
t/yï(^c{^^. (Z

Université de Montréal

Tool Support for Context-Based Comprehension ofLarge-Scale
Software Systems

par

Rui Yin

Département d'Informatique et de Recherche Opérationnelle

Faculté des arts et des sciences

Mémoire présenté à la Faculté des études supérieures
en vue de l'obtention du grade de

Maître es sciences (M.Sc)
en informatique

March, 2002

© Rui Yin, 2002

0

^udes ^
.0'a6WGra^odro^é~<î^

àcompt£l'du ~^

£ 5 SEP 2002 "
?

0 ^-> ^'-^
0eî?/îéde^

?A
^

n

^0^
\/,oU^

0

n

Université de Montréal

Faculté des études supérieurs

Ce mémoire intitulé :

Tool Support for Context-Based Comprehension of Large-Scale Software
Systems

présenté par :

Rui Yin

a été évalué par un jury composé des personnes suivantes:

Président-rapporteur: Peter Kropf
Directeur de recherche: Rudolf K. Keller

Membre du jury: François Lustman

Mémoire accepté le :.
6 août 2002

0

n

Sommaire

La compréhension du logiciel est une activité qui joue un rôle essentiel et primordial dans

le cadre des activités de maintenance et d'évolution des systèmes logiciels de grande

taille. Même si plusieurs outils d'aide à la compréhension du logiciel existent, ces outils

offrent peu de support pour la compréhension de systèmes orientés objet de grande taille.

De plus, ces outils offrent peu de support pour la navigation au niveau conceptuel au sein

de grands systèmes.

Dans le cadre de cette recherche, nous avons développé une approche nommée

Visualization in Contexts (Visualisation en Contexte) afin d'aider à la compréhension de

systèmes logiciels de taille industrielle. Cette approche est basée sur les concepts du

paradigme orienté objet et des patrons de conception. Elle vise à offrir des vues multiples

du logiciel, qui présentent des niveaux d'abstraction différents, et permet d'effectuer des

references croisées entre ces mêmes vues. L'outil Context Viewer (Visualiseur de

Contexte) fut développé et intégré dans l'environnement SPOOL pour fins de validation

de notre approche.

Trois exemples et une évaluation de l'outil, présentés dans ce mémoire, permettent de

démontrer la façon par laquelle cette approche facilite la compréhension du logiciel.

Mots clés : patron de conception, système orienté objet, rétroconception logicielle,

visualisation, vue de contexte, compréhension du logiciel, outil.

(J

n

Abstract

Software comprehension is an activity that plays an essential role in the maintenance and

evolution of large-scale software systems. Although various software comprehension

tools have been developed, these tools offer little support for the comprehension of large-

scale, object-oriented software systems. Moreover, these tools provide little help for

navigating at the design level of large-scale systems.

In this research, we have developed an approach, called Visualization in Contexts, for

helping to comprehend industrial-size, object-oriented software. The approach is based

on the concepts of the object-oriented paradigm and of design patterns. It provides

various context views of the software, with the views being at various abstraction levels

and allowing for cross-referencing. A tool, called Context Viewer, was developed and

integrated into the SPOOL environment to validate our approach.

The three examples and the tool evaluation presented in this thesis show how our

approach facilitates the process of software comprehension.

Keywords: design pattern, object-oriented system, reverse engineering, visualization,

context view, software comprehension, tool.

u

n

Table of Content

0

SOMMAIRE...

ABSTRACT...

TABLE OF CONTENT..

•••l

LIST OF TABLE..

LIST OF ABBREVIATIONS..

ACKNOWLEDGMENT.....................................

CHAPTER 1 : INTRODUCTION

1.1 PROBLEM STATEMENT AND SOLUTION APPROACH
l .2 MAJOR CONTRIBUTIONS
1.3 THESIS STRUCTURE..........

CHAPTER 2 : BACKGROUND AND RELATED WORK,

.........Ill

........IV

..... VII

.........IX

.......... x

....... XII

l

.......2
......2

........... 4

2.1 THEORŒS AND CONCEPTS FOR SOFTWARE COMPREHENSION..^

2.7.7 Cognitive Models.. 5
2.7.2 Object-Oriented Concepts.. 6
2.7.5 Design Pattern Concepts.. 7

2.2 TECHNIQUES AND TOOLS FOR SOFTWARE COMPREHENSION... 9
2.2.7 Commercial Tools... 10

2.2.2 Academic Tools... 11
2.3 SUMMARY ... 12

CHAPTER 3: THE SPOOL ENVIRONMENT. 14

3.1 OVERVIEW OF THE SPOOL ENVIRONMENT... 14
3.2 THE SPOOL REPOSITORY... 17
3.3 THE SPOOL ANALYSIS TOOLS ... 20

3.3.1 Analysis at the Source Code Level.. 21
3.3.2 Analyses at the Structure Level... 21
3.3.3 Analyses at the Design Level.. 23

3.4 DESIGN NAVIGATION .. 25

CHAPTER 4 : OVERVIEW OF THE CONTEXT VIEWER.

4.1 OURÂPPROACH: VISUALIZATION IN CONTEXTS................

.28

.28

n

VI

4.2 REQUIREMENTS FOR THE COAT£XrV/£WÊ/;... 29
4.3 PRINCIPLES OP FEATURE DESIGN ..30
4.4 MAIN FUNCTIONS OF THE CO//T£'XrW£lV£K.. 31

4.4.1 E-Set Elements and Operations..31
4.4.2 Various Context Views.. 31
4.4.3 Mechanisms Embedded inside the Context Viewer... 40

CHAPTER 5 : DESIGN AND IMPLEMENTATION OF THE CONTEXT VIEWER ,43

5.1 FACTORS AFFECTING THE DESIGN ... 43
5.2 CONTEXT VIEWER DESIGN COMPONENTS ... 44

5.2.7 ESet Obséder... 44
5.2.2 Text Search Strategy... 46
5.2.3 Context Viewer Factory ..48
5.2.4 Event Handler... 49

5.3 CHOICE OF LAYOUT STRATEGY TOOLS ... 51
5.4 IMPLEMENTATION AND EXPERIENCES ...53

CHAPTER 6 : EXAMPLES.. .55

EXAMPLE 1 : INVESTIGATION OF CONTEXTS ... 55
EXAMPLE 2 : REVERSE ENGINEERING OF DESIGN PATTERNS.. 57
EXAMPLES : REDUCTION OF COGNITP/E OVERHEAD ... 59

CHAPTER?: DISCUSSION. ,61

7.1 COMPREHENSION APPROACH .. 61
7.2 EVALUATION OF SPOOL ENVIRONMENT.. 62
7.3 RELATED WORK.. 65
7.4 LlMFTATIONS ... 68

CHAPTER 8 : CONCLUSION..

8.1 SUMMARY
8.2 FUTURE WORK......

REFERENCES

..................69

...69
...................70

...................72

APPENDIX : SPECIFICATION OF CONTEXT VIEWER.

0

n

List of Figure

u

FIGURE 1: ARCHITECTURE OF THE SPOOL ENVIRONMENT.. 15

FIGURE 2: SPOOL REPOSITORY SCHEMA: CORE CLASSES ... 17

FIGURES: SPOOL REPOSITORY SCHEMA: FEATURE CLASSES.. 19

FIGURE 4: SPOOL REPOSITORY SCHEMA: ACTION CLASSES.. 20

FIGURE 5: PROPERTY SHEET IN UML DIAGRAMS... 21

FIGURE 6: INHERITANCE DEPENDENCY DIAGRAM... 22

FIGURE?: HIGHER LEVEL DEPENDENCY DIAGRAM... 22

FIGURES: DESIGN PATTERN DETECTION.. 24

FIGURE 9: DESIGN INSPECTOR.. 25

FIGURE 10: DESIGN BROWSER... 26

FIGURE 11: RETRIEVER.. 26

FIGURE 12: SOURCE CODE CONTEXT VIEW ..32

FIGURE 13: CONTAESTMENT CONTEXT VIEW.. 33

FIGURE 14: INHERITANCE CONTEXT VŒW.. 34

FIGURE 15: STRUCTURE OF FACTORY METHOD DESIGN PATTERN...................................... 36

FIGURE 16: FACTORY METHOD CONTEXT VIEW... 37

FIGURE 17: TEMPLATE METHOD CONTEXT VIEW ... 38

FIGURE 18: MULTffLE CONTEXT VIEW... 39

FIGURE 19: SYNCHRONIZATION MECHANISM .. 40

FIGURE 20: HISTORY MECHANISM... 4l

FIGURE 21 : ESET OBSERVER... 46

FIGURE 22: TEXT SEARCH STRATEGY.. 47

FIGURE 23: CONTEXT VIEWER FACTORY... 49

n

VIII

FIGURE 24: EVENT HANDLER... 50

FIGURE 25: INVESTIGATION OF CONTEXTS ... 56

FIGURE 26: REVERSE ENGINEERING OFDESIGN PATTERNS... 57

FIGURE 27: REDUCTION OF COGNITIVE OVERHEAD.. 59

0

0

List of Table

TABLE 1: INFORMATION CONTAINED IN THE SPOOL REPOSITORY 16

TABLE 2: FEATURE COMPARISON OF COMMERCIAL TOOLS AND SPOOL............................ 66

TABLES: FEATURE COMPARISON OF ACADEMICAL TOOLS AND SPOOL............................ 67

u

n

List of Abbreviations

CSER Consortium for Software Engineering Research

DnD Drag & Drop

ICSE International Conference on Software Engineering

ICSM International Conference on Software Maintenance

NRC National Research Council of Canada

NSERC National Sciences and Research Council of Canada

OSI Open Systems Interconnection

SPOOL Spreading Desirable Properties into the Design of Object-Oriented,

Large-Scale Software Systems

TCP/IP Transfer Control Protocol / Internet Protocol

UML Unified Modeling Language

0

XI

0

I dedicate this thesis

to

my parents, Jing Yu and Bang Xin

0

n

Acknowledgment

I would like to thank Mr. Rudolf K Keller, professor at Université de Montreal, for

allowing me to be a member of the SPOOL project group and for having directed and

supervised the writing of this thesis. His patience, critical spirit, and great encouragement

have provided a priceless assistance throughout this work.

Moreover, I want to thank my colleagues in the GELO (GEnie LOgiciel) group for their

support, understanding, and patience.

The SPOOL project is organized by CSER (Consortium for Software Research

Engineering), which is financed by Bell Canada, NSERC (Natural Sciences and

Engineering Research Council of Canada), and NRC (National Research Council

Canada). I would like to thank the members of these organizations who helped making

the realization of this research possible.

Lastly, I would like to thank my parents who have always been supportive, especially

during the difficult phases of this work.

0

n

Chapter 1 : Introduction

0

Software comprehension is an activity that plays an essential and dominating role during

the maintenance and the evolution of software systems. It is an activity that can take

programmers much time, especially when the system under investigation is large-scale

(typically with several millions lines of code) and when the programmers are new to the

software system.

1.1 Problem Statement and Solution Approach

Bell Canada spends millions of dollars each year for purchasing and maintaining large-

scale software systems written in C++. In order to maintain and add new functionality

into these systems in the future, Bell Canada wants to assure that the software systems

under investigation are of a certain quality. To this end, there is a quality assurance team

at Bell Canada, which uses several tools and techniques to assess software systems before

their initial purchase, during their development and all phases of their evolution. This

team needs reverse engineering tools to help understand the original design of the system

and the design decisions taken by its programmers. Even though various software

comprehension tools exist, they offer little support in the comprehension of large-scale,

object-oriented software systems. They take little advantage of the additional information

available in the source code of object-oriented systems. Moreover, these tools provide

little help for the design-level navigation of large-scale software systems.

The work presented in this thesis was conducted in the project SPOOL (Spreading

Desirable Properties into the Design of object-oriented, Large-Scale Software Systems), a

CSER (Consortium for Software Engineering Research) project that is carried out as a

collaboration between Université de Montréal and Bell Canada. The main interest of this lis

n
2

project is to identify the desirable properties in the design of large-scale, object-oriented

systems, and to be able to evaluate their quality in respect to those properties. This thesis

presents a new approach, namely Visualization in Contexts, to better support the

comprehension of large-scale, object-oriented industrial software systems as well as a

prototype tool, namely the Context Viewer, which supports this comprehension approach

within the SPOOL environment. The initial idea for the Context Viewer is discussed in

[19], which is the starting point for our research.

1.2 Major Contributions

This work makes two major contributions. The first contribution is the software

comprehension approach Visualization in Contexts, together with the two concepts view

synchronization and design pattern view. Visualization in Contexts is based on the

utilization of the object-oriented paradigm and the design patterns concept, which are

hardly found so far in other work in the reverse engineering domain. Our research thus

opens up new possibilities in terms of how to facilitate the software comprehension

process.

The second major contribution of this work consists in the Context Viewer, which is a

tool that implements the Visualization in Contexts approach and related concepts. The

Context Viewer is integrated in the SPOOL environment. Consequently, it is available for

installation at Bell Canada and evaluation in an industrial context.

These contributions are summarized in the paper Program Comprehension by

Visualization in Context by Rui Yin and Rudolf K. Keller. The paper has been accepted

as a technical paper at the upcoming International Conference on Software Maintenance

(ICSM'2002), Montreal, Canada, October 2002 [21] (rigorously referced conference with

acceptance rate below 50%).

1.3 Thesis Structure

.)

n

3

Chapter 2 presents various theoretical aspects related to software comprehension. It

discusses several cognitive models, as well as various comprehension concepts related to

the object-oriented paradigm and design patterns. This chapter also gives an overview of

existing commercial and academic software comprehension tools.

Chapter 3 reviews the SPOOL reverse engineering environment, including its design

repository and its tools for analysis at various levels of abstraction.

Chapter 4 gives an overview of the Context Viewer; and describes the approach

Visualization in Contexts, which is at the core of the Context Viewer. It explains the

requirements of the Context Viewer and reviews the main functionality of the tool.

Chapter 5 discusses the design and implementation aspects of the Context Viewer. It

presents various factors that affect the design of the tool as well as some of the design

components employed in its implementation. It also details the considerations about the

selection of layout strategy tools.

Chapter 6 presents three examples, illustrating the interaction between the Context

Viewer and other SPOOL tools in facilitating the software comprehension process and

showing how the Visualization in Contexts approach is supported by SPOOL.

Chapter 7 reports on the evaluation of the context-based SPOOL tools with respect to two

requirement lists proposed for program comprehension tools. It also informally compares

the SPOOL tools with related commercial and academic tools. Moreover, it summarizes

the limits of the SPOOL tools.

Lastly, Chapter 8 briefly summarizes this work and the major contributions. A discussion

of future work concludes the thesis.

The Appendix presents the design specification of the Context Viewer. It gives a

perspective of the Context Viewer from the point of view of the developer.

u

n

Chapter 2 : Background and Related Work

During the life cycle of a software system, 60-80 percent of its cost is spent on

maintenance and updating. One main reason is that understanding a software system is a

difficult activity. It is much more difficult if the software under investigation is of

industrial size since this type of software usually contains millions of lines of code and is

written by different groups of developers in different styles. Moreover, it involves

application domains with which we are not familiar. Reverse engineering has been

heralded as one of the most promising technologies to cope with this situation. Reverse

engineering research has produced a number of theories for software understanding over

the past ten years. In Section 2.1, we will describe some of these theories. In Section 2.2,

we will introduce various reverse engineering tools available in both the commercial and

academic field and discuss their limitations in supporting the comprehension of

industrial-size object-oriented software systems.

2.1 Theories and Concepts for Software Comprehension

There are several cognitive models in the reverse engineering domain; they try to solve

the problem of software comprehension from different angles, such as top-down or

bottom-up. Moreover, the process of building these cognitive models are in general

influenced by many factors. These factors could be of a cognitive nature or be related to

the approach of comprehension itself. The programming paradigm and the language used

could be another factor, and so are the style of programming and design of the software

under investigation. In this section, we will analyze some of these aspects in more detail.

5

n

0

2.1.1 Cognitive Models

The bottom-up model [26] of comprehension suggests that understanding is built from

bottom up, by reading the source code and then mentally chunking or grouping these

statements into higher-level abstractions, which in turn will be aggregated into the high-

level understanding of the program.

The top-down model, which is the opposite of bottom-up, was introduced by Brooks [2].

According to him, the mental model of the programmer is built in the manner of top-

down. This model starts by creating beforehand a hierarchy of hypotheses about the

source code. Then, the initial hypotheses are refined by verification and by fanning

subsidiary hypotheses.

In his knowledge-based understanding model, Letovsky [16] views programmers as

opportunistic processors capable of exploiting either bottom-up or top-down cues. The

assimilation process in the model describes how the mental model evolves using the

programmer's knowledge base together with the source code and the documentation of

the system.

The model of Soloway et al. [30] merged the concepts of systematic strategies, as-needed

strategies and inquiry episodes into a single model by using the concepts of micro-

strategy and macro-strategy. The former are used to get an understanding at the local

level; the latter are used to achieve an understanding at a more global level.

Von Mayrhauser and Vans [43] [44] created a comprehension metamodel, which

integrates several aspects of the models described above. This metamodel is made up of

four components. The first three components describe the comprehension processes used

to create mental representations at various levels of abstraction. The fourth component

describes the knowledge base needed for the construction of the three preceding

processes. Comprehension is thus done, according to Von Mayrhauser and Vans, by

using each one of these processes according to needs (i.e. at the time considered to be

convenient by the programmer).

6

0

There are disparities in these cognitive models which are in part due to the characteristics

of the maintainer, the program to be understood and the goal for comprehending the

program. Starting from these. Storey [33] extracted a list of elements that influence the

comprehension strategies of the software maintainers. This list is divided into three types

of elements: maintainer characteristics, program characteristics, and task characteristics.

Starting from these various characteristics, Storey[34] worked out and organized a

hierarchy of cognitive design elements to guide the development of tools to aid in the

exploration and comprehension of software. This hierarchy is separated into two large

branches. The first branch is intended to capture the essential processes of the various

comprehension strategies such as the top-down, bottom-up and integrated approaches.

The other branch addresses the cognitive issues of the maintainer while he or she browses

and navigates the visualization of the software structure. This tree of cognitive design

elements thus gives a base for the specification of various software comprehension tools.

2.1.2 Object-Oriented Concepts

In the preceding section, we described some cognitive aspects of software

comprehension; the models presented above are strongly related to the concept of

abstraction. In fact, the ultimate goal of reverse engineering is to generate a mental model

about the software system under investigation, which is a rather high-level abstraction in

terms of the software system. Object-oriented languages support abstraction at a certain

level by the language itself. In this section, we will describe in detail how this will

facilitate the comprehension of programs written in a certain language.

During the last two decades, many programming languages were invented and evolved.

They have different strengths and are suitable for different types of programming, such as

Prolog for logical programming, Lisp for functional programming, Pascal for imperative

programming, and C++ and Java for object-oriented programming. The underlying

concepts of a programming language introduce certain forms of semantics into the

u

7

0

0

software. For example, logical programming introduces the concept of predicate; object-

oriented programming introduces the concept of object, etc.

Consequently, we can find this semantic information in the source code directly. This

kind of programming language related information is essential to the comprehension of

the system written in such a programming language. The understanding of a program

written in a low-level language like Assembler, for example, can be a very difficult

activity. Not only because the programmer has to know and understand many details

relating to hardware (registers, memory, etc), but also because the significant abstractions

established in the program are not reflected directly in the source code. If the information

of the various semantic elements could be extracted from the source code directly,

understanding the program would require the programmer much less effort. This is the

case with programs that are written in object-oriented programming languages.

The concepts of abstraction and encapsulation are directly supported by the object-

oriented programming languages. For example, the concepts of classes and objects

present in the various object-oriented programming languages make it very easy to

extract different modules of a software system (classes, for example) directly from the

source code. Thus, a system can easily be divided into various modules, which can be

understood independently. Moreover, inheritance enables abstraction by providing the

concepts of generalization and specializations. Polymorphism also brings certain

semantics to the programs in that it allows the specification of a method in the program to

have several implementations. By taking advantage of these abstract concepts, the

comprehension of an object-oriented software system will be largely facilitated.

2.1.3 Design Pattern Concepts

To move to a higher level of abstraction during the process of software comprehension,

design patterns are a very helpful concept, which can facilitate the comprehension

process significantly. In this section, we will introduce the concept of design pattern, then

brieïïy go through different types of design patterns and the reasons why they are so

helpful.

8

0

0

Designing object-oriented software is difficult, and designing reusable object-oriented

software is even more difficult. Yet, experienced object-oriented designers do make good

designs; one reason is that they have knowledge of certain solutions to the current

problems and an aptitude to apply these solutions each time this kind of problem arises

again. A design pattern can be seen as the description of one of these design problems

together with its solutions. In fact, there are several types of design patterns at various

levels of abstraction. Buschmann et al. [3] make the distinction between architectural

patterns, Design Patterns and programming idioms. We will present the definitions given

by Buschman et al. to each of these types.

Architectural patterns are models for concrete software architectures and are thus patterns

at a high abstraction level. They specify the responsibilities of various subsystems and

different components in a system, and the rules to organize the relations between them.

Buschmann et al. introduce several architectural patterns. Layers [3] is an architectural

pattern that helps to structure applications in different abstraction layers; networking

protocols are probably the best-known example of layered architectures. Reflexion,

Broker, and Pipes and Filters are other well-known architectural patterns described in

[3].

As defined by Gamma et al. [9], a Design Pattern describes a communication structure

between software elements and solves a recurring design problem. This type of pattern is

best known and there are hundreds of them in different catalogues [3] [9] [25], concerning

very varied domains. Observer, Bridge, Iterator, State, Strateg, and Visitor[9} are among

the best-known Design Patterns.

Programming idioms are low abstraction level patterns, which are very language-specific.

A single idiom might help one to solve a recurring problem with the programming

language one is using. Examples of such problems arc memory management, object

creation, naming of methods, efficient use of specific library components and so on. The

Counted Pointer [25] is a well-known idiom, which makes the memory management of

dynamically allocated shared objects in C++ easier.

n

9

During the software comprehension process, the identification of these design solutions

will be very helpful and largely facilitates the process. The reason is that the

implementation of a design pattern usually involves more than one object; the

understanding of the interdependency and collaboration among these objects can thus

form a much higher level of abstraction than the abstraction represented by a single class

or object.

2.2 Techniques and Tools for Software Comprehension

Techniques used to aid program understanding can be grouped into three categories:

unaided browsing, leveraging corporate knowledge and experience, and computer-aided

techniques like reverse engineering.

For unaided browsing, the software engineer manually flips through the source code. This

approach has the limitations that a software engineer may only be able to keep track of a

small amount of information in his or her head.

Leveraging corporate knowledge and experience can be accomplished through mentoring

or by conducting informal interviews with the personnel knowledgeable about the subject

system. This approach can be very valuable if there are people available who have been

associated with the system as it has evolved over time. They carry important information

about design decisions, major changes over time, and troublesome subsystems. However,

leveraging corporate knowledge and experience is not always possible, because in many

cases, the software system may have been acquired from another company.

A reverse engineering environment can manage the complexities of program

understanding by helping the software engineer extract high-level information from low-

level artifacts, such as the source code. This frees software engineers from tedious,

manual, and error-prone tasks such as code reading, searching, and pattern matching by

inspection. Without reverse engineering tools, it is very difficult to understand large-scale

software systems. These kinds of systems often contain several millions lines of code

distributed over several thousand files, and the documentation is seldom up to date, often

n
10

even non-existent. In the following sections, we will briefly discuss some representative

reverse engineering tools found in both commercial and academic environments.

2.2.1 Commercial Tools

The commercial tools developed specifically for supporting software comprehension are

quite rare. In this section, we will first review Understand for C++ [39], which is a

reverse engineering, documentation and metrics tool for C and C++ source code. Then,

we will describe four development environments that have functionalities contributing to

software comprehension. Comprehension tools are integrated into these software

development environments, so they support continuous program understanding and try to

address information needs throughout the software lifecycle.

Understand for C++ [39] is marketed by the company Scientific Toolworks, Inc. It offers

code navigation using a detailed cross reference, a syntax colorizing "smart" editor, and a

variety of graphical reverse engineering views at the structure, hierarchy, and source code

level. The user can analyze various dependencies among entities in the database of the

tool. It is designed to help maintain and understand large amounts of legacy or newly

created C and C++ source code.

Discover [7] is a development environment, which is marketed by the company Software

Emancipation Technology. According to available documentation [7] [36], it provides a

whole range of support tools for the different people involved in the development of a

software system. The environment is organized into several tool sets: For example, one of

these sets is intended for project managers, another one comprises tools supporting the

system architects, etc. The set that is most relevant for this work is the one intended for

developers. It comprises a change impact analysis module and a tool called Visual

Navigator to navigate and make searches in a system by carrying out preset queries. The

source code of software systems is stored in the environment database and source code

level navigation is supported.

0

0
11

Another development environment. Visual Age for Java [4l], is marketed by IBÎA Corp.

and integrates various functionalities such as the automatic management of versions. The

source code of the systems being developed within this environment is managed in the

database of the environment. For software comprehension, this environment provides

search tools and diagram viewers to visualize the class hierarchy, the method calls, etc.

Lastly, the environment SNIFF+ [29], a development environment from WindRiver

Systems Inc., as well as the Source Navigator [31] of RedHat.com, are two development

environments providing the functionality to enhance software comprehension. Element

searching, a cross-reference viewer and a class diagram viewer are available in each of

the two environments.

There are several other commercial environments in the market. Yet, we feel that the

environments mentioned above are quite representative.

2.2.2 Academic Tools

There are a great number of academic tools that were developed with the aim to aid and

facilitate software comprehension. They address several aspects of software system

comprehension for various programming languages and paradigms. In the following, we

will briefly go through four of them that we feel are typical of the state-of-the-art of

academic tools.

ShriMP [33][34][35] supports system navigation by using hyperlinks inserted directly in

the source code. Moreover, source code and documentation arc presented by embedding

code and document fragments within the nodes of the nested graphs representing the

system. SHriMP combines this hypertext metaphor with animated panning and zooming

motions over the nested graph to provide continuous orientation and contextual cues for

the user.

The Portable Bookshelf [8] [12] [27] is an academic environment, which was designed

with the aim of providing a standardized format of system documentation. The

information on a system is made available in the form of a Web page and can be- browsed

n

12

by a navigator like Netscape. Users are able to navigate within the interior of diagrams

(called Landscapes) that will display the various subsystems and files of the system

graphically, as well as the dependencies among them, like the calls of functions, for

example. The internal navigation of such diagrams is rather interactive since they are

displayed in the navigator by a Java applet.

Rigi [45] is a tool, which allows the visualization of diagrams representing the various

aspects of a software system (subsystems, files, etc.) in an abstract way. However, in

contrast to the preceding tools, it does not provide a search mechanism and thus is less fit

for the interactive exploration of a system.

TkSee [28] is another tool that can be used for software comprehension. It provides

mechanisms of integrated search and navigation and allows the displaying of source

codes.

2.3 Summary

Software comprehension is a central activity in a variety of maintenance tasks and even

in the development process of large-scale software systems, since programmers in

different groups need to understand the program written by others. The goal of software

comprehension is to derive the abstract representations of a software system from its

source code in order to build mental models of the system. In the preceding sections, we

reviewed cognitive models of software comprehension and certain aspects of the object-

oriented paradigm and of design patterns that help the comprehension process. Then, we

examined several tools developed with the aim of supporting software comprehension.

Among existing tools, few of them focus on the comprehension of object-oriented

software systems. Neither do they take advantage of some useful information in this type

of software systems, such as polymorphism, for example. In addition, none of them

provides any navigation support at the design level of the software system at hand.

Moreover, most tools available offer little support to our new software comprehension

approach, namely Visualization in Contexts. We will introduce this approach and

0
13

describe the functions demanded by it in Chapter 4, and then conduct the comparison of

selected tools with respect to their support to this approach in Chapter 7. In the next

Chapter, we will introduce the SPOOL environment, which offers powerful support to the

comprehension of large-scale object-oriented systems in both source code navigation and

design recovery. The SPOOL environment is designed to help Bell Canada in assessing

large-scale software systems written in C++.

u

n

Chapter 3 : The SPOOL Environment

0

In the SPOOL project (Spreading Desirable Properties into the Design of object-oriented,

Large-Scale Software Systems), a joint industry/university collaboration between the

software quality assessment team of Bell Canada and the GELO group at the University

of Montreal, the SPOOL environment was developed for design pattern engineering. In

this chapter (parts of the chapter are based on [23][19]), we first give, in Section 3.1, an

overview of the SPOOL environment, and then review its repository schema in Section

3.2. In Sections 3.3 and 3.4, analysis tools (except for the Context Viewer, which will be

described in the Chapter 4) and design navigation are described, respectively.

3.1 Overview of the SPOOL Environment

The SPOOL environment is entirely written in the Java language and makes it possible to

store and visualize the static information extracted from the source code of object-

oriented software (C++, Java). It was conceived mainly to allow the investigation of

large-scale systems at the design level, but it is also capable of exploring such systems at

less abstract levels, such as the structure level, or directly at the source code level.

The SPOOL environment is made of several components as shown in Figure 1. The core

of the environment is an object-oriented database [18], which is used as a repository for

the whole environment and contains the information of the systems to be analyzed. The

repository is accessed by a series of visualization tools, such as the UML diagrams (a tool

to generate UML style diagrams), the dependency analyzer, the design pattern detector,

the design patterns inspector, the search and navigation tool and the metrics tool. The

information contained in the repository is imported by using various syntactic analysis

techniques. For example, it is possible to use parsers, such as Datrix [1], Discover [7], ,?.

15

0

0

and GEN++ [6] to extract information from the source code, and subsequently import it

into the repository (Table 1 shows the list of types of information extracted and imported

to the SPOOL repository). Other technologies like the environment SN1FF+ [29] also

make it possible to extract certain information and import it into the SPOOL repository.

Source code capturing [[Investigation and visualization

Source code

Source code parser
IC/C+^1 Java

J!tL

Intermediate format
î

Intermediate format Importer

Design pattern detector
Design inspector
UML diagrams

Dependency analyzer
Metrics tool

Search and navigation tool

The Context Viewer

Repository

Source code models

Figure 1: Architecture of the SPOOL environment

In fact, the information extracted from the source code is stored in the repository in the

form of an object model. This means that each "element" of the source code is

represented in the SPOOL environment as a standard Java object, with its type, its

attributes and its methods. For example, the user can retrieve not only the classes, the

files, the attributes and the methods of the systems at hand in the form of objects from the

repository, but also the various types of relations between these elements like the

operation calls, the references, instantiations, etc. As all these objects are stored in the

database, various tools can thus reach them and navigate through them simply along their

interrelationships. This approach allows the using of information contained in the

repository inside any Java program in a transparent way. The various SPOOL analysis

n
16

tools enumerated previously use this approach and make it possible to visualize, seek and

navigate easily the various system elements.

l.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

Files (name, directory).

Classifier - classes, structures, unions, anonymous unions,
primitive types (char, int, float, etc.), enumerations [name, file,
visibility]. Class declarations are resolved to point to their
definitions.

Generalization relationships [superclass, subclass, visibility].

Attributes [name, type, owner, visibility]. Global and static
variables are stored in utility classes (as suggested by the
UML), one associated to each file. Variable declarations
resolved to point to their definitions.

Operations and methods [name, visibility, polymorphic, kind].
Methods are the implementations of operations. Free functions
and operators are stored in utility classes (as suggested by the
UML), one associated to each file. Kind stands for constructor,
destructor, standard, or operator.

Parameters [name, type]. The type is a classifier.

Return types [name, type]. The type is a classifier.

Call actions [operation, sender, receiver]. The receiver points
to the class to which a request (operation) is sent. The sender is
the classifier that owns the method of the call action.

Create actions. These represent object instantiations.

Variable use within a method. This set contains all member

attributes, parameters, and local attributes used by the method.

Friendship relationships between classes and operations.

Class and function template instantiations. These are stored as
normaJ classes and as operations and method?,, respectively.

Table 1: Information contained in the SPOOL repository

0

0
17

3.2 The SPOOL Repository

The schema of the SPOOL repository [23] is an object-oriented class hierarchy

whose core structure is adopted from the UML metamodel. Being a metamodel for

software analysis and design, VML provides a well-thought foundation for SPOOL

as a design comprehension environment. However, SPOOL reverse engineering

starts with source code from which design information should be derived. This

necessitates extensions to the UML metamodel in order to cover the programming

language level as far as it is relevant for design recovery and analysis.

ModelElemeitt | „ ,0.. 0..

owneâElenent iuportedElement

\̂

Wane space
0

naiuE3pac&

GenjerallzdblBEleinent Package

A ^It^
-^

•^.

Classiîier Sist Model FileDirectory

Class l l DataTïpe | [Utility FIiYalcaUtodel

u

Figure 2: SPOOL repository schema: Core classes

The core classes of the SPOOL repository schema adhere to a large extent to the classes

defined in the core and model management packages of the UML metamodel. As the

elements of the system to be analyzed are stored under the format of the UML

metamodel, they are called ModelElements, as defined in UML [38]. The eore classes

18

n

0

define the basic structure and the containment hierarchy of the ModelElements managed

in the repository (see Figure 2 and Figure 3). At the center of the core classes is the

Namespace class, which owns a collection of ModelElements. A GeneralizableElement

defines the nodes involved in a generalization relationship, such as inheritance. A

Classifier provides Features, which may be structural (Attributes) or behavioral

(Operations and Methods) in nature (see Figure 3). A Package is a means of clustering

M.odelElements.

Moreover, only the classes defined at the bottom of the hierarchy are concrete and thus,

only the Class, DataType, Utility, System, PhysicalModel, Directory and File classes of

Figure 2 are instantiated, as are the Attribute, Operation, Method and Parameter classes

of Figure 3. Each one of these classes represents a particular category of elements of

object-oriented systems:

Class represents a class, Directory represents a directory, and File represents a file.

DataType represents the basic types of the language, for example int, float and char in

c++.

Utility is a concept to classify the elements that are not a part of a class, like global

variables, or free functions.

System represents a software system. System normally contains a physical model and

a logical model (the logical model is not modeled in the schema of SPOOL).

PhysicalModel represents the physical model of a system and contains the directories

and the files of the system.

Attribute represents the attributes of a class (or of a Utility if it acts as free variables).

Operation is the signature of a method and contains a list of parameters (Parameter).

In other words, a method has only one signature but a signature can be shared by

several implementations and thus in various methods.

19

n
Method is an implementation of an Operation and contains the body of the method.

Several methods can implement the same signature (Operation).

Parameter is a parameter preset in the signature of a method (Operation).

IfodelElement

[> <]

sf
Hamespace

Feature ParameterClassifier

typeT-mer:

^
CYP

StructuralFeature BehaTTioraIFeature

<;

A ^

Operationattribute Method

0

Figure 3: SPOOL repository schema: Feature classes

The preceding list classifies a subset of the elements of object-oriented systems and

specifies their interrelationships. Figure 4 presents the SPOOL class hierarchy modeling

the various types of actions. An Action is defined by UML as "An executable atomic

computation that results in a change in the state of the system or the return of a value"

[38]. In SPOOL, the actions are used to describe what is made in the body of the

methods. For example, CreateAction models the instantiation of a class, and CallAction

models an operation call. The other types of action (RetumAction, TerminateAction,

DestroyAction and UninterpretedAction) are not used at present by the SPOOL tools, and

thus the information is not imported in the repository in order to reduce the size of the

database and thus improve the performance of the analysis tools.

0

Metliod

20

At.

T

Createaction

0..*('

G..1

action

A ~ï î

CallBction

0^

Returnaction

T T

Tennljidteflction,

11 instantiation J. | opération

OperationClass

UnlnterpretecUlction DestroyBction

Figure 4: SPOOL repository schema: Action classes

The schema of the SPOOL repository described above is mainly based on the UML

metamodel, but does not respect it 100%. Indeed, the UML metamodel is not conceived

in terms of reverse engineering, but in terms of software design. Therefore, certain

aspects of the underlying programming languages had to be added and certain

modifications had to be made for considerations of performance.

3.3 The SPOOL Analysis Tools

The SPOOL environment provides a number of tools for investigation and visualization,

allowing the exploration of a system at several abstraction levels (source code, structure,

and design). Below, we will briefly present those analysis tools that were developed or

simply integrated within the SPOOL environment.

0

21

n
3.3.1 Analysis at the Source Code Level

Pioperties xl

ijj|gJja|.JsEJ]j|||||^^^

i^lsi,?;h£r°''ll|]
;!35!^C(ass8Smëï

Features:

1^

ïâêà

llil

DORefati6ns,;:,ggg||||j

lllllllllll@l:<»
Ipffiftsturs Tyiia»;

|[j|g'af8rr>ater Typas:

K-|OpBfattonC8l;ls

dciass InatanaaKaflsi

lil'jll-lfndl!

Max. RelattonsMp Strength: j1

•l

©K

s

Cancel

Figure 5: Property sheet in UML diagrams

The lowest level of abstraction at which the user can explore a system is the source code

itself. Before the Context Viewer was integrated into the SPOOL environment, the

environment did not allow investigation of the source code directly, since no editor had

been implemented yet. However, there is a mechanism to integrate SNiFF+ [29]

development environment into SPOOL. This mechanism makes it possible to visualize

the elements of the source code via the various tools of SNiFF+ (editor of source code,

hierarchy browser of classes, etc). Notably, this bridge between SPOOL and SNiFF+

allows accessing the source code, adding the power of SN1FF+ for software system

inspection and navigation of the SPOOL environment.

0

3.3.2 Analyses at the Structure Level

There are normally two types of structures when we visualize software. The first is the

physical structure of the software, such as the location of the source files in a hierarchy of

directories, the location of the classes in the system, etc. The second structure concerns

0

0

22

the logical location of system elements; for example, the location of the various classes in

an inheritance tree, or simply the location of a method in a function call diagram. The

SPOOL environment supports UML diagrams to visualize six structural aspects of the

software and to combine physical and logical stmctures. Via the property sheet,

associated with UML diagrams (see Figure 5), all the association relationships stored in

the repository, such as generalization, instantiation, aggregation, operation call, and

friend, can be visualized in both separate and combined forms.

^CT3: physical r-tottefe Ctoss Dla<gfir>aBmt
? Tools Fila SdU l^ayBut Vlsw ModalEtement Halp

^^5B

15M
Eg

B

\ ES
"^î-

BackupOStream

n
/•--'

HET_SysEvtHandler[:=:r;1 ET_PeClassRererence [\ ET.

"===:::=:====-:-_

ZombieHanctler l l PeRefreshHandler Dispatchable | | AppllntHandler | i ET_Port ET_StreamConni

&--[RGBColorCell ET_WindowPort

^_

l. """-•-
\

ET_PrintPort

Sen/iceConnection [| ProxyReference | | ObjectSvc | | ObjectProxy | | ET_Xt/VindowPort | | MacPictPort

||;ll't;tionProxy I | Sen/iceConnectionSvc

:s.-d,
a

Figure 6: Inheritance dependency diagram

^ET3î Physicat Modetlî Ctass tWagriMi»

^els......nl8.1......Ëdit.......^a^^,.,...,v^^,,,.^
2fâ
3^S
: @]

B

iy

l»

B

-•*1

5JN&t
-^'^

l C^WWîiË» ''•».. iEIW

lyJl s@ M

il

ïl:

Figure 7; Higher level dependency diagram . : i-}';

0
23

By displaying the iheritance dependencies between classes, Figure 6 shows a part of the

class diagram of the system ET++ [10], which is a system that comprises about 720 C++

classes distributed over more than 480 files. The environment also provides an

aggregation mechanism to visualize higher-level dependencies. For example, class

inheritance can be accumulated at the level of files or even directories, as shown in

Figure 7. This approach allows one to extract certain information related to the design of

a system, and to even detect certain problems; for example, an unforeseen coupling

between two directories or two files.

0

3.3.3 Analyses at the Design Level

To fully comprehend the purpose of a given piece of software, the mere understanding of

the static structure of the source code, or even the clear representation of the system's

physical and logical structure, are still insufficient. The comprehension of the rationale

behind design decisions is as important as the understanding of the software's structural

and logical constituents. Design patterns capture the rationale behind recuningly proven

design solutions and illuminate the trade-offs that are inherent in almost any solution to a

non-trivial design problem. Design pattern recovery is supported in the SPOOL

environment by two tools; namely, design pattern detector and design inspector. The

former allows the user to detect the stmcture of design components (the pattem-like

structures to be discovered), which are possible instances of design patterns; the latter

makes it possible to inspect discovered design components [15]. It is inherently difficult

to automatically recover high-level design components (for example architectural

patterns [3]). SPOOL rather supports the recovery of design patterns that have a simpler

structure, notably certain patterns of Gamma et al. [9]. These patterns are relatively low-

level and detectable by static analysis; that is, no information about the dynamic behavior

of the system is required (An example of a highly dynamic pattern is Chain of

Responsibility [9], which can only be detected during runtime). The design pattern

detector carries out queries on the SPOOL repository and detects certain structures

corresponding to the implementation typically used for the selected pattern. Once the

execution of a detection query is finished, the results must be visualized to allow a more

24

n

0

in-depth inspection by the user. In SPOOL, the visualization of the results of a query is

done directly in the UML class diagram of the system. In SPOOL, each of the supported

abstract design components comprises a so-called reference class. This is the class in the

component's structure diagram that is considered most characteristic of the component's

nature. Upon design recovery, we draw incremental bounding boxes around the reference

classes of the implementations of an abstract design component. For example. Figure 8

shows the Factory Methods [9] found in the system ET++. This way of visualizing and

organizing the information is very useful because it gives a first impression about the

number and location of the possible instances of the specific design pattern in the system.

ET3: Physical MteMdte^ï Oass Diagpcam;

Tools Elle Eel» Layout View ItedelElement Help

(3.AS8ES l DIR@ | FII.ÊS
COLLABORATIONS

DESIGN COMP.

fitter: j
Q. Recursion Chains

Il GOF-Patterns
Il S Inheritance Template Methoc

ft Composition Template Meth
Q. Replaced Template Method
Q i"heri'ani:s l-ook fïistncids
K Composnio" Hoyk sitstl'ioas
Q Inheritance h-lotspots I
% Corfipound Irihsritanc? Hotsl
•ai

l" û CiaçsAdspter
|"R Objecydaiiter

B Bridge
Q. Obsen'er

Ilip'î—

131

Inheritance Factory Method

ê@
lr\
fÇ

I
[v.V

lill

:&

iiaasa

-m

t

•.

y ^/f P--S

^^&>=

E
^iis—"*;,.^^^^^;^ M

Figure 8: Design pattern detection

Supported by the design inspector, as shown in Figure 9, it is then possible for each of

the detected design components to be inspected in a separate diagram, which displays

information in three sections. The top section displays a list where all the instances of the

pattern in which the selected element is the reference class are shown. The center section

displays, in the fomi of a collaboration diagram, all the elements taking part in the pattern

instance selected in the first section. Finally, the section at the bottom highlights each

element of the center section in the context of the class hierarchy, which makes it

possible to identify the components' relative locations. ,-'îjt ,

0

^
~N

Query Result ïnspecfeton

Creator

>^

lETJ^Object

m
creatarKlettotl ftictoryOperatiorï^ c^::^

[ET_yOb]ei:t^
[ÊT.VOtiî'ëcr

IDoLenBuBonDownCommand
îWïtsyfAîSîiswsssi
iDoKsyCommand
!GetMin81ze

IDIspatchEvents
KiiSHI

jDispatehEvents_
se

3
~B

•MS

•

Il

^

ET_VObjed

DispatchEvents

Inpijt

t
ET_CBpper

-î>
DispeftchE vents |

EasyScrolICommand

^v

B
'•-«-l

E5@
r\
^
^

•^"

ET
^— ES3--=^ r^^^^^=sr

'•-i.t

3

Si

25

Figure 9: Design inspector

With the help of the various tools of the SPOOL environment, a user can detect certain

stmctures in the system and inspect them to determine if they really form a part of a

design component or not. In fact, an instance detected by the SPOOL environment is not

necessarily a real design pattern instance, that is, one that exhibits the intention of that

pattern. But the user can often get significant information, especially if the structure is

relatively complex like Bridge or Observer [9] for instance.

0

3.4 Design Navigation

Design navigation in the SPOOL environment is supported by two tools: the Design

Browser[19~\ and the Retriever [19]. The former allows for browsing the source code

model and exchanging results with the different SPOOL tools; the latter supports full-text

and structural searching.

The user interface of the Design Browser is separated into three sections: Starting point,

Queries, and Results (see Figure 10). The first and the last sections each contain a list of

ModelElements, characterized by their names and by differently colored icons that

represent their kind (such as C for class, F for file etc). The list in the center of the

26

0

0

Design Browser contains the list of the queries supported by the tool according to the

selected ModelElements. After the query is executed, the result is shown as a new list of

ModelElements in the Results section. For example, Figure 10 shows the browser after

the execution of a query that retrieves the namespace of SetModified, a method from the

system ET++ [10]. It is simple to add new user-defined queries into the Design Browser.

SPOOL - Design Browseri

Toots File ModeîEtem8nt He!P

|^Brews8rJHIst®ry|

l-llaixl

StsrtingPplnt

s;

1 Element

Queries

;Q AccessibleVariables
;Q Classes instanciated
IQ Model
«Iliii'nsspgce'

Q Operations called
Q Specification
Q System
Q Type

IResulis

IReplace

8 Queries
BH

1 Elements

M^] 'M

Figure 10: Design Browser

@ SPOn L RBbH-rer i-1:0f Xl
lBfileaa

•a

gjam|||||?et1
ii

|Wi:N;:|JJI|.)mlMcfriiS(l
Vis sSS.SÏS'^SsësS.

Bl
;; l WK'.IÏI..,.,,,,,! foun dtrti on

'SSissïs^ SKyS^Î ^s^wsss^fssm
"Bi

A1'?:,' a, |,rfS"
Ft Fid MOW

IBBBijfilSgiiïSiSiiSSS N
jg^^^^^iiii^iBfiiii^sa

Figure 11: Retriever

The Design Browser is complemented by the Retriever, as shown in Figure 11, which

allows the user to search for a string of characters in the names of the M.odelElements that

are contained in a namespace. Accordingly, a namespace class can be found in the

27

0
SPOOL schema, allowing the Retriever to search elements that are contained inside other

elements, such as the System, Packages, Directories, Files, and Classes.

In the next chapter, we will present a new approach of software comprehension, namely

Visualization in Contexts. The SPOOL environment, as presented above, lacks several

important features to support this approach, such as a set of predefined context views,

context customization, etc. For this reason, we integrated a prototype tool, namely the

Context Viewer, into the SPOOL environment to support this approach.

0

0

Chapter 4 : Overview of the Context Viewer

0

In Chapter 2, several cognitive models of comprehension were presented. We will present

an approach of comprehension in Section 4.1; namely, Visualization in Contexts, which is

based on certain aspects of these models as well as on concepts drawn from the object-

oriented paradigm and from design patterns. The approach is strongly coupled with the

utilization of the SPOOL environment presented in Chapter 3. It also demands new

functionalities that need to be supported, which are described in Section 4.2. A new

prototype tool, the Context Viewer, is introduced into the SPOOL environment to

complement the support for our approach. We will go through the principles of its feature

design in Section 4.3 and its main functionality in Section 4.4.

4.1 Our Approach: Visualization in Contexts

In order to facilitate the comprehension of the software, the user needs high-level

information about the system under investigation, such as information at the structural

and the design level. The automatic or semi-automatic recovery of this information may

lead to a faster and more flexible comprehension approach than the various approaches of

comprehension presented in Chapter 2.

This new approach is what we call Visualization in Contexts, which is an approach that

supports several software comprehension directions, such as top-down, bottom-up or a

mixture of both. Moreover, it allows for iterative comprehension based on the resolution

of hypotheses. The tools that implement this approach must facilitate rapid navigation

between various levels of abstraction, so that it is possible to better support the approach

described by Von Mayrhauser and Vans [43] [44].

0
29

Visualization in Contexts requires a set of predefined context views. These context views

can be of structural nature such as inheritance relations between several classes, or can be

directly related to the design of the system, like the elements' roles within one

collaboration of a design pattern. During software comprehension, ambiguities are often

caused by inadequacy or lack of infomiation in the programmer's mental model of the

software system. Such deficiencies can often be resolved by moving between the various

abstraction levels of the system and by proving the hypotheses generated in one context

view in another context view.

4.2 Requirements for the Context Viewer

The various comprehension tools presented in Chapter 2 do not provide the functionality

required to support the Visualization in Contexts approach. In fact, some of the tools

make it possible to visualize certain information in a predefined context (for example, in

SNiFF+ one can visualize a class in its inheritance hierarchy), yet they are rather limited

in that only a few contexts are supported and little design level information is provided.

In addition, it is impossible to create personalized contexts from these tools.

The SPOOL environment already supports Visualization in Contexts to a certain extent. It

handles the elements of a software system in an abstract way and supports the search and

navigation for these elements in an efficient way. Moreover, it supports the automatic or

semi-automatic recovery of various aspects of the system at the structural level and the

design level. Still, SPOOL lacks certain functions demanded by the Visualization in

Contexts approach, such as the following:

1. To visualize a small set of system elements in various precisely defined contexts.

2. To allow the creation of personalized contexts where only the desired elements are

visualized.

3. To rapidly move between various contexts at different abstraction levels.

0

0
30

To complement the support to this comprehension approach, the new tool, Context

Viewer, must provide a set of views for one ModelElement alone or a small number of

ModelElements together in precise predefined contexts, which must focus on various

abstraction levels. It must allow the user to customize the set of ModelElements under

investigation according to his or her needs, and the various context views are static in

respect to these ModelElements. Moreover, every piece of information shown in these

views should carry a reasonably high amount of data about the role of these

M.odelElements without adding too much complexity to the view. Finally, the user needs

a mechanism to more rapidly move between various contexts in order to facilitate mental

models cross-referencing.

4.3 Principles of Feature Design

According to the requirements set out for the Context Viewer, we worked out four

principles for its feature design. Each view in the Context Viewer was designed according

to the following four design principles:

l. A context view of Context Viewer is meant to give a view of one ModelElement

alone or a small number of ModelElements together, in precise predefined contexts.

2. Every piece of information shown in these views should have a direct relation to the

subject ModelElements of the current predefined context.

3. Every piece of information should further describe the roles of the subject

ModelElements of the context without adding too much complexity to the view.

Providing the right amount of relevant information is key to the effectiveness of the

Context Viewer.

4. The views proposed by the Context Viewer are static with respect to the set of

ModelElements under investigation. In other words, the information that the analyst

sees in a context view is determined solely by the ModelElements currently being

0

31

0

0

examined, and nothing apart from changing these ModelElements can change what is

displayed in the view.

4.4 Main Functions of the Context Viewer

In Section 4.2, we have discussed the fundamental requirements of the Context Viewer.

With these requirements in mind, we will briefly describe the main functions of the

Context Viewer, which are implemented to satisfy those needs. The Context Viewer

Specification in the Appendix presents further details about the tool's functionality. In

this section, we will first introduce the so-called e-set elements and their supported

operations. Then, we will go through each context view supported by the Context Viewer.

The context views are organized into three categories; namely, source code view,

structure views, and design views, each of which represents one abstraction level

respectively. Finally, we will describe two supplementary mechanisms embedded inside

the Context Viewer, namely History and Synchronization.

4.4.1 E-Set Elements and Operations

Before we go any further, we need to introduce the term e-set elements. In the Context

Viewer, e-set elements refer to a set of ModelElements that are under examination. E-set

elements can be manipulated by add, replace, and remove operations, and there are

various ways to invoke these operations; for example, via popup menus, pull down

menus and hot keys. This allows for the user to easily change the content of the current e-

set to personalize visualization in the various context views.

4.4.2 Various Context Views

In the graphic user interface (GUI) of the Context Viewer, as shown in Figure 12, various

context views are organized as a set of nested panels, each of them containing a context

view or a group of related views, which are available at the various levels of abstraction

supported by the SPOOL environment. The kind of contexts supported is generally

closely related to the underlying programming paradigm (object-oriented in our case) and

32

n
to the language used (C++ in our case). Each of these views is meant to visualize a small

group of ModelElements in a precisely predefined context view. Figure 12, for instance,

shows the Source Code context view.

Conleitt Viewei

Toots E-S®t M|Od6lÊtllra®nt Help , J g|

S ^ceCode|êtuc^lDes|nJ st0|/|:1

-ICI x|

BBa ^:-:^;':

•^

i.i

i

l

.1

PrhTtMariag&r.h I pmtMamaer.C
l_.2

s public Objectj^J

tf'

Il

stë

B

jint papecSise, topLeftHargin, l:

jar *name;

il ol showgrid;

jtaDef(PrinteESettings);
j inter Settings(Point ps. Point t|
j E inter Settings[);
l
|ar *GefHame()

{ return name; }

|id SetPaperSize(Point);

jint GetPaperSizet)

{ return paperSize; }

jid SetTopLeftHarginfPoint tlm);'

jint CetTopLeftHarginO

{ return topLeftHargin; } ^
j,id. SerfiQtEQUiEi^tM&Ea'inï Points j-3

Files Bst ^^,,

F]PrintManager.h

F Application.C
F CacheUtils.h
F Expander.h
EQbi.Ust.h....
Jli.

IN

ISËÎ3
KBemertts,. ill
IE-set Elements List

ET_PrinterSettin9S

C Contrôler
C ET_Expander
C ET_ObjList
C ET_UnixPttyConnection
C ET_VObjectMark
C Memor/WarnAlert
CbïteClass
^fj].IIIIT;llll--11117:g.:.;gjjggjg^^

IM

>i

9Elemegîs::,::i9|||||^||i||j,|g:g|

Figure 12: Source Code context view

0

4.4.2.1 Source Code Level Context

The most basic context view is obviously the source code itself. The source code view

visualizes the piece of code relevant to the selected e-set element. This context view

presents information about e-set elements at the lowest level of abstraction. Since SPOOL

is targeting software written in C++, both the declaration and the definition of a

M.odelElement are queried and presented in this context view. As shown in Figure 12, for

example, the declaration of class ET_PrinterSettings is highlighted in the source code of

file PrinterManager.h, and the user can find its definition in file PrinterManager.C. It

33

0
facilitates comprehension by automatically locating and visualizing specific code

segments in large-scale software.

0

4.4.2.2 Structure Level Contexts

The Context Viewer supports six context views in this category, namely Containment,

Inheritance, Polymorphism, Call Action, Create Action, and Friendship. Among these

context views, only Containment describes the physical structure of the e-set elements; all

others are related to their logical structure: Inheritance, Polymorphism, Call Action,

Create Action are related to the 00 paradigm; Friendship is specifically related to the

C++ language.

Context Viewer 1-Jal.xj

•^

Ill

El

T"^

l lools E-Set ModelEtement Help

Source Code ISau1^] Design) History |
Call Actions t-on'tainment | Create Actions i Friendship i Inheritance | Polymorphism

|11|[B::S~ET?~
B RÇ, ET3: Physical Model

B-a.
@F PrintManager.h

B E-J UNIX
S- F CacheUtils.h

Ë^BS

S F UnixPtty.h

S F View.h
l ,L-Ci
Éi-ËJ CONTOINER
l à" F ObjList.h

L."CE

11%

's.

ÉI"F Application.C
L. ci

B- F TeriMarks.h
l L. e l

BleRloryWarnAlert

Figure 13: Containment context view

Containment makes it possible to visualize the physical location of the declaration of

an e-set element. The example presented in Figure 13 shows, in the form of a tree, the

34

0

0

location (in terms of which file, which directory, etc.) of certain classes of the system.

In other words, Containment shows the hierarchical position of an e-set element and

shows its location in the physical structure of the software at hand.

Inheritance is a context view where the concept of inheritance is extended. Usually,

inheritance is a relationship between classes; in the Inheritance context view, it can

be examined at three structure levels; namely, the class level, the file level, and the

directory level. Moreover, it is capable of visualizing the inheritance relationship

between levels. As shown in Figure 14, for instance, it visualizes the inheritance

dependencies at the directory level for foundation and CONTAINER and at the class

level for ETjObject, ET_Command, and MultiCellSelector. It is also shown that the

classes ETjObject and ETjCommand have inheritance dependencies with these two

directories respectively.

Tools E-Set MotielElement Help

Source Code [auctuire| Design) History]
Call Actions I Containment) Cteate Actions) Friendship Inberitanee Polymorphism j
IN^
dlQII
lllfipl
^

li.l\

^

Bs

•lil

ET_Object

ï

ET_Command

ï"

sua

>

Figure 14: Inheritance context view

35

n

0

Polymorphism visualizes the polymorphism infonnation about the e-set elements.

Given a method/operation that takes part in a relationship of method/operation

overriding. Polymorphism is capable of visualizing where and how the method

overriding happens in a UML style class diagram.

Call Action is a context view where the concept of function call is extended. Usually,

a function call is the relationship between a method/operation pair; in the Call Action

context view, it can be examined at four structure levels, namely, the

method/operation level, the class level, the file level, and the directory level. In

addition, it is capable of visualizing the function call dependency between levels.

Create Action is a context view where the concept of object instantiation is extended.

Usually, object instantiation is the relationship between classes; in the Create Action

context view, it can be examined at four structure levels, namely, the

method/operation level, the class level, the file level, and the directory level.

Friendship is a context view closely related to the programming language C++. It

makes it possible to visualize the accessibility of certain ModelElements by the others

in the context of a friendship relation, which is defined in C++.

4.4.2.3 Design Level Contexts

The SPOOL environment allows for the detection of various concepts related to the

design; most notably, certain design patterns [9]. The user can carry out certain queries

about the system, in order to find particular structures corresponding to the

implementation typically used for the selected pattern in the system. Since the result of

these queries can be stored in the repository of SPOOL, the Context Viewer is capable of

checking whether a specific ModelElement participates in one or several of these

structures and visualizing the result. The Context Viewer currently supports, at the design

level, four context views corresponding to the design patterns Proxy, Factory Method,

Observer, and Template Method, respectively, as well as the Multiple view. This latter

view allows for the visualization of e-set elements that. participate in instances of two or

36

0
more different design patterns. In this section, we will briefly introduce the Factory

Method view, Template Method view, and Multiple view. For a more detailed description

of the various context views, please refer to the Appendix.

fmducl

7^

ConCTaleProtfuct

Creator

F-sctoiyMeïhtxSfj
AnOiWaiionO

ConerelcCreator

Factort-ti»8liho(i(t

pïOEJiicî ^. Facftxyyetto:l().

fetum new CoiwrateProducf

Figure 15: Structure of Factory Method design pattern

Figure 15 shows the UML class diagram of the stmcture of the Factory Method design

pattern, which is one of the creational patterns as defined in the design pattern catalog

[9]. This pattern provides a flexible solution for object instantiation. It allows a class to

defer the operation of instantiation to be implemented in the subclasses.

We can see that there are four so-called roles in Figure 15; namely, Product, Creator,

ConcreteCreator, and ConcreteProduct. Knowing which role each class is playing, the

user can easily understand the collaboration between the classes that form a design

pattern instance. Each of these design views can identify and visualize which role an e-set

element (class) is playing in terms of its corresponding design pattern, therefore largely

accelerating the software comprehension process.

0

0
ConteKt Viewer

Tools &8®tj»cteEtem^^
'•^'y^

SourceiÊode ! Stucture Design History j
:^;;;"'^^~", ••: " •:. . *;' s ,: :..;."• ..-.:. ï,a;:.ï'.'::• :\'?m

Factoiy Meth0tl|| Observe, Proxy Template Method MuBlipia |
ESet Element

lETFileDialog
|ET_FileDialog

[ET.JileDia]og_

IRole m DP instaBce RefBrsnceclass"

IConcreteProduct |ET_EvtHandler

.l^Jcœte^ïtoL-__JlTJW.ana9^^_Ld

s
(+)

l!l|

ill
•l

ill

•

Bl

.•K;:;:ISn:::"::l»

l E T_D irector/D i a l û g
ET_HBox

MakeFilsltem

S MakeButtùns
•EET_ActionButton

IL

I
ET_Fileltem|

3i
-Il

37

Figure 16: Factory Method context view

In Figure 16, the Factory Method view shows in its upper part the list of recovered

instances of the Factory Method design pattern (DP), identified by the respective E-set

Element, its Role in DP instance, and the so-called Reference class. The lower part shows

the selected Factory Method pattern instance as a UML style class diagram. In the

example presented in Figure 16, the user can easily tell that the ET_FileDialog plays the

role of Creator in the selected pattern instance, the ET_DirectoryDialog plays the role of

ConcreteCreator and the ET_FUeItem, ETJHBox, and ET_ActionButton all play the role

of ConcreteProduct in the Factory Method design pattern.

u

38

0

0

ConteKt Viewer
^

?'ÏjQf3
Tœto^f-Set McKietEtement: Help : '• î::':?:i?::iliS*;ft::ï

jJsurce OMe j Stucture Design | History |
Factofy Mtethcd] BbseKet] Proxy Template Method MBffipte |

BR
Eg

ESetEtsmeni

T FiteDlaloa

ET_FijeDlalog

R®1 e in DP instance

ITernplateClass
IHookClass

ET_FileDialog_ _^^^^^^^

-Reference class

|ET_FlleDialog
lET_EvtHandler

jE]_Dialog :il

Et»

l

SESfiNBl

B»

^si^

m

;i!

ET_Di ne c-tory Dialog

'tA^ngTypâ
 ke File tern

Cc.ntrol
(«take Buttons

::,LjT J-i

H

Figure 17: Template Method context view

The Template Method view visualizes the e-set elements in the context of the Template

Method, which belongs to the catalog of behavioral design pattern. As an example, in

Figure 17, the Template Method view shows that the ETJFileDialog participates in a

instance of Template Method pattern and plays the role of Template Class. Within the

ET_FileDialog, there are four template methods; namely, UpdateList,

DoM.enuCommand, DoMakeContent, OpenOrChangeDir. These methods invoke four

hook methods: MakeFileItem, MakeButtons, WrongType, and Control.

ET_DirectoryDialog plays the role of Hook Class. It inherits from ET_FileDialog and

implements these hook methods.

Multiple is a context view that is able to visualize the e-set elements in the context of

more than one design pattern. By the selection of multiple rows from the design pattern

instances table, the user can investigate e-set elements in terms of any combination of the

four design patterns Factory Method, Template Method, Observer, and Proxy. The

example presented in Figure 18 shows that the currently selected rows fonn the

n
39

combination of the patterns Factory Method and Template Method. The current e-set

element is ETJFileDialog. We know that it participates in both patterns from previous

examples.

ConteKt Viewer

Ipste E-Sst fclodelElBmeBt HBtp .a

Source Code | Stucture Design History
Factory Method Obsenrer Proxy Templatt Method Muttipla

E S et Elément Design Pattern Role In DP inst...! Reference classj
ET_FifeDialog llnheritance Factor/ Method iConcreteProduct |FT_EvfRà ricllër
laaïlEÎHEIBIî^niiliyiiclilifclAIAML'llSfdiliMi^BSfEiBI^^^^BI fjll JJBEEI

ET_FileDialog ilnheritance Factory Method IConcreteCreator]ET_Manager
!ET_FileDialog ilnheritance Template Meth... iTemplateClass |ET_FileDiatog

•••Visualization I

B̂lêiJ

Il

n

j M

@1

]—1ET_ActionButton|-^|—| ET_DirectoryDialog]- ET Fileltem

ET HBox

VUS JJ
d

Figure 18: Multiple context view

In Multiple view, the participants for different patterns are shown in different predefined

colors. If a class participates in more than one pattern instance, its bounding box will

comprise more than one layer; each layer is presented in the color of its associated

pattern, such as ETJFileDialog and ET _Directory Dialog. The strength of Multiple is that

the user can see how certain ModelElements collaborate with others that arc participants

of different design patterns in that view. To avoid confusion, there is no method or

operation shown in the UML style class diagram; the Multiple simply tries to give the

user an overall view of certain ModelElements in terms of design patterns. For more

detailed information on each specific design pattern with which a specific e-set element

gets involved, the user could go to the specific design pattern view.

0

40

n
4.4.3 Mechanisms Embedded inside the Context Viewer

There are two supplementing mechanisms embedded inside the Context Viewer, which

largely facilitate and speed up the software understanding process, as we will explain

below.

Ointeirt Viéweiï":

Teste E-Set MoEtslElemsht Mefp

Source Code @urtune]j Design | Ustoiy |

^Cor^etrt ^ewÉiir|

Taols E-Set J^delEtetrre^ ^
SoiïceCode JMurtuTe| Design) Histoiy|

Il
(c»UAi!lion»lc<>»*alnm*n<j Ci«<)«Actl»nt| Firnit«hip| li>li<| Call Attiont] ContilnmOTtj •Çi«it» Actrontj Fr>««dEl)i»:|'l»ti»tît*»u>: Polymofpftt;!

B-S ET3
E-lg|ET3: Physical Model

B.EJ.
SO LOOKS

E- F EtLook.C
I-CE

El" F MacroCommand.h
L-ci

liil^B
llffil

s
i
ils

ET_Layout

Context Viewer •BB

Taste g.Set KotlBlEtemsnt Help

Source Code [Stucture] Desi(pi | Histoiy
[^^Bm'^CLblM'»creçora<'nanACI,|
^J^III^^sSi: public HacroCoi[

Il,,,,,

î!

Il
li

||oi grUpdate;

BtaDeîlGcHacroCouiaiid) ;

|H&croCommand(chai:*name) ;

IJrHacroCommand();
Ijid AddtConaand*);
jted;

|id Undoltf);

IjidDoItO;
«id Réduit();

can be called in any order...

|id BeginDelayUpdate();

id EndDelayUpdatet);

Il

Ill

l!
l
B

/* HacEOCoimand_Fir3t */

S0

,^
a-

iFftes Ltei

F]MacroCommand.h

F EtLook.C

IZ-Blements,

lE-set Elements List

ici
1C ETMenultemLayout

^jjggsiiasiin^

ET_Object

TT

ET Command

î
MacroCommand

zr

p,.:»!ai

;!

_-tJ.

Figure 19: Synchronization Mechanism

0

4.4.3.1 Synchronization Mechanism

The Synchronization mechanism makes sure that all currently available 12 context views

are synchronized; that is, that they display the same e-set elements whenever the analyst

selects a different context view. This mechanism is meant to reduce the analyst's

cognitive overhead when cross-referencing mental models. During the investigation, to

4l

0
switch between the various views at different levels of abstraction, the analyst simply has

to click on the tabs that indicate the respective views.

Figure 19, for example, shows the e-set elements ETMenuItemLayout and

GrM.acroCommand in three context views; namely, Source Code, Containment, and

Inheritance. To switch between these views, it only takes about three mouse clicks.

Obviously, this reduces the user's cognitive overhead and greatly facilitates the cognitive

process.

0

4.4.3.2 History Mechanism

Context Viewer
^

"illTools E-Set ModelElement Help

Source Code j Stucture) Design Mistofy
B'&s..., Containment panel

s S;sa Inheritance panel
B'">S:Sef Polymorphism panel

B ktSë-i ca" Actions panel
^"^Sst Create Actions panel

È'&s.» Source code panel
S-&sa

^,Set Soul Restore Stats

Cut

Copy

Paste

AetdtoESet

Remove from E8et

Replace ESet

Preipertt&s...

Print- Pâfent Cofttainars.

Print- Event Handitef Chsln

Jl

Figure 20: History Mechanism

Each instance of the Context Viewer stores all the states in which it has been since its

creation as a history tree. A state in the Context Viewer is defined as the content of the e-

set together with the last view the user has displayed with those e-set elements. The

history tree can be accessed through the history tab. As shown in Figure 20, it is

implemented as a vertical tree, each node representing a Context Viewer state, and the

42

0
current state is in magenta color. By selecting a state and invoking the command Restore

State, the user can get back to previous states of the Context Viewer instance, so the user

will never lose the experience acquired during one investigation.

0

0

Chapter 5 : Design and Implementation of the Context
Viewer

0

After the brief overview of the Context Viewer in Chapter 4, we will review in this

Chapter the considerations that led to the design of the Context Viewer. There were many

factors and considerations involved during implementation in order to achieve a good

quality in terms of object-oriented design.

Firstly, we will describe some factors that affected our design decisions. Then, in Section

5.2, we will present four design components [15] that are relevant for the design of the

Context Viewer. In Section 5.3, we will share our experience on how to select a suitable

software package automatic layout given our specific project needs. Finally, we report on

the validation and testing of the Context Viewer.

5.1 Factors affecting the Design

The Context Viewer has been implemented within the SPOOL environment using the

SPOOL reverse engineering framework and the JKit/Go visualization framework. A

framework is a class hierarchy plus a model of interaction among the objects instantiated

from the framework. In addition, a framework reverses the traditional idea of component

reuse. Instead of a programmer writing a main program that calls on re-usable

procedures, a programmer instantiates objects from the framework's class hierarchy and

then provides methods for the framework to call; this is so-called reverse programming.

Therefore, one major design guideline of the Context Viewer tool is to try to tailor the

SPOOL reverse engineering framework and Jkit/Go visualization framework according

to our needs, instead of introducing new classes and mechanisms that define the

interaction between their objects. Whenever possible, we tailor these frameworks by

0
44

providing highly specialized routines that are called by them. For example, to handle user

related events in the Context Viewer, we decided to take advantage of the Event Handler

design component, which is a mechanism about how to handle requests. Its details are

presented in Section 5.2.4.

Another main design guideline for the Context Viewer is to adopt design pattern solutions

[9] for the design problems at hand in order to design a reusable object-oriented

application with good quality. Moreover, one of the major strengths of the SPOOL

environment is design pattern recovery; the Context Viewer has a set of design views that

are design pattern related, so it is in our interest to make our tool rich in design patterns

by nature.

5.2 Context Viewer Design Components

There are many design components in the Context Viewer. In this section, we present four

major design components in order to demonstrate the design quality of the Context

Viewer. They adopt solutions of four design patterns [9]: the ESet observer for Observer,

the Text Search Strategy for Strategy, the View Factory for Abstract Factory, and the

Event handler for Chain of Responsibility. For each design component, we will describe

the design problem on which it focuses, the solution for that design problem, its structure

in the UML style class diagram, and its participants.

5.2.1 ESet Observer

ESeî Observer is a design component whose objective is to establish a one-to-many

dependency between an ESet object and different context views, so that all context views

are notified and updated automatically once the ESet object changes its state.

0
Problem:

0

45

For each Context Viewer instance, there is only one ESet object. The visualization content

in all the views in this instance will depend on the content of the ESet object in order to

achieve synchronization among those views. In other words, once the state of the ESet

object changes, all the views should update themselves accordingly. This also means that

any change made to the ESet object in one view will in turn affect the other views'

visualization. Moreover, it should be Hexible so that adding new views and removing

views from the Context Viewer will not require a lot of effort.

Solution:

The intention of the design pattern Observer [9] is to define a one-to-many dependency

between objects so that when one object changes its state, all its dependents are notified

and updated automatically. For the design requirement of the Context Viewer, we adopt

the solution described by the Observer. As shown in Figure 21, it specifies that the

subject class is observed by the observer classes, which can be attached to or be detached

from the subject class. When the ESet object changes its state, it notifies all the observer

classes by calling their method reactQ.

0

46

0
Structure:

ESet

+add0bserver3:int

+delete Observers:int

+notify0bserver s:int

interface
ViewOfCantext

+react:int

ïTï

SourceCodeVieïOiagraim

+react:int

InheritanceViewDiagranm

+react:int

otherviews

Figure 21 : ESet Observer

Participants:

ESet is the subject class observed by the ViewOfContext, which is an interface

implemented by all the views contained in the Context Viewer. All the views have to

implement the method react().

0

5.2.2 Text Search Strategy

Text Search Strategy is a design component whose objective is to define a set of string

search procedures, encapsulate each one of them, and let them vary independently from

the client that uses them.

Problem:

For the Source Code View, the view at source code level, we need to find the declarations

of ModelElements (for example, the declaration of a class or a method) so we can

47

0
highlight them out from the text pane in this view. Since there arc many possible search

algorithms that can do it, and we may want in the future replace the current algorithm by

another one, we want to achieve the flexibility that different text search algorithms are

interchangeable.

Solution:

The intention of the design pattern Strategy [9] is to define a family of algorithms,

encapsulate each one, and make them interchangeable. Strategy lets the algorithm vary

independently from clients that use it. This is suitable for our need; to comply with the

interface TextSearchStrategy, each concrete text search strategy implements the method

locateÇ) respectively, and therefore the client is not aware of the change if one of the

concrete text search strategies is replaced by another one.

Structure:

SourceCodePanel

\-^>-
interface

TejctSearckStrategy

^locate; StringLocation

\ ~K
/

±
PrimeTextSearchStrategy

+locate:StringLocation

otherTextSearchStrategy

+locate:StringLocation

0

Figure 22: Text Search Strategy

Participants:

As shown in Figure 22, SourceCodePanel is the container of the TextSearchStrategy,

which declares the common interface for all supported search strategies. The

0
48

PrimerTextSearchStrategy is one of those concrete strategy classes that implement a

specific text search algorithm. The SourceCodePanel calls the algorithm implemented in

method locate () within the PrimerTextSearchStrategy or other text search strategies.

5.2.3 Context Viewer Factory

The Context Viewer Factory is a design component whose objective is for the Context

Viewer diagram to create a set of context views without knowing the concrete classes of

each view.

Problem:

In the Context Viewer, various design views are designed so that they arc all composed

into the CVDiagram during its initialization, which is the main container of these views.

We need to enforce the constraint that these views are meant to be used together. At the

same time, the CVDiagram should be independent of how its contained views are

created.

Solution:

The intention of Abstract Factory [9] is to provide an interface for creating families of

related or dependent objects without specifying their concrete classes. For the design

requirement of the Context Viewer, we adopt the solution described by Abstract Factory.

It specifies that the client only knows about the abstract factory and abstract product

interface, each concrete factory class creates a set of concrete products.

0

0
49

Structure:

interface

ToolFactory

ï

CVDiagraam

CVTactory

T

l.
DesignVieiffliagram

î

TeanplatéMethod

L.
Observer

Figure 23: Context Viewer Factory

Participants:

As shown in Figure 23, the CVDiagram is only aware of the ToolFactory and

DesignViewDiagram. CVFactory is the concrete factory that creates a set of design

views; for example. Observer or TemplateMethod, etc.

5.2.4 Event Handler

The Event handler is a design component whose objective is to avoid coupling the sender

of a request to its receiver by giving more than one object a chance to handle the request.

In fact, Event handler is an embedded mechanism inside the SPOOL environment; the

Context Viewer extends and takes advantage of this mechanism to handle Context Viewer

specific events, such as ESetEvent and CVHistoryDiagramEvent.

0

50

0
Problem:

During investigation based on the Context Viewer, one thing the user can do is

add/remove/replace the currently contained ModelElements in ESet object. Once such an

event occurs, we want to handle it in a flexible manner: giving more than one object a

chance to handle this ESetEvent and avoid hard coding the receiver of this event.

Solution:

The intention of Chain of responsibility [9] is to avoid coupling the sender of a request to

its receiver by giving more than one object a chance to handle the request; chain the

receiving objects and pass the request along the chain until an object handles it. The

SPOOL environment has an embedded mechanism, the Event handler, which is a design

component and which adopts the solution of the Chain of responsibility design pattern.

We can take advantage of the Event handler to implement our design for the needs of the

Context Viewer.

Structure:

interface
ActianLiséener

7^
EventEtandler

+handLeEvent:void

+getNextEventHaindler : EventHandlei
+actiunperformed:void

+setNext£ventHaLndler :void

ViewElement

0 Figure 24: Event Handler

51

0

Participants:

As shown in Figure 24, the EventHandler plays the core role in this design component; it

has the methods getNextEventHandlerC) and setNextEventHandlerC) to form the

responsibility chain, and handleEventC) to react to the event. It also implements the

ActionListener to benefit from the Java Event processing mechanism. The ViewElement

subclasses from EventHandler so that all the ViewElements could be candidates to handle

the events.

u

5.3 Choice of Layout Strategy Tools

During the implementation of the Context Viewer, we had to select a visualization tool to

function as the layout strategy in order to generate the UML style class diagram

visualization for design pattern views. Before the implementation of the Context Viewer,

SPOOL employed the Dot & Dotty as the layout package to make a layout for all the

UML style diagrams. Even though it works well, it has two main limitations: one is that

the Dot & Dotty is not written in Java and the tools in the SPOOL environment have to

use the Runtime.exec() method to create the native process to use it; this makes the

SPOOL environment less portable. Another one is that it does not support the orthogonal

layout strategy, which is arguably the most suitable layout strategy for the visualization

of UML style class diagrams.

In order to overcome these limitations, we tried to find a better layout tool. Before we

made our decision, we did a survey among the available visualization tools. The

following is the result of the survey, focusing on the layout strategy and programming

language support aspects:

1. Visualization of Compiler Graphs (VCG) [40]:

The VCG reads a textual specification of a graph and visualizes the graph. Its layout

algorithm can be controlled in different ways.

n

0

52

Supports orthogonal layout.

VCG is written in C++.

2. CodeCrawler [4]:

CodeCrawler is a language and platfonn independent reverse engineering tool that

combines software visualization and software metrics.

• No orthogonal layout support.

CodeCrawler is written in Smalltalk.

3. DaVinci[5]:

DaVinci is a universal, generic visualization system for the automatic generation of high-

quality drawings of directed graphs.

No orthogonal layout support.

• DaVinci is written in C++.

4. GRASP [11]:

GRASP is a molecular visualization and analysis program. It is particularly useful for the

display and manipulation of the surfaces of molecules and their electrostatic properties.

No Orthogonal layout support.

GRASP is written in FORTRAN.

5. Visualizing Graphs with Java (VGJ) [42]:

VGJ is a tool for graph drawing and graph layout. It supports three types of layout

strategy: Tree algorithm. Spring embedder, and Directed graphs.

0
53

No orthogonal layout support.

VGJ is written in Java

6. Tom Sawyer Graph Layout Toolkit (GLT) [37]:

The Graph Layout Toolkit is a graphics system independent component that allows

the visualization of relational data through the use of a sophisticated graph management

system, object positioning libraries, and diagram editing APIs.

• Orthogonal layout support.

GLT has a Java version.

0

Among the six visualization tools mentioned above, we selected the Java version of the

Tom Sawyer Graph Layout Toolkit as the layout tool for the SPOOL environment, due to

its support of orthogonal layout and its ability to enhance the portability of SPOOL.

5.4 Implementation and Experiences

The Context Viewer has been implemented in Java, using JFC/Swing components [13].

The implementation consists of some 70 classes and approximately 20,000 lines of code

(LOC; comment lines not counted). All the functions of the Context Viewer as described

in the Appendix have been implemented.

During the implementation of the Context Viewer, we have tested it with a medium-sized

system, namely ET++ [10], which comprises about 720 C++ classes distributed over

more than 480 files. Usually, if there were less than five ModelElements in an e-set, it

took less than 30 seconds for Context Viewer to generate all the 12 context views (12

context views are generated at the same time to support the Synchronization mechanism,

see Section 4.4.3.1). It may take considerably longer in case there are considerably more

ModelElements in the e-set. Keep in mind, however, that the Context Viewer is designed

to investigate a small amount of M.odelElements.

0

54

Even though we have not yet tested the Context Viewer with very large software systems,

we are confident with the performance of the Context Viewer for that kind of systems.

The reason is that the SPOOL environment is the infrastructure for the Context Viewer.

The SPOOL repository is the key part in the SPOOL environment concerning scalability,

and it has already been shown that it can accommodate very large systems while

maintaining performance at an acceptable level [20] [24].

0

0

Chapter 6 : Examples

0

In this chapter, we present three examples that demonstrate how the Context Viewer

together with other SPOOL investigation tools can be used to support program

comprehension. The system used for the examples is the application framework ET++

[10], a system that comprises about 720 C++ classes distributed over more than 480 files.

The first two examples address context investigation and design pattern reengineering.

The third example illustrates how the synchronization and history mechanisms reduce the

analyst's cognitive overhead during the investigation.

Example 1 : Investigation of Contexts

The investigation and visualization of contexts is key to program comprehension. The

Context Viewer is designed for the quick retrieval and visualization of the various

abstractions concerning the e-set, the group of selected ModelElements.

Figure 25 illustrates a typical investigation and visualization scenario. In this example,

the analyst has found that ET_FileDialog is one of the classes of the system ET3, using

the SPOOL Design Browser (window l) as a query engine. A further query in the Design

Browser reveals that MakeFileItem is one of the methods of class ET_FileDialog (not

shown in the figure). Interested in further investigating MakeFUeItem, the analyst

specifies it as a one-element e-set by dragging and dropping the corresponding label into

a running instance of the Context Viewer. In the Containment view of that instance, the

physical location of MakeFileItem in terms of systems, packages, files, and classes is

visualized (window 2). Then, after cloning the Context Viewer instance and selecting the

Create Actions view (window 3), the analyst can see that MakeFileItem instantiates the

class ET_FileItem. Furthermore, from the Polymorphism view (window 4), one learns

56

0
that the method is only overridden once in the class ET _Directory Dialog. Object-oriented

systems are difficult to comprehend because of the distribution of functionality and

polymorphism, yet the comprehension task becomes much easier, in case such views are

readily available.

Note that only the most relevant context information is visualized in each view. In this

way, the analyst does not become overwhelmed with too much information. By

navigating through the views pertaining to the structure level, the analyst can quickly

grasp the physical and logical context of the method at hand. The analyst may then decide

to continue the investigation and go to the Source Code view (window 5), where the

definition and declaration of MakeFileItem is shown.

::Joofs Fitâ 'ModaiBtement

..!?,ro'b4t?e''.,lj"jilstory.. l
irrt

SI
D.. GELO
S GK-TËST

i«nm

ResultsQueries

Ld Q Attributes C ET_FIBId 1'^r^.
C ET_Fil9Data

Classes instanciated

"B

.jajsj H
2 g

IOGIS E-S&t WoctelËiement Help

SourceCode [Stuct^l Destgnl HtsstwyJ

TBOts E-Set ModelElement Hetp

j Source Code |stoct"rej| Oeslnn | Hlsto^
Cafj Action» e<;nt»fnmant |Êr'"^Acti®nïJFiTr*n
a. S ET3

a-R) ET3: Physical Model
S._l.

3 F FlleDialog.h
a'-C ET_FllsDlalOB

M^^HBSBIll

Pïlyfnoiphlon |
T31

ET Fileltem

î
0

"f. BiBBileBSjate:>g|iWat<eBi:le|lgBN

!'»>
SOI
IHIF"!(
^
Ï'
R

r

îpoia E-Set hteidBlËtement gBÏp

Swurce Code |s(u"Aurie| Cw»l8nj irtoiy|i
Caft AoUorx; l Cont^Oxnant I Cxjrt* .Airtioft«'l".Frt*f»d«h4>.^::toA*rt^>»t K| s|:P«i "M>tp'ht»m.

T;oo!s JE-Set ^oete l Bernent H&tp

^^^^B'Jatal!Is°>»™c°'lB.8 Stucturel DssiBnl History j^:

^ ill
Il

«M»

t

Q
ET_Dir<sctoryD!alog

MaKeFjleltem

FllBDIalog.H FilsDlalog.C

JVOtoject »^^ ^
JFileDialog:îMakeFileItem [Data »data)
K

char *-file_nanie = data->ShortName () ;.....J[|
bool shoTj_it = TRUE;

// always sh.oTir ".." [to go up l dire

if (file_name[0] == '.' && flle_nai>:
3how_it - TRUE;

else (
// check for hidden files (files

if (' 3how_tii(lden_file3 ï
show_it = (file_name[0] != •

// pass file name through patter::

if (sliow_it) {
i£ (£ilter_str != 0 && filts

&& ! (filter_3t:r[0] == '|^.

<il:;35s^^,r-:,!?':::::-:-'™-rï^
03 .. ^ .14^
-Wlï:p*î

IFttss List

F|

J
^set Elements Ust
E IVÏSgSBBtSS^tf

0
1 Element

..:-:J

Figure 25: Investigation of contexts

u

57

0
Example 2 : Reverse Engineering of Design Patterns

Quite often, the key design decisions in object-oriented systems are implemented based

on well-known design patterns [3, 9, 22]. In [14, 2l], we have discussed the use of

SPOOL in reverse engineering some of these patterns. In this section, we illustrate how

the recovery and analysis of design patterns can be further supported by means of the

Context Viewer.

Il

^STOOL - &e»i8«* arowser

3

ÎSîuifs

is IV1 UpdatePath
iVI StoreLists

J°o>S..I"e. . >(îei61emerrt....lHe^..
..8'8WE°'..[H'st'3-.....——.^

•t&uenss

10 Friend Classes
\Q Friend Operations

lint

Ci

•::i:-|!'

it

Tools ÏE-Set NsiiaBtBmant Uelp

Source Code | Stucture Beslgn | (ilstmy |
Factory Mftthod j ObE*ww | Ptw^ Tem?f^ .^ftorflMUIN|a| '.I

ESet Elément Rote in DP instance | Reference elass

w

Tools E-Seï MoctetËiemerrt^':]Kelp-
Souroe Ctwle | Stucture De»han || Hlirtoiy !
Fiicitory Method J Ot>ï«rv» | Pioxy j TTritii-at* M*tl it

;et Element I Rote
|;JE~I^FileDialog |Concre

:.m
jt|ET_nieDjaloL^^^^^^^ ,^
l |ET^ji!eDIatciZZZZZ^

;ET^,EytHandler_
|ETJ:iialqg

In DP instance Reference ciass

ir?"?"ii e Dialog

•teProduct iET_EytHandl(

@
:hiS|

.l.ç..? .F!. ç.r.? î.?.ç..^.?..? Î.9..F...... ..„.„.„„...„ l ^,Z^ !^..?. î?.^ .9,.?. !r.

-ai
•M

I__
ET_Diiecrtor)fDidloa •s

a
i

I
l»

KJB'3:. 6

iyp6
 <>i File item

Corrtpîl
Mak-î Button?

:3:
Tools E-S&! Mo<îe!Ei8fne"t Heîp

1|@"™^3| Stuuun | Dwliinj Hlstnyj

hj
Î31

Aj
d

'lies uaCtiti.h cub.ci:i"'«):''y
S@l
a@

fc l _Uûject isr^
Faasi Cl ob:

(
cegistei: chat *p = pattern,
legisteï char e;

(char *patcern, ch

Glob:Matehs sET_E>rtHandler

s
^

a urhile ((e =• *p++) != '\D')

Ltch (e)BET^Manager
ElementÎ5J

Bi.BfeBi^S^iBiaaiNmi E-setElsmerttsList

if (*t == \01 (dot.ET_Dialog

t turn 0;

[2 els

i bccalt;
ET_FileDialog:UpdateList

case '\\':

iC l*p++ != *C++)

cetucn 0;

5
ET_DirectoryDialog

4 ^
Element

ïil

0

Figure 26: Reverse engineering of design patterns

As an example, window 1 of Figure 26 shows the Factory Method view related to

ET_FileDialog, which happens to be the only e-set element. The upper part of the view

indicates that ET_FileDialog participates in several instances of the Factory Method

pattern. The lower part shows the selected Factory Method instance as a UML style class

58

0

0

diagram. The example shows that the class ET_FileDialog owns the method UpdateList

and DoM.akeContent that invoke the factory method MakeFileItem and MakeButton,

which in turn are overridden in the subclass ET_DirectoryDialog of ET_FileDialog and

instantiates three concreteProducts, namely ET_FileItem, ET_ActionButton, and

ET_HBox.

The content of this view is automatically retrieved from information in the SPOOL

repository that was generated by one of the SPOOL design recovery queries for the

Factory Method pattern. Instead of showing all the information generated by a design

query, the Context Viewer visualizes only the most relevant information related to the e-

set elements. The design views provide precious information for program comprehension

as they present in a concise way all the classes that take on a role in a pattem-based

collaboration. Note that in the physical file stmcture, these classes may be spread out

over many directories and subsystems.

To further investigate this instance of the Factory Method pattern, the analyst might want

to know, for instance, the superclasses of ET_FileDialog as well as the methods that are

invoked by MakeFileItem. The Context Viewer will help the analyst answer these

questions: window 2 in Figure 26 shows the Inheritance view related to ET_FileDialog.

Furthermore, using the Design Browser (window 3), the analyst can retrieve the method

MakeFileItem and drag and drop it into a new instance of the Context Viewer that

displays the Call Actions view (window 4). The analyst can see in the first place that

MakeFileItem is invoked by the method UpdateList. In addition, the view shows that

MakeFileItem calls method Match in class Glob. The analyst might then want to study

the definition of the method Match in the Source Code view (window 5). This provides

invaluable context information about ET_FileDialog and its role in and around the

Factory Method pattern instance.

Furthermore, the analyst can investigate the same e-set elements in respect to other

design patterns. In our example, ET_FileDialog is also a participant in instances of the

Template Method pattern (window 6). The selected instance has four pair of template

methods and hook methods, as visualized in the ET_FileDialog class. This example

59

presents the case where the design patterns Factory Method and Template Method are

combined to provide a Hexible mechanism for object creation in ET++.

0

Example 3 : Reduction of Cognitive Overhead

In the previous two examples, we saw how visualization in various predefined contexts

can enhance software comprehension. Each context view helps the analyst with the

construction of a mental model in terms of the user-defined e-set elements. Typically, the

analyst seeks to verify a hypothesis generated in one view in some other views. This is an

example of cross- referencing a mental model. According to Storey et al. [34], cross-

referencing mental models integrates bottom-up and top down cognitive approaches and

improves program comprehension considerably.

Context Viewer

Tools &-Set MBdsBlsmsnt J:içtp

Source Code | Stoc*ure]j Qaf , ^stoiy
Contiiiinm<int

iili

Ill

GaltAdioi

B-S ET3
E Bl ET3: Physical Model

@.._il.
B F FileDialog.h

l=! - C

C-"LA J'l Fl n da]|

Tools E-Sel ModelElôment He!p

s»»MÇiiin|auaure|Diui j"^
B-Fy.;-.,,- Contginmenl panel

ï-:-^.s.:: Call Actions panEl

4

hi
M

:^."^^ Call Actions p
à Sï^, CallActiût

a-^.-,.. Create

;rl^ Î'I

^M£î
.:-Te"Bfte.J..I'set...,. til83Ë!lemenî..!i:H6i^.

Cut

Copy

Paste

: Atltt to ES6t::

Remove ftomESef

Replace ES et

Properties.

Print- Parenl Containers

Print. Event HandtsrÇftatn;;

Source Cfllte j Stucture Design Nlstoiyl
^l^J^à^j^^^^^i..Ijl"ll^^^
E-SetElement J Design Pattem ... | Roii&inDPms^...RefereEtescla3sJ

ETTïïeUialog " JInherrfance Faclor/ Method -|UoncrètèFrqdûct ;ET_EvtHandler |:*|

iilalog llnherilance Faclor/Method IConcreteCrealor |ET_Manaser

'"<r \^stiatE3tion

s
"s
u

•

3 iai

î
[ET.ActionButton ET_DirectoryDialog

t

IEE
di

È-Set Mod6t@em9nt..Hetp :- /. ;;:.:::|i:|:--f«;:s:||||l|||isi;

is68'"" t^^'3 EU«!)l>illuUty{:iî::!:!:11';:'ï|ï™l
^LotK.àtj &»fltaj:nm«('rt Cr»»t«AcKontJFrt«ftdtfti|)|^ftttifBO»l

liiaijBII

^ttym»i'phfiun|

ET_OrdCollection

Y

2

2[-u

Figure 27: Reduction of cognitive overhead

The synchronization mechanism of the Context Viewer is meant to reduce the analyst's

cognitive overhead when cross-referencing mental models. During the investigations

0
60

shown in Figure 25 and Figure 26, to switch between the various views at different levels

of abstraction, the analyst simply has to click on the tabs that indicate the respective

views. For example, it only takes about five clicks to navigate through the views at the

structure and source code levels of Figure 25. Obviously, this reduces the user's cognitive

overhead and greatly facilitates the cognitive process.

To cut the cognitive overhead even more, the history mechanism of the Context Viewer

may be used. Figure 27 depicts a typical scenario. In this example, the analyst starts the

investigation with the e-set elements LoadLists and UpdateList (window 1). Then, after

adding ET_FileData to the e-set, the analyst investigates the create dependency between

these elements (Create Actions context, window 2). The investigation takes its further

course, when the analyst replaces the e-set elements by ET_FileDialog and considers the

Multiple view (window 3) to investigate its roles in terms of the Factory Method and

Template Method design patterns.

After a while, however, the analyst might want to resume the investigation of the two

initial methods and consider, for example, polymorphism. To this end, the analyst need

not invoke the Design Browser or any other SPOOL tool to retrieve the two methods.

Instead, the analyst can simply select the History panel (window 4) and restore on of the

states in which the e-set consists of these two methods. Then, the analyst may switch to

the desired context views to investigate the two methods. Recall that these switches are

very quick because of the synchronization mechanism.

0

0

Chapter 7 : Discussion

In this chapter, we first discuss our approach compared to the comprehension models

accepted by the scientific community (see section 2.1). In Section 7.2, we will report on

the evaluation of the Context Viewer and the SPOOL environment using two requirement

lists proposed for software exploration tools [34]. Then, we discuss related work by

presenting a feature comparison between SPOOL tools and some representative reverse

engineering tools found in both commercial and academic environment (see Section 2.2)

in Section 7.3. Finally, we will describe several limits currently related to the SPOOL

environment in Section 7.4.

7.1 Comprehension Approach

Our comprehension approach. Visualization in Contexts, is mainly based on the fact that

software elements at low level of abstraction can be visualized in the various contexts at

higher levels of abstraction, such as Inheritance view at structure level or Multiple view

at design level, for example. One can thus see this approach as a complement with the

various comprehension models presented in Chapter 2.

Visualization in Contexts can help the comprehension process in both bottom-up and top-

down direction. With this approach, software elements are visualized in various context

views at various levels of abstraction and those context views are synchronized. After

selected software elements are sent into the Context Viewer, a user can make the

investigation either from context views at high level of abstraction to context views at

low level of abstraction (top-down direction) or opposite (bottom-up direction).

u

0
62

Our approach can also be helpful when a user practices systematic strategies and as-

needed strategies for his or her comprehension process. This approach can be used not

only when a user tries systematically to understand all the elements and relations of a

module or of a subsystem, but also when he or she tries to understand only some parts of

the system. In fact, this comprehension approach can support, with various degrees, all

the models presented in Chapter 2. One can thus see our approach like an investigation

strategy instead of a comprehension model and it can be helpful to those models in terms

of reducing cognitive overhead and facilitate comprehension process.

7.2 Evaluation of SPOOL Environment

After integrating the Context Viewer into the SPOOL environment, we conducted an

informal evaluation based on two requirement lists for program comprehension tools

known from the literature [34, 28].

In [34], Storey et al. present a list of cognitive design elements that should be considered

during the development of software exploration tools. The requirements concern support

for bottom-up (E1-E3), top-down (E4-E5), and mixed-mode (E6-E7) comprehension,

navigation (E8-E9), orientation cues (E10-E12), and disorientation reduction (E13-E14):

0

El: Indicate syntactic and semantic relations between software objects.

E2: Reduce the effect of delocalized plans.

E3: Provide abstraction mechanisms.

E4: Support goal-directed, hypothesis-driven comprehension.

E5: Provide overviews of the system architecture at various levels of abstraction.

E6: Support the construction of multiple mental models.

E7: Cross-reference mental models.

63

0
E8: Provide directional navigation.

E9: Support arbitrary navigation.

E10: Indicate the maintainer's current focus.

Ell: Show the path that led to the current focus.

E12: Indicate options for further exploration.

E13: Reduce additional effort for user-interface adjustment.

E14: Provide effective presentation styles.

The elements E1-E3 and E4-E5 are supported to various extents by the Visualization in

Contexts approach and the SPOOL environment. Indeed, as described previously, our

approach supports both the top-down and bottom-up strategies. The different tools

integrated in SPOOL allow for the creation of system models at various levels of

abstraction and support the visualization of the relations between software elements.

Elements E8-E9 are mainly supported through the Design Browser, and E6-E7 and E10-

E12 mainly through the Context Viewer. Specifically, E6-E7 are addressed via the 12

context views and the synchronization mechanism. The Context Viewer supports E10-

Ell by providing orientation cues and by the recovery of former states via the history

mechanism. Regarding E12, a single view or several views combined may well indicate

options for further exploration.

As to E13, the multiplication of windows naturally slows down the investigation process.

Although SPOOL supports internal windows and thus partially remedies the problem,

window management could still be improved in SPOOL. Element E14 is difficult to

evaluate in an objective way; yet anecdotal evidence suggests that the adopted

presentation styles are indeed useful.

u

0

64

In summary, the tools in the SPOOL environment generally address the suggested

elements to a large extent. Yet, further improvement is desirable, in particular in respect

toE13.

Singer et al. [28] give a list of requirements for software engineering tools that support

the so-called Just-In-Time comprehension strategy. The list contains functional (F1-F3)

and non-functional (NF1-NF7) requirements:

Pl: Provide search capabilities such that the user can search for, by exact name or

by way of regular expression pattem-matching, any named item or group of

named items that are semantically significant in the source code.

F2: Provide capabilities to display all relevant attributes of the items retrieved in

requirement Pl, and all relationships among the items.

F3: Provide capabilities to keep track of separate searches and problem-solving

sessions, and allow the navigation of a persistent history.

NF1: Be able to automatically process a body of source code of very large size, i.e.,

consisting of at least several millions lines of code.

NF2: Respond to most queries without perceptible delay.

NF3: Process source code in a variety of programming languages.

NF4: Wherever possible, be able to inter-operate with other software engineering

tools.

NF5: Permit the independent development of user interfaces (clients).

NF6: Be well integrated and incorporate all frequently used facilities and

advantages of tools that software engineers already commonly use.

0

65

NF7: Present the user with complete information, in a manner that facilitates the

just-in-time comprehension task.

In SPOOL, requirement Fl is supported by the Design Browser. Requirement F2 is

addressed by various context views, and F3 is very well supported by the history

mechanisms present in the Context Viewer, the Design Browser, and other tools.

SPOOL was expressly built to cope with large-scale software systems. It has been used to

do researches [20] [24] with large-scale software systems, and has shown satisfying

performance in those researches. Thus it naturally satisfies NF1. NF2 is also satisfied to a

large extent because SPOOL caches ModelElements so that the queries usually only take

a few seconds [23]. So far, SPOOL processes C++ and Java source code, the main

industrial object-oriented languages (NF3). NF7 is well supported, whereas NF4-NF6 are

only partially satisfied. Keep in mind, however, that SPOOL still is a research prototype

environment.

u

7.3 Related Work

The evaluation presented in the previous section suggests that the SPOOL environment

supports quite well the various cognitive aspects related to software comprehension. To

be able to better evaluate our environment, we conducted an informal comparison

between the context-based tools of SPOOL and the commercial and academic tools

described in Chapter 2. We either used evaluation copies of the various tools, or if not

available, based our evaluation of the tools' documentation. In what follows, the results

of this informal comparison are presented.

The informal comparison is based on two major aspects of our comprehension approach.

The first aspect is related to the context views supported by these tools, which promote

the construction of mental models by revealing different aspects of the software artifacts'

structure and behavior. The second aspect relates to two exploration mechanisms: model

cross-referencing is essential to building a mental representation across abstraction levels

66

(J

and history paths can reduce the exploration effort by giving programmers access to their

past investigation path. Table 2 and Table 3 show the results of the comparisons of

commercial and academic tools respectively, by giving a weighting (strong (+), medium

(+-) and weak (-)) to each criterion and for each tool.

Discover SNiFF+ Source-
Navigator

Understand
for C++

SPOOL

Context
views

Source code level + + + + +

Structure level + +- + +

Design level +

Customization +- +- +- +

Exploration

Model cross-
reference

+

History path +

Table 2: Feature comparison of commercial tools and SPOOL

We conducted an informal comparison between the context-based tools of SPOOL and

four commercial tools that we consider most representative for the state-of-the-art,

namely. Discover [7], Understand for C++ [39], SNIFF+ [29], and Source-Navigator

[31]. Our comparison is based on practical experience with professional licenses of

Discover and SNIFF+, and evaluation licenses of Understand C++ and Source-

Navigator. In summary, context views at the source code level are available in all the

evaluated commercial tools. For the context views at the structure level, they are

supported more or less in all the tools (often accessible via menus) but some object-

oriented related views are in general limited. For example, none of these tools supports a

context view for polymorphism. On the other hand, none of these tools supports

visualization context views at the design level like SPOOL did, which can be very helpful

to quickly understand the collaboration of a group of ModelElements. Except for

SNiFF+, the personalization of context views is supported by these tools, the user can

choose one or more than one ModelElements (called entity in these tools) in some cases

to visualize in views. However, in general they do not allow for the investigation of more

than one ModelElement at the same time, which limits the information about their

interrelationship. Moreover, these tools give very little support to mental model cross-

67

(J

referencing to help bridging between the various abstraction levels. Finally, no tool

provides history mechanism to orient the user in terms of the investigation history path.

As a conclusion, none of these tools directly supports our context-based comprehension

approach Visualization in Contexts.

Rigi Searchable
Bookshelf

SHriMP SPOOL

Context
views

Source code level + + + +
Structure level + + + +

Design level +

Customization +- +- +- +

Exploration

Model cross-
reference

+

History path +

Table 3: Feature comparison of academical tools and SPOOL

Many tools have been developed for program comprehension in academia. Some

interesting academic tools in respect to context-based comprehension include Rigi [45],

SHriMP [35], and Searchable Bookshelf [2T\. Rigi is a tool allowing for the visualization

of diagrams representing the various aspects of a software system (subsystem, files, etc.)

in an abstract way. The Searchable Bookshelf system comprises advanced capabilities for

generating and navigating software stmcture diagrams (called landscapes). ShriMP,

finally, is a tool that allows navigation of source code using hyperlinks and that provides

some support for context navigation. However, these tools provide little context

information at the design level. Moreover, these tools give very little support to mental

model cross-referencing to help bridging between the various abstraction levels. Finally,

no tool provides history mechanism to orient the user in terms of the investigation history

path. As a conclusion, none of these tools directly supports our context-based

comprehension approach: Visualization in Contexts.

The results of this evaluation show that several aspects of software comprehension

supported by the SPOOL environment are poorly supported or absent from the

commercial and academic tools that are currently available. Obviously, each of these

tools has its strong points for which they were developed and it would be necessary to

68

include them in our future research in order to introduce their essential points into the

SPOOL environment.

7.4 Limitations

The advantages of the Context Viewer and the SPOOL environment were illustrated by

the three examples in Chapter 6 and the evaluation in Section 7.1. In short, together with

the rest of the SPOOL environment, the Context Viewer can quickly locate the most

relevant information for the system elements in terms of different context views. In

addition, synchronization and history mechanisms allow the user to bridge different

views in an effective way. However, there are several limitations related to the SPOOL

environment.

One of these limitations is related to the fact that the SPOOL environment is an

environment of investigation and evaluation rather than a development environment.

Indeed, the use of SPOOL on a software system requires several stages of preparation

before being able for the user to start the investigation. For one thing, the source code of

the system must be analyzed, then the information extracted must be imported into the

SPOOL repository, which can take several hours depending on the size of the system. At

present, the user has to use another development environment (SNiFF+, for example)

with the SPOOL environment to obtain the functionality that supports software

development.

Another limitations is the fact that the SPOOL environment currently does not provide

any mechanism that would store the information and the knowledge obtained in the

process of investigation into a repository. Indeed, the backup of the various visualized

context views could help the user later and serve as a form of documentation for the

newcomer.

0

Chapter 8 : Conclusion

Large-scale software system comprehension can be carried out normally in three ways.

Unaided browsing is not feasible for a software system with millions of lines of code.

Leveraging corporate knowledge and experience can be accomplished with the help of

personnel knowledgeable about the subject system, or by resorting to updated

documentation of the system. This approach can be very valuable. Unfortunately,

experience shows that these knowledgeable experts are not always available and often the

system documentation is not up to date. Programmers therefore have a need for

techniques and tools that help them find the desired information starting from the source

code, which is very often the only available resource.

In this thesis, we presented the Context Viewer together with the SPOOL reverse

engineering environment to support the comprehension of industrial size, object-oriented

software systems. In what follows, we give a more detailed summary and discuss future

work.

u

8.1 Summary

The comprehension approach presented in this thesis, namely Visualization in Contexts,

aims at minimizing the efforts that must be made by a programmer in order to understand

a software system. Visualization in Contexts mainly depends on three abstraction levels

of a software system, which can be extracted in a semi-automatic way: the source code

level, the physical and logical structures level, and the design level. Cross-referencing

between various preset context views at various abstraction levels is essential if one

wants to maximize the comprehension of the system in a reasonable time.

70

The SPOOL environment was developed to facilitate research in terms of maintenance,

design evaluation, and software comprehension. The new tool. Context Viewer, was

developed by using the SPOOL reverse engineering framework and integrated into the

SPOOL environment. The Context Viewer, together with other tools in SPOOL, allows

supporting the Visualization in Contexts comprehension approach. This tool alone

contributes to solving many problems related to software comprehension. It addresses the

problem of excessive infomiation that is usually extracted from a large-scale software

system. With its multiple context views, the Context Viewer filters the information and

only visualizes what is necessary to the programmer. Moreover, it synchronizes all

context views so that various views at different abstraction levels of a system are cross-

referenced. Finally, the Context Viewer is integrated into the SPOOL environment, and

there are interaction mechanisms implemented for communication between them. It

leverages the power of navigation and bridges the various levels of abstraction of a

system. Therefore, it facilitates the process for programmers to form mental models about

the system in hand.

The three example presented in Chapter 6, and the evaluation of the SPOOL environment

described in Chapter 7, illustrate how our approach and the usage of the SPOOL

environment facilitates software comprehension.

8.2 Future Work

(J

To improve the aspects related to the limitations of the SPOOL environment described in

Section 7.3, several directions of future works should be undertaken. Indeed, a direction

to be explored would be to integrate the functionality of a development environment into

the SPOOL environment, so that SPOOL would support both forward and reverse

software engineering. This means that SPOOL will have to provide a source code editor,

and the information in the repository will be updated according to the changes made in

the source code. Moreover, certain mechanisms should be implemented in order to

support the storage and analyses of various versions of the software.

<

71

Moreover, several additional context views could be added to the Context Viewer in the

future; for example, the views related to dynamic infonnation about a system and the

views related to program slicing or data flow. In addition, certain mechanisms should be

implemented and integrated into the SPOOL environment to allow the storage of context

views, which serves as documentation for later use.

Finally, the Context Viewer, together with other tools (Design Browser, for example),

could be useful for other research orientations in the future. For example, these tools

could be used for the detection and visualization of the impact of changes and for the

inspection of recursive function calls.

u

References

Note: All web links mentioned below have been visited in February 2002.

[l]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

Bell Canada. DATRIX abstract semantic graph - reference manual. Montreal,
Quebec, Canada. January 1999. Available on request from <datrix@qc.bell.ca>.

Brooks, R., Towards a theory of the comprehension of computer programs.
International Journal of Man-Machine Studies 18, pages 543-554. 1987.

Buschmann, F., IVteunier, R., Rohnert, H., Sommerlad, P., and Stal, M., Pattem-
Oriented Software Architecture - A System of Patterns. John Wiley and Sons.
1996.

CodeCrawler document. On-line
CodeCrawler/codecrawler.html >

at <http://www.iam.unibe.ch/~lanza/

daVinci document.

general_infoF.html>
On-line at <http://www.tzi.de/daVinci/docs/

u

Devanbu, P. T. GENOA - a customizable, language and front-end independent
code analyzer. In Proceedings of the 14th International Conference on Software
Engineering (ICSE'92), pages 307-317. Melbourne, Australia. 1992.

Discover online documentation, Software Emancipation Technology. On-line at
<http://www. setech. com/>.

Finnigan, P., Holt, R., Kalas, I., Kerr, S., Kontogiannis K., Muller, H.,
Mylopoulos, S., Perelgut, S., Stanley, M., and Wong, K., The Software
Bookshelf. IBÎA Systems Journal, Vol. 36, No. 4, pages 564-593. November 1997.
On-line at <http://www-turing. cs. toronto. edu/pbs/papersf bsbuild.html>.

Gamma, E., Helm, R., Johnson, R. and Vlissides, J., Design Patterns: Elements of
Reusable object-oriented Software. Addison-Wesley. Menlo Park, CA. 1995.

Gamma, E. and Weinand, A., ET++: A Portable C++ Class Library for a UNIX
Environment. Tutorial notes. OOPSLA '90. Ottawa, ON, Canada. October 1990.

73

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

0

GRASP Document. On-line at <http://honiglab.cpmc.columbia.edu/grasp/>

Holt, R., Software Bookshelf: Overview and constmction. March 1997. On-line at
<http://www-turing. es. toronto. edu/pbs/papers/bsbuild.html>.

Java Foundation Classes (JFC) documentation, Sun Microsystems Inc. On-line at
<http://www. javasoft, com/products/jfc/index. html>.

Keller, R. K., and Schauer, R., Towards a Quantitative Assessment of Method
Replacement. In Proceedings of the Fourth Euromicro Working Conference on
Software Maintenance and Reengineering, pages 141-150, Zurich, Switzerland.
February 2000.

Keller, R. K., Schauer, R., Robitaille, S., and Page, P., Pattem-Based Reverse
engineering of Design Components. In Proceedings of the 21th International
Conference on Software Engineering (ICSE'99), pages 226-335, Los-Angeles,
ÇA, USA. May 1999.

Letovsky, S., Cognitive processes in program comprehension. Empirical Studies
of Programmers, pages 58-79, Ablex, Norwood, NJ.1986.

Linux Cross-Reference, documentation set. On-line at <http://lxr.linux.no/>.

POET Java ODMG Binding documentation. Poet Software Corporation. San
Mateo, ÇA, USA. On-line at <http://www.poet.com>.

Robitaille, S. Tool support for understanding industrialsized, object-oriented
software systems. Master's thesis. Université de Montreal, Montreal, Quebec,
Canada, April 2000. French title: Support informatique à la compréhension des
logiciels orientés objet de taille industrielle.

[23]

Robitaille, S., Schauer R., and Keller, R.K. Bridging Program Comprehension
Tools by Design Navigation. In Proceedings of the International Conference on
Software Maintenance (ICSM'2000), pages 22-32, San Jose, CA, October 2000.
ŒEE.

Yin, R. and Keller, R. K., Program Comprehension by Visualization in Contexts.
In Proceedings of the International Conference on Software Maintenance
(ICSM'2002), Montreal, Canada, October 2002. To appear.

Schauer, R. and Keller, R. K., The method replacement indicator: A metric for
analyzing behavioral substitution. In Proceedings of the International Conference
on Software Maintenance (ICSM'2001), pages 754-763, Firenze, Italy, November
2001. ŒEE.

Schauer, R., Keller, R. K., Laguë, B., Knapen, G., Robitaille, S., and Saint-Denis,
G., The SPOOL design repository: Architecture, schema, and mechanisms. In

74

0

u

Hakan Erdogmus and Oryal Tanir, editors. Advances in Software Engineering.
Comprehension, Evaluation, and Evolution, chapter 13, pages 269-294. Springer,
2002.

[24] Schauer R., Robitaille S., Keller, R. K. and Martel, P., Hot Spot Recovery in
object-oriented Software with Inheritance and Composition Template Methods. In
Proceedings of the International Conference on Software Maintenance
(ICSM'99), pages 220-229. Oxford, England. August 1999.

[25] Schmidt, D., Design patterns for concurrent, parallel, and distributed systems. On-
line at <http://siesta.cs.wustl.edu/~schmidt/pattems-ace.html>.

[26] Shneiderman, B. Software Psychology: Human Factors in Computer and
Information Systems. Winthrop Publishers, Inc.,1980.

[27] Sim, S. E., Clarke, C. L. A., Holt, R. C. and Cox, A. M., Browsing and Searching
Software Architectures. In Proceedings of the International Conference on
Software Maintenance (ICSM'99), pages 381-390. Oxford, England. August 1999.

[28] Singer, J., Lethbridge, T., Vinson, N. and Anquetil N., An Examination of
Software Engineering Work Practices. In Proceedings ofCASCON'97, pages 209-
223. Toronto, ON, Canada. 1997.

[29] SNiFF+ documentation set. On-line at <http://www.windriver.com>.

[30] Soloway, E., Pinto, J., Letovsky, S., Littman, D. and Lampert, R. Designing
documentation to compensate for delocalized plans. Communications of the
ACM, Volume 31 , Issue 11,pages 1259-1267. 1988.

[31] Source-Navigator documentation set. On-line at <http://www.cygnus.com/sn/>.

[32] S. R. Tilley, The canonical activities of reverse engineering. Baltzer Science
Publishers, The Netherlands, February 2000.

[33] Storey, M.-A. D., A Cognitive Framework For Describing and Evaluating
Software Exploration Tools. PhD Thesis, Technical Report, School of Computing
Science, Simon Fraser University. December 1998.

[34] Storey, M.-A. D., Fracchia, F. D. and Muller, H. A., Cognitive design elements to
support the construction of a mental model during software exploration. Journal
of Systems and Software, 44(3): 171-185. January 1999.

[35] Storey, M.-A. D. and Muller, H. A., Manipulating and documenting software
structures using SHriMP views. In Proceedings of the International Conference
on Software Maintenance (ICSM'95), pages 275-284. Opio (Nice), France.
October 1995.

75

n
[36]

[37]

[38]

[39]

[40]

[4l]

[42]

[43]

[44]

[45]

Tilley, S. R, Discovering DISCOVER. Technical report CMU/SEI-97-TR-012.
Pittsburgh, PA. October 1997. On-line at <http://www.sei.cmu.edu/
publications/documents/97.reports/97tr012/97tr012title.htm>.

Tom Sawyer Graph Layout Toolkit document. On-line at
http://www.tomsawyer.con-Vglt/index.html >

<

UML, Documentation set version 1.1. September 1997. On-line at <http://
www. rational. com>.

Understand for C++ Documentation
www. scitools. com/ucpp. html>

set. On-line at <http://

VCG Overview. On-line at < http://rw4.cs.uni-sb.de/~sander/html/gsvcgl.html >

Visual Age for Java online documentation, IBM Corporation. On-line at
<http://www. ibm. com>.

Visualizing Graphs with Java documentation. On-line at
<http://www.eng.aubum.edu/department/cse/research/graph_drawing/graph_draw
ing.html >

Von Mayrhauser, A. and Vans, A. M., Program comprehension during software
maintenance and evolution, BEEE Computer (Vol. 28, No. 8), pages 44-55.1995.

Von Mayrhauser, A. and Vans, A. M., Comprehension processes during large-
scale maintenance. In Proceedings of the International Conference on Software
Engineering (ICSE'94), pages 39-48, Sorrento, Italy. May 1994.

Wong, K. and Muller, H., Rigi User's Manual—Version 5.4.4, University of
Victoria, Victoria, Canada, June 1998. On-line at <ftp://ftp.rigi.csc.uvic.ca
/pub/rigi/doc/rigi-5.4.4-manual.pdf>.

u

0

Appendix : Specification of Context Viewer

u

