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Abstract

Keywords: DSM1, shared memory, parallel programming, NOW, cluster, programming library,

memory consistency models.

Software distributed shared memory (SDSM) is an attractive tool to develop parallel ap-

plications. However, this facility is not widely used because of its low availability. Moreover,

most of the available systems are either unstable or not flexible enough to allow widespread use.

This research addresses these problems by proposing a new SDSM system, called YADL, that

is flexible and extensible.

YADL supports multiple memory consistency models and the bag of tasks partitioning

method. We explain how the utilization of this partitioning method can enhance performance of

applications by achieving better load balancing in some situations. Moreover, this partitioning

method allows the number of workers to change during the computation, which was forbidden

by most previous SDSM implementations.

YADL also provides the static partitioning method traditionally found in SDSM systems.

Integrating both partitioning methods in a single system and adapting the algorithms to support

both methods is covered by this research.

After having briefly introduced the field of parallel programming and of SDSM systems, we

present the architecture, the implementation and the use of YADL. Some benchmark results are

also presented to illustrate the performance of the system.
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French Abstract

Mots clés: DSM, mémoire partagée, programmation parallèle, NOW, grappe d'ordinateurs, li-

bra.irie de programmation, modèle de consistance de mémoire.

Une mémoire partagée virtuelle (SDSM pour software distributed shared memory) est un

outil facilitant la programmation d'applications parallèles. Malheureusement, cet outil est

rarement utilisé à cause de sa faible disponibilité. De plus, la plupart des SDSMs disponibles

sont soit instables ou ne comblent pas tous les besoins des programmeurs. Cette recherche

aborde ces problèmes en proposant une nouvelle SDSM flexible et extensible nommée YADL.

Les aspects particuliers de YADL sont le support pour plusieurs modèles de consistance de

mémoire et un modèle de programmation basé sur le "pool" de tâches. Nous expliquons comment

l'utilisation de ce modèle de programmation peut contribuer, dans certains cas, à une meilleure

utilisation des ressources. De plus, ce modèle permet d'ajouter et d'enlever des ressources de

calculs durant l'exécution d'un programme, ce qui était impossible avec la plupart des SDSMs

antérieures.

YADL fournit aussi un modèle de programmation statique comme celui traditionnellement

inclus dans les SDSMs. L'intégration des deux modèles de programmation est couvert par cette

recherche.

Après avoir brièvement introduit la programmation parallèle et les SDSMs, nous présentons

l'architecture, les algorithmes d'implantation et l'utilisation de YADL. Une évaluation basée sur

l'exécution de quelques programmes est aussi présentée afin de montrer son efficacité.

0
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Chapter 1

Introduction

When confronted with performance problems, programmers can use faster computers or can

optimize their code. Once these methods no longer help, they can use parallelism to try to

obtain faster solutions. However, developing a parallel program is usually much harder than

developing a sequential program, restraining the use of parallelism.

Many parallel computer architectures are available. Among them, multiprocessor and net-

work of workstations (NOW) are becoming popular. Prior to the development of a parallel

application, programmers must choose their target architecture. This choice is guided by the

program requirements and by the suitability of each architecture.

A distributed shared memory (DSM) is a tool making NOWs more suited for the development

of parallel applications. While conserving their low cost, a DSM reduces the development costs

on NOWs by providing a programming model similar to the one available on multiprocessors.

With a DSM, a programmer can quickly develop a more elegant parallel program on NOW than

when using traditional methods.

1.1 Goals

0
This work has been done in the context of software DSM (SDSM). No special hardware compo-

nents are needed to operate a SDSM, allowing them to be used on almost any computer. The
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goal of this work was to design and implement a SDSM system that could be used on the Linux

operating system (OS), and possibly on all other UNIX-flavor OSes.

Other SDSM systems have been developed. However, even in applications where they could

perform well, they are not widely used. This low use could be explained by the ignorance of

their existence owing to their low availability. Moreover, currently available SDSM systems are

either expensive, unstable research prototypes, incompatible with commonly available computer

systems and OSes, or not distributed by their authors. Furthermore, no available SDSM system

fits most user needs as they have been designed without concern toward general usability.

The main goal of this work is to address this lack of concern. The resulting SDSM should

be able to address most current needs and should also be easily extensible to accommodate

future requirements. To achieve this goal, the proposed SDSM must support a general-purpose

interface and be easily extensible. Moreover, to be as flexible as possible, it should support

many known and useful SDSM key concepts already presented in the literature.

The result of this work is a SDSM system, called YADL, that can be used to develop parallel

applications. This name was chosen as a shortcut for "Yet Another DSM Library". YADL

features support for multiple memory consistency models and the bag of tasks partitioning.

The software package of this system is available on the author's web page (http://www.iro.u-

montreal.ca/~gagnjea/).

1.2 Contents

0

The first part of this document, composed of Chapters 2 and 3, consists of the technical foun-

dations for the rest of the document. Chapter 2 presents the parallel programming models and

architectures. Chapter 3 introduces DSMs, with emphasis on SDSMs.

The second part of the document, composed of Chapters 4 and 5, presents the SDSM system

YADL. Chapter 4 explains the specification, implementation and utilization ofYADL. Chapter 5

exposes the results of the evaluation of the system and presents future development.

Finally, the third and last part of the document, the Chapter 6, concludes by presenting the

contribution of our work to the SDSM field and by discussing further avenues of research.
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Chapter 2

Parallel Applications

A parallel application is composed of many abstract computation instances running in paral-

lei. These instances can be implemented using system-specific threads or processes. To achieve

the parallelization of a computation, the computation must be partitioned into tasks that are

performed by the instances. Instances normally need to communicate. Instances must also be

executed on a specific parallel computer architecture. These three topics, computation parti-

tioning, inter-instance communication and parallel computer architecture, are discussed in the

following sections.

2.1 Partitioning the Computation

0

The partition of the computation is an important part of the parallelization of an application.

Without partitioning a computation, its parallelization cannot be achieved. Moreover, parti-

tioning has an effect on execution time.

To parallelize a program, the computation to be executed must be partitioned into tasks that

will be executed by instances. There should be at least as many tasks as there are instances.

If not, one or more instances are idle and useless. If there are more tasks than instances, some

instances execute more than one task.

The computation partitioning methods can be categorized in two classes: static and dynamic.
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When statically partitioning a computation, the partition into tasks is known before starting

the computation. When dynamically partitioning a computation, the partition process occurs

at the program execution and can change according to run-time parameters.

The main quality of a good partitioning is load balancing. When the load is perfectly bal-

anced, each computation resource (processors and communication channels) is used at maximum

capacity. This does not mean that the resources are never idle, it means that when a resource

is idle, it cannot do something that a busy resource is doing.

In some applications, load balancing can easily be achieved. However, in other applications,

its achievement requires smart use of computation partitioning techniques. Using the right tech-

niques needs careful thought and imagination, and is hard to achieved without proper knowledge

of the application.

2.2 Inter-Instance Communication

In a parallel application, instances are collaborating to obtain the result of a computation.

To collaborate, the instances must communicate. This communication can be achieved using

different models. Two communication models are presented: the shared memory model and the

message passing model. An hybrid model could be inferred from these two models, but it is not

discussed.

0

2.2.1 Shared Memory Model

In the shared memory model, each instance can access a common repository of data. This

repository is the shared memory. The operations that can be performed on the shared memory

are LOAD and STORE, allowing respectively to consult and modify data.

The main advantage of the shared memory model is that the sharing of data structures

between instances is easy. When data is placed in the shared memory, it can be consulted and

modified by any instance. Developing a parallel application using this model is relatively easy

but requires explicit use of synchronization primitives. The synchronization primitives usually

provided for the development of shared memory programs are: mutexes, semaphores, barriers

and condition variables ([HP96, Ste98, SGG02]).
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Synchronization Priinitives

Mutexes

Mutexes are used to enforce mutual exclusion. Only one instance can hold a mutex, allowing

a single instance to execute critical code. This critical code is usually called a critical section.

A "lock" on a mutex is a request to hold it, returning only when the mutex has been granted.

An "unlock" on a mutex releases it, allowing another instance to "lock" it.

One of the uses of mutexes is to guarantee the atomicity of a sequence of otherwise non-atomic

operations. When the atomicity of some particular sequences of operations is not guaranteed,

the program behavior becomes unpredictable. An example of such a sequence is the addition

of a constant to a variable where two operations, the read and the write to this variable should

be atomic. If, when reading and updating the variable, a mutex was previously "locked", a

single instance can modify the variable. This usage of the mutex removes the possibility of

two instances updating the variable at the same time, eliminating the case where the program

behavior is unpredictable.

Semaphores

Semaphores are a generalization of mutexes. Semaphores can be waited on ("wait"), re-

leased ("signal") and initialized. When a semaphore is initialized to N resources, N instances

can hold the semaphore simultaneously. A mutex is equivalent to a semaphore initialized to one

resource.

0

Barriers

Barriers are used to wait for instances at a particular moment in the program. When a

barrier is "reached" by an instance, this instance is blocked. The barrier will be "lowered"

when it is "reached" by a predefined number of instances. When the barrier is lowered, the

blocked instances can resume their computation. Global barriers are barriers where the number

of reaching instances needed before "lowering" the barrier is the total number of instances.

Barriers, and especially global barriers, can be used to wait for initialization of data prior to a

computation, or to wait that all instances are done before starting the next step of an iterative

computation.



n
CHAPTER 2. PARALLEL APPLICATIONS

Condition Variables

6

0

Condition variables are used to avoid active waiting. An active wait occurs when an instance

waits for an event using a loop. An active wait should be avoided because it needlessly consumes

CPU cycles. To avoid losing these cycles, a "wait" on a condition variable blocks an instance. A

"signal" wakes up a single instance currently waiting on the variable. A "broadcast" wakes up

all instances currently waiting on the variable. Emphasis is put on "currently waiting" because

a "broadcast" or a "signal" done prior to a "wait" does not have any effect. In this case, the

waiting instance is blocked until the next "broadcast" or "signal" .

Condition variables are often used in conjunction with mutexes. Instances usually "lock" a

mutex prior to doing some operation (consume data). If the operations cannot be done because

some other instances have not yet produced the data, the consuming instances would "unlock"

the mutex and "wait" on a condition variable. However, if the data is produced between the

"unlock" and the "wait" (the situation shown on the left side of Figure 2.1), the consuming

instance is blocked because the "wait" has been done after the "signal".

To avoid this situation, some implementations of condition variables allow to atomically

"unlock" a mutex at the same time a "wait" operation is performed. With this feature, the

blocking can be avoided as shown on the right side of Figure 2.1.

Time
Instance A Instance B

Lock

Unlock

Wait

Lock

Signal

Unlock

*
Instance A is blocked

as B has signaled before the wait.

Instance A Instance B

Lock

Unlock
& Wait

Lock

Signal

Unlock

Instance A will be unblocked

as B cannot signal before the wait.

Figure 2.1: The Potential Blocking of Condition Variables.
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Deadlocks

7

When using synchronization primitives, deadlocks can occur ([Sta97]). A deadlock is an

endless wait that can be caused by a bad use of synchronization primitives. A deadlock could

occur if a circular dependence exists when "locking" mutexes, if an instance never "reaches"

a barrier, in the case of Figure 2.1 for condition variables, or in some other cases. Producing

a deadlock is a situation that must be avoided at all costs. Programs without deadlock can

be obtained by rigorous programming. An example of rigorous programming method to avoid

deadlocks is, when needing to hold more than one mutex or semaphore, to "lock" or "wait" for

them in the same order. With this method, no circular waiting can be generated ([Sta97]).

0

2.2.2 Message Passing Model

In the message passing model, the instances communicate by exchanging messages. There exists

two communication primitives, RECEIVE and SEND, allowing to respectively get and emit

messages.

In the pure message passing model, no shared memory is available. When two instances

need to communicate, they must do it using messages. When a large data structure must be

exchanged between instances, it must be converted to fit in one or more messages which are sent

to their destinations.

The deadlock problem, presented in Section 2.2.1, can also occur when using the message

passing model. If an instance A is blocked on a RECEIVE waiting data from instance B, but

instance B is also blocked on a RECEIVED waiting data from instance A, a deadlock occurs.

The major drawback of the message passing model is its complexity of use due to the ad-

ditional code needed to explicitly manage communication between instances ([HP96]). When

using message passing, the resulting application source code is larger and harder to understand

than when using shared memory. Message passing libraries, as MPI ([mpi]), have been pro-

posed to ease the development of message passing applications. However, developing parallel

applications using a message passing library is still usually harder than using shared memory.

Despite its drawbacks, message passing is used because it is the only communication model

available on some parallel computer architectures.
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2.3 Parallel Computer Architectures

8

A parallel computer architecture is composed of many processors executing instances in parallel.

The two most popular architectures are multiprocessor and network of workstations (NOW).

These two architectures are presented in this section.

0

2.3.1 Multiprocessor

In a multiprocessor, also known as a tightly coupled system, all the processors can access the

same physical shared memory. To implement this type of architecture, the processors can share

the same bus to the memory ([HP96]) as shown in Figure 2.2.

CPU

Rachel

CPU

"achel

CPU

Rachel

CPU

"achel

Memory

Figure 2.2: The Multiprocessor Architecture.

For performance reasons, each processor has its own local cache. This design improves the

performance but also introduces the problem of cache coherence. When a processor modifies

data residing in other caches, these caches must be updated or invalidated to keep a processor

from reading old data. Since all the processors share the same bus, each cache can listen on

the bus for STOREs from other processors and update themselves accordingly. This method is

known as snoopy caching ([HP96]).

The natural inter-instance communication model for multiprocessors is the shared memory

model as a physical shared memory is provided by the architecture. Message passing can also

be used, but its use is less common because the shared memory model is usually easier to use.

With the availability of a shared memory, developing a parallel application on a multiprocessor

is relatively easy.

The drawback of the multiprocessor architecture is the limit on the number of processors.

This limit is due to the interconnections between processors and memory that do not scale
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well. A bus could be used for two or four processors, but, when using more processors, the

bus contention becomes a bottleneck. This problem can be reduced by using more complex

interconnection network, involving multiple buses to the memory. These interconnections are

expensive, increasing the cost of multiprocessors composed of tenth of processors.

2.3.2 Network of Workstations

A network of workstations (NOW), also known as a loosely coupled system or a cluster, is

composed of many computers, called nodes. The nodes are linked by a network that can be

Ethernet ([Hal96]), Myrinet ([myr]), or any other. As the node and the network are usually

made from off-the-shelf components, the cost of a NOW is low. Moreover, the number of nodes

in a NOW scales well as networks can contain hundreds of nodes.

The nodes of a NOW do not share physical memory. Each node has its own private memory

that can only be accessed by the local node as shown in Figure 2.31

CPU

"achel

CPU CPU

Rachel

CPU

Memory |Memory |Memory |Memory

Network

Figure 2.3: The Network of Workstations Architecture.

Without a shared memory, the only communication model available on NOWs is message

passing. Since the use of this model is complex, the development of a parallel application on

NOWs is also complex. Moreover, the node interconnections in NOWs are less efficient than in

multiprocessors. This causes performance problems in applications where a lot of communication

is required. However, as they are less expensive, NOWs are largely used in applications with

low to moderate communication requirements.

1 Some exceptions exist when the network interface provides functions to access remote memory, but these are

not considered for the general case of NOWs.



n
CHAPTER 2. PARALLEL APPLICATIONS

2.4 Summary

10

This chapter was a brief introduction to parallel application development. Computation parti-

tioning, the inter-instance communication models and the parallel computer architectures were

introduced.

Partitioning the computation is essential to use parallelism. When partitioning properly the

computation, load balancing is achieved, which is a desirable characteristic of a good computa-

tion partition.

Two communication models, shared memory and message passing, were presented. Shared

memory is more attractive than message passing due to its relatively simple use.

Only multiprocessors provide shared memory. NOWs are cheaper and can incorporate more

processing power. Because they often only have access to a NOW, programmers must reluctantly

accept the use of message passing to develop parallel applications.

The next chapter is an introduction to distributed shared memory (DSM). A DSM is an

emulation of shared memory on a computer architecture that does not provide physical shared

memory. Its use eases the development of parallel applications on NOWs by simulating a shared

memory.

0
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Chapter 3

Distributed Shared Memory

Computationally intensive applications are often run on networks of workstations (NOWs) in the

hope of getting a cost-effective solution. However, the effort required to develop and maintain

such applications can be considerable as the message passing communication model, the only

model available on NOWs, is complex to use (see Sections 2.2.2 and 2.3.2).

Distributed shared memory (DSM) has been proposed as a means to ease the development of

parallel applications on NOWs. A DSM provides a virtual shared memory on top of the message

passing model. With the shared memory provided by the DSM, a programmer can design an

application to be run on a NOW using an inter-instance communication model very close to the

shared memory model. This alternative to the message passing model is attractive due to its

easier usage.

This chapter presents the field of DSMs. Because this research focuses on them, emphasis

is put on software DSM (SDSM). The first section defines DSMs. This sections is followed by a

section on memory consistency models. The implementation and utilization of SDSM systems

are then presented. Other subjects in the SDSM field are also introduced. Finally, the niche of

SDSM is discussed.

0
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0

DSMs were introduced in the mid 1980s. Since the beginning, the goal of DSMs has been to

ease the development of parallel applications by providing a shared memory on NOWs ([CBZ91,

FP89, L188]). With a DSM, a programmer can design a parallel application on NOWs using an

inter-instance communication model very close to the shared memory model.

As the nodes from a NOW do not share physical memory, DSMs must be implemented

on top of the message passing model. As the shared memory does not physically exist and

is implemented over message passing, it is sometimes called a distributed virtual shared mem-

ory (DVSM). The DSM does not eliminate the message passing model from NOWs, it provides

a layer hiding the message passing model to programmers.

In DSMs, each instance of the computation has a local cache of the shared memory. Since

two instances could cache the same data, the problem of cache coherence must be addressed (see

Section 2.3.1). How the caches are kept coherent is defined by a memory consistency model.

The general problem of enforcing cache coherence has been studied prior to the introduction

of DSMs. The previously proposed solutions, such as snoopy caching (see Section 2.3.1), could

be applied to DSM, but they do not result in an efficient implementation. These bad results

are explained by the less efficient node interconnections in NOWs. Achieving efficient cache

coherence is the main challenge in DSM implementations.

Providing classic memory consistency models does not always result in an efficient DSM.

The reason for this poor performance is that classic memory models, like the sequential model,

require lots of communication to achieve cache coherence. Since communication resources must

not be wasted in NOWs, memory consistency models needing less communication, such as the

release and lazy release model, has been introduced (see Section 3.2).

There exists three types of DSMs classified according to the way they are implemented:

hardware, software and hybrid. A hardware DSM is totally implemented in hardware. A soft-

ware DSM, also known as a SDSM, is totally implemented in software, using standard network

hardware. A hybrid DSM is implemented using both custom hardware and software components.

Hardware DSMs are usually more efficient as they are implemented with dedicated optimized

components. However, they are expensive DSMs due to the custom elements needed for their

implementation.
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0

SDSMs are less expensive, but also less efficient as they do not benefit from specific hardware

optimizations. However, SDSMs are attractive due to their easy and quick implementation.

SDSMs can include more complex algorithms, are easy to tune, enhance and customize, and are

the only option on off-the-shelf systems ([ScoOO]). For these reasons, SDSMs are also a good

research platform because new algorithms can easily be tested and evaluated.

Hybrid DSMs take the best from both worlds: the optimization of hardware DSM for expen-

sive operations and the flexible environment of SDSMs. Hybrid DSMs probably have the most

promising future as they will probably provide the highest performance-price ratio.

Software DSM systems could be again classified in three classes according to "where" they

are implemented. SDSM systems could be implemented at kernel level, user level, or user level

with minimal kernel modifications.

A SDSM system implemented at kernel level is not limited by the fewer permission given to

user processes. It has access to all system resources, such as advanced features of the network

and of miscellaneous hardware. Moreover, a kernel implementation could benefit from direct

accesses to network resources, reducing the overhead of using a multi-layers network. However,

modifying an OS kernel is a complex task. Furthermore, the kernel modifications done to

implement the SDSM system could be incompatible with the next version of the kernel, voiding

much of the work done.

A user level implementation is the easiest way to implement a SDSM system as it is usually

easy to implement a user library. Moreover, a user library is more likely to be compatible with

future versions of the system, especially if its implementation follows standards such as the

Single UNIX Specification ([sin]). However, it must rely on OS services and must use the OS

API (application programming interface) to access these services. The use of this API might be

expensive as it could need a context switch to kernel level.

If the cost of using the OS API forbids the efBcient implementation of the SDSM, or if a

desired function is not provided to user processes, some extension to the kernel could be made

to optimize or provide the needed function. This approach is more likely to be compatible with

future versions of the kernel. Even if a next version is not compatible with these modifications,

porting them should be easier and faster than porting an entire SDSM system.

DSM is a new programming tool for the development of parallel application on NOWs. They



n
CHAPTER 3. DISTRIBUTED SHARED MEMORY 14

will not replace multiprocessors, nor message passing. DSMs keep some of the drawbacks of the

NOW architecture such as slow communication between nodes. They also cannot reach the same

level of performance as well tuned message-passing applications. However, they could perform

well in some applications. The niche of SDSM systems is described in more details in Section 3.6.

3.2 Memory Consistency Models

When there exist many caches for the same memory, coherence among the caches must be

enforced. How the caches are kept coherent is specified by a memory consistency model. As

DSMs maintain a cache of the shared memory in each instance, the cache coherence problem

cannot be avoided. Thus, memory consistency model is a fundamental concept in the DSM field.

There are many memory consistency models. Some models provide the programmer with

simple but inefficient memory accesses. Others provide more efBcient accesses at the cost of ease

of use.

Memory consistency models can be classified according to the extent of restrictions specified

on consistency ([HP96]). A model with lots of restrictions is a strict model. A model with few

restrictions is a relaxed model. Usually, strict models are easy to use, but are also less efficient

as they require lots of operations to achieve consistency. More relaxed models are harder to

use as they give more burden on the programmer, but their correct use results in performance

improvement.

Many memory consistency models have been defined, but only the one related to SDSMs are

discussed. These models are the sequential, processor, release and lazy release models. However,

before discussing them, notation that gives us a framework to understand and compare the

different models must be introduced.

3.2.1 Notation

0

To better understand memory consistency models, the notation presented in [SD86] is used.

This notation was first used in the context of multiprocessors to define memory consistency

models.
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The original version of the definitions refer to processors. To adapt them to NOWs, the

references to a processor must be replaced by references to a node. The original definitions are

presented in this document.

The [SD86] notation defines memory request initiation, issue, performance, performance with

respect to a processor and global performance. The first three definitions follow:

Initiating a memory request: A memory access request is initiated when a pro-

cessor has sent the request and the completion of the request is out of its control.

Issuing a memory request: An initiated request is issued when it has left the

processor environment, including the CPU and local buffers, and is in transit

in the memory system.

Performing a memory request: A STORE is considered performed at a point in

time when a subsequently issued LOAD to the same address returns the value

defined by this or a subsequent STORE. A LOAD is considered performed at a

point in time when the issuing of a STORE to the same address cannot affect

the value returned by the LOAD.

As explained in [SD86], these three definitions are relevant whether or not memory accesses

are atomic. In this case, atomicity means that the value modified by a STORE operation

becomes accessible at the same time for all processors. An example where memory accesses

could be atomic is some particular implementations of multiprocessors.

When atomicity cannot be enforced, a memory request could be performed at a processor a

but not yet at processor b. This situation is frequent in DSMs: the cache of instance a is often

updated before the cache of instance b, introducing a small interval of time where a and 6 may

not read the same value for a variable in the shared memory. This situation is usually caused

by the impossibility to guarantee the reception of messages at different destinations at the same

time in a NOW.

To also consider memory accesses that are not atomic, [SD86 introduces the performance

with respect to a processor and the global performance. These two definitions follow:

0 Perforniing a meinory request with respect to a processor: A STORE by

processor i is considered performed with respect to processor j when a sub-
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sequent LOAD to the same address by processor j returns the value defined

by this or a subsequent STORE. A LOAD by processor i is considered per-

formed with respect to processor j when a subsequent issued STORE to the

same address by processor j cannot affect the value returned by the LOAD.

Performing globally a memory request: A STORE is globally performed when

it is performed with respect to all processors. A LOAD is globally performed

when it is performed with respect to all processors and when the STORE which

is the source of the returned value has been globally performed.

Performed a memory request with respect to all processors is equivalent to the previous

definition of performing a memory request. Thus, after a STORE is globally performed, which

is equivalent to be performed with respect to all processors, no subsequent LOAD can return

an older value from the one written by the STORE.

A subtle difference between a LOAD performed with respect to all processors and a globally

performed LOAD must be pointed out. Once a LOAD is performed with respect to all processors,

the value returned is locally fixed and cannot be altered independently of any action from any

processor. Thus, performing a LOAD with respect to all processor is an operation that could

be considered local to the current processor because it does not impose restriction to other

processors.

When a LOAD is globally performed, the returned value is locally fixed and cannot be altered

(performed with respect to all processors), and any other LOAD issued subsequently by any

processor cannot return a value that is older than the value returned by the globally performed

LOAD. Thus, performing a LOAD globally is stronger than performing a LOAD with respect

to all processors because it is an operation that restricts the behavior of future LOADs on all

processors.

u

3.2.2 Sequential Model

The sequential memory consistency model is a strict model introduced in [Lam 79] in the context

of multiprocessors:

"[A system is sequentially consistent if] the result of any execution is the same as
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if the operations of all the processors were executed in some sequential order, and

the operations of each individual processor appear, in this sequence, in the order

specified by its program."

The conditions needed to enforce sequential consistency, using the notation from Section 3.2.1,

are ([GLL+90]):

1. before a LOAD is allowed to perform with respect to any other processor, all

previous LOAD and STORE accesses must be globally performed;

2. before a STORE is allowed to perform with respect to any other processor, all

previous LOAD and STORE accesses must be globally performed.

The sequential memory consistency model is a strict model as it specifies lots of restrictions

on the order of LOAD and STORE. As presented in Section 3.3.3, the sequential model is also

the less efficient model because of the restrictions that must be enforced in its implementation.

However, with sequential consistency, a programmer knows exactly the behavior of his program.

Moreover, no special annotation of the source code is required to enforce consistency, contrary

to some relaxed models.

3.2.3 Processor Model

The processor memory consistency model is more relaxed than the sequential model. It was

introduced in [Goo91] again in the context of multiprocessors:

"[A system is processor consistent} if the result of any execution is the same as if the

operations of each individual processor appear in the sequential order specified by

its program."

The conditions needed to enforce processor consistency, using the notation from Section 3.2.1,

are ([GLL+90]):

u 1. before a LOAD is allowed to perform with respect to any other processor, all

previous LOAD accesses must be performed with respect to all processors;
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2. before a STORE is allowed to perform with respect to any other processor, all

previous LOAD and STORE accesses must be performed with respect to all

processors.

Comparing the conditions for processor consistency with the conditions for sequential con-

sistency, the following differences can be noticed:

• Using processor consistency, a STORE access s preceding a LOAD access l does not need

to be globally performed, nor performed with respect to any other processors before / can

be performed with respect to any other processor;

• Using processor consistency, LOAD accesses do not need to be globally performed, but

only performed with respect to all processors, before a subsequent access is allowed to

perform with respect to any other processor.

These differences explain why the processor consistency model is more relaxed than the

sequential consistency model. The implementation of the processor consistency model can be

more efficient because of these fewer restrictions.

[Goo91] presents an example where the results using processor consistency differ from se-

quential consistency, but this program is not very useful. It is also pointed out in [Goo91] that

some multiprocessors do not provide sequential consistency but processor consistency.

3.2.4 Release Model

0

To allow more pipelining and buffering of memory accesses, the release memory consistency

model was introduced in [GLL+90]. If used properly, release consistency can obtain the same

computation results as sequential consistency usually using less communication resources and

usually causing less delay. However, the release model requires the programmer to use annotation

to enforce consistency.

In the release model, accesses are categorized in a hierarchical way. The hierarchy of access

types is given in Figure 3.1.

Competing accesses are defined as accesses to the same memory location (more detail about

the location is given in the implementation section) that could execute simultaneously where at
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Shared Access

Competing Non Competing

Synchronization Non Synchronization

Acquire Release

Figure 3.1: Shared Accesses in the Release Memory Consistency Model.

least one access is a STORE. Synchronization accesses are competing accesses that are used to

order competing accesses (as mutexes). Acquire and release accesses are used to gain access to

shared locations and grant this permission respectively ("lock" and "unlock" on mutexes).

Having defined memory access types, a way to specify them in the program must be supplied.

For this purpose, a label for each access is defined. The labels corresponding to the access type

are given in Figure 3.2. An access labeled £ is also implicitly labeled with all the labels higher

than L in the label hierarchy (a "sync" access is also labeled "special" and "shared").

Special

Sync

Shared

Nsync

Ordinary

Acq Rel

Figure 3.2: Labels for Shared Accesses in the Release Memory Consistency Model.

The forma] definition of the release memory consistency model is based on the access and

label notions. The conditions needed to enforce release consistency, using the notation from

Section 3.2.1, are ([GLL+90]):

0

1. before an "ordinary" LOAD or STORE access is allowed to perform with respect

to any other processor, all previous "acquire" accesses must be performed with

respect to all processors;

2. before a "release" access is allowed to perform with respect to any other pro-

cesser, all previous "ordinary" LOAD and STORE accesses must be performed

with respect to all processors;

3. "special" accesses are processor consistent with respect to one another.
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Release consistency allows all "ordinary" STORE accesses preceding a release to be pipelined

or buffered until the moment the "release" performs with respect to another processor. At this

moment, all the "ordinary" STOREs that have been initiated prior to the "release" must be

performed with respect to all processors.

When "acquire" and "release" are considered as "lock" and "unlock" on a mutex, the model

becomes very clear and simple: the "ordinary" STOREs done prior to the "unlocking" of a

mutex must be performed with respect to all processors when a processor subsequently "locks"

the mutex.

3.2.5 Lazy Release Model

The lazy release memory consistency model has been developed specifically for SDSMs. It was

introduced in [KCZ92]. This model is derived from the eager release model1. It keeps the

notions of access types and labels of the eager release model, but modifies the conditions to

achieve consistency. These new conditions are:

1. before an "ordinary" LOAD or STORE access on processor i is allowed to

perform with respect to processor j, all previous "acquire" accesses on processor

i must be performed with respect to processor j;

2. before a "release" access r on processor i is allowed to perform with respect to

processor j, all "ordinary" LOAD and STORE accesses on i prior to r must be

performed with respect to processor j;

3. "sync" are sequentially consistent with respect to one another.

0

The improvement of the lazy release model over the eager release model is to allow a "release"

access to be performed with respect to processor i without having to perform previous "ordinary"

accesses globally, but only with respect to processor i. Propagating only the modifications to

the next acquiring processor, not to all processors, reduces the use of network resources.

As for the eager release model, when "acquire" and "release" are considered as "lock" and

"unlock" on a mutex, the model becomes very clear and simple: the "ordinary" STOREs done

To simplify the discussion and clearly distinguish the two release models, the original release model is called

the eager release model.
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prior to the "unlocking" of a mutex must be performed with respect to the next "locking"

processor when this processor "locks" the mutex.

Lazy release consistency is the model closest to message passing. Almost like in message

passing, when using the lazy release model, the only processor receiving data is the one requiring

it. However, implementing the lazy release model is much harder than any other model, as

presented in Section 3.3.3.

3.3 SDSM System Implementation

In this section, an overview of the implementation of SDSM systems is given. The aspects

covered are the detection of shared memory accesses, the different types of protocols for the

implementation of synchronization primitives and shared memory, the implementation of the

memory consistency models, and the implementation of the synchronization primitives.

From now on, a SDSM computation instance will be called a worker. To access cache

coherence and synchronization services, the worker must have access to a manager that provides

these services. This manager, which implements the SDSM, can be merged in the worker, or

implemented as a distinct module. Each worker can invoke the manager using the SDSM API.

3.3.1 Detecting Shared Memory Accesses

Detecting accesses to the shared memory is an important part of a SDSM system as it is the

foundation of the implementation of memory consistency models. When a shared memory access

is performed, consistency operations must be executed to enforce the model which is applied to

the accessed memory.

There exist two detection methods: annotations and the virtual memory hardware (VMH).

Both methods have their advantages and drawbacks.

Annotations

0 When using annotations to detect shared memory accesses, code is added to the original program

to inform the manager of shared memory accesses.
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Annotation can provide the manager with precise information about the memory accesses

performed and the memory ranges accessed. However, inserting annotations manually is a task

that programmers usually dislike and that is prone to mistakes.

An existing compiler could be modified to ease the addition of annotations. With a modified

compiler, the programmer only needs to declare that a variable is part of the shared memory,

the compiler does the rest of the job.

Virtual Memory Hardware

The other way to detect shared memory accesses is by using the virtual memory (VM) hardware

included in computers. This hardware allows the protection of the memory at the granularity of

VM pages. When a forbidden access is performed, the OS is notified by a page-fault interruption.

Upon receiving a page-fault, the OS can take any appropriate action, such as inhibiting the

protection to allow the program to resume its execution. These page-faults can even be trapped

outside the OS kernel in application level code (see Appendix A).

The VMH is an attractive access detection method as it does not need involvement from

the programmer to annotate his program. However, the use of the VMH can be more costly

than annotations because hardware page-faults need the interruption of the running program

followed by a context switch to the operating system. This context switch results in the loss of

CPU cycles, and even worse, a potential loss of cache state. Moreover, the VMH cannot manage

access to a smaller granularity than VM pages, which is usually large (4 kilobytes on Intel x86),

and does not provide information about the end of memory accesses.

3.3.2 Protocols

0

A protocol prescribes how a specific part of the SDSM is implemented. Such protocol can be

applied to memory consistency models and to synchronization primitives.

In this section, the general notions needed to classify the implementation memory consis-

tency models and synchronization primitives are described. These notions will be needed in

Sections 3.3.3 and 3.3.4 regarding the implementation of memory consistency models and syn-

chronization primitives.
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Centralized vs Distributed
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A choice to be made for the implementation of both synchronization primitives and memory

models is one between a centralized or distributed (decentralized) protocol. In a centralized

protocol, a single worker, known as the home, answers or redirects requests from all workers

about a specific memory range or synchronization primitive. In a distributed protocol, the

responsibility of answering requests is spread between all the workers and usually migrates with

data movements.

The implementation of a centralized protocol is easy and seems efficient as a single request

results in a quick response. However, a centralized protocol lacks scalability as the home could

become a bottleneck if lots of requests are made simultaneously.

Distributed protocols are more scalable, but are also more complex to implement. Each

worker usually has a hint to the temporary home, the worker currently managing a specific

memory range or synchronization primitive. A request is usually done using this hint. The

request is forwarded by intermediary workers up to the temporary home. As distributed protocol

uses extensively request forwarding, they could sufîer from higher delays for serving requests.

Moreover, care must be taken to avoid cycles in the hints. As they are more scalable than

centralized protocols, distributed protocols are usually a better choice than centralized protocols

in the implementation of synchronization primitives or memory consistency models.

0

Write-Update vs Write-Invalidate

The write-update (WU) and write-invalidate (WI) protocols only apply to memory consistency

models. In a write-update protocol, complete data about a consistency operation follows the

message about this operation. In a write-invalidate protocol, the complete information about

a consistency operation stays at the level of the worker that initiates the operation. Minimal

informations (invalidations) are sent to other workers, resulting in potentially less network use.

When a LOAD is performed on invalidated memory, the loading worker has to fetch a valid copy

of the data from the other workers.

WU protocols are usually easier to implement than WI protocols as they do not require data

to be maintained locally in a worker. Moreover, when using a WU protocol, LOADs are local

operations because the local cache of a worker is always valid. However, as WU protocols use lot
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of network resources to maintain all caches valid, consistency operations could be slower than

WI protocols. Moreover, again because of extensive network usage, WU protocols could scale

badly. To be worthy, the high cost of STOREs of a WU protocol must be distributed on lots of

LOADs. This will be the case when the read-write ratio of an application is high (data is read

more often than it is written).

In situations where the read-write ratio is low or when the newly written data is not read

by many workers before being modified, a WI protocol is more efficient because less useless

data is sent on the network resulting in faster completion of consistency operations. However,

using a WI protocol, LOADs are potentially expensive and high latency operations: if the cache

of a worker has been invalidated, it generates a network request to obtain a valid copy of the

data. Moreover, as workers must answer future data request from other workers, complex data

structure allowing to serve these requests must be locally maintained, increasing the complexity

of implementation of WI protocols.

3.3.3 Implementing Memory Consistency Models

The efficient implementation of the memory consistency models is crucial to achieve good perfor-

mance. In this section, the implementation of the sequential, eager release and lazy release mem-

ory consistency models are presented with the two protocols write-update and write-invalidate.

The processor model is not presented since it is not widely used in SDSM systems.

Before beginning the discussion about the models, basic notions about memory consistency

must be introduced: the granularity and the granule. The granularity is the coherence unit of

the memory. When operations are performed on shared memory, they are performed on at least

one granule. A small granularity, 512 bytes or less, should be used when working on small data

structures. When using large data structures, a larger granularity should be used to reduce

the overhead of granule management. When using the VMH to detect memory accesses, the

smallest granularity that can be used is the size of a VM page. On Intel x86, as the page size

is 4 kilobytes, the smallest granularity available is 4 kilobytes. This could be too large for some

applications. As pointed out in Section 3.3.1, using the VMH to detect accesses always results

in large granularities.

0
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Sequential Model

The classic way to implement the sequential memory model is a multiple-readers single-writer

method. This means that a single worker can write to a granule, introducing the problem of

false sharing (discussed later in this section).

For each granule, there are two possible global states:

Single-writer: The granule is only valid in the cache of a single worker cache which is readable

and writable. All the other caches are invalid.

Multiple-readers: The granule can be valid in many caches, but is read-only in all of them.

Some workers can also have invalid cache.

0

This global state is managed using a distributed protocol. The only worker which is aware

of this state is the owner. This owner is always the last worker that had a valid cache in the

single-writer state. Each worker has a hint to the owner. All requests of a worker are sent using

this hint, and the request are forwarded up to the owner.

In each worker cache, the granule can be in the local state valid or invalid. When the shared

memory is created, the granule is in the global state single-writer, and in the local state valid

in the owner and invalid in all other workers. Then, the owner, the global state and local state

are managed according to the following rules:

• When, in the global state single-writer, a worker caching an invalid granule needs to

write to the granule, the invalid granule is promoted to valid after being updated using

the granule at the owner, the granule of the owner is demoted to invalid, the requesting

worker becomes the owner, and the hint of the previous owner is updated to the new

owner.

• When, in the global state single-writer, a worker caching an invalid granule needs to read

to the granule, the invalid granule is promoted to valid after being updated using the

granule at the owner, the granule of the owner stays valid but becomes read-only, and the

global state becomes multiple-readers.

• When, in the global state multiple-readers, a worker caching an invalid granule needs to

read to the granule, the invalid granule is promoted to valid after being updated using the

granule at the owner (or any other valid cache).
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When, in the global state multiple-readers, a worker caching an invalid granule needs to

write to the granule, the invalid granule is promoted to valid after being updated using

the granule at the owner (or any other valid cache), all the other granules in the other

workers are demoted to invalid, the requesting worker becomes the owner, and the hint of

the previous owner is updated to the new owner.

When, in the global state multiple-readers, a worker caching a valid read-only granule

needs to write to the granule, all the other granules in the other workers are demoted to

invalid, the requesting worker becomes the owner, and the hint of the previous owner is

updated to the new owner.

0

The previous description of the algorithm implements a write-invalidate protocol. It is

possible to modify the algorithm to implement a write-update protocol. To do so, when changing

from the state single-writer to multiple-readers, all the invalid granules must be updated to

become valid. Therefore, the WU version of this algorithm consumes lots of network resources,

which explains why it is not implemented in many SDSM systems.

The implementation of sequential consistency potentially results in false sharing. False shar-

ing occurs when difïerent workers are forbidden to access different data residing on the same

granule. As, in this implementation, a single worker can write to a granule, the other workers

needing to read or write to the same granule cannot progress, resulting in poor performance.

Moreover, when using a VMH approach to implement the model, two nodes writing to the same

granule can exchange back and forth the write permission, causing lot of network requests that

results in trashing.

To avoid this ping-pong effect, the SDSM system Mirage has introduced a minimum own-

ership time A ([FP89]). When getting read or write permission on a granule, this permission

is kept at least A to enforce locality. This optimization reduces the trashing, but does not al-

ways eliminate it. Moreover, A must be correctly tuned to enforce locality without eliminating

parallelism. As the optimal value of A could be application, processor-speed, network load,

bandwidth and latency specific, tuning it optimally is difficult.

The algorithm previously presented has been designed to be implemented using the VMH.

Indeed, in an annotated approach, the transition may not be taken at any time as it is impossible

to change the permissions on memory ranges while access to it has been granted. As the

programmer supposes that he has permissions until he notifies the system that he is done with
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a memory access, dynamically removing read or write permissions should not be done. Thus,

changing the global state of the temporary home can only be done at the end of an access.

To implement the annotated version of the sequential consistency, a pending access queue

must be added to the algorithm to store accesses that cannot be granted immediately. This

queue introduces the deadlock problem: if two workers a and b have granule x and y in read

mode respectively and they request writing on y and x respectively, a deadlock occurs because

the privileges cannot be dynamically removed nor granted. These problems, combined with the

aversion of programming with annotations, could explain why the annotated implementation

of sequential consistency has not been favored by implementers and has not been found in any

studies SDSM systems.

Traditionally, the whole granule is sent when data update is needed. The resulting high

network use explains why WU implementations of the sequential model have not been favored

by implementers. Nevertheless, using twins and diffs methods to transfer updates as explained in

the next section could reduce network use, diminishing the overhead of WU protocols. However,

as the eager and lazy release models have mostly replaced the sequential model, research on the

improvement of the sequential model is not extensive.

Eager Release Model

For the implementation of the release models (both eager and lazy), the twins and diffs notions

are needed. A diff corresponds to modifications to the shared memory that is composed of a list

of offset, length and data tuples. A twin is an image of the memory before a write operation.

Twins are used to compute diffs.

To implement eager release consistency, the notion of release is needed. In the simplified

version of the eager release model implemented in MUNIN ([CBZ91, Car94]), all the accesses

are either ordinary or release. The ordinary accesses are performed with respect to all workers at

the next release. This is a conservative implementation of the release model because the accesses

are performed at the time of the release, and not at the moment the "release" is performed with

respect to another worker.

The implementation of the eager release model follows this algorithm:

0
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0

l. On the first write to a shared memory granule, a twin copy of the granule is taken, all the

subsequent write proceeding normally;

2. On a "release", the actual copy of the memory is compared with the twins to compute the

diffs;

3. The diffs (or corresponding invalidations) are sent to the other workers to update (or

invalidate) their caches;

4. The "release" can only return when all the diffs (or invalidations) have been acknowledged

by all workers.

This implementation of the eager release model allows concurrent writers to the same gran-

ule (multiple-writers), avoiding false sharing. If workers are writing to different sections of

memory, the diffs will not overlap and the memory will be kept coherent as shown in Figure 3.3.

If two workers are writing to the same data at the same time, the diffs could overlap and the

result of the computation is undefined.

The overlapping of diffs depends of the diff unit. The size of a diff is always a multiple of

the difF unit. The diff unit specifies what is the "same memory location for competing accesses"

used in Section 3.2.4 . If the diff unit is small (1 or 2 bytes), concurrent writers can modify

small data like characters of short integers. However, if the difF unit is large (4, 8 or more bytes),

concurrent writers cannot modify consecutive characters because the diffs will overlap. The diff

unit is often specified as 4 bytes in many SDSMs, but its exact value is specific to the SDSM

system used.

To implement eager release consistency using a WU protocol, the diffs are sent to all workers

at the "release". When implementing the eager release model using a WI protocol, only invali-

dations are sent, requiring the releasing worker to locally store the diffs that will be sent when

workers will read the invalidated granules.

To remove the need to store diffs locally, a home implementation of the WI protocol could

be used. This implementation is derived from the home implementation of the lazy release

model ([ZIL96]). At the "release", invalidations are sent to all workers caching the memory,

and difFs are only sent to the home. When a worker does a LOAD on an invalidated granule, it

requests the granule data from the home. The use of this home implementation of the WI eager

release model eliminates the need for storing diffs locally and reduces the memory consumption

of the implementation. Moreover, as the home always has a valid copy, the LOADs done by
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Figure 3.3: The Consistency Operations of the Eager Release Model.

the home are always local operations, which could be an interesting feature to take advantage

from. However, as diffs must be sent to the home, more network resources are consumed and

consistency operations take more time to complete than when storing diffs locally.

Using the home implementation, the fetching of the whole granule on an invalid access could

be unnecessary as only a small part of the granule could have been modified. To reduce this

overhead, the write vector technique has been proposed ([Hu99]). Using write vectors, granules

are partitioned into blocks, the home maintaining a write vector about each granule cached by

each worker. On reception of diffs, the home updates the write vectors according to the diffs

received to mark sections of granules dirty. Beside sending the whole granule, the home only

sends the dirty blocks to the requesting worker, reducing the amount of data sent and reducing

network congestion. When the home sends data to a worker, it updates its write vector to mark

the block valid for this worker. More than reducing the size of data sent to worker, a write vector

implementation could be used to reduce the need for sending invalidations. The write vectors

from the home could be used to avoid sending invalidations to workers where the granules have

already been invalidated.
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Allowing the buffering of the writes until the "release" and allowing concurrent writers to

the same granule are the improvements of the eager release models over the sequential model.

However, the potential transmission of data to workers not needing it, even using WI protocol,

is an issue that could be addressed to increase the performance. The lazy release model solves

most of this problem at the cost of needing more complex data structures for its implementation.

0

Lazy Release Model

The classic implementation of lazy release consistency from the TreadMarks ([KCZ92]) SDSM

system uses the notion of twins and difFs presented in the previous section, and also uses times-

tamp vector ( Mat88]). A timestamp vector is an integer array V of size k, where k is the

maximum number of workers. Each worker w keeps a vector of the events that have been per-

formed locally: Vw[w] corresponds to the current event on this worker, and Vuj[i] (where i / w)

is the last event of worker i that has been performed locally.

In the case of lazy release consistency, events correspond to "acquire" and "release". On each

"acquire" and "release", worker w increments Vu; [w]. On an "acquire", w sends its V^ to the

last releasing worker r. On reception oiV^n r compares Vu, with the timestamp vector that was

stored at the last release (or with its current V to avoid storing the vector on release). When

V^[i] is less than Vr[i], events initiated by worker i have been performed at r and not at w.

These events must be performed at w prior to the "acquire" completion. After the comparison,

r sends w an updated version of V^ with the corresponding invalidations or data updates (in

respectively WI and WU protocols). After these operations, all the events that were performed

at r prior to the "release" are performed at w.

An example of the timestamp vector applied to the lazy release model using three workers

and four "acquires" is given in Figure 3.4. In this figure, one could notice that, even if worker c

did not send message to worker a, worker c is aware of events that have occurred at a.

To send the corresponding invalidations or data updates, the worker r must either cache all

the modifications or contact other workers caching them. Usually, r caches all the invalidations,

but not the corresponding diffs. These diffs are stored locally in each worker that has computed

them. This avoids local memory consumption for r, but results in a bad implementation of

a WU protocol because many workers have to be contacted on an "acquire". This is why a

WI protocol is almost always used with this algorithm. Moreover, using a WI protocol, the
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Time Worker a

^

Acquire(l) : (1,0,0)
Acquire(2) : (2,0,0)

Release(l) : (3,0,0)

Acquire(3) (issuing)

Acquire(3) ; (4,0,4)
Release(3) : (5,0,4)

Release(2) : (6,0,4)

Worker b

icquire(l) (issuing)

^cquire(l): (3,1,0)

Release(l) : (3,2,0)

Worker c

Acquire(3) : (0,0,1)

Release(3) : (0,0,2)

Acquire(4) : (0,0,3)

Release(4) : (0,0,4)

Lcquire(l) (issuing)

acquire; 1) : (3,2,5)

Release(l) : (3,2,6)

Figure 3.4: The Timestamp Vector Applied to the Lazy Release Model.

acquiring worker only requests data if memory is read, which is not necessarily the case in all

applications, reducing even more network use.

The TreadMarks algorithm for the implementation of lazy release consistency allows concur-

rent writers on a granule because the modifications are propagated with diffs (see Figure 3.3).

However, the quantity of memory needed to locally store the diffs is enormous. Garbage collec-

tion must be done regularly to avoid running out of memory. A solution to this problem, using

diffs compression, has been proposed in [RDF+00], but is not described in detail here.

To reduce this memory consumption, a single-writer implementation of lazy release consis-

tency has been proposed in [Kel96b]. According to benchmark results presented in that paper,

the multiple-writers implementation only performs an average of 9% better than the single-writer

implementation. The implementation of this single-writer lazy release consistency almost cor-

responds to the implementation of sequential consistency. A single worker, the owner, can have

a writable copy of a granule. At an "acquire", a worker receives invalidations about granules.

On a LOAD to an invalid granule, a worker fetches a copy of the granule cached at the owner.

Prior to a STORE, a worker which is not the owner fetches the granule cached at the owner

and becomes the owner. This algorithm allows LOADs in non-owner worker to perform concur-

rently with STOREs at the owner, and eliminates the diffs computation and storing overhead

at the cost of transmitting more data on the network. This implementation is suited when false

sharing on a granule is caused by a single writer and many readers since it does not prevent this
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situation2.
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When false sharing is caused by many writers to the same granule, the single-writer imple-

mentation of lazy release consistency is not suitable. A home implementation of lazy release

consistency benefitting of multiple-writers and low memory consumption is presented in [ZIL96].

As for the eager release model home implementation, diffs are sent to the home. On an "ac-

quire", a worker still receives invalidations, but, on a LOAD to invalidated memory, it requests

the granule to the home. As in eager release consistency, fetching of the whole granules could

be unnecessary because only small parts of the granule could have been modified. The write

vector technique, explained in the eager release consistency implementation, could be used to

reduce unnecessary network traffic.

In both home and TreadMarks implementation, lazy diff creation could be implemented

([Kel95]). When using lazy diff creation, the diffs are not computed at the "release", but as late

as possible. In the TreadMarks implementation, the diffs are only required when the updates

are first requested by a worker, or when an invalidation is received on a granule where pending

modifications exist. In the home implementation, the diffs are only required when the first

worker fetches an invalidated granule at the home, or when an invalidation is received on a

granule where pending modifications exist. To avoid a diff request from the home to the worker,

difTs could be computed at the next "acquire" from a worker.

A performance comparison of the TreadMarks and home implementation of lazy release con-

sistency was presented in [Cd+99]. The results are that four out of seven benchmarks perform

within a 4% variance for both implementations, two benchmarks are faster with the TreadMarks

implementation and one is faster with the home implementation. However, these results were

published prior to the optimization of [Hu99] and other optimizations of the home-based imple-

mentation of lazy release consistency that are not presented in details here ( HST99, YLLM01]).

A new comparison of the TreadMarks, the home and the single-writer implementation algorithms

would be useful to actualize these results.

2The eager release memory consistency model could also be implemented using a similar algorithm to avoid

the diff computation.

0
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3.3.4 Implementing Synchronization Primitives

All the synchronization primitives can trivially be implemented using centralized protocols. For

barriers, a "reach" sends a notification to the home, the home informing all workers when the

barrier can be "lowered". For mutexes, an "unlock" sends a notification that the mutex is

available to the home, a "lock" sends a request for the mutex to the home, this request being

answered when the rautex becomes available. For condition variables, a "wait" causes a worker

registration at the home in the waiting queue, a "signal" notifies the home that one waiting

worker can be woken up, and a "broadcast" notifies the home to wake up all waiting workers.

The centralized implementations of the synchronization primitives are simple, but lack adapt-

ability and scalability. For global barriers, this is not a major issue because it is always an ex-

pensive operation. In the case of mutexes and condition variables, if the home does not use the

primitive, the implementation could be enhanced by migrating the responsibility of primitive

management to workers that are using the primitive.

Distributed Mutex

Distributed mutexes can be implemented using the migration algorithm presented in [NTA96].

Each time a mutex is "locked", the locking worker becomes the owner of the mutex. This

migration avoids network messages when a worker "locks" a mutex twice in a short time. To

implement this migration, each worker only has a hint to which worker is the owner, this link

being updated from worker i to worker j when a worker forwards a lock request from worker j

to worker i. In addition to the ownership hint, each worker has a link to the next worker to give

the mutex to when the mutex is to be "unlocked" . The number of messages needed to "lock" a

mutex using this algorithm is in 0(log(n)) for the average case (n being the number of workers).

Distributed Condition Variables

0

For distributed implementations of condition variables, [MueOO] presents an algorithm partially

based on the mutex algorithm of [NTA96]. This algorithm is complex, thus not presented in

this document. The reader is referred to this article for more information about distributed

implementation of condition variables.
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Distributed Global Barriers
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Even if a centralized implementation of global barriers is acceptable, the home must send many

messages on a "lower" and receives many messages of barrier "reach" when lots of workers

participate in the computation. To reduce the number of messages sent by the home, a tree

barrier ([MueOO ) could be used. In a tree barrier, the home sends lowering message to workers

that, on reception, forward the message to other workers. This distributed barrier implemen-

tation allows the home to send less messages and reduces the total time spent by the home for

the barrier management. Moreover, a tree-barrier can keep the home from receiving the "reach"

messages from all workers. Once the first tree barrier has been done, a worker only sends "reach"

message to its parent. When a worker has received "reach" messages from all its children and

has itself reached the barrier, it then sends a "reach" message to its parent for all its children

and itself, reducing the number of messages received by the home. The main advantage of the

tree barrier algorithm is to reduce the number of messages sent and received by the home.

3.4 SDSM System Utilization

How to use a SDSM is system-specific. The exact information about the utilization of a SDSM

system can be found in its documentation. However, some general concepts about program

startup, task partitioning, shared memory and synchronization primitives are similar in many

systems and are presented. These concepts, taken from the documentation of the SDSM sys-

terns Unify, CRL, CVM, Quarks and TreadMarks ([GYF95, JKW95, Kel96a, Kha95, TMK96]

respectively), are presented in this section.

0

3.4.1 Program Startup

The usual way to start a SDSM program is by calling a special startup function. The arguments

given to this function, usually taken from the program arguments, specify what work must be

done. The meaning of the arguments is system-specific.

To execute a SDSM program, a list of nodes is usually given as argument to the program.

The startup function will receive this list and remotely start a worker on each node. How this

is exactly done is system-specific, but often use the rsh UNIX program.
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3.4.2 Task Partitioning

The SDSM systems usually support a static task partitioning where the task assigned to each

worker is based on the number of workers and the index of each worker. At run-time, each

worker performs its task according to these two parameters.

Prior to the execution of the program, the number of workers is not known (except if the user

always runs his program using the same number of workers). In the general case, the program

must be written using worker indexes and the number of workers to partition the computation.

In this case, if the user wants better performances, he can run his program using more workers

on more nodes.

Using this partitioning method, the index assigned to each worker is not known prior to the

program execution (except if the SDSM system assigns worker index according to the order of

the nodes specified as arguments). This restriction means that a programmer cannot develop

an application assuming that a specific node will perform a specific task. As the workers must

be considered equivalent, the programmer must not assume the availability of specific resources

only accessible on some nodes.

0

3.4.3 Shared M^emory Utilization

The use of the shared memory in each SDSM system is different. However, the notion of

region, not always named like this, can be found in almost all SDSM systems. The region is

the memory allocation unit of a SDSM. When shared memory is allocated, a region is created.

After creating a region, the workers can map the region in their local memory. Once mapped,

the region becomes the local cache of the shared memory. Programmers can also unmap and

destroy regions.

When executing the mapping, the region can be loaded at the same memory address as the

other workers, or at a different address. When regions are not mapped at the same address,

standard programming language pointers cannot be stored in shared memory because the map-

ping location is potentially different on each workers (a pointer is valid in a worker cache, but

not on other caches). In this case, to address shared memory, the programmer must use custom

pointers composed of a region id and an offset in that region.
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When regions are mapped at the same address, pointers can be used in shared memory.

However, memory must be reserved prior to program execution to allow the mapping of regions,

limiting the amount of shared memory to the quantity of memory reserved at program startup.

Moreover, using this algorithm, the amount of shared memory is limited by the node having the

less memory. Even if trying to avoid this problem by a kernel implementation, shared memory

is still limited to the size of the address space (4 gigabytes on 32-bit architectures like the Intel

x86). When regions are not mapped at the same addresses, an application could theorically use

more shared memory than the address space limit if the workers do not locally map more than

this limit.

Some SDSM systems, such as CRL, CVM and Quarks ([JKW95, Kel96a, Kha95]), explicitly

allow to create, map, unmap and destroy regions. Other SDSM systems, such as Unify and

TreadMarks ([GYF95, TMK96]), allocate and map the regions at startup, providing a memory

allocator that manages memory in these regions. These last two SDSM systems map their

regions at the same address in memory, the others do not necessarily do so.

Support Several Memory Consistency Models

The support for many memory consistency models has been proposed to increase performance

of SDSM applications ([Car94]). The advantage of supporting many consistency models is the

flexibility provided to the programmers of choosing which model to apply to different sections

of shared memory. In an application, different sections of memory are accessed using different

access patterns. With many memory models at his disposition, a programmer is able to tune

his application by using the appropriate model according to the access pattern. One of the most

interesting advantage of providing multiple memory consistency models is the ability to choose

between a write-update and a write-invalidate protocol.

0

3.4.4 Synchronization Primitives

The utilization of synchronization primitives follows the normal use of barriers, mutexes and

condition variables as introduced in Section 2.2.1. Barriers allow waiting for workers at a point

in the program. Mutexes allow enforcing mutual exclusion by allowing only one worker to be in

a critical section. Condition variables allow one or many workers to wait for a condition to be
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set by another worker, avoiding active waiting.
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The behavior of synchronization primitives are SDSM system specific. To obtain more details

about their use, such as the reentrancy behavior of mutexes, the documentation of the SDSM

system used should be consulted.

When using the eager and lazy release models, the "acquire" and "release" accesses can

be merged with synchronization primitives to simplify the programming model. A "reach"

and "lower" on a barrier are considered as "release" and "acquire" respectively. A "lock" and

"unlock" on a mutex are considered as "acquire" and "release" respectively. Condition variables

are not merged with consistency operations because they are used in conjunction with mutexes.

3.5 Other SDSM Topics

This section is devoted to interesting topics in the SDSM field that are not directly addressed

by this document but worth mentioning. These topics are not deeply covered, but some biblio-

graphic references are given for the interested readers. The four topics addressed are SDSMs on

multiprocessors, fault-tolerant SDSMs, the Linda model and SDSMs son heterogeneous NOWs.

0

3.5.1 SDSMs on Multiprocessors

The basic target architecture of SDSMs is NOWs. However, as multiprocessors with two proces-

sors are often less expensive than two uni-processor workstations due to shared components, a

NOW could be composed of multiprocessor nodes. Spreading the cost of a high performance net-

work and other expensive hardware on dual-processors multiprocessors could be a cost effective

solution to increase the computing power of a NOW.

To take advantage of this special type of NOW, as many workers as the number of processors

could be launched on each node. However, as these workers have been initially designed to run

on distinct nodes, they communicate using message passing. They do not take advantage of

the physical shared memory available on local nodes. Moreover, on a NOW of dual-processors

multiprocessors, the amount of communication is doubled compared to uni-processor because

both workers on the same node must be notified of consistency operations. Furthermore, workers

on the same node could cache the same shared memory, increasing memory consumption.
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To provide a better way to use multiprocessor NOWs, a SDSM system could spawn locally

many workers for a single managing instance. This would reduce the communication needs

between the workers as only one manager per node needs to be notified of consistency operations.

Moreover, with a single manager for many workers, only one cache of the shared memory would

be needed, reducing the memory consumption.

The SDSM system DSM-Thread provides the programmers with these facilities. More infor-

mation on multi-threaded SDSMs can be found in [Mue97] and [MueOO].

3.5.2 Fault-Tolerant SDSM Systems

In classic SDSM systems, when a node fails, the complete application crashes because data

needed by the application could be lost due to the failure. As the probability of the failure of a

node is low, this behavior is acceptable in the majority of applications.

However, since the probability of a single node failure grows with the number of node, the

probability of failure can become unacceptable on a large NOW. Moreover, in applications taking

a long time to execute, a crash is very annoying near the end of the computation. Furthermore,

in some critical applications, such failures are unacceptable. In these cases, fault tolerance

strategies must be implemented to avoid an application crash in case of a node failure.

Some fault-tolerant SDSM systems have been developed to avoid the crash of an application

after a node failure. A strategy used to provide fault tolerance is backward error recovery (BER)

also known as checkpointing. In checkpointing SDSM systems, regular backups of the state of the

computation are performed ([KCG+95, MKB97]). In the event of a node failure, the computation

is restarted from the last backup.

The checkpointing strategy can be suitable for scientific applications where the lost of a

small amount of computation can be afforded. However, in applications needing more real-time

responsiveness, this strategy cannot be used. The boundary-restricted protocol ([FMSTOO])

addresses this problem. This protocol is implemented in the Oasis+ SDSM system ([WLF01]).

Fault-tolerant SDSM systems are still an open field of research. More results are needed to

achieve acceptable SDSM fault tolerance at relatively low cost in a wide range of applications.

0



0
CHAPTER 3. DISTRIBUTED SHARED MEMORY

3.5.3 The Linda Model
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Other shared memory models exist. Among them, the Linda model ([ACG86, CG90]) provides

the programmer with a tuple space where tuples can be inserted and removed according to field

matching. Once added to the tuple space by a computing instance, a tuple can be removed

by any instances of the computation. Once removed, a tuple is only accessible by the instance

which has removed it from the tuple space.

The task partitioning model of a tuple space is the bag of tasks. Tasks are inserted and

removed from the tuple space to represent the computation. The bag of tasks partitioning

discussed later in this document has been elaborated from the Linda model.

Contrary to other SDSMs, Linda does not provide linear shared memory abstraction. The

only shared memory available is the tuple space. All shared data must be converted to tuples

before being used. A problem with this approach is the implementation of constant data. To

allow other workers to consult the data, a worker must always insert back the tuple after having

removed it and read its content.

A commercial implementation of Linda is available. More details are available on the web

site of the company Scientific Computing Associates Inc. ([lin]).

3.5.4 SDSMs for Heterogeneous NOWs

The focus of this work is on homogeneous NOWs built from nodes of the same computer

architecture (but not necessarily of the same speed). Some SDSM systems, such as Inter-

Weave ([PCD+00]), target heterogeneous NOWs built using different computer architectures.

Having a distributed shared memory on heterogeneous NOWs allows to maintain a distributed

shared state on applications running on heterogeneous NOWS, such as the Internet. One of

the problem that must be addressed by such systems is the different representation of data on

different architectures.

0
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SDSM systems are a relatively new tool for the development of parallel applications on NOWs.

Their niche is between multiprocessing and pure message passing. SDSM systems will not replace

multiprocessors because the performance of SDSM applications cannot match their performance

in applications needing lots of communication. Moreover, some applications, traditionally de-

veloped using message passing, do not perform well on SDSM systems because of the overhead

introduced by the management of shared memory.

The greatest advantage of SDSMs is the reduction of code needed to develop a parallel

application, thus producing a more elegant solution than message passing. This clear superiority

of SDSM, used adequately on problems needing little communication or where the speed is not

the prime objective, is the niche of SDSM systems.

When the cost of development and maintenance of a message passing application will be

greater than the performance degradation engendered by the use of a SDSM system, program-

mers could switch from the message passing model to SDSM systems. However, this assumes

the availability of SDSM systems and the awareness, by the parallel programming community,

of their advantages. This still needs to be done by presenting results about the success of SDSM

systems solving known, impressive and relevant problems. The SDSM killer application has not

been found yet.

3.7 Summary

0

This chapter was an introduction to the field of DSMs and more particularly SDSMs. The

definition of a DSM, the memory consistency models, the implementation of SDSM systems,

their use, miscellaneous SDSM topics, and the niche of SDSMs have been discussed.

We have seen that a DSM is an emulation of shared memory on NOWs. This shared memory

does not physically exist but is simulated using a cache on each node. Because many caches are

maintained, coherence among these caches must be enforced. How the caches are kept coherent

is defined by a memory consistency model.

Four memory consistency models have been presented: the sequential, processor, eager re-
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lease and lazy release models. These models define different restrictions on the ordering of mem-

ory accesses. Some models are more relaxed than others, enforcing less restrictions on memory

access ordering. Strict models are usually easier to use, but result in inefficient implementations

due to their restrictions on access ordering.

In the section about the implementation of SDSM systems, the centralized and distributed

protocols, and the write-update and write-invalidate memory implementations have been pre-

sented with their advantages and drawbacks. Algorithms about the implementation of the

sequential, eager release and lazy release memory models were also presented. We have seen

that implementing a relaxed model such as the lazy release is more difficult than a strict model

like the sequential or eager release models, but the benefits obtained from these implementa-

tions are worth their complexity. Centralized and distributed algorithm for the implementation

of synchronization primitives have also been mentioned.

In the section about the utilization of SDSM systems, the startup of a SDSM program (by

giving a list of nodes as the program arguments) has been presented along with the task par-

titioning method based on the number of workers and the index of each workers. The shared

memory region concept and its related operations (creation, mapping, unmapping and destruc-

tion) have also been presented along with the utilization of synchronization primitives. Moreover,

the reader was introduced to SDSM systems supporting many memory consistency models, al-

lowing the programmer to choose the appropriate model according to the sharing pattern of his

application.

The miscellaneous SDSM topics covered included SDSMs on multiprocessors and fault-

tolerant SDSM systems. We have seen that some optimizations could be done in SDSM systems

to increase their performance on multiprocessor nodes and that fault tolerance is an issue that

SDSM systems will have to address before being suitable for long running and critical applica-

tiens. The Linda model and SDSM systems on heterogeneous NOWs were also mentioned.

Finally, we have explained why SDSM systems will neither replace multiprocessors nor mes-

sage passing. Their advantage over message passing is ease of use, and, over multiprocessors, low

cost. However, as they introduce overhead, they cannot beat a well tuned message passing appli-

cation, and, as they are limited by the communication interface of NOWs, they cannot reach the

high performance of multiprocessors. However, they can achieve relatively good performances

in some applications considering the easy and quick development of SDSM applications.
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Chapter 4

YADL Description

YADL is designed to address most needs of SDSM programmers, usability being the first one.

It features many key concepts of SDSMs including support for multiple memory consistency

models. Moreover, it provides the programmer with the ability to choose between two task

partitioning methods.

Section 4.1 describes the specifications of the system. The implementation details are given

in Section 4.2, followed, in Section 4.3, by the utilization of the system.

4.1 Specifications

This section describes the specifications of YADL. These specifications result from the choices

that were made prior to the implementation of the system. As the reader will notice, this section

does not present implementation details. Those details are presented in Section 4.2.

This section begins by elaborating the requirements and design choices. The API of the

system, designed according to the requirements, is then presented and explained.

0
4.1.1 Requirements and Design Choices

Prior to the development of YADL, the following requirements were identified:
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1. Accommodate novice and expert programmers;

2. Support several memory consistency models;

3. Allow easy extension;

4. Supply efficient computation partitioning methods;

5. Allow the use of as much shared memory as possible.

Each of these requirements is presented in this section. The design choices motivated by

these requirements are presented along them.

Accommodate Novice and Expert Programmers

Some programmers are novices and others are experts. The novices want most of the work to

be done by the SDSM system. YADL should provide them with an interface hiding most of

the SDSM actions, such as detecting memory accesses with the VMH and combining memory

consistency operations with synchronization primitives (see Sections 3.2.4, 3.2.5 and 3.3.1).

However, relying only on a high-level interface forbids some optimizations that could be done

by experts. Thus, a low-level interface should also be provided.

To accommodate novice and expert programmers, YADL must provide memory models using

annotations and using the VMH. Moreover, consistency operations must be available directly

or via synchronization primitives. To fulfill these requirements, an interface to the shared

memory must allow the annotation of beginning and end of memory accesses. Moreover, multiple

region and synchronization primitive types must be available and must be able to be used

simultaneously in a program. This will allow a programmer to use both annotated and VMH

shared memory in his program and will allow him to both directly and indirectly control the

consistency operations performed on shared memory.

u

Support Several Memory Consistency Models

Supporting several memory consistency models has been proposed to allow tuning an application

according to the data sharing pattern (see Section 3.4.3). Providing such a feature would allow

YADL to be more flexible and would increase its efficiency.

To support several memory consistency models and to allow easy extension, the region cre-
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ation and shared memory access annotation processes must be as generic as possible to allow

the implementation of any memory model. The region creation process must allow supplying

a memory type to specify which memory consistency model should be applied to the region.

Moreover, the region creation process must also allow the programmer to supply type-specific

data. This data could be tuning parameters, such as A for sequential model or the diff unit

of the release models (see Section 3.3.3). Finally, the granularity of the region must also be

specified at the creation process to allow the programmer to choose the granularity according

to the characteristics of his application (see the introduction of Section 3.3.3).

Allow Easy Extension

Equally, if not more important, is the ability to easily add new consistency models and new

implementations of existing models to the system. This would serve research needs as it would

allow the comparison of different models and implementations. Moreover, this would be a great

benefit to programmers as, when in need for a new or custom memory consistency model, they

could add it to the system. This would allow YADL to be used in many situations where the

development of a communication protocol is normally needed.

To allow easy extensions, the implementation of the system must be as modular as possible.

The addition of a memory consistency model or synchronization primitive should only be a

matter of adding a new module to the system.

0

Supply Efficient Partitioning Methods

Partitioning the computation is essential to the parallelization of an application (see Section

2.1). YADL should provide the programmers with the ability to easily and efficiently partition

their computation.

As exposed in Section 3.4.2, SDSM systems usually support a static computation partition-

ing method based on the number of workers and the index of each worker. This simple and

intuitive partitioning method is only suited for problems where equal size task partitioning can

be achieved. If this cannot be done, load balancing cannot be achieved and some workers finish

their tasks sooner and stay idle. Moreover, for the same reason, this partitioning method is also

not suited when different processor speeds are used. Furthermore, it does not allow new workers
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to join the computation because no task can be dynamically given to them.
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Because of its simplicity and popularity, the static partitioning (this is how will be called

in the rest of this document the partitioning method based on the number of workers and the

indexes of workers) should be supported by YADL. However, a dynamic partitioning approach

should also be provided for the cases where the static partitioning delivers bad performance.

The bag of tasks (BOT) approach ([CG90]) is suitable for this purpose.

When using the BOT partitioning, a program is partitioned in tasks that are stored in a

management service. Each worker requests and executes tasks. An extended task management

service could support task dependencies where a task /3 dependent on task a will not be assigned

to a worker before the completion of a. Moreover, an extended BOT service could also support

task substitution. Substituting a task T consists in replacing it by sub-tasks which must all be

completed before the assignation of a task depending on T. This substitution allows divide-and-

conquer algorithms to be implemented easily.

The EOT partitioning allows new workers to join the computation because tasks can be

dynamically assigned to them. It also allows a worker to leave the computation when it is done

with its current task. The BOT partitioning also reduces the problems associated with different

processor speeds and unequal task partitioning: the faster workers simply execute more tasks.

0

Allo^v the Use of As Much Shared Memory As Possible

Allowing the use of as much shared memory as possible is useful to avoid being limited by a

node with less physical memory. It is also useful to avoid the 4 gigabyte limitation of the 32-bit

architectures (see Section 3.4.3).

To allow the use of as much shared memory as possible, explicit shared memory mapping

has been chosen. As explained in Section 3.4.3, one of the operations on shared memory is the

mapping. The mapping can be done implicitly or explicitly. Explicit memory mapping was

chosen to provide the programmer with the ability to unmap unused memory. This does not

forbid the mapping of regions at the same address on different workers as this feature can be

implemented by a specific region type.
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4.1.2 Application Programming Interface

This section presents the application programming interface (API) of YADL in pseudo-C lan-

guage. This API has been designed to fulfill the requirements without regards to implementation

concern. The proposed flexible API is the stronger aspect of YADL as it allows to address most

current and future requirements.

All the functions of the API return an integer value. This value is zero on success (the

constant DSM_OK), or a non-zero error code on failure.

System Management

0

The system management functions are listed in Figure 4.1.

int DSM_Start(int argc, char *argv[]);
int DSM_Stop();

int DSM_GetWorkerIndex();
int DSM_GetNumberOfWorkers();

int DSM_GetTask(DSMTask_t *pTask);
int DSM_ConunitTask(DSMTask_t *pTask) ;
int DSM_ReplaceTask(DSMTask_t *pTask, DSMAddTask_t *pAddTaslcs, size_t NbTasks);
void DSM_InitAddTask(DSMAddTask_t *pTask, int nType, char *TaskData, size_t nTaskData, int nDep);

Figure 4.1: The System Management API.

DSM_Start and DSM_Stop are used to initialize and halt the SDSM system. The parameters

given to DSM-Start specify initialization informations.

DSM_GetWorkerIndex and DSM_GetNumberOfWorkers return, when using the static parti-

tioning, the index of the current worker and the number of workers respectively. When us-

ing the BOT partitioning, they return a unique identifier for the current worker and the last

known number of workers. It is important to notice that the unique identifier returned by

DSM_GetWorker Index could be greater than the last known number of workers returned by

DSM-GetNumberOf Workers if workers leave the computation.

DSM_GetTask, DSM_CommitTask and DSMJieplaceTask are used to request a task, signal the

completion of a task and substitute a task respectively. DSM_InitAddTask is supplied for ease

of programming: it initializes the task pTask with the arguments given in parameters. These

functions should only be called when using the BOT partitioning.
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Operations Commons to All Resources

The functions common to all resources are listed in Figure 4.2. The YADL resources are the

regions, the barriers, the mutexes, the condition variables and the semaphores.

int DSM_Create<Resource>(DSM<Resource>Data_t *pData);
int DSM_Info<Resource>(int n, DSM<Resource>Data_t *pData);
int DSM_Destroy<Resource>(int n);

Figure 4.2: The Operations Common to All Resources.

The function DSM_Create* is used to create a resource. The parameter pData includes the

resource number, type, and type-specific data. The resource number is used to globally identify

the resource, the type corresponds to a resource type, and the type-specific data is an union

incorporating all possible informations that could be required at the resource creation. The

function DSM-Info* returns informations about resource number n in the parameter pData. The

function DSM_Destroy* destroys the resource n.

In the special case of the regions, pData also includes fields about the size and granularity

of the region. The size is the requested shared memory size and the granularity is the unit at

which the region is managed.

Operations on Regions

0

The region management functions are listed in Figure 4.3.

int DSM_CreateRegion(DSMRegionData_t *pRegionData);
int DSM_InfoRegion(int n, DSMRegionData_t *pRegionData);
int DSM_DestroyRegion(int n);

int DSM_MapRegion(int nRegion, void **pp);
int DSM_UnMapRegion(int nRegion);

int DSM_BeginAccess(int nRegion, size_t Dff, size_t Len, DSMAccess_t Access, void **pp);
int DSH_EndAccess(int nRegion, size_t Off, size_t Len, DSMAccess.t Access);
int DSM_PrefetchAccess(int nRegion, size_t Off, size_t Len, DSMAccess_t Access);

Figure 4.3: The Region Management API.

The function DSMJlapRegion allocates local memory for region nRegion, and modifies the

parameter pp to indicate its mapping site. When a region is not mapped, no memory is locally

reserved. This allows the total amount of memory used to exceed the address space of the

processor (if the amount of memory mapped at any time by any worker fits in the address
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space). The function DSM-UnMapRegion frees the memory allocated for region nRegion.

The functions DSM-BeginAccess, DSM-EndAccess and DSM_PrefetchAccess are used to an-

notate memory accesses. They are provided for the implementation of the low-level interface

discussed in Section 4.1.1. The parameter nRegion is the region number to which the access

is performed, the parameter Off is the offset where the access is performed, the parameter

Len is the length of the memory range where the access is performed, the parameter Access

is the access type that is performed (DSM_REGIONJICCESSJÎEAD, DSMJIEGIONJICCESS-WRITE or

DSMJIEGIONJICCESSJIEAD_WRITE), and the parameter pp is modified to point to the memory

that is accessed. The use of these functions is specific to the region type.

Operations on Barriers

The barrier management functions are listed in Figure 4.4.

int DSM_CreateBarrier(DSMBarrierData_t *pBarrierData);
int DSM_InfoBarrier(int n, DSMBarrierData_t *pBarrierData);
int DSM_DestroyBarrier(int n);

int DSM_WaitInit(int n);
int DSM_ReachBarrier(int nBarrier);

Figure 4.4: The Barrier Management API.

The function DSM_WaitInit implements a global barrier (see Section 2.2.1). This barrier

must be provided to allow the synchronization of workers at initialization when using the static

partitioning. If this barrier not was provided, no synchronization would be possible at program

startup because the synchronization primitives are not yet created. The parameter n, a number

identifying the barrier, is only used for clarity of code and debugging purposes. This function

should only be called when using the static partitioning.

The function DSMJleachBarrier performs a "reach" operation on the barrier nBarrier. This

function returns only when the correct number of workers have reached the barrier.

u

Operations on IVIutexes

The mutex management functions are listed in Figure 4.5.

The function DSMJLockMutex performs a "lock" on the mutex nMutex, and the function
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int DSM_CreateMutex(DSMMutexData_t *pMutexData);
int DSM_InfoMutex(int n, DSMMutexData_t *pMutexData);
int DSM_DestroyMutex(int n);

int DSM_LockMutex(int nMutex, int nFlags);
int DSM_UnlockHutex(int nHutex);

Figure 4.5: The Mutex Management API.

DSM_UnlockMutex, an "unlock". The parameter nFlags given to DSMJ.ockMutex is specific to

the mutex type and could specify a non-blocking mutex. The reentrancy behavior of mutexes

is mutex type-specific.

Operations on Condition Variables

The condition variable management functions are listed in Figure 4.6.

int DSM_CreateCondVar(DSMCondVarData_t *pCondVarData);
int DSM_InfoCondVar(int n, DSMCondVarData_t *pCondVarData);
int DSM_DestroyCondVar(int n);

int DSM_WaitCondVar(int nCondVar, int nMutex);
int DSM_BroadcastCondVar(int nCondVar);
int DSM_SignalCondVar(int nCondVar);

Figure 4.6: The Condition Variable Management API.

The function DSM-WaitCondVar performs a "wait" on the condition variable nCondVar un-

locking the mutex nMutex at the same time of the "wait", the function DSM_BroadCastCondVar,

a "broadcast", and the function DSM_SignalCondVar, a "signal".

Operations on Semaphores

The functions related to semaphore management are listed in Figure 4.7.

int DSM_CreateSemaphore(DSMSemaphoreData_t *pSemaphoreData);
int DSM_InfoSemaphore(int n, DSMSemaphoreData_t *pSemaphoreData);
int DSM_DestroySemaphore(int n);

int DSM_WaitSemaphore(int nSemaphore, int nFlags);
int DSM_SignalSemaphore(int nSemaphore);

Figure 4.7: The Semaphore Management API.

The function DSM_WaitSemaphore performs a "wait" on the semaphore nSemaphore, and the

function DSM_SignalSemaphore, a "signal". The parameter nFlags given to DSM_WaitSemaphore
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is semaphore type-specific and could specify a non-blocking semaphore.

Consistency Operations

The consistency management function is listed in Figure 4.8.

int DSM.Release(void);

Figure 4.8: The Consistency Management API.

The functions DSMJlelease perform a "release". It is used for the implementation of the eager

release consistency model (see the implementation of eager release consistency in Section 3.3.3).

4.2 Implementation

In Section 4.1.1, the specifications have been presented without regard to the implementation

details. The current section explains how YADL is implemented. As the system is only partially

implemented, the first section introduces an overview of the implementation describing what has

been implemented. Following the overview, the architecture of the system is presented, explain-

ing the general flow of data and messages. The different memory consistency models currently

available are then presented, and their implementation algorithm are also explained. Follow-

ing the implementation of memory consistency models, the implementation of synchronization

primitives is presented. Finally, the implementation of the bag of tasks is explained.

0

4.2.1 Overview of the Implementation

YADL is functional, but some features are not implemented yet. Partially or completely imple-

mented features are the static and the BOT partitioning, the region and the mutex management

functions, the "init" global barrier and the function DSMJlelease. The features that are not

implemented are the general barriers, the semaphores and the condition variables.

The static partitioning has been completely implemented. The functions DSM-GetWorker-

Index and DSM-GetNumberOf Workers have also been implemented according to the static parti-

tioning specifications. Moreover, the function DSM-WaitInt provides a functioning global barrier.



n
CHAPTER 4. YADL DESCRIPTION 51

As barriers are not implemented, the "init" is actually the only way to perform a global barrier

in the system.

The BOT partitioning is partially implemented. The functions DSM_GetTask, DSM_Commit-

Task and DSMJleplaceTask are implemented. DSM_GetWorkerIndex and DSM_GetNumberOf-

Workers are also implemented according to the BOT partitioning specifications. Very little

work would be needed to implement the addition of workers in the middle of the computation.

However, worker departure from the computation is not implemented, and lot of work would

be needed to implement it. The complexity of worker removal implementation is due to the

modification of the memory consistency algorithm required to support this feature.

The region management interface is almost completed. The functions DSM_CreateRegion,

DSM_MapRegion, DSM_UnMapRegion, DSM_BeginAccess, DSM_EndAccess and DSMJ'refetchAc-

cess are implemented. Three region types are implemented, their implementations are described

in Section 4.2.3. As two of these region types implements eager release consistency, the function

DSMJielease is provided to perform a "release". However, the function DSM-InfoRegion and

DSMJÎestroyRegion are not implemented, but, as they are not essential to the development of

parallel applications, this is not a limitation.

The mutex management interface is almost completed. DSM-CreateMutex, DSMJ.ockHutex

and DSM_UnlockMutex are implemented. A single mutex type has been implemented, its imple-

mentation is described in Section 4.2.4. However, the functions DSM-InfoMutex and DSM_Des-

troyMutex are not implemented, but again, as they are not essential to the development of

parallel applications, this is not a limitation.

Even if only a partial implementation has been done, complete parallel programs can be de-

veloped with YADL using both the static and the BOT partitioning. The benchmarks presented

in Chapter 5 prove this.

4.2.2 Architecture

0

The architecture of YADL is composed of three different entities: the server, the clients and

the network. In the course of execution of a YADL program, one server and many clients

communicate via the network as shown in Figure 4.9. The next sections present each of these

components.
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Server Client Client Client

Network

Figure 4.9: The Architecture of YADL.

The Network Layer

The network layer, called UDN (Universal Datagram Network), provides reliable packet-oriented

communication. The packet-oriented nature of the network layer implies that the unit of commu-

nication is a message including a size and the corresponding data. The reliability characteristic

of the packet transmission guarantees that, once emitted, the packet will be received only once

at its destination and that the packet payload will not be corrupted. However, the order of

packet reception is not defined: two packets sent to the same destination by the same sender

are not necessarily received in the same order as they were sent.

The network layer has been designed to be easily implemented over UDP/IP ([Ste94]). When

implementing UDN over UDP, only reliability needs to be added to the protocol. This could

be achieved by packet numbering, retransmission and acknowledgment as for HDLC ([Hal96]).

Moreover, to avoid the overhead of the IP protocol, UDN could be implemented directly over

Ethernet or any other low overhead link layer protocol.

UDN has not been implemented over UDP yet. The current implementation of UDN is

over TCP/IP. This implementation is straightforward as TCP already provides reliable delivery

services. The packet transmission over TCP is implemented by inserting, in the TCP stream,

the size of the packet followed by the payload. When TCP data is read, the size is read first

to know how much data follows. After reading the data, the next read on the TCP stream

is aligned to a packet size. This alignment is important to keep the integrity of the packet

communication. To reduce the number of system calls, when reading packet data, enough buffer

space is allocated to also read the next packet size. This reduces the number of system calls,

when another packet is available in the TCP stream, by reading both the payload and the next

packet size using a single system call.

UDN provides blocking and non-blocking send and receive functions. It also provides send

and receive UNIX "select" wrappers to avoid active waiting for sending and receiving packets.
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Its implementation should be thread-safe in the future, but is not in the current implementation.

When many threads are sending packets through UDN, mutual exclusion must be enforced to

avoid more than one thread to be in the UDN layer at the same time. The current implemen-

tation is not multi-threaded, but future releases of UDN over UDP and Ethernet will probably

be multi-threaded.

The Server

0

The server purpose is to be the first point of contact for workers when they are started and when

they need information about regions or synchronization primitives. When a worker is created,

it sends a join request to the server. This request is normally answered by a join notification,

informing the worker that it has been placed in the worker list. When using static partitioning,

once all the workers have joined the computation, a start computation notification is sent by

the server to all workers. When using the BOT partitioning, the server sends a start compu-

tation notification immediately after the join notification. This allows, when using the BOT

partitioning, workers to start their computation as soon as they join the computation. The start

computation notification includes the index of the worker and the number of workers participat-

ing in the computation. These values are accessible using the functions DSM_GetWorkerIndex

and DSM_GetNumberOf Workers respectively.

While performing their computation, the workers need to create and access shared memory

and synchronization primitives. When creating these resources, a worker registers itself at the

server as the creator of the resource. When a worker needs to access an unknown resource, it

sends a data request to the server. The server forwards the request to the creator of the resource

that answers it.

The two other responsibilities of the server in the current implementation are to manage

the "init" barrier and to manage the BOT service. These responsibilities could be implemented

using distributed algorithms. However, the centralized implementation in the server has been

chosen for ease of implementation.

The tasks to be carried by the server, apart from the BOT management, are tasks that occur

infrequently: adding or removing workers is occasionally done, resource data request forwarding

occurs only the first time a worker needs informations about a resource, and the "init" barrier

should only be used at the beginning of a static partitioning computation. Except for the EOT,
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the centralized server implementation should not reduce the performance of YADL nor cause

a bottleneck. Only the BOT could cause problems which could be solved in the future by

implementing a distributed BOT management.

The server is implemented as a simple message loop. The server waits in a loop for requests.

When a request is received, it is treated according to its type. These requests could be a resource

creation notification, a resource data request, a task request, a task commit, a task replacement,

an "init" reach, or a worker join request. As these requests are infrequent, the server can be

run on the same node as one of the client to avoid dedicating a node of the NOW to the server

execution.

The Client

0

The architecture of the client is more complicated than the architecture of the server because

the client is an entity composed of two threads: the manager and the worker. The worker

thread is running the SDSM application, and the manager thread, the SDSM system itself.

Both threads communicate with the server and other clients, but only the manager receives and

answers requests from other clients, as shown in Figure 4.10. As the current implementation of

UDN is not thread-safe, a mutex must be locked before the manager or the worker send data

via UDN to guarantee the integrity of the UDN layer.

Client

Worker Manager

* * A

Network

Figure 4.10: The Architecture ofYADL's Client.

This architecture avoids merging the manager and the worker in the same thread. Multi-

threaded clients have been avoided in the past, probably due to the overhead brought by multi-

threading. In single-threaded SDSM systems, the SIGIO signal is used to interrupt the SDSM

application to allow answering requests ([KCDZ94, Kha]). The multi-threaded approach was

chosen for its simpler implementation and to eventually support multiprocessor NOWs by having
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more than one worker with a single manager (see Section 3.5.1). Moreover, by not using the

SIGIO signal to implement the system, a programmer can use this signal in his application to

manage asynchronous messages, which provides him with more freedom.

The Manager

The manager is mainly responsible for answering requests from other clients and to receive

the answers from requests issued by itself or by the worker thread. The manager is in a "select"

loop, waiting for data the be available, or waiting for the availability of network buffers.

Little data is sent directly when handling a request because the manager must not block

on a send, resulting in the impossibility of answering other requests and perhaps resulting in

a network deadlock. To allow to serve these requests later, the manager has a pending send

queue of the requests that have not been completely answered yet. When network buffers are

available, the pending queue is partially emptied, fulfilling pending requests.

When a message is received, it is dispatched to the correct module or directly handled

according to the message type. There exist modules for the region, barrier, mutex, condition

variable, semaphore and tasks management. Each of these modules can be composed of sub-

modules for different region types, barrier types, and so on.

By virtue of its modular design, the manager can be extended to support new memory

consistency models and synchronization primitives. Implementing a new model or primitive

consists only in adding a new module and modifying the message redirection interface to redirect

messages associated with the new model or primitive to the right module.

0

The Worker

The SDSM application is running in the worker thread. Most of the time, this thread is

executing application code. When a SDSM API call is performed, a request is usually sent to

another client via UDN. If an answer is required before returning from the API call, the worker

thread waits on a condition variable for the manager thread to notify that the request has been

answered. If no answer is needed or if the answer will only be needed later (as for prefetching),

the function returns and the manager thread handles the answer when it is received.

Another way for the worker to invoke indirectly the SDSM API is to perform an invalid
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access to shared memory trapped by the VMH. In this case, the page-fault handling function,

registered at initialization, sends a request to other clients if required. Again, it is the manager

that notifies the completion of the request by doing a "signal" on a condition variable.

If lot of data must be sent by a worker, the worker delegates the delivery of this data to the

manager and waits on a condition variable for the end of the process. The manager is more

suited than the worker to send lot of data because it manages the pending send queue.

4.2.3 Memory Consistency Models

This section describes the implementation the three memory consistency models currently avail-

able in YADL. These models are write-once, eager release write-update and eager release write-

invalidate. Other models, such as the sequential, other versions of the eager release, and the

lazy release models, could be implemented in the future.

Write-Once Model

0

The write-once model is intended to be used for read-only shared memory. The "write-once"

name was chosen instead of "read-only" because the name "read-only" does not indicate that

this memory can only be written once, then only read.

In the implementation of the write-once model, the worker creating the region is the only

worker that can initialize it. Once initialized, all the workers can read the memory.

Annotated and VMH versions of this model are provided. Both implementations use a

centralized protocol where the home is the creator of the region. The general algorithm for both

implementations is:

• Once the region is created, the home must initialize it;

• When a worker performs a LOAD to uncached data, the data is requested from the home;

• When a worker performs a LOAD to cached data, no consistency operations are required

because the memory cannot be modified (the local cache is always valid).

When using the annotated version of write-once model, of which the type in the system is

DSMJ^EGION_WRITE-ONCEJINNOTATEDJIDME or equivalently DSMJIEGION_WDAH, the creator of the
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region must use the functions DSM_BeginAccess and DSM_EndAccess to indicate the system of

the beginning and end of the initialization of the memory respectively. Because all the mem-

ory must be initialized (no partial initialization being allowed), the offset (the Off parameter)

and length (the Len parameter) must be 0 and the size of the region respectively. Moreover,

when initializing the region, the home must use DSMJIEGIONJICCESSJIEAD_WRITE as the access

type (the Access parameter). Once the region has been initialized, any worker can use the

functions DSM-BeginAccess and DSM-EndAccess to read data from the region. When reading

write-once memory, a worker must use the access type DSMJIEGIONJ^CCESSJIEAD. Prefetching

can also be done to attempt reducing the idle time waiting for data. To prefetch data, the func-

tion DSMJ'refetchAccess is used with access type DSMJIEGIONJ^CCESSJI.EAD. Contrary to the

function DSM-BeginAccess, the function DSMJ'refetchAccess does not block waiting for data

from the home. The prefetching of data is performed while the worker executes the application

code. When a prefetch has been performed, a subsequent call to DSM_BeginAccess will hopefully

not block.

When using the VMH version of write-once model, of which the type in the system is

DSMJIEGION_WRITE_ONCE_VMHJIOME or equivalently DSMJIEGION-WOVH, the annotation functions

do not need to be used (and must not be used). The creator (the home) is still required to

initialize the region. The end of the initialization process occurs when the first worker requests

data from the region. If a request occurs before the initialization of memory, the system behavior

is unpredictable.

For both implementations of write-once model (annotated and VMH), request forwarding has

been implemented to optimize data request answering. Without this optimization, the home is

responsible to answer all the data requests from every worker. As request answering is limited by

the available network bandwidth, the home could need to queue many pending requests, resulting

in delay for request answering. The request forwarding optimization consists in the delegation

of request answering to other workers already caching the data. This optimization leads to

great improvements in the answering process and to greater scalability. Figure 4.11 shows that

without the optimization, the delays required to send 128 megabytes of data is 0(n) (where n

is the number of nodes). The complexity becomes 0(log[n)) when the optimization is used (the

experience methodology is described in Section 5.2).

0
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Figure 4.11: 128 Megabytes Sent With and Without Request Forwarding.

Eager Release Write-Update Model

The eager release write-update model is intended to be used for shared memory that is more

often read than modified, or that is read by most of the workers before being modified. To

implement this model, a centralized protocol where the creator of the region is the home is

used. The implementation is based on the conservative algorithm for eager release consistency

presented in Section 3.3.3. The algorithm is:

0

• When a worker other than the home maps the region, a copy of the entire region is sent

to the mapping worker;

• When the first STORE on a granule following a "release" is performed, a twin of the

granule modified is created and all subsequent STOREs perform normally;

• When a "release" is performed (by calling the function DSMJlelease), the diffs are com-

puted and sent to all workers caching the region.

Note: a LOAD is always a local operation because the write-update protocol is used.
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0

To know which workers are caching the region, a releasing worker w sends a release initiation

request to the home. On reception of such request, the home sends w the list of the n workers

currently caching the region and updates its local data structures to record that w is doing a

"release" and that it has been indicated that n workers cache the region (the purpose of this

information will be explained shortly). The release initiation request must be sent on each

"release" because the list of workers caching the region can change.

On reception of the caching workers list, w sends each worker the diffs. Then, w waits for the

diffs reception acknowledgments from all the workers in the list. When all the acknowledgments

have been received, w sends a release completion request to the home including the number of

caching workers it is aware of. Finally, w waits for a release completion acknowledgment from

the home.

The release completion request and its acknowledgment are required to guarantee that all

the caching workers have received the difFs. As workers can map the region at any time, the

number of caching workers can change while a "release" is in progress. When a new worker

maps the region, the home notifies all the releasing workers to send diffs to this new caching

worker, and updates its local data structures accordingly. The home only acknowledges the

release completion request when the number of caching workers transmitted by the releasing

worker corresponds to the number stored in the home local data structures.

It would be possible to avoid the release completion request and acknowledgment by sending

the diffs to the home first, and, when its acknowledgment is received, sending the diffs to the

caching workers identified in the diffs acknowledgment from the home. This avoids the release

completion acknowledgment, but prevents sending difFs to other workers at the same time they

are sent to the home. This algorithm has not been implemented, but could be to compare the

performance of the two methods.

A client can receive diffs in three different situations: while the worker is mapping a region,

while the region is locally mapped, and when the region has been unmapped. When receiving

diffs about an unmapped region, the diffs are simply discarded. When receiving diffs while in

the process of mapping a region, the diffs are stored to be applied when the region is completely

mapped (when all the data is received from the home) . When receiving diffs while the region is

locally mapped, the diffs are applied to the shared memory. The application of diffs is dependent

on the access detection method and is discussed shortly.
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When creating a region implementing the eager release WU model, a type-specific parameter,

the diff unit, must be supplied. This parameter specifies the granularity of diff management.

Theorically, this parameter can be any power of two, but the currently accepted values are 1, 2,

4 and 8. If a small diff unit is specified, small parts of the region can by concurrently modified

by different workers without the diffs overlapping (see the implementation of the eager release

model in Section 3.3.3). However, a small diff unit can result in more network transmission

overhead because the system could consider two consequent modifications on large data as

distinct modifications. In this case, the diffs could not be merged, resulting in the transmission

of two diffs instead of one. Since each diff must be transmitted with its header (6 bytes in

the current implementation), transmitting useless diffs must be avoided especially if the diff

data is small. For example, if two workers are each incrementing one half of an array of 27V

integers (with the size of an integer being 4 bytes), and the diff unit is specified as 1, each

incrementation will be considered as a different modification, resulting in the transmission of

2N diffs of 1 byte as shown in Figure 4.12. This transfers at least 14^ bytes (the header of

6 bytes and the data of 1 byte). Instead, if using a difF unit of 4, only two large diffs would

be needed after difF merging as shown in Figure 4.12, reducing the need for network transfer to

2 x (6 + 4.N) bytes.
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Figure 4.12: DifF Units of 1 and 4 for the Integer Array Incrementation.

Using a diff unit of 8 or more would result in more network use because the diff unit would

be larger than the diff header. However, this could still be useful, not to reduce the network

congestion, but to reduce the diff application overhead by needing to apply less diffs.

When using the annotated version of eager release WU model of which the type in the system

is DSMJ1,EGIONJEAGERJIELEASEJ^NNOTATEDJ10ME_WRITE-UPDATE or equivalently DSMJIEGION_ER-
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AHWU, the functions DSM_BeginAccess and DSM_EndAccess must be used to indicate the SDSM

of the beginning and the end of write accesses in order to create the twins. When indicating

write accesses, the access type must be DSMJIEGIONJ^CCESS-WRITE. Read accesses do not need

to be annotated as they can always be performed on WU memory. To apply diffs, the data from

the diffs is directly copied from the network message to the memory. The difF data must also be

copied to the existing twins (if applicable) to avoid detecting false write to the memory.

When using the VMH version of eager release WU model, of which the type in the system

is DSMJ{EGION_EAGERJIELEASE_VMH_HOME_WRITE_UPDATE or equivalently DSMJiEGION_ERVHWU, the

twin creation is done by the VMH. The memory permission is initially set to read-only, the twins

being created on page-faults. When a twin is created, the memory permissions are set to read-

write, allowing both read and write accesses to perform normally. Applying diffs in the VMH

version is more complicated than in the annotated version. The difFdata cannot simply be copied

to the memory and to the twins because this would require removing the write protection from

the memory. In doing so, modifications could be lost because a write could be performed by the

worker thread while the difFs are applied by the manager thread, missing a twin creation. To

solve this problem, the diffs are stored locally and the permissions to the memory are removed.

When a page-fault occurs, or when the region is unmapped, or when a "release" is done, these

difFs are applied by the worker and the permissions are granted back to the memory. With this

difF application algorithm, the worker thread applies itself the diffs, avoiding the problem of lost

modifications.

0

Eager Release Write-Invalidate Model

The eager release write-invalidate model is intended to be used for shared memory that is more

often modified than read. To implement this model, a centralized protocol where the creator of

the region is the home is again used. The implementation is based on the conservative algorithm

for eager release consistency presented in Section 3.3.3. The algorithm is:

• When a worker other than the home maps the region, all the memory is allocated without

any permission (invalid) and the mapping worker registers itself at the home;

• When a LOAD access to an invalid granule is performed, a copy of this granule is fetched

from the home;

• When the first STORE on a granule following a "release" is performed, a twin of the
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modified granule is created and all subsequent STOREs perform normally;

When the function DSMJlelease is called, the diffs are computed and sent to the home;

When all the diffs have been sent to the home, the corresponding invalidations are sent to

all workers caching the region.

0

For the clients to know which workers are caching the region, the home includes a list of the

workers caching the region with the diffs reception acknowledgment.

On reception of the caching workers list, the releasing worker sends each worker the in-

validation. Then, the releasing worker waits for the invalidation acknowledgments from all the

workers in the list. When all the acknowledgments have been received, the function DSMJlelease

is allowed to return.

As the home receives diffs before the releasing worker sends the invalidations, a worker

fetching an invalid granule will always fetch an up-to-date version of that granule. Moreover,

as the home maintains the valid copy of the memory, it always has a valid copy of the memory.

Thus, a read by the home cannot cause a page-fault and is always a local operation.

It is possible to have write permission on a granule without having a valid read copy of the

memory. As the diffs are computed from the twins, even if the twins contain invalid data, the

algorithm still works (when all the difF unit is modified). However, if a read fault occurs on a

granule with write permission, the diffs must be computed and stored locally before fetching the

data from the home to avoid losing the current modifications. When the data has been fetched

from the home, the diffs are applied back to the data to reflect the previous modifications.

As for the WU version of the eager release model, the diff unit must be specified at region

creation. The reader is referred to the previous section for a complete discussion about this

parameter.

When using the VMH version of the eager release WI model, of which the type in the system is

DSMJ1,EGION_EAGERJIELEASE-VMHJIOME-WRITE_INVALIDATE or equivalently DSMJ^EGIONJERVHWI,

the twin creation and the detection of invalid accesses are done by the VMH. As for the im-

plementation of the eager release WU model, when applying the diffs at the home, care must

be taken to avoid losing STOREs to the memory (see the previous section for a more detailed

description and the solution to this problem).
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The annotated version has not been implemented yet. Its implementation introduces more

problems than the implementation of the VMH version because, when read permissions are

granted on a granule, these permissions cannot be dynamically removed on reception of an

invalidation as the programmer supposes he will have a valid copy of the granule until his next

annotation. To implement an annotated version of the eager release WI model, on reception

of an invalidation on a granule where read accesses have already been granted, the invalidation

acknowledgment needs to be replaced by a diff request to update the memory. The "release"

can only be completed when all invalidation acknowledgments have been received and all diffs

requests from caching workers have been answered.

4.2.4 Synchronization Primitives

This section presents the implementation of the three synchronization primitives currently

available in the system. These primitives are the "init", a standard mutex and the function

DSMJ^elease. Other primitives, such as condition variables, semaphores, tree barriers, special

mutexes and mutexes and barriers including "acquire" and "release" could be implemented in

the future.

Init

0

The "init" is provided to allow the synchronization of workers at startup when using the static

partitioning. It is basically a barrier that is "lowered" when all the workers have "reached" it.

In the current implementation, it is the only way to perform a global barrier as no barrier types

have been implemented.

As it does not need to be particularly efficient due to its seldom use, the "init" implemen-

tation uses a centralized protocol where the home is the server. When calling the function

DSM_WaitInit, a worker sends a message to the server indicating that it has "reached" the

"init". The server notifies all workers to "lower" the "init" when all the "reach" messages have

been received from all the workers.

This simple implementation is satisfactory as, when the real barriers will be implemented,

the "init" will only be used at system initialization.
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The standard homeless mutex, of which the type in the system is DSMJ1UTEX_STDJIOMELESS or

equivalently DSMJ1UTEX_SHL, implements a standard mutex with a FIFO policy for serving lock

requests. The implementation of this mutex type follows the algorithm of [NTA96] mentioned

in Section 3.3.4.

When a mutex of this type is created (using the function DSM_CreateMutex), only the mutex

type (DSM-MUTEX-SHL) needs to be specified. When the mutex is created, it is ready to be

"locked" by a worker. The mutex must always be "unlocked" by the same worker that "locked"

it.

Implementing this algorithm provides the programmer with efficient FIFO mutexes where

the number of messages needed to "lock" a mutex is 0{log(n)) for the average case ([NTA96]).

This algorithm is based on a mutex owner which is the last worker that has "locked" the mutex,

and on a distributed next queue indicating to which worker give the mutex when "unlocking"

it. The implementation follows these simple rules:

0

;

Each worker stores a hint to the owner of the mutex and a pointer to the next worker to

give the mutex to (next);

When a worker initializes a mutex, the owner is set to the first owner of the mutex;

When a worker "locks" a mutex, a lock request is sent to the owner using the owner hint,

the owner hint is set to self, and next is also set to self;

When a worker which owner hint is not set to self receives a lock request, it forwards the

request to the owner using its owner hint, and update its owner hint to the requesting

worker;

When a worker which owner hint is set to self receives a lock request for a mutex that is

not locked, the mutex is granted to the requesting worker, and its owner hint is set to the

requesting worker;

When a worker which owner hint is set to self receives a lock request for a mutex that is

locked, the owner hint is set to the requesting worker, and next is set to the requesting

worker;

When a worker "unlocks" a mutex, if next is not set to self, the mutex is granted to the

worker indicated by next.
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A more formal and unambiguous description of this algorithm is presented using pseudo-C

language in Figure 4.13.

typedef struct {
int bLocked;

Worker_t Hint;

Worker.t GiveTo;

} MutexSHLData.t;

InitMutexSHL(MutexSHLData_t *pData, Worker_t FirstOwner) {
pData->Hint = FirstOwner;
pData->bLocked = 0;

LockMutexSHL(MutexSHLData_t *pData) {
pData->bLocked = l;
pData->GiveTo = "current worker";
if (pData->Hint != "current worker") {

"send a lock request to pData->Hint";
pData->Hint ="current worker";
"wait for the mutex to be granted";

}

ReceiveLockRequest(MutexSHLData_t *pData, Worker_t Requester) {
if (pData->Hint != "current worker") "forward lock request to pData->Hint";
else if (pData->bLocked) pData->GiveTo = Requester;
else "granted mutex to Requester";
pData->Hint = Requester; /* <— Here is what makes the algorithm 0(log(n)). */

UnlockMutexSHLO {
pData->bLocked = 0;
if (pData->GiveTo != "current worker") "grant mutex to pData->GiveTo";

Figure 4.13: Standard Homeless Mutex Implementation.

A potential optimization to the algorithm of the standard homeless mutex is the enforcement

of locality on mutex ownership. As the mutex ownership must travel on the network, two workers

repeatedly "locking" and "unlocking" the same mutex in a short interval cause excessive network

traffic. Moreover, as the mutex is sent back and forth between these two workers, a lots of time

is spent in the network waiting for the mutex. Enforcing locality in this case would introduce

a short wait (like the A of sequential consistency presented in Section 3.3.3) before giving the

mutex to the next worker in the pending queue. With this optimization, if a worker "locks"

the mutex twice in a short amount of time, the network transaction is avoided and this could

result in a more efficient implementation in some cases. However, the FIFO behavior of the

mutex is lost. Moreover, care must be taken to avoid always granting the mutex to the same

worker, causing starvation. To avoid this starvation, a maximum number of times a mutex can

be "locked" enforcing locality can be introduced.
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The function DSMJielease calls a "release" operation on all the regions implementing release

consistency models. When called, this function blocks until the completion of all "releases".

The actions performed by a "release" operation is region type-specific. The reader is referred to

the eager release consistency implementation presented in Section 4.2.3 for more information.

4.2.5 Bag of Tasks

The implementation of the bag of tasks uses a centralized protocol where the home is the server.

The functions DSM_GetTask, DSM_CommitTask and DSM_ReplaceTask send one or more messages

to the server, and the server immediately answers these request.

The centralized implementation of the BOT is satisfactory only if the tasks take enough time

to execute to avoid overloading the server with requests. If too many small tasks are created,

the overhead of requesting and committing tasks becomes noticeable and the performance of

the application deteriorates.

To reduce the task request and commit overhead, task prefetching can be used. While

executing a task, the manager can prefetch a task to avoid the idle time caused by the task

request. This optimization is not currently implemented in the system.

4.3 Utilization

This section describes the utilization ofYADL. The differences between the static and the BOT

partitioning are explained in Section 4.3.1. The startup of a SDSM program is then discussed

with a description of the server and client parameters in Section 4.3.2. Typical static and BOT

partitioning programs are presented and explained in Section 4.3.3. Finally, the utilization of

the shared memory and the synchronization primitives are explained in Sections 4.3.4 and 4.3.5.

0
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4.3.1 Static and Bag of Tasks Partitioning

When using the static partitioning, a programmer must rely on worker indexes and the number

of workers to assign tasks to workers. These parameters can be obtained by calling the func-

tions DSM_GetWorkerIndex and DSM_GetNumberOfWorkers respectively. The worker indexes are

arbitrarily assigned to each worker at program startup. Using this partitioning method, a pro-

grammer can easily develop a SDSM parallel program. However, when running his application,

the user cannot dynamically add or remove workers to the computation.

When using the bag of tasks partitioning, the user can theorically add or remove a worker

to the computation. The worker addition is almost implemented, but the worker removal is

not currently implemented. When a computation is started using the EOT partitioning, a

special initial task is placed in the EOT by the server. When a worker gets this task, it usually

substitutes it by many tasks that correspond to the computation to be executed. In addition

to the operations get and substitute, a worker can commit a task to indicate its completion.

Committing a task allows the BOT management to assign tasks that depend on the completion

of the committed task (see Section 4.1.1 for more information about task dependencies). The

task addition, where a task is inserted in the BOT without prior dependencies or without

substituting an existing task, is not currently implemented. It is not currently needed because

substituting an initial task can express most of the computation. It could be incorporated in

the system in the future to allow the implementation of transactional systems.

The attributes of a task are its type and its data. The task data is a buffer of size

DSM_TASKJ)ATA-SIZE that can be used to store any information relevant to the task execu-

tion. The current value of this constant is 512 bytes, but can be increased by changing the code

of YADL and recompiling the library. The task type is an integer used to indicate which kind of

work must be done. The task types less than 100 are reserved to special use by the system, and

the task type 100 corresponds to the special initial task placed in the BOT. The information

residing in the task data buffer is usually parsed according to the type of a task. The data

associated with the task type 100 is a string specified at program startup.

0
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4.3.2 System Startup

To run a parallel program using YADL, a server and many clients must be started. These two

operations have been included in the function DSM_Start.

As seen in Section 4.1.2, the two parameters given to DSM_Start have the same specifications

as the one received from the function main. These two parameters should be exactly the one

from the function main. When a "-s <server>" is specified as the program arguments (that will

be forwarded to DSM-Start), it indicates that the program is a client that must connect to the

server <server>. In this case, the function DSM-Start returns to allow the worker to perform

its computation. If the "-s" is not present, DSM-Start starts a server and never returns.

More precisely, the exact way DSM-Start behaves when no "-s" parameter is present is by

transforming the current executing program to a server using the exec UNIX system call. To

find the server program, the environment variable DSM_SERVERJ3ATH must be set to the directory

where the executable DSMServer can be found. Prior to executing the server program, DSM_Start

parsed all its parameters to give them correctly to the server.

The parameters that can be specified to the server, and that are forwarded from DSM-Start

when "-s" is not present, are the following:

• "-d <data>" specifies to start the server in BOT partitioning mode (the static partition-

ing is the default when "-d" is not specified) and initializes the initial task with <data>;

• "-h <node>" specifies to start a client on node <node>;

• "-n <integer>" specifies the number of clients to wait for before beginning the compu-

tation;

• "-e <program>" specifies the program to remotely execute as clients with its full path;

• "-P <parameters>" specifies the parameters to be given to the remotely executed pro-

gram;

• "-x" specifies to start the clients in "xterm" windows using the DISPLAY environment

variable as the X server address where the "xterm" is displayed.

0
To be able to add clients to the system, the server prints its address. This address is used

to manually start clients using the "-s" parameter.
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Receiving the parameters from the function main causes a problem: the separation of the

parameters of the program and those of the SDSM. This problem is solved by putting "--"

between the program parameters and the SDSM parameters, the program parameters being

placed first. The UNIX function getopt is used by YADL to parse its arguments and this

function stops when meeting "—" . If getop-t is also used by the program to parse its arguments,

the getopt of YADL will resume the parsing where the application stopped. A common error

that introduces bugs is to forget to put "--" in the program parameters or to forget to call

getopt before DSM_Start.

A list of examples explaining how to use the server and client parameters follows:

0

"DSMServer -e /home/user/prg -p "-n 1024" -h nodeO -h nodel -x" starts a ser-

ver in static partitioning mode that remotely spawns "xterm" on "nodeO" and "nodel".

These "xterm" execute this program: "/home/user/prg -n 1024 — -s <server ad-

dress>";

"DSMServer -e /home/user/prg -d 123:456:789 -h nodeO -h node I" starts a server

in BOT partitioning mode with the initial task having "123:456:789" as data. The server

also remotely spawns the following program on "nodeO" and "nodel": "/home/user/prg

-- -s <server address>";

"DSMServer -n 4" starts a server in static partitioning mode waiting for four workers;

"DSMServer -d 123:456:789" starts a server in BOT partitioning mode. As soon as a

worker joins the system, it starts its execution;

"DSMServer -d 123:456:789 -n 4" starts a server in BOT partitioning mode waiting

for four workers before allowing to start their executions;

"/home/user/prg -- -h nodeO -h nodel" is equivalent to "DSMServer -e /home/-

user/prg -h nodeO -h nodel";

"/home/user/prg -n 1024 — -h nodeO -h nodel -x" is equivalent to "DSMServer -e

/home/user/prg -p "-n 1024" -h nodeO -h nodel -x";

'Vhome/user/prg — -d 123:456:789 -h nodeO -h nodel" is equivalent to "DSMSer-

ver -e /home/user/prg -d 123:456:789 -h nodeO -h nodel.

"/home/user/prg -n 1024 — -s 48568:132.204.25.170" executes the SDSM program

"prg" giving 1024 as the "-n" parameter to the program (not the SDSM). This program
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is run as a client that must connect to server "48568:132.204.25.170"1.

4.3.3 Typical Programs

A Typical Static Partitioning Program

A typical SDSM program using the static partitioning method is presented in Figure 4.14 (com-

plete examples are given in Appendix B). The first operation to be done in a static partitioning

program is the parsing of the command line arguments up to the "--" using the UNIX function

getopt. Then, DSM-Start can be called with the parameters received from the function main.

After having called the startup function, the initialization of the computation must be per-

formed. This initialization includes the creation and initialization of shared memory regions

and synchronization primitives. The initialization is done by a single worker, usually the worker

whose index is zero (by convention, worker zero acts as the main program). All the workers must

wait for the end of the initialization using a barrier. As the barriers used in the computation

are created at initialization, the workers must use the barrier "init", provided exactly for this

purpose (see Section 4.1.2).

After having completed the initialization, each worker performs its task according to its

index and the number of workers. Once their tasks completed, the workers wait at a barrier to

allow all workers to finish their computations. When this barrier has been lowered, one worker,

usually worker zero, gathers the result of the computation and either saves it to disk or displays

it. Finally, the workers wait at a barrier for the end of the saving process, call DSM_Stop to clean

the environment, and terminate the program.

0

A Typical BOT Program

A typical SDSM program using the BOT partitioning method is presented in Figure 4.15 (a

complete example is given in Appendix B). The first operation to be done in a BOT partitioning

program, as in a static partitioning program, is the parsing of the command line arguments up to

the "--" using the UNIX function getopt. Then, DSM-Start can be called with the parameters

lThe network addresses in UDN follow the format <port number>:<IP address> instead of the standard

notation where the IP address precedes the port number. This eases the parsing of network addresses.
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/* Program-specific include file. */

«include "DSM.h"

int main(int argc, char *argv[]) {
/* Variable declarations. */

int e, id0, idl, nPerW, nLeft, ns, ne, NbTasks;

/* Manage the program parameters . */
while ((c = getopt(argc, argv, /* The parameters. */)) != -l)

suitch(c) {

}

DSM_Start(argc, argv)

if (DSM_GetWorkerIndex() == 0) { /* Initialization, done by worker zero. */

}

DSM_WaitInit(l); /* Wait for the end of initialization. */

/* Compute the number of tasks (application specific). */
NbTask = ...;

/* Perform tasks according to worker index and the number of workers. */
idO = DSM_GetWorkerIndex();
idl = id0 + l;
nPerW = NbTasks / DSM_GetNumberOfWorkers();
nLeft = NbTasks •/. DSM.GetNumberOf Workers ();
ns = id0 * nPerW + id0 * nLeft / DSM.GetNumberOfWorkers();
ne = idl * nPerW + idl * nLeft / DSM_GetNumberOfWorkers();

DSM_WaitInit(98); /* Wait for the completion of all tasks. */

if (DSM_GetWorkerIndex() == 0) •[ /* Save the result. */

}

DSM_WaitInit(99); /* Wait for the completion of the saving. */

DSM_Stop();

return 0;
}

Figure 4.14: A Typical Static Partitioning YADL Program.

0
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received from the main.

After having called the startup function, the workers enter a task loop. As long as all the

tasks have not been completed, the workers repeatedly get, execute, and either commit or replace

tasks.

As seen in Section 4.3.1, the special task numbered 100 is the initial task placed in the BOT.

The data associated with this task is specified at program startup. When a worker executes this

task, it usually initializes the computation, creates and initializes shared memory regions and

synchronization primitives. After initialization, the initial task is usually substituted by two

tasks: the computation to be done and the saving process, the saving process depending on the

completion of the computation task. The task of the computation is also eventually replaced by

many tasks corresponding to the computation partitioned in many parallel tasks.

When a task is available, DSM_GetTask returns the constant DSM_OK. When the BOT is empty,

but there still exists tasks to be committed and potentially be replaced, DSM-GetTask returns the

constant DSMJ10_TASKJ^VAILABLE. When the BOT is completely empty, all tasks having been

committed, DSM_GetTask returns the constant DSMJIOJIORE-TASK. In this last case, the task loop

is exited and DSM_Stop is called.

Returning the constant DSM_NO_TASKJ^VAILABLE when no tasks are available forces the worker

to actively wait in a loop for a task to be available or for the BOT to become empty. As active

waiting should usually be avoided, this implementations seems a bad choice. However, as workers

should be allowed to quit the computation at any time, active waiting must be used to allow

a user to remove a worker at any time, especially when no tasks are available. If the worker

was blocked waiting for a task, removing it from the computation would be more complicated

because it would require the interruption of the DSM_GetTask function.

When DSM_GetTask returns DSM_OK, a task has been assigned to the worker. The worker

must perform this task according to its type and data. When the task has been completed, it

must be committed or replaced. Forgetting to commit or replace a task leads to a "task leak"

in the BOT, resulting in the non-termination of the program.

When using the BOT partitioning, the "init" barrier must not be used as the number of

workers in the computation can dynamically change. Global barriers are represented as task de-

pendencies and substitutions. Eventually, when barrier types will be implemented, programmers
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/* Program specific include file. */

«include "DSM.h"

int maintint argc, char *argv[]) {
/* Variable declarations. */

int bLoop = l;
DSMAddTask_t *pAddTasks;
DSMTask_t Task;

while (getopt(argc, argv, "") != -1) ; /* Read up to the --. */

DSM.Start(argc, argv);

while (bLoop) { /* The task loop. */
suitch(DSM_GetTask(&Task)) { /* Try to get a task. */
case DSM_OK: /* A task is available and will be executed. */

switch(Task.nTaskType) -[ /* Perform the task. */
case 100: /* Initial task. */

/* Parse BOT Data. */

DSM_ReplaceTask(&Task, pAddTasks, nNbTasks);
free(pAddTasks);
break;

case ...: /* A particular task type. */

DSM_CommitTask(&Task); /* Commit this task. */
break;

}
break;

case DSM_NO_TASK_AVAILABLE: /* No task currently available. */
usleep(lOOO); break;

case DSM_NO_MORE_TASK: /* All the tasks have been completed. */
bLoop = 0; break;

default:

printf("Error.\n"); bLoop = 0; break;
}
}

DSM_Stop();

return 0;

}

Figure 4.15: A Typical Bag of Tasks YADL Program.

0



0
CHAPTER 4. YADL DESCRIPTION 74

will be able to use barriers in BOT programs.

4.3.4 Shared Memory

To use the shared memory, a region must first be created by calling the function DSM-Create-

Region. When creating a region, the region number, type, size, granularity and type-specific

parameters are provided using the region data parameter (pRegionData).

The five region types available are:

DSM-REGION_WOAH: the write-once annotated home region type implementing the write-

once algorithm presented in Section 4.2.3;

DSM_REGION-WOVH: the write-once VMH home region type also implementing the write-

once algorithm presented in Section 4.2.3

DSM_REGION_ERAHWU: the eager release annotated home WU region type implement-

ing the eager release WU algorithm presented in Section 4.2.3;

DSMJREGION_ERVHWU: the eager release VMH home WU region type implementing

the eager release WU algorithm presented in Section 4.2.3;

DSMJR.EGION_ERVHWI: the eager release VMH home WI region type implementing the

eager release WI algorithm presented in Section 4.2.3.

0

Once a region which accesses are detected by the VMH is mapped using the function

DSMJtapRegion, it can be used like normal memory. If the accesses are detected using annota-

tions, the programmer must use the functions DSM_BeginAccess and DSM-EndAccess to notify

the system to perform the required consistency operations. The function DSMJ3refetchAccess

can be used to perform consistency operations prior to the access of shared memory to attempt

avoiding blocking when calling DSM_BeginAccess.

The use of the three functions DSM_BeginAccess, DSM-EndAccess and DSMJ'refetchAccess

are region type-specific. Some region types may not require the programmer to indicate the

read accesses, but only the write accesses. A list of access notifications required for the two

annotated region types currently provided by YADL follows:

DSM_REGION-WOAH: the first write access to write-once annotated home region must be



n
CHAPTER 4. YADL DESCRIPTION 75

notified (the initialization) using the access type DSMJ^CCESSJIEAD-WRITE. All the sub-

sequent read accesses must be notified using the access type DSMJICCESSJIEAD. Read

prefetching can be used to reduce the time the system is blocked waiting for data to

be imported to the local worker.

DSM_REGION-ERAHWU: the write accesses to eager release annotated home WU region

must be notified using the access type DSMJ^CCESS-WRITE. The read accesses do not need to

be notified as the cache is always up to date (write-update protocol). Prefetching cannot

be done.

When using eager release region types, the diff unit parameter must be specified (see Sec-

tion 4.2.3). The accepted values for the diff unit is 1, 2, 4, and 8. This parameter is specified

using the Specif icData field of the pRegionData parameter. This field is a union having a

type-specific structure for each region type. The diff unit field are:

• pRegionDa-ta->SpecificData.ERAHWU.nDiffUnit for the eager release annotated home

write-update region;

• pRegionData->SpecificData.ERVHWI.nDiffUnit for the eager release VMH home write-

invalidate region;

• pRegionData->SpecificData.ERVHWU.nDiffUnit for the eager release VMH home write-

update region.

0

When creating regions, the granularity of the region must be specified. The valid granularities

are any power of two beginning from 25 to 230: DSMJIEGION-GRAN-32, DSMJÎEGION_GRAN_64,

DSMJIEGION_GRAN-128, and so on. If the programmer does not want to use these constants, he

can use the exponents corresponding to the granularity: 5 for 32, 6 for 64, 7 for 128, and so

on. Of course, a granularity larger than or equal to DSMJIEGION-GRAN-4096 (212) must be used

when using a VJVIH region because the VM page size is 4096 bytes (4 kilobytes).

If eager release memory is used, the release primitive must be used to propagate modifica-

tions. To do a "release", the function DSMJlelease must be called.

When unmapping a region, the memory allocated for the shared memory is not freed im-

mediately when the function DSM_UnMapRegion is called. The region becomes in the cached

state where it is still considered as mapped. In the cached state, a region still receives data



0
CHAPTER 4. YADL DESCRIPTION 76

regarding consistency operations. Using a cached state for region allows the mapping following

an unmapping to be a very fast operation. The garbage collecting of the cached region is done

when no more memory is available when mapping regions. However, this garbage collection is

not implemented yet.

4.3.5 Synchronization Primitives

The two synchronization primitives currently provided by YADL are the "init" and the standard

mutex. More primitives, including tree barriers, will be implemented in the future.

To use the "init", the programmer only has to call the function DSM_WaitInit with an integer

as argument. This integer's purpose is only for clarity of code and debugging: when the "init"

is performed, the integers are compared and must be identical.

To use the standard mutex, of which the type in the system is DSM_MUTEX_SHL, the mutex

must be created using the function DSM-CreateMutex. No mutex type-specific data must be

given when creating this mutex. When a critical section must be entered, the mutex is locked

using the function DSM-LockMutex with the number of the mutex and the flag DSMJ:'LAGSJ10NE.

This function will only return when the mutex is granted. When exiting the critical section, the

function DSM-UnlockMutex must be called to "unlock" the mutex and to allow other workers to

enter the critical section.

0



n

Chapter 5

YADL Evaluation

The last chapter has presented the specification, implementation and the utilization of YADL.

After knowing how is built and implemented YADL, a question stays unanswered: is YADL

efficient? This chapter answers this question by presenting an evaluation of YADL.

The description of the benchmark programs used for the evaluation is given in Section 5.1.

The results of the evaluation are presented and discussed in Section 5.2. Finally, a general

discussion is presented in Section 5.3, including the future development that can be done on

YADL.

5.1 Benchmark Programs

The benchmark programs used to evaluate the performance of YADL are: matrix multiplica-

tion, ray tracing, Mandelbrot fractal, fast matrix exponentiation, n-queens and tridiag. Their

description follows.

0

5.1.1 Matrix Multiplication

The matrix multiplication program uses the traditional 0{n3) algorithm (not the block version).

The static and the EOT partitioning are evaluated using square matrices of size 4096x4096 ini-
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tialized with random numbers. When using the static partitioning, each worker has to compute

4:OQ6/NbWorkers consécutive lines of the resulting matrix. In the BOT partitioning version,

a task corresponds to the computation of four consecutive lines of the resulting matrix for a

total of 1024 tasks. The two matrices to be multiplied are stored in two write-once annotated

home regions, and the resulting matrix, in an eager release VMH home write-invalidate region.

Because the matrices to be multiplied are never modified and the resulting matrix is only read

by one worker, these choices of region types are unambiguous.

The timer measuring the execution time is started after the initialization of the matrices.

The data distribution of the matrices (the time needed to send these matrices over the network

to all workers), is included in the execution time. The timer is stopped after one worker has

read the whole resulting matrix, but without including the time needed to save it to disk .

0

5.1.2 Ray Tracing and Mandelbrot Fractal

The ray tracing ([FvDFH96]) and Mandelbrot fractal ([man]) benchmarks are computationally

intensive applications not requiring a lot of collaboration between the workers. Using the same

partitioning strategy as the matrix multiplication does not lead to good speedups because these

two applications are irregular. Because some lines of the resulting image require more time to

be computed than others and because these lines are usually consecutive, some workers have

much larger tasks than others, resulting in idle processors and poor load balancing.

Two solutions are proposed, one using the static partitioning and the other using the BOT

partitioning. In the solution using the static partitioning, each worker has 1/NbWorkers of

the lines of the resulting image to compute, but these lines are not assigned consecutively, they

are assigned round-robin to workers. With this strategy, the consecutive lines are assigned to

different workers, achieving better load balancing. In the solution using the BOT partitioning,

a task corresponds to the computation of n lines of the resulting image (in these benchmarks,

n = 1). By putting these tasks in the BOT, good load balancing is achieved because the workers

executing smaller tasks will do more tasks than the workers executing larger tasks.

The ray tracing application produces an image of size 2048x1024 pixels from a scene of

114 primitives and four lights, throwing four rays per pixel for antialiasing. The ray tracing

Reading the matrix is essential to generate the page-faults that import the data in the local cache of the

saving worker.
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implementation intersects a ray with all the primitives, no bounding box being used. An overview

of the resulting image is given in Figure 5.1. The timer measuring the execution time is started

after the initialization of the scene. The data distribution of the scene to all workers is included

in the execution time. The timer is stopped when one worker has saved the resulting image to

disk. For the same reasons as for the matrix multiplication, the scene is stored in a write-once

annotated home region and the resulting image, in an eager release VMH home write-invalidate

region.

w^

^

^ S3£,

'»

Figure 5.1: The Resulting Image of the Ray Tracing Benchmark.

The Mandelbrot fractal application produces an image of size 2048x1024 pixels where the

lower left corner of the image is placed at (0.2787636 - 0.009297555t). The image width is

2.5 x 10-7, using 60,000 iterations and no antialiasing. An overview of the resulting image is

given in Figure 5.2. The timer measuring the execution time is started after the creation of

the shared memory to store the image. The timer is stopped when one worker has saved the

resulting image to disk. Again, for the same reason as for the matrix multiplication, the resulting

image is stored in an eager release VMH home write-invalidate region.

0

5.1.3 Fast Matrix Exponentiation

The fast matrix exponentiation benchmark measures the performance of an iterative process

collaborating between iterations, but with computationally intensive iterations. This benchmark
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Figure 5.2: The Resulting Image of the Mandelbrot Fractal Benchmark.
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stresses YADL more than the matrix multiplication as it uses the result of the previous iteration

to execute the next iteration, thus requiring more consistency operations.

Each iteration is a matrix multiplication 0(size3). The total computation complexity is

0(size3 x log (exp)) as the fast matrix exponentiation algorithm is used (see Figure 5.3 for the

pseudo-code of the algorithm). After each iteration, the workers have to exchange the newly

computed matrix to be able to perform the next iteration. The matrix to be exponentiated is

stored in a write-once annotated home region because it is never modified, and the resulting

matrix, in an eager release annotated home write-update region. The choice of the WU protocol

is motivated by the need, by each worker, to access the whole matrix between iterations.

void CopyMatrix(Matrix_t *pFrom, Hatrix_t *pTo);
void NatMult(Matrix_t *pA, Matrix.t *pB, Matrix_t *pResult);

void FastMatExp(Matrix_t *pToExp, int Exp, Matrix_t *pResult) {
if (Exp == 1) CopyMatrix(pToExp, pResult);
else if (Exp •/. 2 == l) {

FastMatExp(pToExp, Exp-1, pResult);
MatMult(pResult, pToExp, pResult);

}
else {

FastMatExpCpToExp, Exp/2, pResult);
MatMult(pResult, pResult, pResult);

}

Figure 5.3: The Fast Matrix Exponentiation Algorithm.
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Again, the static and the BOT partitioning are compared. The problem size is a square

matrix of size 2048x2048 initialized with random numbers and the exponent is 31. This exponent

was chosen to stress equally the odd and even parts of the fast matrix exponentiation algorithm.

The task partitioning is the same as for the matrix multiplication. For the static partitioning

version, the task of each worker is the computation of 2048/NbWorkers consecutive lines. For

the BOT partitioning version, a task corresponds to the computation of two consecutive lines

of the resulting matrix for a total of 1024 tasks.

The timer measuring the execution time is started after the initialization of the matrix. The

data distribution of the matrix to all workers is included in the execution time. The timer is

stopped after one worker has read the whole resulting matrix, but without including the time

needed to save it to disk.

0

5.1.4 N-Queens

The n-queens benchmark measures the performance of a mutex based application. It computes

the number of solutions for placing n queens on an by n chessboard without any queen threat-

ening another queen. To parallelize the application, queen positions for the first l lines of the

chessboard are precomputed, each of these positions corresponding to a task.

To manage these tasks, we can use the BOT or the static partitioning. When using the

BOT partitioning, each precomputed position is a task inserted in the BOT. When using the

static partitioning, each worker does 1/NbWorkers of the tasks. As for the ray tracing and the

Mandelbrot fractal, assigning tasks consecutively for the static partitioning version results in

poor load balancing. To solve this problem, the same solution as for the previous benchmarks

is used: tasks are assigned round-robin to workers.

The number of solutions is the only data put in shared memory. The access to this variable

is protected by a mutex to guarantee its consistency. The choice between an eager release

annotated home write-update and an eager release VMH home write-invalidate region is not

obvious. As the read-write ratio of the application is low (this ratio is one, the data being only

read once before being modified), WI region type seems a good choice. However, as a read

using this protocol suffers from high latency, each incrementation of the number of solutions

introduces a delay. Because the WI implementation anyway sends invalidation to all workers,



n
CHAPTER 5. YADL EVALUATION 82

and because the diffs sent using the WU implementation would be, for this application, only a

little larger than the invalidations and would fit in a single packet, the WU region type could

also be a good choice. Finally, as the read of the WI memory fetches uselessly 4 kilobytes of data

when only 8 bytes are needed (the size of the uint64_t used to store the number of solutions),

the choice of WU seams much better than WI.

Preliminary tests have been done using both WU and WI region types. Both lead to similar

results. The results presented in the next section are the one with the WU region.

For this benchmark, the size of the chessboard is 17 and l = 3, resulting in 2786 tasks. The

timer measuring the execution time is started after the initialization of the shared memory and

of the mutex. It is stopped when all the tasks have been executed.

5.1.5 Tridiag

The tridiag benchmark solves a tridiagonal system of equations using the cyclic reduction al-

gorithm ([tri]). This algorithm performs log(n) iterations over three arrays of data, modifying

all the array elements in each iteration (n is the number of variables). The complexity of

the algorithm is 0(n x log{n)~). Thus, tridiag is an iterative process whose iterations are not

computationally intensive.

For this benchmark, only static partitioning is evaluated. Each worker computes 1/NbWor-

kers consécutive elements of the arrays in each iteration. The arrays of data resides in an eager

release VMH home write-invalidate region. As a worker does not need all the elements of the

array to compute the next values, but only a consecutive subsection of the array, this choice of

region type avoids uselessly sending the update to all workers.

For this benchmark, the number of variables is 4 million (4,194,304). The value of the

variables are randomly chosen at initialization, a system of equations being computed using only

one as the coefficients. The timer measuring the execution time is started after the computation

of the problem. The timer is stopped after one worker has verified the solution by comparing

the computed solution with the expected result chosen at initialization.

0
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5.2 Benchmark Results

83

This section presents the results of the execution of the seven benchmark programs presented in

the previous section. Unless specified, the granularity of the shared memory region used while

executing the benchmarks is one VM page (4 kilobytes).

The platform used to evaluate YADL is a NOW with the following characteristics:

• The NOW is composed of 32 dual-processor nodes;

• The processors are AMD Athlon MP clocked at 1.2 GHz;

• The motherboards are Tyan Thunder K7 model number S2462NG;

• Each node has 4 DIMMs of 256 megabytes of DDR memory for a total of 1 gigabyte of

memory per node;

• Each node has a 80 gigabytes Seagate Barracuda ATA hard drive (7,200 RPM);

• The nodes are linked by a switched gigabit Ethernet network:

- Each node has an Ethernet PCI Intel PRO/1000 TX Server Network Adapter (shared

by both processors);

- The switch is a Cisco Catalyst 6000, using a WS-C6509 9 slot Catalyst 6500 series

chassis with three WS-X6316-GE-TX 16-port gigabit Ethernet modules;

— The links between the nodes and the switch are RJ-45.

• Each node runs the Linux OS with the kernel version 2.4.9.

The results presented are the execution times in seconds and the corresponding speedups of

the following versions of the benchmarks:

• Sequential version;

• SDSM version, using one worker per node, with 1, 2, 4, 8, 12, 16, 20, 24 and 28 nodes ;

• SDSM version, using two workers per node to take advantage of the dual-processors, with

l, 2, 4, 8, 12, 16, 20, 24 and 28 nodes.

0
The presented execution times are the average of six executions of which the best and worst

2Because some nodes were down when the benchmarks were executed, 32 nodes could not be evaluated.
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results were removed. The speedups are computed using the ratio of the sequential and the

parallel execution times.

Speedup graphs are presented using logarithmic scale with the two perfect speedup functions

for one and two workers being drawn with a continuous and dotted line respectively [y = x and

y = 2x). The speedups for the same benchmark are presented on the same graph allowing

an easy comparison of different versions of the benchmark (usually the static and the BOT

partitioning versions).

When using one worker per node, the execution times should be a bit shorter than they

would be with a NOW built with uni-processors because the multi-threaded implementation of

YADL takes partially advantage of the presence of two processors. However, these results are

quite representative because the manager thread of YADL is not a computationally intensive

thread. Furthermore, when using two workers per node on N nodes, the results should be longer

than they would be with a NOW of ÎN uni-processors because the two workers on the same

node compete for network resource and physical memory bandwidth.

The benchmarks and the SDSM library have been compiled using the gcc compiler version

2.96 20000731 (Red Hat Linux 7.1 2.96-85) without using optimizations to forbid the compiler

from removing memory accesses that would result in less page-faults. When executing the

benchmarks, the YADL server is run on one of the nodes used for the computation. The server

was modified to allow the workers, when using the BOT partitioning, to begin their computation

only when all the workers have joined the computation, not when the first worker joins the

computation. This avoids the case of some workers joining the computation a little late, causing

bad speedups.

In addition to the execution times, the following information was collected for each worker

while running the benchmarks. This information is not reported in this document, but they are

used to analyse the results of the benchmarks.

0

• The number of UDN packet sent and received;

• The amount of network data sent and received;

• The number of "release" performed, the amount of data sent for performing all the "re-

leases" and the time spent in the "releases" ;

• The number of times a mutex was "locked", the time spent waiting for the mutex to be
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granted, and the time the mutex was held;

The number of page-faults generated, the amount of data fetched in page-faults, and the

time spent in the page-fault handler;

The number of task gets, and the time spent waiting for tasks;

The number of data requests that were handled, the amount of data sent for handling

these requests, and the time spent while data requests were pending.

0

5.2.1 Matrix Multiplication

Good speedups are expected for this benchmark because matrix multiplication is a computation-

ally intensive application not requiring a lot of collaboration between workers. The execution

times and speedups for this benchmark are presented in Table 5.1, and the graph of the speedups

is presented in Figure 5.4.

Sequential 1177.72

Static

1 Worker

Time | Speedup

2 Workers

BOT

1 Worker

Time Speedup Time Speedup

2 Workers

Time | Speedup

1 node 1115.7

2 nodes 568.4

1.06 567.9

2.07 II 290.4

2.07 1303.7 0.90 737.5

4.06 698.4 1.69 376.9

1.60

3.12

4 nodes 288.6 4.08 II 151.7 7.76 II 373.4 3.15 II 200.9 5.86

8 nodes 148.6 7.93 81.5 14.44 210.0 5.61 117.6 10.02

12 nodes 102.4 11.51 58.5 20.12 II 146.9 8.02 II 87.5 13.45

16 nodes 79.2 14.87 II 47.8 24.65 II 118.3 9.96 II 74.3 15.86

20 nodes 65.3 18.03 41.3 28.49 103.5 11.38 66.9 17.61

24 nodes 56.3 20.90 II 36.7 32.10 98.5 11.96 II 60.9 19.34

28 nodes 50.1 23.53 34.0 34.64 87.7 13.42 57.9 20.35

Table 5.1: Matrix Multiplication Execution Times and Speedups.

Surprisingly, the execution time of the sequential version is longer than for the static parti-

tioning version using a single worker on one node. No precise reasons have been found to explain

this 5.5% difference in the execution time. Great care was taken to reproduce as much SDSM

operations in the sequential version to replicate this behavior, but without success. Possible

hypothesis to explain this different are cache effects and scheduling affinity.

The static partitioning with one worker per node gives the expected good speedups. When
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Figure 5.4: Matrix Multiplication Speedups.

using two workers per node, the speedups are a little worse than twice the speedups obtained

with one worker per node. This can easily be explained by the delay required to distribute

the matrices via the network. Sending 64 megabytes of data (the size of one matrix) using a

write-once annotated home region to 16 nodes using one and two workers per node takes about

5 and 6.5 seconds respectively (it should take a bit more time for 28 nodes, but the exact delays

have not been evaluated). When using only one worker per node, the 5 second distribution delay

for 16 nodes is hardly noticeable compared to the computation time of 1/16 of the result: the

expected computation time is about 74 seconds, the delay accounting for 6.8% of the execution

time. However, when using two workers per node, the 6.5 second delay begins to be noticeable

compared to the computation time of 1/32 of the result: the expected computation time is

about 37 seconds, the delay accounting for 17.6% of the execution time. It will be even more

noticeable when using two workers per nodes and 28 nodes: the expected computation time is

21.4 seconds, a 6.5 seconds delay accounting for 30.4% of the execution time (for 28 nodes, the

distribution delay should even be larger).

When the data distribution delay is not considered in the execution time of the static version
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of the benchmarks (by starting the timer measuring the execution time after the distribution3),

the speedups are much better, almost perfect. This confirms the hypothesis that the acceptable,

but not ideal, speedups are caused by the distribution delay. The execution times and speedups

when the data distribution time is not considered are presented in Table 5.2, and the graph of

the speedups is presented and compared with the previous results in Figure 5.5.

Static Without Distribution

1 Worker

Time | Speedup

2 Workers

Static With Distribution

1 Worker

Time | Speedup || Time | Speedup

2 Workers

Time | Speedup

1 node 1115.7 1.06 567.9 2.07 1163.4

2 nodes 568.4 2.07 290.4 4.06 583.9

1.01 578.7

2.02 290.3

2.04

4.06
4 nodes 288.6 4.08 II 151.7 7.76 292.6 4.02 II 145.8 8.08

8 nodes 148.6 7.93 II 81.5 14.44 II 146.9 8.02 II 73.6 16.00

12 nodes 102.4 11.51 58.5 20.12 98.2 12.00 49.4 23.86

16 nodes 79.2 14.87 II 47.8 24.65 74.1 15.90 II 37.6 31.35

20 nodes 65.3 18.03 41.3 28.49 59.4 19.82 30.2 38.94
24 nodes 56.3 20.90 II 36.7 32.10 49.8 23.66 II 25.5 46.25

28 nodes 50.1 23.53 34.0 34.64 43.1 27.35 22.1 53.28

Table 5.2: Matrix Mult. Execution Times and Speedups Without the Distribution.

The BOT partitioning gives unsatisfactory results. These could be caused by too many

tasks in the BOT, overloading the BOT management service. It could also be caused by doing

too many "releases", a "release" being done at the completion of each task. When doing too

many "releases", a lot of time is spent doing consistency operations, explaining the flattening.

Moreover, due to the implementation of the eager release VMH home write-invalidate region

type, the BOT partitioning implementation does lot of page-faults avoided in the static parti-

tioning version. In the static partitioning version, the home of the region collects the result of

the computation, thus no invalid accesses are performed because the home always has a valid

cache of the data. When using the BOT partitioning, the final result saving task is probably

not assigned to the home, incurring lots of invalid accesses done to collect the matrix, resulting

in worse execution times.

To reduce the impact of the result saving not being done by the home, the granularity of

the shared memory can be increased. This causes less page-faults to occur, incurring less data

3The data distribution delay could be avoided by locally loading the matrices from disk and by only sharing

the resulting matrix. However, this means to write these matrices on the local disk of each node, which would

probably require more time than with the data distribution optimization of write-once regions.
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Figure 5.5: Matrix Mult. Speedups With and Without the Distribution.

requests to the home. By reducing the number of data requests, the worker saving the result

suffers from less request latency. The granularity of the shared memory has been increased from

4 kilobytes to 64 kilobytes to observe the impact of less requests on the performance of the BOT

partitioning version of the benchmark. The execution times and speedups with the increased

granularity are presented in Table 5.3, and the graph of the speedups is presented and compared

with the previous results in Figure 5.6.

As shown in Figure 5.6, increasing the granularity fills a large part of the gap between

the static and BOT partitioning version of the benchmark4. This optimization gives good

improvements for the BOT partitioning version, but the speedups are still smaller than the

static partitioning version. To see the effect of having less tasks in the EOT, the BOT version

has been run with 256 tasks instead of 1024. The execution times and speedups with less tasks

are presented in Table 5.4, and the graph of the speedups is presented and compared with the

previous results in Figure 5.7.

''Increasing the granularity for the static version of the benchmark was also done, but did not result in

improvement of the execution time. These results are presented in Appendix D
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BOT Without Increased Granularity BOT With Increased Granularity
1 Worker 2 Workers 1 Worker 2 Workers

Time | Speedup || Time | Speedup || Time | Speedup || Time | Speedup

1 node 1303.7 0.90 737.5 1.60 1271.3 0.93 661.9 1.78

2 nodes 698.4 1.69 II 376.9 3.12 II 652.8 1.80 |[ 339.3 3.47

4 nodes 373.4 3.15 200.9 5.86 332.8 3.54 174.1 6.77

8 nodes 210.0 5.61 II 117.6 10.02 II 172.6 6.82 II 92.6 12.72

12 nodes 146.9 8.02 87.5 13.45 119.0 9.90 66.8 17.62

16 nodes || 118.3 9.96 [| 74.3 15.86 91.7 12.84 II 53.8 21.88

20 nodes || 103.5 11.38 II 66.9 17.61 75.9 15.52 II 45.2 26.04
24 nodes 98.5 11.96 60.9 19.34 65.9 17.87 40.4 29.19

28 nodes 87.7 13.42 57.9 20.35 58.5 20.12 37.0 31.86

Table 5.3: Matrix Mult. Execution Times and Speedups With Increased Granularity.
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Figure 5.6: Matrix Mult. Speedups With and Without Increased Granularity (IG).
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BOT With 1024 Tasks BOT With 256 Tasks

1 Worker 2 Workers 1 Worker 2 Workers

Time | Speedup Time | Speedup || Time | Speedup Time | Speedup

1 node 1303.7 0.90 737.5 1.60 1287.5 0.91 666.8 1.77

2 nodes 698.4 1.69 II 376.9 3.12 II 663.5 1.78 II 355.7 3.31
4 nodes 373.4 3.15 200.9 5.86 349.3 3.37 180.5 6.53

8 nodes 210.0 5.61 II 117.6 10.02 II 185.6 6.35 II 105.0 11.21
12 nodes 146.9 8.02 87.5 13.45 129.8 9.07 78.2 15.06

16 nodes || 118.3 9.96 II 74.3 15.86 II 106.0 11.11 60.1 19.60

20 nodes 103.5 11.38 66.9 17.61 94.5 12.47 58.5 20.14

24 nodes 98.5 11.96 II 60.9 19.34 94.9 12.41 53.3 22.10

28 nodes 87.7 13.42 57.9 20.35 89.0 13.23 47.8 24.66

Table 5.4: Matrix Mult. Execution Times and Speedups With Less Tasks.
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As shown in Figure 5.7, using less tasks increases the speedups a little. Combining both

optimizations, increasing the granularity and using less tasks, should give even better speedups

for the BOT partitioning version of the benchmark, but has not been done. However, the number

of tasks should not be reduced too much to keep the load balancing property of the BOT.

0

5.2.2 Ray Tracing and Mandelbrot Fractal

Good speedups are expected for these benchmarks because they are computationally intensive

applications not requiring a lot of collaboration between the workers. Moreover, they are less

memory intensive than the matrix multiplication, so the data distribution delay and the page-

fault latency should not be a major problem. The execution times and speedups for the ray

tracing and Mandelbrot fractal benchmarks are presented in Tables 5.5 and 5.6, and the graphs

of the speedups are presented in Figures 5.8 and 5.9.

Sequential 1598.64

Static

1 Worker

Time | Speedup

2 Workers

BOT

1 Worker

Time | Speedup || Time | Speedup

2 Workers

Time | Speedup

1 node 1621.2 0.99 812.3 1.97 1598.6

2 nodes 811.9 1.97 II 407.3 3.93 II 806.2

1.00 812.3 1.97

1.98 II 408.9 3.91

4 nodes 406.9 3.93 II 204.5 7.82 II 406.3 3.93 II 206.6 7.74

8 nodes 204.3 7.82 103.3 15.48 205.8 7.77 105.6 15.14

12 nodes 137.6 11.62 70.8 22.57 II 138.7 11.52 II 72.2 22.14

16 nodes 103.2 15.49 52.6 30.38 II 105.5 15.15 55.1 28.99

20 nodes 83.9 19.06 II 43.1 37.12 85.2 18.76 II 44.4 36.04

24 nodes 70.7 22.61 36.8 43.47 72.2 22.14 38.1 41.95

28 nodes 61.5 25.97 32.7 48.94 63.5 25.16 34.2 46.72

Table 5.5: Ray Tracing Execution Times and Speedups.

As expected, the speedups are quite good. There is practically no difference between the

results of the static and BOT partitioning versions, which is surprising. This can be explained

by the difficulty of seeing the BOT partitioning overhead because this overhead is very small in

these two applications.

Increasing the granularity and using less tasks was also done. However, because the resulting

image is relatively small compared with the resulting matrix of the matrix multiplication (eight
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Figure 5.8: Ray Tracing Speedups.

Sequential

1 node

2 nodes

4 nodes

8 nodes

12 nodes

16 nodes

20 nodes

24 nodes

28 nodes

0

1603.68

Static

1 Worker

Time | Speedup

2 Workers

BOT

1 Worker

Time Speedup Time Speedup

2 Workers

Time | Speedup

1722.4 0.93 856.9 1.87 1622.8 0.99 827.7

862.7 1.86 431.4 3.72 817.6 1.96 414.8

432.4 3.71 217.1 7.39 412.9 3.88 209.4

217.0 7.39 II 109.0 14.71 208.9 7.68 II 106.4

147.3 10.89 74.3 21.58 141.2 11.36 72.9

109.6 14.63 II 55.6 28.84 II 107.7 14.89 II 55.9

90.2 17.78 45.9 34.92 87.3 18.37 45.7

74.6 21.51 II 39.6 40.51 73.7 21.76 II 39.0

64.6 24.81 34.6 46.32 64.7 24.80 34.2

Table 5.6: Mandelbrot Fractal Execution Times and Speedups.

1.94

3.87
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15.07
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46.85
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Figure 5.9: Mandelbrot Fractal Speedups.

times smaller), increasing the granularity does not result in great improvements because there

are eight times less page-faults. Moreover, using fewer tasks (256 tasks instead of 1024), only

improves the execution time by less than 5%. The tables of the execution times for these

minimally optimized versions of the benchmarks are given in Appendix D.

0

5.2.3 Fast IVIatrix Exponentiation

Moderate speedups are expected for this benchmark as the communication required between

each iteration reduces the efficiency of the parallel programs. Even if this is a computationally

intensive benchmark, the required communication between each iteration will probably cause

performance degradation. The execution times and speedups for this benchmark are presented

in Table 5.7, and the graph of the speedups is presented in Figure 5.10.

As predicted, the speedups are moderate. A flattening can be noticed in the static version

using two workers per node and in the BOT partitioning version when using one worker per

node. Moreover, a performance degradation occurs in the BOT partitioning version when using

two workers per node.
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Sequential 1142.59

Static BOT
1 Worker 2 Workers 1 Worker 2 Workers

Time | Speedup || Time | Speedup || Time | Speedup || Time | Speedup

1 node 1123.9 1.02 574.3 1.99 1157.4 0.99 583.9 1.96

2 nodes 581.8 1.96 295.0 3.87 587.2 1.95 301.9 3.78

4 nodes 296.0 3.86 154.6 7.39 300.6 3.80 162.6 7.03

8 nodes 154.1 7.41 85.9 13.30 II 160.2 7.13 II 99.2 11.52

12 nodes 107.5 10.63 64.8 17.63 116.7 9.79 85.8 13.32
16 nodes 84.5 13.51 II 55.3 20.67 95.8 11.93 II 83.4 13.71

20 nodes 71.2 16.05 II 50.2 22.78 85.6 13.35 II 86.3 13.25
24 nodes 62.6 18.26 47.2 24.20 80.8 14.14 94.0 12.15

28 nodes 56.8 20.11 46.0 24.82 78.3 14.58 100.8 11.34

Table 5.7: Fast Matrix Exponentiation Execution Times and Speedups.
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0

An interesting characteristic of this benchmark is that its implementation needs to send more

data at "release" when increasing the number of worker. When doing an iteration of the matrix

exponentiation, each worker must communicate its part of the matrix to the other workers.

Thus, for N workers, each worker must send (N — 1)/N data. For few workers (2 or 4), little

data must be sent (1/2 or 3/4 of the total matrix respectively). When using more workers, the

quantity of data sent soon becomes very close to the matrix itself.

As the quantity of data sent at each "release" grows asymptotically to the size of the matrix

when increasing the number of workers, the amount of data sent when using more than eight

workers increases only a little. This means that when increasing the number of workers, the

overhead of the release should not increase linearly. This is exactly what is observed when

looking at the time required to execute the "releases". For the static versions and one worker

per node, this time is about 1.6 second for 2 nodes and about 3.4 seconds for 28 nodes. For two

workers per nodes, it is about 2.5 seconds for 2 nodes and about 5.3 seconds for 28 nodes. The

overhead is multiply by less than three when multiplying the number of nodes by 14. Therefore,

overhead of the "release" cannot explain the flattening and the degradation of the speedups.

For the two static versions, the most important overhead is the data distribution at the

beginning of the computation. The data to be distributed is the matrix to be exponentiated

and the initial data in the result matrix. As these two matrices' size are 2048x2048 and the size

of the items are 4 bytes (floats), the total amount of data to be distributed is 32 megabytes.

As the matrix to be exponentiated is in a write-once region, its distribution takes advantage

of the request forwarding optimization. However, because request forwarding has not been

implemented for the eager release WU region, the home of the region must answer all the

mapping requests. This leads to a long data distribution delay. Table 5.8 gives an overview of

this delay for the static versions of the benchmarks, and the graph of the speedups without the

distribution is presented and compared with the previous results in Figure 5.11.

As shown in Figure 5.11, the data distribution is the main cause of the flattening of the two

workers per node static version of the benchmark. Without this data distribution, the results

are much better, especially when using two workers per nodes.

To explain the flattening of the BOT version, the difference in the implementation of the two

versions must be discussed. In the static version, when computing A x A (the else part of the

algorithm of Figure 5.3), a copy of the matrix is locally taken before reaching a barrier and then
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1 node

2 nodes

4 nodes

8 nodes

12 nodes

16 nodes

20 nodes

24 nodes

28 nodes

Static

1 Worker | 2 Workers

0

0.55

1.17

2.33

3.40

4.32

5.26

6.17

7.11

0.44

1.32

2.45

4.55

6.47

8.25

10.10

11.84

13.76

Table 5.8: The Data Distribution Delay in the Static Fast Matrix Exponentiation.
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computing A x A. This copy of the matrix is needed in order to remember the content of the

matrix before modifying it. In the BOT version, as the workers cannot synchronize themselves

using a barrier, a single worker copies the content of the matrix in another shared memory

region. This copy introduces network overhead as new data must be sent to all workers. In the

case of the exponent 31, this copy occurs three times (more precisely four times, but the first

copy does not send data to all workers because the region is not mapped in workers yet). This

copy overhead is 3x 16 x (A^—l) megabytes where N is the number of workers. In the case of

16 nodes and 2 workers per nodes (a total of 32 workers), this overhead corresponds to 1.488

gigabytes of data, which is huge. As this overhead grows linearly with the number of workers, it

eventually overcomes the parallelism gain. No precise measurements were done to evaluate this

delay, but it is obviously non negligible. According to some experiments, sending one gigabyte

of data via the current version of UDN takes about 15.32 seconds. With this information, an

estimation of the copy overhead can be made. Table 5.9 gives these estimations, and the graph

of the speedups without the overhead is presented and compared with the previous results in

Figure 5.12.

BOT

1 Worker | 2 Workers

1 node 0.00

2 nodes 0.72

0.72

2.15

4 nodes 2.15 5.03

8 nodes 5.03 10.77

12 nodes 7.90 16.52

16 nodes 10.77 22.26

20 nodes 13.64 28.01

24 nodes 16.52 33.75

28 nodes 19.39 39.50

Table 5.9: The Estimation of the Copy Overhead in the EOT Fast Matrix Exp..

Moreover, as the initial content of the region used to save a copy of the matrix must be

distributed to all workers and that request forwarding is not implemented, the distribution

delay is also augmented. This delay is multiply by about two compared with the delay for the

static version. Table 5.10 gives an overview of the data distribution delay for the BOT versions

of the benchmarks, and the graph of the speedups without the delay is presented and compared

with the previous results in Figure 5.13.
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Figure 5.12: BOT Fast Matrix Exp. Speedups With and Without the Copy Overhead.

1 node

2 nodes

4 nodes

8 nodes

12 nodes

16 nodes

20 nodes

24 nodes

28 nodes

BOT

1 Worker | 2 Workers

0.00

0.82

0.60

2.07

1.74 3.90

3.53 7.77

5.45 11.44

7.24 15.44

8.98 19.07

10.61 23.68

12.58 27.04

Table 5.10: The Data Distribution Delay in the BOT Fast Matrix Exponentiation.

0
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Figure 5.13: BOT Fast Matrix Exp. Speedups With and Without the Distribution.

When removing both overheads, the speedups become acceptable as shown in Figure 5.14.

However, even if it is possible to remove the distribution overhead by implementing request

forwarding, the copy overhead is hardly removable due to a limitation of the BOT partitioning

model. A limitation of the BOT partitioning method has probably been found here.

0

5.2.4 N-Queens

For the static partitioning version, the expected speedups should be good as the number of

solutions is only modified once per worker at the end of the execution of all tasks. For the

BOT partitioning version, as the number of solutions must be modified at the completion of

each task, the expected speedup should be a little worse than for the static partitioning version

because ofmutex contention. However, we still expect good speedups for the BOT partitioning

version. The execution times and speedups for this benchmark are presented in Table 5.11, and

the graph of the speedups is presented in Figure 5.15.

Almost perfect speedups are obtained for both static partitioning versions and for the one

worker per node EOT partitioning version. For the BOT partitioning version using two workers
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Figure 5.14: Fast Matrix Exp. Speedups With and Without Both Overheads.

Sequential 1280.61

1 node

2 nodes

4 nodes

8 nodes

12 nodes

16 nodes

20 nodes

24 nodes

28 nodes

0

Static

1 Worker

Time | Speedup

2 Workers

BOT

1 Worker

Time Speedup Time Speedup

2 Workers

Time | Speedup

1280.8 1.00 641.7 2.00 1281.7 1.00 643.0
640.9 2.00 322.8 3.97 642.4 1.99 326.7

321.9 3.98 II 161.4 7.93 II 321.6 3.98 II 162.5
161.1 7.95 II 81.7 15.67 161.4 7.93 81.6

107.7 11.89 II 54.0 23.70 II 108.0 11.86 II 55.2

81.6 15.70 41.2 31.05 80.8 15.85 42.5

64.9 19.75 II 33.5 38.21 64.7 19.78 |[ 37.8
53.9 23.74 27.4 46.69 53.9 23.75 34.1
46.4 27.60 23.5 54.48 46.4 27.60 34.4

Table 5.11: 17-Queens Execution Times and Speedups.

1.99
3.92

7.88

15.70
23.20

30.10

33.91
37.60

37.21
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Figure 5.15: 17-Queens Speedups.

per node, the speedups flatten drastically when using more than 16 nodes. This is caused by

the mutex contention. As the number of solutions is updated after the completion of each task,

reaching this limit could have been expected. This limit is probably not only caused by the

mutex implementation. It is probably cause by the "release" being done in the critical section

while the mutex is "locked" . Because consistency operations are done while holding the mutex,

all the diff acknowledgments from all workers must be received before "unlocking" the mutex.

To verify these assumptions, two additional versions of the benchmark were derived from the

static partitioning version: a version only locking the mutex at the completion of each tasks,

and a version where the number of solutions is updated at the completion of each tasks while

holding the mutex (as in the BOT partitioning version). The execution times and speedups

of these two modified versions are presented in Table 5.12, and the graph of the speedups is

presented and compared with the previous results in Figure 5.16.

As shown in Figure 5.16, the flattening does not come from the mutex, but from the con-

sistency operations. To avoid this flattening, the amount of consistency operations should be

reduced. To do so, the lazy release model should be used. This model avoids sending diffs to all

workers by only sending them to the next locking worker. However, as the lazy release model is
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Static With Lock Static With Update
1 Worker 2 Workers 1 Worker 2 Workers

Time | Speedup Time | Speedup || Time | Speedup Time | Speedup

1 node 1281.0 1.00 641.5 2.00 1280.9 1.00 642.5 1.99

2 nodes 640.9 2.00 322.8 3.97 641.9 2.00 331.0 3.87

4 nodes 322.7 3.97 II 161.5 7.93 II 323.6 3.96 II 164.7 7.78

8 nodes 161.3 7.94 81.8 15.66 162.2 7.89 82.6 15.51

12 nodes II 107.7 11.89 II 54.1 23.69 II 108.5 11.81 55.3 23.15

16 nodes 81.7 15.67 41.4 30.96 82.1 15.60 43.1 29.70

20 nodes 64.9 19.74 II 33.7 38.05 65.3 19.62 II 39.6 32.33

24 nodes 54.1 23.69 II 27.5 46.50 54.2 23.61 36.8 34.76
28 nodes 46.7 27.45 23.6 54.20 46.7 27.43 37.1 34.52

Table 5.12: 17-Queens Execution Times and Speedups With Locking and Updating.
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Figure 5.16: 17-Queens Speedups With and Without Locking and Updating.
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not yet implemented in YADL, this optimization was not tested.

103

0

5.2.5 Tridiag

Poor speedups are expected for this benchmark because it is an application requiring a lot of

communication without having computationally intensive iterations. The execution times and

speedups for this benchmark are presented in Table 5.13, and the graph of the speedups is

presented in Figure 5.17.

Sequential 41.89

1 Worker 2 Workers

Time | Speedup |[ Time | Speedup

1 node 50.3

2 nodes 59.1

0.83 79.7 0.53

0.71 47.7 0.88

4 nodes 45.8 0.91 II 42.7 0.98

8 nodes 38.1 1.10 39.7 1.06

12 nodes 38.2 1.10 41.2 1.02

16 nodes 38.7 1.08 II 43.3 0.97

20 nodes 39.9 1.05 46.1 0.91

24 nodes 41.2 1.02 II 48.5 0.86

28 nodes 42.5 0.99 51.1 0.82

Table 5.13: Tridiag Execution Times and Speedups.

As expected, the speedups are very bad. There is practically no speedups. This is caused

by a computation requiring little CPU power and too costly consistency operations. Increasing

the granularity of the shared memory could be a solution to obtain better speedups. This

would reduce the number of page-faults incurred by the write invalidate implementation of

the shared memory. The granularity has been increased from 4 kilobytes to 64 kilobytes to

observe the impact of less requests on the performance of the application. The execution times

and speedups with the increased granularity are presented in Table 5.14, and the graph of the

speedups is presented and compared with the previous results in Figure 5.18.

As shown in Figure 5.18, increasing the granularity improves a little the performance of the

application. However, the speedups are still almost inexistent.

To explain the absence of speedups, three elements must be considered. The first is the

delay for serving page-fault requests. This delay and the sum of the data sent by the home for
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Figure 5.17: Tridiag Speedups.

0

1 node

2 nodes

4 nodes

8 nodes

12 nodes

20 nodes

24 nodes

28 nodes

Without Increased Granularity
1 Worker 2 Workers

With Increased Granularity
1 Worker 2 Workers

Time | Speedup || Time | Speedup || Time | Speedup || Time | Speedup

50.3 0.83 79.7

59.1 0.71 47.7

0.53 46.9 0.89 48.5

0.88 II 38.7 1.08 36.3

0.86

1.16

45.8 0.91 42.7 0.98 II 29.0 1.45 II 28.4 1.48

38.1 1.10 39.7 1.06 26.2 1.60 27.4 1.53

38.2 1.10 41.2 1.02 28.0 1.50 30.4 1.38

16 nodes || 38.7 1.08 II 43.3 0.97 II 27.7 1.51 30.0 1.40

39.9 1.05 46.1 0.91 30.5 1.38 35.6 1.18

41.2 1.02 48.5 0.86 II 31.4 1.33 II 37.0 1.13

42.5 0.99 51.1 0.82 32.9 1.27 40.6 1.03

Table 5.14: Tridiag Execution Times and Speedups With Increased Granularity.
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Figure 5.18: Tridiag Speedups With and Without Increased Granularity (IG).

serving page-fault requests for the increased granularity version of the benchmark are presented

in Table 5.15. This table shows that these delays (and the corresponding data sent) increase

with the number of workers. When comparing these delays with the execution times presented

in Table 5.14, the large proportion of the time spent in answering page-fault requests can be

noticed. Another element to explain the absence of speedups is the time spent in "releases".

Table 5.16 presents the delay for doing "releases" in the increased granularity version of the

benchmark. These delays are not as large as the delays for serving data requests, but they are

not negligible. Finally, the last element is that some workers receive their data later than others.

As these workers begin their iteration later, they will also reach the barrier later. As there are

22 iterations in this version of the benchmark, the difference in the reaching time at each barrier

is multiplied by 22, transforming a small delay in a large one. No exact measurement of this

delay has been performed, but, as the time spent answering requests is large, this delay is likely

to be not negligible.

There is still hope of increasing the performance of this application. One of the reasons

explaining the bad speedups is that a single node answers all the data requests from the other

nodes (there is a single home for all the shared memory). Using a more decentralized imple-
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1 Worker

Delay | Data

2 Workers

Delay | Data

1 node 0.00

2 nodes 1.26

0 1.43

125 3.34

125

272

4 nodes 3.26 l 272 5.77 409

8 nodes 5.94 409 8.92 548

12 nodes 9.38 l 544 II 12.73 765

16 nodes 8.85 548 12.10 710

20 nodes || 12.25 | 726 || 17.19 | 1,051

24 nodes || 12.91 | 765 || 17.85 | 1,104

28 nodes || 14.31 874 20.61 1,306

Table 5.15: Delay for Serving Page-Fault Requests in Tridiag.
(Delay in seconds, data in megabytes)

1 Worker | 2 Workers

1 node

2 nodes

5.96

5.85

6.77

6.25

4 nodes 5.79 6.61

8 nodes 6.70 6.77

12 nodes 7.45 7.50

16 nodes 8.05 8.21

20 nodes 8.59 9.29

24 nodes 9.29 10.00

28 nodes 9.29 11.01

Table 5.16: Delay for Executing Releases in Tridiag.
(Delay in seconds)

0
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mentation of the eager release WI model, as the single-writer version presented in Section 3.3.3,

could lead to performance improvements by reducing the delay needed to answer page-fault

requests. As the answering of page-fault requests would be accelerated, the difference in the

barrier reaching time would be reduced, increasing even more the performance of the bench-

mark. Finally, by using a more decentralized region implementation, "release" operations would

also be more efBcient as they would stress less a single worker, the home of the region.

When using two workers per node, we generally have worse results than when using a single

worker per node. This is explained by the computing power added not being backed by more

network resources. As this benchmark uses the network intensively for importing data, only

adding workers sharing the same network resources does not lead to performance improvements.

0

5.3 Discussion

This section discusses the benchmark results presented in the previous section. First, general

conclusions are drawn from the results. Then, a comparison of the static and the EOT parti-

tioning is presented followed by a discussion on the ability of tuning the execution parameters.

Finally, future development on YADL drawn from these discussions is presented.

5.3.1 General Conclusions

Generally, the benchmark results are satisfying. They show that YADL can be used to im-

plement parallel applications achieving moderate to good speedups for some problems. The

applications that need very little collaboration, such as the matrix multiplication, the ray trac-

ing, the Mandelbrot fractal and the n-queens applications, perform very well using YADL.

When problems require more collaboration between the workers, the speedups are inferior.

The tridiag benchmark proves that some applications do not perform well with the current

implementation of YADL. However, implementing more specific region types could lead to im-

provements of the tridiag benchmark. Nevertheless, the performance of tridiag will never be as

good as the performance of very well performing applications.

The performance of the matrix exponentiation benchmark is better than the performance

of tridiag, but, when using many nodes, the performance begins to flatten. The analysis of
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the execution time of this benchmark shows that the flattening is mainly caused by the request

forwarding not being implemented for the eager release WU regions. This leads to the conclusion

that YADL must still be optimized to achieve better speedups for this application.

5.3.2 Static vs BOT Partitioning

The static partitioning almost always gives better results than the BOT partitioning. This could

have been expected as the BOT partitioning introduces overhead. However, the ray tracing, the

Mandelbrot fractal and the n-queens benchmarks are three successes of the BOT partitioning:

the results obtained are very close to the results with the static partitioning. These good results

are mainly explained by the computationally intensive characteristic of these three benchmarks

associated with a requirement for little memory, thus not requiring lots of consistency operations.

For the matrix multiplication benchmark, the performance of the first BOT partitioning

version of the program was unsatisfying. However, increasing the granularity has improved

greatly the performance of the program. Moreover, using less tasks in the BOT also results in

an improvement of the performance of this program. These positive results of the optimization

of the matrix multiplication benchmark shows that the BOT partitioning could obtain good

results in a computationally intensive application that needs lot of shared memory.

For the matrix exponentiation benchmark, the performances of the BOT partitioning version

is disappointing. Because it requires too many consistency operations, including the need for

more shared memory, the BOT partitioning obtains worse speedups than the static partitioning.

However, achieving better speedups and better load balancing were not the only goal motivat-

ing the introduction of the BOT partitioning. Achieving load balancing with different processor

speeds and worker addition and removal are features only provided by the BOT partitioning. If

a programmer requires these features, he may accept the performance penalty associated with

the use of the BOT partitioning.

0

5.3.3 Tuning Parameters

In Section 5.2, some benchmark results have been presented where some execution parameters

have been tuned to try to increase their performances. Tuning correctly the granularity of the
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regions has resulted in performance improvements for the static version of the tridiag benchmark

and for the BOT version of the matrix multiplication benchmark. The ability to tune the

granularity is a feature that must be provided to the advanced programmers to allow them to

get as much performance as possible from the SDSM system.

5.3.4 Future Development on YADL

YADL is functional, but some work must still be done to achieve better performance and to

obtain a more user-friendly interface. The improvements that could be done are: implement-

ing more region types, implementing more synchronization primitive types, supporting many

workers for a single manager, implementing more efRcient versions of UDN, supporting task

prefetching, supporting worker removal when using the BOT partitioning, increasing portabil-

ity, and doing more extensive benchmarking.

Implementing More Region Types

More region types, making available more memory consistency modes, are needed to cover

all possible memory access patterns. Among unimplemented models, the sequential and lazy

release models should be implemented. Moreover, single-writer versions of the eager release

model should be implemented to provide the programmer with lower overhead implementation

for the cases where a multiple-writers version is not required (the case of the tridiag benchmark).

Also, the current implementation of the regions could be optimized. A primordial optimiza-

tion is request forwarding in the eager release WU regions as shown by the results of the matrix

exponentiation benchmark.

0

Implementing More Synchronization Primitive Types

Many synchronization primitive types should be added to the system. Among them, barriers,

including tree barriers, semaphores and condition variables should be implemented. Some other

mutex types should also be implemented to increase the performance of some mutex-based

applications by enforcing mutex locality (see Section 4.2.4).

Moreover, the combination of synchronization primitives with "acquire" and "release" should
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be done to provide a more user-friendly API.

Supporting Many Workers for a Single Manager

As presented in Section 3.5.1, some optimizations could be done when using multiprocessor

nodes. One of these optimizations is to allow many workers to be spawned using the same

manager. Implementing this feature should be done to take advantage of multiprocessor nodes.

However, to implement this optimization, some modifications must be done to the implementa-

tion algorithms of regions and synchronization primitives.

Supporting many workers for a single manager could also be an optimization for uni-processor

NOWs. By having many workers on a single node, CPU cycles are not wasted when a worker

is blocked, as they can by used to run other workers. A study of the effect of this optimization

for uni-processor NOWs would be interesting.

Implementing More Efficient Versions of UDN

The current implementation ofUDN is a naive implementation over TCP/IP (see Section 4.2.2).

Implementing UDN over some lower overhead or higher performance network layers could result

in performance improvements. Among these network layers, UDP/IP, Ethernet and Myrinet

should be the next targets. Moreover, a port of UDN over MPI could also be advantageous to

use the hardware implementation of MPI provided by some network adapter.

Supporting BOT Task Prefetching

When using too small tasks with the BOT partitioning, the latency of task fetching could be a

noticeable overhead. To reduce this overhead, a worker could prefetch some tasks. With task

prefetching, the task commitment and fetching could be done while executing another task, thus

avoiding the lost of CPU cycles.

0
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Supporting Worker Removal in BOT Mode

The worker addition using the BOT partitioning is almost implemented because the shared

memory and synchronization primitive algorithms have been designed to support this feature.

Only small modifications to the server are needed to complete the implementation of worker

addition. However, graceful removal (not a node failure) is not implemented. The removal of

workers with the EOT partitioning would be a nice feature to implement as it would allow to

remove workers from nodes that must be shut down for maintenance or that have been requested

back by their owners5. Implementing this feature requires a lot of work to adapt region and

synchronization primitive implementations.

Increasing Portability

YADL was not designed with portability in mind. However, because most system functions

used are standard UNIX functions, YADL is probably compatible with other UNIX-flavor OSes.

Work should be done identifying sections of code that are not compatible and modifying them

to achieve portability.

Doing More Extensive Benchmarks

More extensive benchmarks should be done to identify the most valuable optimizations and to

get more intuition about the tuning of execution parameters such as the number of tasks to put

in the BOT and the granularity of regions. Moreover, other benchmark applications should be

developed to stress different parts of the system and better evaluate the performance of YADL.

0 5 Some NOWs are composed of nodes used occasionally by their owners and lent to perform parallel compu-

tation.
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Conclusion and Future Work

6.1 Conclusion

0

In Section 1.1, we indicated that our goal was to design and implement a SDSM system that

could be used on the Linux OS. This goal has been achieved. We have proposed a functional

SDSM system, named YADL, that can be used to develop parallel applications on NOW.

The major contribution of this work is to increase the availability of SDSM systems. As

mentioned in Section 1.1, the reason why programmers are not using SDSM systems could be

the ignorance of their existence owing to their low availability. By providing this system, we hope

that programmers will use it and will discover the effectiveness of programming with SDSM.

Another contribution of this work is to introduce the BOT partitioning to SDSM. The idea

of using the BOT partitioning is not new, but, to our knowledge, the way we include it in a

SDSM system is new. The BOT partitioning allows to easily achieve load balancing in irregular

applications and on NOWs composed of different processor speed nodes. It also theorically allows

to add and remove workers during a computation. Moreover, as we will see in Section 6.2, the

BOT partitioning could be a first step to fault tolerant SDSM systems.

Our concern about expert programmers has not been addressed in previous SDSM systems.

Allowing experts to tune the performance of their application by specifying execution parameters

such as the granularity of the regions and the diff unit of the release memory consistency models
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0

is not a feature that we found while studying previous SDSM systems. In Section 5.2, we pointed

out that increasing the granularity improves the performance of some benchmarks, which is a

good optimization. We should eventually add some other advanced features to allow expert

programmers to optimize even more their programs, like user-driven prefetching.

The implementation of YADL is also a starting point for more extensive research on SDSM

systems. Before its implementation, no SDSM system was available at University of Montreal to

conduct research. With YADL, we can launch more experimental research on SDSM systems.

We think that YADL is not simply a research prototype, but also a complete SDSM system

that can be used to develop parallel applications. YADL is actually very suited for computa-

tionally intensive applications not requiring a lot of collaboration between workers. It could

probably be used in the computer graphics field to perform parallel image synthesis. Moreover,

we plan to adapt the system to train neuron network, a machine learning algorithm used in the

artificial intelligence field that requires a lot of computing power.

A comparison of YADL and other SDSM systems was not performed due to availability re-

strictions. One year before publishing this document, a demonstration version of the commercial

TreadMarks SDSM system was obtained and briefly evaluated using a different benchmark plat-

form from the one used for the benchmarks presented in Chapter 5. The benchmark programs

for this evaluation were matrix multiplication and ray tracing. The maximum number of nodes

used was eight due to a limitation in the demonstration version of the TreadMarks library. The

speedups obtained were very similar to the one published in Chapter 5. Of course, YADL is not

a system as mature as TreadMarks, but we think that YADL can be considered as an alternative

to TreadMarks for some applications. When the lazy release memory consistency model will be

implemented, YADL will offer a true alternative to TreadMarks.

Of course, we do not expect YADL to replace neither message passing nor multiprocessors.

As mentioned in Section 3.6, SDSMs' niche is to produce quickly an elegant parallel solution

that can be run on NOWs when a fast and inexpensive solution is required. People needing high

performance computing will still spend much effort on the message passing model and will still

spend much money on multiprocessors to get the fastest solution available.

With YADL, we do not expect to convert programmers needing high performance computing

to use SDSMs. Our target is programmers with limited financial resources and development

deadline needing a parallel solution to their problem. These programmers could eventually start
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using SDSM to obtain elegant parallel programs that can be run on NOWs. However, the low

availability of SDSM libraries was an obstacle to their usage. Now, with the introduction of

YADL, this obstacle will hopefully be removed and programmers will start to use SDSM.

6.2 Future Work

0

Future research should be mainly oriented on the BOT partitioning. One of the needed op-

timizations to the BOT partitioning is a distributed bag of tasks management to remove the

centralized implementation of the BOT in the server.

One of the major drawbacks of the BOT partitioning is the explosion of the number of

consistency operations. Performing consistency operations while executing the next task could

result in improvements. By implementing more aggressive versions of memory consistency mod-

els, a worker could start a new task while the consistency operations related to the previous

task are done in the background, reducing the idle time of processors. Combining aggressive

implementations of memory consistency models and the BOT partitioning is a promising avenue

of research to improve its performance.

Work on the implementation of the lazy release memory consistency model into the BOT

partitioning should also be done. In mutex based applications, the BOT partitioning should

work very well with the lazy release model. However, as in barrier based applications, "acquire"

and "release" operations are merged with barriers. As barriers using the BOT partitioning

are implicit (they are managed in the BOT by task substitutions and dependencies), no explicit

point in a BOT partitioning program provides a way to do "acquires" and "releases" like explicit

barriers do in a static partitioning program. A special task could be added in the BOT to do a

barrier with consistency operations, but we think that a more elegant solution to this problem

can be found.

Moreover, guidelines about the BOT partitioning must also be developed. Correctly choos-

ing the number of tasks to put in the BOT is one of the important elements that should be

clarified. Moreover, techniques using adequately task substitution to dynamically partition the

computation according to run-time parameters should be developed.

Finally, the BOT partitioning could be used as a means to develop a fault-tolerant task
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partitioning system. Fault tolerance implies that both the computation organization and the

data are protected against failures. The data fault tolerance can be achieved by replication, but

a fault-tolerant computation organization is more difficult to achieve. The BOT partitioning

could be used as a mean to achieve a fault-tolerant computation organization. To do so, a task

would be considered as a transaction that, on completion, cannot be lost. On a task commit,

the data modified while executing the task would be replicated, thus achieving fault tolerance.

However, the development of a fault-tolerant BOT and fault-tolerant data storage must still be

carried out.

0
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Page-Faults at User Level

0

The possibility of receiving VM page-faults at user level is important to the implementation of

a SDSM system relying on the VMH to detect memory accesses. The page-faults are trapped

in the OS kernel in the VM module, which is not accessible to user processes.

Fortunately, with UNIX, it is possible to protect memory and receive the corresponding

page-faults in a user program. To protect memory, the UNIX function mprotect must be used.

mprotect allows the protection of memory at a granularity of VM pages by allowing none,

read-only, write-only, or read-write permissions1. If an invalid access is performed, the program

receives a SIGSEGV signal. The default handler for this signal usually halts the program execution

and dumps a "core" file in the working directory of the program.

The default SIGSEGV handler can be replaced by a custom handler to manage the page-

faults. When the execution of the handler is completed, the faulting memory access is replayed.

If the permissions on memory are changed while executing the handler, the access could perform

correctly and the program execution can resume. If the permissions are not changed, the handler

will be called again, causing a potential infinite loop.

To register a custom handler to the SIGSEGV signal, the UNIX function sigaction can be

used. To get the address that causes the access fault, the three arguments signal handler should

be used. When using this handler, the second argument is a siginfo_t structure containing a
1 It is also possible to allow or restrict execution permission on the memory, but this is not very relevant to

SDSMs.
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void *si_addr field which points to the memory location causing the fault (see the sigaction

documentation for more details). However, this feature is not yet implemented on Linux. To

get the faulting address under Linux, we must rely on an undocumented feature.

Under x86 Linux2, adding a struct sigcontext parameter to the one argument signal

handler allows to get information about the context of a signal. One of the fields of this structure

is unsigned long cr2 which corresponds to the faulting address. To know if the fault is a read

or a write fault, the second bit of the field unsigned long err of the signal context structure

must be consulted: if the bit is set, the fault is a write fault, if not, it is a read fault. For more

informations about the Intel page-fault exception, the reader is referred to [Cor02]. An example

of code to obtain a faulting address and the type of fault follows:

ïinclude <stdio.h>

«include <stdlib.h>
•include <signal.h>
#include <sys/mman.h>

«define PAGE_SIZE 4096
«define IsWriteFault(SCP) (SCP.err & 2)

void handler(int nSignal, struct sigcontext SCP) -[

printf(" Faulting address: '/.p\n" , (void*)SCP. cr2) ;
printfC' Type of fault: '/.s.\n", (IsWriteFault(SCP) ? "Write" : "Read"));

if (IsWriteFault(SCP)) mprotect((void*)SCP.cr2, PAGE.SIZE, PROT_READ I PROT_WRITE);
else mprotect((void*)SCP.cr2, PAGE_SIZE, PROT_READ);
printfC'—Out Handler—\n") ;

}

int main (int argc, char *argv[]) {
char *str;

signal(SIGSEGV, handler);

str = malloc(2*PAGE_SIZE);
str = (char*)(((int) str + PAGE.SIZE-l) & -(PAGE_SIZE-D) ;

*str = 'a';

mprotect(str, PAGE_SIZE, PROT.NONE);

printfC'—Try to read, should fault—\n"),
printfC'The Value is: '/,c.\n", *str) ;

printf("--Try to write, should fault--\n");
*str = 'b';

printfC'—Try to read, should NOT fault—\n"),
printfC'The Value is: '/.c.\n", *str) ;

0 2This feature is probably not compatible with other computer architecture Linux versions and with other

UNIX-flavor OSes.
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return 0;

}

/* Execution result:

--Try to read, should fault--
--In Handler--

Faulting address: Ox804a000
Type of fault: Read.
--Out Handler--

The Value is: a.

—Try to write, should fault—
—In Handler--

Faulting address: Ox804a000
Type of fault: Write.
--Out Handler--

--Try to read, should NOT fault-
The Value is: b.

*/

0
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Appendix B

Some YADL Programs

This appendix presents some YADL programs. The emphasis was not placed on performance,

but on ease of development when using a SDSM system. The five programs presented are the

matrix multiplication, the Mandelbrot fractal, the fast matrix exponentiation, n-queens and

tridiag. These codes are not the exact benchmark codes that were used to produce the results

presented in Chapter 5, but simplified version of these benchmarks.

The Matrix Multiplication Program

0

This section presents a matrix multiplication program using the static partitioning. The two

matrices to be multiplied are identity matrices multiplied by two. The resulting matrix should

be an identity matrix multiplied by four, which is verified by the program. The region types

used are write-once VMH home for the matrices to be multiplied and eager release VMH home

write-invalidate for the resulting matrix. This program can be run on two nodes using the

command line: "MatMult -s 128 -- -h nodeO -h nodel".

«include <stdio.h>

«include <stdlib.h>
ïinclude <unistd.h>

#include "DSM.h"

int main(int argc, char *argv[]) {
float *pfA, *pfB, *pfC;
int e, nSize, idO, idl, nPerW, nLeft, ns, ne, i, j, k;
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0

DSMRegionData_t RD;

nSize = 128;
while ((c = getopt(argc, argv, "s:")) != -l)

switch(c) {
case 's':

nSize = atoi(optarg); break;
}

DSM_Start(argc, argv);

if (!DSM_GetWorkerIndex()) -t
RD.nRegionNumber = l;
RD.Size = nSize * nSize * sizeof(float);
RD.Type = DSM.REGION.WOVH;
RD.Granularity = DSM_REGION_GRAN_4096;
DSM_CreateRegion(&RD);

RD.nRegionNumber = 2;
DSM_CreateRegion(&RD);

RD.nRegionNumber = 3;
RD.Type = DSM_REGION.ERVHWI;
RD.SpecificData.ERVHWIData.nDiffUnit = sizeof(float);
DSM_CreateRegion(&RD);

DSM_MapRegion(l, (void**)&pfA);
DSM_MapRegion(2, (void**)&pfB);

for(i = 0; i < nSize * nSize; i++) pfA[i] = pfB[i] = 0;
for(i = 0; i < nSize * nSize; i += nSize+l) pfA[i] = pfB[i] = 2;

DSM_UnMapRegion(2);
DSM.UnMapRegion(l);

}

DSM_WaitInit(l);

idO = DSM_GetWorkerIndex();
idl = id0 + l;
nPerW = nSize / DSM_GetNumberOfWorkers();
nLeft = nSize '/. DSM_GetNumberOf Workers ();
ns = id0 * nPerW + id0 * nLeft / DSM_GetNumberOfWorkers();
ne = idl * nPerW + idl * nLeft / DSM_GetNumberOfWorkers();

DSM_MapRegion(l, (void**)fepfA);
DSM_MapRegion(2, (void**)fepfB);
DSM_MapRegion(3, (void**)fepfC);

for(i = ns; i < ne; i++)
for(j = 0; j < nSize; j++) -[

pfC[i * nSize + j] = 0;
for(k = 0; k < nSize; k++)

pfC[i*nSize + j] += pfA[i*nSize + k] * pfB[j*nSize + k] ;
}

DSM_Release();

DSM_UnMapRegion(3);
DSM_UnMapRegion(2);
DSM_UnMapRegion(l);
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DSM_WaitInit(2);

if (!DSM_GetWorkerIndex()) {
DSM.MapRegion(3, (void**)fepfC);

for(i = 0; i < nSize - l; i++) {
if (pfC[0] != 4) printf("Error.\n"),
for(j = 0; j < nSize; j++)

if (pfCCj + l] != 0) printf("Error.\n");
pfC += nSize + l;

if (pfC[0] != 4) printf("Error.\n");

DSM_UnMapRegion(3);
}

DSM_WaitInit(3);

DSM_Stop();

return 0;

xxi

}

The Mandelbrot Fractal Program

0

This section presents a Mandelbrot fractal program using the BOT partitioning. The region type

used to store the resulting image is eager release VMH home write-invalidate. The task data that

must be given to the program is: "Width:Height:A:B:WidthA:NbIter:OutputFile:NbTasks".

"Width" and "Height" give the width and height of the resulting image. "A" and "B" are the

position in the complex space of the lower left corner of the image. "WidthA" is the width

in the "A" axis of the image. "Nblter" is the number of iterations needed to determine if a

complex number is in the Mandelbrot set. "OutputFile" is the file where the resulting image

is saved in raw RGB format. "NbTasks" is the number of tasks placed in the EOT. As the

output file is saved in raw RGB format, it must be converted to BMP or JPEG with the UNIX

utility "convert" before visualization. This program can be run on two nodes using twenty tasks

with the command line: "Mandelbrot -- -d 512:512:-2:-2:4:50:out.rgb:20 -h nodeO -h

nodel".

Sinclude <stdio.h>

tinclude <stdlib.h>
Sinclude <string.h>
ftinclude <stdint.h>

ftinclude <unistd.h>

#include "DSM.h"

struct color_t {
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uint8_t r, g, b, h; /* h to pad to 4 bytes. */

struct Taskl01_t {
double a, b, dWidthA;
int nWidth, nHeight, nNbIterMax, nNbTasks;

};

struct Taskl02_t {
int nWidth, nHeight;

struct Taskl03_t {
double a, b, dDeltaA, dDeltaB;
int nWidth, nHeight, nNbIterMax, nMyTask, nNbTasks;

î;

int main(int argc, char *argv[]) -[
int bLoop = l;

uhile (getopt(argc, argv, "") != -l) ;

DSM_Start(argc, argv);

while (bLoop) •[
DSHTask.t Task;

switch(DSM_GetTask(&Task)) {
case DSM_OK:

suitch(Task.nTaskType) {
case 100: {

struct Taskl01_t *pT101;
struct Taskl02_t *pT102;
DSMAddTask_t pAddTasks[2];
DSMRegionData_t RD;

DSM_InitAddTask(pAddTasks +0, 101, NULL, O, -1) ;
DSM_InitAddTask(pAddTasks +1, 102, NULL, 0, 0);

pTlOl = (struct Taskl01_t*)pAddTasks[0].TaskData;
pT102 = (struct Taskl02_t*)pAddTasks[l].TaskData;

pT101->nWidth = atoi(strtok(Task.TaskData, ":"));
pT101->nHeight = atoi(strtok(NULL, ":"));
pT101->a = atof(strtok(NULL, ":"));
pT101->b = atof(strtok(NULL, ":"));
pT101->dWidthA = atof(strtok(NULL, ":"));
pT101->nNb!terMax = atoi(strtok(NULL, ":"));
strcpy((char*)&pT102[l], strtok(NULL, ":"));
pT101->nNbTasks = atoi(strtok(NULL, ":"));

pT102->nWidth = pT101->nWidth;
pT102->nHeight = pT101->nHeight;

RD.nRegionNumber = l;
RD.Size = pT101->nHeight * pT101->nWidth * sizeof(struct color_t);
RD.Type = DSN_REGION_ERVHWI;
RD.Granularity = DSM_REGION_GRAN_4096;
RD.SpecificData.ERVHWIData.nDiffUnit = sizeof(struct color_t);
DSM_CreateRegion(&RD);

DSM_ReplaceTask(&Task, pAddTasks, 2);
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break;

}
case 101: {

struct Taskl01_t *pT101;
struct Taskl03_t T103;
DSMAddTask.t *pAddTasks;

pTlOl = (struct Taskl01_t*)Task.TaskData;

pAddTasks = malloc(pT101->nNbTasks * sizeof(DSHAddTask.t));

TlOS.a
T103.b
T103.dDeltaA
TlOS.dDeltaB
T103.nWidth

T103.nHeight
T103.nNbIterHax
TlOS.nNbTasks

pT101->a;
pT101->b;
pT101->dWidthA / pT101->nWidth;
TlOS.dDeltaA;
pT101->nWidth;
pT101->nHeight;
pT101->nNbIterMax;
pT101->nNbTasks;

for(T103.nMyTask = 0; T103.nMyTask < pT101->nNbTasks; T103.nMyTask++)
DSM_InitAddTask(pAddTasks + T103.nMyTask, 103, (char*)&T103, sizeof(T103), -l);

DSM_ReplaceTask(&Task, pAddTasks, pT101->nNbTasks);
free(pAddTasks);

break;

}
{case 102:

int i;
struct color_t *plmage;
struct Taskl02_t *pT102;
FILE *F;

pT102 = (struct Taskl02_t*)Task.TaskData;

DSM_MapRegion(l, (void**)feplmage);

F = fopen((char*)fepT102[l], "w");
for(i = 0; i < pT102->nHeight * pT102->nWidth; i++)

fprintf(F, "•/.c7.c/.c", plmage[i].r, plmage[i].g, plmage[i] .b) ;
fclose(F);

DSM_UnMapRegion(l);

DSM_ConunitTask(&Task) ;

break;

}
case 103: {

double ça, cb, za, zb, zaSquared, zbSquared, dT;
int id0, idl, nPerW, nLeft, ns, ne, i, j, nNbI;
struct color.t *plmage;
struct Taskl03.t *pT103;

pT103 = (struct Taskl03_t*)Task.TaskData;

idO = pT103->nMyTask;
idl = id0 + l;
nPerW = pT103->nHeight / pT103->nNbTasks;
nLeft = pT103->nHeight 7. pT103->nNbTasks;



n
APPENDIX B. SOME YADL PROGRAMS xxiv

ns. = id0 * nPerW + id0 * nLeft / pT103->nNbTasks;
ne = idl * nPerW + idl * nLeft / pT103->nNbTasks;

DSM_MapRegion(l, (void**)&plmage);

for(i = ns; i < ne; i++) {

cb = pT103->b + pT103->dDeltaB * (pT103->nHeight - i);

for(j = 0; j < pT103->nWidth; j++) {
ça = pT103->a + pT103->dDeltaA * j ;
za = ça; zb = cb;

zaSquared = za * za;
zbSquared = zb * zb;

for(nNbI = 0; nNbI < pT103->nNb!terMax
zb= 2 * za*zb+ cb;

za = zaSquared - zbSquared + ça;

zaSquared + zbSquared <= 4.0; nNbI++) {

}

zaSquared
zbSquared

za * za;

zb * zb;

}

dT = 1.0 - (double)nNbI / pT103->nNbIterMax;

plmage[i * pT103->nWidth + j].r = 0;
plmage[i * pT103->nWidth + j].g = 255.0 * dT;
plmage[i * pT103->nWidth + j].b = 255.0 * dT;

}

DSM_Release();
DSM_UnMapRegion(l);

DSM_CommitTask(&Task);

break;
}•

}
break;

case DSM_NO_TASK_AVAILABLE:
usleep(lOOO); break;

case DSM_NO_MORE_TASK:
bLoop = 0; break;

default:

printf("Error.\n"); bLoop = 0; break;
}
}

DSH.StopO;

return 0;

}

0
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The Fast Matrix Exponentiation Program

XXV

This section presents a fast matrix exponentiation program using the static partitioning. The

matrix to be exponentiated is the identity matrix multiplied by two. The resulting matrix should

be an identity matrix multiplied by 2eïp, which is verified by the program. The region types

used are write-once VMH home for the matrix to be exponentiated and eager release VMH

home write-update for the resulting matrix. This program can be run on two nodes using the

command line: "MatExp -e 10 -s 128 — -h nodeO -h nodel".

tinclude <math.h>

•include <stdio.h>

Itinclude <stdlib.h>

#include <unistd.h>

#include "DSM.h"

void MatExp(float *pfA, float *pfB, float *pfC, float *pfD,
int nSize, int nExp, int ns, int ne) •[

int i, j, k;

if (nExp > 1) •[
if (nExp •/. 2) {

MatExpCpfA, pfB, pfC, pfD, nSize, nExp - l, ns, ne);
pfC = pfB;

}
else -C

MatExp(pfA, pfB, pfC, pfD, nSize, nExp/2, ns, ne);

for(i = 0; i < nSize; i++)
for(j = 0; j < nSize; j++)

pfC[j * nSize + i] = pfA[i * nSize + j];

DSM_WaitInit(4);

0

}

for(i = us; i < ne; i++) {

for(j = 0; j < nSize; j++)
pfDCj] = pfA[i * nSize + j];

for(j = 0; j < nSize; j++) {
pfA[i * nSize + j] = 0;
for(k = 0; k < nSize; k++)

pfA[i * nSize + j] += pfD[k] * pfC[j * nSize + k];
ï

}

DSM_Release();
DSM_WaitInit(5);

}
else {

for(i = ns; i < ne; i++)

for(j = 0; j < nSize; j++)
pfA[i * nSize + j] = pfB[j * nSize + i];

DSM_Release();
DSM_WaitInit(6);
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}
}

int main(int argc, char *argv[]) {
float *pfA, *pfB, *pfC, *pfD, f Expected;
int e, nExp, nSize, idO, idl, nPerW, nLeft, ns, ne, i, j;
DSMRegionData_t RD;

-l)

nExp = 10;
nSize = 128;
while ((c = getopt(argc, argv, "e:s:v"))

switch(c) {
case Je} :

nExp = atoi(optarg); break;
case 's' :

nSize = atoi(optarg); break;
}

DSM_Start(argc, argv);

pfC = malloc(nSize * nSize * sizeof(float));
pfD = malloc(nSize * sizeof(float));

if (!DSM_GetWorkerIndex()) {
RD.nRegionNumber = l;
RD.Size = nSize * nSize * sizeof(float);

RD.Type = DSM_REGION_ERVHWU;
RD.Granularity = DSM_REGION_GRAN_4096;
RD.SpecificData.ERVHUUData.nDiffUnit = sizeof(float);
DSM_CreateRegion(&RD);

RD.nRegionNumber = 2;
RD.Type DSM_REGION_WOVH;
DSM_CreateRegion(&RD);

DSM.MapRegion(2, (void**)&pfB);

for(i = 0; i < nSize * nSize; i++) pfB[i] = 0;
for(i = 0; i < nSize * nSize; i += nSize + l) pfB[i] = 2;

DSM.UnMapRegion(2);
}

DSM_WaitInit(l);

idO = DSM_GetWorkerIndex();
idl = id0 + l;
nPerW = nSize / DSM_GetNumberOfWorkers();
nLeft =.nSize •/. DSM.GetNumberOf Workers ();
ns = id0 * nPerW + id0 * nLeft / DSM_GetNumberOfWorkers();
ne = idl * nPerW + idl * nLeft / DSM_GetNumberOfWorkers();

DSM_MapRegion(l, (void**)fepfA);
DSM.MapRegion(2, (void**)&pfB);

MatExp(pfA, pfB, pfC, pfD, nSize, nExp, ns, ne);

DSM_UnMapRegion(2);
DSH_UnMapRegion(l);

DSM_WaitInit(2);
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if (!DSM_GetWorkerIndex()) {
fExpected = pow(2, nExp);

DSM_MapRegion(l, (void**)fepfA);

for(i = 0; i < nSize - l; i++) {
if (pfA[0] != f Expected) printf("Error.\n");
for(j = 0; j < nSize; j++)

if (pfA[j +1] != 0) printf( "Error. \n");
pfA += nSize + l;

}
if (pfA[0] != fExpected) printf("Error.\n");

DSM_UnMapRegion(l);
ï

DSM_WaitInit(3);

free(pfD);
free(pfC);

DSM_Stop();

return 0;

}

The N-Queens Prograni

0

This section presents a n-queens program using the static partitioning. The only shared data

required is the number of solutions which is put in an eager release VMH home write-invalidate

region. To protect the access to this variable, a mutex is used. This program can be run on two

nodes with the command line: "NQueens -n 15 -1 3 -- -h nodeO -h nodel".

#include <stdio.h>

«include <stdlib.h>

ïinclude <unistd.h>

«include "DSM.h"

void PlaceQueens(int nRow, int nNbQueens, int nCol, int nDl, int nD2, uint64_t *pnNbSols) {
int i, nThisCol;

if (nRov >= nNbQueens) pnNbSols[0]++;
else {

nDl »= l;
nD2 «= l;

for(i = 0, nThisCol = l; i < nNbQueens; i++, nThisCol «= l)
if (!((nCol I nDl I nD2) & nThisCol))

PlaceQueens(nRow+l, nNbQueens, nCol l nThisCol,
nDl l nThisCol, nD2 l nThisCol, pnNbSols);

î
}
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void PlaceQueensTasks(int nRou, int nNbQueens, int nLimitPlaced, int nCol, int nDl, int nD2,
int *pnNext, int nJump, int *pnTaskNumber, uint64_t*pnNbSols) {

int i, nThisCol;

if (nRou >= nLimitPlaced) -[
if (pnTaskNumber[0] == pnNext[0]) {

pnNext[0] += njump;
PlaceQueens(nRow, nNbQueens, nCol, nDl, nD2, pnNbSols);

}

pnTaskNumber[0]++;
î
else {,

nDl »= l;
nD2 «= l;

for(i = 0, nThisCol = l; i < nNbQueens; i++, nThisCol «= l)
if (!((nCol | nDl I nD2) & nThisCol))

PlaceQueensTasks(nRou+l, nNbQueens, nLimitPlaced, nCol l nThisCol, nDl l nThisCol,
nD2 l nThisCol, pnNext, nJump, pnTaskNumber, pnNbSols);

}

0

}

int main(int argc, char *argv[]) •C
int e, nNext, nTaskNumber, nNbQueens, nLimitPlaced;

uint64_t nNbSols, *pnNbSols;
DSMMutexData_t MD;

DSMRegionData.t RD;

nNbQueens = 8;

nLimitPlaced = 3;

while ((c = getopt(argc, argv, "n:l:")) != -l)
switch(c) {

case 'n':

nNbQueens = atoi(optarg); break;
case '1':

nLimitPlaced = atoi(optarg); break;

DSM_Start(argc, argv);

if (!DSM_GetWorkerIndex()) •[
RD.nRegionNumber = l;
RD.Size = sizeof(uint64_t);
RD.Type = DSM_REGION_ERVHWI;
RD.Granularity = DSM_REGION_GRAN_4096;
RD.SpecificData.ERVHWIData.nDiffUnit = sizeof(uint64_t);
DSM_CreateRegion(&RD);

DSM_MapRegion(l, (void**)&pnNbSols);

pnNbSols[0] = 0;

DSM_Release();
DSM_UnMapRegion(l);

MD.nMutexNumber = l;
MD.Type = DSM_MUTEX_SHL;
DSM_CreateMutex(&MD);

}

DSM_HaitInit(l);
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nNbSols = 0;
nTaskNumber = 0;
nNext = DSM_GetWorkerIndex();

PlaceQueensTasks(0, nNbQueens, nLimitPlaced, 0, 0, 0, fenNext,
DSM_GetNumberOfWorkers(), fenTaskNumber, fenNbSols);

DSM.MapRegionCl, (void**)&pnNbSols);
DSM_LockNutex(l, DSM_FLAGS_NONE);

pnNbSols[0] += nNbSols;

DSM_Release();
DSM_UnlockMutex(l);

DSM_UnMapRegion(l);

DSM_WaitInit(2);

if (!DSM_GetWorkerIndex()) {
printf ("There were 7,d tasks.\n", nTaskNumber) ;

DSM_MapRegion(l, (void**)fepnNbSols);
printfC'There are °/.lld solutions .\n", pnNbSols [0] ) ;
DSM_UnMapRegion(l);

}

DSH_WaitInit(3);

DSM_Stop();

return 0;

}

The Tridiag Program

0

This section presents a program solving a tridiagonal equation systems using the static parti-

tioning. The equation system is built by choosing random values for the variables and using

only one as the coefficients. After the computation, the solutions found are compared with the

randomly chosen values. The region type used is eager release VMH home write-invalidate for

the system and the solutions. This program can be run on two nodes using the command line:

"Tridiag -s 128 — -h nodeO -h nodel".

«include <math.h>
^include <stdio.h>
«include <stdlib.h>

#include <string.h>
^include <unistd.h>

#include "DSM.h"

int main(int nNbArgs, char *strArgs[]) {
float *pdA, *pdAT, *pdB, *pdC, *pdCT, *pdT, *pdX, *pdY, *pdYT;
int e, i, idO, idl, nPerW, nLeft, ns, ne, nSize, nOff;
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DSMRegionData_t RD;

nSize = 128;
uhile ((e = getopt(nNbArgs, strArgs, "s:")) != -l)

switch(c) {
case 's':

nSize = atoi(optarg); break;

DSM.Start(nNbArgs, strArgs);

if (!DSM_GetWorkerIndex()) {
RD.nRegionNumber = l;
RD.Size = 8 * nSize * sizeof(float);
RD.Type = DSH_REGIDN_ERVHWI;
RD.Granularity = 12;
RD.SpecificData.ERVHWIData.nDiffUnit = sizeof(float);
DSH_CreateRegion(&RD);

DSM_MapRegion(l, (void**)&pdT);

for(i =0; i < 8* nSize; i++) {
pdT[i] = 0;

}

pdA = pdT + nSize;
pdC = pdT + 3 * nSize;
pdY = pdT + 5 * nSize;
pdB = pdT + 7 * nSize;

pdX malloc(nSize * sizeof(float));

0

srand(O);
for(i = 0; i < nSize; i++) {

pdA[i] = pdBCi] = pdC[i] = l;
pdX[i] = randO 7, 10;

}
pdA[0] = 0;
pdCCnSize-l] = 0;

pdY[0] = pdX[0] + pdX[l];
for(i = l; i < nSize-1; i++) {

pdY[i] = pdX[i-l] + pdX[i] + pdX[i+l];
}
pdY[nSize] = pdX[n3ize-2] + pdX[nSize-l];

DSM_Release();

DSM_UnNapRegion(l);
}

DSM.WaitInit(l);

idO = DSM_GetWorkerIndex();
idl = id0 + l;
nPerW = nSize / DSM_GetNumberOfWorkers();
nLeft = nSize •/. DSM.GetNumberOf Workers ();
ns = id0 * nPerW + idO * nLeft / DSM_GetNumberOfWorkers();
ne = idl * nPerW + idl * nLeft / DSM.GetNumberOfWorkers();

pdAT = malloc((ne - ns) * sizeof(float));
pdCT = malloc((ne - ns) * sizeof(float));
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0

pdYT = malloc((ne - us) * sizeof(float));

DSM.MapRegionCl, (void**)&pdT);

pdA = pdT + nSize + ns ;
pdC = pdT + 3 * nSize + ns;
pdY = pdT + 5 * nSize + ns;
pdB = pdT + 7 * nSize + ns ;

for(nDff = l; nOff <= nSize; nOff *= 2) •[
for(i = 0; i < (ne-ns); i++) {

pdA[i] /= pdB[i],
pdC[i] /= pdB[i];
pdY[i] /= pdB[i],

}

for(i = 0; i < (ne-ns); i++) pdB[i] = 1.0 - pdA[i] * pdC[i-nOff] - pdC[i] * pdA[i + nOff];
for(i = 0; i < (ne-ns); i++) pdYT[i] = pdY[i] - pdA[i] * pdY[i-nOff] - pdCCi+nOff];
for(i = 0; i < (ne-ns); i++) pdCT[i] = -1.0 * pdC[i] * pdC[i+nOff];
for(i = (ne-ns)-l; i >= 0; i—) pdAT[i] = -1.0 * pdA[i] * pdA[i-nDff];

DSM_WaitInit(2);

for(i = 0; i < (ne-ns); i++) {
pdA[i] = pdAT[i];
pdC[i] = pdCT[i],
pdY[i] = pdYT[i],

}

DSM_Release();

DSM_WaitInit(3);
}

DSM_UnMapRegion(l);

if (!DSM.GetWorkerIndex()) {
DSM_MapRegion(l, (void**)&pdT);

pdY = pdT + 5 * nSize;
pdB = pdT + 7 * nSize;

for(i = 0; i < nSize; i++)
if (fabs(pdXCi] * pdB[i] - pdY[i]) > 0.0001)

printf("Error.\n");

free(pdX);

DSM_UnMapRegion(l);
}

DSM.WaitInit(4);

DSM_Stop();

free(pdAT);
free(pdCT);
free(pdYT);

return 0;

}
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Appendix C

An Example of Annotated YADL

Program

0

This appendix presents the matrix exponentiation program using annotated versions of the

memory. It is supplied to show the reader how to use the annotated version of the write-once

and eager release WU region types. It basically is the same example as presented in Appendix B,

but using annotated versions of the write-once and eager release write-update regions. Again,

this program can be run on two nodes using the command line: "MatExp -e 10 -s 128 — -h

nodeO -h nodel".

^include <math.h>

ïinclude <stdio.h>

#include <stdlib.h>

#include <unistd.h>

«include "DSM.h"

void MatExp(float *pfA, float *pfB, float *pfC, float *pfD,
int nSize, int nExp, int ns, int ne) {

int i, j, k;
float *pfT;

if (nExp > 1) {
if (nExp •/. 2) {

MatExp(pfA, pfB, pfC, pfD, nSize, nExp-1, ns, ne);
pfC = pfB;

}
else {

MatExp(pfA, pfB, pfC, pfD, nSize, nExp/2, ns, ne);

for(i = 0; i < nSize; i++)
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for(j = 0; j < nSize; j++)
pfC[j * nSize + i] = pfA[i * nSize + j],

DSM_WaitInit(4);
}

DSM_BeginAccess(l, ns * nSize * sizeof(float), (ne-ns) * nSize * sizeof(float),
DSM_REGION_ACCESS_WRITE, (void**)&pfT);

for(i = ns; i < ne; i++) {
for(j = 0; j < nSize; j++)

pfDCj] = pfA[i * nSize + j],

for(j = 0; j < nSize; j++) {
pfA[i * nSize + j] = 0;
for(k = 0; k < nSize; k++)

pfA[i * nSize + j] += pfD[k] * pfC[j * nSize + k];
}

}

DSM_EndAccess(l, us * nSize * sizeof(float), (ne-ns) * nSize * sizeof(float),
DSM_REGION_ACCESS_HRITE);

DSM_Release();

DSM_WaitInit(5);
}
else {

DSM_BeginAccess(l, ns * nSize * sizeof(float), (ne-ns) * nSize * sizeof(float),
DSM_REGION_ACCESS_WRITE, (void**)&pfT);

for(i = ns; i < ne; i++)

for(j = 0; j < nSize; j++)
pfA[i * nSize + j] = pfB[j * nSize + i];

DSM_EndAccess(l, ns * nSize * sizeof(float), (ne-ns) * nSize * sizeof(float),
DSH_REGION_ACCESS_WRITE);

DSM_Release();

DSM.WaitInit(6);

0

}
}

int maintint nNbArgs, char *strArgs[]) {
float fExpected;
float *pfA, *pfB, *pfC, *pfD;
int e, i, j, idO, idl, nPerW, nLeft, ns, ne, nExp, nSize;
DSMRegionData.t RD;

nExp = 10;
nSize = 128;
while ((c = getopt(nNbArgs, strArgs, "e:s:")) != -l)

switch(c) {

case 'e' :

nExp = atoi(optarg); break;
case 's':

nSize = atoi(optarg); break;
}

DSM_Start(nNbArgs, strArgs);

pfC = malloc(nSize * nSize * sizeof(float));
pfD = malloc(nSize * sizeof(float));
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if (!DSM_GetWorkerIndex()) {
RD.nRegionNumber = l;
RD.Size = nSize * nSize * sizeof(float);
RD.Type = DSM.REGION.ERAHWU;
RD.Granularity = 12;
RD.SpecificData.ERAHWUData.nDiffUnit = sizeof(float);
DSM_CreateRegion(&RD);

RD.nRegionNumber = 2;
RD.Size = nSize * nSize * sizeof(float);
RD.Type = DSM_REGION_WDAH;
RD.Granularity = 12;
DSM_CreateRegion(&RD);

DSM_MapRegion(2, (void**)fepfB);
DSM_BeginAccess(2, 0, nSize * nSize * sizeof(float),

DSM_REGION_ACCESS_READ_WRITE, (void**)&pfB);

for(i = 0; i < nSize * nSize; i++) pfB[i] = 0;
for(i = 0; i < nSize * nSize; i += nSize + l) pfB[i] 2;

0

DSM_EndAccess(2, 0, nSize * nSize * sizeof(float), DSM_REGION_ACCESS_READ.WRITE);
DSM_UnMapRegion(2);

}

DSM_WaitInit(l);

idO = DSM_GetWorkerIndex();
idl = id0 + l;
nPerW = nSize / DSM.GetNumberOfWorkers();
nLeft = nSize •/. DSM_GetNumberOf Workers ();
ns = id0 * nPerW + id0 * nLeft / DSM_GetNumberOfWorkers();
ne = idl * nPerW + idl * nLeft / DSM_GetNumberOfWorkers();

DSM_MapRegion(l, (void**)fepfA);
DSM_MapRegion(2, (void**)fepfB);

DSM_BeginAccess(2, 0, nSize * nSize * sizeof(float), DSM.REGION.ACCESS.READ, (void**)&pfB);

MatExp(pfA, pfB, pfC, pfD, nSize, nExp, ns, ne);

DSM_EndAccess(2, 0, nSize * nSize * sizeof(float), DSM_REGION_ACCESS_READ);

DSM_UnMapRegion(2);
DSM.UnMapRegion(l);

DSM_WaitInit(2);

if (!DSM_GetWorkerIndex()) {
fExpected = pow(2, nExp);

DSM_MapRegion(l, (void**)&pfA);

for(i = 0; i < nSize - l; i++) {
if (pfA[0] != f Expected) printf("Error.\n");
for(j = 0; j < nSize; j++)

if (pfA[j + l] != 0) printf("Error.\n");
pfA += nSize + l;

if (pfA[0] != f Expected) printf("Error.\n");
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0

DSM.UnMapRegion(l);
}

DSM_WaitInit(3);

free(pfD);
free(pfC);

DSM_Stop();

return 0;

}



n

Appendix D

Other Benchmark Results

Static Without Increased Granularity || Static With Increased Granularity
1 Worker 2 Workers 1 Worker 2 Workers

Time | Speedup || Time | Speedup || Time | Speedup || Time | Speedup

1 node 1115.7 1.06 567.9 2.07 1118.5 1.05 566.2 2.08

2 nodes 568.4 2.07 II 290.4 4.06 II 568.4 2.07 II 290.1 4.06

4 nodes 288.6 4.08 151.7 7.76 288.6 4.08 151.8 7.76

8 nodes 148.6 7.93 II 81.5 14.44 II 148.3 7.94 II 81.2 14.50

12 nodes 102.4 11.51 58.5 20.12 101.8 11.57 58.6 20.10

16 nodes 79.2 14.87 47.8 24.65 78.9 14.94 II 47.5 24.78

20 nodes 65.3 18.03 41.3 28.49 65.1 18.10 40.9 28.81

24 nodes 56.3 20.90 II 36.7 32.10 55.9 21.07 II 36.7 32.11

28 nodes 50.1 23.53 34.0 34.64 49.6 23.76 33.3 35.35

Table D.1: Matrix Multiplication Exec. Times and Speedups With Increased Granularity.

0
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Static Without Increased Granularity Static With Increased Granularity
1 Worker 2 Workers 1 Worker 2 Workers

Time | Speedup Time | Speedup || Time [ Speedup Time | Speedup

1 node 1621.2 0.99 812.3 1.97 1621.8 0.99 812.7 1.97

2 nodes 811.9 1.97 407.3 3.93 II 812.3 1.97 407.2 3.93

4 nodes 406.9 3.93 II 204.5 7.82 II 407.1 3.93 |[ 204.6 7.81

8 nodes 204.3 7.82 103.3 15.48 204.4 7.82 103.3 15.47

12 nodes || 137.6 11.62 II 70.8 22.57 II 137.6 11.62 70.8 22.58

16 nodes 103.2 15.49 52.6 30.38 103.3 15.48 52.7 30.33

20 nodes 83.9 19.06 II 43.1 37.12 83.9 19.05 II 43.1 37.06

24 nodes 70.7 22.61 36.8 43.47 70.7 22.61 36.8 43.48

28 nodes 61.5 25.97 32.7 48.94 61.3 26.09 32.7 48.93

Table D.2: Ray Tracing Static Exec. Times and Speedups With Increased Granularity.

BOT Without Increased Granularity BOT With Increased Granularity

1 Worker 2 Workers 1 Worker 2 Workers

Time | Speedup Time | Speedup || Time | Speedup Time [ Speedup

1 node 1598.6 1.00 812.3 1.97 1596.2 1.00 809.7 1.97

2 nodes 806.2 1.98 408.9 3.91 802.3 1.99 406.9 3.93

4 nodes 406.3 3.93 206.6 7.74 404.2 3.96 204.9 7.80

8 nodes 205.8 7.77 II 105.6 15.14 203.8 7.84 II 104.5 15.30

12 nodes 138.7 11.52 72.2 22.14 137.0 11.67 71.3 22.44

16 nodes || 105.5 15.15 II 55.1 28.99 104.3 15.33 II 55.0 29.04

20 nodes 85.2 18.76 44.4 36.04 83.8 19.09 43.6 36.63

24 nodes 72.2 22.14 38.1 41.95 70.9 22.55 37.2 42.96

28 nodes 63.5 25.16 34.2 46.72 61.6 25.93 33.3 47.96

Table D.3: Ray Tracing BOT Exec. Times and Speedups With Increased Granularity.
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BOT With 1024 Tasks BOT With 256 Tasks
1 Worker 2 Workers 1 Worker 2 Workers

Time | Speedup Time | Speedup || Time | Speedup Time | Speedup

1 node 1598.6 1.00 812.3 1.97 1595.0 1.00 803.6 1.99

2 nodes 806.2 1.98 408.9 3.91 801.0 2.00 403.1 3.97

4 nodes 406.3 3.93 II 206.6 7.74 II 403.0 3.97 II 203.1 7.87

8 nodes 205.8 7.77 105.6 15.14 202.8 7.88 102.3 15.63

12 nodes || 138.7 11.52 II 72.2 22.14 140.3 11.40 II 72.2 22.13

16 nodes 105.5 15.15 55.1 28.99 103.0 15.52 52.6 30.39

20 nodes 85.2 18.76 II 44.4 36.04 84.5 18.93 II 47.0 34.05

24 nodes 72.2 22.14 38.1 41.95 72.3 22.12 II 40.7 39.24

28 nodes 63.5 25.16 34.2 46.72 65.7 24.34 34.1 46.93

Table D.4: Ray Tracing Exec. Times and Speedups With Less Tasks.

Static Without Increased Granularity Static With Increased Granularity
1 Worker 2 Workers 1 Worker 2 Workers

Time | Speedup Time | Speedup || Time | Speedup Time | Speedup

1 node 1722.4 0.93 856.9 1.87 1722.9 0.93 858.0 1.87

2 nodes 862.7 1.86 431.4 3.72 862.4 1.86 430.4 3.73

4 nodes 432.4 3.71 II 217.1 7.39 II 432.2 3.71 II 216.4 7.41

8 nodes 217.0 7.39 109.0 14.71 217.0 7.39 109.3 14.67

12 nodes 147.3 10.89 74.3 21.58 147.3 10.89 74.4 21.54

16 nodes || 109.6 14.63 l] 55.6 28.84 II 109.6 14.64 II 55.7 28.81

20 nodes 90.2 17.78 II 45.9 34.92 90.1 17.79 45.9 34.97

24 nodes 74.6 21.51 39.6 40.51 74.6 21.50 39.6 40.46

28 nodes 64.6 24.81 34.6 46.32 64.5 24.85 34.6 46.34

Table D.5: Mandelbrot Static Exec. Times and Speedups With Increased Granularity.
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BOT Without Increased Granularity BOT With Increased Granularity
1 Worker 2 Workers 1 Worker 2 Workers

Time Speedup Time | Speedup [| Time | Speedup Time | Speedup

1 node 1622.8 0.99 827.7 1.94 1620.6 0.99 829.6 1.93

2 nodes 817.6 1.96 414.8 3.87 815.3 1.97 413.2 3.88
4 nodes 412.9 3.88 II 209.4 7.66 410.2 3.91 II 209.4 7.66

8 nodes 208.9 7.68 106.4 15.07 207.5 7.73 106.0 15.13
12 nodes || 141.2 11.36 II 72.9 22.00 II 139.8 11.47 II 72.1 22.24

16 nodes 107.7 14.89 55.9 28.67 106.0 15.12 54.9 29.19
20 nodes 87.3 18.37 II 45.7 35.07 85.5 18.76 II 44.7 35.91

24 nodes 73.7 21.76 II 39.0 41.08 71.9 22.31 38.3 41.85
28 nodes 64.7 24.80 34.2 46.85 62.2 25.76 33.6 47.80

Table D.6: Mandelbrot BOT Exec. Times and Speedups With Increased Granularity.

BOT With 1024 Tasks BOT With 256 Tasks
1 Worker 2 Workers 1 Worker 2 Workers

Time | Speedup || Time | Speedup || Time | Speedup || Time | Speedup

1 node 1622.8 0.99 827.7 1.94 1619.2 0.99 816.5 1.96
2 nodes 817.6 1.96 414.8 3.87 812.8 1.97 408.7 3.92
4 nodes 412.9 3.88 II 209.4 7.66 II 409.7 3.91 II 206.2 7.78

8 nodes 208.9 7.68 106.4 15.07 205.2 7.81 104.2 15.39

12 nodes || 141.2 11.36 72.9 22.00 II 142.5 11.26 II 73.3 21.89
16 nodes || 107.7 14.89 55.9 28.67 104.0 15.43 54.0 29.68
20 nodes 87.3 18.37 45.7 35.07 85.7 18.72 47.6 33.69

24 nodes 73.7 21.76 II 39.0 41.08 73.1 21.94 II 41.3 38.86
28 nodes 64.7 24.80 II 34.2 46.85 67.1 23.90 36.0 44.53

Table D.7: Mandelbrot Exec. Times and Speedups With Less Tasks.
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Static Without Increased Granularity Static With Increased Granularity
1 Worker 2 Workers 1 Worker 2 Workers

Time | Speedup Time | Speedup || Time | Speedup Time | Speedup

1 node 1123.9 1.02 574.3 1.99 1118.0 1.02 573.7 1.99

2 nodes 581.8 1.96 II 295.0 3.87 II 581.0 1.97 II 295.1 3.87

4 nodes 296.0 3.86 154.6 7.39 296.1 3.86 154.6 7.39

8 nodes 154.1 7.41 85.9 13.30 II 154.0 7.42 85.8 13.32

12 nodes 107.5 10.63 64.8 17.63 107.6 10.62 64.8 17.64
16 nodes 84.5 13.51 55.3 20.67 84.6 13.50 II 55.0 20.79

20 nodes 71.2 16.05 50.2 22.78 71.3 16.04 50.4 22.69

24 nodes 62.6 18.26 II 47.2 24.20 62.6 18.25 II 47.4 24.12

28 nodes 56.8 20.11 II 46.0 24.82 56.9 20.08 46.0 24.81

Table D.8: Matrix Exp. Static Exec. Times and Speedups With Increased Granularity.

BOT Without Increased Granularity BOT With Increased Granularity
1 Worker 2 Workers 1 Worker 2 Workers

Time | Speedup Time | Speedup |[ Time | Speedup Time | Speedup

1 node 1157.4 0.99 583.9 1.96 1155.5 0.99 582.7 1.96

2 nodes 587.2 1.95 II 301.9 3.78 II 588.6 1.94 II 301.5 3.79

4 nodes 300.6 3.80 162.6 7.03 II 299.8 3.81 162.8 7.02

8 nodes 160.2 7.13 99.2 11.52 159.4 7.17 99.4 11.49

12 nodes 116.7 9.79 II 85.8 13.32 116.4 9.82 II 85.6 13.34

16 nodes 95.8 11.93 83.4 13.71 95.6 11.96 83.1 13.75
20 nodes 85.6 13.35 86.3 13.25 85.6 13.35 86.3 13.23

24 nodes 80.8 14.14 94.0 12.15 80.5 14.19 II 92.4 12.36

28 nodes 78.3 14.58 100.8 11.34 77.8 14.69 100.5 11.37

Table D.9: Matrix Exp. BOT Exec. Times and Speedups With Increased Granularity.
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BOT With 1024 Tasks BOT With 256 Tasks

1 Worker 2 Workers 1 Worker 2 Workers

Time | Speedup || Time | Speedup || Time | Speedup || Time | Speedup

1 node 1157.4 0.99 583.9 1.96 1152.1 0.99 581.4 1.97
2 nodes 587.2 1.95 II 301.9 3.78 II 581.8 1.96 II 300.3 3.80

4 nodes 300.6 3.80 162.6 7.03 299.6 3.81 162.0 7.05
8 nodes 160.2 7.13 II 99.2 11.52 II 159.2 7.18 98.9 11.55

12 nodes 116.7 9.79 85.8 13.32 116.1 9.84 83.4 13.70

16 nodes 95.8 11.93 83.4 13.71 96.4 11.85 80.0 14.28

20 nodes 85.6 13.35 II 86.3 13.25 85.8 13.31 II 83.1 13.76

24 nodes 80.8 14.14 94.0 12.15 80.6 14.18 88.0 12.98
28 nodes 78.3 14.58 100.8 11.34 78.3 14.60 94.6 12.08

Table D.10: Matrix Exponentiation Exec. Times and Speedups With Less Tasks.
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