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RÉSUMÉ

L'objectif principal de cette thèse est la mise au point d'un système automatisé de

modélisation de la stmcturc 3-D des ARNs. Afin d'arriver à cette automatisation, plu-

sieurs étapes intermédiaires s'imposent. D'abord, une analyse systématique des inté-

factions entre bases azotées est faite et permet d'extraire toutes les relations binaires

présentes dans les stmctures connues. Une attention particulière est apportée aux rela-

tions d'appariement puisqu'il n'existait aucune méthode satisfaisante pour les détecter

et les classifier, un algorithme précis et efficace est présenté. Le graphe de relation est

ensuite introduit comme représentation d'une structure d'ARN et permet l'obtention

d'une décomposition de ce graphe en un ensemble de cycles simples (la base minimale

de l'espace des cycles). L'application de cette décomposition à la détection de motif est

présentée et huit occurences d'un nouveau motif d'intérêt biologique sont identifiées

dans la grande sous-unité du ribosome. Finalement, un système de modélisation 3-D

est présenté en utilisant la décomposition en une base de l'espace des cycles et la base

de donnée de relations binaires extraite des structure connues. La précision du système

est évaluée en rappliquant à deux molécules dont la structure 3-D est connue: une

boucle de huit nucléotides extraite de l'ARN ribosomal s'attachant à la protein Ll l et

la boucle en épingle à cheveux 2555-2580 de la grande sous-unité du ribosome. Dans

les deux cas, le système retourne, dans un temps raisonnable, une famille de modèles

dont au moins un représente bien toutes les caractéristiques structurelles recherchées.

Mots Clés: Bioinformatique, théorie des graphes, apprentissage non-supervisé, ana-

lyse de structure, détection de motifs, optimisation combinatoire.
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ABSTRACT

The main goal of this thesis is the development of an automated 3-D modeling system

of RNAs. To achieve this automation, several tools were needed to complete the ana-

lysis of known stmctures. A systematic analysis of nitrogen bases interactions is deve-

lopped and results in the extraction and classification of all binary relations contained

in known RNA structures. An accurate and efficient algorithm for base pairing recogni-

tion was developped since no satisfying method existed. Then, the graph of relations is

introduced as a representation of a RNA stmcturc that allows for its decomposition in a

set of simple cycles (the minimal cycle basis). The application of this decomposition to

motif detection is presented and eight occurences of a new motif of biological interest

are identified in the large ribosomal subunit of H. marismortui. Finally, a 3-D mode-

ling system is presented by using the minimal cycle basis decomposition of the graph

of relations and the database of binary relations obtained from known structures. Mo-

dels are built in two steps: first, by optimizing the 3-D stmcture independently for each

cycle; and then by joining these substmctures together. The accuracy of the system

is evaluated by modeling two molecules with known stmctures: an eight nucleotides

cycle from the ribosomal RNA binding protein LI 1 and the hairpin 2555-2580 of the

large ribosomal subunit of H. marismortui. In both cases, the system returns a family of

models including at least one that has all the stmctural features of the known stmcture.

Keywords: Bioinformatic, graph theory, non-supervised learning, stmcturc analysis,

motif detection, combinatorial optimization.
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^ CHAPITRE 1

INTRODUCTION

La détermination en 1953 de la structure de la double hélice d'acide déoxyribonu-

cléique (ADN) [93] permit la naissance de la biologie moléculaire moderne: les

caractères génétiques sont encodes dans un polymère biochimique, ce polymère

possède une structure précise qu'on peut observer dans certaines conditions, sa

structure dicte sa fonction. A partir de ce moment, on comprend que l'étude d'un

système vivant peut, et doit, se faire jusqu'au niveau atomique [91]. Par contre,

aucune méthode ne permet d'observer une structure biochimique directement

au niveau atomique. Au cours des décennies qui suivirent, plusieurs méthodes

furent développées pour extraire diverses informations structurelles (distance

inter-atomique, densité électronique, angle entre hélices...) et parallèlement pour

en dériver un modèle 3-D.

Les travaux présentés dans cette thèse visent l'obtention d'une représentation

3-D d'une molécule étant donnée un certain nombre d'informations structurelles

sur celle-ci. Le système mis au point vise la modélisation d'un type très précis de

biopolymère: les acides ribonucléiques (ARN). Le système doit être entièrement

automatisé et fournir des résultats de qualité pour des ARNs de petites tailles

(environ 30 nucléotides) dans des délais raisonnables (quelques heures).

J

1-1 POURQUOI MODÉLISER LES ARNS?

Le dogme central de la biologie moléculaire indique que l'ADN d'un gène est

d'abord transcrit en un ARN messager (ARNm), celui-ci est ensuite traduit en une
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protéine qui est la forme effective de ce gène. Plusieurs virus font un usage très

varié de l'ARN, par exemple, les retrovirus (dont le VIH) infectent la cellule

sous forme d'ARN et d'une enzyme particulière (la retro-transcriptase inverse)

permettant de transcrire cet ARN en ADN, la cellule s'occupant de la suite des

opérations. L'opération de traduction d'un ARNm en une protéine est effectuée

par le ribosome, un complexe regroupant dans plusieurs espèces plus de 4000

nucléotides d'ARN. La molécule permettant d'associer un triplet de base sur un

ARNm (un codon) à un acide aminé (sous-unité de la protéine) est l'ARN de

transfert (ARNt), une molécule d'environ 70 nucléotides d'ARN dont la stmcture

3-D a été élucidée à la fin des années '60 [57]. L'ARN est au coeur de la

majorité des mécanismes importants de la cellule, la connaissance de sa stmcture

est donc d'une importance primordiale pour l'élucidation de ces mécanismes.

D'un point de vue thérapeutique, l'omniprésence des ARNs en fait des cibles de

choix pour de nouveaux médicaments.

L'événement déclencheur de l'engouement pour l'étude des ARN est la

découverte que ces biopolymères possèdent, à l'instar des protéines, des capacités

catalytiques. Les ARNs ne sont donc pas seulement des messagers passifs mais

jouent un rôle actif dans la vie cellulaire. En octobre 1989, la Royal Swedish

Academy of Sciences décerna le prix nobel de chimie conjointement à Sidney

Altmann et Thomas Cech pour la découverte des propriétés catalytiques des

ARNs. A l'exception des ARNt et des ARN ribosomaux, les études structurelles

visaient essentiellement les protéines. Cech fut le premier à démontrer l'activité

catalytique d'un ARN en utilisant l'intron auto-excisable (self-splicing) de

Tetrahymena thermophilia. Depuis, plusieurs dizaines d'autres ribozymes ont été

identifies.

Pour l'instant, toutes les méthodes permettant d'obtenir une structure ou une

famille de stmctures potentielles pour un ARN requièrent une grande expertise

et un investissement considérable en temps et matériel. Je propose donc la



^

3

mise au point d'une approche informatique entièrement automatisée permettant

de transformer une description symbolique minimale d'un ARN en une famille

de structures plausibles. À la base, ce projet se voulait une automatisation

de la méthode Mc-Sym (développée par François Major [63]) mais il s'est

rapidement avéré nécessaire d'apporter des modifications majeures à certains

concepts sous-jacents à cette méthode. La présente thèse démontre la possibilité

d'une telle automatisation en décrivant la mise au point d'un système de

modélisation automatisé. Les approches développées en cours de ce projet ont

plusieurs retombées importantes dans le domaine de l'analyse de structures 3-D

d'ARN. Les chapitres 3, 2 et 4 présentent ces aspects tout en exposant les bases

nécessaires à la mise en place du système de modélisation qui sera présenté au

chapitre 5.

J

1-2 STRUCTURE D'UN ARN

La présente section se veut un survol-éclair des concepts de base permettant

de formaliser la structure d'un ARN. Pour une description complète, le lecteur

intéressé pourra consulter le livre Principles of Nucleic Acid Structure [79].

L'ARN est présent sous fomie de polymère, une longue chaîne d'unités

semblables répétées. Ces unités sont les nucléotides et sont présents sous quatre

formes principales: adénosine (A), cytosine (C), guanosines (G) et uridine (U). Le

nucléotide regroupe deux parties: le squelette et la base azotée, les nucléotides

successifs étant reliés par le squelette. Le squelette lui-même peut ensuite être

décomposé en deux parties: le ribose et le groupement phosphate. D'un type

de nucléotide à l'autre, seule la base change. Les types de bases peuvent être

regroupés en purines (la guanosine et l'adénosine) ou en pyrimidines (la cytosine

et l'uridine). Deux détails différencient chimiquement l'ARN de l'ADN: la

presence d'un oxygène supplémentaire sur le ribose (02') et le remplacement de

la thymidine de l'ADN par l'uridine. La figure 1-1 présente cette décomposition
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Figure 1-1 Structure d'une chaîne d'ARN. Le nucléotide i est composé de la

Base i (vert), du hbose i (bleu) et du groupement phosphate i (rouge). La

connectivité de la chaîne est assuré par un lien covalent entre le ribose i et te

groupement phosphate i+1 et entre le groupement phosphate i et le ribose i-1.

Le ribose est la seule partie flexible de cette chaîne.

de la structure d'une chaîne d'ARN.

Le repliement de l'ARN est, en majeure partie, gouverné par la formation

d'appariements entre bases azotées stabilisés par des ponts hydrogène (pont-H).

Les appariements canoniques sont le C«G et le A«U de type Watson-Crick ainsi

que l'appariement de type Wobble G»U (voir figure 1-2). Ces appariements

permettent la formation de double-hélices similaires à celle que l'on retrouve dans

l'ADN, à la différence que l'appariement Wobble G»T n'existe pas dans l'ADN.

Le repliement de l'ARN diffère substantiellement de celui de l'ADN

par la formation de nombreux appariements non-canoniques. La géométrie

de ces appariements est très variable et est le sujet de plusieurs études

(voir [20,21,55,79]). Le chapitre 2 présentera en plus de détails les

caractéristiques de ce type d'interaction ainsi qu'une méthode permettant de les

identifier dans une structure 3-D.
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Watson-Crick

G«C Ww/Wwcis

Wobble

G'UWwWwcis

h'UWw/Wwcis

Figure 1-2 Appariements canoniques dans l'ARN. Le lien glycosyl (entre la

jbase et le ribose) est représenté par une ligne grasse, les atomes d'azote par

de grands cercles pleins, les atomes d'oxygène des cercles vides, les atomes

d'hydrogène par de petits cercles pleins et les ponts hydrogène par des pointillés.

1-3 MÉTHODES PHYSIQUES DE DÉTERMINATION

La principale méthode utilisée pour déterminer la stmcture d'un ARN est la

crystallographie par rayons X. L'ARN est mis dans des conditions (température,

pression, sels) permettant de faire croître un crystal, organisant les molécules de

manière régulière. Le crystal est ensuite bombardé de rayons X et les amplitudes

des patrons de diffraction générés permettent de déterminer la stmcture 3-D de la

molécule crystallisée. Dans certaines situations, cette approche permet l'obtention

de stmctures très précises, mais les coûts d'application de cette méthode sont

énormes. De plus, les conditions parfois extremes permettant la crystallisation

risquent d'affecter le repliement de la molécule à étudier, et les artefacts

dûent aux bombardements sont encore peu caractérisés [78]. Cette méthode est

applicable à tout ARN peu importe sa taille, sa propension à crystalliser étant le

facteur limitant l'utilisation de cette méthode. Les stmctures de plusieurs ARNs

de tailles supérieures à 100 nucléotides ont été déterminées par crystallographie,

la structure la plus imposante ayant été déterminé au niveau atomique est la
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grande sous-unité du ribosome (code PDB: 1FFK [5]), représentant plus de 2500

nucléotides.

Une autre méthode couramment utilisée est la résonance magnétique

nucléaire (RMN). Dans ce type d'expérience, la molécule demeure en solution

et est soumise à de puissants champs magnétiques. Dans de telles circonstances,

les protons entrent en vibration à des fréquences dépendant de certains angles

et distances dans la molécule. Le spectre de résonance obtenu est ensuite

utilisé pour dériver un grand nombre de contraintes de distances, d'angles et de

torsions. En général, un algorithme de recuit simulé (dynamique moléculaire) est

ensuite appliqué sur une représentation tout atome pour identifier la conformation

satisfaisant à toutes ces contraintes. Ce type d'approche est aussi très coûteux

en terme de matériel et de temps. L'assignation de résonance à des paires de

protons précis est un problème combinatoire complexe et limite l'application de

la RMN à de petits ARN, dont la taille est typiquement inférieure à environ

70 nucléotides. Un autre problème inhérent à la RMN est que les contraintes

obtenues font toujours référence à des atomes situés à proximité les uns des

autres dans l'espace, cette propriété fait que l'accumulation des imprécisions sur

les contraintes rend la structure globale particulièrement imprécise. La RMN est

en constant progrès, par exemple, la technique de couplage dipolaire permet de

fournir des contraintes entre régions distantes de la molécule (voir [92] pour une

application à la boucle sarcin-ricin).

Ces méthodes, en plus d'etre très coûteuses, soulèvent aussi le problème

que les données recueuillies le sont dans des conditions très particulières et

rien ne garantie que ces conditions n'affectent pas la conformation adoptée par

la molécule. Par exemple, la stmcture 3-D du ribozyme activé par le plomb

(leadzyme) a été déterminée par crystallographie [94], par RMN [37] et, au

cours de ma maîtrise, par modélisation à partir de données de modifications

chimiques [49]. Les trois structures présentent des différences marquées. Malgré
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qu'aucune des trois structures ne fourni un modèle expliquant parfaitement

toutes les observations biochimiques faites à ce jour, la structure obtenue par

modélisation semble la meilleure candidate pour une structure active du ribozyme.

1-4 DESCRIPTION DU PROBLÈME DE MODÉLISATION

D'une manière générale, on appelle modèle une représentation abstraite permettant

de synthétiser un ensemble d'informations sur un système étudié. Dans le contexte

de la biologie stmcturale un modèle est une représentation1 de la structure

satisfaisant aux informations connues sur la molécule étudiée. Le processus de

modélisation d'une molécule consiste à constmire un ou plusieurs modèle(s) de

la molécule étudiée qui satisfait(ont) à ces informations. On désigne par système

de modélisation un programme ou ensemble de programmes qui permet de

passer d'une liste d'informations stmcturales à un ou plusieurs modèle(s) 3-D

correspondant à ces informations. Ces systèmes peuvent être décomposés en deux

parties: premièrement, la représentation du modèle et la méthode d'exploration

dans cette représentation; deuxièmement, le formalisme utilisé pour représenter les

informations structurelles et les mécanismes permettant d'évaluer un modèle en

fonction de ces informations.

Le système élaboré dans le cadre de cette thèse est quelque peut différent

puisqu'il commence d'abord par scinder le modèle à constmire en une série de

sous-problèmes de plus petite taille et de stmcture simple (voir chapitre 4) qui

seront modélisés en parallèle (voir chapitre 5). Les modèles obtenus pour ces

sous-problèmes seront ensuite réassemblés pour donner plusieurs modèles entiers

(voir chapitre 5). Pour l'instant, il n'existe aucun mécanisme indépendant dans

ce système pour revaluation d'informations structurelles. Ces informations sont

introduites dans la définition de l'espace à explorer et seront nécessairement

J lLa forme de cette représentation peut aller d'un modèle en bois et fil de fer à la liste

explicite des coordonnées 3-D des atomes dans un fichier informatique.
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réalisées dans le modèle. Cette approche, par contre, présente le désavantage de

contraindre la forme de ces informations.

1-5 REVUE DES SYSTÈMES UTILISÉS PRÉSENTEMENT

Afin de donner une vision d'ensemble des méthodes utilisées pour modéliser des

ARNs, la présente section décrira les principaux systèmes existants. Cette liste ne

se veut en aucun cas exhaustive mais vise plutôt à fournir un tour d'horizon de la

diversité de ces systèmes en décrivant les plus influants dans le domaine.

A. SIMULATION PHYSIQUE TOUT ATOMES

Les systèmes Amber [16] et CHARMM [10,23,61] sont les plus couramment

utilises pour les ARNs. La repésentation utilisée pour le modèle est l'énumération

explicite des coordonnées cartésiennes de chaque atome. Les informations

structurelles sont encodées sous forme de forces appliquées de telle sorte à

rapprocher ou éloigner deux atomes, forcer un angle entre trois atomes ou forcer

un angle de torsion entre quatre atomes. La recherche est faite en minimisant

la fonction d'énergie de la molécule ou en simulant la dynamique moléculaire

à basse température (équations dynamiques de Newton, voir [66]). Ce type de

système de modélisation est couramment utilisé pour construire des modèles à

partir d'information de résonance magnétique nucléaire ou de crystallographie par

rayons X. Ces systèmes sont aussi souvent utilisés comme étape de raffinement

dans d'autre approches.

J

CONSTRUCTION PAR NUCLÉOTIDES RIGIDES

NAB [60] (Nucleic Acid Builder) permet la construction d'une stmcture d'ARN

en spécifiant directement sa géométrie. Il permet aussi d'interfacer avec un
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module de dynamique moléculaire (Amber) et de faire appel à des fonctions de

géométrie de distance.

Mc-Sym [52,63] utilise une base de donnée de relations entre bases azotées

et de conformations de nucléotides. Chaque nucléotide est placé en utilisant

une relation avec un nucléotide précédant. L'espace de recherche est défini en

spécifiant dans le script la taille de l'échantillon à utiliser pour chaque relation et

chaque conformation. Un ensemble de contraintes est aussi spécifié dans le script

pour représenter les informations stéréo-chimiques (collisions et connectivité)

ou expérimentales (proximité, angle, formation de stmctures cycliques). Un

algorithme de retour-arrière est ensuite utilisé pour identifier les stmctures

satisfaisant aux contraintes.

C. MANIPULATION INTERACTIVE

J

Manip [64], développé dans le laboratoire d'Eric Westhof, permet de manipuler

des structures d'ARN en important des fragments de structures connues et

en appliquant un protocole de minimisation en temps réel. Afin d'obtenir

l'interactivité recherchée, le champ de force (fonction objectif à minimiser)

utilisé est très restreint et ne contient que des critères de distances avec forces

harmoniques (la fonction objectif est quadratique). Ce champ de force est

beaucoup moins réaliste que celui utilisé dans les méthodes présentées sous la

rubrique "Simulation physique tout atomes". Ce logiciel fut utilisé pour modéliser

un grand nombre d'ARN: ARNt, ribozyme de l'hépatite 8, intron du groupe I,

etc. Un autre système similaire est ERNA-3D [68]. Ce logiciel fut utilisé pour

produire l'un des premiers modèle d'une sous-unité complète du ribosome.

Les méthodes de manipulation interactives ont l'avantage de pemiettre une

totale flexibilité au modélisateur. Lorsque de nouvelles expériences permettent

d'obtenir de nouveaux types d'information sur une structure, le modélisateur
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pourra tenir compte de ces informations lors de ses manipulations. L'expérience

du modélisateur, à tous les niveaux, est accessible au processus de modélisation

et aucune formalisation des informations structurelles n'est requise, laissant libre

cours à la subjectivité et à l'intuition du modélisateur. Le principal désavantage

est que la qualité de la stmcture résultante dépend de la performance et

de l'expérience du modélisateur, il n'existe aucune métrique pour quantifier

ces paramètres! L'expérience de modélisation devient aussi non-reproductible et

fondamentalement biaisée d'une manière non quantifiable.

D. REPRESENTATION RESTREINTE

Yammp [85] permet la modélisation d'ARN en remplaçant chaque nucléotide par

un nombre restreint de pseudo-atomes. Différents modes permettent de remplacer

chaque hélice par un seul pseudo-atome, chaque nucléotide par un pseudo-atome

ou encore de placer 3 pseudo-atomes par nucléotides. Le champ de force est

dérivé de statistiques faites sur les structures connues ou contruit à partir

de critères géométriques ou stéréo-chimiques. L'approche retenue pour explorer

l'espace de cette représentation est la dynamique moléculaire (essentiellement un

recuit simulé). Puisque cette approche possède l'avantage de produire relativement

rapidement des modèles raisonnables pour de très grosses molécules, il fut

utilisé pour construire plusieurs modèles préliminaires du ribosome. Un problème

fondamental lié à cette approche est le fait que le modèle obtenu n'est pas

un modèle tout atomes et ne peut donc être utilisé pour faire des analyses

plus poussées de la structure (dynamique moléculaire, étude de liaison, calculs

énergétiques). L'utilisation de ces modèles restreints comme échafaudage pour

contraindre ou guider une méthode tout atomes est un domaine actif de recherche.

J
J
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1-6 PRESENTATION DES CHAPITRES

Le chapitre 2 (article sous presse à la revue Nucleic Acids Research) présente une

méthode permettant l'identification et la classification automatique d'appariements

dans une structure 3-D d'ARN. La classification adoptée est une extension

de celle proposée dans [56]. Les appariements sont classifies en fonction des

groupements chimiques formant les ponts-H, pennettant une classification discrète

de leur géométrie. Cette outil permet la création d'une base de donnée de

tous les types d'appariements présents dans les structures connues d'ARN. Cette

information est essentielle à l'obtention d'un échantillonage représentatif pour ce

type de relation. Ces relations extraites des stmctures connues seront ensuite

réutilisées lors de la modélisation.

Le chapitre 3 (article publié dans la revue Journal of Molecular Biology)

présente, entre autre, la mise au point d'une métrique de distance permettant

d'évaluer la différence entre deux relations entre bases azotées. Le chapitre

présente l'utilisation de cette métrique pour l'analyse de structures 3-D d'ARN et

pour revaluation de la complétude de la base de donnée de relations. Le rôle de

cette métrique dans l'automatisation de la modélisation est de fournir un critère

objectif pour la construction d'un échantillonage de relations entre bases azotées.

Dans ce travail, j'ai participé au développement de l'ensemble des méthodes

présentées et plus particulièrement à la section concernant revaluation de la

complétude de la base de donnée de relations.

Le chapitre 4 (article en préparation pour la revue Science) met en place

les bases théoriques pennettant la mise au point d'un système automatique de

modélisation. La méthode de décomposition en cycles correspond à l'obtention

d'une base de l'espace des cycles et permet l'identification de motifs 3-D

récurrents dans les structures. Cette méthode est appliquée à l'analyse de la

stmcture de la grande sous-unité du ribosome (code PDB: 1FFK [5]). L'article

souligne l'identification d'un nouveau motif 3-D mimant la structure d'une boucle
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GNRA à l'aide de deux chaînes d'ARN.

Le système de modélisation résultant des outils présentés aux chapitres

précédant est décrit au chapitre 5. On y présente d'abord l'utilisation de la base

de l'espace des cycles comme un décomposition d'un problème de modélisation

en un certain nombre de sous-problèmes plus simples (modélisation des cycles).

Les méthodes présentées à ce chapitre se divisent en deux parties importantes, soit

la modélisation de cycles de relations puis la reconstruction d'un modèle complet

en combinant les résultats de la modélisation des cycles. Le chapitre est stmcturé

en vu de sa publication dans une revue scientifique.

3
J
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CHAPITRE 2

CANONICAL AND NON-CANONICAL BASE PAIRING

TYPE RECOGNITION IN RNA

THREE-DIMENSIONAL STRUCTURES

S. Lemieux et F. Major, Nucleic Acids Research, sous presse.

3
J

ABSTRACT

In this work, the problem of systematic and objective identification of canonical
and non-canonical base pairs in RNA three-dimensional stmctures was studied.
A probabilistic approach was applied, and an algorithm and its implementation
in a computer program that detects and analyzes all the base pairs contained
in RNA three-dimensional stmctures were developed. The algorithm objectively
distinguishes among canonical and non-canonical base pairing types formed by
three, two and one H-bonds, as well as those containing bifurcated and C-H...X
H-bonds. The nodes of a bipartite graph are used to encode the donor and
acceptor atoms of a three-dimensional stmcture. The capacities of the edges
correspond to probabilities computed from the geometry of the donor and acceptor
groups to form H-bonds. The maximum flow from donors to acceptors directly
identifies base pairs and their types. A complete repertoire of base pairing types
was built from the detected H-bonds of all X-ray crystal structures of a resolution
of 3.0 A or better, including the large and small ribosomal subunits. The
base pairing types are labeled using an extension of the nomenclature recently
introduced by Leontis and Westhof. The probabilistic method was implemented in
MC-Annotate, an RNA structure analysis computer program used to determine the
base pairing parameters of the three-dimensional modeling system MC-Sym.

Keywords: Hydrogen bond, base pairing types, RNA stmcture, probabilistic
approach, computer algorithm.
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2-1 INTRODUCTION

During the past year, two important RNA stmctures were determined at high

resolution by x-ray crystallography: the large and small ribosomal subunits (PDB

codes: 1FFK, 1FJG [5,97]). The addition of these two structures does not only

confirm important progress that has been accomplished in the field of RNA

crystallography, but also marks an important leap in the complexity of the

available RNA 3-D structures, and in the difficulty of RNA stmcture analysis.

Up until recently, there was no available tools to extract the useful information

of RNA structures automatically, which hinders the effort to fully exploit them.

An important paradigm switch in RNA stmctural analysis is needed, as the

observation and discovery processes need to be automated so to provide the speed

and objectivity that are necessary to fulfill our hopes towards these structures.

A method that automatically identifies hydrogen-bonding patterns among nitrogen

bases using the nomenclature proposed in [56] (fully described in [53]).

Hydrogen-bonding (H-bonding) patterns that form between nitrogen bases

are particularly important interactions in RNAs. Efforts have been made towards

the repository of base pairs from published littérature to show the diversity of

nitrogen base pairing types with a particular emphasis on non-canonical ones [69],

and a systematic nomenclature has been proposed [56]. From a modeler's

perspective, the spatial relations defined by such H-bonding interactions can be

used to define the conformational search space of RNA. For instance, in the

RNA 3-D modeling software MC-Sym (www-lbit.iro.umontreal.ca/mcsym), these

spatial relations are leamt from known examples and applied to the constmction

of new RNA structures [52]. In earlier versions of MC-Sym [63], the database

was built from base pairs that were identified and annotated using interactive

visualization. However, the number of newly detennined RNA 3-D stmctures

is such that it has become difficult to maintain the MC-Sym database updated

simply by continuing to apply such a slow and subjective method. During
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the development of an automated RNA 3-D stmcture annotation program, we

realized that no objective method existed for identifying base pairing types in

RNA 3-D structures. All currently available ones are limited to the detection

of single H-bonds, and therefore, base pairing types must be identified in a

further step by visual examination or by using heuristics (as in [59]). All existing

methods detect H-bonds from the distance between either the hydrogen or donor

atom and acceptor atom, such as in Manip [64], and the angle between the

hydrogen, donor, and acceptor atoms, such as in the molecular graphics software

insightll (Biosym/MSI) and HBexplore [59]. The use of such strict parameters is

subject to false positives and negatives when applied to RNA 3-D structures that

contain distorted base pairs, either due to experimental conditions, density map

resolutions, or variations in the application of computer optimization protocols.

We present here a new method that resulted from the search of an automated

and objective method for finding and identifying base pairing types in RNA

3-D structures. The probabilistic method provides a degree of certainty for the

presence of each H-bond in the structure by considering the formation of H-bonds

from competing donors and acceptors. This dependency between H-bonds that

share a donor or an acceptor is implemented as a maximum flow problem in

a bipartite graph. The decisions are thus taken to maximize the total number

of expected H-bonds in a stmcture without involving a donor or acceptor more

than once. The maximum flow problem formulation was adapted to search for an

equilibrium solution that suits better the chemical nature of the problem. Base

pairs are identified if the total flow, representing the mathematical expectation of

the number of forming H-bonds, is higher than a predefined cutoff (typically

0.5). This cutoff can be varied depending on the application and on the desired

sensibility of the detection process.

The only a priori knowledge used in selecting the parameters of the

probabilistic approach is the near aligned geometry of H-bonds. The approach
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-^ consists in collecting all local geometries of donor/acceptor pairs, and building

a model of this distribution. Using the fact of near aligned geometries, the

model is decomposed between H-bond and non-H-bond geometries so that the

probability of forming a H-bond is obtained by applying Bayes' theorem.

A mixture of Gaussians (with full covariance matrices) was selected as the

form of density function for the model, and the parameters of this mixture

were optimized using the EM algorithm [18] from a data set extracted from

physically determined RNA 3-D structures. The method is robust, reliable, and

immune against local distortions due to experimental conditions and computer

optimization protocols. The method was implemented in a newly developed

RNA 3-D structure analysis computer program that is available on the internet

(http://www-lbit.iro.umontreal.ca/). This method was also used to define the base

pairing and base stacking parameters of MC-Sym, as well as for matching larger

RNA 3-D patterns and motifs.

In order to identify a base pairing types, the naming scheme proposed by

Leontis and Westhof [53] was used and extended. An algorithm that automatically

name a base pairing using the information from the maximum flow optimization

is presented. This algorithm was applied to 165 high resolution (<, 3 A) X-ray

structures in the PDB [8], HR-RNA-SET (see table 2-1 for the list). The collected

base pairs were classified, resulting in a complete repertoire of the base pairing

types in RNA stmctures (available at http://www-lbit.iro.umontreal.ca/).

3
J

Leontis-Westhof nomenclature:

This nomenclature (fully described in [53]) classifies base pairing

types according to three properties: Glycosidic bond oriention (either

Cis or Trans), Interacting edges and Local strand orientation (either

Parallel or Antiparallel). In our nomenclature, we decided to ignore

the Local strand orientation property since it is not defined by the

spatial relation between two nitrogen bases.
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n The glycosidic bond orientation is "defined to be cis or trans with

respect to an axis mnning parallel to and between the hydrogen bonds

of the basepair". In the base pairing types that are used to examplify

this definition, the drawn axis appears not to follow this definition

making it unclear what is the actual definition used by the authors.

Three edges are defined by the authors on each nitrogen base. The

interacting edges of a base pair are the edges of the nitrogen bases

on which the H-bonds are forming. The edges are defined by the

chemical groups forming H-bonds in each nitrogen base. The names

used by the authors to describe the three edges are: Watson-Crick

edge, the Shallow-groove edge, and the Hoogsteen (for purines) or

'C-H' edge (for pyrimidine). In [56], they changed the name of the

Shallow-groove edge to Sugar edge, making the nomenclature more

clearly independent with respect to the helical confonnation of the

nucleotides involved.

In their examples, the authors seem to favor the syntax <Glycosidic

bond orientation> <First interacting edge>/<Second interacting

edge>. The original nomenclature is unclear regarding the semantic of

the order between the first and second interacting edge.

J
J

2-2 RESULTS

Our analysis of RNA 3-D stmctures led us to three main results. First, we

developed a method to automatically identify base pairing types in RNA 3-D

stmcture. Second, we refined an existing nomenclature and implemented its

definitions in a computer program. Third, we built a repertoire of the base pairing

types found in high-resolution RNA X-Ray structures.
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157D

165D

1A34

1A9N

1APG

1AQ3

1AQ4

1ASY

1ASZ

IAV6

1B23

1B7F

1BMV

1BR3

1BY4

1COA

1C9S

1CSL

1CXO

1D4R

1D96

1D9D

1D9F

1D9H

1 DDL

1DDY

IDFU

1DI2

1DK1

1DNO

1DNT

1DNX

1DPL

1DQF

1DQH

1DRZ

1DUH

1DUL

1DUQ

1DZS

1E6T

1EC6

1EFO

1EFW

1EHZ

1ET4

1EUY

1EVP

1EVV

1EXD

1F1T

1P27

1F7Y

1F8V

1FFK

IFFY

1FGO

1FIX

1FJG

1G1X

1G2J

1GAX

1GID

l CSG

1GTR

1GTS

1HDW

1HEO

1HE6

1HMH

1HQ1

1MMS

10FX

10SU

1QA6

1QBP

1QCO

1QF4

1QF5

1QF6

1QLN

1QRS

1QRT

1QRU

1QTQ
1QU2

1QU3

1RMV

1RNA

IRXA

1RXB

1SDR

1SER

1TN2

1TRA

1TTT

1URN

1YFG

1ZDH

1ZDI

1ZDJ

1ZDK

205D

246D

247D

248D

255D

259D

280D

283D

299D

2A8V

2BBV

2FMT

2TRA

300D

301D

310D

315D

332D

333D

353D

354D

359D

361D

364D

373D

377D

397D

398D

3RAP

3TRA

402D

404D

405D

409D

413D

419D

420D

421D

429D

430D

433D

434D

435D

437D

438D

462D

464D

466D

468D

469D

470D

471D

472D

479D

480D

483D

485D

4TNA

4TRA

5MSF

6MSF

6TNA

7MSF

Table 2-1 HR-RNA-SET. The PDB identifiers of the X-ray RNA structures with
a resolution of 3.0 A or better. This list was compiled on February 1st,
2001. Two structures were removed from the list: 1QCU and 406D. These

iwo structures contain multiple models with different chain identifiers and have
improper MODEL/ENDMDL tags.

J
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A. BASE PAIR IDENTIFICATION METHOD

In order to guide the reader through the steps of this method, we exemplified each

computation by using a canonical G»C Watson-Crick base pair extracted from

positions A79 and B97 of the loop E motif from E. coli 5S rRNA (PDB code:

354D [17], Figure 2-1a shows this base pair). The method is divided in three

steps:

1. compute the probabilities of H-bonds between each pair of donor and

acceptor groups and build a graph representing these interactions;

2. compute the maximum flow in this graph to account for competing donors

and acceptors;

3. assign the types of base pairs according to the probabilities of forming

H-bonds.

J

PROBABILITY OF A H-BOND

For each base in the structure, the hydrogens are added according to geometries

defined in [16]. Lone pair pseudo-atoms (LP) are added and placed at l Â of the

oxygen or nitrogen atoms in the direction of the orbital. We use the term donor

group to refer to a pair of associated donor and hydrogen atom and the term

acceptor group to define a pair of associated acceptor and LP atoms.

Given the list of potential donor and acceptor groups for a 3-D structure,

we compute the probability of forming a H-bond from the values of three

measurements: the distance between the hydrogen and the LP atoms, the angle

between the hydrogen, the donor and the acceptor atoms (refered to as the

hydrogen angle), and the angle between the donor and acceptor, and the LP atoms

(refered to as the LP angle). Figure 2-2 shows a H-bond with the identification of

these three measurements.
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a)
-"

b)

A79:N2-1H2 "• B97;N4-2H4

IH2

A79:N1-H1

B97:02.ZLP2 iB97:N3-LP3 ,• A79:06-2LP6

sink

Figure 2-1 A base pairing and associated graph, a) A canonical G*C

Watson-Crick base pair extracted from positions A79 and B97 of the loop E motif

from E. coli 55 rRNA (PDB code: 354D). The thin lines indicate the direction

of LP atoms, named using the same convention as for the hydrogen atoms, b)

Corresponding graph showing the probabilities associated to this base pair (see

table 2-2 for the actual measurements and probabilities). The donor groups are

located in the upper row of nodes, and the acceptor groups in the bottom row.

The arrow shows the direction of the flow from the source to the sink. The

capacities are indicated beside each edge (only edges with capacity above 10~4

are shown). The thin lines show the edges with no flow after the optimization

of the maximum flow. The thick lines between acceptor and donor groups

correspond to the selected H-bonds.

3
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Bases Acœptor and donor Xl ï2 S3 P(fe|x)
A79^.B97 C8-H8->.02 (1LP2) 9.971 3.087 2.573 2.127x 10-20

-^ ->02 (2LP2) 8.239 3.087 0.480 1.346x 10-22

-»• -^N3 (LP3) 7.321 2.869 0.169 2.070x 10-20

-^ Nl-Hl-i.02 (1LP2) 3.928 0.586 2.719 1.212x 10-9

->• ->.02 (2LP2) 2.377 0.586 0.628 0.002

-^ ^.N3 (LP3) 1.023 0.076 0.089 0.999

-> N2-1H2-^.02 (1LP2) 3.884 2.065 2.051 1.427x 10-7

-^ ^.02 (2LP2) 2.602 2.063 0.119 8.621xl0-7

-»• -»N3 (LP3) 4.090 2.708 0.727 4.252x 10-9

->. ^.02 (1LP2) 2.580 0.049 2.051 2.688xl0-8

-> ->02 (2LP2) 0.968 0.049 0.119 0.999

-r ->.N3 (LP3) 2.541 0.614 0.727 0.001

B97->.A79 N4-1H4-».N7 (LP7) 6.359 2.133 1.384 6.505x 10-14
-> -i.06 (1LP6) 3.831 2.138 1.961 1.985xl0-7

-». ^.06 (2LP6) 2.651 2.138 0.158 1.005xl0-6
-». ^.N3 (LP3) 8.115 2.720 2.720 3.955x 10-16

-^ N4-2H4^.N7 (LP7) 4.917 0.053 1.384 2.282xl0-15

-> ^.06 (1LP6) 2.457 0.044 1.961 5.521 xl0-8
-f ->-06 (2LP6) 0.946 0.044 0.158 0.999

-f -^.N3 (LP3) 6.436 0.635 2.720 2.055xl0-15

->. C5-H5^N7 (LP7) 8.599 2.004 1.540 1.216x 10-18

-> -^06 (1LP6) 6.101 1.914 2.212 1.220xl0-13

^ ^06 (2LP6) 4.599 1.914 0.138 6.995xl0-12

-). ^.N3 (LP3) 9.268 2.455 2.425 6.151x 10-19

->. C6-H6->.N7 (LP7) 10.184 2.937 1.665 2.350x 10-20

-^ ->06 (1LP6) 7.835 2.800 2.386 1.077x 10-15

->. ->-06 (2LP6) 6.145 2.800 0.297 4.896x 10-16

-> -+N3 (LP3) 9.587 2.927 2.254 7.826x 10-19

Table 2-2 Base pair G:A79»C:B97 of the loop E motif from E. coli 5S rRNA

(354D). The three transformed measurements and the modeled probabilities are

shown for each pair of donor and acceptor groups. The values were truncated to

the third decimal. The names used to identify LP pseudo-atoms are built using

the same rules as the standard PDB hydrogen atoms names.

D
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ÂP

Figure 2-2 H-bond parameters. The putative H-bond shown is a weak C-H...O.

The hydrogen and LP angles are respectively identified by a and f3, and the

distance between the hydrogen and LP atoms is indicated by d. Nitrogen and
hydrogen atoms are shown by filled circle, respectivly large and small. Oxygen

atoms are shown with empty circles. Thin lines are used to indicate the direction
of the LP pseudo-atoms.

J

Our data set is built by extracting these values from all pairs of donor

and acceptor groups in HR-RNA-SET (see table 2-1 in Material and Methods

for the list of 3-D stmctures), resulting in a data set X = {xl,...,xn}, where
x! = Çx'[,x^,xi^) is a vector containing the distance, the hydrogen angle and the
lone pair angle. To reduce the amount of data, we extracted only the values from

pairs of residues that contain a pair of atoms at 3 A of distance or less. The data
set contained 1607 756 data points.

To obtain both flexibility and efficiency, we applied a semi-empirical

approach that models the distribution of data points by a sum of Gaussians.

Because the geometrical nature of the measurements introduces a bias in the

distribution of data points, the raw distributions of the extracted values cannot

be directly modeled by a sum of Gaussians. To obtain a proper distribution,

a transformation x/ = F(x) was applied to each data point. This process is

similar to histogram equalization in computer graphics [95], and allows us to

transform any arbitrary distribution into another. Here, we wished to derive a
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transformation so that the data points measured from randomly scattered points

in space resulted in a uniform distribution, and thus to remove the geometrical

bias. Such transformation was obtained by computing the cumulative probability

density given the random model for each dimension of the data points. In the

case of the distance, the cumulative probability density is proportional to the

volume of a sphere of radius a;i. For the angles, the cumulative probability

density is proportional to the volume of a spherical cone of angle x^ (or x^). The

transformation we obtained is given by F(x) = [a;^, cos (3:2), cos (2:3)].

However, this transformation was unreasonable to model the distribution

as a sum of Gaussians since only a specific range is accessible in each

of the three dimensions of the data points (2:1 > 0,0 < 2:2,3 ^ 1)- To solve

this problem, a further transformation was applied to the data points so that

each dimension was distributed in [—cx>,oo]. The complete transformation is

then F(x) = (ln(2;f),arctanh(cos(2;2)),arctanh(cos(ri';3)). The distributions of the
transformed data points are shown in Figure 2-3.

The distribution of transformed data points is modeled as a sum of

Gaussians without any constraint on the mean vector and the covariance matrix.

This model has the advantage of modeling the dependencies between the

dimensions of the distribution. A possible drawback is the increase in the number

of parameters, which brings the risk of overfitting the data [9]. However, our

data points represent a large sample of the distribution, and in practice we didn't

observed overfitting of the data. The parameters of the model (mean vector,

covariance matrix and weight for each Gaussian) are optimized using the EM

algorithm [9,18]. To avoid local minima, a variant of the algorithm was used

where only 25 000 randomly chosen data points were considered at each iteration.

The EM algorithm is known to minimize the negative log-likelihood, and thus

to return the parameters that maximize the likelihood of generating the data

set. Initial values for the parameters were determined by visual inspection of
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Figure 2-3 Superimposed 2-D projections of the data set histogram, modeled

probability density and surface of decision. The histogram of the data set is

shown in shades of grey. The modeled probability density is shown by thin

isocontours. Between 0 and 0.25 they were plotted at each 0.05 interval, whereas

between 1 and 15 they were plotted at each interval of 1. An integration was

done on the axis of projection corresponding to the effect observed by the

histogram. The surface of decision is shown with thick lines isocontoured at

probabilities 0.1, 0.5 and 0.9. The maximum probability is returned on the axis of

projection. The circles represent the optimized mean of the seven Gaussians.
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Figure 2-4 Minimization of the negative log-likelihood for the mixture of seven

unconstrained Gaussians on the transformed data set by the EM algorithm. The

procedure was stopped after 100 steps, corresponding to 1 hour of CPU time on
a Plll-600.

J

the data set, and seven Gaussians provided an accurate model of the data set.

Figure 2-4 shows the negative log-likelihood of generating the data set with

the current parameters as the algorithm progresses. Once the parameters of the

model are optimized, a visual inspection of the caracteristics of each Gaussian

was sufficient to determine which one(s) is (arc) responsible for the data points

fanning H-bonds. As a result, only one gaussian (the one centered on the smallest

distance and angles) represents H-bonds. Table 2-3 shows the initial and final

parameters of the seven Gaussians before and after optimization.

The probability that a local geometry, x, forms a H-bond is equivalent to

the probability that x is drawn from the Gaussian describing H-bond geometries,

H = h, and not from the others. P(H = h\x) can be computed using Bayes

theorem:

P(H = A l x) =
p(x\H= h)P(H = h)

p(x)
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Gaussian

l

2

3

4

5

6

7

Weight

Initial parameters

Mean Covariance Weight

Optimized parameters

Mean Covariance

^ [0.0, 2.5, 2.5] I

^ [2.0, 2.5, 1.0] I

^

^

^

^

^

[2.0. 1.0. 1.0]

[2.0. -0.5, 1.0]

[3.7, 0.0. 0.0)

[6.5. 0.5, 0.5]

[8.0, -0,5. 0.5]

I

J

I

/

J

0.008 [0.101, 2.457, 2.252]

0.010 [8.785, 1.132, -0.074]

0.026 [3.287, 0.449, 0.474]

0.110 [5.923. -0.554, 0.036]

0.121 [5.065. -0.444, -0.425]

0.535 [6.523, -0.165, -0.083]

0.192 [7.736. -0.297, -0.300]

2.801

1.049

0.890

0.173

0.293

0.036

8.890

4.472

4.427

3.190

0.842

0.863

11.723

13.829

11.791

0.907

0.523

0.614

2.190

0.417

0.438

1.049

2.376

-0.597

0.293

1.021

0.193
4.472

3.168

2.614

0.842

0.753
0.317

13.829

20.547

11.290

0.523

3.271

0.548

0.417

1.105

0.084

0.890

-0.597

2.580

0.036

0.193

1.751

4.427

2.614

3.147

0.863

0.317

0.839

11.791

11.290

18.297

0.614

0.548

3.370

0.438

0.084

1.061

Table 2-3 Initial and optimized parameters. The initial parameters of the

seven Gaussians are determined manually after examining the distributions of

transformed measurements, equal weight and identity covahance are used. The

optimized parameters are obtained after 100 steps of the EM algorithm. The
values were truncated at the third decimal.

J
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-^ p{x\ H= h')P(K)
(2.1)Ej=ip(x|^=j)P(^=j)'

where p(x | H = h) is the probability of generating x from Gaussian h,

P(H = h) is the prior probability of forming a H-bond and p(x) is the

probability of observing geometry x. Table 2-2 shows the measurements and

modeled probability according to equation 2.1 for each pair of donor and acceptor

groups for the G»C Watson-Crick base pair extracted from positions A79 and B97

of the loop E motif from E. coli 5S rRNA (PDB code: 354D [17]). Figure 2-3

shows the optimized model (thin black lines) superposed with the extracted data

(grey shades).

J

STABLE SET

Consider a specific donor or acceptor group. We define as stable a set of one

or more H-bonds that involve this donor or acceptor group if the sum of

their associated probabilities (computed independently) is equal to or below 1.

Consequently, one can interpret the probabilities as the proportion of time a group

is occupied in the formation of each H-bond in a stable set (see Figure 2-5c). The

stable set of a given group is chosen in order to maximize the total number of

H-bonds in the structure. This is computed efficiently by defining a maximum

flow problem on a directed bipartite graph connecting donors to acceptors. The

graph, G = (N, A), where N is the node set and A the arc set, is a bipartite

graph that contain the set, I, of nodes for the donor groups, and the set, J, of

nodes for all acceptor groups. If the probability of forming a H-bond between

donor i ç I and acceptor j e J is greater than 10-4, an arc (t, j") is added to the

graph with capacity, Uy, equal to the probability of forming this H-bond. Two

special nodes are then added to the graph, s and t, respectively called the source

and the sink. Arcs that link the source to all donors, (s, i) ç A Vî e J, and all

acceptors to the sink, (j,t) e A Vj £ J, are added with a capacity of 1. The

maximum number of H-bonds that can form in the molecule is obtain by solving
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the maximum flow problem of this graph from node s to t, resulting in values xa

for î 6 J and j e ,7, that indicate the resulting flow.

Algorithms that solve the maximum flow problem return an extremal

solution [2]. In the context of H-bond probabilities, an extremal solution means

that the algorithm, when faced with a situation where two equivalent H-bonds can

form exclusively of one another, will favor the complete formation of one of the

H-bonds, and leave the rest of the flow (typically 0) to the other. Since here we

are more interested by the equilibrium state of the system, a criterion needs to be

added, when allowed (the notation used is the one presented in [2]):

^ij > Xik or Xij = Uij for ici and j", A; € J

Xi j > Xkj or Xij = Uij for i,k ç I and j e ^.

(2.2)

(2.3)

This criterion is satisfied by modifying the preiïow-push algorithm [30]. As the

FIFO variant of the preflow-push algorithm (see [2] for a complete description

of the algorithm, and [1] for theoretical and empirical performance comparisons)

was selected for its simplicity of implementation, the push/relabel( ) operation was

modified in the following way:

J

procedure push/relabel(i);
begin

let 0 be the set of admissible output arcs for node i;
let n be the size of 0;
sort arcs (i,j) e 0 by their r^;
for (i,j) € 0 do:

8 <— min{ry, e(t)/n};
xi j •<— Xij + 8;
e(î) •<— e(i) - 6;
n •<— n— l;

if e(z) > 0 then
let I be the set of admissible input arcs for node i;
let n be the size of I;

sort arcs {i,j) € I by their rij,
for (i,j) e J do:
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a)

b)

e)

d)

e}

f)

Figure 2-5 Base pairing type examples. These were found in only one structure

of HR-RNA-SET. a) The C«G Ww/Ss trans base pair found at positions '9'26:'9'22

and '9'46:'9'43 in 1FFK. b) The G»G Hh/Bs trans base pair found at position

A260-A265 in 1FJG. e) The A»C Ww/Bh cis base pair found at position 38:32

in 1YFG. d) The U^A Ws/Bh trans base pair found at positions '0'1116:'0'1246,

'0'1244:'0'1118 and '0'2661:'0'2812 in 1FFK. e) The C»C Ww/Hh trans base pair

found at position '0'1834:'0'1841 in 1FFK. f) The C*C Ww/Bh cis base pair found

at position '0'937:'0'1033 in 1FFK. The H-bonds are indicated by dotted lines.

Empty, small-filled and filled circles are used for oxygen, hydrogen and nitrogen

atoms respectively.

J
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n S ^— min{r^,e(î)/n};
Xij ^— Xij - Ô;
e(î) <- e(î) - 5;
n -t— n-1;

if e(î) > 0 then
d(i) <- mm{d(j) + l : (i,j) e A(?) and ry > 0};

end;

Figure 2-6 shows the flows resulting from the computation of the stable

H-bond set in HR-RNA-SET. In Figure 2-6a, both distributions of capacities and

flows are shown. The distribution of Figure 2-6b shows the total flow obtained for

every base pairs. The discrete character of this distribution suggests that a cutoff

can be applied in the identification of base pairs with at least one H-bond, and

thus assuming that a base pair forms only if the total flow between two bases is

above or equal to 0.5. This parameter can be adjusted to reflect stringency of the

identification process.

NOMENCLATURE

J

Several schemes were proposed to name RNA base pairing types [11,53,79,87].

The proposition from [56], LW, was retained, where a base pair is described by

a pair of names that are associated to the faces of the bases involved. This

nomenclature has several advantages. First, the names are easy to remember, and

there is no need to reference any documentation. Second, the name alone gives a

good idea of the base pair geometry. Third, isosteric pairs have the same name.

Despite these advantages, LW cannot differenciate base pairing types that

differ by a sliding of the bases along the interacting faces, and especially in

the context of single H-bond base pairs. Thus, to increase the precision of LW,

we defined LW+, by decomposing the faces in sub-faces. Then, we defined and

implemented an objective algorithm to reduce possible identification ambiguities
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shared H-bonds

1l ~T

0.2 0.4 0.6 0.8
Probability of forming a H-bond

1.0

A i
l l l

0.5 1.0 1.5 2.0

Expected number of H-bonds

2.5 3.0

Figure 2-6 Probability densities for xij, -uy and the total flow of the base pairs.
The probabilities were computed for all base pairs in HR-RNA-SET. Only those

with a probability higher than 10-4 are plotted, a) The probability density for xij
and uij are respectively shown with a thin black line and an orange line. The
center peak for xi-, (the optimized flow) is the result of bifurcated H-bonds. b) The

distribution of total flows obtained between every base pairs in HR-RNA-SET. The

total flow can be seen as the mathematical expectation of the number of forming

H-bonds between two bases. The distribution clearly shows the discrete nature of

this value. The area of each peak shows the relative proportion of one, two and

three H-bond base pairs.

J
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to anecdotal occurences. However, the current implementation does not support

the detection of water-mediated, ribose- or phosphate-moeity involved base pairs.

Figure 2-7 shows the four RNA bases and associated faces. For convenience,

the Watson-Crick edge was abbreviated by W, the Sugar edge by S, and the

Hoogsteen/C-H edge by H. The sub-face names are indicated by combining

face abbreviations, for instance Ww corresponds to the central section of the W

face, and Hw to the section of the H face that is adjacent to the W face.

Bifurcated base pairs of LW were renamed by creating small faces at the center

of amino and keto groups. These faces are named Bh and Bs, respectively for

the bifurcated base pairs involving the Hoogsteen side amino/keto group and the

Sugar side amino/keto group. The Cz-Hs group of the adenosine was named Bs

to facilitate the idenfication of isosteric base pairing types (see Figure 2-7). We

also introduced a special face, C8, for the Cg-Hg donor group of the purines.
The order of the faces is the same as the order of the bases. The cis and trans

semantic for the relative orientiation of the glycosidic bond with respect to the

base pair axis are the same as in LW. Note that the local strand orientation and

base-sugar conformation are not specified in the base pair notation since they
rather belong to nucleotide conformations.

The face involved in a base pairing type is obtained by computing the

contact point, defined by the weighted mean of the hydrogen and LP atoms of

each base. The weights correspond to the calculated probabilities of each H-bond,

and as returned by the maximum flow algorithm. The face containing the contact
point is returned.

To compute the glycosidic bond orientation the visual contact point is

defined, a variant of the contact point, obtained by replacing the LP by the
acceptor atoms. The vector between the two visual contact points, the contact

vector, is used as the axis of the base pair, and the glycosidic bonds are attached

to its extremities. A cis orientation is defined by a torsion around the contact
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Figure 2-7 RNA base faces. Nitrogen atoms are shown by a large black circle,

hydrogen by a small black circle and oxygen atoms by an empty circle. The LP

atoms are shown with thin lines. The ribose moiety is shown by the letter "R".
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vector below 90°, and the trans orientation otherwise.

C. REPERTOIRE OF BASE PAIRING TYPES IN RNA

3

The algorithm presented here allowed us to perform a systematic survey of all

of the base pairs in high resolution X-ray RNA stmctures, and to study their

geometrical diversity. For HR-RNA-SET, the complete repertoire was built in less

than four minutes on a PIII-600. Figures 2-8 and 2-9 presents 38 base pairing

types that occur at least twice in HR-RNA-SET. Because of space constraints,

base pairing types that form only one H-bond were not included in this survey.

The structure that minimizes the sum of RMSD [43,44] with all other base

pairs of the same type is shown. Structure and position information about these

specific base pairs is shown in table 2-4. In order to optimize the identification

of representative base pairs, the RMSD calculation was limited to the first 200

examples for each base pair type. These results are also available in PDF

(Portable Document Fonnat) documents that include the superimposition of all the

base pairs of the same type (see various documents about base pair types at our

Web site www-lbit.iro.umontreal.ca).

The base pair types that appear in only one structure in HR-RNA-SET were

examined. Figure 2-5 shows six, among 86, such examples that we found of
particular interest.

Figure 2-5a shows a C»G Ww/Ss trans that was found in positions

'9'26:'9'22 and '9'46:'9'43 of the ribosomal 5S subunit (1FFK). This two

H-bonds base pair was not described by [20,21]. The two examples of the 5 S

subunit of H. marismortui are located 23 À apart, and were found in very

different 3-D contexts. The '9'46:'9'43 base pair is a member of a base triplet

('9'46:'9'43:'9'37) that stabilizes a local phosphodiester chain reversal of an

unusual 13-nt loop between positions '9'33 and '9'47. The other base pair of this
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n
Trans Cis

G«C WviWvi trans A'U W«W\H trans

G'U WviWw trans

G«C WwMwcis A'U WwWwcis

GMWwWwcis

A-C Hh/Ww trans A-U HfiWw trans

-'--..

A-UHhWwds G-UHh/Wwcls

^
G-C Hh/Hh trans A-U SaWs trans

ï^
G.U Ww/Bs trans

G.US&Wwcis A'US&Wwcis

A<; BhWwcis G«U Ww/Bft cis

G-C Ww/Bs cis G-CflsWwcis

J

Figure 2-8 Two H-bonds base pairing types found in HR-RNA-SET. Base pairing
types that occur at least twice are shown. The 19 purine»pyrimidines base pairing
types are on the left side of the page. The 15 purine*purine base pairing types
are on the right side of the page. The 4 pyrimidine*pyrimidine base pairing types
are located at the bottom right comer of the page. Base pairing types were
classified as either trans (left column) or cis (right column). Boxes are used to
group isosteric base pairing types together.
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Trans

A'A Ww/Ww trans

A<i Ww/Ss fans

A'A Hh/Ss trans

A«G Ss/Ss trans

A-A Hh/Hh trans

A'A Wvi/Hh trans

G^iWw/Hh trans

A-G Hh/Ss trans

G-G Ss/Ss trans

G'GBhMw trans

A-G WwWwcis

CMBhAVwcis

G-G Hh/Bs cis

Trans

U-UWw/Hh trans

U.U WwMw trans

C/s

Q-GHhMwcis

A-GHhWwcis

C/s

U'CWwWwcls

U«U Ww/Wwcis

.)
Figure 2-9 Two H-bonds base pairing types found in HR-RNA-SET (continued).
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types Pairing type Nb. Example shown

A • A

A • A

A • A

A . A

A • G

A • 0

A • G
A • G

A • G

0*0

G • G

G • G

G • G

G • G

0*0

A • C

A • C

A • U

A • U

A • U

A • U

A • U

A • U

0 • C
G • C

G • C

0 • C

G • C

G • U

0 • U

G • U

G • U

0 • U

G • U

u e

Purine-Purine

HhlHh

V/wWw

HhlSs
WwlHh

trans 4l

trans 22

trans 7

trans 11

1ASY

1GID

10TS
1FJG

S609 - S623

B151-B248

B22 - B13
A411-A430

•Wv/IWw

HhlWw

HMSs
SslSs

WwlSs

cis 54

cis 3

trans 121

trans 39

trans 15

1DUL

IG1X

1FFK

1FFK

1FFK

B161-B150

D665 - E724

01372-02053
0 1632-0 1568

0629-02070

HhlBs

HhlW»
BhlWw

WwlBh
HhlWw

Ss/Ss

cis

cil

cis

trans

trans

trans

3

25

5

2

8

6

3TRA

1ET4
1D4R

364D

10AX

1FGO

10 - 45

C428-C410

B13 - A16
B76 -C100

D921-D945

A2428-A2466

Purine-Pyrimidine

BhlWw

HMWw
cis 2

trans 17

364D
1FJG

C109- All

A171-A150
Ww/Ww

HhlWw

SsWw

HUWw
Ww/Wit-

SsWw

CIS

CM

cis

trans

trans

trans

730

21

3

109

23

3

1D4R

1QA6

1FFK

1FJG
1ASZ

1FFK

B26 - A3

D138-D110

02083-02063

A496-A437
S6I5 - S648

0761-0645
WviWw

WwlBs

BslWw

WwlWw

HhlHh

cis 2229

eu 2

cis 2
trans 30

trans 2

IDE

1FFK

1G1X

IFFY
1FFK

C2 - D19

01302-01353

1588 - 1651

T15 - T48
02397-02391

WwlV/yv

HhWw

WwlBh

SslWw
WwlBs

V/wWw

cis

cis

aï

cis

trans

trans

264

4

2

2

5

2

1ASZ

1FGO

354D
1FJG

1GTR

1EXD

R610 - R625

A2471-A2278

B102- A74

A362- A49
BI8 - B55

B915-B948

Py rim idine-Pyrimidine

U • U Wwl-Ww cis 25 280D C31 - D42

U • U WwlHh trans f, 1ET4 E127-E115

U • U VlwlV/w trans 3 1FJG A956-A960

WviWv cis 2 1FFK 01702-01545

J

Table 2-4 The 38 base pairing types in HR-RNA-SET. Each base pairing type
was found at least twice in HR-RNA-SET. The example selected for each type for

Figures 2-8 and 2-9 is identified in the last column. The four letter code refers to
the PDB identifier.
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type, at positions '9'26:'9'22, stabilizes a disordered internal loop. It is worth

noting here that a theoretically generated example of this base pair type was

included in the MC-Sym modeling system [63] since its very first version, as the
119 base pair.

Figure 2-5b shows a base pair of type G«G Hh/Bs trans found at positions

A260: A265 in the structure of T. thermophilus 30S ribosomal subunit (1FJG).

This two H-bonds base pair was also not described by [20,21], but, again, was

theoretically generated for the first version of the MC-Sym database. It was

referred to as base pair 34. This base pair is Hanking a 7-nt loop that interacts
with protein S20.

Figure 2-5c shows a base pair of type A*C Ww/Bh cis found at positions

38:32 of the yeast initiator tRNA (1YFG). Here, we use the tenn bifurcated to

qualify a base pair in which two H-bonds either share the same hydrogen or LP

atoms. The equilibrated maximum How settles the probability of each H-bond to

values close to 0.5, expressing the shared nature of the interaction, and hence

the pairing c of Figure 2-5 is a perfect example of a bifurcated base pair.

The base pair of type U*A Ws/Bh trans presented in d of the same figure is

another example of a bifurcated base pair, as found at positions '0'1116:'0'1246,
'G'1244,'0'1118 and '0'2661:'0'2812 of 1FFK.

Figure 2-5e presents a base pair of type C*C W\v/Hh trans found at

positions '0'1834:'0'1841 of stmcture 1FFK. This non-canonical base pair closes

a short helix, and stabilizes a bulged out adenosine and a 6-nt loop. The

interaction is maintained by a H-bond between the extra cyclic amino of one C to

the oxygen of the other base, and by the formation of a weaker C-H...N H-bond.

Note that these H-bonds were included in the H-bond data set used to optimize

the parameters of the mixture of Gaussians, and although they usually exhibit

geometrical parameters slightly different than the other types of H-bonds, they are

properly identified by the probabilistic model.
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Figure 2-5f shows a convoluted network of three partial H-bonds obtained

after the resolution of the equilibrated maximum flow problem. The base pair

was observed at positions '0'937:'0'1033 in 1FFK, the first non-canonical base

pair of a 10-nt internal loop that is adjacent to a G*A sheared tandem. The

H-bond network describes a double bifurcated base pair, as the LP atom of N3 is

shared between both hydrogens of the extra cyclic amino group, and one of these

hydrogens is in turn shared with one of the LPs of the 02 atom.

The probability returned for each H-bond by the maximum flow optimization

is such that their sum is maximized, while respecting the stable set property. The

base pair is detected and correctly classified by the probabilistic system despite its

peculiar geometry.

2-3 DISCUSSION

A. DISTANCE VS PROBABILISTIC MODELS

J

The most employed distance to recognize H-bonds is the one between the donor

and acceptor atoms, d^-A, which is easy to compute and to observe interactively,

and it does not require neither the hydrogen or LP atoms. Figure 2-10

presents the distributions of three distances as measured from HR-RNA-SET.

The distribution of do-A on Figure 2-10 (black line) does not contain a clear

separation between H-bonds (first peak) and non H-bonds, and thus does not

provide a good classification criterion. The distance used in [64], between the

hydrogen and the acceptor atoms, d^-A, is a better one, as shown by the green

line on Figure 2-10. Massire and Westhof suggested a cutoff at 2.1 A, but from
the distribution in Figure 2-10, a cutoff at 2.4 A would be a better solution.
The 2.1 A cutoff was retained to reduce the number of false negatives in the

context of molecular modeling (personal communication). Finally, as indicated in

Figure 2-10, the distance between the hydrogen and LP atoms, OH-LP, among the
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0.0
T

0.5
T

1.0 1.5 2.0
Distance (À)

2.5 3.0 3.5

Figure 2-10 Distance-based parameters. The distributions are computed for all
base pairs in HR-RNA-SET. The black line shows the distribution of distances
between the donor and acceptor atoms, doA- The yellow line shows the
distribution of distances between the hydrogen and acceptor atoms, dsA- The
blue line shows the distribution of distances between the hydrogen and LP atoms,
du L-

three distances is the best, if only one distance must be used. As indicated from

the blue line distribution in Figure 2-10, a cutoff between 1.5 and 1.8 A would be
effective for dn-Lp-

In order to quantify the power of using a probabilistic over the strict distance

approach, a scattered plot where each dot represents one putative H-bond was

created. Figure 2-11 shows that a significant number of H-bonds were assigned

a probability 0 by using the probabilistic method, whereas they would have been
identified as forming H-bonds using da-A with a cutoff at 2.1 A, and as proposed
by Massirc and Westhof. Moreover, most of the H-bonds that were assigned a

probability of 1 using the probabilistic model would have been rejected by the
distance method.

J
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Figure 2-11 Distance criteria vs. probabilities of forming H-bonds. Each scatter

plot shows the correlation between a distance criterion and the probabilities of

forming H-bonds. Each dot represents the evaluation of a pair of donor and

acceptor groups. The pairs separated by more than 5 A were not considered.
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B. STRICTNESS PARAMETER

Our probabilistic method returns the mathematical expectation of the number of

forming H-bonds between two nitrogen bases. As a default value, two bases are

identified as making an "interaction" if the expected number of H-bonds is greater

or equal to 0.5. This value can be redefined by the user to reflect the type of

interactions that need to be identified. In a context where a structure has been

determined imprecisely, the cutoff can be lowered to a value as low as 10~4.
However, if only the strong two H-bond base pairs are desired in the output, the

value of the cutoff could be raised to as much as 1.8. As an example, during the

determination of the 3-D structure of the catalytic core of the hairpin ribozyme,

a weak cutoff of (10-4) was used to examine the first generation of thousands

of stmctures that were obtained from secondary stmcture and low-resolution

experimental data. This is a typical first step in RNA 3-D modeling. In several

generated stmctures, the probabilistic method detected a H-bonding pattern that

formed a base triple involving two bases in the ribozyme and one base in the

substrate. The geometry of the base pairs in the first generation of structures were

far from satisfying the strong H-bonding parameters. Nevertheless, this observation

was reported to the experimentalists who decided to check for the presence of the

triple in the hairpin. The predicted triple was later experimentally determined to

form in at least one of the catalytic reaction steps [76]. In the further modeling

iterations, a more stringent cutoff, typically 0.5, was used to identify generated

3-D structures that contained "nicer" base pairs.

C. MC-SYM BASE PAIRS

J
The probabilistic method was applied to the annotation of all available RNA

3-D structures. The identified base pairs were collected and corresponding

transformation matrices inserted in the MC-Sym RNA 3-D modeling computer
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program database. The previous MC-Sym databases were built from visual

examination of all RNA 3-D structures, a long and subjective process. With the

determination of the ribosome structure, a visual annotation would have been

hardious. The probabilistic method, on the other hand, is automatic, fast and

objective. It completed the base pair recognition process with a throughput of

7042 base pairs per second on a PIII-600. Now, everytime a new RNA 3-D

stmcture is made available to us, the MC-Sym database and parameters are

entirely updated to address the most recent knowledge brought by the new

structure in less than four minutes. The most recent MC-Sym database contains

ten times more nitrogen base spatial relations than the original version of 1991.

D. DISTORSION IN RNA STRUCTURE DATABASES

3

During the computation of the probabilities of all H-bonds in all available RNA

structures, the base pairs that were assigned an expected number of H-bonds

near 0.5 were visualized and analyzed. Some of these base pairs pointed us

to interesting features of the RNA 3-D structures that are currently in public

databases. First, several structures that contain stable Watson-Crick G*C base

pairs are distorded, which could be the result of the refinement process where

H-bonds are represented by simple harmonic restraints on the distance between

the donor and acceptor atoms. The mean distance for H-bonds changes from one
structure to another, and can even sometimes reach a value of 3.9 A, for the

H-bond between C:N4 and G:06 (see for instance 1AOI). We believe this kind of

variation can be explained from the use of different force fields and refinement

parameters and procedures. Given the observed variations, it becomes obvious that

methods based on strict distance and angle values are proned to identification

errors, and hence the use of a more flexible approach, such as the one presented

here, is strongly recommended for an objective analysis of RNA 3-D stmcturcs.
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RlBOSOME CONTRIBUTION

When stmctures of the large and small ribosomal subunits were introduced in

the database, it was believed that they would substantially contribute to RNA

structural knowledge. During the building of the repertoire of two H-bonds base

pairs, we determined that these two structures alone account for 1522 base pairs

among a total of 3852 that were indexed, and thus represent 40% of the base

pairs in HR-RNA-SET. Furthermore, non-canonical base pairs are often referred as

appearing rarely [69], but our analysis revealed that G»C and A«U WWWW cis,

the canonical Watson-Crick base pairs, account for 77% of the total, where the

G»C base pair accounts for 58% alone. This leaves 23% of non-canonical base

pairs. If we remove the G«U WWWw cis base pair, the wobble, the non-canonical

base pairs still represent slightly over 16% of the indexed base pairs in the

repertoire. The results of this analysis covers 629 base pairs, excluding those that

require a water mediated H-bond or a protonated nitrogen base. The repertoire

in Figures 2-8 and 2-9 contains 38 base pairing types that contain at least two

H-bonds. Seven base pairing types are formed by one typical H-bond and a

weaker C-H ... {0,N}.

F. NOMENCLATURE

Leontis and Westhof have emphasized [56] that their proposed nomenclature has

the interesting property of naming all isosteric base pairing types with the same

name. This feature is of utmost importance since it allows one to easily describe

RNA motifs without having to specify different base pairing types that correspond

to sequence variations. This important feature is also a characteristic of LW+, and

goes beyond by discriminating base pairing types that differ only by a sliding

along the pairing faces.

An important exception to this is the G»U W/W trans, which occur in
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two different forms that involve two H-bonds of the W faces. The first form

involves two H-bonds on the h side of the W face, and the second form

involves two H-bonds on the ^ side of the W face. Because the contact points

represent an average when two H-bonds arc present, it is impossible with this

approach to modify the face definitions so that these two base pairing types

can be differentiated, and without introducing undesired new names for each

variation of the classic A«U Hh/W-w trans and A*U WwWw cis. This is the only

ambiguity left in the proposed LW+ nomenclature. The situation could be resolved

by introducing an exception, by naming both base pairing types G«U Wh/Wh

trans and Ws/Wy trans. We decided to postpone the implementation of such an

exception until proper feedback is obtained from the RNA community.

In LW, the presence of bifurcated H-bonds has to be notified explicitely in

the name. This is due to the fact that such base pairs often involve hydrogens or

LP atoms from two different faces on one of the bases. The introduction of the

contact points alleviates this ambiguity, and the addition of the Bh and Bs faces

results in precise names.

The current probabilistic system does not identify water-mediated H-bonds

because most of the currently published RNA stmctures do not contain water

molecules, and when they do most of them do not specify the actual positions

of the water hydrogen atoms. Identification of water mediated H-bond in an

automated manner requires the correct placement of water molecules around the

nitrogen bases, which is known to be a difficult problem.

Another limitation of the probabilistic system is that H-bonds involving the

Os' group in the ribose moiety are not considered. Again, this is due to the fact

that an automated method requires the exact position of the hydrogen atom. The

H is free to rotate around the 02' group, and thus the task of computing its

optimal position is not trivial, although currently under our investigation.
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2-4 CONCLUSION

The probabilistic method introduced here describes the first available algorithm

and computer implementation of an automated base pairing type recognition

procedure, which also objectively classifies and presents the base pairs of an

RNA 3-D structure. The probabilistic method successfully recognized all base

pairing types that are present in available RNA 3-D structures, and allowed

us to automate their classification. In particular, a complete and well-organized

repertoire of observed RNA base pairing types has been made available on the
Internet.

The systematic annotation of all RNA 3-D stmctures, as determined by

high-resolution crystallography, provided us with a convincing confirmation that a

slightly revised version of the nomenclature proposed by Leontis & Westhof [56]

is perfectly suitable to a high-throughput RNA stnicture analysis context.

J

2-5 MATERIALS AND METHODS

The software was developped using the MC-Sym development library under the

Linux operating system, which is publicly available at mccore.sourceforge.net. The

code is written in C++, and, therefore, is easily portable to other Unix platfonns,

such as ÎR1X and SunOS. The probabilistic method has been integrated to the

MC-Annotate system [29], and is accessible on the Web. RNA 3-D stmctures can

be submitted for the identification of base pairing types and complete analysis at
www-lbit.iro.umontreal.ca/mcannotate.

The subset of PDB stmcturcs used in this work, HR-RNA-SET, is composed

of those that contain at least one RNA nucleotide, and that were determined by

X-ray crystallography with a resolution of 3 A or less, as of February 1st, 2001.
Table 2-1 shows the list of 3-D structures that are included in HR-RNA-SET.

Two files of the initial list were rejected: 1QCU and 406D. Both stmctures
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contain multiple models with different chain identifiers, and do not have proper

MODEL/ENDMDL tags. This non-conformity to the PDB syntax precludes us

from applying our automated procedure on these two stnictures. To ensure a

complete uniformity of hydrogen atom names, they were removed, if present, and

then added using bond lengths and angles from the Comell et al. force field [16].

When appropriate, LP atoms were placed at l Â of their atom in the direction

of the lone electron pair, as determined by the sp2 geometry of the base atoms.

Names for the LP atoms were assigned by following the standard nomenclature of

hydrogen atoms in the PDB, replacing the H by LP.

The EM algorithm was initialized with seven Gaussians, the initial

parameters are shown in Table 2-3. To avoid local minima in the optimization,

a variant of the EM algorithm was used in which only 25000 randomly

selected data points were considered at each iteration. The algorithm was given

100 iterations, and convergence was confirmed by monitoring the negative

log-likelihood as the algorithm progressed (see Figure 2-4). One hour of CPU

time was necessary on a PIII/oOOMhz to complete the learning process.

For the detection of a stable set of H-bonds, a modified version of the

preflow-push algorithm [30] was implemented. The graph of donors and acceptors

was first built from the entire 3-D stmcture, the equilibrated maximum flow was

then computed, resulting in a stable set of H-bonds.

J
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QUANTITATIVE ANALYSIS OF NUCLEIC ACID

THREE-DIMENSIONAL STRUCTURES

P. Gendron, S. Lemieux et F. Major, Journal of Molecular Biology (2001) 308, 919-936.

J

ABSTRACT

A new computer program to annotate DNA and RNA three-dimensional structures,

MC-Annotate, is introduced. The goals of annotation are to efficiently extract

and nianipulate structural information, to simplify further stmctural analyses

and searches, and to objectively represent structural knowledge. The input of

MC-Annotate is a PDB formatted DNA or RNA three-dimensional stmcture.

The output of MC-Annotate is composed of a stmctural graph that contains

the annotations, and a series of HTML documents, one for each nucleotide

conformation and base-base interaction present in the input stmcture. The atomic

coordinates of all nucleotides and the homogeneous transformation matrices

of all base-base interactions are stored in the stmctural graph. Symbolic

classifications of nucleotide conformations, using sugar puckering modes and

nitrogen base orientations around the glycosyl bond, and base-base interactions,

using stacking and hydrogen bonding information, are introduced. Peculiarity

factors of nucleotide conformations and base-base interactions are defined to

indicate their marginalities with all other examples. The peculiarity factors

allow us to identify irregular regions and possible stercochemical errors in

3-D structures without interactive visualization. The annotations attached to each

nucleotide conformation include its class, its torsion angles, a distribution of the
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root-mean-square deviations with examples of the same class, the list of examples

of the same class, and its peculiarity value. The annotations attached to each

base-base interaction include its class, a distribution of distances with examples of

the same class, the list of examples of the same class, and its peculiarity value.

The distance between two homogeneous transformation matrices is evaluated

using a new metric that distinguishes between the rotation and the translation

of a transformation matrix in the context of nitrogen bases. MC-Annotate was

used to build databases of nucleotide conformations and base-base interactions. It

was applied to the ribosomal RNA fragment that binds to protein L 11, which

annotations revealed peculiar nucleotide conformations and base-base interactions

in the regions where the RNA contacts the protein. The question of whether the

current database of RNA three-dimensional structures is complete is addressed.

Copyright 2001 Academic Press

Keywords: Nitrogen base interactions, three-dimensional structure and modeling,

quantitative analysis, stmcture comparison, RNA structure database.
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3-1 INTRODUCTION

The function of ribonucleic acid (RNA) molecules goes far beyond the roles

of genetic information repository and carrier. The structural flexibility of RNAs

confers a large diversity of three-dimensional (3-D) shapes and functions [82].

The properties of RNA to interact with other macromolecules, and in particular to

perform catalytic activities, have considerably increased the scientific interest for

RNAs and, consequently, the number of individuals and industries involved in
RNA research.

For over fiftheen years, three transfer RNA, the yeast tRNAPHE and tRNAASP,
and the Escherichia coli tRNAGLN, were the only available x-ray crystal structures
of biologically active RNAs. As a consequence, the reliability of most RNA

structure prediction procedure was evaluated on the capacity in reproducing the

tRNA structures, which is a very restrictive learning set. Recently, however,

several new RNAs of biological interests were discovered, and experimental

techniques that yield medium- and high-resolution stmctural information, such as

x-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy, are

now commonly applied to RNA.

The newly determined stmcturcs, as made available in the Protein DataBank

(PDB) [8] and the Nucleic Acids DataBase (NDB) [7], range from a few

nucleotides, such as the lead-activated [37,94] (PDB codes: 1LDZ and 429D)

and the hammerhead [77] (PDB code: 1HMH) ribozymes, to several hundreds of

nucleotides, such as the P4-P6 domain of the Tetrahymena thermophila group I

intron [31] (PDB code: 1GID) and the 23S rRNA [5] (PDB code: 1FFK). More

RNA 3-D stmctures are expected to be released in a near future, as research

groups have been able to obtain low- and medium-precision x-ray density maps of
the complete ribosomal assembly [5,13,81].

It is clear that understanding and establishing the variety of RNA structures
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and activities, as well as manipulating RNA function, depend upon the acquisition

and analysis of RNA stmctures. For instance, the success of rational development

of pharmaceutical products based on RNA relies on a better understanding of

RNA stmcture-function relationships, as well as on the localization of essential

RNAs in the living cell.

Geometrical and quantitative analyses of RNA 3-D stmctures are employed

in the validation of new 3-D structures, in the comparison and identification

of stmctural patterns and motifs, in the development of empirical modeling

systems, and, more generally, in the studying and learning of structurc-function

relationships. Only few 3-D structure analysis methods apply specifically to RNA,

and all are either based on interactive visualization, which limits analysis to small

RNA domains, or on the computation of atomic distances, and bond and torsion

angles [4,46,47]. Because different torsion angle patterns can result in similar

conformations [74], the results of comparative analysis based on torsion angles are

not always informative [28].

The unavailability of a quantitative and objective annotation tool prompted us

to develop a new computer program, MC-Annotate. We evaluated, defined and

implemented new computer representations and distance metrics for analyzing

and comparing nucleotide confomiations and their spatial interactions, hereafter

referred to as base-base interactions or, simply, interactions. Base-base interactions

stabilize local conformations and determine the folding of the whole structure. For

example, the tertiary interaction between U8 and A 14 is crucial to the folding

of the tRNAPHE (see for instance PDB code: 6TNA) [84] into its characteristic

L-shape [62].

The annotation of RNA 3-D structures consists of a preprocessing of the

information embedded in their 3-D coordinates. The goals of annotation are

to efficiently extract and manipulate stmctural information, to simplify further

stmctural analyses and searches, and to objectively represent structural knowledge.
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These goals were considered during the development of MC-Annotate. At first,

the stmctural graph of an input structure is generated. The stmctural graph

encodes geometric infomiation about nucleotide conformations and base-base

interactions, atomic coordinates and torsion angles. Then, using the geometric

information, symbols are computed and attached to each nucleotide conformation

and base-base interaction in the structural graph. Using symbols and numbers for

representing an RNA structure, rather than atomic coordinates and torsion angles,

simplifies its comparison to other RNAs, as well as the recognition of its motifs.

Symbolic annotations are useful to crystallographers and molecular modelers

seeking efficient analyses of 3-D structures, and identification of relevant structural

features and patterns that could be involved in the activity of their molecules.

MC-Annotate also made possible the creation of databases of nucleotide

confonnations and base-base interactions, extracted from all available DNA

and RNA 3-D stmctures, which were indexed using the symbolic information.

For instance, these databases were employed to update the parameters and

conformational sampling of MC-Sym [63]. In this article, MC-Annotate is

examplified by the analysis of the ribosomal RNA (rRNA) fragment that binds

to protein L 11 [15] (PDB code: 1QA6), which revealed peculiar nucleotide

conformations and base-base interactions in the regions where the rRNA contacts

with the protein. The symbols generated by MC-Annotate were also combined into

sets defining the higher-order patterns, or motifs, of the rRNA domain. Using

the geometric and symbolic information, a list of matching patterns from other

EÎNAs were identified. Finally, the question whether the current database of DNA

and RNA 3-D stmctures is complete was addressed. A complete database would

contain all possible and thermodynamically sound nucleotide conformations and

base-base interactions. This was made by generating and measuring the distances

of randomly generated examples to those currently in the databases.

J
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3-2 RESULTS

A. LOCAL REFERENTIALS AND HOMOGENEOUS TRANSFORMATION MA-

TRICES

3

The local referential of a nucleotide, and thus of a nitrogen base, is defined

by a Cartesian coordinate system whose position, relative to the base, can be

computed from its atomic coordinates (see Figure 3-1). The local referential of

a nucleotide can be defined arbitrarily, but must be identical for each type of

nucleotide. Let u be the unit vector between coordinates of atom N1 and C2

in pyrimidines, and N9 and C4 in purines. Let v be the unit vector between

coordinates of atom N1 and C6 in pyrimidines, and N9 and C8 in purines. Then,

the unit vector y of the Cartesian coordinate system lies in the direction given by

the sum u + v, the unit vector z is oriented along the cross product u x v, and

the unit vector x, following the right hand mle for a Cartesian coordinate system,

is given by y x z. The relative positions of local referentials can be expressed

using homogeneous transformation matrices (HTM), which were first developed in

the field of geometry [65], and later extensively used in computer graphics and

robotics. HTMs encode, in the form of a 4x4 matrix, the geometric operations

needed to transform objects in 3-D space from one local referential to another.

In the base-base interaction context, a HTM describes the spatial relation by a

composition of a translation and a rotation between the two local referentials of
the involved nitrogen bases.

Let Rbi and Rba be the local referentials of nucleotides bi and ba

as expressed relative to the global referential centered at the origin, (0,0,0).

The spatial relation between Rbi and Rba is then given by the HTM

Mbi^-bs = R-biR-bz (see Figure 3-1). In a molecular modeling context such as
implemented in MC-Sym [63], this relation can be reproduced and the atomic

coordinates of nucleotide b^ relative to nucleotide bi computed by applying
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RI'b2

0.81 -0.19 0.55 46.38
-0.11 0.88 0.47 11.80
-0.57 -0.44 0.69 52.25
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RI'bl

0.71 0.53 -0.46 46.32
-0.24 -0.44 -0.87 16.60
-0.67 0.72 -0.18 45.52
0.00 0.00 0.00 1.00

Figure 3-1 Local referentials and base-base interactions. Rbi and Rba are the

homogeneous transformation matrices representing the local referentials of two

nucleotides, bi andb-î. Mbi^bz encodes the relation between Rbi ancfRba, that

/s the position of Rba relative to Rbi.
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the transformation obtained by the matrix product Rb^Mbi-».b2R'b^ to t'le
absolute atomic coordinates of bg. In a similar way, the atomic coordinates

of b'i relative to bg can be computed by applying the inverse transformation

Rb^M^^b^R^,1 to the absolute coordinates of b'i. It is worth noting here that
^bi-^bs = ^bs^bi. that is the inverse of the transformation extracted between
Rbi and Rba, is equivalent to the one that would have been extracted between

Rb2 and Rbi.

NUCLEOTIDE CONFORMATIONS

J

Based on traditional definitions of nucleotide conformations, their symbolic

characterization takes place on two levels. The first one is the position of the

furanose ring atoms relative to the general plane of the ring, which determines

the sugar puckering mode. The values of the pseudorotation phase angle for

furanose rings described by Altona et al. [3] are divided into the ten classes

shown in Table 3-1. The second is the orientation of the nitrogen base relative

to the sugar, which can be determined by the angle around the glycosyl bond, ^,

defined by the atoms 04', Cl', N9 and C4 for purines and the atoms 04', Cl',

N1 and C2 for pyrimidines. As accepted by the BJPAC-RJB commision [39],

values of ^ in the range [—90°, 90° [ indicate a syn orientation whereas other

values indicate a anti orientation. Since the other parts of a nucleotide are mostly

rigid, the two above properties represent a fair qualitative description of nucleotide

confomiations. The class of a nucleotide conformation can thus be defined by

its sugar puckering mode and nitrogen base orientation around the glycosyl

bond. The corresponding symbols assigned by MC-Annotate are summarized in

Table 3-l.

The distance, ri(bi,b2), between two nucleotide conformations, bi and

ba, can be defined by the root mean square deviation (RMSD) between the

heavy atoms in the backbone of the two nucleotides, a posteriori of optimal
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Nucleotide conformation Set of symbols

1. Type

2. Sugar pucker

3. Orientation around
glycosidic bond

{A, C, G, U, T}

{d'-endo, C1'-exo, C2'-endo, C2'-exo,
CS'-endo, CS'-exo, C4'-endo, C4'-exo,
O4'-endo, O4'-exo}

{anti, syn}

Base-base interaction Set of symbols

1.Types

2. Adjacency

3. Stacking

4. Pairing

a. Relative glycosidic
bond orientation

b. Interacting edges

e. MC-Sym number

{A,C,G,U,T}2

{adjacent, non-adjacent}

{stacked, unstacked, helically stacked}

{paired, unpaired}

{cis, trans}

{W.-C., Hoogst., Sh.g.}2

{l, II,.., XXVIII, 29, 30, ...,137}

Table 3-1 Symbols used in classification. Two symbols from the base type and
interacting edges are used, one for each nucleotide involved in the base-pairs of
two or more H-bonds are in roman, whereas arable numbers are used for one
H-bond base-pairing patterns.

J
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Figure 3-2 Correlation of the da and d distance metrics. The dots represent the
RMSD computed using da. (vertical axis) and d (horizontal axis) between randomly
selected pairs of residues from the PDB and NDB.

superimposition of their local referentials in 3-D space [28]. Our metric is in

good correlation with the more standard all-atom superposition and RMSD metric,

ria(bi,b2), performed using the analytical method described by Kabsch [43,44]

(see Figure 3-2). Our metric places the emphasis on the backbone atom positions

and orientations relative to the nitrogen base, and is shown in Figure 3-3.

Figure 3-4 illustrates two situations in which our metric, d, offers a better

evaluation of the structural distance between nucleotide confonnations than the da

metric.

C. BASE-BASE INTERACTIONS

J

For the classification of base-base interactions, we considered nitrogen base

pairs that involve at least one of the known chemical stabilizing forces,

those of two covalently connected nucleotides, base pairing and base stacking.

Base-base interactions are thus of five distinct types: adjacent, adjacent-stacked,

adjacent-paired, non-adjacent-stacked and non-adjacent-paired (see Table 3-1).

Since there is no measurable forces between non-adjacent, non-paired, and
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Figure 3-3 Stereo view of superimposed nucleotide conformations. The RMSD

from a reference in black were computed using d. Dark to pale gray variations

were used to indicate small to large RMSD.

Réf.
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(a)

cf.=1 .OÂ
a-

cf»=0.3Â

(b)

d(b,,b2)=1.45Â

Réf.

d(bi,b2)=1.4Â

d(bi,b2)=4.4Â\^
dg=1.00Â

Figure 3-4 Comparison of the da and d distance metrics for nucleotide

conformations, a) Two nearly identical nucleotide conformations in light and

medium gray, d = 1A5Â, to a reference nucleotide in black. However, their
distances differ when computed using da, respectively 1.0 and 0.3Â. b) Two
different nucleotide conformations in light and medium gray, at respectively 4.4
and 1.4Â of the reference nucleotide in black. Their RMSD computed using da is
1.0Â.
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non-stacked nucleotides, they were not considered even though they are more

frequent. The adjacency of nucleotides was determined either by using the Protein

DataBank (PDB) nucleotide numbering system [8], or a maximum length of 2Â
of the 03'-P chemical bond.

Traditional encodings of adjacent base-base interactions use the six backbone

torsion angles a, /3, 7, 5, e and C [79], or the two pseudotorsion angles r] and

6 [22]. These parameters accurately describe the relative placement of nucleotides

linked by a phosphodiester bond. However, it has already been observed that

distinct torsion angle combinations can result in similar backbone directions and

base orientations. This phenomenon is known as the "crankshaft effect" [36,71].

Also, non-adjacent base-base interactions, like base pairings that are stabilized by

H-bonds and non-adjacent base-base stacking, cannot be accurately parameterized

using these angles. Rather, a plethora of rotation and translation parameters have

been used to describe these interactions [4,46,47]. A simplified and unified

encoding scheme for any type of base-base interactions that emerged from the

introduction of HTMs is introduced. In order to allow us to effectively compare

base-base interactions, a distance metric between two HTMs, Mbi-^bz and

Nb^b^ should possess the following properties:

d(Mb^b2,Nb'^b:,) = d(Nb^b,,Mb^bJ (3.1)

rf(Mb,-,b.,Mb,-,b2) = 0 (3.2)

d(Mb^b,,Nb^b,) = rf(M^^N^) (3-3)
Figure 3-5 shows a two-dimensional vector analogy of equations 3.1 to 3.3.

Equation 3.1 states that the distance metric should obviously be commutative.

Equation 3.2 states that a spatial relation should have a null distance with itself,

but not with its inverse unless they are equal. Equation 3.3 states that the distance

metric should not depend on the direction of application, implicit in the HTM

representation.

The simple Euclidean distance in the 16 dimensional space of HTMs does
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ûf(M,N)

A
y

^

N
-1cV(M »

>

11 N
x

cy(M'1,N'1)

Figure 3-5 Two-dimensional vectorial representation of the distance metric

properties. If M and N are two vectors representing spatial relations, one can

see that the distance between the extremities of these vectors is independent

of the order in which the distance is computed (Equation 3.1) and is equal to

the distance between the extremities of their inverses (Equation 3.3). Also, the

distance between the extremity of a vector and its inverse will be zero only if they

are equal (Equation 3.2).

J
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not satisfy the above properties since HTMs embed a combination of translation

and rotation terms that need to be considered separately. A HTM can be

decomposed in the product of two HTMs, ]VI = TR, where T contains the

translation and R contains the rotation embedded in the original HTM. Paul [72]

showed how to extract the length of the translation, I, as well as the angle 0 and

the axis of rotation k from matrices T and R. The strength of a transformation,

6'(M), regardless of the axis of rotation, is defined by:

5(M) = ^ + {^, (3.4)

where a represents a conversion factor applied between the translation and

rotation contributions to combine the different units. Figure 3-6 shows that a

conversion factor of 30°/A yields a nice correlation with the RMSD metric, and
means that a rotation of 30° around any axis is equivalent to a displacement of

1Â between two nucleotides' local referentials. Using this expression, the distance
between two base-base interactions, d(M,N), can be defined by:

[5(MN-1) + S(M-1N)]d(M,N) =
2 5 (3.5)

which satisfies the requirements of equations 3.1 to 3.3. In equation 3.5, the

composition of transformation MN-1 can be seen as the necessary transformation

needed to align the local referential R{, with Rbs when Rj, and Rbi are
aligned with the global referential. Similarly, M-1N can be interpreted as the

transformation required to align R^, with Rbi when R^ and Rba are aligned
with the global referential.

Figure 3-6 shows that c?(M,N) is roughly equivalent to the more

standard RMSD, da, calculated after the optimal global superimposition of the

atomic coordinates of the two pairs using the analytical method described by

Kabsch [43,44]. However, our distance metric better discriminates between two

spatial relations that differ by a rotation of the nitrogen bases. Figure 3-7 shows

two situations where the more standard RMSD metric incorrectly interprets the
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Figure 3-6 Correlation between standard RMSD, da, and the local referential
metric for base-base interactions, d(M,N), with different factors of a. All
dots represent distances of base-stacking interactions. The gray dots represent
distances obtained using a factor a = 15°/Â, whereas the black dots represent
distances obtained with a factor a = 30°/A.

distances because of nitrogen base rotations, whereas our metric returns a better
evaluation of the distances.

Although HTMs are perfectly suited to uniformly encode base-base

interactions, the information they contain is too compact to identify the type

of spatial relations they encode without reproducing them in 3-D space, and

evaluating other parameters. For this reason, the symbolic annotations of base-base
interactions are detennined from atomic coordinates.

D. BASE PAIRING

J

Hydrogen bonds (H-bonds) are weak electrostatic interactions involving hydrogen
atoms located between two atoms of higher electronegativity. Being weaker than

covalent bonds, they are nevertheless the most significant interactions in the

folding and stabilization of DNA and RNA molecules. H-bonds are directional

due to the orbital shape of the electron density distributions, and thus favor planar
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(a)
0.6Â 0.6Â1.8Â 1.8ÂRéf. Réf.

8 a

a
0

^-^-^ T-^-t.
'^ •^^OriginOrigin

d(M,N) = 3.0Â d(M,N) = 3.0Â

(b)

•y^. ^^
Origin

8.3Â

Origin

8.3Â

da=1.7Â da=1.7Â

Figure 3-7 Stereo views of superimposed base stacking interactions, a)
Two base stacking interactions, at equal distance of 3.0Â to the reference
stacking interaction in black, but at da = 1.8, and 0.6Â respectively, b) The
all-atom superimposition does not allow us to distinguish between two different
base-stacking interactions when the differences come from nitrogen base
rotations. Two base stacking interactions at respectively 3.5 and 8.3Â, due to a
rotation of 18CP of the nitrogen base, is not detected by da = 1.7/4.
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base pair geometries formed by at least two H-bonds.

Most base pairing types are planar and subject to base stacking forces within

the helical regions where they are found. Base pairing between two nucleotides

can be determined using the empirical method developed in our group, which

yields a symbolic classification of the possible H-bonding types. For a given pair

of nucleotides, the list that contains all possible types, involving two or more

H-bonds as defined by Donohue [20,21], and involving one H-bond as defined

by Gautheret and Gutell [27], U = {H^, H^,..., Hn}, is considered. A base pair

of geometry X satisfies the pairing Hk if P{Hk \ X) > P^H, \ X), H, e U,

i 74 k, that is, the probability of forming pairing Hk given geometry X is higher

than any other pairing, and P(Hk \ X) > c, that is, the probability of pairing

Xk given geometry X is higher than cutoff, c, that was empirically fixed to 0.3.

An empirical approximation of the probability of observing base pairing type H,

given the geometry X, P(H \ X), can be obtained by considering H to be the set

of donor/acceptor pairs that should form H-bonds in the given geometry, and H to

be the set of H-bonds that should not form. This approximation can be obtained

by the following product:

P(H l X) = îl^PÇh, | x,). n^^(i - P(^ l xQ), (3.6)

where P(h | x) represents the probability of forming H-bond h given local

geometry x. The local geometry of a pair of donor/acceptor, x, is defined by

the distance between the donor and acceptor, the angle between the acceptor,

the donor and the hydrogen, and the angle between the donor, the acceptor

and the lone electron pair. We obtain an approximation of the probability of

h by multiplying the probabilities associated to each above parameter, which is

computed by the following function:

PÇh \x)= ^
x < p,

else

l

fx- /i\2 (3.7)
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The constants p. and a were obtained empirically for each parameter by visual

observation of the histogram.

The class of a base pair is usually defined by its relative glycosidic bond

orientation and the interacting faces of the two bases [54]. But since these two

attributes can define more than one base pairing type, the H-bonds involved in the

pattern must also be present. To simplify the classification of base pairing types,

identification numbers were introduced in MC-Sym, and are used in MC-Annotate

to define their classes [45]. Roman numerals indicate the two (or three) H-bonds

pairings identified by Donohue [20,21], whereas arable numerals indicate the

bifurcated and single H-bond pairing patterns generated by Gautheret [27].

Table 3-1 summarizes the different parameters of base pair classification.

E. BASE STACKING

J

Vertical nitrogen base stacking is a significant stabilizing interaction of DNA and

RNA 3-D structures, which plays a major role in their folding and complexation.

Stacking occurs more frequently between adjacent, but also non-adjacent,

nucleotides, mostly in double-stranded helical regions. The stabilization of

base stacking involves London dispersion forces [34], and interactions between

partial charges within the adjacent rings [80]. Evidences for hydrophobic

forces between bases in solution [86], as well as a contradictory nonclassical

hydrophobic effect [70], have been observed. However, these interactions were

not characterized and parameterized such that they could define precise energy

parameters that could be used for the detection of base stacking [83].

In order to include examples with large deviations from ideal parameters, we

employed a geometrical approach that uses relaxed ranges of the values defined

in the Gabb et al. method [25]. It has been shown that many inconsistencies

exist in the atomic coordinates of RNA structures. The deviations measured in
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NMR spectroscopy and x-ray diffraction stmctures can be due to variations in the

refinement protocols and force fields, as well as to artifacts resulting from the

detennination processes [19,96].

Stacking between two nitrogen bases is considered if the distance between

their rings is less than 5.5Â, the angle between the two normals to the base

planes is inferior to 30°, and the angle between the normal of one base plane and

the vector between the center of the rings from the two bases is less than 40°.

The class of a stacking interaction is defined by the nucleotides involved in it (see

Table 3-l).

F. STRUCTURAL DATABASES

Nucleotide conformations and base-base interactions identified and annotated by

MC-Annotate in all available DNA and RNA 3-D stmctures (see Materials

and Methods) were stored in databases. Nucleotide conformations and base-base

interactions originating from newly determined stmcturcs can thus easily be

compared to all others, for instance to detect peculiar and similar regions.

G. PECULIARITY

J

From the two distance metrics defined above, peculiarity factors were defined to

identify specific nucleotide conformations and base-base interactions, as well as

to detect possible stereochemical errors in a given RNA 3-D stmcture without

having to visualize it. Each nucleotide conformation and base-base interaction is

thus evaluated relatively to all other examples of its class, and its peculiarity, or

adversely conformity, can be assessed using the peculiarity factor.

The degree of peculiarity of a feature v; is a measure, within its

conformational space c, of how scarce the space surrounding v; is. A kernel-based
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centered on each feature to evaluate its contribution to the peculiarity factor at a

given point in conformational space. The degree of peculiarity is then given by:

Çc(Vi) = l -
l

n^TT^ ^

n i^d(vi,v,)\2
^^[^^)

î (3.8)

where the sum is taken over all features Vj (nucleotides or base-base interactions)

of the same class as v; in the databases. The standard deviation o-c determines the

"size" of the Gaussian kernel, that is, the extent to which a distant feature vj in

the space of conformations contributes to the peculiarity at point v;. Since the

size and density of confonnational space varies within each class of features, we

compute an unbiased estimate of the standard deviation in each class as follows:

ff r. =

c-^j»iîg(v.-^=^E^E(v.-v.)). ^
!=1 \ ~ t=l \ J=l

where the difference (v; - Vj) is simply one of our distance metrics d(v;,Vj)

defined above. In order to more easily compare peculiarity values, we express

them as relative peculiarities using the expression:

Qc(v,) - Qmin^(Vi) = (3.10)
Qmax _ Qmin

Peculiarity values range from 0 to 1 with high values indicating high degrees of

peculiarity.

H. STRUCTURAL GRAPHS

J

A stmctural graph is a computer representation of nucleic acid stmctures in which

nodes correspond to nucleotides, and edges to spatial interactions between pairs

of nucleotides. The first level of annotation stores the atomic coordinates, torsion

angles, and nitrogen base spatial interactions encoded by HTMs. The second level

of annotation computes and attaches the symbols that characterize the nucleotide

conformations and base-base interactions, as described in Table 3-1. MC-Annotate
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Figure 3-8 MC-Annotate output for each node and edge of a structura! graph.

a) The node for G 1051 in the rRNA domain binding protein L11. MC-Annotate

computed the distribution of distances between the G 1051 conformation and all

others examples in the same class, attached examples of the same class (not

shown) and displayed the closest example among them (here, nucleotide 32 in

1ANR), and returned its peculiarity value, b) The edge for the base stacking

interaction between G 1051 and C1052 in the rRNA domain binding protein

L11. MC-Annotate assigned the appropriate base stacking symbol, computed the

distribution of distances with all other examples of the same class, attached

examples of the same type (not shown) and displayed the closest among them

(here the base stacking between nucleotides B73 and B74 in URL069), and

returned its peculiarity value.

generates the stmctural graph of any given DNA or RNA 3-D structure in the

PDB format. This encoding of nucleic acids stmctures and the distance metrics,

which relate nodes and edges, permit the use of many graph theoretical algorithms

to explore higher-order nucleotide arrangements, such as motifs, both on the

geometric and symbolic standpoints. Figure 3-8 shows the annotations attached to

the nucleotide conformations and base-base interactions.

1. THE RRNA DOMAIN BINDING PROTEIN L11

J

To illustrate the various possibilities of MC-Annotate, we have thouroughly

analysed the stmcture of the rRNA domain binding protein L 11. The x-ray

crystallography stmcture of this rRNA domain contains several non-standard

conformations and stmctural distorsions, which are due to its interaction with
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the protein. The domain contains 58 nucleotides of the large subunit of the

ribosome of E. coli, and forms a complex with the ribosomal protein L 11 (PDB

code: 1QA6) [15]. This highly conserved domain of the rRNA is an important

functional site and a potential target for antibiotics. The role of protein L 11

can be structural to maintain the unusual fold of the rRNA domain. A careful

analysis of the geometrical features of this domain is therefore an essential step

to understand its function, and to characterize its interactions with protein L 11

and antibiotics. Here, using MC-Annotate, we provide further evidence and a

quantification of the unusual structural features reported by Conn et al. [15].

The results of the annotation procedure are shown in Table 3-2, which shows

the symbolic description of each nucleotide and base-base interaction, as well as

their associated degrees of peculiarity. All the relationships originally predicted

by Gutell [33] using comparative sequence analysis (CSA) on the large subunit

rRNA are present in the crystal structure, and were identified by our computer

program. Using a graph isomorphism algorithm, we were able to identify and

localize conserved motifs that occur both in the L 11 binding domain and in many

other PDB structures (see Table 3-3).

J. COMPLETENESS OF THE BASE-BASE INTERACTION DATABASE

J

Given the current database of base-base interactions, one might ask if it is

complete, that is if the probing of new structures using x-ray crystallography,

NMR spectroscopy, or any other experimental method is likely to provide more

structural information, and thus improve our knowledge about RNA stmcture. The

answer to this question is particularly cmcial to the development of empirical

molecular modeling computer programs, and in particular to MC-Sym, whose

accurary and precision of the construction process highly depend on the diversity

of examples currently available in the database. MC-Sym uses the database of

base-base interactions to assemble new RNA structures that satisfy experimental
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Description Pattern Molecule PDB id. Position

1. A-Platform Ai 089*Ai 090 P4-P6 group I intron domain
LSU rRNA group l intron
SSU rRNA S8 binding site
LSU rRNA

2. Base triple Cio72*Gl099*Cl092 LSU rRNA group l intron
SUNYrRNAgrouplintronT4
LSU rRNA

1GID
1GRZ
1BGZ
1FFK

1GRZ
1SUN
1FFK

3. U-turn URRN

4. Non-adjacent Aioei/Aio70
stack

HIV-1 RNA hairpin loop 1BVJ
Tobramycin-RNA aptamer complex 2TOB
Hammerhead rybozyme 301 D
LSUrRNA 1FFK
U2 snRNA stem loop I la 2U2A

Yeast tRNAASP 2TRA,3TRA,
1ASY,1ASZ,
486D

SSU rRNA S15,S6,S18 binding site 1EKC
LSUrRNA 1FFK

A17rA172, A218*A219. A225*A226
A171*A172
17*18

0.59*0.60. 0.441*0.442, 9.51*9.52

A260*A212*A109

92'62'37
9.113*9.66*9.15

A11-A14
12-15
A40-A50-A60-A70

0.392-0.395. 0.2598-0.2e01
9-12

9/46
R609/R646, S609/S646
A9/A46, E9/E46
1665/J733
0.191/0.204,0.1684/0.1691

Table 3-2 Motifs in the rRNA domain binding protein L11. The position indicated
in the patterns refer to position in the rRNA binding element. The molecules in

which patterns of the same class were found are listed. The pattern matching

was made according to the classification symbols defined in Table 3-1, as well as

distance comparison of the HTMs of the edges in the target pattern, defined by
the rRNA domain, and matches in the other molecules. A distance cutoff of 2 A
for each relation was used during pattern matching.

J
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code

0; 1051 C3'
C; 1052 C3'
C; 1053 C3'

C3'

C3'
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C3'
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C;10Î2 0:1107
C;1053 0:1WS
A;10S4U;U05
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0:1071 0:1091
G:ia71C:lIOI)
C; 10720:1099
C: 1079 A: 1081
U;1062A;1D8<
0:1067 A;U89
G:108"C;1102
B:10B7A;1103
A;1090 U:1I01
A:umc;iuî
o;io?i c-.iiao
0:1091 U:1101
C:1[)9?.0;UW
0:W93A;W?1

it

it

57
XDC
XI
XX

XX
XBi

3t»II

0.61S
D.5W
a.6tt
0.832
0.703
o.su
0.724
OS97
0,551
0£4S
0.743
O.S7<
OS95

XOt 0,745
0.770

XK tt£SS
0.100

XK 0<S41
46 0.8a3

os»
S999
SS07
O.fS
0.871
asps
0394
0»«

XDt 0.723
O.B85

30; OW
0521

XIX 0^24
0.884

XDt 0^15
XI , 0411 .:

VI
123
122

sco

Table 3-3 Annotation results for the rRNA domain that binds to protein L11.
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and theoretical constraints [63]. An important assumption is the completeness of

the database, which guarantees the construction of any possible RNA structures.

In practice, it is often difficult to evaluate if the problems encountered in building

a particular stmcture is caused by the use of a restricted conformational sampling,

due to insufficient base-base interaction examples, or to inconstancies in the

constraints. Therefore, it is of utmost importance to quantify the completeness of

the base-base interaction database.

The distance metric developed in section C can be used to address the

completeness of the database. We assume that a given spatial relation, M, is

present in the database if the database contains a spatial relation, N, such that

ri(M,N) < e, where c is a distance cutoff that was arbitrarily fixed to 1.75Â. To
evaluate the completeness of the database, 3000 single-stranded RNA stmctures

were generated according to the protocol described in Materials and Methods. All

adjacent base-base interactions were extracted from the random stmctures, and

the base-base interactions that were not present in the database were counted,

Sa. The probability of finding a new interaction can be estimated by Sa divided

by the total number of randomly generated base-base interactions, S'. Inversely,

l — ^-, represents the base-base interaction coverage of the database. The stacking
interaction database covers 87% of all possible stacking interactions, and the

non-stacking interaction database covers 26% of all possible non-stacked adjacent

interactions. In order to increase the diversity of base-base interactions in the

database, and thus improve the precision of the MC-Sym construction procedure,

the randomly generated stmctures were introduced in the database.

We then evaluated the number of such new random stmctures required to

obtain a complete coverage, that is to reach a point where Sa = 0, for the stacked

and non-stacked interactions. As above, all base-base interactions were compared

to the existing examples of the database. However, after being compared, the

randomly generated examples were inserted in the database. Figure 3-9 shows
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Figure 3-9 Database coverages. The curves show coverage increases of the

conformational space as new randomly generated structures are added to the

database. The upper curve is for the base stacking interaction database, and the

lower curve is for the non-stacking base-base interactions.

that as new examples are inserted, the coverages of stacked and non-stacked

interactions increase, as expected. In the base stacking interaction database,

coverage goes up to 99%, after the insertion of only half of the randomly

generated interactions, whereas in the case of non-stacked base-base interactions,

coverage reaches an asymptotic point near 89%.

3-3 DISCUSSION

A. THE RRNA DOMAIN BINDING PROTEIN L11

J

Figure 3-10a shows the 3-D structure of the rRNA domain that binds protein L 11.

As indicated by the yellow color, a large portion of the stmcture is peculiar. The

RNA fold is centered around a four-branch loop connecting, in clockwise order,

stem-loop A, loop B, stem-loop C, and helix B (see Figure 3-10b). In the 3-D

stmcture, stem-loops A and C are parallel and adjacent. Helix B and loop B are

parallel to each other, and antiparallel to stem-loops A and C (see Figure 3-10a).

The large deviations of the Watson-Crick base pairs A1057«U1081 (Q^ == 0.75)
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Figure 3-10 The rRNA domain binding protein L11. a) Stereo view of the
crystal structure of the 58-nucleotide domain. The degrees of peculiarities of the

base-base interactions are shown in red for low peculiarity values, and yellow
for high peculiarity values, b) Secondary structure. Watson-Crick base pairs are
indicated by lines. Non Watson-Crick base pairs are indicated by dots.
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and G1087.Cl 102 (Q/c = 0.64), and the reversed Watson-Crick A1082.U1086

(Q'^ == 0.80, Figure 3-11b) at the branching of the loop suggest that energetic
strains are introduced by this particular arrangement of the domain.

The structure of the domain is stabilized by many tertiary interactions

between the four regions, and shows a large interior core where most bases

are stacked and paired. The surface contains several phylogenetically conserved

bases that are exposed to the solvent, and available to make interactions. An

unusual stacking interaction can be observed between residues A1057 and A1086

(Q' = 0.97, Figure 3-11c) located in two parallel strands, where A 1086 adopts

the uncommon C3'-endo syn confonnation (Q'^ = 0.61). Helix B and loop B are
also stabilized by a non-peculiar single H-bond base pairing between G 1055 and

A1085 (Q'^ = 0.11). These positions are 99% conserved among the sequences of
the three phylogenetic domains (Archaea, (eu)Bacteria and Eucarya) [15].

Results show that stem-loops A and C interact with each other through

several tertiary base pairs. A base triple formed by the base pairs G1071»G1091

(Q/e = 0.86) and G1071»C1100 (Q^ = 1.00) via peculiar base pairing interactions
of types cis Watson-Crick/Hoogsteen (VI) and trans Hoogsteen/C-H (123)

respectively, stacks between two other base triples [32]. The first base triple

involves the C1072.G1099 (Q'^ = 0.71, type trans Watson-Crick/Hoogsteen (122))
and the Watson-Crick C1092.G1099 (Q'^ = 0.30) base pairs. The second base
triple contains the Watson-Crick A1090.U1101 (Q', = 0.60) and A1089.A1090

(Q'c =1.00, type trans Hoogsteen/C-H (4l)) base pairs. A 1090 and A 1089 are
part of the so called "adenosine platform" motif (Figure 3 • 11 g), a very stable base

pairing formed by two consecutive adenosines. Three occurences of A-platforms

were found in the crystal stmcture of the P4-P6 domain of T. thermophila group

I intron [12], and five more were detected by MC-Annotate (see Table 3-3). All

occurrences of A-platform motifs are within a distance of 2Â of each other,
indicating an energetically stable motif. The base stacking observed in the base
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Figure 3-11 Peculiar nucleotide conformations and base-base interactions of

the rRNA domain binding protein L11. Superimposition of the conformations

and interactions extracted from the rRNA domain (in black) with their closest

example in the MC-Annotate databases (in gray), and their distribution of

distances with all other examples of the same class. The red dots in the

distribution curves indicate the distance of the conformation or interaction with

the one used its closest. a) Residue A1088. b) Base pairing G1055»A1085.

e) Base stacking between A1057 and A1086. d) Adjacent stacking between

G 1059 and U 1060. e) Base stacking between A 1061 and A1070. f) Adjacent

non-stacked bases from A1087 and A1088. g) Adjacent base pairing between

A1089 and A1090. h) The three occurrences of the relation UR in the URRN

motif, also called U-turn, that were found in the rRNA domain binding protein

L11: U1066-A1067, U1083-A1084, and U1094-A1095. Also shown are their

distance distributions to the non-stacked interactions in the database.
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triple complex is normal, except for the peculiar stacking between G 1071 and

A1089 (Q^ = 0.99).

The rRNA domain also contains three occurrences of the characteristic

U-tum motif found in many RNA structures (see Table 3-3). The U-tum

motif is a structured URRN loop that is stabilized by a H-bond between the

5'U:N3 and the phosphate of the 3'N, as well as stacking between the Rs.

The motif has a very specific UR non-stacking interaction that possesses a low

variability for this type. Among all of the non-stacked base-base interactions

in the PDB, only 1% are closer than 4Â to the three UR interactions of
the rRNA domain, which among them share distances inferior to 2.7Â. They
nevertheless exhibit relatively high degrees of peculiarity with other adjacent

non-stacking interactions (Figure 3-11h), indicating the importance of specializing

further each class of base-base interactions. They are positioned at the beginning

of loop A (U1066-A1067), B (U1083-A1084) and C (U1094-A1095), and turn

the direction of the phosphodiester chain. One of the U-tum allows loop A

to be inserted deep inside the stmcture between helices A and C, where the

loop interacts in unusual ways with the surrounding nucleotides. Conn et al.

reported that this is an unprecedented configuration for a hairpin loop. Our results

quantify this observation since five out of the eight adjacent interactions adopt

peculiar conformations (Q'^ > 0.5). In addition to the nucleotides G1071 and

C1072, involved in two of the base triples described above, the phylogenetically

conserved G1070 stacks with U1061 (Q^ = 0.86; Figure 3-11e) m a peculiar way

to stabilize the stmcture and to expose to the solvent the Hoogsteen edge of

G 1070 and the Watson-Crick edge of Ul 061. These two nucleotides, as well as

the solvent exposed A 1067 and A 1095 found in the two nearest U-tums, are

suspected to interact with other components of the ribosome and possibly other

molecules [15]. Other occurrences of this particular type of base-stacking were

found in the yeast tRNAASP crystal structures, and in the small and large rRNA
subunits.
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Many peculiar conformations were found in the region near the protein

binding site, indicating a structural role of the protein in the stabilization of

these unusual base-base interactions. These distorsions can be attributed to the

electrostatic influence of protein LI 1, or to the formation of an uncommon, but

specific, protein binding site in the domain. On one hand, mutations at the

binding site of the rRNA reduce L 11 binding affinity [99]. On the other hand, the

protein interactions stabilize the entire rRNA domain [98].

The phylogenetically conserved nucleotides G1059, U1060 and A1088 are

at the heart of the protein binding site where the nearly invariant U 1060 and

A1088 interact in a well formed Hoogsteen base pair (Q'^ = 0.36), although

A1088 adopts an unusual CS'-exo syn conformation (Q/c = 1.00, Figure 3-11a).

A peculiar adjacent relation between nucleotides G1087 and A1088 (Q'^ = 0.87),

in stem C, is necessary to accommodate the insertion of A 1088 into helix A

(Figure 3-11f). Also, nucleotide A1061 bulges out of helix A in an unfamiliar

way to accomodate stacking with G1070, as mentioned above. U1078 also

bulges out of the helix. These bulges introduce an abrupt change in the helix

axis. Nucleotide U1060 interacts with G1059 in a reverse stacking configuration

(Q^ = 1.00, Figure 3-11d), which reverses the polarity of the backbone in the

helix and exposes its major groove edge to the solvent. We found a similar

relation in the NMR structure of the AMP-RNA aptamer complex [40], as well as

in the NMR structure of the Rev-RRE complex [48], as observed by Conn et al..

This unusual conformation creates a particularly reactive binding site by exposing

many H-bond acceptors to the solvent.

In summary, most of the relevant features of the rRNA domain that

binds protein L 11 involve uncommon nucleotide conformations and base-base

interactions. Here, MC-Annotate was useful for targeting and quantifying these

conformational features. Since function can be attributed to structural specificity,

finding conformational features deviating from the norm can be useful for
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identifying structure-function relations. In a similar way, finding highly conserved

conformations, such as those defining the U-tum motif, can also results in
stmcturc-function information.

BASE-BASE INTERACTION DATABASE

J

The protocol used to evaluate the base-base interaction database coverage has

allowed us to quantify the stacked and non-stacked interactions. The stacking

interaction database covers 87% of all possible stacking interactions, and

the non-stacking interaction database covers 26% of all possible non-stacked

adjacent interactions. This observation was consistent with the fact that MC-Sym

builds stacked regions more easily than non-stacked ones, such as unstructured

loops [52].

It was assumed that we could generate all stereochemically sound stacked

and non-stacked base-base interactions by applying the molecular dynamics

protocol to single-stranded oligonucleotides. In fact, since some adjacent base-base

interactions are stabilized by secondary and tertiary structures, it is very difficult

to reproduce some unusual examples using molecular dynamics. It is highly

probable that these structures were not generated using our protocol, and indicate

that our results might correspond to overestimates of the database completeness. It

is also important to note that the completeness was only quantified for adjacent

interactions, and thus non-adjacent (paired and stacked) interactions appearing in

larger structures are difficult to explore using this approach.

These results are particularly important in the interpretation of the absolute

peculiarity values obtained in the annotations since they are artificially raised

in the context of incomplete sets. In particular we should expect systematically

higher peculiarity for non-stacked interactions than for stacked ones. Peculiarity

factors should only be used to compare interactions from equally complete sets.



n

81

With the introduction of newly determined 3-D structures in the MC-Annotate

databases, we expect a steady decreasing in peculiarity values, reflecting the fact

that each structure increases the amount of structural knowledge contained in the

database. However, the peculiarity values of unsound nucleotide conformations

and base-base interactions will increase.

C. CONCLUSION

J

The proposed annotation procedure simplifies the analysis of experimentally and

theoretically determined structures. In particular, MC-Annotate allows one to

classify the nucleotide conformations and base-base interactions, and to detect

marginal regions that could indicate interactions with other molecules, or new

sites that are responsible for structure and/or function. The results of the analysis

of the rRNA domain binding L 11 support these facts. The key interactions that

were identified by the analysis correspond to actual structures involved in protein

binding. Therefore, peculiarity values can be used to identify original and new

structural features, as well as potentially faulty ones, and offer a fast approach to

verify the presence of similar features in other RNA structures.

The interpretation of peculiarity values depend on the parameters used

to classify the conformations and base-base interactions, and of the standard

deviation of the Gaussian distributions. The distribution in each class varies, and

therefore the interpretation is different for each class. In practice, we consider

that peculiarity values higher than 0.75 for nucleotide conformations or base-base

interactions indicate regions of interest. The peculiarity values should never be

interpreted independently of the distributions they are calculated from.

Many aspects of this work have implications for the MC-Sym molecular

modeling computer program. First, the annotation procedure makes it possible

to accurately and automatically build nucleotide conformations and base-base
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interactions databases. The two distance metrics allowed us to define a more

efficient sampling of the conformational space of nucleic acids. With the

introduction of random structures in the database, the modeling process was

improved and now reflects more accurately the actual conformational space of
nucleic acids.

Obviously there exists a bias towards standard A-form helices in the

databases since a large portion of the PDB structures contain only small DNA

and helical RNA fragments. Nevertheless, with the ever increasing size of the

nucleic acids repository, any bias should disappear as the conformational diversity

increases. In fact, a significant addition was made to structure database and

consequently to our knowledge on RNA structure with the recent introduction

of rRNA crystals. For instance, between August 2000 and January 2001, the

base-base interaction database coverage augmented by factors of 6% and 7%,

respectively for the stacking and non-stacking interactions.

J

3-4 MATERIALS AND METHODS

MC-Annotate was developped under a Linux environment using the MC-Sym

software development library. The code was developed in C++, and is therefore

portable to several other computer architectures such as IRDC and SunOS

among others. To accomodate as many users as possible, the computer program

was made available through the Web, which eliminates any need for a local

installation. The Web application provides a user-interface allowing one to easily

browse the results of a particular annotation. DNA and RNA 3-D structures in the

PDB format can be submitted at www-lbit.iro.umontreal.ca/mcannotate/.

The Results were obtained using a database of nucleotide conformations

and base-base interactions from 1630 RNA and DNA 3-D stmctures, taken from

the PDB [8] database, as of January 2001, as well as from a limited number



83

n

J

of personal contributions. Some files from the PDB were not used since they

did not conform to the PDB format specifications. Examples of faulty PDB files

include those containing multiple models without the ENDMDL tags, and files

with misidentified or incomplete nucleotides. Hydrogen atoms were added, to the

PDB and NDB structures lacking them, prior to the analysis of bond lengths

and angles as described in the Comell et al. force field [16]. The resulting

databases contain 108 240 nucleotide conformations (8.9% from rRNA structures),

and 140645 base-base interactions (10.8% from rRNA stmctures). The considered

rRNA structures were 1FFK, 1FFZ, 1FGO, 1FJF, 1FJG, IFKA, 1G1X, and 1HRO.

To evaluate the completeness of the database, the following protocol was

designed to obtain a large sample of random conformations. 3000 single-stranded

RNA structures were generated using MC-Sym, and were refined using a 15ps

molecular dynamic simulation in which we reduced the temperature from 500K to

OK in the first 1 Ops. The oligomer "AACGCAUAGGUCCUUGA" was used with
a sampling of five non-stacked base-base interaction examples from the MC-Sym

database and the ideal A-RNA type nucleotide conformation for each position,

defining a conformational search space of 516 = 1.5 x 1011 possible conformations.
No distance constraints were used, except for a 1Â cutoff for steric clashes.
Each generated structure had at least an RMSD of 5Â with any other, when
computed for the nitrogen base atoms only, to guarantee a sufficient structural

diversity. The program sander from the Amber 4.1 suite of programs was used

with the Amber 94 force field [73] to optimize the stereo-chemical parameters

of the generated structures. All 1-4 electrostatic interactions were scaled by

a factor of 1.2 as suggested in [73]. A distance-dependant dielectric model,

e = 4Jîy, for the Coulombic representation of electrostatic interactions was used,
as suggested by [73]. As expected, the generated stmctures were significantly

different from the starting MC-Sym structures since no equilibration was applied.

This property was important since the goal of this protocol was to generate new
base-base interactions. Here, 11 121 stacked and 36879 non-stacked interactions
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were generated using this protocol.
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A NEW MOTIF IN THE LARGE RIBOSOMAL SUBUNIT IS

REVEALED BY GRAPH THEORY

S. Lemieux et F. Major, Science, à soumettre.

ABSTRACT

Representation of RNA stmctures as graphs has been used both for modeling 3-D

stmctures and predicting secondary structure. By extracting the minimal cycle

basis of this graph, fundamental blocks of the RNA structure are isolated and can

be compared to discover redundant motifs. The application of this technique to the

3-D structure of the large ribosomal subunit has led to the identification of a

novel RNA 3-D motif similar to the GNRA tetraloop but that is formed by two

independent strands. The structural environment of this motif suggests that it plays

a role in the stabilization of tertiary contact by binding the minor groove of an

adjacent helix.

J
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4-1 INTRODUCTION

RNA stnicture information can be stored in a graph of relations (GOR), a

general computer representation, where nucleotide information is attached to the

nodes of the graph and nucleotide interactions are defined in the edges. The

GOR is a general data structure in the sense that it allows one to store

application specific information, and in particular to manipulate any of the

common RNA structure abstractions: the sequence (primary stmcture), base pair

set (secondary structure), and three-dimensional (3-D) atomic coordinates (tertiary

structure). The GOR is an appropriate representation for RNA modeling system

development [49,52,62,63,75,100], and for systematic analysis of RNA 3-D

stmctures [29].

The GOR is an undirected and unweighted graph. It allows pseudoknots,

tertiary interactions, base triples and inter-strand stacking, and consequently it is

neither outerplanar or subcubic [58]. RNA GORs are sparse graphs since steric

repulsion limits the number of neighbors.

A new RNA structure abstraction suggested by the GOR representation is a

subset of cycles of nucleotide interactions. A cycle in a GOR is a circular path of

at least three edges. We contend that RNA function and stmcture are built from a

minimum cycle basis (the smallest set of cycles allowing to rebuild the complete

graph through cycle composition) [35] of the GOR: the elements of this basis are

the fundamental building blocks of RNA structure. We studied a minimum cycle

basis of the large ribosomal subunit (LRS), and discovered a new four-nucleotide

motif that mimicks the stmcture of the GNRA tetraloop in internal loops, and

systematically binds to the RNA minor groove of another stem.

The GOR of the LRS was computed from its x-ray crystal structure by using

the algorithm described by Gendron et al. [29] and a new base pair detection

algorithm developed in our laboratory. The GOR is then decomposed in a minimal



n

87

cycle basis using Horton's algorithm [38]. The cycles of this minimal cycle basis

are made as compact as possible by always including the edges of the shortest

path between any pair of nodes. The cycles were compared using an objective

distance metric and classified using a hierarchical clustering algorithm. The motifs

were defined as the recurrent cycles with high similarity.

J

4-2 MINIMAL CYCLE BASIS OF A GOR

When using the GOR to analyze a RNA 3-D structure, the spatial relation

between nitrogen bases are extracted from the structure and stored in the edges

of the graph. Homogenous transformation matrices (HTM) are used to represent

these spatial relations. They are encoded as 4 x 4 matrices, are used to represent

a combination of translation, rotation, sheer and scale [72]. Figure 4-1 shows a

typical graph of relations for the hairpin at positions 2555-2580 in the LRS of H.

marismortui, PDB code: 1FFK [5].

We decomposed LSR in substructures corresponding to the simple cycles of

the GOR. We also seeked that these cycles be as compact as possible and that

they are a sufficient representation of the entire molecule. This can be formalized

by defining that a cycle contains a short-circuit if the shortest path between

two nodes of the cycle in the graph is not part of this cycle, which would

result in the possibility to form two shorter cycles. Thus, cycles of the smallest

basis of the cycle space do not contain short-circuits (this can be deduced from

Horton's algorithm [38]), and with respect to the composition operator on cycles,

@, they are sufficient to generate the complete cycle space of the molecule.

This representation contains the complete structural information. This is done by

introducing the concept of coherency for both the GOR and a simple cycle and

then showing that the coherency of the minimal cycle basis implies the coherency

of the GOR.
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Figure 4-1 Decomposition of hairpin 2555-2580 of the large ribosomal subunit
in a minimal basis of the cycle space, (left) Graph of relation, (center)

Corresponding undirected graph, (right) Minimal basis of the cycle space.
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We define that a cycle of relation is coherent if the product of HTMs

assigned to its edges is equal to the identity matrix, I. A GOR is coherent if all

its cycles are cohérents. As a consequence of this definition, the coherency is a

property that ensures that a given assignment of HTMs can be used to rebuild

the 3-D stmcture. A subset of coherent cycles that can be used to infer the

coherency of the complete molecule is sufficient to represent this 3-D structure.

To manipulate cycles in graphs, we will use the cycle composition operator,

®, which is defined as the symétrie difference between the two sets of edges

representing the cycles. If both cycles are simple cycles and share a single

contiguous segment of edges, the result of the composition will also be a simple

cycle. The cycle space is known to be closed with respect to this operator [38].

The coherency of a cycle, c, can be infered from the coherency of a subset

of cycles, {ci, £2,..., Ck}, if c = Ci ®C2 @ ...©CA:. Without loss of generality,
let's assume that we have two coherent simple cycles Ci = (a, b) and cs = (6, c)
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sharing a single contiguous segment of edges, b, and we want to show that their

composition 03 = ci @ £2 is also coherent. We assume that the HTMs Hj: represent

the composition of transformations assigned to edges of segment x. Since ci and

C2 are coherent, we know that HbHa = I and HcH^, = I. From this, we obtain

that Ha = He, resulting in H^lHa = I and showing the coherency of cycle

es = (c-l,a). A cycle basis of graph G, B(G), is defined as a set of cycles that

can act as a basis for the cycle space of G with respect to operator @ [35]. This

property ensures that any cycle in G can be obtain by a composition of cycles

in B(G). The coherency of a cycle basis of graph G implies the coherency of G

and thus is sufficient to describe the molecule represented by G. The minimal

cycle basis provides the smallest set of cycles, with respect to the sum of edges

(in the current implementation, no weights are assigned to edges so this criterion

correspond to the total number of edges), sufficient to represent the 3-D structure

of the RNA. It could also be argued that the ideal decomposition would be the

one that minimizes the length of the longest cycle, but [14] have shown that both

criteria would result in the same set of cycles.

J

4-3 MOTIF DETECTION

We propose a new hierarchical organization of RNA stmcture based on the graph

representation where the first level is the nucleotide (nodes of the graph), the

second level is the binary relations (two nodes linked by an edge), the third

level is the cycles of a minimal cycle basis of the GOR, and the fourth level is

the complete GOR. The first level of stmcture is used when analyzing sequence

motifs, torsion angle motifs or pseudo-torsion motifs [22]. The second level

is considered when non-covalent interactions, including tertiary interactions, are

analyzed, as in MC-Annotate [29]. Cycles of the minimal basis are thus the next

step in the understanding of the network of molecular interactions observed in

RNA structures. We propose that such cycles should be regarded as fundamental
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building blocks to identify structural motifs in RNA 3-D stmctures and we present

a method to identify redundant building blocks. A distance metric between two

HTMs, d(M^,Mï), was defined in [29]. Building on this definition, we propose

the following metric between two cycles, c1 and c2:

d{c\c2) =

/(cl,c2,p) =

r(cl,c2,p) =

min ( min/(c ,c ,p),mmr(c ,c2,
p^Ô'J ''" ' " ' 'r/" p::ô* ' ^ ' " ' • (4.1)

^

^

n

E^i,e,,2'(i+p) modJ
z=l

n

^ [ [cn-i+l) ) c(z+p) mod n
î=l

where c1 and c2 are two cycles of equal length, n, c^ represents the jm HTM of
cycle c\ and p corresponds to the phase used to superpose the two cycles. This

distance metric identifies the optimal superposition of both cycles with respect to

the cartesian distance based on the HTM distance metric. Computing the distance

between two cycles of length n is done with a mnning time in 0(n). The motif

analysis of a RNA is done by applying hierarchical clustering on the distances

obtained from this metric.

J

4-4 RESULTS

The LRS was completely annotated as described in [29] but using an improved

method for base pairs detection described in [51]. The results were encoded as

a GOR consisting of 2828 nodes and 4642 relations. The decomposition of the

GOR in a minimal cycle basis using Horton's algorithm is a CPU intensive

process that require a running time in 0(n7), where n is the number of

nucleotides in the molecule. Despite this daunting worst case running time, the

algorithm returns the minimal cycle basis after 28 minutes 20 seconds of CPU

time (PIII-600) and the process occupies 148 Mb of memory to store the cycles

generated in the intermediate step of the algorithm [38]. The basis contains 1816
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3

4

5

6

7

8

9

10

11

12

13

14

15

>15

#

572

905

123

58

29

20

15

11

5

10

2

0

9

%

31.4%

49.8%

6.8%

3.2%

1.6%

1.1%

0.8%

0.6%

0.3%

0.6%

0.1%

0.0%

0.5%

3.1%

E # E %

1477

1600

1658

1687

1707

1722

1733

1738

1748

1750

1750

1759

1816

81.3%

88.1%

91.3%

92.9%

94.0%

94.8%

95.4%

95.7%

96.3%

96.8%

96.8%

96.9%

100.0%

Table 4-1 Distribution of cycle lengths in a minimal cycle basis of the GOR of
the large subunit of the ribosome. # and % report the number and proportion of
cycles of a given length, while Y,# and ^% indicate their cumulative values.

D

cycles, the sum of cycle length is 8710 and the longest cycle contains 66 edges.

Table 4-1 shows the distribution of the cycle length in this minimal basis. On a

general graph, the algorithm has a worst case running time in 0(n7) but since

the worst case of this algorithm is encountered for complete graphs, we expected

more reasonable running time when using it with sparse RNA graphs. Tests

made on random sparse graphs (results not shown) suggest that the topological

properties of the graph greatly influence both the mnning time and the amount of

memory needed. But currently, no formalism exists to fully describe the properties

of RNA GORs, thus it is very difficult to obtain an upper bound for the worst

case running time of this algorithm on RNA GORs. Since this molecule is known

as the largest stmctural RNA, the current algorithm for the decomposition has

achieved a practical efficiency in the context of RNA GORs.

Analysis of the resulting minimal basis of the cycle space of the LRS was

performed by computing for each cycle length the distance between each pair

of cycles. From the resulting matrix, hierarchical clustering (using the nearest
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neighbor algorithm with maximum distance criterion) was applied to obtain a

classification of the cycles. Clusters were visually identified and the substmcturcs

they represent were extracted and superimposed for 3-D visualization of the

putative motifs. This tedious task was applied for cycles of length 4, Figure 4-2

shows the classification obtained where two clusters are identified for further

analysis.

Both motifs identified on Figure 4-2 were further investigated in the

following way: for each motif, we extracted all occurences from the LRS and

superposed them using three atoms and pseudo-atoms per base. The atoms used

were the N9 for purine or N1 for pyrimidines, a pseudo-atom at l Â of the

N{1,9} atom in the direction of the C1'-N{1,9} vector, and another pseudo-atom

at l À of the N{1,9} in the direction corresponding to the normal of the nitrogen

base plane. These three atoms were selected to compare substmctures with

different sequences and without relying on the backbone conformation (motifs

were selected for the similarity of their nitrogen bases relations and we wished to

emphasize this property in the superposition as well).

The GNRA tetraloop motif presented in Figure 4-3 is one of the most

studied RNA motif. This loop is thermodynamically very stable [42] and its

main function is to form tertiary interactions by binding to specific tetraloop

receptor motifs. Thus, there is no surprise in easily identifying 10 nearly identical

occurences of this motif in the LRS. Two sequences arc of particular interest

since they do not conform to the usual GNRA sequence motif associated with

this type of tetraloop. Substructures #11 and #13 on figure 4-3 respectively use

sequences UCAC and CAAC, forming non-canonical base pairs U*C and C»C,

which are both isosteric to the sheared G«A present in the standard GNRA

stmcture. Substructure #11 appears on the surface of the ribosome and may only

contribute to the formation of a thermodynamically stable hairpin. On the other

hand, substmcture #13 appears to stabilize a tertiary interaction with a distant
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Motif 2

Motif 1

Figure 4-2 Hierarchical clustering of four edges cycles in the large ribosomal

subunit. Clusters shown with black lines are grouped within a maximal distance of

4.0 and should be considered as putative motifs. Two motifs are identified with

bold lines and will be presented in more details in Figures 4-3 and 4-4. Red dots

correspond to stacked base pairs, while blue dots represent GNRA-like tetraloop

motifs, defined as one base pair, two base stacking and a covalent bond.
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stem, effectively showing that this type of function is not limited to tetraloop

with a GNRA sequence. Both substructures are shown in yellow and using thicker

sticks on Figure 4-3 to emphasize the stmctural similarity they share with other

GNRA tetraloops. This result suggests that the GNRA tetraloop motif has more

sequence flexibility than its name implies, and perhaps should be renamed to

avoid possible confusion.

The motif presented in Figure 4-4 is of particular interest. The main

difference between the GNRA tetraloops presented in Figure 4-3 and this motif

is that the topmost nucleotide (second position in the GNRA tetraloop) is flipped

on the axis of the nitrogen base, displacing the backbone on the other side of

the motif. What is striking is the constancy of the environment in which it is

found: the eight occurences identified in the LRS always contact a minor groove

of a Type-A helix on the side of the motif corresponding to the Watson-Crick

face of the third base. Despite the fact that there appears to be no direct

chemical interaction between the motif and the minor groove of the associated

helix, the systematic conservation of the structural environment of this motif is

a strong indication that it is selected to promote this kind of tertiary contact.

Another observation on this motif is the strong sequence conservation among its

occurences, the sequence GA.AA is favored in seven of the eight occurences

with one exception where the sheared G«A is replaced by an isosteric G»U one

H-bond base pair.

J

4-5 DISCUSSION

Three main issues remain with the proposed method. First, there is no formal

definition of what consitutes a motif in RNA structures, redundancy is the most

commonly admitted feature of a motif and the one used here. But, ideally, the

concept of motif implies that the observed feature is unusually recurrent, raising

the possibility that it has been selected and that it plays an important role (either



95

^

v
i.

y

¥VT

'•>

#
l
2
3
4
5
6
7
8
9
10
Il
12
13
14
15

Green

G-0577
G-0469
G-02630
G-01055
G-01629
G-01863
G-02696
G-990
G-0691
G-02877
U-0253
G-02249
C-OI469
G-01794
G-02412

C-0578
U-0470
U-02631
U-01056
A-01630
C-01864
A-02697
C-991
A-0692
U-02878
C-0254
G-02250
A-01470
0-01795
A-02413

G-0579
G-0471
G-02632
A-01057
A-01631
A-01865
G-02698
G-992
A-0693
A-02879
A-0255
G-02251
A-01471
A-01796
A-02414

A-0580
A-0472
A-02633
A-01058
A-01632
A-01866
A-02699
A-993
A-0694
A-02880
C-0256
A-02252
C-01472
A-01797
A-02415

RMSD to #1

0.20 À
0.24 À
0.24 À
0.45 À
0.44 À
0.48 À
0.33 À
0.41 À
0.56 À
0.64 À
0.58 À
0.59 À
0.52 À
0.45 À

UCAC #11
CAAC#13

^ ^ Others

Red base pair

Figure 4-3 Motif 1: GNRA-like tetraloops from the large ribosomal subunit. The
stereo s/7oivs the superposition of 10 tetraloops adopting a similar GNRA-like
conformation. The backbone is shown in blue, the base pair in red and the two

other nitrogen bases in green. Two loops with non-GNRA sequences (CAAC and
UCAC) are adopting a GNRA-like conformation and are shown with thick yellow
sticks. The table shows the positions of each occurence of this motif in the large
ribosomal subunit and the RMSD to substructure #1. The base pairs closing the

loops are shown on the lower right, the pyrimidine*pyrimidine base pairs of the
CAAC and UCAC loops are shown separately.

J
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Green bases

# ' ^ RMSD to #1
G-0112 A-0113 A-048 A-049

2 G-01484 A-01485 A-01458 A-01459 0.64Â
3 G-0592 A-0593 A-0565 A-0566 0.31 À
4 G-01908 A-01909 A-01930 A-01931 0.41 À
5 G-0531 A-0532 A-011 U-012 l.05 A
6 G-01614 A-01615 A-01580 A-01581 0.92 À
7 G-01258 A-01259 A-01097 A-01098 0.79 À
8 G-02798 A-02799 A-02775 A-02776 0.81 À

GA.AU #5 (Others in grey)

^L J-

^'^

Red base pairs Others

Figure 4-4 Motif 2: Revisiting the GNRA, but without forming a loop. The

stereo shows the superposition of 8 occurences of this motif in the large

ribosomal subunit. The view angle and color code are similar to Figure 4-3.

The superposition of the base pairs are presented on the lower right panel. All

substructures use the sequence GA.AA except substructure #5 that uses GA.AU,

forming an isosteric G»U base pair.

J
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structural or catalytic) in its host organism. In sequence motif detection, the ratio

of observed/expected occurences is commonly used to reflect the stringency of

the selection process. With RNA 3-D structures, there is still no way to estimate

the expected frequency of a given motif. A solution to this problem lies in the

derivation of a random model for these cyclic substmctures that would be used

to obtain an expected frequency of occurence. The second issue is that motifs

identified using the cycles from a minimal basis of the cycle space are often

partial motifs. This is due to the fact that, frequently, the motifs are built from

several of these cycles. The method presented here should be used as a tool to

rapidly identify motif seeds. The third issue is that it is possible that the minimal

basis of the cycle space is not unique and in the context of motif detection it

would be preferable to use the union of all minimal cycle bases of the GOR. This

union is called the set of relevant cycles of a graph and an efficient algorithm has

already been proposed [90]. We refrained from implementing this algorithm since

the algorithm is no more polynomial and in fact, the set of relèvent cycles is not

guaranteed to be of polynomial cardinality (this situation arises naturally when a

RNA GOR forms a pseudoknot or some type of tertiary contact).

. By showing that the decomposition of a RNA GOR in its smallest basis of

the cycle space is still sufficient to infer the coherency of a 3-D structure we have

provided a genuinely novel representation of RNA molecules. We have shown

that this representation can be useful for stmcture analysis, but it also offer new

perspectives for the modeling of RNA 3-D structures. Indeed, the cycles arc the

smallest non-trivial modeling problems and, in this respect, provide a natural way

to tackle the problem of modeling the 3-D structure of an entire RNA molecule.

On an other scale, properties of cycles of HTMs were used as a post-processing

constraint in the MC-Sym program to obtain a 3-D model of the regular hexamer

of the prohead RNA of B. subtillis ^29 bacteriophage [100].

Here we proposed a new level of analysis for RNA 3-D structures that can
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be applied to motifs larger than a single relation. We applied this technique to

the 3-D structure of the LRS and identified two non-GNRA tetraloop adopting

conformations strickingly similar to the standard GNRA. tetraloop and a novel

motif that mimicks the GNRA tetraloop but without forming a loop. Most

importantly, this decomposition isolates the fundamental building blocks of RNA

structures and is thus a critical step in identifying stmctural motifs in 3-D

stmctures.
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The minimal cycle basis decomposition of a graph of relations (GOR) was

introduced in [50]. This decomposition allows for a new definition of the RNA

3-D modeling problem, consisting in two steps: first, we obtain a decomposition

and model each cycle independently; second, solutions obtained for each cycle

are combined to rebuild a complete 3-D structure. The modeling of a cycle

consists in finding assignment of HTM to the edges so that the coherency of

the cycle is maintained. This step can be computed in parallel for each cycle

and is conveniently distributed on a cluster of workstations. Results of this step

could be archived and retrieved when identical cycles are requested. The second

step is to decide which assignment to retain for each cycle and rebuild the

3-D structure from these asssignments. Two cycle assignments sharing a segment

of edges will be considered compatible if the distance between each pair of

corresponding HTMs is below a cutoff. The identification of a set of cycle

assignments is implemented as a heuristic search method using the distance

between corresponding HTMs [29] as a minimization criterion.

On top of retaining only coherent assignments, two types of constraints have

to be verified in both steps of the algorithm. By assuming that spatial relations

between nitrogen bases are sufficient descriptors of the 3-D stmcture we can

avoid to explore the conformational space of the sugar moiety (conformational
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sampling in MC-SYM [52]). On the other hand, the phosphate groups (PÛ4)

provide an important steric constraint and should be included in the model as

soon as possible. Since the phosphate group can be considered as a rigid body,

we included its local referential in the database of relations, this addition being

done only for adjacent relations. The two types of constraints are the possibility

to rebuild a ribose moiety linking adjacent phosphate groups and a nitrogen base

(called the ribose constraint) and the absence of atomic collision (called the

collision constraint) sometime refercd as the steric clash. Both contraints will be

presented with further details and their implementation will be presented in the

following sections.

Before describing the details of the modeling engine, we will first discuss

the various implications of applying the minimal cycle basis decomposition for

the modeling of RNA 3-D stmcturcs. Then, we will introduce the constraints

that are considered and the optimization methods used to solve the modeling

problem. Finally, results will be presented for two test molecules: the first one is

an eight nucleotides cycle from the ribosomal RNA binding protein L 11 (PDB

code: 1QA6, [15]) and the second one is the hairpin 2555-2580 of the large

ribosomal subunit of H. marismortui (PDB code: 1FFK, [5]). For brevity, these

two molecules will be respectively refered as the L 11 loop and the hairpin
2555-2580.

J

5-1 THE MINIMAL CYCLE BASIS FOR MODELING

A RNA 3-D structure can be represented as a graph of relations (GOR) where

each node represents a nucleic acid base and edges represents HTM between the

two connected nodes. This representation have been used for RNA modeling [52],

and for the analysis of RNA 3-D structures [29]. With this type of representation,

the stmcture of a RNA can be manipulated by modifying the relative orientation

and translation of nitrogen bases, and by considering each rigid nucleic acid
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base as a local referential, these manipulations are easily carried out by using

homogenous transformation matrices (HTM) to represent the relation [72]. HTMs

will be limited to rigid body transformations, and thus will only represent a

combination of translation and rotation. The inverse of an HTM always exists

and can be obtained in constant time. Sequences of translations and rotations can

be composed by multiplying the correspondant HTMs. The modeling program

MC-SYM [52,63] successfully uses this representation to infer 3-D stmctures for

several RNA molecules [49,76,100].

The 3-D modeling of RNA molecules corresponds to the exploration of

possible assignments of HTMs to edges of the GOR and the verification that these

assignments follow some predefined stereo-chemical criteria. Since most of the

stereo-chemical criteria (Van der Walls and electrostatic energies, bond lengths,

angles and torsion, etc.) can only be applied on the all-atoms representation of

the molecule, it is essential to check that the assignments of HTMs allows to

build the 3-D structure, a property that will be defined as the coherency of

the assignment. A straightforward way to solve this problem is to compute the

product of HTMs for every possible cycle of the graph for each assignment,

which would require exponential amount of time in the worst case just to

test one specific assignment. The exploration of all possible assignments being

a combinatorial process in itself, it is essential to avoid another embedded

combinatorial process for the simple validation of each assignment. We propose

to use the decomposition of the GOR in its minimal cycle basis for this puq)ose

and we will show that if the coherency property is respected for the cycle basis,

it will be respected for any cycle. The extraction of a subset of cycles will be

run prior to the modeling process and will require a worst case running time in

0(n7), where n is the number of nucleotide in the molecule, allowing for the
verification that an assignment is consistent with a time in 0(n2) (corresponding

to the maximum length of the minimal basis). Despite a daunting worst case

running time in 0(n7), the algorithm performs in reasonable amount of time on
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the largest RNAs [50]. We will also see that this decomposition suggests an

efficient parallelization of the modeling process.

In the molecular modeling program MC-SYM, coherency of the HTMs

assignment is guaranteed since only a spanning tree of the graph is used to

rebuild the 3-D structure. Since no cycle is present in the set of edges used, any

assignment can consistently be converted to a 3-D representation. This approach

results in a new problem, determining the spanning tree that is the most likely

to yield the desired results... This problem was conveniently left to the modeler.

Currently, there exists no systematic way of determining this spanning tree, and

this appears as the most challenging problem in the design of an automated RNA

modeling system. In 1995, Turcotte [89] proposed and implemented a modeling

approach using quadratic numerical optimization applied on the HTMs. The

results obtained in this work insist on the necessity to split the GOR in subgraphs

(called groups) in order to achieve feasibility, but no rationale was proposed to

automate this grouping step. Here, we show that the decomposition of a GOR

in its minimal cycle basis [14,38] can play a similar role, strongly limits the

topology of these subgraphs and is readily implemented.

A cycle of relations is said to be coherent if the product of HTMs assigned

to its edges is equal the identity matrix, I. This definition can be weakened by

requiring that the distance between the HTM, T, and the identity matrix, I, is

below a predefined cutoff: d(T, I) < e. If e is choosen to be small, the resulting

approximation can be neglected. A distance metric between two HTMs has

already been presented in [29]. The coherency of a GOR or of a cycle confirms

that it is possible to build a consistent 3-D structure from this assignment of HTM

to edges.

By using the smallest basis of the cycle space, we assume that the sum of

edges that is minimized in the Horton algorithm [38] also results in a basis that

will result in the smallest modeling problem. For modeling, the space to explore
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depends on the length of cycles in this decomposition. Since each edge will be

assigned a set of possible HTMs, the cardinality of the space, |5'|, associated with

a basis, B(G), will be:

isi- n (n8<e>).
where s (e) is the number of HTMs used to sample the spatial relation

corresponding to edge e. By assuming a constant sampling for each edge

(s (e) = s for any e e £'), we obtain:

si = n s\c\

ceB(G')

logj5| = ^ cl

ceB(G)

Since seeking the basis that will result in the smallest search space, |6'|, is the

same as searching for the decomposition with smallest log \S\, the smallest cycle

basis as defined in [38] results in the basis that will minimize the amount of work

for subsequent modeling steps.

A rather technical complication that arises from using HTM to represent

spatial relations on an undirected graph is that HTMs arc specific to one direction,

they should be applied in the same direction that they were extracted, suggesting

a contradiction with the undirected property of the GOR. Since the inverse of

a HTM is easily obtained, it is always possible to reverse the HTM to fit the

direction of application. In the rest of this paper, and only when appropriate,

arrows will be used on edges to indicate the direction to use for the encoded

HTM.

J

5-2 CONSTRAINTS

Two types of constraints are essentials to obtain a stereo-chemically sound model

of a RNA. First, one has to make sure the covalent structure of the RNA

molecule is respected. Second, the model should be free of atomic collisions.
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Other types of constraints will eventually be implemented in the system to encode

various types of informations that can be obtained on RNA molecules.

A. RlBOSE CONSTRAINT

J

The ribose constraint can be tested during the optimization of indépendant cycles

for riboses that are completely determined by the optimized cycle. Other riboses

can only be placed during the assembly of adjacent cycles. In both situations,

the fixed position of the phosphate groups ensures that this optimization can be

done independently for each ribose without affecting the rest of the backbone.

This constraint is tested by optimizing the five free parameters of the ribose

moiety (four torsion angles and the pseudorotation angle [79], the ribose pucker

amplitude is kept fixed) in order to minimize the RMSD to anchoring atoms: 03',

05' and both P (see figure 5-1). For this numerical optimization we prcfercd,

for simplicity, an optimization method that does not require the derivative of

the RMSD with respect to the torsion angles (and specially with respect to the

pseudo-rotation angle). We also wished to avoid the problem related to the inverse

kinematics of cyclic robot arms (see [72] for a discussion of this problem), and

thus did not investigate the possibility of an analytic solution. Methods presented

in section 8.4 of [6] were implemented and tested. They were compared by

measuring the average CPU time spent to optimize a ribose conformation. To

our surprise, the fastest method turned out to be the cyclic coordinates descent

method without the use of the linear search, essentially the simplest approach.

This optimization is relatively expensive (140.1 ribose/sec on a PIII-600) and is

only applied once a coherent cycle assignment is obtained.

A ribose is considered correctly placed if the sum of squared distances to

anchor atoms is below a cutoff of 0.5 A. The rate of rejection due to this

constraint is difficult to evaluate since it depends greatly on the nature of the

cycle. When tested on the eight nucleotides loop of the rRNA binding protein



105

n

N7

01 P

03'

02P
C8

04N9 p
05x

V5

cr V4
C5'

v.cb ^ YC4'

Va
V2C2

C3'

02'4 E

03'

02P

05'

01 P

Figure 5-1 Ribose structure used to rebuild the RNA backbone. Atoms are

identified by circles, empty circles represent anchor atoms already positioned by

the placement of nitrogen bases and phosphate groups. Free torsion angles

are shown with circular arrows, degrees of freedom are identified by boxes. P

represents the pseudorotation angle and is used to determine torsion angles 1/1-5.
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L 11, an average rejection rate of 50% was observed for all riboses. This result

suggests that for long cycles requiring the placement of numerous riboses this

constraint could become the limiting factor to produce valid cycle assignments.

The probability that a structure is rejected by this constraint can be approximated

at 0.5" where n is the number of riboses to place. To avoid this problem, it is

possible to increase the rejection cutoff, lowering the rejection rate, but resulting

in more distorted stmctures. It would also be possible to precompute the ribose

parameters for each pair of adjacent relation. The time and memory needed for

this step depends on n, the number of riboses to place, and s, the number of

HTMs that are considered at each relation, and are both bound by OCns2). The

test stmcture used required the placement of 7 riboses and we estimated the

acceptation ratio to be around one structure out of 128. In practice, this aspect of

the system do not seem problematic since most cycles in a RNA strcutures are of

length below 5 and contains the placement of between 0 and 3 riboses [50].

COLLISION CONSTRAINT

J

The collision constraint is first tested during the cycle optimization by adding

a penalty term for each collision between rigid objects (either nitrogen bases

or phosphate group). A collision is detected if the distance between two heavy

atoms is below 2 A, corresponding to a hard-sphere potential. This verification is
performed only for rigid objects not belonging to the same relation (extracted

relations are assumed to be sound). Once a coherent cycle is obtained and

smoothed (see next section), the collision constraint is retested, this time rejecting

solutions where at least one collision occurs.

The collision constraint is tested by verifying that the distance for each

pair of atoms between the two rigid objects is over 2 A. A major drawback of

this aproach is that the 3-D stmcture need to be explicitly rebuilt before testing

the constraint. It would be possible to accelerate the collision detection using
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Figure 5-2 Schematic representation of the modeling process. The process is

divided in two types of threads, the builders are computing valid 3-D structures

for each cycle and sending these structures to the modeler. The modeler receives

cycle structures from the builders and assembles them to produce complete

structures. All file I/O occur in the modeler thread.

sophisticated collision detection algorithms, but since each rigid object contains a

small number of atoms (around 10 for bases and 5 for phosphate groups), the

0(n2) running time is not problematic.

5-3 AUTOMATED MODELING

Figure 5-2 shows a schematic of the overall process. The cycle optimization

method is applied by the builder threads, one is created for each cycle in the

structure and their optimizations are all carried out in parallel. A modeler thread

is responsible to receive, through shared memory, the cycle structures optimized

by the builders and assemble them in complete stmctures. The modeler acts as a

front-end to the user, reading the input script file and writing the output stmctures

in all-atoms PDB format.

J
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Figure 5-3 Example of a cycle with four relations. 6, and pi represent

respectively the nitrogen bases and phosphate groups, T, represent the HTM

used to place &,+i with respect to 6, and Pi are HTMs used to place pi with

respect to 61+1. Ti ancf P, are sto/'ed antf retrieved in pair from the database of

relations. Elements shown with circle represent the phosphate groups and are

optional.

A. CYCLE OPTIMIZATION METHOD

J

This section describes the algorithm used by the builder threads to build coherent

structures for each cycle of the molecule. As an example, we will first suppose

the optimization of a hypothetical cycle of four relations, two of which assign a

phosphate group (see figure 5-3). This cycle can represent a typical RNA base

pair tandem. In the following text, T; represents the HTM assigned to relation i

and Tkji is equivalent to TfeTjT,. For a given assigment of HTMs to edges of the

cycle, the product of these HTMs will sometime yield a residual transformation

refered as the "error". E, of this assignment.

For a série of n HTMs, it is possible to compute the rebuilding error of

the cycle, S(E), in n different ways. The function S() is the strength of a

transformation and is defined in [29]. As an example:

E^TsT^ = I or T^E^Tl = I
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0:

l:

2:

TI Î2 Î3 Î4

Î43 T,,rr
-'21 T,32 14

T,4321 Ti1432 T,2143 T,3214

Table 5-1 Example of the array used to compute the minimal error of rebuilding

(MRE) in 0(n). Boxed positions indicates what needs to be recomputed when Ts
is modified.

J

E, = (T,T,TM-l E^ = (T^T^-)-l

S{E,) + S{E,)

We will use the notation Ei to represent the residual transfomiation after

composing HTMs starting with T,. For a given assignment, the rebuilding

sequence minimizing the rebuilding error should always be used. The optimization

problem thus consists in finding a cycle assignment that minimizes the minimal

rebuilding error (MRE). To solve this problem, we implemented a probabilistic

Monte Carlo algorithm in which at each iteration a random relation is randomly

changed and if the new MRE is lower than the current, the modification is

conserved. If the MRE gets below 1.25, the cycle assignment is accepted.

Naively, the modification of a single assignment requires to recompute in n

different ways the rebuilding error to find the new MRE, resulting in an 0(n2)

complexity to obtain the MRE at each iteration. It is possible to accomplish

this operation in 0(n) by using an array containing the values of intermediate

computations and allowing their reuse. Figure 5-1 shows this array for our four

bases example. Each position of this array is defined by:

My =
ifz==0 Tj

else M^_^^y_^ ^od „). M(,_I),

Figure 5-1 shows the HTMs that have to be recomputed when T^ is modified.
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From this, we obtain that on row i, 2i positions need to be recomputed. Since the

array has log2 n rows and that the update of one position requires only one matrix

multiplication, we obtain that the number of required multiplications is:

/log2 n

^ 2l ) -l = 2(log2n)+l-2
i=0

2.210g2"-2

2-n-2

e 0(n)

To initialize the array, n\og^n matrix multiplications have to be computed. This

technique assumes that the cycle length is a power of 2. In other cases, the array

has to be extended to the next power of 2 by setting Moj == I for j ^ n. This

extension does not affect the complexity of the algorithm.

A cycle assignment is accepted if its MRE is below a cutoff, e, that was

fixed at 1.25. This leaves us with the problem that this assignment, even if it is

close to, is not coherent. The simplest solution to obtain a coherent cycle is to

put all the error in one of the HTM that is adjacent to the position used for the

MRE. This method results in substantial changes on the selected HTM when e is

increased. The approach implemented consists in redistributing the MRE equally

accross all HTMs of the cycles. The smooth procedure is applied in an iterative

way following these steps:

J

1. Select position p corresponding to the MRE.

2. Obtain HTM Ep corresponding to the residual transformation when

multiplying the HTMs by starting at position p.

3. Tp •<— (X- Ep)Tp, where 0<À< l is a small constant.

4. Continue until the current MRE is below 0.05.
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The multiplication of a HTM by a scalar is computed by transfonning the HTM

to a translation vector and a rotation quaternion. Scalar multiplication is then

applied to this representation and a new HTM is then computed. This technique is

the classical approach to interpolate between two HTMs in computer animation.

The results presented in this chapters were computed with A == 0.01. Once the

assignment is smoothed, the 3-D structure has to be rebuilt and a final check is

done to verify that there is no atomic collision and that all ribose can be rebuilt

correctly.

MERGING CYCLE STRUCTURES

Assembling cycle stnicturcs to obtain a complete solution for the molecule also

results in a problem where the order of the operations has an effect on the quality

and quantity of the results. To avoid delegating this task to the user or having to

design some heuristic to find the ideal sequence of operations, we implemented a

stochastic algorithm based on the one presented in [24].

The modeling process is composed of successive generations, during which

each builder contributes one cycle stmcture to a pool of substructures. Once all

these stmctures are collected for a given generation, the modeler thread randomly

selects pairs of substructures and tries to agglomerate them using superposition

of shared bases between the two substmctures. The number of selected pairs

was arbitrarily set to twice the number of cycles in the structure. At the end of

each generation, stmctures corresponding to an agglomeration of all cycles are

considered complete and removed from the pool. The detailed steps followed at

each generation are:

l. Pool the builders until one 3-D structure is obtained for each of them.

2. Execute 2n steps of agglomeration, where n is the number of cycles in

the structure. One substructure is selected from the pool and tested for
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combination with every other substructure. The pair minimizing the RMSD

of the superposed shared bases is combined if the RMSD is below 1.25 A.

The RMSD corresponding to the best superposition is obtained using the

algorithm developed by [43,44].

3. A structure where all the cycles are assigned is considered completed and

removed from the pool.

C. EVALUATION

J

The performance of the algorithm to optimize cycle models was assessed by

using an eight nucleotides cycle (positions C142-C149) from the ribosomal RNA

binding protein LI l (PDB code: 1QA6, [15]) having the following sequence:

CGUAAUAG. Nitrogen bases 1 and 8 are forming a Watson-Crick base pair,

nucleotides l to 3 arc stacked and 4 to 8 arc also stacked. The more classical

anticodon example was avoided because of the presence of modified nitrogen

bases and its over-representation in the database.

To evaluate the accuracy of the complete method we selected the hairpin

2555-2580 of the large ribosomal subunit of H. marismortui (PDB code:

1FFK [5]). This stmcture was randomly selected as being small, but structurally

not trivial to model. The important features of this structure are an anticodon-like

loop resulting in a seven node cycle; two bulged nucleotides including one

involved in a base triple to fonn a tertiary interaction; and two base triples

forming non-canonical base pairs. The graph of relations corresponding to this

structure and its 3-D conformation are presented in figure 5-4. The decomposition

of this graph of relations in a minimal basis of its cycle space is shown in figure

5-5. Finally, figure 5-6 presents the script used to build the hairpin 2555-2580 of

the large ribosomal subunit. The scripts encodes in a textual form the information

contained in the graph of relations.
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Figure 5-4 Hairpin 2555-2580 of the large ribosomal subunit of H. marismortui.

On both panel, yellow is used to indicate the cycle of relations corresponding to

the loop, green for the central base triple and blue for the terminal one. a) Graph

of relations of the structure. Symbols used to indicate pairings and stacking are

defined in [56]. b) 3-D structure extracted from 1FFK [5].
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Figure 5-5 Decomposition of hairpin 2555-2580 in a minimal basis of its cycle

space, (left) Graph of relations. (center) Corresponding undirected graph, (right)

minimal basis of the cycle space.
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ensemble_name ("lffk_2555")

sequence (

rna A2555

CCUGCC CGUGC AGAA GCG GGCAAGGG

) )

pair (

A2561 A2572 { Ww/Ww cis }

A2562 A2571 { Ww/Ww cis }

A2563 A2570 { Ww/Ww cis }

A2557 A2576 { Hw/C2 trans }

A2555 A2577 { Hw/Ww trans }

A2557 A2578 { Ww/Ww cis }

A2556 A2579 { Ww/Ww cis }

A2555 A2580 { Ww/Ww cis }

stack (

range A2555-A2557

range A2558-A2563

range A2566-A2576

range A2578-A2580

A2560 A2573 { Ww/Ww cis }

A2559 A2574 { Ww/Ww cis }

A2558 A2575 { Ww/Ww cis } )

single A2563 A2565

Figure 5-6 Example script used to model hairpin 2555-2580 of the large

ribosomal subunit. The nomenclature used to describe base pairs is described

in [51]. The syntax of the script is similar to the MC-SYM syntax (http://www-

Ibit.iro.umontreal.ca/mcsym), but without specifying ribose conformation, sampling

size and building order.

J
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5-4 RESULTS

Results are presented in two steps corresponding to the analysis of the cycle

optimization and the algorithm for the assembly of cycle stmctures.

A. CYCLE OPTIMIZATION

After 17 hours of cpu time (PIII-600), 1572 structures were generated for

the eight nucleotides cycle from the rRNA binding protein L 11, resulting in

a throughput of 1.54 structures/min. To estimate the redundancy of this set

of stmcturcs, each one was compared to all preceeding ones (using a RMSD

criterion on the nitrogen bases). By assuming that at a RMSD of 1.0 A two

stmctures are considered identical we obtain a redundancy rate of below 1%. This

suggests that no redundancy filter should be used on the generated stmcturcs for

the cycles. The stmcture most similar, according to the RMSD criterion, is at 1.10

A of the X-ray structure. The mean RMSD to the X-ray structure is 2.50 A and
the maximum RMSD observed is 4.57 A.

CYCLE ASSEMBLING

J

The complete algorithm was tested on hairpin 2555-2580 of the large ribosomal

subunit. 200 generations of the algorithm were completed in 1 hour 45 minutes

of real time on a two CPUs linux workstation (PIII-600). The average processor

usage is 1.3 showing that the absence of load-balancing between builder threads

greatly hurts the gain that are made by parallelism. For the first 100 generations,

the distribution of substructure sizes are presented in figure 5-7.

From this, 6 structures were obtained with an average RMSD to the X-ray

of 2.94 A, the best one has a RMSD of 1.78 A. Resulting structures are shown

on figure 5-8, superposed on panel (b) with the best model shown separately on
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panel (d) beside the X-ray stmcture extracted from 1FFK. In the best structure

obtained, all stmctural features of the X-ray (direction of the bases in the loop,

base triples, relative orientation of the base triples) are perfectly reproduced.

J

5-5 DISCUSSION

The use of a Monte Carlo probabilist algorithm has several advantages when

compared to the backtrack algorithm used in MC-SYM. The first one is that

the search can be launched in parallel on several machines since only final

results need to be exchanged. By implementing clever load balancing algorithm

to equally share the cycle building effort across the builders, we should obtain

an acceleration that is linear in the number of CPU used. The approach also

guarantees that all relations used to model the structure are extracted from the

database of known 3-D structures and not only relations belonging to a spanning

tree of the GOR as in MC-SYM. Finally, the most interesting advantage of this

method is the complete automation of the process.

As compared to MC-SYM, the results obtained are easier to justify

structurally since every relation is extracted from the database of known structures

and they do not depend on the arbitrary choice of a spanning tree on the GOR.

No decision is required from the user, except the amount of resources to allow

for a given problem. On the other hand, many disadvantages are expected: first,

there is the loss of rcproducibility of the modeling experiment due to the use

of a heuristic search method; second, is the difficulty to determine the required

amount of resources to allocate for a given problem; third, is the daunting task of

identifying optimal values for the various cutoffs and parameters that would work

well with a variety of structures.

The cutoff to accept a cycle assignment before smoothing was arbitrarily set

to 1.25. This does not reflect the fact that we should expect longer cycles to
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Figure 5-8 Models built for hairpin 2555-2580 of the large ribosomal subunit of

H. marismortui (PDB code: 1FFK, [5]). a) The graph of relations, b) Superposition

of the six models. Each structure is superposed to minimize the RMSD to the first

structure, c) The X-ray structure. d) The best structure (RMSD: 1.78 A). The color

code is maintained accross the four panels to emphasize the structural elements

of the molecule.
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accumulate larger errors and that this error would be easier to redistribute across

these cycles. This cutoff should depend at least on the cycle length and possibly

on the nature of the edges involved in the cycle, but it is still unclear how this

dependence should behave.

Another problem is to decide when a substructure should be removed

from the pool. The current policy is to remove a substructure only when it

is successfully agglomerated. This utterly conservative approach results in the

accumulation of "dead-end" substmctures, on which it is impossible to build

further. These substmctures slowly take over the complete population of the pool

and they significantly slow down the process of identifying possible pairs of

substructures for agglomeration. During the modeling of small RNA stmctures

like the 2555-2580 motif we used, this accumulation did not present a real

problem since satisfactory solutions are obtained before the pool gets clogged.

Also, the bottleneck of the current design is the production of cycle stmctures

for the most "complex" cycle, corresponding to the builder with the lowest

throughput. The modeler is thus spending most of its time waiting for this

builder to produce its structure. We tried to remove the necessity by the modeler

of waiting to obtain a stmcture from each builder but it results in a largely

inhomogenous pool that gets completely filled with substmctures for the simplest

cycles. A dynamic load balancing algorithm should take care of assigning the task

of generating cycles to builders, dispatching one builder per CPU instead of one

builder per cycle.

The current implementation uses shared memory for exchanging information

between the modeler and builder threads. Replacing this by a message passing

approach and transforming the threads in processes would permit distribution of

the processes across a cluster of workstations, providing affordable parallelism.

Larges cycles are inherently difficult to model, they indicate a lack of

information on this region of the stmcture or a very flexible region of the
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molecule. But, in some particular cases, a large cycle is the result of a long

range tertiary interaction (as in a pseudoknot) and will result in the tight binding

of other structural elements. In this latter situation, the assignment of HTMs to

the edges of the large cycle is strongly constrained by the resulting assignment

to all other neighboring cycles. Exploiting this information would be essential

to efficently model this type of structures. A possible approach would be that

each builder shares with adjacent cycles informations on which HTMs should be

prefered for homologous edges, depending on its own solutions. Modeling of

cycles would not be independent anymore and this would preclude reusing the

substructures obtained from modeling similar cycles.

An interesting variation on the collision constraint consists in using Van der

Waals and electrostatic energies from a molecular mechanics forcefield instead of

the arbitrary penalty used. The Van der Waals force is a repulsion term and could

be directly substituted to the collision penalty. The advantage of this approach

is that a finer evaluation of the affinity between the two rigid objects can be

obtained at a minimal cost. This approach was implemented, using the Amber 4.1

forcefield [73], in a similar context with excellent results (unpublished results).

The introduction of the electrosatic term biased the search toward more compact

and thus stable 3-D structures. The use of an energetic evaluation function during

the cycle optimization should produce more plausible 3-D structures that would

eliminate most of the artifacts produced by the MC-SYM algorithm.

The target application for this algorithm is the high throughput modeling of

small stmctures (typically internal loops or stem-loops). This type of modeling is

of great interest for the rational design of RNA targeted drugs. The algorithm

proposed can be used to build a library of possible conformations for the target

that will be used for dmg screening using standard small molecule docking

techniques [26,41,67].
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CONCLUSION
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L'objectif principal étant la réalisation d'un système automatisé de modélisation

des ARNs, les résultats présentés au chapitre 5 démontrent que le système mis

au point atteint cet objectif pour des ARNs de taille relativement faible (environ

20-30 nucléotides). L'impossibilité d'appliquer rapproche à des molécules de

taille plus importante est essentiellement d'ordre pratique puisque le système

délègue la modélisation de chaque cycle à un "thread", la modélisation d'une

stmcture de la taille d'un ARN de transfert engendrerait une trentaine de

processus. De plus, la méthode utilisée pour assembler les cycles en une stmcture

complète n'est fiable que si le nombre de cycle à joindre est faible, permettant

l'obtention de stnicturcs satisfaisantes avant que le bassin de sous-structures soit

envahie de structures "cul-de-sac". Les diverses étapes entourant la modélisation

comme la collecte d'information dans les structures connues ou l'analyse des

stmctures générées ont aussi gagné en automatisme par l'introduction des outils

développés aux chapitres 2 et 3.

De manière spécifique, les travaux présentés dans cette thèse comme des

étapes intermédiaires à l'obtention d'un système de modélisation automatisé ont

aussi permis le développement de plusieurs outils d'analyse ayant des impacts

au-delà du domaine de la modélisation. Entre autre, le chapitre 2 présente

l'élaboration d'une méthode d'identification des appariements dans les ARNs en

utilisant la nomenclature de Leontis et Westhof [56]. L'algorithme développé a été

utilisé pour construire la base de donnée de relations (dont celle utilisée dans

la version courante de MC-SYM), pour l'annotation de stmcture 3-D, pour la
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visualisation de pont-H. Le système d'annotation présenté au chapitre 3 permet de

mettre en relation une stmcture à analyser avec le reste des stmctures connues.

Lors de l'analyse d'une nouvelle stmcture, cet outil permet de mettre l'emphase

sur les régions de la molécule qui présentent des conformations inhabituelles et

donc possiblement responsables de fonctions particulières. La décomposition d'un

graphe de relations en une base minimale de l'espace des cycles a été développée

dans le but de mettre au point un système automatisé de modélisation. Par contre,

au cours de son développement, cette approche s'est révélée pouvoir jouer un rôle

important dans la découverte de motifs, les résultats présentés au chapitre 4 en

témoignent.

Plusieurs résultats présentés au cours de cette thèse sont des avancées

importantes dans le domaine de la biochimie structurales des ARNs. Par

example, la mise au point d'un système permettant l'identification automatique

des appariements a permis l'obtention d'un répertoire complet des types

d'appariements observés dans les stmctures déterminées par crystallographie par

rayons X. Un tel repertoire est une ressource convoitée depuis plus de 40 ans et

certains groupes ont entrepris à plusieurs reprises sa réalisation (voir [69]) par

visualisation interactive de toutes les stmctures connues, un travail colossal mais

voué a un inévitable échec.

Le chapitre 4 présente aussi l'identification d'un nouveau motif, la

pseudo-boucle GN:RA. L'identification de ce motif par visualisation interactive

aurait demandé un travail long et minutieux sans aucune garantie d'exhaustivité.

A la lumière des interactions entre chacune des occurences de ce motif dans

la grande sous-unité du ribosome avec le sillon mineur d'une double-hélice,

il semble évident que cette conformation est sélectionnée pour sa capacité à

former ce type d'intéraction. A notre connaissance, l'existence de ce motif n'a

toujours pas été rapportée dans la littérature scientifique. La grande conservation

des séquences formant ce motif permet aussi de l'ajouter au répertoire du
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modélisateur, permettant d'inférer une confonnation à partir d'une séquence.

6-1 MAUX ET REMÈDES ...

Les approches présentées dans ce travail souffrent toutes d'imperfections que nous

rappelerons ici, en énumérant quelques remèdes possibles.

A. PONT-H GÉNÉRALISÉS

Lors de l'identification d'appariements entre bases azotées (cf. chapitre 2),

l'impossibilité de détecter des interactions impliquant le ribose ou le groupement

phosphate limite l'utilisation généralisée de cette approche. Cette contrainte

est essentiellement due au fait que la méthode requiert la présence explicite

des atomes d'hydrogène et de pseudo-atomes donnant la direction des paires

d'électrons libres. Puisque, sur les ribose, certains de ces atomes sont mobiles

(par exemple le H02' chez les ARNs) et sont en général absent des stmctures à

analyser, il faudrait inclure le positionnement de ces atomes dans l'optimisation du

nombre de pont-H formés. Inclure les torsions responsables du positionnement de

ces atomes et pseudo-atomes lors de l'optimisation sort définitivement du contexte

d'un problème de flot maximum et le problème d'optimisation résultant risque

d'etre complexe et coûteux à résoudre. Par contre, la résolution de ce problème de

determination des hydrogènes libres offrirait la possibilité d'inclure pratiquement

tous les types de molécule dans l'analyse d'appariements et particulièrement

1'identification de contacts ARN-protéine impliquant la formation de pont-H entre

les deux molécules.

J
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EXPANSION DES MOTIFS

Le concept de motif est lié à celui d'évolution par sélection naturelle. On

suppose que si une caractéristique structurelle est sélectionnée positivement, on

devrait pouvoir l'observer d'une manière inhabituellement fréquente. La méthode

permettant l'identification de motifs présentée au chapitre 4 souffre du fait qu'elle

ne considère que la fréquence d'observation d'un motif et qu'elle ne tente

d'aucune façon de voir si cette redondance est naturelle ou non. A ce titre,

la méthode détecte comme motif très significatif les tandems de quatre bases

correspondant à l'empilement de deux appariements Watson-Crick.

Le domaine de l'identification de motif est très étudié au niveau des

sequences d'ADN et de protéine. L'approche la plus courante consiste à calculer

le ratio du nombre attendu d'occurences du motif sur le nombre observé et de

faire l'hypothèse que l'intensité de la sélection est proportionnelle à ce ratio. Le

calcul d'un nombre attendu d'occurences implique la mise au point d'un modèle

probabiliste permettant de prédire le nombre d'instances possibles pour un motif,

ce qui n'a toujours pas été développé dans le domaine des stmctures d'ARNs.

C. RÉPARTITION DE LA TÂCHE DE MODÉLISATION DES CYCLES

J

L'architecture utilisée par le système de modélisation présenté au chapitre 5

implique une exécution parallèle des processus effectuant la modélisation des

cycles. Chacun de ces processus ayant une tâche d'une difficulté variable (et

impossible à déterminer a priori) leur taux de production de nouvelles stmctures

est inégal. Par contre, l'approche stochastique pour l'assemblage des cycles

ne fonctionne bien que si le bassin de sous-structures à sa disposition est

suffisamment homogène. Cette nécessité est à la base de la contrainte d'obtenir à

chaque génération une seule stmcture pour chaque cycle. Puisqu'il existe toujours

un cycle plus complexe que les autres, l'utilisation des processeurs disponibles est
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affecté par le temps nécessaire pour que ce processus obtienne sa structure.

Ce problème peut-être résolu en modifiant l'architecture du système de

telle sorte qu'il y ait un processus par processeur s'occupant de la constmction

des cycles et que la tâche de construire chacune des structures soit considérée

comme une unité de travail qui peut-être transferee d'une processeur à l'autre

ou dupliquée sur plusieurs processeurs. L'optimisation d'un cycle peut être vue

comme un processus de Poisson, ce qui permet de dire que si on consacre

deux processeurs pour un cycle, le temps moyen pour obtenir une stmcture

optimisé sera divisé par deux [88]. Cette dernière remarque suggère une politique

séquentielle pour la distribution des tâches dans laquelle tous les processeurs

tentent successivement d'optimiser chacun des cycles. Dès qu'un processeur

obtient une stmctures, tous passent au cycle suivant.

6-2 DÉVELOPPEMENT FUTURS

A. PARALLÉLISATION DISTRIBUÉE

D'un point de vue pratique une amélioration simple au système de modélisation

serait de transformer les processus légers {threads) construisant les cycles

par des processus indépendants. Cette modification pennetterait de distribuer

automatiquement ces derniers à travers une grappe de stations de calcul linux en

utilisant le logiciel MOSDC.

RÉUTILISATION DES CYCLES

J

Comme il a été démontré au chapitre 4, les cycles d'un ARN sont, en majorité,

de courte taille. Puisque le nombre de types de relations et le nombre de types de

bases est limité (quatre types de bases, quatre à cinq types de relations de manière

générale), on s'attend à ce que dans une molécule de taille raisonnable plusieurs
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cycles aient la même description. Une telle situation pennettrait de n'utiliser

qu'un "builder" pour ces cycles similaire et simplement dupliquer les structures

produites dans le bassin de sous-structures.

Une extension possible de ce concept est la mise au point d'une cache

permettant de conserver les résultats de modélisation des cycles. Lors de la

modélisation d'une nouvelle molécule, si un cycle a la même description qu'un

cycle précédemment modélisé, il serait possible de réutiliser les solutions trouvées.

On pourrait facilement imaginer une cache centrale partagée par plusieurs groupes

de modélisation pour diminuer le temps de calcul. L'espace nécessaire pour

sauvegarder une solution correspond à 2 MTHs ÇHTM) et 5 paramètres de riboses

(environ 100 octets) par arête du cycle.

C. UNE STRUCTURE, PLUSIEURS SÉQUENCES

Un extension proposée depuis longtemps pour MC-SYM est la possibilité de

modéliser plusieurs séquences en même temps. En effet, dans plusieurs projets de

modélisation la séquence de la molécule est connue dans différents organismes.

Puisque la molécule a la même fonction dans chacun de ces organismes, on

fait l'hypothèse que la stmcture est conservée malgré la variation de séquence.

Dans ce contexte, il serait intéressant de contraindre la modélisation à trouver

des structures qui peuvent se réaliser dans un maximum des séquences observées

(idéalement toutes!). Une telle approche a été utilisée au cours de la modélisation

du ribozyme activé par le plomb [49] (réalisé au cours de ma maîtrise),

mais le formalisme proposé devait s'appliquer a posteriori d'une expérience de

modélisation indépendante sur chacune des stmctures. Avec le système proposé

il serait possible de se servir de la décomposition pour détecter les régions

constantes dans certaines séquences et ne lancer qu'un "builder". Ceci est

obtenu en implantant la réutilisation des cycles. Le processus d'assemblage des

cycles aurait la responsabilité lors de l'agglomération de deux sous-stmctures
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de s'assurer qu'une stmcture équivalente peut être constmite pour chacune des

sequences. Cette opération pourrait s'appliquer par un simple critère de RMSD sur

les bases en utilisant les pseudo-atomes décris au chapitre 4.

6-3 LE MOT DE LA FIN...

D'une manière plus générale, la représentation obtenue en utilisant la base

minimale de l'espace des cycles pour décomposer un graphe de relation est

propice à un renouveau important de l'analyse et de la modélisation des structures

d'ARN. Les travaux présentés dans cette thèse ne font, à mon avis, qu'effleurer

la surface des possibilités de cette approche. L'arrivée pratiquement simultanée de

ce nouveau point de vue et des structures du ribosome ne laisse, pour l'instant,

qu'entrevoir les fascinantes révélations que l'ARN s'apprête à livrer.

J
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5S subunit: Smallest subunit of the ribosome (in the structure 1FFK, it is

represented as chain '9'). See Ribosome.

Adjacent/Non-adjacent: Term used in the annotation of RNA 3-D structure to

define the property of two nucleotide of being covalently bonded or not. The

term refers to the adjacency of the two nucleotides in the primary structure, the

sequence.

Backbone: Part of the biopolymer that links the subunit to one another. In the

RNA, the backbone is composed of an alternance of phosphate group and ribose

sugars, the variable part of the nucleotides is linked to the Cl' atom of the ribose.

Cis/Trans: Describe the relative orientation of both glycosidic bond with respect

to the axis of the base pair.

Covalent bond: A permanent chemical bond between two atoms. The set of

covalent bond fomis the chemical graph of a molecule.

GNRA Tetraloop: A GNRA tetraloop is one of the best known motif in RNA

3-D structures. It is formed by the stabilization of a short helical stem closed by a

four nucleotide loop corresponding to the sequence [G][ACGU][AG][A]. The term

now commonly refer to the well characterized 3-D stmcture that is adopted by

such RNA in which position 1 and 4 of the loop (the G and A) form a sheared

G.A base pair and the other two nitrogen bases stack on top of the paired A.
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H. marismortui: (réf. to 1FFK)

Large Ribosomal Subunit (LRS): The ribosome is divided into two main

subunit, refered to as the small and large ribosomal subunit. In bacteria, the large

ribosomal subunit is also called the 50S subunit. It is further divided into the 23S

and 5S subunit. A crystal structure of the large ribosomal is available in the PDB

database with identifier 1FFK. The large ribosomal subunit is the largest RNA

stmcture to be determined by X-ray crystallography.

Major groove: (cf. Minor groove)

Minor groove: The formation of a RNA double helix results in a screw-like

structure. The Cis orientation of the glycosidic bonds in the canonical base pairs

forming the helix create two distincts grooves each sides of the helix. The minor

groove is the shallower of the two, exposing the nitrogen bases Hoogstein edges

to the outside of the helix. This is often the surface of the RNA helix that is used

as an anchor for other molecules as it provides specificity (access to the bases).

The major groove is found on the opposite side of the helix and is composed of

the sugar edge of the bases and the riboses on each side.

Non-canonical base pair: Any base pair type that is not the standard

Watson-Crick G.C or A.U. Depending on the authors, the wobble G.U base pair

type is sometimes included in the set of canonical base pair types.

Paired/Unpaired: These terms are used to describe if two nucleotides are

stabilized by the fonnation of one or more hydrogen bond between their

respective nitrogen bases.

Pseudorotation angle: The complete description of the ribose pucker mode

require the specification of 5 torsion angles (angles and distances between atoms

are fixed). This parametrization is highly redundant and can be reduced to only

two free parameters. The most important one is the pseudorotation angle (obtained
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by sum of the 5 torsion angles of the ribose), the second one is the pucker

amplitude (which is highly constrained in the ribose moiety of RNA.

Ribose: Cyclic carbohydrate composed of 5 carbons. Ribose and deoxyribose

form the basis of the RNA and DNA backbone.

Ribose moiety: Invariant part of a RNA nucleotide composed of a ribose sugar.

In base pairs diagrams, the ribose moiety is often replaced by a "R".

Ribose pucker mode: The ribose is a five-membered ring sugar. In solution, it

adopts two major conformation. The first one is an enveloppe-like conformation in

which for the of 5 carbons are in the same plan and the fifth on is outside the

plane. The twist conformation is obtained when three adjacent carbons are aligned

in the same plane and the two remaining carbons lie each side of this plane. The

pucker describe the conformation in which the ribose is.

RMSD: Root Mean Squared Deviation. This is a common measure of

dissimilarity between to 3-D structure of molecules. Implicitly, the reported

measure is the one obtained after applying a rigid-body transformation to one

of the two molecules in order to obtain the minimal RMSD. The process of

transforming one of two molecule to minimize the RMSD is refered to as

superposition.

Sheared base pair type: One of the most frequently observed non-canonical base

pair type. It is obtained by hydrogen bonding of the Watson-Crick edge of an

adenosine to the Hoogstein edge of a guanosine. It is frequently observed as a

tandem G.A/A.G, often refered as the GA tandem mismatch.

Stacked/Unstacked/Helically stacked: Stacking is an important force stabilizing

the 3-D structure of RNA. These three terms are used to characterize the relation

between two nucleotides with respect to the stacking. Helically stacked refers

to the type of stacking that is observed in RNA double-helices of type A,
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Sugar moiety: See Ribose moiety.

J
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