the following sections, will be placed on the procedures used in
each method, in order to facilitate precise comparison in the subsequent discussion.

l. Standard Two-Stage Method

In this method, the first stage is to identify the kinetic parameters for each
individual in the population. For this purpose, the criterion of the maximum likelihood
is used. At the end of this stage one can obtain:

n; is a vector of estimated kinetic parameters, p^ (of dimension n?) and n;

sequence precision matrices P^ with dimension equal to those of p^ •

• a posteriori estimation of the constant a^yfor the variance model of the

measurement error.

u
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After estimating the parameters for each individual, these estimates may be
combined and compared between individuals. This will produce adequate results if each
individual provides estimates of comparable accuracy. However, if estimates are not
based on (roughly) the same number of measurements for each individual, some form of

weighting of the different estimates is appropriate [Matthews JNS 1993]. This

weighting of the relative contribution can also be obtained by the mixed-effects models
described in the next section.

By assuming that p^ is a correct estimate of the true parameter values, n; data
samples arc analyzed to establish the characteristics of the parameters' distribution and
the covariates (if any).

If Tip OP) follows a Gaussian law with mean parameters po and dispersion Q, it
can be written as

1-1/2
T! (p)=|(S7T)npdetQ| - -exp| T^>-1,-A(P-Po)T^-l(P-Po)

Po and n can be estimated in terms of p^ by using the following equation

Pô
"^ . _ l ^li, / i \ / i \T

—ZP'ML and ^=—Z(PML-PoJ(PML-PoJ
ni~i^ ni ÏrÏ

If Tip (p) follows a lognormal law, we can express the equations as

"p(P)=[(S7x)np det;q,]-l/2[np,j e^-Ienp-R,)T^-l(lnp-R,)]
Pln=3-ÉlnPML and Qln=^-Z(lnPML-Pln)(lnPML-Pln)T

i=l

T _- -- - _^T. -
with Inp = | tapi ,..., Inp [ . Please recall that M ' is the transpose of the matrix M.

u
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When the data is highly erroneous (sampling errors, measurement errors, or
insufficient sampling ...), uncertainty on the numerical value of the kinetic parameters
becomes large and the matrix of covariance, Q, is at risk of over-estimation. In order to
avoid this influence. Caillot et al. (1979) offered a particular way to weight the

estimated parameters p^ by their respective matrix of precision P^ • While knowing
P'ML and P^, it is possible to estimate the mean parameter pg and the covariance fi, by
minimizing the criterion

j(po,Q)- ^[(p^ -PO)T(PML +")-'(PML -Po)+lndet(P^ +n|
i=l

2. One-Stage Method (NONMEM)

The statistical class of mixed-effects models combines the information across

individuals, providing an estimation method called Nonlinear l^Iixed-Effects Modeling.
The models are called 'mixed' because they describe the data using a mixture of fixed
and random effects. Fixed effects are under the control of the investigator like the time
of measurement and the dose administered, while random effects describe the

variability in the measurements within (intra-) or between (inter-) subjects.
The power of the mixed-effects models comes from the fact that differences in

parameters between subjects are modeled using distributions for these parameters. The
task of estimating individual parameters for each subject is replaced by simultaneously
estimating a single mean parameter and inter-individual variability estimate for each
parameter. However, the total variability of the observations comes from two
concomitant sources. The dispersion that exists between individuals on one hand, and
the residual error specific to each individual (the experimental error, modeling error, or

u
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intra-individual variability), on the other. the estimation is carried out using a least
squares criterion

JLs(Po^)=â{[yi-E(yi)]T(Ti)-l[yi-E(yi)]+lndetvPi}

with E(y1) of dimension ni and the sequence matrices IF = Var(y ) of order ni. One

should now express E(y1) and IF1 as a function of pg and Q. However, these two

spaces, the observations and the parameters, are bound non-linearly. It means that the
model for individuals is nonlinear in its parameters. Therefore

J iyl=y.(p\t)+s

Initially, Sheiner et al. proposed the mixed-effects modeling. The term mixed-

effects modeling is the statistical term used in the situation where a combination affixed
and random effects is studied. Hence, it can be defined as the sum of fixed-effects

parameters, expressed as a function of covariates, and random-effects parameters

concerning the dispersion of the parameters Q. and the residual error of the observations

cr , quantifying inter- and intra-individual variability, respectively. In turn, fixed-

effects parameters are part of the experimental design and under control of the

investigator such as the time of measurement or the treatment (dose) applied.

For an individual i, we can consider the model of an observation y^ at time tj as

yi=yn,(po+TiI'tj)+£j

0

The fixed effect po is the moving average of the population, dependent on the

covariates or the subpopulation. The random effect T) is the displacement of individual

i around pg, and 8^ is the additive noise or the residual error. Hypothetically, we can
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assume that r|' and s\ follow the Guassian normal distribution, then r|i ~ N n (0,Q)
and8;~N,(o,aj).

Because of the nonlinear nature of nonlinear mixed-effects modeling, exact and
analytic results are unavailable, and the problem must be approached through
approximations and by the use of iterative techniques. The most extensively developed
and widely used is a first-order Taylor approximation which results in a linearization

of equation y^(po + T1l,tj) in terms of r|l while successive iterations are evaluated at
the mean value of the parameters. This means that during a step in the search for the
best parameter combination, all subjects have the same parameter values. This so-called
'fïrst-order method, introduced by Beal and Sheiner (1982), is used to obtain the first
two moments of the pdf 7t (p).

.i

y;=yL(p,.t,).^t-)..'.^c;
Note that ^(po) is the vector of dimension np of the partial derivative of the model

ym(Po'tj) which is compared to TII and G'(po) = }g;(po),...,g;,,(po) }, matrix with
dimensions np x ni that binds these vectors together. C^ represents the error of the first-
order approximation. If the first order approximation is adequate for individual i,

Ç, =0, and the preceding expression becomes

iT/y-=y,(po,t)+G-(po).îi-4.s,i

which is equal to

iT

E(yi)=yL(Po,t)+G'-(po).E(ii')+E(£i)=y,(po,t)

0
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by definition E(T)1) = 0, hence the assumption becomes E(s ) = 0. Therefore, we can

obtain the estimation of E(y ) as a function of mean population parameters po. The

same approximation would be carried out to obtain the covariance matrix IP in the
space of observations as a function of 0 and a . Since the random-effects are

assumed to be independent, we can write

^i=Var(yi)=Var[yi-y,(po,t)]=Var[GiT(po).r|i]+Var[si]

with the variance of the interindividual random-effects as

Vai[GlT(po>i1] = E[GlT(po>ilTilTGl(po)] = GiT(po)-Q • Gl(p,)

and the variance of the residual error as

Consequently

Var(8i)=I^o2
"t

yl=Gll(po).n.Gl(p,)+i^o2

Q and la3 represent the random-effects and I ^ is the identity matrix by the order ni.
The equations ofE(y') and VF1 are implemented in the least-squares criterion to obtain a
global minimization criterion to estimate po and Q.

Additionally, explanatory covariates, q, are sought to explain part of the inter-
individual variability (discrepancy between individuals) of the parameters. In other
words, we can explain the parameters in terms of the covariates, and hence po becomes
a function of q. These relations are estimated by simple- or multiple-regrcssion models.

0
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This approximation is called first-order estimation method. This method of
approximation works well if subjects provide only little information. There are other
methods for obtaining the population characteristics as well. For example, a more

accurate approximation to equation y^OPo + rll>tj) is obtained if parameter values are
calculated for each individual during each step of the parameter search. This method
that was investigated by Lindstrom and Bates (1990) is called the 'first-order
conditional estimation' method. However, this method is quite complicated and it is
beyond the scope of this thesis.

This method of population estimation are implemented in a software package
called NONMEM (Nonlinear Mixed-Effects Modeling'). This software was initially
developed to investigate the kinetic behavior of drugs in the field of population analysis,
where only small amounts of routine clinical data were available [Sheiner LB and
LuddenTM1992].

In the following section after a brief outline ofNONMEM package, we will try
to present the way that population modeling is being implemented in NONMEM
through an example.

0

NONMEM

The core of the NONMEM program is a set of subroutines written in the ANSI
FORTRAN programming language, which are linked with the model-defining
subroutine to produce the NONMEM executable file. Because of this architecture,
NONMEM can run on any platform supporting a FORTRAN compiler. Basically, it is
designed to fit general statistical (nonlinear) regression-type models to data. This
package was developed by the NONMEM Project Group at the university of California
at San Francisco for analyzing population pham-iacokinetic data in particular.
NONMEM is equipped with a module for model and data definition called NM-TRAN
and comes with an extensive library of model-defining subroutines for pharmacokinetic
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applications called PREDPP. Models may be modified, and models not included in the
library can be defined by the user. Figure 2.2 shows the relationship between
NONMEM, PREDPP, and NM-TRAN.

A file ofNM-TRAN
records

A data file

NM-TRAN

Control and data
files for NONMEM

NONMEM

PREDPP

NONMEM output report

Figure 2.2 - NONMEM, PREDPP, and NM-TRAN.
A user-written PRED subroutine could be included instead ofPREDPP

(Sheiner LB, Béai SL. NONMEN Users Giiides-Part V. 1994, p 2)

Population Model in NONMEM

Proper modeling of population data involves accounting for both unexplainable
inter- and intra-individual effects (random effects), as well as measured concomitant
effects (fixed effects). NONMEM allows this mixed effect modeling. These models
describe observations from a number of individuals sampled from the population. If the

data come from N numbers of individuals i, then the general mixed effects model for yl-
in a one-compartment model can be given, for the jth observation from the i individual,
as

yj=ym(tl>p.)+s5
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This equation is now part of a population model because it is explicitly

recognized, through the superscript, i, that the data come from distinct individuals.

Also, the random effects in the residual errors are denoted by s with individual

variances of a2. WTien dealing with population data, the symbol T| is reserved for
random effects influencing the vector p;. A general model, then, for p; can be written

Pi=/(qi,0)+T1i

It is called the parameter model. Here, vector-valued function / is a structural

(though non-kinetic) type model, which is a function of covariates, q, and a vector of

population (fixed effects and possibly random effects) parameters, 6. The fixed effects

function q is used for the particular fixed effects (covariates) in /, such as the
individual's height, weight, and so forth.

The simplest form that /(.) can take, and the most common, is one that is linear

in 6. In this case all elements of 6 appear as linear coefficients oftenns involving data
items. The data items can appear nonlinearly, without affecting the linearity with
respect to 6.

Population Random Effect Models

There are two levels of random effects in NONMEM called T| and s, first and

second level random effects, respectively. With data from a single individual, only first-

level random effects are needed. However, with data from a population of individuals,
both first- and second-level random effects are considered. First-level effects are used in

the parameter model to help model unexplainable interindividual differences in p, and
second-level effects are needed in the mtraindividual error model.

0
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Models for Interindividual Errors

The scalar difference between p; and g(q,9) is called interindividual error. It
arises from a few sources: the function g may be only approximate, and/or q may be
measured with error. It is regarded as a random quantity, and it may be modeled in

terms ofr| variables. This random effect satisfies the property that there exists a number
œ, such that each value of the random effect arises in accord with a probability
distribution whose mean and variance are zero and œ2, respectively. This variance
describes biological population variability.

The scalar difference between y^ and yn,(t^p,)is called an intraindividual

error. It is modeled in terms of s variables in population data. Each s variable is

assumed to have zero mean and a variance denoted as a . Both variances may be

estimated by NONMEM. Each pair of elements in T| has a covariance, and NONMEM

is also able to estimate it, although often it is assumed that the covariance is zero. A

covariance between two elements ofr|,r|k and r|m, is a measure of statistical association

between these two random variables. Their covariance is related to their correlation, pkm

(Pkm = Pink) by

cov(r)i,,Ti^)=p^coi,©n,'m

The variances and covariances among the elements of T| are laid out in a

variance-covariance matrix, called Çî. The variance-covariance matrix of ri, Q, is the

matrix whose dimension coincides with the length ofr), whose diagonal terms are the

variances of the elements T|, and whose off-diagonal terms give the pairwise

covariances between these elements. This (symmetrical) matrix then is just an array in
which these parameters (i.e., all random interindividual effects), describing the

variability and covariability of the elements of r|, are organized. Ifr) has, for example, 3

elements, Q has the following form

u
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n
œll œl2 C013

œ21 œ22 û)23

œ31 <x>32 (033.

Here, (Okk is another way of writing the variance OK , and cukm (k^m) is the
covariance between T]kand r|m. The elements coii, ©22, ©33 are called the diagonal

elements of the matrix of precision. If the nondiagonal elements (covariances) are all

zero, i.e. the correlation among all pairs of r| elements is zero, the matrix is called a
diagonal matrix.

Similarly, there is defined a single variance-covariance matrix. S, that includes

all the variance and covariance parameters of all the random intraindividual effects.

Example of A Population Mixed Effects Model

All of the parts needed to fully define a population model have already been
presented. It may be useful to recall this information by stating the entire general model:

yS=yn,(t;,p,)+H'(t;,p,)8;

P,=/(q,Q)+T1,

cov(s]) = S ; cov(r|,) = Q

e], g y independent for (i, j) ?s (k, I)

r|, , T), independent for i ^ k

Sj , T||( independent for all ij, k

where H is a vector valued function of t^ and parameters p. £j- is a vector, along with

t] , pi, 0; and r)i, Z and ÎÎ are sequence matrices with dimensions equal to these of e]

u
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and r\;. To try to represent the relationship between all the fixed and random effects of

a population model graphically, consider figure below (Fig.2.3). Considering the
CL,

relation of k, = ——'- , the model corresponding to this is:

yi=^-exp[-(^l-)t;]+Ej
i

CL, =61 +Q^+r[^L

v,=v

var(£;)=o2 ; var(TicL)=œ^L

Where the V; are all equal to a constant V, i.e. there is no random interindividual
variability in the volume of distribution, so that r\\ is just a scalar.

Cl

el

±CT±COd

•

00

e

92

q; q t, time

Figure 2.3 - The relationship between all the fixed- and random-effects of a
population model (Sheiner LB, Beal SL. NONMEN Users Guides-Part V. 1994, p 40).

u
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Application 3

Background

Cyclosporine A (CsA) is a potent immunosuppressive agent, widely used to

prevent graft rejection of transplanted organs and to treat some autoimmune diseases

[Kahan BD, 1989]. This drug is a lipophilic cyclic oligopeptide (Fig 3.1) which is

derived from extracts of Tolypocladium Inflatium Gams, a member of the fungi
Imperfekti family [Canafax DM, Ascher NL, 1983].

HO
0

n—N
N N

0 00

N—

H HN
N N

N N
Ô H

0
0

Figure 3.1 - Cyclosporine A.

u

The pharmacokinetic behavior of CsA varies among different patients with
organ transplants and healthy volunteers [Lemaire M, Fahr A, 1990], and estimates of
pharmacokinetic parameter values differ depending on the analytical method used
[Karlsson MO et al., 1990]. Because many pharmacodynamic methods to monitor
cyclosporine therapy have failed to fulfill clinical criteria of acceptability [Awni WM,
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1992], information concerning the behavior of cyclosporine has been based on blood

level measurements. However, CsA pharmacokinetics are typified by large variations in
blood level after oral or intravenous administration [Ptachcinski RJ, 1986; Shaw LM,
1987] not only between patients but also within patients especially after oral dosing
[Lindholm A, 1988]. This variability appears to be particularly evident in patients
administered oral CsA in the first few weeks after transplantation [Kahan BD, 1984]. If
blood concentrations of CsA are too low graft rejection usually ensues, whereas
nephrotoxicity or hepatotoxicity are associated with high blood CsA concentrations
(Shaw LM, 1987; Kahan BD, 1984; Lindholm A, 1990]. For these reasons—CsA
narrow therapeutic index, it has been recommended that dosing schedules should be
guided by routine pharmacokinetic monitoring for individualized therapy [Kahan BD,
1990].

Introduction

Bone marrow transplantation (BMT) provides a valuable therapeutic modality
for several malignant and nonmalignant disorders [Storb R, 1983; O'Reilly RJ, 1983].
However, as patients begin to engraft, they are at risk of developing acute graft-versus-
host disease (GVHD), caused by mature T lymphocytes reinfused with donor marrow.
In turn, the risk of infection is increased as a result of prolonged immunosuppression
required for GVHD treatment. A major complication of allogeneic BMT, acute to
chronic GVHD, occurs in 30-50% of patients even after marrow grafts from HLA-
identical sibling donors and more frequently in mismatched- or unrelated-donor
transplants [Storb R, 1983; O'Reilly RJ, 1983; Ramsay NKC, 1982], and it continues to
be the most common cause of morbidity and mortality following allogeneic BMT
despite prophylactic immunosuppression after transplantation. Initially used by Powles
[Powles, 1978], cyclosporine A (CsA) has been used as the main immunosuppressive
treatment to prevent GVHD after BMT for decades. Moreover, prophylactic
immunosuppressive therapy with CsA alone, CsA and methotrexate [O'Reilly RJ,

0
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1983], and a combination of CsA and other drugs has been investigated in different
studies and led to a significant reduction in the incidence of GVHD with improved
survival rates. Given as GVHD prophylaxis, the administration ofCsA is usually started

intravenously before BMT in doses ranging from 1.5-5 mg.kg daily and is continued
until patients tolerate oral administration after recovery from treatment-related

gastro intestinal toxicity. Oral CsA is then given in the six following months (12 months
in some cases) [Serre-Debeauvais F, Iliadis A et al., 1990].

Problem

Although CsA has been widely used in a clinical setting for decades, the

application of CsA in the treatment of BMT patients is not optimal. The

pharmacokinetic behavior of CsA varies among different patients with BMT and its

kinetic profile is characterized by great variations in blood level concentrations.

Identical CsA doses, approximately 4 mg.kg , gave rise to considerable differences in
CsA blood levels among patients during the course of study. This variability is even
more pronounced in BMT candidates during the IV infusion period (the first two hours
of the kinetic profiles). As pharmacokinetic profile of CsA exhibits wide inter- and

intra-individual variability, it is hence essential to permanently maintain the CsA blood

concentrations within a desired therapeutic window in order to preserve an optimal

relationship between tolerance and therapeutic efficacy of this drug. Low blood CsA

concentrations ensues acute rejection episodes, whereas nephrotoxicity, hepatotoxicity,
and infections are associated with high blood CsA concentrations, increasing
undesirable risk events.

Several approaches are useful in order to overcome these potential complicating
factors, one of which is to optimize the CsA dosage regimen to reach a target blood
CsA concentration. In doing so, it is crucial to choose the best kinetic model, which
provides a good description of the pharmacokinetic behavior of CsA. A good
description of the kinetic process is essential for proper account of the variability.

u
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Hence, it has to be decided which compartmental model is best suited to minimize the
discrepancy between the data and our mathematical predictions and reliably describe
the time-concentration profile that yield accurate PK parameters to optimize the CsA
dosage regimen as CsA pharmacokinetics have been documented as one- [Anderson JE,
1994], two- [Karlsson MO, 1990], and three-compartment models [Serre-Debeauvais F,
Iliadis A, 1990; Karlsson MO, Lindberg-Freijs A, 1990], and even a physiological
pharmacokinetic model including 14 tissue and two blood compartments [Bernareggi B,
Rowland M, 1991].

Objective

The objectives of the present study were designed to:

estimate cyclosporine population pharmacokinetic parameters, using standard
two-stage (STS) and nonlinear mixed-effects modeling (NONMEM), and
quantify the interindividual variability found with such experimental (rich) data;
compare mean PK parameter estimates and interindividual variability obtained
by the STS and NONMEM methods, and to determine which method is more
appropriate for this data rich situation.

0

Preminary Observation

Phannacokinetic analysis, in the current study, is based on observations in a
peculiarity of the kinetic process of cyclosporine A (Sandimune ). By plotting the
logarithm of drug concentration-time profile of CsA, the linearity attribute common in
kinetic processes could be observed with time elapse (Figure 3.2). Using
pharmacokinetic compartmental modeling, the most suitable seems to be a three-
compartment model, however, the ambiguity still remains considering the third phase of
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elimination. This phase seems to be redundant and hence inaccurate due to the CsA
clinical data (i.e., not enough points available for accurate mathematical modeling of
the 3 phase of elimination). Accordingly, we proposed the use of a two-compartment
open model in order to describe the kinetic profiles of blood CsA concentrations in our
attempt to obtain mean parameter estimates using STS. In addition, data analysis should
also be implemented using pharmacokinetic one-stage approach which allow us to
describe the kinetic variability directly from the observational data. Hence, it can
provide an acceptable method of comparison.

CsA concentration-Time Profille
3-Compartment Model

2.0

.••
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*

E
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•••

0.0

0 2 4 6 10 12 14 16

Time (h)

Time vs Observation
Model Prediction (3-cmt)

Figure 3.2a - CsA concentration-time profile (Linear Representations).
Example of linear representation of kinetic profile ofCsA (Sandimune).

The observations ( * ) are superposed by a 3-cmt model.
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CsA Concentration-Time Profile
3-Companment Model
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Figure 3.2b - CsA concentration-time profile (Semilogarithmic Representations).
Example ofsemilogarithmic representation of kinetic profile ofCsA (Sandimune).

The observations ( • ) are superposed by a 3-cmt model.

Study Design

0

Data

CsA blood concentrations from 534 samples were measured after an intravenous

(IV) single dose in 52 adult candidates for BMT aged 17-47 years [Serre-Debeauvais F,

Iliadis A, 1990] (Appendix 1). Each patient received a two-hour intravenous (IV)

infusion ofCsA (4 mg.kg ) with constant infusion rate, 15 days before allogenic bone
marrow transplant. Blood samples were collected just before the end of infusion and

then at 5-, 10-, 20-, 30 minutes and 1, 2, 3, 6, and 12 hr after the end of infusion. The

concentration levels were analyzed by HPLC analytical method [Serre-Debeauvais F,

1988]. Ten time-concentration pairs are available for each patient; and the observation

sample included all 52 candidates, shown in Fig. 3.3, is considered for estimation of
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mean population pharmacokinetic parameters by the maximum likelihood estimation

using STS and NONMEM methods.

Blood CsA Concentration-Time Profiles
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Mean concentrations ( • ) are shown with time elapse.

Figure 3.3 - Kinetic profile of CsA in 52 candidates before BMT.

Method

Two following methods were used to select a compartmental model which can

well describe the kinetic profile of CsA and obtain its population characteristics in

target patients:

u

l. Standard Two-Stage (STS):

Given the large number of blood samples drawn from each individual (average

of 10 samples per candidate), we evaluated population characteristics by the STS
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method. In the first stage, the blood CsA concentration-time profile in each of 52
pretransplant candidates of BMT taking the first course of CsA treatment was fitted by
one-, two-, and three-compartment open models (Fig. 3.4) to obtain relevant individual
pharmacokinetic parameter estimates. From the best model selected, population
parameters (mean and interindividual variability) were estimated.

i kio

One-compartment Open Model
Micro clearance Macro

VI VI Ai
K10 CL=K10.V1 a,

2kl2
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2
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l

Two-compartment Open Model
Micro clearance Macro

VI VI A,
K10 CL=K10.V1 A;
kl2 V2 a,
k21 Q= kl2.VI =k21.V2 a;

T

kl3
-^
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k31
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kio

Thre&-compartment Open Model
Micro clearance Macro
VI V,, A,, A;, and A3

K12,kl3 Ui,U2,anda3
K21,k31

Figure 3.4 - Mammillary compartmental pharmacokinetic models.

0

The predictions of blood CsA concentrations by one-, two-, and three-
compartment open models were evaluated for all individuals. All models and techniques
were programmed within MATLAB program [The Math Works, Inc. 1999]; fitting and
parameter estimation were carried out using a Quasi-Guass-Newton algorithm
maximizing the likelihood function.
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The experimental data were fitted to the equations of typical compartmental

models following an infusion administration [Gibaldi, 1982], using MATLAB, run on
.®an IBM-compatible Pentiumw II under Microsoft Windows 95:

SÈAL(l-e--)
^—1Yi =7^Z^'
~i^ a

for t ^ T

where N is the number of compartment(s), t is the time after the start of the infusion,

and D and T are the dose and the duration of infusion, respectively. Macroconstants A,

and a, are the intercept and the slope for the iih exponential term, respectively.

After the infusion stops (after time T), the decline in concentration is described
by

y,^Z^(e-UIT-l).e-a" for t > T
i=l

0

As different initial parameters (guess values) may yield different parameter
estimates, a duplicate analysis was always performed to rule out any potential bias in all
models. This confirms that the convergence leads to a true minimum.

In our analysis, while the Akaike's information criterion (AIC) favored the

three-compartment open model to describe CsA concentration-time profiles, the
predicted concentrations of CsA showed that both two- and three-compartment models

were better fitted than the one-compartment (Fig. 3.5). Although the three-compartment
model has a slightly superior fit to that of the two-compartment model, its use (3-cmt)

was rejected by the test of redundancy. The test of redundancy was perfonned using the
relative covariance-correlation matrix of estimates and percent variation of the

parameters. In evaluation of covariance-correlation matrix, any high correlation can be a
sign of the redimdancy of parameters. The three-compartment open model has many
individuals with redundant parameters, describing similar elimination phases (see
Appendix 2 for some examples).
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Distribution of All The Candidates' AIC in Three Different
Compartmental Models
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Figure 3.5 - Smooth histogram of all 52 pretransplant candidates' AIC for 3 different Models.

Although the AIC values in the three-compartment models are smaller, they
have wider distribution (greater variation) and are shifted. In contrast, AIC values in the

two-compartment model are evenly spread following normal Gaussian distribution with
smaller variation.

Furthermore, the percent standard error of mean (%SE) for each parameter

estimate in different compartmental models were calculated, which can be used for
analyzing the precision of the parameter estimations. The precision at which the

parameters were estimated is higher for the two- and three-compartment models,
however, its distribution in the two-compartment model has smaller variance. Figure 3.6

represents the percent standard error of mean for parameter estimates in the three
different models, which favored the use of the two-compartment model.

0
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Figure 3.6 - Distribution of standard error of mean on estimated parameters for all candidates.
Please NOTE that the extension of density plots beyond zero in the negative direction is a
consequence of the smoothing function y used in producing the plot: no precision value was
negative.
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The distribution of % SE of one-, two-, and three-compartment models using
maximum likelihood estimation are shown. The range of distribution of % SE of the
one-compartment model is wider than that of the two- and three-compartment models.

It has also shown that the range of distribution for the two-compartment model is
smaller. In addition, according to the ratio of frequency of negative % SE versus
frequency of positive % SE, the variations of the two-compartment model are the most
symmetrical, and the variations of the three-compartment model are less symmetrical as
there are a larger number of over-estimated parameters in the analysis.

Consequently, as blood concentrations of CsA appeared to decline in a biphasic
manner, the population analysis in the second stage was built on the assumption that
CsA kinetic follows a linear two-compartment open model.

In the second stage, the mean population parameters and the covariance matrix
were computed by combining the corresponding individual estimates of the two-
compartment model. The computed mean population parameters and covariance matrix
describe the fixed-effects and interindividual variability (random-effects), respectively.
Population characteristics, i.e., mean parameter values and covariance matrix of

macroconstant A, and a,, estimated by the STS method can be found in Appendix 3.

In order to compare the result from the STS to that of the NONMEM, clearances and
volumes were calculated from the macroconstants. This would in turn allow comparison
with published results regarding CsA phannacokinetics.

In a two-compartment open model (as shown in Fig. 3.7), the disposition kinetic
parameters (microconstants) for disappearance of CsA from the central compartment
are given by

k a, +a,
e k21

and k
12 a, +a; -k^i -k,

0
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where k2i, the constant rate of CsA disposition from the peripheral (second)
compartment toward the central compartment is expressed as

k21
(A,a2+A2a,)

Ai + A,

D

v
\&

l &3

ke

k12

k21

v2

Figure 3.7 - A 2-compartment open model with elimination from the central compartment.

The actual parameters then calculated were clearance (CL), volume of
distribution at central compartment (Vi), intercompartmental clearance (Q), and volume
of distribution at steady state (Vss=Vi+V2). These parameters can be feasibly calculated
as

v,=
l

I-A,+A, '

CL = V,k, ;

V2=v-t;
and Q=V,k,2 =V^.

0
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2. Nonlinear Mixed-Effects Modeling (NONMEM)

As previously implemented in STS method, the blood CsA concentration-time
profiles of all pretransplant candidates of BMT taking the first course of CsA treatment
were fitted by one-, two-, and three-compartment open models in order to determine the
basic model that best described the data.

In the present study, maximum likelihood estimation known as first-order
approximation (FO) was used for the nonlinear mixed-effects modeling and model
discrimination was performed using the minimum value of the objective function
among different models, which is estimated as twice the negative log-likelihood of the
data. Using likelihood ratio theory, it can be shown that the difference between the
minimum value of the objective function for two models follow a chi-square
distribution with degrees of freedom equal to the difference in the number of
parameters.

The population analysis was performed by the use of nonlinear mixed-effects
modeling software package NONMEM (NONMEM Project Group, University of
California, San Francisco). An IBM-compatible personal computer (Pentium II)
running under Microsoft Windows 95 was used with the Microsoft FORTRAN
PowerStation 4.0 compiler and NONMEM version V, level l. 1 (double precision).

A one-compartment linear model with first-order elimination was fit to the
population data using the ADVAN1 and TRANS2 subroutines to reparametrize the
model. The mean pharmacokinetic parameters of clearance (CL) and volume of
distribution (V) corresponding to the proposed model were determined. Also,
population data were analyzed using a two-compartment linear model. The ADVAN3
and TRA.NS3 subroutines were selected to reparametrize the model in terms of
clearance (CL), central volume (Vi), intercompartmental clearance (Q), and volume of
distribution at steady state (Vss). Fitting the three-compartment model to the data set
was not successful because of the mis-specification of the third compartment
(overparametrization). Furthermore, we were not able to assign interindividual
variability (r|) to all parameters, particularly on parameters describing the third phase of
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elimination. Apparently, there was not enough kinetic points to describe the third phase

of elimination in CsA kinetic profiles. However, failure of fitting the three-compartment

model might probably due to the size of the population (52 candidates of BMT). The
population is probably too small to allocate interindividual variability on the parameters
describing the third phase of elimination.

Eventually, the two-compartment open model was selected after standard
verification of its adequacy using two statistical parameters: AIC value and the

coefficient of variation (CV%) of the parameter mean estimates (Appendix 4). The

pharmacokinetic analysis was conducted using the classical two-compartment open

model with input and elimination from the central compartment, which confirms the use

of this model by the STS method. The following PK parameters were derived for

population data: V, CL, Q, and Vss. As different initial parameters (guess values) may

yield different parameter estimates, a duplicate analysis (i.e., different run with new

initial values) was always performed to rule out any potential bias.

Statistical Model

We implemented statistical models that permitted the detennination of

interindividual variance of the phaimacokinetic parameters of the model and the
intraindividual (residual) variance. Having yielded better result in terms of the MOF

(Minimum Objective Function) value, exponential interindividual variability was

modeled on all structural parameters as follows

9, =6^ xexp(îi,)

0

where the operand, ' x ', denotes element-wise multiplication of the vectors 6, and

exp(r|,); 6, denotes the vector of population mean parameters, and T), denotes a vector
of interindividual random effects which are multivariate normal with a zero mean

E(r|,)=0 and variance of Q (V(r|,)= îî = œ2). Initial modeling using a full

covariance matrix (n) for the interindividual random effects proved difficult to
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estimate due to over-parametrization. Subsequent modeling led to a reduced, blocked
diagonal form for Q. The block diagonal covariance matrix assumes that the random
effects within each block are correlated.

Intraindividual variability representing deviations among pairs of observed
responses (i.e., blood CsA concentrations) and those predicted by the population model,
was also screened in conjunction with the base pharmacokinetic model. Smaller
standard errors associated with parameter estimation and lower OF values were
obtained when the proportional error model was used for modeling intraindividual
(residual) variability, compared with the additive, exponential, or combined additive
and proportional (i.e., slope/intercept) models. Using proportional error model can also
be visually justified where the variation on CsA concentrations is greatly higher at the
beginning of profiles than at the end. This error model can be shown as

yj=ymx(1+8;)

in which y', is the ith observed CsA concentration for thejth individual, y^ is the CsA

concentration predicted by the pharmacokinetic model, and £^. are randomly distributed

term in which each term has zero mean and variances a (V(s'j j= a ). The variance

component in NONMEM is also shown by S. Such errors are caused by influences such
as assay variability, choice of an inappropriate pharmacokinetic model, and timing
errors in drug administration (incompliance) and blood sampling.

Finally, we can summarize the population pharmacokinetic model as

2 levels of random effects

Residual variability

ll-e^'TIi_ ^o_
Yj=CL,

CL,.T;
. e

-CL.
V, +8j
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Interindividual variability

CL. = TVCL. encLi
Nested random effects

.i k
Yj

0

TVCL. eT1CL,i

TVCL.encL'i

l _ e TVV.env-i
.T.ij

TVCL.encL-i

.e TVV.env.i
.tj

+8j

where:

ko is the zero-order infusion rate constant;

rt~i.i.d.N(o,œ2);
e~U.d.N(o,cî2).
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Results

Fitted by different compartmental models, CsA whole blood concentration-time

profiles are well described by a linear two-compartment open model. This seems
reasonable as most of the pharmacokinetic studies using CsA have been conducted
using the two-compartment open model [Ptachcinski RJ, 1986; Mallet A, 1988;Fahr A,
1993; and Guang W, 1996]. The distribution of parameters among individuals of a

population may be characterized in different ways, however for the purposes of this

study, it suffices to characterize this distribution in terms of only its mean and percent

coefficient of variation. The estimates of the population mean parameters and their

relative percent coefficient of variation (CV%) obtained from both STS and NONMEM
methods are given in Table 3.1.

Table î.1-Estimated population characteristics ofCsA (Sandimune ) m candidates
before undergoing bone marrow transplantation (BMT).

NONMEM
Mean %CV

STS
Mean %cv

CL
Vi
Q
v-
V2*
t

*

'/2B

(L/hr)
(^)
(L/hr)
(L)
(^)
(hr)

2.30E+01
1.74E+01
3.25E+01
9.08E+01
7.34E+01

4.1

37.82%
16.94%
16.19%
24.70%
18.20%
25.11%

2.50E+01
2.19E+01
3.06E+01
9.97E+01
7.86E+01

3.9

27.43%
45.01%
34.29%
30.58%
32.01%
31.78%

* : derived parameters.
t y, g is the terminal half life.

0

It may be seen from Table 3.1 that in terms of the parameter estimates, the STS

and NONMEM methods are comparable and show a great agreement in the estimation
process. The clearance (CL) and the volume of distribution at central compartment (Vi)

presented herein are greatly comparable to those previously reported for CsA using
pharmacokinetic analysis.

The population mean model using NONMEM fit to the observed CsA blood
concentrations is illustrated in Figure 3.8. As the blood concentrations have been
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normalized by dose, the data from all the candidates can be plotted on the same graph.
This dose normalization can be performed without loss of information since y^Q is a
linear kinetic model and hence the expected blood concentrations are proportional to
dose. From this plot, it can be observed that the population mean model fit generally
goes through the middle of the data.

Blood CsA Concentration-Time Profiles

500

400 -l

l
5

300 -\

200 -l

100 -)

0

M

t

fc--^

160 6 8 10 12 142 4

Time (h)
Time vs DV

— Mean Model Fit - y^ (.)

Figure 3.8 - The population mean model fit to the observed CsA blood

concentrations (DV) using linear two-compartment open model with NONMEM.

Data regarding the assessment of the predictive performance of the model
(goodness-of-fit) with both methods is contained in scatterplots of model-predicted
versus observed CsA concentrations (Fig. 3.9) and weighted residual versus predicted
concentrations (Fig. 3.10). Although most of the data points were distributed in an
apparent random pattern around the line of identity (Fig. 3.9), there was some marked
under-estimation from 300 to 400 ng/ml in both methods (higher variability in the first
2-hrs when the drug was being administered by infusion). It is also illustrated that the
goodness-of-fit of the NONMEM method in our analysis is slightly better than STS.

u
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0

Blood CsA concentrations vs. Predictions
(STS)
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Figure 3.9 - Model-Predicted vs. Observed CsA concentration
after population analysis using NONMEM.
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Prediction vs. Weighted Residual
(STS)
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Figure 3.10 - Predictive performance of the 2-compartment open model
after STS and NONMEM analysis.
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As illustrated in Figure 3.10, residuals were randomly distributed and mostly lay

within 2 Unit of the null ordinate in NONMEM results, which designates perfect

agreement. However, wider distribution of weighted residual was seen in the STS
method.

Another diagnostic scatterplot for the assessment of the goodness-of-fit of the

final model is the plot of time versus weighted residual (Fig. 3.11). Most of the

residuals were randomly distributed along the null ordinate. However, there was some

marked under-estimation particularly at time 8 in NONMEM method and over-

estimation at time 14 in the STS method (model mis-specification).

Time vs. Weighted Residual
(STS)
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Time vs. Weighted Residuals
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Figure 3.11 - Diagnostic plots after population analysis using STS and NONMEM.
Goodness of fit (for different time-points). Model prediction using 2-cmt open model cannot fully

describe the kinetic profile ofCsA, particularly the last phase of elimination (WRES at time 8 and 14).

Examining the diagnostic scatterplots along with monitoring the changes in the

value of objective function (OF) is one of the crucial steps in model selection process.
Screening the value of OF could be potentially deceptive if it is being used as the sole

0
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discriminator for choosing among population models without concunrent graphical
analyses.

At the end of the analysis, individual first-order estimates of clearance (CL)

conditional on the parameter values of the two-compartment model were calculated in

NONMEM for all 52 candidates in the study. This provided a good comparison of the

results obtained from NONMEM to that of STS method. It is noteworthy that the values

of CL obtained from the STS method does not differ quantitatively from that of the
results obtained from NONMEM. Figure 3.12 illustrates a good correlation between
clearance obtained from both methods.

Correlation between Clearance Obtained from NM and STS

50

y = 0.834x+3.65940 -

r2 = 0.96
•k

S 30 -
••

ï
J°

20 -
0

•••

10 -

0 l

0 10 20 30 40 50

CL (L/h)NM
CL^ vs CLST3

Regression

Figure 3.12 - High correlation between CL estimated by nonlinear mixed-effects modeling
(X-axis) and CL obtained using standard two-stage (STS) method (Y-axis).

0



n 75

Discussion

The benefit of using CsA in the prevention of graft-versus-host disease (GVHD)
after BMT is well established [Deeg HJ, 1985; Biggs J, 1986; Locatelli F, 2000].
Unfortunately, its use is associated with undesirable side effects namely nephrotoxicity
and hepatotoxicity. Acute renal failure (nephrotoxicity) is one of the most frequent and
potentially life threatening complications following BMT [Pulla B, 1998; Taler SJ,
1999]. CsA-induced renal dysfunction is related to reduced glomerular filtration rate
and renal blood flow. This is generally thought to be secondary to vasoconstriction of

the glomerular afferent arterioles, which causes a decrease in glomerular pressure
[Myers BD, 1988; Hansen JM, 1997; Andoh TF and Bennett WM 1998]. However,
liver dysfunction is another major complication encountered in CsA therapy, usually
during the first month of therapy when higher dosages of the dmg are used (preparative
regimen) or in the case of early acute GVHD. Indeed, abnormalities of liver function

test such as increased serum aminotransferase (transaminase), gamma-glutamyl
transferase, and serum bilirubin concentrations are signs of cyclosporine hepatotoxicity
[Canafax DM, 1983; Powles RL, 1980].

It has been shown that CsA adverse effects are concentration-dependent.

"Several studies have demonstrated a relationship between nephrotoxicity and high CsA
concentrations early after transplantation; on the other hand, the relationship between
low CsA concentrations and GVHD is controversial" [Serre-Debeauvais F, 1990]. In

our study, even identical CsA doses (w 4 mg.kg ) gave rise to considerable differences
in CsA blood levels among patients. Also, population pharmacokinetic analysis of CsA
in pretransplant candidates exhibited a wide interindividual variability. This requires the
individualization of CsA dosage regimen in potential candidates of BMT, which would
help preserving CsA blood levels in a therapeutic window at the time of transplantation.
This may accordingly prevent GVHD since the immune recognition of the recipient's
tissues by the bone marrow graft will occur once the transplant takes place [Serre-
DebeauvaisF, 1990].

0
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A two-compartment open model is reportedly adequate for concentration

predictions of CsA in the clinical setting and it proved satisfactory in describing CsA

disposition in our study, although a three-compartment model has also been used on

occasion to characterize the pharmacokinetic profile of CsA by others [Serre-

Debeauvais F, 1990]. Multicompartment models are often used to describe CsA kinetics

since it has been shown that the drug is widely distributed into body fluids and tissues,

with most of the drug being distributed outside the blood volume.

Results of this study suggested that a less complex two-compartment open

model approximation to the kinetic profile of CsA can yield relatively accurate fit for

the actual observations. Its use resulted in substantially inflated estimates of the size and

power of the likelihood ratio test. It is noteworthy however that the model selection was

markedly based upon the comparison of three models and their relative goodness-of-fit

criterion and redundancy of the parameters. Fitting a three-compartment model failed

due to lack of sufficient kinetic points at the end of the cyclosporine A individual

profiles. More kinetic data for individual profiles might in turn lead to the selection of a

more complex model making parameters identifiable. Therefore, in view of CsA's

whole elimination profile, an extensive blood sampling was deemed essential after the

administration of an intravenous infusion dose.

Having a biexponential disposition in pretransplant adult candidates, CsA

clearance and volume of distribution demonstrate considerable interindividual

variability. This variability is more prominent using STS method. After applying the

STS method to CsA data, undesirable interindividual variations were obtained in two

out of six parameters. In fact, the percent coefficients of variation were higher on

volume of distribution at central compartment Vi (CV=45.01%) and inter-

compartmental clearance Q (CV=34.29%) compared to the other parameter estimates. It

was however possible to derive lower interindividual variations of pharmacokinetic

parameters for mean population estimates using the one-stage method (NONMEM).

One might argue that this could simply be the result of a systematic overestimation of

0
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interindividual variability due to larger errors on estimating the parameters in the first

stage of the STS method.

Results of this study also revealed that almost all the parameters are normally

distributed using NONMEM method. Density plots of parameter estimates calculated

for both the STS and NONMEM methods are given in Fig. 3.13. A density plot of STS

values of Q demonstrates a slightly non-normality in the distribution of the estimates of

this parameter using the STS method which may be due in part to the nature of this

method. However, density plots of CL, Vi, ¥2, Vss, and t % did not show any significant

departure from normality (Fig. 3.13).

As shown in these plots (next page), NONMEM tends to narrow down and

decrease the extent of the variability existed on each parameter estimates. This is due to

the prior assumptions made in NONMEM through the process of model building.

Basically, in NONMEM population modeling, the probability distribution of the

parameters impart an assumed shape, as in our study the parameters are assumed to be

lognormally distributed [9, = 9» x exp (r|,)]. However, m the STS method, parameters

are separately estimated for each individual in the first stage and no assumption is being

made for their distribution.

0
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Furthermore, as shown in Appendix 4, fixed-effects parameters (6s) were

estimated with greater precision than the random-effects parameters (© and a ),
which might be a characteristic of pharmacostatistical estimation with NONMEM,
unless there arc data from very large numbers of individuals [Boeckmann, 1992].

Table 3.2 shows the absolute predictive perfonnance of the two-compartment
model built by the STS and NONMEM methods. Although the results favor the two-
compartment model built by the STS, it is unlikely that there is a significant difference
between STS and NONMEM methods in this rich data situation. Therefore, it is

difficult to determine which of the two methods is the best. It can also be seen that the

two-compartment model fitted the data adequately (small bias) and the differences in
predictions between the two methods are quite small.

Table 3.2 - Absolute predictive performance for STS andNONMEM methods.

Two-compartment model
STS NONMEM

ME
(bias)
MAE

(accuracy)
RMSE

(precision)
Posterior Variance

0.011
(0.005-0.017)

182.45
(165.84-199.06)

182,45

14.53

0.015
(0.001-0.029)

195.02
(178.49-211.56)

195.02

16.30

n 534 534

ME (mean prediction error) and MAE (mean absolute prediction error) are presented as the
mean with 95% confidence intervals. The precision is presented as RMSE (root mean squared
prediction error). The unit for all absolute predictive performances is ng ml''.
n: number of samples.

In addition, Figure 3-14 shows the distribution of root mean squared prediction
errors (RMSE) and posterior variances of the best compartmental model using
NONMEM and STS methods. There was also found to be no significant difference in

distributions of absolute predictive perfonnances between NONMEM and STS in the
two-compartment model.
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Predictive Performance (RMSE) for All Individuals
Using STS and NONMEM Methods
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Figure 3.14 - Density plots showing distributions of (a) RMSE and (b) Posterior
Variance for the tvvo-compartment model assessing the predictive performance.

Finally, one of the most important aspects of population pharmacokinetic
analysis is to reduce the interindividual variability by means of covariates. In our study,
however, we were not able to screen the effect(s) of different covariates as they were

u
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missing. Systematic deviations of observed and predicted levels may be caused by

demographic and/or pathophysiologic factors that either have not been recognized or

fail to achieve the statistical significance required for inclusion in the final population

models.

Conclusion

Based upon AIC values and predictive perfonnance analysis, a two-

compartment open model best describes CsA population pharmacokinetics, as built by

NONIVTEM and STS, and it is able to predict CsA levels equally well in our population

of BMT candidates. Considering the coefficient of variation (%CV) on each parameter,

the mean PK parameter estimates obtained by STS and NONMEM are comparable.

However, NON]V[EM seemed to estimate parameters with lower interindividual

variability, particularly on Vi, Q, and t%p. This is due to a fundamental problem with the

STS method, which arises in the way it estimates random interindividual variability.

This method tends to be upward biased because each parameter is estimated from the

original drug concentration versus time data with some error, and this error adds

variability to the parameter estimates that is not biological in origin [Sheiner LB, 1984].

Moreover, the STS and NONMEM appeared to be both suitable methods of population

pharmacokinetic analysis and for this purpose, they can equally offer reliable and

accurate results. In conclusion, our results indicate that:

First, overall the NONMEM (first-order) method behaves about as well as the

two-stage method when there are enough observations per individual for this set of data.

In fact, asymptotic properties insure that an increase of the sample size will compensate

inaccuracy of the parameter estimates in the two-stage method. This conclusion is

consistent with previously reported comparisons between these two methods [Sheiner

LB, 1981; Béai SL, 1984].

The great similarity found between the scatterplots of the STS and NONMEM

first-order estimation (FO) methods also illustrates the utility of that traditional method

0



n 82

(STS). However, the NONMEM algorithm is mathematically superior and can include

sparse data sets which the STS method cannot handle. Using first-order conditional

estimation (FOCE) might result in a better parameter estimation, particularly in studies

where a rich-data situation is involved.

The second conclusion is that, care should be taken in using minimal

pharmacokinetic models (fewer parameters). Their limitations should be recognized,

however, they can provide useful information under appropriate design conditions.

Future

In order to assess the predictive performance of the designs and investigate the

limitations of using a less complex model (fewer parameters) in both methods, clinical

trial simulations and Bayesian estimation are highly suggested on other data sets. They

can provide information on the minimal structural model that can be supported by the

design and data. In addition, they can be used to assess bias in parameter estimates and

variance components when using such minimal models. They can also be used to make

sample size recommendations for such population pharmacokinetic study.

As the use of the two-compartment open model approximation resulted in

substantially inflated estimates of the size and power of the likelihood ratio test, clinical

trial simulation is a good practice to simulate data under the null distribution to assess

the type I or false positive error rate particularly when a minimal model is employed.

Finally, alternative PK model should therefore be applied to predict CsA blood

levels more precisely as the compartmental modeling seemed to somehow misspecify

the kinetic profile of this essential but highly variable drug.
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Table A.l - Blood CsA kinetic data in 52 candidates before bone marrow Transplantation.

ID

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

Dose
(mg)

340
150
340
260

<— C (D (ng/ml) —>
C 0.0 l C 1.0 l C 2.0 l C 2.08 | C 2,17 [ C 2.33 | C 2.50 | C3.o| €4.0 | C 5.0 | C g.o [ C 14
0.000; - 11.760i1.720i1.520M.340i1.240M.160i0.920i0.655i0.320i -
0.000 i 1.328 : 1.680 ; 1.280 ; 1.200 i 1.024 ; 0.936 : 0.752 ; 0.472 i 0.380 ! 0.180 : 0.120
0.000 l 3.340 i 3.520 l 2.900 l 2.580 i 2.060 i 1.860 i 1.400 i 0.450 ; 0.530 ! 0.315 ! 0.167
0.000 i 2.136 ! 2.896 I 2.496 ; 1.992 ; 1.600 ! 1.216 I 0.840 ! 0.534 ! 0.340 i 0.208 ! 0.114

232
200

0.000 l 2.080 i 2.456 ; 2.080 ; 1.792 ; 1.600 \ 1.408 ; 1.160 : 0.816 : 0.546 i 0.372 ! 0.152
0,000 l 1.560 l 1.800 j 1.320 | 1.080 l 0.780 ! 0.660 ; 0.560 ; 0.290 ; 0.275 i 0.170 i 0.095

264
345

0.000 ; 3.420 ' 2.180 | 1.900 \ 1.860 : 1.640 I 1.260 ; 1.060 : 0.760 ; 0.505 : 0.300 i 0.133
0.000 l 3.300 ; 2.220 i 1.820 I 1.640 J 1.340 ! 1.100 : 0.820 i 0.560 ! 0.465 i 0.280 i 0.105

224
292

0.000 l 2.060 l 2.740 ; 2.160 ; 1.720 ; 1.500 ; 1.380 | 1.000 : 0.660 | 0.458 ; 0.268 ; 0.128
0.000 ; 3.024 I 3.300 | 2.400 ; 1.904 | 1.808 | 1.680 ; 1.152 I 0.744 ; 0.584 ; 0.364 ; 0.168

168
204

0.000 l 2.280 l 1.404 | 0.966 | 1.149 | 1.076 ; 0.857 I 0.602 ; 0.478 i 0.246 ; 0.160 ; 0.073
0.000 J 2.224 l 2.344 | 1.616 ; 1.368 ; 1.136 l 1.112 I 0.792 I 0.672 I 0.426 I 0.274 ;

240
256

0.000 : 2.960 I 3.342 : 2.464 i 2.080 : 1.920 : 1.720 i 1.420 i 1.088 ; 0.518 | 0.400 | 0,108
0.000 : 2.480 : 1.600 : 1.380 j 1.280 : 1.120 l 0.940 : 0.780 : 0.440 : 0.320 | 0.175 ; 0.095

164
232

0.000 i 1.872 i 2.320 : 1.840 ; 1.472 : 1.392 : 1.136 I 0.912 I 0.532 I 0.460 : 0.196 I 0.096
0.000 : 2.180 ; 1.440 | 1.120 | 0.920 | 0.780 | 0.620 ! 0.520 | 0.355 | 0.225 | 0.100

270
92

0.000 i 3.760 : 4,080 ; 2,840 ; 2.280 | 2.080 J 1.800 | 1.200 ; 1.060 | 0.340 : 0.320 | 0.180
0.000 i 1.576 : 1.590 : 1.520 ; 1.280 : 1.150 ! 1.032 | 0.896 l 0.672 : 0.680 i 0.568 ! 0.354

148
206

0.000 i 1.140 i 1.160 \ 0.940 i 0.800 : 0.536 i 0.512 : 0.390 : 0.250 ; 0.150 : 0.100 : 0.070
0.000 i 2.440 i 1.780 : 1.420 | 1.280 i 1.040 i 0.800 ! 0.640 ! 0.420 1 0.315 : 0.185 : 0.060

296
264

0.000 •: 1.920 i 2,160 : 1.680 j 1.480 j 1.340 ! 1.300 i 1,040 l 0.740 l 0.520 ! 0.340 i 0.145
0.000 i 4.320 l l 2.448 l 2.416 i 2.080 ; 1.584 ! 1.344 i 0.848 l 0.650 : 0.388 i 0.172

304
280

0.000 l 3.010 l 3.060 i 2.995 i 2.810 j 1.990 i 1.760 i 1.665 i 1.140 i 0.820 i 0.400 i 0.200
0.000 i 2.608 ! 2.576 i 1.824 i 1.552 i 1.232 ! 1.024 i 0.976 i 0.680 : 0.468 ! 0.224 i 0.112

240
218

0.000 [ 3.700 ! 3.520 I 2.016 ; 1.680 [ 1.552 ': 1.152 ; 1.024 i 0.880 ; 0.506 ! 0.326 ! 0.248
0.000 ! 0.980 ! 1,640 ; 1,640 \ 1.600 i 1,000 ! 0.880 i 0.600 i 0.430 i 0.140 ; 0.110 ':

228
144

0.000 ! 3.340 ! 3.600 i 2.628 i 2.080 1 1.712 i 1.432 i 1.136 i 0.856 ! 0.720 ! 0.412 ! 0.100
0.000 ; 0.180 Ï 5.880 i 1.680 ; 1.600 ! 1.220 ': 0.920 '; 0.680 \ 0.465 i 0.330 I 0.145 I 0.060

250
276

0.000 ! 2.364 ! 2,360 ; 1.600 ; 1.344 ! 1.280 ; 1.260 ; 1.024 ; 0.784 i 0.536 : 0.348 Ï 0.150
0.000 i 2.240 \ i 3.600 : 2.800 i 2.400 ! 2.100 : 1.600 : 1.232 ! 0.960 ! 0.660 ! 0.400

360
148

0.000 i 2.960 j 3.300 ; 2.840 ! 2.400 ; 1.960 \ 1.760 ; 1.180 ! 0.860 i 0.580 i 0.290 I 0.140
0.000 ; 1.400 \ 1.620 ; 1.000 1 0.860 ; 0.660 ; 0.560 ; 0.400 ; 0.240 ; 0.215 ! 0.120 | 0.070

260
264

0.000 l 2.340 l 1.880 | 1.520 ; 1.480 ; 1.300 | 1.160 | 0.880 ; 0.640 | 0.495 | 0.225 ; 0.105
0.000 j 1.888 | 1.856 | 1.376 | 1.360 | 1.056 i 1.000 | 0.688 | 0.448 ; 0.372 ' 0.216 | 0.108

244
260

0.000 l 2.020 l 1.600 | 1.380 | 1.320 ; 1.120 ; 1.040 | 0.800 | 0.500 : 0.400 ; 0.215 ; 0.130
0.000 l 1.880 | 3.960 | 3.144 ; 2.568 | 1.950 | 1.808 i 1.264 | 0.916 | 0.890 | 0.425 ; 0.120

204
280

0.000 l 3.640 j 2.540 | 2.100 | 1.900 | 1.680 | 1.380 | 1.080 | 0.800 | 0.625 | 0.295 j 0.140
0.000 l 3,400 l 3,360 | 2.660 | 2.300 | 1.660 t 1.540 | 1.020 | 0,700 | 0.400 : 0.200 | 0.105

220
260

0.000 : 2.740 : 2.440 : 1.940 | 1.760 : 1.540 ; 1.240 : 0.840 ; 0.540 : 0,400 | 0.220 : 0.108
0.000 ; 2.520 I 2.900 : 2,460 i 1.760 i 1.640 i 1.440 i 1.020 l 0.780 \ 0.515 : 0.285 : 0.130

292
260

0.000 : 2.108 ; 2.273 ; 1.671 ; 1,544 : 1.262 ; 1.162 i 0.906 ; 0.660 i 0.462 : 0.268 | 0.132
0.000 ; 3.303 l 2.021 ; 1.866 i 1.471 | 1.165 ; 1.056 ; 0.848 ! 0.625 : 0.394 | 0.258 ; 0.127

230
300

0.000 ; 2.780 ; 4.200 : 2.920 I 2.320 ; 1.640 ; 1.600 : 1.500 \ 0.800 : 0.548 : 0.243 l 0.123
0.000 i 3.540 l 2.580 i 2.500 ; 2.140 : 2.000 ; 1.660 i 1.180 : 0.800 : 0.400 i 0.350 ; 0.135

162
320

0.000 ; 3.194 : 2.852 : 2.357 i 1.912 ! 1,660 ! 1.508 ! 1.120 i 0.757 i 0.487 l 0.272 1 0.126
0.000 i 2.820 : 3.740 I 2.600 ; 1.960 I 1.880 : 1.600 i 1.200 ; 0.800 I 0.575 : 0.235 ; 0.142

296
272

0.000 ! 2.120 i 3.360 i 1.900 ! 1.800 ;• 1.480 i 1.480 ; 1.080 i 0.800 ; 0.465 i 0.215 ; 0.080
0.000 ! 4.500 ; 3.000 ; 2.380 ; 2.260 ! 1.640 ! 1.600 ! 1.340 ; 0.815 ! 0.620 ; 0.283 ! 0.143

200
288

0.000 ; 2.460 ! 3.480 ! 2.060 i 1.780 } 1.280 ! 1.180 : 1.040 ! 0.780 i 0.500 ; 0.270 i 0.150
0.000 i 2.120 i 2.640 i 2.400 i 2.200 ; 1.920 \ 1.560 I 1.160 i 0.780 i 0.565 ! 0.315 : 0.140

256
288

0.000 i 3.400 ; \ 3.340 i 3.000 ; 2.560 \ 2.340 I 1.780 \ 1.540 i 1.025 I 0.605 : 0.257
0.000 l 4.040 ; 3.080 i 2.300 \ 1.980 i 1.660 ; 1.360 ! 1.160 ! 0.820 : 0.585 I 0.327 ; 0.135

Bloob Cyclosporine A (Sandimune) Concentration-Time Data in 52 Patients before BMT.
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Appendix 2 - Table A.2.

Covariance-correlation matrices of candidates resulted from 3-compartment model using STS.

Patient  

1

2

3

4

5

ai
»2
"3
AI
Â2
A3

"l
«2
"3
A]
AÏ
A3

a;
»2
"3
AI
Â2
A3

ai
Ct2
"3
Al
Â2
A3

"l
a-t
a-3
AI
Â2
A3

a; a;
7.45E-03
1.12E-02 1.75E-02

2.68E-01 3.56E-01

-2.01E-05 -3.82E-05

6.36E-05 9.91E-05

2.34E-04 3.02E-04

6.37E-04

2.19E-02

1.26E-03

8.45E-06

9.21 E-05

6.04E-06

6.85E-04

7.10E-03

9.65E-02

1.24E-05

1.13E-04

8.95E-05

1.46E-04

4.66E-03

1.25E-03

2.34E-06

2.05E-06

1.63E-05

1.50E-04

1.35E-02

2.14E-03

6.29E-06

2.15E-05

1.15E-05

3.65E-01

5.66E+00

6.87E-02

3.06E-04

3.86E-02

1.01E-03

6.89E-01

1.55E-01

3.18E+00

1.52E-04

3.15E-03

5.00E-03

3.91E-01

9.76E-01

1.04E-01

8.46E-05

3.99E-03

2.21 E-03

2.76E-01

1.60E+01

4.81E-01

6.58E-04

8.00E-02

6.41 E-03

"3
5.96E-01

5.16E-01

2.72E+01

3.12E-05

2.05E-03

3.95E-02

5.24E-01

3.03E-03

1.72E-05

3.07E-04

2.32E-05

2.71E-01

5.92E-01

1.86E+02

2.11E-03

8.71E-02

6.85E-01

7.51 E-01

7.64E-01

1.90E-02

2.21 E-05

1.73E-04

3.23E-04

7.83E-01

5.39E-01

4.98E-02

1.01E-04

1.12E-03

4.11E-04

Al
-5.89E-01

-7.29E-01

1.51E-02

1.57E-07

-2.12E-07

2.05E-07

3.81E-01

9.27E-01

1.14E-07

1.29E-06

8.71 E-08

9.49E-01

7.74E-01

3.10E-01

2.48E-07

2.46E-06

2.00E-06

9.76E-01

4.32E-01

8.09E-01

3.93E-08

4.35E-08

2.95E-07

9.66E-01

3.09E-01

8.51E-01

2.84E-07

1.07E-06

5.76E-07

A 2

E3D3Î1

9.99E-01

5.25E-01

-7.15E-01

5.62E-07

1.75E-06

2.09E-01

9.29E-01

3.20E-01

2.19E-01

3.04E-04

5.11E-06

5.05E-01

9.36E-01

7.48E-01

5.79E-01

7.30E-05

1.79E-04

3.03E-02

7.20E-01

2.24E-01

3.91E-02

3.15E-05

5.15E-06

7.80E-02

8.85E-01

2.22E-01

8.93E-02

5.10E-04

1.99E-05

A3
3.17E-01

2.67E-01

8.85E-01

6.05E-02

2.72E-01

7.31 E-05

4.00E-01

7.11E-01

7.04E-01

4.33E-01

4.91 E-01

3.57E-07

5.81E-02

2.16E-01

8.55E-01

6.82E-02

3.56E-01

3.46E-03

5.39E-01

8.93E-01

9.37E-01

5.94E-01

3.67E-01

6.25E-06

4.37E-01

7.43E-01

8.52E-01

5.02E-01

4.07E-01

4.66E-06
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Patient  

6

7

9

10

a,
«2
"3
Al
A,

A^
2

'3

ai
0-1
"3
AI

Â2
A3

"l

"2
"3
AI

Â2
A3

ai
«2
"3
A,
Â2
A3

ai
»2
Ct3
Al
Â2
A3

"l
1.89E-04

2.51E-03

9.24E-03

3.23E-06

1.53E-05

1.89E-05

2.18E-01

2.22E-02

1.27E+00

1.04E-03

6.84E-04

8.62E-03

5.01 E-04

1.94E-02

3.97E-02

1.09E-05

1.09E-04

1.61E-05

3.62E-05

2.68E-04

2.29E-03

1.02E-06

1.94E-06

5.97E-06

2.23E-04

2.87E-03

1.44E-02

6.59E-06

2.07E-05

3.31 E-05

"2
7.36E-01

6.14E-02

3.48E-01

4.94E-05

5.05E-04

1.08E-03

3.15E-03

8.73E-02

5.26E-05

9.04E-05

5.12E-04

6.51E-01

1.77E+00

5.28E+00

5.28E-04

1.26E-02

8.25E-03

7.80E-01

3.26E-03

4.40E-02

8.37E-06

3.67E-05

1.50E-04

7.53E-01

6.50E-02

5.02E-01

9.68E-05

6.63E-04

1.68E-03

"3
2.78E-01

5.80E-01

5.85E+00

1.87E-04

4.06E-03

3.82E-02

4.94E-01

2.83E-01

3.04E+01

1.25E-02

2.78E-03

3.53E-01

2.94E-01

6.57E-01

3.64E+01

1.11E-03

4.66E-02

1.97E-01

2.57E-01

5.19E-01

2.21E+00

7.40E-05

8.25E-04

1.41E-02

2.68E-01

5.47E-01

1.30E+01

4.99E-04

7.70E-03

9.26E-02

Al
9.58E-01

8.13E-01

3.15E-01

6.01E-08

3.11E-07

3.90E-07

6.97E-01

2.93E-01

7.07E-01

1.03E-05

1.81E-06

1.02E-04

9.29E-01

7.59E-01

3.51E-01

2.73E-07

3.04E-06

4.98E-07

8.41 E-01

2.85E-01

3.04E-08

6.38E-08

1.96E-07

9.61 E-01

8.27E-01

3.02E-01

2.11E-07

7.27E-07

1.17E-06

A:
5.00E-01

9.15E-01

7.55E-01

5.70E-01

4.95E-06

1.60E-05

SI5

9.82E-01

3.08E-01

3.44E-01

2.70E-06

1.65E-05

4.94E-01

9.56E-01

7.84E-01

5.89E-01

9.73E-05

1.11E-04

4.22E-01

8.43E-01

7.27E-01

4.79E-01

5.83E-07

3.45E-06

4.76E-01

8.93E-01

7.33E-01

5.43E-01

8.50E-06

3.32E-05

A3
7.52E-02

2.38E-01

8.64E-01

8.70E-02

3.93E-01

3.34E-04

2.61E-01

1.29E-01

9.06E-01

4.49E-01

1.42E-01

5.00E-03

1.69E-02

1.46E-01

7.67E-01

2.24E-02

2.64E-01
1.81E-03

2.51E-01

9.02E-01

1.07E-01

4.31E-01

1.10E-04

7.56E-02

2.26E-01

8.77E-01

8.70E-02

3.89E-01

8.59E-04

0



0 XXV

Patient  

11

12

13

14

15

a,
"2
"3
A,

A

A

l

2

•3

ai
"2
»3
Al
AZ
A3

al

a;
"3
AI
Â2
A3

ai
«2
Ct3
AI
Â2
A3

a,
«2
«3
AI

Â2
A3

Ctl
1.94E-01

2.65E-02

1.56E+00

1.37E-03

5.94E-04

1.09E-02

7.50E-01

6.21 E-01

1.45E+00

6.80E-03

"2
8.29E-01

5.24E-03

1.42E-01

1.07E-04

1.09E-04

8.67E-04

5.22E-01

1.32E+00

5.65E-03

"3 Al
4.98E-01 7.64E-01

2.76E-01 3.64E-01

5.08E+01 7.05E-01

2.04E-02 1.65E-05

3.29E-03 2.58E-06

5.89E-01 1.65E-04

5.48E-01

5.99E-01 9.95E-01

9.29E+00 5.56E-01

1.33E-02 6.18E-05

A2

9.82E-01

3.00E-01

4.13E-01

2.36E-06

2.02E-05

so

m

-4.22E-01

-4.33E-03 -3.51E-03 -6.56E-03 -3.92E-05 2.61E-05
7.04E-03 6.79E-03 9.06E-02 6.54E-05 -2.51E-05

5.14E-01

2.05E-02

2.28E+00

2.35E-03

1.49E-03

1.06E-02

8.11E-02

1.30E-02

7.54E-01

4.84E-04

1.78E-04

4.02E-03

1.02E-03

3.10E-03

3.23E-02

2.49E-05

1.40E-05

1.82E-04

8.32E-01

'1.18E-03

6.14E-02

4.69E-05

7.85E-05

2.19E-04

8.24E-01

3.06E-03

8.07E-02

4.67E-05

3.89E-05

3.80E-04

8.89E-01

1.19E-02

1.67E-01

7.90E-05

9.69E-05

1.02E-03

5.14E-01

2.88E-01

3.84E+01

2.09E-02

4.60E-03

3.58E-01

5.00E-01

2.76E-01

2.80E+01

8.03E-03

1.14E-03

2.44E-01

3.58E-01

5.40E-01

8.00E+00

8.43E-04

2.73E-03

7.64E-02

7.15E-01

2.97E-01

7.34E-01

2.11E-05

3.82E-06

1.29E-04

7.87E-01

3.91 E-01

7.02E-01

4.66E-06

6.80E-07

4.89E-05

9.91E-01

9.19E-01

3.78E-01

6.20E-07

3.86E-07

4.77E-06

8.88E-01

9.75E-01

3.17E-01

3.55E-01

5.47E-06

1.67E-05

8.70E-01

9.82E-01

3.00E-01

4.39E-01

5.14E-07

5.40E-06

3.33E-01

6.74E-01

7.32E-01

3.72E-01

1.73E-06

1.93E-05

A3
2.72E-01

1.32E-01

9.08E-01

4.47E-01

1.45E-01

8.28E-03

2.41E-01

2.78E-01

8.80E-01

2.46E-01

-1.46E-01

1.14E-03

2.28E-01

9.84E-02

8.92E-01

4.35E-01

1.10E-01

4.19E-03

2.79E-01

1.36E-01

9.10E-01

4.48E-01

1.49E-01

2.55E-03

1.94E-01

3.17E-01

9.19E-01

2.06E-01

4.98E-01

8.66E-04

0
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Patient  

16

17

18

19

20

a;
«2
"3
AI

AÏ
A3

a,
»2
"3
AI
Â2
A3

a,
«2
"3
Al
Â2
A3

ai
a;
0-3
AI
Â2
A3

ai
"2
"3
AI
AZ
A3

ai
1.49E+01

4.42E+00

8.15E+00

3.00E-02

-1.92E-02

4.23E-02

4.31 E-03

1.43E-02

1.23E-01

7.71 E-05

1.08E-04

9.15E-04

1.03E-04

8.69E-03

2.78E-02

7.64E-06

1.49E-04

-9.04E-05

4.25E-04

1.84E-03

1.21E-02

3.94E-06

1.06E-05

4.64E-05

4.82E-04

3.29E-02

1.44E-02

1.39E-05

4.67E-05

9.46E-05

tt2
9.93E-01

1.33E+00

2.65E+00

8.92E-03

-5.59E-03

1.44E-02

8.28E-01

6.96E-02

8.75E-01

2.74E-04

8.27E-04

7.23E-03

5.40E-01

2.52E+00

1.22E+01

8.82E-04

5.46E-02

-1.71E-02

7.75E-01

1.32E-02

1.37E-01

1.87E-05

1.13E-04

6.18E-04

2.95E-01

2.58E+01

2.97E+00

1.18E-03

2.00E-01

3.29E-02

tt3
5.36E-01

5.84E-01

1.55E+01

1.66E-02

-8.32E-03

1.48E-01

2.87E-01

5.07E-01

4.27E+01

2.42E-03

1.80E-02

5.63E-01

2.66E-01

7.45E-01

1.07E+02

2.90E-03

3.10E-01

2.82E-01

2.76E-01

5.57E-01

4.57E+00

1.27E-04

1.81E-03

3.32E-02

6.94E-01

6.20E-01

8.88E-01

5.01 E-04

8.31E-03

7.53E-03

Al
1.00E+00

9.95E-01

5.44E-01

6.03E-05

-3.85E-05

8.69E-05

9.84E-01

8.71E-01

3.10E-01

1.43E-06

2.17E-06

1.81E-05

9.01E-01

6.64E-01

3.35E-01

7.01E-07

1.55E-05

-9.21 E-06

9.77E-01

8.28E-01

3.03E-01

3.83E-08

1.12E-07

4.91 E-07

9.41E-01

3.44E-01

7.91E-01

4.52E-07

1.73E-06

3.39E-06

Â2
-9.81E-01

-9.54E-01

-4.16E-01

-9.77E-01

2.57E-05

-3.66E-05

4.20E-01

8.02E-01

7.03E-01

4.65E-01

1.53E-05

1.67E-04

4.16E-01

9.71E-01

8.47E-01

5.22E-01

1.25E-03

-1.49E-04

4.51E-01

8.65E-01

7.46E-01

5.02E-01

1.29E-06

9.25E-06

4.38E-02

8.12E-01

1.82E-01

5.31E-02

2.36E-03

1.28E-04

A3
2.59E-01

2.94E-01

8.85E-01

2.64E-01

-1.70E-01

1.80E-03

1.48E-01

2.91E-01

9.15E-01

1.61E-01

4.55E-01

8.85E-03

-1.46E-01

-1.76E-01

4.46E-01

-1.80E-01

-6.87E-02

3.75E-03

1.31E-01

3.13E-01

9.05E-01

1.46E-01

4.75E-01

2.94E-04

5.08E-01

7.63E-01

9.42E-01

5.95E-01

3.11E-01

7.19E-05

0
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Patient N"

21

22

23

24

25

al

a;
»3
AI
Â2
A3

a;
a-2
"3
Al
Â2
A3

ai
»2
"3

AI

Â2
A,

ai
"2
"3
Al
AÏ
A3

ai
"2
a-3
Al
Â2
A3

"l
6.55E-02

4.33E-03

4.95E-01

2.03E-04

1.43E-04

1.21E-03

1.09E-03

1.03E-02
2.71 E-02

4.04E-05

4.99E-05

2.68E-04

4.09E-02

3.19E-02

2.86E-01

3.35E-04

1.17E-05

1.58E-03

1.58E-02

1.17E-02

1.02E-01

7.87E-05

-4.37E-06

7.38E-04

2.41E-02

1.00E-02

2.33E-01

9.39E-05

1.35E-04

2.22E-03

"2
8.42E-01

4.05E-04

2.21E-02

6.38E-06

1.23E-05

4.38E-05

8.07E-01

1.48E-01

6.05E-01

4.19E-04

1.20E-03

7.23E-03

2.63E-02

2.64E-01

2.64E-04

4.04E-05

1.50E-03

9.40E-03

9.52E-02

5.91 E-05

5.68E-06

7.12E-04

9.22E-01

4.91E-03

7.64E-02

1.90E-05

6.44E-05

7.00E-04

"3
5.07E-01

2.88E-01

1.46E+01

3.20E-03

7.53E-04

6.63E-02

2.60E-01

4.97E-01

9.98E+00

1.14E-03

8.69E-03

2.12E-01

AI
6.88E-01

2.75E-01

7.27E-01

1.33E-06

2.38E-07

1.01E-05

9.74E-01

8.65E-01

2.87E-01

1.58E-06

2.18E-06

1.14E-05

5.97E-01
6.86E-01 9.80E-01

5.63E+00 6.07E-01

2.39E-03 2.75E-06

1.42E-03 1.28E-07

4.47E-02 1.32E-05

4.26E-01

5.17E-01 9.72E-01

3.60E+00 4.35E-01

5.17E-04 3.93E-07

3.97E-04 -1.65E-08

3.96E-02 3.77E-06

4.88E-01

3.54E-01

9.47E+00

2.13E-03

1.05E-03

1.49E-01

5.54E-01

2.49E-01

6.35E-01

1.19E-06

2.84E-07

2.25E-05

Â2
8.93E-01

9.79E-01

3.16E-01

3.30E-01

3.91 E-07

1.51E-06

3.88E-01

8.02E-01

7.06E-01

4.45E-01

1.52E-05

1.24E-04

5.99E-02

2.59E-01

6.21E-01

8.00E-02

9.29E-07

9.76E-06

-8.50E-02

1.43E-01

5.12E-01

-6.43E-02

1.67E-07

3.48E-06

9.42E-01

9.95E-01

3.69E-01

2.81E-01

8.55E-07

9.65E-06

A3
2.46E-01

1.14E-01

9.06E-01

4.55E-01

1.26E-01

3.68E-04

1.09E-01

2.51E-01

8.96E-01

1.22E-01

4.25E-01

5.61E-03

3.79E-01

4.49E-01

9.14E-01

3.86E-01

4.91E-01

4.24E-04

2.59E-01

3.24E-01

9.21E-01

2.65E-01

3.76E-01

5.13E-04

2.63E-01

1.84E-01

8.92E-01

3.79E-01

1.92E-01

2.96E-03

u



0 XXVlll

Patient  

26

27

28

29

30

ai
"2
tt3
Al
Â2
A,

ai
a;
«3
AI
Â2
A3

al

"2
"3
Al
Â2
A3

ai
tt2
«3
Al
Â2
A3

ai
Ct2
"3
Al
Â2
A3

ai
1.17E+00

1.44E+00

4.49E+01

3.85E-03

2.16E-02

-9.33E-03

"2
9.80E-01

1.84E+00

6.23E+01

4.75E-03

2.90E-02

-1.01E-02

"3
7.92E-01

8.76E-01

2.75E+03

1.49E-01

1.09E+00

4.29E-02

A,
1.00E+00

9.83E-01

7.98E-01

1.27E-05

7.18E-05

-3.06E-05

1.88E+04 1.61E+02 4.97E-06 -1.45E-04

1.22E+00 3.04E-09 -7.66E+07 6.53E+08

3.22E-03 -2.00E+04 2.24E+01 -4.90E-02

-3.70E+01 6.69E+07 -4.30E+02 3.45E+06

-3.70E+01 6.69E+07 -4.30E+02 1.00E+00

Â2
9.13E-01

9.73E-01

9.48E-01

9.19E-01

4.81 E-04

-1.12E-04

-Inf

-Inf

-Inf

-Inf

O.OOE+00

-7.77E-02 4.86E+05 -3.43E+01 -1.59E-02 -2.39E-08

4.25E-02

1.18E-01

3.65E-01

8.80E-04

2.64E-04

1.11E-02

5.66E-03

2.87E-02

9.96E-02

2.03E-04

-1.07E-04

5.36E-04

3.25E-03

3.10E-02

9.68E-02

1.37E-04

1.53E-04

8.35E-04

9.08E-01

3.98E-01

1.61E+00

2.53E-03

1.94E-03

5.11E-02

9.46E-01

1.63E-01

7.08E-01

1.05E-03

-4.37E-04

4.05E-03

8.13E-01

4.46E-01

3.34E-01

4.82E-01

2.81E+01

8.00E-03

1.84E-02

1.34E+00

3.68E-01

4.89E-01

1.29E+01

3.75E-03

3.89E-04

1.19E-01

2.65E-01

5.00E-01

2.14E+00 4.10E+01

1.44E-03 4.64E-03

3.74E-03 3.23E-02

2.23E-02 7.68E-01

9.93E-01

9.33E-01

3.51E-01

1.85E-05

6.36E-06

2.44E-04

9.95E-01

9.65E-01

3.86E-01

7.33E-06

-3.75E-06

2.03E-05

9.75E-01

8.70E-01

2.93E-01

6.11E-06

7.64E-06

4.05E-05

2.36E-01

5.67E-01

6.39E-01

2.73E-01

2.95E-05

6.46E-04

-8.11E-01

-6.20E-01

6.19E-02

-7.91E-01

3.06E-06

6.15E-06

3.80E-01

7.91E-01

7.11E-01

4.36E-01

5.02E-05

4.08E-04

A3
-4.49E-01

-3.88E-01

4.27E-02

-4.47E-01

-2.66E-01

3.69E-04

-1.03E-05

1.60E+08

-1.31E-01

-1.55E-07

-Inf

3.05E+03

1.93E-01

2.90E-01

9.03E-01

2.03E-01

4.26E-01

7.81E-02

1.97E-01

2.78E-01

9.17E-01

2.08E-01

9.74E-02

1.30E-03

1.10E-01

2.51E-01

9.00E-01

1.23E-01

4.33E-01

1.77E-02

0
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Patient  

31

32

33

34

35

ai
Ct2
«3
AI
Â2
A3

ai
Ct2
"3
AI
A;
A3

a,
a;
"3
AI
Â2
A,

a,
»2
aj
Al
A,
A3

a,
"2
"3
AI

Â2
A,

ai
1.00E-03

3.49E-03

1.80E-02

1.57E-05

1.71E-05

6.47E-05

1.49E-04

6.29E-03

1.67E-03

2.60E-06

2.06E-05

1.08E-05

2.42E-02

2.88E-01

3.29E-02

2.64E-04

1.55E-03

-6.89E-05

2.93E-04

4.09E-03

2.13E-02

5.71E-06

2.22E-05

2.83E-05

2.40E-03

9.60E-03

7.70E-02

3.60E-05

2.65E-05

2.89E-04

"2
9.22E-01

1.43E-02

8.91E-02

5.61 E-05

9.35E-05

3.48E-04

2.57E-01

4.00E+00

2.01E-01

1.29E-04

3.62E-02

2.61 E-03

4.11E-01

2.03E+01

5.11E-01

3.24E-03

1.70E-01

1.58E-03

7.41 E-01

1.04E-01

8.24E.01

9.21 E-05

7.73E-04

1.67E-03

8.56E-01

5.25E-02

6.03E-01

1.53E-04

2.61 E-04

2.52E-03

«3
5.52E-01

7.23E-01

1.06E+00

2.95E-04

8.61E-04

6.39E-03

7.38E-01

5.42E-01

3.43E-02

3.35E-05

9.08E-04

3.05E-04

9.58E-01

5.14E-01

4.88E-02

3.64E-04

2.86E-03

-4.45E-05

2.72E-01

5.60E-01

2.08E+01

4.92E-04

8.91E-03

9.40E-02

3.01E-01

5.04E-01

2.73E+01

1.26E-03

5.85E-03

1.85E-01

A,
9.95E-01

9.43E-01

5.74E-01

2.48E-07

2.85E-07

1.06E-06

9.59E-01

2.91E-01

8.13E-01

4.93E-08

4.31E-07

2.23E-07

9.98E-01

4.23E-01

9.69E-01

2.89E-06

1.75E-05

-7.12E-07

9.57E-01

8.19E-01

3.09E-01

1.22E-07

5.17E-07

6.69E-07

9.86E-01

8.95E-01

3.24E-01

5.55E-07

4.56E-07

4.76E-06

AZ
5.59E-01

8.10E-01

8.65E-01

5.92E-01

9.33E-07

3.91E-06

8.19E-02

8.78E-01

2.38E-01

9.41 E-02

4.26E-04

1.45E-05

2.43E-01

9.23E-01

3.15E-01

2.51E-01

1.68E-03

1.15E-05

4.90E-01

9.07E-01

7.38E-01

5.60E-01

6.99E-06

2.35E-05

3.42E-01

7.21E-01

7.09E-01

3.87E-01

2.50E-06

2.84E-05

A,
2.87E-01

4.10E-01

8.71E-01

3.00E-01

5.68E-01

5.06E-05

4.86E-01

7.19E-01

9.06E-01

5.54E-01

3.87E-01

3.29E-06

-4.33E-01

3.44E-01

-1.97E-01

-4.10E-01

2.74E-01

1.05E-06

6.99E-02

2.19E-01

8.69E-01

8.09E-02

3.76E-01

5.61 E-04

1.53E-01

2.86E-01

9.17E-01

1.66E-01

4.66E-01

1.49E-03

0
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Patient  

36

37

38

39

40

"l
"2
"3
Al
Â2
A3

ai
"2
Ct3
AI
Â2
A3

ai
»2
a-3
AI
Â2
A3

ai
»2
Ct3
AI
AZ
A3

«l
"2
"3
Al
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Appendix 3 - Parameter estimates of all 52 pretransplant candidates using STS.

Table A.3-la - One-Compartment Model (STS):

sujet aI Al RM S AIC
1 1.976E-01 5.199E-03 1.74E-01 -7.17E+00
2 2.256E-01 1.032E-02 4.45E-01 7.51E+00
3 2.682E-01 1.002E-02 5.88E-01 2.81E+01
4 2.714E-01 9.626E-03 5.43E-01 1.93E+01
5 2.409E-01 1.072E-02 4.01E-01 1.46E+01
6 2.517E-01 7.604E-03 6.27E-01 1.29E+01
7
8
9

2.791E-01
2.946E-01
2.568E-01

1.106E-02
7.948E-03

6.77E-01
7.24E-01

2.70E+01
2.60E+01

1.091E-02 4.65E-01 1.64E+01
10 2.581E-01 1.053E-02 5.52E-01 2.51E+01
11 2.938E-01 1.104E-02 7.42E-01 1.80E+01
12 3.868E-01 1.311E-02 4.76E-01 1.66E+01
13 2.928E-01 1.420E-02 4.44E-01 2.02E+01
14 2.803E-01 8.002E-03 7.23E-01 2.06E+01
15 2.705E-01 1.325E-02 4.69E-01 1.31E+01
16 5.284E-01 9.914E-03 6.35E-01 1.33E+01
17 2.695E-01 1.336E-02 6.38E-01 3.10E+01
18 1.451E-01 1.828E-02 4.21E-01 1.38E+01
19 2.492E-01 7.185E-03 6.54E-01 6.10E+00
20 |_3.164E-01 1.030E-02 6.93E-01 1.79E+01
21 2.355E-01 7.380E-03 4.21E-01 1.32E+01
22 2.880E-01 1.601E-02 6.96E-01 3.51E+01
23 2.474E-01 1.135E-02 4.32E-01 2.30E+01
24 2.763E-01 8.865E-03 6.08E-01 2.13E+01
25
26

1.918E-01 8.612E-03
4.599E-01 9.306E-03

4.91E-01
3.28E-01

1.71E+01
4.95E-01

27 3.056E-01 1.559E-02 5.21E-01 2.38E+01
28 3.355E-01 1.G70E-02 9.48E-01 2.63E+01
29 2.444E-01 9.400E-03 5.29E-01 1.92E+01
30 2.077E-01 1.432E-02 5.42E-01 3.37E+01
31
32

2.749E-01 9.112E-03
2.662E-01 8.781E-03

5.02E-01
6.85E-01

2.33E+01
1.04E+01

33 2.711E-01 8.647E-03 5.60E-01 1.76E+01
34 2.543E-01 7.040E-03 5.66E-01 1.49E+01
35 2.422E-01 7.677E-03 5.91E-01 1.68E+01
36 2.752E-01 1.280E-02 3.20E-01 1.36E+01
37 2.806E-01 1.539E-02 6.71E-01 2.83E+01
38
39
40

3.043E-01
2.832E-01

1.170E-02 6.41E-01 2.66E+01
1.170E-02

2.674E-01 1.065E-02
6.26E-01
5.03E-01

2.22E+01
2.01E+01

41 2.489E-01 7.533E-03 5.12E-01 1.67E+01
42 2.787E-01 9.971E-03 7.79E-01 2.75E+01
43 2.869E-01 1.457E-02 5.16E-01 2.36E+01
44 2.833E-01 1.094E-02 6.16E-01 2.72E+01
45 2.826E-01 1.882E-02 6.00E-01 2.51E+01
46 2.716E-01 9.740E-03 5.38E-01 2.39E+01
47 3.006E-01 9.219E-03 4.48E-01 1.50E+01
48 2.950E-01 1.358E-02 7.37E-01 3.29E+01
49 2.560E-01 1.321E-02 5.68E-01 2.26E+01
50 2.542E-01 9.429E-03 3.92E-01 1.52E+01
51
52

2.418E-01
2.919E-01

1.662E-02
1.199E-02

4.03E-01
6.97E-01

2.65E+01
3.05E+01

0
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Table A.3-lb - Population Result from one-compartment model (STS).

a A

M can Param eters

C V %
2.765E -0 l

20.77%
l .1 14E -02
27.60%

Covariance-CorreIation Matrix

Ot l

Al

a i

3.300E -03

A l

L 6.0764E-06]
L 0.034

9.450E -06
]

The macroconstants are the model parameters: A, is the intercept and a, the slope of the
\-th order phase. The covariance-correlation matrix is devided into three parts: in the upper-right
triangular part are the interindividual correlations between two parameters. They were
computed from covariances that are written in the lower-left triangular part. The variances of
each parameter (squared standard deviation) are presented on the diagonal of the matrix.

0
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Appendix 3 - Parameter estimates of all 52 pretransplant candidates using STS.
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Table A.3-2a - Two-Compartment Model (STS):

0

sujet
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

CCl Ct2 Al AZ RM S AIC
_3.751E-1
1.266E-1

2.911 E-2
1.599E+0

5.982E-3
3.838E-3

6.158E-4
2.384E-2

7.69E-02
1.20E-01

-22.588
-17.484

1.128E-1
1.308E-1

1.662E+0
1.783E+0

2.071E-3
2.275E-3

2.985E-2
3.024E-2

1.60E-01
1.12E-01

-0.427
-18.505

1.621E-1
1.263E-1

2.292E+0
2.750E+0

5.172E-3
2.294E-3

2.895E-2
3.470E-2

8.13E-02
1.48E-01

-15.307
-20.548

1.777E-1
1.771E-1

4.232E+0
4.548E+0

4.544E-3
2.861E-3

6.721E-2
5.643E-2

7.38E-02
3.28E-02

1.838
-5.758

1.519E-1
1.486E-1

1.885E+0
2.475E+0

3.898E-3
3.769E-3

3.001E-2
3.847E-2

1.11E-01
1.11E-01

-15.832
-6.312

1.810E-1
2.415E-1

3.526E+0
8.932E+0

3.981E-3
6.673E-3

5.807E-2
1.255E-1

1.39E-01
1.14E-01

-3.710
-11.125

2.306E-1
1.594E-1

5.609E+0
2.820E+0

8.374E-3
2.588E-3

8.353E-2
3.462E-2

1.69E-01
5.84E-02

-1.493
-3.164

1.736E-1
3.364E-1

2.076E+0
1.000E+1

5.174E-3
4.138E-3

3.775E-2
1.174E-1

1.648E-1
1.000E+0

3.196E+0
3.656E-2

4.911E-3
2.739E-2

1.149E-1
2.030E-1

2.233E+0
4.523E+0

1.902E-3

6.363E-2

1.34E-01
6.81E-02
2.72E-01

-14.631
-12.325

6.691E-3
2.734E-2

5.05E-02
1.60E-01

10.975
-0.028
-22.749

3.819E-3
1.635E-1
1.794E-1

2.874E+0
5.603E+0

3.861E-3
7.060E-2
2.365E-2

6.17E-02
9.47E-02

-14.605
-12.738

5.952E-3
1.758E-1
1.911E-1

2.875E+0
6.288E+0

5.855E-3
1.550E-1
3.725E-2

2.26E-01
1.23E-01

6.691
0.140

4.219E-3
1.262E-1
1.000E-6

4.873E+0
9.006E-1

4.648E-3
7.954E-2
8.355E-2

1.66E-01
2.22E-01

-8.021
0.992

4.433E-4
1.000E+0
2.231E-1

1.697E-1
7.193E+0

2.234E-2
1.426E-2
4.357E-3

2.32E-01
5.44E-02

-7.304
15.099

5.937E-3
1.785E-1
1.000E+0
1.719E-1

1.000E+1
6.174E-2
~2—242E+0

5.502E-3
3.332E-1
1.164E-1

2.78E-01
1.41E-01

10.850
-8.938

2.753E-2

1.343E-1
1.854E-1

3.165E+0
3.356E-3

3.138E-3
2.931E-2

1.79E-01
1.08E-01

24.458
-8.955

2.496E-3
3.668E+0

1.441E-1
1.363E-1

2.552E+0
4.052E-3

4.840E-2
4.015E-2

1.49E-01
9.13E-02

-25.501
-6.768

2.510E-3
2.408E+0

2.120E-1
1.811E-1

3.012E+0
2.843E-3

2.675E-2
2.676E-2

8.02E-02
5.97E-02

-17.965
-7.751

7.149E-3
4.652E+0

1.790E-1
1.574E-1

2.524E+0
6.471E-3

4.163E-2

3.429E-3
2.468E+0

1.736E-1
1.616E-1

2.775E+0
3.513E-3

1.031E-1
4.705E-2

6.63E-02
9.65E-02

-3.835
0.907

4.595E-2
1.56E-01
7.15E-02

-2.161
-10.884

4.411E-3
3.168E+0

1.682E-1
1.651E-1

5.933E+0
3.392E-3

4.050E-2
3.137E-2

1.26E-01
1.16E-01

-10.796
-12.710

3.819E-3
1.521E+0

1.651E-1
1.777E-1

2.409E+0
4.171E-3

9.612E-2
3.494E-2

3.623E-3
2.895E+0

1.691E-1
2.278E-1

2.374E+0
7.079E-3

3.898E-2

1.21E-01
2.28E-01
1.22E-01

-1.269
3.669
3.368

7.779E-2

3.151E+0
1.969E-1
1.730E-1
1.560E-1

6.154E+0

3.5 71 E^l
4.635E-3

3.380E-2
3.421E-2

1.09E-01
1.99E-01

-2.382
-0.029

2.06E-01
5.789E-3

6.009E+0
1.578E+0

6.242E-3
3.562E-3

1.259E-1
1.200E-1

1.29E-01
-3.807
7.588

1.82E-01
2.079E-2

1.000E+0
1.906E-1

1.308E-1
5.981E+0

2.494E-2
5.024E-3

5.489E-3
1.086E-1

4.73E-02
-4.828

-26.241
1.17E-01
1.08E-01

11.714
-0.829
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Table A.3-2b - Population Result from two-compartment model (STS).

Mean Parameters

cv%

Ctl

2.377E-01

96.00%

"2

3.420E+00

68.30%

A,

5.923E-03

100.41%

Aï

5.757E-02

93.27%

a,

Ct2

Al
AÏ

Covariance-Correlation Matrix

"l

5.205E-02

"2

-0.321

Al

0.971

-1.711E-01 j 5.454E+00 t -0.298
1.318E-03 -4.141E-03 | 3.538E-05
-2.632E-03 9.551E-02 -5.118E-05

A2

-0.215

0.762

-0.160

2.883E-03

The macroconstants are the model parameters: A; is the intercept and a, the slope of the
i-th order phase. The covariance-correlation matrix is devided into three parts: in the upper-right
triangular part are the interindividual correlations between two parameters. They were
computed from covariances that are written in the lower-left triangular part. The variances of
each parameter (squared standard deviation) are presented on the diagonal of the matrix.

0
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Appendix 3 - Parameter estimates of all 52 pretransplant candidates using STS.

Table A.3-3a - Three-Compartment Model (STS):

sujet Ctl "2 Ct3 A, A2 A, RMS AIC
1
2
3

3.202E-1
2.034E-2

1.000E-6
1.000E+1

7.352E+0
5.001E-1

5.503E-3
1.018E-3

3.787E-4
7.882E-2

1.037E-1 1.243E+0 1.000E+1 1.870E-3 1.832E-2

1.264E-2
1.041E-2
5.504E-2

6.22E-02
5.14E-02
1.96E-01

-26.902
-39.390
1.072

4 9.085E-2 4.141E+0 8.369E-1 1.428E-3 4.045E-2 9.525E-3 4.64E-02 -32.177
5
6

1.385E-1
9.814E-2

1.000E+1
1.035E+0

9.050E-1
8.900E+0

3.983E-3
1.690E-3

6.907E-2 9.623E-3
7.625E-3 7.939E-2

5.87E-02
9.51E-02

-24.241
-32.435

7 6.918E-1 1.235E-1 1.000E+1 7.213E-3 2.449E-3 1.332E-1 6.90E-02 1.441
8 1.620E-1 1.493E+0 1.000E+1 2.457E-3 7.246E-3 9.535E-2 2.09E-02 -5.355
9 1.162E-1 8.425E-1 1.000E+1 2.585E-3 1.190E-2 8.089E-2 1.62E-01 -43.923
10 1.240E-1 9.918E-1 1.000E+1 2.881E-3 1.054E-2 9.597E-2 7.21E-02 -15.522
11 7.019E-1 1.110E-1 1.000E+1 8.484E-3 1.778E-3 1.309E-1 1.70E-01 -3.911
12 1.000E-6 4.614E-1 1.000E+1 1.011E-3 7.632E-3 1.276E-1 9.50E-02 -12.959
13 8.244E-1 1.984E-1 1.000E+1 7.558E-3 5.940E-3 1.208E-1 1.68E-01 -1.948
14 6.793E-1 8.390E-2 1.000E+1 6.554E-3 1.081E-3 9.714E-2 4.18E-02 -7.664

"-25.63315 9.292E-2 5.815E-1 8.986E+0 1.922E-3 1.197E-2 1.017E-1 8.90E-02
16 1.000E-6 4.523E-1 1.000E+1 2.213E-4 4.582E-3 1.123E-1 5.20E-02 -9.340
17
18

6.361E-2
6.865E-2

6.494E-1
1.884E+0

1.000E+1
1.000E+1

1.494E-3
9.515E-3

1.210E-2 1.480E-1
2.348E-2 1.124E-1

2.57E-01
5.98E-02

7.686
-17.489

19 4.195E-2 7.258E-1 8.351E+0 8.161E-4 6.997E-3 7.161E-2 8.30E-02 -39.157
20 1.829E-1 1.000E+1 1.338E+0 3.101E-3 1.207E-1 8.705E-3 1.90E-01 -14.955
21
22

7.175E-1
1.265E-1

1.298E-1
7.949E-1

1.000E+1
1.000E+1

5.112E-3
3.344E-3

2.648E-3 5.761 E-2
9.801E-3 2.387E-1

5.69E-02
1.75E-01

-21.777
0.631

23 1.000E-6 3.556E-1 5.804E+0 5.643E-4 8.851E-3 5.941 E-2 9.62E-02 -7.370
24 1.000E-6 3.736E-1 1.000E+1 3.502E-4 5.990E-3 1.155E-1 5.56E-02 -22.186
25 4.408E-1 1.000E-6 1.000E+1 7.904E-3 9.876E-4 1.492E-1 1.38E-01 -8.802
26 1.000E-6 8.624E-1 3.999E+0 4.372E-4 1.303E-2 4.107E-3 2.82E-01 -3.380
27
28

2.189E-1
1.122E-1

2.189E-1
5.685E-1

6.281E+0
1.000E+1

3.460E-3
1.592E-3

4.218E-3 1.286E-1
9.475E-3 4.433E-1

5.69E-02
2.30E-01

-18.817
12.265

29
30

1.145E-1
7.617E-2

4.697E-1
7.285E-1

1.000E+1
1.000E+1

2.596E-3
3.781E-3

4.529E-3 l 1.044E-1
1.046E-2 2.172E-1

8.92E-02
1.03E-01

-11.611
18.600

31 8.694E-2 5.433E-1 4.813E+0 1.182E-3 6.751E-3 4.403E-2 4.16E-02 -24.070
32 1.006E-1 1.000E+1 1.017E+0 1.718E-3 1.132E-1 8.560E-3 8.12E-02 -40.324
33
34

5.621 E-2
1.208E-1

1.000E+1
1.045E+0

4.203E-1
1.000E+1

7.705E-4
1.939E-3

9.249E-2
7.529E-3

6.288E-3
6.246E-2

4.43E-02
6.47E-02

-9.713
-22.335

35 6.603E-2 6.068E-1 1.000E+1 1.234E-3 6.580E-3 7.788E-2 4.13E-02 -12.128
36 2.118E-1 4.206E+0 2.826E+0 7.139E-3 1.005E-2 3.246E-2 8.12E-02 0.164
37 6.989E-2 4.347E-1 1.000E+1 1.588E-3 9.420E-3 2.011E-1 3.53E-02 -0.515
38 6.978E-1 8.358E-2 8.218E+0 1.085E-2 1.104E-3 1.097E-1 6.70E-02 -17.983
39 1.242E-1 1.018E+0 1.000E+1 2.411 E-3 1.354E-2 1.093E-1 4.42E-02 -14.813
40 1.184E-1 6.879E-1 8.801E+0 2.314E-3 8.710E-3 8.959E-2 7.90E-02 -21.919
41 1.029E-1 6.278E-1 1.000E+1 1.711E-3 5.695E-3 7.438E-2 3.72E-02 -26.953
42 9.805E-2 1.000E+1 6.037E-1 1.712E-3 1.492E-1 5.344E-3 8.04E-02 -3.499
43 5.918E-2 5.541E-1 1.000E+1 1.127E-3 1.349E-2 1.513E-1 1.02E-01 -11.418
44 1.367E-1 1.098E+0 1.000E+1 2.673E-3 1.294E-2 9.075E-2 1.49E-01 3.653
45 6.955E-1 1.118E-1 1.000E+1 1.558E-2 3.303E-3 2.014E-1 4.03E-02 -12.243
46
47

6.310E-3
9.956E-2

I1.000E+1 4.934E-1 4.642E-4 1.033E-1 8.903E-3 6.48E-02
5.003E-1 1.000E+1 9.367E-4 7.736E-3 8.353E-2 1.16E-01

-25.699
-15.406

48 3.291E-2 4.350E-1 1.000E+1 7.441 E-4 8.715E-3 1.899E-1 6.60E-02 2.765
49 1.263E-2 3.989E-1 1.000E+1 8.200E-4 9.212E-3 1.778E-1 7.51E-02 -22.131
50 6.684E-1 1.242E-1 3.010E+0 6.792E-3 2.431E-3 2.206E-2 2.44E-02 -38.749
51 5.628E-1 1.000E+1 1.260E-1 1.044E-2 1.477E-1 5.106E-3 7.51 E-02 -11.196
_52 1.317E-1 6.023E-1 1.000E+1 2.553E-3 5.967E-3 1.656E-1 3.72E-02 -3.912

0
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Table A.3-3b - Population Result from three-compartment model (STS).

Mean Parameters

cv%

Ct|

2.036&01

118.00%

Ct2

2.165E-+00

159.99%

Ctj

7.569E+00

48.40%

A,

3.407E-03

96.80%

A,

2.408Er02

161.10%

A,

9.709E.02

81.38%

"l

"2

Ct3

Al
A,
A,

Ctl

5.772E^02

-1.409E-01

7.701E.02

6.463E-04

-1.175E-03

3.638E-04

Covariance-Correlation Matrix

"2 a? Al

-0.169

1.200E+01 L
0.087

-0.858
-1.089E+01

-9.634&04

1.274E-01

-1.445B-01

1.342E+01

0.816

-0.084

0.055

6.648EW

-1.136E-01

1.880E.01

1.087&05

A,

-0.126

0.948

-o.soo

^.058

-7.471E.06

1.982E.05

1.505E/03

-1.466E-03

A,

0.019
-0.528

0.650

0.076

-0.478

6.242E-03

The macroconstants are the model parameters: A, is the intercept and a; the slope of the
ï-îh order phase. The covariance-correlation matrix is devided into three parts: in the upper-right
triangular part are the interindividual correlations between two parameters. They were
computed from covariances that are written in the lower-left triangular part. The variances of
each parameter (squared standard deviation) are presented on the diagonal of the matrix.

0
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Appendix 1 - Calculated (derived) parameters for all 52 pretransplant candidates (STS).

Table A.3-4 - Two-Compartment Model :

[* indicates the poor fit for candidates due to measurement error]

0

sujet
r
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18-
19
20
21
22
23
24
25
26'
27
28"
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

CL V, Q V,s V, f/2p_
26.95
22.11

151.57
36.13

25.01
28.28

558.80
121.66

407.23
85.50

23.8

27.51
29.11

31.33
30.76

21.41
22.17

131.58
120.77

100.50
90.00

22.45
32.49

29.31
27.03

35.26
37.45

102.02
156.56

72.70
129.60

24.12
35.01

13.94
16.87

31.29
38.15

85.92
115.18

72.00
98.30

24.05
24.45

29.49
23.67

25.67
29.23

102.57
105.79

73.10
82.10

26.00
23.99

16.12
7.57

27.37
40.29

85.29
66.77

69.20
59.20

19.53
35.07

10.88
26.88

36.17
35.75

61.08
130.66

50.20
103.80

20.84
41.61

23.30
8,23

22.19
37.98

78.35
65.31

55.10
57.10

20.12
4.75

14.59
29.34

23.34
19.04

75.69
113.70

61.10
84.40

34.73
29.05

34.20
13.44

36.93
28.75

180.37
81.13

146.10
67.70

31.40
16.44

36.35
6.21

59.24
17.12

145.27
51.30

108.90
45.10

21.62
28.80

23.20
11.94

36.58
42.61

90.64
97.47

67.40
85.50

18.53
0.00
20.83
13.71
23.55
12.76
30.67
29.52
30.49
35.84
31.28
21.03
17.27
26.46
24.43
25.00
32.37
25.70
20.73
26.23
14.99
28.28
32.05
20.06
17.84
27.77
14.95
22.46

11.34
68.01
37.46
2.95
8.20
32.61
30.61
19.65
22.62
34.18
33.78
20.50
9.13
19.81
20.22
22.27
28.77
10..01
25.57
23.47
11.78
26.76
25.74
7.59
7.92

41.06
32.86
8.80

33.89
59.50
11.56
7.14
54.83
16.72
31.44
29.75
45.27
44.32
42.69
32.30
22.78
20.39
22.15
31.11
50.33
31.47
14.46
25.83
16.45
29.60
40.08
24.67
27.47
28.48
12.76
27.92

101.37
2255.80
75.33
23.64
96.42
138.57
112.41
124.76
112.34
160.54
154.24
72.41

. 60.28
80.07
89.13
94.75
139.36
91.00
72.28
96.05
52.47
104.70
95.28
61.42
67.45
119.37
77.27
71.29

90.00
2187.79
37.90
20.69
37.90
106.00
88.20
106.00
81.80
105.10
89.70
126.40
120.40
51.90
51.20
60.30
68.90
72.50
110.60
81.00
46.70
72.60
40.70
77.90
69.50
53.80
59.50
78.30

5.5
6.2
5.3
4.3
5.5
3.9
3.9
4.6
4.7
3.8
2.9
3.0
4.3
4.0
2.1
4.2
0.7
6.0
3.4
4.2
3.9
3.9
3.6
5.5

0.7
0.1
3.9
0.7
4.0
5.2
3.7
4.8
5.1
3.3
3.8
3.9
4.4
4.0
4.3
4.1
4.2
4.2
3.9
4.1
3.0
3.5
4.0
4.4
0.7
3.6

MRT
20.73
5.50
4.78
4.15
4.54
4.82
3.56
3.29
4.26
4.33
3.28
2.78
3.13
3.73
3.76
1.57
3.76
23.92
5.19
2.79
4.63
3.12
4.19
3.39
5.47

999964.28
3.62
1.72
4.09
10.86
3.66
4.23
3.68
4.48
4.93
3.44
3.49
3.03
3.65
3.79
4.31
3.54
3.49
3.66
3.50
3.70
2.97
3.06
3.78
4.30
5.17
3.17
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Appendix 4

Table A.4 - Population characteristics for one- and two-compartment models
using NONMEM.

Parameters

1-cmî
SE
%cv
2-cmt
SE
%cv

CL

39.60
1.72

30.22%
23.00
1.37

37.82%

VI

77.50
3.24

20.90%
17.40
1.36

16.94%

Q

32.50
1.71

16.19%

Vss

90.80
3.72

24.70%

Interindividual Variability

1-cmt
SE
2-cmt
SE

TICL
9.13E-02
2.71 E-02
1.43E-01
7.47E-02

TIVI
4.37E-02
1.36E-02
2.87E-02
1.15E-02

TlQ

2.62E-02
1.56E-02

TIVss

6.10E-02
1.56E-02

Intraindividual Variability

1-cmt

SE
2-cmt
SE

Si
3.17E-02
3.82E-03
3.06E-02
3.81 E-03

S2

2.08E-02
2.41 E-03

0

Objective Function

1-cmt
2-cmt

CL

-730.931
-1084.281

1-cmt : One-compartment Model;
2-cml : Two-compartment Model;
SE : Standard Error of Estimate;
%CV : Percent Coefficient of Variation;
OF : Minimum Objective Function.


