
^^//^95?J/

0 Université de Montréal

Objet Identification Using Conceptual Clustering

par

Shiqiang Shen

0
Département d'informatique et recherche opérationnelle

Faculté des arts et des sciences

Mémoire présenté à la faculté des études supérieures

en vue de l'obtention du grade de

Maître es sciences (M.Sc.)

en informatique

Novembre, 2001

© Shiqiang Shen

J

^Etudes'
^'. 'ù'<!

'octoi
îu

^^
^

d ç.<B
u,

FFV 2002

^
:4 ^.1<®A

î'fé t»0de

^
^
(J^
^oo q
v.oo3

0

0

,t:

u

0 Université de Montréal

Faculté des études supérieures

J

Ce mémoire de maîtrise intitulé

Object Identification Using Conceptual Clustering

présenté par

Shiqiang Shen

0
a été évalué par un jury composé des personnes suivantes:

Président: Balâzs Kégl

Directeur de recherche: Houari Sahraoui

Membre: Petko Valtchev

Mémoire accepté le:. 15 ^W\)(^^ ^oo^

0
Acknowledgements

I want to thank my supervisor, professor Houari Sahraoui, for his support over my

whole thesis period. I really appreciate the chance to work in such an interesting

project under his valuable guidance and advice. He has constantly supported me in

very kind and encouraging way by pointing out relevant research, generating

interesting ideas. I am thankful to Idrissa Konkobo, Salah Bouktif for many

interesting discussions on the topics of my thesis that have broadened my

perspective.

0

u

Abstract

The object identification is one cmcial step in migrating legacy systems to the object

oriented technology. It aims at reducing the overwhelming number of lines of code

in the legacy systems to a number of high-level design decision, and tends, thus to

minimize the need for domain application experts. This thesis proposes a novel

approach for identifying objects in an automatic fashion. It differs from other work

by the fact that it borrows part of its inspiration from the artificial intelligence sub-

field of conceptual clustering and focuses on the identification of objects which

should be internally cohesive meanwhile inter-dependency between them should be

kept as loose as possible.

0
We identify two kinds of structural information to be used by the approach, one is

the usage of each variable in a set of routines, the other is the call relation among

routines. The two relations are supposed to significantly capture the basic structural

infonnation leveraged for object identification.

The prototype we built can work in an automatic fashion. It is also open to human

intervention when an expert is available. Those adjustable parameters available in

the prototype offer more flexibility in searching for candidate objects similar to those

already found.

We introduce a process of iterative optimization into the approach to seek higher

quality of objects decomposed from a legacy system. The process compares the

qualities of two sequential clustering trees according to their total sum of couplings

between candidate objects and terminates when there is no further improvement in

clustering quality.

u The approach adopts the new clustering criterion functions (objective functions) that

are directly associated to the well-known object oriented design metrics (cohesion

0

iii

and coupling), introduces the multi-criteria decision-making to insure all identified

objects with a relatively high degree of cohesion and then to keep its coupling with

others as low as possible.

In order to overcome order effects, we put a Reordering procedure into the iterative

optimization process and extract the so-called interleaved ordering in each iteration.

The introduction of reordering procedure to our approach mitigates ordering effects

globally and uncovers better clustering effectively.

The approach has been applied to the three small real-life systems and the results are

compared to those identified manually. The validation results of the approach are

considered to be good concerning recall rate. The further analysis on the results

reveals its drawback due to the inherent limitation of automated techniques.

Keywords: conceptual clustering, re-engineering, object identification, legacy

software migration.

u

0 iv

Sommaire

L'identification des objets est une étape cruciale dans la migration des systèmes

légués vers les technologies orientées objet. Elle vise à réduire le nombre de lignes

de codes très élevée dans les programmes légués à un nombre de décisions de

conception de haut niveau; Elle tend donc à minimiser le besoin d'experts du

domaine. Cette thèse propose une nouvelle approche pour l'identification des objets

de manière automatique. Elle diffère des autres travaux par le fait qu'elle emprunte

une part de son inspiration à un sous domaine de l'intelligence artificielle: le

regroupement conceptuel; elle se concentre sur l'identification des objets qui doivent

être cohésifs tout en conservant une interpédance qui soit la plus basse possible.

0

Nous identifions deux sortes d'informations structurelles à utiliser par cette

approche, l'une est l'utilisation de chaque variable dans un ensemble de routines,

l'autre est représentée par les relations d'appel entre les routines. Les deux relations

sont supposées capturer les informations structurelles de base pour l'identification

des objets.

Le prototype que avons construit peut fonctionner de manière automatique. Il est

aussi ouvert à l'intervention humaine lorsqu'un expert est disponible. Ces paramètres

ajustables offrent plus de flexibilité dans la recherche d'objets candidats similaires à

ceux déjà trouvés.

Nous introduisons un processus d'optimisation itérative dans rapproche dans le but

de trouver des objets de meilleurs qualités dans un code légué. Le processus compare

les qualités de deux arbres de regroupements séquentiels en fonction de la somme

totale des couplages entre les objets candidats et se termine quand il n'y a plus

d'ameliorations qualitatives possibles dans les regroupements.

u L'approche adopte un nouveau critère de regroupement (les fonctions objectifs) qui

sont directement associées à des métriques orientées objets bien connues (la cohésion

0 v

et le couplage) et introduit la notion de prise de décision multi objectifs dans le but

d'assurer que chaque objet identifié a relativement un haut degré de cohésion et

conserve un couplage aussi bas que possible, par rapport aux autres objets.

0

Dans le but de résoudre le problème de l'effet de l'ordre, nous avons introduit dans

le processus d'optimisation itérative, une procédure qui réordonne et nous avons

extrait les ordres dits "interleaved" dans chaque itération. L'introduction de cette

procédure à réduit les effets de l'ordre et permis d'avoir de meilleurs groupes.

L'approche a été appliquée à trois systèmes de petites tailles et les résultats ont été

comparés à ceux identifiés manuellement. D'un point de vue "du taux de rappel"

les résultats de validation sont bons. Une analyse approfondie des résultats révèle

que les inconvénients sont dus aux limitations inhérentes aux techniques

automatiques.

Mots clés: Regroupement conceptuel, rétro ingénierie, identification des objets,

migration des applications léguées.

u

0 vi

CONTENTS

Acknowledgements

Abstract,

i

Chapter 1 Introduction.. 1
1.1 Motivation.. 1

1.2 Goals.. 2

1.3 Outline... 3

0

Chapter 2 State of the Art ... 5

2.1 Terminology of Reengineering.. 5

2.2 The Importance of Object Identification in Re-engineering.............................. 7

2.3 Overview of Current Techniques of Object Identification................................ 8

2.3.l Global-based Object Identification... 8

2.3.2 Type-based Object Identification.. 12

2.3.3 Unifying Forward and Reverse Engineering.. 13

2.3.4 Other Methods to Identify Objects... 16

2.4 Problems in Object Identification.. 19

Chapter 3 Conceptual Clustering ...21

3.1 A Brief Introduction to Conceptual Clustering.. 21

3.2 Cobweb System... 23

3.3 An Example of Cobweb... 26

3.4 Some Important Properties of Cobweb system.. 27

u

Chapter 4 Conceptual Clustering Based Approach..................................29

4.1 Overview of the Proposed Approach... 29

4.2 An Example of Applying Cobweb to Object Identification 31

0 Vil

0

4.3 Limitation of Applying Cobweb to Object Identification 33

4.3.1 Cobweb Algorithm Itself.. 33

4.3.2 Object Function CU.. 33

4.4 Conceptual Clustering Based Approach .. 34

4.4.1 Approach Overview.. 34

4.4.2 Two Relations... 36

4.4.3 Clustering Criterion Functions of OI-Cobweb... 38

4.4.4 Multi-Criteria Decision Making ... 40

4.4.5 OI-Cobweb Algorithm.. 43

4.4.6 Reordering Procedure... 44

4.4.7 An Example of the Approach... 45

Chapters Implementation... 56

5.1 Supporting Tool... 56

5.2 Extracting Information... 59

5.3 Properties of the Prototype .. 64

u

Chapter 6 Evaluation of the Algorithm ..69

6.1 Systems Studied... 69

6.2 Reference Corpus... 71

6.3 Classification of M.atches... 72

6.4 Accuracy and Recall Rate.. 75

6.5 Case Studies... 78

6.5.1 Case Study 1 ...78

6.5.2 Case Study 2 ... 79

6.5.3 Case Study 3 ... 79

6.5.4Summary of Evaluation Results ... 80

6.6 Discussions and Lessons Learned.. 83

Chapter? Conclusion..86

0
7.1 Thesis Summary

7.2 Future Work.

viii

..86

,88

Bibliography...90

0

u

0 ix

LIST OF FIGURES

0

J

Figure 1 Reference relation between routines and global data.................................... 9

Figure 2 Routine interdependence graph of the relation of figure 1............................ 9

Figure 3 Reference graph of the relation between routines and global data.............. 10

Figure 4 A Cobweb clustering for four one-celled organisms................................... 27

Figure 5 Overview of the object identification approach .. 30

Figure 6 Clustering tree for object identification... 32

Figure 7 An Imaginary System.. 37

Figure 8 VR-relation from An Imaginary System... 37

Figure 9 RR-relation from An Imaginary System... 38

Figure 10 A Scenario of Three Clusters ..40

Figure 11 Procedural Code of Collections in C... 47

Figure 12 Matrix representation of a set of relations between routines and variable 48

Figure 13 Matrix representation of a set of relations between routines..................... 49

Figure 14 Initial Clustering of Variables in A Random Order.................................. 52

Figure 15 Clustering of Variables in A New Order in the Second Iteration 53

Figure 16 Clustering of Variables in A New Order in the Third Iteration 54

Figure 17 Different Clustering in different presented ordering................................. 55

Figure 18 An Example in Brower of Discover's DeveoperXpress 57

Figure 19 An Example in View ofDiscover's DeveoperXpress............................... 58

Figure 20 A sample of Input File for the Approach .. 64

Figure 21 Interface of the prototype.. 65

Figure 22 Parameter Setting .. 66

Figure 23 Suite of Analyzed C Systems.. 70

Figure 24 Summary of model elements for reference corpus.................................... 72

Figure 25 Example correspondences of candidates and references........................... 75

Figure 26 Summary of evaluation results.. 80

Figure 27 Evaluation results in percentage.. 81

Figure 28 Overall quality of the approach... 82

0 x

Figure 29 Summary of CCBA and GOAL evaluation results

Figure 30 Sensitivity of the approach to COHESION variations,

,82

83

0

u

0

chapter 1 Introduction

0
1.1 Motivation

The software industry has a lot of legacy systems that have been used and

maintained for several (or even dozens of) years. After undergoing a number of

changes over the years, in most cases, they tend to become ill-structured, highly

redundant, poorly self-documented, and weakly modular. These systems are

important and valuable from the business point of view and still remain in heavy use.

However, mere maintenance of these legacy systems is not always adequate and

even not feasible, instead they require larger modernization and re-engineering [37].

u

In order to address these issues, many organizations have been migrating their legacy

systems to object-oriented technology. This migration goal has strategic relevance

because the demand for maintenance/e volution of existing systems is likely to

increase rapidly in the near future as a result of major innovations in both the

administrative processes and the technologies in use. Advantages of object-oriented

programs are considered to be encapsulation, data abstraction, information hiding,

etc. In addition, they are easy to understand, maintain, and reuse. Re-engineering

n

0

2

these systems to create object-oriented architectures seems to be a more feasible

approach [54].

M.OTG than 50% of the time needed for the re-engineering of an existing legacy

system is spent in understanding the program before the actual change can be

designed and realized, as several case studies have shown [17]. When re-engineering

non-object-oriented (procedural) programs into object-oriented ones, it is important

to identify objects or components from procedural programs in reverse engineering

activities. The identification of them can help in comprehending the system's design

and, in particular, the structure and meaning of the data. When the cost of manual

identification of objects is prohibitive, the automated identification of objects is more

economical especially for large systems, and it allows engineers to skip over

implementation details that hide, or make difficult to recognize, the meaning of the

system's parts.

Research in the area of object identification has yielded many techniques, and their

number is still growing. However, a simple automatic solution to object

identification seems to be few and the quality of the automatically identifying objects

is not good enough to be accepted without additional examination by the

maintenance engineers [36].

1.2 Goals

Aiming at achieving better results, we propose a new and more flexible approach,

namely conceptual clustering based approach, to identify objects automatically from

legacy systems. In this thesis, we especially pay attention to those aspects that are

supposed to be primary factors affecting or improving the quality of automated

techniques for this problem. The principal new results of this thesis include:

u
Chapter 1 Introduction

n

0

•

3

Maximal use of useful information extracted directly from legacy code

which is supposed to significantly capture the basic structural information

leveraged for object identification;

Significant practical experience with the use of conceptual clustering for

object identification;

Association of clustering criterion functions of object identification to

well-known design cohesion and coupling metrics for object-oriented

systems that is incorporated into object identification;

Introduction of multiple criteria decision making into the process of

optimizing data grouping which makes the approach more flexible and

enhances the quality of object identification;

A discussion of a number of problems (and solutions) involving use of the

approach in the case studies;

Validation of the approach based on comparison of the results obtained by

the approach with those identified by human from three small real-life

systems;

Implementation of a prototype tool that uses the approach to find potential

objects and also provides the user with the other base facilities that may

support more typical object identification tasks through setting parameters

based on the characteristics of the subject system.

1.30utline

The rest of this thesis is organized as follows:

Chapter 2 introduces the terminology and concepts of reengineering used in the

thesis and presents existing techniques for object identification.

u
Chapter 1 Introduction

0 4

Chapter 3 first gives a brief introduction to conceptual clustering, and then describes

Cobweb system, a conceptual clustering technique, which our proposed object

identification approach heavily relies on.

0

Chapter 4 describes the conceptual clustering based approach we propose, discusses

those concerns about the approach's efficiency, and shows how this approach works

by applying it to a well-known example in this area.

Chapter 5 presents the prototype of the approach, and describes some aspects of base

facilities the prototype provides.

Chapter 6 performs evaluation of this approach with three small rcal-life systems,

compares the results obtained by the approach to those identified manually in order

to assess its accuracy, strength, and effectiveness.

Chapter 7 makes some conclusions from considering the benefits gained by using the

approach in the thesis, and then discusses future work.

u
Chapter 1 Introduction

Q

Chapter 2 State Of the Art

0
This chapter considers re-engineering in general and object identification in

particular. We first introduce the terminology. Then we explain the importance of

object identification in re-engineering, and after that we present published

approaches of object identification and discuss the problems of these approaches.

2.1 Terminology of Reengineering

In this section, we introduce some basic concepts concerning reengineering, which

are based on [10]. For simplicity, the definitions assume that the software life cycle

consists of three phases: requirements analysis, design, and implementation.

u

Software maintenance

The ANSI definition of software maintenance (ANSI/ffiEE Std 729-1983) is the

"modification of a software product after delivery to correct faults, to improve

performance or other attributes, or to adapt the product to a changed environment".

The first step in software maintenance is to examine the program to understand it.

Reverse engineering facilities can be used to support the maintenance process. Thus,

reverse engineering is the part of the maintenance process helping to understand the

n 6

program in order to make the desired changes. Maintenance can also be considered

as reuse-oriented software development [1].

Forward Engineering

Forward engineering is the traditional process of moving from the requirements of

the system to its design, and from design to the concrete implementation of the

system. Actually, forward engineering means exactly the same as engineering. The

adjective forward is used to distinguish the term from reverse engineering.

0

Reverse engineering

Reverse engineering is a reverse process for forward engineering. In reverse

engineering, the extracted information about a system is more abstract than the

system itself under examination. For example, abstractions or design decisions arc

generated from the implementation level. Reverse engineering can start from any

level of abstraction or at any stage of the life cycle. Reverse engineering does not

involve changing the subject system. It is a process of examination, not of change or

of replication.

Restructuring

Restructuring is the transformation from one representation form to another at the

same abstraction level. The transformation preserves the external behavior of the

system. Restmcturing is typically used in implementation stage to transform code

from an unstructured form to a structured form (transforming, for example, goto-

statements to control structures). In addition, restructuring can be used in other

stages, for example to reshape design plans or requirement structures.

u

Design recovery

Design recovery is a subset of reverse engineering in which domain knowledge,

external information, and deduction or fuzzy reasoning are added to the observations

Chapter 2 State of the Art

0 7

of the subject system to identify meaningful higher level abstraction beyond those

obtained directly by examining the system itself.

2.2 The Importance of Object Identification in Re-engineering

Analyzing old software has become an important topic in software technology, as

there are millions of lines of codes which lack proper documentation; due to ongoing

modifications, software entropy has increased steadily. If nothing is done, such

software will die of old age — and the knowledge embodied in the software is

inevitably lost.

0

As a first step in legacy system, one must reconstruct abstract concepts from the

source code. In a second step, one might try to transform the source code such that

the structure of the system is improved and obeys modem software engineering

principles. One particular problem is modularization of old code. Old systems have

not been developed by today's modularization criteria. Therefore, static information

like control and data flow, access to non-local objects, or interface information must

be extracted in order to guide restructuring. Modularization can then be achieved by

manual changes or automated program transformation or both [31].

u

Although procedural programming languages do not directly support object-oriented

programming constructs, they do provide several object-like features (such

groupings or related data, abstract data types, and inheritance). It would be very

useful to the maintenance programmer to understand the data and function

relationships and objects the original designer had in mind. Clustering and re-

engineering operations on the components belonging to a candidate object are

necessary to transform them into an actually reusable object. Furthermore, success

maintenance requires a precise knowledge of the data items in the system, the ways

these items are created and modified, and their relationships. As Livardas and

Johnson pointed out [40], identifying objects in procedural code helps to

Chapter 2 State of the Art

0

•

•

8

understand system design;

test and debug;

re-engineer the system from a procedural program into an object-oriented

one;

avoid degradation of original designs during maintenance;

facilitate the reuse of existing methods contained in the system.

0

There is a lot of work concerning the migration from procedural languages into

object oriented ones. Actually, most of the papers concerning this topic use the term

object identification. To be exact, objects can be considered as run-time features and

classes as compile-time features. We usually search for object-oriented features from

code. Consequently, we can find compile-time features (classes). However, in this

thesis we use both the terms class identification and object identification to mean

very much the same.

2.3 Overview of Current Techniques of Object Identification

This section describes different approaches for identifying objects in procedural

programs.

u

2.3.1 Global-based Object Identification

Liu et al. have used global-based object identification in their system called Object

Finder [39, 47]. The method acts as follows. For each global variable of the program,

the set of routines that directly use the global variable is detennined. After that a

routine interdependence graph is constructed, which show the dependence between

routines consequent to their common coupling to the same global variable. A node

P(x) in the graph denotes the set of routines that reference a global variable x. An

edge between P(xi) and P(x-z) means that the two sets are not disjoint (P(xi) n P(x2)

^ 0). Figure l-a shows the reference relations between the routines n's and the

Chapter 2 State of the Art

n 9

global data J,'s of a program. Figure2 shows the corresponding routine

interdependence graph. Such a kind of graphs is used to identify objects. Each

isolated sub-graph is considered to embody an object.

0

ri

'"2

r3

r4

rs

rs

ri

rs

'•9

rio

'-;;

di

l

l

l

di

l

l

l

ds
l

l

l

d,

l

d, \ ds

l

l

l

l

Figure 1 Reference relation between routines and global data

P_(d2) P(dj)

rj

r4

rs

P(d4)

rs

r?

P(d5)

rô

rio

n

/-2

rii

P(d6)

rs

r? P(di)

r2

rs

r7

rii

Figure 2 Routine interdependence graph of the relation of figure 1

u
Chapter 2 State of the Art

n

0

10

Dunn and Knight introduce a different way to construct the graph consisting of

global variables and routines [15]. In reference graphs, nodes are either routines or

global variables, and an edge between a routine and a variable means that the routine

uses the variable. Figure 3 shows the reference graph of the relation of figure 1. Like

the routine interdependence graph, this kind of graph is used to identify objects

through isolated sub-graphs.

c^
A

rj

rn

r»

d,

d, KD r,n

ri

d,

r,ir?

d,

rs r?

d6

Figure 3 Reference graph of the relation between routines and global data

When applying global-based identification methods, the program code may be so

tightly coupled that the whole program is one large connected component.

Consequently, the method cannot split the program into smaller parts. In these

situations, the user can specify (by hand) those global variables that fonn undesired

links between nodes (routines) in the graph. These global variables are then ignored

during the global-based object identification analysis.

u

Many other object identification systems have applied and developed global-based

identification further. For example, Livadas and Johnson have detected some

deficiencies from the method [40]. First, in programming languages allowing nested

procedures (like Pascal), those variables that are visible for several procedures

should be considered as global variables. Second, although a global variable is

Chapter 2 State of the Art

n 11

passed as a parameter to a function, the receiver function should notice that the

parameter originally is a global variable.

u

In the extended method proposed by Livadas and Johnson [40], the internal program

representation is a system dependence graph. It is a directed labeled multi-graph

consisting of a program dependence graph and a collection of procedure dependence

graphs. The program dependence graph represents the main program, and procedure

dependence graphs represent procedures. Each node of these graphs represents a

program construct such as declaration, assignment, etc.. Additional nodes represent,

for example, formal and actual parameters. The edges represent several kinds of

dependences among the nodes and are distinguishable according to the labels

attached to them. When using the system dependence graph, all the information

needed can be obtained from the headings of the procedures. Thus, procedures with

lacking bodies (for example library procedures) can also be modeled with the system

dependence graph.

Canfora et al. use global-based object identification in their RE2 project [5, 6, 7, 8].
The authors propose an algorithm that transforms a reference graph into a set of

strongly connected and disjoint sub-graphs, where each sub-graph represents a

candidate object. This transformation is based on the notion of variation of the

internal connectivity of sub-graphs (AIC) of the reference graph. At the beginning,

each routine defines a sub-graph (with a AIC). Two primitives are used to transform

the graph (in an iterative way): Merge and Slice. Merge clusters all the data of a sub-

graph into a single data node. This is done when the AIC is greater than a threshold

value. Slice, consists of slicing a routine to dissociate two sub-graphs [32, 55, 56].

This occurs when the AIC is less than the same threshold value. The major weakness

of this algorithm is the way the threshold value is calculated. The proposed approach

is based on the programming style, which is very difficult to assess.

Chapter 2 State of the Art

0 12

2.3.2 Type-based Object Identification

Liu et al. also provide another method to identify objects in Object Finder [39, 47].

This method is based on types and acts as follows. First, a topological ordering of all

types in the program is defined as follows. If a type x is used to define a type y, then

we say that x is a part of y, and y contains x. The relation of types is transitive: if x

is a part of y and y is a part of z, them x is a part of z. Second, routines and types

are connected together. A type is connected to a routine, if it is a formal parameter or

a return type of the routine. However, if a type and its part type would be connected

to the same routine, the part type will be ignored. The groups consisting of connected

routines and types form objects and their routines. Again, human assistance is

needed to split too large objects.

0
The reason why part types are rejected as described is to eliminate some irrelevant

connections. We may, for example, have a type node, and another type stack

whose items are nodes. Thus, node is a part of stack. Consider a routine push

having two arguments: one of type node (which will be pushed) and another of type

stack (to which a node will be pushed). For a human, it is clear that push should

be a routine of stack, not a routine of node. If we follow the above mles, the

connection between push and node will be removed, and the remaining connection

will be the one between push and stack, as we intended.

Livadas and Johnson have noticed some shortcomings in type-based object

identification, too [40]. The return type of a procedure is not always appropriate

criterion for forming connections. For example, a routine is_empty (for a

stack) has a Boolean return type. However, the routine is not a routine of Boolean,

but a routine of stack.

u
Chapter 2 State of the Art

13

Livadas and Johnson also introduce the method of receiver-based object

identification [40]. Receiver parameter type of a routine means a type whose

parameter is modified in at least one execution path of the routine. If a routine has

several parameters, one of which is modified, the type of that parameter is typically

an object candidate. For example, consider a routine push having two arguments:

one type node and another of type stack. The routine pushes the given node to

the given stack. Thus, only the parameter of type stack is modified, and stack

should be an object candidate having the routine push.

Other researchers, such as Yel et al. (1995), Girard et al., (1997) proposed some

heuristics to enhance Liu and Wilde's work. Yel et al. combine data structures with

global variables in order to form groups of routines, data structures and global

variables. Girard et al. propose an approach called similarity clustering to identify

both objects and classes. This approach is based on the similarity metric introduced

by Schwanke (1991).

2.3.3 Unifying Forward and Reverse Engineering

Gall et al. introduce CORET or COREM (Capsule Oriented Reverse Engineering

Technique/Method) to translate non-object-oriented programs into object-oriented

ones[18, 19, 20, 21, 22, 23, 24, 25,26, 34]. CORET not only considers data stores as

object candidates, but also examines functional relationships between data structures

to get more object candidates from which several are selected to become objects.

CORET divides object recovery into four phases: design recovery, application

modeling, object mapping and source-code adaptation.

The first phase, design recovery generates different low-level design documents (i.e.

stmcture charts, data flow diagrams). These documents are again modified to

generate an entity-relationship diagram (ERD). The ERD consists of entities based

Chapter 2 State of the Art

0 14

on the data stores of the data flow diagram. Data structures that are functionally

related to these data stores are also added as entities of the ERD. A functional

relationship is defined as a manipulation or use of one or several attributes of an

entity (e.g. data store) by another entity (e.g. data structure). The relations of the

diagram arc both special relations (is-a, part-of) and general relations. The general

relations are derived from those procedures of the program that incorporate a

functional relation between two entities.

0

The entity-relationship diagram is transformed into an (reversely generated) object-

oriented application model. The transformation is based on the structural similarities

of these two design representations: each entity is mapped to an application object.

The relationships (is-a, part-of) between objects and operations of objects are derived

directly from the corresponding structures of the entity-relationship diagram. They

are also derived from the declaration parts of the source code: is-a relations can be

derived from variant records while part-of relations can be derived from array or

pointer structures within data type definitions. The operations for an object can be

found both from entity-relationship diagram and by the examination of the source

code to recognize the procedures manipulating the object.

The second phase, application modeling constructs an (forwardly generated) object-

oriented application model. This model is independent of the actual procedural

implementation, but is based on the same requirements as the examined methods [11,

12, 49]. Actually, this step models the application, which is earlier modeled by the

means of procedural program design, again by using object-oriented techniques.

u

The third phase, object mapping maps the objects of the two models (reverse and

forward) together. The goal of this step is to find a mapping of similarities between

the elements of those two models. The papers [25], [26] especially concentrate on

finding the similarities using different binding techniques. Because of the different

Chapter 2 State of the Art

0 15

origins, the models have some differences. The forward model originates from the

requirements analysis and the domain knowledge, and therefore does not have

detailed information (e.g. attributes have no types). The reverse model on the other

hand offers a lot of detailed information because it originates from the examined

source code. Thus, in mapping objects, the forward model is working as a pattern for

the target application model to which the reverse model gives the detailed

information. The two models have varying amount of attributes, instance

connections, and message connections. Thus, some parts remain without

correspondence. These parts contain elements of the procedural program that cannot

be mapped to the target object-oriented model, and they form so-called procedural

remainder.

0

In the fourth phase, source-code adaptation, both the earlier mapped elements and

the procedural remainder are adapted to object-oriented concepts. Syntactically,

objects are formed by encapsulating the attributes and the declaration parts of the

procedures. Global data items are encapsulated in separate objects, too. They are

called data objects, because they have only attributes, but no procedures. The

procedural remainder produces the following objects. First, it gives master objects

which include the highest level of system control and can be compared to a control

unit. A typical example is the main program. Second, it gives aggregation and

coordination objects, which perfonn system control over a specified set of

procedures and provide some kind of functionality for a master object. Third, it gives

provider objects, which perform the main functionality (e.g. sorting, searching,

computing). These objects do not perform any system control, but provide certain

functionality for aggregation and coordination objects.

u

In each phase, a human expert is needed. In the first phase, various ambiguities may

arise, for example, to which particular object a procedure should be assigned. The

second phase is implemented totally by a human expert. In the third phase, using

Chapter 2 State of the Art

^ 16

application domain knowledge, the human expert can perform the matching between

reverse and forward model in ambiguous situations. Many parts of the fourth phase

can be automated. However, the human expert has to deal with adapting the

interfaces of procedures and with the decomposition of the procedural remainder.

Especially, the author [12] considers the means to decrease human intervention. This

kind of methods relies heavily on the domain analysis of the application to migrate.

In addition to the cost of this analysis, which is usually very high, most of the legacy

applications are not documented and the domain expertise is not always available,

making this method of little practical use.

0

2.3.4 Other Methods to Identify Objects

There are a lot of other methods to identify objects from legacy code. Zimmer (1990)

[58] outlines the need for restructuring FORTRAN programs to achieve a style related

to data abstraction and object-oriented programming, and proposes a method for

identifying objects by searching for cobwebs of related variables and mapping them

on global invariants. Jacobson and Lindstrôm [33] show how old systems can be

gradually rc-engineered to an object-oriented architecture. They consider different

cases depending on whether the change concerns implementation technique or

functionality. They discuss three different situations: a complete change of

implementation technique and no change in functionality, a partial change in

implementation technique and no change in functionality, and a change in

functionality. If the implementation technique changes only partially, the new part

(object-oriented) and the remaining part of the old system (non-object-oriented) must

be made fit together. An interface is needed between these different parts via which

they can communicate with each other. But this technique does not suggest a method

for identifying potential objects in legacy systems.

u
Concept analysis has also recently been applied to the problem of identifying objects

in legacy systems [38, 53, 50]. Concept analysis provides a way to identify groups of

Chapter 2 State of the Art

n

0

J

17

entities that have common attributes. Each group constitutes a concept, while

concept partitions are represented by collections of concepts that partition the set of

entities (Siff and Reps, 1997). In the case object identification, routines are mapped

onto entities, while attributes such as variable usage (uses global variable v) (Lindig

and Snelting, 1997), or type usage (return type is t, has argument of type t, uses

structure field of type t) (Siff and Reps, 1997) are considered; a concept partition

represents a possible decomposition of a system into objects. The main advantage of

this approach is the possibility of using negative attributes, such as "does not use

structure fields of type t" (Siff and Reps, 1997), to obtain more refined objects. Two

major limitations are the need to define the relevant attributes carefully and the high

number of concept partitions resulting when the method is applied to large systems.

Sahraoui et al. [50] apply concept analysis to the object reference view in order to

detect abstract data objects. Their approach differs from Lindig and Snelting's

approach by distinguishing different kinds of variable references and by the

interpretation of the concept lattice. The identification of atomic components in the

concept lattice is divided into three steps: first, identification of sets of variables;

second, merging of overlapping sets of variables; third, identification of

subprograms. The term object is used by Sahraoui et. al. in the meaning of object-

oriented programming. This originates in the object-oriented approach. The

definition of a concept requires of all routines to reference all variables and since

variables are rarely referenced by the same set of routines in reality, concepts with a

huge number of variables virtually do not exist. Thus, the concepts we can expect to

find do not comprise a very large number of variables and concepts with many

variables represent higher cohesion among the routines in the concept than concepts

with a lower number of variables.

Philip and Ramsundar [48] use a dynamic method to get abstractions of function in

order to re-engineer from a procedural language into an object-oriented one. They

operate a system, invoke all its functions, and evaluate the behavior of the functions.

Chapter 2 State of the Art

0 18

Based on the functionality, they get abstractions for each function. They analyze the

corresponding code to refine the functions to lower levels. During this analysis, data

elements are identified, and they are added to a data dictionary. To identify objects,

the data dictionary is examined to identify items which correspond to specific

components in the system. In most cases, these items become the objects in the target

system. In addition, closely related items in the data dictionary are used as attributes

of the found objects. After the objects are identified, they are compared against the

remaining data items in the dictionary. Those items that describe an identified object

are placed as attributes of that object. The algorithms of the functions refer to the

data elements of the system. This information is used to assign functions as

operations of the identified objects. Each function is assigned to an object, which

closely matches the object or the attributes of the object.

0

u

Newcomb [45] describes a highly automated process to re-engineer procedural

programs into object-oriented ones. His object-oriented model is based on state

machines, and it is called hierarchical object-oriented state-machine model.

Newcomb describes several analyses. Alias analysis, for example, examines records

and their fields to find out the occurrences of records having a different name but an

identical structure. The template for a record having different occurrences is called

collision former. The records matching the collision former are called aliases. An

alias map is a relation whose domain is a collision former and whose range is the set

of alias records. He constructs control flow graphs, a data flow graph, and a state

transition graph for procedures. The state transition graph consists of a start state, an

end state and asset of intermediate states joined by state transitions. A state transition

is defined by each distinct sequence of control conditions followed by a sequence of

actions. The state transition table depicts one or more states and the conditions and

actions involved in transitions between states. Newcomb derives classes in different

ways. Data object classes, for example, can be obtained by the alias analysis, and a

program object class is a class whose instances are top level programs.

Chapter 2 State of the Art

0 19

Record types of procedural programs are usually converted into objects (classes) of

object-oriented programs. However, this method does not suit Cobol programs very

well. A record variable in Cobol may contain even about 40 fields. Thus, the

corresponding classes would have too many attributes. Consequently, van Deursen

and Kuipers [13, 14] have used cluster analysis to derive smaller objects. Cluster

analysis generates a use matrix, telling which procedures use which variables. For

each variable pair of that matrix, a Euclidian distance is calculated. The greater the

distance is, the bigger the dissimilarity between the variables is. According to the

distances, the variables sharing a great similarity can be grouped together.

2.4 Problems in Object Identification

As presented above, there are a lot of tools to aid object identification. However,

usually the existing tools are not suitable for a certain situation. For example, they do

not support the particular dialect of the programming language. Parsing-based tools

may not accept a deficient program, for example, the program cannot be parsed if

some included files are missing. In addition, usually the tools are neither flexible nor

extendible.

A typical situation when re-engineering a legacy system is that the only existing

document about the system is the source code. The other information about the

system is in the heads of the designers and programmers. However, they may have

left the company or moved to other duties. The lacking documents make re-

engineering more difficult. Thus, many tools for re-engineering do not require any

other document than code.

u

In object identification, domain knowledge is usually needed. Thus, totally

automated tools do not yield good resulting code. The tools are typically semi-

Chapter 2 State of the Art

n 20

automatic: routine work is performed automatically, but human assistance is needed

in some decisions, for example in the decision whether to accept an object candidate

as a final object. However, producing pure automated tools for as many rc-

engineering phases as possible is desirable, because they can significantly reduce

resources needed for object identification.

Object identification area especially has its inherent difficulties in recovering objects

in non-object-oriented code. When using graph-based solutions, for example,

searching for isolated sub-graphs produces satisfactory results only for the ideal

programs which have been designed according to a fully object based approach [5].

For other programs the sub-graphs are not totally isolated, and human assistance is

needed to dissolve the insignificant relationships.

0

u
Chapter 2 State of the Art

^

chapter 3 Conceptual Clustering

0
The goal of object identification is to identify coherent groups of data items with

those routines that use these data items in a given legacy software system.

Conceptual clustering is a technique for finding related items in a data set. We apply

conceptual clustering to the usage (grouping) of global variables throughout a legacy

system, based on the hypothesis that global variables that arc related in

implementation (are used in the same routine) are also related in the application

domain. In this chapter, we first give a brief introduction to conceptual clustering.

Then we describe Cobweb system, a conceptual clustering technique, which our

proposed object identification approach heavily relies on. We end the chapter with an

example of Cobweb System for the four single-cell organisms to understand its

algorithm well.

u

3.1 A Brief Introduction to Conceptual Clustering

Conceptual clustering is the grouping of a given set of instances (or observations)

into conceptually simple clusters based on their attribute values. It was first

introduced by Michalski [43]. Conceptual clustering is an unsupervised technique

where the instances are presented without any bound to a particular concept. It

0 22

involves learning category structure from little previous information and using a

domain-general (syntactic) similarity-based method to refine and construct new

knowledge structure.

The traditional techniques developed in clustering analysis are often inadequate as

they arrange instances into clusters solely on the basis of a numerical measure of

instance similarity. The only information used is that contained in the instances

themselves. Their algorithms are unable to take account of semantic relationships

among instance attributes or global concepts that might be of relevance in forming a

classification scheme. Consequently, the obtained clusters may have no simple

conceptual description and may be difficult to interpret.

0

u

The traditional techniques' limitation is overcome by conceptual clustering, which

an-anges instances into clusters representing certain descriptive concepts rather than

into clusters defined solely by a similarity metric defined initially in the attribute

space. In brief summary as stated by Michalski and Stepp [44], conceptual clustering

can be regarded as:

Given:

A set of instances (physical or abstract);

A set of attributes to be used to characterize the instances;

A body of background knowledge, which includes the problem constraints,

properties of attributes, and criteria for evaluating quality of constructed

classifications;

Find:

A hierarchy of object categories, in which each category is described by a

single conjunctive concept. Subcategories that are descendant of any parent

category should have logically disjoint descriptions and optimize an assumed

criterion (a clustering quality criterion).

Chapter 3 Conceptual Clustering

n 23

3.2 Cobweb System

In 1987, Fisher [16] presented Cobweb and since then it became one of the most

used, studied and extended clustering systems. It has been used, with some variants

in several domains like physics, design and medicine.

0

Cobweb is an incremental clustering system that generates a probabilistic

categorization tree (hierarchical clustering with probabilistic described clusters). The

number of clusters to be formed is automatically chosen and it has no parameters to

be set. Instances, described by a list of attribute-value pairs, are presented to the

system one by one and a hierarchical classification tree is formed. An instance is

assumed to be a vector of nominal values Vi, along different attributes A,. Cobweb

employs probabilistic concept descriptions to represent the learned knowledge. In

this sort of representation, in a category Q, each attribute value has an associated

conditional probability p(A,=Vy|Q) reflecting the proportion of instances in Q with

the value Vy along the attribute A;. Each category in the hierarchy includes

probabilities of occurrence for all values of all attributes. This is essential to both

categorizing new instances and modifying the category structure to better fit new

instances. When given a new instance, Cobweb considers the overall quality of either

placing the instance in an existing category or modifying the hierarchy to

accommodate the instance. The criterion Cobweb uses for evaluating the quality of a

classification is called category utility [28].

Category utility attempts to maximize both the probability that two instances in the

same category have values in common and the probability that instances from

different categories have different property values. Category utility is defined:

SZS^A =^MA =v, |C,)P(CJA, =^)

u
Chapter 3 Conceptual Clustering

n 24

The sum is taken across all categories, Q, all attributes, A,, and all attribute values,

Vij. p(A.i=Vij\Ck), called predictability, is the probability that an instance has value Vy

for its attribute A;, given that the instance belongs to category Q. The higher this

probability, the more likely the instances in category Q share the same attribute

value Vij. p(Ck\Ai=Vij), called predictiveness, is the probability with which an

instance belongs to category Ck given that it has value Vy for its attribute A, . The

greater this probability, the less likely instances not in the category will have the

attribute value Vy. p(A.i=Vij) serves as a weight, assuring that frequently occurring

attribute values will have stronger influence on the evaluation. By combining these

values, high category utility measures indicate a high likelihood that instances in the

same category will share properties, while decreasing the likelihood of instances in

different categories having properties in common.

Using the Bayes' rule we have p(A,=Vy)p(Q |A,= Vij)=p(Ck)p(A,=yy|Q). Thus we
can transform the above expression into an equivalent fomi:

2Zp(^)££p(A,=^|c,)
k i j

Gluck and Carter have shown that the sub-expression E;Ejp(A,=V,-/[C<:) is the
expected number of attribute values that one can correctly guess for an arbitrary

member of category Q. This expectation assumes a probability matching strategy, in

which one guesses an attribute value with a probability equal to its probability of

occurring. They define the category utility as the increase in the expected number of

attribute values that can be correctly guessed without such knowledge. The latter

term is ZiZjp(A;=yy)2, which is to be subtracted from the above expression. Thus the
complete expression for the category utility the follow:

u
Chapter 3 Conceptual Clustering

•) 25

eu =
Zp(c,)£i;p(A. =v,\c,)2-^^p(A, =y,)2)
k i j i j

k
(3.1)

The difference between the two expected numbers is divided by k, which allows us

to compare categories of different size.

The Cobweb algorithm is defined:

0

u

N = Node; I = New instance

Cobweb(N, l) =

/Fleaf(N)

THE/Vcreate_subtree(N, l)

ELSE

lncorporate(l, N) ; Updates N's probabilities

Compute score of placing I in each child of N

Ni = child with highest score High

N2 = child with second highest score

New = score when placing l as a new child of N

Merge = score for merging N1 and N2

Split = score for splitting N1 into its children

/F highest score is :

High: THE/VCobweb(Ni, I)

New : THEN add I as a new child of N

Merge : THE/VCobweb(merge(Ni, N2, N), l)

Split : THE/VCobweb(split(Ni, N), l)

Chapter 3 Conceptual Clustering

r•)

0

26

Cobweb performs a hill-climbing search of the space of possible taxonomies using

category utility to evaluate and select possible categorization. It initializes the

taxonomy to a single category whose attributes are those of the first instance. For

each subsequent instance, the algorithm begins with the root category and moves

through the tree. At each level it uses category utility to evaluate the taxonomies

resulting from:

Placing the instance in an existing category;

Adding a new category and placing the instance into it;

Combining two categories into a single category (merging);

• Dividing a category into several categories (splitting).

To merge two nodes, the algorithm creates a new node and makes the existing nodes

children of that node. It computes the probabilities for the new node by combining

the probabilities for the probabilities for children. Splitting replaces a node with its

children.

This algorithm is efficient and produces taxonomies with a reasonable number of

clusters. Because it allows probabilistic membership, its categories arc flexible and

robust. In addition, it has demonstrated base-level category effects and, through its

notion of partial category matching, supports notions of prototypicality and degree of

membership.

u

3.3 An Example of Cobweb

This section presents a sample concept hierarchy tree built by Cobweb. Figure 4

illustrates a Cobweb taxonomy taken from Gennari et al. (1989). In this example, the

algorithm has formed a categorization of the four single-cell animals at the bottom of

the figure. Each animal is defined by its value for the attributes: number of tails,

color, and number of nuclei. The members of category €3, for example, have a 1.0

probability of having 2 tails, a 0.5 probability of having light color, and a 1.0

probability of having 2 nuclei. As the figure shows, each category in the hierarchy

Chapter 3 Conceptual Clustering

0 27

includes probabilities of occurrence for all values of all attributes. This is essential to

both categorizing new instances and modifying the category stmcture to better fit

new instances. If the clustering with the singleton category emerges as the winner,

Cobweb creates this new category and makes it a child of the current parent node.

Node Co in the figure was created in this fashion, since the instance it summarizes

was sufficiently different from node Cz and €3.

0

P(C,) =4/4 P(V|C)
TAILS I ONE

TWO
0.50
0.50

COLOR I LIGHT
DARK

0.50
0.50

NUCLEI ONE
TWO
THREE

0.25
0.50
0.25

P(C;) =1/4 P(V|C) P(C>) =2/4 P(C,) =1/4 P(V|C)
FAILS I ONE I 1.0

TWO I 0.0
TAILS ONE TAILS I ONE

TWO
1.0

TWO 1.0 0,0

COLOR I LIGHT
DARK

1.0 COLOR I LIGHT
DARK

0.5 COLOR I LIGHT
DARK

0.0

0.0 0.5 1.0

ONE
TWO
THREE

NUCLEI 1.0 NUCLEI ONE
TWO
THREE

NUCLEI ONE
TWO
THREE

0.00.0

0.0 1.0 0.0

0.0 0.0 1.0

P(V|C) P(V|C)P(C4) =1/2
TAILS I ONE

TWO
0.0 TAILS I ONE

TWO
0.0

1.0 1.0

COLOR I LIGHT
DARK

1.0 COLOR LIGHT
DARK0.0

NUCLEI ONE
TWO
THREE

0.0 NUCLEI ONE
TWO
THREE

0.0
1.0
0.0 0.0

••

Figure 4 A Cobweb clustering for four one-celled organisms

3.4 Some Important Properties of Cobweb system

Cobweb system is able to afford the following advantageous properties, which are

considered to be important and appropriate to our object identification problem.

These promising properties are main reasons why our algorithm heavily relies on

Cobweb system. We list them as follows:

u Unsupervised

Chapter 3 Conceptual Clustering

0

28

Learner has to cluster instances without advice from a teacher; in other words,

learner must decide not only which instances each cluster should contain, but also

the number of such clusters. In view of object identification problem, given the

information directly extracted from a legacy system as its input, our algorithm is

supposed to group closely and functionally related data items together automatically

with little knowledge about the system in advance.

Incremental

It does not require that all instances be present before it begins learning. It could

constmct usable concept descriptions from an initial collection of data and update

that description as more data become available. This feature provides the Hexibility

that allows our algorithm to deal with one subsystem alone, many subsystems

together, and a whole system with various tasks. The flexibility thus enhances our

algorithm perfomiance.

Hierarchical

It constructs a concept hierarchy. The root represents the most general concept that

summarizes the entire instances. The higher level nodes represent more general

concepts than the lower level nodes. Each node in a concept hierarchy not only

represents a concept, but also contains an intentional description of that concept. In

view of the concepts, such as composition or inheritance in 00 model, the hierarchy

is able to provide some information about object-features in it and help our further

understanding the program structure in a legacy system.

u
Chapter 3 Conceptual Clustering

0

chapter 4 Conceptual Clustering Based
Approach

0

u

This chapter presents the conceptual clustering based approach. It first gives the

overview of the object identification approach by Sahraoui [50], in which my work is

embedded. It describes an example of applying Cobweb system to object

identification to illustrate its limitations. Then we turn our attentions to mitigating or

even eliminating those undesirable features the original Cobweb has. At the end of

this chapter, we present an example of object identification in order to illustrate how

this approach works.

4.1 Overview of the Proposed Approach

The object identification approach Sahraoui (1999) proposed consists of five steps

(see Figure 5). First, it computes some metrics to determine the profile of the

application at hand. This profile allows us to choose the appropriate program

abstraction that we can use to identify objects. Then we identify objects using

different algorithms. Third, we identify the methods of these objects. The fourth step

consists of identifying the relationships between the objects (generalization,

aggregation, or more generally, associations). Finally, the source code is transformed

using the so-derived object model. In this thesis, we limit ourselves to application

f") 30

profiling in first step and the second step. In remainder of the section, we briefly
introduce them. A detailed description is given in the following sections.

0

Procedural
code

Object-oriented
code

!_

Decision made by
Domain application

experts

lll'rofiliRg and?i:i|r
program aKslraction

Abstraction

^

Code transformation

Structure of the objects w

Method
identification

Structure and behavior
wof the objects

Relationship
identification

<
Object models

--i
l

--:

Figure 5 Overview of the object identification approach

Application profiling and program abstraction: We establish two sets of relations,
one is the relationship between routines and data (for each data, which routines use
it), the other is the relationship between routines (for each routine, which other
routines are called by it). These two sets of relations are used as inputs of our
algorithm.

u

Object identification: In an 00 design, an application is modeled by a set of objects
where objects are composed of a set of data and a set of operations that manipulate
the data. Most of the graph based approaches to object identification group data with
the routines that use the data. Our approach uses conceptual clustering based
algorithm.

Chapter 4 Conceptual Clustering Based Approach

n 31

4.2 An Example of Applying Cobweb to Object Identification
In this section, an example of the direct usage of Cobweb to an imaginary small

legacy system is given to explain how Cobweb is applied to the object identification

and to offer some additional insight into the limitations of Cobweb to this problem.

D

The target system consists of 6 global variables (data items) and 11 routines as

shown in Figure 1. It shows the reference relations between the routines r;'s and the

global data d,'s of this system built by Sahraoui et al [50]. Figure 3 in Chapter 2

shows the corresponding reference graph, where nodes are either routines or global

data, and an edge between a routine and a data means that the routine uses the data

[15]. This kind of graph is used to identify objects, where each isolated sub-graph is

considered to embody an object. Three candidate objects {d^, rf^}, {ds}, and [dj, dj,

ds} can be obtained from the reference graph. Although the algorithm based on the

search for notable sub-graph and /or patterns may, in many cases, produce low

quality objects, or even more than one object within the same candidate, a good

result can be obtained in the particular example since no routines that reference the

data items of two objects create a link between the corresponding sub-graphs.

u

For our purpose of applying Cobweb to object identification, each data item can be a

represented by a set of values in cells of each column in Figure 1, where a cell filled

with value 1 stands for the routine references the data item and an empty cell stands

for the routine does not reference the data item. Note that each data item contains a

large proportion of the routines with value 0 (or empty cells in Figure 1), and the

presence of these routines distorts the meaningful concept formation of the given set

of the data items. To overcome this problem, it is necessary to introduce the tailored

algorithm for missing values in [3]. Further, the algorithm redefines the CU measure

so that comparison between a concept node and its parent is made only over the set

of routines that are common to both nodes. Therefore, the term for the parent node in

the CU calculation is summed only over ;' e child node. In other words, CU function

Chapter 4 Conceptual Clustering Based Approach

n 32

is defined to measure the increase in predictability only for those routines that have

observed values (routine with value l) in child node. Unobserved routines with value

0 are ignored.

0

By using the category utility CU as an object function, the clustering tree for object

identification is built in Figure 6. Considering a single-level partitioning of the data

items as candidate objects, two objects [di, dj, ds} and [dz, 04, ds} are detemiined,

which are different from those obtained from the above reference graph in the

number of objects and their composition of data items in objects.

Figure 6 Clustering tree for object identification

u

As we know that the different techniques have their own different clustering criteria

of identifying coherent groups of data items, the reference graph technique achieved

a better recall for this system. Apparently, this system has a better decomposition.

The direct usage of Cobweb to object identification, however, is based on a single

value of the object function, which provides the tradeoff between maximal intra-

cluster similarity and inter-cluster difference and favors making two groups, one

with relatively high similarity of attributes, and the other with relatively low

similarity of attributes among data items. In the following section, the limitations of

Cobweb to object identification will be discussed.

Chapter 4 Conceptual Clustering Based Approach

^ 33

4.3 Limitation of Applying Cobweb to Object Identification

Based on our understanding the conceptual clustering approach in Chapter 3 and the

result of the above example, we point out the following limitations of applying

Cobweb to object identification directly. These limitations and other concerns led us

to propose an improved technique of object identification, which is more efficient

and takes additional information extracted from a legacy system into account.

0

4.3.1 Cobweb Algorithm Itself

Its order dependency

One of undesirable characteristics of Cobweb is that it can be sensitive to the order of

instance presentation, creating different hierarchies from different orders of the same

data [42]. Although MERGE and SPLIT operators are introduced in Cobweb, these

two operators can only mitigate the ordering problem locally but can not improve the

whole nonoptimal hierarchies. In addition, these two operators' cost can be

comparatively high.

Its hierarchy tree height

A hierarchical tree built by Cobweb can be grown to arbitrary height. As the tree gets

deeper, the cost of the above phases grows substantially. In general, the higher level

nodes in the tree represent more general concepts than the lower level nodes.

Furthermore, the higher levels reflect meaningful stmcture in the data set more

significantly than the lower levels. The resulting hierarchical tree can be bounded to

some limited height, which, however, keeps sufficient information to interpret the

induced results in view of object identification so as to reduce its cost.

u

4.3.2 Object Function CU

CU is the criterion Cobweb uses for evaluating the quality of a clustering. It stresses

the tradeoff between maximum intra-cluster similarity and inter-cluster difference.

Chapter 4 Conceptual Clustering Based Approach

0 34

However, it may give a relatively high evaluating value when an instance is placed

into one cluster with low similarity (cohesion) and very low dissimilarity (coupling)

to the other clusters. Such circumstance raises the question whether the criterion is

appropriate to object identification.

0

Furthermore, CU makes use of information that what routines access a global

variable as shown in the above example. But in view of object identification, it is

also of interest what other routines are called by a routine since it is closely relevant

to the quality of object identification. A relatively high value of CU can be acquired

if a global variable is put in a cluster with respect to its some common routines that

access the variable. However, if some routines that access the variable call many

other routines in other distinctive clusters, ignoring the calling relation between

routines in different clusters may produce low quality objects. The calling relation

may make undesirable high coupling between objects. Therefore, the relation must

also be borne in mind. CU is unable to make use of the information according to its

definition. One of our challenges in applying Cobweb to object identification is to

define an appropriate object function.

4.4 Conceptual Clustering Based Approach

The section will present the conceptual clustering based approach for identifying

objects. It first gives an overview of the approach. Then it discusses the various

aspects in details, which are taken into account in the approach. We will finish this

section with an example of applying the approach to a well-known small system in

the literature.

u

4.4.1 Approach Overview

The approach heavily relies on Cobweb algorithm and introduces a process of

iterative optimization to seek higher quality of objects decomposed from a legacy

system. We propose a new algorithm, called OI-Cobweb that makes some

Chapter 4 Conceptual Clustering Based Approach

n

0

35

modifications on several aspects of Cobweb's properties, where it creates new

clustering criterion functions (objective functions). The criterion functions are based

on object oriented design metrics (cohesion and coupling). OI-Cobweb makes use of

the two relations extracted from a legacy system, one is the usage of each variable in

a set of routines, the other is the call relation among routines, which renders

information that what other routines are called or used by each routine. Multi-criteria

decision-making was adopted in OI-Cobweb to prevent a candidate object from

turning out to be a highly cohesive cluster while highly coupling with other objects

or a low cohesive cluster while coupling with other objects. Such bad objects may be

produced while using single criterion decision-making like CU in Cobweb. In

addition, the approach puts a Reordering procedure into the iterative optimization

process and sets the terminal condition of the process that minimizes the total

couplings between candidate objects. The high quality of objects is obtained while

trying to maximize the cohesion in each object and minimize the coupling between

the objects.

Given a set of global variables arranged in a random order, the algorithm applies 01-

Cobweb to build a conceptual clustering tree. In iterative process, the algorithm

keeps the previously built clustering tree, applies the Reordering procedure to

rearrange the global variables in an intended order ('dissimilar' order) as the next

input and rebuild a new clustering tree. Then the algorithm compares the qualities of

previous and new clustering trees according to their total sum of couplings between

candidate objects. The process terminates when there is no further improvement in

clustering quality. Each set of global variables covered by each first-level node in the

tree is identified as a candidate object.

u

The approach algorithm is defined as the following where OI-Cobweb algorithm can

be found in section 4.4.5 of this chapter.

Chapter 4 Conceptual Clustering Based Approach

n 36

0

Algorithm 1

Given [Vininai^, a set of global variables in a random order initially

Apply 01-Cobweb({V;n,(,a/}) to build {dnitiai}, an initial clustering tree

Repeat

Reordering({Qn/ha/}) to get [Vnew], the set of variables in a new order

Apply 01-Cobweb {{Vnew}} to build {Cnew}, a new clustering tree

If (Sum-Coupling({C,Mfa/}) < Sum-Coupling({Cneiv}))

keep [Cnew] as an initial clustering tree, Continue Repeat

Else keep { Cinitiai} as final clustering tree, Stop Repeat

4.4.2 Two Relations

Our proposed approach presumes that data and routines that are related in

implementation in procedural software systems are also related in the application

domain. A set of binary relations between the global variables and the routines is

necessarily established, which indicates that the routines somehow manipulate the

variables. We call the set of relations VR-relation. However, most legacy systems

are sequential and monolithic. Multiple tasks are performed within a routine by

calling other routines. Routine call is the most primitive and dominating type of

connector of such systems and may capture the additional useful information that

global variables are related to each other frequently via such routine call. The set of

relations, that a routine call a set of other routines, is termed RR-relation. The two

relations, extracted from a legacy system, are supposed to significantly capture the

basic structural information leveraged for object identification. The following gives

their definitions.

u

Definitions. Let a legacy system consist of a set of routines R and a set of global

variables V. VR-relation is defined as VR ^Vx R. If (v, r) e VR, routine r uses

Chapter 4 Conceptual Clustering Based Approach

0 37

global variable v. RR-relation defined as RR Œ R x R.If (r,, r,) e RR, where ; ^ j,

routine r, calls routine rj.

Figure 7 shows an imaginary system, which consists of a set of routines {r;} and a

set of global variables {v;} VR-relation and RR-relation of this system can be

established, which is shown in Figures 8 and 9.

0

rs

Q
'•6

>'2

Vî l-2 r i, r.i r»

r;
Vd

rs

Figure 7 An Imaginary System

u

VR

ri

r2

r3

r4

rs

'-6

r?

r&

r9

rio

rii

Vl

l

l

l

l

V2

l

l

l

l

Vj

l

l

l

V4

l

l

l

V5

l

l

l

Figure 8 VR-relation from An Imaginary System

Chapter 4 Conceptual Clustering Based Approach

V6

l

l

0
RR

ri

/-2

r3

r4

r5

r6

r?

rs

rs

rio

ri l

ri '-2 ï-3

l

T4 rs r6

l

'-7

l

rs

38

rg rl0 l rll

l

Figure 9 RR-relation from An Imaginary System

0

(u

Another example of VR-relation and RR-relation, which are extracted from a mini

system, called Collections, can be found in Figures 11 and 12 respectively in section

4.4.7 of this chapter.

4.4.3 Clustering Criterion Functions of OI-Cobweb

Cobweb uses Category Utility (CU) as its clustering criterion function to evaluate the

quality of a classification. Clustering criteria here adopted by OI-Cobweb consist of

two criterion functions, one termed Cohesion that evaluates the cohesion in an object

(a set of global variables), the other tenned Coupling that evaluates coupling of an

object with other objects. Both Cohesion and Coupling are inspired by those existing

well-known design cohesion and coupling measures for object-oriented systems.

Cohesion directly uses Coh [4], which is a variation of LCOM5 [52] and Coupling

borrows the definition of COB [9] and counts the frequencies of links an object has

with other objects. We cannot ignore the actual number of dependencies existing

among objects, i.e., objects with only one dependency have the same Coupling as

Chapter 4 Conceptual Clustering Based Approach

0 39

objects with hundreds of dependencies. Both of them can be precisely defined as

follow.

Let Y = {V],V2 ... Vn} be a set of n variables; R= [rj, r^, ... rm} be a set of m routines

The elements of V are grouped into a set of k clusters C = {Q, ...Ci,...C^,...Q}

where an element C,=y; c V.

Cohesion of cluster d

The cohesion of a group C, is defined as the number of routine-van able references

over the number of all possible combinations routine-van able. Formally

0

Cohesion (C,)=^^
m'*n'

(4.1)

where n' is the number of variables in C, (#Vi), m' is the number of routines that use

the variables of V, and //fv^ is the number of routines that use a variable Vk.

Coupling of cluster d to the other clusters C-d

The coupling of a group C, with the other groups of the system C - C; is defined as

the number of external references of C,. Formally

CouplingÇC, ,C-C,)=^^ (NRVÇC, ,C^)+ NRRÇC, , C,)) (4.2)

where Cj e C, i ^j, NRVCCi, Cj) is the number of occurrences that the routines in C;

use the variables in Cj and NRR(Ci, Cj) is the number of occurrences that the routines

in Ci use the routines in Cj and inversely the routines in Cj use the routines in C,.

u
Chapter 4 Conceptual Clustering Based Approach

0 40

A scenario of three clusters, G], €2, and Q from the imaginary system, introduced

above in Figure 7 is shown in Figure 10 and an example of their calculations of

Cohesion in cluster €2 and Coupling of €2 with the other clusters is given out.

Cohesion(C.
^"//(v)_ 4+3+2

m'*n' 5*3
0.6

0

Coupling (C „ {C,,C,})=(NRV<iC^, C,)+NRR(C^, C,))

+(NRV(C,,C,)+NRR(C,,C,))

(14-1)+(1+2) =5

eQ C32
-^

r

r^<~~"^
^

\
-'

/ l-l \

:Ï5

ri I'll
fj r»

Bi »
"l

m
V4\

r-,

l ,/
>'<

\
s^

/

Figure 10 A Scenario of Three Clusters

u

4.4.4 Multi-Criteria Decision Making

In the same way as Cobweb performs, for each subsequent global variable, 01-

Cobweb begins with the clustering tree root and moves through the tree. At each

level it uses two criterion functions to evaluate the overall quality of either placing

the variable in an existing category (an existing node in the tree) or adding a new

category (creating a new node in the tree) and placing the variable into it. As

Chapter 4 Conceptual Clustering Based Approach

n 4l

described above, the two criteria functions are associated directly to the selected

object-oriented design metrics, cohesion and coupling. For each of the identified

objects, Ci, its quality may be considered good if a high value of cohesion in it is

achieved by Cohesion(Ci) and a value of its coupling with other objects by

CouplingÇÇi, C-Ci) turn out to be low.

0

Ideally, objects should be internally cohesive, i.e. the variables in an object should be

kept together, and meanwhile inter-dependency between the objects should be kept

as loose as possible. However, in the process of identifying objects using the

incremental algorithm, we have to frequently face two options: to place a variable

into a certain object resulting in a strong cohesion in it and also a high degree of

coupling with other objects or into another object which makes the resulting object

have a low cohesion while it loosely couples with others. Such situations indicate

that object identification sometimes trades cohesion in an object against its coupling

with others, and vice verse.

Considering the circumstances, our approach introduces multi-criteria decision

making into the process of building clustering tree incrementally. It sets the

prerequisite that when a variable is placed into a cluster, the resulting cluster (a

candidate object) C; should acquire an accepted degree of cohesion in it, i.e. a value

achieved by CohesionCCi) no less than a predefined threshold value, which will be

discussed in detail in Chapter 5 and 6. When the variable is placed into these existing

clusters respectively, those potential clusters that satisfy the prerequisite are

determined. Then among these potential clusters, the approach searches for the

cluster that minimizes its coupling with other clusters. If there does not exist any

such cluster that satisfies the prerequisite, a new cluster will be created for the

variable.

u
Chapter 4 Conceptual Clustering Based Approach

0 42

As we know, different systems have different levels of quality, such as modularity,

information hiding, and usage of work variables. The multi-criteria decision making

can also provide our approach provide a flexible management means to different

migration systems by setting cohesion threshold value. This advantage can be seen in

the case studies of different systems in Chapter 6.

The multi-criteria decision making can be described precisely as follows.

Let C = { G], ...Ci,...Cj,...Ck } be the set of existing clusters and v, a new coming

variable to be clustered, v, is accessed by a set of routines Ri; let C; be a cluster. If v,

is placed into C/, we will call the obtained cluster C^. We call the cohesion threshold

value COHESION (a value ranging from 0 to 1). So whether cluster C, the variable

v; is clustered into or placed into a new cluster Q+7 depends on the following.

0 VC, in C, Place v, into Ci individually and its updated C^

IF Cohesion(C7) < COHESION

create a new cluster Q+y and place v, into Q+/, so updated clusters C/={Cj...

Ci,...Cj,...Ck,, Ck+i }

ELSE

collect all clusters satisfying Cohesion(C/i) > COhlESION;

place v, into C< if and only ifMIN({Cou^mg(C^, C-C,)| CohesionCC^) >

COHESION,/= l,...^, });

updated clusters C/={Cj... C'i,... Cj,...Ck,}

u

The desirable characteristics of the multi-criteria making are that it insures all

identified objects with a relatively high degree of cohesion and then keeps its

Chapter 4 Conceptual Clustering Based Approach

0 43

coupling with others as loose as possible, and offers the Hexibility to our approach

applied to different systems.

4.4.5 OI-Cobweb Algorithm

OI-Cobweb is inspired by the original Cobweb. It adopts its own criteria functions

that directly link to object-oriented design measures, and the multi-criterion making

as described and discussed above. Furthermore, it intends to make use of two kinds

of relations, extracted from a legacy system, which are supposed to significantly

capture the basic structural information leveraged for object identification. We

believe that these modifications make OI-Cobweb more appropriate to object

identification problem.

0
OI-Cobweb performs roughly the same clustering procedure as Cobweb's. To further

reduce the cost in the phrase of building clustering tree, OI-Cobweb does not use

merging and splitting operations in Cobweb, whose computations are comparatively

expensive. The roles these two operators play in mitigating order effects will be

taken over by introduction of iterative process and the reordering procedure to our

approach that are expected to mitigate ordering effects globally to a great extent.

Given an instance and a current partition, OI-Cobweb evaluates the quality of new

clustering that results from placing the instance in each of the existing clusters, and

the quality of the clustering that results from creating a new cluster that only covers

the new instance; the option that yields the highest quality score based on multi-

criteria making is selected. The clustering grows incrementally as new instances are

added.

The following is the basic OI-Cobweb algorithm:

u
Chapter 4 Conceptual Clustering Based Approach

0 44

\Algorithm 2

Given N = Node ; l = New instance

01-Cobweb(N, l) =

IF level(N) = TREE_HEIGHT -2 or

leaf(N) and level(N) < TREE_HEIGHT -2

create_subtree(N, l)

ELSE

lncorporate(l, N) ; Updates N's database

Compute cohesion of placing I in each child of N

IF Cohesion^ >= COHESION Threshold and Coupling(Ni, N-Ni) is
lowest

Cobweb(N,, l)

ELSE

create_subtree(N, l)

4.4.6 Reordering Procedure

A well-studied characteristic of incremental algorithms is their order dependency.

They generate different clustering trees for different data orders. Although split and

merge operators in Cobweb system may mitigate order effects, both operators are

applied locally with each partition and order dependency could still affect the

clustering tree structure.

J

Biswas's works [3] reveal that interleaved orders produce better clustering trees and

stable final groupings in term of the rediscovery task. The "interleaved" corresponds

to an order in which instances from different clusters are presented in sequence in an

attempt to obtain a maximally dissimilar ordering among the instances. Taking this

viewpoint, we presume that instances (global variables) that appear dissimilar tend to

be placed in different clusters using the criterion functions in 10-Cobweb and

Chapter 4 Conceptual Clustering Based Approach

Q 45

propose the following reordering procedure in order to extract the so-called

interleaved order. It is expected that the introduction of reordering procedure to our

approach may mitigate ordering effects globally and uncover better clustering to a

great extent. The following function outlines the reordering procedure.

0

Algorithm 3

ORDERING(Root)

IF Root is a leaf

THEN Return(an instance covered by Root)

ELSE

Order children of Root from those covering the most instance s to those

covering the least.

For each child, Ck of Root (in order) Do L/(<-ORDERING(C/()

L^-MERGE({Lk /list of variables constructed by ORDERING(C^)})

Return (L)

It recursively extracts a list of variables from the largest cluster to the least cluster,

and then merges (i.e., interleaves) these lists, before exiting each recursive call - at

each step, an element from the largest cluster is placed first, followed by an element

of the second largest, and so forth. Thus, this procedure returns a measure-dependent

dissimilarity ordering by placing variables from different clusters back-to-back.

Following initial clustering tree, Algorithm 3 extracts a dissimilarity ordering,

reclusters, and iterates, until there is no further improvement in clustering quality.

u

4.4.7 An Example of the Approach

The following example, to which we apply the approach in identifying objects, is the

well-known one introduced in Canfora et al (1996) — called it collections. This

example has the advantage of being self-contained, well known in the literature,

Chapter 4 Conceptual Clustering Based Approach

0 46

small, and yet relatively complex. Also, we add imaginary call relations to the

example based on our understanding its implementation. This example presents a

part of a C program shown in Figure 11. The program manipulates a stack, a queue

and a list. In Figure 11, the body of each routine is replaced by a comment that

indicates the list of global variables used by the routine and a list of routines called

by the routine. The following demonstrates an example of object identification in

order to illustrate this approach and its algorithm.

0

We establish two sets of relations, VR-relation and RR-relation from the program.

Figures 12 and 13 show the matrix representations of a set of binary relations

between global variables and routines, VR-relation, and a set of binary relations

between routines, RR-relation in the program respectively. For the sake of

readability, names of routines and variables are replaced by codes (number for a

routines and letter for a variable). In Figure 12, we display a variable name and its

corresponding letter in each cell of the first row and a routine name and its

corresponding number in each cell of the first column. Using the approach, we build

its clustering tree with 7 variables based on VR-relation and RR-relation.

COHESION threshold value 0.65 and clustering tree height 4 are set for the example.

The following describes in a little more details how our approach works in

identifying objects so that we can learn clearly and intuitively that such

advantageous features as iterative optimization process, multiple criteria decision

making, reordering procedure, which the approach acquire, contribute to uncovering

better objects.

u

For this mini system with 7 global variables and 20 routines, the approach iterates

three times arriving at its best result. We display how the approach builds its

resulting clustering tree incrementally when given a order of the variables for each

iteration, as shown in Figures 14,15, and 16.

Chapter 4 Conceptual Clustering Based Approach

n 47

0

#define MAXIM 99
typedef int ELEM_T;
typedef int BOOL;
ELEM_T stack_struct[MAXIM];
int stack_point;
ELEM_T queue_struc t[MAXIM];
int queue_head, queue_tail, queue_num_elem;
struct list_struct {ELEM_ node_content;

struct list_struct * next_node;
} list;

main()
{
/* this program exploits a stack, a queue, and a list of items of type */
}

/* list of functions with as comment the list of global variables
referenced */
void stack_push(el)

ELEM_T stack^pop()

ELEM_T stack_top()
BOOL stack_Empty()
BOOL stack_full()
Void queue_insert()

ELEM_T queue_extract()

BOOL queue_Empty()
BOOL queue_full()
Void list_add(el)
Void list_elim(el)
BOOL list_is_in()
BOOL list_empty()
Void global_init()

void stack:_to_list ()

void stack_to_queue()

void queue_to_stack()

void queue_to_list()

void list_to_stack()

void list_to_queue()

{/* stack_point and stack_struct */
stack_full(), stack_top () }

{/* stack_point and stack_struct */
stack_top () , stack_Eirç>ty () }

{/* stack_point and stack_struct */}
{/* stack_point */}
{/* stack_point */}
{/* queue_struct, queue_heaâ and queue_num_elem
*/ queue_full() }

{/* queue_struct, queue_tail and
queue_num_elem */ <iueue_Enc>ty () }
{/* queue_num_elem */}
{/* queue_num_elem */}
{/* list* / list_is_in() }
{/* list */ list_is_in() }
{/* list */}
{/* list */}
{/* stack_point, list, queue_head,
queue_tail and queue_num_elem */}
{/* stack_point, stack_struct
and list */ stack_Enc>ty () , list_add() }
{/* stak^îoint, stack_struct, queue_struct,
queue_head and queue_num_elem */ stack_Enc>ty (),
gueue_insert(), queue_full0 }
{/* queue_struct, queue_tail,queue_num_elem,
stack_point and stack_struct */
queue_Eaiç>ty () , stack_push() , stack_full() }
{/* queue_struct, queue_tail,
queue_num_elem, and list */
queue_Eiis>ty(), list_add() }
{/* list, stack_point, and stack_struct */
list_enc>ty(), stack_push(), stack_full() }
{/* list, queue_struct, queue_head
and queue_num_elem */

list_empty(), queue_insert(), queue_full() }

J

Figure 11 Procedural Code of Collections in C

Chapter 4 Conceptual Clustering Based Approach

0

0

48

VR a.

stack_stmct
b.

stack_point
e.

list
d.

queue_tail
e.

queue_head
f.

queue_struct
g.

queue_num_elem

l. stack_push

2. stack_pop

l

l

l

l

3. stack_top

4. stack_empty

l l

5. stack_full

6. stack_to_queue l

l

l l l l

7. global_init

8. listjsjn

l l

l

l l l

9. list_empty

10. stack_to_list l l

l

l

11. Iist_to_stack

12. list_add

l l l

l

13. list_elim

14.queue_to_stack l l

l

l l l

15. queue_extract

16. queue_full

l l l

l

17. queue_empty

18. queuejnsert l l

l

l

19. list_to_queue

20. queue_to_list

l

l l

l l

l l

Figure 12 Matrix representation of a set of relations between routines and variable

Initially, the variables are presented in the following random order: a-b-c-d-e-f-g in

Figure 14. In fact, this ordering is said to be 'similarity' one [3], that is, the worst

case for uncovering good quality of object identification. Generally, 'similarity'

orderings lead to poor clustering and 'dissimilarity' orderings lead to good

clustering.

J

When given the first variable a, a tree with only one node is built with the variable.

The node is not only the root but also the leaf of the tree. As variable b comes,

OI_Cobweb creates a new node and places b into it with the same parent node as a's

showed in Figure 14(2). Note that actually variables a and b contain a large

proportion of the common routines that access both a and b, and should be clustered

into same category. However they are separated into different clusters. The resulting

Chapter 4 Conceptual Clustering Based Approach

0 49

inappropriate clustering derives from the given 'similarity' order of a-b-c-d-e-f-g. As

we can see afterwards in figures 15 and 16, they will be clustered into the same

category correctly. As a result of clustering in figures 15 and 16, it indicates clearly

the importance of introduction of iterative optimization process as well as

Reordering procedure into our approach.

0

RR

l. stack_push

2. stack_pop

3. stack_top

4. stack_empty

5. stack_full

6. stack_to_queue

7. global_init

8. list_is_in

9. list_empty

10. stack_to_list

ll.list_to_stack

12. list_add

13. list_elim

14.queue_to_stack

15. queue_extract

16. queue_full

17. queue_empty

18. queuejnsert

19. list_to_queue

20. queue_to_list

l 2

l

l

3

l

4 5

l

6 7

l l

l

l

l

l

8 9 10 12 13 14

l

l

l

l

l

l

15 16 17 18

l

l

l
l

l

l

l

Figure 13 Matrix representation of a set of relations between routines

19 20

u

When variable c is fed in, there could be three clustering possibilities: to place c in

an existing category, the same one as a's or Z>'s, or to modify the tree hierarchy to

accommodate variable c. Using its criterion functions, OIJCobweb evaluates the

quality of first two possibilities respectively. Criterion function Cohesion turns out to

give cohesion 0.57 for the cluster a and c, and cohesion 0.59 for the cluster b and c,

Chapter 4 Conceptual Clustering Based Approach

0 50

which are less than Cohesion threshold value 0.65 we set above, so that OI_Cobweb

creates a new node for holding c according to multi-criteria decision making.

For variables d and e, in the situation similar to c's, OIjCobweb modifies the

existing tree hierarchy to accommodate them separately (see (4) and (5) in Figure

14).

0

When given variable/, OI_Cobweb places/into these existing clusters, a, b, c, d, e,

and evaluates their clustering quality using the criterion function Cohesion

respectively. It finds out two potential clusters: one is to place / into cluster d, the

other is to place / into cluster e, whose cohesion value are both 0.71, higher than the

predefined Cohesion threshold value. Furthermore, in order to determine which

clustery will be placed into, OIjCobweb evaluates their clustering quality of the two

potential clusters in the aspect of its coupling with other clusters using the other

criterion function Coupling. As a result of its evaluation, the cluster with variables /

and e acquires lower coupling value 11 than that the cluster with variables/and d 15.

The corresponding clustering tree is shown in Figure 14(6).

u

As the last variable g emerges, OI-Cobweb begins with the root node, evaluates

categorization and selects one of the root's children in the same fashion as the above.

The cluster selected among existing clusters is a parent node of e and /. At the

current level, OI-Cobweb extends downward and further finds the leaf node with /

sharing a great proportion of properties with g. Thus OI-Cobweb makes / and g the

children of the current parent node. As a result, it builds the initial tree with SUM-

Coupling 37.

Next, The approach start performing its iterative optimization until terminating

condition is reached. A new order of the variables, f-a-b-c-d-e-g, from the above

initial tree is extracted.. In the first iteration, the tree with SUM-Coupling 28, lower

Chapter 4 Conceptual Clustering Based Approach

51

than previous one is established. Figure 15 shows the whole process of building its

tree.

Continually, extracting a new order, e-a-c-d-b-f-g from the tree in Figure 15, the new

tree built in the second iteration with the same SUM-Coupling score as the one in the

first iteration is obtained, shown in Figure 16. It indicates that there is no further

improvement in overall quality of clustering tree. Thus, iterative optimization

tenninates.

0

It is quite interesting to note that OI-Cobweb builds the same clustering tree

hierarchy although different orders of the variables are presented to it in the first and

the second iteration respectively. Such result indicates that the 'dissimilarity' order

OI-Cobweb is expected to have for better clustering is not strict. In fact, OI-Cobweb

acquires such power to find a best clustering in few iterations. Figure 17 summarizes

the results in the iterative optimization process.

We take the tree built in the first iteration with the variables presented in the order/-

a-b-c-d-e-g as our final tree for object identification. We take the direct children

nodes of the tree root, which contain variables, as the objects. In the example, we

arrive at the following objects:

Objectl=C;={rf,{^/,^}}
={queue_tail, queue_head,{queue_struct, queue_num_elem}}

Object 2=C2={c}={list}

Object 3=Cj={a, 6}={stack_struct, stack_point}.

u
Chapter 4 Conceptual Clustering Based Approach

0 52

(l) ExNs:none
NewN: a

^

(2)ExNs: a
NewN: b

•l •ilil

(3) ExNs: a, b
NewN: e

b .f:;

(4) ExNs: a, b, e
NewN: d

a "è1: e d •

(5) ExNs: a, b, e, d
NewN: e

0

J:
» II f J l rf

^zx.

lui s

(6) ExNs: a, b, e, d, e
NewN:/

M \ le l 1c l l d

L^X.
m

•

(7) ExNs:a, b, e, d, e, f
NewN'.g

u

ExNs -—Existing Nodes |j
NewN—'New Node to be added

Figure 14 Initial Clustering of Variables in A Random Order

Chapter 4 Conceptual Clustering Based Approach

0 53

1MB iii

(l) ExNs: none
NewN:/

(2) ExNs:/
NewN: a

:|Bi:

(3)ExNs:ût,/
NewN: Z»

0

^^
Ill

<gl 6

(4)ExNs:a,&,/
NewN: e

e

te:: ::»

(5) ExNs:a, b, e, f
NewN: d

e::

A: ir6i:l !d|

N vf[!

(6) ExNs: a, b, e, d, f
NewN: e

e

/^x /^
l'J \ï

m

(1)ExNs:a,b,c,d,e,f
NewN'.g

u

ExNs -—Existing Nodes
NewN-—New Node to be added

Figure 15 Clustering of Variables in A New Order in the Second Iteration

Chapter 4 Conceptual Clustering Based Approach

54

0

(l) ExNs:none
NewN: e

^^.
• !•

(2)ExNs: e
NewN:a

Ï

I
• m

(3) ExNs: a, e
NewN: e

,.€,

'X.
ilÏs

(4) ExNs: a, e, e
NewN:rf

ïa,;;

^x.
»:- e

(5) ExNs: a, e, d, e
NewN: b

.:^ii:

ns :*

v

(6) ExNs: a, b, e, d, e
NewN:/

*::

^x^
A:

^x.
.tfïi

l»;

I
i:M;

(7) ExNs:a, b, e, d, e, f
NewN'.g

ExNs -—Existing Nodes @
NewN—'New Node to be added

u Figure 16 Clustering of Variables in A New Order in the Third Iteration

Chapter 4 Conceptual Clustering Based Approach

0 55

I
• H

u

(a) a-b-c-d-e-f-g (b) f-a-b-c-d-e-g (e) e-a-c-d-b-f-g

Figure 17 Different Clustering in different presented ordering

0

u
Chapter 4 Conceptual Clustering Based Approach

0

chapter 5 Implementation

0 This chapter presents the prototype of our approach. First, a brief description of a

supporting tool, DISCOVER's DeveloperXpress, which we use for the purpose

of analyzing source code and extracting information as input for our approach, is

given. Then we present some aspects of base facilities the prototype provides and

how it is used for object identification.

5.1 Supporting Tool

DISCOVER's DeveloperXpress is a commercial tool that provides powerful

navigation and query capabilities of existing software source code structure. It allows

software developers to quickly find their way through code and to quickly

understand a target software system. It supports many programming languages, such

as Java, ANSI C/C++, K&R C, and a variety of SQLs on various operating

systems, like Solaris, IRIX, WIN 32 and is integrated with other tools, such

asClearCase, SourceSafe, Emacs, Microsoft Visual Studio.

J

n 57

It is a parsing-based system that collects information about the relationships between

language structures. It saves infonnation about object domains, such as files, macros,

data types, global variables and functions. Each object domain has attributes. For

example a function has the following attributes: the name of the file containing it, its

(return) type, its name, static variables used in it, its beginning and ending lines, its

call expression, etc.. The relationships between each object domain are stored in the

database. Thus, the normal database queries can be made. For example, the

following queries are possible:

Which functions refer to a certain global variable and a certain data type?

Which functions arc called by a certain function?

Which functions take a certain global variable as their actual parameter?

Figure 18 shows an example of functions organized in DevelperXpress Brower.

0
:OISCB?ERS,iBff(»«»swS:;-:tï

File Manage View Tools Access Help

Project
l Ir

\rBmwse -*• Scan

^ûitego^ies^
jFiles ..:r
j Packages f
I Methods î
|Uass Vanayjmll
BlasseslL : Bllffill
1 Interfaces||~:
I String LiteraSs
ISbierlc Literals
ILocaU Variables;

iVariafatss!
l Stncturesaî

1 Unions,
iEtilUBS
r

jTypectefs
|[lacrol: :,,,i

f all

w-

Up

î:'tisS, ii^î

• :• •?-^"; •"^'îvyws'g'st —

....î

N

Group Reset l _1 Qosure

l

Bements

•l'

1 of 17

lcomaàndline

l comandl lne_errornss
iBmmandl ine_one<rt
ean.KakéBchecksum

l erBOtto-1'8 8:
getencodlng Ï
I get_Beoneiry .|:
jget^inputjstrlng1:.!
jlget..ma-3in' :y
i'§et_pa3e_9<8Wtry ,;:,
i:8et_tat:ile:

|8<>t-B"it :s:1
i8t_encddasï

a

s

ill

Ill
M

Ask

|:Hwre MFîœd]:.|||||l
I Where Re(;ensrtC8d:|l||j;
lUhere Used-

|lfees ^y|
"Uses Pacilages •»»[

(Uses ClassIVariables
juses Classes
; Uses illnterf aces
i:tfe8S"T||ttlds
i Uses String Liteî^ls:

j-Use» Nunertc literals
!Shdu,Defined BS
I Shew Dde|Usa9ei:
IShoulVnstances

of 56 J;:)
UShgu^OE.erRldes^.^^jl

:);0('23

m
? Results

IIarcode.Enœde.anCPrlnt:!
lieomiiandlîhe

lcomnandltne_errorns§
j exit |i| 1:,,.U5
iîta>en"3! s 'II
'i'printf

ill
• l

prlnfef
retrlKœ_yiput_stnin9

strwvis!Sl6Ë9
latrerrdrlUlilli

i» 1^1l on l

r—
l tunet IntlBstjencodeaggfil.E*) :^==>i:terc»Hâm.c., ïg»! n

s

J Figure 18 An Example in Brower of Discover's DeveoperXpress

Chapter 5 Implementation

0 58

It also enables one to analyze code through advanced graphical views to visualizing

the software structures and the information of the resource flow graph of a software

system. These structures and information include software components such as

subsystems, calls, data accesses, interfaces, dependencies among components and

data-ïïow relations. So we can define program segments to consist of statements,

which are semantically related, but not necessarily physically adjacent. With the tool,

these kinds of program segments can be isolated from other program text to examine

them more precisely. Figure 19 shows an example of call-relation graph in the

Viewer of Discover's DeveoperXpress.

0
aias«Kiaeuw

;Ed<| Mansa|«| Vtew MBrgB CsdrWsee

Uptet&j 'l Tre^mawiJ^J

"jï^i

!<. coiiJnandTTn^>-

•iiStlSffliiana
if'

£_>-&
mal 1 od

furintfi

et

letenvi

•<^ ^^dHn^one^

hC£2s^iJne::error"s3^

'caT\

str

sscan

<s?

-<. Bâr^d^^^^^^^)H

<^°SB"i>/ <f Baîcode...^_p^\

^ B^^^^^STt]^ ^>

p^ Barco^Encodj)>

|a:2.23:SS

Top Level Pni^cts

i^srw'- y
E/sre.Hone ï
|l.<>ad«t: Files
[UnpSrsed Flles:i;

•1af4

il

f/src/barcode.hl
l /src/cndl;Ïne.el
l/sre/endllnà.hil

iilRsTc/codabar. ci
i/scc/cadel28.eï

tere

ai

!^M

/^c/c<wipôt
[/sre/con<tefs.hg||g|
l'&rc/ean,e:'3ig||B
|/src/i,25.ei:::ï||i
l/src/fibrar«j|^BI ;
|/su'»aln.c:|||N||

^SStSS

;j]^t6nit»5MÏWBet^^
:'^

:iil|iE
S&l

J
Figure 19 An Example in View of Discover's DeveoperXpress

Chapter 5 Implementation

0 59

Users also can extend the functionality available in Developer-Xpress by adding

advanced graphical views to basic browsing. It also provides access to a TCL-

based scripting language and Tree Pattern Matching (TPM) technology.

With these new analytical technologies, software designers can create additional

syntactic patterns of own interest.

Parsing-based tools have their deficiencies, too [2]. Although they are very well

suited to the recognition of programming-oriented concepts, they cannot be used in

searching for semantic information.

0

5.2 Extracting Information

As mentioned in Chapter 4, the proposed approach makes use of the information on

two relations, VR-relation and RR-relation. VR-relation is the usage of each variable

in a set of routines, while RR-relation is the call relation among routines, which

renders information indicating that what other routines are called or used by each

routine.

u

For the purpose of acquiring the information extracted from a target software system

as the input of the approach, we need to use two other tools, Access and Tree

Pattern Matching (TPM) in the Discover toolkit. Access is a TCL-

based language that allows one to write scripts to perform complex operations.

Once written, an Access script may be used again and again: the same kind of

analysis applied to one project may be again on another project. Access script may

write output to files in a certain format TPM extends Access to provide access to

Abstract Syntax Trees (ASTs)-complete parse trees constructed and saved

while building the information model. By searching these parse trees for specific

constructs, TPM can find many different constructions of interest. Our Access

script gets the following information from a source code:

Chapter 5 Implementation

0 60

The title of subject software system;

The number of global variables in the system;

The number of functions in the system;

The name and ID of each variable in the system;

The name and ID of each function in the system;

For each variable, a set of functions that use it;

For each function, a set of other functions that are called by this function.

The following describes how our Access script extracts required information from a

subject software system and discusses some aspects of acquiring accurate and

complete information.

3

First, our script extracts such general information, as the title of project, total number

of functions and variable defined, in a subject system. The script segment can

perform the tasks. In this segment, "home_proj", "defines" are query

commands; "cname" is string attribute; "-functions", -"variables" are

entities provided by Access. Query commands are allowed to find entities, such as

home project, functions and variables in the information model built for a system.

String attribute " cname " returns the name of the specified entity.

puts $fileld "©project [cname [home_proj]]"
set funs_num[size [defines -functions /]]
set vars_num [size [defines -variables /]]

J

In view of some deficiencies from the global-based method by Liu and Wilde,

Livadas and Johnson noticed that first, in programming languages allowing nested

procedures (like Pascal), those variables which are visible for several procedures

should be considered as global variables; Second, although a global variable is

passed as parameter to a function, the receiver function should notice that the

Chapter 5 Implementation

n 61

parameter originally is global variable. The algorithm for the object finder described

in Liu and Wilde (1990) is unable to find the threads that would be caused by such

bindings.

0

As we can see, our studied systems are all implemented in C programming language

that does not allow nested procedures. Thus, those variables that are visible in more

than one procedure should be considered as global variables. Furthermore, using

Access script and TPM, we can extract the information indicating which functions

take a certain global variable as their actual parameter. So, the VR-relation are a set

of binary relations that for each global variable indicate not only which routines use

it directly but also which routines take it as their actual parameter.

set data_set [sort [defines -variables /]]
set nmain main

foreach data $data_set {
puts -nonewline $fileld "[itag $aata]\#[cname $data]\{"
set datafun [sort [filter funct [where used $data]]]
set argfuns [filter funct [tree navigate { r(<- ast_expr)

call_expr } [instances $data]]]
set ufuns [sort [set_union $argfuns $datafun]]

set j 0
foreach sfun $ufuns {

set singlefunstring [cname $sfun]
if { [size [where defined $sfun]] != 0

&& [string compare $singlefunstring $nmain] !
if { $j == 0} {

puts -nonewline $fileld "[itag $sfun]\#[cname $sfun]"
} else {

puts -nonewline $fileld " [itag $sfun]\#[cname $sfun]"
}
incr j l

0 } {

}
}
puts $fileld "\}"

}
puts $fileld "\n"

u
Chapter 5 Implementation

0 62

This above segment of Access script is to extract the above-mentioned VR-relation

and to write its output into a file, called fileld. The statement, "set

dafca_set [sort [defines -variables /]]", assigns a set of all the

global variables to data_set. For each variable $data in the set, a set of those

functions that directly use it could be found by the statement, "set datafun

[sort [filter funct [where used $data]]] ", where "[where

used $data] " finds those entities that use the variable, and then " [filter

f une t [entities]] "applies attribute-expression, f une t to each member of

entities and creates a return set that contains only those functions. For the same

variable, a set of those functions that take it as their actual parameter could be

acquired from the statement "set argfuns [filter funct [tree

navigate { r(<- ast_expr) call_expr } [instances

$data]]] ", where "[tree navigate { r(<- ast_expr)

call_expr } [instances $data]]]" searches its AST for those entities

that use all instances of the variable by using the TPM tool , and " [filter

funct [entities]] " filters these functions out. It should be pointed out here

that the AST is highly structured representation of a body of source code. It

encapsulates all of the syntactical properties of the source in a format that can be

formally manipulated. Each element or node in the tree represents a syntactical

component and may have one or more sub-nodes. "set uf uns [sort

[set_union $argfuns $datafun]]" is used to unite those functions that

directly use the variable and those functions that the variable as their actual

parameter so that we can get a complete set of functions that access the variable.

u

The appropriate selection of input data and routines strongly affects the results of

object identification. Our algorithm turns out to be sensitive to items that possess all

features. In a C system, too many routine calls and many global variables are

contained within the function "main". In that case, it may be preferable to ignore this

Chapter 5 Implementation

n 63

function. As a result, we have removed the routine "main" from a list of routines

which access a global variable and those global variables the routine "main" uses

uniquely from the C systems. The reason is that a global variable appearing in

"main", which is not accessed by any other routine, can be considered as a constant.

The condition , "[string compare $singlefunstring $nmain] !=

0 " in the segment, is set to exclude "main".

0

Considering that extracted information is in the scope of the whole system and the

different variables or different functions with same name occur possibly (for

example, different global variables are given the same name from different files in C

programming language), each variable and each function are prefixed to an ID. The

ID consists of a unique tag number followed by as symbol #, which is assigned to

each entity by Discover automatically during the internal representation

generation step. " [itag $data] \#" and " [itag $sfun] \#" in the segment

return a string that uniquely identifies a variable and a function respectively.

Similarly, we can also extract the RR-relation using Accept script. The following is

a part of segment for extracting RR-relation. First, the statement "set pfun

[sort [defines -funct /]] " finds a set of all defined functions in the

subject system and assigns them to "p fun"; Then for each function of them, the

statement "set psubfun [sort [uses -functions $fun]]"

extract those functions that are used by it. These functions may include not only

defined functions but also built-in functions provided by library. However, the later

functions are not relevant to the domain of the subject system and should be

excluded. We use a constraint "[size [where defined $subfun]] !=

0 " to prevent these functions from being included.

u
Chapter 5 Implementation

n 64

set pfun [sort [defines -funct /]]

foreach fun $pfun {
set funstring [cname $fun]
if { [string compare $funstring $nmain] !=0 } {

puts -nonewline $fileld "[itag $fun]\#[cname $fun]\{"
set psubfun [sort [uses -functions $fun]]
set psubfun_size [size $psubfun]
set n 0

foreach subfun $psubfun {
set subfunstring [cname $subfun]
if { [size [where defined $subfun]] != 0 && [string compare

$subfunstring $nmain]!= 0 } {......}

A sample of the input file created by our script is showed in Figure 20.

0

©project Barcode
@routinesNames{ 3/421 #Barcode_128_encode ...}

@âatalnfo
3/995ttalphabet{3/683#Barcoâe_pls_encode 3/682#Barcode_pls_verify}
3/490ttalphabet(3/524#Barcode_39_encode 3/520#Barcode_39_verify}
3/178#alphabet{3/207#Barcode_cbr_encode 3/201#Barcode_cbr_verify}

(aroutineslnfo
3/421#Barcoâe_128_encode{3/417#Barcode_128_make_array}
3/405#Barcode_128_verify{}
3/5 2 4#Barcode_3 9_encode{3 /52l#add_one}

Figure 20 A sample of Input File for the Approach

5.3 Properties of the Prototype

Given an input file, based on the setting of several parameters by a user or by

default, the prototype presents the result of identified objects. The result includes the

following important information:

u
Chapter 5 Implementation

^ 65

Setting of parameters for the result which consists of clustering tree height,

cohesion threshold value, and each value of three modes' weight;

Information on the subject system including the system title, the total number

of global variables, and the total number of functions in the system;

Result summary containing minimum cohesion which indicates that minimum

value of cohesion for the system can be set, the number of identified objects,

the values of average coupling and average cohesion which are used for

evaluating overall quality of the result of identified objects, the iteration time;

Detailed information on the resulting objects where for each identified object,

it displays which global variables are contained in the object, which functions

refer to these variables.

Figure 21 shows an example of the result displayed in an interface of the prototype.

3

J

Object Identification - R:\scrgrt:\bAn:<rilieWE^aiii;

File Settttig Executo Help

—

isi
Clustering F?e sun

CLU3TERISNG TREE =====

1-0 (3/42l!|iBarcode_128_encode, 3/393j»Barcode_128b_e

1-1 (3/5gO;fBarcode_ean_encode)
1-2 (3/590#Barcode_ean_encode)
l-3->3/570!(fguardl: (3/590i|(Barcode_ean_encode) |.-|
|-3->3/537j(idigits (3/590#BaEcode_ean_encode) p"|
l -3->3/566#guard (3/590;i(Barcode_ean_encode)
l -3->3/559#upc_mirrortab (3/590!(fBarcode_e8n_enco
l -3->3/561#upc_mirrortab2 (3/590!(fBarcode_ean_enc ;; l
l -3->3/572[»guardS (3/590jj(Barcode_ean_encotie)

l-2->3/S48ij(ean_miErortab (3/S90i?Barcode_ean_encod

::!

1-1 t3/835i»get_geometrY, 3/839!(iget_tatile) j
11-2 (3/835!lget_geoiiiecrY, 3/839!!<get_calile) |
l l l-3->3/795j|fxmaEginl (3/839!»get_table) |
l l |-3->3/791#lines (3/839#get_talile) II
l l |-3->3/796#ïmarginl (3/839!(iget_table) ;ij
l l l-3->3/794i»YmarginO 13/835!(iget_geometry, 3/839#g |
l |J-3->3/792!f(columns (3/839;fcTet taSle) j.^1
i':<F;j:,féSiffiSN._

Çlu:stenngSumma|y
CLUSTERING SETTING =====

iTree Height : 3
ICohesion Threshold: 0.6

|Hode CTeighC :
E-Mode = l
w-Hode = l

p-Hode = l

INPUT INFORMATION =====
Project title : src_Home
Number of data : 49

Number of routines : 55

CLUSTERING RESULT SUMMARY
Minimum cohesion : 0.05

Numïer o£ clusters : 20

average coupling : 44

average cohesion : 0.939

Iteration time : 1

Il

"Il

lË :;"^l'^ll%ll i.^
.|sefflngrOreBWe|gi@

Figure 21 Interface of the prototype

Chapter 5 Implementation

^

0

66

The prototype provides users also with the other base facilities that may support

more typical object identification tasks through setting parameters based on the

characteristics of the subject system. One user is allowed to set any of the five

parameters individually and also the prototype offers defaulted values for the

parameters shown in Figure 22.

Settings for Clustering!

13I Tree Heights

I Cohesion Threshold |0.6

I Write Weight

Read Weight

1.0

1.0

Preâicate Weight |1.0

lipte Cancel -He.tai

Figure 22 Parameter Setting

Besides an object identification method itself, the quality of object identification is

also affected by inherent character of a subject system to a large extent, such as its

domain, programming style, size, and the degree to which modules are implemented

in the system. The setting of these parameters provided by the prototype enables one

to mitigate unfavorable impacts on the object identification due to these factors.

J

Clustering Tree Height Its value ranges from 2 to infinite and its defaulted value is 3.

A hierarchical tree can be grown to arbitrary height. As the tree gets deeper, the cost

Chapter 5 Implementation

67

of the above phases grows substantially. In general, a relatively low height of the tree

is set for those small-size systems or systems implemented with an appropriate

degree of modules. However, for those large-size systems or system with low degree

of modules, one should increase its height correspondingly, which makes the

reordering operator introduced into the proposed approach more powerful for the

purpose of enhancing the quality of object identification.

D

u

Cohesion Threshold its value is between 0.0 and 1.0. There could be two extreme

cases for a given system, one is that all variables are grouped into an object with a

minimum cohesion as shown in Figure 21, and the other is that each variable turns

out to be an object with cohesion value 1. The setting of Cohesion Threshold

provides one with the means of finding out best result of object identification for a

given system depending on its inherent character. For example, for a system with

large size, low degree of modules, a relatively low value should be assigned to it.

Model Weights their values range from 1.0 to 10. The relationship between a routine

and a global variable simply indicates that the routine uses the variable. In our case,

the way in which the routine uses the variable is important. We define three modes:

modification or write mode (w) when the routine modifies the value of the variable,

access or read mode (r) when it accesses its value to compute something else, and

predicate mode (p) when the variable is used to control the execution of the routine

(in a predicate). In general, one can set a high value for write mode weight and a low

value for read or predicate weight. This classification is based on the works of [46]

and [4l] on module coupling. This improvement can help us for two reasons:

A global variable in a system that has no link in (m) mode can be considered

as a constant, and removed from the graph (such decisions are not easy to

make when pointer arithmetic is used).

When we identify methods, the mode can be considered in conflict

situations.

Chapter 5 Implementation

68

These adjustable parameters offer more flexibility. On the other hand, when the

maintainer wants to search for candidate objects similar to those already found, these

parameters can be automatically calibrated by the set of known objects.

D

u
Chapter 5 Implementation

Chapter 6 Evaluation Of the Algorithm

D In this chapter the proposed approach is applied to the three small real-life systems

and the results are compared to those identified by human as well as the results

obtained by genetic algorithm, called GOAL [35]. With respect to the comparison,

an approximate matching technique is introduced to evaluate the quality of the

approach proposed. It shows the application of the approach to these simple

programs and discusses the results of a set of case studies, which were carried out in

order to assess its accuracy, strength, and effectiveness, while identifying its major

limitations.

u

6.1 Systems Studied

The systems used for evaluating the algorithm arc all small size real-life and diverse

C systems (see Figure 23 for their characteristics). Barcode is a business tool

designed to convert text strings to barcodes. It supports a wide variety of encoding

standards and creates encapsulated/postscript output. Jalote is the software for

scheduling a set of courses offered by the Computer Science Department and Sga-c

is a package for Goldberg's Simple Genetic Algorithm and a C-

^ 70

language translation and extension of the original Pascal SGA code presented by

Goldberg.

D

In Figure 17 the systems, their name, their version, the lines of code, the number of

files, the number of user-defined types and the number of global variables and

routines may give an overview on these systems. All figures about program length in

tenns of lines of codes in the Figure include comments and blank lines. Most

systems have additional libraries that often encapsulate platform dependencies.

These libraries were not investigated. Figure 23 lists only the size of the core systems

that were analyzed. The number of global variables does not include constants.

System
Name

Version # Files
Lines of
Code

Barcode 0.96 14
3.8

KLOC

User
Types

Global
Variables

#
Routines

7 56 56

Jalote 1.0 l
1.6

KLOC
4 19 40

Sga-c 2.0 13
1.2

KLOC
4 28 42

Figure 23 Suite of Analyzed C Systems

For the purpose of evaluating the algorithm, although the size of these systems is

small and the limited extent of the case studies may not allow definitive conclusions

there are a number of considerations that can already be drawn from evaluation

results of the diverse systems. The general objective of small-scale evaluation is not

to yield a definite empirical proof for the usefulness of a method for all kinds of

systems and settings but to learn about the strengths and weaknesses of a method and

to investigate where further research should be directed.

u
Chapter 6 Evaluation of the Algorithm

-)

3

<J

71

These systems are written in C language. The decision to use them has practical

reasons and reasons that lie in the language as such. Many legacy systems are written

in C and many large C systems are available in the public domain. Furthermore, C is

widely used as target language in the reverse engineering community, which allows

comparable results. C supports abstraction by allowing the user to define his own

types and by offering means to hide details of the implementation. Yet, the support

for information hiding is quite limited and commonly unused such that reverse

engineering can make a real contribution to program comprehension of C programs.

All that makes C an interesting language from the reverse engineering researcher's

point of view: There is abstraction in the language, yet not enough; programs are

designed with the ideas of infonnation hiding in mind, yet these ideas are often

ignored. Last but not least, C is anything else than a toy language: it has many

idiosyncrasies, such as pointer arithmetic, an unsafe type system, or gotos that make

analyses of C programs difficult. If an approach works for C, it is likely that it also

works for languages that are at a higher level of abstraction than C.

6.2 Reference Corpus

In order to establish a comparison point for assessing accuracy, strength, and

effectiveness, as well as major limitations of our algorithm, a list of reference objects

(short references) decomposed manually from the systems must be available. These

reference objects can be used for statistical analyses. For the evaluation, we

compared the objects proposed by our approach, called candidate objects (short

candidates) to corresponding reference objects. The systems Barcode and Sga-c

were analyzed and the reference objects were established by two groups of computer

science graduates for both of them. Furthermore, they manually developed the

object-oriented redesigns for these two systems. At that time, the graduates were

taking the course Advanced Software Engineering in Département d'Informatique et

de Recherche Opérationnelle, Université de Montréal and fulfilled the work as their

projects in the course. All of these graduates acquire solid and deep knowledge about

Chapter 6 Evaluation of the Algorithm

72

3

u

reverse engineering and object oriented analysis and design. They had at least 4

years of programming experience and were familiar with the programming language

C. The system Jalote is originally written in C and its author also translated it into a

functionally equivalent C++ program, so they provide a reasonable basis for

companson.

These students construct class diagrams in UML for the systems Barcode and Sga-c.

Also we reconstruct the class diagram in UML for the system Jalote based on its

C++ program. Figure 24 summarizes what kind of model elements occur in UML

class diagram for these respective systems. A J- means that the model element does

not appear in the class diagram, and a 'V says that the model element exists in the
diagram. Here we should mention that for Barcode, since the students add some

classes to their 00 model design aiming at offering interface, these classes are not

considered as the reference objects in reference corpus in comparison to candidate

objects.

System Name Barcode Sga-c l Jalote

No. of Classes 24 10 21

Inheritance ^ J- ^

Aggregation ± ± ^

Composition ^ ^ ^

Abstract Class ^ ± ^

Template Class ± ± ^

Interface ^ ± ±

Figure 24 Summary of model elements for reference corpus

6.3 Classification of Matches

With respect to the comparison of candidate objects to reference objects, the

elements of objects are basically sets of global variables. Its important information is

Chapter 6 Evaluation of the Algorithm

n

0

u

73

whether the elements of one object arc a subset of the other's elements. For this

purpose, we use an approximate matching technique proposed by Girard, Koschke,

and Schied. The adoption of the approximate matching is to accommodate the fact

that the distribution of routines and global variables into objects is sometimes

subjective and, pragmatically, we have to cope with matches of candidates and

references that are incomplete, yet "good enough" to be useful. "Good enough"

means that candidate and reference overlap to a large extent and few elements are

missing.

The approximate matching introduces a partial subset relationship, Cp between

two sets A and B. the relationship is defined as follows:

A Cp 5 if and only if
An5

Al
>p (6.1)

where the tolerance parameter p in this relationship ranges 0 to 1 and can be

specified by the maintainer. ïf p is set to 1.0, A must be completely contained in B.

Based on the definition of partial subset, we compare two objects with each other to

ascertain their degree of overlap. More precisely, we treat one object 5 as a match of

another object T if 5 is a partial subset of T (denoted by S CpF). For the results

reported in this chapter, p = 0.7 is assumed, i.e., at least 70 percent of the elements of

S must also be in T. This number is arbitrary, but motivated by the fact that at least

three elements of a four-element object must also be in the other object to be an

acceptable match.

We use the same approximate matching criteria as those proposed by Girard, etc.,

setting p as 0.7 to classify the quality of candidate objects into three categories,

Chapter 6 Evaluation of the Algorithm

n

0

74

Good, Ok, and Bad according to the degree of matching between corresponding

objects. The following is described precisely and in detail.

Good when the match between a candidate object, CO, and a reference object,

RO, is close, (i.e., CO Cp RO and 7?0 Cp CO where p > 0.7). This category

requires that a great proportion of elements in corresponding objects be

matched and a quick verification in order to identify the few elements which

should be removed from or added to the candidate object. This case is denoted

as 1-1.

Ok when the relationship holds only one direction for a candidate object, CO,

and a reference object, RO.

CO Œp RO but not RO Cp CO. CO is a subset of /?0 to a large extent.

The candidate is too detailed. This case is denoted as n~l.

RO <^p CO but not CO Cp RO. RO is a subset of CO to a large extent.

The candidate is too large This case is denoted as l~n. Partial matches of

this type require more attention to split, combine, or refine a candidate and

reïïect the fact that multiple Ok matches may exist for a given RO or CO.

Bad when the relationship cannot hold in both directions for a candidate object

and a reference object. This category indicates that a candidate object is not

close enough to the reference object to guide the software engineer's work in

object identification.

J

Example. Consider the example in Figure 25. CO i and ROi are a good match.

Because only partial matches are required, there can be another reference R04 (with

R4 r^R] =0) that is a partial subset of GO] (of CO; \ RO}, more precisely). C02 is

an Ok match with R02, and so is CO 3. CO^, CO 3, and RO^ constitute an n~l match.

That is, the technique has produced finer-grained candidates than what was expected.

Note that we cannot necessarily conclude that CO^ uCOj and RO^ are a good match

because RO^ could be much bigger than CO^ uCOs. ROs and C04 constitute a l~n

Chapter 6 Evaluation of the Algorithm

0

75

match, where no other reference than RÛ3 can be matched with CÛ4. COs and ROs

do not match at all.

As the example indicates, it is not enough just to count the matches in order to judge

the detection quality of a technique. For example, ROs is a partial subset of CÛ4 and,

therefore, considered at least an Ok match. However, C04 could be huge and the

match could just be coincidence. The next section proposes a measurement for

detection quality based on multiple aspects that considers this imprecision.

candidates references

^ RO,co 4l

ROco ?7.

ROco 1
1

ROco dà

ROco l;î

cp
->

Figure 25 Example correspondences of candidates and references

6.4 Accuracy and Recall Rate

Since the partial subset relationship is used to establish a match, the matching

candidates and references need not be equal. That is, there may be elements of the

candidate not in the reference and vice versa: CO\RO -fc 0 and RO\CO 7^ 0. In other

words, there may be a flaw in a good match; even more so for Ok matches because

of (let RO be a reference and CO, be candidates for which CO, Cp /?0 holds):

Chapter 6 Evaluation of the Algorithm

n

0

76

IJCqc^O ^RO^,[jCO,

In the presence of these imprecise matches, in order to indicate the quality of

imperfect matches of candidate and reference elements, an accuracy factor has been

associated with each match that measures the quality of a relation between a

candidate and a reference. The accuracy between a candidate and a reference is

computed as follows:

accuracy (Ç,R~) =
Cn/?

CuR
Where C and R stand for a set of entities.

For matches between more than two objects (l~n and n~l), the union of all n objects

is used for the accuracy. Note that the accuracy of good matches can also be below

the threshold of the partial subset relationship. For example, if RO and CO both have

10 elements and 7 elements of RO are in CO and 7 elements of CO are in RO, then

RO Cp CO /\CO ^p RO holds and, hence, RO and CO are a good match. However,

the overlap of RO and CO is only 7/13 = 0.54 <p = 0.7.

If there are some candidate objects with no sufficient relation to the reference

objects, they are called false positives. These are candidates which are not

represented in the reference and, thus, are false candidates. If there are some

reference objects with no sufficient relation to the candidate objects, they are called

true negatives. The existence of true negatives leads to unmatched references. The

best evaluation result would contain no false positives and no tme negatives. The

number of false positives and the number of true negatives are two important aspects

in a comparison of a set of candidates with a set of references to consider when

matches have been established. The fallowings describe them more precisely.

J

Number of false positives: The number of candidates that neither match a reference

nor are matched by any reference, i.e., candidates that cannot be associated with any

Chapter 6 Evaluation of the Algorithm

0 77

reference. Technically speaking, these are candidates that are neither involved in a

1-1, l~n, nor n~l match. This number should be 0.

Number of true negatives: The number of references that neither match a candidate

nor arc matched by any candidate, i.e., references that are not even partially detected.

Technically speaking, these are references that are neither involved in a 1-1, l~n,

nor n~l match. This number should be 0.

0

To quantify the overall detection quality of the algorithm, the recall rate is

computed. The recall rate abstracts from the level of granularity - since all positive

relations are treated equally - and ignores the number of false positives. Thus, the

false positives have to be given extra inspection. The recall rate is computed as

follows:

accuracy (C)+ ^accuracy (C)
recall rate = ^^ reOt

Good j + |OÂ;| + |true negatives
(7.2)

In the equation, \x\ denotes the number of elements in the set x. \Good\ denotes the

number of 1-1 relations and \0k\ denotes the number of both l~n and n~l relations.

In the following section, the evaluation of the algorithms is discussed.

u

Different aspects arc considered to allow a detailed survey of the results. The recall

rate and the number of false positives would suffice to give an overview of the

quality of the technique. However, a simple example shows that those two numbers

alone might mislead the reader: If a technique proposes one single candidate that is

actually the union of all references, the recall rate is 100% and there are no false

positives. Nevertheless, a better result would match each reference separately.

Chapter 6 Evaluation of the Algorithm

n 78

6.5 Case Studies

This section compares the objects identified by our approach with those identified

manually, presents, and discusses the results of their comparison. It is pointed out

that in the case studies, we set the same value 1 for the mode.

6.5.1 Case Study 1

For Barcode, an independent, manually developed, object-oriented redesign made by

a group of students, exists The number of identified objects is 20 in total and the

iteration time is 1. Comparing these candidates with those classes in the redesign for

this system using the above mentioned matching criteria, we obtained 6 Good, 7 Ok

objects, 5 false positives, and 6 true negatives. Its recall rate is 0.641.

3
The results do not yield the complete redesign, but they constitute the core classes of

the independent redesign. One difference is that no identified objects can match

some classes related to interface which is added to the redesign. A second difference

is that in the redesign some 00 model elements, such as inherence, composition, are

used which cannot be considered in our approach. The third difference is that in the

redesign domain knowledge is used to further refine certain classes (for example, a

separate "HelpMessage" class is included). However, this separation is not explicitly

present in the legacy system. For this reason, it is not included in those identified

objects. To some extent, these differences lead to the increase of the number of both

false positives and tme negatives.

By looking more closely at source code of Barcode, we find out that the

programmers of Barcode followed the infonnation hiding principle in its

implementation and restricted the access and modification variables to a limited

number of routines, so that the modularity of the system is enhanced. This might

have contributed to a number of exact matches between candidates and references.

Chapter 6 Evaluation of the Algorithm

n 79

6.5.2 Case Study 2

Sag-c has a smaller size compared to Barcode. The graduates who made the redesign

of the system are acquainted with genetic algorithm and domain knowledge of the

system. As a result, the redesign provides a complete list of references without losing

details. With the settings of tree height 7 and cohesion threshold 0.65, the approach

has its best results with the total number of 12 objects in iteration time 3. Based on

matching criteria, we have 6 Good, 5 Ok objects and 1 false positive and 3 true

negatives. Its recall rate is 0.75.

0

For this system, high recall rate, low numbers of both false positives and true

negatives are given. We can expect this result because of the following two

contributing factors. The first factor is that the programmers of the subject system

take advantage of the means of the programming language C for information hiding

of global variables. These variables are mostly declared static instead of declared in

header files (they can only be declared there as external). The second factor is that

there are a relatively high number of references that are detected as a 1-1 match by

the approach since the most of the same domain-related data in the system are used

both by the approach and the redesign of the system.

6.5.3 Case Study 3

Jalote is redesigned and implemented functionally equivalent to its original program

in C++ by the same author. Setting tree height and cohesion threshold as 5 and 0.53

respectively. The approach identifies 14 objects in total in iteration time 4, among

which are 3 Good, 7 Ok objects and 3 false positives. Its recall rate is 0.53 and the

number of true negatives is 7.

In the case of Jalote, the approach has a relatively high number of both false

positives and true negatives in spite of its smaller size. A more detailed investigation

Chapter 6 Evaluation of the Algorithm

0 80

on this reveals that there are many user defined types such as struct in C program are

simply replaced with classes in C++ while those variables with these types are

mostly declared in the form of an array in the C program, which leads to more tme

negatives. Furthermore, some variables grouped in an identified object no longer

appear in its corresponding class in C++ since values of them can be obtained by

calling some member function in the class. For example, the value of variable

RoomSize in C is available by calling a member function tellSize in C++,

which may increase the number of false positives.

0

6.5.4 Summary of Evaluation Results

The following figure summarizes the evaluation results of the approach applied to

the three systems.

System
Name

Parameter setting Evaluating Results

Cohesion
Threshold

Tree
Height

Recall
Rate

#Good #0k
#False
Positives

#True
Negatives

Barcode 0.55 5 0.641 6 9 5 6

Jalote 0.53 5 0.529 3 7 4 7

Sag-c 0.65 7 0.75 6 5 l 3

Figure 26 Summary of evaluation results

According to these summaries, the effectiveness of the approach strongly depends

upon its subjective system. When those figures of the number of Good, Ok, false

positives and true negatives in Figure 26 are represented in percentage of the total

identified objects as shown in Figure 27, the difference is observed obviously.

Chapter 6 Evaluation of the Algorithm

n 81

Finally, in order to evaluate the overall quality of the approach to the three systems,

we calculate for each of the three categories of identified objects (Good, Ok, Bad)

the average of the three percentages corresponding to the three systems (see figure

28). We note the relatively high percentage of Ok of the three categories of objects,

46%. This indicates that many of identified objects by the approach need more

attention to split, combined, or refined

0

Recall Rates
Q^fë-0.8

0.7

e^ss0.6 0753

0.5

0.4

0.3

0.2

0.1

0

Barcode Jalote Sag-c

Percentage of Good and OK
100%

B Ok90%

•Good80%

%70%

60%
[5°/,

50% 50%
40%

30%
0%

20%
i0°/

21%10%

0%

Barcode Jalote Sag-c

Percentage of False Positives
23%-30%

25%
25%

20%

15%

R%10%

5%

0%

Barcode Jalote Sag-c

Percentage of True
Negatives

.33%.35%
30%@^

•30%
25%

25%

20%

15%

10%

5%

0%

Barcode Jalote

Figure 27 Evaluation results in percentage

Sag-c

J
Chapter 6 Evaluation of the Algorithm

n 82

0

Evaluation Results

50% ZtB'70

45%

40%
34%

35%

30%

25% 21 0

20%

15%

10%

5%

0%

Good Ok Bad

Figure 28 Overall quality of the approach

Furthermore, the results of the comparison of the identified objects by conceptual

clustering based approach (CCBA) to the identified objects by GOAL for each

system are given in 29.

100%

90%

80%

70%
ig Good

60%

Ok50%

40% a Bad
30%

20%

10% -J

0%

GOAL CCBAGOAL CCBA GOAL CCBA

JALOTEBARCODE SGA

Figure 29 Summary of CCBA and GOAL evaluation results

u
The two algorithms show almost the same percentage of false positives except for

Barcode where GOAL performs better. The performance of the two algorithms

Chapter 6 Evaluation of the Algorithm

^ 83

depends on the systems. The results of SGA are better than those of Barcode, which

in turn are better than those of Jalote. CCBA performs better than GOAL on two

systems. This can be explained by the fact that GOAL has more parameters to set

than CCBA.

0

Another interesting issue is the sensitivity of the approach to the COHESION

parameter. As shown in Figure 30, the results of the application of the approach on

SAG vary significantly from one COHESION value to another.

70%

i60%

50%
B Good

40%
Ok

^30% .f. D Bad3
20%

8
10%

0%

0.70.6 0.65

Figure 30 Sensitivity of the approach to COHESION variations

6.6 Discussions and Lessons Learned

Even if we didn't test our algorithms on a large set of system, we can reasonably

claim that they perfonn well when the migrated system is of good quality. However,

if the system is poorly written, the algorithms cannot produce miracles.

u

Although overall results of the evaluation of the approach are encouraging in view of

the limitation of automated object identification techniques, the phenomenon that the

number of false positives is relatively high deserves special attention, and hence we

make their analysis.

Chapter 6 Evaluation of the Algorithm

n 84

The approach proposed some objects for which no corresponding reference objects

(classes in its redesign) existed and, therefore, were classified as false positives. We

investigated these false positives to learn more about the weaknesses of the

approach. It turned out that a few false positives are indeed correct positives; some of

these were too small to be considered by the students as objects, others were simply

overlooked by them. The analysis of false positives revealed certain common

patterns that were generally found in the set of false positives proposed by the

approach.

0

Some global variables are only referenced by one routine; thus, they act as static

local variables of this routine but the programmer did not take advantage of the

ability in C to express this explicitly. A routine with such static local variables alone

can hardly be considered an object in a narrower sense - even though the local

variables indeed clearly belong to the routine

Variables used at many places in the system often represent global system

parameters, e.g., variables that indicate whether a certain command line switch was

set when the program was invoked. Often, it is recommended to exclude frequently

used variables [57]. However, simply excluding frequently used variables may also

affect variables of an abstract data object that the programmer made public. A more

reliable method is to exclude variables that are directly data dependent on the

parameter argv of the main routine that contains the command line arguments of the

invoked program in batch-oriented systems. It is still not clear how to distinguish

these from frequently used public variables of an abstract data object.

u

The main lesson we learned from this problem was that we need human intervention

to decide which data are domain related. Our approach is not able to know

automatically which components under analysis belong to a domain-independent

Chapter 6 Evaluation of the Algorithm

n 85

library, and which components belong to the application domain. We consider,

however, that this kind of information can be easily obtained from the maintainers.

Once we know which routines should not be analyzed, our approach is able to work

properly without further help from the maintainer.

0

Furthermore, due to the degree of vagueness of reasonable decompositions and the

complex semantic issues involved, the user should be integrated into atomic object

identification. For this reason, our approach allows the user to set a key parameter,

cohesion threshold, which provides the effective ways of user integration. The

effectiveness of the approach depends upon system characteristics, like degree of

information hiding, proper module decomposition. If programmers followed the

information hiding principle, the approach would detect all abstract data objects

without any false positives. However, they hardly exist in this case.

u
Chapter 6 Evaluation of the Algorithm

^

Chapter 7 COHClUSiOH

0

J

This chapter summarizes the work of this thesis and proposes further research

directions that seem to be worthy to be explored.

7.1 Thesis Summary

Object identification is the key activity in migration of a legacy system to an object-

oriented one. It helps to understand system design and facilitate the reuse of existing

components contained in the system.

In this thesis, we presented a new approach aimed at identifying objects in

procedural code more effectively. It differs from other work by the fact that it

borrows part of its inspiration from the artificial intelligence sub-field of conceptual

clustering and focuses on the identification of objects, which should be internally

cohesive; Meanwhile inter-dependency between them should be kept as loose as

possible. The prototype we built can work in an automatic fashion. It is also open to

n 87

human intervention when an expert is available. These adjustable parameters offer

more flexibility in searching for candidate objects similar to those already found.

Realizing the inherent advantageous characteristics of Cobweb system,

unsupervised, incremental, hierarchical, and base-level effect, as stated in Chapter 3

we first proposed the approach to object identification which inspires Cobweb. Its

performance turns out to be effective and encouraging. One of its advantages is that

it yields a dendrogram of clustered entities instead of a set of flat candidate objects.

Significant experience with the use of conceptual clustering for object identification

is acquired.

0

Of utmost importance with high quality of identified objects is the appropriate use of

information extracted from legacy code. We identify two kinds of structural

information to be used by the approach: one is the usage of each variable in a set of

routines; the other is the call relation among routines. The two relations are supposed

to significantly capture the basic structural information leveraged for object

identification.

Aimed at enhancing the quality of object identification, some works we have done

are listed below

We introduce a process of iterative optimization into the approach to seek

higher quality of objects decomposed from a legacy system. The process

compares the qualities of tow sequential clustering trees according to their total

sum of couplings between candidate objects and temiinates when there is no

further improvement in clustering quality.

u

We propose a new clustering algorithm, called OI-Cobweb that makes some

modifications on Cobweb. First, OI-Cobweb creates new clustering criterion

functions (objective functions). The criterion functions are directly associated to

Chapter? Conclusion

^-}
88

the well-known object oriented design metrics (cohesion and coupling), thus the

criteria of identifying objects also reflect object-oriented design to a large

extent; second, OI-Cobweb uses the multi-criteria decision-making to prevent a

candidate object from turning out to be a highly cohesive cluster while highly

coupling with other objects or a low cohesive cluster while coupling with other

objects. This kind of bad objects may be produced while using single criterion

decision-making like CU in Cobweb. A desirable characteristic of the multi-

criteria making is that first of all it insures every identified objects with a

relatively high degree of cohesion and then keeps its coupling with others as

loose as possible.

0

In order to overcome order effects, we put a Reordering procedure into the

iterative optimization process and extract the so-called interleaved ordering in

each iteration. The introduction of reordering procedure to our approach

mitigates ordering effects globally and uncovers better clustering effectively.

The approach has been applied to three small real-life systems and the results are

compared to those identified manually. The validation results of the approach are

considered to be good concerning recall rate. The further analysis on the results

reveals its drawback due to the inherent limitation of automated techniques.

7.2 Future Work

u

One obvious direction to extend this research is to apply the approach to type-based

object identification, which clusters a routine with a set of types of all its formal

parameters and the type of its return value. It might be useful to cluster a routine with

the type of the global and static variables that it accesses as well as the types of its

parameters and return value.

Chapter 7 Conclusion

n 89

Further study is needed to develop a technique that enables its users to determine the

value of cohesion threshold for a given legacy system based on extracted information

before they carry out object identification from the system. This work is quite

important because the effectiveness of the approach strongly depends upon its

subjective system.

0

The proposed approach uses the relationship between a routine and a global variable.

It simply indicates that the routine uses the variable. Sahraoui defined three modes

write mode, read mode, and predicate mode, for different ways in which the routine

uses the variable [50]. In this thesis, the approach did not take account of the aspect.

However, in object identification, a routine which modifies a variable is generally

more important than another routine which reads the variable. Hence the former

should be given more weight. In future study, the weight factors for different modes

should be introduced into the approach to improve its precision. The weights for

these modes could be calibrated on results from our case studies by systematic hand

tuning.

u
Chapter 7 Conclusion

n

Bibliography

0
[l] Basili, V. R., Viewing maintenance as reuse-oriented software development,
mEE Software, 7 (l), 1990, 19-25.

[2] Biggerstaff, T. J., Mitbander, B. G., Webster, D. E. (1994), Program
understanding and the concept assignment problem, Communications of the ACM,
37(5), 72-83.

[3] Biswas, G., Weinberg, J.B., and Li, C. (1994). ITERATE: A Conceptual
Clustering Method for Knowledge Discovery in Databases. Innovative Applications
of Artificial Intelligence in the Oil and Gas Industry. B. Braunschweig and R. Day,
Editor. Editions Technip.

[4] Briand, L., Daly, J., Wùst, J. (1998). A unified framework for cohesion
measurement in object-oriented systems. Empirical Software Engineering Journal,
3(1), 65-117. Also available as Technical Report ISERN-96-14.

[5] Canfora, G., Cimitile, A., Munro, M., Taylor, C. J., Extracting abstract data types
from C programs: a case study, Proceedings of the Conference on Software
Maintenance, Montreal, Canada, 1993, 200-209.

u

n

0

91

[6] Canfora, G., Cimitile, A., Visaggio, G., Assessing modularization and code
scavenging techniques, Journal of Software Maintenance: Research and Practice, 7,
1995,317-331.

[7] Canfora, G., Cimitile, A., and Munro, M., An improved algorithm for identifying
objects in code. Journal of Software Practice and Experience 26(1), 1996, 25-48.

[8] Canfora, G., Cimitile, A., De Lucia, A., and Di Lucca, G.A. (1999), A case study
of applying an eclectic approach to identify objects in Code, Workshop on Program
Comprehension Pittsburgh, IEEE Computer Society Press, 136-143.

[9] Chidamber, S.R., & Kemerer, C.F. (1994) Towards a Metrics Suite for Object
Oriented design. IEEE Transactions on Software Engineering, 20(6), 476-493.

[10] Chikofsky, E. J., Cross II, J. H., Reverse engineering and design recovery: a
taxonomy, IEEE Software 7 (1) 1990,13-17.

[11] Coad, P., Yourdon, E., Object Oriented Analysis, Prentic-Hall, 1991.

[12] Coad, P., Object-oriented patterns, Communications of the ACM 35 (9) 1992,
152-159.

[13] van Deursen, A., Kuipers, T., Finding classes in legacy code using cluster
analysis, Proceedings of the ESEC/FSE'97 Workshop on Object-Oriented
Reengineering, Technical Report TUV-1841-97-10, Technical University of Vienna,
August 1997. (Internet : http: //www.cwi.nl/~arie/papers/)

[14] van Deursen, A., Kuipers, T., Identifying objects using cluster and concept
analysis, Proceedings of the 21st International Conference on Software Engineering
(ICSE'99), Los Angeles, California, May 1999, 246-455.
(Internet : http: //www. cwi .nl/~arie/papers/)

[15] Dunn, M. F., Knight, J. C., Automating the detection of reusable parts in
existing software, Proceedings of the 15th International Conference on Software
Engineering (ICSE'93), Baltimore, Maryland, 1993, 381-390.

[16] Fisher, H. D. (1987). Knowledge Acquisition via Incremental Conceptual
Clustering. Machine Learning, Vol. 2, pp.139-172.

[17] Fjeldstadt, R.K., and Hamlen, W.T. (1984), 'Application Program Maintenance
Study: Report to Our Respondents', Proc. GUŒ)E 48, IEEE Computer Society Press,
April.

u
Bibliography

,<"-)

3

92

[18] Gall, H., Klôsch, R., Capsule oriented reverse engineering for software reuse,
Proceedings of the 4th European Software Engineering Conderence (ESEC'93),
Garmisch-Partenkirchen, Germany, September 1993, Lecture Notes in Computer
Science 717, Springer, 1993, 418-433.

[19] Gall, H., Klôsch, R., Program transformation to enhance the reuse potential of
procedural software, Proceedings of the ACM Symposium on Applied Computing
(SAC'94), Phoenix, Arizona, March 1994, 99-104.
(Internet: http: //www. infosys. tuwien. ac . at / Staff/hg/sac94 .ps)

[20] Gall, H., Klôsch, R., Managing uncertainty in an object recovery process,
Proceeding of the 5th Inemational Conference on Information Processing and
Management of Uncertainty in Knowledge-Based Systems (IPMU'94), Paris, France,
Julu 1994, 1229-1235.
(Internet: http: //www. infosys . tuwien.ac.at/Staff/hg/ipmu94.ps
)

[21] Gall, H., Klôsch, R., Kofler, E., Wurfl, L., Balancing in reverse engineering and
in object-oriented systems engineering to improve reusability and maintainability,
Proceedings of the 18th IEEE Computer Software and Application Conference
(COMPSAC'94), Taipei, Taiwan, November 1994, 35-42.
(Internet: http: //www. infosys . tuwien.ac.at/Staff/hg/compsac-
cr.ps)

[22] Gall, H., Klôsch, R., Mittermeir, R. T., Architectural transformation of legacy
systems, Proceedings of the ICSE-17 Workshop on Program Transformation for
Software Evolution, Seattle, Washington, April 1995.
(Internet: http: //www. infosys . tuwien.ac.at/Staff/hg/icse-
ws .ps)

[23] Gall, H., Klôsch, R., Mittermeir, R. T., Object-oriented re-architecturing,
Proceedings of the 5th European Software Engineering Conference (ESEC'95),
Sitges, Spain, September 1995, Lectue Notes in Computer Science 989, Springer,
1995,499-519.
(Internet: http: //www. infosys . tuwien. ac.at/Staff/hg/esec-
cr.ps)

[24] Gall, H., Klôsch, R., Mittermeir, R. T., Application patterns in re-engineering :
identifying and using reusable concepts, Proceedings of the 6th International
Conference on Information Processing and Managememt of Uncertainty in
Knowledge-Based Systems (IPMU'96), Granada, Spain, July, 1099-1106.

J
Bibliography

0

0

(Internet :
web.ps)

93

http://WWW.infosys.tuwien.ac .at/Staff/hg/ipmu-cr-

u

[25] Gall, H., Weidl, J., Reswolving uncertainties m object-oriented re-architecting
of procedural code, Proceedings of the 7th Intmational Conference on Inflormation
Processing and Managememt of Uncertainty in KnowledgBased Systems (IPMU'98),
paris, France, Julu, 1998.
(Intemet:http: //www. infosys . tuwien. ac.at/Staff/hg/publicati
ons.hfcml)

[26] Gall, H., Weidl, J., Building object models to source code : an apporach to
object-oriented rc-architecting, Proceedings of the 22nd Computer Software and
Applications Conference (COMP_SAC'98), Vienna, Austria, August 1998.
(Internet : link from
http://WWW.infosys.tuwien. ac.at/Staff/hg/publications.htm
l)

[27] Gennari, J. H., Langley, P., and Fisher, D. (1989). Models of incremental
concept formation. Artificial Intelligence, 40(1-3): 11-62.

[28] Gluck, M. A., & Carter, J. E. (1985). Information, uncertainty, and the utility of
categories. Proceedings of the Seventh Annual Conference of the Cognitive Science
Society, pp. 283-287, Irvine, CA: Lawrence Erlbaum.

[29] Girard, J. F., Koschke, R., and Schied, G., A metric-based approach to detect
abstract data types and abstract state encapsulation, Conference on Automated
Software Engineering, Lake Tahoe, IEEE Computer Society Press, 1997, 82-89.

[30] Girard, J.F., Koschke, R., and Schied, G. (1999), A Metric-based Approach to
Detect Abstract Data Types and Abstract State Encapsulation, Journal on Automated
Software Engineering, no. 6, October, 357-386, Kluwer Academic Publishers.

[31] Griswold, B., Automated Assistance for Program Re-stmcturing, ACM
Transactions on Software Engineering and Methodology 2, 3 (July 1993), pp 228-
269.

[32] Horwitz, S., Reps, T., Binkley, D., Interprocedural slicing using dependence
graphs, ACM Transactions on Programming Languages and Systems 12 (1) 1990,
26-60.

[33] Jacobson, I., Lindstrôm, F., Re-engineering of old system to an object-oreinted
architecture, Proceedings of the ACM. AIGPLAN Conference on Object-Oriented

Bibliography

n

D

94

Programming, Systems, Languages and Applications (OOP-SLA'91), Phoenix,
Arizona, October 1991, 340-350.

[34] Klôshch, R. R., Reverse engineering : why and how to reverse engineer
software, Proceedings of the California Software Sumposium (CSS'96), Los
Angeles, California, April 1996, 92-99.
(Internet : http: //www. infosys .tuwien.ac.at/Staff/hg/css-cr-
web.ps)

[35] Konkobo, I., Master thesis, Identification des objets dans les applications
léguées basée sur les algorithms génétiques, Université de Montréal, December
2001.

[36] Koschke, R. (2000), Atomic Architectural Component Recovery for Program
Understanding and Evolution, PhD thesis, Institute for Computer Science, University
of Stuttgart.

[37] Lehman, M.M., Belady, L. (1985), 'Program Evolution', Processes of Software
Change, Academic Press, London.

[38] Lindig, C. and Snelting, G., Assessing modular stmcture of legacy code based
on mathematical concept analysis, Proceedings of the International Conference on
Software Engineering, Boston, 1997, 349-359.

[39] Liu, S. S., Wilde, N., Identifying objects in a conventional procedural language:
an example of data design recovery. Proceedings of the Conference on Software
Maintenance, San Diego, California, November 1990, 266-271.

[40] Livadas, P.E. and Johnson, T. (1994), 'A New Approach to Finding Objects in
Programs', Journal of Software Maintenance: Research and Practice, no. 6, 249-
260.

[4l] Lounis, H., and Melo, W., 1997, Identifying and measuring coupling in modular
systems, 8th International Conference on Software Technology ICST'97.

[42] McKusick, K. M. and Langley, P. (1991). Constraints on tree stmcture m
concept formation, Proc. of 12th International Joint Conference on Artificial
Intelligence, Sydney, Australia, August, 1 810-816.

[43] Michalski, R. S. (1980). Knowledge Acquisition Through Conceptual
Clustering: A Theoretical Framework and an algorithm for Partitioning Data into
Conjunctive Concepts. Policy Analysis and Information Systems, Vol. 4, No. 3, pp.
219-244.

Bibliography

0 95

[44] Michalski, R. S. & Stepp, R. (1983). Learning from Observation: Conceptual
Clusterings. In R.S. Michalski, J. G. Carbonell, & T. M. Mitchell (Eds.), Machine
Learning: An artificial Intelligence Approach. Volume I, San Mateo, CA: morgan
Kaufman.

0

[45] Newcomb, P., Reengineering procédural into object-oriented systems,
Proceedings of the 2" Working Conference on Reverse Engineering, Toronto,
Canada, July 1995, 237-249.

[46] Offutt, J., Harrold, M. J., and Kolte, P., 1993. A software metric system for
module couping, The Journal of Systems and Software, 20 (3), 295-308.

[47] Ogando, R. M., Yau, S. S., Liu, S. S., Wilde, N., An object finder for program
structure understanding in software maintenance, Journal of Software Maintenance:
Research and Practice, 6, 1994, 261-283.

[48] Philip, T., Famsundar, R., A reengineering framework for small scale software,
Software Engineering Notes 20 (5) 1995,51-55.

[49] Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., Lorensen, W., Object-
oriented Modeling and Design, Pîentice-Ralï, 1991.

[50] Sahraoui, H., et al., (1999). A concept formation based approach to object
identification in procedural code. Automated Software Engineering, 6, 387-410.

[51] Schwanke, R.W., An intelligent tool for re-engineering software modularity,
International Conference on Software Engineering, May 1991, 83-92.

[52] Fast programming manual. SEMA Group, France, 1997.

[53] Siff, M. and Reps, T., Identifying modules via concept analysis, Proceedings of
International Conferenceon Software Maintenance, IEEE Computer Society, Ban,
October 1997, 170-179.

[54] Sneed, H. M. (1996), Encapsulating legacy software for use in client/server
systems, Proceedings of the Third IEEE Working Conference on Reverse
Engineering, Monterey, CA, IEEE Computer Soc. Press, Silver Sand, MD, pp. 104-
119

u
Bibliography

n 96

[55] Tenma, T., Tsubotani, H., Tanaka, M., Ichikawa, T., A system for generating
language-oriented editors, IEEE Transactions on Software Engineering 14 (8) 1988,
1098-1109.

[56] Venkatesh, G. A., The semantic approach to program slicing, Proceedings of the
ACM Conference on Programming Language Design and Implementation
(SIGPLAN'91), Toronto, Canada, June 1991, Sigplan Notices 26 (6) 1991, 107-119.

[57] Yeh, A.S., Hams, D., and Reubenstein, H., Recovering abstract data types and
object instances from a conventional procedural language, Second Working
Conference on Reverse Engineering July 1995, IEEE Computer Society Press, 1995,
227-236.

[58] Zeinmer, J.A., 1990, Restructuring for style. Software Practice and Experience,
20 (4), 365-389.

/'"

<J
Bibliography

