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Sommaire

Les blocs pre-congus et pre-vérifiés, appelés les blocs de propriété intellectuelle (IP),
sont de plus en plus utilisés dans la conception des systémes microélectroniques.
D'une part, ils facilitent la conception des systemes et, d'autre part, ils contribuent de

fagon significative a 'évolution du produit.

Cependant la vérification de ces systemes, intégrant les blocs IP devient un véritable
défi et une tache trés laborieuse. En effet, la difficulté réside dans le fait qu'un bloc
IP fonctionne correctement seulement dans son propre environnement et il est peu

probable qu'il maintient ses propriétés dans un environnement arbitraire.

Afin de garantir le bon fonctionnement de ces systemes, un bloc IP non seulement
doit étre certifié mais son environnement doit &tre aussi mis en exergue. Dans cette
direction, l'approche supposition/garantic’ est un support idéal aussi bien pour
spécifier le comportement attendu du systéme que pour prouver certaines de ses
propriétés. Ainsi, la spécification des blocs IP se subdivise en deux parties. La
premiére partie décrit les hypothéses que le composant suppose sur son
environnement tandis que la deuxiéme partie spécifie les propriétés du composant.
D'une maniére intuitive, cette décomposition est justifiée par le fait que le composant
garantit ses propriétés lorsque son environnement satisfait les hypothéses que le

composant suppose.

L'inconvénient du paradigme supposition/garantie est que les hypotheses et les

propriétés sont souvent exprimées en logique temporelle ou bien dans un langage

il




propre des outils qui supportent ce type de spécification, comme MOCHA 2 titre
d’exemple [37]. Cette dépendance de la logique ou d'un outil particulier n'est pas
acceptable a la spécification des blocs IP car il limite généralité, réutilisablilit¢ et
portabilit¢ des blocs. C'est pourquoi, nous introduisons les automates
acceptants/imposants pour la spécification supposition/garantie des blocs IP. Ensuite,
nous proposons un paradigme formel pour la vérification compositionnelle des

systémes intégrants de ces blocs.
Cette these est constituée de 6 chapitres :

Dans le premier chapitre, nous introduisons le probleme d'intégration des blocs IP.

Nous discutons aussi les objectives des travaux présentés dans les chapitres suivants.

Dans le deuxiéme chapitre, nous présentons une synthése de la littérature récente
reliée a la vérification formelle des composants matériels’. Ce chapitre introduit les
notions mathématiques utilisées dans la thése et regroupe un ensemble de méthodes
supposition/garantie et les méthodes de vérification sémantique compositionelles’.
Nous classifions ces méthodes par deux critéres : (1) Est-ce que la méthode en
question permet un raisonnement/composition circulaire des propriétés des
composants de systéme? (2) Est-ce que cette méthode peut étre appliquée aux

compositions des propriétés de slireté ainsi qu'aux propriétés de vivacité?

Dans le troisiéme chapitre, nous proposons d'utiliser les automates
acceptants/imposants’ pour spécifier les hypothéses d'environnement de composant,
par exemple, un bloc IP. Un automate acceptant/imposant est un automate qui a €té
augmenté par certaines contraintes booléennes. Ces contraintes décrivent ce que doit
étre fourni a l'entrée de l'automate dans ses états. Les contraintes restent satisfaites

tant que le comportement de l'environnement de l'automate est conforme au

! Assume-guarantee
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comportement décrit par ces contraintes. Ainsi, on représente le comportement par
l'automate  acceptant. Supposons que nous modélisons les hypotheses
d'environnement d'un composant par un automate acceptant. Nous composons cet
automate avec le composant et nous imposons une condition que les coniraintes
d'automate soient maintenues (vrais) pendant toute la vérification du composant. Le
vérificateur sémantique’ doit appliquer toute la séquence de données qui satisfait les
contraintes de l'automate. De cette facon, l'automate acceptant caractérise les
séquences de données du composant. Ce dernier nous permet de vérifier le composant
dans un environnement propre. Nous décrivons la syntaxe et la sémantique de ce type

d'automate dans ce chapitre.

En guise d'exemple, nous décrivons un modele d'un commutateur ATM® dans les
chapitres 4 et 5. Notre objectif est d'illustrer I'application de I'automate
acceptant/imposant a la spécification et vérification d'un systeme complexe. Ce
commutateur est comosé d’un ensemble de contrdleurs et un commutateur. Nous
décrivons les hypothéses des environnements du controleur et du commutateur. Dans
le chapitre 4, nous démontrons que les hypothéses des contréleurs sont respectées par
le commutateur et vice-versa, les hypotheéses du commutateur sont respectées par le
commutateur. De la méme fagon, nous illustrons dans le chapitre 5 que ce type
d'automate peut étre utilisé pour la spécification et la vérification compositionelle des

propriétés de stireté et de vivacité du commutateur ATM.

Nous concluons ce travail en chapitre 6 en mettant en évidence les aspects pratiques
de 'automate proposé, en particulier son application a la vérification des processeurs

ainsi qu'aux systémes de protocoles de télécommunication multicouche.

> Model checker
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Abstract

In this thesis, we review recent developments in compositional and assume guarantee
verification. We discuss whether each method supports circular/non circular

reasoning and whether it can be used when proving safety/liveness properties.

We formulate interface recognizers/suppliers (IRS), which are recognizers augmented
with Boolean constraints. The constraints specify what values may occur on IRS

inputs at each state. In other words, IRS can constrain its inputs.

We discuss a composition theorem for circular reasoning using IRS. In this way, IRS
framework extends non-circular constraint model checking [25] to a circular

constrainted model checking.

We demonstrate an application of IRS in (1) specifying environment assumptions and
in (2) modeling pre conditions / post conditions of properties of an ATM switch.

Using IRS, we specify and then verify the switch.




Abreviations

A/G
ATM
CMC
CTL
Cv
FIFO
FSM
1P
IRS
LTL
RTL
TBL
TLA
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Chapter 1

Introduction

1.1 Motivation

Predesigned, preverified silicon building blocks or cores are finding increasing use in
microelectronic system designs [50]. Examples of such cores or hardware intellectual
properties (IP) are microprocessors, DSP, PCI, MPEG and JPEG cores. Integration of
these application specific components into complex system-on-chip (SOC) designs is
a new challenge for system-level designers. As the complexity and the density of ICs
increase, verification becomes even more important than before. Traditionally,
simulation has been used for design verification, but the increasing design complexity
makes it very difficult, if not impossible, to create sufficient test vector sets. Even
with partial vector sets, simulation usually takes too long for each iteration.
International Technology Roadmap for Semiconductors (ITRS) [10] has identified
test and verification of complex systems as the challenges of the system design in the
next decade. ITRS has warned that these challenges are soon becoming crises. There
are currently 2 to 3 times more verifications engineers than designers on
microprocessor teams. Overall Cost of design threatens continuation of the

semiconductor roadmap [10].

Formal verification may offer a viable approach to the verification of these complex
systems. Instead of applying stimuli to a design and comparing its responses with
expected results, formal verification tools examine a design and mathematically prove

or disprove its functional properties. The huge effort needed to create functional test




vectors can be avoided except for those parts of the design where simulation is still
necessary. Putting both methods together, a thorough verification can be achieved in a
much shorter time than purely using simulation. Unlike nonexhaustive simulation,
which only aims to show the presence of bugs, formal verification can prove their
absence. When errors are found, formal verification tools can also generate counter
examples to demonstrate the error conditions. Formal verification has become an

essential technology for solving today’s verification problems [48].

Most formal verification methods fall into one of two classes [31]; (1) proof based
methods which use theorem provers, and (2) state-exploration methods which use
model checkers to automatically search the state space of the design. Theorem
provers use the full power of mathematics, so they are very flexible and can proof
properties of entire classes of systems [31]. The main drawback of such methods is
that they require a large amount of interaction from the users. In contrast, state-
exploration methods restrict the model to be finite-state, and use state space search
algorithms to check automatically that the specification is satisfied. The most serious
drawback of the state-exploration methods is the state explosion problem [31]. This
problem mostly arises in systems composed of multiple components operating in
parallel. Composing finite state machines in parallel leads to an exponential explosion
of states in the worst case, which imposes a strong limit on the size and complexity of

systems that can be verified by state enumeration methods [14].

Two main techniques have been proposed to avoid state explosion problem [31]: (1)
compositional verification and (2) abstraction. In compositional verification, the
specification of the system is separated into properties of its components. Then, the
properties of the components are separately verified. Finally, it is proven that the
components specifications imply the specification of the entire system. In abstraction,
the models are simplified by hiding details of the design. Then the simplified model is
verified. Finally, a relation between the abstract model and the original one is
established to assure that the correctness at the abstract level implies the correctness

at the detailed or refined level.




Typically, a component works properly only in a given environment in the system. It
is unlikely that the component satisfies any useful property in an arbitrary
environment. This is called “the environment problem” [14]. In compositional
verification, properties or abstract models of the other components constitute a

constraining environment for verifying the given component.

The environment problem appears in a similar way when reusing IP cores in new
applications. Given that the core works properly under specific environment
assumptions, it is unlikely that it works in any arbitrary application. For a successful

core reuse, a formalism is needed to specify these assumptions.

In this thesis, we study formal requirements for (reusable) component integration and
propose a formalism for the specification of the properties and the environment
assumptions of these cores. We use compositional verification methodologies to

enssure correct integration of cores in systems.

Our objective is also to illustrate compositional reasoning on a relatively complex
system. As a case study, we target telecommunication hardware systems. We study an
asynchronous transfer mode (ATM) switch module that consists of port controllers
and a switch fabric. ATM is a cell based switching and multiplexing technology
designed to be a general purpose transfer mode for a wide range of services [52]. It is
particularly well suited for the exchange and transfer of media intensive data such as

real time audio, video, and high quality images.

The ATM switch includes a complex control path and handles large data structures
like ATM cells. The switch is quite complex for current model checking tools, e.g.,
Formal Check [3], and consequently a compositional approach must be adapted for
the overall verification. Although, there have been earlier efforts in the verification of
switch fabrics [32], there is no published work on (the formal or informal)

verification of port controllers. As data rates of networks increase and more services




are offered by network service providers, these port controllers are becoming more
complex since they have to handle packets in a shorter time budget and with different
qualities of service. For instance, with an OC-192 data link, the switch has a
maximum time of 51 microseconds to read, convert the header, and route each ATM
cell [26]. Becoming more complex, the switch module requires a parallel architecture
to perform its functions. Currently, major semiconductor manufacturers are starting to
sell a new type of integrated circuit, the network processors [26]. Network processors
are programmable chips like general purpose microprocessors, but are optimized for
packet processing required in network devices. This (network processor) industry is
currently at its early stage. In this thesis, we implement a relatively simple switch
module which (is not as complex as a network processor, however) performs basic
operations, e.g., cell buffering, routing, header transformation, and cell prioritization.

We aim to develop the following ideas:

1. If a switch fabric or a port controller is provided as an IP core, what would be the
environment assumptions for each of them and which specification formalism can

describe those assumptions?

2. Having specified the environment assumptions, what properties have to be
specified for switch components? Although a set of well-defined, well-established
properties is available for microprocessors, such a specification does not exist for port

controllers of an ATM switch.

3. Having the assumptions and the properties, how could one verify a correct
integration of switch components in an application? How could one show that each

component satisfies the assumptions made by its neighbors?

1.2 Contributions

The principal contributions of this thesis are as follows:




1. We classify recent (and relatively poorly documented) compositional verification
methods. In chapter 2, we describe assume guarantee reasoning implemented by
theorem provers and non-circular and circular compositional verification methods

implemented by state of the art model checkers.

2. We introduce interface recognizers/suppliers (IRS) as a practical mechanism to
represent environment assumptions and interface properties of the components. IRS is
a recognizer’ augmented with a set of Boolean constraints. By forcing the constraints
to be always true, IRS constrains its inputs. By checking the constraints of IRS, we
verify that a component satisfies the specification modeled by the IRS. IRS can thus
equally act as a recognizer of a property and as a supplier of assumptions on its

inputs.

3. We extend the application of IRS from modeling environment assumptions to
compositional verification. Given that the reasoning with IRS can be circular, we

develop well-foundedness conditions to avoid erroneous conclusions.

4. We model an existing port controller and switch fabric modules of an ATM switch.
(Port controllers are modeled in VHDL [9] and the fabric is translated from Verilog to
VHDL. The controller and the fabric models are about 3500 and 500 lines of VHDL
code respectively. (See Appendix 4.)) In a 4x4 setting, there are 4 in port controllers
and one 4x4 switch fabric. This 4x4 model is about 14500 lines of VHDL code and
includes 1500 state variables, which is far beyond the capacity of a commercial model
checker. We use IRS to model environment assumptions of the switch fabric. Using
the same IRS, we show that the in port controllers satisfy these assumptions. We also
show that the fabric satisfies its properties when operating under the environment

IRS.

5. We propose a specification and verification methodology for switch-type systems,

e.g., for this class of network devices. We specify 5 properties for in port controllers

7 Recognizer is defined in Chapter 3.




and then use IRS to model and verify these properties. Due to the large complexity of
ATM cells, we use the data-independence assumption and cell size reduction

techniques to carry out successful verification.

We organize the thesis as follows: Chapter 2 introduces the mathematical notation
needed to describe and classify compositional verification methods.
Assume/guarantee reasoning and compositional model checking methods are also

discussed there.

In Chapter 3, we propose interface recognizers/suppliers (IRS) as a means to specify

environment assumptions and properties of (reusable) components.

Chapters 4 and 5 contain our case study: The ATM switch design is introduced and

its properties are formally verified using the IRS methodology.

Chapter 6 presents conclusions and discusses possible extensions or improvements to

the proposed compositional verification method.

The methodology proposed in this thesis has been published in [28][29][2]. We have
also submitted a comprehensive article on the compositional reasoning using IRS to

Formal methods in system design journal.




Chapter 2

Compositional verification rules

In this chapter, we present the computation models and the formal notation that are
used to describe compositional verification rules. In particular, we represent the

models that have been used in compositional verification of hardware systems.

Definition 2.1 [31]: A Moore machine M = <S, Init, I, O, T, L> is a tuple of the
following form:

1. S'is a finite set of states.

2. Init — S is a nonempty set of initial states.

3. I is a finite set of input propositions.

4. O 1s a finite set of output propositions.

5. T < $x2'xS is a transition relation.

6. L: S—2° is a function that maps each state to the set of output propositions true in

that state.

It is required that 7 N O = & and for every s € S and v C /, there exists some f € §

such that 7(s, v, ?).

Moore machines that have disjoint sets of outputs can be composed in a natural way.
The composition, for instance at the circuit level, corresponds to wiring outputs of

one machine to the appropriate inputs of the other. Each machine receives some of its




inputs from the other machine and some of its inputs from an environment. The next

definition is a formal definition of the composition.

Definition 2.2. The composition of Moore machines M1 = <S;, Init;, 1), O;, T, L;>
and M2 =< S5, Inits, I, O, T, Ly> (denoted M1 H M2) is defined when O N Oup =
¢ and it is the Moore machine M defined by:

1. 5= S;x S,, where X represents the Cartesian product. For instance, (s;, 52) €S only
ifs;€ S;and s, € S,

2. Init = Init;xInit,.

3.1=(LuDh)—(0;00y).

4.0=0;0 0,.

5. T1(sy, s2), v, (s”1, s ) iff Ty[s7, (v U La(s2) ) N 1}, s°;] and
Tols2, (v Li(s1) ) N I, 872).

6. L(sy, s2) = L(s1) U L(s2).

This definition of M1 // M2 has the following properties:

1. Each machine must make a transition®, and

2. The inputs that each machine sees are the inputs from the overall environment plus
the outputs from the other machine in the composition. Finally, the union of the
outputs of the modules gives the outputs of the composed system. (It is possible to
restrict the global outputs to a subset of this union, e.g., O < O U O2. However, we

have reported the original definition in [31] .)

Kripke structures [41] are usually used in model checking of hardware systems. We
study the relationship between Moore machines and Kripke structures. A Kripke
structure M = <S8, Init, T, A, L> is defined as follows [31]:

1. S is a finite set of states.

2. Init < S is a nonempty set of initial states.

¥ In this thesis, we have only assumed synchronous hardware systems.




3.7 ¢ § x S is a transition relation.
4. A is a finite set of atomic propositions.
5. L is a function that maps each state to the set of output propositions true in that

state.

A Kripke structure or structure for short does not distinguish inputs from outputs.
Moore machines, on the other hand explicitly define inputs to interact with their
environments. By incorporating inputs of a Moore machine to its states, it is possible
to obtain the corresponding Kripke structure. Figure 2.1 shows a machine M and the

corresponding structure struct(M).

Figure 2.1: a) A Moore machine M and b) the corresponding structure struct(M) [31]

Next, we review a temporal logic that is commonly used for property specification in
the literature. Temporal logic is a logical language used in the formal verification of
concurrent systems. We will use standard linear temporal logic (LTL) [51]to reason
about the composition of properties in Chapter 5. A model for an LTL formula is an
infinite sequence sy, si, ... of states, representing consecutive time instants. A formula
is either an atomic proposition or one of —p, pag, pUq, Xp, where p and g are
formulas. "—" and "A" represent propositional operators not and and, respectively.
The Until operator "U" and the Next operator "X" are defined as follows:

Each formula is either true or false in a given state.




We use the notation (M, s;) |= p to indicate that M satisfies p at the ith state, i.e., 5.

1. (M, s;) |7 —p iff M, s,) [# p.

2.(M, s) FpaqiffM, s) |=pand M, 57) = g.

3. M, 5;) |5 p U g iff (M, s;) |= g or there exists />i such that (M, s;) |= ¢, and for all
i<k<j, (M, sp) = p.

4. (M, s;) |= X p iff (M, 5,41) |= p.

The formula F p (eventually p) is an abbreviation to (true U p) and it predicts the
eventual occurrence of p becoming true. G p (globally p) is equivalent to —F—p

indicating that p is true from now on.

We will use finite state automata to specify interface behaviors. A finite state

automaton (FA) is a 5-tuple (S, Init, A, T, F), where [30]

1. S is a finite set of states.

2. Inite S is a start state.

3. A is a finite set called the alphabet.

4. T x4 — S is the transition function.

5. F ¢ S is the set of accepting (or final) states.

The input alphabet contains the allowed input symbols. If the automaton receives an
allowed input symbol a in a state s, it moves to the next state indicated by the
transition function 7. When a machine accepts a string, it ends up in an accepting
state. If L is the set of strings that machine M accepts, we say that L is the “language”
of machine M [30].

A finite state machine (FSM) is a model similar to FA. An FSM generates outputs in

each state of the machine. (In contrast to FA, outputs rather than final states are

considered and emphasized for FSMs.) The outputs are determined from the current
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state and the inputs of the machine [5]. When the output values depend only on the

state of the FSM, we get a Moore machine (Definition 2.1).

FSMs can model synchronous circuits. Suppose a machine M implements a property

p under the environment assumptions e. This is denoted by [4]
<e>M<p> 2.1)

The environment assumptions e can be supplied as a set of linear temporal logic
formulas, or equivalently by an FSM E that models these temporal formulas.
(However, to model eventuality formulas, fairness assumptions sould be added to
these FSMs.) In [6] a practical method called tableau construction is proposed to
build a maximal model for a given temporal logic formula. The tableau or the
maximal model is the one that can simulate all the models that satisfy the formula’.
We denote TBL(p), the tableau for a formula p. Assertion (2.1) can then be

implemented using model checking algorithms. For instance, one can verify that
E[[M|=p (2.2)

Equivalently, it can be verified that the composed machine E||M can be simulated by

the machine TBL(p) [6]

E|M < TBL(p) (2.3)
Assertion (2.1) can also be implemented using deduction-based algorithms, i.e,
theorem prover systems. The formulas are expressed with first order or higher order

logics and they get an explicit time parameter ¢. For instance, (2.1) is implemented as:

Vi e(t) = (M(1) = p(1) (2.4)

° The simulation relation is defined in Appendix 2.
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Having defined computational models, we proceed to study compositional

verifications methods.

2.1 Assume guarantee reasoning (A/G)

Abadi and Lamport [22] presented an assume guarantee formalism for the
specification of open systems, i.e., the systems that interact with their environment.

Suppose that the specification of a component M is represented with an assume
guarantee (A/G) specification e—> p, where p specifies the component

commitments and e describes its environment assumptions. This A/G specification

asserts that M maintains its commitments p if the environment satisfies the
specification e. (More precisely, formula e—— p asserts that (for all i,) p is true up
to point i of the computation if e holds up to point j < i. This means that p holds at
least one step more than e does. The formula e = p is weaker than e— p in that

it only asserts that p holds as long as e holds.)

Lamport [23] states the principles of the composition as follow. Suppose a system M
is composed of components Mj, ..., M,. Each component guarantees its specification
under a specific environment assumption. If the following conditions are met, then
the principles of the composition infer that the global system M guarantees the global

specification p under the global environment assumption e. These conditions are:

1- Every component M; guarantees its specification p; under the environment

assumption e;. (¢—> p;, for 0 <j <m)

2- The environment assumption ¢; of each component is satisfied under the global
assumption e and the inout properties of all components. That is

(eApin...Ap,=e),for0<j< n.

3- M guarantees p if each component M; guarantees p;. This means that the global

system specification p is implied by the component properties p;, i.e.,
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(eADPIA ... App = D).

A composition rule based on the composition principles has been implemented in a
special linear temporal logic, called TLA [21]. TLA uses a theorem proving
approach. Conditions (1) to (3) of the composition are manually verified using a
proof assistant. However, Lamport and Kurshan [33] presented a hybrid approach to
compute Steps (2) and (3) of the rule by a theorem prover, and Step (1) by a model

checker.

The composition rule, as expressed in TLA can be applied only to safety properties
[15]. A safety property holds in all states of a model. Safety properties assert that bad
things “never” happen. A liveness property on the other hand talks about eventual
occurrences of events. For example, a liveness property in a communication protocol
can be as follows: if a good message is sent by the transmitter, it is eventually

received by the receiver.

In the next section, we review the compositional methods which use model checking
algorithms (rather than deduction-based reasoning) to implement compositional
verification. We also discuss whether each method can prove liveness properties in

addition to the safety ones.

2.2 Compositional verification

The recent developments in the compositional verification (CV) originated from the
assume guarantee (A/G) reasoninglo. Although very similar, the major difference is in
the way they treat the environment model. In A/G approaches, the environment
assumptions are stated explicitly, from the beginning, with the component
specifications. (That is what we wish to require for the specifications of reusable

components.) In compositional verification methods, the environment assumptions do

' These compositional approaches attempted to implement structural induction by using model
checking algorithms [31][14]. A more complete survey of compositional methods, e.g., the methods
that generally infer system properties from component properties can be found in COMPOS97
proceedings [49]
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not explicitly exist. They are subsequently obtained by the abstract models of the
components of the system, surrounding a given module. These so obtained
environment assumptions create an abstract context for the verification of the
component(s). It is thus verified that the component satisfies its properties in the

abstract environment.

2.2.1 Non circular compositional verification

Pnueli [4] presented an assume guarantee rule for the temporal logic model checking.
The rule states that if a module M/ satisfies a property p; and then assuming this

formula, a module M2 satisfies a property p,, then the system M1 // M2 satisfies the

property p>.

<> Ml<p> (250
<o M2<p>  (2.5.2)
2.5)

<Ml [| M2 <p2>

In the rule, (2.5_1) discharges property p; which is assumed in (2.5_2). This kind of
reasoning has been implemented in model checkers such as SMV [16]. When the
properties p; and p; are known, this rule provides the benefit that direct reasoning
about the composed system MI // M2 is avoided. In practice, nevertheless,

determining such properties may be highly non-trivial [20].

2.2.2 Circular compositional verification

The inference rule (2.5) presented in Section 2.3.1 is not circular. The first subgoal of
the rule states that M1 satisfies p; without any further assumption. Generally, this is
not the case and M/ may make certain assumption p, about M2 in order to maintain
p1. The rule thus becomes circular. M1 satisfies p; if M2 satisfies p; and vice-versa,
M2 satisfies p, if M1 satisfies p;. From propositional logic point of view, this circular
reasoning may conclude wrong results. One cannot deduce p; A p; from p; = p, and

p2 = p;. For instance, both predicates p; and p, may be false and yet p; = p; and
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p2=>p; are true. We illustrate this by an example.

Example 2.1 (cycle-of-gates) Consider a cycle of NOT gates NI and N2 in Figure
2.2a. Let p;: = (i = 0) and p, == (0 = 1). Under the assumption G py, i.e., G (i =0), NI
satisfies G p; i.e., G (o = 1). Similarly, assuming G (0 = 1), N2 satisfies G (i = 0).
However, the conclusion G(i = 0) A G(o = 1) in N/ || N2 is wrong, since we may have

G(i=1)AG (o=0).

<> NI <G[(i=0)=(0=1)]>@2.6_1)
<> N2<G[o=1)=(@i=0)]> (262

(2.6)
<> NI||N2 <G(i=0)AG(o=1)> {wrong conclusion}

If there is at least one unit time delay'’ in the cycle, the conclusion is valid, however,
based on induction in time [14]. Let X represent the next state operator of linear
temporal logic. We have added a register in Figure 2.2b and the following reasoning

1s then sound.

1 i

a) W b) =
N2 % N1 R2 E %! ;% N1
L

Y 0
Figure 2.2: a) Cycle-of-gates. (b) The cycle is broken by a register

—— o]

[

<>NI<G[(i=0)=(@=1]> @71
<>R2<G[(0=1)=X(@i=0)]> (2.7.2)
<>R2<(i=0)> (2.7.3)

2.7
<>NI||R2<G(i=0)AG(o=1)>
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Subgoal (2.7_3) in (2.7) asserts that R2 satisfies (7=0) in the initial state. Let p;(T)
denote that p; := (i = 0) holds true at time 1. Let p, = (0 = 1). p;(0) holds true by
(2.7_3). p2(0) holds true by (2.7_1) at the output of NI which is the input to R2. If p;
holds true at the input of (register) R2 at the current time, then p; holds true at its
output at the next time, by definition of register R2. Hence, by p(0), p;(1) holds true
at R2 output (which is the input to NI). Continuing this way, p; and p; hold at all
times, ic., G p; A G p,. We represent this inductive reasoning by the following

general rule:

Vt. pi(t) = pa(t) (2.8_1) <> MI<Glp;=>pl>
Vt.po(t) = pi(t+ 1) (2.8_2) <> M2<Gp,= Xpi]>
21(0) (2.8.3) <> M2<p;>
(2.82) ; (2.8b)
V. pi(t) A pa(t) < M1 || M2 <G (p; A p2)>

Rule (2.8b) implements (2.8a) using temporal logic operators.

McMillan [14] proposed the following rule to implement compositional model

checking. Let p|” denote that p holds up to (including) time ¢ = 7.

pl" = pAd) (2.9_1)
po™ = pi(D) (2.9_2)
(2.9)

Vt. pi(t) A pa(t)

This rule is also sound based on induction on 7z When evaluated at time [14], (2.9_2)
asserts that p;(0) holds true. Let pl}o = p;(0). Then, p>(0) holds by (2.10_1), p,(1)
holds by (2.10_2) and so on.

" In this thesis, we have considered synchronous haradware systems. Gates have no delay and
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Rule (2.9) replaces subgoals (2.8_2) and (2.8_3) with one subgoal (2.9_2). Moreover,
(2.9_1) and (2.9_2) can be verified using linear temporal logic formulas [15]. For
instance, we (reproduce a proof to) show that pgl(”) = pi(7) can be computed by
—(p> U —p;). By definition, a module M satisfies (p. U py), if p; holds true at the
initial state or if there exists a state s; in which M satisfies p; and in all states s; before

s;, M satisfies p,.

pi(0) v [F/>0). (V(0<k)). sk [=p2) Asj =P ] (2.10)
For (p> U —p)), this definition becomes:

—pi(0) v [F>0). (V(OSkS). s¢|=p2) A s | —pi ] (2.11)

By negating (2.11), i.e., —(p; U —p;), we obtain the following expression. ( Note that
— [F>0). Q)] = [(¥>0). =Q()].)

PiO) AL(Tj>0). ~(VO<k<)).sl=pa)vs=pi ] 2.12)
or
Pr(0) AL(Y)50). (VOKS)). s |=p2) => 57 1= p1 ] (2.13)

A module satisfies pg}(”) => pi(7) if it satisfies p; in the initial state and (for all j)

when module satisfies p, up to (and including) state s;.1, then it satisfies p; at state s;.

21(0) A [(V7>0). (V(0K<)). si|= p2) = 55 1= p1 ] (2.14)
That is,
A" = pi(D]1=[~(p2U—p)) ] (2.15)

registers have one clock period delay. The clock period represents one unit “time” delay.
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Now, we show that p;|° = px(7) can be computed by —(p; U (—p2 A pj)). By

definition, we have that

2" = pA D= ()Y A pi(D) = pa(D] (2.16)

Using the relation [(p A q) = 7] =[p = (g = r)], we get

(21" = pa(D] =11 Api(D) = paA(D]
= [p™ = (pi(9 = pAD)]
=[p]*’ = (D v pAD)] (2.17)

Rewriting (2.17) using (2.15) gives the following result:

[p)|" = pAD) = [—(p1 U= (—p;1 v p2)]
= [—(p: U (p1 A —p2))] (2.18)

Using (2.15) and (2.18), the circular model checking rule (2.9) is computed by

checking the following two temporal logic formulas on M/ and on M2.

<> MI<—~(p; U(—p2Ap1)>
<> M2 <""l(p2U“‘1p1)>

(2.19)
<> MI[[M2<G (p; Ap2)>

In summary, we conclude that if there is no cycle-of-gates in the system, i.e., every
cycle is cut by at least one unit delay, the circular reasoning is sound, based on the

induction over time introduced by the delay element.

Note that p; and p, can represent safety and liveness properties. Rule (2.19) (unlike

other approaches) can then be used to prove liveness properties. We will use (2.8b)
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(which is our approximation of (2.19)) to prove a liveness property of an ATM switch
in Chapter 5. In Appendix 2, we prove that (2.8b) = (2.19), ie., (2.8a) is a

conservative approach to (2.19).

Next, we review the assume guarantee reasoning in reactive modules [35]. With
reactive modules, the specifications of components are not described using temporal
logic formulas. Instead, the specification is a higher-level design of the component,
thus another reactive module. This framework uses trace-containment relation to

show that a component implements a specification.

2.2.3 Reactive modules [35]

A reactive module M (or module M, for short) has a finite set of variables, denoted
Vy. A "state" of M is a valuation for V. The module represents a system that
interacts with an environment. V), is partitioned into three sets; input variables I,
output variables O, and privates variables P. While O and P are updated by M, I is
updated by the environment. M contains two predicates to assign values to the
variables in (O U P); an initial action that assigns initial values to (O U P), and an
update action that assigns updated values to them. For every state s of M, and for
every valuation of I, there exists a finite number of next states for s. In other words,
the update predicate is always executable, and the system is prepared to respond to all
possible environment moves. M does not constrain the behavior of I variables and

thus interacts with the environment in a nonblocking way.

A module M consists of one or more atoms that control (O U P) variables of the
module. Each atom controls one or more variable, however, every variable is
controlled by one and only one atom. Let X, be a finite set of variables of an atom a.
X, contains three sets of variables; a set of controlled variables ctrX, < X,, a set of
read variables readX, — X,, and a set of awaited variables waitX, C {X, \ ctrX,}. A
controlled variable of an atom may depend sequentially on a read variable of the

atom, much like a register output that depends on register input. A controlled variable
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y of an atom may depend combinationally on an awaited variable x of the atom. This

is denoted x <, y to indicate that atom a can update y only after x has been updated.

A module M consists of its atoms which have the following properties. (1) Controlled
variables of atoms are disjoint, i.e., for every atom a and b of M, ctrX, N ctrX, = Q.
(2) The set (O U P) of M equals the set (Uieawoms ctrX,) of the atoms. (3) The
transitive closure of <y = (Usearoms <a)' is asymmetric. The third condition ensures
that the await dependencies among the variables of M are acyclic, and consequently,

there exists a consistent ordering for updating all atoms of M [35].

The execution of a module results in a trace of observation. For two states s and ¢ of
M, the state 7 is a successor of s if # can be obtained from s, by executing updating
actions of M. A trajectory of M is a finite sequence sy...s, of states such that (1) s¢ 1s
an initial state and (2) for all 0 < i< n, the state s;4+; is a successor of s;. If s is a

valuation to variables Vi of M and W < V), then [s]w denotes the valuation restricted
to W. Let 1O denote the variables in (s U Op). If 5= Sp...Sy 18 a trajectory of M, then

its projection sequence [ s Jio= [So)i0---[sn]i0 1s a trace of M. The trace language Ly of

M is the set of traces of M.

A module M implements a module N, written M < N, if the following conditions are

met: (1) Oy € Op;(2)Iy < (I W Oy); (3) for Vxe (Iy U Oy) and Vye (Oy ) such that

we have x <y y, then x <), y; and (4) if s is trace of M, then the projection [/ :v Jioisa

trace of N, where 10 = (Iy U Op).
Two modules M1 and M2 are "compatible" if (1) Oy; N Ouz = &, and (2) the

transitive closure (<) U <mp)* is asymmetric, i.e., the await dependencies among /O

variables of M1 and M2 are acyclic.
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If M1 and M2 are two compatible modules, then the composition M1 // M2 is the
module with Pt | mz) = Pvi U Py, Ot m2) = Orr U Oniz, v vz = I U Dz \

Owi || M2), and Atomsi | m2) = Atomsmy U Afomsa.

Assume guarantee [35]: Let M and M2 be two compatible modules, and let N/ and
N2 be two compatible modules such that Iy, | n2) © 101 | m2). If M1 || N2 < NI and
M2 || NI <N2,then M1 /| M2 < NI || N2.

The steps of the assume guarantee rule are illustrated in Figure 2.3. The proof of the

rule, based on induction on the trace length is given in Appendix 1.

5 NI b o NP 302

v/ v/ v/
Ml [ M2 M1 M2
MI || M2 < NI || N2 MI ||N2<NI M2 || NI<N2

Figure 2.3: The assume guarantee rule. Steps b) and c) prove a)

2.3 Summary

We have presented recent works in assume guarantee (A/G) reasoning and its
descendant, compositional model checking (CMC). In the original A/G reasoning
[22], the environment assumptions of the modules are explicitly stated, a priori along
the component specification. In this way, a closed system, (i.e., the component and its
environment assumptions) is specified, as the specification of each component. In
CMC approaches, the environment assumptions do not explicitly exist. However, an
abstract environment is obtained by the properties or abstract models of the
components of the system, surrounding a given module. These so obtained
assumptions create an abstract context for the verification of components. If we want

to apply compositional verification methods to designs constructed using reusable
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components (e.g., intellectual property (IP) blocks), the environment assumptions of
these components must be supplied with the component specification so that the

components could be safely used in any application.

The following classification represents the works reviewed in this chapter.

1. (Non-circular compositional model checking) Long [31] presented a composition
rule that non-circularly verifies a composed system using model checking algorithms.
For instance, it is first verified that a component satisfies its properties under certain
assumptions. It is then verified that the other components of the system satisfy those
assumptions, without any assumption about the first component. Long showed how to
transform a temporal logic formula to a Kripke structure so that to compose
components with formulas. This composition allowed the assumtion/guarantee be
implemented using model checking systems. This framework supports both safety

and liveness property verifications.

2. (Assume guarantee reasoning) Abadi and Lamport [22] assuming an interleaving
model of concurrency, proposed a circular compositional rule to verify safety
properties of the composed systems. The rule is originally implemented by theorem

provers and supports only safety properties.

3. (Assume guarantee with synchronous communications) Alur and Henzinger [35]
extended the interleaving unit-delay model of the components in [22] to synchronous
Mealy machines. These machines may contain zero-delay communication from
machine inputs to machine outputs. This framework imposes a well-foundedness
condition that there must be no-cycle-of-gates in the composed Mealy machines. This

method supports only safety properties.
4. (Cicular compositional model checking) McMillan [14][15][17][19] contributed in

two ways to the compositional model checking literature. First, he relaxed the

condition that only one component (or one atom) constrain any output of the system.
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To resolve the conflicts, he introduced a refinement relation among those modules
that constrain one output [14]. Second, he introduced an inductive rule and verified

liveness properties of composed systems, in addition to the safety properties.

Compositional methods use abstract models of the components, either in the form of
temporal properties or in the form of higher-level designs to compute subgoals of the
composition rule efficiently. A rule is efficient if the abstract models are logically
sufficient to carry out the proof obligations. However, when either of them is not
strong enough, the rule cannot yield the desired results. The abstractions constitute
both the strength and the weakness of the methods. They make the computation
efficient. But in practice the problem remains how to obtain the appropriate abstract

models.

In the next chapter, we propose a compositional rule based on the interactions
observed at the interfaces of components. This method uses interface interactions as
the formalism of the specification and abstraction. We present interface
recognizers/suppliers (IRS) which enable us to symmetrically verify a property or
supply an assumption on components inputs. IRS can be used to organize an end-to-

end verification of modular systems.
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Chapter 3

Constraints in model checking

In chapter 2, we mentioned that during model checking, environment assumptions of
components could be provided as temporal logic formulas. Industrial model checkers,
e.g., Formal Check [3] or Verdict [25] have mechanisms to specify these as
verification constraints. In this chapter, we study the requirements that the constraints
and the components must satisfy so that the reasoning about them is valid. We then
present a methodology based on interface recognizers/suppliers (IRS) to implement
constrained model checking. We propose a composition rule and discuss its well-

foundedness.

3.1 Constrained model checking

Developing environment models during formal verification of components in
modular systems is a time-consuming and error-prone activity. Kaufmann et al. [25]
suggest using "constraints" as a simple way to model the environment. A constraint
is a Boolean formula involving any signals in the design. Constraints appear at three
levels of granularity: (1) At the first level, they involve only input signals of the
component. Suppose A and B are inputs of a module M. Then, $constraint[—(4 A B)]
specifies a constraint in Verdict [25] that restricts the inputs of M so as to always
satisfy —(4 A B). (2) At the second level, constraints may also depend on the internal
state of the design. For instance, $constraint[(state = s;) => (4 v B)] defines a
constraint that depends on state s; of M. Implicitly, it is assumed that the design by
itself contains the information necessary to determine what its (next) input should be.

Consequently, the inputs of the design are combinationally computed from the state




information of the design. (3) At the third level, the inputs may depend not only on
the current state of the design but also on the history of reactions of the design to its
inputs. In this case, a finite state machine called "monitor" is defined to watch and
record the information needed to determine the next inputs to the design. With the
addition of the monitors, constraints become as expressive as environment models

[25].

Constrained model checking performs reachability analysis over those computations
that globally satisfy the constraints. (A computation path is an infinite sequence of
states [37].) It has to be ensured that (1) this state space is not empty, i.e., the design
has at least one initial state that satisfies the constraints. It also has to be ensured that
(2) the constrained model does not contain any "dead-end" state, i.e., every reachable
state of the constrained model should have at least one successor state that satisfies
the constraint (a dead-end state is a reachable state that does not have a next state that
satisfies the constraints [25]). Although traditional hardware modules satisfy these
conditions, no-dead-end condition may fail in the presence of constraints. These
conditions can be verified using temporal logic model checking. Suppose (M, s¢) |=
AG p indicates that a property p holds true in all states of all computation paths
starting from so. Similarly, (M, sp) |= EG p asserts that there exists a computation path
on which all states satisfy p. Let C denote a constraint, e.g., a Boolean formula.
Suppose that M satisfies C in some initial state s0, i.e., (M, s0) |= C. Suppose that
assuming M satisfies C in the current state, we can prove that there exists some next
state that satisfies C, i.e., (M, s0) |= AG(C => EX C). Then, M composed with C does
not have any dead-end state. It is also said that the constrained model M¢ of M is

“model checkable” [25].

The semantics of the constrained model checking is defined as follows [25]. Let S be
a set, and R be a binary relation. Let Img(S, R) denote the image of Sby R, 1.e,,
{s’

and initial states Init. Let C be a Boolean constraint over S and the signals of the

dseS. R(s, s”)}. Consider a Kripke structure M with states S, transition relation 7,

design. Let Clnit # & be the initial states of M that satisfy C. States CS of Mc are
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obtained from S by restricting the reachable states of M to the states that respect C. In
terms of the fix point computations, CS is the least fix point of the following

monotone functional F' [25].
F(Y)= CInit U C(Img(Y, 1),

where C(Z) represents the set of states in Z that satisfy C. CS is the least set ¥ of

states containing Cinit such that for every (s, s’) € T, for which se Y and s’ satisfies

C,seY.

3.2 Assume guarantee in constrained model checking

Let a constraint C be a simple propositional logic formula, i.e., free of temporal logic
operators (G, F, X, U). Suppose that a model M satisfies a property p under constraint
C. This is denoted
<GC>M <p>,

where G represents the “global” operator of temporal logic. M preserves p whenever
it works in an environment E that satisfies GC. Therefore, there is an obligation to
prove that the environment E satisfies GC. However, the verification that E satisfies
GC may fail, since £ may in turn make some assumption about its inputs from M.
Kuafmann et al. [25] suggested to verify that E || M satisfies GC (Figure 3.1b).
However, when the state space of E || M becomes larger than the capacity of the
model checker, this subgoal is informally verified by a simulation. For instance, it is
verified that the constraint is not violated in E || M during simulation. In Section 3.4,
we show that by abstracting the component it is possible to formally discharge the

environment assumptions using a less complex subsystem.
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a)

AL
< M

<GC>M <p> < E || M <GC>

Figure 3.1: Assume guarantee reasoning in constrained model checking.
a) Module M under constraint GC satisfies property p.
b) E||M discharges assumption GC.

Monitors can be added to the design to provide history variables for constraint

definition. This type of verification is reviewed in the next section.

3.3 Constrained model checking with monitors

The inputs of a design may depend on the current state of the design as well as on the
history of interactions that occurred between the module and its environment. In this
case, a finite state machine called monitor is defined to record such information. A
monitor has multiple inputs and one output [25]. It watches the inputs to ensure that
they are behaving as expected. It could monitor, for instance, that the interactions

follow a given protocol.

Monitors like auxiliary variables [19] may provide extra signals for constraint
definitions. The output of a monitor can be used in a constraint to form a “sequential”
constraint (Figure 3.2a). Similarly, the same monitor can be used when discharging
the constraint (Figure 3.2b). However, the system £ || M may become very complex.
Then, M should be abstracted away from this verification. We study this kind of
verification in the next section in the context of constrained model checking using

interface recognizers/suppliers.
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b)

Figure 3.2: Constrained model checking using monitors.
a) < GC> M || Monitor <p>. b) <> E || M || Monitor <GC>.

3.4. Interface recognizer/suppliers

We extend assume guarantee reasoning in constrained model checking in two ways.
First, we propose an interface-based verification methodology, assuming that the
internal states of the components are not accessible (or visible) to the environment.
This is the case, for instance, when the state information of the design is not provided.
In that case, whenever a sequential property (of the interface) is concerned, the use of
monitors becomes inevitable. We provide a tighter connection between monitors and
the constraints by using recognizers. Moreover, we make an abstraction of the
component when discharging the environment assumptions. This second abstraction
makes the methodology symmetric, i.e., the environment is abstracted (using the
constraints) to model check the component and the component is abstracted (using
the constraints) to model check the environment. This circular reasoning is not sound
in general. We must avoid propositional circularity, by implementing an appropriate
framework within the compositional model checking methodologies presented in

Chapter 2.

Before presenting the formal foundation of the methodology, we give an example to

introduce interface recognizers/suppliers (IRS).
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Example 3.1 (Interface recognizers/suppliers) Suppose we want to design a
generator to produce pulses of unit length on signal f such that they are at least 5
clock cycles apart (Figure 3.3a). A recognizer can be developed for the generator
(Figure 3.5b). The recognition is encoded by a set of constraints in each state of the
recognizer. For instance, consider the automaton in Figure 3.3b that recognizes the
sequences that could be produced by the pulse generator. The signal f can be zero or
one in state s/. After becoming 1 in s/, f becomes zero in s2. In 53, the recognizer
uses a counter that counts modulo 5. f should remain zero in s3 until state s/ 1s
reached. Note that if f gets a value other than the ones specified in the specification

(in Figure 3.3a), the recognizer will not change its state.

(f=0)and
(count = 4)

(f=0)and
(count < 4)

Figure 3.3: A recognizer for the pulse generator /.
a) Specification. b) The recognizer. The “variable” count is zero in state s/, one in
state s2, and is incremented in state s3 until reaching 5.

We define a Boolean signal Crto monitor f:

Cr:=[ ((state = s2) or (state = s3) ) = (f=0) ] 3.1

Cy= true asserts that f'is zero in states s2 and s3 of the recognizer. (Note that it does
not assert that s2 and s3 are ever reached. In fact, if s2 and s3 are not reached, then Cr
= true will still hold.) Cy= false asserts that fis not zero in either of those states. Cy
acts like an acceptance condition of the recognizer R such that, when always true, it
verifies that the generator F respects the unit cycle as well as the 5 clock-cycle period
constraints on /. Figure 3.4a shows the generator F and the recognizer R. Suppose we
verify the recognizer (without using the generator) with a model checker like Formal
Check [3] and we set a constraint that Cybe always true (Figure 3.4b). Cy = true is a

constraint of the recognizer which observes the primary input signal /. By forcing
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Cr= true, the model checker must supply only those combinations of f'which respect
the constraint Cy= true. The net result is that f'can be 1 (or 0) at state s/ and 0 at
states s2 and s3, thus generating exactly the pulses required by the specification. In
this way, R supplies constraints on its primary input /. This input-shaping feature of
the recognizer enables us to produce almost any signal characterized by the
constraints of the recognizer using any model checker. In this configuration, the
recognizer forms a supplier, i.e., it supplies constraints or assumptions on the
(otherwise free) inputs. This type of a recognizers that is augmented by Boolean

constraints is called an “interface recognizer/supplier” (IRS).

Figure 3.4: Interface recognizer/supplier.
a) Recognizer R for pulse generator . b) When Cr= true, R shapes f for a module M.

Definition 3.1 An IRS machine R = <S, Init, I, C, T, O> is a tuple of the following

form:

1. S is a finite set of states.

2. Init C S 1s a nonempty set of initial states.

3.1={i, iy, ..., iy} 1s a finite set of inputs.

4. C={cy, ¢y ..., C} is a finite set of constraints, where each constraint
C;: Sx2' — {false, true} is a function that determines the constraints value
(either false or true) from the current state and the inputs.

5. T:8x1— §is atransition relation.

6. O : S xI — C is a function that determines the constraint value (either FALSE or

TRUE) from the current state and the inputs.
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We require that for every state s € S and input i € I, there exists some ¢ € S such that
t = T(s, ). By this definition, IRS accepts any inputs at any state, i.e., it is receptive to
all inputs. As in the automaton in Chapter 2, accepting states /' can be added to the
IRS definition. We shall address the use of accepting states when we verify liveness
properties of a switch fabric in Chapter 5, otherwise, all states may be considered as

accepting.

IRS can be used in compositional model checking. Consider a system M [/ M2 in
Figure 3.5. We want to verify a property or a specification spec about the interactions
that occurr at the interface of M1 and M2. An IRS [ is first developed to represent a
model for spec. Then, two constraints C, and C, are defined to recognize spec, i.€., to
determine what values may happen on interface signals x and y at each state of 1.

Now, M1 and M2 can be separately verified using C, and C, as follows.

Convention: (Activating a constraint) IRS [ and its constraints Cx and C, are denoted
as I(C,, C,). We use the expression “activate a constraint” to indicate that the
constraint is set always true during model checking. The formula

<GCy> M || I <GC,> asserts that module M composed with 7 where C, is activated
satisfies the property that C, is always true on I (Figure 3.5b). We represent <GC,> M
|| 1 <GC,> by an IRS model checking assertion [(C) A M |= I(Cy). As in TLA [21], the

conjunction MI A M2 represents the composition M1 || M2.

We activate C, to verify M1 against C, (Figure 3.5b), and we activate C, to verify M2
against C,. We study the problem whether it is sound to conclude M1 // M2 |= I(C,) A
I(Cy) from the subgoals I(Cy) A M1 |= I(Cy) and I(C,) A M2 |= I(C,). The following

example demonstrates that such circular reasoning may not be sound.
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L1 P

Figure 3.5: A drawing convention for interface recognizer/supplier.
a) Modules M1, M2, and an interface recognizer I(Cy, C,). b) C 1s activated and C, 1s
checked.

Example 3.2 (Cycle-of-gates problem in IRS) Let M1 and M2 be two registers as
shown in Figure 3.5a. The IRS I that contains two states s0 and s/ and its constraints
C, and C, are defined in Figure 3.6. We want to verify that [(C,) A M1 = 1(C) (e.g.
Figure 3.5b). Register M1 has an initial value, say y = 0. Then, by C; in 50, x becomes
1. In the next cycle, i.e., in s1, M1 assigns 1 to y. Then, x becomes 0 in s/ and so on.
Figure 3.6b illustrates this verification in /(C;) A M1. Note that, although C; and C,
are similar, the intent in C, is to restrict x (i.e., the input of M1) and the intent in C, is
to verify a property of y (i.e., the output of M1). The subgoal I(C,) A M1 |= I(C,) is
thus successfully verified. The subgoal I(C,) A M2 |= I(C,) is also verified in M2 with
x = 0 initially (Figure 3.6¢). But because of the initial values, we have (x = 0) A (y =
0) at all times in M1 || M2. Consequently, the conclusion M1 /| M2 |= I(C;) A I(C)),
i.e., M1 /|| M2 |= G(x = not(y)) is not valid. In this example, although there is no cycle-
of-gates in M1 || M2, there does exist a "cycle-of-gates” in the specification, i.e., in
the IRS. From I(C,) A M1 |= I(C,) and I(C,) A M2 |= I(Cy), one cannot deduce M1 //
M2 |= I(Cy) A I(C)).
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™~ Y| M1
@ C, = [state = s0) => (x=not(y)] and y
(yinot(x)) and “ (x=not(y)) and [(state = s1) => (x=not()] C) Cx
(x=not(y) ) (y=not(x) ) C, = [(state = 50) => (y=not(x)] and N G
Q) [(state = s1) => (y=not(x)] M2 E §‘/
y

Figure 3.6: Cycle of gates problem in IRS.
a) An IRS 7 and its constraints C; and C,. b) C; is activated and C, is checked in M1.
¢) C, is activated and C, is checked in M2.

To avoid erroneous conclusions, we must define a set of conditions for compositional
verification within the IRS framework to be well-founded. For instance, we define
what it means to have no "cycle-of-gates" in an IRS and what it means to declare that
a constraint and a module are compatible thus the constrained module is model-

checkable.

3.5 Logical foundation of composition using IRS

Following the requirements that are proposed for assume guarantee reasoning in
reactive modules (Section 2.2.3 in Chapter 2), we propose well-foundedness
conditions for compositional verification in the IRS framework. These conditions
mainly concern the "cycle-of-gates” and "disjoint-outputs” properties of the
subsystems involved in the subgoals of the rule. We define those properties as

follows:

Definition 3.2: (Zero-delay dependency (or zero-delay path) [14]) We write
x—2) y to denote that there exists a gate in module M with y as its output and x

as one of its inputs. For instance,
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X =yorz, 3.2)

introduces y—2—u x and z—2 >y x. The zero-delay dependency relation

—% 5y is transitive, that is, from x—>>y y and y—%—>y z we get a zero delay

pathx—2—y z.

Definition 3.3 (Cycle-of-gates) Any two variables (x, y) for which x—>—, y and

y—2>u x hold, introduce zero-delay paths from x to y and from y to x.

Consequently, they form a cycle-of-gates (or a zero-delay cycle) in M.

Transitive closure of —%—y in M is denoted by —>— 4. When there are no cycle-

of-gates in the module, the relation —%— is irreflexive. The predicate —>u ,
being irreflexive, anti-symmetric, and transitive becomes a well-founded partial order

<, on the variables of the module [19]. This means that there is a consistent

ordering for updating all variables of M.

In order to formulate a zero-delay dependency relation in IRS machines, we follow a
convention when defining the constraints. Suppose that each constraint restricts only
one signal. A constraint that restricts a signal x in some state(s) of an /RS [ is denoted
by C,. In the simplest case, C, = true assigns a value a to x in some states s;, ..., §; of
I. Let P(s) == ( (s = s;) or ... or (s = ;) ) denote a predicate on states s of /, i.€., given a
state s, it returns either false or true. C, may define x in terms of other inputs y, ..., z

of I. We denote this by a predicate R(x, y, ..., z). In general C; has the following form:

Co=[ N\ (Pls) = Rix, y, .., 2))] (3-3)

We assume that all constraints of IRS are non-conflicting with each other. So,
whenever the constraints are activated, there exists a possible valuation in each state

of the IRS for all IRS inputs.
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For instance,
C, = [ ((state = s9) = x = not(y)) A ((state=5;)=>x=0))] (3.4)
is such a non-conflicting constraint for the IRS shown in Figure 3.6a.

The intention of the predicate Ri(x, y, ..., z) of C, in (3.3) is to restrict x in terms of
other signals y, ..., z. We assume that when C; is activated, the IRS will be composed
with a module M such that M accepts x as input and has y, ..., z as outputs. C,= true
then constrains the value of x in certain states of / in relation to other variables of the
interface. Consider RI(y, x) = (x = not(y)) in (3.4). We may call the predicate RI(y, x)

of C, a conditional zero-delay dependency or conditional zero-delay path (from MI

output y to M1 input x, i.e., y—>—c x). It is conditional since it is only effective in

the appropriate state(s) when the constraint is activated. Otherwise (constraint not

activated), no restriction is introduced. The conditional path y—2—¢ x introduced

by x = not(y) is like a "static" zero-delay path y—>—y xin

x := not(y) which constrains x in terms of y. Similarly, C.= true in (3.3) introduces

conditional zero-delay paths between x, y, ..., Z, i.6., Y= X, ... , Z——>cx X .

Conditional zero-delay dependencies are symmetrical. If a signal x is constrained by a
signal y via a conditional path R(y, x), then y is also constrained by x via R(y, x). For
instance, in x = not(y), x restricts y and y restricts x. Given a predicate R(y, x), one
cannot deduce whether x restricts y or y restricts x. However, when composing a
constraint and a module, depending on the application context, it will be fixed which
variable is actually constrained and which is the constraining one. This is different

than a zero-delay path —%—,, which is inferred from the gates that clearly

distinguish causal dependency from input to output. The predicate —>—>y must be
anti-symmetric to have no-cycle-of-gates in M. A cycle-of-gates in IRS must be
defined differently to take into account the symmetrical conditional zero-delay paths

that are introduced by the constraints of the IRS. For instance, the direction of each
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conditional path must be determined after composing the constraint and the

component. Then, it must be examined whether or not these paths can form a cycle.

Example 3.3: (Conditional cycle-of-gates) Let the constraints C, and C, of an IRS I
be given as C, = [(state = s;) = (x = not(y)] and C, = [(state = s;) = (y = x)]. By C,,
there is a conditional binary predicate x = not(y) over y and x in state s;, and by C,,
there is a conditional binary predicate x = y over x and y in state s;. Assume that the
naming convention is respected, i.e., C; is used to restrict x as input to one module

and C, is used to restrict y as input to the other module. C, and C, introduce the paths
y—"5cx and x—>>c y, respectively. If s; = s;, then y—>->c x and

x—>—>¢ y form a conditional (conflicting) cycle-of-gates in the IRS. However, if

s # 85, Cy and C, form no cycle-of-gates in /, since states s; and s; of the IRS are at

least one clock cycle apart. (We will proof this by Theorem 1 in this section.)

Example 3.3 illustrated that when conditional paths co-exist in a state of IRS a cycle

is formed. We define conditional cycle-of-gates as follows:

Definition 3.4 (Conditional cycle-of-gates) For an IRS I, let C; := [PI(s) = R;] and
C, :=[P:(s) = R;] be two constraints where P1, P, , R;, and R> are some predicates

and x and y are IRS inputs. When the following conditions (C/, C2, and C3) hold, a

conditional cycle-of-gates y —>—c x—2>>¢, y is formed in I(C,) A I(C)).

C1 (Non unary predicates) R; and R, are defined over x, y, and possibly some other

variables.

In this way, R; (of C,) establishes a “conditional” zero-delay path y¢2oc xin [

while R (of C,) establishes a conditional zero-delay path x¢—+—>¢ y in I (Figure

3.7 shows an example with R;(x, y) := (x = not(y)) and Rx(x, y) := (y = not(x)).)
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C2 (Common states) P1(s) and P(s) are defined on some common states of /, i.e.,

there exists a state ¢ such that PI1(f) A Py(f) is true. Consequently, the conditional zero-

delay paths y«2—¢ x and x> y will co-exist in 7.

C3 (Directions) C, is activated when verifying C, in M1 (e.g., [(Cx) A M1 |= I(C,) in
Figure 3.7) and C, is activated when verifying C, in M2 (e.g., I(C)) A M2 |= I(C,) in
Figure 3.7).

The components in the design determine the actual direction of the conditional zero-
delay paths. Without considering the design components, the direction of the
conditional paths cannot be known. Practically, when there exist some actual paths in
the design (with zero-delay or more) from x to y, C, is activated when proving C,.
Otherwise (no path from x to y in the design), C, cannot help in proving C,.
Therefore, the direction of a path in the design will choose the direction of
conditional paths. A conditional cycle-of-gates can be visualized when both
constraints Cy and Cy are simultaneously activated and more importantly the direction
of the conditional paths are known. To test for the existence of a cycle of gate, the

following has to take place:

(1) Activate all constraints of the IRS to detect all the conditional zero-delay
paths.

(2) Determine the directions of these paths from the way the constraints are
composed with the components in the subsystem verifications.

(3) Consider the states of the IRS that these constraints are defined on, in order

to verify that the paths co-exist in some states of the IRS.

The fact that a conditional path has no direction (prior to the component verifications)
is a unique property of the IRS that enables them to symmetrically recognize a
property or supply a constraint without further code modifications. This feature will

be used in Chapter 5 where we prove end-to-end properties of a switch module.
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Example 3.4. (Unary and binary predicates) Let C, := [(state = s;) = (x = not(y)]

and C, = [(state = s7) = (y = not(x)] be two constraints in Example 3.2. With these

constraints, a conditional cycle-of-gates y —>—>c x—>¢y ¥ is formed in the IRS.

However, if C, is modified to become C, := [(state = s;) = (y = 0)], then no cycle is
created since C, does not introduce a zero-delay path from x to y (i.., Condition C/
of Definition 3.4 does not hold.). C, in the latter case will contain a unary predicate
(i.e., y = 0) while C, still contains a binary predicate (i.e., y = nof(x)). A unary
predicate like a component that has one output but no input does not introduce any

(input-output) path. Then, C, and C, create no cycle.

Figure 3.7: Conditional cycle-of-gates in IRS /(C,, C)).

Having defined a conditional cycle-of-gates, we proceed to specify the well-
foundedness/compatibility conditions for the compositional verification using IRS

machines.

3.5.1 Well-foundedness/compatibility conditions (WFC)

We present the well-foundedness conditions for compositional verification m IRS
framework following the conditions presented for assume guarantee reasoning in

reactive modules (Section 2.2.3).

Let M1, M2 be two modules and I(C,, C,) be their interface recognizer/supplier

machine as illustrated in Figure 3.8.
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M2 g M

Figure 3.8: Modules M1 and M2 and the /RS I(C,, C,)

The following is a list of conditions that are required for a sound composition of

modules M1 and M2 and IRS constraints.

W1 (No conflicting outputs in the implementation) The outputs of M/ and M2 are

disjoint. Only one module assigns values to a signal of the interface.

W2 (No cycle-of-gates in the implementation) M // M2 contains no cycle-of-gates;

In other words, the transitive closure (—2— 1 U—>->u2)" is irreflexive.

Assuming that M1 and M2 are receptive, i.e., each one accepts all possible inputs, and
the conditions W1 and W2 hold true, then M1 and M2 are compatible. L.e., there exists
a consistent assignment to input/output signals of M1 and M2 in M1 || M2. If there
were conflicting outputs or conflicting cycle-of-gates, then M1 // M2 could deadlock
(Section 3.1).

W3 (No conditional cycle-of-gates in IRS) The IRS machine 1 contains no

conditional cycle-of-gates (Definition 3.4).

W4 (No output-constraining) When IRS is composed with a module, no activated

IRS constraint can constrain an output of that module.

We explain when an IRS does not constrain outputs of a module. This condition in

fact imitates W1 that requires that M should not constrain an output of M2 and vice-
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versa. Similarly, an activated constraint can only restrict the input of the module.
Consider the subgoal I(C,) A M1 |= I(C,) where x is an input and y is an output of M.
Let C, := [P1(s) = R;(y, x)]. C, must compute a value for x and should not constrain
yin I(C,) A M1. More precisely, for any y in M1, there must exist a value for x such
that the predicate RI of C, can be satisfied. We express Condition W4 using
characteristic functions. Characteristic function f; of a set Z is a function that returns

1 (or true) for any element s of Z and 0 otherwise.

seZ & fAs)=1 (3.5

Let y =Y(s) be an output function of M1 that computes y, for given states of M. Let
(s, ) be the characteristic function of ¥, RS denote the set of reachable states of M1,
and let fzs(s) be the characteristic function of RS. In I(C;) A M1, for R(x, y) of Cs not
to constrain the output y of M1, for any reachable value a of y (via MI), there must

exist a valuation b of x such that R;(b, a) holds.

ds. (frs(s) Afi(s,y)) = Ix. Ri(y, x) 3.6)

Similarly, /(C,) A M2 must be checked to satisfy the no-output-constraining property
(W4).

W5 (No cycle-of-gates in the subsystems) The compositions /(C,) A M1 and I(C,) A

M?2 contain no cycle-of-gates. If there is a predicate RI(y, x) in C; (that introduces a

conditional zero-delay path y—>—c x), then there has to be no (static) zero-delay

path X———(-)—9M| y in M112.

RI(y, x) = [—(x—2=u1 y)] (3.7)
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Similarly for R2(y, x) of C, and M2.

Note that by (P = —Q) = (Q = —P) in (3.7), one can infer that when MI contains a
zero-delay path from x to y, predicate R/ of C, should not contain any conditional

zero-delay path from y to x to prevent forming a cycle-of-gates in /(C;) A M1.

After presenting the well-foundedness/compatibility conditions WI1-W5, we can now

define the composition rule as follows:

Assume guarantee with IRS: Let M/ and M2 be two modules and /(C,, C,) be their
IRS machine (Figure 3.8). Suppose that the systems (or subsystems) M1 || M2, I(C.)
A M1, I(Cy) A M2, and I(C,) A I(Cy) that are involved in this assume guarantee
reasoning satisfy all of the well founded/compatibility conditions WI-W5. It follows
that:

KC) A MI |- I(Cy)
ICy) A M2 = I(Cy)
WIi-W5
(3.8)

MI AM2 |=KC,) A I(C,)

Proof: We provide a proof sketch based on the same theorem in reactive modules
[36]. First, the interface machine I(C,) can be replaced by a non-deterministic model
NI as follows. I(C,) restricts x in terms of y. module N/ has y as its input and
generates an x equal to that allowed by I(C,), as its output. The input/output
sequences of NI are exactly those accepted by /(Cy). Similarly, /(C,) can be replaced
by an equivalent module N2. Let NI |= I(Cy) assert that every trace of NI is an

12 This condition may be too strong. For instance, M1 may also contain a conditional path, which is not
activated at the same time as the IRS. It would be more precise to examine zero-delay paths of the
module and the IRS at each state of the IRS. This would then need more complex computation.
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accepted trace of I(C,). (So, the satisfaction relation |= represents trace containment
when left and right hand sides of |= are both modules [44]).

Now, we recall the assumption/gurantee rule in reactive modules from Chapter 2.
Reactive modules M and M2 are "compatible” if (1) their outputs are disjoint and (2)
the transitive closure (<jy; U <p2)+ is asymmetric, i.e., they form no cycle-of-gates.
Let M1 and M2 be two compatible modules, and let N/ and N2 be two compatible
modules such that every input of N1 || N2 is an input or an output of M7 || M2. If M1 ||
N2 |= NI and M2 || NI |= N2, then M1 /| M2 |= N1 || N2.

For comparison, let the reactive modules MI, M2, NI, and N2 correspond
respectively to M1, M2, I(C,), and I(Cy) in this theorem. All of the conditions of the
assume guarantee theorem in reactive modules have equivalent conditions in rule
(3.8), e.g., disjoint outputs (W1, W4) and no cycle of gates (W2, W3, W5). Moreover,
every input of I(C;) A I(C,) is an input or an output of M/ || M2, by construction of
the IRS. Given that /(C,) and NI, and I(C,) and N2 are trace-equivalent, by I(Cy) A
MI |= I(C,) and I(C,) A M2 |= I(C,) in the rule (3.8), we have that N2 || M1 |= NI and
NI || M2 |= N2, respectively. Then, (M1 || M2) |= (N1 || N2), by the theorem of
reactive modules. From (M1 || M2) |= (NI || N2), we get (M1 || M2) |= (I(Cy) || I(Cy))
which using IRS notation is denoted by MIA M2 |= I(Cy) A I(C)).

(We recalled the proof of the assume/guarantee theorem in reactive modules in

Appendix 1. The theorem is proven by induction on trace length).

This assume guarantee rule shows that the IRS framework is a special case of the
reactive modules. However, detecting a “conditional” cycle-of-gates (Definition 3.4)
in I(C,) A I(C,) is not as intuitive as detecting a “static” cycle-of-gates in N/ || N2.
Interestingly, this resemblance indicate that I(C,) A I(C,), i.e., the IRS when its both
constraints are activated, plays the same role as the abstraction modules N/ and N2 in
reactive modules. In this regard, by considering interactions at the interface of
components, IRS suggests a practical approach to the abstraction module
development. IRS represents a model for the “joint” behavior of the modules in the

composition (unlike to the separate models, e.g., N/ and N2 in reactive modules) and
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the constraints then adapt the IRS to the specific needs of the left hand side module or

the right hand side module of the interface.

Similarly as in reactive modules, the IRS methodology as presented so far is
applicable to safety properties only. However, in Chapter 4, we present a verification

approach using IRS to verify liveness properties of a switch module.

In the well-foundedness/compatibility conditions, we required that I(C;) A I(C))
contains no conditional cycle-of-gates (W3). In Definition 3.4, we have illustrated
how a conditional cycle-of-gates is formed in an IRS. For instance, when appropriate
conditional zero-delay paths occur in the same state of the IRS, i.e., they occur at the
same “time”, a conditional cycle is formed. We have implicitly assumed that if such
conditional zero-delay paths happen on disjoint sets of IRS states, no cycle is formed.

In the following, we formally prove this assumption.

Theorem 1 (Non zero-delay cycles) Consider a module M with input x and output y
and a module M2 with input y and output x. MI and M2 and their IRS I(C,, C)) is
depicted in Figure 3.9a. Let C, contain one binary predicate R;«(X, y) and a finite
number of unary predicates Ro(x), .... Rux(x). (We separate the unary predicates from
non unary predicates since a non unary predicate can introduce a zero-delay path

while a unary predicate cannot. Example 3.4 illustrated this.)

Ci = [PLds) = Ry, ¥)] A /k\ (Prls) = R¥)] , k22 (3.9
where Py.(s) are predicates on states s of the IRS. C, is defined similarly.

C, = [PIy(s) = Ri(y, )] A /[\ (Pp(s) = Ry()] , 122 (3.10)

Suppose that the systems I(Cy) A M1, I(Cy,) A M2, and M1 /| M2 satisfy conditions
W1-WS5 that apply. If conditional zero-delay paths introduced by R;.(x, y) (of C;) and
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Ry(x,y) (of C,) occur on disjoint sets of IRS states, then no conditional zero-delay

cycle is formed by C; and C,, i.e., the set of constraints is well formed.

Proof: Constraint C, defines one binary predicate over x and y and a finite number of
unary predicates over x. The proof does not change if C, or C, contains more than one
binary predicate, since only the closest one to the initial state of the IRS is involved in
the proof.

Consider the subgoal I(Cy) A M1 |= I(C,) in Figure 3.9b. Since there is a binary

predicate R, (x, y) in C,, there has to be no zero-delay path (x—°~>*M1 y) within M1

for M1 A I(C,) to satisfy the no cycle-of-gates condition (W5). We have thus shown a
register from x to y in MI. Similarly, there has to be no zero-delay path within A2

from y to x, because of R;,(x, y) (Figure 3.9c¢).

a) (O Cy) b) MI c) M2

S -1
M2 MI == c';___

MI AM2 |=KC,, C,) KC)AMI|=KC,)  KC)AM2=ICy)

Figure 3.9: Non zero-delay cycles in IRS /(C;, C)).

Consider P1,(s) in (3.9). Let s; be the first state of the IRS that makes P1.(s) true.

Pl,(s;)=true

Similarly, let s; be the first state of the IRS that makes P1,(s) in (3.10) true.

PI,(s)) = true
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We have that s, # s, since otherwise there will be a conditional cycle-of-gates at s;

(Definition 3.4). Suppose, without loss of generality, that s; < s;, i.e., s; is reached

before s; in the IRS.
§;<§;

From (P1,(s;) = Rix(x, y)) in C;, R;:(x, y) restricts x before R;,(x, y) from

(P1(sj)) = Ry(x, »)) in C, restricts y, since s; < s;. While x is restricted by Ry.(x, y) in
s;, ¥ is not restricted by Rj(x, y) at that state. Consider the projection of C, over s;.
First, we show that this projection is not empty and therefore it provides a constraint

for y at s;. Consider the verification 7(C,) A M2 |= I(C,) at s;. We denote this by

ICy) A M2 |- [I(C))s (3.11)

Since there is a register in the path y to x via M2, x has a value at s;, for instance, x = a
(Figure 3.9¢). In subgoal I(C,) A M2 |= I(C,), C, is activated in order to verify C..
Suppose that y is not restricted at s;, i.e., [Cy];s = &. (3.11) can then be rewritten as

follows:

[Mz]si |= [[(CX)]SI (312)
Which can be simplified to:

[M2]si |- Ri(a, y) (3.13)
If y is not restricted at s;, then (3.13) fails since R;.(x, y) cannot be proven true with

x = a and y free in M2. (If (3.13) holds true with x = a and y free, then R;(a, y) is
independent of y, i.e., it is not a binary predicate over y and x. However, Ry (x, y) is a

binary predicate by assumption and introduces a zero-delay path from y to x.)

Consider the second case that y is restricted at s;, by a predicate R,,(y) of C,.
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[Cls = Rpy(») (3.14)
R,,(») is unary predicate and assigns a value b to y such that R;(b, a) holds at s;.

R, (») A M2 |= R;x(a, b)

R,,(y) must, in turn be discharged by verifying /(C;) A M1 |= I(C,) (Figure 3.9b).

[(C) A M1 |5 Ryy(»)

Suppose that to discharge R,,(y) at s;, an extra constraint must be assumed on (the

primary input) x at a state s, < s, €.g, [Cx]sg = qu(x)n.
Ry(x) A [M1]si |= Rpp(v) (3.15)

Figure 3.10 illustrates the sequence of the constraints and the states of the IRS.
Consider the verification (3.15). M1 contains a register in the path from x to y. When
proving a property about the output of a register at time f/, one cannot use an
assumption about values on its input at time ¢, since, the output at ¢ is independent of
the input at £. However, if necessary, one could make an assumption about the input
at time (z-1). In order to prove (3.15), i.e., to prove R,,(y) (on M1 output in Figure
3.9b) using R,.(x) (on M1 input), Ry(x) has to be declared in a state s, < s; in IRS
(Figure 3.10). We can trace back the chain of dependencies of constraints on the
states of the IRS to find out how each constraint is assumed when proving the other
constraint. (Note that because of the registers in the design, this tracking is
guaranteed to move backward.) However, there has to be a first state s, in the IRS,
where the first constraint is ever declared. This first state exists, since at the earliest, it

could be the initial state.

' This is similar to proving a property (y = b) at the current state of a register with input x and output y
that requires that (x = b) to be assumed in the previous state of the register.
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State of IRS: init ...... Sheraeaannan. St Sgueennennnnns S ...

G Ryy()eovo i Ry(¥) e Rpy(®)....Rp(», x).con
4
Ce: Rp(X) oo, Rp(x)...... R, p)eeeenn.

Figure 3.10: Projections of the constraints C, and C, over states of the IRS.

There is no constraint before s;, and every constraint at that state has to hold true
without further assumption/constraint on the other part. At s;, however, we may have
two constraints, €.g., [Cilsp = Rpx(x) and [Cyls = Rpy(v). Given that M1 in [/(Cy) A M1
|= I(C,)]s» contains a register, [C.]s restricts the input of the register at sp. [Cy]s
defines the output of the register at s,. The output of the register at each time 7 is

independent of its input at time z. Thus M/ has to satisfy [C,]s without assuming

[Cilsp-

MI |= [H(C)s» (3.16)
In the same way, M2 has to satisfy [Cy]s, without using [C,].

M2 |= [H(Clw (3.17)

After that, [C.]s and [C)s become root assumptions. The set of
assumptions/properties is thus well-founded, i.e., there exist verified root assumptions

and the set of assumptions is not (zero-delay) circular.

By this theorem, non-zero-delay cycles, as opposed to the conditional cycle-of-gates
could not introduce invalid results since the dependencies in the non-zero-delay

. cycles is not (zero-delay) circular. The theorem concludes that when non-unary
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predicates happen in disjoint sets of IRS states, no zero-delay cycle is created. We

may call such “cycles” non-zero-delay or sequential cycles.

This theorem provides an intuitive justification for the assume guarantee rule (3.8).
The correctness of that rule can be inferred from the time delays introduced in no-
cycle-of-gates conditions (W2, W3, W5) so that they break every cycle by at least one
unit delay [19]. Disjoint-outputs (W1), no cycle-of-gates (W2, W3, W5) and no-
output-constraining (W4) conditions assure that all the compositions involved in the
rule are model-checkable, i.e., they could not deadlock. These requirements together
disallow any zero-delay conditional or static cycles and provide a well-founded non-
circular ordering for evaluating all variables and constraint/assumptions in the

system.

3.5.2 Generalization

We consider three (schematic) examples of the assume guarantee rule using IRS.

Example 3.5 (More interface signals) Figure 3.11 represents a case where M/ and
M?2 communicate using signals x, y, z. The subgoals of the composition rule are

given in Figure 3.11b.

KC) AIC) A M |=I(C))

3) I (Cx> Cya Cz) b)
x l I(C) A M2 = KC) AICy)
M2 -t i
< > Well-foundedness

MINM2 l=HCHNATCYATC)

Figure 3.11: Application example of the compositional rule using IRS.
(a) Modules M1 and M2 and their IRS I(Cy, C,, C.). (b) Assume guarantee reasoning.

To ensure the well-foundedness of the composition, we have to verify the no-output-
constraining (W1, W4) and the no cycle-of-gates conditions (W2, W3, W5) for
subsystems involved in the compositional reasoning. Consider /(Cx) A I(C,) A M1, for

instance. To check that this system meets W4, we verify that (1) /(C,, C,) does not
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restrict the output of M1 and (2) I(C,, C,) computes some values for the inputs of M.
Let z = Z(s) represent the output function of M/ that computes z, for a given state s.
Let RS represent the set of reachable states of MJ. We have to verify that for any
valuation of z in M1, there exist some values for x and y such that the predicates R/ of
C, and R2 of C, can be satisfied. Using the characteristic functions, we verify the

following.

3s. frs(s) AfAs,2)) = (@x,y. RIAR2), (3.18)

where, frs and f7 represent the characteristic functions of RS and Z, respectively.
Similar condition exists for R3 of C, Other conditions of the well

foundedness/compatibility are similar to the basic case in Figure 3.7.

Now, consider our second example in Figure 3.12. The compositional reasoning is
given in the figure as well. We verify that all systems involved in the subgoals satisfy
the well-foundedness/compatibility conditions.

I(C) AM2 AIC) = I(C))

I(C) A M3 |=IC)
I(C) A M2 A KCY= K(Cy)

II(CX) Cv) IZ(Cry Cz)

x r
> > I(C) AMI = I(Cy)
Ml ¢ . M2 <« M3 Well-foundedness

M1 || M2 || M3 |= KCy) A I(C)) AI(C) AI(C)
Figure 3.12: Three modules with IRS machines /; and />.

Consider I(C,) A M2 A I(C,). This system contains a cycle-of-gates if (1) C; contains
a predicate R,(x, y) over x and y (defined in any state of IRS /;), (2) M2 contains a
zero-delay path from x to r and a zero-delay path z to y, and (3) C; contains a
predicate R,(7, z) over z and r (in any state of IRS ;). Similarly, if C; contains a
predicate R.(x, y) and M2 contains a zero-delay path from x to y, a cycle-of-gates is
formed in the subsystem. Therefore, if the following condition hold, there is “no”

cycle-of-gates in I(Cy) A M2 A I(C).
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R(x,y) = —[ (x~—0~—>;42 y)V ((x———(l——)jwz rYARAr, 2) A (z—9—>jwz 1]

To respect the no-output-constraining property (W4) in I(Cy) A M2 A IC)), a
predicate R, of C, cannot constrain the output y of M2, if for any reachable value of y

via M2, R, can compute a value for x.

ds. frs(s) Afi(s,y) = Ix. R, ,

where fzs and fy denote the characteristic functions of reachable states RS of M2 and
output function ¥(s) of M2, respectively. In the same way, it is checked that C; does
not constrain output » of M2. The other systems involved in the reasoning in Figure
3.12 are verified in a similar way to meet the no-output-constraining (W1, W4) and

the no-cycle-of-gates conditions (W2, W3, W35).

Example 3.6 (Transitivity rule) Consider the system and compositional reasoning in
Figure 3.13. When all the subsystems involved in the reasoning satisfy the well-
foundedness/compatibility conditions, compositional reasoning infers an end-to-end
property for the composed system. This rule resembles the transitivity rule in
propositional logic. We will apply this rule in Chapter 5 to prove end-to-end

properties of an ATM switch.

I(Cy) 14C) I(C) 1o(Co) A M1 = 1(C))
xb SN ‘s I(C) A M2 |7 IAC.)
< . Ml |4 M2 «—
z Well-foundedness/compatibility

TdCYAMT A M2 I=T(C.)
Figure 3.13: IRS machines Iy, /; and I, allow us to prove a property for M1 || M2.

3.6 Summary

Kaufmann et al. [25] presented a framework for asymmetric constrained model
checking. They suggested (1) to model the environment assumptions with simple

constraints of the form G p (globally p) and (2) to use the complete system (i.e., the
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environment and the module) to discharge the constraints, e.g., Environment ||

Module /= G p.

We have extended this framework to a symmetric constrained model checking. We
presented IRS machines that specify the "joint" behavior of the environment and the
module at their interfaces. An IRS defines a set of constraints that specifies what
values may happen on its inputs, i.e., on the signals of the interface. These constraints
enable us to verify the environment and the modules separately. Compared to the
monitors in asymmetric constrained model checking, the IRS in symmetric
constrained model checking is more compact. A Monitor has an output to assert that
for instance, a component correctly follows a protocol. Unlike a monitor, an IRS
through its constraints shapes/verifies its “inputs”, i.e., it does not generate any output
signal. This key feature enables IRS to symmetrically recognize a property or supply
assumptions on inputs. Using transitivity rule, it can be used to organize end-to-end

property verification, which is important for modular systems.

Reasoning with IRS is circular. To avoid erroneous results, we adapted the well-
foundedness conditions from reactive modules. We defined and formulated the
conditional cycle-of-gates and the no-output-constraining conditions for the systems
composed with IRS. In this way, (1) the constrained systems remain model-
checkable, as requested by Kaufmann et al. [25], and (2) the overall reasoning is
sound, as defined by assume guarantee reasoning in reactive modules [35]. These

properties together characterize the IRS methodology.

In the next chapter, we report on the verification of an ATM switch module to
illustrate the applicability of the IRS methodology to model checking of large
systems that involve complex control path and large data structures. We illustrate

how IRS can be used to conduct compositional verifications in modular systems.
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Chapter 4

ATM Switch Specification

In this chapter, we specify properties and environment assumptions of an
Asynchronous Transfer Mode (ATM) switch. The Fairisle ATM switch [32] was
developed at Cambridge University for an experimental network. It consists of a 4x4
switch fabric that performs the actual switching, and four port controllers that handle

cell queueing, prioritizing and transfer to the fabric.

There have been earlier efforts in ATM switch verification [32][46][42]. For
example, Curzon developed a detailed model of the fabric using HOL (Higher Order
Logic). He showed that an RTL (Register Transfer Level) implementation of the
fabric implements a higher-level specification written in HOL. Tahar et al. [46] used
MDG (Multiway Decision Graph) to automate this verification. Lu et al. [13] using
the model checker VIS [48] verified certain safety and liveness properties of the
fabric. These works focused on the fabric verification and none of them addressed the
port controllers of the switch. Rajan et al [42] introduced a parametric high-level
model of an ATM switch and used a combination of formal verification methods
(e.g., theorem proving and model checking) and informal verification methods (e.g.,
simulation) to verify the design. This (validated) high-level design was then
synthesized with concrete values for the generic parameters. The idea was to avoid
verifying the synthesized concrete designs by verifying only the parameterized higher

level ones. Although this work emphasizes the integration of formal techniques in




early design phases, their high-level model left out certain functions, e.g., cell

prioritization and data-flow regulation to a central switch controller [42].

Our model of the port controllers is more complex than the one used in the earlier
works. (Its VHDL code is about 4000 lines i.e., 7 times bigger than that of the fabric.
We provided VHDL models of the port controller and the fabric in Appendix 4.) The
controller includes features such as data-flow control and cell prioritization. The
switch module (i.e., the fabric and the port controllers) uses acknowledgements from
the destination buffers to control the transmission of cells to the buffers. Moreover,
the in port controllers contain separate queues for storing and handling the cells of
different priorities. This division splits the main cell flow inside the controller into
parallel paths. Formal verification of such systems, especially for liveness properties
is more complex than in the earlier works that do not include this cell prioritization

feature.

Our methodology for the formal verification of ATM switch is compositional model
checking using interface recognizer/supplier (IRS), thus different from the previous
works which used theorem proving or model checking or a combination of them to
verify (somewhat simplified/high level) models. IRS is a formalism for modeling
assumptions and safety properties of components. It allows us to subsequently (and
easily) discharge these assumptions, i.e., to show that other modules satisfy the

assumptions that the component makes about them.

In the next section, we first use IRS to model the environment assumptions of the

fabric. Then, we prove that these assumptions are respected by the port controllers.

4.1 Fairisle ATM switch [32]

The switch consists of three types of components: in port controllers, out port
controllers and a switch fabric (Figure 4.1). It switches ATM cells from the input
transmission lines to the output transmission lines. In a 2x2 switch, there are 2 loop

back First-In-First-Out (FIFO) buffers inside the switch that serve to return the cells
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back into the switch for special routing, e.g., for multistage switching. An ATM cell
is composed of 48 bytes of data (payload) and 5 bytes of header (containing
information about the channels). The in port controllers synchronize incoming cells,
convert cell headers according to a routing table, append two routing tags 4/ and h2
in front of each cell, and send them to the fabric. The fabric does not use the
information in the header; it is only used by the port controllers. The header is treated
by the fabric as additional data of cell. Routing tags 4/ contain all the control
information that the fabric needs for arbitration. There is a synchronization signal
called frame start (fs) which begins a cycle of a cell transmission. When a new cycle
starts, the fabric watches the first bit of each byte on its in ports, e.g., dIn0(0) in
Figure 4.1. This is the active bit of the cell routing tag (Figure 4.2). As soon as one
such bit on an in port becomes 1, that event marks the start of cells on all the in ports.
On receiving a set of routing tags in a particular frame, the fabric processes them and
arbitrates among the in ports for accesses to the requested out ports. The cells are then
forwarded to the appropriate out ports as determined by the routing tags 2/. When
sending out the cells, the fabric removes 4/ and forwards 22 with the cell to the out
port. 22 is used internally by the out port controllers to choose either out buffers or
loop buffers to deposit the cell, and is subsequently stripped off. Out port controllers
forward the ack signal from the selected out buffers to the fabric. The port controllers
and the switch fabric all use the same clock. They use a frame start signal to ensure
that the in port controllers inject cells synchronously, i.e., the routing tags arrive at
the same time to the fabric in ports. If no in port raises the active bit throughout a
frame then the frame is inactive - no cells are processed. Otherwise, the frame is

active.
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4.2 Global specification

We specify global properties and assumptions that the switch makes about its (global)
environment. Then, we specify the local components, e.g., the in port controllers and
the fabric each one in its own specific environment. Finally, we use a compositional
approach to show that the local properties imply the global specification. Depending
on the complexity of a component, it may require further utilization of compositional
reasoning. For instance, the local properties of the in port controllers will be in turn

verified by a compositional approach.

We introduce the following global properties as the most basic operations of the
switch module. (We will formally state and verify these properties using interface

recognizers/suppliers in Chapter 5.)

GI1 (Extraction) The switch should correctly dequeue cells from the input FIFO

buffers. It should discard incomplete cells and deposit complete ones in cell memory.

G2 (Header conversion) The switch should convert cell headers according to the
routing table. The headers contain the channel numbers needed to route cells to

correct destinations.

G3 (Data integrity, no duplication, no loss) The switch should transfer cells to the
destination output buffers with no duplication or loss or corruption. Under certain
assumptions (e.g., acknowledgement reception and a limited number of high priority
cells), it should eventually transfer cells to the output buffers. In the case of no-ack, it

may discard them after several attempts.

G4 (Prioritization) The switch should deliver cells based on their priorities, e.g., it

should deliver the high priority cells first.

G5 (Order preservation) The order of cells should be respected, i.e., there should be a

first-in-first-out order between cells of the same priority (that are arriving from the
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same in port and are destined to the same out port). The order between the bytes of a

single cell has also to be preserved.

As an example, suppose we want to send two very short cells "hello" and "peter" to
destination Peter. No duplication property (G3) asserts that, we are not delivering for
instance "hello", "pepeter" to Peter. G3 also guarantees that the cells are not cut to
"hel" and "pet", for example. Order preservation (GJ5) requires that the message not
be transferred as “peter”, “hello” or "olleh", "retep" etc. The correct header
transformation (G2) i.e., correct destination channel number ensures that the

messages will be delivered to Peter and not to John.

Next, we define environment assumptions of the switch. The switch reads the cells
from the input FIFO buffers and sends them to the appropriate output FIFO buffers. It
uses a frame start signal f§ to synchronize its components. For a correct operation of
the components, the switch requires that the cell frame (which is delimited by the

frame start pulses) be greater than the cell size:

E: The cell frame should be greater than the cell size™.

4.3 Specification of the components

We (informally) defined the global properties and the environment assumptions of
the switch in Section 4.2. In the same way, we specify the switch components, i.e.,

the in port controllers and the fabric.

4.3.1 In port controller specification

The in port controller extracts the cells from the input FIFOs and sends them to the
fabric. The following is a list of local properties that characterize the desired behavior

of the in port controllers: (Formal specification using IRS will be given in Chapter 5.)

" We will consider a (fairness) assumtion on acknowledgement when we verify liveness property (G3)
of the fabric in Section 5.7 in Chapter 5.
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C1 (Extraction) The controller should drop incomplete cells and deposit complete

ones in a cell memory.

C2 (Header conversion) The controller should convert cell headers (in the memory)
according to the routing table. It should add two routing tags 4/ and 42 to each cell;
hl1 should indicate the start of the cell and the cell priority to the fabric. 42 should

indicate the start of the cell to the out port controllers.

C3 (Data integrity, no loss, no duplication) Upon receiving positive acknowledgment
during cell transmission, the in port controllers should forward the cells to the fabric
without duplication or loss. (Low priority cells can be transferred if (1) ack is

received and (2) the number of high priority cells is limited.)

C4 (Prioritization) Cells should be forwarded to the fabric based on their priorities,

i.e., the high priority cells should be transmitted first.

C5 (Order preservation) The order of cells should be respected, i.e., there should be
first-in-first-out order between cells of the same priority. Similarly, the order of the
bytes in a single cell should be preserved during the transfer.

The in port controllers use the frame start signal /5 to synchronously inject cells to the
fabric. They assume that the frame size (supplied by the local environment) is bigger

than the cell length.

E. The frame length has to be greater than the cell size.
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4.3.2 Fabric specification

The fabric receives cells on its in ports and forwards them to its out ports. It does not
store the cells, and if there is contention among the incoming cells for an out port, the
fabric arbitrates between them and sends negative acknowledgments to the
unsuccessful in ports. The successful ports however are forwarded the (positive or

negative) acknowledgment received from the destination out port.

F1 (Data transfer) After dropping routing tag hl from the cells, the fabric should

forward the successful cells to the requested out ports.

F2 (Ack transfer) The fabric should forward the acknowledgement from the out ports

to the successful in ports.

F3 (Prioritization) High priority cells should be given precedence over the low

priority ones during arbitration in the fabric.

F4 (Order preservation) The fabric should preserve the order of cells. If a celll in an
in port i is to go to destination out port j and a cell2 arrives to the same in port after
celll and is also to go to the destination port j and celll has a high priority (while
cell2 can have high or low priority), then celll may reach the out port only before
cell2 does. In other words, either celll is discarded or it reaches the out port before

cell2 does.

Having specified the properties, we next define the assumptions that fabric
(implementation) makes about its environment. These assumptions concerns the
relative time distance between the frame start and cell reception from the in ports. A
timing diagram (specification) for the in port0/fabric interface of the switch is shown
in Figure 4.3. After sending 21, h2 and the first byte of the cell on dIn0, the

controller on in port0 expects to receive an acknowledgement (ackOut0) from the
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fabric for each transmitted byte of the cell. With a positive ack, a cell (of length
ATMiength) is completely transmitted to the fabric.

For proper operation, the fabric makes the following assumptions about 4/ and fs that
it receives from its environment. These assumptions are going to be discharged on the

in port controllers and the frame pulse generator fsGenerator, as their properties.

Ej; Cells must not arrive sooner than three cycles after the frame start signal fs. The
first byte of a cell is 41. If #; and #,; denote respectively the time that fs and A7 arrive,

we have
th1 2 ts+ 3 4.1

E; Frame start cannot be asserted before three cycles, after t;,. If 7, denotes the end of

the current frame or the beginning of the next frame, then the following must hold.
te2tm+3 4.2)

Eg; The frame length has to be greater than the cell size.

1s
din0
ackOut0[ = A] 1 ’
tht+3 ty+1+A4TMlength

Figure 4.3: Timing diagram specification for the in port0/fabric interface in
Figure 4.1
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Next, we model fabric environment assumptions using interface recognizers/suppliers
(IRS). Frame start pulses that are generated by the global environment can be
supplied (as assumptions) by an IRS in Figure 4.4 (similar to the one presented in
Figure 3.3 in Chapter 3). By setting its constraint Cg to be always true, frame start
pulses can be generated respecting the given cell size ATMlength. As mentioned in
Chapter 3, we will use the expression “activate a constraint” to indicate that the
constraint is set always true while model checking a component. By activating C, fs
pulses are always generated with a period bigger than ATMlength. Since f5 is non-
deterministically generated in s/, f§ can take any period bigger than ATMlength.
Although, the lower limit of frame sizes accepted by IRS I is bounded, its upper

limit is not restricted.

[ (fs=0)and
(count = ATMlength+A) ]/ (count = 0) Cg; == (state = 52 or state = s3) =>
(5=0)]
b) else
“ ' [ (fs=0)and
@ (count < (ATMlength + A)) ]/

(5 =0) (fs=1)/ (f5=0)/ (count = count + 1)
(count = 0) (count=1) (count= count+ 1)

Figure 4.4: IRS and its constraint Cy, for frame start pulse /5. A parameter
(A>2+ty,,-t) determines the frame size in Figure 4.3

We have an obligation to show that an actual component (called fsGenerator) that

generates fs pulses with a fixed period satisfies Cy;.

JsGenerator |= I(Cp) 4.3)
After representing assumption Eg by I, we next model assumptions £y (4.1) and Ep
(4.2) by an IRS I,,. Figure 4.5 shows I.,,, which recognizes the sequence of events

that is authorized by Ej and Ep. For instance, suppose that a frame start occurs at

state p1. The routing tag h1 can then arrive at state p4 (up to p11), i.e., at least 3 clock
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cycles after frame start. Similarly, after 2/ occurs (at one of the states p4 to p/1), the
next frame start may occur at p7, i.e., 3 clock cycles later. The switch fabric begins
the arbitration between ports as soon as it receives one A1 on one of its in ports. If no
hl is received up to state pll, the frame is considered late or inactive, since a
complete cell could not be transferred within a given frame size. We added the
transition p// to pl to distinguish inactive frames traced by pI-> ... ->pl1->pl from
active frames traced by pl->...->p9->p5->...->p7. This distinction helps us to

express properties of active and inactive frames.

(=fs ARI)

Figure 4.5: Interface machine 1, of the environment assumptions on the in ports of

the fabric.

Next, we define a constraint Cy;pg for L,, to state that (the active bit of) 4/ on in port0

should be zero at states p2, p3, and at p/ and p7 when fs is 1.

Chipo = [ ((state = p2) or (state = p3) or ( (state =p7 or state =pl) and fs = 1))
= (dIn0(0) =0) ] (4.4)
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where dIn( indicates the fabric input on in port 0. Cyyp; is similarly defined for in

port 1.

Chipr = [ ((state = p2) or (state = p3) or ( (state = p7 or state =pl)andfs=1))
= (dIN1(0) = 0) ] 4.5)

After developing an IRS, the machine has to be validated to ensure that it correctly
models the interface interactions. For instance, we activate Cg and Cjjp to verify that
after a frame starts (i.e., state s2 of I is reached), 2/ on in port() remains zero (i.e.,
inactive) until state p4 (i.e., & + 3) is reached. This verification is denoted by the

following formula:

L (Chipo) A I(Cr) |= AFTER: Ig(state = 52) (4.6)
ALWAYS: dIn0(0) = 0
UNLESS: L,.(state = p4)

where AFTER, ALWAYS, and UNLESS denote the temporal operators of the model
checker Formal Check [3].

We have an obligation to prove that the in port controllers respect the environment
assumptions (4.4) of the fabric. To verify this, we compose I, with an in port
controller to check that Cyjpp is always true on Z,,. The verification can be denoted

by the following formula:
Ii(Cy) A inPortController [= Iem(Chipo) 4.7)
Formula (4.7) indicates that the in port controller composed with the pulse generator

interface I with the constraint C; activated satisfies the property that Cj; is always

true on /1., that observes the fabric interface of the controller.
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It is possible to discharge the original subgoal that the transmitter respects the
environment assumptions of the fabric directly using the proper language of the
model checker, i.e., without any use of £, or Cyp.. However, by introducing IRS Ion,
which is coded in VHDL or Verilog, we get a portable and uniform representation of
these environment conditions. This representation by IRS is portable, since it does not
use the model checker (temporal) operators. It is uniform because IRS can uniformly
verify a property or supply an assumption using the constraints. In any new
application of the fabric, the components in the application should satisfy these
conditions to use the fabric safely. IRS should thus accompany the specification of

any reusable component to represent its environment assumptions.

4.4 Summary

In this chapter, we (informally) specified properties and environment assumptions of
the in port controllers, the fabric, and their composed system - the switch module. We
used IRS to model these environment assumptions. We described that the in port
controllers and the frame pulse generator fsGenerator should meet environment
assumptions of the fabric. We illustrated how we can discharge these obligations

using constraints of IRS 1, and I;;.

In the next chapter, we will use IRS to specify and verify properties of the switch

components. We will then compose these local properties to prove the global ones.
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Chapter 5

Formal Verification of an ATM Switch

In Chapter 4, we specified the in port controller and the switch fabric. In this chapter,
we prove that the in port controllers and the fabric implementation satisfy their
properties. Then, we compose them to show that the switch module (composed of the
in port controllers and the fabric) satisfies the global properties. During these
verifications, we culd observe that model checking of the in port controller for 53-
byte ATM cells is very expensive in time and memory. Therefore, we first
decompose the in port controller into its components and use a compositional
approach to verify the global properties of the controller. Two abstraction techniques
will also be used to reduce the verification problem. First, we assume a data

independent model [34] and second, we scale down the cell size.

5.1 In Port controller implementation

The port controller of Fairisle ATM switch consists of a receiver, a dispatcher, a
scheduler, a transmitter, an arbiter, and a cell memory (Figure 5.1). In addition, there
are 5 queues (R, PI, P2, T, and F) that contain addresses of the memory locations
where the cells are stored. These queues are implemented in the same memory, which
stores the cells. When a cell is present in one of the input FIFO buffers (e.g., FIFO L
or I), the receiver allocates an address from the free address queue F to the cell. The
receiver then transfers the cell one word at a time from the FIFO to the memory.
After transferring a complete cell, the address is inserted into the queue R. The

dispatcher detects the presence of a cell address in queue R and proceeds to update



the cell header in the memory. It transforms the header according to a routing table
and, moreover, it adds a fabric tag (hl) and an out port tag (A2) to the cell. The
priority (high, low) of a cell is indicated by a bit in 41 (Figure 4.2). The dispatcher
checks that bit and depending on the priority, it inserts the cell address (dequeued
from R) to either queue P/ or queue P2. The scheduler transfers cell addresses from
P1I and P2 to the transmission queue T, giving priority to the cell addresses in P/. The
transmitter sends the ATM cells from the cell memory to the fabric one byte at a
time. After a cell has been transmitted to the fabric, its address (dequeued from 7) is
returned to the free address queue F. The arbiter regulates the accesses to the memory
shared between the receiver, the dispatcher, the scheduler and the transmitter, giving
always priority to the transmitter. Although we use independent queue models, we
assume that they are implemented in the shared memory, hence only one cell word or

one address in a queue can be accessed at a time. This is enforced by the arbiter.

mitter

1

1

i
trans- »

i

I

Figure 5.1: An ATM switch in port controller

5.2 Arbiter abstraction

The receiver, the dispatcher, and the scheduler require a permission from the arbiter
to access the memory. The transmitter has the highest priority, however, and can
access the memory as soon as it requests. We first verify that if the transmitter

releases the memory infinitely often, the arbiter can grant memory accesses to the
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receiver, the dispatcher, and the scheduler infinitely often. We shall show in Section
5.8 that the transmitter does release the memory infinitely often, thus we abstract the
arbiter and decompose the port controller into receiver, dispatcher, scheduler, and
transmitter subsystems where each subsystem may assume to receive memory

accesses infinitely often.

5.3 Receiver subsystem

The receiver is the most complex module among the components of the port

controller. We verify the following properties of the receiver.

R1 (Extraction) Incomplete cells are dropped and the complete cells are transferred

from the input FIFOs to the cell memory.

R2 (Order preservation) When depositing the cells in the memory, the order of the
bytes inside a cell is preserved. Similarly, the ordering between cells is preserved. For
instance, if a complete celll arrives to the receiver before a complete cell2, celll is

deposited to the memory before cell2 is deposited.

R3 (Address path) After depositing a cell in the memory, its address that is taken

from queue F is enqueued in queue R.

R4 (Address order preservation) While transferring the addresses from F to R, the

order among addresses is preserved.

In the input FIFOs, the bytes are made of 9 bits where the 9" bit indicates the start of
a cell (when equal to 1). When reading the cell bytes, if a start-of-cell bit is set or if

the buffer becomes empty, the cell is discarded.
Model checking of the receiver subsystem containing the receiver, queues F and R,

and the cell memory is practically not feasible because of the state explosion

problem. To reduce the problem, we use the data independence assumption: the
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queue, the memory, and the receiver are data-independent. The data-independence
assumption infers, for instance, that, a queue preserves the order among its elements,

if it does so for a reduced data set {0, 1, 2} that contains three elements (Appendix 2).

The receiver has a scalable architecture, parameterized on the cell length. This allows
us to reduce the cell to the minimum of 3 elements <start-of-cell, data0, datal>. With
the data-independence assumption and the cell-size reduction, it is possible to verify

the receiver subsystem.

5.3.1 FIFO/receiver interface machine I;

We use IRS machines to verify the properties RI-R4 of the receiver described in
Section 5.3. First, we develop an interface machine I; to recognize the interactions
between the FIFO [ and the receiver (Figure 5.1). We will ultimately remove FIFO 1
and use I; to supply an abstract model of FIFO to the receiver as receiver

environment. /; as shown in Figure 5.2 depends on the following Boolean variables:

e socl: the 9™ bit of the FIFO I top element, indicating start of a cell.

o deqNeeded: when true, it indicates that an address will be dequeued from F
for a new cell.

e fifolempty, gFempty: indicate whether FIFO [ respectively queue F is empty.

o deql, deqF: dequeue commands on the corresponding queue interfaces.

e oneCellFroml: indicates whether FIFO [ contains a cell, i.e., 1 + 53 bytes of
data where the first byte represents the start-of-cell byte.

e rok: true, indicates that the receiver has the right (from the arbiter) to access

the shared memory.

Following the data independence principle, IRS /; should recognize the language
(cell0)*(celll)(cell0)*(cell2)(cell0)* and will subsequently be used to constrain the
inputs of the receiver to this language. cell(, celll, and cell2 represent three arbitrary
(but different) cells. Each cell consists of three data octet such that the soc bit of the

first octet is set. Suppose xsoc represents an arbitrary octet with soc = 1. Let the
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sequences <xsoc, 0, 0>, <xsoc, 1, 1> and <xsoc, 1, 0> represent respectively cell0,
celll and cell?. In the initial state, I; awaits xsoc from the FIFO /. The transition

s0 -> s1 of I recognizes this xsoc under the following condition.

(socl A oneCellfroml A ~fifolempty A deql A ~qFempty A deqF’ A rok n deqNeeded )
(5.1

This means that it observes a start of cell, FIFO I contains 53 bytes, and the receiver
is dequeuing (xsoc) from FIFO [ and (an address) from queue F. Also the receiver
received permission (rok) from the arbiter to read queue F from memory. The
transitions s0->sl->s2->s3 recognize cell(. After that, in state s3, I; awaits rok for
cell0 to be written in the memory. In state 54, the address of cell0 is written in queue

R, if queue R is not full and rok is received.

During the cell extraction from / in states s/ and s2, if the soc bit is asserted then the
start of another cell is detected. This means that the current cell is incomplete and the
cell must be discarded. This is recognized by transition 3, i.e., before writing the cell
in the memory. In that case, the address dequeued from F is retained for the next cell.

The following condition will then hold at the beginning of a new cell.

(socI A oneCellfroml A ~fifolempty A deql A ~deqNeeded) (5.2)
Similar]yv to cell0, transitions s0->sl->s5->s6->s7 and  s8->s9->s13->s14->s15

recognize celll and cell2, respectively. I; can thus recognize the language

(cellOy*(celll)(cellOY*(cell2)(cell0)* at the interface.
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Else

else

. (0)
t1 2

t1=(51)v(52)
12 = (fifoloutput = 0 ) A

~fifolempty A ~socl
A deql

13 = fifolempty v socl
t4 = rok

Figure 5.2: FIFO/receiver IRS /;. Transitions 15 = rok n~qRfull

50 -> s -> 52 -> 53 recognizes cell) = <xsoc, 0, 0>. 16= (fifoloutput =1) n
~fifolempty A ~socl

celll and cell2 are recognized similarly. A degl

<(xsoc). (1), 1)>

I; uses the following constraints Ceep and Cupicenns 2 and Ceery and Ceenz to impose
that language on its inputs. When the constraints are activated on /;, the inputs of the

receiver will be restricted to follow that language.

Ceenno = [ ((state = s2 or state = s10) and fifolempty = 0 and socl =0 )
= (fifoloutput = 0)] (5.3)

C..i10 corresponds to transition 2. For instance, it asserts that the output of FIFO /
(fifoloutput) should be 0 at states s2, and 510 to supply the data value 0 of cell0. This
restriction on the FIFO output should be supplied whenever the FIFO is not empty
and the soc bit is not asserted. Remark that /RS /; allows the FIFO [ to non-
deterministically be empty or even soc to be set at those states. These cases represent
incomplete cell reception (e.g., transition 3 in s/ and s2). If we removed the
condition socl = 0 from C.., the incomplete cell reception could be ignored in the

verification. When C..;p remains true and for instance, state s3 is reached, cell0 is
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successfully extracted from the FIFO. Constraints Ceey, Ceonrz and Cynicerrr 2 are

defined similarly.
Ceon = [ (state = s5 and fifolempty = 0 and socl = 0 ) = (fifoloutput = 1)] 5.4)
Ceatz = [ (state = s13 and fifolempty = 0 and socl = 0 ) = (fifoloutput = 0)]  (5.5)

Cunicens 2 = [ ( (state = 516 or state = 517) and fifolempty = 0 and socl = 0 ) =
(fifoloutput = 0)] (5.6)

By forcing (5.3), (5.4), (5.5), and (5.6) to be always true, /; supplies the appropriate
input sequences to the receiver and allows us to verify cell extraction (R/) and cell-

order preservation (R2) properties of the receiver.

5.3.2 Receiver/memory interface

An interface machine /5 recognizes the writing of celll and cell2 in the memory at
addresses al and a2, respectively. These addresses were previously dequeued from F’
and a copy is kept in 7;. The receiver extracts cells from FIFO 7, octet by octet to form
words before writing them in the memory. Celll and cell? are thus respectively
© written as 4 and 5. By the transition m0->m1 in Figure 5.3, I5 detects that celll was
written in memory. This happens when /; is in state s6 (waiting for the receiver to
obtain rok to write celll in the memory) and the receiver asserted the memory write
signal. The transition ml -> m2 similarly detects that cell2 was written in the

memory.

else else el = I (state = s6) A meminput =4

. A (memAdrs = al) A write A rok
' el ' e2
@ @ @ e2 = I/(state = s14) A memInput =5

A (memAdrs = a2) A write A rok

Figure 5.3: IRS /s for the receiver/memory interface
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Consider the subsystem I; A receiver A Is in Figure 5.4. Using the interface machines
I; and I5, we can verify that celll and cell2 are eventually written in the memory. We
set the constraints Cieg, Ceeit1, Ceeniz, and Cimicens 2 of I; to be always true and verify
that after celll is extracted (i.e., state s6 of I; is reached) and rok is asserted, then

celll is written in the memory (i.e., state mI of Is is eventually reached).

1(Ceeno, Ceettiy Ceeniz, Cunicens 2 ) A receiver |= AFTER: rok A Li(state = 56)
EVENTUALLY: Is(state = ml) (5.7

Similarly, we verify that after s/4 is reached, cell2 is eventually written in the

memory.

I (Crato, Ceentiy Ceeizy Cunicens 2) A receiver |= AFTER: rok A Ij(state = s14)
EVENTUALLY: Is(state = m2) (5.8)

Following the data-independence assumption, we must show that celll and cell2 are
uniquely recognized at Is. We add a constraint Cy,ymique that asserts that after writing
celll and cell2, no celll (i.e., 11) or cell? (i.e., 10) is written in the memory anymore
(only 00 can be written then).

Contnigue = [(state = m2 and write = 1) = (memlInput = 0)] )

We then verify that C,,unigue always holds frue.

I(Ceenoy , Ceeitty Ceetiz, Cumiceinn 2) A receiver |= Is(Cruunigue ) (5.9
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Ceetio, 1,2 Cunicenn_2

hi— —;— Caz Caz
I 7 [3
To queue R
receiver Contimique Caiccard
Is
>
Non-constrained To memory
(free) address

values

Figure 5.4: Receiver subsystem. Constraints Ceeng, Ceentr, Ceeniz and Cipicennr 2 are
activated and (property) constraints Cyunigue, Caiscards Car, and C,y, are checked.

To verify that no incomplete cell is written in the memory, we consider the write
signal and define a constraint Cyiscqra to assert that in states other than s3, 56, s11, s14,
and sI8 the write signal is always deasserted. Therefore, only in states s3, s6, s/1,

s14, s18 where a cell is completely received, the cell can be written in the memory.

Cuiscard := [not ((state = s3) or (state = s6) or (state = s11) or (state = s14) or

(state = s18)) = (write = 0)]
We checked that Cyiscqra always holds true.
I(Ceeitos » Ceent, Ceeitzs Cuniceitr 2) A receiver |= Is(Caiscard ) (5.10)
To verify the address path, we use an IRS /5 to recognize that addresses al and a2 of
celll and cell2 are successfully enqueued in queue R. We first verify that that the

address al is enqueued to R. This happens when FIFO I/Receiver IRS I; is in state 57

and rok is asserted and queue R is not full.
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else else b1 =I/(state = sT) A rok A (~qRfull)
' ' ( ! engR A (qRinput=al)
bl b2
@ e @ b2 = Ii(state = s15) A rok n (~qRfull) A
engR A (qRinput = a2)

Figure 5.5: IRS I; for the receiver/queue R interface

Transition b/ which is described by the following constraint detects that the receiver

asserted engR and inserted al to queue R.

Caj = [( Is(state = q0) and [)(state = s7) and rok and ~gRfull)
= (engR =1 and gRinput = al))

Using the following property, we verified that C,; is always true:

I11(Ceettos Ceet1, Ceenizs Cuniceitr 2) A receiver |= I3(Car ) (5.11)

Similarly, using a constraint C,; on transition b2, we verified that a2 is enqueued in
R. In summary, addresses al and a2 (of celll and cell2) are correctly inserted in

queue R.
Ii(Ceaioy Ceentty Ceetizy, Cunicens 2) A receiver |= I3(Cay, Ca2) (5.12)

Remark that we have not yet proven that these addresses are uniquely inserted. For
instance, a/ could have been written twice. That verification was not possible since
we did not constrain the address value supplied by F. We employ the data-
independence assumption and we verify that if a stream (0)*(1)(0)*(2)(0)* 1s supplied
as address values at queue F/receiver interface, the same stream is inserted in queue

R, thus, no duplication happens. This proves that, when the values 1 and 2 are
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supplied once (and in order), they are recognized as such. Figure 5.6 shows the IRS I,
used to impose the stream (0)*(1)(0)*(2)(0)* as the address values to the receiver.
The constraints C,,;; and C,,;; restrict the inputs so that the values 1 and 2 are
supplied once. For instance, C,,; asserts that the data value 1 could only be supplied
(non-deterministically) in gf0.

Cimir = [(state = gf1 or state = qf2) = (qFoutput /= 1)]

Similarly, C,,;> asserts that value 2 could only be supplied (non-deterministically) in

qfl:

Comiz = [(state = gf0 or state = qf2) => (qFoutput /= 2)]

else else
d] = (gFoutput = 1) A deqF A vok A
. . (~gFempty)
di d2
@ @ @ d2 = (qFoutput =2) A deqF A rok A
(~gFempty)
Figure 5.6: IRS I, for queueF/receiver interface

An IRS 7I’; with constraints Cyizo and Cipize similar to Cy,;; and C,,,;; recognizes the

language (0)*(1)(0)*(2)(0)* at the receiver output.

else else
gl = (qRinput = 1) A engR A rok A
3. .
@ @ @ g2 = (qRinput = 2) A enqR A rok A
(~qRful)
Figure 5.7: IRS I’; to verify the address path

Cunito = [(state = grl or state = qr2) = (qRinput /=1)
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Cunizo = [(state = gr0 or state = qr2) = (qRinput /= 2)]

We use an IRS [I’; to supply an arbitrary stream of cells, e.g., (cell0)* at
FIFOl/receiver interface. It allows us to carry on the address path verification. (/;, for
instance contains states s0 to s4 of I;). In the subsystem /’; A receiver A I, A I3
(Figure 5.8), we verify that the address values 1 and 2 are uniquely enqueued in R so

that no address is duplicated.

]Z(Cum'], Cum'z) A receiver I: ]’S(Cuni]o, CuniZo) (513)
= Cum o ;
_]r Ceeito ! Cunizo
1] »
I] 1 3
Cell i To queue R
receiver
-i_. c _.i_
uni2
Cunir | p |
e}
address
values

Figure 5.8: C..0, Cuniz, and Cyiz, are activated and Cupizo and Cipizo are checked to
verify address path of the receiver.

Constraints C,ij, and Cui2. assure that address values 1 and 2 are recognized
whenever states grl and gr2 are reached. However, the verification of (5.13) does
ascertain that those states are ever visited. We still have to ensure that gr/ and gr2 are
eventually reached. For instance, in the subsystem I’; A receiver A I A I's (Figure
5.8), we verify that after the state gf7 of [, is reached (i.e., 1 is dequeued as an address
value by the receiver), address value 1 is eventually enqueued in R (i.e., the state grl

of I’; is reached).

IACynit, Cuniz) A receiver [= AFTER: I(state = qf1) n I’ (state = s4) A vok A ~qRfull
EVENTUALLY: [I’;(state = grl) (5.149)
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Next, we verify that the address value of 2 is eventually enqueued in R.

I(Conit, Cuniz) A receiver |= AFTER:Iy(state = qf2) A I'|(state = s4) A rok A ~qRfull
EVENTUALLY: I3(state = gr2) (5.15)

By considering all the properties, we can conclude that the receiver discards
incomplete cells, extracts complete cells from FIFO I, writes the cells in order and
without any duplication in the cell memory, and finally it correctly writes addresses
of cells in the queue R. In the next section, we verify that the queue R correctly

forwards these addresses to the dispatcher.

5.4 Queue R interface

The queue size is a generic value. We used CBL SMV [24]to show that the generic
queue (implementation) delivers data from its input to its output. We first proved that
when the condition (engR A ~qRfull) holds, an arbitrary input enters the queue. Then,
using the SMV induction rule, we verified that the data in any position in the queue
eventually reaches the top position, assuming that the dequeue is asserted infinitely
often. This proves that the generic queue correctly delivers the data it receives.
Similarly, we proved that this queue preserves data order. (We included the queue

model and the verification results using SMV in Appendix 3).

Q1 (Order preservation) If a stream (0)*(1)(0)*(2)(0)* is supplied (by I3) to the

queue input, the same sequence is recognized (by /) at the queue output.
13(Cuni]p CuniZ) N queue I: ]4(Cuni105 CuniZo) (516)

Q2 (Data delivery) After a value 1 is enqueued in R, it eventually reaches the queue

output, if degqR is repeatedly asserted.

77




I(Conit, Cuniz) A queue n A2 |= AFTER: Ix(state = grl)
EVENTUALLY: Iy(state = sI) (5.17)

A2 = AFTER: ~qRempty ~ EVENTUALLY: degR = 1 (5.18)

Similarly assuming 42, after a value 2 enters the queue, it eventually reaches the

queue output.

I5(Cyity Cuniz) A queue A A2 |= AFTER: Is(state = qr2)
EVENTUALLY: I(state=s2). (5.19)

5.5 Combining local properties of the receiver and the
queue R

We have separately verified the receiver and the queue. Before describing other
components of the in port controller, we show how to prove the composed receiver A
queue subsystem properties from the queue and the receiver properties. We will apply
this methodology to deduce end-to-end properties of the controller from properties of

its components. We prove the following properties for receiver A queue.

RQI (Extraction) receiver A queue discards incomplete cells and deposits complete

ones in a cell memory.

Proof: By (5.10) and (5.9), the receiver discards incomplete cells, extracts the correct

ones and writes them once and in order in the memory.
I1(Ceettoy Ceentt, Ceeitzy Cuniceit 2) A receiver |= Is(Caiscard, Cmtnique)

The queue does not change header or body of cells in the memory, and consequently,

it does not affect extraction property R/ of the receiver.
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IJ(Ccellf)g Ccell]; CcellZ> CuniCell]_Z) A receiver A queueR l: ]5(Cdiscarda CmUnz’que)

Nevertheless, we have to show that the queue, the receiver, and 7;(Ceero, Ceentz, Ceelizs
Cunicenr 2) meet well  foundedness/compatibility conditions (WI1-W5) of the
composition.

W1 (No conflicting outputs in the implementation) We verified that outputs of the
receiver and queueR are disjoint. This way, only one module can constrain a signal

of the interface.

W2 (No cycle-of-gates in the implementation) We should check that no cycle 1s
formed in receiver A queueR. The receiver and the queue do not contain any cycle-of-
gates, consequently, we only check that no cycle is formed in their composition.
Queue R inputs {dataln, enqR, deqR} and outputs {dataOut, gRempty, qRfull} are at
least one cycle apart. Therefore, no cycle is formed when it is composed with the

receiver.

W3 (No conditional cycle-of-gates in IRS) We verify that I; does not contain any
conditional cycle-of-gates. Consider the constraint C.p; = [ (state = s5 and
fifolempty = 0 and socl = 0 ) = (fifoloutput = 1)] of I;. It has a predicate over
fifolempty, socl, and fifoloutput, and thus introduces conditional zero-delay paths
socl —2— 1 fifoloutput and fifolempty—2— fifoloutput . There is no constraint in

I, that introduces a zero-delay path in the inverse direction from fifoloutput to socl or

fifolempty, so I; contains no conditional cycle-of-gates.

w4 (NO outpuz‘-constraining) [I(Ccelll)a Ccellh CcellZ: CuniCell]_Z) should not constrain any
output of the receiver or the queue. /; constrains fifoloutput which is the receiver

input. Therefore, it does not constrain the receiver or the queue output.

W5 (No cycle-of-gates in the subsystems) The composition 1;(Ceeno, Ceeits, Ceelizs

Cunicel1 2) A receiver A queueR should contain no cycle-of-gates. Given the zero-

delay paths socl —2— fifoloutput and fifolempty——n fifoloutput by I;, no
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zero-delay path should exist in receiver A queue from fifoloutput to either socl or
fifolempty. There are no such paths in the receiver (and in fact fifoloutput, socl, and

fifolempty are all primary inputs of the receiver).

By WI-W5, I; A receiver A queue satisfies the well-foundedness/compatibility
conditions of the composition theorem. Similarly, other subsystems involved in the

compositional reasoning have been checked for well-foundedness/compatibility.

After RQI, we continue proving the other properties of the combined subsystem

receiver A queue.

RQ?2 (Address order preservation) Address order is preserved in receiver A queue
subsystem. Le., if a celll is deposited in the memory before a cell2 is deposited, then

its address is dequeued from the queue (output) before cell2 address is dequeued.
Proof: In Section 5.3.2, we showed that the receiver correctly (i.e., once and in order)
writes the cells into the memory. It then correctly inserts their addresses to queue R.

Suppose that cell, celll and cell2 are written at addresses 0, 1 and 2 respectively. By
(5.12), we have then

1(Ceeno, Ceeitt, Ceeniz, Cumiceins_2) A receiver |= Is(Cunir, Cuniz) (5.20)
By (5.16), queue R preserves the order of data.

I(Cunity Cuniz) A queueR [= 1a(Cunit, Cuniz) (5:21)
Remark that IRS /; acts as a recognizer in (5.20) and as a (constraint) supplier in
(5.21). As mentioned in Chapter 2, this property of IRS allows us to implement a

transitivity rule in our reasoning. For instance, from (5.20) and (5.21), it follows that:

]I(CcelIO, Ccell], CcellZ; CuniCell]_2) A receiver A queueR l: ]4(Cuni]a CuniZ)
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This proves the order preservation from the receiver input to the queue R output.

Until now, we have proven extraction and order preservation properties of receiver A
queue from the receiver and the queue local properties. These properties which are
proven using IRS constraints are safety properties asserting that if the system states
are visited, the corresponding constraints hold true. However, if the states are not
visited, the constraints also remain true, by definition. We need then to add liveness

properties to assure that the states are eventually reached.

RQ3 (Liveness) After extracting a cell, its address is eventually enqueud in queue R.
Then, this address eventually arrives to the top of the queue, if dequeue is asserted

infinitely often.

Proof: By (5.14), we verified that after address value 1 is dequeued for depositing

celll, that address is eventually enqueued in R.

I(Copit, Cuniz) A receiver |= AFTER: L(state = gf1) A Ii(state = s4) A rok A ~qRfull
EVENTUALLY: I;(state = grl) (5.22)

Verifications of queue in Section 5.4 concluded that the addresses that were enqueued

in R are eventually transferred to top of R when dequeue is asserted infinitely often.

L(Counity, Cuniz) A queue A A2 |= AFTER: Is(state = qrl)
EVENTUALLY: I(state =sl), (5.23)

A2 := AFTER: ~qRempty = EVENTUALLY: degR =1
The EVENTUAL event in (5.22) matches AFTER event in (5.23). By a simple

transitivity rule of temporal logic, from (5.22) and (5.23), it follows that after celll is

extracted by the receiver (i.e., the state s4 of I; is reached) and an address is obtained
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for it (i.e., state gf7 of I, is reached), the address is eventually forwarded to the queue

output.

IA(Cynit, Cuniz) A receiver A queue n A2 |=
AFTER: I)(state = qf1) A I)(state = s4) A rok A ~qRfull)
EVENTUALLY: I(state = grl) (5.24)

Similarly, it is verified that cell2 address eventually arrives to the top of R.

Assuming that dequeue happens repeatedly, queue R will supply the language
(0)*(1)(0)*(2)(0)* to the dispatcher. Before considering the dispatcher verification,

we summarize the compositional reasoning we have followed.
1 We used IRS to specify and verify local (safety) properties of the components.

2 Using local properties, we proved the global ones. IRS transitivity rule allowed us
to chain the local safety properties in order to prove end-to-end ones. A theorem

prover could also be used during these verifications.

3 We checked conditions WI-W5 to conclude that the components are actually

compatible for the composition and the set of constraints are well-foundeded.

4 Liveness properties were added to ensure that the composed system is live. They

proved that the states that were used for constraint definitions are reachable.

5.6 Dispatcher and scheduler subsystems

We should verify that
DI: The dispatcher updates cell headers according to a routing table, and

D2: Addresses of the cells are correctly inserted into queue P/ or P2, depending

on cell priority.
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For these verifications, we reduce the cell size to 10 bytes. Each cell comprises 2
bytes of routing tags 41 and 42, 4 bytes of cell header and 4 bytes of cell body. Figure
5.9 illustrates a cell <hl, h2, x;, x» X3, X4 X5, X6 X7, Xg> deposited in the memory.
Each cell occupies three locations. The first location contains the routing tags 4/ and
h2. The second location contains the header bytes, and the third one contains (the

reduced) cell body.

h2| k1l -| -| <—— routingtags of the cell

xq4| x3| x2] x;| 4—— header of the cell

Xg | X7 | X6 | Xs | 4—— body of the cell

Figure 5.9:Placement of a cell <hl, h2, x;, X2, X3, X4, X5, X5, X7, Xg> 1n cell memory

An IRS I, supplies the stream (0)*(1)(0)*(2)(0)* to the dispatcher, as address values
at the queue R/dispatcher interface (Figure 5.10). These addresses are respectively
pointers to cell0, celll, and cell2 in the memory. We initialize these cells in the

memory and develop an IRS I’s (similar to memory/receiver IRS /5) to monitor that:

1: Dispatcher reads headers of celll and cell2 from the cell memory (i.e., the second
word of each cell in memory, figure 5.9) and based on them, adds two routing tags 4/

and /42 to (the first word of) each cell in the memory.
2: According to the given routing table, the dispatcher updates (correctly and in

order) the headers of celll and cell2. These headers are in the second word of each

cell in the memory.
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Next, we used an IRS /5 to recognize sequences of addresses (e.g., (0)*(1)(0)*(2)(0)*

) written to queues PI and P2. Using the subsystem Iy A dispatcher A I’s A I, (Figure

5.10), we thus verified that the dispatcher satisfies properties D/ and D2.

address
values

Dispatcher

unilC Ciuniz0
Bl
To queue

C_hlh2 C_heade P1

I's

memory

Figure 5.10: Dispatcher verification. We verify that the headers of cells are correctly

updated in the memory.

Similarly, using interface machines, we verified that:

S1. The scheduler orderly and uniquely transfers addresses from queue PI to

queue 7, and

S2. Assuming that there are no high priority cells in queue P/, the dispatcher

orderly and uniquely transfers addresses from queue P2 to queue 7.

5.7 Transmitter subsystem

We have shown that the receiver correctly extracts cells from input FIFOs and

deposits them in the cell memory. The dispatcher converts cell headers and then

appends routing tags to them. The scheduler transfers the addresses of cells to the

transmit queue 7 based on the cell priority. Now, we show that the transmitter

correctly extracts cells from the memory and forwards them to the fabric.
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Consider the transmitter subsystem, composed of queue 7, the transmitter, and the
cell memory (Figure 5.1). Using our IRS approach, we show that the following

properties holds true in the transmitter subsystem.

T1 (Cell delivery) When queue T supplies an address a to the transmitter, the
transmitter sends out the corresponding cell, if it receives positive acknowledgement
from the fabric during this transmission. Otherwise (no ack from the fabric), the

transmitter drops them after several attempts.

T2 (Serialization) Given that the transmitter reads the cells word by word from the
memory, and sends them byte by byte to the fabric, the transmitter should correctly

convert memory words to cell bytes prior to the transmission.

T3 (Order preservation) The transmitter should preserve the order of cells. That is, if
an address a/ is supplied by queue 7 before an address a2, then the cell at a/ should

be sent out before the cell at address a2 be sent out.

The transmitter subsystem is different than the receiver subsystem (or other
subsystems of the in port controller) in that the later communicates through a queue,
while the transmitter communicates with the fabric without using any queue. There is
therefore a tighter (synchronization) relation between the transmitter and the fabric.

We will show how IRS can model such (possibly reciprocal) communications.

Similar to other subsystems, we reduce transmitter verification by an appropriate data
abstraction. Following the data independence assumption, we reduce the queue data
set to two values {0, 1}. These values are respectively pointers to cell number 0 and 1
in the memory. The memory can be reduced to contain only cell0 and celll.
Moreover, we downsize the cells to 10 bytes. This is possible since the transmitter

has a generic architecture, parameterized on the cell length. (However, the
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architecture is such that the cell size cannot be reduced to less than 10 bytesls.) With
these reductions, we initialize cell0 in the memory to <1, 1, 0, 0, 0, 0, 0, 0, 0, 0>
where the first two 1’s represent routing tags of the cell (which were added by the
dispatcher). Similarly, Celll, the cell that we want to track is initialized to <1, 1, 1, 2,
3, 4, 5, 6,7, 8. This sequence of celll helps us to verify the correct serialization

property (72) as well as the cell delivery property (77) of the transmitter.

5.7.1 Interface recognizers in the transmitter subsystem

We first develop a recognizer Iy at the queue output. Iy reads three signals of the
queue interface; fop which shows the head of queue, gTempty which indicates
whether the queue is empty, and deq that dequeues an element from the queue. When
the condition ((fop = 1) and (deq = 1) and (qTempty = 0)) becomes true, /o makes a
transition (to state g/) to detect that a 1 was dequeued (Figure 5.11). Assuming that
there is only one data value 1 in the data set, the head element should never get

another 1. We thus obtain the constraint C,,,;; shown in Figure 5.11:

Cynis = [(state = q1) => (top = 0) ]

else top=0

Figure 5.11: An IRS for a data set reduced queue.

15 Transmitter reads 4k + 2 bytes from the memory, where  is the number of words in an ATM cell
and the additional 2 bytes are routing tags. Each cell thus requires (1 + k) memory accesses. A loop in
the transmitter is repeated & times to transmit 4k bytes, but the first iteration is special since the
acknowledgement from the fabric cannot be checked before transmitting the first byte of the first
iteration (Figure 4.3). After this point, the acknowledgement (for the transmitted bytes) is checked
before transmitting any new byte. The first iteration of the loop is therefore unfolded, while the normal
loop is executed (k — 1) times. The transmitter can send cells of (2 + 4 + 4 (k- 1)) bytes, where

k > 2 . For (k=2), the cell size is reduced to a minimum of 10 bytes. More formally, one should use a

theorem prover to prove that the transmitter works properly forany & = 2.
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Using the timing diagram of the transmitter/fabric interface, an IRS Iy is designed to
recognize the cells at the transmitter/fabric interface. The timing diagram and IRS /3
are shown in Figures 5.12 and 5.13. In the initial state, /;) awaits a routing tag hl
from the transmitter. This happens when the fabric environment machine 7., that
monitors the fabric inputs is in state p9. (States of /.., are shown in the timing
diagram). By a transition s0 -> s, I;y detects the state p9 of /,,,, and the routing tag hl
= 1. The transitions s0 -> s/ -> 52 -> s0 trace the non-representative cell cell0, i.e.,
<1,1,0,0,0,0,0, 0, 0, 0>. The transitions s0 -> sI-> ... -> s10 recognize the cell
celll, ie.,<1,1,1,2,3,4,5, 6,7, 8. After that in state s/0, only the values 0 or 1
are accepted, indicating that the sequence of celll has occurred once, as required by
the data independence assumption.

The ack signal has been taken into account in IRS 7, only after recognizing 4/ and
h2 and the first byte of the cell body in s3. This is derived from ackOut0 in the
timing diagram specification in Figure 5.13. In the case of a negative ack in states s3
to 59, I;o returns to the initial state s0, since the transmitter stops and it will retransmit
in the next frame. Remark that, following the timing diagram, after the last byte of the
cell “8” is sent in s9, no ack is expected for it in s70. Due to the pipeline delay in the
fabric, it is supposed that the last byte of the cell will be unconditionally accepted by
the fabric, given that the preceding bytes of the cell were accepted [27].

else

ackOut0=1and  ackOut0 =]

p
din0(0)=1 din0=1 din0=2 din0=3

s4

ackOut0 =0

<

ackOut0= 1 and

ackOut0 =0 din0=4

ackOut0=1 ackOut0=1 ackOut =1 ackOut =
and dIn0 =8 and din0="7 and din0=6 and din0 =15

Figure 5.12: IRS [, at the transmitter/fabric interface
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dIn0 T
ackOutOr —————

lhl+3 tH1+ATMlength

Figure 5.13: Timing diagram specification of the transmitter/fabric interface
(Figure 5.1)

The recognition conditions are encoded by the following constraints on /;¢:

1. (routing tag h2) Cy, := [(state = s1) = (dIn0 = 1)], where dIn0 designates the

transmitter output.
2. (data value 2) C; := [(state = s3 and ackOut0) = 1) = (dIn0 = 2)]

3. (data value 0 or 1) Cy; == [(state = 510) = (dIn0 = 0 or dIn0 = 1)]

Constraint C, asserts that data value 2 is recognized in state s3, if ack is asserted in
that state. Similar constraints are stated for data values 3, 4, .., 8. Cy; asserts that a

value 0 or 1 is recognized from state s5 on.
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We verified that the system composed of the transmitter, the memory, and the
interface machines Iy, Iy, Ijy satisfies all mentioned constraints. For instance, by
activating Cy; (on the frame start pulse generator IRS), we verify that

( ALWAYS: C); = true). The entire verification can be denoted by

I(Cp) A Io(Cunis) A transmitter n memory |= I1o(Cya, Ca, ..., Cs, Cor).

Now, we consider the order preservation property (73). Similar to the receiver
subsystem, we verify that the transmitter transfers the cells in order. Suppose that the
address input of the transmitter is constrained to a sequence (0)*(1)(0)*(2)(0)* by an
IRS I’g. Let cell0, celll, and cell2 denote three arbitrary but different cells in memory
addresses 0, 1, and 2 respectively. We use an IRS 7’ to recognize the sequence
(cell0)*(celll)(cell0)*(cell2)(cell0)* at the transmitter output. This verification is

represented by the following formula:

I(Cp) A I'o(Cunity, Cuniz) ~ transmitter A memory [= I'1o(C cenr, Ceeitz, C uniceit1 2),
(5.25)

where C’.oii1, Ceennz, and C’icenr 2 denote the constraints that recognize the sequence

of celll and cell2 at I';y.

5.7.2 Transmitter liveness

The properties checked by IRS constraints are safety properties asserting that if a
particular state is reached, a corresponding property holds. These constraints do not
assert, for instance, that the states that satisfy the properties are actually ever reached.
Liveness properties have to be added to guarantee that these states are eventually
visited. For instance, we verify that celll is eventually sent to the fabric/out port

interface [;;.

By the definition of I;¢ in Figure 5.12, ackOut0 has to be asserted from state s3 up to

state s9.
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Cackouo = [ ((state = s3) or (state = s4) or (state = s5) or (state = 50) or (state = s7)

or (state = s8) or (state = s9) ) = (ackOut0=1) ] (5.26)

Now, we activate (5.26) at [,y to prove that the transmitter eventually sends the
unique cell to the fabric. As usual, we use the AFTER-EVENTUALLY construct of
Formal Check [FC99] to express the following liveness property.

I(Cr) A 1o(Conis) A transmitter A memory A 11o(Cackouo) =
AFTER: Io(state = ql) A Ix(state = f2) EVENTUALLY: [;¢(state = s10) (5.27)

(5.27) asserts that the model composed of I; with constraint Cy activated, queue IRS
Iy with C,,,i; activated, the transmitter, the memory, and ;9 with Cperouo activated as
an assumption has the property that after /o reaches state ql and Iy reaches state f2,
the transmitter eventually sends celll and thus drives /; to state s/0. Note that when Iy
reaches state g/ and [; reaches state f2, the top element of the queue becomes 1, i.e.,
the pointer to the celll comes out to the transmitter and a frame start pulse is
generated by I;. Then, the unique cell is recognized at the transmitier/fabric

interface, along the sequence prescribed by /;.

5.8 Composing local properties of the in port
controller components

We have separately verified the in port controller components. Now, before
connecting them together, we have to verify that they are compatible, i.e., each
subsystem involved in the reasoning satisfies no-output-constraining (W1, W4) and

no-cycle-of-gates properties (W2, W3, W5).

1 (Wellfoundedness/compatibility) Similar to I; A receiver A queueR A I; subsystem
in Section 5.5, we verify that I; A receiver A queueR A dipatcher A queuePl A

queueP2 A scheduler A queueT A transmitter A Ijy satisfy well-foundedness
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conditions. Having verified well foundedness, local safety properties can then be

combined together to prove global ones.

2 (Safety) We have verified that the in port controller components individually
preserve data order. By a reasoning similar to the one that was used in composing of
the receiver and the queue R in Section 5.5, we use IRS transitivity rule to conclude

that the in port controller preserves cells order.

11(Ceeiioy Ceentty Ceetizs Cuniceitn 2) A inPortController [=1'10(C cenr, Ccetizs C unicelt 2)
(5.28)

Constraints C’..;; and C’.2in (5.28) recognize the sequence of celll and cell2 at I’,.
They assert that the headers of celll and cell? are converted according to the routing
table and then the routing tags 42/ and 42 are prepended to them. We used cells of the
same priority, since otherwise the order may not be preserved. In this way, (5.28)
infers cell extraction, header transformation, no duplication, and order preservation

properties of the in port controller that are defined in Chapter 4.

Verification of (5.28) proves safety properties such that, for instance, the in port
controller cannot duplicate cells or change their order. It does not assert, however,

that any cell is eventually transferred. This is considered in liveness verification.

3 (Liveness) We have to prove that the composed system is live. Suppose a stream
(cell0)y*(celll)(cell0)* is “supplied” by I; at the in port controller input. From the
liveness property of the components, we should prove that after a celll (of high
priority) arrives to the input, it eventually reaches ;o at the output of the in port
controller. The following subgoal express this global liveness property. Fairness and

other assumptions needed to prove the liveness property are stated as well.
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I5(C) A 11(Ceeito, Ceentt, Cunicents) A inPortController A AO A Al A A2 N A3 NA4 N A5
NAG6 AAT |= AFTER: I)(state = s7) EVENTUALLY: Iy(state = s10) (5.29)

where 40-A7 are defined as follows: A0 states that fs pulses are repeatedly generated;
Al to A7 are collected from the component verifications. In the following definitions,
rok, dok, and sok denote the arbiter permission for the receiver, the dispatcher, and

the scheduler, respectively. Interfaces 7}, ..., Ij are pictured in Figure 5.1.

AQ := AFTER: true EVENTUALLY: I(state = f2)

Al := AFTER: I;(state = 54) EVENTUALLY: (rok ~ ~qRfull)
A2:= AFTER: ~qRempty A ~qP1full EVENTUALLY: deqR

A3 := AFTER: I,(state = s1) EVENTUALLY: (dok A ~qPIfull)
Ad4:= AFTER: ~qPlempty A ~qTfull EVENTUALLY: deqP1

A5 := AFTER: I;(state = sI) EVENTUALLY: (sok A ~qTfull)
A6:= AFTER: ~qTempty A ~qFfull EVENTUALLY: deqT

A 7 S AL WA YS.V [IO(CackOutO)

Primary assumptions A0 and A7 should be respectively satisfied by the fs pulse
generator and the switch fabric which form the global environment of the in-port
controller. However, 41-46 must be discharged on the components of the in-port
controller. We have to prove that rok A ~qRfull, deqR , dok n ~qPIfull , deqPl, sok A
~qTfull, and deqT occur infinitely often.

Proof: We first show that rok, dok, and sok in AI, A3, and A5 are infinitely often
asserted by the arbiter. We use linear temporal logic formulas when reasoning about
liveness properties. (For instance GF p expresses "infinitely often p", etc.) In Section
5.2, we mentioned that the arbiter can grant memory accesses to the receiver and the
dispatcher if the transmitter releases the memory repeatedly. The transmitter, in turn
releases the memory if it receives an acknowledgment from the fabric, during the cell
transmission. However, if it does not receive any acknowledgment, it tries to

retransmit the cell several times before dropping the cell. Whether the cell is
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discarded or sent out, the transmitter will eventually release the cell memory (GF
~transmitterMemReq). Now, the arbiter can grant memory accesses to the

components, when the transmitter is not accessing the memory.

I5(Cy) A transmitter A AQ |= GF (~transmitterMemReq)

Arbiter |= G (~transmitterMemReq = rok v dok v sok) (5.30)
Arbiter [= G (~transmitterMemReq A ~dok A ~sok = rok)

Arbiter |= G (~transmitterMemReq A ~rok A ~sok => dok)

Arbiter [= G (~transmitterMemReq A ~rok A ~dok => sok)

Next, we discharge assumptions A2, A4, and A6 by proving that deqR, deqPI, and
deqT occur infinitely often. The transmitter asserts deqT infinitely often to transmit

new cells to the fabric.

I5(Cg) A transmitter A AO [= G (~qTempty A ~qFfull = F deqT) (5.31)
(5.31) discharges A6.
I5(Cp) A transmitter A AO [= A6 (5.32)

(5.32) is represented by an edge 40 -> A6 in the “proof graph” shown in Figure 5.40.
A proof graph [15] illustrates the dependencies of assumptions on other assumptions
and properties. A non-circular proof graph ensures that the overall liveness

verification is well founded.
By (5.31), deqT is asserted infinitely often as far as the queue T is not empty and F is

not full. Queue 7 becomes infinitely often not full (i.e., ~¢g7full) letting the scheduler

write new addresses to 7, which are dequeued from P/.

scheduler A GF (sok) |= G (~qTfull A ~gPlempty = F deqP1l) (5.33)
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(5.33) is represented by GF (sok) -> A4 in Figure 5.14. By (5.33), deqP1 is asserted
infinitely often, making P/ not full and letting the dispatcher write new addresses to

P1 that are dequeued from R.
dispatcher n GF (dok) |= G (~qP1full A ~qRempty = F deqR)

Therefore, deqR is infinitely often asserted and the queue R becomes not full. This

lets the receiver to read new cells from the input FIFOs and insert their addresses to

R.

receiver A GF (rok) |= G (~qRfull A ~FIFOempty A ~qFempty = F (deqF A
deqFIFQ))

A8 in the proof graph is defined as follows:

A8 = AFTER: ~qRfull A ~FIFOempty A ~qFempty
EVENTUALLY: deqT A deqFIFO

A8

/Aé A4 A2
A0 GF sok\ GF Yok GF rok
A5 A3 Al

Figure 5.14: Proof graph to discharge assumptions 47-46

The proof graph in Figure 5.14 indicates that 47-46 and A8 hold true if sok, dok, and

rok are infinitely often asserted and A0 is respected by the pulse generator.

A0 A GF sok A GF dok A GF rok —=> Al AA2 ANA3 ANA4 AA5 A A6 (5.34)
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Using (5.34) and the arbiter verification (5.30), the liveness property (5.29) can be

rewritten as follows:

IfS(CfS) A II(Ccem), Ceentl, CuniCelI]) A inPortController n AO AN A7 l‘—'
AFTER: [(state =s7) EVENTUALLY: [;o(state = s10) (5.35)

By (5.35), if the acknowledgement is asserted during cell transmission (i.e., A7 is
respected) and frame pulses are repeatedly generated (i.e., A0 is met), then (high

priority) cells will successfully be sent out to the fabric.

(5.35) proves the in port controller liveness property. Before presenting the switch
fabric and its composition with the in port controller, we first consider a stronger

liveness property, the proof of which requires circular reasoning.

5.8.1 Circular reasoning to prove liveness property

From the definition of assumptions 42, A4, and 46 in Section 5.8, it follows that the
in port controller is "active" (i.e., it reads the queues by asserting degR, degP1, and
deqT repeatedly) as long as the corresponding queues are not empty. However, when
the queues become empty, the controller eventually becomes inactive. We prove a
liveness property that if complete ATM cells arrive infinitely often, then the queues

R, P1, and T become repeatedly non-empty.

Proof: A proof graph for the goal that the queues become repeatedly not empty is
illustrated in Figure 5.15. An edge p —{? g indicates that p is to be assumed in module

M when proving F' g. Similarly p %} g indicates that p is assumed in the current state

becomes non-empty (i.e., ~gTempty) if enqT is asserted. The scheduler can assert

enqT if the queue PI is not empty, since it transfers addresses from P/ to 7. Pl
becomes non empty if engP1 is asserted. It is asserted if R is not empty. R becomes
non empty if engR is asserted and engR is asserted if the input FIFO and the queue F

are not empty. However, F' to become non empty requires that engF be asserted, and
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it happens when 7 is not empty. This reasoning is apparently circular, since T to

become non empty requires that T be non empty. As mentioned in Chapter 2, the
circularity can be resolved by induction over time. This rule is shown in Figure 5.16.
As shown, if the cycle is cut by at least one time unit delay (e.g., one X in the graph),
then the circular reasoning is sound by induction. While we used the X operator to
implement the proof graph, McMillan [15] uses UNTIL operator to implement it. In

Appendix 2, we show that our approach is a conserative approximation to that in [15].

~FIFQempty 4—7_%%5—— AcompleteCellArrives

TCVINF

gFempty —— engR e gRempty

dis,z}\F

X F X F
engPl —q?l-b ~qPlempty <™ engT. - ~qTempt)LTm

engF

Figure 5.15: A proof graph for the in port controller global liveness

a) b)
Gp=gq)
Glg=>Xp) p/\ p
A Y X
GpnGg

Figure 5.16: Circular reasoning by induction over time. a) The rule. b) The proof
graph

Consider the graph in Figure 5.15. We assume that queue /' is not empty (at the
beginning) in the initial state, otherwise, there is no place available in the memory to
deposit the very first cell. The cycle in the graph is cut by a delay of 4 time umnits,
since there are 4 Xs on the graph edges. (For example, consider when engR is asserted

in the current state, R will become non-empty in the next state.)
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Using relations

[Gp=>Fq)]=[GFp=Fgqg)and [G (p = Xq)] = [G (Fp = XF qg)], the
proof graph can be represented by the formulas shown in (5.36). By an inductive
reasoning similar to the basic case in Figure 5.16, it follows that all propositions on
vertices of the cycle happen infinitely often. We have assumed that [GF
~FIFOempty n GF ~qFempty] = [GF (~FIFOempty A ~qFempty)], because (1)
when ~FIFOempty and ~qFempty are true, they remain so until the queue or the FIFO
is dequeued. (2) The receiver waits to observe that the queue F and the input FIFO
both are not empty before asserting degF A deqFIFO. The conclusion is that the
queue and the FIFO will be both not empty at the same time if they are so separately.
This synchronization guarantees that engR in the proof graph can be asserted
repeatedly, if ~FIFOempty and ~qFempty become true (independently) infinitely

often.

In summary, the queues R, P/, and T become repeatedly non empty and dequeues are
repeatedly asserted given that complete ATM cells arrive repeatedly into input

FIFOs.
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G [F AcompleteCellArrives = XF ~FIFOempty]
[GF ~FIFOempty n GF ~qFempty] = [GF (~FIFOempty A ~qFempty)]
G [F (~FIFOempty A ~qFempty)] = F enqR]

G [F engR = XF ~qRempty]
G [F ~qRempty = F enqP1]

G [F enqPl = XF ~qPlempty]
G [F ~qPlempty = F enqT]
G [F enqT = XF ~qTempty]
G [F ~qTempty = F enqF ]

G [F engF = XF ~qFempty]

F [~qFempty A AcompleteCellArrives |
(5.36)

GF (AcompleteCellArrives) = [GF (~FIFOempty) A GF (engR) A GF(~qRempty)
A GF (engPl) A GE(~qPlempty) A GF' (enqT) n GF(~qTempty) A GF (enqF ) A
GF (~qFempty) |

Proving liveness properties is more difficult than proving safety properties.
Soundness of the circular reasoning for safety properties is guaranteed by the no-
cycle-of-gates conditions of the well-foundedness rules (WI1-W5). Liveness properties
usually require fairness assumptions. A proof strategy (or so called proof graph) must
be planned to discharge these fairness assumptions. For a sound circular reasoning for
liveness, every cycle in the proof graph must be cut by at least one time unit delay
[15]. This is represented by an explicit X operator in our representation of the proof

graph. This delay guarantees the result by induction over time.

After proving safety and liveness properties of the in port controller, we next consider
the fabric properties. We verify that the fabric is timing-compatible with the in port
controller. Finally, we will infer the global properties of the switch module from the

in port controllers and the fabric properties.
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5.9 Switch fabric verification

In this section, we specify the fabric properties and show how to compose them with

the in port controllers properties.

F1 (Cell transfer) After dropping the routing tag &/ from the cells, the fabric should

forward them to the requested out ports.

F2 (Ack transfer) The fabric should forward the acknowledgement from the out ports

to the successful in ports.

F3 (Prioritization) High priority cells should be given precedence over the low

priority ones while arbitrating in the fabric.
F4 (Order preservation) The fabric should preserve the order of cells.

We use IRS to specify and verify these properties. In Section 5.7, we proved that the
transmitter of the in port controller sends (cell0)*(celll)(cell0)* to the fabric on /.

I5(Ci) A 1o(Cunit) A transmitter A memory |= I1o(Cha, Cs, ..., Cs, Cor)

Now, we prove that the fabric correctly transfers these cells to an out port. To verify
FI and F3 in a 4x4 switch fabric, we set a scenario in which in port0 is requesting the
out port0, with a high priority while other in ports are free to request either of out
ports, however with a low priority. In port0 should successfully be connected to out

port0.

We explain how to set up the scenario'®: Figure 5.18 illustrates that the inputs dIn0
and dINI of the fabric have been constrained by the constraints of /.n, /10 and I; and
its outputs dOut0 and ackOut0 are observed by constraints of an IRS /;;. The

18 We illustarte a 2x2 switch fabric, however, the verifications are carried on a 4x4 model.
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environment IRS 7., shown in Figure 4.5 in Chapter 4 provides a correct sequence of
inputs to the fabric. Suppose that 7., begins to send a non-zero 41,9 (the routing tag
on in port 0), and a non-zero h1,; (the routing tag on in port 1) in state P9. Both /7y
and %1y, should then be zero before P9. This (initial) zero segment of inputs can be
enforced by Cpspo and Cppy of Leny. Let x represent a don’t care value, i.e.,a 0 or 1.
Using the format shown in Figure 4.2 in Chapter 4, the scenario is initialized by
activating a constraint C., that assigns “xxxx0011” to s/, and “xxxxxx01” to Al
in P9. Let Cy1p0, Chipi, and Cic., denote respectively the environment and the scenario
constraints in Figure 5.18. Assuming that the fabric strips off 4/ before sending out

the cell body, the following IRS /;; can recognize celll at out port 0.

else (first byte)

state = p7 and ackin0 = 1 and ackin0 =1 and
dOut0 = 1

dOut0 = 0 or
dOut0 = 1

Km0 ackln0 =]
“ ackn and dOut0 = 3

dOut( =8

ackln0 =1
and dOut0 =6  and dOut0 = 5 and dOut0 = 4

Figure 5.17: IRS I;; for the cells at the fabric/out port interface

The tag h2 arrives at the fabric out port when IRS 1, reaches state P7. This state is
used as a means of synchronization between the property IRS I;; and the environment
IRS I.,, which supplies the timing infra-structure for the verification. Constraints of
L., ensure that 41 is kept zero before P9 on all in ports of the fabric (therefore, the
ports remain inactive). From P9, the constraints of /;p send cell0 and celll to the
fabric on in port 0 (More precisely, I,y represents the environment assumptions,
while I;p represents the preconditions of the cell delivery property). Finally,

constraints of I;; recognize the cells at the fabric out port 0 (Figure 5.18).
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Figure 5.18: The fabric subsystem for cell delivery property

The first recognition constraint is written for data value 2.

1. (data value 2) Cy, := [(state = 02 and ackin0 = 1) = (dOut0 = 2)]

2. (data value 3) Cs, = [(state = 03 and ackln0 = 1) = (dOut0 = 3)]

3. (data value 0 or 1) Cy; = [(state = 04) = (dOut0 = 0 or dOut0 = 1)]

Consider the subsystem ;9 A Iny A I A fabric A I;; in Figure 5.18. We activate
constraints (Cjz, C,, ..., Cs, Cyy) of I;p on the fabric inputs. We verify that the fabric
respects constraints Cs,, C3,, Cyso 0f 117, indicating that the representative cell celll is
recognized at the fabric output. The verification can be denoted by the following

formula.

I5(Cr) A Lens(Chipo, Chipts Cscen) A L10(Chz, Co, .., Cs, Cop) A fabric
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/= 111(Cao, ... Cso, Coro) (5.37)

The constraints of /;; (being true) assert a conditional property that celll can be
recognized on I; if states of /;; are visited. We need a liveness property to prove that
these states are eventually visited. For instance, we verify that after the transmitter
sends celll, i.e., I}y reaches its final state s/0, the same cell is eventually recognized

at the fabric output, i.e., the final state 09 of /;; is eventually reached.

I5(Cp) A fabric |= AFTER: Ijy(state = s10) EVENTUALLY: I;,(state = 09)

Next we verify property F2 by showing that the fabric correctly forwards the
acknowledgement from the out ports to the successful in ports. First, we assume a
condition on out port0 that ackln0 is asserted during the cell transmission from state

ol to state 06 of 1;; (Figure 5.17).

Cackino = [ ((state = ol ) or (state = 02) or (state = 03)
or (state = 04) or (state = 05) or (state =06) ) =

(ackIn0 =1 ] (5.38)

Similarly, by the definition of Ijo in Figure 5.12, ackOut0 has to be asserted from

state s3 up to state s9.

Cackouo = [ ((state =3 ) or (state = s4 ) or (state = s5) or (state = s6)
or (state = s7) or (state = s8) or (state = s9) ) =
(ackOut0 =1)] (5.39)

Now, we can verify that the fabric correctly transfers ack from out port0 to the in
port0 by checking that (5.38) discharges (5.39). Verification results show that
constraint (5.38) is not strong enough to prove (5.39). The counter example indicates

that a positive ack, sent in state o/ by /;; could not arrive to /;y sooner than in s4 . The
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switch components can be made timing-compatible as follows. Currently, the
transmitter sends routing fags hl, h2, and the first element of the cell without any ack
(Figure 5.13). The solution consists of shifting the transmitter expectation one cycle
away, e.g., it would expect the ack at 54 , after sending A/, h2, byte number 1, and
byte number 2 of the cell. Constraint (5.39) is modified as follows and the ack

transfer can then be successfully verified:

Cackouo = [ ((state = 54 ) or (state = s5) or (state = s6) or (state = s7)
or (state = s8) or (state =s59) ) =

(ackOut0 =1) ] (5.40)

The ack transfer from I;; to I o can be recapitulated as follows:

I6(Cr) A Lons(Chipo, Chipt, Cseen) A fabric A1(Cocking) [= T10(Cackouo) (5.41)

Finally, we consider the last property of the fabric: Order preservation F'4. We should
verify that if a sequence (cell0)*(celll)(cell0)*(cell2)(cell0)* is supplied by an IRS
I’;0 on the fabric input, the same sequence is recognized by I’;; at the fabric output.
However, we can simplify the verification. Given that the fabric does not store cells
and it only forwards them (with a fixed latency) to the successful out ports, we simply
prove that after the arbitration finishes, the values on a destination out port of the
fabric are equal to those that were on the (source) in port of the fabric. Consequently,
the sequence of data on the out port will equal the sequence of data on the in port.
The order will be preserved since fabric does not store any cell and cannot inverse

their order.

We explain how we implemented this verification. Suppose that the fabric receives
routing tags A1y, hopo, and a cell on its in port0. I.,, observes the reception of Al
and hoyo while it is in states P9 and p5, respectively (Figures 5.13 and 4.5). The fabric
transfers cells with a latency of two cycles to the destination out ports. Suppose that it

removes /1y and sends hoy to the out port 0. Two cycles later, hyyo is received on the
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out port0 (while I,y reaches state P7). Let din0 _1r denote the values on d/n0 that are
delayed for two cycles. The following property asserts that in the current frame from
state p7 (i.e., two cycles after the reception of /,9) until state p3 (i.e., two cycles after
the next frame start) the octets of the cell at the fabric out port0 equal to those stored

indn0 _rr.

I5(Cr) A Lew(Chipo, Chipt, Cscen) A fabric [=
After: state = p7 Always: dOut0 = dIn0 _rr  Unless: state = p3

Given that the frame is bigger than the cell size, the fabric forwards cells to the
requested out ports in the order they are received from the in ports. Let us note that
this implementation of the fabric does not contain any input or output latches, hence,

the latency has been reduced from 4 cycles (reported in [32]) to 2 cycles.

5.10 Composing in port controllers and the fabric

We have separately verified the in port controller and the fabric. Before connecting
them together, we have to verify that they are compatible. We consider compatibility
of the transmitter and the fabric, since the fabric communicates only with the

transmitter component of the in port controller.

1 (Well foundedness/compatibility) We have to verify that each subsystem involved
in the compositional reasoning satisfies no-output-constraining and no cycle-of-gates
conditions (WI-W5) (Chapter 3). For instance, we examine W3-W5 for the subsystem

119 A Loy A I A fabric A 177 shown in Figure 5.19.
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Figure 5.19: Well-foundedness check for the compositional verification of the
transmitter and the switch fabric

I,o introduces ackOut0—2— 0 dIn0, however, there is no any zero-delay path from
dIn0 to ackOut0 in I, A I A fabric A Ijj. I, introduces fs—>jew dIn0, and

there is no path from din0 to fs in I;g A I A fabric A I;;. So no (static or conditional)
cycle can be formed in I;9 A Leny A I A fabric A Ipp. IRSs Ijg, Leny, and I do not
constrain outputs (ackOut0 and dOut0 ) of the fabric. Therefore, 110 A I A Iem A
fabric A~ I;; satisfies no-output-constraining and no-cycle-of-gates conditions.
Similarly, we checked that Iy A I A transmitter A memory satisfies these conditions.
Hence, the composition is sound and the properties proven using IRS constraints

remain valid in the composed system.

2 (Safety) Safety properties of the inPortController A fabric can be deduced from the
following verification: (1) In Section 5.8, we showed that the in port controller
correctly extracts cells, deposits them in the cell memory, converts their headers, and
appends two routing fags 1 and h2 to each cell in the memory. (2) The verification

of the transmitter concluded that these cells are correctly forwarded from the memory
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to the transmitter/fabric interface I;9. (3) The verification of the fabric proved that the
same cells are correctly forwarded from I to the fabric/outPort interface I;;. For
instance, they illustrated that the routing tag s/ is removed and that the cells once and
in order are routed to the out ports. From these verifications and the transitivity
property of IRS 7y, it follows that the cells are correctly routed from end to the end,

from the in port controller inputs to the switch fabric output.

3 (Liveness) inPortController A fabric should be live, i.e., it should be eventually
possible to route a cell from input FIFOs to the out ports of the fabric. By (5.35), the
in port controller forwards a cell to the fabric (i.e., to I;o) if it receives ack during the

cell transmission.

I5(Ci) A L1(Coeno, Ceeniz, Cunicenr) A inPortController n A0 A 11o(Cackouo) |=
AFTER: I;(state = s7) EVENTUALLY: I;y(state = 510) (5.42)

By (5.41), the fabric forwards ack from the out ports to the requested in ports.
I5(Cs) A LwoChipo, Chipr, Cscen) A fabric Alp(Cacking) [= 110(Cackoun) (5.43)
From (5.42) and (5.43) and the transitivity rule of IRS, it follows that:
I5(Cr) A 1I1(Ceeito, Ceeitt, Cuniceit) A inPortController A A0 A
Len(Chipo, Chipt, Cseen) A fabric A T11(Cacking) [=

AFTER: Ij(state = s7) EVENTUALLY: I g(state = s10) (5.44)

Now, after receiving the cells, the fabric eventually forwards the successful ones to

the requested out ports.

I5(Cy) A fabric [= AFTER: Ijo(state = s10) EVENTUALLY: I;(state = 09)
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From this verification, we conclude that inPortController A fabric can correctly route
cells from input FIFOs (i.e., from I;) to the fabric out ports (to /;;), given that it

receives ack from the out ports as specified on /;;.

I5(Cr) A 1(Ceetio, Ceent, Cuniceits) A inPortController A A0 A

]env(ChIpOy Chlp]; Cscen) /\fdbi’iC A ]]](Cack]nO) /:
AFTER: I(state = s7) EVENTUALLY: 1;;(state = 09)

5.11 Summary and Experimental Results

We used Interface Recognizers/Suppliers (IRS) to implement circular constraint
model checking. IRS allows us to separately verify each component of the switch and
then infer the end-to-end properties of the system. We applied the data independence
assumption and cell size reduction techniques to further reduce the verification
problem, since otherwise the verification was not possible. The IRS key functions
provide a transitivity rule and a mechanism to prove end-to-end properties, i.e.,
supplying assumptions (as constraints on inputs) and verifying properties (using
constraints). We specified both safety and liveness properties of the ATM switch,
nevertheless, for the liveness properties, we used IRS and temporal operators of the
model checker FormalCheck [3], since IRS alone has no mechanism to specify such

properties.

Although the concept of the proof graph and inductive circular reasoning for liveness
was recently proposed in [15], our implementation of the rule is slightly different. For
instance, we explicitly introduce an initial requirement (as the base of the induction)
and an induction step using next time (X) operator. In the original form, these steps
are computed using the until operator (U). In Appendix 2, we compare these two

implementations of the rule.

Using the ATM switch, we illustrated our approach including the specification, the

compositional verification rule, and the appropriate reduction techniques tailored to

107




the verification of switch-type designs. This method can be used in the verification of

similar network components that contain queues.

Table 1 illustartes experimental results of our case study. We spent 3 months on
developing VHDL models of port controllers and 3 months out carrying on the
verifications. As Table 1 shows each model checking run took under 2 minutes,
however, developing and debugging IRSs and the switch components were the most

time-consuming activity.

Table 1:Experimental results of the switch fabric verification

Receiver (5.7) 5.09¢+8 78 52.92
Receiver (5.8) 1.10e+7 62 52.42
Receiver (5.9) 5.48e+5 62 51.91
Receiver (5.10) 6.38e+03 46 45.53
Receiver (5.12) 1.06e+06 45 46.20
Receiver (5.13) 1.29¢e+5 26 33.42
Receiver (5.14) 1.67e+5 28 33.51
Receiver (5.15) 1.41e+5 27 33.52
Dispatcher M 4.08e+04 14 13.66
Dispatcher ) 4.08e+04 13 13.66
Scheduler (SH 5.21et04 6 11.87
Scheduler (5.33) 100 24 11.80
Transmitter (5.25) 5.36e+04 61 21.65
Transmitter (5.27) 1.02e+04 61 20.43
Arbiter (5.30) 46 14 0.91

Fabric (5.37) 3.37e+11 42 17.76
Fabric (5.41) 3.32e+11 39 16.50
Fabric (5.42) 3.37e+11 44 19.84
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Chapter 6

Conclusions and future work

In this thesis, we proposed to use interface recognizers/suppliers (IRS) as a practical
mechanism to specify environment assumptions of reusable components, e.g., IP
cores. We have also used IRS to specify constraints and properties for model

checking.

The main advantage of IRS is its ability to act (without any code modification) as a
supplier of assumptions or verifier of a property. This key feature allows us to
implement a compositional verification method. For instance, in one step of the
reasoning, IRS verifies property on its inputs. Then, in the next step, it supplies that
property as an assumption to the subsequent components in the system. This easy
conversion of property/assumption provides a transitivity rule and allows us to

implement end-to-end verification of modular systems.

IRS is different than a monitor in that it constrains (or shapes) its inputs. A monitor
does not constraint its inputs; it only generates an output like other components in the
system. This input-constraining property of IRS is instrumental for symmetrically
being a supplier or a recognizer. On one hand, when IRS constraints remain true, they
indicate that the property that is represented by the constraints is satisfied by the
component. On the other hand, by forcing the constraint to be always true, IRS
restricts its inputs to the sequence that satisfies the property. In this way, the property

1s supplied as an assumption to other components.




Although IRS constraints its inputs, we have to assure that the outputs of the
components are not restricted when composed with IRS. We established this
requirement by a set of well-foundedness/compatibility conditions that are adapted

from reactive modules [36].

The original contributions of this thesis are as follows:

1 We reviewed recent developments in compositional and assume guarantee
verification (Chapter 2). We discussed whether each method supports circular/non
circular reasoning and whether it can be used when proving safety/liveness

properties.

2 We formulated interface recognizers/supplies, which are recognizers augmented
with Boolean constraints (Chapter 3). The constraints specify what values may occur

on IRS inputs at each state. In other words, IRS can constrain its inputs.

3 We developed a composition theorem for circular reasoning using IRS. In this way,
IRS framework extends non circular (or asymmetric) constraint model checking [25]

to a circular (or symmetric) constraint model checking (Chapter 3).

4 We demonstrated an application of IRS in (1) specifying environment assumptions
and in (2) modeling pre conditions / post conditions of properties of an ATM switch.
We specified, implemented and verified the switch. [The 4x4 ATM switch is about
15000 lines of VHDL code and includes more than 1500 state variables.] Verification
of such a complex system that handles cells of 53 bytes is far beyond the capacity of
current industrial model checkers like Formal Check [3]. We proposed to use
abstraction techniques, e.g., cell size reduction and data independence assumptions to
reduce the complexity of the verification. Our approach can be applied to other
systems that contain several queues or involve cell processing. Although the

application of the data-independence assumption is not new, its application to an
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ATM switch that processes bounded cells with header and routing tags (defining cell

priorities) is new.

5 IRS can specify only safety properties. Nevertheless, we have shown how to use
IRS and temporal operators of a model checker to specify and verify liveness

properties.

6.1 Future work:

1. (Automation) We have constructed the environment IRS from a timing diagram
specification of the fabric. It should be possible to automatically generate
environment IRS from timing diagrams. For instance, Allara et al. [1] have developed
a tool called STD to automatically translate timing diagrams into temporal logic
formulas. Tableau algorithm [6] generates a finite state machine (FSM) for a
temporal logic formula. Using STD and the tableau algorithm, one should be able to

generate FSM from the timing diagram.

Property IRS is obtained from specifications other than the timing diagrams. We
obtained the property IRS of the switch module from the switch specification. For
instance, the order preservation property required that a celll arrive before a cell2 to
the fabric. These specifications guided us to develop suitable IRS to model pre
conditions/post conditions of the properties. Automatic generation of one or more
IRS from such specifications should be investigated as well. Other issues concern the
constraints. The constraints of IRS are obtained from the transition conditions. In our
case study, we manually defined them. Automatically formulating constraints of the
IRS is another step toward full automation. More experiments have to be carried out

to fully understand problems related to the automatic construction of IRS.

2 (Processor verification) another possible direction is to study the application of IRS
methodology to microprocessor verification. It should be investigated what kind of
processor specifications or properties can be modeled by IRS. Switch is a data-

independent system, i.e., there is less interdependency between cells. A general-
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purpose microprocessor has different characteristics. The data independence
assumption is not valid on them. In practice, there can be global dependencies
between different IRSs in the system. For instance, when a particular state of one IRS
is reached, it may prevent another IRS from receiving data (e.g., an operand of an
instruction, etc). These interdependencies will require one or more additional IRS to

coordinate the local IRSs.

3 (Multiple layers of protocols) IRS can possibly be used in multi-layer verification.
Telecommunication protocols have multi-layer structures. The physical layers
communicate data at bit level, data link layers at frame level, network layers at packet
level, and transport layers at user defined message level [44]. Suppose that each layer
is separately represented and verified by an IRS. Then, how could these IRS be
related to each other? Consider a similar problem. If for a given interface several
IRSs are defined, what relation must be established between these IRSs? There is
some pioneering work in multiple layer verification [14]. It must be investigated how
these multiple layer refinement maps could be specialized by IRS. And, finally,
another question arises. Is it possible to replace one transition of the original IRS by a

second IRS like in hierarchical state charts [7]?
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Appendix I

Assume guarantee in reactive modules

[36]

A reactive module represents a system that interacts with an environment. A reactive
module M (or module M, for short) has a finite set of variables, denoted V. A "state"
of M is a valuation for V. V), is partitioned into three sets; input variables /, output
variables O, and privates variables P. While O and P are updated by M, 7 is updated
by the environment. A module M consists of one or more atoms that control (O U P)
variables of the module. Each atom controls one or more variable, however, every
variable is controlled by one and only one atom. Let X, be a finite set of variables of
an atom a. X, contains three sets of variables; a set of controlled variables ctrX, ¢ X,,
a set of read variables readX, < X,, and a set of awaited variables waitX, < {X, |
ctrX,}. A controlled variable of an atom may depend sequentially on a read variable
of the atom, much like a register output that depends on register input. A controlled
variable y of an atom may depend combinationally on an awaited variable x of the
atom. This is denoted x <, y to indicate that atom a can update y only after x has been

updated.

We review the assume guarantee theorem in reactive modules. Reactive modules MJ
and M2 are "compatible" if (1) their outputs are disjoint and (2) the transitive closure
(<M1 U <wmp)*+ is asymmetric, i.e., they form no cycle-of-gates (Chapter 2). Let M1
and M2 be two compatible modules, and let NI and N2 be two compatible modules

such that every input of NI // N2 is an input or an output of M1 || M2. Let < denote
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the trace-containment relation. If M1 // N2 <NI and M2 /| NI SN2, then M1 || M2 <
NI J/ N2.

Proof: Let 7, = s4s,...s, represents a trace of length (¢ +1) (for instance, 7} is a trace
of length 1). Let trace(M) represent the set of all traces of M. The relation <
represents the trace-containment (Chapter 2). Suppose a formula M1 < (N1, t) denotes
that all traces 7; of MI of length (t+1) are traces of NI. Let [T]j represent the
projection of a trace T over input/output variables of M (Chapter 2). The rule is

proved by an induction on trace length 7. Suppose that

1. Every trace T,.; of M1 // M2 (of length t) is a trace of NI || N2.
Tei€ trace (M1 || M2). [Tuilvyw: € trace (NI || N2) (A1)

2. Every trace of M1 || N2 is a trace of N1.
M1 | N2 < NI (A2)

3. Every trace of M2 || N1 is a trace of N2.
M2 || NI <N2 (A3)

Consider a trace Ty of M1 || M2:

Tye trace M1 || M2) (A.4)
We have to prove that [Ty, vz € trace (NI || N2). From (A.4) and the definition of
the composition, we have that the projection [T(]m; 1s a trace of M1.

[Tim: € trace (M1) (A.5)
Consider the trace Ty.; of M1 || M2. [Te1]vi2 is a trace of N1|| N2, by (A.1). Then, the
projection of that trace over N2 is a trace of N2:

[Tey]n2 € trace (N2) (A.6)
We show that [Tmnz € trace (M1||N2). From (A.5), we have [Ti.q]m € trace (M1).
Then, by (A.6) we get [Teilmijnz € trace (M1 || N2). We know that Ty € trace (M1 ||
M?2). Let Compare M1 // M2 to M1 || N2 when M1 [/ M2 makes a transition from Ty,
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to T,. We show that Oy, < Owmp. For any trace, we have M2 || NI < N2. Given that Oy;
< (Om2 U Op;) (By the definition of M2 || NI < N2), and On; n Op; = & (by the
definition of N1 || N2), then On; € Onm. M1 in M1 [/ M2 receives inputs from M2 and
also from an environment. M1 in M1 || N2 receives inputs from N2 and from the
environment. Since [Teilminz € trace (M1 || N2) and On; € Owma, M1 receives the
same input (from M2) in [Tui]mimz that it receives (them from N2) in [Tei]miw:
(given that the free inputs have been adjusted accordingly). It means that at the next
time, M1 can generate the same output in M1||N2 as it generates in M/ || M2. Hence,
the outputs of M1 in M1 || N2 at time T are the same as its outputs in M1 // M2 at time
t. The following denotes this.

Val(Ouy, M1 || M2, t) = Val(Ouy, M1 || N2, 1), (A7)
where Val(Oyy, M1 || M2, t) represents the value of outputs of M1 in M1 || M2. Now,
Similar to Op; € O, We have Oy; © Oyy;. For any trace, we have M1 || N2 < N1. By
this trace containment, inputs/outputs of NI/ can be assigned values vequal to

inputs/outputs of M1 in M1 || N2.

Val([Ou]ni, M1 || N2, t) = Val(Ony, t) (A.8)
(A.8) and the projection of (A.7) over NI give the following result.
Val([Oulni, M1 || M2, t) = Val(Op, 1) (A9)

Similarly, we can prove that

Val([Omz]nz, M1 || M2, t) = Val(Opz, t) (A.10)
Consider the inputs of NI and N2. Inputs of NI in NI|| N2 come from the outputs of
N2 plus some free inputs. Given the equalities (A.9) and (A.10), and the fact that
there is no cycle of gates in the designs and that the designs are non-blocking for their
inputs, all inputs/outputs of NI in NI || N2 (including the free inputs and the inputs
from N2) can be assigned values equal to those of M2 in MI || M2. Therefore, the
projection of [T¢] y; over N1, i.e., [Ti]n; is a trace of N1, [T{]y,€ trace (NVI). Similarly,
inputs/outputs of N2 can be assigned values equal to those of M2 in M1 || M2. So,
[T € trace (V2). Putting both together, we get

[Tdwsw:z € trace (N1||N2) (A.13)
Consider the base case. An empty trace (i.e., a trace of length 0) of M1 // M2 is a trace
of all systems, including N/ || N2. Consider a trace Ty (of length 1) of M1 || M2. 1t
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contains a valuation for the initial states of M1 || M2. By definition, the projection of
Ty (of MI || M2) over Ml, i.e., [Ty]lms is a trace of MI. Since, MI and N2 are
compatible, they contain disjoint set of outputs and no-cycle-of-gates. Therefore, M1
accepts any (initial) value for its inputs, coming from N2. [Tyly; can thus be
extended to contain any initial valuation for variables of N2. In particular, [/To/ain2
that contains initial assignments to M/ and N2 becomes a trace of MI||N2. By M1 ||
N2 < NI, we have that [T,/y; € trace (N1). Similarly, from [Tolm: € trace(M2), it
follows that [Ty/yzyni € trace (M2||N1), and [Ty/n; € trace(N2). By [To]n; € trace
(N1) and [Tolnz € trace(N2), we get that [To]nyz € trace (N1||N2). We conclude that
any trace of M1 // M2 is a trace of NI || N2, by this induction on the trace length.
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Appendix 11

Technical details

In this appendix, we review data independence assumtion, simulation relation, and

other technical details used in chapters 2, 5.

Bl. Data abstraction by data independence
assumption

Data abstraction is a technique that can be used in model checking of the systems that
employ a large number of data values. In such systems, reducing the data set to fewer
representative values may be sufficient to prove a property about the whole data set.
An assumption known as data independence [34] allows one to implement such an
abstraction. Data independent systems can be separated into two parts; a control and a
data path such that the values of the data do not affect the control state. In a data
independent system, if we change the input data, the behavior of the system will not

change, except for the corresponding values of the data output.

When a system satisfies data independence property, its data set can be reduced to a
smaller set while verifying the system properties. For instance, for the verification
that a protocol delivers all data, only two values, say 0 and 1 may be enough to prove
the data delivery property: One value for representing the data we are tracking for

data delivery, and the other one for representing all the other values.

Example 1 (Bounded buffer [18]) Consider a bounded first-in-first-out (FIFO) buffer.
Suppose that the data set is reduced to {0, 1}. Suppose we have verified that if data




value 1 enters the buffer exactly once, then it reaches out exactly once. For this
verification, the model checker has used an arbitrary number of Os and only one 1. (In
automaton terminology, a stream described by (0)*(1)(0)* is provided to the buffer
input, and the stream described by (0)*(1)(0)* is obtained on its output.) From this
verification, it follows that the buffer can deliver any data without duplication. Let
in(x) denote that a value x is enqueued in the buffer. Similarly, out(y) indicates that a
value y is dequeued from the buffer. Suppose a data, for instance 2 is duplicated in

the following sequence.
in(1); in(2); in(3); out(1); out(2) out(2); ...

If the duplicated output is changed to 1, and all others to zero, then according to the

data independence property of the buffer, we should get the following sequence.
in(0); in(1); in(0); out(0); out(1) out(1); ...

This sequence clearly violates exactly_once_in(1)/ exactly_once_out(1) property of
the buffer. Therefore, no data is duplicated by this data independent buffer, if it can
not be done for the reduced set. Kurshan [40] states that to reduce the data set to two

values during model checking, the following conditions should be met:

1. System be symmetric, with respect to permuting values,
2. The first value of data is generated precisely once, non-deterministically within a

stream of data having the second value.

The order preservation property can similarly be verified using a reduced data set {0,
1, 2}. Suppose that, by supplying a stream (0)*(1)(0)*(2)(0)* to the buffer input, the
same stream is recognized at its output. Notice that data values 1 and 2 are supplied
once, non-deterministically among a stream of zero. Then, it follows that the buffer

preserves the order among all the data it receives. The proof is similar to that of the
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data-delivery property. Suppose that a data, e.g., 4, enters the buffer before a data 5,

but comes out after 5 in the following sequence.
in(1); in(4); in(2); in(5); out(1); out(5); out(2); out(4) ...

By replacing 4 by 1, 5 by 2, and all others with 0, we get the following sequence,
which contradicts the recognized language (0)*(1)(0)*(2)(0)* at the buffer output.
Therefore, the order will be preserved for any data set, if it is preserved for the

reduced set {0, 1, 2}.
in(0); in(1); in(0); in(2); out(0); out(2); out(0); out(1) ...

B2. Simulation relation

The simulation relation [39] is classically defined over “Kripke structures” [41]. Let
M= <S8, Init, T, A, L> and M’= <§’, Init’, T’, A, L"> be two structures. A relation /

c S xS’ is a simulation relation over M x M iff the following conditions hold:

1. (Init, Init’) € H.
2.Forall(s,s)e H, L(s) =L’(s’) and
Vi[(@s,)eT = ' [, the T'A@t, t)e H]].

Whenever there exists a simulation relation H over MxM’, we write M < M’ to

express that M is simulated by M.

B3. Realtionship between upto- and at-inductions

We want to show that the at-induction

Vi. [q(0) ~ (@) = qt+1)] (B.1)

implies the upto-induction:
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ve. [p)*" = q)]. (B.2)

Proof: (B.2) at time 0 asserts g(0), by definition,. (B.1) also asserts ¢(0). Thus,

(B.1) => (B.2) at time 0. Consider 7> 0. Let 4 = p/*” | B = p(t-1), and C = q(t). We
have to show that:

[B=>C]=>[AAB=C] (B.3)

(B.3) can be rewritten as follows:

[(-B)vC] = [+(AAB)vC] (B.4)

For any two propositions P and Q, we have that [(P A Q) = P ]. This is true whether

QO = true or Q = false. For 4, and B this is written as follows:

[(AAB) = B] (B.5)
Using the relation [ (P = Q) = (—Q = —P) ], (B.5) gives the following relation.
[(=B)= —=(4rB)] (B.6)
By conjuncting both sides of (B.6) with C, we get (B.4), i.e.,

[(-B)vC] = [=AAB)vC(C] (B.7)

Using this proof and the relation (2.16) in Chapter 2, we conclude that the at-

induction is a conservative approximation to the upto-induction, i.e.,

[AOAGp=>XqQ]=[-(pU—q]
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It is easy to show that the upto-induction does not imply the at-induction. For
instance, let A = false, B = true, C = false in (B.3). Then, the upto-induction

(A A B) = C holds true, while the at-induction B = C does not hold true.
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Appendix 111

SMYV [24] model of a queue

We used CBL SMV [24] to show that a generic queue delivers data from its input to
its output. In this appendix, we first prove that when the condition (enqR A ~qRfull)
holds, an arbitrary input enters the queue. Then, using the SMV induction rule, we
verify that the data in any position in the queue eventually reaches the top position,
assuming that the dequeue is asserted infinitely often. This proves that the generic
queue correctly delivers the data it receives. Similarly, we prove that this queue

preserves data order

/* the queue model */

scalarset DATA undefined;

ordset INDEX 0..; else {
forall(i in INDEX)
module main(enq, deq, inp){ next(cells[i]) := cells[i];
next(count) ;= SIZE ;
input deq, enq : boolean; }
input inp : DATA; }
else if (enq = 0 & deq = 1){
cells : array INDEX of DATA; if (count > 0){
count : INDEX; forall(i in INDEX)
next(cells[i]) := cells[i+1] ;
SIZE : INDEX;
next(SIZE) = SIZE; next(count) = count - 1 ;
}
if(enq = 1 & deq = 0){ }
if(count < SIZE){ /* not full */
forall(i in INDEX) elseif (enq = 1 & deq = 1){
next(cells[i]) := (i = count) ? inp if (count > 0){
- cells[i]; forall(i in INDEX)
next(count) := count+1 ; next(cells[i]) :== (1 <(count- 1)) ?
cells[i+1] :

}
/* if full, the action is blocked */




(1=count-1)? inp:
cells[i];
next(count) := count;

}
}

else { /* no enq no deq */
forall (1 in INDEX)
next(cells[i]) := cells[i];
next(count) := count;

}

/* the property: any data can enter, if
Q Not full */

forall(j in DATA)
qlj] : assert G ( (inp =j & count <
SIZE & enq=1 & deq=0)->X
(cells[count-1]=17) );

forall(j in DATA) forall(s in
INDEX)forall(c in INDEX)

subcase q[j][s][c] of q[j] for SIZE =s
& count = ¢;

forall(j in DATA)forall(s in
INDEX)forall(c in INDEX)

using INDEX -> {s-1, s} prove
qlills]ic]; /* s-1 is needed for count - 1
in q[j] */

/* the property: any data inside the
queue finally arrives to top of queue, if
deq asserted inf. often */

forall(i in INDEX) forall(j in DATA)

P[i][j] : assert G ((cells[i]=j &1 <
count & count < SIZE) -> F (cells[0] =
D)

forall(s in INDEX) forall(i in
INDEX) forall(j in DATA)

subcase P[i][j][s] of P[i][j] for SIZE
=s;

fairDeq : assert G ( count >0 -> F

(deq=1));
assume fairDeg;

/* the proof */

forall(s in INDEX)forall(i in
INDEX) forall(j in DATA)

using INDEX -> {s}, fairDeq prove
Pi][1Ls];

}

/* Queue model for the order
preservation property */

/* scalarset DATA undefined; */
ordset INDEX 0..; /* index of cells */
ordset SEQ 0.. ; /* sequence number

for inputs */

module main(enq, deq, inp, out){
input deq, enq : boolean;

input inp : struct{
valid : boolean;
seq_num : SEQ;
}

output out: struct{
valid : boolean;
seq_num : SEQ;

/* data: DATA;*/

}

cells : array INDEX of struct{
valid : boolean;
seq_num : SEQ;
/* data : DATA;*/
}

count : INDEX;
cnt_i, cnt_o : SEQ;
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/* generic queue size */

SIZE : INDEX;
next(SIZE) := SIZE;

init(cnt_o) := 0; init(cnt_i) := 0;
inp.valid := (enq = 1) & (count <
SIZE);

if(eng =1 & deq = 0){
if(count < SIZE){ /* not full */

forall(i in INDEX)
next(cells[i]) := (1 = count) ? inp
: cells[i];

next(count) := count+1 ;
next(cnt_i) :=cnt_i+ 1;

}
/* if full, the action is blocked */

else {
forall(i in INDEX)
next(cells[i]) := cells[i];
next(count) := SIZE ;

next(cnt_i) := cnt_i;

}
}
elseif (eng=0 & deq = 1){
if (count > 0){
forall(i in INDEX)
next(cells[i]) := cells[i+1] ;

next(count) :=count - 1 ;
next(cnt_o) :=cnt_o + 1;

}

elseif (enq=1 & deq = 1){
if (count > 0){
forall(i in INDEX)
next(cells[i]) := (1 <(count - 1) ) ?
cells[i+1] :

(i=count-1)?inp:
cells[i];
next(count) := count;

next(cnt_i) :=cnt_i+ 1;
next(cnt_o) :=cnt_o + 1;

}
}

else { /* no enq no deq */
forall (i in INDEX)
next(cells[1]) = cells[i];
next(count) := count;

next(cnt_i) := cnt_i;
next(cnt_o) :=cnt_o;

/* the property */

orderedInp : assert G ( ((enq =
1) & (count <= SIZE)) -> inp.seq_num
= cnt_i);

ord :assert G (((deq=1) &
(count>0) & (cells[0].valid = 1)&
(count<SIZE)) -> cells[0].seq_num =
cnt_o);

forall(s in INDEX) forall(c in
INDEX) forall(i in SEQ)

subcase ord_case[i][s][c] of ord for
cnt_o=1 & SIZE =s & count =¢;

forall(s in INDEX) forall(c in
INDEX) forall(i in SEQ)

using
INDEX -> {s} , ord_case[i-1]
, orderedInp

prove
ord_case[1][s][c];

assume orderedInp;
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Appendix IV

VHDL models of the switch fabric and

the port controller

In this appendix, we provide VHDL models of the ATM switch components, e.g., the
receiver, the dipatcher, the scheduler, the transmitter, the arbiter, and the switch

fabric.

C1. The receiver

-- Written by M. Sadegh
Jahanpour.

-—~ parameters:
-- ATMlength is scaled down to
4, so, we set ATMlengthDiv4 =

-~ The first packet is written
at address 0, i.e.,
firstPacketadrs = 0.

-- Queue element width is
scaled down to 2 bits.

-- new modifications:

-- fifoIoutput is two bits
width and only the least
significant bit i.e,
fifoIoutput(0) is used as input
data. start-of-cell (S0C) bit
is additionaly provided along
each fifo element.

use work.atmDataTypes.all;

entity receiver is
port ( QFempty, QRfull,
fifoIempty, socI,
receiverGrant: in bit;
fifoLempty, socL: in
bit;
QFoutput: in
bit_vector(2 - 1 downto 0);
fifoIoutput: in
bit_vector(2 - 1 downto 0);
fifoLoutput : in
bit_vector(2 - 1 downto 0);
reset, clock in bit;
onePacketFromI,
onePacketFromL in bit; --
added input ports
consultFifol,
consultQF, deqgI, deqgF: out bit;
consultFifolL, deqlL: out
bit;
memInput : out
bit_vector( 4 - 1 downto 0) ;
memAdrsRCVR : out
bit_vector (4 - 1 downto 0);
engR: out bit;
receiverWillReq : out
bit;




writeEnableRCVR : out
bit;

QRinput : out
bit_vector(2 - 1 downto 0));

end receiver;

architecture stateMachine of
receiver 1is

-- combinational circuit
signals
type arbiterStates is (init,
i0, i1, 12, i3, i4, last, 10,
11, 12, 13, 14) ;
type count is range 0 to 2;
-~ ATMlengthDiv4

signal state_c

arbiterStates ; --
combinational
signal state :
arbiterStates; -- registers
signal wordCount : count;
signal wordCount_c : count;
signal 1b : bit; -~
loop back register
signal 1b_c : bit; --
and its wiring
signal dn_c : bit; --
internal signals for degFneeded
signal dn : bit;
signal r0_c : bit;
signal rl_c : bit;
signal r2_c : bit;
signal r3_c : bit;
signal r0 : bit;
signal rl : bit;
signal r2 : bit;
signal r3 : bit;
signal e

bit_vector(2 - 1 downto 0); --

a register for queue outputs
signal e_c :

bit_vector(2 - 1 downto 0); -~

signal adrs_c :
bit_vector(4 - 1 downto 0); --
register input

signal address :
bit_vector(4 - 1 downto 0); --
the register output

-- registered inputs

-- signal QFempty_r,
fifolempty_r, socl_r,
receiverGrant_r: bit; --
primary inputs

-- signal fifolLempty_r,
socL_r: bit;

-- signal QFoutput_r:
bit_vector(2 - 1 downto 0);
-~ signal fifoIoutput_r:
bit_vector(2 - 1 downto 0);
-- signal fifoLoutput_x
bit_vector(2 - 1 downto 0);
-- signal onePacketFromI_r,
onePacketFromL_r : bit;

begin -~ the state machine

transitions: process (state,
QFempty, dn, 1lb, fifoIempty,
socl, receiverGrant,
fifoLempty, socL, wordCount,
fifoIoutput, address, xr0, ril,
r2, r3, e, onePacketFromI,
onePacketFromL)

begin

case state is

when init =>
if (QFempty = '0' and
dn ='1' and 1b = '0' and
fifoIempty = '0'
and socI = 'l' and
receiverGrant = '1' and
onePacketFromI = '1'
-- new condition
-- and
onePacketFromI = '1°'
} then

state_c <= i0;

elsif (dn = '0' and 1b

= '0' and fifoIempty = '0' and
socI = '1l' and onePacketFromI =
lll

-- new condition

-- and
onePacketFromI_r = '1°

) then

state_c <= 1i0;
elsif(dn = '1l' and

QFempty = '1' and fifoTlempty =
'1') then
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state_c <=
init;
elsif(dn = '0' and 1b =
'0' and fifoIempty = '0' and
socI = '0') then

state_c <= init;

elsif (QFempty = '0' and
1b = '0' and fifoIlempty = '0’
and socI = '0') then

state_c <= 1init;

elsif(dn = '0' and 1b =
'0' and fifoIempty = '1') then

state_c <= init;

elsif (QFempty = '0' and
1b = '0' and fifolempty = '1"')
then
state_c <= init;
elsif (QFempty = '0' and
dn = '1l' and 1b = '0' and
fifolempty = '0'
and socI = 'l' and
receiverGrant = '0') then

state ¢ <= init;
-- now, loob back
side for the init state

elsif (QFempty = '0°

and dn ='1' and 1lb = '1' and

fifoLempty = '0°'
and socL = 'l' and
receiverGrant = 'l' and
onePacketFromL = '1°

-- new condition

-— and
onePacketFromlL_r = '1'

) then

state_c <= 10;

elsif (dn = '0' and 1b
= 'l' and fifoLempty = '0' and

socL, = 'l' and onePacketFromL =
|1l

-~ new condition

-- and
onePacketFromL_r = '1°'

} then

state_c <= 10;

elsif(dn = '1' and
QFempty = '1' and fifoIempty =
'0') then --1
state_c <= init;

elsif(dn = '0' and 1lb =
'1' and fifoLempty = '0' and
soclL, = '0') then -- 2

state_c <= init;

elsif (QFempty = '0' and
1b = '1' and fifoLempty = '0'
and socL = '0') then -- 3

state_c <= init;

elsif(dn = '0' and 1b =
'1' and fifoLempty = '1l') then

state_c <= init;

elsif (QFempty = '0' and
1b = 'l' and fifoLempty = '1"')
then -- 5

state_c <= init;

elsif (QFempty = '0' and
dn = '1' and 1lb = '1l' and
fifoLempty = '0' and -- 6
socL = '1' and
receiverGrant = '0') then

state_c <= init;
else -- no change
state_c¢ <= state;

end if;

when 10 =>

if (fifoIempty = '1')
then
state_c <= init;
elsif (fifoIlempty = '0°'
and socI = '1') then

state_c <= init;

133




elsif (fifoIempty = '0°
and socI = '0') then
state_c <= 1i1;
else -—- no change

state_c¢ <= state;

end if;

when il =>

if ( fifoIempty = '1')
then
state_c <= init;

elsif (fifoIempty = '0°'
and socI = '1') then
state ¢ <= init;
elsif (fifoIempty = '0’
and socI = '0') then
state_c <= 1i2;
else -- no change

state_c <= state;

end if;

when 12 =>

if ( fifoIempty = '1'")

then
state_c <= init;
elsif (fifoIempty = '0°'
and socI = '1l') then

state_c¢ <= init;

elsif (fifoIempty
= '0' and socI = '0') then
state_c <=

13;
else -- no
change
state_c <=
state;

end if;

when i3 =>

if ( fifoIempty =
'1') then
state_c <= init;

elsif (fifolempty
'0' and socI = '1l') then
state_c <= init;

elsif (fifoIempty =

'0' and socI = '0') then
state_c <= 14;
else -- no
change

state_c <= state;
end if;
when i4 =>
if (receiverGrant =
'1' and wordCount > 0 and

fifoIempty = '1') then

state_c <= 1init;

i

elsif (receiverGrant
'0') then
state_c <= 1i4;

elsif (receiverGrant =
'1' and wordCount > 0 and
fifoIempty = '0' and socI =
'1') then

state_c <= init;

elsif (receiverGrant =
'1' and wordCount > 0 and
fifolempty = '0' and socl =
'0') then

memInput (0) <= r0;
memInput(l) <= rl;
memInput (2) <= r2;
memInput (3) <= r3;

state_c <= 1il;

elsif (receiverGrant =
'1' and wordCount = 0) then

memInput (0) <= r0;
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memInput (1) <= rl;
memInput (2) <= r2;
memInput (3) <= r3;

state_c <= last;

else -- no

change
state_c <= state;

end if;

when last =>

if (receiverGrant =
'0' or QRfull = '1') then
state_c <= last;

else
state_c <= init;
QRinput <= e;
end if;

-- loop back side of
the state machine

when 10 =>

if (fifoLempty = '1'")
then

state_c <= init;
elsif (fifoLempty =
'0' and socL = '1') then
state_c <=
init;

elsif (fifolempty =
'0' and socL = '0') then
state_c <= 11;

else -- 1o
change
state_c <= state;
end if;
when 11 =>
if ( fifoLempty =
'1') then

state_c <= init;

elsif (fifoLempty
'0' and socL = '1l') then
state_c <= init;

i

elsif (fifoLempty

"0’ and socL = '0') then
state_c <= 12;
else -- no
change

state_c <= state;

end if;
when 12 =>

if ( fifoLempty =
'1') then
state_c <= init;

elsif (fifoLempty =
'0' and socL = '1') then
state_c <= init;

elsif (fifoLempty =
'0' and socL = '0') then
state_c <= 13;

else -— no
change
state_c <= state;
end if;
when 13 =>
if ( fifoLempty =
'1') then

state_c <= init;
elsif (fifoLempty =
'0' and socL = '1') then
state_c <= 1init;
elsif (fifoLempty =
‘0" and socL = '0') then

state_c <= 14;

else -—- no
change

state_c <= state;

end if;
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when 14 =>

if (receiverGrant
'1' and wordCount > 0 and
fifoLempty = '1') then

state ¢ <= init;
elsif (receiverGrant =

'0') then
state_c <= 14;

1

elsif (receiverGrant
'1' and wordCount > 0 and
fifoLempty = '0' and socL =
'1') then

state_c¢ <= init;

elsif (receiverGrant
'1' and wordCount > 0 and
fifoLempty = '0' and soclL =
'0') then

memInput (0) <= r0;
memInput (1) <= rl;
memInput (2) <= r2;
memInput(3) <= r3;

state_c <= 11;

elsif (receiverGrant
'1' and wordCount = 0) then

memInput (0) <= r0;
memInput (1) <= rl;
memInput (2) <= r2;
memInput (3) <= r3;

state_c <= last;
else -—- no
change

state_c <= state;

end if;
end case;

-- wait on state,
QFempty, dn, 1lb, fifoIlempty,
socl, receiverGrant,
fifoLempty,

-- -- socL,
wordCount, fifoIoutput,
address, r0, rl, r2, r3, e ;

end process
transitions;

degIConsultI: process
(state, QFempty, dn, 1lb,
fifoIempty, socI,
receiverGrant, wordCount,
onePacketFromI)

begin
if ( (state = init
and QFempty = '0'
and dn ='1"
and 1b = '0' and fifoIempty =
lOv
and socl =
'1l' and receiverGrant = 'l' and
onePacketFromI = '1")
or (state =
init and QFempty = '0'
and dn
='1'" and 1b = '0' and
fifoIlempty = '0'
and socl =
'1' and receiverGrant = '0')
or (state =
init and dn = 'l' and QFempty
'1' and fifoIempty = '0')
or (state =
init and dn = '0' and 1b = '0'
and fifoIempty = '0' and socI
lll)

or (state =
init and dn = '0' and 1b = '0'

and fifoIempty = '0' and socl =
'0")

or (state =
init and QFempty = '0' and 1lb =
'0' and fifoTlempty = '0' and
socI = '0")

or (state = i0
'0' and socIl =

and fifoIempty

|1|)

or (state = i0
and fifoIempty = '0' and socl =
|OI)

or (state = il
'0' and socI =

I

and fifoIempty

|1|)

or (state = il
and fifoIempty = '0' and socl =
IOI)

136




or (state = i2

and fifoIempty '0' and socl

1)

or (state = i2
and fifoIempty = '0' and socl
'0")

or (state = i3
and fifoIempty = '0' and socl
lll)

or (state = i3
and fifoIempty = '0' and socI
|O|)

or (state = i4
and receiverGrant = '1l' and

wordCount > 0 and fifoIempty =

'0' and socI = '1')

or (state = i4

and receiverGrant = '1' and

wordCount > 0 and fifoIempty =

'0" and socI = '0'")

) then

consultFifol <=
Il",

else
consultFifol <=
end if;

-- deq signals

if ( (state = init

and QFempty = '0' and dn ='1"
and 1b = '0’
and fifoIempty = '0' and socI
'1' and receiverGrant = '1°
and
onePacketFromI = '1"')
or (state =
init and QFempty = '0'
and dn
='1l' and 1b = '0' and
fifolempty = '0'
and socl
'1' and receiverGrant = '0')
or (state =
init and dn = '1l' and QFempty
'l' and fifoIempty = '0')
or (state =
init and dn = '0' and 1b = '0’

I

and fifolempty = '0' and socl
Ill)

or (state =
init and dn = '0' and 1b = 'O

and fifoIempty = '0' and socl =
'0)

or (state =
init and QFempty = '0' and 1b =
'0' and fifoIempty = '0' and
socI = '0")

or (state = i0
'0' and socl =

and fifoIempty

!1!)

or (state = i0
and fifoIempty = '0' and socI =
0")

or (state = il
and fifoIempty = '0' and socIl =
-1')

or (state = il
and fifoIempty = '0’ and socl =
'0)

or (state = i2
'0' and socI =

and fifoIempty

llv)

or (state = i2
and fifoIempty = '0' and socI =
'0")

or (state = i3
and fifoIempty = '0' and socl =
1)

or (state = i3
and fifoIempty = '0' and socIl =
oY)

or (state = i4
and receiverGrant = '1' and
wordCount > 0 and fifoIempty =
'0' and socI = '1')

or (state = i4
and receiverGrant = 'l1' and
wordCount > 0 and fifoIempty =
'0' and socI = '0")

) then

consultFifol <=
|1|;
else
consultFifol <=

101;

end if;
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-- deq signals

if ( (state = init
and QFempty = '0' and dn ='1"
and 1lb = 0"
and fifoIempty = '0' and socI =
'1' and receiverGrant = '1°
and
onePacketFromI = '1°')

or (state =
init and dn = '0' and 1lb = '0’

and fifoIlempty = '0' and socl =
lll

and
onePacketFromI = *1')

or (state =
init and dn = '0' and 1lb = '0"

and fifoIempty = '0' and socIl =
'0")

or (state =
init and QFempty = '0' and 1b =
'0' and fifoIempty = '0' and
socI = '0")

or (state =
init and dn = '1l' and QFempty
'1' and fifoIempty = '0')

or (state = 10
'0' and socI =

and fifoIempty
|O')

or (state = il
'0' and socI =

and fifolempty
101)

or (state = i2
'0' and socI =

i

and fifoIempty
|O|)

or (state = i3
'0' and socl =

and fifoIlempty
IO!)

or (state = i4
and receiverGrant = '1l' and
wordCount > 0 and fifoIempty =
'0' and socl = '0"')

) then
degIl <= '1';
else

degIl <= '0°';
end if;

-- wait on state,
QFempty, dn, 1lb, fifoIempty,
socl, receiverGrant, wordCount;

end process
degIConsultI;

deqgLConsultL: process
(state, QFempty, dn, 1b,
fifoLempty, socL,
receiverGrant, wordCount,

onePacketFromL)
begin
if ( (state = init
and QFempty = '0' and dn ='1"'
and 1b = '1°
and fifoLempty = '0’
and socL =
'1'" and receiverGrant = '1' and
onePacketFromL = '1"')

or (state =
init and dn = '0' and 1b = '1’

and fifoLempty = '0' and soclL =
lll

and
onePacketFromL = '1")

or (state =
init and dn = '0' and 1b = '1°
and fifoLempty = '0' and socL =
'0')  --2

or (state =
init and QFempty = '0' and 1lb =
'1' and fifoLempty = '0' and
socL = '0")

or (state = 10

and fifoLempty = '0' and socL =
llv)

or {(state = 10
and fifoLempty = '0' and socL =
'0)

or (state = 11
and fifolLempty = '0' and socL =
lll)

or (state = 11
and fifolLempty = '0' and socL =
'0')

or (state = 12
and fifolLempty = '0' and socL =
1)

or {(state = 12
and fifoLempty = '0' and socL =
IO!)

or {state = 13
and fifoLempty = '0' and socL =
1)

138




or (state = 13
and fifolLempty = '0' and socL =
0')

or (state = 14
and receiverGrant = '1l' and
wordCount > 0 and fifoLempty
'0' and socL = '1'")

or (state = 14
and receiverGrant = 'l' and
wordCount > 0 and fifoLempty
'0' and socL = '0'")

I

) then

consultFifoL <=

|1II.
else
consultFifol <=
0t
end if;
-- degL circuit
if ( (state = init
and QFempty = '0' and dn ='1"
and 1b = '1°
and fifoLempty = '0’ and socL =
'1' and receiverGrant = '1')
or (state =
init and dn = '0' and 1lb = '1'
and fifoLempty = '0' and socL =
-1-)
or (state =
init and dn = '0' and 1lb = '1"
and fifoLempty = '0' and socL =
0y --2
or (state =
init and QFempty = '0' and lb =
'1'" and fifoLempty = '0' and
socL = '0')y --3

or (state = 10
'0' and socL =

and fifoLempty
rov)

or (state = 11
'0' and socL =

H

and fifoLempty
10|)

or (state = 12
'0' and socL =

and fifoLempty
IOI)

or (state = 13
and fifolempty = '0' and socL =
IOI)

or (state = 14
and receiverGrant = 'l' and
wordCount > 0 and fifoLempty =
'0' and socL = '0')

) then
deqgL <= '1"';
else

deqlL <= '0"';
end if;

-- walt on state,
QFempty, dn, 1lb, fifolempty,
socL, receiverGrant, wordCount;

end process
degLConsultL;

-- engR circuit

enqueueR: process
(state, receiverGrant)
begin

if (state = last
and receiverGrant = 'l'and
QRfull = '0' ) then
engR <= '1"';
else
engR <= '0';
end if;
-- walt on state,
receiverGrant;
end process engueueR;

ConsultFdegF: process
(state, QFempty, dn, 1lb,
fifoIempty, socI,

receiverGrant,
fifoLempty, socL)
begin

if ( (state = init

and QFempty = '0' and dn ='1"
and 1b = '0"

and fifoIempty = '0' and socI =
'1' and receiverGrant = '1'")
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or (state =

init and QFempty = '0' and dn
-1
and lb =
'1' and fifoLempty = '0' and
socL = 'l' and receiverGrant =
|lv)
) then

consultQF <= '1";

degF <= '1';
else

consultQF <= '0';

degF <= '0';

end if;

-- wait on state,
QFempty, dn, 1lb, fifoIempty,
socl, receiverGrant,

fifoLempty, socL;

end process
ConsultFdedgF;

-- dequeue needed circuit

degNeed: process
(state, QFempty, dn, 1lb,
fifoIempty, socI,
receiverGrant, fifoLempty,
socL,

onePacketFromI, onePacketFromL)

begin
if ( (state = init
and QFempty = '0' and dn ='1"
and 1b = '0’
and fifoIempty = '0' and socIl =
'1' and receiverGrant = 'l’' and
onePacketFromI = '1"')
or (state =
init and QFempty = '0' and
dn ='1"
and 1b = '1l' and fifoLempty =
'0' and socL = '1l' and
receiverGrant = '1' and
onePacketFromL = '1')
) then

dn_c <= '0';

elsif (state = last
and receiverGrant = 'l' and
QRfull = '0') then
dn_c <= '1';

else

dn_c <= dn;
end if;
-- walt on state,
QFempty, dn, 1lb, fifolempty,
socI, receiverGrant,
fifoLempty, socL;

end process degNeed;

-~ loop back circuit,
1b

loopBack: process
(state, QFempty, dn, 1b,
fifoIempty, socI,
receiverGrant, fifolLempty,

socL, onePacketFromI,

onePacketFromL)
begin
if ( (state = init
and QFempty = '0' and dn ='1"
and 1b = '0°
and fifoIempty = '0' and socI =
'1' and receiverGrant = 'l
and
onePacketFromI = '1"')

or (state =
init and dn = '0' and 1b = '0’

and fifoIempty = '0' and socl =
Ilv
and

onePacketFromI = '1')

or (state =
init and dn = 'l' and QFempty =
'1'" and fifolempty = '1') -~
dual

or {(state =
init and dn = '0' and 1lb = '0'
and fifoIempty = '0' and socI
101)

or (state =
init and QFempty = '0' and l1lb

I
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'0' and fifoIempty = '0' and
socl = '0")

1}

or (state
init and dn = '0' and 1b = '0"

and fifoIempty = '1"')
or (state =
init and QFempty = '0' and 1b

'0' and fifolempty = '1')

-—- or (state
init and dn = '1' and QFempty
'1' and

fifoIempty = '0')
} then
1b_c <= '1';

elsif( (state =

init and QFempty = '0' and dn
=11

and 1lb =
'1' and fifoLempty = '0' and
socL = 'l' and receiverGrant =
lll

and
onePacketFromL = '1"')
added, may 15 2000

-— new

or (state =

init and dn = '0' and 1lb = '1"
and fifoLempty = '0' and socL
lll

and
onePacketFromL = '1l') -- neww

added may 15 2000

or (state =
init and dn = '0' and 1lb = '1'

and fifoLempty = '0' and socL
'0') --2

or (state =
init and QFempty = '0' and 1b
'1' and fifoLempty = '0' and
socL = '0')y -- 3

or (state =
init and dn = '0' and 1b = '1°
and fifoLempty = '1")

or (state =
init and QFempty = '0' and 1lb
'1'" and fifoLempty = '1"')

or (state =
init and dn = '1l' and QFempty
'1' and fifoIempty = '0')

correction carried out

I

i

) then
l1b_c <= '0';
else

1b ¢ <= 1lb_c;
end if;

-- wailt on state,
QFempty, dn, 1lb, fifolempty,
socI, receiverGrant,
fifoLempty, socL;

end process loopBack;

-- word counter
wordCounter: process
(state, QFempty, dn, 1b,
fifolempty, socI,
receiverGrant, fifoLempty,
socl, wordCount)

begin
if ( (state = init
and QFempty = '0' and dn ='1"
and 1b = '0"
and
fifolempty = '0' and socI = '1°
and receiverGrant = '1"')

or (state =
init and dn = '0' and 1b = '0"
and fifoIempty = '0' and socI
Ill)

i

or (state =
init and QFempty = '0' and dn
='1' and
1b = 1"
and fifoLempty = '0' and socL
'1' and receiverGrant = '1')
or (state = init
and dn = '0' and 1b = '1' and
fifoLempty = '0' and socL =
vll)

1}

) then
-= wordCount_c <= 2;

wordCount_c <= 1;
-- changed to 1
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elsif( (state = i3

and fifoIlempty = '0' and socI=
tOl)
or (state =
13 and fifoLempty = '0' and
socL, = '0")
) then

wordCount_c <=
wordCount - 1;

else -- no change

wordCount_c <=
wordCount ;
end if;

-- walt on state,
QFempty, dn, 1lb, fifoIempty,
socI, receiverGrant,
fifoLempty, socL, wordCount;

end process
wordCounter;

-- address circuit

adrsCircuit: process
(state, QFempty, dn, 1b,
fifoIempty, socI,
receiverGrant, QFoutput,
fifoLempty, socL, address, e)

variable temp
natural; -- temporary variable
variable elem
bit _vector(4 - 1 downto 0);
begin

if ( (state = init
and QFempty = '0' and dn ='1"
and 1b = '0"
and fifolIempty = '0' and socI=
'1'" and receiverGrant = '1')
or (state =
init and QFempty = '0' and dn
1]
and 1b =
'1' and fifoLempty = '0' and
socL = '1l' and receiverGrant =
1)

) then

adrs_c <= QFoutput;
e_c <= QFoutput;
-- typee
conversion for adrs_c

temp :=
bits2natural (QFoutput) ;

naturall2bits
(temp, elem);

adrs_c <= elem;

elsif( (state =
init and dn = '0' and 1b = '0’
and fifoIempty = '0' and socI=
|1|>

or (state =
init and dn = '0' and 1lb = '1"
and fifoLempty = '0' and socL =
|1|)

)} then

-— adrs_c <= e ;

-—- assigning
adrs_c <= e

temp :=
bits2natural (e);

natural2bits

(temp, elem);
adrs_c <= elem;

elsif( (state = 12

and fifoIempty = '0' and socl=
'0)

or (state =
12 and fifoLempty = '0' and
socL = '0"')

) then

-—- compute a
memory address from pointer e

if (

bits2natural (address) =
bits2natural(e) ) then --
first address

temp :=
bits2natural(e) * (1 + 1) + 0;
-- firstPacketAdrs : natural :=
0
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ATMlengthDiv4 = 2, and 1
location is preserved

-- for fabric
and out controller headers

temp := temp +
1; -- increment address

natural2bits
(temp, elem);

adrs_c <= elem;

else
-- subsequent addresses

adrs_c <=
increment (address) ;
end if;

else

adrs_c <=
address;
end if;

-- walt on state,
QFempty, dn, 1lb, fifoIempty,
socl, receiverGrant, QFoutput,
fifoLempty, socL, address, e;

end process
adrsCircuit;

-- e register, i.e, a
temporary element

tempRegister: process
(state, QFempty, dn, lb,
fifoIempty, socI,
receiverGrant, QFoutput, e)

begin

if ( (state = init
and QFempty = '0' and dn ='1"
and 1lb = '0'
and fifoIempty = '0' and socI=
'1l' and receiverGrant = '1')
or (state =
init and QFempty = '0' and dn
=11
and 1b =
'l' and fifoLempty = '0' and
socl, = '1l' and receiverGrant =
lli)

) then
e_c <= QFoutput;

else

e_c <= e;
end if;

-- walt on state,
QFempty, dn, 1lb, fifoIempty,
socl, receiverGrant, QFoutput,
e;

end process
tempRegister;

-- register inputs

reg: process (state,
fifoIempty, socI,
receiverGrant, wordCount,
fifoLempty, socL, r0, rl, r2,
r3, fifoIoutput, fifoLoutput)

begin
1if( (state = i0 and

fifoIempty = '0' and socI= '0")

or (state = i4
and receiverGrant = 'l' and
wordCount > 0 and fifoTIempty =
'0' and socI= '0')

) then

r0_c <=
fifoIoutput(0); -- forget the
soc bit

elsif( (state = 10
and fifoLempty = '0' and socL =
|O|)

or (state =
14 and receiverGrant = 'l' and
wordCount > 0 and fifoLempty =
'0' and socL = '0')

} then
r0_c <=
fifoLoutput(0);
else r0_c <= r0;

end if;
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if(state = il and
fifoIlempty = '0' and socI= '0')
then

rl_c <=
fifoIoutput (0);

elsif(state = 11 and
fifoLempty = '0' and socL =
'0') then

rl_c <=
fifoLoutput (0) ;

else rl_c <= rl;

end if;

if(state = 12 and
fifoIlempty = '0' and socI= '0'")
then
r2_c <=
fifoIoutput (0);

elsif (state = 12 and
fifoLempty = '0' and soclL =
o)
then
r2_c <=
fifoLoutput (0);

else r2_c <= r2;
end if;

if(state = i3 and
fifolempty = '0' and socI= '0')
then

r3_c <=

fifoIoutput(0);

elsif(state = 13 and
fifoLempty = '0' and soclL =
'0') then
r3_c <=
fifoLoutput (0);

else r3_c <= r3;

end if;

-- wait on state,
fifoIempty, socI,
receiverGrant, wordCount,
fifoLempty,

-- socL, x0,
rl, r2, r3, fifoloutput,
fifoLoutput;

end process reg;

YW : process
(state, QFempty, dn, 1b,
fifolempty, socI,

fifoLempty,
socL, wordCount)
begin
if |
(state = init and

QFempty = '0' and dn ='1"
and 1b = '0' and
fifolempty = '0' and socI= 'l')
or (state = init
and QFempty = '0' and dn ='1"

and 1b = '1°
and fifoLempty = '0' and socL =
llv)
or (state = i4
and
(wordCount =
0 or
(fifoIempty
= '0' and socI= '0')))
or (state = 14
and
(wordCount =
0 or
(fifoLempty
= '0" and socL = '0'")))
or (state = last)
) then
receiverWillReq
<= '1l";
else
receiverWillReqg
<= '0"';
end if;
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-- wait on
state, QFempty,dn, 1b,
fifolempty, socI,

~- fifoLempty,
socL,wordCount;

end process rw;

sequentials: process
begin

wailt until clock =

lll;

if (reset = '1"')
then

1b <= '0'; dn <=

'1'; state <= init; wordCount
<= 0 ;
- socl <= '0';

else

state <= state_c;

wordCount <=
wordCount_c;

1b <= 1lb_c;

dn <= dn_c;

e <= e_cC;

address <=
adrs_c;

rO0 <= r0_c; rl <=
rl c; r2 <= r2_c; r3 <= ¥r3_c;

end if;

end process
sequentials;

memAdrsRCVR <= adrs_c;
writeEnableRCVR <= '1"
when ( (state = i4 and

receiverGrant = '1°'

and wordCount > 0

and fifoIempty = '0' and
socI = '0")
or (state = i4d and

receiverGrant = '1' and
wordCount = 0)

or (state = 14 and
receiverGrant = '1'

and wordCount > 0 and
fifoLempty = '0’

and socL = '0'")

or {(state = 14 and
receiverGrant = '1l' and
wordCount = 0))

else
lovl.

end stateMachine;

configuration config_receiver
of receiver is

for stateMachine -- the
architecture

end for;
end config_receiver;

C2. The dispatcher

use work.atmDataTypes.all;
entity dispPart is

port (processorGrantD,
QRempty,QPI1full, QP2full,
clock, reset in bit;
QRoutput_c : in
bit_vector(2 - 1 downto 0);
memOutput : in
bit_vector(4 - 1 downto 0);
QRoutputEnable, deqR,
engPl, engP2 out bit;
memAdrsDISP: out
bit_vector(4 - 1 downto 0);
memInput_c : out
bit_vector(4 - 1 downto 0);
writeEnableDISP : out
bit;
QPlinput, QP2input : out
bit _vector (2 - 1 downto 0);
freePrio: in bit
) ;
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end dispPart;

architecture stateMachine of
dispPart is

type dispStates is (40, d4di,
d2, d3, d4);

-- combinational circuit
signals

subtype wordType is
bit_vector(4 - 1 downto 0);

-- a function that provides
new routing header

function newHeader (signal
oldHeader : wordType) return
wordType is
variable newHead

wordType;
begin -- a simple function

for now.
newHead := not (oldHeader) ;

return newHead;
end newHeader;

function fabricHeader (signal
oldFabHead : wordType) return
wordType is
variable fabHead

wordType;
begin -- a simple function
for now.
-- fabHead := not
oldrabHead;

fabHead := oldFabHead ;

return fabHead;
end fabricHeader;

function headerPriority
(signal header : wordType;
signal freePrio : bit) return
bit is
variable prio : bit;
begin

-- A simple example. Don't
change the priority.
prio := header (0);

return prio;

end headerPriority;

subtype vector is
bit_vector(4 - 1 downto 0);

signal state_c : dispStates ;
-~ combinational

signal state : dispStates;
-- regiters

signal address, adrs_c
bit_vector(4 - 1 downto 0);

signal e, e_c bit_vector(2
- 1 downto 0); -- queues
output

signal header : wordType; --
header is embedded in the
memory word

signal header_c : wordType;

-- signals for latchings

begin -- the state machine

combinationalDisp: process
(QRempty, processorGrantD,
header, state, e, QP1full,
oprP2full)

begin
case state is

when d0 =>
-- if (processorGrantD
= '0' and QRempty = '0')} then

if (processorGrantD =
'0' or QRempty = '1') then
state_c <= d0;

- elsif (processorGrantD =
'1' and QRempty = '0' ) then
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else

state_c <= dl;

-~ output signals are
given in another processes,
below

end if;

when dl =>
if (processorGrantD =
'0') then
state_c <= dil;

else -- processorGrantD
state_c <= d2;

end if;

when d2 =>
if (processorGrantD =
'0') then

state_c <= d2;
else -~ processorGrantD

state_c <= d3;

-- write to
memory data bus
memInput_c <=
newHeader (header) ;
-- note: newheader ->
memInput_c -> memory_c ->
written with clock

end if;

when d3 =>
if (processorGrantD =
'0') then
state_c <= d3;

else -- processorGrantD
= 11
state_c <=
d4;

memInput_c <=
fabricHeader (header) ; -- write
the new fabric header
end if;

when d4 =>

if (processorGrantD ='1"
and headerPriority(header,
freePrio) = 'l' and QPIfull =
'0') then
state_c <= d0;
QPlinput <= e;

elsif (processorGrantD
='1' and headerPriority (header,
freePrio) = '0' and QP2full =
'0') then
state_c <= d0;
QP2input <= e;

else
state_c <= d4;
end if;

end case;

end process
combinationalDisp;

memoryAdrs: process (address,
state, processorGrantD)

begin
if ( (state = dl or state =
d2) and processorGrantD = '1')
then

memAdrsDISP <=
increment (address) ;
else

memAdrsDISP <= address;
end if;

end process memoryAdrs;
-- values for address

(register) that goes through
queues

Qelements: process(state,
processorGrantD, QRempty,
address, QRoutput_c, e)

variable temp : natural; -
- temporary variable
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variable elem
bit_vector(4 - 1 downto 0);
-~ memory address

begin
if (state = d0 and
processorGrantD = 'l' and
QRempty = '0') then

e_c <= QRoutput_c;
- a copy of the address

temp :=
bits2natural (QRoutput_c) * (2
1) + 0;

natural2bits (temp,

elem) ;
adrs_c <= elem;
else -- no change
adrs_c <= address;
e_c <= e;
end if;

end process Qelements;

-- header circuit:
combinational part

headerCircuit: process
(state, processorGrantD,
header, memOutput)

begin
if (state = dl and
processorGrantD = '1') then
header_c <= memOutput;
else
header_c <= header;
end if;

end process headerCircuit;

sequential : process

begin

wait until clock = '1' ;

if (reset = '1') then

state <= d0;

else
state <= state_c;
address <= adrs_c;
header <= header_c;

e <= e_cCj;

end if;

end process;

writeEnableDISP <= 'l' when
({state = d2 or state = d3)

and processorGrantD = '1')
else ' 0';

degR <= '1l' when (state = d0

and processorGrantD = 'l' and
QRempty = '0"')
else '0';

QRoutputEnable <= 'l'when
(state = d0 and
processorGrantD = '1' and
QRempty = '0")

else '0';

engPl <= 'l' when (state = d4
and processorGrantD ='1' and
headerPriority (header,
freePrio) = '1' and QPIfull =
'0")

else '0°';

engP2 <= 'l' when (state = d4
and processorGrantD ='1' and
headerPriority (header,
freePrio) = '0' and QP2full =
o)
else '0';
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end stateMachine;

configuration config_dispPart
of dispPart is

for stateMachine -- the
architecture

end for;
end config_dispPart;

C3. The scheduler

written by: M.Sadegh Jahanpour
-- Feb, 99

use work.atmDataTypes.all;
entity schlPart is

port (processorGrants,
QPlempty, QP2empty,

QTfull, clock, reset
in bit;

QPloutput_c, QP2output_c

in bit_vector(2 - 1 downto

0);

QPloutputEnable, deqgPl,
QP2outputEnable,

degP2, engT : out bit;

QTinput : out
bit_vector(2 - 1 downto 0)

)

end schlPart;

architecture stateMachine of
schlPart is

type schlStates is (s0, sl);

-- combinational circuit
signals

signal stateSchl_c
schlStates;

signal stateSchl
schlStates;

signal e2, e2_c
bit_vector(2 - 1 downto 0); --
queues output

begin -- the state machine

combinationalSchl: process
(processorGrantS, QPlempty, QP2em
pty, stateSchl, e2, QTfull)

begin
case stateSchl is
when s0 =>

if (processorGrantS ='1"
and QPlempty = '0' and QTfull =
'0') then
stateSchl_c <= sl;

elsif (processorGrants
='1'" and QPlempty = '1' and
QP2empty = '0' and QTfull =
'0') then
stateSchl_c <= sl;

else

stateSchl_c <= s0;
end if;

when sl =>
if (processorGrantS =
'0' or QTfull = '1') then
stateSchl_c <= sl;

else

QTinput <= e2;
stateSchl_c <= s0;

end if;

end case;

end process
combinationalSchl;
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end process;

Qelements2:
process (stateSchl,
processorGrantS, QPlempty, degPl <= 'l' when
QP2empty, (stateSchl = s0 and
processorGrantS ='1' and
QPloutput_c, QP2output_c , e2, QPlempty = '0' and QTfull =
QTfull) '0")
begin else '0';
if (stateSchl = s0 and
processorGrantS ='1" and QPIloutputEnable <= '1°'
QPlempty = '0' and QTfull = when (stateSchl = s0 and
'0') then processorGrantS ='1' and
QPlempty = '0' and QTfull =
0)
e2_c <= QPloutput_c ; else
:Orl.
elsif (stateSchl = s0
and processorGrantS ='1l' and
QPlempty = '1° QP2outputEnable <= '1°'
and QP2empty = when ( stateSchl = s0 and
'0' and QTfull = '0') then processorGrantS ='1' and
QPlempty = 'l1l' and QPZ2empty =
e2 _c <= QP2output_c; '0' and QTfull = '0')
else else
'O';

e2_c <= e2;
degP2 <= '1l' when (

end if; stateSchl = s0 and
processorGrantsS ='1' and
end process QelementsZ; QPlempty = 'l' and QP2empty =

'0' and QTfull = '0'")

else '0';
seg2: process engT <= '1' when (
begin stateSchl = sl and
wait until clock = '1' ; processorGrantS ='1' and QTfull

—_ |O|)
if (reset = '1') then
else '0';

stateSchl <= s0;

e2 <= "00"; end stateMachine;
else

stateSchl <= configuration config_schlPart

stateSchl_c; of schlPart is

e2 <= e2_c; for stateMachine -- the

end if; architecture
end for;

end config_schlPart;
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C4. The transmitter

-—- written by: M.Sadegh
Jahanpour
-- Feb. 99

~- data path is 4 bits wide:
-- one bit for actbit, one bit
for hi/lo priority,

-- and two bits to select
either of 4 out ports.

-- QToutput is two bits wide.
-- memory address is 4 bits
wide.

~-- memory word is 8 bits wide.
-- address pointer 0 generates
memory address 0,

-- address pointer 1 generates
memoyry address 3.

-- internal registers regTO,
regTl, regT2 and regT3 are two
bits wide.

-- Aug. 99

library IEEE;
use IEEE.std_logic_arith.all;
use work.atmDataTypes.all;

entity transmitter4 is

port (frameStart, QTempty,
ackIn, clock, reset : in bit;
QToutput_c: in
bit_vector(2 -1 downto 0);
memOutput : in
bit_vector (16 -1 downto 0 );
ConsultQT, deqT, engF
out bit;
QFinput : out
bit_vector(2 -1 downto 0);
address_c : out
bit_vector (4 -1 downto 0);

transmitterWillReqg : out

bit;
-- dataOut : out
bit_vector(2 -1 downto 0)

dataOut : out
bit_vector(4 -1 downto 0)
)
end transmitterd;

architecture stateMachine of
transmitterd is

-~ combinational circuit
signals

type transmitterStates is
(t0, t1, t2, t3, t4, tb5, té6,
t7, t8, t9, tlo0,

t11,

tl12, t13, t14, tl1l5, tlé6);

subtype adrsType is
bit_vector(4 - 1 downto 0); --
concrete memory addresses

signal state_c
transmitterStates ; --
combinational

signal state
transmitterStates; -
registers

signal address : adrsType;

signal adrs_c : adrsType; --
extra wiring for address
signals

signal e, e_c : bit_vector(2
-1 downto 0); -- Queues
outputs

signal wordCount : natural;
signal wordCount_c : natural;
signal retransCount
natural; -- # of
retransmissions, tried so far
signal retransCount_c
natural;

-- T registers

signal regT0: bit_vector(4 -1
downto 0);

signal regTl: bit_vector(4 -1
downto 0);

signal regT2: bit_vector(4 -1
downto 0);

signal regT3: bit_vector(4 -1
downto 0);

-~ inputs of registers
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signal regTO_c: bit_vector(4
-1 downto 0);

signal regTl_c: bit_vector(4
-1 downto 0);

signal regT2_c: bit_vectoxr(4
-1 downto 0);

signal regT3_c: bit_vector(4
-1 downto 0);

begin -- the state machine

combinational: process
(state, address, QToutput_c,
ackIn, frameStart, QTempty,
memOutput, regT0, regTl, regT2,
regT3, wordCount)

begin
dataOut <= "0000";

case state is
when t0 =>
if (frameStart = '0' ox
QTempty = '1') then

state_c <= t0;

elsif (frameStart = '1'
and QTempty = '0' ) then

state_c <= tl;

else -- no change
state_c <= t0;

end if;
when tl =>
state_c <= t2;

when t2 =>

regT0_c <= memOutput (3
downto 0);

regTl_c <= memOutput (7
downto 4);

regT2_c <= memOutput (11
downto 8);

regT3_c <= memOutput (15
downto 12);

state_c <= t3;

when t3 =>

state_c <= t4;
when t4 =>

state_c <= t5;
when t5 =>

dataOut <= regT2;
state_c <= t6;

when t6 =>
dataOut <= regT3;

regT0_c <= memOutput (3
downto 0);

regTl_c <= memOutput (7
downto 4);

regT2_c <= memOutput (11
downto 8);

regT3_c <= memOutput (15
downto 12);

state_c <= t7;
when t7 =>

dataOut <= regTO0 ;
state_c <= t8;

when t8 =>

if (ackIn = '0') then
dataOut <= "0000";

state_cate_c <= tl6;
else
dataOut <= regTl;
state_c <= t9;
end if;

when t9 =>

if (ackIn = '0') then
-- dataOut (0) <= '0';
dataOut (1) <= '0"';
dataOut <= "0000";
state_c <= tl6;
else

dataOut <= regT2 ;

state_c <= t10;
end if;
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when t10 =>

if (ackIn = '0') then
-- dataOut (0) <= '0';
dataOut (1) <= '0°';
dataOut <= "0000";
state_c <= tl6;
else

dataOut <= regT3 ;

regT0_c <=
memOutput (3 downto 0);
regTl_c <=
memOutput (7 downto 4);
regT2_c <=
memOutput (11 downto 8);
regT3_c <=
memOutput (15 downto 12);

state_c <= tll;
end if;

when tll =>

if (ackIn = '0') then

~-- dataOut (0) <= '0';
dataOut (1) <= '0';

dataOut <= "0000";
state_c <= tl6;

else
dataOut <= regT0;
state_c <= tl2;

end if;

when tl2 =>

if (ackIn = '0') then
-- dataOut(0) <= '0';
dataOut (1) <= '0';
dataOut <= "0000";
state_c <= tl6;
else

dataOut <= regTl ;
state_c <= tl13;
end if;

when tl3 =>

if (ackIn = '0') then
-- dataoOut(0) <= '0";
dataOut (1) <= '0°';
dataOut <= "0000";
state_c <= tl6;
else

dataOut <= regT2 ;
state_c <= tl4;
end if;

when tl4 =>

if (ackIn = '0') then
-- dataOut (0) <= '0"';
dataOut (1) <= '0';
dataOut <= "0000";
state_c <= tl6;
elsif (wordCount > 0
and ackIn = '1l' ) then

dataOut <= regT3;

regT0_c <=
memOutput (3 downto 0);
regTl_c <=
memQutput {7 downto 4);
regT2_c <=
memOutput (11 downto 8);
regT3_c <=
memOutput (15 downto 12);

state_c <= tll;

elsif ( wordCount = 0
and ackIn = '1l' ) then

dataOut <= regT3 ;
state ¢ <= tl15;

else

state_c <= tl4; --
no change

end if;

when t15 =>
-- dataOut(0) <= '0';
dataOut (1) <= '0';
dataOut <= "0000";
QFinput <= e;
state_c <= t0;

when t16 =>

if (retransCount = 0)
then

state_c <= tl5;
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dataOut <= "0000";

else end if;
dataOut <= "0000";
state_c <= t0; end process adrsCircuit;
end if;
-- a process to count the
end case; number of transmitted words
end process combinational; wordCountCircuit : process

(state, ackIn, wordCount)

adrsCircuit: process (state, begin
wordCount, ackIn, QToutput_c,
address, retransCount, e) if (state = t4 ) then
variable temp : natural; -~ wordCount_c <= 2;
- temporary variable -- ATMlengthDiv4
variable elem
bit_vector(4 - 1 downto 0); -- elsif ((state = t8 and ackIn
memory address = '1'") or (state = tl2 and
ackIn = '1') )then
begin wordCount_c <= wordCount
- l’-
if (state = tl or (state =
tl1l4 and wordCount = 0 and ackIn else
= '1") wordCount_c <= wordCount;
or (state = tl6 and end if;
retransCount = 0 ) ) then

end process wordCountCircuit
e_cc <= QToutput_c; ;

temp :=
bits2natural (QToutput_c) * (2 + -- a process for the
1) + 0; -- firstPacketAdrs : retransmission circuit
natural := 0
-- ATMlengthDiv4 = 2, and retransmissionCounter:
1 location is preserved process (state, retransCount)
-- for fabric and out
controller headers begin
natural2bits (temp, if (state = tl1l5) then
elem) ; retransCount_c <= 4 ;

adrs_c <= elem;

elsif(state = tl6 and
retransCount > 0) then

elsif (state = t3 or state retransCount_c <=
= t7 or (state = tll and ackIn retransCount - 1;
= '1"'))
then else
adrs_c <=
increment (address) ; retransCount_c <=
retransCount;
else
end if;

adrs_c <= address ;
e ¢ <= e;

154



end process
retransmissionCounter;

-- to generate pulse
signals, 1i,e, to pull down
signals to zero

-- after being set
to one, we specify an extra
process

pulseGeneration: process
(state, wordCount, ackIn,

retransCount)
begin
if ( ( state = tl4 and
wordCount = 0 and ackIn = '1' )
or (
state = tl6 and
retransCount = 0) ) then
deqT <= '1';
else
deqgT <= '0';
end if;

if (state = tl5) then engF
<= '1"';

else engF <= '0';

end if;

if (state = tl or (state =
t14 and wordCount = 0 and ackIn
= '1')
or (state = tl6 and
retransCount = 0 ) )then
ConsultQT <= '1"';

else
ConsultQT <= '0';
end if;
end process pulseGeneration;

tw : process {(state, ackIn,
retransCount)

begin
1f ( (state = t2 or state =
t6 or state = tl5)
or
( (state = tl10 or
state = tl4) and ackIn = '1")
or (state = tl1l6 and
retransCount = 0) ) then

transmitterWillReqg <=
IlI;
else transmitterWillReqg <=
IOI;

end if;

end process tw;

sequential: process
begin
wait until clock = '1' ;

if (reset = '1l') then
state <= t0; wordCount <=
2 ; retransCount <= 4;

else

state <= state_c;

regT0 <= regTO_c;
regTl <= regTl_c;
regT2 <= regT2_c;
regT3 <= regT3_c;

wordCount <= wordCount_c;

address <= adrs_c;

retransCount <=
retransCount_c;

e <= e_cC;

end if;

end process sequential;

address_c <= adrs_c;
end stateMachine;

configuration
config_ transmitterd of
transmitter4 is

for stateMachine -- the
architecture

end for;
end config_transmitter4d;

155




CS5. The arbiter

-- written by: M.Sadegh
Jahanpour, Jan, 99.

-- Arbitrates the memory
accesses among the receiver,
the dispatcher, the scheduler,
and the transmitter.

entity arbiter is

port (transmitterWillReq: in
bit;
receiverWillReqg : in

bit;
reset : in bit;
clock : in bit;
receiverGrant: out bit;
processorGrant: out
bit);

end arbiter;

architecture stateMachine of
arbiter is

-- combinational circuit
signals

type arbiterStates is (a0,
al, a2, a3);

signal state_c

arbiterStates ; --
combinational

signal state : arbiterStates;
-- regiters
begin -- the state machine

cominational : process
(state, receiverWillReq,
transmitterWillReq)

begin
case state is

when a0 =>
if (transmitterWillReq
= '1") then

state_c <= al;

elsif
(transmitterWillReq = '0' and
receiverWillReq = '0') then

state_c <= al;

elsif
(transmitterWillReqg = '0' and
receiverWillReq = '1l') then

state_c <= al;

else -- no chang, ie,
self loop

state_c <= state ;

end if;

when al =>

state_c <= a2;

when a2 =>

state_c <= a3;

when a3 =>
state_c <= al;
end case;
end process;
outputs: process (state,
transmitterWillReq,
receiverWillReq)
begin
if (state = a0 and

transmitterWillReq = '0' and
receiverWillReq = '1') then
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receiverGrant <= '1';

else
receiverGrant <= '0';
end if;

if ( (state = a0 and
transmitterWillReg = '0' and
receiverWillReq = '0')
or ( (state = al or
state = a2 or state = a3) and
transmitterWillReg = '0')
)

then
processorGrant <= '1';

else
processorGrant <= '0';
end if;

end process outputs;

sequential : process

begin

-— output signals are

registered
wait until clock = '1' ;
if (reset = '1') then

state <= al;

else

~- state variables
state <= state_c ;
end if;
end process;
end stateMachine;
configuration config_arbiter of
arbiter is
for stateMachine -- the
architecture

end for;
end config_arbiter;

C6. The fabric

-- This model has four input
ports of 8 bits each.

use work.arbt;

entity fabdbdp is

-- generic (PORTWIDTH
positive := 4; PORTNUM
positive := 4);

port (dIn0O, dInl, dInZ, dIn3:
bit_vector(4 - 1 downto 0); --
Data inputs for all ports

ackIn0, ackInl, ackInZ2,

ackIn3 : in bit ; --
Acknowledge In signals

frameStart: in bit;

clock: in bit;

reset : in bit;

dout0, doOutl, dout2,
dout3 : out bit_vector(4 - 1
downto 0); --Data outputs for
all ports

ackout(0, ackOutl,
ackOut2, ackOut3 out bit

)

end fabdbdp;

architecture mix of fabdbdp is

signal dTerm0O, dTerml,
dTerm2, dTerm3 : bit_vector (4 -
1 downto 0); -- Intermediate
data outputs;

signal dout0_c,
dOutl_c,dout2_c,dOut3_c
bit_vector(4 - 1 downto 0);

signal ackOutO_c,
ackOutl_c,ackOut2_c,ackOut3_c
bit;

signal co0 : bit; -
- Control signals for output

signal col : bit; -
- port 0 to 3. If coi is '1l"',
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signal co2 : bit; -
- it means that output port i

signal co3 : bit; -
- 1is enable, otherwise it
disable

signal co0_c : bit;
-- Control signals for
output
signal col_c : bit;
-- port 0 to 3. If coi is
'1‘:
signal co2_c : bit;
-- it means that output
port i
signal co3_c : bit;

-- is enable, otherwise
it disable

signal ipO0, -- The input
port which destinated
ipl, -- to output
port j (i=0~3)
ip2, -- If ipi=j,

it means that input port

ip3: bit_vector(l downto
0); -- j will transfer
to the output i if

-- coi = 1.

signal req nopri00, --

Non-priority cell transfer
request

req nopri0l, -- from put k
to output j (reqg noprikj)

req nopri02,

req _nopri03,

reg nopril0,

reqg noprill,

req nopril2,

req _nopril3,

req nopri20,

req nopri2l,

req nopri22,

reg_nopril3,

req nopri3o0,

req _nopri3l,

reqg_nopri32,

reqg nopri33 : bit;

signal reqg pri00, -
Priority cell transfer request

reqg pri0l, -- from put
k to output j (reqg prikj)

req pril02,

req pri03,

req prilo,

req prill,

req pril2,

req pril3,

reqg pri20,

req pri2l,

reqg pri22,

req pri23,

req pri30,

req pri3l,

req_pri32,

req pri33: Dbit;

signal one_pri_for0,
-- At least one priority
request
one_pri_forl, -- for

output port i1 (one_pri_fori)
one_pri_for2,
one_pri_for3d: Dbit;

signal one_nopri_for0,
-- At least one non-
priority request
one_nopri_forl, -
- for output port i
(one_nopri_fori)
one_nopri_for2,
one_nopri_for3: bit;

signal state:
bit_vector(l downto 0); -
Timing state, it could be
-- 2'b00 (RUN), 2'b01

(WAIT)
-- 2'bll (ROUTE)
signal state_c:

bit_vector(l downto 0);

signal anyActive: bit;
-- Anyactive for all the
input ports

-- component declaration

component arbt
port(one_pri_fori : in bit;
one_nopri_fori : in
bit;
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state : in
bit_vector (1l downto 0);
req priOi : in bit;
req prili: in bit;
regq pri2i: in bit;
req pri3i:in bit;
reg _nopriOi :in bit;
req noprili : in bit;
req _nopri2i : in bit;
req nopri3i : in bit;
clock : in bit;
reset : in bit;
-- this is new

ipi : out bit_vector(l

downto 0)
)y

end component ;
begin -- the architecture

anyActive <= ( dIn0(0) or
dInl(0) or dIn2(0) or dIn3(0)
)

-- Important note: reg-nopri=
means either low or high prio
requests. However, reqg-pri

-- indicated only low prio
requests.

req_nopri00 <= dTerm0(0) and
(not dTerm0(2)) and (not
dTermO (3) ) ;

req nopri0l <= dPerm0(0) and
(not dTerm0(2)) and dTerm0(3);

reqg nopri02 <= dTerm0(0) and
dTerm0(2) and (not dTerm0(3));

req nopri03 <= dTerm0(0) and
dTerm0(2) and dTermO(3) ;

reg nopril0 <= dTerml (0) and
(not dTerml(2)) and (not
dTerml (3));

reg noprill <= dTerml (0) and
(not dTerml(2)) and dTerml(3);

regq nopril2 <= dTerml (0) and
dTerml (2) and (not dTerml(3));

req nopril3 <= dTerml (0) and
dTerml (2) and dTerml (3);

req nopri20 <= dTerm2(0) and

(not dTerm2(2)) and (not
dTerm2 (3)) ;

req nopri2l <= dTerm2(0) and
(not dTerm2(2)) and dTerm2(3);

req nopri22 <= dTerm2 (0) and
dTerm2 (2) and (not dTerm2(3));

req nopri23 <= dTerm2(0) and
dTerm2 (2) and dTerm2(3);

req nopri30 <= dTerm3 (0) and
(not dTerm3(2)) and (not
dTerm3 (3) ) ;

req nopri3l <= dTerm3 (0) and
(not dTerm3(2)) and dTerm3(3);

req _nopri32 <= dTerm3(0) and
dTerm3 (2) and (not dTerm3(3));

req nopri33 <= dTerm3 (0) and
dTerm3 (2) and dTerm3(3);

req pri00 <= dTerm0(0) and
dTerm0 (1) and (not dTerm0(2))
and (not dTermO(3));

req pri0l <= dTerm0(0) and
dTerm0 (1) and (not dTerml(2))
and dTermO(3) ;

req_pri02 <= dTerm0(0) and
dTerm0 (1) and dTermO(2) and
(not dTerm0(3));

req pri03 <= dTerm0(0) and
dTerm0 (1) and dTermO(2) and
dTerm0 (3) ;

req prilQ0 <= dTerml (0) and
dTerml (1) and (not dTerml(2))
and (not dTerml (3));

reg prill <= dTerml (0) and
dTerml (1) and (not dTerml(2))
and dTerml (3);

req pril2 <= dTerml(0) and
dTerml (1) and dTerml(2) and
(not dTerml(3));

req pril3 <= dTerml(0) and
dTerml (1) and dTerml (2) and
dTerml (3) ;

req pri20 <= dTerm2(0) and
dTerm2 (1) and (not dTerm2(2))
and (not dTerm2(3));

reg pri2l <= dTerm2(0) and
dTerm2 (1) and (not dTerm2(2))
and dTerm2(3);

req pri22 <= dTerm2 (0) and
dTerm2 (1) and dTerm2(2) and
(not dTerm2(3));

reqg pri23 <= dTerm2(0) and
dTerm2 (1) and dTerm2(2) and
dTerm2 (3) ;
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reqg pri30 <= dTerm3(0) and
dTerm3 (1) and (not dTerm3(2))
and (not dTerm3(3));

reqg pri3l <= dTerm3 (0) and
dTerm3 (1) and (not dTerm3(2))
and dTerm3(3);

req pri32 <= dTerm3(0) and
dTerm3 (1) and dTerm3(2) and
(not dTerm3(3));

req pri33 <= dTerm3(0) and
dTerm3 (1) and dTerm3 (2) and
dTerm3 (3) ;

-- Finite inite state machine
to control the timing of the
fabric
control: process (state,
frameStart, anyActive)
begin
case state is

when "00" =>

if (frameStart = '1'")
then

state_c <= "01";
else
state_c <= "00";

end if;

|
\%

when "01" =
if (frameStart= '0' and
anyActive = 'l' ) then
state_c <= "11";
else
state_c <= "01";

end if;

when "11" =>

if (frameStart = '0')

then
state_c <= "00";
else
state_c <= "01";
end if;
when "10" => state_c¢ <=
state; -- I have added for
completeness
end case;

end process control;

ackOutQ <= '1' when (

(ackInO = '1' and (col =
'1') and (ip0 = "00")) orx

( ackInl = 'l' and col =
'1' and (ipl = "00")) ox

(ackIn2 = 'l' and co2 =
1" and (ip2 = "00")) or

(ackIn3 = '1' and co3 = '1°
and (ip3 = "00")) )

else '0' ;

-- my modification

ackOutl <= '1' when/(

(ackIn0 = '1' and (co0 =
'1') and (ip0 = "01")) or

(ackInl = '1' and col = '1°
and (ipl = "01")) or

(ackIn2 = '1l' and co2 =
'1' and (ip2 = "01")) or

(ackIn3 = '1l' and co3 = '1°

and (ip3 = "01"))
)

else '0';

ackOut2 <= 'l' when/(

(ackIn0 = '1' and (co0 =
'1') and (ip0 = "10")) or

(ackInl = '1' and col = '1"
and (ipl = "10")) or

(ackIn2 = '1l' and co2 =
']l and (ip2 = "10")) or

(ackIn3 = '1' and co3 = '1"
and (ip3 = "10"))
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else '0';

ackOut3 <= '1l' when/(

(ackIn0 = '1' and (co0 =
'1') and (ip0 = "11")) or

(ackInl = '1l' and col = '1°
and (ipl = "11")) or

(ackIn2 = '1l' and co2 =
1" and (ip2 = "11")) or

(ackIn3 '

= '1l" and co3 = '1°
and (ip3 = "11"))
)

else '0';

OutputData : process( co0,
col, co2, co3, ip0, ipl, ip2,
ip3, dTerm0, dTerml, dTerm2,
dTerm3)

begin

-- outputs of the out-port 0;

if (( co0 = '1') and (ip0 =
"00")) then
dout0_c <= dTerm0;
elsif (( co0 = '1') and
(ip0 = "01")) then
dout0_c <= dTerml;
elsif ({ co0 = '1') and
(ip0 = "10")) then
dout0_c <= dTerm2;
elsif (( co0 = '1') and

(ip0 = "11")) then
dout0_c <= dTerm3;
else dOutO_c <= "0000";

end if;

-- out port 1

1f (( col = '1') and (ipl =
"00")) then
doutl _c <= dTerm0;
elsif (( col = '1') and
(ipl = "01")) then
doutl_c <= dTerml;
elsif (( col = '1') and
(ipl = "10")) then

doutl_c <= dTerm2;

elsif (( col = '1') and
(ipl = "11")) then
doutl_c <= dTerm3;
else doutl_c <= "0000";
end if;
if (( co2 = '1') and (ip2 =
"00")) then
dout2_c <= dTerm0;
elsif (( co2 = '1') and
(ip2 = "01")) then
dout2_c <= dTerml;
elsif (( co2 = '1') and
(ip2 = "10")) then
dTermlOut2_c <= dTerxrm2;
elsif (( co2 = '1') and
(ip2 = "11")) then
dout2_c <= dTerm3;
else dOut2_c <= "0000";
end if;
if (( co3 = '1') and (ip3 =
"00")) then
dOout3_c <= dTerm0;
elsif (( col3 = '1') and
(ip3 = "01")) then
dout3_c <= dTerml;
elsif (( co3 = '1') and
(ip3 = "10")) then
dOut3_c <= dTerm3;
elsif (( co3 = '1l') and
(ip3 = "11")) then
dout3_c <= dTerm3;
else dOut3_c <= "0000";
end if;

end process OutputData ;

ctrlOoutSignals:
process (state, reg nopri0o0,
req noprilQ,
req_nopri20,reqg nopri30,
frameStart,

req noprill, req noprill,
req _nopri2l,reqg nopri3l,
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one_nopri_for2 <= reg nopri02

reqg nopri02, req nopril2, or reqg nopril2 or reg _nopri2?2
req nopri22,req nopri32, or req nopri32;

one_nopri_for3 <= reqg nopril3
req nopri03, req nopril3, or req nopril3 or reg nopri23
req nopri23,req nopri33, coO0, or reqg nopri33;

col, co2, co3)
one_pri_for0 <= reqg pri00 or

begin req pril0 or req pri20 or
req pri30;
if (frameStart = 'l') then one_pri_forl <= reqg pri0l or
co0_c <= '0'; req prill or req pri2l or
col_c <= '0'; req pri3l;
co2_c <= '0'; one_pri_for2 <= reqg pri02 or
co3_c <= '0'; req pril2 or req pri22 or
reqg pri32;
elsif (state= "11") then one_pri_for3 <= reg pril3 or
-- note: reg-nopri req pril3 or reqg pri23 or
includes both pri and nopri. req pri33;

But, reg-pri
-- includes only pri

reguests. arbt0: arbt
port map (
co0_c <= req nopriO0 or one_pri_for0,
req nopril0 or reqg nopri20 or one_nopri_for0,
req nopri30; state,
col_c <= reqg noprill or req pri00,
reqg _noprill or reqg nopri2l or req pril0,
reqg nopri3l; req priz20,
co2_c <= req nopril2 or req pri30,
reg nopril2 or req nopri22 or req nopri0o0,
reg nopri32; req nopril0,
co3_c <= reqg nopril3 or reqg nopri20,
req nopril3 or reqg nopri23 or req_nopri30,
req nopri33; clock,
reset,
ip
)
else

arbtl: arbt port map (
one_pri_forl,

co0_c <= co0; one_nopri_forl,
col_c <= col; state,
co2_c <= co2; req pri0l,
co3_c <= co3; req prill,
end if; req pri2l,
req pri3l,
end process ctrlOutSignals; reg_nopriOl,
req noprill,
reg_nopri2l,
one_nopri_for0 <= req nopri00 req _nopri3l,
or req nopril0 or reg nopri20 clock,
or req _nopri30; reset,
one_nopri_forl <= reqg nopriOl ipl

or req noprill or reqg nopri2l )
or req nopri3l;
arbt2 : arbt port map(
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one_pri_for2,

one_nopri_for2,

state,

req pril2,

req pril2,

reqg pri22,

reqg pri32,

reqg_nopri02,

reqg nopril2,

req_nopri22,

reg nopri32,

clock,

reset,

ip2

)
arbt3

one_pri_for3,
one_nopri_for3,

state,
req pri03,
req pril3,
req pri23,
req pri33,
req _nopri03,
reqg nopril3,
req _nopri23,
req nopri33,
clock,
reset,
ip
)
sequential process
begin
wait until clock = '1';
if (reset = '1l') then
state <= "00";
dTerm0 <= (others =>
'0');
dTerml <= (others =>
o)
dTerm2 <= (others =>
'0);
dTerm3 <= (others =>
0
else
dTerm0 <= dIn0; dTerml
dInl;
dTerm2 <= dIn2; dTerm3
dIn3;

state <= state_c;

arbt port map(

<=

dout0<= doutlO_c; dOutl <=
doutl_c;

dout2<= dOut2_c; dOut3<=
dOout3_c;

col <= col_c;

col <= col_c;

Cco2 <= co2_c;

co3 <= co3_c;
end if;

end process sequential ;

end mix;

configuration fabric_config of
fab4bdp is

for mix

end for;
end fabric_config;

C7. Submodule arbt of the fabric
-- Arbittation module inside
the switch fabric

-- When there are several
inputs for one same destination
output port, it performs a
round-robin algorithm between
them.

-- This vhdl program is a vhdl
translation of the switch

-- fabric developped by
jianping lou in concordia
university in verilog. For more
information see the technical
report No. 401, september 97

entity arbt is
port (one_pri_fori in bit;
one_nopri_fori in bit;

state in bit_vector (1l
downto 0);
req pri0i in bit;

reqg prili: in bit;
req pri2i: in bit;
reqg pri3i:in bit;
req nopriOi :in bit;

req noprili in bit;
req nopri2i in bit;
req nopri3i in bit;
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clock : in bit;

reset : in bit; -—

this is new

ipi : out bit_vector(l
downto 0)

);
end arbt;

architecture stateMachine of
arbt is

-— ipi_1i and ipi are
registers output. ipi_c is
combinational

-- circuit.

signal ipi_c, ipi_i
bit_vector(l downto 0); -~
internal connections
begin

combinational: process(ipi_1i,
state, req prili, reqg pri2i,

req pri3i, reqg pri0i,
one_nopri_fori,

reqg nopriOi,
req noprili,reqg nopri2i,

req_nopri3i)

begin
if (state= "11" and
one_pri_fori = '1l') then

case ipi_1i is
when "00" =>

if ( regq prili = '1"')
then

ipi_c <= "01";

elsif ( reqgq pri2i
'1') then

ipi_c <= "10";

It

elsif ( reqg pri3i
'1')then

ipi_c <= "11";
else

ipi_c <= "00";
end if;

when "01"

|
\

if (req pri2i = '1"')

then
ipi_c <= "10";
elsif (req pri3i =
'1') then
ipi_c <= "11";
elsiff (reg prilOi =
'1') then
ipi_c <= "00";
else
ipi_c <= "01";
end if;
when "10" =>
if ( reqg pri3i =
'1') then
ipi_c <= "11";
elsif ( req prili =
'1') then
ipi_c <= "00";
elsif ( reqg prili =
'1') then

ipi_c <= "01";
else

ipi_c <= "10";
end if;

when "11" =>
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if ( req prili =
'1') then
ipi_c <= "00";
elsif ( req prili
'1') then
ipi_c <= "01";
elsif ( reg pri2i
'1') then
ipi_c <= "10";
else
ipi_c <= "11*";
end if;
end case;
elsif ( state ="11" a
one_nopri_fori = '1') then
case ipi_i is
when 00"
if |
reg noprili = '1') then
ipi_c <=
“Ol“,’
elsif (
reqg_nopri2i= '1l') then
ipi_c <=
"10";
elsif (
reqg nopri3i= '1') then
ipi_c <=
nlln’.
else
ipi_c <=
IIOO";
end if;

"

nd

=>

when "01" =>
if |
req nopri2i = '1') then
ipi_c <=
lllO";
elsif (
req nopri3i = '1l') then
ipi_c <=
ﬂll";
elsif
(req nopriOi = '1') then
ipi_c <=
IIOOII;
else
ipi_c <=
"01“,'
end if;
when "10" =>
if |
req nopri3i = '1'") then
ipi_c <=
Illl";
elsif (
req nopri0i = '1l') then
ipi_c <=
"OOU;
elsif (
req noprili = '1') then
ipi_c <=
“01“;
else
ipi_c <=
"10“;
end if;
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when "11" =>

if (
reqg nopri0i = '1') then
ipi_c <=
"OO";
elsif (
req noprili = '1') then
ipi_c <=
HOlll;
elsif (
req nopri2i = '1') then
ipi_c <=
"10“;
else
ipi_c <=
“11";
end if;
end case;
else -- no change
ipi_c <= ipi_1i;
end if;

end process
combinational;

sequential: process

begin
wait until clock = '1';
if (reset = '1l') then

ipi_i <= "00";
else

ipi_1 <= ipi_c;
end if;

end process sequential;

ipli <= ipi_i;
end stateMachine;

C8. Data type ATMdataType used
in VHDL models
package atmDataTypes is

function bits2natural (signal
bits : in bit_vector) return
natural;

procedure natural2bits (nat
in natural; bits: out
bit_vector);

function increment (signal
bits : in bit_vector) return
bit _vector;

function decrement (signal
bits : in bit_vector) return
bit_vector;
- procedure random (seed:
inout real; output : out real);

function bit2digit(b: in bit)
return natural;

function digit2bit(nat: in
natural) return bit;

end atmDataTypes ;

package body atmDataTypes is

function bit2digit (b: in
bit) return natural is
variable result : natural;

begin
if(b = '0') then
result := 0;
else
result := 1;
end if;

return result;
end bit2digit;

function digit2bit{nat: in
natural) return bit is
variable result : bit;

begin
if(nat = 0) then
result := '0';
else
result := '1’';
end if;

return result;
end digit2bit;
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function bits2natural (signal
bits : in bit_vector) return
natural is
variable result : natural;

begin

result := 0;
for index in bits'range
loop
result := result * 2 +
bit2digit(bits(index));

-- result := result * 2 +
bit'pos (bits(index));
end loop;
return result;
end bits2natural;

procedure naturallbits (nat
in natural; bits: out
bit_vector) is
variable temp: natural;
variable result
bit_vector(bits'range);

begin

temp := nat;

for index in
bits'reverse_range loop

result (index) :=
digit2bit(temp rem 2);
-~ result (index)

bit'val (temp rem 2);

i

temp := temp / 2;
end loop;
bits := result;

end naturallbits;

function increment (signal
bits : in bit_vector) return
bit_vector is

subtype QelementSizeInBit
is bit_vector (bits'range);
variable result
QelementSizeInBit;
variable tempNatural
natural;
begin

tempNatural :=
bits2natural (bits) + 1 ;

natural2bits (tempNatural,
result);

return result;
end increment;

function decrement (signal
bits : in bit_vector) return
bit_vector is

subtype QelementSizeInBit
is bit_vector (bits'range);
variable result
QelementSizeInBit;
variable tempNatural
natural;
begin

tempNatural :=
bits2natural (bits) - 1 ;

natural2bits (tempNatural,
result) ;

return result;

end decrement;

end atmDataTypes;
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