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Résumé

0

En model-checking, la méthode utilisée pour vérifier si une implantation satisfait

une spécification est basée sur l'exploration de l'espace d'états accessibles du

modèle de l'implantation. Pour la plupart des systèmes, leur espace d'états est

tellement grand qu'il est quasiment impossible de l'explorer complètement avec

un outil de vérification de modèle. Ceci est reconnu comme le problème de

l'explosion d'états. Les techniques les plus puissantes pour résoudre ce problème

sont basée sur la réduction du modèle. Si l'on peut réduire le modèle original M à

un modèle plus petit M' tel que M satisfait à la propriété P si et seulement si M'

satisfait également à P, alors la vérification de propriété P peut être effectuée en

utilisant M' et ainsi potentiellement éviter l'explosion d'états.

Dans cette thèse, nous nous concentrons sur les techniques de réduction pour

résoudre le problème de l'explosion d'états dans le système de vérification basée

sur le IVGDG (MDG : Multiway Decision Graphs). Le système adopte MDG pour

représenter symboliquement l'ensemble d'états et les relations de transition des

machines à états abstraits. Dû à la présence des variables abstraites et des

symboles de fonctions non-interprétees, il n'y a pas d'opération préimage sur le

MDG. Tous les algorithmes qui utilisent le calcul de préimage ne peuvent alors

pas être appliqués dans notre cas.

u

Nous présentons deux techniques de réduction. L'une est basée sur la topologie

des circuits et l'autre sur la dépendance fonctionnelle de la propriété à vérifier.

Nous définissons le circuit suffisant et le PDG (Property Dependency Graph)pour

une propriété P et prouvons que le circuit suffisant et le modèle réduit M' qui

utilise toutes les variables d'état dans le PDG préservent fortement P, c'est-à-dire

que M' |=P <^M |= P.
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^
Cependant, le circuit suffisant ou le modèle réduit utilisant toutes les variables

d'etat de PDG pourrait encore conduire au problème de l'explosion d'états. Nous

prouvons que les modèles réduits qui utilisent un sous-ensemble des variables

d'etat dans le circuit suffisant ou PDG préservent faiblement P, c'est-à-dire que si

le modèle réduit possède P, alors le modèle original aussi, mais si le modèle réduit

ne possède pas P, le modèle original pourrait posséder P. Nous présentons des

algorithmes de réduction itératifs pour enlever plus de variables d'état. Nous

utilisons les portes à entrance multiple dans le circuit pour guider la réduction

iterative basée sur la topologie du circuit. La recherche en profondeur et la

recherche en largeur sur le PDG partitionné nous permet d'ajouter itérât! vement de

variables d'etat dans la méthode basée sur la dépendance fonctionnelle.

0
Les méthodes proposées dans cette thèse sont complètement automatiques sans

1'intervention de l'utilisateur. Nous les avons intégrées dans un outil de vérification

de modèle MDG, donc rendu capable de vérifier les designs réels. Nous avons

effectué différentes expériences de validation et les résultats montrent que nos

méthodes peuvent réduire de manière efficace les modèles et elles fonctionnent

bien même quand les autres outils de vérification échouent.

Mots clés : Vérification formelle de propriétés, Graphe de décision avec chemins

multiples (MDG), réduction de modèle, Graphe de dépendance, problème de

l'explosion d'états

u
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Abstract

In model checking, the method to verify that an implementation satisfies a

specification is based on exploring the reachable state space of its model. For

many systems the state space is extremely large and beyond the capacity of model

checking, which is referred to as the problem of state explosion. The most

powerful techniques to solve this problem are model reductions. If we can reduce

the original model M to a smaller model M' such that property P holds on M if and

only if P holds on M', then property checking can only be done by using M',

which may often avoid the state explosion problem.

3
In this thesis we focus on the reduction techniques to solve the state explosion

problem in MDG Model Checking. MDG Model Checking adopts Multiway

Decision Graphs (MDG) to symbolically represent sets of states and transition

relations of Abstract State Machines (ASM). Due to the presence of abstract

variables and uninterpreted function symbols, there is no preimage operation in

MDG. All reduction algorithms that use preimage computation cannot be applied

to MDG Model Checking.

We present two reduction techniques. One is based on the topology of circuits and

the other is based on the functional dependency of the property to be verified. We

define the sufficient circuit and the Property Dependency Graph (PDG) for a

property P and prove that the sufficient circuit and the reduced model M' using all

state variables in the PDG strongly preserve P, i.e., M' |==P <=^ M |= P.

J

However, the sufficient circuit or the reduced model using all state variables in

PDG may still lead to the state explosion problem. We prove that reduced models

using a subset of the state variables in the sufficient circuit or PDG weakly
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preserve P, i.e., if P holds on the reduced model then P holds on the original

model, but if P fails on the reduced model it may not fail on the original one. We

present iterative reduction algorithms to remove more state variables. We use

multiple fanin gates in the circuit to guide the iterative reduction based on circuit

topology, and depth-first search and breadth-first search on partitioned PDG to

iteratively add more state variables in the functional dependency method.

Our methods are completely automatic without user guidance. We have integrated

them in the MDG model checking tool and thus made it capable of verifying

realistic designs. We carried out experiments on a number of benchmarks and the

results illustrate that our methods can reduce models efficiently and work well

even when other verification tools fail.

0
0

Keywords: formal verification, model checking, Multiway Decision Graph

(MDG), model reduction, dependency graphs, state explosion problem
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n Chapter 1 Introduction

1.1 Motivation and Goal

Hardware systems are much larger than before and their conaplexity continues to

grow. Locating and correcting design errors can be a time consuming and

expensive process. Traditionally, simulation has been the main debugging

technique. Ideal simulation needs to simulate all possible input patterns for

checking the correctness of the system, which is impossible in practice. Typically

a much reduced subset of the input patterns is simulated. The critical and

intractable problem in simulation is that it is hard to find an effective simulation

sequence that is sufficient to expose any incorrect behavior of the system.

An alternative method to simulation is formal verification. Formal verification

overcomes the weakness of non-exhaustive simulation by proving the

correspondence between some abstract specification and the design. It is like a

mathematical proof in some sense. Just as correctness of a mathematically proven

theorem holds regardless of the particular values that it is applied to, correctness of

a formally verified hardware design holds regardless of its input values. Thus,
consideration of all cases is implicit in a methodology for formal verification.

Moreover, since the high-level description of a design at the early design stage can

be used in formal verification, the design errors can be caught early, and thus a lot

of money and time can be saved.

<^

Formal verification means formally establishing that an implementation satisfies a

specification. The implementation refers to the hardware design to be verified. The
representation of an implementation can be a network of transistors/gates, finite-
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state machines, description in logic, etc. The specification refers to the properties

to which correctness is to be determined. It can be expressed as finite-state

automata, u>-automata, or logic, e.g., temporal logic, first-order predicate logic and

higher-order logic.

Formal verification methods fall into two classes: theorem proving and FSM

(Finite State Machine)-based methods. With theorem proving, an implementation

and its specification are often expressed as first-order logic or higher-order logic

formulas. Their relationship equivalence/implication is regarded as a theorem to be

proven within the logic system using axioms and inference rules. The ability to

define appropriate theories and to reason about them using a common set of

inference rules provides a unifying framework within which all kinds of

verification tasks can be performed. But the generality increases the complexity.

Most of the theorem-proving systems today arc semi-automated, and require much

effort on the user part in developing specifications of each component and guiding

the proving process. Thus it can only be used by experts.

FSM-based methods model implementations as finite state machines. FSM-based

verification is based on state enumeration by reachability analysis which starts

from initial states, repeats applying the transition relations to determine the next

states, until all reachable states are visited. For equivalence checking,

specifications are also represented by FSMs. Two FSMs are equivalent if they

produce the same outputs for every possible input sequence. For model checking
proposed by Clarke and Emerson [CE81] and Queille and Sifakis [QS81],

specifications are represented as a set of properties expressed by formulas in a

temporal logic. Validity of the properties is checked at each reachable state of the

FSM representing the implementation. If for all reachable states the formulas are

true, then the properties hold in the implementation. FSM-based methods can be

applied fully automatically, and also they can produce state sequences as
counterexamples when verification fails. This makes it possible to diagnose bugs

u
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n in designs. Due to the above advantages, FSM-based methods are used more and

more in industry to verify complex designs [Ben01][XCSCLP99][JQK97]
[XCS97] [BM97] [BLPV95] [BD94] [CYF94] [MS91 ].

The major problem of FSM-based verification is the state explosion problem, the
number of states for a system is too large to check exhaustively within the limited

time and memory available. Therefore, this thesis is studying and proposing

methods for alleviating the state explosion problem.

1.2 Related Work

The efficiency of FSM-based verification depends heavily on the size of the

reachable state space. The larger the reachable state space is, the more time and

memory it takes to verify a system. An explicit representation of the set of

reachable states is exponential with the number of state components in a circuit
which limits the applications of FSM-based methods to large systems. Burch,

Clarke, McMillan, Berthet, Coudert et al [BCMDH90][BCMD90][BCL91_2]

[McM92][BCMDH92][BCLMD94] explored a method called Symbolic Model

Checking to alleviate the state explosion problem by using characteristic functions

to symbolically represent sets of states and transition relations. Reduced Ordered

Binary Decision Diagrams (ROBDDs) developed by Bryant [Bry86] to represent

Boolean functions are used to represent the characteristic functions of sets and

relations. Thus a large state space may be stored in a relatively small memory for

many practical functions. Operations on ROBDDs can execute transitions on a

large set of states at the same time.

u

Although using ROBDDs to perform an implicit enumeration of the state space
has enlarged the useful domain of model checking, the theoretical complexity is
still exponential (in the number of state and input variables), and there are circuits
that require an exponential number of ROBDD nodes to represent them. Since the
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n variables are Boolean and an individual variable is needed for every bit of data,

ROBDDs are not adequate for verifying circuits with large datapaths. They are

primarily useful in verifying control paths. More efficient methods are needed to

verify datapaths as well as to verify the interactions between the datapath and the

control parts of a design. A new method using Multiway Decision Graphs (MDGs)

to represent the relations and sets of states was proposed by Corella, Cerny, Song,
Zhou, et al [ZSCC94][CLCZS95][ZSCC95][ZSCCL95][CZSLC97]. MDGs can

efficiently represent formulas of a many-sorted first order logic with a distinction

of abstract and concrete sorts. In an MDG, a data can be represented by a single

variable of abstract sort, and a data operation can be represented by an

uninterpreted function symbol. Thus the verification using MDGs is independent

of the data path width, which greatly increases the range of circuits that can be
verified.

Since ROBDD and MDG must obey a set of well-formedness conditions to be a

canonical representation, the variables in ROBDDs and MDGs must be totally

ordered. Different orders may produce different sizes of the graphs, and a bad

order can result in the state explosion problem. To find the optimal order is an NP-

complete problem [THY93]. There are many heuristic algorithms to find good
orders [CDMOO] [CYB97] [RG97] [PS95] [Rud93] [FDH93] [FFM93] [BBFS93]

[CZJYT92] [FMK91][ISY91 j.

u

Many finite state systems arc composed of multiple processes running in parallel.

Verifying the specification on the whole system often leads to the state explosion

problem. Since most designs have a modular structure, it seems natural to

decompose the specification of the whole system into properties of its modules,

and verify the properties of the modules separately. If we can prove that the

module properties collectively imply the specification of the entire system, then

we prove the soundness of this method, which is referred to as compositional
verification [McM92][Lon93] [GL94][McM97][TB97][Kai93].
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Besides the methods introduced above, there are many methods based on model

reductions. If we can reduce model M to a smaller M' such that if M' satisfies

property P then M satisfies P and vice verse, we can only use M.' to verify P in

order to avoid state explosion. We refer to this relation as strong preservation of P

and express itasM' \= P <^>M \= P. The relation of strong preservation of P

limits the freedom of reductions and in many cases the resulting reduced model is

still too big to be handled. For proving a property P we can often find a smaller

reduced model M' such that M' satisfies P implies that M satisfies P. We refer to

this implication as weak preservation of P and express it as M' \= P =^>M. \= P.

However in this case if a property fails on the reduced model, it may not fail on the

original one.

^
J

One reduction method is based on abstract interpretation [CGL92] [CGL94]

[Dam96]. This method relies on the user to provide an abstract mapping from an

original state to an abstract state, and an abstract interpretation for every operation

in the system. If the abstraction is appropriate, the smaller abstract state space can

be used to verify the properties of the system. This method is not automatic and

also the correctness of the abstraction needs to be proven.

Another method is input elimination [SLH98] which reduces the size of the model

by existential quantification of the inputs. A deterministic system with free inputs

can be transformed into a non-deterministic one without inputs such that they are

bisimulation equivalent. All CTL* formulas are then strongly preserved [CGL92].

Model reduction can be viewed as input elimination by transforming the state

variables to be eliminated into input variables and then existentially quantifying

them out.

)
J

Yet another reduction method is a homomorphic reduction in language

containment tests [Kur87][Kur90][Kur92][Kur97]. To verify that a system

satisfies a given property is to test whether the co-regular language associated with
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n the reduced system is contained in the language associated with the property. The

reduced automata are derived from the original ones through co-linear automaton

homomorphisms. The Cadence FormalCheck tool [Bell98] is based on such a

language containment test.

Another reduction method is to exploit symmetry in the structure of the system

[CFJ96][ES93][GS97][ID96][Ip96][PB99]. The structural symmetry induces an
equivalence relation between states. For verifying the equivalence classes, we need

to explore only one state per each class. In [CFJ96] the symmetry of a finite state

system was formally described, and it was proven that a formula in CTL* is

preserved if all atomic propositions in the formula are invariant under the

symmetry group. In [ID96][Ip96] the scalarset data type was added to the Murcp

description language for specifying symmetry. Usually it is used to eliminate

symmetrically selectable registers or individual bits in a word. Symmetry

reduction is also used in the SMV (Symbolic Model Verifier) system [McM98].

Partition refinement is still another method for model reductions [KS83][Per90]

[Dam96][DGG93][LY92][FV98]. For a given system, its state space is partitioned
into sets of states, and each set is an abstract state in the reduced model. If the

reduced model is bisimular to the original system, then the properties in CTL* are
strongly preserved.

Generally there are no universal solutions to the state explosion problem. All the
above heuristics and solutions work only for certain classes of problems. Usually,
a combination of some of these methods is needed.

1*3 Scope of the Thesis

J

We use and have further developed the MDG model checker [XCSCM98][Xu99]
[ZSCC94][ZSCCL95]. It can verify properties expressed by a subset of a Ist-order
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n ACTL. The state explosion problem still limits the tool. Our work is to partially

solve this problem and make MDG a practical verification tool. In the preceding

section we surveyed many techniques for approaching this problem. However, not

all of these methods can be applied to MDG model checking, and also not all of

them are efficient and automatic. From our experience of using formal verification

tools we realized how important it is to have the automatic reduction feature in

these tools. Thus we focus on developing automatic and efficient reduction

algorithms that can be used in MDG model checking as well as in other tools.

Since there are abstract variables and uninterpreted functions in MDG, data can be

represented by one abstract variable, and thus the bit symmetry reduction is not

needed. We tried a state splitting algorithm [Dam96][DGG93], but we encountered

several problems. First, in MDG the original property is transferred to a circuit as

an additional state machine and a simplified property. The transferred property

itself is too simple to contain sufficient information for the splitting algorithm to

carry out reductions. This is also the case when the property is directly encoded in

the circuit. Second, due to the presence of abstract variables, there is no

complement operation and also no conjunction operation of two MDG graphs

having the same primary abstract variables. Without these basic operations, we
cannot compute the preimage of a set of states that is used in the splitting

algorithm, and thus we cannot use this method in MDG. In general all the partition

refinement methods and other reduction methods based on finding a bisimulation

relation using a preimage computation cannot be applied to MDG.

J

We first propose a simple way to verify the property by using a reduced circuit

obtained by topology analysis of the original circuit. In the MDG model checker,

the property P to be verified is transferred to an additional circuit and a simplified
property, e.g., AG(flag = 1) is then verified. We begin from the signal/Za^, the
output of the circuit, and search back to the inputs. If a part of the circuit cannot be

reached that means it is isolated from the connected part containing y?ag, this part
will be removed. The verification is then done on the reduced model. Furthermore,
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we can consider the circuits with multiple fanin gates, e.g., AND/NAND/OR/NOR/

XOR-gatës. In many cases only a part of the design connected to some inputs of
multiple fanin gates can generate the result A.G(flag = 1). We present a heuristic

algorithm to iteratively select the input branches of the multiple fanin gates in a

design. Each time we use the selected part of the design to verify the property and

reduce the other state variables to primary inputs. If the property holds on the
reduced model, it also holds on the original model, since the other state variables

are considered as free primary inputs, i.e., the reduced model represents a larger

state space. If the property does not hold on the reduced model, another part of the

circuit is used. Finally when the whole connected part containing flag is used, the

property is strongly preserved.

In the above method we only consider the topology of the circuits. A connected
part of a circuit may still contain some state variables that do not affect the value

of flag. We try to remove these variables by considering the functional
dependency. We define the property dependency graph (PDG) and the
noncorrelated sets. We have proved that the resulting abstract system constructed

by using all the state variables in the PDG is the least model regardless the initial

states that strongly preserves P, and consequently the abstract system constructed

using only a subset of these variables weakly preserves P. Thus we can construct

the first abstract system using the state variables appearing in the property. These

are associated with the root of the PDG. Then we search the PDG to progressively

add state variables to construct abstract systems on which P is verified. The critical

thing is how to select state variables. We partition the nodes in a PDG by finding

noncorrelated sets. The resulting graph is called partitioned property dependency

graph (PPDG). We have developed two iterative algorithms that select state

variables based on depth-first search and breadth-first search in the PPDG.

u

Using our method we can construct the abstract model by only considering the
reachable abstract states. Since no preimage operation is needed, our methods can
be used with the MDG model checking. Experimental results show that our
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n methods can do efficient model reduction even in cases where other tools fail

[HCOO] [HCOO-2].

Contributions:

l. Two heuristic reduction algorithms based on the topology of circuits.

2. A proof that the abstract model constructed using all the state variables in

the PDG is the least model regardless of the initial states that strongly

preserves property P, and the abstract models constructed using a subset of

these state variables weakly preserve P.

3. Two iterative reduction algorithms based on different search strategies in

the PPDGs.

4. The integration of our algorithms in the MDG model checker that has

extremely improved the behavior of this tool and made it usable on large

designs.

5. Experiments on a number of benchmarks.

Outline of the thesis:

In Chapter 2 we review model checking techniques and temporal logics used in

FSM-based verification. Symbolic methods and existing model checking tools are
also introduced.

hi Chapter 3 we review the theoretical foundations of model abstractions and
reductions.

In Chapter 4 we introduce Multiway Decision Graphs (MDG) and LMDG used in
MDG model checking. We then explain the MDG model checking algorithms.

In Chapter 5 we give two heuristic reduction algorithms based on topological
analysis of circuits.

J
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n In Chapter 6 we define a property dependency graph (PDG) and noncorrelated sets
of state variables. We prove that a property is strongly preserved when it is
verified by using all the state variables in its PDG, and weakly preserved when it is

verified by using a subset of these state variables. We then show how to construct
PDG in the MDG model checker.

u

In Chapter 7 we present two iterative reduction algorithms based on a depth-first
search and a breadth-first search of a PPDG.

In Chapter 8 we describe the integration of our reduction algorithms in the MDG
model checker.

In Chapter 9 we verify a number of benchmark designs using our system, SMV

and FormalCheck, and then compare the results obtained.

0 In Chapter 10 we give conclusions of the thesis and outline the future directions of

research.
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// Chapter 2 Model Checking and

Temporal Logics

u

Model checking determines the validity of a specification with respect to a

behavioral inodel of a system. The implementation is represented as an FSM and

the specification as a set of properties expressed by formulas in a temporal logic.

The validity of the properties is checked by exploring the reachable state space of

the implementation FSM. If in all reachable states the formulas are true, then the

properties hold on the implementation. In the following we will first introduce the

basic concepts of temporal logics and the Computation Tree Logic (CTL), a

widely used temporal logic in model checking. Then we will introduce symbolic

model checking and the tools we have today.

Temporal logics [Pnue86] are a class of formal logics that allow reasoning about

dynamically changing situations. They provide a formal system for describing how

the truth values of assertions change over time without time being explicitly

mentioned. There are four basic temporal operators: Always (G), Sometimes (F),
Next-time (X), Until (U).

Gp is true in state s, if p is true in all future states from s.

Fp is true in state s, if p is true in some future states from s.

Xp is true in state s, if p is true in the next state from s.

pVq is true in state s, if either q is true in s itself, or it is true in some future state of

s, and until then p is true at every intermediate state.

Specification properties such as safety, liveness and precedence properties can be
easily expressed in a temporal logic. Safety properties assert that nothing "bad"

happens, represented as M 1= Gp, which means p holds at all times on model M.
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For example, a safety property could be that at an intersection the traffic lights of

different directions cannot be green at the same time.

Liveness properties assert that eventually something "good" will happen,

represented as M l=j9 => Fg, if p is initially true then q will eventually be true on

model M. For example, a liveness property could be that if the traffic light is now

red, it will turn to green in the future.

Precedence properties assert the precedence order of events, represented as M. 1=

pVq, which means on model M, p will hold until q becomes true. For example, a

precedence property could be that if the traffic light is yellow now, it will stay

yellow until it becomes red.

Temporal logics can be classified [1] into linear time temporal logics (LTTL) and

branching time temporal logics (BTTL). In an LTTL, time is characterized as a

single linear sequence events. In a BTTL, a branching view of time is taken, at any

instant there are branching possibilities into the future. It is suitable for defining

the semantics of non-deterministic programs. For example, if p represents the fact

of a program terminating, then the inevitable termination is expressed by the

formula AFp and a possible termination is expressed by EFp. Here A means for

all computation paths, and E means that there is a computation path.

2.1 Computation Tree Logic (CTL)

u

The temporal logic CTL is a branching time temporal logic defined by Clarke and

Emerson [CE81]. In CTL formulas there are path quantifiers and temporal

operators. There are two path quantifiers: A denotes that something should be true

for all "paths" starting from the current state, and E denotes that there exists a path

starting from the current state having some property. There are five temporal

operators in CTL: G ("always"), F("eventually"), X ("next time"), U ("until"), and
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0 R ("releases"). They are used to describe the ordering of events along the path or

paths indicated by the A or E. The meanings of G, F, X, U have been defined

previously. A path satisfies pRq if q is true at the current state, and remains true up

to and including the first state where p is true. p is not required to hold eventually,

but when it does, it releases the requirement that q is true. The difference between

ReqVAck and AckRReq is that acknowledgment must occur in ReqVAck but may

never occur in AckRReq.

Syntax

CTL restricts the formulas in such a way that the linear time operators must be

immediately preceded by a path quantifier, and linear time operators cannot be

combined directly with propositional connectives. There are two types of formulas

in CTL: state formulas that are true in a specific state and path formulas that arc

true along a specific path. The syntax of CTL formulas is as follows [CGL94]

[CGL96]:

For state formulas:

l. Every atomic proposition is a state fonnula.

2. If/and g are state formulas, then so are ~f,fvg and/A g.

3. If/is a path formula, then A(/) and E(/) are state formulas.

For path formulas:

l. If/is a state formula, then/is also a path formula.

2. If/and g are path formulas, then ~tf,f^g,f^ g, Gf, Vf, Xf,fUg andfRg are path

formulas.

Semantics

u

Formally, CTL formulas are interpreted relatively to a transition system called a

Kripke structure. A Kripke structure M =(S, R, L) is a tuple of the following form:
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0 5 is a finite set of states;

Ris a. total binary relation on states and represents possible transitions;

L: S—>7A is a function that labels each state with a set of atomic

propositions true in that state. AP is the set of atomic proposition names.

As its name suggests, CTL interprets temporal formulas over structures that

resemble infinite computation trees. A computation tree is formed by starting from

a designated state called initial state in a Kripke structure and unwinding the graph

(S, R) into an infinite tree. The computation tree illustrates all the possible

executions starting from the initial state. The semantics of CTL given below are

equivalent to the semantics with respect to the infinite tree.

A path in a Kripke structure M starting from So is an infinite sequence of states,

TV=SO, si, ... such that (si, s^i) e R for all i >0. We let 7f = si, ^+7, ... be a suffix

of K. If / is a state formula, the notation M, s 1=/means that / is true at state s in

the structure M. If / is a path formula, the notation M, ^"1=/means that / holds

along path ^ in the structure M. The truth of a CTL formula is defined inductively

as follows:

l. (M, s) ï=p iff p£ L(s ), where? is an atomic proposition

2.(M,s)t=^fiff(M,s)^f

3. (At, s) \=fv g iff (M,.?) l=/or (M, s) 1= ^

4. (M, 5) 1= E / iff there exists a path ^starting from s such that 7rl=/

5. (M, 7T) \=f iîîsïs the first state of ^ and s\=f

6.(M,!T)\=-/ lîf!T\^f

7. (M, ^) l=/v g iff (M, ^) l=/or (M, 7i)\=g

8. (M, ^) 1= X/ iff ^ !=/

9. (M, ^) 1=/U ^iffJi:>0 such that (M, ^) 1= g, and t7î, O<!<Â:, (M, ^) 1=/
10. (M, JE) 1=/R^ iff for all fc ^ 0, if for every \<k{M, ri) 1^/then (M, ^) 1= g

u
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n
CTL [CE86][CES86] is an extension of CTL and is sometimes referred to as full

branching-time logic. It combines both branching-time and linear-time operators;

a path quantifier, either A or E can prefix an assertion composed of arbitrary

combinations of the usual linear-time operators G, F, X, and U. For example, EFjp

is a basic modality of CTL; E(FpAFc) is a basic modality of CTL*.

Sometimes we want to restrict the logics CTL* and CTL so that they cannot

express the existence of a specific path in the Kripke structure. The Universal

CTL* (or ACTL*) and Universal CTL (or ACTL) are obtained by eliminating the

existential path quantifier from the logic CTL* and CTL respectively [GL91]. To

ensure that existential path quantifiers do not arise via negation, in ACTL* and

ACTL negations can only be applied to atomic propositions. Thus a formula in

ACTL* and ACTL can include only the universal quantifiers over paths.

Fixpoint characterization ofCTL

CTL properties can be characterized as fixpoints of appropriate continuous

functions. This allows us to use the standard fixpoint algorithm to determine the

set of states of a given model in which a CTL formula is true, and thus have

efficient algorithms for model checking.

u

For a finite Kripte structure M = (S, R, L~), to obtain the fixpoint characterization,
we identify each CTL formula/with {s I s \=f], the set of states in which/is true.
Then false represents the empty set and true represents the complete set of states S,
and any formula / represents a subset of 5'. Let 1s be the power set of S (the set of
all subsets of S), c be the order of set inclusion. (2 , c) forms a complete lattice.
Let 7. 2s -> 2s and it is monotonie: if Si e 5'z, then <5'i) c -?(5'2). According to
Tarski's theorem [Tar55], T has a least and a greatest fixpoint with respect to
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inclusion order. A fixpoint of T is a set of states 5' such that T(S') = S'. A least

fixpoint is denoted by Ifpy.î[y] and a greatest fixpoint is denoted by gfpy.î[y].

There is a standard algorithm for computing the least and the greatest fixpoint of a

monotonie function. It starts with empty set false and the whole set true

respectively, and repeats applying the function T on the last set until a fixpoint is

reached. This procedure will terminate in at most 151 + 1 iterations.

Computing the least {or greatest} fixpoint:

y := false; {or F := true}

do

r:=y;y:=<D;

until F = Y;

return Y

Clarke and Emerson proved that each of the basic CTL operators can be

characterized as a least or a greatest fixpoint of an appropriate predicate
transformer.

AF/= IfpV. [/-v AXV]

EF/= IfpY. [yv EXY]

AG/=gfpy.[/-AAXF]

EG/= gfpY. [f A EXF]

A^Ug]=lfpy.[^v(fAAXY)]
E[fUg]=lfpy.[gv(fAEXY)]

A[fR^]=gfpy.[gA(/-vAXY)]

W^g]=ëfpY.[gA(f^EXY)]

u

Clarke, Emerson and Sistla [CES 86] showed that there is an algorithm for
determining whether a CTL formula / is true in state s of the Kripke structure M =

(S, R, P) which runs in time 0(length(/)x(151+17?l)).
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n 2.2 Symbolic Model Checking

l .)

In the original implementation of model checking algorithm, transition relations

were represented explicitly by adjacency lists. This old method can only handle

concurrent systems with small number of processes and states. E. Cerny et al

proposed a new way to represent transition relations by using Boolean

characteristic functions [Cer80][Cer77][CM77]. Burch, Clarke, Berthet, Coudert et

al presented a new method for model checking which is called Symbolic Model

Checking [BCMD90] [BCM90] [BCL91_2][McM92][BCMDH92][BCLMD94].

Symbolic model checking uses Quantified Boolean Formulas (QBF) [AHU74] to

represent sets and relations. QBF is an extension of propositional logic allowing

quantifiers over propositional variables. The set operations such as union,

intersection and image can be characterized in terms of Boolean operations. The

well-developed techniques for manipulating Boolean formulas can thus be applied

to CTL model checking. Since a Kripke structure is represented symbolically by

Boolean formulas, there is no need to construct it as an explicit data structure.

Hence the state explosion problem can be reduced.

A state of a concurrent system is generally modeled as a vector where each

element represents one state bit of one component of the system. Thus a state of

the system can be viewed as a truth assignment to a set of prepositional variables

V={vi,...,Vn}. Under this interpretation, a set of states can be represented by a QBF

formula. For example, if there are two state variables v\ and V2, then the formula vi

A V2 represents the set of states in which vi is true and V2 is true.

u

For representing a binary relation with a QBF formula, we let the variables

y={vi,...,Vn} represent the current state, and the variables V={vr,...,Vn'} represent
the next state. The transition relation of the system can be represented by a

boolean formula R(V,V). The image S' of a set 5' is computed by the following

QBF operations, where '<—' means substitution.
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S'=(3V.(SA R(V, V'))) (V ^- V)

For manipulating Boolean formulas automatically and efficiently, Reduced

Ordered Binary Decision Diagrams (ROBDD) [Bry86] are used to represent

Boolean formulas. The symbolic model-checking algorithm is implemented by a

procedure Check that takes the CTL formula to be verified as argument and returns

an ROBDD that represents the states satisfying the formula. If / is an atomic

proposition, check(f) is the ROBDD representing the set of states satisfying/. If/=

f l A /2 or / =^/7> then check(f) is obtained using the algorithm Apply given by

Bryant for computing 16 logical operations, with check(fi) and cheeky) as

arguments. For example formulas of the form EX/, E(/U^) and EG/are handled as

follows:

CheckÇEXf) = CheckEXÇCheck(f))

Check(E(jUg)) = CheckEU(Check(f), Check{g)~)

Check(EGf) = CheckEG(Check(f))

The procedure CheckEX is straightforward. It verifies if the current set of states

has successors in which / is tme. CheckEU is based on the least fixpoint

characterization of the CTL operator EU, and CheckEG is based on the greatest

fixpoint characterization of EG. We use y to represent the set of states computed
in the ('-th iteration. It is easy to test for convergence by comparing the ROBDDs

representing Yi~ï and Yi.

2.3 Existing Model Checking Tools

With the progress of research in formal verification techniques, several model
checking tools have been developed. Some of the well-known tools are SMV

(Symbolic Model Verifier) [McM92][SMV], a system developed at Carnegie-

Mellon University; VIS (Verification Interacting with Synthesis)

[BHSSAC96][VIS], a system developed at University of California, Berkeley;
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FormalCheck (COSPAN) [FC97][FC], a system developed at Bell Labs; and

BlackTie [BT] developed at Verplex Inc.

The model accepted by SMV is written in the SMV or SV (Synchronous Verilog)

language, and the properties to be verified are expressed in CTL. SV is designed to

allow the description of finite state systems ranging from completely synchronous

to completely asynchronous, and from detailed to the abstract. SMV uses an

efficient ROBDD-based symbolic model checking algorithm.

VIS is a tool that integrates the verification, simulation, and synthesis of finite-

state hardware systems. VIS operates on an intermediate format called BLHÎ-MV.

VIS includes a compiler from a synthesizable subset of Verilog to BLIF-MV. It

supports CTL model checking, language emptiness checking for Btichi automata,

combinational and sequential equivalence checking, cycle-based simulation, and

hierarchical synthesis. Multi-valued decision diagrams (MDDs) that are an

extension ofBDDs are used to represent the functions over multi-valued variables.

FormalCheck is a model checker based on language containment. This method

requires that the description of the system and the properties be represented by u>

automata, and it verifies the correctness of the system by checking that the

language of the system is contained in the language of the property. The reduction

algorithms and the refinement methods embedded in FormalCheck make the tool

applicable to industrial-size designs [XCSCLP99].

l)
u

Unlike the other tools listed here, BlackTie doesn't use any temporal logic or

specific language for writing properties. The properties are written in the Verilog

Hardware Description Language, which can shorten the learning curve for

hardware designers and make the formal verification an easy-to-use design

methodology. Another benefit is that the properties written for formal verification
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can be used in simulation to continually monitor the expected behavior. BlackTie

also automatically generates checkers for some simple properties.

In the LASSO laboratory at Université de Montéal a formal verification tool called

the MDG model checker has been developed [ZSCC94][ZSCCL95][CLCZS95]
[XCSCM98][Xu99][HCOO]. This tool supports combinational and sequential

equivalence checking, and property checking. A model is represented by an

abstract state machine that allows abstract variables and uninterpreted functions.

This makes the model checker capable of verifying circuits with large data path.

Sets of states and transition relations are symbolically represented by Multiway

Decision Graphs (MDGs). Design models are described using the language MDG-

HDL, and properties are expressed by formulas in LMDG, a first-order ACTL logic.

We will give more detail in Chapter 4. We are still continuing to develop and

improve this tool.

Summary

The advantages of model checking techniques are that they can be made

completely automatic, and when the verification fails an error trace is given to help

the designers to locate bugs. Due to the state explosion problem, model checking

has not been used widely in industry. Further research on solving this problem is

continuing. In particular effective model reduction techniques can extremely
alleviate this problem. To find efficient model reduction methods is the subject of

this thesis. In the next chapter we will introduce the basic theory of model

reduction and some of the techniques.

u
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n Chapter 3 Model Abstraction and

Reduction

In the previous chapter we introduced the basic theory of model checking. The

critical problem of this technique is state explosion. As the complexity of real

systems continues to grow, model checking with symbolic representation still

cannot handle many of them. Abstraction is probably the most important technique

for reducing the state explosion problem, since it is performed even before the

original model is constructed that might be too big to fit into memory. However,

we must establish a relationship between the abstract model and the original model

such that correctness at the abstract level implies correctness for the original

system. It is important that the verification methodology does not lead to false

positive results. If At' \= P ^ M 1= P, we say that M' weakly preserves P, i.e., if

M' satisfies property P, then so does M, but if M' does not satisfy P, M may or

may not satisfy P. While if M' 1= P <=> M 1= P, we say that At' strongly preserves

P, i.e., both the positive and the negative results of verifying P on Af' can be

carried to M. In this chapter we introduce some theoretical basis for model

abstraction and reduction, and the related literature. This will be used to prove our

reduction algorithms in Chapter 6.

3.1 Simulation and Bisimulation

u

Definition 1. A labeled transition system is a tuple M = < S, So, I, T, AP, L >,

where 5 is a set of states, 5'oc 5' is a set of initial states, 7 is a finite set of inputs, T:

Sxl -^ Sis a transition relation, AP is the set of atomic propositions, L: 5 -> 2AP



22

is a labeling function indicating which propositions are true in each state. We use s

—>a s3 to denote there is a transition from state s to state s' when the input is a.

Definition 2. Given two labeled transition systems M = < S, So, I, T, AP, L > and

M' =< S', So', I, T', AP', L' >. M and M' have the same sets of inputs and AP' c

AP. A relation H cSxS' isa. simulation relation between M and M' if and only if

for all se S and s'eS', if H(s, s') then the following conditions hold:

l.L(s)r^AP' ^L'(s')

2. For every state ^ie S and T(j', j'i), there is a state ^i'e 5' such that T'(s', si') and

H(s,,s^).

We say that M' simulates M if there exists a simulation relation H such that for

every initial state SQ in M there is an initial state SQ' in M' for which H(SQ, SQ').

Clarke et al. [CGL96] proved that if M' simulates M then for every ACTL*

formula f. M' \= f =» M 1= /, i.e., properties expressed in ACTL* arc weakly

preserved by M'.

Definition 3. Given two labeled transition systems M and M' similar to the above,

but let AP' = AP. A relation B cSxS' is called a bisimulation relation between M

and M' if and only if for all ^ e S and s'^ S', if 5(5', ^') then the following

conditions hold:

Î.L(s)=L'(s')

2. For every state s^ e S and T(s, ^i), there is a state 5'i' e 5" such that T'Çs', si')

and 5(^i, j'i').

3. For every state ^i' e 5' and T (s\ ^i'), there is a state s^ S such that T(^, s\}

and B(si, si').

u

If there is a bisimulation relation B between M. and M\ we say M and M' are

bisimular if and only if 5 satisfies two additional conditions:

1. For each initial state so in M there is an initial state so' in M' for which BCso, SQ').
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2. For each initial state so' in At' there is an initial state SQ in M for which 5(j'o, ^o')-

Clarke et al [CGL92] proved that if M and M' are bisimular, then for every CTL*

formula/, M \=f<^> M' \=f, i.e., the properties expressed in CTL* are strongly

preserved by At'.

Clarke et al [CGL96] presented general algorithms for determining whether two
transition systems are simular or bisimular. These algorithms can handle both

deterministic and nondeterministic transition systems. To check the simulation

relation between two transition systems M and M', they defined a sequence of

relations, Hg, H^ ... on5'x 5" as follows:

l. Ho (^, s') if and only ïîL(s) nAP' =I,'(^');

2. H^; (^, 5') if and only if

- îî'^s, s'), and

-V^e S. [R(s, si) ^ 3^i'6 S\ [R\s\ ^i') & R^SI, ^i')]]

The procedure will terminate since the transition systems are finite. There is an n

such that H,,= H^, and !!„ is the largest simulation relation H'between M and

M'. Thus M' simulates M if and only if for every initial state SQ in M there is an

initial state SQ' in M' such that H' (so, SQ').

u

For checking the bisimulation relation between two transition systems M and M', a

sequence of relations, B() , B^,... on 5 x 5" are defined as follows:

l. B^s, s') if and only ifL(^) = L'(J');

2. B'^i (5,^') if and only if

-B:(^^'),and

-V^i € 5. [/?(.?, ^i) ==» 3^'e 5'. [7?'(^', ^i') & B[(si, si9)]] and

-V^i'e S\ [R\s\ sif) ==> 3^ e S. R(s, s,) & B;(^i, ^i')]].
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•-^

This procedure will terminate when B,, = B,, j. B,, is the largest bisimulation B

between M and M\ If for every initial state so in M there is an initial state 5-0' in M'

such that B'(so, so'), and additionally for every initial state SQ' in M' there is an

initial state SQ in M such that B* (SQ, SQ'), then we say M and M' are bisimular.

3.2 Abstract Interpretation

0

For many cases, the properties that we are interested in involve fairly simple

relationships among the data values in the system. Additionally real systems

generally manipulate data in a well-stmctured way. If we can abstract the concrete

elements to a small number of abstract elements such that the abstraction will not

affect the verification result, then the state explosion problem can be reduced.

For example, if we want to check that x\ * x^ is positive or negative, we need not

perform the multiplication at the concrete level of the two numbers. The only thing

we need to be concerned with is the sign of the result. Thus we can abstract the

individual operands to their signs [neg, pos] by a mapping h: if x <0 then h(x) =

neg, if je > 0 then h(x) = pas. Then apply the rules of signs for multiplication * :

neg ^ pas = neg, neg ^ neg = pas, pos ï pos = pos.

J

Given a transition system M. = (S, So, I, T, AP, L) with variables ranging over a set

of values D, to construct a reduced system M', we select an abstract domain A and

a mapping h from D to A. This determines a set of abstract atomic propositions

AP\ For the example shown above, the abstract atomic propositions are 5 = neg

and s = pos. Normally the abstract-level propositions in M' are less than those in

the concrete system M, thus the complexity of verification is reduced. M' = (S',

So', I, T', AP', L') is constructed as follows:

1.5'={/i(5)|^e S}
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n 2. s' e 5'o' iff there exist s such that s' = h(s) and s e SQ

3. AP' is determined by the abstract mapping h as described above

4.L\s')=s'

5. T(s', si') iff there exist s and si such that s' = h(s), si' = h(si) and T(s, si)

We can see that each abstract state is a set of concrete states that have the same

labeling of abstract atomic propositions. It is easy to see that the reduced system

M' simulates the original M, and the mapping h introduces a simulation relation H

= {(j1, 5') lj' e 5' and s' = h(s)} between the two systems [CGL96].

When the abstract mapping h satisfies some conditions, H= [Çs, s')\ s e S and s'=

h(s)] is a bisimulation relation between M' and M. For two states si and ^2, the

abstract mapping h induces an equivalence relation ~: s\ ~ s-i iff h{s\) = hCs^). If all

these equivalence relations ~ are congruences for the primitive relations

corresponding to the basic operations used in the program that is (si ~ S2—> (P(si)

<^ P(sî))), then M and M' are bisimular [CGL92].

3.3 Symmetry Exploited in Model Checking

Real systems often exhibit considerable symmetry, for example, it is easy to find

symmetry in memories, registers, bus protocols and network protocols which have

a lot of replicated structures. [CFJ96] [CFJ93] [ID96] [Ip96] [ES93] use symmetry

to reduce the state space in model checking. In general, they abstract the original

system by a mapping according to the symmetry in the system.

u

Definition of symmetry groups: Let G be a group of permutations, i.e., bijective

mappings acting on the state space S of the transition system M defined above. A

permutation <7 e G is said to be a symmetry for M. if and only if it preserves the

transition relation T. That is cr should satisfy the following condition:
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n ( Vs 1 e S)( Vs2 e S) ((s j, 52) e T =^ (asi, 052) e T)

G is a symmetry group for M if and only if every permutation <7 e G is said to be a

symmetry for M.

In the example shown below, the permutation <7is defined as: SQ -^ SQ, si —> s^, sz

-> ^i, ^3 -> S3. a exchanges the states si and s^, but j'o and ^3 are not affected. It is

obvious that the transition remains the same. Hence cris a symmetry of At.

SiSo »•

Il S3S2

Figure 1. A symmetry example

If ^ is an element of S, then the orbit of s is the set

0(5)= {ti(3ae G) (as = t)}

Each orbit 6(s) is represented by rep(6(s)), a representative selected from it. The

quotient model Me = (So, Sco, 1, Tc, AP, Lc) of M and G is defined as follows:

l. The state set is 5e ={ 0Çs) \ s e 5'}, the set of the orbits of the states in 5';

2. The transition relation To is (6(si), 6(82)) e Te iff (sj, 52) e T;

3. The labeling function is Lc(0(s)) = L(rep(0(s))).

G is an invariance group for an atomic proposition p if and only if the set of states

labeled by p is closed under the application of all the permutations of G. That is

the following condition holds:

f Va- e G)( Vs e S)(p e L(s) ^>p e L(as))

u
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n Given a labeled transition M and a symmetry group G, if G is an invariance group
for all the atomic propositions j? occurring in a CTL* formula/, then [CFJ96]

M,s\=f^Mc, 6(s)\=f

The complexity of orbit calculations is as hard as the Graph Isomorphism problem.

If a system has N equivalent components, i.e., N instances of one module, and each
equivalent component has m state variables, the lower bound for the BDD

representing the induced orbit relation 0 is 2K/8 with K = min(N, 2m) [CFJ96].

Since the exponential complexity of computing the orbit relation, exploiting these

types of symmetries in symbolic model checking is restricted to examples with a

small number of components. An approach to avoid the computation of the orbit

relation is given in [CFJ96], in which any subset instead of a unique state of an

orbit can be used to represent this orbit. The image and preimage are computed in

terms of the representatives instead of using the transition relations of the quotient

model. That is, we can perform model checking on the quotient system without
explicitly building the quotient model. We use Img to denote the image

computation, and Pre to denote the preimage computation. For a set of states S, the

image and preimage of 5' are defined as follows:

Img(S)={s'\3seST(s,s')}

Pre(S)={sl3s' eST(s.s')}

A similar approach is presented by Ip and Dili [ID96] [Ip96]. In their work they

also propose a new data type scalarset that was added to the description language

to detect and exploit symmetries in the finite state system. A scalarset can only be

accesssed through restricted set of operations that guarantee certain symmetries to

hold on the state graph. SMV and Murc? verification tools adopt this reduction

technique based on symmetry and scalarset data type.

u
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n 3.4 Partition Refinement Methods

A partition /? of a set 5 is a set of pairwise disjoint subsets of 5" whose union is all

of S. The elements of/? are called its blocks. If/?= {Bi,..., Bn] and p' = {Bj',...,

Bn'} are partitions of S, we say that p' is a refinement of /? if and only if :

VBi'ep\3Biep.(B,'cBi)

For a given transition system M = <S, So, I, T> and a partition p= [Bi,..., Bn} of

S, we define a quotient system M' = <S', So', I, T'> as follows:

l. 5" = [BI,..., Bn], that is, every state m M' is a block in the partition p.

2. Vso' e So', 3so e So. (so e so').

3. Vael. (si'—a-^S2' e T' ^(Bsiesi', ^es^. (sj^-^S2 e T))).

A transition s^' " > s^' in the quotient system is stable if and only if the following
condition is satisfied:

Vsjesi'. ((si—^ S2eT)A(s2e s^'))
That is, the transitions of each state in the block si' guarded by input a will lead to
a state in the same block s^. The quotient system is stable if and only if all of its

transitions are stable.

Let p = {BÏ,..., Bn] be a partition of the states in the transition system M. If the

quotient system M' constructed by p is stable, M' is a bisimular of M [BFH90]

[Fer90] [LY92].

u

Lee and Yannakakis [LY92] present an algorithm that computes bisimulations
only on the reachable state space and computes the equivalence classes of the
bisimulation relation rather than the bisimulation relation itself. The algorithm
starts with an initial partition, then splits the blocks until there are no unstable arcs.

This algorithm explores the graph and splits blocks simultaneously, combining the
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n forward inference of reachability information with the backward inference of

equivalence information. The algorithm in [FV98] is a modification of [LY92]

which adds a holding set to reduce the number of unreachable blocks retained

during the processing. A holding set includes several unreachable blocks and is

treated as a single equivalence class which improves memory usage.

Summary

In this chapter, we introduced the theoretical basis for model reduction. If a model

M' simulates a model M, then for every ACTL* formula/, M' !=/=> M |=/. If a

model M' bisimulates a model M, then for every CTL* formula/, M' [=f<^> M\=

/. The techniques of abstract interpretation, reductions based on symmetry, and

partition refinement methods were also introduced. Not all these techniques are

totally automatic and efficient. Usually in abstract interpretation and symmetry

reduction, users need to provide some information to guide the verification tools.

New methods that are more efficient and friendly arc needed. We intend to

develop some new reduction methods that can be implemented in MDG model

checking. In the next chapter we will introduce MDG model checking. We will see

why many existing methods cannot be adopted in this tool.

u
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Chapter 4 IVÏultiway Decision Graphs

(MDGs) and Model Checking

.)

In the previous chapters we introduced model checking and techniques to solve its

critical problem of state explosion. With the appearance of ROBDD-based

symbolic model checking techniques, the useful domain of model checking was

increased considerably. Since ROBDD-based model checking requires a binary

representation of the circuit, every individual bit of data signals must be

represented by one boolean variable. When a circuit has a large datapath width,

ROBDD-based verification methods may take too long or mn out of memory. The

reduction methods based on abstract interpretation and data symmetries take long

time to compute the bisimulation relation. Do we have other methods to handle

circuits with large data?

Corella, Cerny, Zhou and Song et al [CLCZS95][ZSCCL95][ZSCC94] developed

new techniques based on the use of abstract variables to represent data and

uninterprcted function symbols to represent data operations. These techniques can

handle data path feedback and can verify interactions between data paths and

control paths when data operations can be viewed as black boxes, i.e., the

correctness does not depend on the meaning of those operations. As a

consequence, Multiway Decision Graphs (MDGs) that incorporate abstract

variables and uninterpreted functions were developed to represent and manipulate

sets of states and transition relations. The technique of implicit state enumeration
in the Boolean domain where ROBDDs are used was lifted to the domain of

u
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abstract sorts where MDGs are used. The higher level of abstraction in MDGs

makes it possible to verify circuits with large datapath widths.

4.1 A Many-sorted First-order Logic

Syntax

The formal logic used in MDG is a many-sorted first-order logic with a distinction
between abstract sorts and concrete sorts. Concrete sorts can be enumerated

finitely, while abstract sorts do not have an enumeration. The enumeration of a

concrete sort a is a set of distinct constants of sort a. The constants occurring in

enumerations are referred to as individual constants, while the constants of abstract

sorts are referred to as generic constants. Variables of concrete sorts are used for

representing control signals, and variables of abstract sorts are used for

representing datapath signals.

The distinction between abstract and concrete sorts leads to a distinction between

three kinds of function symbols. Let / be a function symbol of type o/iX ...x <% —>

On+i, where â'i ... Ctn+i are sorts. If On+ï is an abstract sort then / is an abstract

function symbol. Abstract function symbols are useful for modeling data

operations of which we know the implementation to be correct. If all the o'i...dn+i

are concrete, / is a concrete function symbol. If On+i is concrete while at least one

of ai ... On is abstract, then we refer to / as a cross-operator. Cross-operators are

useful for modeling feedback signals from the datapath to the control circuitry.
Both abstract function syrabols and cross-operators can be uninterpreted or
partially interpreted by conditional rewriting rules.

u

The function symbol/fA;,..., AJ may be structured which means Ai,..., A» can be

function symbols. We call structured function symbols as terms which are defined

inductively as follows: a constant or a variable of sort a is a term of sort a; if / is a
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function symbol of type a\x .. .x On -> On+i, n > 1, and A\,...,An are terms of sorts

ai ... On, then/fA;,..., An) is a term of sort ân+i. A term that has no concrete

subterms other than individual constants is said to be concrctely-rcduced. A term

of the form/fA 7,..., A J where / is a cross-operator and Ai, ..., An are concretely-

reduced terms, is a cross-term. An equation is an expression "Ai = Az" where Ai

and Â2 are terms of the same sort. The atomic formulas are the equations plus T

(truth) and F (falsity). The formulas of the logic are built from the atomic formulas

in the usual way using logical connectives and quantifiers.

Semantics

An interpretation is a mapping \j/ that assigns a denotation to each sort, constant

and function symbol, satisfying the following conditions:

1. The denotation y< or) of an abstract sort a is a non-empty set.

2. If a is a concrete sort with enumeration {ai,...,an} then y/(a) = {y/(ai),...,

\{^a.n)} and ^(a,) ^ y<a/) for \<.i<j<:n.

3. If / is a function symbol of type a\x ...x £(„ -> an+i, then i^f) is a function from

the cartesian product y<ai) x ...x ^< un) into the set ^(c^i+i). In particular, if n =

0, i.e.,/is a generic constant of sort ai, ïf/J) e ^(«i).

u

Let X be a set of variables, a variable assignment with domain X compatible with

an interpretation y is a. function ^ that maps every variable x e X of sort a to an

element ^(x) of ^(a). We write 0vxfor the set of ^-compatible assignments to the

variables in X. The denotation of a term and the truth or falsity of a formula under

an interpretation and a compatible variable assignment are defined as usual. We

write l//,<^\= P if a formula P denotes truth under an interpretation y and a y/-

compatible variable assignment (f) to the variables in P, y\= P if y/, </)\= P for all

such assignments ^, and \=P if y\= P for all y. Two formulas P and <2 arc

logically equivalent iff 1=P <=> <2. A formula P logically implies a formula Q. iff 1=

P=><2.
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n
4.2 Multiway Decision Graph (MDG)

An MDG is a finite directed acyclic graph G where the leaf nodes arc labeled by

formulas, the internal nodes are labeled by terms, and the edges issuing from an

internal node N are labeled by terms of the same sort as the label of N. An MDG G

represents a formula defined inductively as follows:

l. If G consists of a single leaf node labeled by a formula P which can only be T or

F, then G represents P;

2. If G has a root node labeled A with edges labeled B\...Bn leading to subgraphs

Gi\..Gn, and if each G;' represents a formula P,, then G represents the formula

Vi<,<«((A=5,)AP,.

MDGs satisfy a set of well-formedness conditions to turn MDGs into canonical

representations that can be manipulated by efficient algorithms. The formulas

represented by MDGs are a subset of the many-sorted first-order logic introduced

in the previous section. We refer to these formulas as Directed Formulas (DPs).

A directed formula (DF) is a disjunction of conjunctions of equations. A well-

typed equation is an expression "Ai = Az" where Ai and A-i are terms of the same

sort. Given two disjoint sets of variables U and V, a directed formula is of type U

—> V if and only if (1) each equation is well-typed; (2) every abstract variable in V

appears in the left-hand-side of the equations; (3) the abstract variables in U
appear in the right-hand-sides of the equations or in the cross-terms in the left-
hand-sides; (4) in each disjunct, the left-hand-sides of the equations are pairwise

distinct. In a DF of type U —> V,Vis referred to as the primary variables and U is

referred to as the secondary variables. Abstract primary variables label MDG
nodes, while secondary abstract variables label edges or appear as function

arguments. Concrete variables can only label nodes. Two directed formulas are

equivalent if and only if their MDG representations are isomorphic. In the

u
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n following we also use DFs to represent MDG graphs, and we do not make the

distinction between them.

u

Similar to ROBDDs, MDGs can represent transition relations and sets of states.

Since a variable assignment (f) with domain V compatible with an interpretation \f/

can be viewed as a vector of values, indexed by the variables in V, </)v'v can be

viewed as the cartesian product of the indexed family of sets (^(Oi,))vev, where uv

is the sort of v. For a given interpretation l//, a directed formula P of type U -^ V

can be used to represent the transition relation [(f) e ^c/uv ! ^ ^1= P), or to

represent the set of states Setv(P) = {^ e ^yl ^, (^1= (3 U)P} .

The basic operations of MDG are disjunction, conjunction, existential

quantification, relational product (RelP), and pruning by subsumption (PbyS).

Relational product RelP(MDGs, Vars, 77) takes as arguments a set of MDGs, a set

of variables Vars, and a variable renaming substitution 77. It computes the

conjunction of the MDGs, removes the variables by existential quantification, and

applies the substitution. Since abstract variables occur in MDG, for the MDG (x =

c) where x is an abstract variable, and c is a generic abstract constant, there is no

MDG representing -i(x = c). Thus there is no negation operation in MDG. Then

there is no complement operation in MDG. In MDG there is PbyS operation which

approximates the difference of sets represented by MDGs. PbyS(G, H) takes two

MDGs as arguments: G and H of type X —> Y\ and X —> YÎ respectively, and

produces an MDG G' of type X -> Vi. Suppose that the DP of G is of the form:

D\\/...\/Dn, and the DP of ^ is of the form: 5iv...v5n. If there is a substitution 0

with domain less than or equal to ¥2, we apply this substitution to H, ÎÎ there exist

Di and 6(Bj) such that Û, A ^5/) = D; then we say Z), is subsumed by Bj. When

doing the PbyS(G, H) operation, we remove every D, which is subsumed by a

disjunct of H from the DP of G, which is so-called pruning by subsumption. G'

satisfies the relation: 1= G" v (3X) H <^ G ^/ (3X) H. Since an MDG represents a

set, for every interpretation ^, {Set\G) \ Seîv(H) e Setv{G') c Setv(G).
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4.3 An Abstract Description of State Machines and

State Enumeration

An abstract description of a state machine (ASM) is a tuple D = (X, Y, Z, V, 77, Fj,

FT, Fo) where:

î. X, Y and Z are pairwise disjoint sets of input, state and output variables. They

can be of abstract sorts.

2. F is the set of next state variables, disjoint from X u Vu Z, and 77 is the

function that maps each state variable to the corresponding next state variable.

For convenience, we use the primed symbol v' to represent the next state
variable of state variable v.

3. Fi is an MDG of type UQ—>Y that represents the set of initial states, where UQ is

a set of abstract variables disjoint from XuYuZuV.

4. FT is an MDG of type {X\jY)—>Y that represents the transition relation.

5. FO is an MDG of type (Xu F) -> Z that represents the output relation.

For an interpretation \y, there is only one state machine M = {(f)¥x, <j) Y, ^ z, Si, RT,

Ro) satisfying the description D. Since </)yx is the set of all ^-compatible
assignments to the variables in X, i.e., the set of all input vectors, thus it is the

input alphabet of the state machine. Similarly (ffy is the set of states of the

machine and ç)^z the output alphabet.

l.Sj = Setv(F{) is the set of initial states.

2. Rr= {(0 ç>', ^") e fxx^yx fy\ y, ^u ç)' u (^"OT?) l=Fr} is the transition
relation.

3. Ko = {(^, ^', ^") € ^ X ^y x^zl ^ ^u^' u ^" 1= ^o} is the output
relation.

u
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0

u

Model checking is based on state enumeration. Here we show how reachability

analysis can be performed on the abstract description D = (X, Y, Z, Y', T], F/, FT,

Fo) in MDG. The algorithm is shown in the following:

ReAn (D)

Initially R := Ff, Q := F/; 2s: := 0;

Loop

K:=K+l;

I := Fresh(X, K);

N:=RelP({I,Q,FT},X^Y,7D;

Q:=PbyS(N,R);
If 0 =F then return;

R:=PbySÇR,Q);
R := Disj(R, Q);

End loop;

End ReAn

The variable K is the loop counter that is used to generate fresh abstract variables

to denote values of abstract data inputs at the k-th iteration. Fresh(X, K) builds a

DF representing a conjunction of equations v = v#K, one for each abstract input

variable veX, where v#K is a fresh variable disjoint from X uY u ZuV. Then / :=

Fresh(X, K) represents the set of input vectors. Before the k-th iteration, k> 0, R

represents the set of states reachable in less than k steps, and g represents the

frontier set, a subset of R containing at least all the states newly reached in the

previous iteration. At the beginning, both R and <2 are the initial states. At the K-th

iteration, RelP([I, Q, Fr}, X u Y, îf) computes the set of states N that can be

reached in one transition from Q with input /. Then, PbyS(N, R) computes the

frontier set Q.îf Q = F then there are no new states reached, Rk-i = Rk, i.e., the

fixpoint is reached, and the reachability analysis finishes. \iQ,^F, the set of states

reachable in K iterations is computed. This is done by R := PbyS(R, <2); R '.=

DisjÇR, Q). Since Q was not computed earlier as an exact difference, R may
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n contain some disjuncts that are subsumed by Q. Removing these disjuncts from R

before taking the disjunction of R and Q often produces a smaller resulting MDG.

4.4 The Specification Language LMDG

0

In MDG model checking, the properties to be verified are expressed by formulas

in LMDG that defines a Ist-order branching-time temporal logic, a subset of which

can be verified using our MDG model checker [Xu99][XCSCM98]. The atomic

formulas of LMDG are the constants True or False and equations of the form ?i = 12,

where ti is an ASM-variable, k is an ASM-variable, a constant, an ordinary

variable or a function of ordinary variables. An ASM-variable is a variable

appearing in the description of an ASM. An ordinary variable is not an ASM

variable and is used to remember the past value of an ASM-variable in the

specification of a property. If p, q are LMDG formulas, then so SSG\ p,p & q,p\ q,

p-^q, LET (v = t) IN p, Xp, Ap, AGp, AFp, A(p U ç), AG(p ^ F(ç)), AG(p ->
(q U r)). In the formula LET (y = î) IN p, v is an ordinary variable and t is an
ASM-variable. LET (vi = f,) &...& (v» = ?„) IN j? is a shorthand for LET (v; = ?,)
IN ((LET (vi = r,) IN (...LET (vi = ^) IN p))). In LMDG the existential path

quantifier E is not allowed and negation can only be applied to prepositional
formulas over concrete variables. The semantics are defined on an abstract

computation tree.

u

A path TTin an abstract computation tree is an infinite sequence of states SQ, si, ...

such that RÇsi, Si+i) for i Ï 0. We use ^ to denote the suffix of ^"starting at s^, s, a

1= p to mean that the formula p is true at state s; TT, cf\= p to mean that the formula

p is tme on path jr, and Val^j^t) to denote the value of term t under a y-

compatible assignment <f) to state, input and output variables and a ^-compatible

assignment cr to ordinary variables. The relation 1= is defined inductively as
follows:
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0 s, 0-1= fi = î2 iff ya^o(?i) = Val^k);

s, a'\=lp iff it is not the case that s, a 1= p;

s, <rl=p &qiîfs, O'i=p and j, a'\=q;

s, a'i=p\q iff s, CT\=p or s, a i= ^;

s, ff\=p —> q iff s, a\= \ pars, a\=q;

ÎT, a\=p'tîîs, a\=p and 5' is the first state oîp;

7T, (71= ! p iff it is not the case that TT, cr 1= p;

K, a\=p &qiîf 7T, a\=p and TE, (T\=q;

K, a\=p \qiîf TT, a\=por v, a\=q;

K, a\= p—f q\iî K, a\=- ipoT !T, crï=q;

îc, o'l=Xpiff,Ti, 0-1= p;

îc, al= Gp'iîîjCj, (7l=pforallj>0;

7T, a\=~F piff ^, (T 1= p for some j >. 0;

K, al=j?U^iffforsome^^O, %, <7l=çand ^•, crbpforallfc^y^O;

^- , 0- 1= LET (v = t) IN p iff TE, (f 1= p, where o' = ((T \ {(v, o(v))}) u

{(v,Val,o^t))}.

A property in LMDG holds on an ASM if and only if the property is true for all the

paths starting from the initial states in the abstract computation tree.

In the following, we use a memory as an example to illustrate how to use LMDG to

express properties.

Example 1: A memory unit cannot be read (read = 1) and written (write = 1) at the

same time.

AG ( ! ((read = l) & (write = l)));

0

Example 2: After the read signal is set, the content datalO of the memory unit at

the specified address 10 will be fetched after one clock cycle.

AG (LET v = datalO IN {{read = l & address = 10) ^ X {data_out = v)));
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4.5 Construction of an ASM for the Property in

L
MDG

In the MDG system, model checking is carried out as folllows: an additional ASM

is built for a property represented by a LMDG formula, composed with the original

ASM of the design, and finally the appropriate algorithm is applied to verify a

transferred property on the composite machine. Thus the verification of the

original property on the original machine is changed to the verification of the

transferred property on the composite machine. The transferred property is

AG(flag = l) for AG(Next_letJ'ormula), AF(flag = l) for A¥(Next_letJ'ormula),

A((flagî = l) U (flag2 = l)) for A((NextJeîJ'ormulal) U (Next_letJ'ormula2)\

where flag, flagl and flag2 are boolean state variables of the additional ASM

generated from the original property.

t )
u

Given a design which is represented by an ASM Mo = (XD, YD, ZD, rfD, FID, FTD,

FOD), and a property P to be verified, we construct the additional ASM Mp = (Xp,

Yp, Zp, T}p, FIP, FTP, Fop) for the property expressed in LMDG- The input variables

of Mp are the ASM-variables of MDthat appear in the property, i.e., Xp^XoU YD

u ZD. They represent the values at the current clock cycle. Let n be the maximum

nesting number of X operators in the property. The set of state variables Yp and the

transition relation represented by the DF FTP are constructed to remember the

values of the input variables of Mp or the results of a comparison of the variables

in the past n (or less than n) clock cycles. There are special state variables flag,

flagï, flagl in Mp which are used to indicate the truth values of the

Next_let_formula one clock cycle earlier. There is no output from Mp, so there is

no output relation either, i.e., Zp = 0, Fop = 0. The initial values of the state

variables in Mp are set in such a way that they do not affect the result of verifying

P on the original ASM.
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After the additional ASM Mp is constructed, the composite machine M of the

original ASM Mo and M.p is constructed. Let M = (X, Y, Z, 77, F/, FT, Fo) where

l. X is the set of the input variables ofM,X= XD-

2. F is the set of state variables of M. which contains both the variables in Yo and

Yp, y= FÛ u Yp. The state space of At is a subset of Q^ x O^. under each

interpretation iff, because M is a composite machine in which the states of Mp

are derived from Mo, rather than the product machine of Mo and Mp.

3. Z is the set of the output variables of M D, Z= ZD.

4. Fi is a DF representing the set of initial states of M, F] = FID A F ip.

5. FT- is a DF representing the transition relation of M, FT= FTD A FTP.

6. FO is a DF representing the output relation ofAf, FO=-FOD.

7. TI is the function that maps each state variable of M to the corresponding next

state variable, 77 = 770 u 7/p.

For example, we construct the additional ASM (Figure 2) for the property of

example 2 in section 4.4. The boldly lined components in Figure 2 are flip-flops.

AG (LET v = datalO IN ((read = l & address = 10) -^ X (data_out = v)));

read

rcg
flagaddess 10?

datalO
v

equal?

. )
u

Figure 2 : An example of additional ASMs
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4.6 Reduction Problems in MDG Model Checking

Although MDG model checking can use abstract variables and uninteq)reted

function symbols to represent sets of states and transition relations that enlarges

the useful domain of MDG, the state explosion problem is still a bottleneck that

prevents MDG from handling many real systems. Our work is to alleviate this

problem and make MDG a practical verification tool.

As introduced in Chapter 1 and Chapter 3, there are many techniques to approach

the state explosion problem. The techniques that attract us most are those based on

model abstraction and reduction. If we can find an abstract model that normally is

smaller than the original model, i.e., a reduced model, and this model simulates or

bisimulates the original model, then we can verify properties on the abstract one. If

an abstract model simulates the original model then ACTL properties are weakly

preserved, while if an abstract model bisimulates the original one then any CTL*

property is strongly preserved and we never need to use the original model in this

situation, i.e., the state explosion problem can be reduced.

However, in general bisimulation equivalence can be verified in 0(rnn) [Mil80] for

a labeled transition system with m transitions and n states which is exponential

with the number of components in the design. For a large circuit, the method to

compute a bisimulation relation is not feasible. Most of the solutions to avoid this

computation are based on preimage and postimage computations. As mentioned

earlier, MDG has no complement operation due to the presence of abstract

variables and uninterpreted functions and no conjunct operation of two MDGs
having the same abstract primary variables, and thus cannot compute preimages.

All the methods that are based on preimage computation cannot be applied to
MDG.

f

l )

.J
Symmetry reduction is often used on the systems that have a collection of

components that may be replicated n times, such as symmetrically selectable
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registers or individual bits in a word. These systems can often be proved correct

without modeling the precise number of replicated components. Since MDG

allows abstract variables, a datum with n bits can be represented by a variable

datan of abstract sort. Thus bit symmetry reduction is not needed in MDG.

Moreover, symmetry reduction is also based on computation of equivalence

relations on states, and the efficient algorithms as presented in

[CFJ96][ID96][IP96] are still based on preimage computation, thus they cannot be

applied to MDG.

u

For the partition refinement methods introduced in [LY92][FV98][Dam96]

[DGG93], preimage computation is also used, hence those methods cannot be used
in MDG. In fact not all the methods are efficient even in the case of concrete

variables. For example, the splitting method in [Dam96] [DGG93] splits states and

then computes the transition relations of the refined model. It requires n

computations of abstract transition relations for constructing an abstract model

with n states. This makes the algorithm impractical even after state encoding. As

reachability analysis cannot be done on the original model, computation of the

abstract transition relations is also done for the unreachable states, which may be

costly. Second, in MDG the original property is transferred to the circuit model as

an additional state machine, the transferred property itself is thus very simple. The

companion set becomes trivial and does not contain much information for carrying

out reductions. This is also the case when the property is directly encoded in the

circuit, i.e., saying that we should analyze the property first before constructing the

additional state machine would not help.

[ )
u

Many reduction methods are not fully automatic. They need users to give a

mapping between the concrete model and the abstract model. Only then they can

construct the abstract model automatically. In some symmetry methods

[ID96][Ip96], the user also needs to define the components that can be

symmetrically reduced as scalarset to guide the tool to complete the reduction.
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What we want is to provide users with an efficient and friendly verification tool

that can do automatic reductions. We have to find some suitable reduction

methods for improving our MDG model checker.

t )
u

Summary

3

In this chapter we introduced Multiway Decision Graphs (MDG) and model

checking based on MDG. The models under verification are represented by

abstract state machines that may contain abstract variables and uninterpreted

function symbols. This makes MDG model checking suitable for verifying the

interaction between datapath and the control. However, the state space explosion

problem critically limited the useful domain of MDG model checker. In this thesis

we present two model reduction methods in the following chapters and have

integrated them in MDG model checker and made this tool capable of verifying

real industry designs. One is based on the topology of the circuits under

verification and is discussed in Chapter 5. The other method is based on the

functional dependency and is discussed in Chapter 6 and Chapter 7.
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n Chapter 5 Model Reductions Based on

Circuit Topology

0

In the previous chapter we have introduced MDG model checking. Due to the

particular characteristics of MDG, many existing reduction methods cannot be

adopted in MDG model checking. From observation we know that many

properties only specify the behavior of a part of a circuit under verification. If we

can only use this part of a circuit to prove the property, then we may avoid the

state explosion that may happen when using the whole circuit. In this chapter we

present an automatic method based on circuit topology to find the sufficient model

for verifying a given property. Furthermore we present am improved method based

on the fanin information of gates.

5.1 A Reduction Algorithm Based on Circuit

Topology

u

In the MDG model checker, the property to be verified is first transferred to an
additional circuit and this circuit is connected to the original design circuit. Then

the verification of the original property on the original design is transferred to the
verification of the simplified property on the composite machine. For example, the

property of the form A.GCNext-let-formula) is transferred to the simplified property

P: AG(flag =1). The simplified property verifies the values of some flag signals.

If we know which parts of the circuit influence the values of the flags, we can use

only those parts to verify the simplified property. Intuitively, those parts of circuit
in which signals propagate to the flags may influence their values. In the following
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the flags.

0

We start from the signals of the uags in the additional circuit representing the

property to be verified, and search back the circuit in the reverse direction of

signal propagation. If a signal or a component is reached during the searching, it is

marked as "reached". The searching process terminates when it reaches the

primary inputs or previously reached components. After the searching process

terininates, the reached components of the circuit are those whose values

propagate to the flags and thus may influence their values. The components not

marked as "reached" cannot influence the values of the flags. We can use the part

of the circuit containing all the reached components to verify the property, and

remove the unreachable components. We call the so-constructed reduced system a

sufficient model for P. Obviously the sufficient model strongly preserves property

p.

The circuit that is unshaded in Figure 3 is a MinMax machine [CZSLC97] that has

2 input variables X = [r, x] and 3 state variables V = {c, rm, rM], where r and c

are of the boolean sort, and x, rm, and rAf are of an abstract sort s. rm stores the

smallest value of input x, and rM stores the greatest value of input x since last

reset. When the machine is reset, rm is loaded by the maximal possible value max

and rM is loaded by the minimum possible value min. Here max and min are

generic constants. The smallest and greatest values are computed using an operator

leq. leq is an uninteq)reted cross-operator of type sx s —> B.M leq(a, b) = l, we

say a is less than or equal to b.

u

We want to verify that if reset ison (r= 1 ) then rm will be loaded by the generic

constant max in the next clock cycle. This property is expressed in LMDG as

follows:

P: AG((r = l) -^ X(rm = max));
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n The additional circuit constructed for this property is shown in the shaded area of

Figure 3. We thus verify P': AG(flag = 1) on the resulting composite machine.
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Figure 3. The MinMax machine and the additional circuit for P

[)
J

Now, we start from flag and search the circuit in the reverse direction of signal

propagation to find which parts of the circuit influence the value of flag. The thick

lines in Figure 3 show the signals that propagate to flag. We find that the

components {or4, or3, notl, addsigl, abscomp, addsigl, rm, mux3, mux2, orl,

leql, e, muxï} are reached, and the components {mux4, muxS, leq2, or2, rM,

notl} are not reached. Since only the reached components influence the value of

flag, thus only these parts are used to verify AG(flag =1). The outputs of flip-

flops are state variables. The property is verified on a reduced system that consists

of the state variables {flag, addsigl, addsigî, rm, e}, and the state variable rM is

removed.
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The procedure Reduced_model_checking(M., P) shown below automatically finds

the reachable parts of the circuit M according to the property P using the

subprocedure Find_reachable_parl, and removes the unreachable part of M from

the transition system by the subprocedure Remove_unreachable_part. It constructs

the transition model from the reduced circuit by the subprocedure

Construct _transition_relations, and then verifies P on the reduced model using

Modelcheck. Here M is the circuit description of the composite machine and P is

the simplified property.

;~)
J

Reduced_model_checking(M, P)

Begin

reached_part := Find_reachable_part(flags, M);

Ms := Remove_unreachable_part(M, reached_part);

T := Construct_transition_rclations(Ms);

Return Modelcheck(T, P);

End;

l )
u

Find_reachable_part(flags, M)

Begin

signals := Hags;

reached := 0;

While signals^ 0;

Begin

reached := signals u reached;

comp := Find_component_connected_to_signals(signals, M);

if comp ^0

Begin

reached := comp u reached;
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fanins := Find_fanins(comp, M);

signals := fanins \ reached;

End;

Else Return reached;

End;

Return reached;

End;

Figure 4. The reduction algorithm based on circuit topology

5.2 An Iterative Reduction Algorithm Considering

the Fanins of Gates

For large designs, even if we use only the sufficient part of the circuit to construct

the reduced transition system that influences the values of the flags that need to be

verified, state explosion may still occur. In many cases the property can be verified

on an even-more reduced model. We now consider the gates with multiple fanins

that frequently appear in circuits. For the circuit shown below, the components

[flag, ro, ri, r^, r's] are. flip-flops, i.e., the state variables, and {xi, xz} are inputs.
The initial values of flag, ro, ri, r'z, and r^ are all 1. The property we want to verify

isAG(flag=ï).

xl ^r2
^rO

> fla
x2 r3

M r4 ri

u
Figure 5. An example of circuit
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In the circuit shown in Figure 5, the OR-i gate has two fanins r^ and r^. Searching

back the circuit from rz and rs, we can see that there are no common predecessors

of r2 and r^, the fanins of the ORî gate. Here we say s\ a predecessor of si if and

only if the value of si propagates to sz. The values of rz and /-3 are thus not

correlated. When we check the output of the OR'i gate, we can keep r-i as a state

variable and change rs to a primary input or vice versa. In this example when r^ is

changed to a primary input, AG (flag =1) holds on the reduced model. This gives

us the following idea: partition the fanins of gates to sets Si,...,Sn such that for any

signal s^e Si, there exists s^e 5; having common predecessors with si, and there is

no signal in Sj (j^i) having common predecessors with si. That is the values of the

signals in different sets have no correlation. Each time we can select one set and

constructs the reduced model by using the state variables connected to this set and

changing the state variables connected to the other sets to primary inputs. If the

reduced model satisfies the property then verification terminates, otherwise
another set is selected to construct a new reduced model. If all these reduced

models do not satisfy the property then the more complete model sufficient is used.

The reduced model constructed by reducing some state variables to primary inputs

weakly preserves the property in ACTL. It is easy to understand this. Since the

reduced state variables are changed to primary inputs, their values are chosen

nondeterministically in the reduced model, thus the reduced model represents a

more general transition system and larger reachable state space than the original

model. If the property holds on the reduced model then it holds on the original

one. The detailed proof is similar to the proof of Theorem 2 in Chapter 6, and is
not included here.

u

The iterative reduction algorithm based on reducing inputs of gates is shown in
Figure 6. When the procedure Verify _circuit_topology(M, P, flags) is called, its

subprocedure FindJ'anin starts from the flags, and searches the circuit in the



50

0

0

reverse direction of signal propagation until primary inputs or previously reached
signals or gates. The input signals of currently reached multiple fanin gates are

partitioned into sets of signals such that each set has no coinmon predecessors with

other sets by procedure Partition J'anin. If there are more than one set, then one set
is selected, and Find_unused_vars finds the state variables that are not

predecessors of this set. Change _circuit reduces these state variables to primary

inputs. Construct _transition_ relations constructs the reduced transition model and
Modelcheck verifies the property on the reduced model. If the result is success,

i.e., the property holds on the reduced model, then verification terminates and

returns success. Otherwise, another set of fanin signals is selected, and the above

procedure is repeated. After every set of fanin signals has been selected to

construct the reduced models and all these models do not satisfy the property, or if
all currently found fanin signals belong to one set, Verify_circuit_topology(M, P,

fanins) is called, and the algorithm continues to search backward in the circuit to

find other multiple fanin gates, and the above procedure is repeated. When the

search reaches the primary inputs and all the reachable parts of the design, the

reduced model is the final sufficient model.

u

Verify_circuit_topology(M, P, sigs)

begin

fanins := Find_fanin(sigs, M);

if fanins -fc 0

begin

sets := Pardtion_.fanin(fanins, M);

if sets has more than 1 set

begin

while sets -t- 0

begin

Select one set S from sets;

Remove S from sets;
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unuse_vars := Find_unused_vars(S, M);

Mr := Change_circuit(unused_vars, M);

T := Constmct_transition_rclations(Mr);

result := Modelcheck(T, P);

if result = success Return success;

end

end

Verify_circuit_topology(M, P, fanins);

end

else begin

Ms := Find_sufficient_circuit(M);

T := Construct_transition_relations(Ms);

result := Modelcheck(T, P);

Return result;

end

end

Figure 6. An iterative reduction algorithm based on the fanins of gates

For the circuit in Figure 5, to verify the property AG (flag =1), our algorithm

starts from flag, searches backward in the circuit and finds the gate ORi. Since the

fanin signals of OR\ have the common predecessor signal xi, they cannot be

partitioned. Then the algorithm searches further and finds the gate OR^. The two

fanin signals of ORz have no coinmon predecessor signals and are partitioned to

two sets {r2} and {rs}. First {rz} is selected and rs is reduced to a primary input,

but the property check fails. Then [r^] is selected and /-2 is reduced to an input.

This time the property holds on the reduced model constructed by using the state

variables yïag, ro, ri, rs, r4}. The experimental result is shown below.

u
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n Without reduction:

=== Circuit statistics ===

Total components: 13

Total signals: 15

Abstract signals: 0

Concrete signals: 15 which is equivalent to 15 boolean signals

Total state variables: 6

Abstract state variables: 0

Concrete state variables: 6 which is equivalent to 6 boolean

variables

Performance statistics

0

Total time spent:

Run time : 0.160 seconds ; System time : 0.030 seconds ; Real

time : 0.583 seconds .

State variable coverage : 6 , 100% of all state variables.

Nodes: 123; Compound Terms: 1.

Memory usage: 1189144 bytes.

Garbage_collection 6 times: 0.040 seconds; 813636 bytes freed.

With reduction:

Circuit statistics

u

Total components: 11

Total signals: 15

Abstract signals: 0

Concrete signals: 15 which is equivalent to 15 boolean signals

Total state variables: 5

Abstract state variables: 0

Concrete state variables: 5 which is equivalent to 5 boolean

variables
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== Performance statistics ===

Total time spent:

Run time : 0.100 seconds ; System time : 0.020 seconds ; Real

time : 0.212 seconds .

State variable coverage : 5 , 83% of all state variables.

Nodes: 96; Compound Terms: 1.

Memory usage: 985472 bytes.

Garbage_collection l times: 0.010 seconds; 280144 bytes freed.

0

The circuit statistics tells us the information about the circuit that was used to

verify the property. From the result we can see that without our reduction

algorithm the MDG tool verified the property on the original circuit using 13

components and 6 state variables, while using the reduction algorithm the MDG

tool verified the property on the reduced model using 1 1 components and 5 state

variables. The performance statistics tells us the information about the time, state

variable coverage (i.e., the number of state variables that were used and its

percentage of the total state variables in the original design), the number of MDG

nodes, memory usage, and etc. We can see that using our reduction algorithm the

number of MDG nodes, memory usage, cpu time and run time are also decreased.

Summary

u

In this chapter we presented heuristic reduction algorithms that are based on the

circuit topology. Beginning from the signal flags, our algorithms search through

the circuit in the reverse direction of signal propagation and find all the signals and

components that control the flags. This model constructed using all the reached

signals and components is called the sufficient circuit, meaning that this part of the

circuit is sufficient to verify the property. The property is strongly preserved. We
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0 can obtain further reduction by iteratively reducing some input signals of multiple
fanin gates. The method is completely automatic without any user guidance.

The reduction based on circuit topology may include some unnecessary state
variables. The sufficient model may not be the least model that preserves the

property strongly. In the subsequent chapters we will present reduction algorithms
based on functional dependency and we will then obtain the least model regardless

the initial states that strongly preserves the property.

0

u



n

55

Chapter 6 Model Reductions Based on the
Property Dependent State Variables(Z>V )

0

In the previous chapter we introduced a reduction method based on circuit

topology. However, there still may exist a situation that a signal is connected to
flag, but its value cannot influence flag. The sufficient circuit preserves the

property strongly, but it is not necessarily the smallest model. We want to find the

least model that strongly preserves the property, and iterative reduction methods

that can further reduce state variables from the original model. In this chapter we

present a reduction method based on functional dependency. Given a property P

we search for the so-called property dependent state variables DVp and construct

the reduced model to verify P using only the individual transition relations otDVp.

We prove that the abstract system constructed by the transition relations of DVp is

the least model that we can obtain without reachability analysis on the original
machine that strongly preserves P, and the abstract system constructed by a subset

of DVp weakly preserves P. This method is different from those that compute an

equivalence relation using preimage operations. Hence this method is particularly

useful for MDG, although it can be used in other model checking tools as well.

6.1 Definitions

u

Given a transition system M = (Y, F, X, T),ïetY= (yi, ... , y n) be the set of state
variables, r = (yi', ... , jn) be the set of corresponding next state variables. We
use the primed symbol y' to represent the next state variable of the state variable y.
Let X = (xi,... , Xm) be the set of input variables, and T the transition relation. If/,
is the next state function of y,', then y,' = fi(Y, X). The transition relation of the
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n state variable y, is T,<y, X, y,') <=» (y;' = fff, X)). The transition relation of the

entire model can be expressed as a conjunction of the individual transition

relations of the state variables [BCL91]:

7(7, X, F) = Ti(r, x, yi') A r^y, x, yz) A ... A 7^(7, X, yn) (l)

0

Definition 1. Let ddv(yi) be the set of direct determining variables of y;. It includes

all variables v e Vu X such that fi\v=a ^ fi\v=b for some a ^ b, where fi\v=x is the

cofactor offi for v = x. Let dv(yi) denote the set of determining variables of y, that

is defined recursively as follows: dv(yi) = ddv(yi) u (dv(yj) l yj e ddv(yi) \ y,}.

Then, let ddsv(yi) be the set of direct determining state variables of yi, ddsv(yi) =

ddv(yi) \ X, and dsv(yi) denote the set of determining state variables of y,, dsvÇyi) =

dv(yi) \ X. The variables that are not in dv(yi) are called don't care variables of y,.

For a set of state variables SetV= {yi,..., yk }, we have ddv(SetV) = ddv(y^) u... u

ddv(yk), dv(SetV) = dv(y{) u ... u dv(yk), ddsvÇSetV) = ddv(SetV) \ X, dsvÇSetV) =

dv(SetV)\X.

Definition 2. Let P be the property to be verified, and Yp=(y\, ..., y<:) be the state

variables appearing in P. The set of determining variables of the P is dv{Yp) =

dv(yi) u ... u rfv(};jt), and the set of determining state variables is dsvCYp) = dv(Yp) \

X. Let DVp be the set of property dependent state variables of P, and DVp = YpU

dsv(Yp).

6.2 Property Preservation on Reduced Models

u

In this section, we prove that for verifying a property P it is sufficient to use the

individual transition relations of the variables in DVp to compute the transition

system. We prove that the so-constructed system is the least model not requiring

reachability analysis on the original machine that preserves P strongly. We also
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variables in P preserves P weakly.

For the transition system M defined above, and a property P to be verified, we

reduce all the don 't care state variables and construct the reduced machine M.R =

(YR, YR, X, TR), where YR is the set of the property dependent state variables DVp,

YR contains the corresponding next state variables, X is the set of input variables,
and TR is the conjunction of the individual transition relations of the state variables

mDVp.L6tDVp={yi,...,yk}.

TR(YR, X, Yp) = T}(YR, X, y/) A ... A T^YR, X, yk) (2)
In formula (2), Ti to Tk are the same as those in formula (l). Since yi'1, ...,yk are

not dependent on y^i to jn, then Ti(Y, X, y/) = ^(Ffl, X, y/), ..., Tk(Y, X, y/) =

Tk(Yp, X, y i'). The transition relations of the don't care variables, T^+i to Tn, are
removed from TR, which means that the don't care state variables are reduced.

0 From the definition of M and MR, we can see that M represents a state machine in

which each state can be represented by a characteristic predicate over the state

variables {yi, ..., yn], denoted by C(yi, ..., yn), while Afp represents a state

machine in which each state can be represented by a characteristic predicate over
the state variables in DVp, denoted by C(yi, ..., yic). Obviously, each state in MR

represents a set of states in M. Thus the set of the states in MR can be viewed as a

partition of the state space of M, and each state of MR can be viewed as a block of

the partition. The initial states in MR are those blocks that contain some initial state

in M, i.e., CRo(y\, ...,yk) represents an initial state of MR if and only if there exists

an initial state of M, denoted by CoCyi, ...,yn) and CRo(yï, ..., yfc) A Co(yi, ...,yn)=

Co(yi, ••-, y n)- We will prove that the transition relation TR makes the reduced

system MR a stable quotient system of At.

u

Given two states s^ and s^ in M, represented by CiCyi, ..., yn) and C2Cyi, ..., Vn)
respectively, belong to the two different states 5i and B^ of MR, represented by
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Ci(yi, ..., yk) and CzCyi, ..., yk) respectively, if there is a transition from si to ^2
guarded by input value a(X) in M, we will see that there is a transition from Bi to

BÎ guarded by a(X) in M.R. Since the predicate over a set of variables is a conjunct

of the atomic propositions of the variables, we can use C2(yi, ..., yk) A €2^+1, ...,

Yn) to represent CzCyi, ..., Yn)- During the following computation {y^+i, ..., yn} can

be quantified earlier since yi, ..., y<: do not depend on [yk+ï, —, Yn} [BCL91].

^, ...,yn,x[Ci(yj, ..., y,) A a(X) A T}(Y,X,yi') A ... A Tn(Y,X,yn')]] = C^yi', ..., yn)
^ 3yl, ..., ^ X [Ti(Y,X,yi ') A ... A Tk(Y,X,yk') A [3y^,..., yn [Ci(yi, ..., yn) A a(X) A

T^i(Y,X,y^i') A ... A T,(Y,X,y.')]]J = C^y]',..., yk') A C^y^i',..., Yn')

=> 3y,, ..., yk, X [Ti(Y,X,yi ') A ... A T^Y,X,yk) A Ci(yi...., yn) A a(X) A C^y^i ',..., yn')]
=C2(yi',...,yk')AC2(y^',...,yn')

^ ^, ..., yk. X [Ti(Y,X,yi ') A ... A Tk(Y,X,yi,') A Cj(y],..., y,) A a(X)] = C^yi ', ..., yk')
Since T\, ...,Ticdo not depend on ^+1 to y», then

^,..., yk x [Ti(Y,X,yi ') A ... A Tk(Y,X,y,,') A Q^, ..., ^ A a(X)]
= ^, ..., y, X lTi(YR,X,yi ')A...A Tk(YR,X,yk') A C,(yi, ..., ^ A a(X)]

=> 3y,, ,, ^ X [Ti(YR,X,yi •) A ... A Tk(YR,X,yk) A Ci(yi,..., yk) A a(X)J = C^yi ',..., yk')

Next we will prove the opposite direction: for any transition 5, ->a Bj in MR, there

is a transition s\ —>a s^ in M such that s\ e 5; and ^2 e 5,'. Let Ci'Gyi, ..., yk)
represent fi,, Cj(y^, ...,yk) represent Bj, and aCX) represent the current values of the

input variables X. The transition 5; ->a 5; is represented by the following formula:

^7, ...,yk x lC,(yi,..., yk) A a(X) A Ti(Y,X,yi') A ... A Tk(Y,X,yk')î = q(yi, ..., y^,
after renaming yi' to yi, ..., and yk to yk

u

Now we compute the post image of 5, in M.

posta(Bi) = posta(Ci(yi, ..., yk))

= 3yl,..., yn. X [Ci(yi, ..., yk) A a(X) A Ti(Y,X,yi ') A ... A Tn(Y,X,yn')J]
= 3yl, ..., yk X [Ti(Y,X,yi ') A ... A Tk(Y,X,yk') A [^,,, ,„ [Q(yi, ..., ^ A a(X) A

TM(Y,X,y^') A ... A Tn(Y,X,yn')]J]



59

n = 3y, ,, „ X lTi(Y,X,yi ') A ... ^ Tk(Y,X,yk') A C,f^, ..., ^ A a(X) ^ C(y^i ', ..., yn')J
= Cj(yi', .... yk) A C(y^i', ..., yn)

=Cj(yi,..., Vk) ^ C(yk+j, ...,yJ after renaming yi'to }'i,..., andyn'to^

e Cj{yi, ..., yic)

That is, we get the post image of 5, in M that is a set of states represented by Cj(yi,
..., Vk) A C(yic+i,..., yn)- From the above we can see that when there is a transition B{

—>a Bj in MR, then there exists some transition in M from a state of M that belongs

to Bi to a state of M that belongs to Bj. Since posta(Bi~) c 5,, the transition 5; -^a 5/
is stable, and since any transition in MR is stable, MR is stable too. That is, MR is a
stable quotient system of M, and MR and M are bisimular. The formulas in CTL*
with atomic propositions over DVp are thus strongly preserved by M/?. From the
above proof, theorem 1 follows.

0

Theorem 1. The reduced model MR constructed using the transition relations of
the state variables in DVp strongly preserves property P.

Now, we will prove that the reduced model MR constructed by using all the state

variables in DVp is the least system that bisimulates the original model regardless

the initial states. Suppose that DVp has k state variables [yi... yk], and there exists

a smaller reduced model Mi that is obtained by using k-ï state variables in DVp,

i.e., reducing it only by one state variable of MR. Let ^ be the state variable that is

reduced, and Mi is constructed using [y\ ... yk-i}- In the following we will prove
that Mi does not bisimulate MR.

u

Let BI be a state in Mi, represented by C,(yi, ..., yk-i). Let 5, -^a Bj be any transition

in Mi. Obviously fi, represents one set of states in MR. Suppose that &i and 62 are
two states of MR that belong to B{. Let Ci,i(yi,..., yk) and C^Cyi» •••» y*) represent bi

and bz respectively. Then CbïÇyi, ..., ^-i) = Cb2(yi, ..., ^-i)= QCyi, ..., yk-i) and
Cbï(yk) ^ Cb2(yk)- Let ^i' and b^' be the next states of bi and ^2, represented by

Cbi'(yi, -, Yk) and Cb2'(yï, ..., yk) respectively. Let y/i be the state variable in [yi ...
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0 Yk.i} whose value is determined directly by yic. Since the value of yk is different in

state bi and bz, i.e. Cbi(yk) ^ Cb2(yk), the value of y h is thus different in fci' and ^2'.

Then C&i'(yi,..., y^i) ^ Cb2'(yi,..., y^-i). That is, Z?i' and ^2' belong to two different

sets that correspond to two states in Ati. Since posta(Bi) c Bj does not exist, the

transition 5, —>a Bj in Mi is not stable. Hence Mi does not bisimulate M/?. From the

above proof, we have the following Theorem 2.

0

Theorem 2. The abstract model MR constmcted by the transition relations of the

state variables in DVp is the least reduced model that bisimulates the original

system regardless the initial states.

There still may be reduced models that strongly preserve the property and that are
smaller than the one described in Theorem 2. This is because we do not consider

specific initial states there. To consider them, however, would require removing

unreachable states and necessitate carrying out reachability analysis on the original

system which we want to avoid.

According to Theorem 1, for a given property P, the reduced transition system MR

constructed by the transition relations of all the variables in DVp strongly

preserves P. But the resulting MR may still be too large. Can we do better

reduction than MR'] In the following we will prove that the reduced model Mr

constructed by using the transition relations of a subset of DVp weakly preserves
p.

u

We construct Mr in a similar way as MR. Let Mr = (Vr, 7r', Xr, Tr) where ?,- = {yi,

..., ^m) is the set of state variables, a subset of DVp, m Ï k, Yr' is the set of the

corresponding next state variables, Xr is the set of input variables and Xr = X u

ÇDVp\ Yr). The state variables in DVp but not selected in Yr are reduced to primary

inputs. The transition relation Tr is a conjunction of the individual transition

relations of the variables in Yr. The initial states in Mr are those blocks that contain
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0 an initial state in M, i.e., C^(yi, ..., ym) represents an initial state of Mr if and only

if there exists an initial state of M, denoted by Co(yi, ...,yn) and C^(yi, ..., ym) A

Co(yi, ...,yn)=Co(yï,...,ym).

0

Let hi be a state of MR represented by CiCyi,..., yk) and 5i be a corresponding state

of Mr represented by Ci(yi,..., ym) such that bi belongs to Bi. If there is a transition

from bi to ^2 guarded by input value a(X) in MR, we have the following formula:

b2 = 3yl,..., ^ x lCi(yi,..., yk) A a(X) A Ti(Y,X,yi ') A ... A T,(Y,X,yk')]]
Let BÎ be the next state of B\ by the transition from B\ guarded by a(X) in Mr.
Then we have:

B2 = 3yi,....y^xlCi(yi, ..., y J A a(X) A Ti(Y,X,yi') A ... A T^Y,X,y^')J]

If 62 belongs to Bz, then Mr simulates MR, and the property expressed in ACTL*

with atomic propositions over Yr is weakly preserved [CGL96]. In the following

we will see that bz belongs to B^.

b2 = 3yl,..., yk. x [Ci(yi, ..., yk) A a(X) A Ti(Y,X,yi ') A ... A Tk(Y,X,yk')J]
e ^,., ^ x [Ci(yi,..., yk) ^ a(X) A Ti(Y,X,yi ') A ... A Tn,(Y,X,y^')]], m ^k
e ^,., ^ x [Ci(yi,..., yj ^ afX) ^ T7fY,X,^ '^ ^... A T^(Y,X,yn,')] ] = B^

Theorem 3. The abstract model Mr constructed by using any subset of DVp

containing the state variables in P weakly preserves an ACTL* property P.

It is easy to understand Theorem 3. Since all other state variables in DVp but not in

Yr are reduced to primary inputs, they are nondeterministic in Mr, Mr thus

represents a more general transition system than MR. If the property holds on Mr,

the property holds on MR too, and then it holds on M. If the property does not hold

on Mr, it may or may not hold on MR and M. Hence, the reduced transition system

Mr constructed by a subset ofDVp weakly preserves P.

u

In MDG model checking, a property expressed in LMDG is transferred to an

additional circuit and a simplified property. The verification of the property on the
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n original machine is transferred to the verification of the simplified property on the
composite machine. Since the simplified property is a subset of ACTL, the above

theorems apply to MDG model checking.

According to Theorem 3 we know where we can start a reduction. According to

Theorem 1 and 2, we know that the reduced model MR is the least model that we

are sure that property P is strongly preserved without constructing the original

transition system. Thus we know where we can stop. This is used in the iterative

reduction algorithms presented in Chapter 7.

6.3 Construction ofddv Hash Table in MDG

0

In MDG model checking, all the sets of states and transition relations are

represented by Directed Formulas (DFs) that are directly transformed to MDG

graphs. To find the functional dependency of the property on the system, we need

to find the direct determining state variables of the state variables appearing in the

property, and then recursively find other such variables. It is easy to get direct
determining variables in MDG, since there are no redundant nodes and no

redundant subgraphs. The variables appearing in the MDG representing the

transition relation of the state variable v are thus the direct determining variables

of v, i.e. ddvÇv). By scanning all the MDGs representing the individual transition

relations, we can construct a hash table of direct determining variables for all state

variables in the design. Then we can get the direct determining state variables,

determining variables, and determining state variables of any state variable and

any set of state variables. It means that we can get the property dependent state

variables DVp of property P.

u

Given the circuit description file, order file and algebric file of the design, and a

property to be verified, first we use the "next" coinmand to construct the

composite machine and the simplified property. Then we compile the circuit and
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0

build the individual transition relations and from them we build the hash table of

direct determining variables for every state variable. One individual transition

relation is represented by a compound term R(NexîStVar, MDG). One MDG is

represented by the term graph(_, NodeKind, NodeLabel, _, _ , SubGraphs,

SecVars) where "_" represents the terms we do not use here, NodeKind is

concrete, abstract or cross-term, NodeLabel is the label of the node, SubGraphs is

the immediate subgraphs, and SecVars is a set containing all the secondary

variables in the graph, i.e., the variables appearing on the edges or in the cross-

terms. We can find the set of primary variables in an MDG by searching the node

in the graph and recursively searching the nodes in the SubGraphs. ddv(y) is the

set of primary variables and secondary variables excluding v', the next state

variable of v in the MDG representing the transition relation of v. The procedure

construct_ddv_table shown below constructs ddv(v) for a state variable v. The

arguments are circuitj'ile that is the circuit description file of the composite

machine defining the circuit, the initial states, and the mapping function Tf from

next state variables to state variables, order J'ile defining the order of all variables

and uninterpreted function symbols of the composite machine, and algj'ile that is

the algebric file defining the sorts, functions and rewriting rules used in the

composite machine.

u

Construct_ddv_table(circuit_file, order_file, alg_file)

Begin

Transitions := Compile_circuit_construct_individual_transitions(

circuit_file, order_file, alg_file);

While Transitions -t- 0

Begin

Choose a transition R 6 Transitions;

Transitions := Transitions \ R;

v' := R(NextStVar);
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0 v := r| (v');

G := R(MDG);

While G ^ T

Begin

primary := Find_primary_variables(0, G);

ddv(v) := G(SecVars) u (primary \ v');

end

end

Return ddv;

end

0

Find_primary_variables(primvar, graph)

Begin

primary := primvar;

If (graph(NodeKind) ^ cross-term)

Begin

primary := primary u graph(NodeLabel);

end

For each subgraph e graph(SubGraphs) begin

If subgraph -t- T begin

primary := Find_primary_variables(primary, subgraph);

end

end

Return primary;

end

Figure 7. Procedure Construct_ddv_table in the MDG model checker

u
Compile_circuit_construct_individual_transitions checks if there are any syntax

errors in the description file and constructs the individual transition relations for



n
65

every state variable. It also constructs the database which contains the table of

input signals, the table of abstract input signals, the table of the pairs (state
variable, its next state variable), the table of the initial values of state variables,

and the table of the order of variables, etc.

After the individual transition relations are constructed, individual transition

relations are selected one at a time to compute ddv(v). Find^)rimary_variables

(primvar, graph) searches the MDG representing the individual transition relation

of v, and finds all the primary variables appearing in the MDG. If a node is not a
cross-term then its labeling variable is a primary variable. Find_primary_variables

starts from the root node and makes depth-first search in the MDG. If a node is

reached, Find_primary_variables is recursively revoked to find the variables

labeling the nodes in the subgraphs. After we obtain the set of the primary
variables and secondary variables in an MDG and remove the next state variable

from this set, we then get all the direct determining variables of v. After the direct

determining variables of all the state variables are obtained, the hash table ddv is
constructed.

In the following we show the state machine of the MinMax example from Figure

3, and then draw the MDGs representing the individual transition relations of the

state variables e, rm and rM. We will see that the direct determining variables of
the state variables can be obtained from the MDGs and the reduced model can thus

be constructed. The state machine of the MinMax machine is as follows:

u

r=l,
{rm'=max|
rM'=min}

<
e l

r = l, {rm'=max,
rM'=min}

r = 0, {rm'=x,
rM'=x}

fc=o
r=0,
{if (x<=rm) then rm'=x else rm'=rm,
if (x<=rM) then rM'=rM else rM'=x}

Figure 8. The MinMax state machine
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The individual transition relations of the state variables e, rm, and rM are shown in

Figure 9. From the transition Te, T rm and TrM, we can get the sets of the direct

determining variables of the state variables e, rm and rM respectively, i.e., ddv(c)

= {r}, ddv(rm) = [r,x,c,rm], and ddvÇrM) = {r,x, e, rM}.

0

TrM
Te Trm

r
r

r 0/ \ lo y^ l 0 l
e

e' ee'

rM' ) f rM' ) f rM'

x / \ iM \ x \ min
0 X l rm' ) t rm j (. rm

rm / \ x \ x \ max

leq(x,rm) ^ ( leq(x,rm)

T

leq(x,rM) ^ ( leq(x,rM)

l

T
T

Figure 9. MDGs of the individual transition relations ofMinMax

For example, we wish to verify that if r = 1 then rm will be loaded the generic

constant max in the next clock cycle. This property expressed by LMDG is as
follows:

P: AG ((r = l) -> X (rm = ma^;));

The additional circuit constructed for this property is as shown in Figure 10. After
composing the additional circuit with the original design, we verify AG (flag =1)

on the composite machine.

u
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n
0

r

addsigl

>addsig2 flag

rm abscomp
max

Figure 10. The additional circuit for AG ((r = l) -^ X (rm = max));

0

In the additional circuit, there are three state variables {flag, addsigl, addsigl},
and their initial values are all 1. The transition relations of the three state variables

are represented by the following Directed Formulas (DFs):

Tflag:(addsigl=lAflag'=l)

v(addsigl=0 A (addsig2=0 v(addsig2=l A abscomp(rm,max)=l)) Aflag'=l)

v(addsigl=0 A addsig2=l A abscomp(rm, max)=0 A flag'=1)

Taddsigi: (addsigl '=0)

Taddsig2: (r=0 A addsig2'=0) v(r=l A addsig2'=l)

Since the DFs are directly transformed to MDGs, the variables appearing in the DF
representing the transition relation of the state variable v are its direct determining

variables. From Tflag, Taddsig\ and Taddsigi, we get ddv(flag) = {addsigl, addsigl,

rm], ddv(addsig\) = 0, and ddvÇaddsigî) = [r].

u

We have the lists of direct determining variables for all the state variables in the
composite machine. Beginning from state variable flag, we can recursively

compute the property dependent state variables as DVp = {flag, addsigl, addsig2,
rm, e}. We can see that to verify P, the state variable rM is not needed. We can

construct the reduced system by only using the transition relations of DVp, and the

property is strongly preserved.
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0

Summary

In this chapter, we defined the property dependent state variables DVp for property
P and proved that the reduced model constructed by using all the state variables in

DVp strongly preserves P. Furthermore, the reduced models constructed by a

subset of DVp preserve P weakly. We also showed how to get the direct
determining variables of the state variables using MDG. In the next chapter we
will present two iterative reduction algorithms based on the theorems in this

chapter.

u
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Chapter 7 Iterative Reduction Algorithms
Based on Depth-fîrst and Breadth-fîrst Search
ofPPDG

From Theorem l in Chapter 6, for a given property P we can only use the

transition relations of the property dependent state variables in DVp to build the

reduced system to verify P. P is strongly preserved in that case. However, this

reduced system may still produce large state space. From Theorem 3 it follows that
we can use a subset of the transition relations of DVp to construct the reduced

system, however, the property may now be only weakly preserved. This leads us to

consider an iterative reduction method. First we can select a small subset of DVp

and use the transition relations of the state variables in the subset to build a

reduced system, and then check if P holds on it. If the answer is "yes", the

procedure terminates and we can say P holds on the original machine. If the

answer is "no", we can add more state variables in DVp to construct another

reduced machine and check P. We repeat this procedure until all the individual

transition relations of the variables in DVp are used to construct the reduced

machine. Then, the property P is strongly preserved.

u
u

The critical thing of the iterative reduction methods is how to select the subset of

DVp at each iteration step. If these subsets are not well selected, the reduced

machines cannot satisfy the property P, it may thus take many iteration steps and

longer execution time. In the worst case all the reduced systems constructed by the

selected subsets of DVp cannot satisfy P and this leads to all the state variables in
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DVp being eventually used. We want to avoid this. In the following we will

introduce our iterative reduction algorithms that are based on the property

dependency graph (PDG) and noncorrelated sets.

7.1 Definition of PDG and Noncorrelated Sets

We can view the dependency of property P on the determining variables as a

directed graph, called property dependency graph (PDG). The definition of PDG is

given below.

Definition 1: We define the graph PDG = (V, E, L), where Vis the set of nodes, E

is the set of edges, and L is the set of labels of the nodes. Let Yp be the set of the

state variables appearing in property P. The root of PDG is labeled by Yp. Each of

the other nodes in the graph is labeled by one determining variable of Yp that can

be a state variable or an input. There is an edge v —> w m PDG if and only if w e

ddv(v), i.e., w is a direct determining variable of v.

According to the definition, PDG might be a cyclic graph. We define the levels in

PDG such that the root is at level 0, the nodes that can be reached by n edges along

the shortest paths from the root are at level n.

After we find the direct determining variables ddv(v) for each state variable v in M,

we build the PDG starting from the root labeled by the set of the state variables

appearing in P. Obviously all the variables in the PDG form the set of determining

variables of P, all the state variables in the PDG represent the property dependent

state variables DVp, and any subgraph starting from any node in PDG represents

the determining variables of this node.

u
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For the composite machine of the MinMax example shown in Figure 3, we obtain

the direct determining variables of each state variable from their individual
transition relations as follows:

ddv(c) = {r}, ddv(rm) = (r, x, e, rm}, ddv(rM) = {r, x, e, rM}.

ddv(flag) = {addsigl, addsig2, rm}, ddv(addsigl) = 0, ddv(addsig2) = {r}.

Beginning with flag, we can constmct the property dependency graph for the

simplified property P': AG (flag = 1) as shown below, where r and x are inputs
and the other variables are state variables.

addsigl

flag addsig2 r
¥

rm e

x

level 0 level level 2

Figure 11. PDG of property P of the MinMax machine

u

From the PDG we can see that the state variable rM in MinMax machine is not in

the graph. It is a don 't care variable of the property to be verified, and thus it can
be removed from the reduced machine. All the variables in the PDG are

determining variables of P, and the set of state variables in PDG is exactly the set

of property dependent state variables DVp. In this example, we can see that DVp =

{flag, addsigï, addsigt, rm, e}.
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0 When the PDG and the set of property dependent state variables DVp have been

obtained, we want to select a subset of DVp to build the reduced system. If the
subset is well selected then the verification can terminate much faster. In our

method we select a so-called noncorrelated set at each iteration step. The

definition of noncorrelated sets is given next.

DeHnition 2: Let S be the set of state variables of M, and Let 5i c S and ^2 c S be

two disjoint subsets, 5'i n ^2 = 0. If dv(Si) n Jv(5'2) = 0, which means that 5'i and

5'2 have no common determining variables, then 5i and Sz are noncorr elated.

In our example, the two sets {addsigV) and (addsigl, rm) in Figure 11 are

noncorrelated, since dv(addsigl) = (addsigî) and dv(addsig2, rm) = {addsigl, rm,

r, e, x) have no common determining variables.

From the definition we can see that if two sets 5'i and 5'2 are noncorrelated then the

variables in 5'i u dv(S^) have no influence on the values of the variables in Sz u

dvÇSî), and vice versa. In PDG, the corresponding subgraphs are disjoint. The

basic idea of our reduction method is to partition the state variables of PDG into

noncorrelated sets that cannot be further partitioned, and each time select one set
to construct the reduced model.

7.2 An Algorithm for Finding Noncorrelated Sets

0

We start from any variable vi e 5 and add it to 5'i. Ifa variable vj e S \ Si and

rfv(vj) n dv(Sï) ^ 0, then vj is added into Si. Repeat this procedure until we cannot
find a variable in 5 \ 5'i having a common determining variable with Si. Thus we

find the first set 5i of correlated variables. We start from another variable vz e 5 \

Si and find the second set Sz. We repeat this procedure until every variable in S has

been considered. The resulting sets 5i, ..., Sn are noncorrelated. The algorithm is
as follows.
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Partition_set(vars, PDG)

Begin

noncorrelated_sets := 0;

While vars ^ 0

begin

Select v e vars;

vars := vars \ v;

Si := Find_one_set(v, vars, PDG);

noncorrelated_sets := Si u noncorrelated_sets;

vars := vars \ Si;

end

Return noncorrelated_sets;

end

Find_one_set(v, vars, PDG)

begin

Si := M;
dv_Si := dv(v);

While vars -t- 0

begin

Select w e vars;

vars := vars \ w;

dv_w := dv(w);

If dv _Si n dv_w t- 0 then

begin

Si:=Siu{w};

dv_Si := dv_Si u dv_w;

end
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0 end

Return (Si);

end

Figure 12. An algorithm for finding noncorrelated sets of state variables

Partition_set(vars, PDG) partitions the variables in vars to noncorrelated sets.
Here, vars contains a subset of state variables in DVp, and PDG is implicitly

represented by the hash table of direct determining variables of all the state
variables in DVp. First we select one variable v from the set vars. Find_one_set(v,

vars, PDG) finds all the variables in vars that correlate to v. The resulting set is
added to noncorrelated_sets. We remove this set from vars, and continue

searching for the next set of correlated variables. When vars is empty, all variables
in the initial var have been considered and the result is stored in

noncorrelated_sets.

Find_one_set(v, vars, PDG) finds the variables in vars correlating to v. First it

obtains the determining variables of v by searching the hash table dv, and adds

them to dv_Si. Then it selects a variable w in vars, and finds the determining

variables of w. If w and v have common determining variables, w is in the same set

as v, add w to Si and add rfv(w) to dv_Si. For the next variable in vars, we need to

check if it has a determining variable included in dv_Si. If it has then it is added to

Si and its detennining variables are added to dv_Si. When vars is empty, all its

variables have been checked and the correlated set including v has been found.

The algorithm Construct _dv_table(Yp, PDG) that constructs the hash table dv of

the determining variables for the state variables in PDG is shown in Figure 13.

u
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0

Constmct_dv_table(Yp, PDG)

begin

Y:=Yp;
While Y ?<= 0

begin

Select v e Y;

Y:=Y\v;

If v is not marked as visited

begin

dv(v) := Find_dv(v, PDG);

end

end

end

u

Find_dv(v, PDG)

Begin

Mark v as visited;

dv(v) := ddv(v);

ddsv := ddv(v) \ inputs;

While ddsv ^ 0

Begin

Select w € ddsv;

ddsv := ddsv \ w;

If w is not marked as visited then

Begin

dv(w) := Pind_dv(w, PDG);

dv(v) := dv(v) u dv(w);

End
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0 End

Return (dv(v));

End

Figure 13. An algorithm to construct a dv table

(:)

Find_dv{v, PDG) finds the determining variables of v. It first finds the direct
determining variables of v, i.e., ddv(y), adds them to dvCv), and then removes
inputs from ddv(v) to get the direct determining state variables of v which are
stored in ddsv. Then it selects a variable w in ddsv to recursively compute the
determining variables of w, i.e., dv(w), and adds dv(w) to dv(v). After rfrf^v is

empty, we get the determining variables of v, dv(y) = ddv(y) u {dv(w) I w E

ddsvÇv)}. Since there may be cycles in PDG, we use a mark "visited" to label those

variables that have been found before, and further search is done only for the
unmarked variables.

Given the definitions of property dependency graphs and noncorrelated sets, we
can define a partitioned property dependency graph (PPDG) needed for illustrating
our iterative reduction algorithms. The root of PPDG is the same root as PDG, the
nodes of level n in PPDG are labeled by the noncorrelated sets of variables

labeling the nodes of level n in PDG. If there exists an edge from node v to node w
in PPDG, then w contains one noncorrelated set of direct determining variables of
set v. Our iterative reduction algorithms start from the variables in P, i.e., the root,

and at each iteration step add its one noncorrelated set of state variables to
construct a reduced system. This iterative procedure can be viewed as a search of
PPDG. In the following we will introduce the iterative reduction algorithms based
on two different search strategies: depth-first and breadth-first.
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7.3 A Depth-fîrst Iterative Reduction Algorithm

0

First we explain the basic idea behind our algorithms. For instance, in the property

dependency graph given in Figure 14, yi is directly determined by ^2 and ^3, and

the two subgraphs d and Gz are disjoint, which means that y^ and ^3 have no

common determining variables, dv(y'i) n dv(yT,) = 0. Thus the values of y^ and ys

are uncorrelated. When we consider the influence of ^2 on yi, we can leave ^3 as a

primary input, or vice versa. For verifying the property AG(yi=l), we use yi and

the state variables in Gi to construct a reduced model and change the state

variables in G;2 to primary inputs. If P holds on this reduced model, the procedure

terminates, otherwise we use y\ and the state variables in GÎ to construct another

reduced model and change the state variables in Gi to primary inputs. If P still

fails, then we use yi and all the state variables in Gi and Gz to verify P.

Gl

y2

yi

Y3
G2

Figure 14. Example of a property dependency graph

u

The above procedure can be further refined, since using all state variables in a

subgraph may not be necessary and may still produce a large state space.

Beginning from the root of PDG, we search through the graph, partition the newly

visited state variables into noncorrelated sets Si,...,Sn, and then select a set 5;, 1^ ("

^ n and add it to the current set of state variables that was previously used to

construct a reduced model. If the property fails on this model, we search the graph

again beginning from Si, and repeat the above procedure. We thus iteratively add

state variables to construct a more and more complete model.
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Figure 15. (a) A property dependency graph (PDG) (b) The corresponding PPDG

For the PDG shown in Figure 15 (a), yi,..., yi are state variables, x\, x^ are primary

inputs, the property to be verified is AG(y\ = 1). Starting from the root y\, we find

ddsv(yi) = (y2, y^, y^). The variables in ddsv(yi) can be partitioned to two

noncorrelated sets 5'i = (y2, y3) and 5'2 = (y^). First we select Si, and use (^7) u 5'i to

construct a reduced model. If P fails, we start from Si and find ddsv(Si) = (ys, y^,

y7). The variables in ddsv(S\) can be partitioned into two noncorrelated sets S-i =

(ys, ys) and S^ = (yj). Then we select 5'3 and use (^7) u 5'i u 5'3 to construct a

reduced model. If P still fails, since •S'3 has no direct determining state variables,

we select S^ and use (^7) u 5'i u >S"4 to construct a reduced model. If P fails again,

we use (^7) u5i u 5s u5'4 to construct a reduced model. If P still fails, we use (y-i)

u Sz to construct a reduced model. If P fails again, we use all the state variables in

PDG, i.e., (y^ u S\U S^u S^U S^. to construct the final model that is now

guaranteed to strongly preserve P. In Figure 15(b), the corresponding PPDG is

also shown, in which a node represents a correlated set of variables. The above



79

n procedure for searching a correlated set to be used in constructing a reduced model
can be viewed as a depth-first search on PPDG.

The iterative reduction algorithm Reduction_verify_depthfirst(M, P) shown in

Figure 16 accomplishes the above idea. Here At is the circuit model, and P is the

property to be verified. Yp contains the state variables appearing in P. V is the set

of state variables that is used to compute the abstract model. DVp is the set of
property dependent state variables of P. lastset is the newest set added to Y.

0

Reduction_verify_depthfirst(M, P)

Begin

Yp is the set of the state variables in P;

dsv(Yp) := Compute_dsv(Yp, M);

DVp := Yp u dsv(Yp);

Y':=Yp;
Mark variables in Y' as visited;

result := Verify_depthfirst(M, P, DVp, Y', Y');
If result == success

print('Property checking succeeded');

Else print('Property checking failed');

End

u

Verify_depthfirst(M, P, DVp, Y', lastset)

Begin

M' := Reduce_model(M, Y');

result := Modelcheck (M', P);

If result == success

Return success;

ElseifY'==DVp

Return failure;
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End

Else

Begin

ddsv := Compute_ddsv(lastset, M);

ddsvl := Remove_visited_variables(ddsv);

noncorrelated_sets := Partition_set(ddsvl, M);

While noncorrelated_sets is not empty

Begin

Select newset e noncorrelated_sets;

noncorrelated_sets := noncorrelated_sets \ newset;

Mark the state variables in the newset as visited;

newY' := Y' u newset;

Verify_depthfirst(M, P, DVp, newY', newset);

End

dsv := Compute_dsv(lastset, M);

newY' := Y' u dsv;

M' := Reduce_model(M, newY');

result := Modelcheck (M', P);

If result == success

Return success;

ElseifnewY'==DVp

Return failure;

End

Figure 16. A depth-first iterative reduction algorithm

(,)
u

The procedure Compute _ddsv{Si, M) computes all direct determining state

variables of the set Si. Compute _dsv(Si, M) computes all determining state

variables of 5';. Remove_visited_variables(ddsv) removes the visited state variables

from the set of the currently reached state variables, then further search from these
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n variables is prevented. Reduce _model(M, Y) reduces the other state variables

except y to primary inputs. Partition_set(Vars, M) partitions the variables in Vars
into noncorrelated sets.

D

The procedure Verify _depthfirsî accomplishes the iterative reduction and model
checking. It begins from the reduced model constructed by the variables in Yp that

are contained in the root of PDG. If property P holds on this model, then the

verification finishes. Otherwise the algorithm checks if the abstract model was

constmcted using all the property dependent state variables DVp. If yes, the

algorithm terminates with a negative result. If not, it enlarges the model by adding

more state variables. It begins with the last selected set, i.e., Yp, and searches

ddsv(Yp), the set of state variables of level l in PDG. The previously visited state
variables are removed from ddsv(Yp) and the remaining variables are partitioned

into sets of variables by partition_set such that in any pair of sets there are no

common determining variables. The resulting noncorrelated sets are stored in

noncorrelated_sets that is at level 1 here. Then a set S\ in noncorrelated_sets is

selected and added to V to construct the abstract machine, the other state variables

become primary inputs. If the model does not satisfy P and does not contain all the

variables from DVp, the algorithm begins with the last selected set, i.e., 5i and

repeats the above procedure. If a set has no direct determining state variables, then
another set in the same noncorrelated_sets is selected. If the noncorrelated_sets at

level n is empty, that is, the determining state variables of any set in it have been

used to construct a reduced model and none of these reduced models satisfy P,
then all the determining state variables of all the sets in the noncorrelated_sets are

used to construct a reduced model. If the property still fails, then the algorithm
goes back to the noncorrelatedjsets at level n-1, and selects another set.

u

For example, consider the circuit shown in Figure 17 where RQ, ..., Rs, Rgui are

registers, and a, b, c are free inputs.
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Ra RO3

1>- R4
Ri Rout

b Rs
R2e

Figure 17. An example of circuit

If the initial values of all the state variables are 1, then the circuit has the property

that the output Rout is always l, AG(Roui= 1). The property dependency graph is

shown in Figure 18.

Si 83
/^<x /^\

^RO R3/

^RO R w. aut

bR2 Rs

S4
e

S2

Figure 18. The PDG of the circuit shown in Figure 17

u

The procedure for verifying A.GCRout = 1) using our iterative reduction algorithm is
as follows:

Iteration 1: The abstract model is constructed using only [Rout], and the
verification fails.

Iteration 2: The abstract model is constructed using {Roui, RO, Rï}, and the
verification fails.

Iteration 3: The abstract model is constructed using { Rout, KO, RÏ, R3,R^}, and the
verification succeeds.

The property is verified with R^ and Rs eliminated.



83

n

0

We implemented the iterative reduction algorithm shown in Figure 16 in the MDG
tool, the experimental results using MDG to verify AG(/?our = 1) on the circuit

illustrated in Figure 17 are shown as follows.

MDG without reduction algorithm :

Performance statistics ===

Compiling (loaaing+deriving all the relations) took:
Run time : 0.210 seconds ; System time : 0.020 seconds ; Real
time : 0.429 seconds .

Building the initial state set MDG took:
Run time : 0.000 seconds ; System time : 0.000 seconds ; Real
time : 0.003 seconds .

Property checking took:
Run time : 0.060 seconds ; System time : 0.000 seconds ; Real
time : 0.170 seconds .

Total time spent:
Run time : 0.270 seconds ; System time : 0.020 seconds ; Real
time : 0.602 seconds .

State variable coverage : 8 , 100% of all state variables.
Nodes: 234; Compound Terms: 1.
Memory usage: 1275776 bytes.
Garbage_collection l times: 0.010 seconds; 173164 bytes freed.

MDG with reduction algorithm :

Performance statistics ===

Compiling (loading+deriving all the individual relations) took:
Run time : 0.170 seconds ; System time : 0.010 seconds ; Real
time : 0.379 seconds .

Constructing adp and dp tables took :
Run time : 0.000 seconds ; System time : 0.010 seconds ; Real
time : 0.009 seconds .

Iterative reduction verification took :
Run time : 0.280 seconds ; System time : 0.010 seconds ; Real
time : 0.642 seconds .

Total time spent:
Run time : 0.450 seconds ; System time : 0.030 seconds ; Real
time : 1.030 seconds .

State variable coverage : 6 , 75% of all state variables.
Nodes: 134; Compound Terms: 1.
Memory usage: 1069912 bytes.
Garbage_collection 7 times: 0.040 seconds; 986400 bytes freed.

u
Our iterative reduction algorithm in MDG eliminated R^ and R^ automatically and

verified the property using 75% of all the state variables, we can see that there are
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n 134 MDG nodes, much less than without reduction (234). The memory usage is

also less. For this small example, the property can be easily verified on the original

system without reduction and the run time is smaller since the reduction method

takes several iterations. But for large systems, iterative reduction methods use less

memory and less time and help verify properties that cannot be verified by the

original systems, especially in the cases that the original systems lead to the state

explosion.

0

We also used FormalCheck and SMV to verify AGCRoui = 1). We selected the

Iterated algorithm in FormalCheck and the property was verified with all the state

variables used, as shown in the "Reduction Manager" window. When we

eliminated R-^ and Rs manually by setting them free in the Reduction Manager

window, the property was verified faster. When we selected automatic reduction in

SMV, all the state variables were used to verify the property with 238 BDD nodes.

When we manually eliminated R-i. and R^ by setting them free in the "Abstraction"
window, the property was verified with fewer BDD nodes (186). From the

comparison we can see that our reduction algorithm can automatically find the
state variables that could be reduced while other tools fail to find them in this case.

u

The algorithm shown in Figure 16 randomly selects one set from the

noncorrelated_sets. For a large design, this set may contain many state variables,

and using it to construct the abstract system may still lead to state explosion. We

modified the algorithm to select the smallest set in the noncorrelated_sets at each

step. We added one procedure Sort_sets(noncorrelated_sets) to sort the sets in

increasing order of their sizes and store the result in a list. Each time the algorithm

selects the set at the head of this list. That is, the smallest unused set is added to

build the abstract machine. This may reduce the chance of the state explosion and

avoid the situation that a property cannot be verified by the reduced model using a

large set in the noncorrelated_sets while it could be verified by the reduced model

using a smaller set.
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7.4 A Breadth-fîrst Iterative Reduction Algorithm

In the preceeding section we introduced the reduction algorithm based on a depth-

first search of the partitioned property dependency graph. In this section, we

present an iterative reduction algorithm based on a breadth-first search of the

PPDG. The algorithm Reduction_verify_breadthfirst(M, P) is shown below. Here

M. is the circuit model and P the property to be verified. Yp contains the state

variables appearing in P. T is the set of state variables that is used to compute the

abstract model. DVp is the set of property dependent state variables of P. lastset is
the newest set added to F.

0
Reduction_verify_breadthfirst(M, P)

Begin

Yp is the set of the state variables in P;

dsv(Yp) := Compute_dsv(Yp, M);

DVp := Yp u dsv(Yp);

Y':=Yp;
Mark the state variables in Y' as visited;

result := Verify_breadthfirst(M, P, DVp, Y', Y');
If result == success

print('Property checking succeeded');

Else print('Property checking failed');

End

u

Verify_breadthfirst(M, P, DVp, Y', lastset)

Begin

M' := Reduce_model(M, Y');

result := Modelcheck (M', P);
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If result == success

return success;

ElseifY'==DVp

return failure;

Else

Begin

ddsv := Compute_ddsv(lastset, M);

ddsvl := Remove_visited_variables(ddsv);

noncorrelated_sets := Partition_set(ddsvl, M);

listofsets := Sort_sets(noncorrelated_sets);

While listofsets is not empty

Begin

newset := head oflistofsets;

listofsets := listofsets \ newset;

Mark the state variables in the newset as visited;

newY' := Y' u newset;

M' := Reduce_model(M, newY');

result := Modelcheck (M', P);

If result == success

return success;

ElseifY'==DVp

return failure;

End

newY' :=Y'uddsvl;

Verify_breadthfirst(M, P, DVp, newY', ddsvl);
End

End

t )
u

Figure 19. A brcadth-first iterative reduction algorithm
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Reduction_verify_breadthfirst uses the variables in Yp that appear in P to constmct
the first abstract machine, ff P is satisfied then the procedure terminates. If P is not
satisfied and not all of DVp have been used, the direct determining state variables
of Yp are obtained by Compute_ddsv and partitioned into noncorrelated sets by

Partition_set. The noncorrelated sets are sorted in an increasing order of their

sizes, and the result is stored in Ustofsets, the list at level 1. Each time the smallest

set in the remaining listofsets is selected to construct the abstract machine to verify

P. If P cannot be proved on the abstract machines by selecting any individual set

in listofsets, then all the sets in listofsets are used together to constmct the reduced
machine to verify P. If P is still not satisfied, the direct determining state variables
of all variables in the sets in listofsets are obtained and partitioned into
noncorrelated sets that are stored in the list at level 2. Then the set in the list at

level 2 is iteratively selected and the above process is repeated. Verification

terminates when property P is satisfied or all state variables in DVp are used.

If we use the breadth-first reduction algorithm to verify P: AGCRoui = 1) on the
circuit in Figure 17, referring to the PDG in Figure 18, the iterations are as
follows:

Iteration l: V = {Rgui}, property P fails.

Iteration 2: V = {Rout, ^2}, property P fails.

Iteration 3: V = {R^i, RO, Ri], property P fails.

Iteration 4: F = { R^h KO, RI, ^2}, property P fails.

Iteration 5: F = { Roui, KO, R], R2, Rs], property P fails.

Iteration 6: V = { Roui, KO, RI, ^2, K.3, ^4}, property P succeeds.
The verification succeeds after six iterations and one state variable Rs is reduced.

For this example, the iterative reduction algorithm based on the depth-first search
of PPDG gets the better result, i.e., the verification succeeded after 3 iteration

steps and two state variables R^, Rs were reduced.

J
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n It is hard to say which algorithm is better. For the MinMax example, we will see

that the brcadth-first reduction algorithm works better. The partitioned property

dependency graph (PPDG) of Figure 11 is shown in Figure 20.

{flag}

{addsigl} ^ ( {addsig2,rm}

{ { {X}r e

0

Figure 20. PPDG ofMinMax example

If we use the algorithm based on the breadth-first search of PPDG to verify
property P:AG(flag = 1), the verification proceeds as follows:

Iteration l: V = [flag], property P fails.

Iteration 2: V = {flag, addsigl}, property P fails.

Iteration 3: V = {flag, addsigî, rm}, property P fails.

Iteration 4: V = [flag, addsigl, addsigl, rm], property P succeeds.
The verification succeeds after four iterations and two state variables [c, rM} are

eliminated.

J

If we use the iterative reduction algorithm based on depth-first search of PPDG to

verify the property P: AG(flag = 1), the verification proceeds as follows:

Iteration l: V = [flag}, property P fails.

Iteration 2: V = [flag, addsigl}, property P fails.

Iteration 3: V = {flag, addsigl, rm}, property P fails.

Iteration 4: V = [flag, addsig'î, rm, e}, property P fails.

Iteration 5: V = [flag, addsigï, addsigî, rm, e], property P succeeds.
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0 The verification succeeds after five iterations and one state variable rM is reduced.

For this example, the iteration reduction algorithm based on the breadth-first
search of PPDG reduced more state variables and ran faster.

In general, since there are many different designs, it is hard to say which algorithm
is better. We provide users with the two algorithms, one based on the depth-first
search of PPDG, and the other one based on the breadth-first search of PPDG.

There are generally more iteration steps before all the state variables in DVp are

included in the depth-first search than in the breadth-first search algorithm. That is,

the depth-first search adds state variables more slowly and may succeed with

fewer variables, however, the iterations also take time. Hence more experience is

needed on large models to see where either algorithm performs better.

0

When a property should be falsified, i.e., there is a bug in the design, the iterative
reduction algorithms may take more time. Since the abstract models constructed

using a subset of property dependent state variables of P only weakly preserve P,
when P is falsified on an abstract model, the algorithms add more state variables
iteratively until all variables in DVp are used. The good thing is that the state
variables not in DVp are still reduced in this situation and this may avoid state

explosion that could happen using the whole design.

7.5 Complexity Analysis of the Algorithms

(J

We introduced two iterative reduction algorithms based on functional dependency
of the property. First, the property dependency graph is constructed that is
implicitly represented by a hash table ddv of the direct deterinining variables of the
state variables. Second, the hash table dv for the state variables in PDG is

constructed. Third, the PDG is partitioned to PPDG. Fourth, reduced models are
constructed by iteratively selecting sets of state variables based on two search

strategies on PPDG.
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The algorithm for constructing the hash table ddv is shown in Figure 7. The time to

construct ddv is the time to find all primary variables in the MDGs representing
the transition relations. Since the primary variables label MDG nodes, to find all

the primary variables is to visit every node in MDGs. Thus the complexity of

constmcting ddv table is OÇNMDG'), where NMDG is the number of MDG nodes and
in the worst case it is 2 , where N is the number of state variables and inputs in the
original model.

The algorithm for constructing the hash table dv is shown in Figure 13. The time to

construct dv is the time to visit all the state variables in the PDG, i.e., OÇN-pîio)-

Here Npoc is the number of nodes in PDG, that is, the number of property
dependent state variables in DVp. In the worst case, Npoc is the number of the state

variables in the original machine.

The iterative reduction algorithms are shown in Figure 16 and Figure 19. The
PPDG is implicitly represented by the noncorrelated sets and is constructed

iteratively during reduction iterations. When a new set of state variables in PDG is

reached, these variables are partitioned into noncorrelated sets by the procedure

Partition_set shown in Figure 12. The time to partition a set is 0(Nsei), where Ngei
is the number of the state variables in this set. In the worst case when all the state

variables in PDG are reached, PPDG is completely constructed. Since each state
variable in PDG is visited only once, the time to construct PPDG is OCNp^o). In the

worst case, Np^c is the number of the state variables in the original machine.

.J

The two iterative reduction algorithms are based on a depth-first search or a
breadth-first search on PPDG. In both of these two methods, in the worst case

when all the property dependent state variables are necessary for verifying the

property, the time to iteratively select the sets of state variables is OCNppno), where

M'PDG is the number of the nodes in PPDG. In the worst case, A^ppDG is the number
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n of the state variables in the original model. When one set of variables is selected to
construct the reduced model, the other state variables are changed to primary

inputs and the time of reducing the model is QCNsivai), where Mtvar is the number of
state variables to be reduced. In the worst case, Mivar is of the same order as the

number of state variables in the original model.

The total time for iteratively constmcting the reduced models is thus ^NMDG) + 2
x 0(Npî)G~) + QÇNppvG) x ^(Mtvar). In the worst case the time is 0C2N), where N is the
number of state variables and inputs in the original model.

Summary

0
In this chapter, we introduced two iterative reduction algorithms based on function
dependency. We defined a property dependency graph (PDG) and noncorrelated
sets of state variables, and then we defined the partitioned property dependency
graph (PPDG). The algorithms construct reduced models starting from the state

variables appearing in the property. If the reduced model does not satisfy the
property, then a set of state variables is selected to construct a more detailed
model. If the reduced model satisfies the property, the verification is finished. If all
intermediate reduced models do not satisfy the property, then the model

constructed using all the state variables in PDG is used. There are two iterative

reduction algorithms depending on the search strategy of the PPDG, depth-first

and breadth-first. In the next chapter we will introduce the implementation of our
reduction algorithms in the MDG model checker.

u



92

n
Chapter 8 Integration of Reduction
Algorithms with MDG Model Checker

u

In the previous chapters we have introduced the reduction algorithms based on

circuit topology or functional dependency. In this chapter we will introduce some
implementation issues relative to the integration of our reduction algorithms in the
MDG model checker.

8.1 Implementation of the Reduction Algorithms

The MDG model checker verifies properties expressed in LMDG. This tool has two

separate subsystems. One is the property compiler and the other one is the model

checking engine. The property compiler accepts a design written in the MDG-
HDL language and a property in LMDG, and constructs the additional ASMs for the
property by translating the formula into an MDG-HDL net list. It then combines

the additional circuit with the original design. Then model checking engine accepts
the composite machine and the simplified property and verifies the simplified

property on the composite machine.

The reduction algorithms are integrated with the model checking engine.
Reduction options are provided for users to decide if they want to use reduction
and which reduction algorithm they prefer. The reduction methods 1, 2, and 3 are
the reductions based on the depth-first search of PPDG, breadth-first search of
PPDG and the circuit topology respectively. There are 14 types of properties

accepted by the model checker. The user must select the type of the property. Then
the main model checking procedure revokes the appropriate subprocedures to
verify the property. The overall flow chart of the integration is shown in Figure 21.
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Construct_dv_table
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Verify_circuit_topology

Verify_breadthfirst(property_type,M,P,DVp,Yp,Yp)

Figure 21. Flow chart of MDG Model checking main procedure

If "no reduction" is selected, then the appropriate model checking algorithm
without reduction is used according to the type of the property. If "reduction" is
selected, the circuit is compiled and a database is constructed using different
procedures for different types of properties. If the reduction method 1 or 2 is
selected, the MDGs of the individual transition relations are constructed. The state

variables Yp in the additional circuit representing the property P are found by name
matching. Then the hash tables of direct determining variables and determining
variables are constructed, and the set of the property dependent state variables DVp

14

CheckAF
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n is obtained. According to the selection of the depth-first search or the breadth-first
search, the appropriate iterative reduction algorithm is used. If the reduction
method 3 is selected the iterative reduction algorithm based on circuit topology is

used. The flow charts of Verify _depthfirst. Verify _breadthfirst and Verify_circuit_

topology are shown in Figure 22, Figure 23 and Figure 24 respectively.

0

The procedure Find_Yp is used to find the state variables in the additional ASM
for a property P. In next section we will explain why we use these state variables
as Yp rather than the flags in the simplified property. Since all the signals in the
additional ASM are named by words beginning with 'addedsignal' or 'v' or 'flag',
which are reserved key words, it is easy to find the state variables in the additional
ASM that form Yp. The first abstract machine is constructed using the variables in
Yp, and then noncorrelated sets of state variables are added iteratively to construct
more detailed abstract machines.

The procedures Verify_depthfirst and Verify _breadthfirst are similar to those in
Chapter 7, and the procedure Verify _circuit_topology is similar to the iterative
reduction algorithm in Figure 6, except that they have one more augument
property _type, and the procedure Modelcheck also has property_type as one
augument. Modelcheck(property_ type, Mr, P') completes property checking on

the reduced machine Mr using the appropriate algorithm depending on the type of
the property.

u

When the MDG model checker reads in the composite machine, it produces a
database that includes the tables of output variables, input variables, abstract input
variables, the pairs of state variables and the corresponding next state variables,
initial signals, initial values, and initial variables. This database is useful for
constructing the transition system and for completing the model checking. When
the reduction algorithm eliminates some state variables, this database needs to be
updated. This is completed by the procedure Reducejnodel and Change _circuit.
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< Verify_depthfirst(property_type,M,P,DVp,Y',lastset)

Reduce_model_and_verify(property_type,M,Y')

l
ddsv:=Compute_ddsv(lastset, M)

ddsv1:=Remove_visited_variables(ddsv)

JL
Noncorrelated_sets :=

Partition_sets(ddsv1,M)
l

No

Noncorrelated_sets=emp
±

Select one set S
newY' := S U Y'

Yes

Compute_dsv(lastset, M)

Verify_depthfirst(property_type,M,P,DVp,newY',S) dsv:=Compute_dsv(lastset, M)

newY' := Y' U dsv

I
Reduce_model_and_verify(property_type,M,newY')

Reduce_model_and_verify(property_type,M,Y') >

e End ^

Reduce_model(M,Y')

Property Type ?
1

142

Model Check 2 Model Check 14Model Check 1

^^

Succeeds
Results?

( )Fails Terminate

Yes

Y' DVp?

No ( )Terminate

e )End

Figure 22. Flow chart of procedure Verify _depthfirst in MDG model checker
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< Verify_bread1hfirst(propertyJype,M,P,DVp,Y',lastset)

l
Reduce_model_and_verify (property Jype,M,Y')

r
I

ddsv:=Compute_ddsv(lastset,M)
ddsv1:=Remove_visited_variables(ddsv)

ï
Noncorrelated_sets := Partition_sets(ddsv1 ,M)

YesNo

oncorrelated_sets=empty?
^

Select one set S
newY' := S U Y' newY' := Y' U ddsv1

^
Reduce_model_and_verify(property_type,M, newY') Verify_breadthfirst(property_type,M,P,DVp,newY',ddsv1)

End

u
u

Figure 23. Flow chart of procedure Verify _breadthfirst in MDG model checker
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< Verify_circuit_topology(property_type,M,P,sigs)

fanins := Find_fanin(sigs,M)

yes no

fanins = empty?

sets := Partition_fanin(fanins,M)Ms:= Find_sufficient_circuit(M)

^
no

Isetsl 1Construct_transition_relations(Ms) >

yes

es no
sets empty?

Property Type ?
141 2 T

Model Check 1 Model Check 14 Verify_circuit_topology(property_type,M,P,fanins)Model Check 2

^
e )end

( Return result )

Select one set S
sets := sets \ S

i
unused_vars:=Find_unused_var(S,M)
Mr:=Change_circuit(unused_vars,M)

Construct_transition_relations(Mr)

Property Type ?
1 2 14

Model Check 1 Model Check 2 Model Check 14

^

result=?
failure

success

( Return success

u
u

Figure 24. Flow chart of procedure Verify _circuit_topology in MDG model checker
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8.2 Selection of the Starting State Variables

In this section we want to emphasize that a suitable selection of the starting state
variables Yp for building reduced models can lead to more efficient reductions. We

will explain why we use the state variables in the additional ASM of property P as
Yp to construct reduced models for the MDG model checker.

0

Given a design and a property to be verified, we want to use the information

provided by the property to reduce the original model. In the MDG model checker,

an additional ASM machine represents the original property, and the verification

of the original property on the design is transferred to the verification of a

simplified property on the composite machine. Since the transferred property is too

simple, we cannot get from it much information about the original property.

Because of the particular way to generate the additional ASM for a property, all

the added signals are necessary for the flag being true and they are in different

correlated sets. If we start from the flag in the simplified property, at the next

iteration only a subset of the added signals is used, and the flag check should fail.

The reduction verification using a breadth-first search of PPDG takes more

iteration steps to finish, but in this case the reduction algorithm based on a depth-

first search cannot eliminate any state variable in DVp. Therefore, we start with the

state variables of the composite machine appearing in the additional ASM that

directly represents the original property. This makes the iterative reduction

algorithms terminate faster and eliminate state variables more efficiently. We will

illustrate this using the MinMax example.

u

In the MinMax example, the additional ASM representing the property AG((r = 1)

—> X(m = max)) is shown in Figure 3. The state variables appearing there are {flag,

addsigl, addsigl, m}. The short prefix addsig represents the original prefix

addedsignal. The property dependency graph of this example is shown in Figure
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0 11. The way to define the initial values of addsigï and flag in this example
guarantees that the value ot flag is l in the first two clock cycles, and thereafter the

value of flag is determined by the functional parts of the circuit. Without addsigï
the property A.G(flag = 1) should fail. Using the reduction algorithm based on a
depth-first search, at first iteration [flag] is used to construct the abstract machine
and P fails. The direct determining state variables of flag are found which are

{addsigl, addsigl, rm]. They are partitioned into two noncorrelated sets,
[addsigï} and [addsigl, m}. {addsigl} is used •with flag at iteration 2 to construct

the abstract machine, P fails. [addsigl, rm] is then used with/Za^ to verify P, but

P still fails. Then c is added at iteration 4, but P fails again. Finally at iteration 5
all the state variables in PDG are used, P is satisfied on the final abstract machine

with the don't care state variable rM. eliminated.

On the other hand, if we use the state variables appearing in the property ASM

{flag, addsigl, addsigl, m] to construct the reduced machine at the first iteration,

the property A.G(flag = 1) is satisfied and the verification is finished with state

variables c and rM eliminated. Comparing with the reduction that starts from
[flag], the reduction that starts from the state variables in the additional ASM can

eliminate more state variables in less time. The experimental results of verifying

AG((r = l) -» X(m = ma^)) on the MinMax machine are as follows:
Iteration 1 :
Used state variables: [m, flag, aadedSignall, aadedSignal2]

=== Checking_AG succeeded ===

=== Circuit statistics ===

Total components: 14
Total signals: 19

Abstract signals: 4
Concrete signals: 15 which is equivalent to 15 boolean signals

Total state variables: 6
Abstract state variables: 2
Concrete state variables: 4 which is equivalent to 4 boolean
variables

u
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n Performance statistics ===

Compiling (loading+deriving all the individual relations) took:
Run time : 0.180 seconds ; System time : 0.000 seconds ; Real
time : 0.475 seconds .

Constructing ddv and dv tables took :
Run time : 0.010 seconds ; System time : 0.000 seconds ; Real
time : 0.010 seconds .

Iterative reduction verification took :
Run time : 0.090 seconds ; System time : 0.000 seconds ; Real
time : 0.250 seconds .

Total time spent:
Run time : 0.280 seconds ; System time : 0.000 seconds ; Real
time : 0.735 seconds .

State variable coverage : 4 , 67% of all state variables.
Nodes: 224; Compound Terms: 9.
Memory usage: 1126760 bytes.
Garbage_collection 14 times: 0.150 seconds; 2421448 bytes freed.

Summary

0
Our iterative reduction algorithms were implemented in the MDG model checker.

We have carried out several experiments using MDG with and also without model
reductions. These experiments showed that our reduction algorithms enlarge the

useful domain of the MDG tool. Although our reduction algorithms are
particularly useful for the MDG model checker, since they need not compute a
bisimulation relation or use a preimage operation, they can be used in other tools
as well. We used FormalCheck and SMV to compare the performance of
reduction. The experiments showed that our reduction algorithms can reduce the
model more efficiently on a large number of designs. In the next chapter we study
two such cases.

u
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Chapter 9. Case Studies

0

In this chapter we consider a very common circuit in data processing and digital

telecoinmunication designs, and a benchmark design called the Island Tunnel

Controller. We use the MDG model checker, FormalCheck and SMV to verify a

number of properties. The experimental results show that our reduction algorithms

have largely improved the behavior of the MDG model checker and can achieve
efficient model reduction where other tools fail.

9.1 A Common Data Processing Circuit

Consider the example discussed in [XCSCLP99] and shown in Figure 25. The

structure of the circuit is quite common in data processing circuits. The

appropriate context (set of registers, memory data, etc.) is selected based on the

control signals (address of the memory, etc.), processing is carried out on the

selected context, and then the modified context is stored in the same memory

element. It is also quite common in telecommunication circuits in which channel

or link numbers select the corresponding registers to be updated. This structure can
be easily enlarged by adding more registers and increasing the size of the registers.

u
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flip-flops: {rs, rO, rl}, operation: inc

Figure 25. A data processing circuit

0

In Section 9.1.1, all the signals in the circuit are defined at the concrete Boolean

level. We use three verification tools MDG, FormalCheck and SMV to verify the

model with different numbers and sizes of registers. The experimental results are

then discussed. Since in MDG there are abstract variables and uninterprcted

function symbols, we give an abstract description of the circuit in Section 9.1.2

and verify it using MDG. The experimental results are again discussed. All of the

experiments were carried out on a 333 MHz Sun Ultra 10 workstation with 1GB of

memory. In the following tables, the symbol '-' means that the verification did not

terminate.

9.1.1 Property Checking on a Concrete JVIodel

u

All the signals in the circuit shown in Figure 25 are defined as Boolean. The

registers are defined to have a certain number of bits. Property P\ states that if s is

0, rs is 0, and the value of register K) is 0 in the current clock cycle, then the value

of r0 will be 1 in the next clock cycle. Property Pz states that if s is 0, rs is 0 and

the value of r0[0] is 0 in the current clock cycle, then the value of r0[0] will be 1
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in the next clock cycle. We verified these two properties on the models with

different numbers and sizes of registers.

Table 1 shows the results obtained using the MDG model checker. We can see that

without our reduction algorithm, the tool can only verify the models having two

registers with widths less than 20 bits. The reduction algorithm has significantly

increased the useful domain in this case. When the number of registers is increased

to 12 and the width is increased to 28 bits, Pi and P^ can still be verified using our

reduction algorithm.

0

Property

Pl

P2

Table 1: Experimental results with MDG

Register

No.&

Width

No reduction Reduction

State

Vars

Nodes Time

(Sec)

v Mem

(MB)

State i Nodes

Vars

Time

(Sec)

Mem

(MB)

2&8 20 1554 2.42 2.05 11 1249 2.41 1.72

2&16 36 4083 ! 4.73 3.94 19 3131 5.60 3.24

2&20 23 5635 10.26 4.77

2&28 31 9390 19.56 8.54

12&28 31 42247 3863.6 517.8

2&8 20 1199 1.77 1.90 4 506 1.86 1.36

2&16 36 3057 l 3.66 l 2.46 4 866 3.22 2.30

2&20 4 1092 5.27 3.19

2&28 4 1468 11.51 5.81

12&28 4 23447 4006.6 507.3

u

PI illustrates one behavior of rO, which only refers to the boolean signals of rO, but

does not refer to the other registers. Our algorithm automatically eliminates all the

Boolean signals of the other registers. We can also see that for the models with 28

bit registers, no matter how many registers are added, there are always only 31

state variables used to verify Pi. These include r0[0],..., r0[27], and three
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0 additional state variables in the auxiliary circuit for the property. Pz only refers to

r0[0], and our algorithm automatically eliminates the other bits of rO and all the

other registers. Table 1 shows that only 4 state variables are used to verify Pz no

matter how many and how large the registers in the model are.

It should be pointed out that MDG compilation process constructs MDG graphs

for each signal and each component which consumes a lot of memory and time.

When the sizes of the circuits increase, memory and time usage increase

significantly.

0

For instance, we let the model have two registers rO and rl with 28 bits, each bit

being represented by one Boolean signal. The model is written in MDG-HDL

which does not have a means to describe arrays. This makes the description quite

long and thus it is not included here. We use Pz to illustrate how the reduction

algorithm works. ?2 is expressed by the following LMDG formula:

AG((s=0&rs=0& r0_0 = 0) -> (X (r0_0 = l)));

The additional ASM extracted from Pz is shown in Figure 26, in which flag,

addsigl and addsigl are state variables. The initial values of flag, addsigï and

addsigî are 1, which guarantees that/Zag = 1 during the first 2 clock cycles. The
verification of PÎ on the original model is transferred to the verification of P^:

AG(flag = l) on the composite ASM consisting of M and Mp2.

s

rs

r0[0]

0. addsigl

addsig2 flag)—

Figure 26. Additional ASM Mp^ for P^

u
The property dependency graph of Pz is shown in Figure 27. Node 5 is a primary

input and the other nodes are the state variables. At the first iteration of the
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reduction algorithm, the set of the state variables [flag, addsigl, addsigl, r0[0]} is

used toconstruct the reduced model, and the simplified property AG (flag = 1) is

verified. Thus only 4 state variables are used to verify Pz as shown in Table l. In

the worst case, if the design has some errors and ?2 should fail, i.e., the initial

reduced model constructed using {flag, addsigl, addsigl, /0[0]) cannot satisfy the

property AG (flag = 1), then the set {rs, rl[0]} is added to construct the model for

the second iteration. Now all the state variables in the property dependency graph

are used, and the verification is final. To verify Pz, only 6 state variables are
needed in the worst case.

0

addsigl

Il !• ^addsig2flag rs ^ s

:^r l[0]¥r0[0]

Figure 27. The property dependency graph of P^'

u

We now will use FormalCheck and SMV to verify the models of the circuit shown

in Figure 25. We again use the model with 2 registers of 28 bits. The model

written in synthesizable Verilog for FormalCheck is as follows:

module main(s, RST, CLK, dout);

input s, RST, CLK;

output [27:0] dout;

reg [27:0] r0, ri;

reg rs;

wire [27:0] dnew, dout;

assign dout = (rs == 1'bO)? rO : rl;

assign dnew = dout + {{6{4'b0000}}, 4'bOOOl};
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n
always @(posedge CLK)

begin

if (RST == 1'bO)

begin {r0,rl} <= {8{7'bOOOOOOO}}; end

else begin

rs <= s;

case (s)

I'bO: r0 <= dnew;

l'bl: ri <= dnew;

endcase

end

end

endmodule

Properties Pi, P^ expressed in FormalCheck become:
PI: After: (CLK==rising && RST!=0 && s==0 && rs==0 && r0==0)

Always: r0==l

Unless after: CLK==rising.

PZ: After: (CLK==rising && RST!=0 && s==0 && rs==0 && r0[0]==0)

Always: r0[0]==l

Unless after: CLK==rising.

u

In SMV the above model and the properties P; and PÎ were rewritten in

Synchronous Verilog (SV), which requires some modifications to the original

Verilog code. Pi and Pz expressed in SV are as follows:

PI: always

begin

if (RST==1 & s==0 & rs==0 & r0==0)

begin wait(1); assert r0_update: r0==l; end

end
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0
PZ : always

begin

if (RST==1 & s==0 & rs==0 & r0[0]==0)

begin wait(1); assert r0_0 update: r0[0]

end

••1; end

The experimental results are shown in Table 2.

0

Table 2: Experimental results with FormalCheck, SMV and MDG (reduction on)

Property

Pl

P2

Register

No.&

Width

FormalCheck

State

Vars

Time

(Sec)

SMV

Mem

(MB)

State

Vars

Time

(Sec)

MDG

Mem

(MB)

State

Vars

Time

(Sec)

2 & 16 26 26 3.39 34 0.29 8.40 19 5.6

2 & 20 30 26 3.48 42 0.38 8.42 23 10.26

2 & 28 38 37 3.73 58 0.63 8.42 31 19.56

4&28 39 67 5.04 115 5.79 8.57 31 72.04

8 & 28 40 131 9.24 228 7.28 9.52 31 759.8

10 & 28 4l 213 12.84 285 10.87 10 31 1820

12 & 28 4l 301 16.30 31 3863

2 & 16 38 1772 68.12 4 0.06 8.24 4 3.22

2 & 20 49 32760 l 961.2 4 0.08 8.25 4 5.27

2 & 28 4 0.08 8.25 4 11.51

4&28 7 0.18 8.37 4 66.32

8 & 28 12 0.49 9.03 4 780.1

10 & 28 15 0.81 9.42 4 1886

12 & 28 17 1.09 9.84 4 4006

Mem

(MB)

3.24

4.77

8.54

29.85

165.7

315.3

517.8

2.30

3.19

5.81

26.04

158.8

306.6

507.3

u

For SMV, the column Time indicates user time, while for FormalCheck and MDG,

it is real time including loading the Verilog or MDG-HDL description files,

compilation and model checking. The reduction algorithm selected in
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0 FormalCheck is Iterated with Empty reduction seed, and the mn option is

Symbolic (BDD). The run option of SMV uses heuristic variable ordering,

computes the number of reachable states and restricts model checking to reachable

states. The iterative reduction algorithm is selected in MDG.

0

Many different factors influence the experimental results, e.g., these tools use

different variable ordering (no automatic variable ordering in MDG yet), different

partitioning of the transition relations and different reduction methods. MDG

graphs require more memory than the other model checkers in the case of concrete

representations of signals, because the MDG structure and algorithms arc more

complicated than those of ROB DD to take into account abstract sorts (even though

they were not used in this experiment). However, the columns indicating the

number of state variables illustrate that our reduction algorithm can reduce the

models appropriately according to the properties. For Property Pi our reduction

algorithm eliminated all the registers other than rO. From Table 2 we can see that

for the models with 2, 4, 8, 10, 12 registers of 28 bits, there are always 31 state

variables, that is r0[0], ..., r0[27] and 3 state variables in the additional ASM

representing Pi. However, SMV used all registers to verify Pi, and when the

model was enlarged to have 12 registers of 28 bits, SMV could not complete the
verification. FormalCheck also used more state variables when the number of

registers in the model was increased. After verifying P\ on the model with 2

registers of 28 bits, we opened the reduction manager window to see that r0[0],...,
r0[27], rl[0], ..., rl[3] were used, but rl[0], ..., rl[3] could have been eliminated.

For Property P-s,, our reduction algorithm used only 4 state variables (r0[0], jfZag,

addsigl, addsigT) and automatically reduced all the other bits of /0 and all the

other registers no matter how many and how large the registers were. SMV used

the least significant bit variables of all the registers to verify P^, e.g., for the model

with eight registers of 28 bits, r0[0], ..., r7[0] are used by checking the "cone"

window in SMV. Table 2 shows that the number of state variables used in SMV is

growing when more registers are added in the models. FormalCheck could not

reduce anything when verifying Pz. We opened the reduction manager window
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0 and could see that all the state variables were used. When the models became even

larger, FormalCheck could not complete the verification of PÎ.

9.1.2 Property Checking on the Abstract Model

0

u

For the circuit shown in Figure 25, we are only concerned about the data in a

selected register being conrectly updated and stored in the appropriate register. We

can define the registers as words of size n using abstract sorts, e.g., an abstract sort

wordn. This makes the description generic, and the verification is thus applicable

to registers of any word size. For the data processing unit, here an incrementer, we

can use an uninterpreted function symbol fine. The symbols wordn and fine are

defined to be of abstract sort in the algebraic file of the MDG model checker:
abs_sort(wordn).

function(fine, [worân],wordn).

The abstract model M in MDG-HDL is as follows:

% Variables definition

signal(s, bool).

signal(a, wordn).

signal(n_r0, wordn).

signal(r0, wo ran).

signal(n_rl, wo ran).

signal(ri, worân).

signal(n_rs, bool).

signal(rs, bool).

signal(anew, worân).

signal(dout, worân).

% Pairs of a state variable and its next state variable

st_nxst(r0, n_r0).

st_nxst(rl, n_rl).

s t_nxs t(rs, n_rs) .

% Circuit definition
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n component(fork_s, fork(input(s), output(n_rs))).

component(muxl,mux(sel(s),inputs([(0,dnew) ,(l,r0)]),output(n_r0))) .

component(mux2,mux(sel(s),inputs([(l,dnew) ,(0,rl)]),output(n_rl))) .

component(mux3,mux(sel(rs),inputs([(0,r0),(l,rl)]),output(dout) ) ) .

component(r0,reg(input(n_r0),output(r0))).

component(rl,reg(input(n_rl),output(ri))).

component(rs,reg(input(n_rs),outpufc(rs))).

component(fine,trans form(inputs(dout),function(fine),output(dnew) ) ) .

outputs( []).

output_partition([]).

next_state_parfcition([[[n_r0]] ,[[n_rl]],[[rs]]]).

par_strategy(auto,auto).

0

The property to be verified on the abstract model specifies that if ^ is 0 and rs is 0,

and the value of r0 is v in the current clock cycle, then rO will be the value of

finc(y) in the next clock cycle. The property expressed in LMDG is as follows:

PÎ: AG (LET (y = rO) IN ({s=Q&rs= 0) -> (X (rO =/mc(v)))));

The circuit in Figure 28 represents the additional ASM for ?3. The verification of

?3 on the original model is transferred to the verification of Py': AG (flag = 1) on

the composite ASM consisting of At and Mp3.

0 addsigl

s

addsig2 flag
rs

rO v fine
=?

Figure 28. The additional ASM Mp^ for Ps

u
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The individual transition relations of the composite machine arc represented by the

following Directed Formulas that translate immediately to the MDG graph

representation.

Tflag: ((addsigl = 0) A (addsigZ = l) A {abscomp(finc(y), rO) = 0) A (flag' = 0)) v

(((addsigl = l) v (addsigî = 0) v (abscomp(finc(v), rO) = l)) A (/7^' = l))

^addsigi: (addsigï'=0)

rTaddsig2. ((.(rs = l) V ^= l)) A (addsigT = 0)) v ((rs =0) A (^=0) A (addsigT=\))
Tv: (v' = rO)

T.,: (rsj=s)

Trt: ((s = l) A (/0' = K))) v ((^ = 0) A (r^ = 0) A (r0' =/wc(/0))) v

Ç(s = 0) A (rs = l) A (r0' =/mc(rl)))

TH: ((s = 0) A (rl' = rï)) v ((^ = l) A (^ = l) A (ri- =/wc(rl))) v
((s = l) A (rs = 0) A (/-!' =/mc(/0)))

The property is now verified in 0.7 second using 1.04M of memory and 201 MDG

nodes. The state variables (rs, rl) are automatically converted to primary inputs,
and only the state variables (flag, addsigi, addsigl, v, rO) are used. However,

without this reduction, Ps is successfully verified in 1.5 seconds using all state

variables, 1.17M of memory, and 230 MDG nodes. Data abstraction makes the

verification much faster. As it can be seen, by combining abstract data
representation with efficient model reductions the state space explosion problem

can be considerably diminished.

9.2 The Island Tunnel Controller

0

The Island Tunnel Controller (ITC) benchmark shown in Figure 29 was originally

introduced by Fisler and Johnson [FJ95]. There is one lane tunnel connecting the

mainland to an island. There are one traffic light and two sensors at both ends of

the tunnel. On the island side, sensor ie detects the presence of vehicles at the

tunnel entrance, and sensor ix detects the presence of vehicles at the tunnel exit.
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Similarly, on the mainland side, sensor me is at the tunnel entrance and mx is at the

tunnel exit. There is a constraint imposed on the maximum number of cars that
may stay on the island. This introduces one counter ic on the island side and one
counter tc in the tunnel to keep track of the number of cars currently on the island

and in the tunnel respectively. We assume that all cars are finite in length, no car
gets stuck in the tunnel, cars do not exit the tunnel before entering the tunnel, cars

do not leave the tunnel entrance without traveling through the tunnel, and there is a
sufficient distance between two cars such that the sensors can distinguish the cars.

We will use MDG, SMV and FormalCheck to verify some properties on the TTC.

....•••••
..••

id mrl

igl mgl0 0

IX me^-^~

~â>-^ie mx

Island
Mainland

/

/•

Figure 29. The island tunnel controller

9.2.1 ITC Specification

The specification of the TTC proposed by Fisler and Johnson [FJ95] uses three
controllers and two counters shown in Figure 30. Their state transition diagrams

are shown in Figure 3 l.

u
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Tunnel counter
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igl

ie
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Figure 30. The specification of the Island Tunnel Controller

The island light controller (ILC) has four states: green, entering, red and exiting.
The outputs igl and irl control the green and red lights on the island side,

respectively; iu indicates that the cars from the island side are currently occupying
the tunnel, and ir indicates that ILC is requesting the tunnel. The input iy requests
the ILC to release control of the tunnel, and ig grants control of the tunnel from the

island side. A similar set of signals is defined for the mainland light controller
(MLC). The tunnel controller (TC) processes the requests for access issued by the
ILC and MLC. The island counter and the tunnel counter keep track of the
numbers of cars currently on the island and in the tunnel, respectively. For the
tunnel counter, at each clock cycle, the counter tc is increased by 1 depending on
itc+ and mtc+, or decremented by 1 depending on itc- and mtc- unless it is already
0. The island counter operates in a similar way, except that the increment and

decrement signals are ic+ and ic-, respectively.

u



114

0
green red

iu=T rt iri=T 4¥
iel=T *

•dirï7PLW
F

F F
F Fig]^-L-ie

T T T

Ci.^5
^ exiting

itc+ ic

entering
iu=T
isl=T

iri=T^
<

± T F
ixF T

ie

(a) Island light controller

green red

mu=T ^|mrl=T 4^

'^ T^me

meF mr
ic<n

F^ ±±T E
mxmy mg

F ^^ T T

<-—j me j
IT

(^^)
^ exiting

<^mtc+ ic+^>
entering

mu=T

Iû£l

-> mrl=T

T

lme1=Tt<-

F i — I-i T
me

î
mx

F

(b) Mainland light controller

u

]^->@:LI<$)
T ir m use F m clear

<E
>'=T

i-,J'
——[ic<n tc=0|

T

i_clear

iy=T

-t
tc=0|

(e) Tunnel controller

ready,

thenn_ic :=ic+l;
elseif(ic-=l)A(ic^O)

thenn_ic :=ic-l;
else n_ic := ic;

(d) Island counter

ready^

Conventions:

State

Condition

2
if(itc+=l)v(mtc+=l)
thenn_tc :=tc+l;
else if ((itc-=l)v(mtc-=l))A(itc?iO)

thenn_tc := te-1;
else n_tc := to;

(e) Tunnel counter

Figure 31. State transition diagrams of the Island Tunnel Controller
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0 9.2.2 Property Checking on the ITC

We created the MDG-HDL models of the Island Tunnel Controller that include the

modules representing ILC, MLC, TC and the counters. First, we defined all the

signals as concrete variables. The three properties and their CTL formulas that we
verified are as follows:

PI: If the incremental signal of the island counter is valid and the island counter is

3 in the current clock cycle, then the island counter will be 4 in the next clock

cycle.

AG ((;c+ = l) & (ic = 3)) ^ X(ic = 4));

PÎ: The tunnel counter is never ordered to increment simultaneously by ILC and
MLC.

AG (! ((itc+ = l) & (mtc+ = l)));

?3: The island counter is never ordered to increment and to decrement

simultaneously.

AG(!((?C+=I)&OC-=I)));

For example, with a 5-bit island counter, Pi expressed in LMDG is as follows:

AG (((ic_4=0 & ic_3=0 & ic_2=0 & ic_l=l Se ic_0=l) & (ic_plus=l))

-> X(ic_4=0 & ic_3=0 & ic_2=l & ic_l=0 & ic_0=0));

Table 3 shows the experimental results of verifying Pi, P-i and Ps using the MDG

model checker. We can see that without our reduction algorithm, MDG can only

verify Pi, PZ and Py on the TTC models having counters with less than 8 bits, while

using our reduction algorithm MDG can verify the same properties on a model
with 11-bit counters.

u
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0

Property

Pl

?2

p3

Table 3. Verifying Pi, ?2 and ^3 of ITC using MDG

Counter

Width

(Bits)

5

6

7

8

9

10

11

5

6

7

8

9

10

11

5

6

7

8

9

10

11

No Reduction Reduction

State

Vars

Nodes Time

(Sec)

Mem

(MB)

State

Vars

Nodes Time

(Sec)

16 84849 240 29.5 11 8287 13.6

18 284285 2369.5 93.2 12 16263 24.4

20 953920 l 23662.9 | 306.3 13 34780 54

14 71557 168.3

15 152139 550

16 328121 2868.7

17 710457 14391.3

14 84486 230.1 29.2 9 7841 11.78

16 283775 2601.8 92 10 15755 21.15

18 l 930896 l 22507.7 l 304.8 11 33925 53.1

12 70365 157

13 150348 562.2

14 325202 2717.6

15 705391 14747.2

14 84486 234.4 29.6 9 7841 11

16 283775 3010.4 91.7 10 15755 20.1

18 l 953169 l 25318 | 301.6 11 33925 55.8

12 70365 265.6

13 150348 594.9

14 325202 2945.1

15 705391 14252.6

Mem

(MB)

11.7

19.5

32.8

55

94.4

168.4

312.7

11.5

19.2

32.4

54.3

93.3

166.3

308.5

11.4

19.2

32.3

54

92.8

165.3

306.6

(J

For example, to verify Ps on the model with 5-bit counters, there are 84486 MDG

nodes if model reduction is not used, while there are only 7841 nodes if reduction

is used, which reduces the memory usage from 29.6MB to 11MB! From the

columns labeled Nodes, Time and Mem, we can see that without reduction the
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nodes, time and memory usage increase much faster than with reduction. When the

two counters increase to 8 bits, the verification cannot finish. When reduction is

used, for verifying P\, P-i and Ps the tunnel counter is eliminated.

0

To illustrate the reductions obtained, we verify Pi on the model with 3-bit

counters. Pi is transferred to an additional circuit composed with the original

design. The property dependency graph of the composite machine is as follows:

addsigî

addsig2
flag

^ic-0 > 0tems

ic l lts te¥ ^

ic 2 is 2te4 ^

Figure 32. The property dependency graph

At the first iteration, (flag, addsigl, addsigl, ic_Q, ic_\, ic_T) which appear in the

additional ASM are used to construct the reduced model, and the property fails.

Then, the direct determining state variables of the set are computed and the

variables (ms, ts, is) are added, i.e., the set (flag, addsigl, addsigî, ic_0, ic_ï, ic_2,

ms, ts, is) is used to construct the reduced model. Property checking succeeds in
this case at the second iteration. The tunnel counter tc was eliminated. The

situation is similar when verifying P^ and P^. In the following, we will use

FormalCheck and SMV to verify the same properties. The experimental results
show that these tools do not eliminate tc.
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We construct the Verilog and the SMV models of the TTC for FormalCheck and

SMV respectively. Pi expressed in FormalCheck is as follows:
After: main.clk==rising && main.rst==0 && main.ic_plus==l && main.ic==3

Always: main.ic==4

Unless after: main.clk==rising

Property Pi expressed in SMV is as follows:

SPEC AG (((ICplus = l) & (1C =3)) -> AX(IC = 4))

Properties P^ and Ps are expressed in a similar way as P\ in FormalCheck and

SMV. The experimental results of verifying Pi, Pz and Ps using FormalCheck,

SMV and MDG are shown in Table 4. The reduction algorithm selected in

FormalCheck is Iterated with the Empty reduction seed, and the run option is

Symbolic (BDD). The run option of SMV uses heuristic variable ordering,

computes the number of reachable states and restricts model checking to reachable

states. In MDG our reduction algorithm (depth-first search) is selected.

From the columns labeled by State Vars, we can see that MDG uses less state

variables than FormalCheck and SMV. To verify Pi, Pi and P^, MDG

automatically reduces the tunnel counter, while SMV uses all the state variables.

FormalCheck uses all the state variables for verifying Pi. For Pz and Ps,

FormalCheck uses tc[1] and tc[0], and reduces the higher order bits of the tunnel
counter on models with counters less than 8 bits. (We can see from the "Reduction

Manager" window that tc[1], tc[0] and other state variables are active, and the

higher order bits of tc are started as inputs.) When the models have counters with 8

bits or more, FormalCheck uses all state variables.

u
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0

Table 4. Verifying Pi, P^ Py of TTC using FormalCheck, SMV and MDG

Property

pl

P2

p3

Counter

width

6

7

8

9

10

11

6

7

8

9

10

11

6

7

8

9

10

11

FormalCheck SMV MDG

State

Vars

Time

(Sec)

Mem

(MB)

State

Vars

Time

(Sec)

Mem

(MB)

State

Vars

28 30 5.5 19 2.5 5.5 12

30 33 5.7 21 6.7 6.5 13

32 36 6.6 23 20.1 9.4 14

34 50 8 25 211.4 76 15

36 79 10.7 27 932.1 284 16

38 138 16.2 17

24 37 5.4 19 2.4 5.6 10

25 38 5.5 21 6.3 6.5 11

32 65 6.6 23 53 23 12

34 80 8 25 211.6 76 13

36 112 10.7 27 916.7 284 14

38 167 16.3 15

24 28 5.4 19 2.5 5.4 10

25 30 5.5 21 6.2 6.3 11

32 50 6.6 23 53.4 23 12

34 62 1.5 25 212.2 76 13

36 94 10.7 27 916.4 284 14

38 151 16.3 15

Time

(Sec)
24.4

54

168.3

550

2868.7

14391

21.15

53.1

157

562.2

2717.6

14747

20.1

55.8

265.6

594.9

2945.1

14252

Mem

(MB)

19.5

32.8

55

94.4

168.4

312.7

19.2

32.4

54.3

93.3

166.3

308.5

19.2

32.3

54

92.8

165.3

306.6

u

When we manually reduce the tunnel counter by making all bits of tc as inputs in
the "Reduction Manager", Pi, P^ and P^ are all verified by FormalCheck. We also
manually reduce tc by setting tc free in the "Abstraction" window of SMV, Pi, Pz
and Ps are successfully verified. Even though FormalCheck uses less time and
memory than SMV and MDG in this example, since many different factors may
affect the experimental results as mentioned before, it does not eliminate state
variables as our algorithm in the MDG tool. From the table we can see that the
memory usage of SMV is exponentially increasing with the increase in width of
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the counter, while the memory usage of MDG is increased linearly by a factor
about 1.7 with the increase of width. When the counters have 11 bits, SMV cannot

automatically verify Pi, Ps and Ps in the available memory. But when we

manually reduce te in SMV, we can verify Pi on the model with 11-bit counters in

165 seconds using 51MB memory, Ps in 164.7 seconds using 48MB, and ?3 in

168.3 seconds using 48MB.

Summary

0

In this chapter we carried out property checking on two examples: a data

processing circuit and the Island Tunnel Controller. We did a comparison between

MDG, FormalCheck and SMV on thèse designs. From the results we can see that

our reduction algorithms have enlarged the useful domain of the MDG tool, and

make it practicable for large circuits. Also, these algorithms achieve better model

reduction than the other tools in these two cases. The first example is a common

circuit structure in telecommunication and data processing circuits. Since our

methods can do efficient reduction on this example, it means that our methods can

work on many real circuits having a similar structure. We can thus safely say that

our methods provide better performance than other tools for a large class of

circuits. Moreover, our methods are completely automatic without user-guided

information, and do not use preimage computation that makes them useful for

MDG. Our methods can also be used in other tools to improve their performance.

u
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Chapter 10 Conclusions and Future Work

10.1 Conclusions

Although model checking can verify circuit designs automatically and produce

state sequences as counterexamples when verification fails, the state explosion

problem limits its use. In order to increase the efficiency of automatic formal

verification, it is necessary to develop model reduction methods.

0
The MDG model checker is a formal verification tool developed in our university.

Due to the state explosion problem, MDG could only be applied to small circuits

in the past. Due to the occurrence of abstract state variables and uninterpreted
function symbols in MDG, there is no prcimage operation in MDG. Thus all the

reduction algorithms based on preimage computation cannot be used in MDG. Our

objective was to develop reduction algorithms that can operate under this
restriction.

u

In this thesis, four reduction algorithms based on circuit topology or based on

functional dependency were developed. All of the reduction algorithms do not use

preimage operation and are particularly useful for the MDG model checker.

Certainly, these methods can be also used in other tools to improve their
performance. Experimental results have shown that our reduction algorithms are

efficient. The original contributions of the thesis can be summarized as follows:

1. Two reduction algorithms based on topology of the circuits were developed.

One such algorithm automatically searches the circuit and finds the sufficient

part of the circuit that contains all signals and components connected to the
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flags whose values are checked in the property. The sufficient part of circuit

strongly preserves the property. The other one is an iterative reduction

algorithm, which considers the inHuence of input signals of multiple fanin

gates. It partitions the fanin signals of gates to sets of signals, each signal in one

set has some common predecessor signals with another signal in the same set.

Each time it constructs a reduced model by selecting one set and eliminating the

other state variables by changing them into primary inputs. The reduced model

weakly preserves the property. If the reduced model satisfies the property then

verification terminates. If all the reduced models do not satisfy the property

then the sufficient model is used. These two algorithms are fully automatic and

the verification results are safe.

0

2. Property dependent state variables DVp for a given property P were defined, and

we proved that the reduced model constructed by using all the variables in DVp

is the least model regardless the initial states that strongly preserves property P

stated in CTL*, and that the reduced model constructed by using a subset of

DVp that contains the state variables in P weakly preserves P stated in ACTL*.

This is the theoretical basis of the reduction algorithms based on functional

dependency. These theorems tell us where we can begin to reduce the model

and when we can stop. When all the state variables in DVp are used to constmct

the reduced model, the verification is final.

u

3. Two iterative reduction algorithms based on functional dependency were

developed. Both of these algorithms start from the reduced model constmcted

by using all the state variables appearing in the property. If the verification fails
on this reduced model, then a more detailed model that uses more state

variables is constructed. At each iteration, more state variables from DVp arc

used, until all DVp is used. The critical thing is how to add a subset of DVp at

each iteration. We defined the property dependency graph (PDG) that reflects

the functional dependency of the property, and noncorrelated sets that are

functionally independent. Each time a noncorrelated set is selected and used to
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construct the more detailed model. The two iterative reduction algorithms adopt

two different search strategies: a Depth-first search and a Breadth-first search of

the partitioned property dependency graph. These two algorithms are fully
automatic and efficient.

0

4. The above reduction algorithms were implemented in the MDG model checker

by using Quintus PROLOG. This makes the MDG model checker useful and

practicable for real circuits. The automatic execution of reductions made this

tool user friendly.

5. Experiments of property verification on a Data Processing Circuit and the Island

Tunnel Controller benchmark were carried out using the MDG model checker,

FormalCheck and SMV. The experimental results showed that our reduction

algorithms can achieve better model reductions than the other tools on the

classes of circuits represented by these benchmarks.

10.2 Future Work

The four reduction algorithms presented in this thesis largely alleviate the state

explosion problem by reducing the original model to a smaller one. The

implementation of these reduction algorithms in our MDG model checker has

significantly improved the behavior of this tool and made it capable to verify large

and complex circuits. In addition, other techniques can also be combined with our

reduction algorithms to further improve the behavior of the MDG tool.

1. Develop heuristic algorithms to find a good variable order.

In the MDG model checker, sets of states and transition relations are

represented by MDG graphs. Like ROBDD, different node ordering may

produce different sizes of MDG graphs. It is possible to lift some ROBDD node
ordering techniques that have been successful at the Boolean level to MDGs



0

124

[CZJ92] [BBF93] [FFM93] [FMK91 ] [FOH93] [Min96] [PS95] [RG97] [Som96] [T

HY93].

0

When using the MDG package, a custom symbol order must be given before

verifying a circuit. In addition, MDGs have concrete variables, abstract

variables and cross-terms in nodes that participate in the node ordering, and the

ordering must satisfy a number of conditions for a well-formed MDG. Thus

variable ordering is more difficult in MDGs than in ROBDDs. Since to find the

optimum order is an NP-complete problem [THY93], we could study some

heuristic algorithms to find good orders. We could start from four aspects. First,

we can analyze the stmcture of MDGs, deduce the influence of the order of

concrete variables, abstract variables and cross-terms on the topology of the

MDGs as a guide. Second, we can analyze the topology of the circuits and try

to get a good order. Third, we can analyze the functional dependency of the

variables to get a good order. Fourth, since a fixed static custom symbol order

may result in very large intermediate MDGs, we need to introduce dynamic

reordering. The sifting and variable exchanging algorithms [Rud93][ISY91]

could possibly be applied to MDG.

u

2. Develop algorithms to find good partition and ordering of transition relations.

In addition to a good variable order, finding a good partition of the transition

relations of a sequential circuit or input-output relations into blocks and finding

a good order of the blocks can also improve the efficiency of MDG

computation. Burch, Clarke and Long [BCL91] proposed using partitioned

transition relations. In this method, instead of using one ROBDD representation

of the transition relation, the transition relations of different latches are kept as
separate ROBDDs. Since ROBDDs representing the individual latch transition
relations are much smaller than the combined one, this method can result in

substantial memory savings. During image computation, the state variables that

are not in the support of other transition relations can be quantified early, which

also saves on memory usage. In [BCL91] and [GB94], the conjunction of the
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transition relations is computed iteratively one by one. In [ZSCCL95], Zhou,

Song and Cerny et al. developed a partitioned transition relation product

algorithm in MDG. In this method, the relational product algorithm was

extended to an n-ary operation and the partitioned transition relations were

divided into blocks. This method also can be improved by finding a good way

to partition the individual transition relations into blocks, and a good way to
order the blocks.

3. Generate error trace

In addition to the above areas that improve the behavior of the MDG tool, there

are other aspects of the MDG model checker that need to be improved. One

advantage of model checking is that when the verification fails, an error trace

from the initial state to the failure state can be generated. This helps designers

to find bugs. Several ROBDD based model checkers possess this feature. Right

now the MDG model checker does not. A counter example facility could be
added in MDG to store the trace from a set of initial states to sets of states in

which the property is not satisfied.

4. Use error traces to guide reduction.

Beside the reduction approaches presented in this thesis, there are some other

approaches [GDOO] [CGJLVOO][WHLKZMDOO] that use error traces as a

guide to select the variables. When a property is violated on a reduced model,
its error trace is used to find out what information is lost in the reduction

process. Then hints can be given to guide the reduction process. The existing
methods that use preimage computation cannot be applied to the MDG model

checker. The error trace generator and new reduction algorithms of utilizing the
error traces for MDG could be another research in the future.

u
5. Develop interface translating Verilog or VHDL to MDG-HDL

The MDG model checker accepts circuit descriptions in the MDG-HDL

language, while some other tools (FormalCheck, VIS, SMV) accept circuit
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descriptions in simplified Verilog or VHDL, the most popular hardware

description languages. This makes those tools more easily applicable to real

designs. Since there is no array type in MDG-HDL, it is very hard for a user to

manually translate a circuit in Verilog/VHDL to MDG-HDL. An automatic

translation system from Verilog or VHDL to MDG-HDL is needed.

6. Combine theorem proving with MDG model checking

The MDG model checking tool can be linked with the theorem prover HOL

[PTCMSOO]. Since theorem proving is built on higher order logic, hierarchical

verification is possible where the module of design can be divided into several

submodules. There are several hybrid methods that combine theorem proving

with model checking [RSS95][JS93]. In the combined system, model checking

is used to verify the submodules and pass the results to the theorem prover that

completes the verification of the whole system. Theorem proving can verify

large circuits, but it is not automatic, while model checking is automatic, but it

cannot handle large design. Using the combined system, we can verify larger

designs partially automatically. A combined system MDG-HOL is currently

under study.

D

7. Solve the nontermination problem in MDG

Due to abstract sorts in MDG, reachability analysis may not terminate in

circuits with a cyclic behavior. Some early research proposed two methods to

solve the non-termination problem in some situations. One approach is to

modify the circuit description file in such a way that the generic constant initial

value is generalized by an abstract variable and the necessary rewriting rules

are added to avoid non-termination problem [ZSTCCL96]. The other one

[MSC97] provided an idea of generalizing the initial value by using a p-term

[CH95] to finitely represent the infinite sets of states generated during

reachability analysis. A more general method is expected that can automatically
analyze the description files and infer the two generalization methods.
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Appendix 1 MDG-HDL Code for the
Circuit in Figure 25

A Concrete model having 2 registers of 28 bits ;

u
J

:- multifile signal/2.
:- multifile component/2.
:- multifile outputs/1.
:- multifile st_nxst/2.
:- multifile init_val/2.
:- multifile init_var/2.
:- multifile par_strategy/2.
:- multifile next_state_partition/l.
- multifile output_^partition/l.
- dynamic signal/2.
- dynamic component/2.
- dynamic outputs/l.
- dynamic st_nxst/2.
- dynamic init_val/2.
- dynamic init_var/2.
- dynamic next_state_partition/l.

% input var
signal(s,bool).
% connection vars
signal(a0,bool).
signal(al,bool).
signal(a2,bool).
signal(a3,bool).
signal(a4,bool).
signalta5,bool).
signal(a6,bool).
signal(a7,bool).
signal(a8,bool).
signal(a9,bool).
signal(al0,bool).
signal(all,bool).
signal(al2,bool).
signal(al3,bool).
signal(al4,bool).
signal(al5,bool).
signal(al6,bool) .
signal(al7,bool).
signal(al8,bool).
signal(al9,bool).
signal(a20,bool).
signal(a21,bool).
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signal(a22,bool).
signal(a23,bool).
signal(a24,bool).
signal(a25,bool).
signal(a26,bool).
signal(a27,bool).

signal(c0,
signal(cl,
signal(c2,
signal(c3,
signal(c4,
signal(c5,
signal(c6,
signal(c7,
signal(c8,
signal(c9,
signal(cl0
signal(ell
signal(cl2
signal(cl3
signal(cl4
signal(cl5
signal(cl6
signal(cl7
signal(cl8
signal(cl9
signal(c20
signal(c21
signal(c22
signal(c23
signal(c24
signal(c25
signal(c26
signal(c27
signal(c28

bool).
bool).
bool).
bool).
bool).
bool) .
bool) .
bool) .
bool) .
bool) .
,bool) .
,bool) .
,bool) .
,bool) .
,bool) .
,bool) .
, bool) .
,bool) .
,bool) .
,bool) .
,bool) .
,bool) .
,bool) .
,bool) .
,bool) .
,bool) .
,bool) .
,bool) .
,bool).

signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal

(sumO,
(suml,
( sum2,
( sum3,

(sum4,
( sum5,

(sum6,
( sum7,
( sum8,

( sum9,
(sumlO

(sumll
(suml2

(suml3

(suml4
(suml5

(suml6

(suml7

(sumlS

bool) .
bool) .
bool) .
bool) .
bool) .
bool) .
bool) .
bool) .
bool) .
bool) .
,bool) .
,bool) .
,bool) .
,bool) .
,bool) .
,bool) .
,bool) .
,bool) .
,bool) .
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signal
signal
signal
signal
signal
signal
signal
signal

(suml9

( sum2 0
( sum21
(sum22
( sum2 3

( sum2 4
( sum2 5

( sum2 6
(sum27

,bool) .
,bool) .
,bool).
,bool).
,bool).
,bool).
,bool).
,bool).
,bool).

% state variables in the machine

signal(n_r,bool).
signal(r,bool).

0
^

0
J

signal(r0.
signal(r0.
signal(r0.
signal(r0.
signal(r0.
signal(r0.
signal(r0.
signal(r0.
signal(r0.
signal(r0.
signal(r0.
signal(r0.
signal(r0.
signal(r0.
signal(r0.
signal(r0.
signal(r0.
signal(r0.
signal(r0.
signal(r0.
signal(r0.
signal(r0.
signal(r0.
signal(r0.
signal(r0.
signal(r0.
signal(r0.
signal(r0.

_0,bool).
_l,bool).
_2.bool).
.3,bool).
_4,bool).
_5,bool).
.6,bool).
.7,bool).
_8,bool).
_9,bool).
_10,bool).
_ll,bool).
_12,bool).
_13,bool).
.14,bool).
_15,bool).
.16,bool).
.17,bool).
_18,bool).
.19,bool).
_20,bool).
_21,bool) .
_22,bool).
23,bool).
24,bool).
25,bool).
26,bool) .
27,bool).

signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal

(n_r0.
(n_r0.
(n_r0.
(n_r0_
(n_r0_
(n_r0_
(n_r0_
(n_r0_
(n_r0_
(n_r0_
(n_r0.
(n_r0_

.0,bool).

.l,bool).

.2,bool).

.3,bool).

.4,bool).

.5,bool).

.6,bool).

.7,bool).

.8,bool) .

.9,bool).

.10,bool) .
ll,bool) .
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signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal

(n_r0.
(n_r0.
(n_r0.
(n_r0_
(n_r0_
(n_r0_
(n_r0_
(n_r0.
( n_r0.
(n_r0.

(n_r0_
(n_r0.
(n_r0_
(n_r0.
(n_r0_
(n_r0.

.12,bool).

.13,bool).

.14,bool).

.15,bool).

.16,bool).

.17,bool).

.18,bool) .

.19,bool).

.20,bool).

.21,bool).

.22,bool).
23,bool).
24,bool) .
25,bool) .
26,bool) .
27,bool).

signal(rl.
signal(rl.
signal(rl.
signal(rl.
signal(rl.
signal(rl.
signal(rl.
signal(rl.
signal(rl.
signal(rl.
signal(rl.
signal(rl.
signal(rl.
signal(rl.
signal(rl.
signal(rl.
signal(rl.
signal(rl.
signal(rl.
signal(rl.
signal(rl.
signal(rl.
signal(rl.
signal(rl.
signal(rl.
signal(rl.
signal(rl.
signal(rl.

_0,bool).
_l,bool).
_2,bool).
J,bool).
.4,bool).
_5,bool).
.6,bool).
,7,bool).
.8,bool).
_9,bool).
_10,bool).
.ll.bool).
_12,bool).
.13,bool).
.14,bool).
_15,bool).
_16,bool).
.17,bool).
.18,bool).
.19,bool).
20,bool).
21,bool).
.22,bool).
23,bool) .
24,bool).
.25,bool) .
.26,bool).
27,bool).

signal
signal
signal
signal
signal
signal
signal
signal
signal
signal

(n_rl.

(n_rl_
(n_rl.
(n_rl_
(n_rl_
(n_rl.
(n_rl_
(n_rl.
(n_rl_
(n_rl_

.0,bool).

.l,bool).
_2,bool).
.3,bool).
.4,bool).
.5,bool).
.6,bool).
7,bool).
.8,bool).
9,bool).
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signal(n_rl.
signal(n_rl.
signal(n_rl.
signal(n_rl.
signal(n_rl.
signal(n_rl.
signal(n_rl.
signal(n_rl.
signal(n_rl.
signal(n_rl.
signal(n_rl.
signal(n_rl.
signal(n_rl.
signal(n_rl.
signal(n_rl.
signal(n_rl.
signal(n_rl.
signal(n_rl.

.10,bool).

.ll,bool).

.12,bool).
_13,bool).
.14,bool).
.15,bool).
.16,bool).
.17,bool).
.18,bool).
.19,bool).
20,bool).
21,bool) .
22,bool).
23,bool).
24,bool).
25,bool).
26,bool) .
27,bool).

% next state

st_nxst(r,n_r).

st_nxst(r0_0,n_r0_0).
st_nxst(r0_l,n_r0_l).
st_nxst(r0_2,n_r0_2).
st_nxst(r0_3,n_r0_3).
st_nxst(r0_4,n_r0_4).
st_nxst(r0_5,n_r0_5).
st_nxst(r0_6,n_r0_6).
s t_nxs t(r 0_7 , n_r 0_7 ) .
st_nxst(r0_8,n_r0_8).
st_nxst(r0_9,n_r0_9).
st_nxst(r0_10,n_r0_10).
st_nxst(r0_ll,n_r0_ll).
st_nxst(r0_12,n_r0_12).
st_nxst(r0_13,n_r0_13).
st_nxst(r0_14,n_r0_14).
st_nxst(r0_15,n_r0_15).
st_nxst(r0_16,n_r0_16).
st_nxst(r0_17,n_r0_17).
st_nxst(r0_18,n_r0_18).
st_nxst(r0_19,n_r0_19).
st_nxst(r0_20,n_r0_20).
st_nxst(r0_21,n_r0_21).
st_nxst(r0_22,n_r0_22).
st_nxst(r0_23,n_r0_23).
st_nxst(r0_24,n_r0_24).
st_nxst(r0_25,n_r0_25).
st_nxst(r0_26,n_r0_26).
st_nxst(r0_27,n_r0_27).

st_nxst(rl_0,n_rl_0).
st_nxst(rl_l,n_rl_l).
st_nxst(rl_2,n_rl_2) .
st_nxst(rl_3,n_rl_3) .
st_nxst(rl_4,n_rl_4).
st_nxst(rl_5,n_rl_5).
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st_nxst(ri.

st_nxst(ri.

st_nxst(ri.

st_nxst(ri.

st_nxsfc(ri.

st_nxst(ri.

st_nxst(ri.

sfc_nxst(ri.

st_nxst(ri.

st_nxst(ri.

st_nxst(ri.

st_nxst(ri.

st_nxst(ri.

st_nxst(rl.

st_nxst(ri.

st_nxst(ri.

st_nxst(ri.

st_nxst(rl_

st_nxst(ri.

st_nxst(ri.

st_nxst(ri.

st_nxst(ri.

_6,n_rl_6).
-7,n_rl_7).
_8,n_rl_8).
_9,n_rl_9).
_10,n_rl_10).
_ll,n_rl_ll).
.12,n_rl_12).
.13,n_rl_13).
.14,n_rl_14).
_15,n_rl_15).
_16,n_rl_16).
_17,n_rl_17).
_18,n_rl_18).
_19,n_rl_19).
_20,n_rl_20).
_21,n_rl_21).
_22,n_rl_22).
_23,n_rl_23).
_24,n_rl_24).
_25,n_rl_25).
_26,n_rl_26).
.27,n_rl_27).

u

% transition relation
component(fork_s,fork(input(s),output(n_r))).
component(comp_r,reg(input(n_r),output(r))).
component(constl,constant_signal(value(1), signal(cO))).
% For bitO
component(mux0_0,table([[s, n_r0_0],[0,sumO]
component(muxl_0,table([[s, n_rl_0],[1,sumO]

r0_0])) .
n_o] ) ) .

component(mux_r_0,table([[r,a0],[0,r0_0],[l,rl_0] ] ) ) .

component(comp_sum0,xor(input (cO,aO),output(sumO) ) ) .
component(comp_carrier0,and(input(c0,a0),output (cl))).

% For bitl

component(mux0_l,table([[s, n_r0_l],[0,suml]| r0_l ] ) ) .
component(muxl_l,table([ [s,n_rl_l],[1,suml] |rl_l])).

component(mux_r_l,tablet[[r,al],[0,r0_l],[l,rl_l] ] ) ) .

component(comp_suml,xor(input(cl,al),output(suml)) ) .
component(comp_carrierl,and (input(cl,al),output (c2 ) ) ) .

% For bit2
component(mux0_2,table([[s, n_r0_2],[0,sum2]| r0_2 ] ) ) .
component(muxl_2,table([[s, n_rl_2],[1,sum2]| rl_2 ] ) ) .

component(mux_r_2,table([[r,a2],[0, r0_2],[1,rl_2]])).

component(comp_sum2,xor (input(c2,a2),output (sum2))).
component(comp_carrier2,and( input(c2,a2),output(c3))) .

% For bit3



148

n

0

u

component(mux0_3,table([[s, n_r0_3],[0,sum3 ]| r0_3 ] ) ) .
component(muxl_3,table([[s, n_rl_3],[1,sum3]| rl_3 ] ) ) .

component(mux_r_3,table([[r,a3],[0, r0_3],[1,rl_3]])).

component(comp_sum3,xor(input(c3,a3) ,output(sum3))) .
component(comp_carrier3,and(input(c3,a3),output(c4))).

% For bit4

component(mux0_4,table([ [s,n_r0_4],[0,sum4]|r0_4] ) ) .
component(muxl_4,table([ [s,n_rl_4],[l,sum4] rl_4]) ) .

component(mux_r_4,tablet[[r,a4],[0,r0_4],[l,rl_4] ] ) ) .

component(comp_sum4,xor(input(c4,a4), output(sum4))).
component(comp_carrier4,and(input(c4,a4),output (c5))).

% For bit5
component(mux0_5,table([[s, n_r0_5],[0,sum5]| r0_5 ] ) ) .
component(muxl_5,table([[s, n_rl_5],[1,sum5]| rl_5 ] ) ) .

component(mux_r_5,table([[r,a5],[0, r0_5],[1,rl_5]])).

component(comp_sum5,xor(input(c5,a5),output(sum5))).
component(comp_carrier5,and(input(c5,a5),output(c6))) .

% For bit6
component(mux0_6,table([[s, n_r0_6],[0,sum6]| r0_6 ] ) ) .
component(muxl_6,table([[s, n_rl_6],[1,sum6]| rl_6 ] ) ) .

component(mux_r_6,tablet[[r,a6],[0,r0_6] ,[l,rl_6]])).

component(comp_sum6,xor(input(c6,a6).output (sum6))).
component(comp_carrier6,and(input(c6,a6),output(c7))) .

% For bit7
component(mux0_7,table([[s, n_r0_7],[0,sum7]| r0_7 ] ) ) .
component(muxl_7,table([[s, n_rl_7],[1,sum7]| rl_7 ] ) ) .

component(mux_r_7,table([[r,a7],[0,r0_7],[l,rl_7] ] ) ) .

component(comp_sum7,xor( input(c7,a7),output( sum7))).
component(comp_carrier7,and(input(c7,a7) ,output(c8))) .

% For bit8

component(mux0_8,table([[s, n_r0_8],[0,sum8]| r0_8 ] ) ) .
component(muxl_8,table;[[s,n_rl_8],[l,sum8] |rl_8])).

component(mux_r_8,table([[r,a8],[0, r0_8],[1,rl_8]])).

component(comp_sum8,xor(input(c8,a8),output(sum8)) ) .
component(comp_carrier8,and(input(c8,a8), output(c9))).

% For bit9
component(mux0_9,table([[s, n_r0_9],[0,sum9]| r0_9 ] ) ) .
component(muxl_9,table([[s, n_rl_9],[1,sum9]| rl_9 ] ) ) .
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component(mux_r_9,table([[r,a9],[0,r0_9],[l,rl_9] ] ) ) .

component(comp_sum9,xor(input(c9,a9), output(sum9))).
component(comp_carrier9,and(input(c9,a9),output(clO))) .

% For bitlO
component(mux0_10,table f[[s,n_r0_10],[0,sumlO] |r0_10])).
component(muxl_10,tablet[[s,n_rl_10],[l,suml0] |rl_10])).

component(mux_r_10,tablet[[r,al0],[0,r0_10] ,[l,rl_10]])).

component(comp_suml0,xor(input(cl0,al0),output(sumlO))).
component(comp_carrierl0,and(input(cl0,al0),output (ell))).

% For bitll

component(mux0_ll,table([ [s,n_r0_llj,[0,sumll]
component(muxl_ll,table([ [s,n_rl_ll],[l,sumll]

r0_ll])) .
n_ii])) .

component(mux_r_l1,tablet[[r,all],[0,r0_ll] ,[l,rl_ll]])).

component(comp_sumll,xor(input(ell,all),output(sumll))).
component(comp_carrierll,and(input(ell,all),output (c12))) .

% For bitl2

component(mux0_12,table([[s, n_r0_12],[0,suml2]| r0_12 ] ) ) .
component(muxl_12,table([[s, n_rl_12],[1,suml2]| rl_12 ] ) ) .

component(mux_r_12,table([[r, al2],[0,r0_0],[1,rl_0 ]] ) ) .

component(comp_suml2,xor(input(cl2,al2) ,output(suml2))) .
component(comp_carrierl2,and(input(cl2,al2) ,output(cl3))).

% For bitl3
component(mux0_13,table([[s, n_r0_13],[0,suml3]| r0_13 ] ) ) .
component (inuxl_13, tablet [ [s,n_rl_13] , [l,suml3] |rl_13])).

component(mux_r_13,tablet[[r,al3],[0,r0_13] ,[l,rl_13]])).

component(comp_suml3,xor(input(cl3 ,al3),output(suml3) ) ) .
component(comp_carrierl3,and(input(cl3,al3),output(cl4)) ) .

% For bitl4
component(mux0_14,table([[s,n_r0_14],[0,suml4] |r0_14])).
component(muxl_14,tablet[[s,n_rl_14],[1, suml4]]rl_14])).

component(mux_r_14,table([[r,al4],[0,r0_14] ,[l,rl_14]])).

component(comp_suml4,xor(input(cl4,al4),output(suml4))).
component(comp_carrierl4,and(input(cl4,al4), output(cl5))).

% For bitl5
component(mux0_l5,tablet[[s,n_r0_15],[0,suml5] |r0_15])).
component(muxl_15,tablet[[s,n_rl_15],[l,suml5] [rl_15])).

component(mux_r_15,tablet[[r,al5],[0,r0_15] ,[l,rl_15]])).
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component(comp_suml5,xor(input(cl5,al5),output(suml5) ) ) .
component(comp_carrierl5,andfinput(cl5,al5),output (c16))).

% For bitl6
component(mux0_l6,tablet[[s,n_r0_16].[0,suml6] |r0_16])).
component(muxl_16,table([[s,n_rl_16],[l,suml6] |rl_16])).

component(mux_r_l6,tablet[[r,al6],[0,r0_16] ,[l,rl_16]])).

component(comp_suml6,xor(input(cl6,al6), output(suml6))).
component(comp_carrierl6,and(input(cl6,al6),output (cl7))).

% For bitl7
component(mux0_17,table([[s, n_r0_17],[0,suml7]| r0_17 ] ) ) .
component(muxl_17,table([[s, n_rl_17],[1,suml7]| rl_17 ] ) ) .

component(mux_r_17,tablet[[r,al7],[0,r0_17],[l,rl_17] ] ) ) .

component(comp_suml7,xor(input(cl7,al7),output (suml7))).
component(comp_carrierl7,and(input(cl7,al7),output(cl8))).

% For bitl8
component(mux0_l8,tablet[[s,n_r0_18],[0,sumlS] |r0_18])).
component(muxl_18,tablet[[s,n_rl_18],[l,suml8] |rl_18])).

component(mux_r_18,tablet[[r,al8],[0,r0_18] ,[l,rl_18]])).

component(comp_suml8,xor(input(cl8,al8), output(suml8))).
component(comp_carrierl8,and(input(cl8,al8),output (c19)) ) .

% For bitl9
component(mux0_19,tablet[[s,n_r0_19],[0,suml9] |r0_19])).
component(muxl_19,table([[s, n_rl_19],[1,suml9]| rl_19 ] ) ) .

component(mux_r_19,tablet[[r,al9],[0,r0_19] ,[l,rl_19]])).

component(comp_suml9,xor(input(cl9,al9),output(suml9))).
component(comp_carrierl9,and(input(cl9,al9),output (c20))).

% For bit20
component(mux0_20,tablet[[s,n_r0_20],[0,sum20] |r0_20])).
component(muxl_2 0,table ([[s,n_rl_2 0],[l,sum2 0 ]|rl_2 0])).

component(mux_r_20,tablet[[r,a20],[0,r0_20],[l,rl_20] ] ) ) .

component(comp_sum20,xor(input(c20,a20), output(sum20))).
component(comp_carrier2 0, and(input(c20,a20), output(c21))).

% For bit21
component(mux0_21,tablet[[s,n_r0_21],[0,sum21] |r0_21])).
component(muxl_21,table;[[s,n_rl_21],[l,sum21] |rl_21])).

component(mux_r_21,tablet[[r,a21],[0,r0_21],[l,rl_21] J ) ) .

component(comp_sum21,xor(input(c2l,a2l),output(sum21))) .
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component(comp_carrier21,andfinput(c21,a21),output (c22))).

% For bit22
component(mux0_22,table;[[s,n_r0_22],[0,sum22] |r0_22])).
component(muxl_22,tablet[[s,n_rl_22],[l,sum22] |rl_22])).

component(mux_r_22,tablet[[r,a22],[0,r0_22] ,[l,rl_22]])).

component(comp_sum22,xor(input(c22,a22),output(sum22))).
component(comp_carrier22,and(input(c22,a22),output (c23))) .

% For bit23

component(mux0_23,tablet[[s,n_r0_23],[0,sum23] |r0_23])).
component(muxl_23,fcable([[s,n_rl_23],[l,sum23] |rl_23])).

component(mux_r_23,tablet[[r,a23], [0,r0_23],[l,rl_23]])).

component(comp_sum23,xor(input(c23,a23) ,output(sum23))).
component(comp_carrier23,and(input(c23,a23) ,output(c24))).

% For bit24
component(mux0_24,tablet[[s,n_r0_24],[0,sum24] |r0_24])).
component(muxl_24,tablet[[s,n_rl_24],[l,sum24] |rl_24])).

component(mux_r_24,tablet[[r,a24],[0,r0_24] ,[l,rl_24]])).

component(comp_sum24,xor(input(c24,a24),output(sum24))).
component(comp_carrier24,and(input(c24,a24),output(c25))).

% For bit25
component(mux0_25,tablet[[s,n_r0_25],[0,sum25] |r0_25])).
component(muxl_25,table([[s,n_rl_25],[l,sum25] |rl_25])).

component(mux_r_25,table;[[r,a25],[0,r0_25],[l,rl_25] ] ) ) .

component(comp_sum25,xor(input(c25,a25), output(sum25))).
component(comp_carrier25,and(input(c25,a25),output(c26))) .

% For bit26
component(mux0_2 6,table ([[s,n_r0_2 6],[0,sum2 6 ]|r0_2 6])) .
component(muxl_26,tablet[[s,n_rl_26],[l,sum26] |rl_26])).

component(mux_r_26,table([[r,a26],[0,r0_26],[l,rl_26] ] ) ) .

component(comp_sum26,xor(input(c26,a26), output(sum26))).
component(comp_carrier26,and(input(c26,a26),output(c27))) .

% For bit27
component(mux0_27,tablet[[s,n_r0_27],[0,sum27] |r0_27])).
component(muxl_27,tablet[[s,n_rl_27],[l,sum27] |rl_27])).

component(mux_r_27,tablet[[r,a27],[0,r0_27] ,[l,rl_27]])).

component(comp_sum2 7, xor ( input (c27 , a27 ) , output(sum2 7))).
component(comp_carrier27,and(input(c27,a27),output (c28))).
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outputs([flag]).

output_partition([]).

next_state_partition([
[[n_addedSignal2]],
[[n_adâeâSignal62]],
[[n_flag]],
[[n_r]],
[[n_r0_0]],
[[n_r0_l]],
[[n_r0_2]],
[[n_r0_3]],
[[n_r0_4]],
[[n_r0_5]],
[[n_r0_6]],
[tn_r0_7]],
[[n_r0_8]],
[[n_r0_9]],
[[n_r0_10]],
[[n_r0_ll]],
[[n_r0_12]],
[[n_r0_13]],
[[n_r0_14]],
[[n_r0_15]],
[[n_r0_16]],
[[n_r0_17]],
[[n_r0_18]],
[[n_r0_19]],
[[n_r0_20]],
[[n_r0_21]],
[[n_r0_22]],
[[n_r0_23]],
[[n_r0_24]],
[[n_r0_25]],
[[n_r0_26]],
[[n_r0_27]],
[[n_rl_0]],
[[n_rl_l]J,
[[n_rl_2]],
[[n_rl_3]],
[[n_rl_4]],
[[n_rl_5]],
[[n_rl_6]],
[[n_rl_7]],
[[n_rl_8]],
[[n_rl_9]],
[tn_rl_10]],
[[n_rl_ll]],
[[n_rl_12]] ,
[[n_rl_13]],
[[n_rl_14]],
[[n_rl_15]l,
[[n_rl_16]],
[[n_rl_17]],
[[n_rl_18]],
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[[n_rl.
[[n_rl_
[[n_rl.
[ [n_rl_
[[n_rl_
[[n_rl_
[[n_rl_
[[n_rl_
[[n_rl_
]).

.19]],

.20]],

.21]!,

.22]],

.23]],

.24]],

.25]],

.26]],

.27]]

par_strategy(auto,auto).

0

u
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Appendix 2 MDG-HDL Code for ITC

An ITC concrete model with 8 bit counters:

)

u

% Multifile declaration required by Prolog system.

- multifile component/2.
- multifile signal/2.
- multifile next_state_partition/l.
- multifile output_partition/l.
- multifile init_val/2.
- multifile init_var/2.
- multifile st_nxst/2.
- multifile outputs/1.
- multifile par_strategy/2.
- dynamic component/2.
- dynamic signal/2.
- dynamic next_state_partition/l.
- dynamic output_partition/l.
- dynamic st_nxst/2.
- dynamic inifc_val/2.
- dynamic init_var/2.

:- dynamic outputs/1.

%================= Inputs and Outputs

%--- Input signals---

signal(ie,bool).
signal(ix,bool).

signal(me,bool).
signal(mx,bool).

%--- Outputs ---

signal(irl_A,bool).
signal(igl_A,bool).
signal(itc_plus_A,bool).
signal(itc_min_A,bool).
signal(ic_min_A,bool).

signal(mrl_A,bool).
signal(mgl_A,bool).
signal(mtc_plus_A,bool).
signal(mtc_min_A,bool).
signal (ic_^>lus_A,bool) .
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%=============== Island Light Controller ================

%--- Input signals---

signal(ig_A,bool).
signal(iy_A,bool).

%--- Outputs ---

signal(ir_A,bool).
signal(iu_A,bool).

%--- State variables---

signal(is_A,mi_sort).

%--- Behavioral description for the island light controller-

0

component(is_comp_A,tablet[[is_A,ig_A,iy_A,ie,ix,n_is_A],
[green,*,0,0,*,green],
[green,*,0,l,*,entering],
[green,*,!,*,*,red],
[entering,*,*,0,*,green],
[entering,*,*,!,*,entering],
[red, 0,*,*,0,red],
[red, 1,*,*,0,green],
[red, *,*,*,1,exiting],
[exiting, *,*,*,0,red],
[exiting, *,*,*,l,exiting]])).

component(ir_comp_A,table([ [is_A,ie,ir_A],
[red,l,l]|0])).

component(irl_comp_A,table([ [is_A,irl_A],
[red.I],
[exiting,!]|0])) .

component(igl_comp_A,tablet[[is_A, igl_A],
[green,!],
[entering,!]|0])).

component(iu_comp_A,table( [ [ is_A, iu_A] ,
[green,!],
[entering,!]]0])) .

u

component(itc_plus_comp_A,table([ [is_A,iy_A,ie,itc_plus_A],
[green,0,1,l]|0])) .

component(itc_minus_comp_A,table([ [is_A,ix,itc_min_A],
[red,l,l]|0])).

component(ic_min_comp_A,table([[is_A, iy_A,ie,ic_min_A],
[green,0,1,l]|0])) .
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%=============== Mainland Light Controller ==================

%--- Input signals---

signal(mg_A,bool).
signal(my_A,bool).

%--- Outputs ---

signal(mr_A,bool).
signal(mu_A,bool).

%--- State variables---

signal(ms_A,mi_sort).

%--- Behavioral description for the mainland light controller---

component(ms_comp_A,table(
[[ms_A,mg_A,my_A,me,mx,lessn_ic_A,n_ms_A],
[green,*,*,*,*.0,red],
[ green,*,0,0,*,1,green],
[green,*,0,1,*,1,entering],
[green,*,!,*,*,1,red] ,
[entering,*,*,0,*,*,green],
[entering,*,*,!,*,*,entering],
[red, 0,*,*,0,*,red],
[red, 1,*,*,0,*,green],
[red, *,*,*,1,*,exiting],
[exiting, *,*,*,0,*,red],
[exiting, *,*,*,1,*,exiting]])).

component(mr_comp_A,table([ [ms_A,me,mr_A],
[red,l,l]|0])) .

component(mrl_comp_A,table([ [ms_A,mrl_A],
[red,1],

[exiting,!]|0])) .

component(mgl_comp_A,table([ [ms_A,mgl_A],
[green,1],
[entering,!]|0])) .

component(mu_comp_A,table ([ [ms_A, mu_A] ,
[green,1],
[entering,!]|0])).

u

component(mtc_plus_comp_A,table(
[ [ms_A,my_A,me,lessn_ic_A,mtc_plus_A],
[green,0,1,l,1] JO])).

component(mtc_minus_comp_A,table(
[ [ms_A,mx,mtc_min_A],
[red,l,l]|0])) .
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component(ic_plus_comp_A,table(
[[ms_A,my_A,me,lessn_ic_A,ic_plus_A],
[green,0,1,l,l]]0])) .

Ï-- Tunnel Controller

%--- State variables---

signal(fcs_A,fcs_sort).

%---- Behavioral description for the tunnel controller----

component(ts_comp_A,table(
[[ts_A,ir_A,mr_A,lessn_ic_A,
[dispatch,
[dispatch,
[dispatch,
[dispatch,
[dispatch,
[dispatch,
[dispatch,
[dispatch,
[iuse,
[iuse,
[muse,

[muse,
[iclear,
[iclear,
[mclear,
[mclear,

0,0,*,*,*,*,
0,1,0,*,*,*

0,1,1,*,!,*,
0,1,1,0,0,*,
0,1,1,1,0,*,

* * n *
f 9 f ^ f S ^ S

l,*.*.l,*,0.
* * * *

f ; / ? -*- /

* * * *n*
e f s f ^ l s

*,*,*,*,!,*,
•*•****
s f e f f ^ f

** * * *^

* * *n* *
f S S^ f ff S

* * * 1 * *
/ / / -L- / / /

* *n * *
/ / / '-' / / /

* *1 * *
/ / S J- l f f

*

*

equz_tc_A,iu_A,mu_A,n_fcs_A],
dispatch],
dispatch],
iuse] ,
iclear],
dispatch],
mclear],

dispatch],
muse] ,
iclear],
iuse] ,

mclear],

muse] ,
iclear],
dispatch],
mclear],
dispatch]])).

component(ig_comp_A,table([ [ts_A,ir_A,equz_tc_A,mu_A,ig_A],
[dispatch,l,l,0,1],
[mclear, *,!,*,!]|0])).

component(iy_comp_A,tablet[[ts_A,iy_A],
[iuse.l]|0])) .

component(mg_comp_A,table(
[[ts_A,ir_A,mr_A,lessn_ic_A,equz_tc_A, iu_A,mu_A,mg_A] ,
[iclear, *,*,*,!,*,*,!],
[dispatch, 0,1,1,1,0,*,1]|0] )).

component(my_comp_A,table([ [ts_A,my_A],
[muse,l]|0])).

%- Behavioral description for Counters

signal(tc_A_0,bool).
signal(tc_A_l,bool).
signal(tc_A_2,bool).
signal(tc_A_3,bool).
signal(tc_A_4,bool).
signal(tc_A_5,bool).
signal(tc_A_6,bool).
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signal(tc_A_7,bool).

signal
signal
signal
signal
signal
signal
signal
signal

signal
signal
signal
signal
signal
signal
signal
signal
signal

signal
signal
signal
signal
signal
signal
signal

(sum0,bool) .
(suml,bool) .

(sum2,bool).
(sum3,bool) .
(sum4,bool).
(sum5,bool).
(sum6,bool) .
(sum7,bool).

(c0,bool).
(cl,bool).
(c2,bool).
(c3,bool).
(c4,bool).
(c5,bool).
(c6,bool).
(c7,bool).
(c8,bool).

(sl,bool).
(s2,bool).
(s3,bool).
(s4,bool).
(s5,bool).
(s6,bool).
(s7,bool).

signal(tc.
signal(tc.
signal(tc.
signal(tc.
signal(tc.
signal(tc.
signal(tc.
signal(tc.

signal(c.
signal(c.
signal(c.
signal(c.
signal(c.
signal(c.
signal(c.
signal(c.

_0,bool).
_l,bool).
_2,bool).
_3,bool).
_4,bool).
_5,bool).
,6,bool).
_7,bool).

.l,bool).

.2,bool).
3,bool).
4,bool) .
5,bool).
.6,bool) .
7,bool).
8,bool) .

u

signal(ic_A_0,bool).
signal(ic_A_l,bool).
signal(ic_A_2,bool).
signal(ic_A_3,bool).
signal(ic_A_4,bool).
signal(ic_A_5,bool).
signal(ic_A_6,bool).
signal(ic_A_7,bool).
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signal
signal
signal
signal
signal
signal
signal
signal

signal
signal
signal
signal
signal
signal
signal
signal
signal

(ic0,bool).
(icl,bool).
(ic2,bool).
(ic3,bool).
(ic4,bool).
(ic5,bool).
(ic6,bool).
(ic7,bool).

(ca0,bool).
(cal,bool).
(ca2,bool).
(ca3,bool).
(ca4,bool).
(ca5,bool).
(ca6,bool).
(ca7,bool).
(ca8,bool).

signal(ic.
signal(ic.
signal(ic.
signal(ic.
signal(ic.
signal(ic.
signal(ic.
signal(ic.

signal(ca.
signal(ca_
signal(ca.
signal(ca.
signal(ca.
signal(ca.
signal(ca_
signal(ca.

_0,bool).
_l,bool).
_2,bool).
_3,bool).
_4,bool).
.5,bool).
_6,bool).
.7,bool).

.l,bool).

.2,bool).

.3,bool).
4,bool).
.5,bool).
.6,bool).
7,bool) .
.8,bool).

signal(s.
signal(s.
signal(s.
signal(s.
signal(s.
signal(s.
signal(s.

.l,bool).

.2,bool).
_3,bool).
.4,bool).
.5,bool).
.6,bool).
7,bool).

u

signal(tc_plus_A, bool).
signal(tc_min_A,bool).

signal(equz_tc_A, bool).
signal(lessn_ic_A,bool).

component(tc_plus_A, or(input(itc_plus_A, mtc_plus_A),
output(tc_plus_A))).

component(tc_minus_A,
or(input(itc_min_A,mtc_min_A),output(tc_min_A))).
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% For increasing 1 of the counter tc_A

component(constl,constanfc_signal(value(1), signal(cO))).
component(comp_sum0,xor(input(c0,tc_A_0),output(sumO))).
component(comp_carrier0,and(input(cO,tc_A_0) ,output(cl))).

component(comp_suml,xor(input(cl,fcc_A_l),output(suml))).
component(comp_carrierl,and (input(cl,tc_A_l ),output(c2))).

component(comp_sum2,xor (input(c2,tc_A_2 ),output(sum2 ) ) ) .
component(comp_carrier2,and (input(c2,tc_A_2 ),output(c3))).

component(comp_sum3,xor( input(c3,tc_A_3) ,output(sum3))).
component(comp_carrier3,and(input(c3,tc_A_3),output(c4))).

componenfc(comp_sum4,xor(input(c4,tc_A_4),output(sum4))).
component(comp_carrier4,and(input(c4,tc_A_4),output(c5))).

component(comp_sum5,xor (input(c5,tc_A_5) ,output(sum5))).
component(comp_carrier5,and(input(c5,tc_A_5),output(c6))).

component(comp_sum6,xor(input(c6,tc_A_6),output(sum6))).
component(comp_carrier6,and(input(c6,fcc_A_6),output(c7))).

component(comp_sum7,xor (input(c7,tc_A_7 ),output(sum7 ) ) ) .
component(comp_carrier7,and(input(c7,tc_A_7),output(c8))).

% For decreasing 1 of the counter tc_A

component(comp_tc_0,not (input(tc_A_0) ,output(tc_0))).
component(comp_fork,fork(input(tc_A_0), output(c_l))).

component(comp_s1,xor(input(c_l,tc_A_l),output(si))).
component(comp_tc_l,not(input(si),output(tc_l))).
component(comp_carril,or(input(c_l,tc_A_l),output(c_2))).

component(comp_s2,xor (input(c_2, tc_A_2),output(s2))).
component(comp_tc_2,not(input(s2),output(tc_2))).
component(comp_carri2,or( input(c_2,tc_A_2) ,output(c_3))).

component(comp_s3,xor (input f c_3, tc_A_3),output(s3))) .
component(comp_tc_3,not (input(s3),output( tc_3 ) ) ) .
component(comp_carri3,or(input (c_3 , tc_A_3 ) , output(c_4))).

component(comp_s4,xor (input(c_4,tc_A_4 ),output(s4))).
component(comp_tc_4,not(input(s4),output (tc_4))).
component(comp_carri4,or(input(c_4,tc_A_4),output(c_5))).

component(comp_s5,xor(input(c_5,tc_A_5),output (s5))) .
component(comp_tc_5,not(input(s5),output(tc_5))).
component(comp_carri5,or(input(c_5,tc_A_5),output(c_6))).

component(comp_s 6, xor(input(c_6 ,tc_A_6),output (s6 ) ) ) .
component(comp_fcc_6,not(input(s 6),output (tc_6))).
component(comp_carri6,or(input(c_6, tc_A_6),output(c_7)) ) .
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component(comp_s7,xor(input(c_7,tc_A_7) ,output(s7))).
component(comp_tc_7,not( input(s7),output(tc_7 ) ) ) .
component(comp_carri7,or(input(c_7,tc_A_7),output(c_8))).

% When tc_A reaches 255 and tc_plus_A=l, tc_A remains 255.
% When tc_A reaches 0 and tc_min_A=l, tc_A remains 0.

component(tc_A_0, table (
[[tc_plus_A, tc_min_A, c8, c_8, sumO, tc_0, n_tc_A_0],
[1,0,0,*,0,*,0], [1,0,0,*,1,*,1], [1,0,1,*,*,*,!],
[0,1,*,!,*,0,0], [0,!,*,!,*,!,!], [0,1,*,0,*,*,0]
|tc_A_0] )).

component(tc_A_l, table (
[ [tc__plus_A, tc_min_A, c8, c_8, suml, tc_l, n_fcc_A_l],

[1,0,0,*,0,*,0],
[0,1,*,!,*,0,0],
|tc_A_l] )).

[1,0,0,*,!,*,l],
[0,1,*,!,*,1,1],

[1,0,1,*,*,*,!],
[0,1,*,0,*,*,0]

component(tc_A_2, table (
[[tc_plus_A, tc_min_A, c8, c_8, sum2, tc_2 , n_tc_A_2],
[1,0,0,*,0,*,0], [l.0,0,*,!,*,!], [1,0,1,*,*,*,!],
[0,1,*,!,*,0,0], [0,1,*,!,*,1,1], [0,1,*,0,*,*,0]
|tc_A_2] )).

component(tc_A_3, table (
[[tc_plus_A, tc_min_A, c8, c_8, sum3, tc_3, n_tc_A_3],
[1,0,0,*,0,*,0], [1,0,0,*,!,*,l],
[0,1,*,!,*,0,0], [0,1,*,!,*,1,1],
tc_A_3 ] ) ) .

[1,0,1,*,*,*,!],
[0,1,*,0,*,*,0]

component(tc_A_4, table (
[[tc_plus_A, tc_min_A, c8, c_8, sum4, tc_4, n_tc_A_4] ,
[1,0,0,*,0,*,0], [1,0,0,*,!,*,l], [1,0,1,*,*,*,!],
[0,1,*,1,*,0,0], [0,1,*,!,*,1,1], [0,1,*,0,*,*,0]
tc_A_4] ) ) .

tc_5, n_tc_A_5],
component(tc_A_5, table (

[[tc_plus_A, tc_min_A, c8, c_8, sum5,
[1,0,0,*,0,*,0], [1,0,0,*,!,*,l], [1,0,1,*,*,*,!],
[0,1,*,1,*,0,0], [0,1,*,!,*,!,l], [0,1,*,0,*,*,0]
tc_A_5] )).

tc_6 , n_tc_A_6 ] ,
component(tc_A_6, table (

[[tc_plus_A, tc_min_A, c8, c_8, sum6,
[1,0,0,*,0,*,0], [1,0,0,*,!,*,l], [1.0,1,*,*,*,!],
[0,1,*,!,*,0,0], [0,1,*,!,*,1,1], [0,1,*,0,*,*,0]
tc_A_6] )).

component(tc_A_7, table (
[[tc_plus_A, tc_min_A, c8, c_8, sum7, tc_7, n_tc_A_7],
[l,0,0,*,0,*,0j, [1,0,0.*,!,*,l], [1,0,1,*,*,*,!],
[0,1,*,!,*,0,0], [0,1,*,!,*,1,1], [0,1,*,0,*,*,0]
|tc_A_7] )).
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% For increasing 1 of the counter ic_A

component(const2,constant_signal(value (1),signal(ca0))).
component(comp_ic0,xor(input(caO,ic_A_0),output(ic0))).
component(comp_carr0,and(input(caO,ic_A_0),output(cal))).

component(comp_icl,xor(input(cal,ic_A_l),output(ici))).
component(comp_carrl,and (input(cal, ic_A_l),output( ca2 ) ) ) .

component(comp_ic2,xor(input(ca2,ic_A_2),output(ic2))).
component(comp_carr2,and (input(ca2, ic_A_2),output( ca3 ) ) ) .

component(comp_ic3,xor( input(ca3,ic_A_3 ),output(ic3 ) ) ) .
component(comp_carr3,and (input(ca3, ic_A_3),output( ca4 ) ) ) .

component(comp_ic4,xor(input(ca4,ic_A_4),output(ic4))).
component(comp_carr4,and (input(ca4, ic_A_4),output( ca5 ) ) ) .

component(comp_ic5,xor(input(ca5,ic_A_5),output(ic5))).
component(comp_carr5,and (input(ca5,ic_A_5 ),output(ca6))).

component(comp_ic6,xor( input(ca6,ic_A_6), output(ic6))).
component(comp_carr6,and(input(ca6,ic_A_6),output(ca7))).

component(comp_ic7,xor (input(ca7, ic_A_7),output( ic7 ) ) ) .
component(comp_carr7,and(input(ca7,ic_A_7),output(ca8))).

% For decreasing 1 of the counter ic_A

component(comp_ic_0,not (input(ic_A_0) ,output(ic_0))).
component(comp_fork2,fork (input(ic_A_0) ,output(ca_l))).

component(comp_s_l,xor( input(ca_l,ic_A_l ),output(s_l ) ) ) .
component(comp_ic_l,not (input(s_l) ,output(ic_l))).
component(comp_ca_l,or (input(ca_l, ic_A_l),output( ca_2 ) ) ) .

component(comp_s_2,xor( input(ca_2,ic_A_2 ),output(s_2 ) ) ) .
component(comp_ic_2,not (input(s_2) ,output(ic_2))).
component(comp_ca_2,or (input(ca_2, ic_A_2),output( ca_3 ) ) ) .

component(comp_s_3,xor (input(ca_3, ic_A_3),output( s_3 ) ) ) .
component(comp_ic_3,not (input(s_3) ,output(ic_3))).
component(comp_ca_3,or(input(ca_3 ,ic_A_3),output(ca_4) ) ) .

component(comp_s_4,xor (input(ca_4, ic_A_4),output( s_4 ) ) ) .
component(comp_ic_4,not (input(s_4) ,output(ic_4))).
component(comp_ca_4,or (input(ca_4, ic_A_4),output( ca_5 ) ) ) .

component(comp_s_5,xor(input(ca_5,ic_A_5),output(s_5))).
component(comp_ic_5,not( input(s_5), output(ic_5))).
component(comp_ca_5,or (input(ca_5, ic_A_5),output( ca_6 ) ) ) .

component(comp_s_6,xor (input(ca_6, ic_A_6),output( s_6 ) ) ) .
component(comp_ic_6,not( input(s_6), output(ic_6))).
component(comp_ca_6,or( input(ca_6,ic_A_6 ),output(ca_7 ) ) ) .
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component(comp_s_7,xor (input(ca_7, ic_A_7),output( s_7 ) ) ) .
component(comp_ic_7,not( input(s_7), output(ic_7))).
component(comp_ca_7,or (input(ca_7, ic_A_7),output( ca_8 ) ) ) .

% When ic_A reaches 255 and ic_plus_A=l, ic_A remains 255.
% When ic_A reaches 0 and ic_min_A=l, ic_A remains 0.

component(ic_A_0, table (
[[ic_plus_A, ic_min_A, ca8, ca_8, icO, ic_0, n_ic_A_0] ,
[1,0,0,*,0.*,0], [1,0,0,*,!,*,l], [1,0,1,*,*,*,!],
[0,1,*,!,*,0,0], [0,1,*,!,*,1,1], [0,1,*,0,*,*,0]
|ic_A_0] )).

component(ic_A_l, table (
[[ic_plus_A, ic_min_A, ca8, ca_8, ici, ic_l, n_ic_A_l] ,
[1,0,0,*,0,*,0], [1,0,0,*,!,*,l], [1,0,1,*,*,*,!],
[0,1,*,!,*,0,0], [0,1,*,!,*,1,1], [0,1,*,0,*,*,0]
|ic_A_l] )).

component(ic_A_2, table (
[[ic_plus_A, ic_min_A, ca8, ca_8, ic2, ic_2, n_ic_A_2],
[1,0,0,*,0,*,0], [1,0,0,*,1,*,1], [1,0,1,*,*,*,!],
[0,1,*,!,*.0,0],
ic_A_2] )).

[0,1,*,!,*,!,l], [0,1,*,0,*,*,0]

component(ic_A_3, table (
[[ic__plus_A, ic_min_A, ca8, ca_8, ic3, ic_3, n_ic_A_3],
[1,0,0,*,0,*,0], [1,0,0,*,!,*,!], [1,0,1,*,*,*,!],
[0,1,*,!,*,0,0], [0,1,*,!,*,1,1], [0,1,*,0,*,*,0]
|ic_A_3] )).

component(ic_A_4, table (
[[ic_plus_A, ic_min_A, ca8, ca_8, ic4, ic_4, n_ic_A_4],
[1,0,0,*,0,*,0], [1,0,0,*,!,*,l], [1,0,1,*,*,*,!],
[0,1,*,!,*,0,0], [0,1,*,!,*,1,1], [0,1,*,0,*,*,0]
|ic_A_4] )).

component(ic_A_5, table(
[[ic_plus_A, ic_min_A, ca8, ca_8, ic5, ic_5, n_ic_A_5],
[1,0,0.*,0,*,0], [l,0,0,*,!,*,!], [1,0,1,*,*,*,!],
[0,1,*,!,*,0,0], [0,1,*,!,*,!,l], [0,1,*,0,*,*,0]
ic_A_5] )).

component(ic_A_6, tablet
[[ic_plus_A, ic_min_A, ca8, ca_8, ic6, ic_6, n_ic_A_6],
[1,0,0,*,0,*,0], [l,0,0,*,!.*,l], [1,0,1,*,*,*,!],
[0,1,*,!,*,0,0], [0,1,*,!,*,1,1], [0,1,*,0,*,*,0]
ic_A_6] )).

component(ic_A_7, table (
[[ic_plus_A, ic_min_A, ca8, ca_8, ic7, ic_7, n_ic_A_7],
[1,0,0,*,0,*,0], [l,0,0,*,!,*,l], [1,0,1,*,*,*,!],
[0,1,*,!,*,0,0], [0,1,*,!,*,1,1], [0,1,*,0,*,*,0]
|ic_A_7] )).
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component(equz_tc_A,
table([[tc_A_7 , tc_A_6 , tc_A_5 , tc_A_4 , tc_A_3 , tc_A_2 ,tc_A_l,tc_A_0, eq
uz_tc_A], [0,0,0,0,0,0,0,0, 1]|0])).

component(lessn_ic_A,
table([[ic_A_7 ,ic_A_6,ic_A_5, ic_A_4,ic_A_3,ic_A_2 ,ic_A_l,ic_A_0,
lessn_ic_A], [1,1,1,1,1,1,1,1, 0]|l])).

0

u

%--- Initial states ---

init_val(is_A,red).
inifc_val (ins_A, red) .
init_val(ts_A,dispatch).

init_val(tc_A_0,0).
init_val(tc_A_l,0).
init_val(tc_A_2,0).
init_val(tc_A_3,0).
init_val(tc_A_4,0).
init_val(fcc_A_5,0).
init_val(tc_A_6,0).
init_val(tc_A_7,0).

init_val(ic_A_0,0).
init_val(ic_A_l,0).
init_val(ic_A_2,0).
init_val(ic_A_3,0).
init_val(ic_A_4,0).
init_val(ic_A_5,0).
init_val(ic_A_6,0).
init_val(ic_A_7,0).

%--- Outputs ---

outputs([irl_A, igl_A, mrl_A, mgl_A, itc_plus_A, mtc_plus_A,
ic_plus_A, ic_min_A]).

%--- Partitions ---

output_partition([[[irl_A]] ,[[igl_A]], [[mrl_A]],[ [mgl_A]
[[itc_plus_A]], [[mtc_plus_A]],
[[ic_plus_A]], [[ic_min_A]]]).

next_state_partition([
[[n_is_A]],
[[n_ms_A]],
[[n_ts_A]],
[ [n_tc_A_0] ] ,
[[n_tc_A_l]],
[[n_tc_A_2]],
[[n_tc_A_3]],
[[n_tc_A_4]],
[[n_tc_A_5]],
[[n_fcc_A_6]] ,

/
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[[n_tc_A_7]],

[[n_ic_A_0]],
[[n_ic_A_l]],
[[n_ic_A_2]],
[[n_ic_A_3]],
[[n_ic_A_4]],
[[n_ic_A_5]],
[[n_ic_A_6]],
[[n_ic_A_7]]
]).

%--- State variable, next state variable mapping---

st_nxst(is_A,n_is_A).
st_nxst(ms_A,n_ms_A).
st_nxst(ts_A,n_ts_A).

st_nxst

st_nxst
st nxst

st_nxst

st_nxst

st_nxst

st_nxst

st_nxst

st_nxst

st_nxst

st_nxst

st_nxst

st_nxst

st_nxst

st_nxst

st_nxst

( tc_A_0, n_
( tc_A_l, n.
( tc_A_2, n.
( tc_A_3, n_
( tc_A_4, n_
(tc_A_5,n_
( tc_A_6, n_
(tc_A_7,n_

-tc_A_0) .

tc_A_l) .
tc_A_2 ) .
tc_A_3 ) .
tc_A_4) .
tc_A_5) .
tc_A_6) .
tc_A_7) .

(ic_A_0,n_ic_A_0).
(ic_A_l,n_ic_A_l).
(ic_A_2,n_ic_A_2).
( ic_A_3,n_ic_A_3).
(ic_A_4,n_ic_A_4).
(ic_A_5,n_ic_A_5).
(ic_A_6,n_ic_A_6).
(ic_A_7,n_ic_A_7).

%--- Partition strategy--'

par_strategy(auto, auto).

u



n
166

Appendix 3 Verilog Code for ITC

The ITC model with 8 bit counters;

0

u

'define green 0
'define entering 1
'define red 2
'define exiting 3
'define dispatch 0
'define iuse 1
'define muse 2
'define iclear 3
'define mclear 4

/*: Main module :*/

module main(elk,rst,igl ,irl,mgl,mrl);
input elk, rst;
output igl,irl,mgl,mrl;

wire ie,ix,me,mx,igl,irl,mgl,mrl;
wire ic_plus,ic_minus, itc_plus,itc_minus,mtc_plus ,mtc_minus;
wire [7:0] tc,ic;

sensor sensor(elk,rst, ie,ix,me,mx);
counter counter(elk,rst,tc,ic,ic_plus,ic_minus,

itc_plus, itc_minus,mtc_j)lus,mtc_minus) ;
island islandfclk,rst,ie,ix,igl,ir 1, ic_minus,

itc_plus,itc_minus,iu,ir,ig,iy);
mainland mainlandfclk,rst,me,mx,mgl,mrl,ic,ic^plus,

mtc_plus,mtc_minus,mu,mr,mg,my);
tunnel tunnel(elk,rst,iu, ir,ig,iy,mu,mr,mg,my,tc,ic);

endmodule

module sensor(elk,rst,ie,ix,me,mx);
input clk,rst;
output ie,ix,me,mx;

wire rand_choicel,rand_choice2, rand_choice3,rand_choice4;
reg ie,ix,me,mx;

always ©(poseâge clk)
begin

if (rst==l'bl) // reset all flops
begin

ie = 0;
ix = 0;
me = 0;

mx = 0;
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end

else
begin
if (rand_choicel==0)

ie = 0;
else

ie = l;
if (rand_choice2==0)

ix = 0;
else

ix = l;
if (rand_choice3==0)

me = 0 ;
else

me = l;
if (ranâ_choice4==0)

mx = 0;

else
mx = l;

end

end
endmodule

/*=================== Counters

module counter(elk,rst, tc,ic,

=*/

J

ic__plus,ic_minus,itc_plus ,itc_minus,mtc_plus, mtc_minus);
input clk,rst;
input ic_plus,ic_minus, itc_plus,ifcc_minus,mtc_plus ,mtc_minus;
output tc,ic;

reg [7:0] tc,ic;
wire ic_plus,ic_minus,itc_plus,itc_minus,mtc_plus,mtc_minus;

always @(posedge elk)
begin

if (rst==l'bl) // reset all flops
begin
te = 0;
ic = 0;

end

else

begin
if ((ic_minus==l)&&(ic > 0)) ic = ic - 1;
else if ((ic_plus==l)&&(ic<255)) ic = ic + 1;
else ic = ic;

if ((itc_minus==l)&&(tc>0)) tc= te - 1;
else if ( (itc_plus==l) &&(tc<255)) te = te + 1;
else if ((mtc_minus==l)&&(tc>0)) te = te - 1;
else if ((mtcjplus==l) &&(tc<255)) te = te + 1;
else te = te;

end
end
endmoâule
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/*= Island Light Controller --* l

0

module islandfclk,rst,ie,ix, igl,irl,ic_minus,
itc^ilus, itc_minus, iu, ir, ig, iy) ;

input clk,rst;
input ie,ix,ig,iy;
output igl,irl,ic_minus,itc_plus, itc_minus,iu,ir;

wire ie,ix,ig,iy,igl,irl,iu,ir;
wire ic_minus,ifcc_plus, itc_minus;

reg [1:0] is;

always @(poseâge clk)
begin

if (rst==l'bl) // reset all flops
begin

is = ''red;

end
else

begin
case (is)
'green: if ((iy==0)&&(ie==0)) is = 'green;

else if ((iy==0)&&(ie==l)) is = 'entering;
else is = 'red;

'entering: if (ie==0) is = 'green;
else is = 'entering;

'red: if ((ix==0)&&(ig==0)) is = 'red;
else if ((ix==0)&&(ig==l)) is = 'green;
else is == 'exiting;

'exiting: if (ix==0) is = 'red;
else is = 'exiting;

endcase

end

end

assign ir = ((is=='reâ)&&(ie==l)) ? l : 0;

assign iu = ((is=='green)| |(is=='entering)) ? 1 : 0;

assign irl = ((is==Tea)||(is=='exiting)) ? 1 : 0;

assign igl = ((is=='green) (is=='entering)) ? 1 : 0;

assign itc_plus = ((is=='green)&&(iy==0)&&(ie==l)) ? 1 : 0;

assign itc_minus = ((is==*red)&&(ix==l)) ? 1 : 0;

assign ic_minus = ((is=='green)&&(iy==0)&&(ie==l)) ? 1 : 0;

endmodule
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/*= Mainland Light Controller *•/

0

u

module mainlandfclk,rst,me,mx,mgl,mrl,ic,ic_plus,
mtc_plus,mtc_minus,mu,mr,mg,my) ;

input clk,rsfc;
input [7:0] ic;
input me,mx,mg,my;
output mgl,mrl, ic_plus,mtc_plus,mtc_minus , mu, mr ;

wire [7:0] ic;
wire me,mx,mg,my;
wire mgl,mrl, ic_plus,mtc_plus,mtc_minus , mu, mr ;

reg [1:0] ms;

always @(posedge elk)
begin

if (rst==l'bl) // reset all flops
begin

ms = * red;
end

else
begin

case (ms)
'green: if (ic<255) ms = 'red;

else if ((my==0)&&(me==0)) ms = 'green;
else if ((my==0)&&(me==l)) ms = 'entering;
else ms = 'red;

'entering: if (me==0) ms = 'green;
else ms = 'entering;

'red: if ( (znx==0) && (mg==0) ) ms = 'red;
else if ((mx==0)&&(mg==l)) ms = 'green;
else ms = 'exiting;

'exiting: if (mx==0) ms = 'red;
else ms = 'exiting;

endcase

end

end

assign mr = ((ms==*red)&&(me==l)) ? l : 0;

assign mu = ((ms=='green)| j (ms=='entering)) ? l : 0;

assign mrl = ((ms=='red)| |(ms=='exiting)) ? 1 : 0;

assign mgl = ((ms=='green)| |(ms=='entering)) ? 1 : 0;

assign mtc_plus =((ms=='green)&&(my==0)&&(me==l)
&&(ic<255)) ?1 : 0;

assign mtc_minus = ((ms=='red)&&(mx==l)) ? 1 : 0;

assign ic_jplus = ((ms=='green)&&(my==0)&&(me==l)&&(ic<255))? 1:0;

endmodule
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/*================= Tunnel Controller ==================*/

module tunnel(elk,rsfc,iu,ir,ig,iy,mu,mr,mg,my,te,ic);

input elk,rst;
input [7:0] ic, te;
input iu,ir,mu,mr;
output ig,iy,mg,my;

wire [7:0] ic, te;
wire iu,ir,mu,mr;
wire ig,iy,mg,my;

reg [2:0] ts;

always @(posedge elk)
begin

if (rst==l'bl) // reset all flops
begin

ts = 'dispatch;
end

else

begin
case (ts)

'dispatch: if ((ir==0)&&(mr==0))
ts = 'dispatch;

else if ((ir==0)&&(mr==l)&&(ic>=255))
ts = 'dispatch;

else if ((ir==0)&&(mr==l)&&(ic<255)&&(iu==l))
fcs = 'iuse;

else if ((ir==0)&&(mr==l)&&(ic<255)&&(iu==0)&&(tc!=0))
ts=liclear;

else if ((ir==0)&&(mr==l)&&(ic<255)&&(iu==0)&&(tc==0))
fcs=*dispatch;

else if ((ir==l)&&(mu==l))
ts='muse;

else if ((ir==l)&&(mu==0)&&(tc!=0))
ts='mclear;

else ts='dispatch;
'iuse: if (iu==0) ts = 'iclear;

else ts = 'iuse;
'muse: if (mu==0) ts = 'mclear;

else ts = 'muse;
'iclear: if (tc!=0) ts = 'iclear;

else ts = 'dispatch;
'mclear: if (tc!=0) ts = 'mclear;

else ts = 'dispatch;
endcase

end

end

assign ig = (((ts=='dispatch)&&(ir==l)&&(tc==0)&&(mu==0))
((ts=='mclear)&&(tc==0))) ? l : 0;
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assign iy

assign mg

assign my

endmodule

(ts=='iuse) ? l : 0;

(((ts==*dispatch)&&(ir==0)&&(mr==l)&&(ic<255)&&
(tc==0)&&(iu==0)) [l ((ts=='iclear)&&(tc==0)))? l

(ts=='muse) ? l : 0;

0;

0

<J


