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Résumé

L'un des défis de la biologie moléculaire est d'identifier les gènes et les autres

éléments génétiques dans des séquences d'ADN d'une longueur de plusieurs milliers

et même de plusieurs millions de nucléotides. Du fait de la grande quantité d'ADN

séquencée chaque année, le décodage de l'infomiation génétique ne peut pas reposer

sur la seule utilisation de méthodes expérimentales, et l'utilisation d'algorithmes de

recherche devient indispensable. Plusieurs méthodes ont été développées pour la

recherche de motifs biologiques plus ou moins complexes. L'inconvénient majeur de

ces méthodes est le manque de flexibilité dans la définition des motifs à rechercher.

Quelle que soit la méthode utilisée, elle est toujours basée sur la recherche de sous-

structures primaires ou secondaires conservées. Les sous-structures secondaires

conservées sont généralement des hélices formées d'un bras d'appariements et d'une

boucle. L'algorithme de Sagot-Viari est l'un des algorithmes les plus appropriés pour

la recherche de telles hélices. Son avantage majeur est de permettre toutes sortes

d'incertitudes dans le motif (insertions, suppressions, substitution de nucléotides ou

de paires de bases). Les hélices sont définies par les tailles maximales et minimales

de boucle et de bras, et le nombre maximal d'erreurs autorisées. Dans ce mémoire,

nous généralisons cet algorithme à toutes sortes d'hélices comprenant des boucles

internes et panse, des bases invariantes et semi-invariantes, et nous utilisons des

scores pour filtrer les résultats. Nous appliquons l'algorithme à la recherche des

gènes d'ARN 5S et de RNase P RNA dans différents génomes.

u

Mots klef: hélice, ARN, structure secondaire, génome, algorithme de recherche.



IV

n

Abstract

One of the challenges of molecular biology is to identify the different genes and

other genetic elements that play a major role in the biological function of the

organism. Due to the large variety of genomes sequenced each year, DNA analysis

cannot rely exclusively on experimental methods, and a preliminary computer

processing of sequences is usually considered. Several methods have been

developed for identifying more or less complex RNA structures in a genome. Each

of these methods has its advantages and drawbacks, but the general problem is the

lack of flexibility in defining the structure to be searched for.

Whatever the method is, it is always based on the identification of various conserved

primary and secondary sub-structures called helices. One of the most appropriate

algorithms for identifying helices (stem-loop stmctures) is the Sagot-Viari algorithm,

as it allows for various kinds of uncertainties (insertion, deletion and substitution of

nucleotides and base-pairs). The helices in the Sagot-Viari algorithm are defined by a

loop length, a step length, and a maximal number of allowed errors. In this

dissertation, we extend the Sagot-Viari algorithm to allow for searching different

kinds of helices with possible preserved internal loops and bulges, conserved or

semi-conserved nucleotides, and various kinds of scores. We use our new algorithm

to identify the 5 S RNA genes and the RNase P RNAs in different genomes.

Keywords: helix, RNA, secondary stmcture, genomic sequence, searching

algorithm.
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Chapter 1

Introduction

The genetic inheritance of any organism is contained in its genome made up of one

or several DNA molecules. Each molecule can be seen as a sequence of four

nucleotides: A, C, G, T. This observation that the DNA contains all the "instmctions"

responsible of the biological functions of an organism as well as the mechanism to

carry out these instructions is known as the "Central Dogma of molecular biology".

The genes are the parts of the DNA molecule that contain all the genetic information.

In particular, "coding sequences" are the genes containing the instmctions for protein

synthesis. These macromolecules play a major role in the genetic machinery.

The general mechanism for decoding the "genetic message" follows two major steps.

The first one is the "transcription" of the DNA into RNA. More precisely, the coding

regions of the genome are "copied" into RNA molecules (mRNAs, tRNAs and

ribosomal RNAs). The second step is the "translation". The genetic message

contained in the mRNA is then "read" and "translated" into proteins. The primary

structure of the RNA is a sequence of four nucleotides: A, C, G, U. The molecule

folds into a secondary and tertiary structure, by forming hydrogen bonds between

nucleotides A, U, and nucleotides G, C. The paired regions of the RNA are called

helices.

u
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The challenge of molecular biology is to understand the genetic message contained

in the DNA. In particular, the goal is to identify the different genes and other genetic

elements that play a major role in the biological function of the organism. Such

coding sequences can be of several thousands and even of several million

nucleotides long. Because of the huge amount of information contained in the

databases and the large variety of new genomes sequenced each year, DNA analysis

cannot rely exclusively on experimental methods, and a preliminary computer

processing of sequences is usually considered. For example, whenever a new gene is

sequenced, the first task is to use a research tool such as PASTA [PL88] or BLAST

[AGM90] to search for homologous genes in the existing genomic databases. More

sophisticated algorithms for searching more complex RNA structures have also been

developed. Such algorithms are used to "filter" the DNA parts that can possibly

contain specific genes. Experimental methods can then be used to verify such

hypotheses.

According to different empirical methods, biochemical techniques, multiple

sequence alignment and dynamic programming algorithms, some common secondary

stmctures of certain RNA families and other genetic elements have been determined.

In particular, tRNA molecules have been extensively studied. The corresponding

gene sequence is short (about 75 nucleotides), and the primary, secondary and even

tertiary structure is very conserved [RRB76]. Other more complex and less

constrained stmctures have been studied, such as group I and II introns [LDM94,

KKB94, MU089], bacterial RNase P RNA [MJW98, LBK97] and various ribosomal

RNAs. However, in most cases, the consensus stmcturc is very difficult to establish,

and only some characteristics of the primary and secondary structure are known.

Several methods have been developed for identifying more or less complex RNA

structures. Some of them are "tailor-made" for searching specific gene families. For

example, many algorithms have been developed to identify all tRNA genes in a
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genome [FB91, EML96, LE97], and others have been developed for searching the

Escherichia coli transcription terminator [dCBT90], snoRNAs [LE99, OLROO], and

group I introns [LDM94]. The idea is to find the conditions that precisely and

uniquely define a specific gene family, and to develop an algorithm that takes all

these constraints into account. Other methods are more general and designed to

search for any kind of constrained sequences described by the user in an input file.

This is the case of RNAmot [GMC90], RNAbob[Edd96], Palingol[BKV96]. The

major disadvantage of these methods is the lack of flexibility in defining the

stmctures to be identified. For example, it is hard, if not impossible, to search for

helices with potential internal loops and bulges (unpaired regions). More generally

any difference between the most common stmcture and a variation of this structure is

difficult to include in the definition of a consensus stmcture.

Whatever the method is, it is always based on the identification of various conserved

primary and secondary sub-structures. Given an initial alignment of homologous

sequences in different genomes, a conserved sub-structure is one approximately

repeated at the same position in all the sequences of the alignment. As for conserved

secondary sub-structures (stem-loop stmctures, pseudo-knots), they are defined by

conserved nucleotides, stem length, loop length and possible bulges and internal

loops. Our goal here is to develop a very flexible tool that will help the biologist in

identifying all kinds of secondary sub-stmctures, with different kinds of deviations

(errors).

One of the most flexible algorithms for identifying structural objects, such as helices

(stem-loops), pseudoknots and triple helices is probably the Sagot-Viari algorithm

[SV97]. The algorithm treats the problem of errors with the help of an object called a

model against which the comparisons arc made. In this case, a model is either a

word or a pair of words over the same alphabet as that of the sequences that have

both direct and inverse occurrences in the sequence. Moreover, errors (substitutions,
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deletions and insertions) are allowed between a model and its inverse occurrences.

Helix stems may, therefore, present bulges or interior loops. Reasonably efficient

performance comes from the fact that the parts composing the structures are kept

separated until the end and that filtering for valid occurrences (occurrences that may

form part of such a structure) can be done in 0(n) time where n is the length of the

sequence. In the Sagot-Viari algorithm the helices are defined by a loop length, a

stem length, and a maximal number of allowed errors.

In this dissertation, we extend the Sagot-Viari algorithm to search for different kinds

of helices. Moreover, we improve the output of the algorithm by filtering the

solutions and selecting the best results between all possible occurrences. These

occurrences are chosen on the base of a general score. We first study the different

helices that can be encountered in complex biological stmctures to better understand

the needs, and to be able to develop a program that will be used in an efficient way to

search for all kinds of structures. This preliminary study shows that a flexible

definition of a helix should take into account potential internal loops and bulges,

potential conserved nucleotides or subsets of nucleotides, as well as different

distance measures on the primary and secondary stmcture (errors in the conserved

nucleotides, or in the paired regions).

Such an algorithm for searching helices can be used in the different existing methods

of complex biological structure search (RNAmot, RNAbob, Palingol) to improve the

flexibility of these algorithms, or can be the basis of another general method. The

idea is to first subdivide the general structure into a set of helices, to search for all

these helices in the genome being analyzed by our algorithm, and then to assemble

the different substructures. In that way, the user can try to assemble the "basic"

helices in different ways, and new structures can be more easily discovered.

u
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In Chapter 2, we present the basic concepts of molecular biology that we will use in

the rest of this thesis. Chapter 3 is a review of various existing algorithms for

identifying complex biological stmctures in a genome. In particular, we describe the

Sagot-Viari algorithm for identifying helices in a genome. In Chapter 4, we first

present different types of helices found in different types of RNA sequences and

other genetic elements. In particular, we present conserved stmctures in tRNAs,

mitochondrial 5S RNAs and mitochondrial RNase P RNAs. We then present our

improvements to the Sagot-Viari algorithm. In Chapter 5, we present our

applications and results for searching mitochondrial 5S RNA and mitochondrial

RNase P RNA in various genomes. In each case, the algorithm identifies the

annotated RNAs, with no false negatives and a few numbers of false positives.

u
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Chapter 2

Basic concepts in molecular biology

u

In this chapter, we introduce the basic notions that are fundamental to understand the

biological problem we are facing, and the concepts that we will use in the rest of this

dissertation.

2.1 Biological background

The genetic information of an organism is stored in one or more distinct DNA

molecules, called chromosomes. The set of all chromosomes of an organism is

referred to as its genome. For example, the human genome contains 23 pairs of

chromosomes. RNA molecules also store the genetic information of an organism.

Some RNAs contribute to specific biochemical functions, whereas others, the

messenger RNAs (mRNA), are the drivers of protein synthesis.

DNA (deoxyribonucleic acid) and RNA (ribonucleic acid) are long polymers of four

types of monomers (small molecules) called nucleotides. Each nucleotide consists of

three parts: one of two base molecules, plus a sugar, and one or more phosphate

groups. The nucleotides differ by their base molecule. There are two types of bases:

purines (denoted R) and pyrimidines (denoted Y). In the DNA, the purines are
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Adenine (A) and Guanine (G), and the pyrimidines are Cytosine (C) and Thymine

(T). In the DNA alphabet, U replaces T.

u

Nucleotides are sometimes called bases, and since DNA consists of two

complementary strands bonded together, these units are often called base-pairs. A

DNA molecule can be seen as a linear sequence on the alphabet of four letters

N={A,C,G,T} (each letter corresponding to the nucleotide beginning by this letter),

for example "AGATCAGG". A strand of DNA has a head (called the 5' end) and a

tail (called the 3' end). The size of a DNA molecule is about 10 to 10 bases.

One well-known fact about DNA is that it forms a double helix, which is two helical

(spiral-shaped) strands of the polypeptide, mnning in opposite directions, held

together by hydrogen bonds. The nucleotide A bonds exclusively with T (or U in the

case of the RNA) and forms the base-pair A-T, and the G bonds exclusively with C

(G-C). A is the complementary base of T (and conversely), and C is the

complementary base of G (and conversely).

In contrast with DNA, an RNA molecule is made up of only one strand. However,

certain complementary parts of an RNA sequence are paired together to form a two-

dimensional and three-dimensional structure. The paired regions are called stems.

Although the most frequent base-pairs are Watson-Crick (A-U, C-G), other non-

canonical pairings are also possible, the most frequent one being G-U. The function

of an RNA is determined by its stmcture.

Proteins constitute a third category of macromolecules that play a major role in the

genetic machinery. Proteins are responsible of most functions of a cell. They are

enzymes and catalysts that drive the chemical reactions of the cell, they are the

switches that control whether genes are turned on or off, they are the effectors that

make muscles move. All proteins are made of the same basic constituents: the amino
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acids. The amino acids are linked together by peptide bonds, and long chains of

amino acids are strung together into polymers, called polypeptides. The length of a

protein can vary from tens to thousands of amino acids. There are 20 different

amino acids. Each one is encoded in the DNA by a sequence of three nucleotides,

called a codon. Most amino acids are encoded by more than one codon. For

example, alanine is encoded by GCT, GCC, GCA and GCG. The genes are the parts

of the DNA that encode for genetic elements, and in particular for proteins.

The process of mapping from DNA sequences to proteins involves two major steps.

The first step is the transcription of a gene into an RNA molecule, called a

messenger RNA (mRNA). The second step is the translation of an mRNA into a

polypeptide. The translation process depends on the presence of transfer-RNA

(tRNA) molecules (see Figure 2.1) that make the mapping from codons in the

mRNA to amino acids. Other RNAs, called ribosomal RNAs are involved in the

translation machinery. In this dissertation, we are interested by the secondary

stmcture of another genetic element: the RNase P RNA. It is a ribozyme responsible

for the maturation of the 5' end of tRNAs [MJW98, LBK97].

u
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u

2.2 RNA secondary structures

An RNA is made up of a long chain of nucleotides (A,C,G,U). The base sequence

that characterizes an RNA molecule is called its primary structure. Under natural
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conditions, parts of a single RNA molecule bond to each other through

complementarity, to define its secondary structure (see Figure 2.2).
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Figure 2.2 The secondary structure of a transfer RNA molecule,
tRNAp"101 from Anacystis nidulans. Letters other than A, G, C, U
indicate chemical modifications of these four unites [ECC76].

Secondary structures may have different and complicated shapes. However, any

secondary structure S can be described in a unique and natural way as made up of

different kind of paired and unpaired substructures (Figure 2.3) that we describe

here. Ifi -j is a pair and i< r <j, we say that i • j surrounds r. Similarly, i • j

surrounds a pair p • q ifit surrounds both p and q.

u
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Figure 2.3 The six substmctures: (i) hairpin loop (ii) stacked pairs
(m) interior loop (iv) bulge (v) multiple loop (vi) single-stranded
regions [SK83].

u

l. If S contains i • j but none of the surrounded elements i + l, ...J-1 are paired,
the loop thus formed is called a hairpin.

2. If S contains i • j, (i+1) . 0-1), ..., (i +h) . (j-h), each of these pairs (except
the last) is said to stack on the following pair. Two consecutive pairs may be
referred to as a stacked pair or as a stacked-pair cycle.



12

n

3. If i+l<p<q<j-l and S contains i • j and p • q, but the elements between i and p

are unpaired and the elements between q and j are unpaired, then the two

unpaired regions are said to constitute an interior loop.

4. If S contains i • j and (i+1) • q, and there are some unpaired elements between

q and j, these unpaired elements form a bulge. Symmetrically, a bulge also

occurs if S contains i • j, p • (j-1) and some unpaired elements between i and

p.

5. If S contains i • j and i •j surrounds two or more pairs p- q,r- s, ... which do

not surround one another, then a multiple loop is formed.

6. If r is unpaired and there is no pair in S surrounding r then we say that r is in

a (external) single-stranded region.

T C A G

AAGCG AC A

11111 II

TTCGC TC A

A A ÇA

Figure 2.4 An example of a helix. The helix contains a loop of 6
nucleotides, a stem of stacked 7 pairs, a bulge (unpaired nucleotides at
one side of the stem) and an interior loop (unpaired nucleotides at
both sides of the stem).

u

In this dissertation, a stem will be any sequence of stacked pairs, bulges and internal

loops, and a helix will refer to a stem followed by a loop. In the literature, this kind

of structure is sometimes referred to as a stem-loop or a palindrom. Figure 2.4 is an

example of a helix with a bulge and an internal loop.
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Si S2 S3 S4

——CG_G_A_—— T A A A —— T C C G —— T T T A ——

Figure 2.5 An example of a pseudoknot. Si and 83 form a stem of
stacked 4 pairs, 82 and 84 form another stem of stacked 4 pairs.

AAGCGTAA G-——i
Il l II 1111 l

1--—.-T T C GC AT T C——-1
l II 1111111
lL-——A A GCGTAAG

Figure 2.6 An example of a triple helix. It contains two loops and 9
base triples.

u

RNA secondary stmcturcs subsequently fold into tertiary structures. Pseudoknots

and triple helices are part of such tertiary structures. A pseudoknot (see Figure 2.5)

in a folded RNA molecule has a stem-loop plus a single strand folded back to form

base pairs with the bases in the loop. RNA pseudoknots are functionally important in

several known RNAs. For example comparative analysis shows that RNA

pseudoknots are conserved in ribosomal RNAs, the catalytic core of group I introns,

and RNase P RNAs [Cec93]. A base triple is an approximately planar group of three
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bases involving at least one hydrogen bond joining each pair. A triple helix is a

contiguous series of base triples (see Figure 2.6).

2.3 Multiple sequence alignment

Multiple sequence alignment is an important tool in studying RNA genes. The basic

information they provide is the position and nature of the conserved regions in each

member of the gene group. This is very useful in predicting the function and

stmcture of RNA gene, and in identifying new members of gene families.

Conserved sequence regions correspond to functionally and structurally important

parts of the motif. We often only know the sequence-to-function relation for one or

two members of the group. Multiple alignments let us transfer that knowledge to the

other members in the group. Hypotheses about functional importance or specific

roles can then be directly tested by mutagenesis and tmncation experiments.

Let A be an alignment of n homologous sequences corresponding to a given region

of an RNA family (for example TtFC ov D region of tRNAs). From such an

alignment, one should be able to extract some common characteristics of the primary

and secondary structure of these sequences, that is deduce a consensus secondary

structure. Different methods have been used to represent common primary

constraints. First, from an alignment A, we can deduce a consensus sequence that is

the sequence formed by the most frequent nucleotide at each position of the

alignment. For example, consider the following alignment:

AT A GT AC

A C A GA _ C

T T C G AA

Its corresponding consensus sequence is: ATAGAAC, as A is the most frequent

nucleotide at position l, T is the most frequent nucleotide at position 2 etc.
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For a more precise representation, we can also consider the consensus matrix

representing the alignment, which is the matrix containing the frequency of each

nucleotide at each position of the alignment. The consensus matrix representing the

alignment above is given in Table 2.1.

position

Base

A e G T

l

2

3

4

5

6

7

0.67

0

0.67

0

0.67

0.67

0

0

0.33

0.33

0

0

0

0.67

0

0

0

l

0

0

0

0.33

0.67

0

0

0.33

0

0

Table 2.1 The consensus matrix representing the alignment in the
example.

For a real example, let us consider the TÏ-C region of the tRNAs (between positions

48 and 62). El-Mabrouk and Lisacek [EML96] have aligned 546 RNA sequences

extracted from the EMBL database, and obtained the consensus matrix shown in

Table 2.2 for the TtFC region.

u
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Position

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

Base
A e 'G~

0.013
0.147
0.106
0.161
0.126
0.009
0.039
0.000
0.000
0.299
0.996
0.476
0.050
0.000
0.026

0.833
0.303
0.473
0.158
0.013
0.000
0.000
0.002
0.995
0.000
0.000
0.038
0.197
0.987
0.826

0.00.5
0.514
0.216
0.520
0.835
0.991
0.000
0.002
0.004
0.701
0.004
0.214
0.006
0.002
0.013

-T-
0.148
0.037
0.205
0.161
0.026
0.000
0.961
0.996
0.002
0.000
0.000
0.271
0.747
0.011
0.136

Table 2.2 The consensus matrix for the TÏFC region.

u

From a consensus matrix, one can deduce a certain number of conserved nucleotides.

A given nucleotide X (X is A, C, G or T) is said conserved at position p if X is the

nucleotide present at position p in almost all the sequences of A. For example, if we

take as conserved nucleotides those that have a frequency higher than 0.9, then we

can define the TTC region by the sequence: NNNNNGTTCNANNCN, where N

corresponds to any nucleotide.

Suppose now that, not only we know the alignment, but also the secondary folding of

the sequences of A. Suppose that the conserved nucleotide X is situated in a folded

region, that is, it is part of a base-pairing X-Y. Then this pairing is called a

conserved base-pairing. For example, the first conserved nucleotide of the TiFC

region is one part of a base-pairing G-C (see Figure 2.1, 2.2).
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Chapter 3

Algorithms for searching structured biological motifs

u

3.1 Introduction

Just as the evolutionary relationship in proteins is often seen more in tertiary

structure than primary sequence, RNA molecule relatedness is often seen in

preserved secondary structures. Indeed, RNA secondary stmcture gives useful

information about the mechanisms of gene expression, gene evolution and the

functions of ribosome. Much effort has been devoted to finding an RNA structure

given an RNA sequence. Phylogenetic analysis of homologous RNA sequences

identifies secondary structures that are conserved during evolution [FW75]

[WGG83] [JOP89]. Another approach is to apply thermodynamics to compare the

free energy of alternative stmcturcs [TUL71] [NJ80] [ZS81] [JGS84]. The retained

secondary stmcture is the one that has the lowest free energy value. Context-free

grammars have also been applied to the problem of predicting the secondary

structures of RNA families [Sea93] [ED94] [SBM94].

Following the complete or partial sequencing of a large variety of genomes, and in

particular the human genome, one of the major challenges in molecular biology is to

decode this huge amount of information by identifying the different genes in the new

sequenced genomes. Given a gene family characterized by a particular secondary
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structure, the searching problem is to identify, in a newly sequenced genome, all sub-

sequences that are coding for a gene of the given gene family, i.e., all sub-sequences

that can fold in a given way. Though less studied than the prediction problem, the

specific problem of searching biological stmctures has been treated in different

ways. Some methods arc tailor-made for searching specific families, for example

tRNAscan [FB91], tRNAscanSE[LE97] and FAStRNA [EML96] for tRNAs,

CFTRON [LDM94] for group I introns, and SNOSCAN for snoRNAs

[LE99,OLROO]. Other methods are more general in the sense that they are not

restricted to the identification of specific gene families, such as RNAMOT

[GMC90], RNABOB[Edd96], Palingol [BKV96]. In Section 3.2, we describe two

examples of tailor-made methods for tRNA identification. In Section 3.3, we

describe RNAMOT, RNABOB and Palingol.

Most of the methods mentioned above do not rely on deep algorithmic

considerations, which make them slow in practice. Another drawback is the lack of

flexibility in defining the conserved sub-structures. In Section 3.4, we describe a new

approach that will allow searching for biological stmctures in a very ïïexible way.

This approach is based on partitioning the structure into conserved primary and

secondary sub-stmctures, searching for these sub-stmcturcs, and then assembling

them to form the final general structure.

Whatever the method is, it is always based on the identification of various conserved

primary and secondary sub-structures. A flexible representation of primary stmctures

is provided by regular expressions. In Section 3.4, we introduce some algorithms for

the identification of all approximate occurrences of a regular expression in a text (or

a genome). For RNA molecules, tme signals are actually defined by a combination

of spatial structure and sequence motif, and folding constraints can be stronger than

the primary sequence itself. Few algorithms have been devoted to the search of

conserved motifs with folding constraints, one of the most interesting one being the
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Sagot-Viari algorithm [SV97] for searching helices, mirror-repeats and pseudo-

knots. The major work of this thesis is to generalize this algorithm to a large variety

of helices. These improvements will be presented in the next chapter, but in this

chapter (Section 3.5), we describe in detail the basic Sagot-Viari algorithm.

3.2 A tailor-made algorithm for searching tRNA sequences

FAStRNA:

The tRNA molecule has been extensively studied. The corresponding gene sequence

is short (about 75 nucleotides) and the primary, secondary and even tertiary

structure is often conserved [RRB76]. Self-complementary regions create a

cloverleaf-shaped stmcture (see Figure 2.1). This stmcture is subdivided into four

regions: the aminoacyl stem, the D region, the anticodon stem and the TVPC region.

The aminoacyl stem (the acceptor stem) has 7 base-pairings, and a (external) single-

stranded region containing 4 nucleotides. The anticodon has a stem of 5 base-

pairings and a loop of 7 base-pairings with conserved nucleotides (nucleotide 33 is

usually a T, and nucleotide 37 is usually an A). The TVC region has a stem of 5

base-pairings and a loop of 7 nucleotides. Finally, the D region has a stem of 3 or 4

base-pairings, and a loop of 7 to 11 nucleotides.

Several algorithms have been developed for identifying all tRNA genes in a genome

[Sta80][PCB94][FB91][EML96][ED94][LE97]. One of the most accurate and fast

algorithm is FAStRNA, which is a modified version of tRNAscan [FB91]. It is a

backtracking algorithm based on the following considerations:

• The presence of invariant (or universal) nucleotides situated at specific

positions.

The cloverleaf structure consisting of four stems and three loops.
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• A relatively optimized hierarchy of the operations. In other words, most

constrained regions are searched before less constrained regions (the TÏ-C

region is searched first, then the first part of the D region, then the aminoacyl

stem, then the anticodon stem).

The calculation of a general score for evaluating the stability of the entire

structure.

By aligning about 500 tRNA sequences, N. El-Mabrouk and F. Lisacek have been

able to represent the TÏFC signal, situated between the nucleotides 48 and 62, by the

consensus sequence: YMNNRGUUCRAKYCY, where each letter denotes a

particular subset of {A, C, G, T}, formally defined in Table 3.1. The meaning of

that consensus sequence is: the first position of the TV/C signal is either aC or aT in

all the tRNA sequences of our test alignment, the second position is everything

except a T, etc. Similarly, the D signal, situated between positions 8 and 15 has been

represented by the consensus sequence: TRGYNNAR.

u

Symbol

A

e

G

J

K

L

M

N

Significance

A

e

G

CIGIT

AIGIT

AICIT

AICIG

Symbol

AICIGIT (whole alphabet)

Q

R

s

T

w

Y

z

Significance

AIT

AIG (purine)

AIC

T

GIT

CIT

CIG

Table 3.1 Symbols used to define nucleotide subsets.
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This representation of the TIFC and D signals consider the variability in the different

tRNA sequences. Other flexibilities have been introduced to account for the D-loop

variability and the dependencies between the different regions of a tRNA. Moreover,

to improve the speed of the algorithm, efficient pattem-matching methods have been

used to search for the TIFC and D signals. With these improvements, the previous

(tRNAscan) algorithm was altered to mn 500 times faster and to lower both rates of

false positives and false negatives.

tRNAscan-SE:

tRNAscan-SE is another algorithm for identifying all tRNAs in a genome that has

been developed by Todd Lowe and Sean Eddy [LE97]. It is an improved tool based

on three previous methods: tRNAscan [FB91], Cove analysis [ED94] and Pavesi's

algorithm (EufindtRNA) [PCB94]. tRNAscan-SE does no tRNA detection itself, but

instead combines the strengths of the three independent tRNA prediction programs

by negotiating the flow of information between them, performing a limited amount

of post-processing, and outputting the results in one of several formats.

TRNAscan-SE combines the specificity of the Cove probabilistic RNA prediction

package [ED94] with the speed and sensitivity of tRNAscan 1.3 [FB91] plus an

implementation of an algorithm described by Pavesi and colleagues [FCB94], which

searches for eukaryotic pol III tRNA promoters (the implementation referred to as

EufindtRNA). tRNAscan and EufindtRNA are used as first-pass pre-filters to

identify "candidate" tRNA regions of the sequence. These sub-sequences are then

passed to Cove for further analysis, and output if Cove confirms the initial tRNA

prediction. In this way, tRNAscan-SE attains the best of both worlds: (1) a false

positive rate equally low to using Cove analysis, (2) the combined sensitivities of

tRNAscan and EufindtRNA, and (3) faster search than that of Cove analysis and the

original tRNAscan.
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3.3 General methods

3.3.1 RNAMOT

Gautheret-Major-Cedergren [GMC90] have presented a general method for

representing an RNA stmcture given a certain number of structural elements and

primary constraints. The considered structural elements are stems and loops

(unpaired regions). The idea is to describe an RNA structure by a list of its stmctural

elements, each element followed by its position and length. The descriptor can also

indicate the presence of conserved nucleotides, and the maximal number of

mismatches allowed on conserved nucleotides. For example, tRNA stmctures can be

represented by the descriptor shown in Figure 3.1.

In Figure 3.1, the first line is a list of all the structural elements (Figure 3.1 a), 's' is

for single-stranded (unpaired) region and 'H' for helical region. The first line is

followed by a description of the properties of each structural element, i.e., for helices

(H), the minimal length, the maximal length, the number of errors allowed (pairs

other than Watson-Crick), and finally any primary sequence constraint (Figure 3.1 b

and c). The same parameters are used for single-stranded regions, except for errors

(Figure 3.1 d and e). The last two lines of the descriptor are optional declarations.

The first line indicates the order in which the elements should be searched (Figure

3.1 f), and the second line the total number of mismatches allowed on the conserved

nucleotides (Figure 3.1 g).

u
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HI S1 H2 s2 H2 s3 H3 s4 H3 s5 H1

H1 3:5 Q
H2 4:5 1 AGC:GCU
H3 4:5 1 <-©
S1 3:6 UCC
s2 5:7
S3 0:3
s45:8gaag
s5 3:5

RH2H3H1
M1 ®

Figure 3.1 An example of descriptor. The organization of structural
elements, single-stranded ('s') and helical ('H') regions is described
in the first line. For each structural element, the constraints are given
in the following order: minimal length, maximal length, maximal
number of base mismatches (for helices only), and an optional
primary sequence. The line starting with a 'R' is a search order
command, the line starting with an 'M' gives the total number of base
mismatches allowed within the motif.

RNAMOT is a backtracking algorithm that successively searches each stmctural
element given in the descriptor. The order of searching can be modified by the user.
When several matches are found at the same position, additional conditions on helix

length and stability are used to choose the best match.

u
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The advantages of RNAMOT are that it uses a simple representation of an RNA

structure, it considers both primary and secondary constraints, it allows for a certain

flexibility in the definition of the helices (a certain number of non Watson-Crick

pairings is allowed), and a score for evaluating the stability of the global structure is

calculated. However, the method is not flexible enough in defining primary

structures constraints, as well as helix constraints. For example, motifs such as those

defined in Section 3.1 with symbols from Table 3.1 cannot be considered. Also the

only accepted errors are mismatches, thus interior loops and bulges are not allowed.

As mentioned in the original paper [GMC90], its main drawback appears when

complicated correlations between sequence and/or stmcture elements should be

introduced.

3.3.2 RNABOB

RNABOB is an improvement of RNAMOT [Edd96]. It allows for non-canonical

base-pairings, and for mismatches in the stacked regions as well as in the single

stranded regions. The descriptor defines the order of occurrences of a series of

single-stranded, double-stranded, and related elements. Each element is prefixed

with 's', 'h', or 'r', indicating single-strand, helical, or a relational element. Helical

and relational elements are paired to other elements, which are suffixed by a prime.

For example, [hi sl hi'] describes a hairpin stmcture with a stem (hi -hi') and a

loop (sl). The relational elements are used for non-canonical base-pairings. For

example, if the stem always contains a non-canonical base-pairing, the topology

could be described as [hi rl h2 sl h2' rl' hi'].

The structural elements are described as in the RNAMOT descriptor, except that

relational elements have an additional field, a "transformation matrix" of four

nucleotides, specifying the rule for making the r' pattern from the r sequence in order

A-C-G-T. For example, the transformation matrix for a simple helix is TGCA; if you
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consider G-T pairs, it is TGYR. RNABOB consider G-T pairing by default and uses

the TGYR matrix for helical elements.

RNABOB is more flexible than RNAMOT as the relational elements consider all

kinds of base-pairings. However, neither of these algorithms deals with

insertions/deletions. Therefore, only very specific interior loops can be considered,

those that have the same number of nucleotides at each side of the stem.

3.3.3 Palingol

Billoud-Kontic-Viari [BKV96] described a general representation of stmctures,

together with a programming language, Palingol, designed to manipulate them.

Palingol has specific data types, corresponding to structural elements, basically

helices that can be arranged in any way to form a complex structure.

The general idea of the method is the following. At the beginning, the user should

describe the structure as a list of helices and a list of two kinds of constraints: local

constraints, that act on each individual helix specifying its length, the size of the

loop, the presence of particular primary constraints; and global constraints that act

between helices, specifying their relative position or any kind of cross-conditions

and correlation between properties of different helices. Once all the local and global

constraints are identified and written down in natural language, they are translated to

a Palingol program. The rest of the analysis proceeds in two main steps: the search

for elementary helices and the Palingol interpretation/search.

In the first step, the sequence is scanned by an internal program (HelixSearch) which

builds, for each sequence, a database of all "elementary" helices found in the

sequence, that could be involved in the final structure. HelixSearch can treat non-

canonical base-pairings, but not bulges. Notice that this program can be replaced by

another one that is more flexible in defining basic helices.
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The second step is performed by the Palingol interpret and engine. The interpreter

reads the user's program written in Palingol, and builds an evaluation tree for all the

constraints. Then the engine runs through the list of helices, trying to find all subsets

of helices that match the required constraints. This is done by a branch-and-bound

algorithm.

The elementary objects manipulated by Palingol are the helices computed by

HelixSearch. Each helix is described within Palingol by three physical elements,

respectively called: 'head', 'tail' and 'loop' where 'head' and 'tail' represent the two

paired regions and 'loop' represents the region in between. The start and end

positions of each of these three elements on the sequence are respectively referred to

as 'start' and 'end'. A real secondary structure is actually described by the association

of several elementary helices. More precisely, it is described by a set of elementary

helices (each of them with local constraints) and a set of constraints between them.

The advantages of Palingol is that it allows for searching all kinds of complex

helices, with bulges, interior loops, non-canonical base-pairings, and it allows for

mismatches in double stranded regions, as well as single stranded regions. However

it still does not allow for insertion/deletion errors. But the major drawback of the

method is that a relatively simple secondary stmcture requires a very complex and

tedious representation in Palingol language. Moreover, even if bulges can be

considered, they should be specified very precisely, and no flexibility in their length

or position can be considered without highly increasing the complexity of the

representation. This impractical representation make it very difficult to search for

complex biological stmctures such as those introduced in Chapter 4, and to try

different variations of the same general stmcture.

3.4 Searching for conserved structures

u
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As we have seen in the last section, all methods for searching complex RNA

structures are based on the identification of various conserved primary and secondary

sub-structures. RNAMOT and RNABOB require a unique subdivision of the general

motif into structural elements. As for Palingol, it requires the use of a preliminary

program "HelixSearch" that generates a database of all "basic" helices that can be

part of the general motif. The more flexible HelixSearch is, the easier the

representation of the general structure is, and the more efficient Palingol can be.

Indeed, if HelixSearch is restricted to elementary helices, without considering non-

canonical base pairings, bulges or interior loops, then the general structure should be

subdivided into many substructures, and the assembling procedure becomes very

long.

Despite the drawbacks of Palingol, the general idea of pre-processing the genome to

be analyzed and creating a database of the different kinds of helices before

assembling them in one or different ways seems very promising, as it allows for a

very flexible search. Indeed, in that way, the user can try to assemble the "basic"

helices in different way, and new structures can be more easily discovered. This

motivates the development of very efficient and flexible algorithms for the

identification of conserved primary and secondary sub-stmctures.

3.4.1 Searching for primary structures

In many cases, conserved motifs are the anchor points for identification of complex

biological stmctures. These motifs can be defined by sequences, such as

"TAGCTCAG" or, in a more flexible way by subsets of nucleotides at each position,

such as "TRGYNNAR". In Section 3.2, we have described the TVC and D signals of

the tRNA by this kind of motifs. More flexible motifs can be defined by regular

expressions. For example in the motif "AC (GG l TA) CT (GT)?", 'I' represents the

union operation, and '?' means one or zero times the preceding expression. More
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complex motifs can also be defined by the combination of several regular

expressions, separated by gaps.

The problem of approximately matching a sequence in a text has been extensively

studied by various people in the pattem-matching field. In the case of biological

motifs, the most interesting motifs are those represented by regular expressions.

Myers and Miller [MM89] have developed an 0(np) algorithm for approximately

matching a sequence G of size n to a regular expression R of size p. This algorithm is

based on an alignment graph obtained by concatenating n+1 copies of a non-

deterministic finite automaton recognizing R. An optimization of this algorithm

running in 0(kp) time, where k is the number of allowed mismatches, has been

developed by Myers [Mye96]. Myers has also considered the case of motifs formed

by regular expressions interspersed with specifiable distance range. For example, if

SI, S2, S3, S4 are four regular expressions, a motif can be specified by:

it{S1J}<0,20>({S2,1}1{S3,1})<25>{S4,1} 5?

u

which represented the class of patterns specified by: « S 1 with at most one error,

followed at a maximum distance of 20 nucleotides by an S2 (with at most one error)

or an S3, followed by an S4 at a distance of 25 nucleotides. For this class of patterns,

Myers [Mye96] develops a backtracking procedure with optimal evaluation order in

the sense that its expected time is minimal over all such procedures.

3.4.2 Searching for helices

Few algorithms have been devoted to the identification of conserved motifs with

base-pair constraints. PatScan [OBOO] is one of such algorithms. It is a pattern

matcher which searches protein or nucleotide sequence archives for instances of an

input pattern. It can also searches for palindrome or complementary sequences, and

thus for simplified helices. The Sagot-Viari algorithm [SV97], which is described in
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details in the next section, is a more efficient algorithm that allows for the

approximate search for helices, palindromes, mirror repeats, pseudo-knots and triple

helices.

Another interesting algorithm related to this problematic is the Gendron-Major

[GGM98] algorithm. It identifies, in an RNA structure, the most represented helices

of small size. The algorithm represents helices by graphs of relations where the

nodes represent the nucleotides and the edges represent stmctural relations. The

problem of finding helices in an RNA secondary structure can be divided into two

distinct tasks. The first one is an enumeration of all possible sub-graphs and, second,

their isomorphic classification. Central to the helix identification process is the

notion of incremental enumeration. In order to find the sub-graphs of size n, the sub-

graphs of size n-1 are considered. The sub-graphs of size n-1 are extended by

connecting the nodes that are connected to it from the secondary stmcture. The

classification of sub-graphs requires an efficient graph isomorphism algorithm.

Specific RNA secondary structure information makes it possible to split the

isomorphism determination in three stages of increasing complexity. First, a

comparison is made between two sub-graph vertices, based on their respective type

and number of relations, or degree. Then, if the sub-graphs contain the same

nucleotides, their edges are compared, and if they are equal, a depth-first search is

finally applied to verify their isomorphism.

3.5 Sagot-Viari Algorithm

Marie-France Sagot and Alain Viari [SV97] have developed algorithms for flexibly

identifying stmctural objects in nucleic acid sequences. These objects are helices,

mirror repeats, pseudoknots and triple helices. The developed algorithms are not

predictive in the sense that we cannot say which of the potentially structural objects

u
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found will actually be part of the final, global stmcture of the molecule, but rather

identify all those that may do so.

As we arc interested here in finding helices, we restrict ourselves to describe the

Sagot-Viari method that concerns helices, though the methods for the other structural

objects are not much different. More precisely, the problem solved by Sagot-Viari

algorithm is the following: given 4 parameters dmm, dnmx, k, e, find in a genomic

sequence s, all the helices of maximal stem size k and with a loop size varying

between dmin and dmax with at most e errors. The valid base-pairing are A-T and G-

C, and all other base-pairings are considered as errors.

The algorithm treats the problem of errors with the help of an object called a model

against which the comparisons are made. A model is a word over the alphabet of

nucleotides corresponding to one half of the helix being searched. The second part of

the helix corresponds only approximately to the model.

Next, we describe the method and the algorithm with the help of several examples.

3.5.1 Statement of the problem

Let S be the alphabet of nucleotides, that is, X= {A, C, G, TorU} and let a

sequence s be an element of S*. A word u of length k is an element of S for k > 1

and u is said to be a word in s ifs = xuy with x, y e S*. Here is an example of a

sequence s:

AACTCACGTCCGTTGACGTACTTTACGTCAT
12 3 45 6 78 91011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

u
Let u =ACGTCA be a word of size 5. There is an occurrence of u starting at position

25 and ending at position 30 in the sequence s. We say that 25 is the start position
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of this occurrence of M in ^ and 30 is its end position. The inverse u of M is just the

word read in reverse, that is u=ACTGCA. 30 is the start inverse position of the

occurrence of M in ^ and 25 is the end inverse position of this occurrence in s.

Let Me be the 4 x 2 matrix of the nucleotides complementary base pairs:

Me

A T(U)

e G

G e

T(U) A

u

where (A, T) and (C, G) are the Watson-Crick base pairs. The complementary

inverse Uc of u is the word obtained by reading u in reverse and replacing each

nucleotide by its complementary according to matrix Me. For example, for the word

u given before, Uc=TGACGT.

Notice that for any word u, if v= Uc, then Vc = u.

DeHnition 3.5.1 Given non-negative integers e, dnun and dmax, and two words u, v in

s, we say that (u, v) forms an approximate helix in s if it satisfies the following

constraints:

• distL (u, Vc) is no more than e, where dist^x, y) is the edit distance between x and

y (it is the minimum number of substitutions, deletions and insertions necessary to

convert x into y);

• dmin <d <dntax, where d is the distance between the end position of v and the start

position of u in s.

ïî e = 0, we have of course an exact helix.
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In the example given in Figure 3.2, if e = l, dmin = 2, dmax = 20, we can say that (u,

v) forms an approximate helix in s because distL (u, Vc) =0, < e, and d = 25-

19+1=7, i.e. dmin ^ d < dmax. Moreover, (u, v) is an exact helix in s. There is

another approximate helix (u, w) in s, with w=TCACGT, because distL(u, We) =

7, < e, d= 25-9+1=17, i.e. J^n <d <d^.

dmios 2. dmax » 20. e«

iprindmnicnedel ÇA C OTC A)

TCA C GT [TOACCTt JA C GTC A|
9

l subïtftution

invene occurrtnce

19

invtrae oecuCTenee

30

direct occurrence

Figure 3.2 Example of palindromes and palindromic model.

u

Mismatches in a helix correspond to interior loops, and deletions and insertions to

bulges. The subsequence of 5' between the two halves of a helix represents the helix

loop (see Figure 3.3).

Figure 3.2 has also given a palindromic model m=ACGTCA. When the

program searches for helices in the sequence s, the words in s should be compared

with the model m. Furthermore, the words should be read in both directions as

shown by the arrows in Figure 3.2. When the direction is from the beginning to the

end of the sequence, it is searching for direct occurrence and the words should be

exactly equal to the model m; when the direction is from the end to the beginning of

the sequence, it is searching for complementary inverse occurrences and the words

should be related with the model m with an upper bounded edit distance. In Figure
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3.2, m is exactly equal to word u, so we say that u is an (exact) direct occurrence of

m m s; v and w are two approximate complementary inverse occurrences of m,

because distL (m, Vc) <e, and distL (m, Wc) <e. The set of all direct occurrences of

a palindromic model m present in 5 is denoted by OD(m) and its set of

complementary inverse occurrences is denoted OI(m).
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Figure 3.3 Mismatches and deletions/insertions corresponding to
bulges and interior loops.

u

With palindromic model, it is not necessary to have OD(m) n OI(m) = 0. For

instance, palindromic model m = AGCT is present in sequence s=AGCTAGCTAGCT

with the constraints (e=0, dmin=0, dmax=0) (at positions 5 and 9). The word AGCT

starting at position 5 is both a direct and a complementary inverse occurrence.

The parts of the stmctural helices searched for are not kept "assembled" in the sets of

occurrences of a model, but are instead kept separated in POD(m) and POI(m) until

the end. Here POD(m) and POI(m) are the sets of possible direct occurrence and

possible inverse occurrence respectively. In the exact case for instance (e = 0),

keeping them assembled would require 0(n2) space in the worst case while keeping
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them separated requires at most 2n space. Note however that, although the parts of a

stmcture arc kept apart, only valid ones arc preserved. If a word u kept in POD(m)

is such that u = mfor a. model m, u will be stocked in OD(m) only if there exists v in

POI(m) such that (u, v) is a helix satisfying fe, dmm, ^mwc) constraints, and vice-versa.

This is the algorithm Verify (See Figure 3.4). What is even more important to

observe is that checking for this validity takes only 0(n) time. Now the problem can

be stated in the following way:

The Helix Problem Given a sequence s and non-negative integers e, dmin and d,nax,

the problem is to find all approximate palindromic models present in s that satisfy

the constraints {e, d^in, dmax).

3.5.2 Algorithm

The algorithm for constmcting the models and searching for their occurrences (see

Figure 3.4) is based on the observation that models, and their sets of occurrences, can

be constructed by recurrence. The main idea of the algorithm of searching for

helices is to progressively construct models having at least one direct occurrence and

one approximate complementary inverse occurrence that form a helix verifying the

constraints (e, dmin, dn^).

Observe one fact in the construction. A word that is an occurrence of a model is

related not just to the model, but also to at least one other occurrence of the same

model. The relation of an occurrence to a model is either an exact match or an upper

bounded edit distance, while the relation to another occurrence is positional (it is the

distance between the end position of an occurrence and the start position of the

other).

En summarize, the different steps of the algorithm, that are detailed in

ConstructModel are the following:
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• Begin by a model m of size 1 ;

• Find all exact direct occurrences of m, put them in POD(m) and find all

approximate complementary inverse occurrences of m, put them in POI(m);

• For a model of size 1, the algorithm just scans the genomic sequence to find all

the occurrence of the given character; For the elongated model (m'=ma) of size

greater than 1, it takes each position in the last obtained sets OD(m) and OI(m) and

check in the sequence whether the occurrence can be extended by the new character

a;

• Filter the sets POD(m) and POI(m) (Function Verify) to keep the occunrences in

POD(m) that have a corresponding occurrence in POI(m), and vice-versa. This

function gives size to the sets OD(m) and OI(m);

At the end, the direct and indirect occurrences are combined to form helices;

This procedure is shown in the algorithm in Figure 3.4. For simplicity, we assume a

fixed size hmax for the desired helices. There is a remind of the definitions in the

Figure 3.4.

u

Definitions

m

OD(m)
OI(m)
ODI(m)
POD(m')
POI(m')
PODI(m')
StackError(m)

hn,.
max

seq

'•max

maxerror

model to be searched
set of direct occurrences of the model m

set of complementary inverse occurrence of the model m
OD(m)uOI(m)
set of possible direct occurrences of the model m', m'=ma
set of possible complementary inverse occurrence of the model m'
POD(m')uPOI(m')
set of errors for helices corresponding to the occurrences
contained in set ODI(m)
maximum length of the model

maximum error allowed for the helices

the sequence being analysed
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program DoMoivre(seq, hmax, maxerror)
/*initialisation*/
k<-0
m^-0
ODÏ<-Q
PODI <- 0
ConstructModel (seq, m, hmax, maxerror, ODI, k, PODI)
ConstructHelices (OD(m), OI(m))

/*The kth iteradon in constructing a model m'=m0t is:*/
Algorithm ConstructModel ( seq, m, hmax, maxerror, ODI(m), k, PODI(m) )
l: if(k<h^)
2: for a=A,C,G,T
3: m' = ma // add a to the end of model
4: //search for elongated words to get sets PODI(m')

ManberSearch ( m', ODI(m), StackError(m), PODI(m'), StackError(m') )
5: // filtering POD(m') and POI(m') to get sets OD(m') and OI(m')

Verify (POD(m'), POI(m'), OD(m'), OI(m') ) //See 3.5.1
6: ConstructModel (seq, m', hmax, maxerror, ODI(m'), k+1, PODI(m'))
7: remove Ct from the end of the model
8: end for

9: end if

Algorithm ManberSearch (m', ODI(m), StackError(m), PODI(m:),
StackError(m'))

1: while get the next elements w from GDI (m) and e from StackError(m)
2: extend w in sequence and get wp
3: if w is a direct occurrence

4: ifCt = P // where Ct is the last element of model m'
5: put w[3 in set PODI(m'=ma) and put e in set StackError(m')
6: else // w is a complementaty inverse occurrence
7: if Ot match P (A-T or G-C) // where a is the last element of model m'
8: put wp in set PODI(m'=ma) and put e in set StackError(m')
9: else ife+l<maxerror, e <—e+1
10: put wP in set PODI(m'=ma) and put e in set StackError(m')
12: endwhûe

u
Function Verify ((POD(m'), POI(m'), OD(m'), OI(m^ )

Returns sets OD(m') and OI(m') after filtering POD(m') and POI(m')
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Function ConstructHelices (OD (m'),01 (m'))
Returns combined helices after assembly the elements from OD(m') and

Figure 3.4 Recursive algorithm for constructing the model and
algorithm of searching for the occurrences of model m'=ma.

3.6 Complexity

Algorithms for finding helices follow in general a naïve approach [Wat89], or restrict

themselves to exact comparisons [Kon93] [Mar83]. In contrast, the Sagot-Viari

algorithm is flexible and reasonably efficient in time and space. One of the reasons

of this efficiency is that the left and right parts of the helices are assembled only at

the end of the algorithm. Thus, the complexity of the algorithm depends on the

number of parts that compose the helices, rather than on all possible helices

contained in the considered genomic sequence. In the case of helices without errors,

an upper bound for their number is 0(n) where n is the length of the genome, while

the total number of the parts composing them is bounded over by 0(n). Where

errors are allowed, the Sagot-Viari algorithm finding all the parts composing the

helices have time in 0(nk(e+l)(l+ min{(dm^ - dmin + l + e), ke \^e})), where n is

the size of the genomic sequence, dmin, dmax, e, k are the parameters described above,

and 121 is the size of the alphabet of nucleotides. Putting the parts together requires

0(N ) time, where N is the number of possible helices and is majored by 0(n(dmax -

dmin + l)).

u
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Chapter 4

Identifying helices in a genome

u

4.1 Introduction

Several methods have been developed for identifying more or less complex RNA

structures. Whatever the method is, it is always based on the identification of various

conserved primary and secondary sub-structures. In this section, we are exclusively

concerned with secondary sub-stmctures. More precisely, we are interested in

developing a flexible and efficient method for identifying all occurrences of specific

secondary structures in a genomic sequence G. These secondary stmctures are

helices defined by their stem and loop length, the presence of conserved bases, and

the presence of interior loops and bulges.

We have presented in the section 3.5 the efficient Sagot-Viari algorithm for

identifying helices. However, this algorithm searches for very general helices only

described by their stem and loop length. In most cases different helices of a complex

structure differ not only in their length, but also in some conserved bases, internal

loops and bulges. It is important to introduce this information in the algorithm.

Moreover, the score calculation should account for these different structure and

sequence constraints. The algorithm is further improved through filtering the

solutions and selecting the most significant occurrences. With these improvements,
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our new algorithm gives a very flexible representation and identification of all kinds

of helices.

In a first step, we study the different kinds of helices that can be encountered in

complex structured biological motifs in order to better understand the needs and to

perform the right improvements. After this preliminary study, we describe our new

algorithm.

4.2 Conserved helices

Some common secondary stmctures of certain RNA families and other genetic

elements have been determined by using different empirical methods, multiple

sequence alignment and dynamic programming algorithms. The complex consensus

stmctures contain different kinds of helices.

Before being able to develop an efficient algorithm that could be used by biologists

in different situations and for different gene families, we should study the different

helices that are encountered in biological data. This section is an overview of the

different kinds of helices found in different consensus structures.

4.2.1 Conserved structures in tRNAs

As described in Section 3.2, the tRNA molecule has a very constrained cloverleaf

structure (see Figure 2.1). In this stmcture, the TVC and D regions are very

constrained. El-Mabrouk and F. Lisacek [EML96] have been able to represent the

T^FC region by the consensus sequence: YMNNRGUUCRAKYCY, where each

letter denotes a particular subset of {A, C, G, T}, formally defined in Table 3.1. In

order to take the secondary structure into account, we can represent the T1FC region

by the structure represented in the right of Figure 4.1. The left structure in Figure 4.1

is a possible occurrence of the right structure.
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Figure 4.1 The right structure is a secondary expression representing
a consensus for the TTC region of tRNAs. The left structure is an
occurrence of the right stmcture.

El-Mabrouk and Lisacek [EML96] also deduce a consensus stmcture for the D-

region, represented in Figure 4.2. In this figure the symbol '?' means that the

considered nucleotide can be missing.

N?

N? N

C R N N?A G

1111 G

TRGYNNA N?

R N?

N

u

Figure 4.2 A consensus stmcture for the u-region of tRNAs. The
notation '?' means that the nucleotide can be present or absent.
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4.2.2 Conserved structures in mitochondrial 5S rRNAs

The most common configuration of RNA structures is alternating sections of helices
and loops, called a helix-loop or loop-helix motifs. Also common in RNAs are

mispaired bases, called noncanonical pairings. The most stable non-canonical base-
pairing is G-T. The mitochondrial 5S rRNA in Figure 4.3 shows us this kind of

common configuration ofRNAs.

Reclinom.onas americana mitochondnal 5S RTSA
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Figure 4.3 The secondary stmcture ofReclinomonas Americana
(AF007261 - entry name in GenBank) mitochondrial 5 S rRNA.
Circled residues are universally conserved among mitochondrial 5 S
rRNA sequences. Loop D (dashed box) is variable in length.
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Mitochondrial 5S rRNA molecules vary in length between 110 and 125 nucleotides,

with the majority measuring about 120 nucleotides. The consensus structure can be

subdivided into five helices: I, II, III, TV and V, and 5 loops: A, B, C, D and E.

Although the structure is not as well conserved as that of tRNAs, some general

characteristics have been deduced from the study of a set of aligned sequences.

The length of helix I vary between 6 and 10 base-pairings. The helix II is of size 8,

but it often contains non-canonical base-pairings. Up to 4 non-canonical base-

pairings have been observed.

The hairpin structure formed by helix III and loop C is the most constrained region.

It contains 7 conserved nucleotides: 4 in the helix and 4 in the loop. The loop is of

size 13. The helix contains 6 base-pairings, and a well-conserved interior loop

located in the middle of the stem. The 5' part of the interior loop contains one

nucleotide, whereas the 3' part contains between 3 and 7 nucleotides. By

considering all the stmctures available, we have been able to represent it by the

consensus structure of Figure 4.4.

u
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Figure 4.4 A consensus stmcture for the helix HI in 5S rRNA.
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Finally, the hairpin structure formed by helices IV and V and loops E and D is the

one that contains the most non-canonical base-pairings. It has 14 base-pairings,

among which 3-8 are non-canonical. Moreover, a bulge of variable size is located in

the middle of the stem. Five conserved bases are present, four of them form two

canonical base-pairings, and the last base is part of a non-canonical base-pairing.

4.2.3 Conserved structure in mitochondrial RNase P RNA

RNase P RNA is a ribozyme responsible for the maturation of the 5' end of tRNAs

and various ribosomal RNAs. Its sequence (see Figure 4.5) varies in length between

160 and 900 nucleotides. Such molecules have been identified in 15 mitochondrial

genomes. Though very different, the structures found have common characteristics,

and the consensus sequence is formed of 19 regions that are called helix structures

(Pl, P2, .. .P19). Every structure found is constituted of a subset of these 19 helices,

but does not necessarily contain them all. Some structures contain just three of these

helices: Pl, P4 and P18, with several loop sections and single-stranded regions. The

helices Pl, P4 and Pl 8 are the only ones that are located in all the structures.

The helix P4 is the most constrained region. By considering all the structures

available, we have been able to represent it by the structure of Figure 4.6. Notice

that conserved bases are located not only in the paired region, but also before and

after this region. The P4 loop can be very large (almost the size of the whole RNase

P RNA sequence).

u
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Figure 4.5 Secondary stmcture of reclinomonase Americana NZ
(AF007261 - entry name in GenBank) mitochondrial RNase P RNA.
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Figure 4.6 A consensus structure for the P4 region of the RNase P
RNA. The line "———" denotes a large loop .

u

Pl is the longest helix of the stmcture: its size varies between 11 and 27 nucleotides.

In some cases, a bulge or interior loop is observed. Pl 8 is a hairpin stmcture with a

variable stem length (between 3 and 15 nucleotides) and a variable loop length

(between 4 and 17 nucleotides).

Finally, we can notice the remarkable conserved multiple-loop structure formed by

the helices P7, P8, P9 and P10.

4.3 Our algorithm for searching helices

The Sagot-Viari algorithm is improved in different ways. First, in order to avoid the

redundancy in the solutions obtained by the algorithm, we introduce helix scores that

reflect helix stability, and the solutions are filtered depending on their scores. This

filtering largely reduces the number of irrelevant solutions. Furthermore, we consider

the G-T pair as a valid one, but we give it a lower score than to Watson-Crick base-

pairings. The helices together with their corresponding scores are reported as output.
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Our second major improvement concerns the different kinds of helices that the

Sagot-Viari algorithm is not able to search for. Indeed, in most cases, we not only

know the length of a helix stem and loop, but we also have information about

conserved nucleotides, bulges and internal loops that are present at specific position

(see for example helices in Figures 4.2, 4.3, 4.4, 4.5, 4.6). Our goal is to introduce,

in the Sagot-Viari algorithm, different constraints on the primary and secondary

stmcture, in order to be able to search for various kinds of helices and to represent

them in a very flexible way.

4.3.1 Filtering the solutions

The solutions obtained by the Sagot-Viari algorithm contain a high degree of

redundancy. Indeed, when an occurrence of a helix is found at one position in the

genome, many other similar helices are found in the same region. Usually, only one

of these occurrences is significant. In order to choose the helix that has the highest

stability of the group, we introduce scores that measure helix stability.

A e G T E

A

e

-2 -2 -2 5 -2

-2 -2 7 -2 -2

G

T

E

-2 7 -2 3 -2

5 -2 3 -2 -2

-2 -2 -2 -2

Table 4.1 the matrix that shows the score calculation rule.

u
Table 4.1 gives the scores used to evaluate each alignment between two nucleotides.

E denotes the empty character, so that an alignment E-N or N-E, where N is an
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arbitrary nucleotide, represents an insertion or a deletion of the nucleotide N. This

scoring has been chosen to reflect the fact that the pair G-C is more stable than the

pair A-T who is, in turn, more stable than the pair G-T [Tur88]. All other pairs of

nucleotides are considered as mismatched and given the score -2. Similarly, an

insertion or deletion (in a bulge or interior loop) is given the score -2.

Observe that the introduction of scores is not for replacing the notion of errors and

uncertainty. We still preserve the way to count the errors in the word searched for

in order to decide whether we continue or stop extending the word. The score role is

just to filter the output solutions at the end of the algorithm. First, we introduce a

parameter, minscore, that serves as a threshold. In other words, helices that have

scores less than minscore are eliminated. The second filtering is to choose the best

helix representative between several helices that have tiny position differences,

which will be explained with an example.

Let s be the sequence:

s = GGGGGGAAAG——CTTTGCCCC
l 10 17 25

Let m=TTTGCCCC be the palindromic model searched for, ernnax = 1 be the

maximal number of allowed errors, and the 7-9 be minimal and maximal length of

the loop respectively. The Sagot-Viari algorithm outputs three solutions satisfying

these constraints:

Solution 1, beginning at position 2 and ending at position 25 in s:

GGGGGAAA ——i
Il 11«1l l l

l

u

CCCCGTTT ——

Its loop length is 8, its number of errors is 1, and its score is 4l.
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Solution 2, beginning at position 1 and ending at position 25 in s:

G G G G GGAA——I
Ill 1«1 l l l

CC CC G TT T——'

Its loop length is 9, its number of errors is 1, and its score is 39.

Solution 3, beginning at position 3 and ending at position 25 in s:

GGGGAAAG ——i
Il l!•Ill I

CCCCGTTT ——l

Its loop length is 7, its number of errors is 1, and its score is 39.

There are tiny position differences between these three solutions, and just one of

them can be part of a secondary stmcture. This kind of situation is common, which

explains the redundancy obtained by the Sagot-Viari algorithm. To solve this

problem, we just have to keep, among a set of similar helices, the one that has the

highest score. In the example above we choose the solution 1, as it has the highest

score (4l), and discard solutions 2 and 3.

To implement the procedure that calculates the scores, the parameter minscore

mentioned-above is read from an input file Param, and a stack is used to keep track

of all the helix scores. The algorithm is described in Figure 4.7.

u
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Definition

StackScore(m) set of helix scores corresponding to the model m

Other definitions and program are the same with those in Figure 3.4

Algorithm ManberSearch (m', ODI(m), StackScore(m), StackError(m),
PODI(m'), StackScore(m'), StackError(m'))

1: while get the next elements w from ODI(m), s from StackScore(m) and e from
StackError(m)

2: extend w in sequence and get wp
3: if w is a direct occurrence

4: ifa = P // where a is the last element of model m'
5: put wp in set PODI(m'), s in StackScore(m'), e in StackError(m')
6: else // w is a complementary inverse occurrence
7: if a match |3 (A-T or G-C or G-T)
8: s <- s+7 (for C-G) or s <- s+5 (for A-T) or s <- s+3 (for G-T)
9: else ife+l<maxerror

10: s <- s -2, e ^- e+1
11: else goto 1 //w is dropped
12: put wP in set PODI(m'), s in StackScore(m'), e in StackError(m')
13: end while

/*The sets PODI(m') StackScore(m') and StackError(m') are then the after
elongated elements.*/

Figure 4.7 Calculating scores for filtering helices.

4.3.2 Introducing the G-T base-pairing

In addition to Watson-Crick base-pairings, the non-canonical G-T pair is very

frequently present in secondary stmctures. As reflected by the scores of Table 4.1, its

thermodynamic stability is lower than that of Watson-Crick pairs, but higher than all

other non-canonical pairs. The Sagot-Viari algorithm treats G-T pairs as substitution

errors. Thus, if we want the program to output helices containing G-T pairs, the

maximal allowed number of errors errmax should be large. For example, consider

the lowing helix stmcture:

u
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GUAC T G C A——l

• 0 0

C AGO GT G U——'

If we want to search for this kind of structure and if G-T is not considered as an

error, then the maximum number of error allowed can be errmax=l. However, if G-

T is considered as an error, then the helix contains three substitution errors, and to be

able to find it we should set errmax = 3. The problem with increasing the maximal

number of allowed errors is that the program finds a large set of irrelevant helices,

that is, a large number of false positives. In order to be able to output helices

containing G-T pairs without increasing the number of bad solutions, we consider the

G-T pair as a valid base-pairing, as for A-T and G-C base-pairings. The only

difference between the three base-pairings is in the way to evaluate them in a general

helix score in the filtering process. The result is that now a model can have more

than one complementary inverse. For example, the model TAG have the set of

complementary inverse {CTA,TTA,CTG,TTG}. The algorithm dealing with G-T

pairs is shown in Figure 4.7.

4.3.3 Conserved nucleotides

As mentioned in Chapter 2, a conserved base-pairing is a base-pairing (for example

G-C) present in almost all the sequences of an alignment. An example is given by

the helix III of the consensus structure (see Figure 4.4) corresponding to

mitochondrial 5S rRNA (Figure 4.3). This helix contains two conserved base-

pairings G-C and A-T situated just before the hairpin loop. If we search for helix

element III without considering the conserved base-pairings, the program will output

a large number of solutions that are not close enough to the consensus. Therefore, it

is important to introduce in the program the constraints that characterize a given

helix.

u
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To be able to consider such kind of constraints in the program, we introduce, for

each helix, an array BaseCR described in the input file Param. For each position ; of

the palindromic model m describing the helix, BaseCR[i] takes the value 0, 1, 2, 3 or

-1 corresponding respectively to A, C, G, T or no conserved nucleotide. For

example, consider the following description of a helix:

NNNACNGG T——|
111111111 l

l

u

NNNTGNCC A——'

Its spreading out presentation may be:

NNNACNGGT —— ACCNGTNNN

N stands for any nucleotide (A, C, G or T). Thus, a pairing N-N means that it can be

anything, that is, it is not a conserved base-pairing. The above helix contains 5

conserved base-pairings. The palindromic model describing this helix is

m=ACCNGTNNN. The corresponding array BaseCR is:

BaseCR=[0, l, l, -l, 2, 3, -1,-1,-1]

Notice that we arc able to define conserved nucleotides just in the lower side of a

helix stem. Indeed, a conserved helix is defined through the palindromic model

corresponding to the lower side of the helix. Thus, if only Watson-Crick pairings are

allowed, then this palindromic model has only one possible complementary inverse,

and the helix is uniquely defined. Otherwise, if the G-T pair is also allowed, then the

palindromic model does not define the helix in a unique way.

Before describing the algorithm that takes the array BaseCR into account, we show

how to consider a possible uncertainty in conserved base-pairings.

4.3.4 Introducing errors for primary structure constraints
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As mentioned before, a conserved nucleotide is a nucleotide that is present at the

same position in almost all the sequences of an alignment. This formulation means

that, in some cases (in few sequences) this conserved nucleotide can be missing.

Therefore, if we don't want the algorithm to be too restrictive, we should introduce a

new parameter accounting for the uncertainty in the primary structure constraints. In

other words, instead of having only one parameter errmax, we will have two

parameters: errmax and maxcbe, the first one for the maximal number of allowed

base-pairing errors, and the second for the maximal number of allowed conserved

nucleotides errors.

T 3 4

A A G T T G G A——|
Ill •1111
TTC T A C C T——l

Figure 4.8 The P4 helix of Schizosaccharomyces pombe(X54421 -
entry name in GenBank) mitochondrial Rnase P RNA. The fourth
base-pairing is a valid T-A replacing a conserved C-G. The third
base-pairing is absent and replaced by a non-canonical T*T.

u

For example, the stmcture of mitochondrial RNase P RNAs (Figure 4.5) contains a

conserved helix P4, for which a possible consensus structure has been defined in

Figure 4.6. This conserved stmcture contains four well-conserved base-pairings: A-

T, G-C, C-G and C-G. However, in some cases, the fourth conserved base-pairing

is absent. For example, in the case of the species Schizosaccharomyces pombe which

P4 helix is shown in Figure 4.8, the C-G base-pairing is replaced by a T-A base-

pairing. Observe that this T-A base-pairing is still a valid Watson-Crick base-pairing.

Thus, it is not a secondary stmcture error, but a primary stmcture error. Sometimes

both kinds of errors can be present in a helix, which is the case for

Schizosaccharomyces pombe(Figure 4.8). Indeed, observe that the third conserved

base-pairing is replaced by a non canonical T*T. This pairing accounts both for
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secondary stmcture and primary structure errors, because it replaces the C-G pair of

the bacterial consensus and also it has negative score.

Definition

BasseCR[k] parameter array describing conseryed nucleotide in each position of m
cbemodel global variable used in counting the conserved base errors, initialized as 0
increase[i] global Boolean variable array indicadng whether or not there is a

conserved nucleotide error in position i of m, initialized as false
maxcbe maximum conserved base error allowed

Other definidons and program are the same with those in Figure 3.4 and Figure 4.7.
The kth iteration in construcdng a model m'=ma is:

Algorithm ConsttuctModel ( seq, m, hm.Lx, maxerror, ODI(m), k, PODI(m) )
l: if(k<h^)
2: for a= A, C, G,T

lfBaseCR\k] ^- a //conserved base at position k of model ^ a3:
4:

5:
6:
7;
8:
9:
10:

11:
12:
13:
14:
15:
16:
17: end for
18: end if

if cbemodel < maxcbe //counted conseryed base error <aUowed
// maximum value

m'= ma // add a to the end of model
cbemodel<— cbemodel+ l

intrease^ <— tnie
else go to 2

else m' = ma

ManbetSearch ( m', ODI(m), StackScore(m), StackError(m), PODI(m'),
StackScore(m'), StackError(m') ) // See Figure 4.7

Verify (POD(m'), POI(m'), OD(m'), OI(mT) ) //See Figure 3.4
ConstructModel (seq, m', hmax, maxerror, ODI(m'), k+1, PODI(m'))
remove Ot from the end of the model
if increase^} = true
cbemodel<— cbemodel- l

increase^ <— false

Figure 4.9 Dealing with the conserved nucleotides and their errors
in constructing the model.

u

The algorithm for dealing with the conserved nucleotides is shown in Figure 4.9. To

account for primary stmctures errors, we introduce two new parameters maxcbe and

cbemodel, and an array increase. maxcbe is the maximal number of allowed
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mismatches for the conserved nucleotides of a helix. It is read from the input file

Param. cbemodel is used to count the conserved nucleotides errors in the process of

building the helix model. It is set to 0 at the beginning and it cannot exceed maxcbe.

increase[i] is a boolean parameter indicating whether or not the position i of the

palindromic model has a conserved nucleotide error. At the beginning, we set

increase[i] = false for every position i of the helix model. If a nucleotide other than

the conserved one is set at position i when building the model, increase[i\ is set to

true, and cbemodel is increased by l.

The model constmction is performed by traversing a branching tree in the depth-first

way. When the algorithm returns to a lower level i after finishing the construction of

a model of size i+1, it is important to check increase[i\. If it has been set to tme, that

means that at level i cbemodel has been increased by 1, and thus we should decrease

cbemodel by 1 and restore increase[i] to false.

4.3.5 Subsets of nucleotides

In Section 2.3, we mentioned that an alignment can be described through a consensus

matrix, and that such a matrix can be used to define consensus nucleotides.

However, if we want to define a conserved structure more precisely, we should

extract more information from the consensus matrix, and represent each position by

the subset of nucleotides that are most frequently present at that position. For

example, we can ignore all nucleotides that have a frequency less than 0.05 at a

given position.

For example, let us consider the consensus matrix of the TtFC region of tRNAs

(Table 2.2). We can notice that the most frequent nucleotides at position 48 are the

pyrimidines Y={C,T}, and the most frequent nucleotides at position 57 are the

purines R={A,G}. With the notations of Table 3.1, we can represent the T ÎFC region

by the consensus stmcture represented at the right of Figure 4.1. Similarly, the P4
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helix of the mitochondrial RNase P RNA can be represented by the conserved

structure of Figure 4.6.

In order to consider such nucleotides subsets in the definition of a helix in the input

file Param, a two dimensional array BaseCR[k][]] is adopted instead of the ancient

one dimensional array. The first index is the position in the helix model and can

vary between 0 and the length of the helix stem. The second index is the number of

nucleotides in the considered subset, and can take the values 0, 1 or 2, as there is a

maximum of three nucleotides in each subset other than N. BaseCR[k]\]] can take

the values 0, l, 2, 3 or -l corresponding respectively to the nucleotide A, C, G, T or

non-conserved nucleotide (that is the character N).

For example, consider the palindromic model: NNNLG. The program begins by

initializing each value of BaseCR[k][]] to -1, for 0<k<4 and 0 <j < 3. When the

program reads the model, it changes the parameter BaseCR depending on the

characters encountered. For the first three 'N', there are no changes for the

corresponding values of BaseCR. Now, for the 'L' at position 3, as 'L' represents

the subset {A C T}, we set:

BaseCR[3] [0] = 0 corresponds to 'A' ;

BaseCR[3][l] = l corresponds to 'C';

BaseCR[3] [2] = 3 corresponds to 'T'.

And for the last ' G ' we set

BaseCR[4] [0] = 2 corresponds to 'G'.

The algorithm for constructing a palindromic model by taking nucleotide subsets into

account is shown in Figure 4.10.

u
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Definition

BaseCR\k^ [j] two dimension parameter array describing conserved nucleoride in
each position k of m and in each position j of the subset

Other definitions and program are the same -with those in Figure 3.4, Figure 4.7
and Figure 4.9

Algorithm ConstructModel ( seq, m, hmvx, maxerror, ODI(m), k, PODI(m) )
l: if(k<h^)
2: for a =A, C, G,T
3: if BaseCR\k] [0] ^ -l // the character at position k is not N
4: ifBaseCR\k][0~\^amd

B^CR[k] [l]^a and
BaseCR\k][2] ^ a

5: if cbemodel < maxcbe //counted conserved base error <allowed
// maximum value

6: m'= ma // add a to the end of model
7: cbemodel<— cbemodel+ l

8; increase^ <— true
9: else go to 2
10: else m' = ma

11: else m'= ma

12: ManberSearch ( m', ODI(m), StackScore(m), StackError(m), PODI(m'),
StackScore(m'), StackError(m') ) // See Figure 4.7

13: Verify (POD(m'), POI(m'), OD(m'), OI(m') ) //See Figure 3.4
14: ConstructModel (seq, m', hn,^., maxerror, ODI(m'), k+1, PODI(m'))
15: remove Ct from the end of the model

16: if inavase\)s\ = true
17: cbemodel<— cbemodel- l

18; mcrease^ <— false
19: end for
20: end if

Figure 4.10 Dealing with the nucleotides subsets in constructing a
model of size k.

4.3.6 Single stranded regions

u

So far, the only considered conserved nucleotides were part of conserved base-

pairings, that is integrated in the folded part of a helix. However, in many cases,

primary constraints are also located in the loops and single stranded regions. For

example, the most conserved nucleotides in the TtFC region of tRNAs are situated in
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the TTC loop (see Figure 2.1). Another example is the helix P4 of mitochondrial

RNase P RNA (see Figure 4.6), where five conserved nucleotides are located just

before the beginning of the folded region.

To be able to take into account such conservation in single stranded regions, a new

array DeletionL[k] is introduced, that indicates whether the nucleotide at position k

in one side of the helix should be paired or not with a corresponding element in the

other side of the helix. Since we put single stranded regions in the model, the side of

the helix with single nucleotides corresponds to the direct occurrences of the model

and the other shorter side of the helix corresponds to the complementary inverse of a

model.

For each position i of the palindromic model m describing the helix, DeletionL[i]

takes the value 0 or 1 corresponding to paired nucleotide or single nucleotide

respectively, and this is performed initially when the program reads the palindromic

model in file Param. When the program searches for elongated words in the

sequence, DeletionL[k] for the extended position k should be checked. If

DeletionL[k] = l, the inverse occurrence is not extended, while the direct

occurrence continues to be extended in the sequence, ïf DeletionLW = 0, both direct

and inverse occurrences continue to be extended in the sequence.

4.3.7 Conserved bulges and interior loops

Many conserved secondary stmctures contain bulges and interior loops at specific

positions. For example, all mitochondrial 5S RNA stmctures that have been

considered contain an interior loop situated in helix III (see figure 4.3, 4.4). It is

always located at the same position, with one nucleotide at one side and three to

eight nucleotides at the other side of the helix. Also, all the mitochondrial RNase P

RNA structures that have been studied contain a bulge at a specific position in the

helix P4 (see Figure 4.5, 4.6). It is formed by a unique nucleotide which is always a



n

58

u

T. The Sagot-Viari algorithm treats interior loops and bulges as errors (insertion and

deletion). Therefore, it is not adapted to helices that have such loops as proper

characteristics. Thus, a new method is introduced which can deal with conserved

interior loops and bulges. The algorithm is given in Figure 4.11.

Four arrays are used: BulminL[k], BulmaxL[k] for the upper side of the helix, and

BulminR[k~\, BulmaxR[k] for the lower side of the helix. The index k denotes the

position in the palindromic model describing the helix. These four arrays indicate

the minimal number and maximal number of nucleotides that can be inserted at the

given position in the upper part and lower part of the helix respectively.

For example, consider the helix HI of mitochondrial 5S RNA represented by the

following conserved secondary structure:

N
N N N N G A——i

N N N N C T——'
N[3-8]

N[3-8] in the lower part of the interior loop means that we can have a minimum of

three nucleotides and a maximum of eight nucleotides. The four arrays BulminL,

BulmaxL, BulminL, BulminR are set as follows. There is no conserved interior loop

in the first part of the helix formed by the first three base-pairings N-N. Thus, for 0 <

i < 2 we set:

BulminL[i] = BulmaxL[i] = BulminR[i] = BulmaxR[i] = 0

The conserved internal loop begins at position 3, so we set:

BulminL[3] = l, BulmaxL[3] = l, BulminR[3] = 3, BulmaxR[3] = 8
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Definition

î>ulminK[k]

BulmaxR[k]

î>ulminL[k]

Buimaxï^[k]

constant arrays indicating the mtnimal number of nucleotides in
the loop at the position k of the lower part of the helix
constant arrays indicating the maximum number of nucleotides
in the loop at the position k of the lower part of the heUx
constant arrays indicating the minimal number of nucleotides in
the loop at the position k of the upper part of the helix
constant arrays indicating the maximum number of nucleoddes
in the loop at the position k of the upper part of the helix

Other definitions and program are the same with those in Figure 3.4 and Figure
4.7. Here we omit the details of treatment for score and helix error since they are
the same with those in Figure 4.7.

l:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:

Algorithm ManberSearch' (tn', ODI(m), StackScore(m), StackError(m),
PODI(m'), StackScore(m'), StackError(m'))

while read the next elements w from ODI(m)
if w is a direct occurrence // the lower part of the helix

ifBukninRpî] = 0 and BuhnaxR[k] = 0 //no loop or bugle
extend w in sequence and get wp
if a = P // where a is the last element of model m'

put wp in set PODI(m'=ma)
else for i = BukninR, until BulmaxR //there is a loop or bulge

extend w with i+1 elements in sequence, and get wbibz. . .bi|3
if a match p

put wbib2.. .bip in set PODI(m'=ma)
end for

else //w is a inverse occurrence, in upper part of the helix
ifBuLminL[k] = 0 and BulmaxL[k] = 0 //no loop or bulge

extend w in sequence and get w|3
if a match P

put w|3 in set PODI(m'=ma)
else deal with the errors

else for i = BulminL, until BulmaxL

extend w with i+1 elements, and get wbib2.. .biP
if a match p

put wbib2.. .UP in set PODI(m'=ma)
else deal with the errors

end for

//there is a loop or bugle

end while

u

The set PODI(m'=ma) are then having elongated direct and inverse occurrences.

Figure 4.11 Dealing with conserved interior loops and bulges when
searching for the elongated words.
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For the example above, when the program searches for the upper side of the helix, at

position 3 it jumps one position in the sequence, then it continues to search for the

next position 4. When the program searches for the lower occurrence, at position 3 it

jumps 3 elements, 4 elements, ..., until 8 elements, because it should search for all

the possible cases: the size of the lower side of the loop can vary between 3 and 8.

Then it continues to search for the next position 4.

This method is general. It can deal with the helix with several interior loops and

bulges at specific positions, and the number of nucleotides in the loop or bulge can

be variable just as explained in the above example.

4.3.8 Representing the helices in the input file

Now that we have adapted the Sagot-Viari algorithm to various kinds of helices

containing various primary and secondary stmcture constraints, we should describe a

useful way to represent such helices in the input file. The new parameters that have

been introduced in our algorithms (BaseCR[k][]], BulminR[k], BulmaxR[k~\,

BulminL[k] and BulmaxL[k]') should be deduced from a specific representation of a

helix.

A helix will be described by its lower side. The upper side is deduced from the lower

side. Here is an example:

Motif = A N[2] L G#[l,l][3,8] N[5] K N[1]

This motif is a description of the following helix:

N
NLNNNNN CKNNT ——i
1111111 11111 1
NKNNNNN GLNN A——'

N[3-8]
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More precisely, a motif is a sequence of strings, where each string S can be of one of

the following form:

S is a character from the alphabet E={A,C,G,J,K,L,M,N,Q,R,S,T,W,Y,Z}.

The meaning of each character is given in Table 3.1.

S is a character X from S followed by [i] where i is a given integer. This

means that the corresponding helix contains X repeated i-times in tandem.

S is a character C of Z followed by #[i,j ][k,l], where i,j,k,l are four integers

such that i < j and k < 1. This means that the helix contains the character C

followed by an interior loop which upper side size varies between i and j, and

lower side size varies between k and 1. If one of the two intervals is [0],then

the interior loop is a bulge.

S is a character C of Z followed by +. This means that only the lower side of

the helix contains this character C in the conresponding position, while the up

side of the helix contains a vacancy in this position.

Let us consider the model given above. Before reading the model, all the parameters

are initialized: BaseCR[ï] = -l, BulminL[ï] = 0, BulmaxL[i\ = 0, BulminR[i] = 0 and

BulmaxR[i} = 0. When the program reads the first element of the motif, that is, the

conserved nucleotide A, the parameter BaseCR[0][0} is set to 0; the second string

N[2] means that there are two nucleotides at position 1 and 2. The third string is the

character L corresponding to the subset {A, C, T}, so BaseCR[3][0] =0,

BaseCR[3'\[l]=Ï and BaseCR[3][2~\=3. The fourth string is G#[l,l][3,8] meaning

that the helix contains a conserved nucleotide G fallowed by an interior loop with the

length constraints defined by the two given intervals. Therefore, BaseCR[4][0}=2,

5u/mmL[4]=l, BulmaxL[4]=ï, BulminR[4]=3 and 5M/maz7?[4]=8. The fifth string,

N[5], means that the helix contains five consecutive nucleotides at positions 5 to 10,

that can be any nucleotide from the alphabet {A,C,G,T}. The sixth string is the

character K corresponding to the subset {A, G, T}, and thus BaseCR[l\][0~\=0,
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BaseCR[lï~\[l~\=2 and BaseCR[ïï][3~\=3. The last string corresponds to one last

nucleotide.

A last notation (+) is introduced in our helix models to be able to consider conserved

nucleotides in the single stranded regions. A string formed by a character of Z

followed by + will be considered as unpaired, that is, without a corresponding

complement in the upper side of the helix. An example of such model is given. For

example, the stem of the P4 helix of RNase P RNAs can be represented by:

Model = N[3] L C#[0,0][l,l] GAA A+ G+ G+ A+ K+

Before reading the model, DeletionL[i] is set toO, fori = 0, 1, ... 12. When the first

A+ is read, the program set BaseCR[S][0]=0 and DeletionL[S] =1. Similarly,

DeletionLW = l fork= 9, 10, 11, 12.

4.4 Conclusion

Based on the Sagot-Viari algorithm, we have developed a flexible and efficient

method that is able to identify, in a genomic sequence G, all the occurrences of a

specific secondary stmcture. These secondary structures are helices defined by their

stem and loop length, the presence of conserved nucleotides, the presence of

conserved base subsets and the presence of interior loops and bulges at specific

places. Our new algorithm allows for a very flexible representation and identification

of different kinds of helices. Moreover our program is able to deal with the

uncertainty in the primary stmcture, as well as in the secondary structure. In

addition, introducing score calculation makes it possible for us to filter the solutions

to avoid the redundancy in the output. Our program takes less spaces and times than

that of Sago-Viari's algorithm, because when model is been constructing we

consider just conserved nucleotides and conserved base subsets at some positions
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instead of taking every one successively from the alphabet {A C GT} for every

position of the model.

u
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Chapter 5

Applications and results

In this chapter, we test our algorithm on specific annotated genomes. We search for

all possible occurrences of 5S RNAs and RNase P RNA, and we compare the

obtained results with the results reported in the literature. We also test the effect of

different sets of parameters on the output.

To analyze the results of an algorithm, two types of errors should be considered:

The false negatives: The sequences corresponding to "true" genes detected

by other methods and reported in the annotations, but not found by our

algorithm.

The false positives: The sequences found by our algorithm, but that do not

correspond to real genes.

As we restrict ourselves to the search of specific subsequences of a complex

structure, the false positives can be explained by the fact that we did not consider all

the constraints of a gene structure, and these false positives can be eliminated by the

search of the other substructures. Therefore, obtaining false positives is not

necessarily a bad result, in contrast with obtaining false negatives. Moreover, it is

u



n

65

u

usually better to obtain too many results than to miss possible occurrences, as false

positives can then be tested by other ways.

5.1 Searching for mitochondrial 5S RNA

Mitochondrial 5S rRNAs are involved in mRNA translation (protein synthesis). The

general characteristics of a 5S RNA secondary stmcture have been defined in

Section 4.2.2. It is formed of four helices, among which helix III is the most

constrained one. Each helix is defined by general constraints such as conserved

base-pairings, a conserved interior loop for helix III, and specific length constraints.

In order to define these constraints more precisely, we considered the stmctures of

10 specific mitochondrial 5S RNAs: the plants chondms crispus (Z47547 - entry

name in GenBank), marchantia polymorpha (X04465), triticum aedtivum, the algae

cianidium caldarum, cyanidioschyzon merolae (D89861), plocamiocolax pulvinata,

nephroselmis olivacea (AF137379) and prototheca wickerhamii (U02970), and the

bacteria jakoba libéra and reclinomonas Americana NZ. All of them have been well

defined by other methods (for example, by x ray infraction), and we extract some

general characteristics.

5.1.1 Choosing appropriate parameters

Table 5.1 summarizes the parameters used to define the two helices I and III. We

did not take into account the other helices of the structure as they are very poorly

conserved, hmin is the minimum helix length, hmax the maximum helix length,

Imin the minimum loop length, Imax the maximum loop length, errmax the

maximum number of errors allowed (base-pairings that are not Watson-Crick pairs),

indel is the insertion/deletion permission (indel=l means insertion/deletion are

allowed) and minscore is the minimum score used to filter the helices, cberr is the

maximum number of errors allowed for conserved bases.
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Parameter element I element III

hmin 6 6

hmax 10 6

Imin 96 13

Imax 103 13

errmax l 0

indel 0 0

minscore 32

cberr

32

0 0

Table 5.1 The parameters used to define the elements I and III.

In addition to these constraints, helix element III is defined by a certain number of

conserved base-pairings and an internal loop. These constraints are represented by

the following model:

Model for helix HI: T C N*[l,l][3,8] N[3]

u

5.1.2 Searching for 5S RNAs

The general method used to find all 5S RNAs in a genome is the following. First, we

search for the helix elements I and III. Then we combine the different occurrences

of these two elements by respecting the distance constraints: there is a minimum of

17 nucleotides and a maximum of 21 nucleotides between the helices I and III of a

5S rRNA structure.
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HELICE 3 lmin=13, lmax=13, scoremin=32, errmax=0, boucle: l et 3-8

MODELS OF LENGTH 6

PALINDROME
Posl

>67259 C A C
56034 T G T
47428 A T T
41187 ACT
32263 T T T
31439 TAT
31001 T T T

30926 T T G
19887 C A G
13352 T T T
6371 TAT

T G1220
343

e
TAT

T T
T G
T T
A T
T G
T A
T A

T T
C A
T A
T A
C G
T A

G A
G A
G A
G A
G A
G A
G A
G A
G A
G A
G A
G A
G A

Score

34
32
32
32
32
32
32
34
32
32
32
34
32

Pos2
67279
56054
47448
41207
32283
31459
31021
30946
19907
13372
6391
1240
363

TCGAATTGT
TCTCAGAAT r^ r^

<3 ^ A C A
TCATATATAAT
TCATTAAGGCT
TCCGATAGA

TCTTATAGATA
TCTTTAACTGAAAA
T C
T C
T
TCTTTAAATA

TCTTGGTAGCAG
TCTTGCCATA

AAA G C AA
TTCGATAATTG
TAATTTTAAA

Figure 5.1 The output of our program for searching all occurrences
of helix HI in the R_amer_mtDNA sequence of the Reclinomonas
Americana genome. The first occurrence marked with symbol '>' is
the only one that is part of a real 5S rRNA structure, and it is the one
given in Figure 4.3.

To give an example let us consider the sequence R_amer_mtDNA of Reclinomonas

Americana. This sequence is of size 114, and the only 5S rRNA structure reported in

the annotation of that sequence is the one given in Figure 4.3. We detail here the

results obtained by our algorithm for searching 5S rRNA sequences in this genomic

fragment:

u
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• Two thousand occurrences of element I have been obtained. This is because

element I has not a very constrained structure: it does not contain conserved

base-pairings, and its stem is not very long.

• 13 occurrences of element III have been found. Figure 5.1 is the output of our

program for searching occurrences of element III.

• After combining the occurrences of element I with the occurrences of element

Ill, two solutions remain. One of them corresponds to the unique 5S rRNA

reported in the annotations of the R_amer_mtDNA sequence of Reclinomonas

Americana (see Figure 4.3). In Figure 5.1, the first one (at position 67259) is the

occurrence of helix ffl that is a part of this final stmcture.

5.1.3 The effect of filtering

As discussed in Section 4.3.1 of Chapter 4, in order to avoid the redundancy in the

solutions found by the Sagot-Viari algorithm, we introduced a score calculation and

filtered the solutions by choosing the one that had the best score. This had the effect

of considerably reducing the number of output results. For example, we have

searched all the occurrences of helix I in the sequence of Nephroselmis olivacea. The

effect of this filtering can be seen when we compare the results obtained with and

without filtering. We can see in Figure 5.2 that filtering largely cuts down the

number of occurrences obtained, especially for helix length 8 (29.64% reduction)

and 9 (34.70% reduction).
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Figure 5.2 The number of occurrences of helix element I vs. the
helix length in the sequence of Nephroselmis olivacea. The helix
length vary between hmin=6 and hmax=ÏO, as given in Table 5.1.
Curve a is the results obtained when no filtering is considered, and
curve b is the results obtained with our new filtering.

5.1.4 Results

We have searched for all potential sequences of 5S rRNAs in four genomic

sequences: Chondms crispus(size: 25836; entry: Z47547), Nephroselmis olivasea

(size: 200799; entry: AF137379), Prototheca wickerhamii(size: 55328; entry:

U02970) and Reclinomonas Americana(size: 69034; entry: AF007261). Table 5.2

presents the number of solutions found out by our method in the four genomic

sequences. We can see that there are no false negatives in our solutions, yet several

false positive may exist for some sequences.
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Sequence Solution False positive | False negative

C. crispus l 0 0

N. olivasea 3 2 0

P. wick. 4 3 0

R. Americana I 2 l 0

Table 5.2 The number of helices found out by combining the
occurrences of element I with the occurrences of element III with

respecting the distance constraint. The number of false positive and
the number of false negative for the four sequences are listed as well.

Figure 5.3 shows the number of occurrences obtained for helix I depending on its

length, for each of the four genomic sequences. As we have noticed, helix element

Ill is much more constrained than helix element I, and thus, far less occurrences

should be found for this helix. This is demonstrated by comparing the number of

occurrences of helix I (Figure 5.2) and the number of occurrences of helix HI in

Table 5.3. This table shows the number of occurrences of helix element III of length

6 in the four genomic sequences, with the two specific characteristics of helix III

(interior loop and conserved base-pairings) are considered, and when only length

constraints (parameters of Table 5.1.) are considered. One can see from this table

that the number of occurrences have been enormously reduced by taking all

characteristics of helix III into account.
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Figure 5.3 The number of occurrences vs. the model length for helix
element I. The curves correspond to the sequences: chondms crispus
mt DNA, nephroselmis olivacea mt DNA, prototheca wickerhamii mt
DNA and reclinomonas americana mt DNA.

Sequence
Number of occurrences (length 6)

No improvement | With two improvements

Chon-crise 128 3

Neph-oli 222 8
Pro-wick 235 11
R-amer 326 13

u

Table 5.3 The number of occurrences for helix element III in four

sequences, with two improvements (interior loop and conserved base
pairs) and without any improvement (only considering the length
constraint).
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5.2 Searching for mitochondrial RNase P RNA

The general characteristics of a mitochondrial RNase P RNA secondary structure

have been given in Section 4.2.3. It contains a certain number of conserved

substmctures, the most constrained one being helix element P4 (see Figure 4.5, 4.6,

4.7).

We first focus on the identification of all occunrences of helix P4. We then verify,

with the surrounding helix Pl whether the whole sequence is a potential RNase P

RNA.

5.2.1 Choosing appropriate parameters

We have considered mitochondrial RNase P RNAs of 10 bacterial: Jakoba libéra,

Reclinomonase Americana NZ, Schzosaccharomyces pombe, Saccharomyces

cerevisiae(AJ011856), Schizosaccharomyces octospoms(X54421), Saccharomyces

exiguous(AJ011856), nephroselmis olivacea, Rhizopus stolonifer, Emericella

nidulans and mucor mucedo. Table 5.4 summarizes the parameters used to define

the helices Pl and P4.

In addition, two models are defined for helices Pl and P4:

Model for helix Pl: N*[0,2][0,0] N[3] N*[0,0][0,l] N*[0,l][0,0] N[8];

Model for helix P4: N[3] L L*[0,0][l,l] GN[1] A A+ G+ G+ L+ K+.
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Parameter Helix Pl Helix P4

hmin 11 13

hmax 16 13

Imin 100 80

Imax 900 820

errmax 0 2

indel l 0

minscore 53 37

cberr 0 0

Table 5.4 The parameters used to define the helices Pl and P4.

u

5.2.2 Searching for RNase P RNAs

First, we search for the helix elements Pl and P4. Then, we combine the different

occurrences of these two elements by respecting the distance constraints: there is a

minimum of l nucleotide and a maximum of 2 nucleotides between the elements Pl

and P4 (shorter side) of a RNase P RNA stmcture (see Figure 4.5, 4.6).

To give an example, let us consider the sequence of mitochondrial RNase P RNA of

Reclinomonas Americana NZ. This sequence is of size 315 and the only RNase P

RNA structure reported in the annotation of that sequence is the one given in Figure

4.5. We detail here the steps of searching for RNase P RNA sequences by our

algorithms in this genomic fragment:

• 20 000 occurrences of helix Pl have been found.

• 10 occurrences of helix P4 have been found. Figure 5.4 is the output of our

program for searching occurrences of helix element P4.
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• After combining the occurrences of helix element Pl with the occurrences of

helix element P4, two solutions remain. One of them corresponds to the unique

RNase P RNA reported in the annotations of the R_amer_mtDNA sequence of

Reclinomonas Americana NZ (see Figure 4.5). In Figure 5.4, the one marked

with '>' (at position 33500) is the occurrence of helix P4 that is a part of this

final stmcture.

SEQUENCE R.amer mtDNA reversed

MODELS OF LENGTH 13

PALINDROME
Posl
66525
61584
61354
60189
50124
44856

>33500
33173
26435
13474

T T

T T
T T
T A
T G
T A
T T

T C
T T
T T

T G
T T
C T
T A
C T
T T
C G
T G
C T
T G

G G
T A
T A
A A
A T
G G
A C
A C
A A
G A

T C
A A
A A
A A
G A
T G
C T
C T
A A
T G

Score Pos2
39 67046
38 61726
42
38
38
37
48
37
42
42

61726
60928
50475
45249
33751
33751
26550
14161

G C
T T
T T
T T
T T
C A
A G
A G
T T
C A

e e
T A
T A
T T
A T
e e
G T
G T
T T
T C

C A
A A
A A
T C
A T
A G
C T
C T
A T
C T

G A
G A
G A
G T
G T
G A
G A
G A
G A
G G

A A
A A
A A
A A
A A
A A
A A
A A
A A
A A

G G
G G
G G
G G
G G
G G
G G
G G
G G
G G

C A
T T
T T
A T
A A
T T
A T
A T
T G
T A

Figure 5.4 The output of our program for searching all occurrences
of helix P4 in the RNase P RNA sequence of the Reclinomonas
Americana genome. The occurrence marked with symbol '>' is the
only one that is part of a real RNase P RNA structure, and it is the one
given in Figure 4.5.

5.2.3 Results

u
We have searched for RNase P RNA sequences in the four DNA sequences

corresponding to the four bacteria: Rhizopus stolonifer(size: 54178), Reclinomonas
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Americana NZ (size: 69034; entry: AF007261), Nephroselmis olivacea (size:

200799; entry: AF137379) and Schizosaccharomyces pombe (size: 19431; entry:

X54421). Table 5.5 summarizes the solutions found. We can see that there are no

false negative in our solutions, yet one false positive exist for some sequences.

Sequence Solution False positive | False negative

R. stolonifer l 0 0

N. olivasea 2 l 0

S. pombe 2 l 0

R. Americana I 2 l 0

Table 5.5 The number of helices found out by combining the
occurrences of element Pl with the occurrences of element P4. The

number of false positive and false negative is given.

5.2.4 Discussion on parameter settings

To give a better idea about the inïïuence of the parameters in the searching

algorithm, we compare the results obtained for searching the helix P4 in the

sequence of the mitochondrial genome of S.pombe, by considering different

parameter sets. Table 5.6 gives five parameter sets and the corresponding number of

occurrences found in the genome. The number of special characters refers to any

character except A, C, G, T, N in the model defining the helix (characters defining a

set of nucleotides). In this table, we just report the set of parameters that leads to no

false negative.

u
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Set

Number of

occurrences

Number of

special characters

Conserved

base error

Base pair

error

Set no. 1 237 0 4 2

Set no.2 134 l 3 2

Set no.3 63 2 2 2

Set no.4 24 3 l 2

Set no.5 5 4 0 2

Table 5.6 The parameter sets for searching the stmcture P4, and the
corresponding number of objects found in S. pombe mt sequence.

250

-5§2001
11 "°1

100-1

z § 50^
0
01234

Conserverd base error

Figure 5.5 The number of helices found greatly increases as the
conserved base error increases from 1 to 4, though the number of base
subset in the model decreases.
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Although helix element P4 has been found out with each of these five sets, the

difference in the number of false positives is large (Figure 5.5). The number of

occurrences greatly increases as the number of allowed errors on the conserved

nucleotides increases from 0 to 4, though the number of special characters in the

model decreases. We have performed the same kind of experiences on the four

genomes: Rhizopus stolonifer, Reclinomonase Americana NZ, Nephroselmis

olivacea and Schzosaccharomyces pombe. Table 5.7 is the result of searching P4 by

choosing a model that does not contain any special character, and by varying the

number of errors allowed. Conversely, Table 5.8 is the result of searching P4 by

allowing no error on the conserved bases, and by varying the number of special

characters in the model.

Conserved base error False positive | False negative

0 2 3

l

2

6 3

57 l

3

4

413 l

2320 0

Table 5.7 Searching P4 with a model that does not contain any
special character. As the number of conserved base error increases,
the number of false positive increases, and the number of false
negatives decreases. Here the maximum base pair error is 2.
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Number of base subset False positive | False negative

0 2 3

l

2

5 3

8 l

3

4

14 l

34 0

Table 5.8 Searching P4 by varying the number of special characters
in the model. Here the maximum base pair error is 2.

These results show that the effect of errors is higher than that of special characters.

This is because a special character inïïuences just one position, whereas an increase

in the number of errors allowed influences every position. So we conclude that the

number of occurrences slightly increases with the number of special characters in the

model, but highly increases with the number of allowed errors.

u
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Chapter 6

Conclusion

u

Based on the Sagot-Viari algorithm, we have developed a flexible and efficient

method for identifying, in a genomic sequence G, all the occurrences of some

specific secondary structure. These secondary structures are helices defined by their

stem and loop length, the presence of conserved nucleotides, the presence of

conserved base subsets and the presence of interior loops and bulges at specific

places. Such an algorithm for searching helices can be used in the different existing

methods of complex biological structure search (RNAmot, RNAbob, Palingol) to

improve the flexibility of these algorithms, or can be the basis of another general

method. The idea is to first subdivide the general stmcture into a set of helices, to

search for all these helices in the genome being analyzed by our algorithm, and then

to assemble the different substmctures. In that way, the user can try to assemble the

"basic" helices in different ways, and new structures can be more easily discovered.

Our new algorithm makes it possible to easily represent different kinds of helices.

Besides, based on the score calculation, we improved the output of the algorithm by

filtering the solutions and selecting the best results between all possible occurrences.

These occurrences are chosen on the base of a general score. The filtering had the

effect of considerably reducing the number of output results.
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We used our algorithm for searching different structures in various genomes. In each

case, the algorithm identifies the annotated RNAs, with no false negatives and a few

number of false positives. Moreover, by testing the effect of different parameters sets

on the output, we noticed that the number of occurrences slightly increases with the

number of special characters in the model, but highly increases with the number of

allowed conserved base errors.
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