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Résumé

Mots Clés
Faux chemins, ITGE, Vérification formelle, Circuits logiques séquentiels, Vérification

des aspects temporels.

La vérification des aspects temporels des circuits logiques synchrones est NP-dur
cause du probléme des faux chemins dans les circuits combinatoires. Les méthodes de
vérification basées exclusivement sur les propriétés topologiques du circuit sont trop pes-
simistes, et les méthodes exactes ont une complexité exponentielle de temps d'exécution
au pire cas. Nous présentons dans cette thése une méthode basée sur la satisfaction des
contraintes, ayant une complexité linéaire d'espace, et une complexité de temps qui peut
étre quasi-linéaire, n x log(n), quadratique ou exponentielle, tout dépendant du niveau de
précision requis. La méthode consiste 4 modéliser le circuit, les conditions de fonctionne-
ment, et les contraintes temporelles par un systéme de contraintes qui est consistant si et
seulement si les contraintes temporelles ne sont pas respectées. Le systéme de contraintes
contient un ensemble de variables, prenant valeurs de leurs domaines respectifs, et un
ensemble d’opérateurs de contraintes dont chacun opére sur un sous-ensemble des varia-
bles. Le systéme est résolu partiellement en appliquant répétitivement les opérateurs de
contraintes, éliminant des valeurs qui ne font partie d'aucune solution, jusqu’a ce qu’il
atteigne le point fixe, ol ce n’est plus possible de changer les domaines des variables.
Lorsque la résolution résulte en une variable ayant un domaine vide, on déduit que le sys-
téme est incohérent et par conséquent les contraintes temporelles sont respectées; autre-

ment, on ne peut rien conclure.

La méthode conduit & des résultats faux négatifs dans le cas ou la résolution partielle
se terminerait avec des domaines non vides, et que le systéme est en réalité incohérent.

Nous avons développé deux méthodes polynomiales pour réduire ce pessimisme:




* Le concept des dominateurs temporels, des nceuds clés dans le circuit, ayant des
domaines qui peuvent étre réduits suite & des conditions nécessaires déduites en exa-

minant la fonction globale du circuit;

*  Une procédure de corrélation spatiale qui permet de renforcer partiellement la fonction
globale du circuit sur les nceuds ayant des branchements convergents, en restreignant
leurs domaines a des ondes qui se stabilisent a la valeur logique 0, puis a 1, et en com-

binant les résultats.

Nous avons aussi développé une procédure de décision qui permet de trouver une
solution du systéme de contraintes (vecteur de test qui viole les contraintes temporelles)

ou de prouver que le systeme est effectivement incohérent.

Lorsque appliquée sur les benchmarks standards ISCAS'85, la méthode a trouvé les
bornes supérieures des délais des circuits correspondant aux délais exacts. En plus, a
I'exception du circuit 6288, la procédure de décision a trouvé des vecteurs de test pour

tous les circuits avec un nombre remarquablement restreint de retours en arriére.

On a rendu I'implantation plus compléte et robuste afin de pouvoir tester la méthode
sur des circuits industriels. Le vérificateur résultant fut testé sur un circuit industriel de
122 milles portes logiques, et a prouvé qu'au pire cas, la marge de sécurité de la contrainte
d'etablissement des bascules est en fait 17.459% du temps de cycle, comparée a 8.74%

déduite par une analyse topologique.




Abstract

Keywords
Timing Verification, False Path Problem, VLSI, Formal Verification, Synchronous

Sequential Circuits.

Verifying the timing properties of VLSI circuits is NP-Hard due to the false path
problem, and considering just the topological delay of the circuit is too conservative and
may result in unnecessary redesign efforts. We preseht in this thesis a timing verification
method based on Waveform Narrowing. The method has linear space complexity, and has
controllable time complexity that can be virtually linear, n X log(n), quadratic, or expo-
nential, depending on the required level of accuracy. The method consists of modeling the
circuit, the timing constraints, and the operating conditions as a constraint system that is
consistent if and only if the timing constraints are violated. The constraint system is com-
posed of a finite set of variables that take values from their respective domains, and a set
of relational constraint operators, each operating on a subset of the variables. The system
is solved partially by repeatedly applying the constraints, removing from the domains val-
ues that are not part of any solution, until the greatest fixpoint is reached. If we end up
with empty domains, we conclude that the timing constraints are satisfied; otherwise, no

conclusion can be drawn.

The method results in false negative answers when we end up with non-empty
domains, and yet the constraint system has no solution. To reduce this pessimism we

developed two polynomial techniques:

The Timing dominators concept that determines key circuit nets for which the
domains can be narrowed as a consequence of necessary conditions deduced from the glo-

bal circuit function;




vii

Spatial correlation procedure that enforces partially the global circuit function by
restricting the domains of selected reconvergent fan-outs to waveforms stabilizing at 0 and

1, and then merging the results.

Also, we developed a case analysis procedure able to find a test vector or to prove

that no violation is possible.

When tested on ISCAS’85 benchmarks, the method found tight upper bounds that
correspond to exact circuit delays for all circuits. Moreover, except for ¢6288, the case
analysis procedure found test vectors for all circuits with a remarkably low number of

backtracks!

We extended the method by implementing capabilities necessary to verify industrial
designs. The resulting timing verifier was tested successfully on a 122K-gate industrial
circuit, and proved that its relative safe margin is 17.459% of the clock cycle instead of

8.74% reported by topological analysis.
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PREFACE

Electronic Design Automation (EDA) is a multi-billion-dollar industry that is strug-
gling to keep pace with the increasing capability of silicon technology that is still follow-
ing the Moore's Law. A common cause of increasing complexity is design methodology
that is not uniform. EDA tools need to handle excessive number of special cases that make
it impossible to hard-code their user interface. Most design tools are command line utili-
ties, or shared libraries integrated using scripting extension languages like Tcl, which
makes the learning curve steep and makes the design methodology open. In fact, too much
of the capabilities of the tools are exposed to designers who can easily abuse them. The
complexity of the user interface makes the EDA industry adopt methods that are easy to
code, validate, integrate, and use. For instance, although too pessimistic, topological anal-
ysis is still the basis of many commercial timing verifiers because of its simplicity. The
result is an industry that is expanding horizontally; little effort is available for advanced

research.

Academia is, however, more relaxed, and one can still dedicate effort to investigate a
new method, hoping to provide new scientific solutions that EDA and the scientific com-
munity in general may benefit from. This thesis presents the results of the investigation we
conducted on a new timing verification method based on waveform narrowing, inspired

by logic constraint programming and interval arithmetic.

It was a great challenge to write this thesis as it deals with complex subjects related to
optimization techniques, electrical engineering, and to computer science. We did our best
to make the thesis highly illustrated, self-contained, requiring no in-depth knowledge in
any of the subjects mentioned, however, mathematical maturity is a prerequisite for the

understanding of this work.




CHAPTER 1 INTRODUCTION

Advances in very large scale integration (VLSI) technology have made digital elec-
tronics essential for a wide spread of applications. In the 1960's, circuits were fabricated
using millimetric scale discrete components such as transistors, resistors and capacitors.
Recently, Motorola succeeded in fabricating a microprocessor device using a new 0.1
micron process technology [1]. Current standard fabrication processes use 0.35, 0.25,
0.18, and 0.11 microns for the transistor size, enabling the integration of a complete sys-

tem containing millions of transistors on a single silicon chip.

The increasing complexity led the designers’ community to formalize the design
flow, and made essential the use of computer assisted design and verification tools. Simu-
lation based verification of gigantic designs has become practically impossible due to the
exponential state explosion problem (e.g. A processor with 16 registers, 32 bits each, has
2_5 12 possible states). Consequently, formal verification, an approach exploiting mathemat-
ical techniques in order to prove certain functional properties without having to enumerate
all existing states, has emerged. Numerous problems are subject to formal verification,
such as the equivalence of two state machines or two logic circuits, proof that a system

stays alive (no deadlock), or verifying that timing constraints of memory elements are sat-

isfied in a sequential circuit.

The subject of this thesis is the development of a “static” timing verifier for synchro-
nous sequential circuits. The attribute “static” is used instead of formal to comply with

timing verification literature.

The remainder of this chapter introduces the principal subject as well as related sub-

jects that are necessary to the understanding of the subsequent parts of the thesis.




1.1 Design Flow

Figure 1 shows a simpli-
fied design flow of integrated
circuits. Starting from specifi-
cations (function, response
time, power dissipation, etc.),
the design process follows a
hierarchical
of

abstraction has to be verified

descending

approach. Each level
as functionally equivalent to
the one above it, and, that dif-
ferent constraints such as

power dissipation and

response time are satisfied.

Obviously, the process is
iterative, and the purpose of
design and verification tools
is to minimize the number of
iterations, especially at lower
levels, where the fabrication
of prototypes is very expen-

sive.

( Specification '

y

Behavioral Design

Functional Design

Logic Design

Physical Design

Prototype Fabrication

( Fabrication '

Figure 1

| High level language: Verilog, VHDL.

architectore behaviour of count2 is
begin

count_val ._value + 1) mod 4:
90 <="bit" nt_vilue mod 2) after prop_delay;
41 <= bit'val(cosnt"value / 2) after prop_delay;

end if;

End process count_up;
and behaviour;

Registers, multipliers, muitiplexers, ...

\/

Logic gates: AND, OR, NOT, ...

i
bt

Transistors, connections

Design flow of integrated circuits.

Different Levels of Abstraction:

Behavioral Level: The system is defined using a high-level hardware description lan-
guage (HDL) such as Verilog or VHDL.




Register Transfer Level: The description of the system in terms of functional blocks
(multipliers, multiplexers, registers, etc.) This description is obtained using a com-
piler for the behavioral level, i.e., the high-level language, or by manual transla-

tion.

Logic Gate Level: The definition of the system is in terms of logic gates and memory
elements (AND, OR, NOT, flip-flops, etc.). The logic synthesizer generates this

description from the Register Transfer Level.

Transistor Level: The lowest level in the hierarchy. This level is an assembly of tran-
sistors and metal connectors. A technology mapper is used to rewrite the logic gate
level in terms of gates from a well-characterized library (e.g., TGC1000 from
Texas Instruments). Then, placement and routing tools are applied to generate the

physical layout.

1.2 Post-Fabrication Testing

The production of integrated circuits is a complex lithographic process that yields a
success ratio lower than 1. The success rate varies depending on the process technology

and the chip area.
Two major models of fabrication defects are used:

Stuck-at Fault: the output of a logic gate g is said to be stuck-at-1 (0) if its logic level
remains 1 (0) regardless of its input levels. For example, the output of an AND
gate is 1, even if one of the inputs is 0. To detect such a defect, é test vector must
be applied to the circuit inputs, propagating the fault to at least one of the outputs.

Fig. 2 shows a simple example.

Delay Fault: a gate can have an excessive delay due to a fabrication defect. A com-
mon cause of such a defect is an excessive interconnect resistance caused by a very
thin open that still permits conduction by tunneling effect. To detect such a defect,

two test vectors must be applied successively to the circuit inputs in order to trig-




Stuck at 1 Fault Gate with a Delay Fault
— l 0 1 —
. Qutput

0 in the correct circuit 1 1
0 1 in the faulty circuit
0 0 0
Figure 2 l

P First assignment: wait for 0 at Qutput

Stuck-at-1 fault testing.

3 Second assignment: Output should become 1
within a predefined time interval

ger a transition that propagates to a cir-  Figure 3

. Delay fault testing.
cuit output through the defect, as shown Y g

in the example of Fig. 3. ( Fabrcation Mask )

Finally, for a specific design, a set of test vec- A

Fabrication

Stuck-at fault tests

tors is generated to detect possible defects. Manu-

factured chips are tested before delivery as indicated

in Fig. 4. Automatic Test Pattern Generation

Delay fault tests, ...

(ATPG) is a domain that has been widely studied in

the last 30 years [31-55]. Contributions in this v
Defiver,
domain offer a rich set of heuristics [32,33,35] that . C:YD
Figure 4
help resolve the satisfiability of a Boolean formula. Post-fabrication tests.

1.3 Timing' Verification

Verifying timing properties of a synchronous sequential circuit consists of determin-
ing whether it functions properly at a certain clock frequency (e.g. 500 MHz), or determin-
ing the maximal safe clock frequency. This verification can be applied to any level of
abstraction. The highest precision is obtained only after the actual physical design is avail-
able, where the different circuit components are precisely characterized. Before reaching

this stage, approximate delays are assumed for each circuit component and interconnect.

Note that the violation of timing constraints of circuit components depends on the

clock frequency, functioning semantics, and circuit topology. The following section




defines default semantics for synchronous sequential circuits, adopted throughout this the-

sis, unless stated otherwise.

1.3.1 Simplified Model of a Synchronous Sequential Circuit

A model of a combinational logic circuit is a directed acyclic graph. Nodes represent

logic gates and each arc represents a connection (connects the output of a gate to the input

of another gate). The circuit input (output) terminals are represented by nodes with no

incident (exiting) arcs.

A synchronous sequential circuit is an
implementation of a state machine. The state is
stored in a register and the next state is calculated
by a combinational logic circuit as shown in Fig.
5. The state register consists of memory elements
for which the memorizing action is triggered by

the system clock.

The default operation semantics assumes

that a new state is calculated every clock cycle.

Combiniationar Cireuit
Register

——] — — @

2 ] 2
— D 1 © T F 4 g

g. © ﬁ 3
— 1 &5 Pl e [e]
— 2 L o 5 b 2
— — ] o

e R —

|
Clock

Figure §

Sequential synchronous circuit.
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Therefore, the clock period must be long enough for the combinational circuit to finish its

calculations and for the memory elements to store the new state at the next active clock

edge.

1.3.2 Constraints of Memory Elements

Two types of memory elements are used: Edge-sensitive flip-flops, and level-sensi-

tive transparent latches. The most common ones used for state memorization are the flip-

flops sensitive to the rising edge of the clock (transition from 0 to 1, see Fig. 6). When the

logic level of the clock CLK changes from 0 to 1, the logic level of input D is memorized




and becomes present at the output Q. Like every physical 1 N
device, the memorization operation is not instantaneous;
its timing behavior is characterized by three parameters CLK
[12]: '
D VALID

1) CLK to Q Delay: This delay represents the time ¢Lk \
Setup Constraint -y

necessary for the memorized logic level to get ~ Hold Constraint
P CLK 1o Q Delay

to the output Q. Q VALID

Figure 6
2, 3)Setup Time (tg), Hold Time (ty) Constraints:  Rising-edge-triggered flip-flop.

They represent the timing constraints on the
logic level of D to be memorized correctly. D must be valid (stable) in the inter-

val [ty - tg, tg +tyy] where tg is the arrival time of the rising edge of CLK.

The timing verifier must check that setup and hold constraints are satisfied for each

flip-flop.

Note that the setup time constraint tends to be violated when higher clock frequency
is used, whereas, hold time constraint tends to be violated due to the circuit topology,
resulting in a system that does not function properly with any given clock frequency. In
the circuit of Fig. 7, the flip-flop does not memorize correctly the new state computed by
the inverter due to the premature disappearance of the previous value. Violation of the
hold time constraint is due to very short paths in the combinational circuit, and to clock

skew (non-simultaneous arrival time of the clock edge at different flip-flops).

Flip-flops sensitive

to the falhng clock edge Int’ﬂa_li: There is no guarantee that the logic
§ . | level at this point is 1 because D is
(Sensitive to the transi- 12774 3| not stable at 1 in the interval C.
D Q NI
tion from 1 to 0 of the o e | L
ClKtoQ: 1 Q -] - | I—--
clock) are defined in a A 5
o . CLK | L1 ] | ] | 1
similar manner. Clock Period: 10
Figure 7

An incorrect 1 bit counter: Hold time constraint of the
flip-flop is violated.




The behavior of the level sensitive latch (transparent 1 a
latch) is slightly different. Consider the latch sensitive to
the high level (see Fig. 8), when the clock C is at 1, the c
output follows the input (Q = D). When C falls to 0, Q '
keeps its last value. Its temporal behavior is characterized P o §
C
by fOlll‘ parameter S [12]. Setup Constraint f——
- === Hold Constraint
Cto Q Delay 3 i
1) C to Q Delay: Time before Q starts to follow D, a "’x o0 el _
after C rises to 1. Figure 8

High level sensitive latch.
2) D to Q Delay: When C = 1, it is the events (logic

level change) propagation time from D to Q.

3, 4) Setup Time, Hold Time Constraints: The same definition as for the falling edge
flip-flop (the edge of the clock after which the latch keeps its last value).

The low level sensitive latch is defined similarly.

-
D2 Q2 D1 Qt P

CVLK(o Q1
a T L T
cz CiK CKIM1_ I 1T 1L_TI1
i | D2 I 1 | ]
Clock Period: 10
Figure 9

Hold time constraint violation prevented by the use of a transparent latch.

Transparent latches are frequently used in industrial circuits to avoid violation of
hold time constraints of edge-triggered flip-flops. Fig. 9 shows a revised version of the cir-
cuit in Fig. 7: the low level sensitive latch prevents the premature disappearance of the
previous state by delaying it to the falling edge of the clock. When CLK rises to 1, the
value of Q1 becomes D1 after 1 time unit (CLK-to-Q1), then D2 becomes QI after 1 time
unit, but Q2 keeps its old value until CZ falls back to 0. Of course, the latch timing con-

straints must also be satisfied.




1.3.3 Verification of a Flip-Flop’s Constraints

According to the operation semantics of the

synchronous sequential circuit, the new value that

each flip-flop stores has been computed from values ____3’-,-—-- ._’L’.;IL."
stored on the previous clock cycle. To verify the Setiip Constralnt Veifcation:
constraints of a flip-flop, the combinational sub-cir- LAY 9
cuit that does the computation is observed and the =~ Hold Constraint Verification:

D should keep previous value at least till O+t
flip-flop setup and hold time constraints are studied Figure 10
separately. Considering the example in Fig. 7, only Unfolding clock cycles.
one flip-flop is present and the sub-circuit that does
the computation is the inverter. The flip-flop is broken down in two parts: one receives the
data computed by the combinational circuit, and the other injects a value into that same
circuit (see Fig. 10). For a period of 10 units of time, data is injected at time 0, and sam-

pled at D at time 10.

Verifying the setup time constraint comes down to verifying that D stabilizes before
10 - tg, meaning that it is the maximal delay of the combinational circuit that comes into
play. On the other hand, to check the hold time constraint, assuming that the flip-flop
injects a value at time 0, it must be verified that the previous value of D does not disappear
before t = 0 + tyy. In this case, it is the minimal delay of the combinational circuit that has

to be considered.

In summary, the problem of deciding whether the setup or hold constraints are satis-
fied comes down to comparing the maximal and minimal circuit delays to certain given

values.

Chapter 2 explains the major methodologies for computing the maximal combina-

tional circuit delay proposed in literature.




1.3.4 Synchronizing Clocks

In Section 1.3.1, the synchronous sequential
circuit was introduced without exploring thoroughly
the subject of synchronizing clocks. Designers of
synchronous circuits face many practical and con-

ceptual problems:

Maximal Fan-out Capability: In a real circuit,

it is not possible for a single gate output to

Digital
Filter
A
H2
H ] N

Figure 11
Sequential circuit controlled by two
harmonically related clocks.

drive an indefinite number of gates without risking loss of data. Therefore, the

clock signal is distributed to a number of buffers; each can then send it to a number

of memory elements and / or other buffers.

Clock Skew: To avoid violations of the hold time constraints, delays are inserted in

the clock tree to minimize the time window in which the memory elements are

activated.

Multiple Clocks: For certain applications, such as the digital filter shown in Fig. 11, it

is useful to use multiple clocks. In this particular case, for every voice sample,

many cycles are needed to perform the filtering function.

Gated Clocks: power dissipation in Complementary Metal Oxide Semiconductor

(CMOS) circuits, is directly related to the number of signal transitions (change of

logic level) on circuit nodes. To reduce power dissipation, logic gates are inserted

to prevent the clock from propagating to the parts of the circuit that are irrelevant

to the current operation.

A timing verifier must be able to deal with multiple and gated clocks without exces-

sive user intervention.
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1.3.5 Component Delays +V/

The delay of a component is the time neces- A-—G Y

sary for it to respond to a stimulus. Logic gate

delays are related to fabrication technology. A A
+V] .
CMOS circuit is essentially a network of P and N y
transistors interconnected by metal connections. : Tire oy ™
Figure 12

Transistors act as switches (closed or open-circuit). Delay of an inverter.

Gate delays: The logic level at the output of a
gate changes from 1 to 0 when the paths that lead to +V become all open and at
least one path to ground (0 volt) becomes closed. Transistor switching time is not
negligible, the electrical signal chénges gradually instead of instantaneously. Fig.
12(a) shows a CMOS implementation of an inverter with its electrical response to
a rising transition at its input. Fig. 12(b) shows the logic abstraction of this circuit.
One particularity of CMOS gate delays is that they are inertial: two successive
events (impulse) at the input of a gate that have time separation (pulse width) less

than the gate delay do not affect the output; it is absorbed by the inertial gate delay.

Interconnect delays: as opposed to gate delays, interconnect delays are not inertial.

They propagate events as waves.

1.3.5.1 Factors Affecting Component Delays
Gate Delays:

Gates do not have fixed delay values; their dynamic properties are affected by many

factors:

Fabrication Process: The silicon atom is an element of group 4 on the periodic table.
It forms liaisons with four other atoms to make a non-conducting crystal. To con-

struct transistors, the silicon chip is doped with atoms of group 3 such as gallium to
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get positive charge carriers (type P regions), and {:

with atoms from group 5 (arsenic) to get negative

charge carriers (N type regions). Fig. 13 shows the l(_N_j P L_N_J ’ l LB_,':"LE_JI
structure of Metal Oxide Semiconductor (MOS)
Figure 13

transistors of types P and N. Feature size and doping P (left) and N type transistors.
density variations introduce uncertainty in the tran-

sistor switching time. The fabrication of chips is done on silicon wafers (see
Fig.14). It is generally accepted that component features vary depending on the
position within a wafer and from one wafer to another. On the same wafer, if A is a
point where the doping density is da, then the density at a point B is contained
within [ds-f{AB) , dy+{AB)], where f'is a positive non decreasing function such
that f{0) = 0. The latter translates into a correlation
law between the different gate delays on the same sil-
icon chip. This law will be later elaborated by con-
sidering the effect of the fabrication process along

with the effects of power supply and temperature.

The relationship between doping density and gate

. ) . . . Figure 14
delay is monotone, it can be increasing or decreasing  Sijicon wafer.

depending on the process technology.

Supply Voltage: Fluctuations in supply voltage implies a change in gate delays. Gen-

erally, the delay increases as voltage decreases.

Temperature: Ambient temperature and transistor switching activity cause tempera-
ture variations in the different regions of the silicon chip. Generally, the clock dis-
tribution network is at the highest temperature. A gate delay increases as the

temperature rises.

Slew Rate: When a signal at the input of a gate switches slowly, the gate response is

also slower, resulting in a higher delay.
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Interconnect Delays:

Metal connections are fabricated by depositing a conductor on the silicon substrate
using a chemical process. This is done over several layers due to the fact that circuits are
generally non-planar. An interconnect delay is affected by the depositing process, the

chips geometry, and the temperature.

1.3.5.2 Delay Models and Components Correlation

Integrated Circuit (IC) manufacturers specify the variation margins of the different
factors influencing gate delays. Fabrication process, electric power supply and tempera-
ture are the most noticeable. A delay value is defined by a set of three values (dpin, dyoms

diax)- The actual delay is contained within the interval [y, , dypay]-
dpmin: Minimal value of the delay with respect to the three factors.

dyom: Nominal value, defined over a predetermined condition of the three factors (e.g.,

temperature 25°, supply voltage 5 volts and doping density d).
dmax: Maximal value of the delay with respect to the three factors.

The effect of the influencing factors on gate delays of the same silicon chip, apart
from signal slew rate, makes it impossible for different gates to have arbitrary values
within the associated intervals [d, diay].- For example, when the delay of a gate A has
its maximum value d,;,,4, the delay of a gate B is necessarily in the interval [dnaxB - &
dmaxBl- €18 a positive value that depends on the degree of correlation, a number between 0
and 1 (0: no correlation, 1: 100% correlation). An elaborate delay correlation model is pre-

sented in chapter 4.

1.3.6 Maximal Delay of a Combinational Circuit

A combinational logic circuit & with m inputs and n outputs implements a logic func-

tion f: B” — B" where B = {0, 1}. Due to gate and interconnect delays, the response of
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€, following an input stimulus, is not instantaneous and a certain lapse is necessary before

the outputs stabilize at valid values.

Definitions and Terminology:

A | B | NOT(®B) | AND(AB)
010 T 0
Path: a path of & is an alternating sequence of connec- | 0 | I 0 0
0 x x 0
tions and gates which are connected one to the next. T 10 1 0
T |1 0 ]
1 X x X
Path Length: the length of a path is the sum of the delays i 5
of its gates and connections. * ! 0 i
X X X X

Table I: Floating algebra.
Maximal Topological Delay: the length of the longest

(slowest) path of §.

Input Vector: an input vector for & is an element of B” x R. This represents logic

values applied at the inputs of § at a certain time 2. (ej,e,...,ep,t) is Written

(€1,2,-8m)s

Sequence of Input Vectors: a sequence of & input vectors for &, (Vi1 5V 505 Vyi )5 1820
ko, . . .

element of (B" x R) , it is assumed that t; <ty ==1,k-1. Furthermore, when v,; is

applied at time 7;, it remains applied until time 7;,;. Obviously, v,, remains applied

indefinitely.

Floating Algebra: it is the Boolean algebra augmented with an unknown uncorrelated
value, denoted x. Table I defines the logic functions NOT and AND over F = {0, 1,
x} (other functions are deduced in a straight-forward fashion). Many methods use
this algebra to define and compute the delay of a combinational circuit. In that

case, & computes f: F'' — F".

Maximal Delay of Sequences of Vectors: the maximal delay of sequences of vectors
of &, denoted dmaxs(}’;) is: a’maxs(ﬁ) =  minimum {20 |
Vsv = (v_, ..., V), all outputs of & are stable after time 7 when sv is applied}.

Intuitively, it is the maximal time for & to compute its logic function for every pos-
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sible value of an input vector applied at time 0, assuming the inputs were previ-

ously arbitrarily changing.

Maximal Transition Delay: The maximal transition-mode delay of circuit &, denoted

dmaxT(ﬁ,) is: dmaxT(ﬁ) = minimum {t20 | V (v__, v,), all outputs of & are
stable after time ¢/ when (v_,,v) is applied}. It is the maximal time for & to com-
pute its logic function for every possible value of an input vector v, applied at

time 0, assuming the inputs were previously stable at arbitrary levels.

Maximal Floating Delay: The maximal floating delay of circuit &, denoted

dmaxF(Z';) is: dmaxF(ﬁ) = minimum {t=20 |
V (V_ o V) € (({x}" x {—o0}), (B™ x {0})), all outputs of & are stable after

time t when (v_,,v,) is applied}. Note that the circuit outputs stabilize at values in

B.

Fig. 15 shows examples of input signals for each of the previ-
ously defined delays. Note that the transition delay is not a valid

model for sequential circuits because the state register changes

g
Iuu——

Sequence of Vectors
0

- I

Transition

value at every clock cycle. Devadas et al determined in [82] that  Ficating

the transition delay is valid when it is greater than (% X topologi-

cal delay).

Lam and Brayton have shown in [102] that,
for real circuits, floating and sequences of vectors
delays are equal. The difference exists only in arti-
ficial cases such as the one shown in Fig. 16. In a
real circuit, the probability of having two paths of
exactly the same length is null. Consequently, the
correlation between X and Y in the circuit in Fig.

16 is highly improbable.

Figure 15
Examples of input
stimuli.

E 1 )-S

Y

Max. Floating Delay = 2
(X andY are not correlated)

Max. Delay for Sequences of Vectors = 0

(X =Y atall times, S = 0)

Figure 16

Difference between floating and
sequences of vectors maximal delays.
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Monotone Speed-up Property: A method for maximal circuit delay calculation that
uses fixed delay values (max.) instead of intervals is said to satisfy the monotone

speed-up property if the following holds:

Let C be a circuit for which the method calculates a max. delay of d. The
method calculates a max. delayless than or equal to d for any circuit C’ that is

the same as C except that some of its components are faster.

In other words, speeding-up components of a circuit C does not result in a slower

one (as calculated by the method).

1.3.7 Minimal Delay of a Combinational Circuit

Definitions of minimal delays for a combinational circuit & are expressed in a sym-

metrical fashion with maximal delays.

Minimal Topological Delay: the minimal topological delay of £ is the length of its
shortest path.

Minimal Delay of Sequences of Vectors: the minimal delay of sequences of vectors
of circuit &, denoted dmins(é,) is: dminS(E;) = maximum {720 |
Vv = (v Vgs -+ ), all outputs of & are stable before ¢ when sv is applied}.
Intuitively, it is the time before which the outputs of & remain stable after applying

vy and assuming that, subsequently, inputs change arbitrarily.

Minimal Transition Delay: the minimal transition delay of circuit &, denoted
dminT(E_,) is: dminT(ﬁ) = maximum {20 | V (v__, v,), all outputs of £ are

stable before  when (v__,,v, ) is applied}.

Minimal Floating Delay: The minimal floating delay of circuit &, denoted dmi nF( £)
is: dmin’(€) = maximum {¢>0 | V (v__, vg) € (B" X {1}, ({x}" x {01)),

all outputs of & remain stable before ¢ when (v__ ,Vp) is applied}.
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1.3.8 The False Path Problem

Fig. 17 shows a circuit that has a floating delayless than its topological delay. This
phenomenon is caused by the fact that, in general, not all signal paths in a circuit can prop-
agate transitions (so called false paths). When the longest paths are false, e.g., path A-C-
D-F-G in the circuit of Fig. 17, the actual circuit delay is less than its topological delay.
Hrapcenko [57] presented early an extended discussion on the subject, and proved that
even minimal circuits may have their longest paths false. He noticed also that false paths
appear naturally in accelerated carry-skip adders. This phenomenon makes the problem of
deciding whether the maximal circuit delay is less than a certain value NP-complete, as

shown in [76].

Figure 17

A circuit with false paths (numbers on gates represent delays):
when B stabilizes to 0 (1), G stabilizes to 1 after 5 (3) time units.
The circuit's floating delay is 5, whereas its topological delay is 7.

1.4 Original Contributions of this Thesis

The major contributions of this thesis are summarized as follows:

* Established the mathematical foundations of the waveform narrowing method for the
purpose of floating-mode delay calculation, the original method was formulated

around the transition-mode.




17

* Developed a spatial correlation procedure that was effective in reducing the pessimism

of the method on standard and industrial benchmark circuits.

* Developed the Timing Dominators concept that was very successful in eliminating

false violations with minimal added execution time complexity (# X log(n)).

* Developed a case analysis procedure able to find a test vector, or prove that no viola-
“tion is possible. The procedure is guided by heuristics inspired by ATPG techniques,
namely the controllability measure of [23] and the FAN algorithm of [33]. The proce-

dure uses a novel partitioning strategy based on timing dominators.

In order to provide support for state of the art industrial circuits, we extended the method

as follows:

* Developed an intuitive formalism able to express arbitrary complex clocking schemes,

along with a procedure to deduce correct default edge selection for setup verification.

*  Defined a delay correlation domain based on three-valued delay annotation (min, typ,
max) using the novel concept of normalized delays. The resulting constraints can be
used to build complex correlation networks able to model arbitrary complex compo-

nent delay correlation, like position dependence, rising-delay vs. falling-delay, etc.
* Defined more than 70 constraint primitives able to model industrial cell libraries.

* Developed a hard multiplexer primitive that reduces the inherent pessimism of the

floating delay model.

* Developed and automated a general concept for modeling combinational cells. And
added cell aware constraints that remove the pessimism induced by path delays of

unknown polarities.

* Added support for automatic handling of combinational loops, still present in some

synchronous industrial designs.
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* Implemented an industrial-grade version of the timing verifier in the object oriented
language C++, and evaluated the Waveform Narrowing method on industrial circuits

provided by Nortel Networks.

1.5 Plan of the Thesis

Chapter 2 presents an overview of the methods for computing maximal circuit delays

proposed in the literature.

Chapter 3 contains the proposed timing verification method, along with the results on

the standard ISCAS’85 benchmark suite.

Chapter 4 presents the extensions we implemented to enable the method to be applied
to state of the art industrial designs, along with the results on industrial circuits provided

by Nortel Networks.

Chapter 5 concludes the thesis.




CHAPTER 11 LITERATURE REVIEW

In this chapter we review the major methodologies for computing the maximal delay
in combinational logic circuits as presented in the literature. These methods have evolved
from a simple topological sort of the PERT project by Kirkpatrick and Clark in 1966 [56]
to more recent methods that consider the circuit functionality and automatically eliminate

false paths.

Motivation

In the early 1980’s, the increasing complexity of logic circuits made the use of simu-
lators such as SPICE [9] futile for timing verification. SPICE solves differential equations
to deduce the waveform at the output of a circuit, given a precise waveform at each input.
Execution time was estimated to about a minute for each circuit transistor on a typical
computer of that era. To compute the transition delay of a circuit, an exponential number
of simulation runs is required in order to account for all possible situations. Therefore, a

trade-off had to be made between execution time and precision.

First Approach: Limited Worst Case Simulation - Case Analysis

In 1980, McWilliams introduced SCALD [58], égate-level timing verifier. The com-
binational circuit is represented by a directed acyclic graph. Each node represents a gate
and is associated with a delay value. Gate algebra is defined over a set of seven values {0,
1, rising-transition, falling-transition, stable, changing, unknown}. A signal is defined by a
list of values and time intervals, e.g. [stable for 1 ns, varying for 2 ns, stable the rest of the
cycle]. Bach gate signal is computed using a lookup table, keeping track of minimal and

maximal event times. The evaluation is achieved using an event driven simulator that trig-




20

gers the evaluation of a gate when all its inputs are ready (this scheduling technique is
referred to as path tracing in literature). The algorithm complexity is linear, function of the
number of connections. The advantage of this method over a simple topological sort is the
possibility to perform case analysis by allowing the user to specify constant values (0 or 1)
on certain nodes. Case analysis can eliminate false paths, however, its abuse can underes-

timate the circuit delay as will be seen later when static sensitization is discussed.

Case analysis has been adopted by many verifiers such as TV [60] and CRYSTAL
[62], both of which function at the transistor level. Other systems such as Hitchcock’s [59]
allow the user to explicitly specify false paths. With the increasing complexity of digital

circuits, however, manual identification of false paths became very hard and error prone.

Automatic Identification of False Paths
Automatic false path elimination techniques are classified as follows:

1) Path Enumeration [63, 66, 70, 72, 73, 75, 76, 78, 82, 87, 88, 89, 110, 117]: these
methods search systematically all circuit paths and use sensitization criteria

(defined later) to decide whether a path is false.

2) Reduction to a Test Generation Instance [86,93]: these methods reduce the
problem of deciding whether the maximal circuit delay is greater than a certain
value to an instance of the problem of generating a test vector for multi-stuck-at

faults.

3) Approximate: [108,114] present approximate methods that construct Boolean
expressions using a subset of the involved variables, and solve them by symbolic

methods.

4) Optimization: [85,102] present a mixed Boolean-linear programming formula-

tion, [98,109,112,118] present a formalism based on constraint satisfaction.
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2.1 Methods Based on Path Enumeration

These methods search systematically to find the longest circuit path that is not false, -
the so-called longest sensitized path. Sensitization criteria as explained thoroughly in the
following sub-paragraphs are predicates used to decide whether an event at a gate input
can propagate to its output. The generic algorithm that stops when the longest true path is
found is a best-first search. The first step is to mark each gate with the length of the long-
est path that reaches an output, starting from the gate itself. The marks are then used to
guide the search: paths are incrementally built, one gate at a time, starting at the inputs,
and keeping the paths in a priority queue which returns the potentially longest path when
an output is reached. Details of the algorithm are given in [66]. Simple depth-first search

is used when all true paths are to be found.

These methods compute the maximal circuit delay using the maximal delay values
for gates and connections instead of their interval of uncertainty [d;,, dyax]- The follow-

ing definitions are required to simplify the presentation:

Side Input: for a gate g belonging to a path p, inputs of g that do not lie on p are side
inputs of p.

Controlling Value: a controlling value of a logic gate is a logic value which, if applied
at an input, determines the output independently from the other inputs, e.g., 0 for
an AND gate.

Non-Controlling Value: a non-controlling value of a logic gate is a logic value that is

not controlling.

Consider a path p containing » gates g, g, ..., g, - A sensitization criterion is a con-

Jjunction

D =0(g)) AP(gy) A .. AO(g,)

which evaluates to true if the path is sensitizable. ¢ is a predicate which depends on the

gate type. It evaluates to true if the last event at the input E that is part of p, propagates to
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Table Il
Sensitization criteria for delayless two-input AND gate.

E: gate input belonging to the path which we check whether it is false.

X: gate input not belonging to the path.

S: gate output.

X: last event at E does not propagate to S.

v/ last event at E propagates to S.

N: the decision does not affect the outcome of computing the max. delay using the criterion.

V: cause of overestimating the delay.

U: cause for underestimating the delay.

Brand & lyengar: last event of X is determined using topological information only.
the gate output S. 7} is the occurrence time of the last event on E, T 'y 18 the occurrence
time of the last event on a side input .X. Note that the sensitization criteria are expressed
using partial information: The last events at gate inputs. Therefore, they are only heuristics
and do not necessarily reflect reality. A safe sensitization criterion is one that does not
cause delay under-estimation if it is used for maximal circuit delay computation. Table I
summarizes the sensitization criteria defined for a delayless two-input AND gate. The col-
umn labeled Conservative represents a safe criterion: the only case where the last event on
E does not propagate to S is when X stabilizes to a controlling value earlier. It is important
to note that, when £ stabilizes to a non-controlling value earlier than X, the last event on S
propagates from X. In such case, the last event on £ is irrelevant for computing the maxi-

mal circuit delay. It is this property that makes the Floating-Mode sensitization criterion
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safe and equivalent to the Conservative one when it comes to computing the maximal cir-
cuit delay, though they differ when paths shorter than the circuit delay are checked for sen-
sitizability.

The following sections define the predicate ¢ in terms of the following:

%ckea{ fér?s@nsitizabﬂity;

2.1.1 Static Sensitization

A path p is statically sensitized if there exists an input vector that sets the side inputs

of each gate g of p to non-controlling values (with respect to g).

¢(g) = X isnon-controlling

The shaded path of Fig. 18 is

statically sensitized: all side inputs

are set to non-controlling values.
0
Proposed in [66], this crite- D—'—_'
rion can cause an under-estimation Figure 18
A path statically sensitized.

[x

of the maximal circuit delay as

shown in [72] and [88]. Fig. 19 shows a circuit with a true path of length 3, identified by
this criterion as false. All gates have delays of 1. Non controlling values for the side inputs
of the path {b, d, f, g} area=1,c =0, and e = 1. Althougha =1 implies that e = 0, it is

possible for the falling transition at b to travel to g because of the dynamic behavior of the
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circuit. In fact, before time 0, we have a = 1,

b=1,¢=0,d=1,e=0,f=1,and g = 1.

Both a and b change values from 1 to 0 at

a

time 0, causing d to fall to 0 at time 1, ande b

to rise to 1 at time 1, causing g to fallto 0 at ©

time 2. Then f falls to 0 at time 2, causing g a _v 123
to rise to 1 at time 3. b~
¢ - -
This example shows the inadequate use d —
of case analysis based on constant logic val- e - ;
ues, as proposed in SCALD and other tools. fF——_
g L1
Figure 19 ‘

A true path of length 3 identified as false by
static sensitization criterion.

2.1.2 The Brand-Iyengar Criterion

To avoid the delay under-estimation problem of static sensitization, the authors of
[63] suggested imposing non-controlling values only on the side inputs X for which
Topy<Topg where Topy (Topy) is the longest path from a primary input to X (E).

Therefore,

¢0(g) = (Topy=Topy) v X is non-controlling

The column Brand & Iyengar in Table II gives the wrong impression that this crite-
rion is equivalent to the conservative one. The fact of the matter is that it is not as tight.
The pessimism is caused by the fact that there may be cases where T opy2 Topy and yet
Ty<Topy, (the longest path from a primary input to X is false). In such case, Brand-Iyen-
gar criterion evaluates to true, while the conservative one requires X to stabilize to a non-

controlling value.
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2.1.3 Co-Static Sensitization

This criteria is proposed by
Devadas et al in [93]. For the last
event to propagate from E to S, if

E stabilizes at a non-controlling Figure 20
. A false path of length 6 identified as true by co-static
value, then X must stabilize to a  gepsitization (a=0).

non-controlling value also.

®(g) = (£ is controlling) v (X is non-controlling)

Unlike the static sensitization, this criterion does not under-estimate the circuit delay,
however, is does over-estimate it, as can be seen in the example of Fig. 20. The Numbers
on gates represent their delays. A value of 0 at the input a implies 0 on all circuit nodes,
satisfying the criterion for the path {a, ¢, d, f, g} with a delay of 6. However, it is impossi-
ble for a transition to travel along this path. In fact, when a falls to 0 at time 0, b follows at
time 1, and d follows b instantaneously at time 1. In this case, the last transition at gisat
most at time 5. In the case of a rising transition at a, d follows after 2 time units, but g,
controlled by the short path {d, e} because 1 is a controlling value for the OR gate, follows

d after 3 time units instead of 4.

2.1.4 Viable Sensitization

Suggested by McGeer and Brayton [72], for the last event to propagate from E to S, X’

must stabilize to a non-controlling value before 7' > Or X stabilizes after 7.

¢(g) = (Ty=Ty) v (X stabilizes to a non-controlling value)

This is the most conservative criterion, it is the negation of a sufficient condition that

makes a path not sensitized: a side input that stabilizes to a controlling value earlier.
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2.1.5 Floating Mode Sensitization

This criterion is proposed by Chen and Du [71]. The last event at £ propagates to S

according to the following rules:

when E stabilizes to a controlling value, 7y > T  or (X stabilizes to a non-controlling

value and T, < T;)

when E stabilizes to a non-controlling value, X must stabilize to a non-controlling

value and T < Ty.

The maximal floating delay of a combinational circuit defined in section 1.3.6 is
compatible with this criterion. It is widely used by timing verifiers due to its simplicity
and the fact that it determines a tight upper bound for the maximal circuit delay. Further-
more, this bound is an upper bound for the family of circuits that have gate delays con-
tained in the interval [0 , maximal gate delay], that is, the criterion satisfies the so called
monotone speed-up property. Note that this property is satisfied in all previously stated

sensitization criteria, except static sensitization.

Another sensitization criterion, which has not been stated, is dynamic sensitization.
This criterion computes the maximal transition delay defined in section 1.3.6, taking into
consideration the instantaneous signal values. This criterion does not possess the mono-
tone speed-up property. An interval delay model has to be used instead of simply the max-

imal delay values, which makes the computation too complex to be practical.

2.2 Reduction to a Test Generation Problem

Ashar et al [86], and Devadas et al [93] proposed two similar methods to reduce the
problem of deciding whether a circuit delay is greater than & to an instance of a multi
stuck-at-fault test generation problem (see [31-42] for details on test generation). These
methods use the properties of the transformation of a logic circuit into a two-level circuit,

a disjunction of conjunctions, known as the equivalent normal form. This transformation




is illustrated on the example of Fig. 21
extracted from [93] (numbers on gates
are identifiers). First, all fan-outs are
eliminated by duplicating common
structures, resulting in the tree circuit
of Fig. 22. Then, the inverters are
pushed back to the inputs, applying
DeMorgan’s law resulting in the circuit
of Fig. 23. The normal form logic

expression representing the circuit is:

(bra 63 ACr1,3,461 A (13,460 V
(a3 5,67 C1,3,5,61 A di2,5,61) V
(ag3,5,61 A C1,3,5,61 A b, s, 61) v
(ag3,5,6y A 113,561 Adg2,5,61) v
(a3 5.6y Ad11,3,5,61 A b2, s, 61)

NFE is represented by the circuit
of Fig. 24. Each variable represents an
individual path of the original circuit;
the indices contain the identifiers of the

path gates. To make it equivalent to the

]
Fjil

Figure 21
A circuit fo be transformed to the equivalent normal
form.

o Qo o o o

%
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Figure 22
Removing fan-outs results in a tree circuit
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Figure 23
The result of pushing back the inverters.
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original circuit, a delay equal to the path length is placed at each input and gates are

assumed delayless. Suppose that the maximal floating delay of the circuit is to be com-

puted for the rising transition at the output, i.e., T = maximum time separating the applica-

tion of an input vector v and the last event at the output for all v such that ENF(v) = 1

(obviously, the last event is a rising transition). Assuming that T > §, there exists an input

vector v such that, referring to the circuit of Fig. 24:
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1) all AND gates belonging only to paths shorter than

or equal to J stabilize at 0;

2) at least one AND gate belonging to a path longer

than J stabilize at 1.

The input vector v is a test vector for multi stuck-at-0

faults injected at each of the AND gates inputs belonging to

I9SI0YY

gH)L{U! qugj

a path longer than 8.

To compare the maximal floating delay for the falling Normal form representation.
transition, the method is simply applied to the inverted cir-

cuit..

Devadas et al suggest an algorithm in [93] that uses the original circuit without mod-
ification at the cost of modifying the way the test generation is done. Ashar et al [86] use
standard tools for test-generation at the cost of modifying the circuit, which in the worst
case doubles in size by the process of pushing back the inverters to the inputs. The execu-
tion time for the circuit 1908 from the ISCAS’85 [3] benchmark is 3675 seconds for the
method in [93] on a 10 MIPS machine, and it is 800 seconds for the one in [86] on a 20
MIPS machine.

2.3 Mixed Boolean-Linear Programming

Lam et al suggested in [85] a Mixed Boolean-Linear programming formalism to
compute the exact circuit delay using the interval delay model for the gates. The dynamic
behavior of the circuit is represented by a timed Boolean function. For example, a two-
input AND gate wifh a delay of 2 is represented by s(¢) = a(t—2) AND b(t—2) where
tis time, s is the output, a and b are the inputs. The function representing the circuit behav-
ior at its output is f{1, Xy oo X dy, oy d,,) Where X5 s X, are the inputs, dy, ..., d,, are
the gate delays and # is time. The computation of the maximal delay is formulated as fol-

lows:
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Delay = max t such that

fxys o X dyy oy d,) #flo0, X4, o X, dy d,) (1)

To resolve (1) for certain values of ¢ and the delays d;e [ Dins Amax,)
flt,xy s %, dyy oy dy,) XOR floo, x4, oy X, d,, ..., d,) is represented by a Binary Deci-
sioﬁ Diagram (BDD, see [15-21]) and checked for satisfiability. A BDD is a directed acy-
clic graph representation of a Boolean function. The disadvantage of BDDs is their size
that is exponential in the worst case (in terms of the number of variables), encountered
with multipliers for example. The execution time of this method on circuit ¢1908 from the

ISCAS’85 benchmark is 12140 seconds on a 38 MIPS machine.

2.4 Hierarchical Method

Yalcin and Hayes [107] proposed a method applicable at different levels of abstrac-
tion of a circuit. They represent the delay of the combinational circuit with  inputs and m
outputs with a matrix of dimensions n x m. The element (i, j) represents the delay from
input i to output j. This delay is a set of pairs (y, f) where y represents the conditions
that have to be satisfied to have a delay ¢ from input i to output j. The circuit matrix is
deduced by operations on the matrices corresponding to its building blocks. Satisfiability
of conditions v is evaluated symbolically by manipulating BDDs. The excessive require-
ments for execution time and memory inclined the authors to follow an approximate
approach in [108], by restraining the conditions W to depend on a limited number of sig-
nals, the controlling lines. In the case of a multiplier, however, there are no controlling

lines and this method simply computes the topological delay.
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2.5 Method Based on Constraint Satisfaction

Cerny and Zejda proposed in [98] a method based on Waveform Narrowing (WN).
Using the circuit description and the operating conditions, a constraint system is built and

partially resolved using an event driven mechanism.

A constraint system is composed of a finite set of variables {.X; 1> X25..., X} that take
values from their respective domains Dy, D,,..., Dy, and a set of relational constraint oper-
ators {Cy, Cy,..., Cp}, each operating on a subset of the variables. A domain Dy of a vari-
able Xy initially contains the set of all possible values Xy can take. A solution of the
constraint system is an assignment for all the variables, from their respective domains, that
makes the system consistent, i.e., all the constraints are satisfied. When a constraint opera-
tor Cy is applied, it removes from the domains of the associated variables values that are
not compatible, i.e., values that are not part of any solution. The resulting system contains

the same original set of solutions.

Modeling a timing verification problem using Waveform Narrowing concept consists

of:
¢ Defining domains that represent sets of binary waveforms;
*  Defining domains that represent sets of delay values;

*  Defining constraint operators that represent logic gate functions. When applied, the
constraint operators remove from the domains associated with the gate terminals the
values that do not satisfy the local gate constraint, regardless of the global circuit func-

tion;

* Building a constraint system based on the logic circuit description, the component tim-
ing properties (delays / timing constraints), and the operating conditions (clock fre-
quency). The constraint system should have a solution if and only if the timing

constraints are violated;
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* Resolve the system partially by repeatedly applying the constraint operators until the
greatest fixpoint is reached; it is no more possible to change the domains by applying
the constraint operators. If the resolution results in empty domains, we conclude that

the timing constraints are satisfied. Otherwise, no conclusion can be drawn.

This method is an attractive framework for timing verification as it can efficiently
handle component delay correlation, eliminates false paths, and models the transition and
floating-mode delays. The method can give false negative results because the constraint
system resolution is partial, however, it'is possible to tighten the results by investing more

processing time. The method is the basis for our work that is detailed in Chapters 3 and 4.

2.6 Summary

Timing verification is a critical phase in the design flow of VLSI circuits. In the
emerging system-on-a-chip technology, timing verifiers are faced with multi-million-gate
chips that need to be verified in hours. Therefore, quasi-linear complexity is imposed on
any commercially acceptable timing verification algorithm. Unfortunately, the timing ver-
ification problem is NP-Complete [76]. The complexity of the problem is caused by the
fact that, in general, not all signal paths in a circuit can propagate transitions (so called
false paths). Many techniques have been developed to deal with the false path problem.
Algorithms based on path enumeration suffer from poor performance, as they may have to
enumerate a very large number of paths, however, it is possible to improve the perfor-
mance by memorizing inconsistencies between sub-paths [110]. In [86,93] the authors
reduced the problem of comparing the circuit delay with & to an ATPG problem. In [85] a
method based on timed Boolean functions and a BDD representation was formulated,
however, it may experience exponential space explosion for certain circuits. To cope with
the increasing complexity, the research community tends to offer approximate solutions,
as is the case in [108] where the entries of the conditional delay matrix are restricted to be
expressed using the controlling lines, smoothing out the other variables. The group at the

Universit¢ de Montréal has developed a method based on waveform narrowing
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[98,112,118] inspired by constraint logic programming using relational interval arithmetic
[14]. Unlike other methods, it can efficiently handle component delay correlation [112]

and adapt to different circuit-delay modes (transition or floating).

A recent publication [119] is particularly interesting. It exposes the approach used to
verify the timing properties of the 600 MHz Alpha processor. This processor is built on a
one square centimeter silicon chip, containing roughly 18 million transistors. Their

approach is summarized as follows:
1) Uses a fixed delay model (nominal value) for components
2) Uses SPICE [9] to simulate the clock signal
3) The longest circuit path is responsible for its delay

Note that no automatic false path elimination technique was used. Having to deal
with a circuit of such size, even a quadratic algorithm is not acceptable. Moreover, the use
of a fixed delay model is motivated by the fact that, when the timing verifier does not han-
dle component delay correlation, the use of interval delay model introduces excessive pes-
simism. Finally, the Alpha design group had to program their own timing verifier in order
to be able to handle non-standard design techniques, such as gated clocks, necessary to

achieve the 600 MHz clock frequency.

The main drawback that keeps exact false path elimination methods from serious

industrial use is their inherent computational complexity:

*  Methods based on BDD evaluation have an exponential space complexity in the worst
case. For example no method was able to build a BDD for the multiplier ¢6288 from
ISCAS-85 benchmark suite without exhausting the system memory. But they can
apply existential abstraction of variables to reduce complexity for approximate (upper
bound) values, as is the case in [108] where the variables are limited to the controlling

lines.
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* Methods that reduce the problem to an instance of a test generation problem have
exponential time complexity in the worst case. For instance, these methods experience
an excessive execution time for simple circuits like c1908 from the ISCAS-85 bench-

mark suite.

* Methods based on path enumeration may have to enumerate an exponential number of

paths. For instance, 6288 has more than 10'® paths!

Beyond the computational complexity issue, a methodology for circuit delay compu-
tation is required to be easy to integrate with existing EDA tools. The objective of our
work is to provide a method that has the characteristics mandatory for industrial use, such

as:

- Quasi-linear time and space complexity.

- Possibility to tighten results of critical circuit nodes by investing processing time.
- Supports interval delays and component delay correlation.

- Supports delays as defined in Standard Delay Format (SDF) [13].

- Supports gated clocks.

- Supports correctly transparent latches.

- Supports complex clocking schemes.

- Provides easy and automated cell library modeling.

The following chapter contains the proposed timing verification method, along with

the results on the standard ISCAS’85 benchmark suite.




CHAPTER 111 METHOD BASED ON
WAVEFORM NARROWING

In this chapter, we present the proposed timing verification method based on the
work of Cerny and Zejda in [98]. After explaining the basic idea, two examples are used to
develop intuition. The method is then formalized and further extended using conservative
reduction techniques and a case analysis procedure. The original method was formulated

around the transition-mode delay, and implemented no pessimism reduction techniques.

3.1 Overview of the WN Method

The waveform narrowing method is a custom constraint programming system
adapted for timing verification. A constraint system is composed of a finite set of variables
{X1, Xp,..., X, } that take values from their respective domains Dj, Dy,..., Dy, and a set of
relational constraint operators {C}, Cy,..., Cyy}, each operating on a subset of the variables.
A domain Dy of a variable X initially contains the set of all possible values Xy can take. A
solution of the constraint system is an assignment for all the variables, from their respec-
tivé domains, that makes the system consistent, i.e., all the constraints are satisfied. When
a constraint operator Cy is applied, it removes from the domains of the associated vari-
ables values that are not compatible, i.e., values that are not part of any solution. The

resulting system contains the same original set of solutions.

3.1.1 Inconsistency Property

If applying repeatedly the constraints results in one of the domains becoming empty,
the constraint system has no solution. However, if all the domains are non-empty, the sys-

tem may still have no solution.
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3.2 Formalism for Timing Verification

Formulating a circuit delay computation problem by means of a constraint system
involves defining signal domains (sets of binary waveforms), delay domains (intervals),
and constraints representing logic gate functions. The variables and the relational con-
straints represent the signal values of circuit nets and the logic gate functions, respectively.
The specific circuit-delay mode and the timing constraints being verified introduce further

restrictions on the domains.

3.2.1 Abstract Waveforms
* A binary waveform is a mapping iR — {0, 1}.
* The space of all binary waveforms is BW = {f: R — {0, 1} }.

* An abstract waveform is a subset of BI¥ defined as
w=v["" ={fe BW |3t e [Imin,max] f(t)#v A Vi>1 f(t) = v}.
v];:lna; contains the binary waveforms that are stable at value v after time max and
undergo the last transition at or after time /min.
Example:
0|:g contains the binary waveforms that: undergo 1 to 0 transition exactly at time 10,
stable at 0 after time 10, and can be anything before time 10.
Infinite bounds extension:

oo
V-

contains the set of all binary waveforms that stabilize at v.

v| : contains the binary waveform that is stable at v for all finite values of time.

Note that v|"~ A v~ = v["~ and 0|7~ 1" = ¢ by definition.

* The abstract waveform space is AW = {v{m)ﬁl | Imin, max € R A ve {0,1}}

R Ve T T

References to v, Imin and max of an abstract waveform w are denoted w.v, w.Imin and

w.max, respectively. w.v is the class and [w.Imin, w.max] is the last-transition interval of
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w. If w.lmin > w.max then [w.Imin, w.max] is empty and w itself is also empty, denoted w =
0.
Abstract waveforms are used in the formalization of maximal circuit delay verifica-

tion for which the relevant signal waveforms are the ones that do stabilize to a final logic

value at a finite value of time.

3.2.2 Abstract Signals Domain : Transitions

e . min  max
The objective is to define a domain model for the set (b)

of possible binary waveforms that an electrical signal, Rising clock edge
Figure 25

abstracted to the timed Boolean domain, can take values (a): Abstract signal domain.
L. . . . . . (b): Clock edge domain.

from. In timing verification, signals are considered in a

finite time interval. A signal is normally unstable for a certain period of time, and then it

stabilizes to a final binary value. Therefore, it is convenient to compose the domain using

two abstract waveforms, one containing the waveforms stabilizing at 0, the other contain-

ing the ones stabilizing at 1. This subdivision is a key element when it comes to defining

the relational constraints that model the gate functions such as AND, OR, NOT, etc.

* An abstract signal S is a pair of abstract waveforms (W, wy) | wy.v =0 and
wiy = 1.

*  The space of all abstract signals is AS={w e AW|w.v = 0 }x{we 4 Wiwyv =1}

Domains of the variables representing digital signals are elements of AS.

References to wy and w; of an abstract signal S are denoted S.wg, S.wy, respectively.
Fig. 25 (a) shows the graphical representation of the abstract signals domain used in the

examples throughout this thesis.

3.2.3 Other Domains

Beside abstract signals, clock domains are represented as the interval uncertainty of
the occurrence time of the relevant clock edge (Fig. 25 (b)), delays are represented as

intervals.
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3.2.4 Timing Verification

Given a logic circuit and operating conditions, we build a constraint system that is

consistent, i.e. has a solution, if and only if the timing constraints are violated. The system

is built as follows:

For each circuit net Vy we associate a variable X that takes values from its domain Dj.

Dy initially contains the set of all possible values (waveforms) X; can take.

For each logic gate Gy driving a net Ny (gate output), and driven by nets {Ny,, ...,
Nip} (gate inputs), we associate a constraint operator Cy, that operates on the domains
Dy, Dy, ..., Dyy, from which the variables Xy, X, ..., Xy, take values, respectively.
Letf : B W' ™' — BW be the timed Boolean function Gy implements. An assignment
to the variables { Xy, Xy, ..., X} satisfies the gate constraint if X,y = fiXy, ..., Xip)-
When applied, the constraint operator Cy removes from each domain Dy; (narrows
Dy;) the values that, when assigned to Xj;, do not satisfy the gate constraint for all pos-

sible assignments to the other variables.

Constraint Operators: the constraint operator Crof a two input gate implementing
the timed Boolean function f'(4, B: domains of the inputs, ¥ domain of the output) is
defined in terms of the forward and partial inverse functions defined as follows:
Forward Function:
forwardY(A, B)={fla,b) |ac A,be B}
Partial Inverse functions:
partiallnverse’(B, Y)={a e BW |3be Bandye Y,y = fla, b)}
partiallnverse®(4, Y) = {be BW |daedandye Y,y = fla, b)}
Constraint Operator: the constraint operator is defined as C{4,B, V)=A,B, )
such that:
Y =Y N forward (4, B)
A=4n partial]nverseA(B, Y)
B’ =B N partiallnverse®(4, Y)




Generalization to multiple input gates

is trivial.

Example: Fig. 26 shows the results of
applying the constraint operator of a
delayless AND gate. the and function is
a mapping and: BWXBW — BW,
for a,be BW and(a,b) =y such
that y(¢) = a(¢t) and b(¢) V te R.

Initial state: Fig. 26(a) shows the
initial domains of the gate inputs A
and B, and the gate output Y, before
the AND constraint operator is
applied:

A=(¢,1 ]ii ), contains the wave-
forms stable at 1 after time 10;

B = (Q),llio ), contains the wave-
forms stable at 1 after time 5;

Y=( O]? ,1 [;1 ), contains the binary
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Aw, T

(a)

B,

( C) Bw) TR

Yo, ErTT

Yowy
Figure 26
A delayless AND gate constraint operator.
(a) Initial domains.

(b) Effect on the gate output Y.

(c) Effect on the input A.

waveforms stable at 1 after time 11, having transitions in [9,11], and the wave-

forms stable at 0 after time 8, having transitions in [7,8];

Effect on the output ¥: Fig. 26(b) shows how the gate output is narrowed by

deductions derived from the gate function: Let a€ 4, be B, and y € ¥ wave-

forms that satisfy the AND constraint: y = and(a, b). Since a is stable at 1 after

time 10, and b is stable at 1 after time 5, y is necessarily stable at 1 after time 10,

Therefore, Y is narrowed to (¢,1 };0): waveforms unstable after time 10 and those

stabilizing at O are removed.

Effect on A4: Fig 26(c) shows the narrowing performed on the input 4. Let y € Y,

Jte [9,10] | y(¢) = 0. Since any waveform in B is stable at 1 after 5, waveforms
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in A that satisfy the AND constraint are g € 4 | a(t) = 0. Therefore, waveforms in

A that are stable at or after time 9 are removed, resulting in 4 = (6,1 |;0 ).

Effect on B: no narrowing is possible on B because, Vb€ B,3 ac A and ye ¥

such that y = and(a, b) . For example,

0forr<10
a(t) = y(t) = or . satisfy y = and(a,b) Vbe B.
1 otherwise

* When delays are represented as intervals instead of fixed values, additional variables
and domains are associated with circuit component delays, along with appropriate

constraints that handle component delay correlation.

The system is partially resolved by an event-driven engine that repeatedly applies the
constraint operators until the greatest fixpoint is reached. If we get empty domains we
conclude that the timing constraints are satisfied (no violation), otherwise, no conclusions

can be drawn.

A formal presentation of the WN method is presented later, after developing intuition

by means of the following two examples.

3.3 Combinational Circuit Example

Consider the circuit in Fig. 27(a) where

the numbers on gates represent their maxi-

mal delays. The operating conditions and

timing requirements imposed on the circuit

are:

- Input data (A and B) stable after time 0

L

(operating conditions). Figure 27
(a): Combinational circuit with a false path.

(b): Combinational circuit example: step 0.
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- Output (G) stabilizes at time 61 or earlier. That is a constraint; therefore, transitions

at or after time 61 at G violate the timing requirements.

A graph of constraints is built isomorphic to the circuit, as mentioned in Section

3.2.4. The constraint associated with a logic gate is formulated around its forward logic

function and its partial inverse operating on sets of waveforms. The constraint system res-

olution is depicted in Figures 27-34.

Step 0

Initially assign the set of all possible

waveforms (0[:, 1[:) to the internal

nets C, D, E, and F. Inputs A and B are  Figure 28

. . Combinational circuit example: step 1.
restricted to waveforms stable after time

0: (0°,1/"). The output G is

restricted to what violates the timing

requirements: transitions at or after time

+oo +o0
61: (Ofg; s g, )-

)Figure 29

Step 1 Combinational circuit example: step 2.
Applying the inverter constraint operating on {A, C} removes from C (narrows C) the
waveforms having transitions after time 10. Obviously, transitions after 10 at C cannot
be caused by a signal that is stable after 0 at A, provided the inverter between A and C

has a maximal delay of 10.

Step 2
Applying the AND constraint operating on {B, C, D} removes from D the waveforms

having transitions after time 40.

Step 3
Applying the Inverter constraint operat-

ing on {D, E} removes from E the wave-

forms having transitions after time 50.

Figure 30
Combinational circuit example: step 3.
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Step 4
Applying the OR constraint operating on ‘
pplying perating on (=) ==

{B, D, F} removes from F the wave-

forms having transitions after time 60.

Figure 31

Step 5 Combinational circuit example: step 4.

The OR constraint operating on {E,F,G}

has a more complex behavior as the p—

, o . Lm_;m%""_' ol
gate’s partial inverse function comes >
into play: -

Figure 32

Forward function: since the gate maxi- Combinational circuit example: step 5.
mal delay is 10, and waveforms at its
inputs are stable after time 60, applying the constraint removes from G the waveforms

having transitions after 70 (the circuit topological delay).

Partial inverse: any waveform in E that is stable at 1 (controlling value for OR) after
time 50 causes waveforms at G to be stable after 60, none of which is in the domain of
G. Therefore these waveforms do not make part of any solution, they are removed.
Furthermore, waveforms at F stable at time 51 and after cause waveforms at G to be
stable at 61 and after, none of which is in the domain of G. Therefore, they are
removed form F which ends-up with waveforms stable after 60, having transitions in
[51,60].

It is important to get familiar with the meaning of narrowing: Step 5 narrowed the
domain of E from (OESQ, 1 E(:o) to (0 lfi, ¢) , removing the waveforms stabilizing at 1.
Then it narrowed the domain of F from (O]fi, I[fi) to (0}?1), 1!2(1)) , removing the
waveforms stabilizing at or after 51. Narrowing v];','na; either decreases the value of
max (removes late transitions), or increases the value of Imin (removes early stabiliza-

tion), or both.
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- Step 6 T

Applying the OR constraint operating on = g"“ |l —

; -
"Erm 70
! H

{B,D,F} involves also its partial inverse

function: waveforms in the domain of B

stabilizing at 1 (controlling for OR) are o0 33

removed as they cause at F waveforms Combinational circuit example: step 6.

stable after time 20, none of which is in
its domain. Also, waveforms of D stabi-
lizing at time 31 or earlier are removed

as they cause waveforms at F having no

transitions at or after time 51.

Figure 34
. Step7 Combinational circuit example: step 7.
Finally, applying the AND constraint operating on {B,C,D} removes from B the wave-
forms stabilizing at 0 (controlling for AND) as they cause waveforms at D stable after
time 30, none of which is in its domain. We end up with an empty domain. Therefore,
the constraint system has no solution, and it is impossible to violate the timing require-
ments in the context of the current operating conditions (inputs stable after time >O).
This proves that no transition is possible at or after time 61, consequently, the path A-

C-D-F-G of length 70 is false.

It is important to note that the system is resolved using an event driven mechanism.
Each time a domain is narrowed, all the constraints operating on it are re-applied. The
operating conditions and the timing constraints trigger the initial operations. The system

then iterates until no domain is narrowed further, until the greatest fixpoint is reached.

In this example, only the maximal gate delay is used, and no clock signal is involved.
The objective was to illustrate false path elimination using the waveform narrowing for-
malism. The following example illustrates how component delay correlation is handled

through a simple example involving no complex logic functionality.
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3.4 Sequential Circuit Example

Fig. 35 illustrates a simple frequency divider circuit composed of one edge sensitive
flip-flop, one inverter, and one clock buffer. The logic behavior is as follows: Q flips its
value at each rising edge of the clock, resulting in a 50% duty cycle signal at Q having half
the clock frequency. Considering the physical components behavior, the timing constraints
of the flip-flop (setup / hold) have to be satisfied; otherwise, the circuit response is unpre-
dictable. The setup constraint verification is illustrated next, using the following parame-

ters:

* Clock period: 22

*  Clock buffer delay: [10,20] JL I I T cio E-—_o—_g
e Inverter delay: [10,20] Fauttoss, deyess behm: e
*  CLK-to-Q flip-flop delay: 0 ek D }
* D/ CLK setup constraint: 0 Figure 35
Frequency divider.

D has to stabilize at least 0 time units

before the occurrence time of the clock edge.

» Component delay correlation factor: 10%
This means that, although the circuit delays can have values in [10,20], once one is

specified as d, the other is in [d - 1, d + 1]. (10% of [10,20] interval width is 1).

As explained in Section 1.3.3, two clock cycles are unfolded. The flip-flop is broken
down into two parts: one injects a logic value at the arrival time of the active clock edge of

one cycle; the other samples the data at the next clock cycle (after one period).

The constraint system that is used to model the verification of the setup constraint of
the flip-flop is depicted in Fig. 36. The clock period is modeled by a buffer that has a fixed
delay value equal to the clock period of 22. Since the logic function is very simple, the
graphical representation of the data signal domain shows only the dynamic behavior.

Three domain types are used in this example:

* Interval delay domains, shown on the clock buffer and the inverter;
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* Clock domains representing the interval | o 50 -
amCraonoot | [=pr
of uncertainty of the arrival time of the | """ Q- {@c —0
rising edge. The clock falling edge is irrel- oo Eoge irstoycie) | e T
: mo ) A S .t
Iy . [ =
evant in this particular case. P s =l e
%d: Period 22 (next cycle}
* Abstract signal domains for Q and D. Figure 36

Sequential circuit example: step 0.

Initial domain values are specified as follows:
*  Qand D contain all possible waveforms: (0|, 1|"7).

* Internal clock domains, CLK at both cycles, contain all possible rising edges

[, + o],

’

¢ The primary input clock domain contains a single rising edge at time 0.

* Delay domains for the inverter and the clock buffer contain all possible delay values
[10,20].

Constraint Operator of the delayless Flip-Flop D/CLK half: when the flip-flop D /
CLK constraint (the part that samples data the next cycle) is applied, it removes from the
domains of D and CLK the values that do not violate its setup constraint. It removes from
CLK the edges arriving after the stabilization time of D, and removes from D the wave-

forms stabilizing before the earliest arrival time of the clock edge at CLK.

Constraint Operator of the delayless Flip-Flop Q/CLK half: when the flip-flop CLK /
Q constraint is applied, it removes from Q the waveforms unstable after the latest clock
edge, and removes from CLK the edges arriving before the latest transition at Q. The
rational behind this definition is that the data signal at Q stabilizes CLK-to-Q units of time
(0 in this case) after the arrival time of the active clock edge. Therefore, the latest transi-

tion at Q cannot happen after the arrival time of the clock edge.

Figures 37-56 depict the constraint system resolution. Each step explains the results of

applying the shaded constraint.




Step 1
Applying the clock buffer constraint oper-
ator narrows the CLK domain to [10,20].

Step 2
CLK / Q constraint operator removes
from Q the waveforms that are unstable

after time 20.

Step 3

The inverter constraint operator removes
from D the waveforms that are unstable
after time 20 + 20 = 40.

Step 4
The period delay narrows the next cycle
clock domain to 22 + [10,20] = [32,42].

Step 5
The D / CLK setup constraint operator has
effect on both domains, D and CLK. The
setup constraint is violated only when the
clock edge occurs before the stabilization
time of D. Therefore, clock edges occur-
ring in ]40,42] do not violate the setup
constraint, and thus the domain of CLK is
narrowed to [32,40]. The same is true for
the waveforms at D stabilizing before
time 32 (before the arrival time of any
| clock edge). Therefore, the domain of D is

narrowed to (0|§g, 1[:2). In fact, the
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Delay C:

on: 90%

10% permitted delay

deviation: 1

Clock Edge (first cycle) CLK

Tea ) A
o~

L= | aracnpemom

Figure 37

Sequential circuit example: step 1.

Delay Corralation: 90% ’:_"'%E::" s maendl

10% permitted delay —7

deviation: 1 v D

Clock Edge (first cycle) CLK

TR I, vt

f - . i

L~ Gioek Perioa 22 (next cycle)

Figure 38

Sequential circuit example: step 2.

Delay Correlation: 90%
10% permitted delay
deviation: 1
Clock Edge (first cycle)
g J .
’ e — ==
‘‘‘‘‘‘ mozo . ;
10,20 r;z\ -
o e %Period 22 (next cycle)
Figure 39
Sequential circuit example: step 3.
Delay Correlation: 90% o medl|
10% permitted delay o —
deviation: 1 al D
Clock Edge (first cycl ' /
0 Edge (first cycle) (kK CLK
Tmh_ )
i [
= 1020 > rzz\ -
b B LG poros 2 s ey
Figure 40

Sequential circuit example: step 4.

Delay Correlation: 30%
10% itted delay
deviation: 1

Clock Edge (st cycle)
TBa )

Clock Period 22 {next cycle)

Figure 41
Sequential circuit example: step 5.
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(delayless) setup constraint operator does an interval intersection operation between

the domains of D and CLK.

Step 6

The inverter constraint operator has a
backward effect on the domain of Q.
Since all waveforms at D have transitions
at or after time 32, the waveforms at Q
should all have transitions at or after 32 -
20 = 12. Therefore, the waveforms at Q

stabilizing before time 12 are removed,;

the domain of Q is narrowed to (OI?g, 1 |f(.2)) .

Step 7

The CLK / Q constraint operator has also
a backward effect on the domain of CLK.
Since all the waveforms at Q have transi-
tions at or after time 12, the clock edge
cannot happen before 12. Therefore
[10,12[ is removed from the domain of
CLK.

Step 8

The clock period constraint operator also
has a backward effect on the clock
domain of the previous cycle. Remember
that the clock period is 22, and the time
lapse between successive rising edges of

the clock is exactly 22 time units. The lat-

| Delay Comelation: 90% __
10% permitted delay ,~_
 deviation: 1 7 ol . b
i |
Clook Edgo (irstoycle) | ¢y T ok
et tosy | o %
(2 T 4 U
N %Peyiod 22 (next cycle) |
Figure 42
Sequential circuit example: step 6.
Delay Correlation: 90% F'E:FF"T el
10% permitted delay Sl
deviation: 1 M D
10,20
T
Clock Edge (st cycle) e 1 oK
B J ‘40 e LA
; PR S 22= 18 ° I
‘ 5 = .,"“,._'4_'._‘L3'f?mw,1
2 1020">— [ 22 ;
S ot l " Clock Periad 22 (next cycle)
Figure 43

Sequential circuit example: step 7.

Delay Correlation: 80%
10% permitted delay
deviation: 1

Clock Edge (frsteycle) |

CLK
A

1,@,‘65_,.-,’ VN .
L 10,20 / 1\22\\ -
B’ l/(;l; Perlod 22 (next cycle)
Figure 44

Sequential circuit example: step 8.

est arrival time of the clock on the next cycle is 40; therefore, the latest arrival time of

the clock at the previous cycle is 40 - 22 = 18. It follows that the clock signal domain

must be narrowed to [12,18].




Step 9

The buffer delay constraint operator
affects its delay domain: a delay value in
[10,12[ or ]18,20] causes the clock edges
to fall outside of [12,18]. Therefore the
buffer delay domain should be narrowed

to [12,18].

Step 10

At this point, the delay correlation factor
of 10% comes into play. Since delays can-
not differ by more than 1 unit of time, a
delay of [12,18] at the clock buffer
implies an inverter delay in [12,18] +
[-1,+1]=[11,19].

Step 11
The CLK / Q constraint operator removes
from Q the waveforms unstable after 18,

the latest arrival time of the clock.

Step 12
The inverter constraint operator removes
from D the waveforms unstable after 18 +

19 =37.

Step 13

The clock period constraint operator
removes from the domain of the clock on
the next cycle the edges occurring in
[32,34], since the earliest edge on the pre-

vious cycle occurs at time 12.
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; Delay Corralation: 0%

10% [ d defay i P &
. deviation: 1 Q i 10,20 o

Clock Edge (first cycle) | ¢y e | ik
“To A / L&A
! J —
oo N ‘ l/capenoa 22 (rent oyce)

Figure 45
Sequential circuit example: step 9.

. Delay Correlation: 80% . =3
| 10% permitted delay , - =
deviation: 1 )/ a
i

Edge (frst cycle) CLK
i

: —W - | 22
! | Clock Period 22 (next cycle)
Figure 46

Sequential circuit example: step 10.

Delay Corralation: 90%
10% permitted delay
deviation: 1

Clack Edge (first cycle) CLK
J A
K z.“”,uz,agl,., ) -
f’—]mna \ o~
.o %P‘E‘W??(ﬂemyﬁ"!,
Figure 47
Sequential circuit example: step 11.
Delay Corretation: 80% [
1083{?}Z?ermiitsd delay % J
deviation: 1 al 1199 D
—
Clock Edge (firstcycle) | ¢k ="‘"""L““":L‘J CLK
o " T A\ ) LA
JG T L,,M,Ja.”ggl J
%12,18 r22\ i :
e I "7 Clock Period 22 {next cycle) |
Figure 48

Sequential circuit example: step 12.

Dslay Correlation: 90%
10% permitted deiay
deviation: 1

Glock Edge (first cycle)
[ X - |

CLK
A

> |
L~ Glook perion 22 et )

Figure 49
Sequential circuit example: step 13.




Step 14

D / CLK setup constraint operator nar-
rows D and CLK to their interval intersec-
tions: (O[3, 1[3,) for D, and [34, 37] for
CLK.

Step 15
The inverter constraint operator removes
from Q the waveforms that are stable

before 34 - 19 15. Q becomes

18 .18
Olis> 1;5)-

Step 16

The clock period constraint operator
removes from the clock domain of the
previous cycle the edges occurring after
37-22=15.

Step 17

CLK / Q constraint operator removes
from Q the waveforms unstable after time
15, and removes from CLK the edges

occurring before 15.

Step 18

Once again, the clock buffer delay domain
is affected; it is narrowed to the single
value of 15, as the clock domain at its out-
put contains the single edge occurring at

time 15.
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| Delay Corralation: 80% W S o, 34 - 195 15
| 10% permitted delay Lol el - "
| deviation: 1 Q 7 ,@c D
e [

(Clook Edge (rsteyole) | ===
e A A
Dz o> i
L LG poron 2 ey |
Figure 50
Sequential circuit example: step 14.
Delay Correfation: 90%
10% permitted delay
deviation: 1 D
Clock Edge (first cycle) CLK CLK
b A cE I

P e W/«:«.‘ = { "

C L
| ’ Clock Period 22 (next cycle) |
Figure 51

Sequential circuit example: step 15.

Delay Correlation: 90%
10% permilted delay !,/ .

deviation: 1 ; /
i
{
Clock Edge (frst oycle)
{ i

{ a}m,wa ¥

Figure 52

Sequential circuit example: step 16.

i Delay Correlation: 90%

| 10% permitted delay

: deviation: 1 D

:Clock Edge (first cycle) CLK

[ A
—‘{ 12,18 -

: B % Period 22 (next cycle)

Figure 53

Sequential circuit example: step 17.

Delay Correlation: 90%
10% permitted delay

deviation: 1

Clock Edge (frst cycle)

CLK
A

Figure 54

% Period 22 {next cycle) -

Sequential circuit example: step 18.




Step 19

The delay correlation of 10% narrows the
inverter delay domain to [15,15] + [-1,+1]
=[14,16].

Step 20

Applying the inverter constraint operator
narrows the domains of Q and D to ¢. In
fact, waveforms at Q that are stable after
time 15 cause waveforms at D to be stable
after time 15 + 16 = 31, none of which is
in the domain of D. Therefore, we can
conclude that the constraint system has no

solutions, and the setup constraint of the
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Delay Correlation: 90%
10% permitted delay
deviation: 1

Clock Edge (firs! cycle} c/kK 15+ 18 = 31 (kK
SBo ; o
; , g
/ e e {
e o>
Lo prios 2 ot e

Figure 55
Sequential circuit example: step 19.

Delay Correlation: 90%
10% p d delay
deviation: 1

Clock Edge (first cycle) CLK
o A
i _— ,,,,Jyﬂj
~ 15,15 !.22\ |
] Clock Period 22 (next cycle)

Figure 56
Sequential circuit example: step 20.

flip-flop is satisfied.

Fig. 57 illustrates graphically the domains evolution for steps 6 to 20. The height of

the shaded area represents the domain interval width. Note that during evaluation,

domains never get enlarged. They either remain the same or get narrowed.

Summary: to prove that the setup
constraint of the flip-flop is satisfied,
the constraint system narrows the
domains by keeping only the values that
violate the constraint. If we end up with
empty domains, we can conclude that

the setup constraint is satisfied.

The next Section formalizes the
notion of a relational constraint opera-
tor, and defines constraint operators for
the basic symmetrical logic gates such

as AND, OR, XOR, etc.

Clock buffer
delay domain

Inverter delay
domain

First cycle
clock domain

Next cycle
clock domain

Q domain

D domain

Step

Figure 57
Waveform narrowing for steps 6 through 20.
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3.5 Relational Constraints

The relational constraints defined on abstract signals, clock domains, and delay
domains make extensive use of interval arithmetic and set operations such as union and

intersection.
Interval arithmetic:

A real interval [a, b] is a subset of R defined as [a, b] = {x€ R|(x=aAx<b)}.

When a > b the interval is empty, denoted ¢ .

Interval operators are derived from arithmetic and set operators. For an arithmetic
operator ® that can be anything like — , + , + ,or X ,the corresponding inter-

val arithmetic operator is: [a, 5] ® [c,d] = {m=x®y | xe [a,blaye [c,d]}.

* Addition:
[a,b] +[c,d] = [a+c,b+d] when both intervals are not empty. Otherwise,
[a,6]+¢ = 0+ [a,b] = 0.
k+[a,b] = [a,b]+k = [k, k] +[a, b] = [k+a,k+b] when [a, b] is not empty.
Otherwise, k+¢ = ¢ +k = 0.

* Negation:

—la, b] = [-b, —a] when [aq, b] is not empty. Otherwise, ¢ = ¢.

¢ Subtraction:

la, b] - [¢, d] = [a, b] + (-[c, d])

Examples:
[1,5]1+1[2,4] = [3,9]
[3,9]1-1[2,4] = [-1, 7]. Note that the result is “larger” than [1, 5].

Note that interval operators corresponding to arithmetic commutative operators are

also commutative,
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*  Union:
la,b] U e, d] = [min(a, c), max(b, d)] when both intervals are not empty. Other-
wise, [a, bl UG = ¢ U [a, b] = [a, b].

Note that the interval union is not equivalent to the set union. For instance,
[1,2]U[S5,6] = [1,6], a set union does not include 12, 5[. In fact, the interval

union is defined as to allow representing the result as an interval.

* Intersection:
[a, b] N [c, d] = [max(a, c), min(b, d)] when both intervals are not empty. Other-
wise, [a, D] N = d N [a, b] = ¢.

Domain Operators:

Arithmetic and set operators are defined on signal (clock, data) and delay domains
(intervals) using the interval operations defined previously. Since an empty set (¢ ) results
when any of the operands is empty, the following defines the cases when the operands are

non-empty:

* Addition:
Abstract Waveform + Delay: (AW X Reallntervals) — AW

max

+ + .
Forv| — € AW,[d,;..d,.,Je (R"XR") | din <,y and Imin < max
max _ max+d,,.
vllmin+ [d dmax] - vllmin +d i

min’ )
It corresponds to the interval addition between [Imin, max) and [d . ,d

min? max] .
Abstract Signal + Delay: (4S x Reallntervals) — AS

For an abstract signal S and a delay [d,,,d. le (R xR"),

S+ [dmin’ dmax] = (S'WO + [dmin’ dmax]’ S'Wl + [dm;’n’ d

max]) :

*  Subtraction:

Abstract Waveform - Delay: (AW x Reallntervals) — AW

Forv|)"" & AW, [d,;, d,, 1€ (R xR |d,, <d, _and Imin < max

max [d d max ~d,;,

v{lmin_ min Imax] = vllmin~d,,mx'
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It corresponds to the interval subtraction between [/min, max] and (i Dpar]

Abstract Signal - Delay: (4S5 x Reallntervals) — AS
For an abstract signal S and a delay [d,,,;,, d,,,.] € (R+ X R+) ,
S— [dmin’ dmax] = (S‘WO - [dmin’ dmax]’ S'wl - [dmin’ dmax])'

Union:

Abstract Waveforms: (AW XAW) — AW

max, max,
For v]lml,nl ) v|1ml,n2 e AW,ve {0,1},
max, max, max(max,, max,)
vl Vv =y ,
Imin, Imin, min(Imin,, Imin,)

It corresponds to the interval union between their last transition intervals.

Abstract Signals: (4S5 x AS) — A4S
For the abstract signals S, S,

Sus, = (S1-wo U Sy.wp, Spow LS, wy).

Intersection:
Abstract Waveforms: (AW X AW) — AW

max max
Forv| ', vllmm2 e AW,ve {0,1},
max ! 2
v]lm.

| min(max,, max,)
in,

max,
Avy = . .
llmm2 V|max(lmm,, Imin,)

It corresponds to the interval intersection between their last transition intervals.

Abstract Signals: (A4S X AS) — AS
For the abstract signals S}, S,

NSy = (S weN Sywy, Spow; N S,.wy).

Note: for an Abstract signal S, S.wy (S.wy) is used to denote both the abstract wave-

Jorm S.wg (S.wy) and the real interval [S.wg.lmin_ S.wo.max] ([S-wy.Imin_ S.wy.max]).
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Relational Constraint Operators:

Definition 1: let Sy, S,, S5, ..., S, be n sets, and fa relation fC S; XS5, x ... xS, .
The complete relational constraint operator based on f is a mapping
(Al'f 27 % 2% % L x 2% 5 2% % 2% % x 2% defined as follows:
forD,cS,,D,cS,,...D,CS,,
éj(D], D,,...D,) = (bl, bz, ;..,bn) such that, foreach ie {1, 2, ..., n}
D; = {x;e D, | forallj#i3x;e D) (x), %y . X,) € f}.

{xe D; | xe D;} is the set of incompatible values of the domain D; in the con-
text of the relation f. In fact, when applied to a set of domains, the relational con-
straint operator is said to strip out their incompatible values. D; is the set of values

compatible with the relation . Note that, in the

context of a constraint system, a value in D; is I*l is incompatible with the configuration]
not necessarily part of a solution because all 0. 1BA v 103 ~
. . . {1} B Y=AAND B
constraints have to be satisfied not just Cr .
Figure 58

Example: An incompatible value.

Let /= {(0,0,0),(0,1,0),(1,0,0),(1,1,1)}. In fact f represents the logic
function AND, and its elements are (x,y , AND(x , ) ).

Referring to Fig. 58, D, = {0,1}, Dy = {1},and D, = {0}

Cann({0, 1}, {1}, {0}) = ({0}, {1}, {0}) because

(0,1,0)e AND, but (1, 1,0) ¢ AND. In fact, no value in B can be combined
with the value 1 in A so that Y results in the value 0, and therefore, the value 1 in A

is incompatible with the constraint.

Property: let S|, S,, S5, ..., S, nsets, arelation fC S| XS, x ... X S, and E?f its com-
plete relational constraint operator. ¥ D,cS§8,D,¢8,,..,D,c8§,, and
D;= DDy,

CAD,, D,y .sD,) = CAD,, Dy, D, U CAD,s oDy DD,
The union of (Ey 1. By )y (By 1y s By )€ 27 % x 2™ s defined as
(E\ | VE) 1, .. E ,VE, ).
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Definition 2: let S|, S,, ..., S, be n sets, and f'a relation f< S; XS, X ... xS, , and let
é’f : ZS' X 2S2 X ... X ZS" - 2S' X ZS2 X .. X 2S" be its complete constraint operator.
Let E,c2” E,c2” ., E,c2” such that Vie {1,2,.,n}, Vde2"
dBe E; | Ac B;and let Cr be a mapping
CriEyXEyX .. XE, > EXEyX ... XE,. C, is said to be an optimal con-
straint operator based on fiff for every (D, D,, ..., D,) € E; XE,x..XE,
the following holds:

for CADy, Dy, ...D,) = (D1, D3, ....Dy)
and C(D,, D,, ...,Dn) = (D', D, ..,D'") A
Vie {1,2,..,n},D;cD; A VXeE,DicX=>D,cX.
Put in intuitive terms, D', is the unique “smallest” member of E ; that contains b,- .

Note that, when it exists, an optimal constraint operator is unique.

The concept of optimal constraint operator is important for cases where it is not pos-
sible to represent efficiently members of 23'. For example, in the context of timing verifi-
cation where logic functions are defined on binary waveforms, the logic constraints are
defined on the space of abstract waveforms (AW) instead of the space of binary waveforms
(BW). The reason for this is practical: representing arbitrary members of 25" may require
excessive space, whereas, representing an abstract waveform require one bit for the final
stable value and two numbers for the last-transition-interval (see Section 3.2.1). In this
case, it is not always possible for constraint operators to strip out all the incompatible val-
ues (waveforms) simply because the resulting binary waveform set has to be represented
as an abstract waveform. Therefore, it is desirable to define optimal constraint operators

on abstract waveforms.

3.5.1 Delay Constraints

Delay Function: a delay function is a mapping del : BW x R = BW, for fe BW
and de R, del(f,d) = g such that Ve R, g(t) = f(t—d).

Example: let f € BW such that
ft) = 0 fort<0
flty =1fort=0
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del(f,5) = g defined as : x_j_,_—,—,——
0

gty =0fort<5
g(t) = 1 fort>5 (see Fig. 59)

Delay elements in circuits propagate data and clock

0 5 time

signals. The following defines delay constraints operating ~Figure 59
A delayed binary waveform.

on clock and data domains.

Clock Delay Constraint Operator: the clock delay constraint operator operates on

three domains (see Fig. 60):

1) 4 is the domain corresponding to the clock D

mio o omax

signal driving the input of the delay element. It is B
gnal driving the inp ’ i

the set of clock edges, represented as an interval .

Figure 60

each clock edge is represented by its occurrence
( £ P y Clock delay constraint.

time).
2) Y is the domain corresponding to the clock signal at the output of the delay element,
also represented as an interval.

3) D is the domain of the delay values, represented as an interval.
Let’s calculate the bounds for each domain, considering only the other two:

Y c{del(a,d)|(ae A),de D}
Yc{a+d|(ae A),de D}
YcA+D )

A'c{ae R |del(a,d)e Yforde D}
A'c{y-d|ye Yandde D}
A'cY-D 2)
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D'c{deD|d+a=yforae Aandye Y}
D'c{y—-alye Yandde D}
DcY-4 3)

The clock delay constraint operator is a direct consequence of (1), (2), and (3):

ClockDelay(A, D, Y) = (A4', D', Y') such that,
A' = AN (Y-D)
Y =YNn(A4+D)
D' =Dn(Y-A4)

Property: the clock delay constraint operator is optimal.
Let &del be the complete clock delay constraint operator. By following the same steps as
for ClockDelay, we find that édel(A, D, Y) = (4,D,Y). In fact, when the domains of
A, B, and Y are initially intervals, the delay constraint operator is equivalent to the com-

plete relational constraint operator based on del.

{minmax) Y

Data Delay Constraint Operator: the data

. Figure 61
delay constraint operator operates on three pg, delay constraint.

domains (see Fig. 61):

1) 4 is the domain corresponding to the data signal driving the input of the delay ele-
ment. It is the set of binary waveforms represented as an abstract signal (See section
3.2.2). Awy (4.wy) is the set of binary waveforms in A stabilizing at 0 (1) having at least
one transition in the interval 4.wg (4.wy).

2) Y is the domain corresponding to the data signal at the output of the delay element,
also represented as an abstract signal. Ywy (Y.w) is the set of binary waveforms in ¥ sta-
bilizing at 0 (1), having at least one transition in the interval Y.wy (Yw,).

3) D is the domain of the delay values, represented as an interval.

The delay relation is the same for clock delay, except it is defined on abstract signal

domains for 4 and Y. Let C,,; be its constraint operator. We have
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A4 =A4wyUAd.w and Y = Y.w, U Y.w, . Therefore,
Cuef(4,D,Y) = Cy(Awy, D, Y)U Cy,(A.wy, D, Y)
Cyef(A-wy, D, Y) = Cy(Awy, D, Y. wy) U Cy(A.wy, D, Y.w))
Cuof(Awy, D, Y) = Cy(Awy, D, Y. wy) U Cyy(Ad.wy, D, Y.w))

Since waveforms stabilizing at 0 (1) in 4 result in waveforms stabilizing at 0 (1) in ¥
we have:
Cuei(A-wy, D, Y w)) = (6,0, 0)
Cyo(A.w), D, Y.wgy) = (0,0, 0)

Therefore,

Chei(4, D, Y) = Cy(A.wy, D, Y.wy) U Cy (4w, D, Yow))

The delay constraint operator defined on abstract signals is a composition of the

same operator defined on abstract waveforms. Let’s calculate the bounds for the domains
of Cy,)(A.wy, D, Y.wg):

D.max

1) Effecton Y:

Let a € 4.w; then

YAWO - — :
a(t) = 0 for t >A.wy.max Figure 62
dtiedwyla(ty) =1 Effect on Y.wy.

for d € D, the waveform in Y compatible with a and d is y defined as:
y(t) = a(t—d). Therefore,

y(t) = 0 for t>A.wy.max+d

y(t +d) =1

In other terms, since any waveform in 4 is stable at 0 after time A.wy.max, any wave-
form in Y having transitions after time 4.wy.max + D.max is incompatible (see Fig. 62).

Also, any waveform in Y stabilizing before time A4.wy./min + D.min is incompatible.
Therefore,

Y'wocAdwy+D




2) Effect on A: Since any waveform in Yw
is stable after time Y.wy.max, any waveform in 4.w
having transitions after Ywy.max - D.min is incom-
patible (see Fig. 63). Also any waveform in 4.w
stabilizing before Ywy./min - D.max is incompati-
ble.
Therefore,

A'.WO g Y.WO —‘D

3) Effect on D: Any delay value (in D) less
than Ywg.Imin - A.wg.max is incompatible as it

results in waveforms stabilizing before Ywy.Imin in
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D.max

Figure 63
Effect on A.wg.

Upper bound for D

Lower bound for D
[N

Awy

Yoy

{Imin,max}

Figure 64
Effect on D.

Y (see Fig. 64). Also a delay value greater than Y.wg.max - 4.wq.Imin is incompatible as it

results in waveforms having transitions after Ywg.max

D’ _C__ Y.WOMA.WO

in Y. Therefore,

Finally, the data delay constraint operator is defined on 4, D, and Y as follows:

DataDelay(A,D,Y) = (A", D', 1) such that,
Y=Y ((Y.wy+D), (Yw +D))
A" = AN ((Y.wy-D), (Y.w; - D))
D' =D ({(Ywg—Awy)u(Yw —A.w

1)

Property: the data delay constraint operator is optimal.

3.5.2 Delayless Gate Constraints

This section defines the constraint operators ass

ociated with delayless symmetrical

logic functions BUFFER, INVERTER, AND, and XOR. The other symmetrical functions

such as OR, NAND, NOR, and XNOR are derived fro

m AND, XOR and NOT.
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3.5.2.1 Buffer Gate (Identity)

Buffer Function: the buffer function, buf, is a mapping buf: BW — BW, for
fe BW buf(f) = f.

Buffer Constraint Operator: the buffer constraint operator operates on two

domains of the same type (clock or data) (see Fig. 65):

1) A is the domain corresponding to the data or clock signal driving the input of the

buffer.

2) Y is the domain corresponding to the data or clock signal at the output of the

buffer.
Cpuf(4, ¥) = (4, ) such that: 5 _{>_ v
Y =YnA ‘

' Figure 65
A =4nY Buffer Constraint,

Property: the Buffer constraint operator is optimal.

3.5.2.2 Inverter Gate (NOT)

NOT Function: the inverter function, NOT, is a mapping not: BW — BW, for
fe BW not(f) = g suchthat g(t) = f(t) V te R.

. . . ' e s 4 ¥
The inverter function results in waveforms stabilizing at 0 l :

(1) when the input stabilizes at 1 (0). Figure 66
NOT Constraint.

NOT Constraint Operator: the NOT constraint operator

operates on two abstract signal domains (see Fig. 66):
1) 4 is the domain corresponding to the data signal driving the input of the inverter.

2) Yis the domain corresponding to the data signal at the output of the inverter.
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Cyor(4,Y) = (4, Y') such that:
Ywy = YowgnA.w, Y'w, = Ywyndw,

A'wy = A.wom Y.w, A'w, = Aw; N Y.w,

Property: the NOT constraint operator is optimal.

The NOT constraint operator is also defined on clock signals, where a rising (falling)
transition at the input results in a falling (rising) transition at the output. In such case, the

clock signal domain is defined as two sets of transitions: rising, and falling ones.

3.5.2.3 AND Gate a

b

AND Function: the AND function
is a mapping and : BWXBW — BW, AND(a,b)
for a,be BW and(a,b) =y such Figure 67
ANDing two binary waveforms.
that y(¢) = a(t) and b(t) Vte R.

Fig. 67 shows an example of ANDing two binary waveforms. A+ %
B-

Figure 68

(non-controlling for AND) during the transition. AND Constraint.

Note that a transition at a (b) is reflected at y only if b (a) is stable at 1

AND Constraint Operator: the AND constraint operator operates on three abstract

signal domains (see Fig. 68):
1) A, B are abstract signal domains for the inputs of the AND gate.
2) Y is an abstract signal domain of the output of the AND gate.

The AND constraint is much more complex than the previously defined single input
gates constraints (Delay, Buffer, and Inverter). The AND constraint is broken down into
simple cases of a single abstract waveform for each case of possible relative positions of

the last transition intervals.
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Cynp4, B, Y) = C yp(A.wy, B, Y) U Cynp(Ad.w, B, Y)

Cynp(Awy, B, Y) = Cynp(A.wy, B.wy, Y) U Cynp(A.wg, Bw,, Y)
CyypAd.w,B,Y) = Cynvp(4.wy, B.wy, ) U Cynp(A.w,Bw,., Y)
Cynp(d.wy, B.wy, Y) = C np(Ad.wy, B.w, Yowy) v Cynp(4d.wy, B.w, Yow)
Cinp(A.wg, Bw,, Y) = Cynp(4.wy, B.wy, Ywo) U Cyyp(A.wy, B.wy, Yw))
Cynpd.wy, B.wy, Y) = CAND(A.WI,B.WO, Ywy)u CAND(A.wl,B.wo, Y.w))
Cinp(A-w,Bw,Y) = Cynp(A.wy, Bowy, Yowy) U Cynp(d.wy, Bw,, Y.w))

Therefore,
Cynp(4,B,Y) = Cynp(A-wy, Bowg, Yowg) U
Cynp(A.wy, B.wy, Yowy) U
Cynp(A.wy, B.w,, Ywy) L
Cynp(A.wy, B.wy, Ywp)u
Cynp(A.wy, B.w,, Yiwy) U
Cynp(A-wy, Bowy, Yow)) U
Cawp(A.wy, Bawy, Yowg) U

CAND(A.WI,B.WI, Yow))

Cynp(A.wy, B.wy, Y.w)) = (0, 0, 0) because waveforms at an AND input stabiliz-

ing at 0 (controlling value for AND) result in waveforms stabilizing at 0 at the output Y.

For similar reasons,

Canp(A.wo, Bwy, Yowy) = (0,0,0),
Cynp(A.wy, B.w, Yw)) = (9,0,0),and

CAND(A.WI,B.WI, Yowg) = (9,0,0)

Therefore,

Cunp(4, B, Y) =
Cynp(A.wy, B.wy, Yowy) v
Cynp(A.wy, Bw,, Yowg) U (A0)
Cynvp(A.wy, B.wy, Yowg)u

CAND(A.WI,B.WI, Y.w))




Each subset is considered separately, and
domains are considered non-empty, as the

case of empty domains is trivial.

o Cynp(A.wy, Bwy, Yowy) =

(A" wy, B'.wy, Y'.wy)
Effecton Y.w:

Fig. 69 enumerates the six possibilities
for the overlap of the last transition intervals
of A.w, and B.w,. since waveforms in 4 and
B stabilize at 0, waveforms in Y are stable at
0 after time min(4.wy.max, B.w,.max).
This is trivial since 0 is a controlling value for
the AND gate. However, except when
Awy = Bwy = O[;, it is possible for Y to
contain the binary waveform stable at 0 at all
time. This happens when we have waveforms
a in A, and b in B that are never at 1 at the
same time. Therefore there is no restriction on
whether waveforms in Y have transitions in
some interval, and hence,

if (A.wy = B.wy = 0|7 ) then
Y.w, 0|7
else
min(A.wy.max, B.wy.max)

Y'.wog0|

—00

Effect on 4.w, and B.wg:

referring to Fig. 70, waveforms in A.w, and
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Imin max

Imin_max

Case | Bow

Yowy

Imin max

Imin max
Case 2
Imin max
Case 3
lmin
Fosgy
Imin max
Cased B, -
Imin max
Yoy
Awy
Case 5 By
Imin max /
Yoy . L
Awy e
Case6 By g
limin max &
Yowy o
Figure 69

AND Constraint ( A.wg, B.wy, Y.w, ) - effect
on Y.wp.

Imin max

Ay

Imin

B.w
N Imin

Yoy

B.w stabilizing before Y.w,.Imin are incompatible Figure 70

with the constraint because they result in waveforms

AND Constraint ( A.wp, B.wy, Y.wp)
- effect on A.wy and B.w,.
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in Y having no transitions at or after Y. wo.Imin . In fact, let y € Y.w, 3 1€ Y.w, such
that y(z) = 1. Therefore, waveforms g in 4, and b in B compatible with y are such that
a(t) = 1 and b(¢) = 1. On the other hand, there is no restriction on whether a or b has to
stabilize after a certain time, because, for example, while a stabilizes before Y. wo.max, b
can have ftransitions after time Y.w,.max and yet a, b, and y are compatible
(y = AND(a, b)). Hence,

A'wy O[;f’:vo.lmin and

Therefore,

Cynp(A.wy, B.w, Yowg) = (4w, B'.w, Y'.wy) such that,
if (A.wy = B.wy = 0]1) {

Y'w, = Y.wom()[;
} else { ‘

min(A.wy.max, B.wy.max)
Y.wp = Yowy A 0] ' ’

—00

}

' _ teo
4 Wo A'womolY.wo.lmin

f _ +oo
B'WO - B'WOmOlY.wo.lmin
/1 if any becomes empty, the others follow
if( A wy =0 ){Bwy = 0;Ywy = 0;}
if(B'wy = ¢ ) {4 wy =¢; Vow, = ¢;}

if (Yowg = 0 ) {B.wy = ¢; 4wy = 03 (A1)

Note: C 5 p(A.wy, B.wg, Y.w,) as defined in (A1) is not equivalent to the complete rela-
tional constraint operator based on AND. For example, C (4, B,Y) = (4,B,Y) for
A= Ol‘:‘g, B = Olfg, and Y = OI?g. Let x be the binary waveform defined as:
x(25) = 1 and x(¢) = 0 for t#25. We have x € B but it is incompatible with AND in
the context of 4 and Y. The AND constraint operator could not narrow B from Oﬁg to Oﬁg
because the binary waveform b defined as 5(10) = 1, b(30) =1, b(t) =0 for
t¢ {10, 30} is compatible with AND in the context of 4 and ¥,
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Cynp(A.wy, B.w, Yowg) = (4 wy, B'.w,, Y.wy)

Effect on Y. Wo

Fig. 71 enumerates the six cases of overlap of the last transition intervals of Awg

and B.w;. In all cases, Y.w,.max is bounded by A.wy.max. Since the waveforms in

A.w, are stable at 0 after time 4.w,.max, all compatible waveforms in ¥ are stable at 0

after A.wy.max. On the other hand, for Cases 2-6, the binary waveform stable at 0 in

Y.w, is compatible: Let a € 4.w,, such that,

a(t)
a(t)

1 fort = A.wy.lmin

]

0 otherwise,

and let b € B.w, such that,

b(t) = 0 for t<B.w,.max
b(t)

i

1 otherwise.

For Cases 2-6 A.wy.Imin < B.w,.max;
therefore, a and b are never 1 at the same
time, and ANDing them results in the stable 0
in Y.w,. In Case 1, however, the waveforms
in 4.w, have transitions after the waveforms
in B.w; stabilized at 1. Hence, waveforms in
Y.w stabilizing at O before 4.w,./min are

incompatible. Therefore,

if ( A.wy.Imin>B.w,.max ) then
Y'.wo cA.w,

else
A.wy.max

Y‘.WOQOI

—00

Imin

Imin_max

Case | Bow,
Imi

Case 2
Imin max
Case 3
Case 4
Ay
Imin
Case 5 B
Imin max M.f
Yowy 14
Imin max
Awy 0
Case6 By
Yowy
Figure 71

AND Constraint ( A.wy, B.wy, Y.w, ) - effect
on Y.wp.




Effect on 4 Wyt

Fig. 72 enumerates the six cases of over-
lap of the last transition intervals of B.w,
and Y.w,. Waveforms in 4.w, stabilizing
before Y.w,.Imin are incompatible with the
constraint because they result in waveforms
in Y having no transitions at or after
Y.wo.lmin.Infact,letye Y.w,, I te Y.w,
such that y(¢z) = 1. Therefore, waveforms a
in 4, and b in B compatible with y are such
that a(f) = 1 and b(r) = 1. On the other
hand, waveforms in 4.w, having transition
after max(Y.wy.max, B.w,.max) are
incompatible with the constraint as they result
in waveforms in Y.w, unstable after time
Y.wy.max . Hence,
max(Y.wy.max, B.w,.max)

1
4 Wo S OlY.wo.lmin

Effect on B.w, :
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Case |
Case 2
Case 3
Case 4
Case 5
Imin max
Ay r
7 Imin max 7
Case6 B,
Imin max
Yoy T
Figure 72

AND Constraint ( A.wp, B.w;, Y.w, ) - effect
on A.w.

Fig. 73 enumerates the six cases of overlap of the last transition intervals of A.w

and Y.w,. Case 1, where 4.w.max < Y.w,.Imin, is inconsistent because no waveform

in Y.wy, is stable at 0 after time 4.w,.max. For Cases 2-5, no assumption can be made on

how waveforms in B.w, should behave. In fact, let a € 4.w; and y € Y.w,, such that,

a(t)
a(t)

and y = a.

0 otherwise,

1 when t = max(A.wy.Imin, Y.wy.Imin),




The binary waveform in B.w, stable at
1 is compatible with a and y. Also, the binary
waveform in B.w, stable at 1 at and before
time max(A4.wy.max, Y.w,.max), and hav-
ing transitions elsewhere is also compatible
with a and y. Therefore, for Cases 2-5,
B'.w, ¢ l[f: Case 6 is different, let
ae Awy, dte Awy,a(t)=1. Since
waveforms in Y.w,, are stable at 0 after time
Y.wg.max, any waveform b in B.w, com-
patible with a is such that b(¢) = 0. There-

' +o0
fore, B'.w, ¢ 1|A.w0.lmin'

The effect on B.w, is as follows:

if (A.wy.max <Y.wy.Imin ) then
B.w,co
else
if (A.wy.Imin>Y . wy.max ) then
' Foo
B W& 1IA.,wo‘lmin

else

Bw, c llj:

Finally,
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Imin  max
Ay

Imin

Case 1 Bowy

Yoy

Imin max

Awy

Imin max
Case 2 Bowy | ]

Yoy

Imin max

Case 3
Imin  max
Case 4
Imin max
Imin max
Case 5 i
Imin max
Imin  max
AT
{ Imin max
Case 6 B.w, ]
Imin max
Yoy
Figure 73

AND Constraint ( A.wp, B.wy, Y.w, ) - effect
on B.wy.




Cynp(Ad.-wg, B.wy, Yowy) = (4'.wy, B'.w,, Y'.w)) such that,

if (A.wy.Imin>B.w,.max ) {
Ywg = Yowgn 4w,
} else {

A.wy.max
Yw, = Y.womO’ 0

-0

}

max(Y.wyg.max, B.w,.max)
A'wy = 4wy 0 ’ ‘

Y.wy.Imin

if (A.wy.max<Y.wy.Imin ) {
B'w, = ¢

if(A.wy.lmin>Y . wy.max ) {
Bw, = Bw 1"
Wo.

} else {

Imin

B'.w, = B.w,

}

// if any becomes empty, the others follow

(A wy =0 ) {B.w, =¢;YV.w, = ¢;}

if(B.wy =0 ){dwy=0;Y.w, = ¢;}

if(Yowg = ¢ ) {B'w, = ¢;4wy = 0;} (A2)

* Cynp(A.wy, Bowy, Yowy) = (4w, B'.wg, Y'.w)

This case is symmetrical to Cynp(A.wy, B.wy, Y.owg).
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s CyypAdw, Bw, Yow)) =4 w,B.w,Y.w)
Effecton Y.w,:

Fig. 74 enumerates the six cases of overlap of the last transition intervals of A.w,
and B.w;. In all cases, waveforms in Y.w; having transitions after
max(A.w,.max, B.w;.max) are incompatible. Also, waveforms in Y.w, have transitions
at or after max(A.wy.Imin, B.w,.Imin). This is caused by the fact that waveforms in
A.wy and B.w, are at a controlling value (0) some where in their respective last transi-

tion intervals. Therefore,

Imin max

max(A.w,.max, B.w,.max)
Yow cl| ! !

max(A.w,.Imin, B.w,.Imin) Case 1 /’" max

Effect on 4 Wy

. . Case 2
Fig. 75 enumerates the six cases of over-

lap of the last transition intervals of B.w,
and Y.w,. In Case 1, waveforms in Y.w,

have transitions after the waveforms in B.w;  Case3

stabilized at 1. Therefore, waveforms in

A.w, stabilizing at 1 before Y.w,.Imin are

Imin max
incompatible. For all cases, waveforms in Cased imin_max \\
A.w, having transition after Y.w,.max are
incompatible as they result in no waveform in
Y.w,. Case 6 is inconsistent as all waveforms = 5
in B.w, are at a controlling value (0) at cer- Case 3
tain time in B.w,, while the waveforms in
Y.w, are stable at 1 at the same time. 4.w, is
bounded as follows: Case6 B e

{ imin_max
Yo L
Figure 74

AND Constraint ( A.wy, B.wy, Y.wy ) - effect
on Y.wy.
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if ( B.wy.Imin>Y.w,.max ) then Imin max

A'.Wl =¢ Case | By

Imin

else Yo

if ( Y.w,.Imin>B.w,.max ) then

Imin max

Y.w, .max :
' 1
A Wy - 1|Y.W1.lmin Case 2 I o %\\
else
Y.w,.max
Aw 1

linin max

Case 3 Imin ma;\\
Imin max

Case 4
Case 5

Aw

. Imin  max
Case 6 Bay = T B
i

Yo
Figure 75
AND Constraint ( A.wy, B.wy, Y.wy ) - effect
on A.wy.

Effect on B.w,:

This case is symmetrical to the case of 4.w.

Finally, combining the bounds on 4.w,, B.w, , and Y.w, gives:
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CAND(A-Wl,B-Wl’,Y-Wl) = (4".wy, B'.wy, Y'.w,) such that,

y —y 1 max(A.w,.max, B.w,.max)
Wy T Lwpn Imax(A,w,.lmin,B.w,.lmin)

if ( B.w,.Imin>Y.w,.max ) {

B'.w, = ¢;// the others become empty later

} else {
if ( Y.wy.Imin>B.w,.max ) {
Aoy = o
} else {
Aowy = dw, A1) e
}

if(A.wy.dmin>Y.w,.max ) {

A'.w, = ¢;// the others become empty later

}else {
if ( Yow.Imin>A.w,.max ) {
, Y.w,.max
B Wy = B'Wl a llY.wi.lmin
} else {
Y.w,.max

B'.w, = B.w1 N l]

—00

}

/I if any becomes empty, the others follow

if (A wy = 0){Bw =0;YV.w = 0;}

if(Bw =0){dw =0;Vw = 06;}

if(Yw) = ¢){B.w =¢;4'w = 6;} (A3)

(A0), (A1), (A2), and (A3) constitute the algorithm for the 2-input AND gate con-

straint operator.
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Yowy 2
Figure 76
AND Constraint Example.

Example: Fig. 76 depicts a situation of three domains operated on by the AND constraint:
4= 0L, 15)
B = (01
Y= (05 11)
(A0) implies:
Cynpd,B,Y) = (4,B,Y) =
CAND(Olio’ Olio’ 0‘3) U
CAND(OIix,’ IEW’ 0!3) Y
Cavp(1].2, 0", 0[5y U

10 5 10
Cavp( o 1 o)

Fig. 77 illustrates the case for C, ND(OEOQ, 0 [io, O]j) , it is impossible for waveforms in Y

to have transitions after time 6

because the waveforms in B are sta- g
Awy T

ble at 0 (controlling) after time 6. -

Therefore, Yowy B

6 8
2 01)

8 6 8y _ Figure 77
Canp0_. 01, 01 = (0, ?’ 0). AND Constraint Example: CAND(O|L, 0]

Fig. 78 illustrates the case for

Canp(0°_, 117, 0P3), since wave-

forms in A stabilize at a controlling

Figure 78 5 g
value (0). Waveforms that stabilize ~AND Constraint Example: C 4y p(0]”_, 1|”_,0],)

8
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before 7 are incompatible as they result in waveforms in Y having no transitions at or after

7. Therefore, Cyp(0]°_, 11°_, 03 = (0], 1]°_, 0]).

Fig. 79 illustrates the case for
10 .6 8 ..
Cyvp(1_ 0. O|7) . This is an
inconsistent situation as it is impossi-
ble for waveforms in Y to have tran-
sitions at or after 7, while waveforms

in B stabilize at 0 after 6. Therefore,
10 .6 8
(jAND(1 ‘_oo’ Ol_oo’ 017) = (¢a q)’ q)) .

Fig. 80 illustrates the case for

Yowg T

Figure 79

AND Constraint Example: C 4yp(1 lli, O[fm, 0{3)

Figure 80 0 .5 10
AND Constraint Example: C yn(1]__, 1|”_, 1|9 )

C, yp(1 [fo, 11;, 1 [;O). Since waveforms in B are stable at 1 when the waveforms in Y

have transitions at or after 9, waveforms in A stabilizing before 9 are incompatible. There-

10 5 10 10 .5 10
fore, Conp(1] oo 1 1o ) = (g 117, 1o ).

Hence, C yp(4,B,Y) = (4, B,Y) =
(0, 0,0) U
O 17, 0] u
(0,9, 0) v
AL 1L 1) = (O 1), (0 117, (03 11,%))

as shown in Fig. 81.

Alw I

.
A'wy

B'w, T

’
B'wy

Yo, T2

'
Yy

Figure 81

Domains contents after the AND constraint is applied.
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3.5.2.4 OR - NAND - NOR Gates Constraints

The members of the family of AND, NAND, OR, and NOR gates have similar
behavior. They all have:

* controlling values, 0 for AND / NAND, 1 for OR / NOR;
* non-controlling values, 1 for AND / NAND, 0 for OR / NOR;

* controlled values, i.e., the value of the gate output when one of the inputs is at a con-

trolling value: 0 for AND / NOR, 1 for NAND / OR;

* non-controlled values, i.e., the value of the gate output when all inputs are at non-

controlling values: 1 for AND / NOR, 0 for AND / OR.

Although it is possible to model these gates using AND and NOT constraints, it is
more efficient to have a hard model for each. This is accomplished by parameterizing the
AND constraint algorithm using the concept of Controlling / Non-Controlling / Controlled
/ Non-Controlled values. Table III shows the abstract waveform substitutions to get the

constraints for NAND / OR / NOR from the constraint of the AND gate.

AND NAND OR NOR
A.wy A.wg Aow, A.wy
Awq Awy Awy Awg
B.w B.w B.w,; B.w,
B.w,y Bow, B.wy B.wy
Yw Yw, Yw, Ywg
Yw, Ywy Ywg Ywq
Table Il

Substitution for Controlling / Non-Controlling / Controlled / Non-
Conirolled values.

For example, to get the OR gate constraint, replace the abstract waveforms in (A0),
(A1), (A2), and (A3) as follows:




A.wy becomes A.Wl
A.w; becomes 4.w,,
B.wy becomes B.wy
B.w; becomes B.w,
Y'wg becomes Yw;

Ywq becomes Yw

A’.wy becomes 4’.w,;
A’.wy becomes 4’.w
B’.wy becomes B’.wy
B’.wy becomes B’.w
Y’.wg becomes Y '.w;

Y’.wy becomes Y '.w

3.5.2.5 Exclusive OR Gate (XOR)
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A.wg N Oly becomes 4.w; N I[y

X X
Aw;n llz becomes 4.wy N Oli
B.wy N Oli’ becomes B.w; N l{i
Bw N 1|i: becomes B.wy N 0]§
Ywg N O[i becomes Y.w; N lli

Yow, N 1]y becomes Y.wy N O’y
X X

XOR Function: the XOR function is a mapping xor: BWXBW — BW, for
a,be BW xor(a,b) = y suchthat, V te R,
y(1) = 0ifa(s) = b(1),

y(f) = 1 otherwise.

Fig. 82 shows an example of XOR-

ing two binary waveforms. At time 2, a a

and b changed values simultaneously, 5

resulting in no transition for XOR(a,b).
In fact, a transition at a (b) is reflected

at y only if b (a) is stable during the

transition.

XOR Constraint Operator: the XOR constraint operator oper-

ates on three abstract signal domains (see Fig. 83):

XOR(a,b)

Figure 82
XORing two binary waveforms.

)

Figure 83
XOR Constraint.

1) A, B are abstract signal domains for the inputs of the XOR gate.

2) Y is an abstract signal domain of the output of the XOR gate.

The XOR constraint is simpler than the AND counterpart because it does not have

controlling values. In fact, 0 and 1 are both non-controlling. The presentation of the XOR

constraint follows the same exhaustive case analysis of the abstract waveforms and the

overlap of their last transition intervals.
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Cyor(4, B, Y) = Cyop(Ad.wy, B, Y) U Cypp(4.wy, B, Y)

Cyor(A.wy, B, Y) = Cypp(A.wy, B.wy, Y) U Cypr(d.wy, B.w,, Y)
Cyor(A.wy, B, Y) = Cypp(A.wy, B.wy, Y) U Cyop(d.wy, B.w, Y)
Cxor(Ad-wg, B.wy, Y) = Cyor(A.wy, Bowy, Ywy) U Cypp(d.wy, B.wgy, Yowy)
Cyor(A.wg, Bw, Y) = Cyop(A.wy, Bwy, Yowy) U Cypp(4.wy, B.wy, Y.w)
Cxor(A.wy, Bowy, Y) = Cyor(A.wy, Bwy, Yowy) U Cyop(d.wy, B.wg, Y.w))
Cyor(A.wy, Bw, Y) = Cyop(A.wy, Bw,, Yowy) U Cypp(4.w), Bw,, Y.w|)

Therefore,

Cyor(4,B,Y) = Cyor(A.wg, B.wy, Yowy) U
Cyor(A-wy, B.wg, Y.w) U
Cxor(A.wg, B.wy, Yowy) U
Cyor(A-wg, Bw,, Y.w)) U
Cyor(A.wy, B.wy, Yowy) U
Cyor(A.w, Bwy, Y.w ) U
Cyor(A.wy, Bowy, Y.owy) U
Cyor(A-w, Bw;, Y.w))

Cyor(A.wg, B.wy, Y.w;) = (0, 0, ) because waveforms at both XOR input stabi-

lizing at 0 result in waveforms stabilizing at 0 at the output Y.

For similar reasons, we have
CynpA.wy, Bw, Yow)) = (4,9,0),
Canp(A-wy, B.wg, Ywg) = (9,9, 0), and
Cynp(A.wy, Bw, Yowg) = (9,0,0).

Therefore,

Cyor(4,B,Y) =
Cyor(A.wo, B.wgy, Yowy) U
Cyor(A-wg, Bwy, Yow ) U X0)
Cxor(4.wy, Bwg, Yw) U

Cyor(A.wy, B.wy, Y.wg)
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Each subset is considered separately, and all domains are considered non-empty, as

the case of empty domains is trivial.
Cyor(A.wy, B.wg, Yowy) = (A wg, B'.wg, Y. w;)
Effecton Y.w:

Fig. 84 enumerates the six cases of overlap of the last transition intervals of A.w
and B.wy. In all cases, waveforms in Y.w, having transitions after
max(A4.wy.max, B.wy.max) are incompatible. Also, for case 1 (6), waveforms in 4.w

(B.w,) happened to have transitions when the

Imin max

waveforms in B.w,, (4.w,)) are already stable

Ay
Imin max

at 0. Therefore, waveforms in Y.w,, stabiliz- Casel 5y i I ]

ing before A.wy.Imin (A.wy.Imin) are

incompatible. Y.w, is bounded as follows: Imin max
Ay [
Imin
Case2 By E
if (A.wy.max < B.wy.Imin ) then o, BB Ly
B.wy.max
Y'WO < 0|B.w0.lmin
else
. . Case 3
if ( B.wy.max <A.wy.Imin ) then
A.wy.max
Y'WO = O!A.wo.lmin
else Imin ma
Y'_WO - Olmax(A.wo.max, B.wy.max) Case 4
Imin max
Effect on 4.w,:
Imin max
Case 5 g
Fig. 85 enumerates the six cases of over-
lap of the last transition intervals of B.w
. A
and Y.w,. In Case 1, the waveforms in ¥.w, "
Case 6 By

happen to have transitions after the wave-

Yoy
forms in B.w, stabilized. Therefore, the Figure 84

XOR Constraint ( A.wg, B.wy, Y.w, ) - effect
on Y.Wo.

waveforms in A.w, stabilizing before




Y.wy.Imin are incompatible. Case 6 is sym-
metrical to Case 1. On the other hand, the
waveforms in 4.w, cannot have transitions
after the waveforms in both B.w, and Y.w,

have stabilized. 4.w,, is bounded as follows:

if ( B.wy.max < Y.wy.Imin ) then
Y.wy.max

]
4 Wo & OIY.wo.lmin

else

if ( Y.wy.max < B.w.Imin ) then
B.wy.max

'

4 Wo & 0IB.wo‘lmin

else
max(B.wy.max, Y.wy.max)
A'wy 0] ' °

-0

Effect on B.wg:

The effect on B.w, is symmetrical to the

case for 4.wy.

Case 1

Case 2

Case 3

Case 4

Case 5

Case 6
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linin max

Ay ’
Imin max

B.wy

Tonp

Ay

max

By

Youy

Ay

B.wy
Imin max

Yoy

Ay
By S— | }

Yowy

Awy

By

Imin max

JATN

Imin  max

Awy

B

Yoy

Figure 85
XOR Constraint ( A.wy, B.wp, Y.wy ) - effect

on A.w.

In fact, all the cases of the XOR gate are symmetrical. A transition present at an input

results in a transition at the output provided the other input does not change at the same

time.

Therefore,
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Cxor(A.-wy, B.wg, Yowy) = (A" wg, B.wg, Y'.w;) such that:

if (A.wg.max <B.wy.Imin ) {
Vowg = Yoo 0[5 e
Wo.

} else {

if ( B.wg.max <A.wy.Imin ) {
A.wy.max

A OIA.wo‘lmin

Imin

Y‘.w0 = Y.w,
} else {
Yw, = Y.wor’\0|

if ( B.wg.max<Y.wg.Imin ) {
Y. wy.max

N OlY.wo.lmin

max(4.wg.max, B.wy.max)

e 3}
A wy = A.w,
} else {
if ( Y.wg.max <B.wy.Imin ) {
Awy = Awy(0[0"
} else {
A wy = A.wyN 0|
3}

if (A.wg.max<Y.wy.Imin ) {
Y. wy.max

a OlY.wo.lmin

B.wgy.Imin

max(B.wy.max, Y.wy.max)

—00

B'.wy = B.w,
} else {

if ( Yowg.max <A.wy.lmin ) {

A.wg.max
' _ Wo
B 'WO - B.WO m0|AW0

} else {
max(A.wy.max, Y.wy.max)

B'wy = B.wgn 0| b

Imin

if(A'wy = 0){Bwy,=0; Vowy = 03}
if (B.wy = 0){dwy = 0; Y.w, = 0;}
if(Yowg = ¢ ) {B'.wy = 0; 4w, = ¢;} (X1)

The algorithm for the constraint Cyop(A.wy, B.wy, Y.w|) = (4. wy, B.w, '.w))
is deduced from (X1) by the following substitution:
A.wy becomes 4.w, A’.wq becomes 4’.wy Awyn 0 Ii becomes 4.wy N 0 |§
B.wj becomes B.w, B’.wy becomes B’.w, B.wyn 0|§: becomes B.w; M1 lﬁ

Yw, becomes Yw, Y’.wy becomes Y'.wy | Y.wy N O] becomes Y.w; N 1],
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The algorithms for Cyopr(4.wy, B.wy, Yow ) = (A" wy, B'.wg, Y'.wy) and
Cyor(A-wy, Bowy, Yowy) = (4w, B'.wy, Y'.w,) are derived from (X1) in a similar
way. Also the Inverted XOR gate (XNOR) is symmetrical to XOR, we simply exchange

Y.w, and Yow,.

3.6 Combinational Circuit Delay Verification / Basic Modeling

Timing Check: a timing-check is a tuple 6 = (&, s, 8) where § is a combinational
circuit, s is a primary output of £, 0 is a delay value, and the primary inputs of £ are con-
sidered stable after time 0. It represents the following timing verification decision prob-
lem:

Does the output s of circuit & have a delay greater than or equal to 6?

The timing-check 6 = (&, s, 8) is transformed into a constraint system that is consis-
tent iff the output s has a delay greater than or equal to 0. The constraint system is built
around the sub-circuit graph corresponding to the nodes that have arcs leading to s (the
fan-in cone of s). The circuit is transformed into an equivalent form that contains only
gates that have a hard constraint model (Delays, Buffers, Inverters, 2-input-AND, etc.). In
fact, this is done in a bottom-up fashion: the logic gates of the technology cell library of
the circuit is modeled first, then each cell instance is replaced by its model. Hence the
transformation is straightforward and involves no complexity overhead, the cell library is
modeled once and used for all circuits designed for the cell technology. Fig. 86 shows how
a four-input-NAND gate is modeled by a constraint network, 2-input delayless AND and

NAND constraints are cascaded, and the gate delay is modeled by a delay constraint

placed at the gate output. The constraint model 4 —
NAND-4 p=Y  (a)

B —

contains variables associated with the original IC):

gate terminals 4, B, C, D, and Y, and variables
for the internal nodes Iy, 15, and /5, and a variable

for the delay value DV. In order to simplify the

presentation of the remainder of this chapter, we

Figure 86
NAND-4 constraint model.

consider that circuits are composed of one and
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two-input symmetrical fixed delay gates. The delay constraint is embedded (hard coded)
with the gate constraints making the constraint network isomorphic to the circuit graph. In
fact, this is suitable for combinational circuit delay verification where no clock is used.
Although the gate constraints have no notion of inputs and outputs (they are actually rela-

tions), the graph of constraints is directed, according to the combinational circuit graph.

Let §({Gate|, Gate,, ..., Gate,}, {Net,|, Net,, ..., Net,}) be the circuit of m
gates and n nets where each gate is connected to a subset of the nets. We build a constraint -
system composed of n variables X, X,,...,X, associated with the n domains
Dy, D,, ..., D, , respectively, and m relational constraints C,, C,, ..., C, , where C; oper-
ates on the domains corresponding to the variables of the nets connected to Gate,. The
initial values for all the domains of the constraint system of ¢ are (0|:’, 1 |::) S0 as to
contain any possible BW. For floating-mode delay calculation, we restrict the primary
inputs to the set of waveforms that are stable after time 0: (O]?w, 1 |L) . To verify whether
the output s has a delay greater than or equal to &, we restrict the signal domain of s to the

waveforms having transitions at or after time 6, i.e., D, = (0 [gm, 1 |g°°) .

The constraint system is tightened (solved) by repeatedly applying the gate constraint
operators until no narrowing (change) of any domain is possible, i.e., the greatest fixpoint
of the system of equations induced by the constraint system is reached. We implemented
this iterative computation efficiently using an event-driven scheduler. The function evalu-

ateConstraintSystem() in Appendix A (A.1) evaluates the constraint system.

Timing-Check Compatible Waveforms: Given a timing-check o = (§,s,d) and
its corresponding constraint system composed of the variables X, X,, ..., X, , their
respective domains D,, D,, ..., D,, and the constraints C,, C,, ..., C;” , a binary wave-
Jorm w e Dy, is said to be 6-compatible iff it is part of a solution, i.e., iff there is a wave-
form in each D;, i#k, such that with w from Dy, the constraint system is satisfied. w is said

to be o-incompatible if it is not 6-compatible.

For combinational circuits with multiple outputs, each output is considered with the

sub-circuit corresponding to its fan-in cone included in its timing check.
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Theorem 1: Given a timing-check 6 = (&, s, 8), the fixpoint of the evaluation of its cor-

responding constraint system is reached in a finite number of steps.

Proof: This is a consequence of the domains’ discrete representation and the monoto-
nicity of the constraint operators. Since each domain is represented using a finite number
of 32 bit integers, the number of values a domain can take is finite. Moreover, if D; and
D, are the values of a domain D at iterations i and (i + 1), respectively, we have
D, ;< D, (according to the definition of the constraint operators). The time domain of
interest for a given ¢ = (&, s, 8) is [0, fop], top is the topological delay of the circuit & .
The possible values for the Imin and max parameters of D.w, and D.w, are in {-co, 0, 1,
..., top, +eo}. In fact, —co and +eo can be represented as -1 and (top+1), respectively. The
number of ways a non-empty interval [Imin, max] can be narrowed is ((max — Imin + 1)
X (max—Imin+2)/2) + 1, a positive number that decreases when (max - Imin)
decreases. For instance, the interval [2,3] can be narrowed to one of 4 possibilities: [2,3],
[2,2], [3,3], and ¢. Let now fp(i) be the number of ways a domain D can be narrowed at
iteration i. fp.N—N is a finite non-increasing discrete function. Therefore, 3 nye N |V n
> ny, fp(n) = fp(ng). The minimum number after which the functions fp, of all domains

converge is the number of steps required to reach the fixpoint, and this number is finite.

The time complexity of evaluateConstraintSystem() is very difficult to establish. In
fact, it has a worst case of enumerating all integer values of a large interval. This worst
case happens when the constraint system has circular implications such as the case of the
sequential circuit example in section 3.4. Consider Step 5 of this example. The setup con-
straint narrowed the clock domain of the next cycle from [32, 42] to [32, 40]. In real cases,
however, delays are scaled to fine resolutions. Therefore, if a domain is narrowed one time
unit each iteration, e.g., from [6000000, 8000000] to [6000000, 7999999], it may need to
enumerate the integer values of a very large interval before the fixpoint is reached. When
such a slow convergence is encountered, the evaluation is stopped and the constraint sys-
tem is considered consistent. This worst case behavior is not encountered in combinational
circuits where clocks are not considered. In fact, if the gates constraints are evaluated once
in topological order, followed by another evaluation in reverse topological order, the sys-
tem become “very close” to its greatest fix point. For combinational circuits, the time
complexity of evaluateConstraintSystem() is virtually linear with the circuit size. How-

ever, the algorithm is very pessimistic in the presence of reconvergent fan-outs.
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Theorem 2: Let 6 = (&, s,d) be a timing-check, and D, the domain of s after its con-
straint system has been evaluated. If D, = {¢, ¢} then no transition is possible on output

s at or after time §.

This is a direct consequence of the way the gate constraints are defined. The con-
straints never eliminate compatible binary waveforms from any domain, although they
may include some incompatible ones to allow representing the family of waveforms by an
abstract signal value. Moreover, when a domain becomes empty, its value propagates to

all other domains because no value is compatible with an empty set of waveforms.

When the evaluation reaches a fixpoint with non-empty domains, the domains may
still contain only incompatible binary waveforms which in this case represents a false neg-
ative answer to the question: “Is the circuit output s stable at and after time §?”. Only
inconsistency of the constraint system is the exact answer, implying that the output s is

stable at and after time .

Figure 87
False path circuit of Hrapcenko.

Hrapcenko false-path example: Consider the timing-check ¢ = (€, s, 61) where §
is the circuit of Fig. 87 [57]. Assuming a delay of 10 for each gate, the topological delay of
€ is top = 70 and its floating-mode delay is known to be 60, because the path
{11, 89 1y, &3, N3, 845 N4y &> N> 7> M7» 85> S+ 18 false. This can be easily proven for this
particular example: it is caused by g, and g4 sensitization conflict, while e; is required to
be 1 for g,, it has to be 0 for g¢. Let’s prove that the floating circuit delay is less than 61 by

resolving the constraint system associated with the timing check o©. Let




83

De,’ Dez, Des, De4, Des, Deﬁ, De7, Dnl, Dnz, Dn3’ Dn4, Dns, Dnﬁ, Dn7, D, be the domains

associated with the variables of the corresponding nets. The initial domain values are:
* Inputs stable after time 0: Dei = (0|L, 1 ]L), i€ {1,2,3,4,5,6,7}
* All waveforms for internal nodes: Dn,- = (0[:, 1 E:), ie{1,2,3,4,5,6,7}

* Waveforms that violate the timing constraints at the output, transitions at or after time

oo +oo
61: (Of ;7 1)
Applying the constraint operators of the gates yields:

g =D, =( Oti’ Ili) the maximal delay of g, is 10; therefore, no transition is
possible on n; after time 10.

g2 D,, = (O], 1))

8= D,, = (O, 1)

g4=D,, = (02, 1]7)

g =D, = (Olfz,, 1[2)

2= D, = (O, 1)

872 D, = (O, 1[%)

g8s= D, = (0];, 1), D, = (0], 0), D, =(0fs, 1|5): the last-transition-
interval on s is propagated to n, and the controlling waveforms on ng are
removed because théy “block the way” on n,;

8= D, = Oy, 1), D = (0 11°)

8= Dy, = (O[3 1[31). D, = (0., 0)

842 D, = (010, 1130, D, = (0, 1°)

g =D, = (00 11, D, = (0_, ¢)

g=D, = (0[;0, 1 Iio), D e, = (0, 0) . This proves that no transition is possible on

s at or after t = 61, therefore, the circuit floating delay is less than 61.
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3.7 Reduction of Pessimism

The basic waveform narrowing method is based on local consistency techniques.
Constraints consider each gate as isolated, ignoring the global circuit function. Therefore,
the system evaluation may result in false negative answers when we end-up with non-
empty domains and yet the constraint system has no solution. To reduce this pessimism we
incorporated additional constraints based on necessary conditions determined by consider-

ing the global circuit function.

3.7.1 Static Learning

N

Static learning [35] is a technique widely used to

speed up test pattern generation. It consists of deter-

o0 W

mining a table of global logic implications using the
negation of forward logic implications. For example, Non trivial implication: K =1 = (/=1

. . Fi 88
consider the circuit c17 (ISCAS’85 benchmark) of S’tgtl;ciearning on the circuit ¢17.
Fig. 88:

G=0 =» (H=1)An(I=1) = K=0
Therefore, «(K=0) = —(G=0)

K=1 = G =1 is anon-trivial global implication that is not deduced using
local constraint operators. In fact, K =1 can be caused by either
H=0)A((I=0)vU=1)) or {=0)A(H=0)v(H=1)). Therefore, no deduc-
tion can be made from a local stand point. Note that H = 0 = G = 1 is not consid-
ered a learned implication because it is trivial. In fact, it can be determined using the local
constraint operator of NAND. A good heuristic to distinguish trivial and non-trivial impli-
cations is to keép only what was caused by non-controlling values. For instance,
—(K=0) = —(G=0) is considered non-trivial as K = 0 is caused by non-control-

ling values at the NAND inputs.
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Static learning is implemented in a pre-process-

ing stage that determines implications and adds new

constraint operators to the constraint system. When a

O W o

class (wy or wq) becomes empty during constraint sys-

tem resolution, learning tables are used to impose

class restrictions on other domains wherever possible.  Figure 89
. R . Learned constraint.
For instance, the added learned constraint in Fig. 89 is

defined as:

if (K.wy = ¢ ) then
G=Gn(o,17)
That is, if there is only the w; waveform on K, it must be that there is only the w; wave-

formon G

3.7.2 Spatial Correlation

Another way to reduce pessimism is to enforce spatial correlation on reconvergent

fan-outs. The spatial correlation procedure is as follows:

1) Select a reconvergent fan-out X;

2) Save the circuit domains as ALL;

3) Restrict the domain of X to waveforms stabilizing at 1, and evaluate the system;
4) Save the circuit domains as SC1 and restore ALL;

5) Restrict the domain of X to waveforms stabilizing at 0, and evaluate the system;

6) Merge the circuit domains with SC1;

Spatial correlation is performed on reconvergent fan-outs in topological order. Beside
reducing the pessimism of the method, this procedure enables the calculation of a tight
upper bound of the circuit delay instead of resolving a decision problem that consists of
comparing the circuit delay to a certain value. For instance, let’s apply the spatial correla-
tion to e3 of the false path example of Hrapcenko without imposing any constraint on the

output s (see Fig. 90):
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Figure 90

Spatial correlation on reconvergent fan-out es.

(a) Domains before spatial correlation

(b) Domains when ej is restricted to waveforms stabilizing at 1
(c) Domains when e is restricted to waveforms stabilizing at 0
(d) Domains after spatial correlation on e5 (union of (b) and (c) )

Initial Domains:

» Inputs stable after time 0: D, = (0 , 1°_),ie {1,2,3,4,5,6,7}
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« All waveforms for internal nodes: Dn,» = (OE:, Ilj:), ie {1,2,3,4,5,6,7}
«  All waveforms for the output s: D, = (0[ =, 1|"7)

Applying the constraint operators of the gates yields (Fig. 90 (a) ):

g =D, =(0/%,1') g=D, = (02, 11%)
g =D, = (02,11 g,=D, = ([, 1]")
gs=D, = (0], 1) ge=D, = (0%, 11)
g =D, =0/, 1|°) gs= D, = (0%, 1]"°)

all we can conclude here is that the circuit floating delay is < 70.

Save all domains as ALL;

Remove waveforms stabilizing at 0 in e; (Fig. 90 (b))

&= D,, = (0, 112) g5=D,, = (0, 1]0)

g =D, = (0], 1) g5 =D, = (0", 11%)
the circuit floating delay is < 60 in this case.

Save all domains as SC1 and restore ALL;

Remove waveforms stabilizing at 1 in e; (see Fig. 90 (c) )

10 20 10
8 =>D,, =0 0) & =D, =0, 1)

30 20 40 30
g4 = D,14 =0, 1_) gs=> Dn5 =0, 1")

40 30 50 . 40
86 =Dy, = (0], 1) &= D, = (O], 1)

60 50
g8 = DS = (Ol-—oo’ ll—co)
the circuit floating delay is < 60 in this case also.
Merge all domains with SC1; (Fig. 90 (d))

Spatial correlation on stem ej tightened the domains of ng, 14, and s. In fact, it proved

that the circuit floating delay is < 60.

Note that, unlike the case analysis based on constant logic values [50, 60, 62], this

procedure is safe and conservative.
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The reconvergent fan-outs are identified as follows:

*  Perform a breadth first search backward from the output (e.g., from s in F ig. 90), mark

each node visited multiple times as a reconvergent fan-out;

*  Perform a depth first search backward from the output, visiting the deeper structures
first, and gather each node marked as reconvergent fan-out when its sub-structure is
already gathered. (e.g., returns {e3, n4} when applied to the circuit of Fig. 90, e; is

deeper than ny).

Appendix A (A.2) contains the function getOrderedReconvergentFanouts(gate)
that returns the reconvergent fan-outs in topological order, deeper nodes first. The time

complexity of this algorithm is linear with the graph size.

The procedure correlateReconvergentFanouts(gate_set) in Appendix A (A.4) per-
forms a generalized spatial correlation that does 27 system evaluations corresponding to
the restriction of p domains to waveforms stabilizing at 0 and 1 (p 1s the number of gates
of gate_set). The procedure doSpatialCorrelation(order,s) in Appendix A (A.3) deter-
mines the reconvergent fan-outs {r, r,, ..., 1, } of the logic cone of the output s; then it
calls correlateReconvergentFanouts(gate_set) for (k - order + 1) gate sets corresponding to
{r], 12,..., Torder}s {12505 Tordert1}s - > {Tk - order + 1o+ T ). The total number of system
evaluations is (20rder X(k—order+1)). When order<6 (a constant) and
ke O( graph size ) The overall time complexity of doSpatialCorrelation(order, s) is

virtually quadratic for combinational circuits.

3.7.3 Global Timing Implications

In this section we introduce the notion of static and dynamic timing dominators to
identify global implications related to the existence of transitions at or after a certain time

on some key circuit nodes.




Figure 91
16-bit carry skip adder.

The propagation of the last-transition interval is the main mechanism that proves
timing properties. In the Hrapcenko’s false path example (Fig. 87), only one path was the
potential carrier of the transitions at the output s. There was no ambiguity in deciding
which net is the cause of the violation when the gate constraints were individually applied:
at gate g¢ the constraint was able to decide that net ng cannot be the cause of the violation
because its waveforms stabilize too early, max(D, .wy.max, D, .w;.max) + 10 <
min(Ds.wq.Imin, D_.w,.Imin). This is why 1]2 (stabilized too early at a controlling
value) was narrowed to ¢ in ng and the last-transition interval was propagated to n,. In
more complex circuits, such as the carry skip adder in Figure 91, we may not be able to
make such an unambigljous decision. Consider for example the output C;. Suppose that
the maximum path length from C, to C; is 750 and that the domain of C7 contains wave-
forms that have transitions at or after time 750, i.e., ¢ = (&1, C,, 750). Also, suppose
that the paths from C; to the primary inputs that are longer than 750 constitute the shaded
sub-graph of Fig. 91. The waveforms in the domains of the unshaded nets do not have
transitions that may propagate to the last-transition interval of C4, they stabilize too early.
Fig. 92 shows a magnified view of the paths from X to C-, and Fig. 93 (a) shows its con-
straint sub-graph. Referring always to Fig. 93, (b) shows how g, propagates the last-tran-
sition interval from C;’ to R, and removes the waveforms stabilizing at the controlling
value from Q because they stabilize too early, (c) shows a similar behavior for g,. In (d),
the behavior of g is different. It still removes the waveforms stabilizing at the controlling
value from M because they stabilize too early, and propagates the last-transition interval

from X.w; to P.wy and N.wy, but it cannot propagate X.w, to P.w; or N.w; because the




waveform stable at 1 in each domain is com-
patible with the constraint. The behavior on
g3 leads a more pessimistic result than nec-
essary for this example. However, by exam-
ining the shaded sub-graph of Fig. 91, we
can see that it converges to single nets on
Cg, Cs, C4, C3, and C,. Considering that the
transitions in the last transition interval of
C; traveled along the shaded nets, the wave-
forms in Cg stabilizing before 750 minus the
maximum path length from Cg to C; cause
the constraint system to be inconsistent, they
are not part of any solution, therefore, they

can be removed. In fact, g5 could not decide

90

Select,

Figure 92

Carry out of 16-bit carry skip adder.

whether the transitions in X.wy come from P or N, but examining the circuit graph we can

decide that they necessarily come from Cg4. Cg is narrowed to waveforms having transi-

tions at or after time 750 - the maximum path length from Cg4 to C;. The domains on nets

Cs, Cy4, C3, and C, are narrowed in a similar way. These nets are defined in the next sec-

tions as timing dominators.

Figure 93

Circuit path from X to C;. NAND gates are

Z=Z7T

(@)

represented as separate delays and delayless

NAND constraints. :
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3.7.4 Static Timing Dominators

Static Carrier: A net x of & is a static carrier of 6 = (&, s, 8) iff 3 path in & con-
taining x and s of length greater than or equal to 8. Obviously, violation of the timing
requirement (transitions at or after time 0 at s) is caused by signal transitions traveling

along the static carrier nets.

Static Carrier Circuit: The sub-circuit composed of the static carriers of

o = (&, s, 8) and their driving gates of £ is the static-carrier circuit of G.

For example, the static-carrier-circuit of 6 = (&, C4, 750) where €, is the circuit

of Figure 91, is the sub-circuit of &, composed of the shaded nets and their driving gates.

Static Timing Dominators: Let ¥ be the static-carrier circuit of 6 = (, s, 8). Let
P’ be a directed acyclic graph derived from ¥ as follows: each net in ¥ corresponds to a
vertex in ‘P’; each gate in ¥ with k inputs x,x,,...,x; and one output x, corresponds to k
edges, from the vertex corresponding to x, to those corresponding to x;, i=1 to k. We add a
terminal vertex T to ¥, and we add an edge to T from each vertex of an input of ¥. ¥’ is
a directed acyclic graph with one source vertex S (corresponding to s) and one sink vertex
T. The nets of ¥ corresponding to the dominators [2] of T, i.e., the vertices that lie on

every path from S to T, are said to be the static timing dominators of G.

For example, for 6, = (§,, C,, 750) where &1 is in Figure 91, C;, X, Cq4, Cs are

some of the static timing dominators of ¢, .

Lemma: Let d be a static dominator of 6 = (&, s, 8) . Waveforms on d that are sta-
ble at and after time (8 - maximum path length from d to s) are 6—incompatible, i.e., make

the constraint system inconsistent.

The proofis trivial, it follows from Lemma 6.1 in [8].
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3.7.5 Dynamic Timing Dominators

The propagation of the last-transition interval of the output to the static timing domi-
nators of the circuit represents global necessary assignments. Additional global implica-
tions can be determined by analyzing the contents of the abstract signal domains. This

section presents a generalization of the concept of static timing dominators.

k-Dynamic Carrier: Let 6 = (&, s, 8) be a timing-check, and C its associated con-
straint system. Let Dy be the domain associated with output s. If D, # (¢,0) then s is said to
be a O-dynamic carrier of 6. If net y is a k-dynamic-carrier and it is the output of gate g
with max. delay dpmax, then an input net x of gate g is a k-dynamic-carrier of ¢ where k’ =
(k + d,g), provided that the domain D, of x satisfies D, .~ (O[gf o 1 {gf ) = (0,0).

Dynamic Carrier: A net x is said to be dynamic carrier of 6 iff 3 k>0 such that x

is a k-dynamic carrier of .

Dynamic Carrier Circuit: Let ¥ be the circuit composed of the dynamic carriers of
6 = (&, 5,9) and their driving gates of &. ¥ is said to be the dynamic-carrier circuit of

G.

Dynamic Distance: Let ¥ be the dynamic-carrier circuit of 6 = (€, s, 8) and x be

anet of . The maximum length of paths in ¥ from x to s is the dynamic distance of x.

Intuitively, the dynamic distance of x is the maximum time a transition at x takes to
reach s, and is equal to the highest value & such that x is a k-dynamic carrier of 6. In fact,
the concept of dynamic carriers is formulated by necessary conditions for a net to be the
cause of a violation of the timing check, and the domain of a net that is not a dynamic car-
rier of 6 = (€, 5,8) does not contain transitions that propagate to the last-transition

interval of s.
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Dynamic Timing Dominators: Let ¥ be the dynamic-carrier circuit of
6 = (§,5,8). Let ¥ be a directed acyclic graph derived from W as follows: each net in
‘¥ corresponds to a vertex in W’; each gate in ¥ with k inputs xy,%,,...,x, and one output x,,
corresponds to k edges, from the vertex corresponding to xg to those corresponding to x;,
1=1 to k. We add a terminal vertex T to ¥’, and we add an edge to T from each vertex of
an input of W. ¥’ is a directed acyclic graph with one source vertex S (corresponding to s)
and one sink vertex T. The nets of ¥ corresponding to the dominators [2] of T, i.e., the
vertices that lie on every path from S to T, are said to be the dynamic timing dominators

ofo.

Theorem 3: For a timing-check ¢ = (&, s, 8) and a dynamic timing dominator d, let
k be the largest integer such that d is k-dynamic carrier of 6. The waveforms in d that are
stable at and after time (8 - k) are G—incompatible, i.c., they necessarily make the con-

straint system inconsistent.

Proof: Theorem 3 is a direct consequence of the fact that any netx ¢ ¥ is not the
source of a timing violation, i.e., D, do not contain transitions that propagate to within the
last-transition interval of Dy. This fact can be proven by contradiction: Suppose that there
is a path p = (x, iy M s 1 ko 8k s) such that the domain of x contains transitions that
propagate along p to the last-transition interval of Dy. This implies that the same property
is true for all the nets of p. Then n k, has transitions at or after time (8 — max. delay of gkp)‘
and consequently n K, is (0 —max. delay of gkp) -dynamic carrier of ¢. Similarly x is
(8 — length of p) -dynamic carrier of 6. x € ¥ contradicts the original assumption. This
proves that transitions on internal nets of the circuit that cause transitions on s at or after
time  (a violation of the timing check) if any are originating from . Any waveform on a
dynamic dominator that is stable at and after time (& — its dynamic-distance) makes the

constraint system inconsistent.
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Corollary: Let d be a dynamic dominator of 6 = (&, 5,8) and k the dynamic dis-
tance of d. Narrowing the domain of d by intersecting it with (1 lgoj e 0 |g°j ;) Maintains all

the solutions of the original system.

The proof follows from Theorem 3.

To determine the timing dominators, a back trace is started at the output. The fan-in
gates that are in the dynamic carrier circuit are scheduled on a priority queue that returns
the closest gate to the output when queried. Each scheduled gate keeps track of its
dynamic distance which is updated when the gate is scheduled multiple times. A node d is
a dynamic dominator if the queue becomes empty after d is removed from it. The function
getTimingDominators(output) in Appendix A (A.5) is a high level algorithm that deter-
mines the timing dominators. The worst case time complexity of the algorithm is
nxlog(n) (nis the circuit graph size). In practice, the apparent complexity is close to lin-
ear as the number of gates scheduled at the same time is small due to practical circuit
topologies, and to the fact that, in most cases, the dynamic carrier circuit is a small frac-
tion of the logic circuit. In fact, it is possible to determine the timing dominators in linear
time by first determining the dynamic carrier circuit, but this turned out to be more expen-
sive than the wuse of a priority queue in most cases. The function
evaluateConstraintSystemTD(output) in Appendix A (A.6) is a high level algorithm
that evaluates the constraint system applying the additional narrowing on the timing dom-

inators.

Timing dominators concept is a very important contribution to the waveform narrow-
ing method, it leads to a powerful mechanism for reducing the pessimism of the method.
For example, the c1908-ALL-GATE circuit of the ISCAS’85 benchmark suite is a tradi-
tionally difficult case for combinational circuit delay calculation, and yet its timing prop-
erties were proven very efficiently when timing dominators were determined. For
example, the output output_57 has a topological delay of 400. We restricted its domain to

waveforms having transitions at or after time 241 and the constraint system ended up with
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Topological delay = 400
Floating-Mode delay = 240

“internal 462 06 me 7. internal_55
output_57
‘ & =241

Figure 94
Timing dominators of output_57 of ¢1908-ALL-GATES.

non-empty domains. This particular timing check has four timing dominators beside the
output itself, no narrowing was performed on three of them (internal_462, internal_1806,
and internal _1217) by the original method (see Fig. 94). After narrowing the domains of
these dominators to waveforms having transitions at or after time 8 — DynamicDistance
(e.g., 161 for internal_462) the constraint system evaluation resulted in empty domains,

proving that the actual floating delay of output_57 is < 241.

3.8 Case Analysis

When the evaluation of the constraint system associated with a timing-check
o = (&, s, 8) ends up with non-empty domains, we cannot definitely conclude that a vio-
lation is possible. This section presents an algorithm for case analysis that does a decision
tree traversal by selecting nets, and restricting their domains to waveforms stabilizing at
either 0 or 1. The objective is to find a test vector or to prove that the constraint system is
actually inconsistent, i.e., has no solution. A test vector is found when each circuit domain
is decided, i.e., is non-empty and contains waveforms stabilizing at either 0 or 1 exclu-
sively. Obviously, we are dealing with an NP-Hard problem. Therefore, the algorithm
relies heavily on heuristics, and has exponential time complexity in the worst case. The

outcome of case analysis can be one of the following three:




sive algorithm:
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CS_INCONSISTENT, the constraint system has no solution, no timing violation is
possible. This happens when the constraint system ends up with empty domains on all

decision tree leaves;

TEST_VECTOR, all circuit nodes were successfully restricted to one abstract wave-
form (0 or 1), and the constraint syétem is consistent. In this case we consider that the

assignment of the primary inputs is a test vector that violates the timing requirements;
ABANDONED, the case analysis is abandoned due to excessive number of back-

The general scheme for the decision tree traversal is depicted in the following recur-

FindTestVector() {

Evaluate the constraint system;
if ( result is empty domains ) return CS_INCONSISTENT;
if ( all nets are decided ) return TEST_VECTOR;
select one net N that is not yet decided and a value V;  // V=0 or 1
save system state;
restrict N to V;
result = FindTestVector();
if ( result == CS_INCONSISTENT ) {
restore system state;
restrict N to V:
result = FindTestVector()
}

return result;

The key for good performance is an appropriate net selection heuristic. As a general

rule of thumb, obvious easy decisions should be made as late as possible in the decision

process. In fact, when made early in the decision tree, decisions that have conflicting
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Figure 95
(1) Requirements impossible to satisfy. (2) Decision tree when b is chosen the last.
(3) Decision tree when b is chosen the first.

implications are likely to prune a large part of the search space. Consider for example the
circuit in Fig. 95(1) for which our objective is to find an assignment for a, b, and ¢ that sets
the AND gate output to 1, and the OR gate output to 0. Six decisions are needed to prove
that the requirements are impossible to satisfy when b is decided the last (see Fig. 95(2)).
In contrast, only two decisions are needed when b is selected
first (see Fig. 95(3)). Conlflicting implications can be deter-
mined easily by propagating backward the requirements.
Fig. 96 shows how this is done for the previous example, the

AND gate requires 1 for a and b, whereas the OR gate

requires 0 for b and c. Therefore, b is required to be at 0 and Figure 96
1, hence it is likely to have conflicting implications. This is Xequirement propagation.
the basis for a very successful strategy used in test pattern

generation. The back trace mechanism was introduced by Goel [32] as the PODEM algo-
rithm, and then refined by Fujiwara and Shimono [33] in the FAN algorithm as the multi-
ple back trace procedure. The PODEM algorithm back traced objectives all the way to

primary inputs, one path at a time, according the following rules:

* If our objective can be satisfied by setting a gate input to a controlling value, e.g., 0 for

AND / NAND gates, then choose that input that can be “most easily” set.

* If our objective can be satisfied by setting all gate inputs to a non-controlling value,

e.g., | for AND / NAND, then start with that input that is the “hardest” to set.
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The multiple back trace procedure follows multiple paths in a reverse levelized order.
Decisions are made on fan-out branches that receive conflicting requirements, e.g., fan-
out b in the example of Fig. 96. We adopted the multiple back trace strategy to select nets
and decisions. The objectives to satisfy, however, are derived from a timing verification
problem rather than test pattern generation one. For the timing check ¢ = (&, s, §), case
analysis main goal is to find a test vector that produce transitions later than 8. Therefore,
we need to sensitize one path in W, the dynamic carrier circuit of ¢ . This is done incre-

mentally, starting from the output s, favoring the longest paths in V.

Section 3.8.1 defines the controllability measure we used to distinguish between
“easy” and “hard” to set nets; Section 3.8.2 defines the back trace procedures; and Section

3.8.3 contains the case analysis algorithm.

3.8.1 Controllability Measure

Controllability is a heuristic measure associated with circuit nodes. It represents the
cost for finding a test vector that, when applied to primary inputs, sets the node to 0 or 1.
For instance, suppose that it is desirable to set the output of an AND gate to 0, this can be
achieved by setting any of the gate’s inputs to 0. The controllability measure is used to
choose the easiest. Controllability is a subject fairly well studied in literature [22]-[30], we
used SCOPE [23].

SCOPE controllability is defined as a couple (Cy, C;), and calculated as follows:
* Primary inputs are assigned (Cy=1, C;=1)

+ For a circuit net driven by a gate G, C, = (minimum cost of input assignments that pro-

duce x) + 1.

for an AND gate where Y is the output, A and B are the inputs:
Co(Y) = min (Co(A), Co(B)) + 1
CI(Y) = CI(A) + CI(B) +1
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for a NAND gate where Y is the output, A and B are the inputs:
Co(Y)=Ci(A)+Cy(B)+ 1
C1(Y) = min (Co(A), Co(B)) + 1

for an OR gate where Y is the output, A and B are the inputs:
Co(Y)=Cy(A) +Cy(B) + 1
Ci(Y) = min (C,(A), C,(B)) + 1

for a NOR gate where Y is the output, A and B are the inputs:
Co(Y) = min (Cy(A), Cy(B)) + 1
Ci(Y) = Co(A) + Cy(B) + 1

for a XOR gate where Y is the output, A and B are the inputs:
Co(Y) =min (Cy(A) + Cy(B) , Co(A) + Co(B)) + 1
C1(Y) =min (Co(A) + Cy(B), Cy(A) + Cy(B)) + 1

for an XNOR gate where Y is the output, A and B are the inputs:
Co(Y) = min (Co(A) + C(B), C1(A) + Co(B)) + 1
C1(Y) = min (C,(A) + Cy(B), Co(A) + Cy(B)) + 1

for a NOT gate where Y is the output, A is the input:
Co(Y) =Cy(A) +1
Ci(Y) =Co(A) + 1

for a BUFFER or DELAY gate where Y is the output, A is the input:
Co(Y) =Co(A) + 1
Ci(Y)=Cyi(A) +1

This measure represents the number of nodes in the equivalent fan-out-free circuit
that need to be set to a specific value in order to set the gate output to 0 or 1. Controllabil-

ity functions for other gates can be easily formulated.
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Figure 97
Controllability measure for circuit c17.

Fig. 97 shows the controllability measures calculated for the circuit c17 of the
ISCAS’85 benchmark suite.

3.8.2 Requirement Propagation / Back Trace Procedure

Logic requirements are presented in [33] as objectives: an objective is a triplet (Net,
no(Net), ny(Net)). Net is the net identifier where the objective is attached, no(Ne?) (n((Net))
is the number of times Net is required to be set to O (1). Objectives serving our purpose
have different semantics for ng(Nef) and nj(Net). ny(Net) (ny(Net)) is the potential length
of the path that is likely to be enabled if the domain of Net is restricted to waveforms sta-
bilizing at 0 (1). Objectives are propagated from a gate output to its inputs (back traced)
according to the gate type and the controllability measures of the gate inputs. During
backtracing, objectives are put in a priority queue that returns the objective attached to the
net that is the closest to the circuit primary output (in our case, the circuit has only one out-
put). Backtracing proceeds by pulling an objective out of the priority queue, calculating
the objectives for the inputs of the gate driving the objective’s net, and inserting back the
calculated objectives in the queue. When an objective is being inserted in the queue, and
another one for the same net is already queued, they are merged into one that gets the larg-
est values. For instance, merging (Net, 100, 200) and (Net, 50, 300) results in (Net, 100,
300). This deviates from the back trace procedure defined in [33] where the merged objec-

tive gets the sum of the values.

The following algorithms calculate the objectives for the inputs of the different logic

gate types. Cy(X), C;(X) are the controllability measures for the net X,
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for a BUFFER or a DELAY gate where Y is the output, A is the input:
ni(A)=ny(Y)
no(A) = ny(Y)
for a NOT gate where Y is the output, A is the input:
n1(A) = n(Y)
no(A) = ny(Y)

for an AND gate where Y is the output, A and B are the inputs:

ny(A) =ny(Y)

ny(B) =ny(Y)

if Co(A) <Co(B) ) {
no(A) = no(Y)
ny(B) =0

} else {
no(B) = no(Y)

”0( A)=0 Figure 98
Back Trace example.

}

Fig. 98 shows a back trace example: (Y, 100, 50) is back traced as (A, 0, 50) and (B,
100, 50); (Z, 0, 200) is back traced as (B, 0, 200) and (C, 0, 200); the objectives at B are
merged as (B, 100, 200). B has a conflicting requirements, the case analysis sets B to 1 as

a first attempt, to favor the path of length 200.

for a NAND gate where Y is the output, A and B are the inputs:
ny(A) = ny(Y)
ny(B) = ny(Y)
if( Co(A) <Co(B)) {
no(A) =ny(Y)
no(B) =0
}else {
np(B) =m (Y)
no(A)=0




for an OR gate where Y is the output, A and B are the inputs:

no(A) = ng(Y)

no(B) = ny(Y)

if( Cy(A) <Cy(B)) {
ny(A) =ny(Y)
n(B)=0

}else {
n(B) =ny(Y)
ni(A)=0

for a NOR gate where Y is the output, A and B are the inputs:

no(A) = ny(Y)

no(B) = n(Y)

if( C1(A) <Cy(B)) {
ny(A) =ny(Y)
n(B)=0

} else {
ny(B) = ny(Y)
ni(A)=0

102
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for a XOR gate where Y is the output, A and B are the inputs:
if( Co(A) + Co(B) < C(A) + C1(B)) {

if Co(A) + Cy(B) <Cy(A) + Cy(B) ) {
ro(A) = max (ng(Y) , ny(Y))
no(B) = ng(Y)
nl(A) =0
ny(B) = ny(Y)

} else {
no(A) = no(Y)
no(B) =max (ny(Y), ny(Y))
n(A)=ny(Y)
nl(B) =0

}

} else {

if( Co(A) + C1(B) < Cy(A) + Co(B)) {
no(A) = ny(Y)
no(B) =0
ni(A) = ng(Y)
ny(B) = max ( ng(Y) , ny(Y))

} else {
no(A) =0
no(B) = ny(Y)
ny(A) =max (ny(Y) , n1(Y))
n1(B) = ng(Y)

The back trace procedures for XOR and XNOR gates are more complicated as 0 and

1 are both non-controlling values. They were defined in [35].




for an XNOR gate where Y is the output, A and B are the inputs:

if Co(A) + Cy(B) < C(A) + C|(B) ) {
if( Co(A) + C(B) < Cy(A) + Cy(B) ) {

no(A) = max (ng(Y) , ny(Y))
no(B) = ny(Y)

ny(A)=0

n(B) = n(Y)

} else {

}

} else {

no(A) = ny(Y)
no(B) = max (ny(Y) , n1(Y))

- m(A)=ny(Y)

n(B)=0

if( Cy(A) + C1(B) <Cy(A) + Cy(B) ) {

no(A) = no(Y)

ny(B)=0

ny(A) =ny(Y)

ny(B) =max (ny(Y), n1(Y))

} else {

no(A) =0

no(B) = ng(Y)

ny(A) =max (no(Y), ny(Y))
n(B) =ny(Y)

104
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3.8.3 Case Analysis Procedure

The main idea is to compute the initial objectives so as to set those nets which are
inputs of gates in the dynamic-carrier circuit ¥ of ¢ that are not dynamic carriers to a
non-controlling value regarding the gates they feed into V. This strategy is justified by the
following reasoning: The timing violation at output s is originating in ¥, hence we need to

sensitize the paths in ¥. Let’s illustrate how the initial objectives are established on the

Al

Bl

Timing Dominators

Figure 99
Timing check (&, T, 61) for a carry skip circuit.

example of Fig. 99. This is a carry skip circuit having a topological delay of 70 (all gates
have a delay value of 10). The timing check compares the circuit delay with 61. The con-
straint system evaluation ended with non-empty domains. The dynamic carrier circuit is
the shaded sub-circuit, it contains six timing dominators: T, S, P, H, D, and C. The follow-

ing is a partial list of domain contents:

T= Ol S= OGP = O

H=Ohplh) D= Q%) C= 1))

N is restricted to waveforms stabilizing at 1, non-controlling for AND. We denote
this as N = 1 in order to simplify the presentation.

N=1 Q=0 R=0 K=0 G=0
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The remaining nets have undecided domains (both classes, wo and wy, are non-
empty). R and Q need no justification, they are not considered as objectives. However, N,
K, and G are still unjustified. A net is unjustified if it is possible to restrict the domains of
the inputs of its driving gate to single no empty classes (wp or w;) and end up with an

inconsistent situation. The following objectives are selected:

(N, ng=0,n; =+o0) +oo is used to indicate that this objective is
mandatory to satisfy

(K, ny=+oo, ny =0)

(G, ng=+eo,n; =0)

(A2,n5=0,n;=70) A2 is feeding an AND gate in the dynamic carrier
circuit, the longest path that is potentially enabled
by setting A2 to 1 is of length 70.

(B2, ny =0, n; =70)

(Al,ny=0,n; =70)

(B, ny=0, n, =170)

Once these seven objectives are put in the priority queue, the basic idea is to start the
backtracing process, and to apply decisions to the domains of the fan-out nets for which
the objective have both ny# 0 and n, # 0. The decision is to restrict the domain to wave-
forms stabilizing at 0 (1) when ny>ny (ng < ny). The actual algorithm is more complex,
and is presented later in this section. Let us start first by stating the algorithm that com-

putes the initial objectives:

The algorithm is parameterized by a
starting and ending points, both of them are
timing dominators. ComputelnitialObjectives

determines the objectives that sensitize the

sub-paths of the dynamic carrier circuit that ,
Figure 100
Topological partitioning for decision making.

lie between start and end (see Fig. 100).
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function ComputelnitialObjectives((E, s, 8) , start, end) {
compute W the dynamic-carrier-circuit of (€, s, 8);
if (end # none) remove end from ¥
restrict ' to the cone of start;
List = {gates in ¥ having inputs not in ¥}
H=¢; // H is a heap returning objectives in reversed topological order
for each gate G in List do {
for each net N, input to G not in ¥ do {
if domain of N contains both classes then { //' N is not yet decided
if G has a controlling value then { /i.e., if G is not xor or xnor
if the non-controlling value is 0 then
add the objective (N, dynamic-distance of N + max(N), 0) to H;
// max(N) is the largest of N.wg.max and N.w,.max
else add the objective (N, 0, dynamic-distance of N + max(N)) to H;
// when H already contains an objective corresponding to N, adding the new objective
// results in updating the already included one so as to contain the largest

// of ng and n.
}
}
else { /I' N is already decided
for each unjustified net N in the cone of N do {
if (the non-empty class of N’ is 0) then add (N’,+00,0) to H;
else add (N”,0,100) to H;
}
}
}
}
return H;

In the context of test pattern generation, backtracing is restarted a minimal number of
times. In our case such a strategy resulted in poor performance because decisions on nets
may have profound effect on P, the source of the violation. The back trace is restarted
each time the size of the decision stack changes as a result of backtracks. Moreover, deci-

sions are performed in 4 phases:

Phase 1: Let dy, d|, ..., d, be the consecutive dynamic-dominators of (&, s, d) com-
puted before any decision is taken, (d, = s). Let § d,d,, be the sub-circuit of & composed
of the fan-in cone of d; excluding d; , | . We fix the class value of nets in & d,d.i=0to

k-1, using the function MakeDecisions((&, s, 8), d;, d; ). Then, we fix the class of nets
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in the fan-in cone of d, using MakeDeci-
sions((&, s,8), d,, none). MakeDecisions

fixes the class only on those fan-out nets with

T —

conflicting objectives, i.e., both ny and n; # 0. 3

Figure 101

Fig. 101 shows a partitioning example Topological partitioning for phase 1.

for three timing dominators, dg, d;, and d,.

Phase 1 fix the class of fan-out nodes in regions (1) first, then (2) then (3).

Phase 2: We perform decisions on the whole circuit using MakeDecisions((§, s, 8),

s, none).

Phase 3: We perform decisions on the whole circuit using MakeAllDeci-
sions((&, s, 8)). Decisions in phases 2 and 3 are taken on fan-outs with conflicting
requirements, i.e., ny and n; are both non-zero, whereas decisions here are taken on all

fan-outs.

Phase 4: We perform decisions on the primary inputs after complete back trace from
all unjustified nets. An output of a gate G is unjustified iff its domain is restricted to one
class and if we can intersect the domain on each input with ( Olt:, 0) or (¢, 1 [j:) to get

non-empty input domains that are inconsistent with the gate constraint.

Case analysis algorithm:

function CaseAnalysis (&, s, 8) {
1. compute dynamic-dominators of (€, s, 8);
for each successive pair of dominators d; and dj, starting from s do {
if (MakeDecisions( (&, s, 8), d;, dj) == CS_INCONSISTENT) return CS_INCONSISTENT;
}
if (MakeDecisions( ( E:,, S, 0), d, none)== CS_INCONSISTENT) return CS_INCONSISTENT;
// decisions on the cone of the deepest dynamic-dominator d.
2. if (MakeDecisions((&, s, 8), s, none) = = CS_INCONSIST ENT) return CS_INCONSISTENT;
// decisions on the whole circuit
3. if (MakeAllDecisions((, 5, 8)) == CS_INCONSISTENT) return CS_INCONSISTENT;
4. Compute objectives for all unjustified nets;
Perform complete back trace, to the primary inputs;
while (decision stack not empty and not all inputs decided) make decision for a primary input;
if (decision stack is empty) return CS_INCONSISTENT; else return TEST_VECTOR;
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function MakeDecisions((E, s, 8), start, end) {
H = ComputelnitialObjectives((, s, 8) , start, end);
while (H not empty) {
remove the objective for the net closest to s from H and place it into obj;
if (N the net of obj is a fan-out) { k
if (both ny and ny # 0) {

if (both classes of the domain of N are not empty) {
if (ng > n;) then remove, i.e., make empty, class 1 of the domain of N;
else remove class 0;
while (constraint system is inconsistent) {

backtrack;
if (decision stack empty) return CS_INCONSISTENT;

}
if (the decision stack changed size because of backtracks)
H = ComputelnitialObjectives((&, s, 8) , start, end);

}

if (N is an output of a gate G) {
if (class 1 of the domain of N is empty) back trace (N, +o0 ,0);
else back trace (N,0,+oo0);
// back trace puts the computed objectives corresponding

// to inputs of G on H
}
}
else {
if (N is an output of a gate G) {
if (both classes of the domain of N are not empty) back trace obj;
else {
if (class 1 of the domain of N is empty) back trace (N, +o0,0);
else back trace (N,0,+o0);
}
}
}
3
else {
if (N is an output of a gate G) { // i.e., not an input
if (both classes of the domain of N are not empty) back trace obj;
else {
if (class 1 of the domain of N is empty) back trace (N, +o0 ,0);
else back trace (N,0,+o0);
}
}
}




function MakeAllDecisions((E, s, 8)) {
H = ComputelnitialObjectives( ( E_,, 5,0),s, none);
while (H not empty) {
remove the objective for the net closest to s from H and place it into obj;
if (N the net of obj is a fan-out) {
if (both classes of the domain of N are not empty) {
if (ng > n;) then remove, i.e., make empty, class 1 of the domain of N;
else remove class 0;
while (constraint system inconsistent) {
backtrack;
if (decision stack empty) return CS_INCONSISTENT;
}
if (the decision stack changed size because of backtracks) {
if (MakeDecisions((&, s, 0), s, none) == CS_INCONSISTENT)
return CS_INCONSISTENT;
H = ComputelnitialObjectives(( E:,, S, 5) , S, none);

}
if (N is an output of a gate G) {

if (class 1 of the domain of N is empty) back trace (N, +o0 ,0);
else back trace (N,0,+o0);
//'back trace puts the computed objectives corresponding

// to inputs of G on H

}
}
else {
if (N is an output of a gate G) {
if (both classes of the domain of N are not empty) back trace obj;
else {
if (class 1 of the domain of N is empty) back trace (N, +oo ,0);
else back trace (N,0,+o0);
}
}
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The next section presents the experimental results of applying the basic waveform

narrowing method and the pessimism reduction techniques to the ISCAS’85 benchmark

suite.
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3.9 Experimental Results

The experiments were executed on a Sun SPARCstation 10 (120 MIPS). The basic
constraint system evaluation without global implications on timing dominators was able to
eliminate timing check violations for the circuits c5315 and ¢7552 of the NOR-gate imple-
mentations of the ISCAS’85 benchmarks [11] with delays of 10 on the outputs of all gates.
The global implications on timing dominators eliminated timing violations from c1908
and ¢3540. Spatial correlation of order 1 eliminated timing check violations from c2670
and c¢6288. The case analysis found test vectors for all circuits except c6288. Table TV
contains the detailed checks and Table V summarizes the results. Note that the value of §
for which a test vector is found represents the exact floating-mode delay of the circuit
when the constraint system is inconsistent for (8 + 1) on all outputs. The columns of Table
IV contain, from left to right, the following information: 1) the circuit name, 2) the output
on which the timing check was done, 3) the max. topological delay of the output, 4) the
max. topological delay of the circuit, 5) the timing constraint § on the output, 6) the result
of the first evaluation of the constraint system before the use of global implications on tim-
ing dominators, 7) the result after the use of global implications on timing dominators, 8)
the result after spatial correlation of order 1 is applied, 9) the number of backtracks in the
case analysis, 10) the result of case analysis, and 11) the total CPU time. Not included in
Table IV is the timing check performed on a 16 bit carry-skip adder, partly shown in Fig.
91. The adder has a topological delay of 2000 and a floating-mode delay of 1000. This
was determined in 25 seconds of CPU time after a total of 1636 backtracks. For & =1001
the case analysis proved that the constraint system is inconsistent on all outputs, and for

6=1000 found a test vector.

The global implications on timing dominators proved to be very effective in the case
of the traditionally difficult c1908 circuit. It proved that output 57_912 (topological delay
of 340) has a delayless than or equal to 200 in 0.76 seconds. This particular check has 5
timing dominators and no narrowing was performed on 3 of them by the original method.
Spatial correlation may present a processing overhead when applied by default, however,
it is necessary and proved to be efficient when the constraint system evaluates to non-

empty domains and yet no violation is actually possible as in the cases of 2670 and
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c6288. In these two cases the false paths are caused by reconvergent fan-outs that are
dynamic carriers. Without applying spatial correlation, case analysis failed to prove the
inconsistency because decisions on dynamic carriers are done in Phase 3, too far in the

decision tree.

CRCUT | OUIRUT | yitor. | maxtor. | O | cann. | . | consr, | sk | weanr |
cl7 23GAT_10 50 50 50B P P P 0 v 0.0
c432 | 432GAT_195 190 190 190E P P P 1 \% 18.82
c499 OD31_211 250 250 250F P P P 5 \Y 7.10
c880 880GAT_440 200 200 200E P P P 0 v 3.06
1355 | 1355GAT_558 270 270 270E P P P 1 v 8.17
c1908 69_908 320 340 311 N - - - - 0.07
c1908 72_909 320 340 311 N . - - - 0.07
c1908 57_912 340 340 201 P N ] - - - 0.76
1908 72_909 320 340 3108 P P P 5 v 11.58
c2670 225_1424 250 250 241 P P N 0 N 3.67
€2670 225_1424 250 250 240E P P P 7 \ 17.07
€3540 405_1717 410 410 391 P N - - - 2.86
€3540 402_1718 410 410 391 P N - - - 226
¢3540 402_1717 410 410 390E P P P 3 v 56.00
c5315 658_2483 460 460 451 N - - - - 0.78
c5315 690_2484 460 460 451 N - . - - 0.78
5315 658_2484 460 460 450F P P P 16 v 21.97
6288 | 6288GAT_2447 | 1230 1230 1221 P P N 0 N 56.36
6288 | 6288GAT_2447 | 1230 1230 | 190V P P P A A A
c7552 338_3716 380 380 371 N - - - - 034
7552 399_3717 380 380 371 N - - - - 038
c7552 399_3717 380 380 370E P P P 1 v 8.34
Table IV

Results on the ISCAS’85 benchmark suite

Legend for Tables IV, V, and VI: (G.LT.D. stands for Global Implications on Timing Dominators.)

P: Possible violation of the timing-check constraint,

N: No violation of the timing-check constraint is possible.

V: Test vector found.

- (dash): Procedure not used (was not necessary).

A: Abandoned due to excessive number of backtracks.

(®: Value represents exact floating-mode delay. In this case timing checks for all outputs having topological delay greater
than or equal to the value are included in Table IV,

(U): Value represents upper bound on the maximal floating-mode delay.

Apart from 6288, case analysis heuristics proved to be extremely efficient consider-

ing the very low number of backtracks.
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CIRCUIT | #INPUTS | #OUTPUTS #GATES #NOR nfg(_c:g‘ FI;)(;{FAIYNG #BCT"’:éK (T:SJ ?SL)
cl7 s 2 26 6 50 50E 0 0.05
c432 36 7 386 129 160 190E 1 18.82
499 41 32 1126 370 250 250E 5 7.10
c880 60 26 744 244 200 200E 0 3.06
cl355 41 32 1206 474 270 270E 1 8.17
1908 33 25 1216 426 340 310E 5 12.48
c2670 233 140 1946 584 250 240F 7 20.74
c3540 50 22 2134 840 410 390E 3 61.12
c5315 178 123 3718 1351 460 450E 16 23.53
6288 32 32 4800 2352 1230 12209 0 5636
c7552 207 108 5806 2023 380 370E 1 9.06
Table V

Summary of the results on the ISCAS'85
NOR-GATES benchmark suite

The columns of Table V contain, from left to right, the following information: 1) the
circuit name, 2) the number of circuit inputs, 3) the number of circuit outputs, 4) the num-
ber of gates, 5) the number of NOR gates the circuit has, 6) the circuit topological delay, 7)
the circuit floating delay as calculated by the waveform narrowing method, 8) the number
of backtracks of case analysis that was needed to find a test vector, 9) the total CPU time
for the timing checks that were necessary to prove the circuit timing property (floating
delay). Note that the circuits have only NOR gates, buffers and inverters. For instance,
6288 has a total of 4800 gates, 2352 of them are NOR gates, the remaining gates (2448)

are buffers and inverters.

~ Compared to other methods, waveform narrowing proved to be extremely efficient
on the traditionally difficult example of ¢1908. For instance, the method of [85] took
12140 seconds on a 38 MIPS workstation. This represents 3844 seconds on a 120 MIPS,
about 300 times slower than our method. For the same circuit, the method of [93] took
3675 second on a 10 MIPS workstation, still about 24 times slower than our method when

scaled to 120 MIPS.
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ancur | creurs Tronc] o
c1908 340 310Y 0.86
c2670 250 240Y 3.67
3540 410 390U 5.12
c5315 460 450V 1.56
6288 1230 1220V 56.36
c7552 380 370V 0.72
Table VI

False path elimination summary

After all, comparing execution time for exact results between different methods does
not tell the whole story. Let’s not forget that the calculation of combinational circuit delays
is an NP-Hard problem, any exact method has an exponential time complexity in the worst
case. Therefore, all methods rely on heuristics biased toward resolving efficiently certain

types of circuit topologies.

The important properties a timing verification method should have are execution time
predictability, reasonable memory requirements, and implicit false path elimination. Exact
methods are not necessary in most cases. In fact, the electronic design automation (EDA)
industry is busy building timing verifiers that can be integrated in the design flow easily,
and little emphasis is given to false path elimination. The customers simply cannot afford
to wait unpredictable amounts of time before obtaining the results, not to mention that the
memory requirement of the method is critical for large industrial designs. In fact, modern
EDA physical design tools, e.g., IBM’s ChipBench, have design and verification tools
integrated in one user interface. The designer can modify the physical design and get tim-
ing feedback right after, all design data remain in core along with the data structure needed
for timing verification. These facts put the waveform narrowing method at a great advan-

tage.

Table VI summarizes the false path implicit elimination of our method, the case anal-
ysis execution is stripped out. The fact of the matter is that only 10% of the execution time

is spent on eliminating the false paths and determining a tight delay upper bound that cor-
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responds to the exact circuit delay. The remaining 90% is simply spent on proving that the
upper bound we found is in fact the exact delay. Beside the case analysis, our method has
a virtually n x log(n) time complexity (n is the circuit size) when the timing dominators
procedure is used, and a virtually quadratic time complexity when the spatial correlation
procedure is used. Moreover, the memory requirement of our method is minimal, the data
structure is basically a circuit graph representation, and a domain stack for each circuit
net. The domain stack can be limited to a maximum of three domain instances. The pro-

gram implementation required on the average about 400 bytes for each circuit gate.

3.10 Conclusions

In this chapter, we established the mathematical foundations of the waveform nar-
rowing method, and defined elaborate constraints for basic primitives such as symmetrical
gates, AND, XOR, NOT, BUFFER, DELAY, etc. We showed how the novel global impli-
cations on timing dominators efficiently reduced the pessimism of the method. Further
refinements were achieved by enforcing spatial correlation on reconvergent stems and by

the case analysis procedure that aims at finding exact results.

At this point, we have a method that proved to be very efficient on the standard
ISCAS’85 benchmark suite. However, it is very desirable to assess its effectiveness on
real world industrial circuits. The software implementation, part of the Power and Timing
Verification Project at the Université de Montréal, is suitable to run standard benchmark
circuits, but it does not have the capabilities needed to run industrial designs. It needs ade-
quate capability for cell library modeling, standard delay back-annotation, complex clock-
ing schemes, etc. In order to test the method on industrial circuits, we simply had to
rewrite the timing verifier from scratch. Chapter 4 explains the work we did to bring the

waveform narrowing method closer to industrial use.




CHAPTER IV ADVANCED MODELING

The previous Chapter presented a comprehensive constraint-based framework for
timing analysis that can be applied to circuits composed of symmetrical logic gates having
simple timing properties. When the timing environment consists of a single-phase clock
signal, it is trivial to reduce the problem of verifying setup and hold constraints of the flip-
flops to a delay calculation problem of a combinational circuit. However, when faced with

real world industrial designs, complex pragmatic aspects need to be addressed, namely:

Test Cases: VLSI chips have multiple modes of operation, e.g., test mode, scan
mode, functional mode, etc. Therefore, multiple test cases are presented to the timing ver-
ifier; each one consists of a set of constants to be applied to primary inputs, and a set of
harmonically related clocks. The constants configure the chip in a specific mode of opera-
tion, causing the clocks to be routed to specific sub-sets of the flip-flops. While defining
constants is trivial (instance pin = logic value), defining harmonically related clocks

require a concise and elaborate syntax.

Standard Delay Annotation: industrial component delays are specified as triplets
(minimum, typical, maximum). Since the typical delay value does not occupy a fixed rela-
tive position in the interval [minimum, maximum] over all circuit components, abstracting

the delays to their [minimum, maximum] intervals leads to erTors.

Cell Libraries: the building blocks of an industrial design are components chosen
from a technology cell library that usually contains non-symmetrical and tristate logic
gates, e.g., multiplexers, tristate buffers, etc. Moreover, cell component delays are speci-
fied as selective i/o path delays for each type of transition at an output, caused by an event
at a specific input. For example, consider a tristate buffer having an output Y and two

inputs A and G, operating according to the following truth table:
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A G Y
0 0 Z (high impedance state)
1 0 Z
0 1 0
I T T

The output Y can hold three values (0, 1, and Z). Therefore, six transition types are

possible at Y: 01, 10, 0Z, Z0, 1Z, and Z1; i/o path delays are specified as follows:

AtoY for 01 (event propagation delay from A to Y, when the resulting
event at Y is a rising transition)

AtoY for 10

GtoY for 0Z

GtoY for Z0

GtoY for1Z

GtoY for Z1.

Consequently, an extended set of constraint operator primitives is needed to allow the

modeling of cell library components.

Combinational Loops: although discouraged by modern design methodologies,
industrial designs may still contain combinational loops that the timing verifier needs to

identify and handle properly.

Section 4.1 presents the syntax adopted to specify harmonically related clocks; Sec-
tion 4.2 addresses delay modeling and component delay correlation using triplets (min,
typ, max); Section 4.3 defines an extended set of constraint operator primitives necessary
to model cell library components; Section 4.4 presents the cell library modeling process;
Section 4.5 illustrates how combinational loops are handled; Section 4.6 presents a high-
level architecture of the resulting timing verifier; Section 4.7 presents the results of verify-

ing a real world industrial design; and Section 4.8 concludes the chapter.




118
4.1 Clock Definition Formalism

An important piece of information presented to timing verifiers in test cases is the
definition of clock domains, harmonically related clocks, and the functional semantics of
the circuit. It is imperative that the timing verifier distinguishes which clock edge is sam-
pling the computed new circuit state, and which one is injecting the old state to be used by
the combinational circuit to compute the new one. This section defines simple formalism

but powerful enough to express arbitrary complex clocking schemes.

Test cases are specified using a simple regular grammar syntax. We describe the part
that defines harmonically related clocks, and edge selection clauses that specify which
clock edge to use at each flip-flop when performing setup verification. Note that it is irrel-
evant to specify edges for a synchronizing latch; its constraint selects the pulse that propa-
gates data without violating its setup/hold constraint. The clock definitions are based on

absolute time scale.

Notation:
: : = denotes the relation “is a”;
Balanced parentheses enclose syntax elements;
*+ @ = oneormore occurrences of the preceding syntax element;
{}::=one of the enclosed, comma separated, syntax elements;

C++ data types and comments are used inside definitions.

A set of harmonically related clocks is specified as:

(CLOCKS
(BASE_PERIOD float_base period)
(CLOCK clock name
(DRIVER pin driver)
(MULT unsigned mult)
(DIV unsigned div)
{
{ (RISE float_ideal time [float, float])
(FALL float_ideal time [float, float]) }+,
{(FALL float_ideal time [float, float])
(RISE float_ideal time [float, float]) }+
}

)+
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Each clock has a name, a driver, a clock period base_period * mult / div,
and an even number of alternating transitions, each defined by an ideal time and an
interval of uncertainty for the edge occurrence time. ideal time is a real number

reflecting simultaneity and edge ordering.
Example: the clocking scheme of Fig. 102 is represented as:

(CLOCKS
(BASE_PERIOD 10.0)
(CLOCK clock A

(DRIVER driver A)
(MULT 3) (DIV 1)

(RISE 0 [-0.1,0.11)
(FALL 10 [11.1,11.2])

)

(CLOCK clock B
(DRIVER driver B)
(MULT 4) (DIV 1)
(RISE 20 [19,21])
(FALL 30 [30.5,32])

)

)

0 10 30 40 60 70 90 100
1 ] I

clock_A Period = 30 "“‘%% "‘a\% »

20 30 60 70 %»%%55@ 00 110
o,
clock_B Period = 40 s ]
- N%% M ﬁ,ﬁﬁ; a

. %%Nmmwwj

Figure 102

Clocking scheme example.

Examining the MULT/DIV entries, the timing verifier determines that the clocking
scheme period is 120 (4 clock_A cycles, or 3 clock_B cycles). If no edge selection is
provided in the test case, it generates default setup edge selection for all transitions in one
clocking scheme period. For instance, when the new state is sampled by edge 100 (see Fig.
102), the timing verifier selects the closest relevant edge before it for old state data injec-
tion, 90, 70, or 60, depending on which clock is driving the flip-flop, and which edge
polarity the flip-flop is sensitive to. An edge selection is represented by ideal time

[translation] where ideal_time is one defined in the clock definition;
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translation is an integer representing the number of clock periods the edge is trans-

lated by. The following is a part of the generated default setup edge selection clause.

(SETUP_EDGES
(DEST clock A o[0]
// data destination flip-flop clocked by
// clock A edge 0 in cycle 0
(SOURCE clock A
(EDGE 0[-1]) (EDGE 10[-11))
~// if data source flip-flop is clocked
// by clock A, select edge 0
// or edge 10 in cycle -1, whichever
// is relevant
(SOURCE clock B
(EDGE 20[-1]) (EDGE 30[-1]))

If the user provides edge selection clauses, the timing verifier uses them and gener-
ates no defaults. Correct edge selection depends on correct comparison and translation of
ideal_time, which is represented as a double precision floating point number, a repre-
sentation that may cause slight errors as a result of conversion and arithmetic operations.

Consequently, software compensation measures were taken (fuzzy comparison).

4.2 Modeling Delays

Gate delays are defined and annotated as triplets (min, typ, max), representing delays
for predefined operating conditions and manufacturing parameters (supply voltage, junc-
tion temperature, process). It is generally accepted that, for example, when the delay of a
gate gy is assigned its typical value, the delay of a gate g 1s assigned a narrow interval
around its own typical value. A similar scheme is used for min. and max. delays. Typical
delays do not occupy a fixed relative position in the interval [min, max] for all gates; there-
fore, the simplistic correlation approach used in the sequential example in section 3.4 is
incorrect. In this section we address this problem by introducing the concept of normal-

ized delays.




4.2.1 Normalized Delay
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Normalized delay is a real value in the interval [-1, +1]. For a delay annotation d =

(min, typ, max), we define a mapping DtoNy  :[min,max]—1[-1,1]1 such that

DtoNy([min,max]) is the two line segments (min, -1) to (yp,0) and (typ,0) to (max,1),

illustrated in Fig. 103. We define also the function NtoDy as the inverse of DtoNy.

The delay correlation degree A is a real number in the interval [0,1]: O for no correla-

tion, 1 for 100% correlation. The normalized deviation for a delay correlation degree A is

J=2(1 - A), areal number in [0,2]. J represents the maximum deviation between any two

correlated delays at the normalized scale. For a specific normalized delay value N and

deviation J, a gate interval delay is determined as

k
. . Normalized
NioDg((N -J,N+1] r [-1, 1]), see Fig. 104 (2). Fig. 1 Delay. -
104 (b) shows the gate delay bounds, function of the
normalized delay N and J. It is a polygon ABC-
DEFGH. Path delays are sums of gate delays; there- _ Gate
. 0 Min.  Typ. Delay
fore, they are bounded by a similar polygon, and when Max.
setup constraint verification is based on topological
analysis (no false path elimination), it is sufficient to
consider four cases for N: -1+ J,-J, J,and | - J to geta 1
conservative figure for the slack (timing margin before Figure 103
Normalized delay.
(a) Belay
Max.
J =2(1 - cor. degree)
| Gate delay (b) Gate
interval for Max.].9S1Y ... F_E
N, cor degre%py J=2(1- cor. degree)
Min.
H_..
- +J [ i
Normalized A i Normalized
Delay i . i i ; delay
-1 0 N +1 -1 -1+ < [0J 1-J +1
Figure 104

Gate interval delay, function of J and N.
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Figure 105

Four point slack computation.
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Path
Length

J=2(1- cor. degree)

Pcuk + period

Normalized delay

-1 0 +1

Figure 106
Slack for multiple data paths.

setup violation happens at a flip-flop). Fig.
105(a) illustrates the case for a single data
path: the minimum clock path delay and the
maximum data path delay change linearly
between the four evaluation points, therefore
the slack, shown in F ig. 105(b), changes also
linearly (Note that N = -J or N = J does not

represent the worst case). In the case of multiple data paths, see Fig. 106 for example, the

line segment joining the highest end points of a set of line segments between -J and +J is

always above all of them. Consequently, considering that the slack changes linearly

between -J and J is conservative. In general, it is not clear whether this property holds

when the timing verifier eliminates false paths and the circuit contains delay dependent

false paths.




123

4.2.2 Delay Correlation Networks Normalized delay

Consider a set of delays {d;, d,, ..., dp}, correlated
by a degree A. The correlation relation is implemented
using a single normalized delay ND, and a correlation Correlated gate delays

constraint for each delay, operating on the delay and  Figure 107 _
Simple delay correlation network.

ND (see Fig. 107). For a delay dy and its associated

DtoNy and NtoDy, The constraint is defined using J = 2(1 - A) as follows:
* ND’=ND n (DtoN(dy) +[-],]])

* dk‘ = dk N NtoD(ND)

In other words,

* when a delay dy changes as a resuit of applying constraints, ND is narrowed to

(DtoN(d)+ [-1,1]);

*  when ND changes, all correlated delays d,, are narrowed to NtoD(ND).

99% Correlation 99% Correlation

COO0OOO00VOTCOOODVIOTOOODV
I

98% Correlated 99% Correlated

97% Correlated

Figure 108
One-dimensional position dependent delay correlation network.

A normalized delay is no different from a delay, and it is possible to use multiple cor-
related NDs. Fig. 108 and 109 illustrate position dependent correlated delays using two
level NDs. Arbitrary complex correlation schemes can be represented by correlation net-

works. Apart from supporting position dependent delay correlation, our timing verifier
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supports correlation between rising delays;
between falling delays; and between rising and
falling delays, as they may be inter-correlated

with different strengths. However, more

research is needed in process characterization to
L Figure 109
take full advantage from the offered flexibility.  Tyo-dimensional position dependent delay

In general, delays associated with components correlation network.
belonging to different manufacturing steps are

correlated with lesser strengths than those belonging to the same one.

4.3 Modeling Building Blocks

Modeling industrial cell libraries, the building blocks of industrial designs, requires
many types of primitives and domains. Cell delays are back annotated in the Standard
Delay Format (SDF) as multiple triplets (min, typ, max), one for each combination of
input terminal and event type at the output. For example, consider a two input AND gate
for which A and B are the inputs, and Y is the output. Four path delay triplets are defined

for such a gate:

* A delay to be used for an event at A that causes a 0-to-1 transition at Y
* A delay to be used for an event at A that causes a 1-to-0 transition at Y
* A delay to be used for an event at B that causes a 0-to-1 transition at Y
* A delay to be used for an event at B that causes a 1-to-0 transition at Y

Moreover, industrial designs contain tristate gates that can have high impedance
states (Z) at their outputs. Therefore, the data domain should support this new state in
addition to the usual binary values 0 and 1. This leads to heterogeneous domain types in
constraint models. For instance, the domain type at a tristate buffer output contains three

intervals (for 0, 1, and Z), whereas a domain at an input contains only two. Also, delays
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for tristate gates are defined for six types of transitions: 0 tol, 1t00,0t0 Z, Z to 1, 1 to Z,
and Z to 0. The remainder of this section summarizes the domain types and primitives we

implemented as building blocks for developing cell libraries.

4.3.1 Domains
The following domains are implemented:

* TVintervalDelayDomain

Delay domain used when a single interval is needed for gate or interconnect delays.

*  TVrfDelayDomain

Delay domain for 0-to-1 and 1-to-0 transitions (two intervals).

*  TVonOffDelayDomain
Delay domain for 0-to-Z, Z-to-1, 1-to-Z, Z-to-0 transitions (four intervals). This is
suitable for delays from tri-state control inputs to switch the output between normal

binary states and high impedance.

*  TVcorrelationDomain

Normalized delay domain.

*  TVrfCorrelationDomain

Normalized delay suitable to correlating rising and falling delays separately.

*  TVclockDomain
Clock domain. It contains a number of transitions depending on how the clock is
defined in the clocking scheme. Each transition is defined as a polarity flag (RISE, or

FALL), an ideal time, and an interval of uncertainty for the clock edge.

* TVsetupDomain

Abstract signal domain, it contains two intervals, wy and w;, representing

0 Wq.max 1 wy.max
Iwo.min’ Iw,.min ’
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¢ TVsetupDomainZ

Abstract signal domain that accounts for high impedance state. It contains three inter-

0-Max _ w,.max W, max
Z . .
w,.min

. W
vals, wy, wy, and w, representing (O{w

o-min’ !wl.min ’

4.3.2 Primitive Constraints

The following logic primitives are used internally by the timing verifier, and used to
describe cell library models. Appendix B (B.1) lists the primitives necessary for cell mod-

eling, along with their terminal and delay names.

* interconnectDelay
A delay primitive for interconnect delays. It is distinguished from gate delays, so that
the timing verifier can correlate its delay correctly if the user chooses to correlate

interconnect delays separately.

* nonlnvertingDelay
A delay primitive annotated as rising (R) and falling (F) delays. It applies R to w; and
F to wy. Used at a cell input to model positive path delay (rising transition at input

causes rising transition at output, e.g., input of an AND gate).

* invertingDelay
A delay primitive annotated as rising (R) and falling (F) delays. It applies F to w; and
R to wy. Used at a cell input to model negative path delay (rising transition at input

causes falling transition at output, e.g., input of a NAND gate).

* unknownDelay
A delay primitive annotated as rising (R) and falling (F) delays. It applies R U F to
wj and wy. Used at a cell input to model unknown path delay (rising transition at input

may cause a rising or falling transition at output, e.g., input of a XOR gate).

* fs0zRz0FDelay, fs0zFz0RDelay, fs0zUz0UDelay, fs1zRz1FDelay, fs1zFz1RDelay,
fs1z2Uz1UDelay, onRoffFDelay, onFoffRDelay, unknownZDelay, tristateDelay
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These delay primitives handle tristate gate delays, they differ by how annotated delays
are applied.

buf, not, and2, and3, ..., or2, or3, ..., nand2, nand3, ..., nor2, nor3, ..., xor2, xor3,
..es XNOI2, XN0I3, ...

Delayless symmetrical gates.

mux2

Multiplexer primitive. The multiplexer constraint is discussed in detail later.

nMux2

Inverted output multiplexer primitive.

devicelnput, deviceInOut, deviceOutput

Primitives for device inputs, outputs, and input/outputs.

vss, vdd, highZ
Primitives that provide constants (vss = 0, vdd = 1, highZ = Z).

passive, passiveZ

To hide circuit nodes that have no timing assumptions, e.g., connections that are driven
exclusively by clocks not harmonically related to the current clock, the timing verifier
uses the passive primitives. Passive and passiveZ always hold the constant domains
(0], 1) and (O, 1|, z| "), respectively. When the setup constraint of a D
flip-flop is being verified, the timing verifier traces the logic cone that drives D and
breaks the connections that have no timing assumptions. The broken connections are
then routed to passive or passiveZ depending on whether high impedance state is
needed. Passive primitives disallow narrowing on the domain they hold to prevent tim-

ing optimism.

bufif0, bufifl, notif0, notifl
Tristate primitives. Their outputs hold tristate domains (TVsetupDomainZ), whereas

their inputs expect binary domains (TVsetupDomain).
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pullup, pullupDeviceInOut, pulldown, pulldownDeviceInOut, pullupdown

Primitives needed to accommodate circuit nets that are driven by multiple tristate
gates. In such cases, all net drivers are routed to the inputs of the pull primitive which
becomes the driver of the net sinks. Pull primitives expect tristate domains at inputs,

they hold a binary domain at the output.

latchHQ, latchLQ, latchHQZ, latchLQZ
Transparent latch primitives. They differ by whether the output is inverted or not, and
by the clock sensitivity. The latch constraint is delay dependent. Actually, latches are
delay annotated. The latch constraint determines the earliest clock window that makes
the latch transparent, respecting its setup timing requirement. For example, consider
the high level sensitive non-inverting latch (latchHQ) as defined in Section 1.3.2 (see
Fig. 8): D is the data input; C is the clock defined as a'rising edge, falling edge, and a
period; Q is the output; C-to-Q is the time delay before Q starts to follow D, after C
rises to 1; D-to-Q is the events propagation delay from D to Q, when C = 1; S is the
setup time constraint. The latch constraint operator operates on {C, D, Q, C-to-Q, D-
to-Q, S}, and it is defined as follows:
Effect on Q.wy and D.w:
R = uncertainty interval of the rising clock edge;
F = uncertainty interval of the falling clock edge;
period = clock period;
SafeCycle = min {n € Z | D.wy.max < F.min + period X n - S.max};
The actual falling edge interval for which the setup constraint is satisfied is:
AF =F + period x SafeCycle;
AR = uncertainty interval of the rising edge that occurs just before the edge of AF;
if(D.wy.Imin > AR.max){
// latch is transparent for the last-transition-interval of D.wy.
// the latch behaves like a buffer
Q wy=Qwy N (D.w,+ D-t0-Q)
D’wy=D.wy N (Q.w;—D-to-Q)
else{
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max0 = max {AR.max + C-to-Q , D.wy.max + D-t0-Q};

Q’.wy.max = Q.wg.max N O|max0

—00

}

The effect on Q.w; and D.wy is symmetrical.

dffHQ, dffLQ
Primitives that inject logic values into the combinational circuit. They are used to
model the output half of a D flip-flop. dffHQ is triggered by a rising clock edge,
whereas dffLQ is triggered by a falling one. The dff relational constraint is very sim-
ple. Let C be the clock edge interval, and Q the abstract signal at the output:

0wy = Qowyn 057

Q'wp = Q0w N llimax

C' = Cn[min(Q.wy.Imin, Q.w.Imin), +eo]

HsetupHold, LsetupHold

Flip-flop setup constraints. This models the input half of a D flip-flop. HsetupHold is
sensitive to the rising clock edge, while LsetupHold is sensitive to the falling one. The
relational constraint is very simple. Let C be the clock edge interval, and D the abstract

signal to check for possible overlap with the clock:

+o0
J =
D'.w, D.wyn OIC.min
' _ too
D'.w; = Dw;n O[C'mm

C' = CN[—oo, max(Q.wy.max, Q.w;.max)]

dummy

used as a place holder with no functionality.

reset, resetZ, preset, presetZ

Primitives used to model active low/high reset/preset lines for flip-flops and latches.
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The following primitives handle delay values and component delay correlation. They

are used internally by the timing verifier.

* TVconstantDelayHolder

Holds a delay domain that is not bound by component delay correlation.

*  TVdelayCorrelation
Single interval normalized delay primitive, used to bind a set of delay values by a cor-

relation degree.

e TVrfDelayCorrelation
Dual interval normalized delay primitive, used to correlate rising and falling delays

separately.

¢ TVintervalDelayValue

Holds a single interval delay.

*  TVrfDelayValue

Holds two interval delays, Rising and Falling.

* TVooDelayValue
Holds four interval delays, 0-to-Z, Z-to-1, 1-to-Z, Z-to-0.

* TVshDelayValue
Holds setup and hold constraints (annotated like delays) for flip-flops and latches.

* TVneglntervalDelayValue, TVnegRFDelayValue, TVnegOODelayValue, TVneg-
SHDelayValue
These primitives hold delay values similar to their “positive” counterparts. However,
the delay correlation mechanism is reversed. For example, when delays in “positive”
delay primitives get their max values, delays in these primitives get their min values.
These primitives may be useful to model delays in mixed technologies where, for
example, higher temperature can cause some components to be slower, and some oth-

ers to be faster.




Multiplexer Primitive

Multiplexers have complex non-sym-
metrical behavior. Two-to-one multiplexers
have three inputs: A, B, and S, and one out-
putY. WhenS=0,Y=A,and whenS =1,
Y = B. Special attention is given to the
multiplexer primitive as it is very pessimis-
tic to use its equivalent logic model as a

timing one.

The circuits of Fig. 110(1) and (2) are
two logic models equivalent to the multi-
plexer logic function, nevertheless, they
have different floating-mode timing prop-
erties. Consider the case when A and B are
both stable at 0. The output of the AND-
OR circuit (1) is stable at 0 regardless of S,

whereas, the constraint model of the OR-

0]

2

AND

S @o—«

) OR

ORr

Figure 110

Two-to-one multiplexer.
(1) AND - OR logic model.
(2) OR-AND logic model.
(3) Timing model.
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AR
Y

INTERSECTION

AND

AND model (2) fail to get to such a conclusion. When A and B are stable at 1, however,
the OR-AND circuit behaves correctly, while the AND-OR model fail. The fact of the

matter is that the paths from S to Y are false when A and B are stable at the same logic

value, a situation the floating-mode delay model fail to uncover.

Since the AND-OR and the OR-AND have complementary behaviors, one succeeds

when the other fail, we opted to use the intersection of both cases. The hard coded multi-

plexer constraint model is depicted graphically in Fig. 110(3), it corresponds to the
sequences of vectors delay model. The INTERSECTION constraint is defined as follows:
INTERSECTION(RA, AR, Y) = (RA', AR', Y') such that

Y' = YNARNRA,
RA'= YN ARNRA,
AR'= YN ARNRA.
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4.4 Cell Library Modeling

The modeling of combinational cells is straightforward. Interconnect delays are
placed at the cell inputs, each interconnect delay is followed by path delays, one for each
reachable cell output. The cell logic structure is mapped to the predefined primitives coun-
terparts. The exception is when the cell contains logic structures that drive multiple out-
puts. In such cases, the common structure is duplicated in order to make the path delays
independent, as illustrated in the example of Fig. 111. The path delay types are chosen
according to the path polarity from the cell input to the cell output in question. For
instance, path delays of an AND gate are of type nonlnvertingDelay, because a rising tran-
sition at the output is only caused by rising ones at inputs. Inverting and non-inverting
path polarities cause no accuracy problem for the cell timing model. However, unknown
path polarity is pessimistic, because the worst-case delay is applied at the cell input
regardless of the transition type at the output. In fact, the delay element is not aware of the
state at the cell output. To remove this pessimism, the timing verifier adds a cell-aware
constraint. It consists of the following procedure (Note that the rising/falling delay from
input A to output Y is the delay separating an event at A and the resulting rising/falling

transition at Y):

_____D___W ) poftA >Atov1

j > | Port B BtoY1 .
———-}Yz B B ]__Dr}w
(1) ma

V]
\

O O w >»

Y

D interconnectDelay C
b noninvertingDelay Fort C WYZ

D (2)
E> invertingDelay PortD

Interconnect Delays - Path Delays

¥
e

Figure 111
Combinational cell modeling example. (1) Cell logic function. (2) Cell constraint model.
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1) Save the domains of the cell (internal and terminals);

2) Apply the constraints using the rising path delays;

3) Remove from the output the waveforms stabilizing at 0;
4) Exchange the domains with the saved ones;

5) Apply the constraints using the falling path delays;

6) Remove from the output waveforms stabilizing at 1;

7) Merge the domains with the saved ones.

Port D
D Q
CLK"f> —Q l : D Q l /\/

HsetupHold dfiHQ CLK _to_Q

A A

D— Port CLK L—T—__—l
CLK
L—

( 1 ) Interconnect Delays (2) Path Delay

Figure 112
Flip-Flop cell modeling example. (1) Cell logic function. (2) Cell constraint model.

We automated the combinational cell constraint model generation to prevent human
mistakes and omissions from corrupting the timing verification results. The sequential
cells are hand crafted. Fig. 112 shows how a flip-flop is modeled. Interconnect delays are
put at the inputs, a timing check is put between the clock and the data input signal, dffHQ
primitive is used to drive the clock-to-Q path delay that is placed at the output this time.
The setup constraint value is annotated to HsetupHold primitive. Appendix B (B.3) con-

tains the real definition of a similar flip-flop.

4.5 Handling of Combinational Loops

Although discouraged by synchronous design methodologies, combinational loops
are still used. Therefore, the timing verifier needs to deal with them. Our timing verifier -

determine all circuit loops and resolves them by imposing additional constraints on loop




nodes. An added constraint binds the stabili-
zation time of the node using the worst-case
arc (path length) from the loop input lines as

shown in the example of Fig. 113:

(a) C and E are part of a combinational
loop (in fact E = B);

(b) additional constraint for E: limit E to
waveforms stabilizing after max, the
worst case of A propagated through
path g;-g,, and D propagated through
path g5;

(c) additional constraint for C: limit C to
waveforms stabilizing after max, the
worst case of D propagated through
path gy-g;, and A propagated through

path g;.

4.6 Timing Verifier

The timing verifier is written in C++
(about 60000 lines of code), uses a Verilog
compiler provided by Nortel Networks, and
is composed of three components (see Fig.

114):

* Cell Library Compiler, generates models

for combinational cells;

o o P
94 9 E
(a)
A Q1>_ 9 p
E
D — g2 ! (b)
c
A— G P ©

Figure 113
Combinational loop example.

134

(@) C and E are part of a combinational loop.

(b) Loop aware constraint for E.
(c) Loop aware constraint for C.

CIRCUIT
CELL LIBRARY VERILOG
VERILOG
CONSTRAINT

NETWORK
CELL LIBRARY GENERATOR

COMPILER

CONSTRAINT
NETWORK

CELL LIBRARY
CONSTRAINT MODELS

TEST CASES TIMING VERIFIER
(CLOCKS, ENGINE SDF BACK-
CONSTANTS) | ANNOTATION

(" REsuTs )
Figure 114

Timing Verifier Architecture

*  Constraint Network Generator, generates constraint networks (in terms of cell models)

from Verilog circuit descriptions;
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*  Core Waveform Narrowing Timing Verifier, supporting SDF back-annotation.

Input constraints that select particular circuit operation modes or test cases can be
presented to the timing verifier as sets of constants to be applied to certain circuit nodes,
and as clock domain definitions. The syntax is very simple, the following is a commented

example:

(STV_TIMING
(DESIGN "falsepath") // usually the Verilog module name
(DATE "Wed Jan 26 13:30:35 2000")
(PROGRAM "™
(VERSION "
(DIVIDER .) // hierarchy divider, it can be either . or /
(SYSTEM_TIME_UNIT ns)
(SYSTEM_TIME_SPAN 100) // this tells the timing verifier to scale delays to
// integers so as to accommodate at least 100 ns max values.
(TEST_CASE "test 1" // we can define multiple test cases, e.g., “Functional”, “Scan Test”, ...
(CONSTANTS
(DRIVER falsepath.instancel.Y H) //apply 1 to falsepath.instancel.Y
(DRIVER falsepath.instance2.Y H)
(DRIVER falsepath.instance3.Y L) // apply 0 to falsepath.instance3.Y
)
(CLOCKS
(BASE_PERIOD 5)
(CLOCK clock
(DRIVER falsepath.clk)
(MULT 1)
DIV 1D
(RISE 0[0,0D
(FALL 2.5[2.5,2.5])
)

)
(SETUP_EDGES

(DEST clock 0[0]
(SOURCE clock
(EDGE O[-1])(EDGE 2.5[-1])




The verification is done as follows:

verifyTestCases() {
. load the cell libraries, constraint network, and test cases;
. if SDF file is specified {
. . load and annotate delays;
. Yelse { ‘
. use default delays specified in the libraries;
.

. for each test case do {

. generate default clocks edge selection clauses if not provided by the user;

. apply and propagate constants to circuit nodes;
. strip inactive parts of the circuit;
. trace and initialize clock trees;
. determine testable setup checks;
// an untestable check is one that is driven exclusively by
// logic that is not controlled by any defined clock.
// Testable checks may still be controlled partly by logic with
// unknown timing properties, this part is routed toward passive
// constraints so that we can verify the part we know about.
. for each edge selection clause do {
. select the checks that are controlled by the edge;
. initialize the constraint system;
// initialization includes combinational loop
// detection and additions of appropriate loop constraints if any
. evaluate the constraint system with no constraint on any check;
. while (true) {
. restrict the constraint system to the check having the worst slack;
. refine the check results using pessimism reduction techniques;
. . . . break if we still get the same slack;
-}
. . . print results for the edge selection;
. . }// for each edge selection clause
.} // for each test case
} 1/ verifyTestCases()

136
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4.7 Experimental Results

The timing verifier was tested on two industrial circuits provided by Nortel Net-
works. The first circuit is a small well-characterized Nortel benchmark used mainly for
tool evaluation and debugging purposes. It has 2651 cell instances (TGC1000 Texas
Instrument cell library) and 1160 timing checks. The test case has four clock domains and
13 constants. After constants propagation, the clock tree reached 1120 timing checks; all
of them are found to be testable. The results were consistent with the results of Mirage, the
timing verifier used at Nortel Networks. The execution required 5.8 Mbytes and 0.891
seconds on a PC (P-I11, 866 Mhz) detailed as:

Loading libraries: 0.12 second Loading design: 0.15 second
Loading test cases: 0 second Loading delays: 0.3 second
Verification: 0.311 second.

This circuit was very useful for debugging our software, it has typical industrial com-
plexity: uses synchronizing latches, flip-flops, tristate gates, etc., it is small enough to
trace easily, and it has known timing properties. This small benchmark has no value when
it comes to evaluating false path elimination effectiveness. In fact, its logic cones are tiny,
and the eliminated false paths did not affect the final timing results. Its value, however, is
in validating our clock edge selection algorithms, as well as the basic timing verification

algorithms.

The other circuit we checked is a 122 Kgates synchronous design (34 inputs, 131
inouts). The experiment was done on a Sun Ultra 10 workstation with 512 Mbytes of
RAM. The test case has 13 constants and 4 harmonically related clock domains (period =
100 ns). After constants propagation, the defined clocks reached 57118 timing checks. 55
checks were determined irrelevant (data is constant, Reset/Preset active, or data not
selected for latching in a scannable flip-flop). 57063 timing checks are testable, all
checked for setup constraint. Two delay annotation files were available: one has worst-
case delays; the other has best-case delays. We checked the design against each annota-
tion. The results are presented in Tables VII and VIIL. The tables columns contain, the tim-

ing check identifier, followed by slack double columns under R (timing slack for rising
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transitions) and F (timing slack for falling transitions). Each execution required 145

Mbytes of RAM, and the following CPU times for file loading across network file system:

Loading libraries: 1.65 seconds Loading design (30 Mbytes): 101.33 seconds
Loading test cases: 0.01 seconds Loading delays (50 Mbytes): 243.25 seconds.

Best No Pessimism  JSpatial Correlation { Spatial Correlation Spatial Correlation | Spatial Correlation | Spatial Correlation

Ca Reduction Order 1 Order 2 Order 3 Order 5 Order 8
se 1.51 minutes 0.2 minute 0.7 minute 0.9 minute 4.8 minutes 20.79 minutes
Check R F R F R F R F R F R F

DFF_01] 36.04 | 3553 | 39.25" [ 39.26" | 39.25 | 39.26 [ 39.25 39.29" 1 3925 | 39.29 | 39.25 | 39.29
DFF_02| 41.15 | 4049 | 4167 | 4049 | 4167 | 4049 | 4167 | 4049 | 4170 | 40.49 | 4170 | 4049
DFF_03} 41.24 | 40.79 Jr41‘,83"’ 40.79 | 41.83 | 4079 | 4183 | 40.79 | 41.83 | 4079 | 41.83 | 40.79
DFF_04] 41.45 | 40.86 ] 42.01* | 40.86 | 42.01 | 40.86 | 42.01 | 40.86 42.05" | 40.86 | 42.05 | 40.86
DFF_05) 4149 | 41.04 | 42.04° | 41.04 | 42.04 | 4104 | 4204 | 41.04 42,06 41.04 | 42.05 | 41.04
DFF_06] 41.63 | 41.09 4205* | 41.09 | 42.05 | 41.09 | 42.05 | 41.09 42.09" | 41.09 | 4209 | 41.09
DFF_07) 4168 | 4111 J 4224 | 111 | 4224 | 4111 | 4224 | 411 221 1 11 | 4227 | 411
DFF_08] 41.70 | 4112 J 42.25" | 4112 | 4225 | 4112 | 42.25 | 4112 221 ) 112 ] 221 | 2112
DFF_09] 4163 | 4116 | 207" | 49176 | 4217 | 4116 | 4217 | 4116 42217 4116 | 42.21 | 41.16
DFF_10] 41.90 | 4117 | 4249" | 4117 | 4249 | 4117 | 4249 | 1.7 | 249 017 | 249 | 2117
DFF_11} 41.83 | 41.19 ﬁifﬁ’ 4119 § 4236 | 4119 | 4236 | 41.19 4239’ 4119 | 4239 | 4119
DFF_12] 42.09 | 41.32 4248 | 4132 ] 4248 | ;132 | 4248 | 4132 251 032 1 251 | 21.32
DFF_13] 4210 | 4136 | 4253 | 41 36 ] 42.53 | 41.36 | 4253 | 4136 | 42.55° | 41.36 | 4255 | 41.36
DFF_14] 4215 | 41.40 "‘4;2;71* 4140 | 4271 | 4140 | 4271 | 4140 4272 | ©140 | 9272 | 4140
DFF_15| 4201 | 4157 | 42.48° | 4157 4248 | 4157 | 4248 | 9157 | 4248 | 4157 | 4248 | 4157
DFF_16| 41.58 | 41.78 42.05° | 41.78 | 42.05 | 4178 | 4205 | 4178 | 42.05 | 41.78 42.05 | 41.78
DFF_17] 42.39 | 41.63 | 43.43* | 42.24" | 4343 | 4224 | 4343 | 42.24 4343 | 4224 | 4343 | 42.24
DFF_18] 42.09 | 4192 | 4255 | 1.9 4255 | 41.92 | 4255 | 41.92 | 4255 | 4192 | 4255 | 41.92

Table Vil
Results on an industrial benchmark for best-case delay annotation.

Apart from loading files, the first slack double column under “No Pessimism Reduc-
tion” corresponds to verifying all 57063 setup checks using the basic waveform narrowing
method without using the pessimism reduction techniques. The double columns under
“Spatial Correlation Order n” correspond to performing pessimism reduction only on the
cases shown in the tables. Pessimism reduction was run independently for each column,
Le., the basic method is applied to all 57063 checks, than pessimism reduction with spatial
correlations of order n is applied. Note that, in this particular example, little benefit was
gained by setting the spatial correlation order to higher than 1. The shaded table elements

correspond to the cases for which the higher order made a difference.
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No Pessimism | Spatial Correlation | Spatial Correlation | Spatial Correlation | Spatial Correlation Spatial Correlation

\go;t Reduction Order 1 Order 2 Order 3 Order 4 Order 8
a 1.46 minutes 0.51 minute 0.75 minute 1.24 minutes 1.4 minutes 13 minutes
Check R F R F R F R F R F R F

DFF_01] 1092 | 8.740 | 17.79" [ 17.45° ] 17.79 | 17.45 | 17.79 | 1745 | 17.719 | 1745 | 17.79 | 1745
DFF_19] 22.04 | 2096 | 22.04 | 2096 | 22.04 | 2096 | 22.04 | 2096 | 22.04 | 20.96 | 22.04 20.96
DFF 02] 21.05 | 2118 | 21.05 | 21.18 | 21.05 | 21.18 | 21.05 | 2118 | 21.05 | 21.18 | 21.05 | 2118
DFF 03] 2240 | 21.07 | 2240 | 21.07 | 22.40 | 21.07 | 2240 | 21.07 | 2240 | 21.07 | 2240 | 21.07
DFF 20] 2271 | 2107 | 2211 | 2107 | 221 | 2107 | 2211 | 2107 | 221 | 21.07 | 2211 | 2107
DFF 21] 2255 | 21.45 | 2255 | 21.45 | 22.55 | 21.45 | 2255 | 21.45 | 22.55 | 21.45 | 22.55 | 2145
DFF 22| 2259 | 2149 | 2259 | 21.49 | 22.50 | 21.49 | 22.59 | 21.49 | 22.59 | 21.49 | 22.59 | 2149
DFF 18] 2318 | 2154 | 2318 | 2154 | 2318 | 2154 | 23.18 | 2154 | 23.18 | 21.54 | 2318 | 21.54
DFF 23] 2269 | 2160 | 2269 | 2160 | 2269 | 21.60 | 22.69 | 21.60 | 2269 | 21.60 | 2269 | 21.60
DFF_2a) 2267 | 2160 | 2267 | 21.60 | 2267 | 2160 | 22.67 | 21.60 | 2267 | 21.60 | 22.67 | 21.60
DFF_ 151 2301 | 2171 | 2301 | 2171 | 2301 | 2171 | 23.01 | 21.71 | 23.01 | 21.71 | 23.01 | 2171
DFF 251 2238 | 2173 | 2238 | 2173 | 2238 | 2173 | 2238 | 21.73 | 2238 | 21.73 | 2238 | 2173
DFF 26 2282 | 2174 | 2282 | 2174 | 2282 | 2174 | 2282 | 2174 | 2282 | 21.74 | 2282 | 2174
DFF 27} 2282 | 2176 | 2282 | 2176 | 22.82 | 21.76 | 2282 | 21.76 | 2282 | 21.76 | 2282 | 21.76
DFF 28| 225 | 2186 | 225 | 2186 | 225 | 2186 | 225 | 2186 | 225 | 21.86 | 225 | 21.86
DFF 04] 2352 | 2189 | 2352 | 21.89 | 23.52 | 2189 | 23.52 | 21.89 | 23.52 | 21.89 | 2352 | 21.89
DFF 10| 23.22 | 2192 § 2322 | 2192 | 2322 | 2192 | 23.22 | 2192 | 2322 | 2192 | 2322 | 21.92
DFF 13} 2313 | 2196 | 2313 | 2196 | 23.13 | 21.96 | 23.13 | 21.96 | 23.13 | 21.96 | 23.13 | 21.96 '
DFF_ 111 2299 | 2196 | 2299 | 21.96 | 22.99 | 2196 | 22.99 | 21.96 | 2299 | 21.96 | 22.99 | 21.96

Table Viil
Results on an industrial benchmark for worst-case delay annotation.

The results for this example are very significant; they prove that false path elimina-
tion should not be ignored by industry because it is necessary and affordable. For this
example, the waveform narrowing method proved that the slack lower bound for setup
checks is in fact 17.459 ns as compared to 8.74 ns reported by topological analysis. The
clock period in the test case is 100 ns, therefore, the relative safe margin proved to be

17.459% of the clock cycle instead of 8.74% !

The resources required by the program are minimal. The memory requirement and
execution time for the basic method without pessimism reduction scales linearly with cir-
cuit size, and the constant factor of our implementation is very efficient. Although the time
complexity of pessimism reduction procedures is bounded by the spatial correlation,
which is virtually quadratic, we expect it to grow much slower with circuit size. This

belief is backed by two facts:
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1) The complexity of the timing checks does not grow with circuit size. Timing check
cones are limited to a limited number of logic levels. Usually, deep logic structures are
broken into pipelines to keep up with the appealing higher clock frequencies. In fact, big-

ger circuits contain more checks not more complex ones.

2) When a timing check still has the worst calculated slack after it is refined by apply-

ing the techniques of pessimism reduction, there is no need to go any further.

In our example, only 19 timing checks out of 57063 have their slack less than 23 ns in
the worst-case delay annotation (Table VIII). After the worst-case DFF_01 is refined from
8.74 to 17.45 ns, it is still the worst case. Therefore, there is no need to go any further, and
pessimism reduction execution time is actually less than 2 seconds rather than the 0.51
minute for spatial correlation of order 1. The remaining checks were refined simply to col-

lect more data for the sake of this illustration.

4.8 Conclusions

In this chapter, we presented the basic concepts behind delay correlation schemes
using three valued delays (min, typ, max), accommodating cell position dependence and
the ability to support precise process characterization. We also presented the extensions
that we implemented for the method to become applicable to state of the art industrial cir-
cuits. We showed the hard primitive constraints, which are the building blocks for cell
library modeling. We presented the concepts behind combinational cell modeling support-
ing separate rising and falling i/0 path delays. A simple and intuitive, yet very powerful,
clock definition formalism was presented, able to express arbitrary complex clocking
schemes. The resulting timing verifier was tested successfully on a real world industrial

synchronous design; false paths were eliminated successfully.




CHAPTER V CONCLUSIONS

We presented in this thesis an elaborate timing verification method based on Wave-
Jorm Narrowing proposed initially by Cerny and Zejda in [98]. The method is in fact a
custom constraint programming system adapted to timing verification of logic circuits. It
consists of modeling the circuit timing constraints and operating conditions as a constraint
system that is consistent, i.e., has a solution, iff the timing constraints are violated. The
constraint system is composed of a finite set of variables {X1, X,..., X, } which take values
from their respective domains Dy, D,,..., D,, and a set of relational constraint operators
{C1, Cy,..., Gy}, each operating on a subset of the variables. A variable represents either a
circuit net, or a gate or interconnect delay. Net domains contain sets of binary waveforms,
whereas delay domains are intervals. A constraint operator is a logic gate function defined
over sets of waveforms and interval delays. A domain D, of a variable Xy contains ini-
tially the set of all possible values Xy can take. A solution of the constraint system is an
assignment for all the variables, from their respective domains, that makes the system con-
sistent, i.e., all the constraints are satisfied. When a constraint Cy is applied, it removes
from the domains of the associated variables values that are not compatible, i.e., values
that are not part of any solution. The system is then solved by repeatedly applying the con-
straints until the greatest fixpoint is reached. If we end up with empty domains, we con-

clude that the timing constraints are satisfied; otherwise, no conclusion can be drawn.

The foundation of the waveform narrowing method is based on local consistency
techniques. Constraints consider each gate as isolated, ignoring the global circuit function.
Therefore, the system evaluation may result in false negative answers when the resulting
domains are not empty, and yet the constraint system has no solution. To reduce this pessi-

mism we developed two polynomial techniques:
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* Timing dominators concept, which determines key circuit nets for which the domains
can be narrowed as a consequence of necessary conditions based on the global circuit

function;

» Spatial correlation procedure, which enforces partially the global circuit function by
restricting the domains of selected reconvergent fan-outs to waveforms stabilizing at 0

and 1, and then merging the results.

Also, we developed a case analysis procedure able to find a test vector (solution of

the constraint system, proof of timing violation), or prove that no violation is possible.

When tested on the ISCAS’85 benchmark suite, the original method eliminated vio-
lations from the ¢5315 and ¢7552 circuits. The use of timing dominators alone eliminated
violations from the traditionally difficult ¢1908, and from ¢3540. Timing dominators,
combined with spatial correlation, eliminated violations from ¢2670 and also the tradition-
ally difficult multiplier, c6288. In summary, timing dominators and spatial correlation
techniques made the Waveform Narrowing method determine tight circuit delay upper
bounds that correspond to the exact circuit delays for all ISCAS’85 circuits. Moreover,
except for c6288, the case analysis procedure found test vectors for all circuits with a

remarkably low number of backtracks!

Motivated by the success of the method when tested on standard benchmark circuits,
we wanted to evaluate its effectiveness on real world industrial circuits. The task, how-
ever, turned out to be complex and required us to rewrite the software from scratch. We
implemented appropriate capabilities for cell library modeling, standard delay back-anno-

tation, complex clocking schemes, etc.

The resulting timing verifier was tested on a 122K-gate industrial circuit, provided by
Nortel Networks. The results were very significant because they proved that false path
elimination should not be ignored by industry because it is necessary and affordable. For
this instance, our method proved that the slack lower bound for setup checks is in fact

17.459 ns as compared to 8.74 ns reported by topological analysis. The clock period in the
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test case is 100 ns, therefore, the relative safe margin proved to be 17.459% of the clock

cycle instead of 8.74% !

5.1 Comparison with Other Methods

Although our method has a very competitive execution time as compared to other

methods, we believe that the real comparison comes from other points of view:

1) Timing verification is an NP-Hard problem. Therefore, any exact method has
exponential time complexity in the worst case. All algorithms that aim at finding test vec-
tors rely on heuristics biased toward résolving certain types of circuits. Commercial tim-
ing verifiers need approximate false path elimination methods that have predictable
execution time, and are statistically efficient. Our method proved to have this property on
all tested circuits. In fact only 10% of the reported execution time for the ISCAS’85 cir-
cuits (except c6288) were used for false path elimination. The remaining 90% were used
to prove that the delay upper bound we determined is actually the exact circuit delay. The
results for the industrial circuit were even better; they showed that the execution time
required by our method grows virtually linearly with the circuit size, although the spatial
correlation is quadratic. In fact pessimism reduction techniques need to be applied only to
timing checks having the worst slacks, and bigger circuits contain more checks, not more
complex ones. For our example of 57063 checks, only 19 of them had slacks less then

23% of the clock period before pessimism reduction.

2) The memory requirement is critical in today’s integrated electronic design automa-
tion tools. Our method requires a simple data structure that represents the graph of con-
straints, and a domain stack for each net that can be limited to three domain instances. The
implementation averaged at 1188 bytes per industrial gate. This requirement can be
brought down if fixed delay model is used instead of the three valued delay model. In con-
trast, any method that attempts to build binary decision diagrams to resolve the satisfiabil-
ity of a Boolean function f'has an exponential space complexity in the worst case (in terms

of the number of variables of 7)!




144

3) Our method has a unique delay correlation model that is able to express complex

correlation schemes like two-dimensional position dependence.

4) As a verification environment, the waveform narrowing is very flexible and intui-
tive. In fact the constraint system resembles a simulation environment, except that the
gates operate on sets of waveforms instead of instantaneous values. The constraint net-
work that does the verification, and the circuit description, are one entity. No dynamic
structures need to be created for each individual check. Clock trees are traced on the fly,

and timing checks that verify the integrity of gated clocks can be inserted very easily.

5.2 A Disadvantage

A disadvantage of the waveform narrowing method is its complexity. In fact, it takes
a lot of effort before one can develop intuition about waveform narrowing. Therefore, a
new software developer allocated to maintain and enhance a timing verifier based on

waveform narrowing needs to go through a steep learning curve.

5.3 Original Contributions of this Thesis

The major contributions of this thesis are summarized as follows:

» Established the mathematical foundations of the waveform narrowing method for the
purpose of floating mode delay calculation, the original method was formulated

around the transition mode.

* Developed the spatial correlation procedure that was effective in reducing the pessi-
mism of the method on standard and industrial benchmark circuits. The added execu-

tion time complexity is quadratic.
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* Developed the Timing Dominators concept that was very successful in eliminating

false violations with minimal added execution time complexity (n X log(#n)).

* Developed a case analysis procedure able to find a test vector, or prove that no viola-
tion is possible. The procedure is guided by heuristics inspired by ATPG techniques,
namely the controllability measure of [23] and the FAN algorithm of [33]. The proce-

dure uses a novel partitioning strategy based on timing dominators.

In order to provide support for state of the art industrial circuits, we extended the method

as follows:

* Developed an intuitive formalism able to express arbitrary complex clocking schemes,

along with a procedure to deduce correct default edge selection for setup verification.

* Defined a delay correlation domain based on three-valued delay annotation (min, typ,
max) using the novel concept of normalized delays. The resulting constraints can be
used to build complex correlation networks able to model arbitrary complex compo-

nent delay correlation, like position dependence, rising-delay vs. falling-delay, etc.
* Defined more than 70 constraint primitives able to model industrial cell libraries.

* Developed a hard multiplexer primitive that reduces the inherent pessimism of the

Sfloating mode delay model,

* Developed and automated a general concept for modeling combinational cells. And
added cell aware constraints that remove the pessimism induced by path delays of

unknown polarities;

* Added support for automatic handling of combinational loops, still present in some

synchronous industrial designs;

* Implemented an industrial-grade version of the timing verifier in the object oriented
language C++, and evaluated the waveform narrowing method on industrial circuits

provided by Nortel Networks.
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5.4 Future Work

Two objectives were in mind when we started work on the timing verification method

based on Waveform Narrowing: First, to reduce its pessimism, then to assess its suitability

for industrial use. While we succeeded in both, there is still a lot of gaps that need to be
filled.

From an evaluation point of view:

We could not test all the capabilities of our timing verifier due to data unavailability.
For instance, it is not clear how circuit components are related. Like, how rising
delays, affected mostly by PMOS transistors, are correlated to falling delays, affected
mostly by NMOS transistors. Or how interconnect delays belonging to different metal
layers are correlated, etc. We believe that component delay correlation is a subject that

needs to be researched from a process characterization perspective.

On another front, our timing verifier is missing important features needed by com-

mercial tools. They are summarized as follows:

Support for slew dependent delays.

Support for latch based designs. Modern design methodologies favor transparent

latches to store the circuit state, due to their advantage in preventing race conditions.

Support for derived clocks. Test cases presented to timing verifiers predefine derived
clocks based on manual calculations or spice simulations that do not necessarily
reflect the current configuration of delay annotation. For example, consider a multi-
phase clocking scheme that is generated using a master low frequency clock that
drives a PLL frequency multiplier, which in turn drives a clock generation circuit,
Defining the clock generated by the PLL in the test case is no cause of errors, however,
defining the clocks generated by the clock generator involves using discrete compo-
nent delay values that are not valid in all configurations, making the clock phases rela-

tive positions incorrect.
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We believe that the spatial correlation procedure can be enhanced further by using the
heuristics used by case analysis instead of simply using topological sorting on recon-
vergent fan-outs. Limiting the fan-outs selected for spatial correlation to the ones with
conflicting requirements for sensitizing the longest paths would enhance the effective-

ness of higher spatial correlation orders.
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A.1 evaluateConstraintSystem()

This function evaluates the constraint system in an event driven fashion.
Returns:

CS_CONSISTENT if the evaluation ended with non-empty domains

CS_INCONSISTENT if the evaluation ended with empty domains
Notes:

queue is a global queue for event scheduling

evaluateConstraintSystem() { ,
// initially queue contains the constraints operating on the domains that were
// previously changed.
while (! queue.empty() ){
constraint = queue.removeFirst();
apply constraint; ,
if (a domain becomes empty ) return CS_INCONSISTENT;
schedule the constraints operating on the modified
domains on queue (if they’re not scheduled already);

}
return CS_CONSISTENT;

}

The worst case time complexity of evaluateConstraintSystem() is O(N x 23) where
N is the number of domains, and B is the number of bits used to represent a domain. This
worst case may happen when each application of a constraint operator results in narrowing
one domain by one time unit, and when the constraint system has circular dependencies

like the sequential example in section 3.4.

The worst-case time complexity highly over-estimates the actual execution time of
the algorithm. In fact, when component delay correlation is not used, the constraint system
has no circular dependencies and the experimental time complexity is virtually linear with
the constraint system graph size. Figure 15 shows the experimental time complexity when

the algorithm is applied to the ISCAS’85 benchmark circuits.
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Figure 115
Experimental time complexity of the basic WN method on ISCAS’85.
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A.2 getOrderedReconvergentFanouts(gate)

This function returns an array of reconvergent fan-outs in topological order, deeper structures first.
returns:

Array of reconvergent fan-outs
Notes:

gate is a primary output (a setup timing check)

getOrderedReconvergentFanouts(gate){ // gate is a primary output
queue.reset();
queue.insert(gate);
gate.setProperty(PROP_IS_VISITED);
while( ! queue.empty() ) { // visit the graph from the output, breadth first to mark the RF
g = queue.removeFirst();
for ( fi=0; fi < g.nbLogicFanin(); fi++) {
fanin = g.fanin(fi);
if ( fanin.hasProperty(PROP_IS_VISITED) ) {
fanin.setProperty(PROP_IS_RECFANOUT);
telse{
fanin.setProperty(PROP_IS_VISITED);
queue.insert(fanin);

}

reconvergent_fanouts.reset(); // to receive the ordered reconvergent fan-outs
stack.reset();
stack.push(gate);
gate.unsetProperty(PROP_IS_VISITED);
while(!stack.empty()){ // visit the graph to collect the RF in topological order, deepest first

gg = stack.top();

depth_sorted_gates.reset(); / to receive the ordered fan-ins of gg

for (i=0; i<gg.nbLogicFanin(); i++) {

if ( gg.fanin(i).hasProperty(PROP_IS_VISITED) ) {
depth_sorted_gates.insert( gg.fanin(i) );

}

depth_sorted_gates.sort(); // visited fanin gates are sorted by depth of sub-graph (deepest first)
for( i=0; i<depth_sorted_gates.size(); i++) {
stack.push(depth_sorted_gates(i));
depth_sorted_gates(i).unsetProperty(PROP_IS_VISITED);

if(gg == stack.top()){ // finished visiting its fan-ins
stack.pop();
if( gg.hasProperty(PROP_IS_RECFANOUT) ) {
reconvergent_fanouts.insert(gg);
gg.unsetProperty(PROP_IS_RECFANOUT);
}

}
}

return reconvergent_fanouts;

}

The worst-case time complexity of getOrderedReconvergentFanouts(gate) is linear

with the graph size of the fan-in cone of “gate”.
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A3 doSpatialCorrelation(order, s)

This function performs spatial correlation. It basically perform exhaustive simulation, ‘order’
nodes at a time on reconvergent fan-outs in topological order, deeper structures first.
Returns:
CS_CONSISTENT when the constraint system evaluation ends with non-empty
domains
CS_INCONSISTENT when the evaluation ends with empty domains

doSpatialCorrelation(order, s){
rec_fanouts = getOrderedReconvergentFanouts(s)
unsigned 1=0;
unsigned last;
do{
last = min( i + order , rec_fanouts.size() );
cor_gs.reset();
for( gi = i; gi <last; gi++ ){
cor_gs.insert(rec_fanouts_(gi));
1++;
if( correlateReconvergentFanouts(cor_gs) == CS_INCONSISTENT){
return CS_INCONSISTENT;

}while(last < rec_fanouts.size());
return CS_CONSISTENT;

}

The worst-case time complexity of doSpatialCorrelation(order, s) is
O((2°™"" x (k- order + 1)) x F)

where £ is the number of reconvergent fan-outs, and F is the worst-case time com-
plexity of evaluateConstraintSystem(). Since k£ € O(Graph Size) and order € O(1), the

spatial correlation worst-case is O((Graph Size) X F).

Figure 116 shows the experimental time complexity for the spatial correlation of

degrees 1-8 applied to ISCAS’85 circuits.

Figure 117 shows the average number of times a constraint operator is applied when
evaluateConstraintSystem -is called from within correlateReconvergentFanouts(cor_gs). It is
much less expensive that the initial evaluation where all initial internal domains contained
all possible values. This confirms a quadratic experimental time complexity for a given

correlation order.
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Figure 116

Experimental time complexity of doSpatialCorrelation on ISCAS'85.
Graph: the graph size of the constraint system.
Order 0: basic method only is applied, no spatial correlation.
Order n: basic method is applied, then doSpatialCorrelation(n,s) is called.
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A.4 correlateReconvergentFanouts(gate_set)

This function does “exhaustive simulation” on the domains of the gates in gate_set.
Returns:
CS_CONSISTENT when the constraint system evaluation ends with non-empty
domains
CS_INCONSISTENT when the evaluation ends with empty domains

correlateReconvergentFanouts(gate_set){
int last = gate_set.size() " 2;
save the constraint system state in STATE_1;
set all domains of STATE_2 to empty; // where to accumulate the results
bool consistent = false;
for(i=0; i <last; i++){
restore domains from STATE_1;
for( g=0; g<gate_set.size(); g++ ){
if((1&(g"2))==0){
remove w1l from domain of gate_set(g);
}else{
remove w0 from domain of gate_set(g);

}

!

if(evaluateConstraintSystem() == CS_CONSISTENT){
accumulate system domains in STATE_2; // union
consistent = true;

restore domains from STATE_2;
if ( consistent ) return CS_CONSISTENT,;
return CS_INCONSISTENT;

}

The worst-case time complexity of correlateReconvergentFanouts(gate_set) is
0 ( 2gatc_sct‘sxze() % F)

where F is the worst-case time complexity of evaluateConstraintSystem(). Figure 117
shows the experimental time complexity observed for evaluateConstraintSystem() when it is

called from within correlateReconvergentFanouts(gate_set).
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Figure 117

Experimental time complexity of each system evaluation of the spatial correlation on ISCAS'85.
Graph: the graph size of the constraint system.

Order 0: basic method only is applied, before spatial correlation.

Order n: number of steps needed to perform evaluateConstraintSystem() when it is called in
correlateReconvergentFanouts(gate_set). Note that here it is much less expensive than the ini-
tial system evaluation because changes to few domains propagate to a small region of the con-
straint system.
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A.S getTimingDominators( output )

This function determines the Timing Dominators
Returns:
array of timing dominators
Notes:
‘output’ is a setup timing check, it is actually a timing dominator.

getTimingDominators( output ) {
dominator_set.reset();
heap.reset();
dominator.gate = output;
dominator.Imin = output.Imin();
heap.insert( dominator );
while (! heap.empty() ) {
dominator = heap.removeNodeClosestToOutput();
if (heap.size() == 0) { // what we removed from heap is a dominator
dominator_set.insert(dominator);

for (1= 0; i < dominator.gate.nbLogicFanin(); i++){
if ( dominator.gate.fanin( i ).max() >=
dominator.Imin - dominator.gate.maxDelay() ){
// dominator.gate.fanin( i ) is a possible cause of the violation
if(dominator.gate.fanin( 1 ) is a primary input) return dominator_set;
new_dominator.gate = dominator.gate.fanin( i );
new_dominator.Imin = dominator.Imin - dominator.gate.maxDelay();
if ( heap contains a node N such that N.gate == new_dominator.gate ){
if (N.Imin > new_dominator.lmin){
N.Imin = new_dominator.Jmin;

}
Yelse{
heap.insert( new_dominator ),

}
}
; .
return dominator_set;

}

The worst-case time complexity of getTimingDominators( output ) is the same as

heap sort: O(n x log(n)) where n is the graph size of the fan-in cone of “output”.
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A.6 evaluateConstraintSystemTD( output )

This function evaluates the constraint system and applies narrowing on Timing Dominators
Returns:
CS_CONSISTENT when the constraint system evaluation ends with non-empty
domains
CS_INCONSISTENT when the evaluation ends with empty domains

evaluateConstraintSystemTD( output ) {
// initially queue contains the constraints operating on the domains that were
// previously changed.
if ( queue.empty() ) return CS_CONSISTENT;

if ( evaluateConstraintSystem() == CS_INCONSISTENT) return CS_INCONSISTENT,;
dominators = getTimingDominators( output );
for each dominator d of dominators {

. . . +oo o0
intersect domain of d.gate with (0| dImin’ 1 |; lmin)

if domain of d.gate changed then schedule all constraints operating on it on queue;

return evaluateConstraintSystemTD();

}
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B.1 Hard Primitives Used to Model Cell Libraries.

Primitives have Named INPUTs, OUTPUTs, INOUTSs, and DELAYS.
When used in cell descriptions, terminal names are used to specify how primitives are connected,
delay names are used for delay annotation.

deviceInput
OUTPUT: Y

deviceOutput
INPUT: A

deviceInOut
INOUT: A

vss
OUTPUT: Y

vdd
OUTPUT: Y

highZ
OUTPUT: Y

pullup
INOUT: A

pullupDeviceInOut
INOUT: A

pulldown
INOUT: A

pulldownDeviceInOut
INOUT: A

pullupdown
INOUT: A

bufif0
OUTPUT: Y
INPUT: A
INPUT: GZ

bufifl
OUTPUT: Y
INPUT: A
INPUT: G




notif0
OUTPUT: Y
INPUT: A
INPUT: GZ

notifl
OUTPUT: Y
INPUT: A
INPUT: G

and2
OUTPUT: Y
INPUT: A
INPUT: B

and3
OUTPUT: Y
INPUT: A
INPUT: B
INPUT: C

and4
OUTPUT: Y
INPUT: A
INPUT: B
INPUT: C
INPUT: D

or2
OUTPUT: Y
INPUT: A
INPUT: B

or3
OUTPUT: Y
INPUT: A
INPUT: B
INPUT: C

or4
OUTPUT: Y
INPUT: A
INPUT: B
INPUT: C
INPUT: D

nand2
OUTPUT: Y
INPUT: A
INPUT: B

... and26

... or26
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nand3
OUTPUT: Y
INPUT: A
INPUT: B
INPUT: C

nand4
OUTPUT: Y
INPUT: A
INPUT: B
INPUT: C
INPUT: D

nor2
OUTPUT: Y
INPUT: A
INPUT: B

nor3
OUTPUT: Y
INPUT: A
INPUT: B
INPUT: C

nor4
OUTPUT: Y
INPUT: A
INPUT: B
INPUT: C
INPUT: D

xor2
OUTPUT: Y
INPUT: A
INPUT: B

xor3
OUTPUT: Y
INPUT: A
INPUT: B
INPUT: C

xord4
OUTPUT: Y
INPUT: A
INPUT: B
INPUT: C
INPUT: D

... nand26

... hor26

... Xor26
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xnor2
OUTPUT: Y
INPUT: A
INPUT: B

xnor3
OUTPUT: Y
INPUT: A
INPUT: B
INPUT: C

xnor4
OUTPUT: Y
INPUT: A
INPUT: B
INPUT: C
INPUT: D

mux2
OUTPUT: Y
INPUT: S
INPUT: A
INPUT: B

nMux2
OUTPUT: Y
INPUT: S
INPUT: A
INPUT: B

buf
OUTPUT: Y
INPUT: A

not
OUTPUT: Y
INPUT: A

latchHQ
OUTPUT: Q
INPUT: C
INPUT: D

DELAY: C_TO_Q
DELAY: D_TO_Q

... Xnor26

DELAY: SETUP_HOLD

x1




latchLQ

OUTPUT: Q

INPUT: CZ

INPUT: D

DELAY: CZ_TO_Q
DELAY: D_TO_Q
DELAY: SETUP_HOLD

latchHQZ

OUTPUT: QZ

INPUT: C

INPUT: D

DELAY: C_TO_QZ
DELAY: D_TO_QZ
DELAY: SETUP_HOLD

latchLQZ

OUTPUT: QZ

INPUT: CZ

INPUT: D

DELAY: CZ_TO_QZ
DELAY: D_TO_QZ
DELAY: SETUP_HOLD

interconnectDelay
OUTPUT: Y
INPUT: A
DELAY: A_TO_Y

tristateDelay
OUTPUT: Y
INPUT: A
DELAY: A_TO_Y

nonlnvertingDelay
OUTPUT: Y
INPUT: A
DELAY: A_TO_Y

invertingDelay
OUTPUT: Y
INPUT: A
DELAY: A_TO_Y

unknownDelay
OUTPUT: Y
INPUT: A
DELAY: A_TO_Y
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fs0zRz0FDelay
OUTPUT: Y
INPUT: A
DELAY: A_TO_Y

fs0zFzORDelay
OUTPUT: Y
INPUT: A
DELAY: A_TO_Y

fs1zRz1FDelay
OUTPUT: Y
INPUT: A
DELAY: A_TO_Y

fs1zFz1RDelay
OUTPUT: Y
INPUT: A
DELAY: A_TO_Y

onRoffFDelay
OUTPUT: Y
INPUT: A
DELAY: A_TO_Y

onFoffRDelay
OUTPUT: Y
INPUT: A
DELAY: A_TO_Y

unknownZDelay
OUTPUT: Y
INPUT: A
DELAY: A_TO_Y

dffHQ
OUTPUT: Q
INPUT: CLK

dffLQ
OUTPUT: Q
INPUT: CLKZ

dummy
INPUT: A

reset
INPUT: Y
INPUT: CLR

xlii
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resetZ
INPUT: Y
INPUT: CLRZ

preset
INPUT: Y
INPUT: PRE

presetZ
INPUT: Y
INPUT: PREZ

HsetupHold

INPUT: CLK

INPUT: D

DELAY: SETUP_HOLD

LsetupHold

INPUT: CLKZ

INPUT: D

DELAY: SETUP_HOLD
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B.2 Two Input AND Gate Cell Model Example

The model definition contains:

1) Header: cell name, library name, version, date, vendor, program. timescale;

2) Instance Declaration: named instances with default delay values when applicable;
3) Drivers Section: specifies the driver of each input terminal

4) SDF Delay Mapping: how SDF delay annotations are mapped.

Interconnect port delays are the input instances.
IOPATH delays are driven by the interconnect delays.
Primitives at the cell pins are named after the pin names.

For multiple output cells, common logic structures are duplicated to make the
IOPATH delays independent.

(STV_LIBDEF
// Header
(CELL "AN210™)
(LIBRARY "Library Name")
(VERSION "1.0")
(DATE "Thu Oct 21 15:36:12 1999")
(VENDOR "Semi Conductor Vendor")
(PROGRAM "cdf") // the program that generated this description
(TIMESCALE 1ns) // time scale for default delays

// Instance Declaration
// PORT delays

(INSTANCE A INPUT /I INPUT keyword marks the primitive instance as a cell input
(PRIMITIVE "interconnectDelay")
(DELAY "A_TO_Y"(0.0:0.0:0.0)) // NULL default
// instances of primitives with delays specify the default delay values to be used
// if no SDF annotation is performed
)
(INSTANCE B INPUT
(PRIMITIVE "interconnectDelay")
(DELAY "A_TO_Y"(0.0:0.0:0.0)) // NULL default

)

// path delaysto Y

(INSTANCE A_Y

(PRIMITIVE "nonlnvertingDelay™)

(DELAY "A_TO_Y"(0.332246:0.390227:0.582283)(0.280749:0.343123:0.515448))
)
(INSTANCE B_Y

(PRIMITIVE "nonInvertingDelay")
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(DELAY "A_TO_Y"(0.316855:0.378051:0.57481)(0.326919:0.401621:0.595931 )
)

// gatesto Y

(INSTANCE Y OUTPUT  // OUTPUT keyword marks the primitive instance as a cell output
(PRIMITIVE "and2")
)
// Drivers Section
(DRIVERS

// driversto Y

(INSTANCE Y
AA_Y)BB_Y)
// pin “A” of instance “Y” is driven by instance “A_Y”
// pin “B” of instance “Y” is driven by instance “B_Y”’
)
(INSTANCE A_Y
A(A)
)
(INSTANCEB_Y
A(B)
)
)

// SDF Delay Mapping

(TARGET_DELAY "PORT A"
(INSTANCE A "A_TO_Y")

// “PORT A” SDF delay annotation goes to instance “A”, delay “A_TO_Y”
) .

(TARGET_DELAY "PORT B"
(INSTANCEB "A_TO_Y")

)

(TARGET_DELAY "IOPATH A Y"
(INSTANCE A_Y "A_TO_Y")

)

(TARGET_DELAY "IOPATH B Y"
(INSTANCEB_Y "A_TO_Y")

)

(TARGET_DELAY "DEVICE Y"
(INSTANCE A_Y "A_TO_Y")
(INSTANCE B_Y "A_TO_Y")

)

(TARGET_DELAY "DEVICE"
(INSTANCE ALY "A_TO_Y")
(INSTANCE B_Y "A_TO_Y")

)

)




xlvi

B.3 FLIP-FLOP Gate Cell Model Example

(STV_LIBDEF
(CELL "FlipFlop™)
(LIBRARY "LibName")
(VERSION "1.0")
(DATE "Wed Oct 20 11:40:41 1999"™)
(VENDOR "VendorName")
(PROGRAM "cdf")
(TIMESCALE 1ns)

// PORT delays

(INSTANCE CLK INPUT

(PRIMITIVE "interconnectDelay")

(DELAY "A_TO_Y"(0.0:0.0:0.0)) // NULL default
)
(INSTANCE D INPUT

(PRIMITIVE "interconnectDelay")

(DELAY "A_TO_Y"(0.0:0.0:0.0)) // NULL default

)

// path delays to Q

(INSTANCE Q OUTPUT
(PRIMITIVE "nonlnvertingDelay")
(DELAY "A_TO_Y"(0.672096:0.881856:1.351029)(0.758338:1.037886:1.606180))

)

// gates to Q

(INSTANCE DFF
(PRIMITIVE "dffHQ") // positive
)

// timing check

(INSTANCE check_D_CLK
(PRIMITIVE "HsetupHold") // positive
(DELAY "SETUP_HOLD"(0.660000:0.800000:1.250000)(0.420000:0.420000:0.420000))

)

(DRIVERS
(INSTANCE Q
A(DFF)
)
(INSTANCE DFF
CLK(CLK)




)

)
(INSTANCE check_D_CLK

CLK(CLK)
D(D)
)

)
(TARGET_DELAY "PORT D"

(INSTANCE D "A_TO_Y")

)

(TARGET_DELAY "PORT CLK"
(INSTANCE CLK "A_TO_Y")

)

(TARGET_DELAY "IOPATH CLK Q"
(INSTANCE Q "A_TO_Y")

)

(TARGET_DELAY "DEVICE Q"
(INSTANCE Q "A_TO_Y")

)

(TARGET_DELAY "DEVICE"
(INSTANCE Q "A_TO_Y")

)

(TARGET_DELAY "SETUPHOLD D CLK"
(INSTANCE check_D_CLK "SETUP_HOLD")

)
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