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Résumé

J

Dans ce mémoire, nous considérons la conception et la mise en place d'une

meilleure forme de Java qui pourrait être employée pour enseigner et programmer des

algorithmes sans devoir recourir au pseudo-code. Nous appelons ce langage J. Il modifie

la fonne externe de Java, mais maintient sa sémantique interne: elle utilise le même code

d'octet et la même machine virtuelle.

J retire quelques irritants de Java: il automatise en partie la conversion de type

pour réduire au minimum l'utilisation explicite de « cast »; il utilise également une

declaration simplifiée pour la méthode main. J utilise la notation mathématique ou

algorithmique standard autant que possible. Par exemple, J utilise ": = " pour l'affectation

et " = " pour l'égalité. Dans J, les opérateurs classiques de comparaison (>, > =, =, etc.)

s'appliquent aux objets de n'importe quelle classe qui met en application l'interface

Comparable. De même, la notation d'indexation (e.-à -d. a[i]) peut être employée pour

accéder à des éléments de chaînes de caractères et de vecteurs au lieu d'avoir à utiliser

une méthode comme a.elementAt(i). J utilise également la syntaxe algorithmique pour les

énoncés if et while. Comme le Pascal, J essaye d'imposer une certaine mesure de stmcture

aux déclarations de classe. Pour séparer clairement des attributs d'insîance des attributs

(statiques) de classe et pour éviter la répétition, J emploie le délimiteur static comme

séparateur après quoi toutes les déclarations (main y compris) sont considérées comme

statique.

Le changement le plus complexe de J est le relâchement de l'algorithme de

selection de méthodes surchargées. J emploie une notion de distance entre les types

primitifs pour choisir la version la plus appropriée d'une méthode. L'étude détaillée de ce

dispositif a cependant soulevé quelques problèmes fondamentaux.

Le compilateur pour J est mis en application à l'aide de plusieurs outils existants:

JavaCC, le compilateur de compilateur de Sun; BCEL, une bibliothèque de classes pour
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manipuler le code d'octet; et Espresso, un compilateur complet pour Java 1.0. Nous

présentons brièvement ces outils et donnons des exemples démontrant comment les

utiliser. Notre modification principale au compilateur comporte l'ajout d'une passe

particulière à J: un visiteur pour transformer tous les noeuds spécifiques à J dans l'arbre

syntaxique en noeuds de Java standard. Nous ajoutons également un fonnatteur au

compilateur, qui peut sortir l'équivalent en Java d'un programme de J. Ceci illustre le

travail du compilateur, aide dans la mise au point et fournit une base pour la comparaison

de J et de Java.

Pour terminer, nous faisons quelques comparaisons pour tester si nous avons

réalisé nos buts de clarté et de brièveté. Les essais objectifs comparant la longueur des

programmes équivalents prouvent que les programmes de J sont toujours plus courts que

la version de Java: avec des gains de 8.8% du nombre de jetons et de 7.8% du nombre de

caractères en moyenne.

Mots clés : construction compilateur, compilateur-compilateur, indexation, surcharge,

cast, Espresso, JavaCC.

J
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Abstract

J

In this thesis, we consider the design and implementation of a better form of Java

that could be used to teach and program algorithms without having to resort to pseudo-

code. We call this language J. It modifies the external form of Java but retains its internal

semantics: it uses the same byte-code and the same virtual machine.

J removes some Java irritants: it automates some type casting to minimize the

explicit use of cast expressions; it also uses a simplified main method declaration. J uses

standard mathematical or algorithmic notation as much as possible. For example, J uses

":=" for assignment and "=" for value. In J, the classic comparison operators (>, >=, =,

etc.) apply to objects of any class which implements the Comparable interface.

Similarly, indexing notation (i.e., a[i]) can be used to access elements of both Strings and

Vectors instead of having to use methods like a.elementAt(I). J also uses algorithmic

syntax for if and while statements. Like Pascal, J tries to impose some measure of

structure on class declarations: to clearly separate instance attributes from class (static)

attributes and to avoid repetition, J uses static as a delimiter after which all declarations

(including main) are considered static.

The most complex change that J introduces is the relaxing of the method selection

algorithm of Java. It uses the notion of distance between primitive types to allow the

closest version of a method to be selected. Detailed study of this feature brought out some

fundamental problems.

The compiler for J is implemented using several existing tools: JavaCC, Sun's

compiler-compiler; BCEL, a library of classes to manipulate byte code; and Espresso, a

complete compiler for Java 1.0. We introduce briefly these and give examples

demonstrating how to use them. Our major modification involves the addition of a J-

specific compiler phase in the form of a visitor to transfonn all the J-specific syntax

features on the syntax tree into standard Java. We also add a pretty printer to the

compiler, which can output the Java equivalent of a J program. This illustrates the work
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0 of the compiler, helps in debugging and provides a basis for the comparison of J and

Java.

Finally, we do some comparisons to test whether we achieved our goals of clarity

and brevity. Objective tests comparing the length of equivalent programs show that J

programs are always shorter than the Java version: with gains of 8.8% fewer tokens and

of 7.8% fewer characters on average.

Key words: compiler construction, compiler-compiler, indexing, overload, type casting,

Espresso, JavaCC.

u
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Chapter 1

Introduction

u

Java is the newest development in computer languages. It incorporates many fine

features but this does not mean that it is perfect. In this thesis, we try to show how Java

could be improved while retaining its good qualities.

From its first public release in 1994, Java has rapidly become a very popular

programming language. Java is associated with the World Wide Web - and the Web's

global scale - and it has applications near and far, from smart cards to the 2001 Mars

Lander. There are hundreds of books on Java, specialist magazines, and web sites. Java is

now taught in hundreds of universities. Java is clearly a mainstream phenomenon.

Java is an obvious example of a successful blend of new and old features. With its

object orientation, parallelism, and extensive Internet library, Java has the right blend of

features for modem application developers to enhance their productivity. Java improves

the security of programs with garbage collection, the elimination of explicit pointers, and

more stringent type checking and is suitable for security sensitive Internet applications.

Geared to the exploding growth of the internet, its widespread diffusion was helped by

the fact that it came out just at the right time to be incorporated into WWW browsers and

distributed free all over the planet.

Java is not totally revolutionary; it is based on C and has kept many features of

that language. Far from being a problem, this allows C programmers to switch easily to

Java. Thus both the old and new features contribute equally to the success of Java.

Though Java has achieved great success, both commercial and academic, it means

neither that it is perfect as a computer language, nor that it could not be improved. Java

has several problems.

Java support of formatted I/O is worse than that of its predecessors (C and Pascal).

Simple tasks such as reading an integer or printing a number with a specified number of
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decimals require several lines of code and use of auxiliary classes. The Java syntax based

on C is more hermetic than that of Algol based languages. This problem is compounded

by the introduction of additional keywords, which reflect the new features of the

language as well as the objective to be totally "object oriented". As a result, Java

programs tend to be overly wordy and algorithm descriptions in Java are much less

readable than those in other languages like Pascal or in pseudo-code. This stands in

contrast to previous developments where new languages allowed clearer expression.

The lack of clarity of Java is especially a problem when it comes to the teaching

of both programming and algorithms. However, there are so many useful modem features

in the language: objects, graphics, parallelism, distributed applications, security, and

portability, that Java is the language of choice in many universities. There are two

solutions to bridge the gap: either design a complete new language, or extend Java in

some way. Obviously, the latter is easier and it benefits from any progress in Java.

We choose the second solution, that is, to extend Java by modifying its external

form and retaining the Java internals: JVM and Java byte code. We design a language for

this purpose and call it J.

The compiler for J is based on an open source research project named Espresso

[Espresso98]. Espresso is a full Java compiler for Java 1.0.2 written in Java at Boston

University. Its main purpose is to serve as a workbench for students interested in applying

their theoretical knowledge of programming languages and compiler technologies and

using modem compiler construction tools like JavaCC to construct a compiler for a

modem language.

J improves on Java in the following ways. It uses Pascal-like syntax to make the

program more readable and structured; it introduces different operators for the primitive

value equality test and the object identity test to clearly distinguish those two tests; it

allows use of comparison operators on objects; it extends the use of indexing operator []

on classes String and Vector to simplify program syntax; and it generalizes Java's method

selection algorithm. Many of these changes are relatively simple to implement but the

more important work goes into automating some type conversions to reduce the need for

the explicit type cast operation.

The rest of the thesis is organized as follows: chapter 2 gives a brief overview
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over Java's evolution, its new language concepts and its advantages and disadvantages;

chapter 3 is the design of the language J; chapter 4 is a survey of some compiler

construction tools and the project "Espresso"; chapter 5 explains how the J compiler is

implemented; chapter 6 tells us if J achieves our design goal by running some test

programs and doing some comparisons with plain Java; and chapter 7 concludes the

whole thesis.

u
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Chapter 2

Survey of the Java Language

Java is an object oriented programming language developed in the early 1990's by

James Gosling at Sun Microsystems. Originally, it was designed for embedded consumer

electronic application and the language was called Oak. In 1994, Guy Steele, and Bill Joy

joined James Gosling; they re-targeted the language to the Internet and renamed it Java.

As the premier Internet language with an interpreter in every web browser, Java gained

rapid acceptance. As of November 1997, when Java was 900 days old, there were

900,000 active programmers [Javax]. By comparison, it took C++ ten years to achieve the

same acceptance level.

In this chapter, we will first have a look at Java's evolution, and then examine more

closely its design and its language concepts, commenting on its advantages and

disadvantages.

2.1 Evolution of Java versions

Since its birth, from Java 1.0 to the latest version Java 1.3, Java has always been

improving and evolving. It can help us better understand the Java language itself if we

consider the various stages of their evolutions.

Java 1.0

Java 1.0 was the first official release, however it contained some critical security

related bugs that were fixed in versions 1.0.1 and 1.0.2. Generally, when Java 1.0 is

referred to, it means Java 1.0.2, the first stable release.

Java 1.0.2 had 8 packages and 211 classes or interfaces [JavalO]. It laid down the main

structure of the language, the only important language component missing was the inner

class. This thesis is based on Java 1.0.2, for which a full compiler was available.

u Java 1.1
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0 Java 1.1 had 22 packages and 477 classes and interfaces [Javall]. It introduced many

new features listed in table 2.1, in addition to many refinements in areas like AWT,

networking, I/O, etc.

Table 2.1 New features introduced in Java 1.1

Inner Class Intemationalization Security package

JAR File Format Remote Method Invocation Object Serialization

Reflection Java Database Connectivity | Java Native Interface

With the inner class, mainly used to create adapter classes, Java 1.1 completes the

Java syntax design. The intemationalization feature allows the development of locale

sensitive applications and the use of Unicode characters. It makes Java suitable for

language sensitive applications and helped make Java popular in different countries all

over the world no matter what language is spoken there. The Java Security package is

designed to allow fine-grained control over individual operation for various classes of

applications. Remote Method Invocation (RMI) enables the programmer to create

distributed Java-to-Java applications, in which the methods of remote Java objects can be

invoked from other Java virtual machines in a simple way. Reflection enables Java code

to discover information about the fields, methods, and constmctors of loaded classes, and

to operate on objects whose class is unknown at compile time. Native Interface allows

Java programs to call native methods and thus interface with and reuse legacy systems.

J

Java 1.2

Java 1.2 had 59 packages and 1524 classes and interfaces [Javal2]. Java 1.2

adds the following new features: Swing GUI toolkit and Collections framework. Java

Swing GUI toolkit extends the original Abstract Window Toolkit (AWT) by adding a

comprehensive set of graphical user interface class libraries. Java Swing GUI

Components are written in Java, without window-system-specific code. This facilitates a

customizable look and feel without relying on the native windowing system, and

simplifies the deployment of applications. It is a major improvement over AWT.

Collections framework is a unified architecture for representing and manipulating data
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structure. Collections (sometimes called containers) are simply objects that group

multiple elements into a single unit and are used to store, retrieve, and manipulate data.

Java 1.3

The latest Java version is Java 1.3 and it has 76 packages and 1840 classes and

interfaces [JavalS]. As usual, in addition to introducing many refinements, Java 1.3

added libraries oriented to distributed applications: Java Naming and Directory Interface

(JNDI), Remote Method Invocation (RMI) over IIOP, CORBA ORB, Java IDL compiler

idlj, etc.

2.2 Concepts of Java

Java builds upon tried and tme programming language concepts. First it is object-

oriented and embodies features from Smalltalk, Simula, C++, and Modula. For syntax,

Java uses that of C or C++, which is familiar to a large number of users; this has proved

helpful for Java's immediate and widespread acceptance.

Java, leaving C++'s legacy aside, borrows more from Pascal than C with regards to

type safety. Java does not allow assignment between incompatible types. Sometimes this

can seem like an unnecessarily severe restriction, but the payback is worthwhile: by

preventing defects at initial coding, it saves lots of the time spent later on debugging.

Furthermore, a virtual machine verifier checks at loading time that an object is well

fanned and contains no security violation.

Learning from the problems in C++, Java uses lazy binding for methods. This means

that, unlike in C++, code for method calls is not hard-wired into the compiled program.

Thus it is not necessary to recompile all code that uses a library when the library changes.

This and the removal of the need for header files as in C and C++ means that

programming environments for Java can dramatically speed up the "round-trip

engineering cycle": from debug to edit to compile and back to debug.

J

2.2.1 Portability and Java Virtual Machine (JVM)

Java programs can mn on any platform that has a Java Virtual Machine

implemented. Portability has traditionally meant writing source code that conforms to
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programming language. Each port is a significant new testing effort because of the

differences between platforms. The goal for Java is to write and compile Java programs

once and mn the resulting "machine" code on every platform without change.

The Java Virtual Machine, or JVM, is an abstract computer that runs compiled

Java programs. The JVM is "virtual" because it is generally implemented in software on

top of a hardware platform and operating system. All Java programs are compiled for the

JVM. Therefore, the JVM must be implemented on a particular platform before compiled

Java programs will run on that platform. However, it is easier to write an interpreter

(VM) than a compiler

Java programs are compiled into a form called Java byte-code. The JVM executes

Java byte-code , so Java byte-code can be thought of as the machine language of the

JVM. The Java compiler reads Java source code files (suffixed with Java), translates the

source code into Java byte-code , and writes the byte-code into Java class files (suffixed

with .class). Generally, Java classes are shipped over the Internet as byte-code. These

modules are completely platform independent and are interpreted into machine specific

and operating system specific calls by the virtual machine on the target platform.

•
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Fig 2.1 Relationship of Java application, JVM, and hardware platform

u The JVM plays a central role in making Java portable. It provides a layer of
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abstraction between the compiled Java program and the underlying hardware platform

and operating system, as shown in Fig. 2.1. The JVM is central to Java's portability

because Java programs mn on the JVM, independent of whatever may be underneath the

particular JVM implementation.

JavaSoft, the Sun subsidiary that handles the development of the Java language,

controls the specification for what the byte-code must look like, and this specification has

remained very stable since the first Java Development Kit (JDK). When the byte-code s

arc being interpreted by the virtual machine, calls to the standard library functions are

handled by the built-in Java libraries, which arc also part of the Java specification.

When talking about Java portability, many Java proponents forget to mention the role

of Java virtual machine. They gave people a misleading impression that Java is some

magic language and is portable just by itself.

The success of Java is due in part to its portability; and paradoxically, this portability

arises from the very popularity of the language. Java is so popular and successful that

computer vendors have implemented the Java virtual machine on almost all hardware

platforms such as Windows, HP UNIX, Sun Solaris, etc. It means that computer vendors

have done the platform porting for us. In this way, portability has been achieved.

2.2.2 Reliability

Since Java was initially aimed at simple consumer devices, reliability was a critical

objective because in simple consumer devices, software failure is not distinguishable

from hardware failure. This goal explains many design choices for Java such as the

garbage collection, no explicit pointers, the array boundary checking, the exception and

the security management. We will elaborate each choice in a separate subsection.

u

2.2.2.1 Garbage collection

Java's automatic garbage collection frees Java programmers from spending time

worrying about complex and error-prone memory allocation schemes. In Java, there are

no memory leaks or dangling pointers - common mistakes under the manual approach.

In C and C++, you create a chunk of memory for an array, for a class, or for any kind

of storage needed. You also have to free this memory when you are done with it. But you
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should not free it if some program actually still wants to reference this memory. In a

medium sized application, the separation of memory allocation from de-allocation is not

unusual. The worst case is when a third party library is used and you must de-allocate

some memory allocated by third party. It is easy to end up with buggy programs that

either run out of memory because someone forgot to free allocated memory, or crashes as

a program freed memory where a live pointer still points.

Java frees us from the chore of allocating and de-allocating memory with its built-in

garbage collection. The Java run-time system can tell (though not 100% accurate) when a

block of memory is no longer being used and occasionally collects these up and returns

them to the pool of available memory blocks. What we have learned is that garbage

collection - while it can have a considerable performance impact - is essential for

reliability.

2.2.2.2 References instead of pointers

In a language like C or C++, a pointer is just a simple memory location that holds

the address of another memory location. The real problem with pointers is that you can

do arithmetic on them and cast them to point to anything you want. Pointers have no

checking and no protection associated with them so they could cause unpredictable

system damage when manipulated inappropriately. Thus explicit pointers can potentially

make a system vulnerable.

In Java, all objects are references (implicit pointer) and you are not allowed to do

any arithmetic on them. You can do type casting but the Java compiler and JVM will

check the type compatibility of the cast before the reference is used to access an object. If

not compatible, either the Java compiler will complain about inconvertible types, or JVM

will throw a class cast exception at mn-time. Finally, Java does a null pointer check on

every reference access. Following null or invalid pointers is a large problem in C or C++.

These means contribute to the robustness of a Java program and speed up the

development of enterprise applications.

J
2.2.2.3 Dynamic array boundary checking

Array bound checking is a mn-time check to make sure no array reference is out of
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bounds. This kind of check is common in high-level languages. But system languages

like C or C++, for the purpose of convenience and efficiency, reduce array access to

pointer arithmetic and do not do any check about it. Dynamic array boundary checking is

another measure to ensure the reliability of a Java application.

2.2.2.4 Exceptions

Java has a simple and effective exception mechanism to handle computing errors. This

is really important in real-time applications and exceptions have evolved as the best way

to handle unexpected conditions in the code.

An exception may indicate an error or an unacceptable situation. Instead of constantly

checking all possible variable values in each nested method call and passing error codes

up a heavily nested function call chain, exceptions are thrown where a problem is

detected. Then, anywhere back up the chain of nested function calls this exception can be

caught where it is most reasonable to handle it. Further, Java requires that programmers

explicitly handle all exceptions that could be thrown so that with a little more up-front

work, the code when compiled will be more robust and require less debugging time.

u

2.2.2.5 Security

Security is increasingly important as more and more users and their companies are

connected to unknown and potentially malicious individuals on a global network.

Java byte-code verifier is a critical security component of the Java VM runtime. It

ensures that compiled Java code is formatted correctly and follows the rules that enforce

"good behavior". During this process, the verifier applies a theorem-proving algorithm to

prove that there is no violation of access restrictions.

The Java class loader, part of Java virtual machine, does not allow Java byte-code to

change any system functions. Unlike in C/C++, you are allowed to replace system

functions with your own so that you can change their behavior for benign purposes such

as debugging very difficult bugs, however it can compromise security.

Finally, Java has a portion of the runtime VM called the security manager. This

component is very particular about what kind of I/O functions can and cannot be

performed. At run-time, it enforces strict rules about which kinds of these functions will
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be allowed to prevent uncontrolled I/O calls to write to disk, memory, the video display

memory, or even the network, which would constitute a serious breach of security.

With the above three means, the byte-code verifier, the class loader, and the security

manager, Java can provide a very secure environment for Java applications.

u

2.2.3 The Java library

Java has a huge core API library together with some APIs described as Standard

Extensions. Java application developers can find most of often used functionality such as

data structure support, GUI support, networking, multithreading, Java Database

Connectivity (JDBC), etc. The presence of this built-in toolkit speeds up the application

development and is also an important reason for Java's success.

Java has a quite complete data structure library and it has built-in classes or interfaces

to support Array, Stack, Queue, Linked List, Tree, Hashtable, set, Map, and Vector. Since

Java has no explicit pointers, it is easier to understand and to implement data structures in

Java than in its counterparts like C++. All these data structure concepts can be applied in

any programming language, therefore Java can provide a good introduction to data

structures in general and let learners easily have some hands-on practice.

Java supports GUI development through the Abstract Windowing Toolkit (AWT) and

the Swing GUI toolkit. The AWT is the Java equivalent of the Microsoft Windows

Common Control Library or a Motif widget toolkit. It includes support for simple

graphics programming as well as a number of pre-constructed components such as

button, menu, list, and checkbox classes so that Java developers can quickly build Java

GUI applications. Java 1.2 incorporates the Swing GUI toolkit as a standard Java package

with a huge range of new components and controls, and customizable "look-and-feel".

Though Swing may be the way of the future for Java GUI developers, it has a steep

learning curve because of the complexity of the Swing toolkit.

Java supports network programming by providing classes that can deal directly with

sockets, and classes to parse network data and to deal with data representation differences

between different hardware platforms. Unlike network programming in C, you need not

to handle every detail by yourself. It is more reliable and faster to develop networking

programs in Java than in C or C++.
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2.3 Weaknesses of Java

Language design is always a compromise between conflicting elements. For example

in Java, in order to gain the portability and security, we have to introduce the Java Virtual

Machine and therefore sacrifice some program performance. In this chapter, we will look

into Java's weaknesses, concentrating on the areas that we plan to correct in this thesis.

u

2.3.1 Poor readability

Java programs arc difficult to read for two seemingly contradictory reasons:

sometimes the syntax is cryptic and in other cases it is wordy. In Java, with new concepts

such as "pure object orientation", there seems to be little concern with simplicity of

expression. As a result, Java programs tend to be overly wordy and algorithm

descriptions in Java are much less readable than those in other languages or in pseudo-

code. This stands in contrast to previous developments where new languages allowed

clearer expression.

Java is based on C, which is hardware oriented and a replacement for assembler

language. In contrast, other high level languages such as Fortran, ALGOL, Pascal, etc.,

tried to be problem oriented - they are also known as algorithmic languages. When

designing the syntax, we would like to keep two rules in our mind: a) prefer algorithmic

syntax to hardware syntax such as that of C; b) reduce the number of tokens that must be

written.

First, within a Java class, the access modifier (private, protected, public, etc.)

applies to each field or method. For example,

class JavaClass{
private int num;
private float price;
public int getNum(){return num;}
public float getPrice(){return price;}

Other languages such as C++, group class members according to access modifier and do

not need to repeat the modifier, i.e.:

class CplusClass{
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public:

int num;
float price;

}

int getNumf){return num;}
float getPrice(){return price;}

u

Second, the static modifier is also applied to class members on individual basis

and Java programmers can disperse the static class members all over a Java class. The

disadvantages are not only the syntax verbosity but also that, with such a mixed style,

developers can not distinguish static members from non-static ones at a glance.

Developers can easily make mistakes when programming static methods because a Java

static method can call only other static methods or reference only static fields. Actually

many professional developers develop their own style to group static class members and

non-static ones. We could extend the use of C++ style and apply it to static methods. It is

more concise and conceptually cleaner for programmers to write:

class A{
//dynamic part
int nonStaticMember;

static:
//static part
int staticMember;

main(args){}

This example also shows our proposal for the main method. The most wordy

syntax in Java is the definition for the main method (if any) in a class: public static void

main(String[] args). Its method signature is always the same in Java. Maybe the

designers aimed to keep all method definitions consistent. But it is really a pain for

developers to type in so much, while it does not introduce any new information to the

program. At this point, Java can actually learn from some script languages like Peri or

JavaScript and simplify the syntax for the main method definition to: main(args) and let

the Java compiler restore it back to the full method definition. By doing this, Java can

reduce typing work while keeping all necessary infonnation for compilation.

As far as readability is concerned, Java is much worse than languages like Pascal.

In Java, curly brackets are used to delimit all scopes: class, method, and block. When

there are many nested scopes and inner classes in one file, all the boundaries arc visually

blurred, though appropriate code indentation can alleviate the situation to some extent.
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brackets to delimit method and block scopes like:

[Access_modifier] class classname
begin
public void methodl{

end

The begin/end pair is unique within a class and can distinguish more clearly the scope of

a class from the inner scopes of the class, thus making programs more readable.

The Java syntax for the IF statement and the WHILE statement are:

IF ( expression ) statement

and

WHILE ( expression ) statement

Compared to the Pascal style:

IF expression THEN statement

WHILE expression DO statement

Java is less human readable. Note that the Pascal style has no parenthesis surrounding the

conditional expression and we save one token for each of them.

J

2.3.2 Object comparison

In Java, there is no syntactic differentiation between object identity and value

equality, and the operator "==" is used for both. For example, in the following code

snippet:

String strl = new String("Hello world");
String str2 = new String("Hello world");
int intl =1, int2 = 2;
iffstrl == str2)

System.out.println("strl and str2 are equal");
else

System.out.println("strl and str2 are not equal");
if (intl == int2)

System.out.println("intl and int2 are equal");
else

System.out.println("intl and int2 are not equal");

One may be surprised to know that strl is not equal to str2, especially to the Java
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beginner. The confusion stems from the fact that when applied to primitive data types,

operator "==" tests for value equality; when applied to objects, it tests for identity

equality, i.e., whether two variables point to the same object instance. If we want to test

some kind of content equality for two objects, we must either override method equals() or

program a similar method.

Languages of the Algol family retain the traditional meaning of equality for the

"=" operator and use " : =" for assignment. Later when introducing objects, Simula added

a distinct operator "==" to test object identity. Simula distinguishes these two equalities

by using different operators for each of them. Simula uses operator "=" to test content

equality for objects (operator ":=" used for assignment) and operator "==" to test the

equality of pointers as shown in the following code segment:

TEXT strl, str2;
strl :- COPY("Hello world");
str2 :- COPY("Hello world");
if (strl == str2) //identity test

if (strl = str2) //value equality test

With such a syntax design, identity equality and content equality are both conceptually

and syntactically distinguished, and users will not be confused.

2.3.3 Indexing for String and Vector

In Java, classes String and Vector arc two classes that are used very often. They

are essentially arrays with some methods that can manipulate the encapsulated internal

elements. However, we can not access their elements using normal array element

accessing. Java follows C hardware bent with zero based indexing so that the [-th element

is denoted x[i-lj. We choose not to correct this blemish. We can't access the first

character of string strl with strl[0]. Instead we must use function call strl.charAt(O) to

do this. Similarly, we have to invoke method elementAt() to retrieve an object in a vector.

Many programmers are used to the indexing of array with operator [] and they regard the

way Java uses to access elements of String and Vector inconvenient, for example:

u
Vector vl = new Vector(lO), v2

//store elements into vl
forfint i = 0; i < vl.length(); i++)

v2.addElement(vl. elementAt(i));

new Vector(10) ;
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While in C++, there is also a vector type and it can behave like a normal array as shown

in the following code segment:

vector<basic_string> vl(10), v2(10);
//store elements into vl

for(int i = 0; i< vl.lengthO; i++)
v2[i] = vl[i];

The simplicity and familiarity of the C++ style are obvious.

u

2.3.4 Type casting

Type casting plays an important role in Java's type system. Java is strongly typed

but not statically typed, which means that sometimes the type correctness of a Java

program is not known at compile time. The main reason why some type incorrect Java

programs can pass the Java compiler, is the type casting operation. Like in a C program,

you can cast the type of an expression into many other types in Java and the compiler will

accept it. Java is type safe only when the type casting is not involved. For example, Java

compiler accepts code fragments like:

String str;
Object obj = new Object();
Str = (String) obj;

But if we try to run it, the Java virtual machine will report a class casting exception.

Because of the above reason, we can actually relax the type system and let the

compiler do the type casting automatically whenever possible. For example, when the

LHS and RHS of an assignment are of different types, the compiler could cast the RHS

into the type of LHS as illustrated in code snippet that follows:

String strl = "Hello world", str2;
Vector v = new Vector;) ;
v.adâElement(strl ) ;
str2 = v[0]; //instead of str2 = (String)v.elementAt(0) ,-

However, if the type casting occurred within a complicated RHS expression of an

assignment statement, it is hard to do automatic type casting and maybe we have to do it

manually. For example, in the following Java statement:

substr = ((String)v.elementAt(0)).substring(1,3);
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It is difficult for the compiler to figure out of what type is the first element stored in

vector v. Therefore we must be very careful when researching on automatic type casting.

2.3.5 Complicated I/O

Although in package java.io Java 1.3 has 60 classes that are dedicated to input and

output for any difficult I/O task, ironically there is no easy way to do simple I/O jobs like

reading an integer from the keyboard. In order to do it, we must go through the steps

necessary for most difficult I/O tasks and we may need to program more or less like:

BufferedReader in = new BufferedReaderf
new InputStreamReader(System.in));

String oneLine;
oneLine = in.readLine();
i = Integer.parselnt(oneLine);

To show what could be done, we give the C++ equivalent:
cin » i;

Moreover, this kind of task is so frequent that it is really an everyday inconvenience in

the life of Java programmers, especially the novice.

Maybe Java designers intended to enforce the object oriented program paradigm.

They do not want a C-style function scanf() in Java to break the object oriented

principles. However, there are many ways to remedy the inconvenience within the 00

paradigm. Another argument of Java designers is that they want to treat all I/Os in a

uniform way —no matter how different in difficulty the I/O tasks are, programmers have

to spend almost the same effort to achieve them. This rigidity does not sound tenable

enough.

u

2.3.6 Rigid method selection algorithm

In C, the method name is the only clue to do the method lookup in the symbol

table and all methods are in one scope, therefore the compiler will complain about the

name conflict if there arc two method definitions for one name.

Java supports both method overloading and polymorphism, and they provide

flexibility and simplicity for software designers and programmers. These advantages are
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compiler.

For a Java compiler, there are three possibilities for a method selection: an exact

match found, the most specific method found, and lookup failure. If the name and

parameter type match those of the method call, then it is an exact match. For the second

case, the name matches, the number of parameters is the same, and the types of

parameters are compatible, then the compiler will find a most appropriate one according

to the relationship between types. Otherwise, it will report a lookup failure.

However, Java sometimes is not flexible enough in method selection. Let us have

a look at the following code fragment:

class Test {
int sum;
public void add(short item){

sum += item;

public static void main(String[] args){
Test t = new Test ( ) ;
t.add(73);

}
}

Everything in the program looks fine: method add() expects a short integer and 73 is a

short integer. Surprisingly, Java compiler does not compile the program and complains as

following:

Test.Java:8: Incompatible type for method. Explicit cast needed to
convert int to short.

t.accumulate(73);

At this point, Java is really conservative and unreasonable, and it can be improved.

In the coming chapter, we will design a new language to overcome some of Java's

disadvantages discussed above.

u
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Chapter 3

Language design of J

u

3.1 Introduction

Language design is a difficult enterprise that must compromise between high-

level abstractions and low-level efficiency concerns. Too much innovation may even be

counter-productive if it requires intensive retraining of programmers. Finally, language

acceptance may depend as much on lucky timing and marketing strategy as on technical

excellence. Java is an obvious success example.

Much progress in computer languages has come from trying to hide hardware

dependencies: to make application-oriented languages that focus on concepts that reflect

the problem at hand and help the programmer code his solution in a simple and readable

fashion. For example, FORTRAN introduced algebraic notation and the concept of arrays

for mathematical computations. ALGOL introduced block structure, recursive and formal

syntax. Pascal introduced structured (goto-less) programming, strong-type checking, and

user defined data types. Finally Simula introduced the object-oriented programming.

C, on the other hand, had a different focus. It was designed to replace machine

language in the programming of low-level systems programs such as UNIX. Therefore,

mn-time efficiency and direct manipulation of hardware was of prime importance.

Though it adopted the syntax of high level languages, C remained hardware oriented. The

language also reflected the idiosyncrasies of its designer who saw it as a personal tool and

not as universal language.

C++ brought about some improvements, such as modularity with object-oriented

programming and better type checking with function prototypes. Java added to the

security with garbage collection, elimination of direct pointer manipulation, and more

stringent type checking. Yet, to allow easy learning by C programmers, Java retains

several archaic low-level hardware oriented features. For example: one-dimensional

arrays where [1] designates the second element, unstructured case statements, use of the
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equality symbol "=" for assignment, high dependence of the "cast" operator, etc.

The lack of clarity of Java is especially a problem when it comes to the teaching

of both programming and algorithms. However, there arc so many useful modem

features in the language: objects, graphics, parallelism, distributed execution, etc., that

Java is the language of choice in many universities. The solution in many cases is to

present examples written in a Java-like pseudo-code rather than Java proper.

This thesis aims to design a simplified external form for the Java language while

retaining the Java internals to ease the writing and reading of Java programs. This

language is called J.

u

3.2 Design overview

Different language designers have different points of view and this is reflected in

their design principles. It is hard to define a complete list of such principles. However,

people can easily find a set of guiding principles when doing language design, such as

simplicity, efficiency, safety, expressiveness, modality, and compatibility. Excellent

discussions about them could be found in [Bg 96] and [Fwh 92]. In the design of the

language J, we try to follow those language design principles and use them as our design

guideline.

Since J only extends the external forms of Java and keeps all the Java internals,

compatibility with the Java byte-code is our foremost important criterion. J compiler

should generate JVM byte code so that J module is compatible with other Java "class"

files. Second, J programs should be able to import any Java packages. Otherwise with J

you can not do much because you have to program everything from scratch and this

deviates from its original purpose: study Java and improve Java. Third, we would like J

be able to output a pure Java version of the J code so that we can compare J directly with

Java about simplicity and readability.

In some cases, J will accept both Java syntax and more stmcturcd J syntax to facilitate

testing and comparing about J. Thus J can be used as a pseudo-code compiler for a course

that uses a Java Text.

Next, we focus on the simplicity of the program. J tries to shorten the program

and reduce the number of keywords that must be written. Serving this purpose, J allows
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keyword factoring or implicit keywords. In common situations, it assumes "default

behavior" and relieves the programmer from necessity of explicit specification.

Java inherits many syntax peculiarities from C or C++ like the syntax for

constructs if-else and for loop, which are not user friendly and readable. In these

situations, J uses instead the Pascal-style "universal" modes of expression since Pascal is

regarded as a model of readable programming language. In some cases, in order to

stmcture program text, we have to reduce some freedom of expression so that code is

easier to read.

Finally, we would like to mention that the purpose of this thesis is not to design a

robust language for general purpose, but to demonstrate how the Java language could be

improved. We also want to show by examples how to apply the compiler techniques for

modem computer languages and how to use some compiler tools.

\

3.3. The language design of J

J modifies partially both the syntax and some syntax semantics of Java. Some

modifications are almost trivial to implement when one has the complete source of a

compiler available plus a compiler-compiler system. Others are more difficult and require

non-trivial modifications to the semantic actions of the compiler. Finally, some

modifications that seem to be useful initially may, upon further investigation, prove to

introduce some fairly complex semantic problems.

3.3.1 Syntax design of J

The complete syntax grammar in JavaCC is listed in appendix A. Here we would

like only to highlight our major modifications to Java.

J

3.3.1.1 Class declarations

The class is a key concept to Java. Everything in Java: object, variable, method,

constant, even main program must be specified with or within a CLASS declaration. This

is the first Java-specific concept that must be shown to any student. Thus, it is important

to simplify class declarations.

In Java, the class declaration does two things. First, it specifies "dynamic"
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instance attributes and methods that each object of that class will have. Second, with

"static" declarations, it specifies methods and global variables that can be accessed on the

basis of class. The static and dynamic declarations can be interspersed and the "static"

keyword must be repeated for every static declaration.

In J class declaration, we propose to segregate the static and dynamic declarations

by using the "static" keyword to mark the end of dynamic declarations and the start of the

static ones. Thus the two functions of a class declaration are clearly separated and the

attributes of each are better visually differentiated. Moreover, there are some restrictions

on static methods like that static method can only access static class fields and call static

class methods. This division is very helpful for us to respect all the restrictions when

programming a static method.

Everything is a class in Java and an application is thus expressed as a class with a

"main" method. The header for that method is always the same:

public static void main (String [] <args> )

where the only variant is the name given to the parameter.

J uses "main" as a keyword and simplifies the signature of main method to:

main(args)and the compiler will take care of the other necessary information and

complete the method signature. Thus we save lots of typing for this method without

losing any information. Furthermore, to make it clear whether a class is written in "J" or

in "Java" - as well as to distinguish class and method declarations - we use "begin" and

"end" as class delimiters. The above decisions are exemplified by the Java code snippet

and its J equivalent in the following table:

u
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J code

Java code

class cl
begin

float x;
float y;

static:
private int instances := 0;
float pi := 3.14 ;
main (args){

System.out.printlnf"Hello");
}

end

class cl {
private static int instances = 0;
float x;
public static void main(String[] args){

System.out.println("Hello");

}_

}
static float Pi
float y;

3.14 ;

3.3.1.2 If and while statements

For the IF and WHILE statements in J, we prefer the more readable Pascal forms

with the keywords THEN and DO instead of the parentheses:

J code

if > b then
max : = a ;

else
max : c/

while a > 0 do
{

b ++ ;
a := a/2;

}

Java code

if (a > b)
max = a ;

else
max = e;

while (a > 0)
{

b ++ ;
a = a/2;

},

u

3.3.1.3 Use of traditional operators

In mathematical notation, equality is expressed by "=". Languages of the

ALGOL/Pascal family follow this convention but other programming languages
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sometimes use "=" to denote value assignment. With a simple language like Basic,

context can distinguish between the two meanings of "=". In other languages, as with C

and Java, "=" is an operator that can be used inside more complex expressions and

another symbol must be used for equality: "==" in the case of Java and C. This works for

simple values (like int). For example:

int il = 99, i2 = 99;
System.out.printlnfil == i2); // prints "true"

With objects, it is tempting to do the same thing and use "==" to test for object equality.

With strings, this sometimes works:

String si = "allô";
String s2 = "allô";
System.out.println(sl==s2); // prints "true"

However, the following example, where both sl and s2 contain "Hello world" gives a

different result:

String si = new String("Hello world");
String s2 = new String("Hello world");
System.out.println(sl==s2); // false

This is because sl and s2 are reference variables and the test for equality is done not on

the contents of the two objects pointed by s 1 and s2 but between the pointer values

contained in si and s2. In other words, it tests whether sl and s2 point to the same

object: identity testing; not objects of identical value. To test for object equality, one

must use the "equals" method declared in the root class (and which must be redefined for

every new class). The example below shows the differences:

String si = new String("Hello");
String s2 = new String("Hello");
System.out.printlnt sl==s2 );
System.out.printlnf sl.equals(s2) );

// false
// true

u

Simula has an elegant way to distinguish these operators. It uses operator ":=" for

assignment, "=" for value comparison, and "== " for identity comparison.

In J we propose to use the Simula operators: ":=", "=", and "==". For the

NOT_Equal operator, we propose to use the C not symbol "!" giving "!=" for not equal

and " ! ==" for not identical. Following is an example using these operators:
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J code
String si := new String("Hello");
String s2 := new String("Hello");
System.out.println(sl == s2);
System.out.println(sl = s2);

//false
// true

Java code

String si = new String("Hello");
String s2 = new String("Hello");
System.out.println(sl == s2);
System.out.println(sl.equals(s2));

// false
// true

3.3.2 Semantics design of J

When designing a programming language, some designers tend to keep its

paradigm as pure as possible, especially for an object oriented programming language.

Java claims itself as a pure object-oriented programming language. It is true at a higher

level in the sense that all of Java programs consist of classes. However, at a lower level,

there are still variables of primitive types and there arc many primitive operators

operating on them. They are not OOP style and no program can work without it.

Therefore the argument on the purity of program paradigm does not make much sense

given that we can combine different paradigms in a reasonable way. Like C++, it is a

good combination of OOP paradigm and imperative paradigm and it achieves great

commercial and academic success. This is one of our guiding principles when designing

the semantics of J.

Java does not support explicit operator overloading since there is no language

syntax for us to do so in [Ly97]. [Thim 99] pointed out that Java is hypocritical and it

supports overloading only when it suits Java itself. The operator "+" is overloaded by

Java and it is used very extensively in Java programs. The method toString of a class

serves this purpose. When + is applied to two String objects, or one String object and one

other object (including variable or constant of primitive type), it will invoke the method

toString automatically. Since Java has overloaded operator +, why not some others if they

can improve the expressiveness and the simplicity of a program. In J, we will overload

operator =, >, <, >=, and <= whenever needed.

u
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Often it is useful to compare two objects to see which one is larger. This is often

used in search trees and priority queues.

To this end, Java 2 introduces the Comparable interface which requires classes to

implement method compareTo() where:
a.compareTo(b)

returns a value equal to 0, less than 0 or greater than 0 depending on whether a is equal

to, less than, or greater than b respectively. These conventions give a firm footing to

generic algorithms that need to compare objects; however, it leads to wordy and opaque

code quite different from the same algorithms when simple values like integers are

involved. For the sake of easy reading and writing of code, it would be highly preferable

to allow the use of the usual comparison operators, >=, < and <= on "Comparable"

objects and this is what we chose for J. Examples are given below:

J code

if pivot < b.element then

else if pivot > b.element then

else

Java code

if (pivot.compareTo(o2.element) < 0)

else if (pivot.compareTo(o2.element) > 0)

else

3.3.2.2 Indexing of String and Vector

To overcome the problems discussed in previous chapters, we chose to implement

the indexing operator [] for String and Vector. The following example demonstrates how

the indexing of String and Vector can simplify the writing of programs:

<J
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J code

Java code

String str := "Indexing";
char ch;
int i;
for(i=0;i<str.length;);i++)

ch := str[i];
Vector v := new Vector();
v.add(str);
str := (String)v[0];

String str = "Indexing";
char ch;
int i ;
for(i=0; i<str.length(); i++)

ch = str.charAt[i];
Vector v = new Vector();
v.add(str);
str = (String)v.elementAt(O);

3.3.2.3 Automatic type casting

Some languages like Algol 68 and Pascal insist that almost all conversion be done

through the explicit use of a function. At the other end of the scale, PL/I converts data

type as necessary automatically. These implicit conversions are criticized for the fact that

some conversion errors are accepted as a reasonable conversion by the compiler. The

advantage of Algol 68 and Pascal kind of approach is that the programmer is made aware

of almost all conversions.

In J, we made a compromise between both. For some obvious and simple type

castings, we use the implicit conversion policy. But for other less obvious conversions, J

must do it explicitly. We aim to automate type casting in three areas: 1) arithmetic

expression; 2) automate some type cast from a class Object to a more specific Java class

used with Collections and utility classes like Vector and Hashtable; 3) method selection.

For the first two cases, it is simpler. When the LHS and RHS of an assignment are

of different types, the compiler will cast the RHS into the type of LHS. When writing J

code, if this default action does not work, we must do the type casting explicitly.

Following is an example of automatic type casting in J:

^
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J code

String strl := "Hello", str2;
Vector v := new Vector();
v.adâ(strl);
str2 := v[0];
float f := 0.9;

Java code

String strl = "Hello", str2;
Vector v = new Vector() ;
v.add(strl);
str2 = (String)v.elementAt(O);
float f = (float) 0.9;

However, we do not try to automate the type conversion when the type derivation

for an expression is complicated, for example,

Vector v = new Vector();

String str := ((String)v.elementAt(0)).substring(1);

Because in some complicated cases, it is very difficult to derive (not just guess) the

correct target type from the expressions themselves, for example, in the expression

v.elementAt(0).substring(1), we can not know easily where we should do

type casting and what kind of type casting, only the programmer can know those readily

so that programmers should do the type casting explicitly.

J

3.3.2.4 The Method selection

In Java, there are two primitive type chains: integral types and float types. We can

convert one type to the other as indicated by the arrows in the following picture. All other

type conversions, like from int to short, are illegal.

byte—^ short—> int-

char

long Hoat —^ double

We need to introduce the concept of the distance between two types, say from A to B. In

the above type conversion pictures, if we can reach B directly from A following an arrow,

then distanceÇA, B) = l; ifA = B, then distance(A, B) = 0; if there is no way from A to B,

then distance(A, B) = -oo; and the type distance obeys the cumulative rule: distance(A,C)

= distance(A, B) + distance(B, C).
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0 Next we would like to introduce the concept of the specificness of the method

definition methodName(f\, f^, ...fn), to the method call methodName(pi, p2, ...pn), where fj

is the i-th formal parameter type of the method definition and p; the i-th actual parameter

type of the method call:

specificness(methodName(fi, î-i, ...fn), meîhodName(p\, pz, ...pn)) = Sdistance(f;, pi)

The compiler will use this criterion to choose the most appropriate method definition

among the candidate method definitions for a method call. Let us have a look at the

following code fragment:

class Test {
long sum;
public void accumulate(int item) {

sum += item;
}
public void accumulate(long item) {

sum += item;

public static void main(String[] args){
Test t = new Test ( ) ;
short s = 73;
t.accumulate(s);

}

For the method call t.accumulate(s), the compiler will find that its name and number of

parameters are the same as the two candidate methods in class Test, and the type of

parameter s, short, is compatible with both int and long. Then the compiler will calculate

the specificness of the two candidates. Since short is closer to int than to long, the

method: public void accumulate(int item) is more specific and will be selected.

After choosing the method definition, the compiler may need to cast the

parameters into appropriate types. For the above example, the expression t.accumulate(s)

will be cast into t.accumulate((int)s) implicitly.

In J, we would like to relax the rules for method selection and the type conversion

rules for primitive types. We combine Java's two primitive type chains into one and make

them compatible in either direction as:

u

long Hoat doublebyte short int

$
char
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For a method definition like void add(int item), we still consider method call add(1.23)

legal. The compiler will cast float literal 1.23 into an integer. One may argue that casting

a Hoat into an integer is not well defined for many platforms. That is tme. But its

behavior can be anticipated in some cases if people can keep the type mles in mind. It is a

good experiment to study the type checking.

3.3.3 Some comments

As you may have noticed, we do not handle two weaknesses of Java that we have

mentioned in chapter 2: the zero-based array and the Java I/O. Though the fact that arr[1]

denotes the second element of array arr contrasts to our intuition, it is not easy to fix the

problem because the implementation of many Java classes like Vector, String, etc., is

based on it. If we want to fix the problem, we have to rewrite all those classes.

If simple I/O is available, it will make huge difference for beginner's programs.

But it requires a lot of simple-minded coding and the Java working group is preparing a

new packa.ge.java.mo, to enhance the I/O capability of Java. Furthermore, in my opinion,

it is more a subject of development of language utilities than a real research issue of the

language design itself. Therefore, we choose not to treat the I/O problem.

In next chapter, we will introduce some compiler tools in order to implement a

compiler for language J.

u
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Chapter 4

u

Survey of compiler construction tools

The typical constmction of a compiler basically consists of 4 major steps

according to [Muc97] and [Mak91]: 1) Lexical analysis to tokenize the input program; 2)

Program parsing and production of an intermediate-level representation, usually plus a

symbol table; 3) Type checking the intermediate-level representation to check the

correctness of the input program; and 4) Generation of code in the target language out of

the intermediate-level representation with the help of the symbol table. In addition, a

practical compiler always carries out many kinds of optimizations.

Nowadays there are many compiler writing tools that are useful for both research

and software production. When people construct a compiler for a language, they rarely

build their own lexer and parser from scratch. What they usually do is to use some tool

called compiler compiler or parser generator to build the front-end of the compiler. A

parser generator is a tool that reads a grammar specification and generates a parser to

recognize matches to the grammar and to build a syntax tree as well.

The first compiler compiler dates from July 1960 by Brooker & Morris [Bm62]

from Manchester University. Lex & Yacc were the first widely used compiler tools for C

applications in Unix environment. Now they are almost replaced by Flex & Bison, which

are more powerful and easier to use. Given a grammar description and semantic actions,

they will generate a lexical analyzer and parser. The generated program must be fleshed

out with more code to do useful work. Flex/Yacc produce C or C++ code.

A more recent compiler generator based on Java is JavaCC. JavaCC has been

used for many languages and JavaCC grammars for existing languages are available for

C, Ada, XML, SQL, Scheme, and Java itself.

A working compiler needs more than a lexer and parser. It needs at least a

structured symbol table to do type checking, a machine code generator, and a convenient

interface to the existing code libraries.
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If the source code of a compiler for a similar language already exists, it will be easiest for

computer language experimentation. In the case of Java, we found a package called

Espresso. Espresso is an open-source complete Java compiler for Java 1.0.2 developed at

Boston University by Santiago M. Pericas and Karl Doerig. Its main purpose is to serve

as a workbench for students interested in applying their theoretical knowledge from

programming languages and compiler design and construction for a modem

programming language. Espresso uses JavaCC to which it adds its own symbol table. For

code generation it also relies on a package from Technical University of Berlin: BCEL

(Byte Code Engineering Library). BCEL is responsible for generating Java byte-code and

interfacing to Java library.

In this chapter, we provide an overview over JavaCC, BCEL, and Espresso.

4.1 JavaCC

JavaCC is currently the most popular parser generator for Java applications

([JavaCC]). According to Sun Microsystems and Metamata, it has had hundreds of

thousands of downloads. JavaCC was developed by Sriram Sankar, Sreenivasa

Viswanadha, Rob Duncan, and Juei Chang in Sun Microsystems in 1996, but it is now

maintained by Metamata and the main reference is the home page of JavaCC:

http://www.metamata.com/JavaCC/. In addition to the parser generator itself, JavaCC

provides other standard capabilities related to parser generation such as building abstract

syntax tree (AST), debugging, etc.

The work of using JavaCC is mainly to write the JavaCC grammar, which is a

mixture of regular expressions and Java code for semantic actions. The most common

output of a parser is an AST. Therefore, before writing the JavaCC grammar file, we

must first design a class hierarchy of the AST for the target language. Then we can assign

an appropriate AST node to each non-terminal production in the grammar.

u

4.1.1 JavaCC tutorial by a simple example

We adapt a calculator example that comes with the downloaded JavaCC package

to illustrate some features and the use of JavaCC. This calculator accepts an arithmetic

expression using only the plus (+) operator and multiply (*) operator operating on
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0 integers. For example,

7 12 + 23
35

This example will be reused in the following two sections.

When writing JavaCC grammar for this example, we assume a hierarchy of Java

classes as depicted below. These classes will be used in semantic actions associated to the

grammar rules.

AdditiveNode

ExpNode

MultiplyNode

Fig. 4.1 Class hierarchy for JavaCC example

ConstantNode

u

Class ExpNode is the base class and all others are subclasses of class ExpNode. We do

not introduce much about the classes except for their constmctors, as the class names are

quite self-explanatory. The constructors for them are listed below since they will be used

later in the JavaCC grammar:

public AdditiveNode(ExpNode left, ExpNode right);
public MultiplyNode(ExpNode left, ExpNode right);
public ConstantNode(String numbers);

Now we have all the elements to write the JavaCC grammar for our simple

calculator. As usual we list the grammar in Courier font. The grammar starts with a Java

"main" method and this is followed by the grammar proper. Note that the words in

capitals (like LOOKAHEAD) are keywords for JavaCC and the line numbers are not part

of input and they are used to facilitate the explanation.

l. options {
2. LOOKAHEAD=1;
3. }
4. PARSER_BEGIN(Calculator)
5. public class Calculator {
6. public static void main(String args[])
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0 throws ParseException {
Calculator parser = new Calculator(System.in);
ExpNode ast;
while (true) {

System.out.print("Enter Expression: ");
System.out.flush();
try {

ast = parser.expression();
} catch (ParseException x) {

System.out.print In("Exiting.") ;
throw x;

}
//do something with the AST, for example,
//evaluating and displaying result

}

7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22. }
23. }
24 . PARSER_END(Calculator)

u

25.
26.
27.
28.
29.
30.

31.
32.
33.
34.

35.
36.
37.
38.
39.

40.
4l.
42.
43.
44.
45.

46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.

58.
59.
60.
61.
62.
63.
64.

SKIP :
{

Il

}

"\r"
"\t"

TOKEN :
{

< EOL: "\n" >
}

TOKEN : /* OPERATORS */
{

< PLUS: "+" >
l < MULTIPLY: "*" >

}

TOKEN : /* Integer Constants */
{

< CONSTANT: <INTEGER> >
< #INTEGER: ( <DIGIT> )+ >
< #DIGIT: ["0" - "9"] >

}

ExpNode expression() :
{

}
{

}

ExpNode node;

node = sum() <EOL>
{ return node; }
<EOL>
{ return null; }
<EOF>
{ return null; }

ExpNode sum() :
{

ExpNode nodel, node2;
}
{

nodel=term()
( <PLUS>
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0 65.
66.
67.
68.
69. }

noâe2=sum()
{nodel = new AdditiveNode(nodel, node2);}
)*
{ return nodel;}

70. ExpNode term() :
71. {
72. ExpNode nodel, node2;
73. }
74. {

nodel=element()
( <MULTIPLY>

node2=term()
{ nodel = new MultiplyNode(nodel, node2);}

)*
{ return nodel;}

75.
76.
77.
78.
79.
80.
81. }

82 . ExpNode element( ) :
83. {
84. ExpNode nodel;
85. Token t;
86. }
87. {
88. t=<CONSTANT> {noâel
89. {return nodel;}
90. }

new ConstantNode(t.image) ; }

u

From the above example, we can see that the JavaCC grammar file looks like a

Java program. It starts with an option block (which is optional) to finely tune the

efficiency of the resulting parser or to turn on some debugging feature, etc. In the

example, we have only the instruction "LOOKAHEAD = I", which tells the parser to

look ahead only one token.

Then follows a Java compilation unit enclosed between "PARSER_BEGIN" and

"PARSER_END", which is used to specify the Java Parser class name, in our example,

Calculator. The code between them will be copied to the resulting Java parser class.

Next is a skip block to tell the parser which character to be ignored when parsing

a program. Meanwhile, they act as token delimiters. In our case, character blank, carriage

return, and tab will be ignored.

Following is a list of token definitions. A token is a sequence of character that

matches a pattern defined by a regular expression. In the example, we defined four

tokens: EOL, PLUS, MULTIPLY, and CONSTANT. Whenever a token is recognized, an

object named Token will be returned to parser. Note that Token is a built-in class of

JavaCC and it has a field named image containing the token string.

The last and most important section is the JavaCC productions part. In JavaCC
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0 grammar, the syntax of a production is:

<Java_type> <Java_identifier>"("<Java_parameter_list>")" " : "

<Java_block>

{"

"}"

<expansion_choices>

J

The Java_identifier is the non-terminal name and has a method-like signature. It

has a return type and parameters (if necessary). Actually each non-terminal is translated

into a method of the same signature (including name, return value, and parameters) in the

generated parser class. Parameters and return value of the non-terminal are the means to

pass values up and down the parse tree. If a non-terminal includes some other non-

tenninals, they appear in the production just like any method. A non-terminal can also

include itself. Therefore JavaCC production can be recursive. For example, in non-

terminal sum() at line 58, it may contain one term and may call itself zero or more times

term() ( <PLUS> sum())*

The <]ava_block> in a JavaCC production is a block of Java declarations and

statements. They are visible to the embedded Java code in semantic actions in the

production. JavaCC does not do any processing on this block, it simply copies them to the

beginning of the resulting method. Every time this non-terminal is involved in the parsing

process, this Java block will be executed.

The <expansion_choices> is a list of possible choices separated by the OR

character "|", while each choice could be a concatenation of non-terminals and tokens. In

the example, the non-terminal expressionC) at line 46 has three expansion choices:

sum() <EOL>| <EOL> | <EOF>

which means that a legal expression non-temiinal must be only one of the three choices.

Now we can go over each production in our simple example.

The first and root non-terminal is expressionC). It returns an ExpNode object and

has no parameter. In the Java block, it declares an ExpNode object, node. After each

expansion choice, there is an optional Java code block called parser actions or semantic

actions. It will be executed if a match for that expansion is recognized. It is copied into

the Java method parsing the non-terminal at the appropriate location. This is a new
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concept introduced in JavaCC. If an expression consists of a non-terminal sum() ending

with an EOL character. The return result of non-terminal sum ( ) will be assigned to node

and be returned to parser as the internal representation of the calculator expression. If

only EOL or EOF is recognized, a null pointer will be returned.

The second non-terminal is sumC). One point special in it is that this non-temiinal

production is recursive and has a regular operator *. This operator means the sequence

"<PLUS> sumO" can appear zero or more times. The Java block inside the * operation

will be executed and how many times it will be executed depends on how many times the

sequence "<PLUS> sumÇ)" is matched.

The top-down decomposition will continue through non-terminal term ( ) to non-

terminal elementC). The expansion choice is token <CONSTANT>. When there is a match

for it, JavaCC creates an object of type Token. You use the object in your semantic

actions. Note that we do not need an extra lexer when using JavaCC.

At this point we have described the skeleton of a JavaCC grammar file.

J

4.1.2 JavaCC grammar for Java

There are several JavaCC grammar files coming with JavaCC package for various

Java versions. Since our work is on Java 1.0.2, we will introduce brieïïy the grammar file

for this version.

All reserved words, primitive operators, and literal of Java are defined as tokens at

the beginning. Then the grammar starts with the top non-terminal production

CompilationUnit, which represents a Java file to be compiled. It may include three

components: optional package declaration, optional import declaration, and optional type

declarations. Usually a Java file has at least one type declaration, either an interface or a

class. The top-down decomposition will continue through Java class field and method

declaration, through all kinds of Java statements, through all kinds of Java expressions,

until it hits the token as end points.

The complete JavaCC grammar file for Java 1.0.2 has 983 lines and altogether 79

productions to describe the Java language, out of which 25 are for expressions and 19 are

for statements. At first sight, it is overwhelming. However, due to its top-down stmcturc,

it is easy to read and understand.
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Note that it is only the grammar to define a legal Java program. Usually we

should change or embed some Java code as semantic actions into the grammar file

according to our needs. For example, each non-terminal production's return type was

originally void and we must change it to return some kind of syntax tree node in order to

build an AST.

u

4.1.3 Advantages of JavaCC

The most widely used compiler compiler tool is Lex/Yacc ([Lmb95]). Compared to

them, JavaCC has the following advantages:

JavaCC integrates the functionality of both Lex and Yacc in that you can specify both

the lexical rules (regular expression) as well as parsing rules (BNP) in the same input file.

Therefore, with JavaCC we need fewer steps to construct a compiler.

JavaCC generated parser and lexer are self-contained in that all code required to run

the parser is generated and no support libraries are required.

JavaCC grammar is more readable than the grammar for Lex/Yacc. At the right-hand

side of each production, JavaCC can mix the non-terminals with Java code (semantic

actions), while with Lex/Yacc actions appear only at the end of production. Actually,

within many productions certain actions are only related to part of the production. If we

can insert actions as soon as we see that part, the grammar file will be more readable and

easier to debug.

JavaCC puts less restriction on language grammars. Lex/Yacc can handle only the

LRLA(l) grammar. Though LRLA(l) is the standard of syntax design for most existing

programming languages, in some case we want to design our own language or to modify

an existing language. Then we will find that LRLA(l) is very restrictive. JavaCC accepts

LL(k) grammars, where LL(k) means the look-ahead number is variable and you can look

ahead as far as you want. In practice, we can easily design a language in which most part

is LL(1) and there are only a few choice points where we must look ahead more than one

token. In this way, we can get an efficient parser with little restriction on grammar.

JavaCC is very flexible when constructing the AST. Sometimes we need to pass

information up and down the AST. JavaCC can do this naturally since its non-terminal

production can have parameters and return a result like a normal method call. While it is
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0 very difficult to go up to a higher level production with Lex/Yacc.

4.2 Byte-code Engineering Library (B GEL)

BCEL ([Bcel98]) is a framework package for Java byte-code engineering. It

provides users a convenient way to read, to create, and to manipulate a Java class file.

u

4.2.1 Java class file format

To understand the importance of BCEL, we need to have an overview on the Java

class file format. [Ly97] has a detailed introduction of Java class file. Each Java class file

contains a single ClassFile structure:

ClassFile {
u4 magic;
u2 minor_version;
u2 major_version;
u2 constant_pool_count;
cp_info constant_pool[constant_pool_count-l];
u2 access_flags;
u2 this_class;

u2 super_class;
u2 interfaces_count;
u2 interfaces[interfaces_count];

u2 fields_count;
field_info fields[fields_count];
u2 methods_count;
method_info methods[methods_count];
u2 attributes_count;
attribute_info attributes[attributes_count];

}

Note that all the types mentioned in the above declaration are defined by JVM. Below,

we explain their meaning:

magic:

The magic item supplies the magic number identifying the class file format; it

has the value OXCAFEBABE.

minor_version and ma j or_ version;

The values of the minor_version and major_version items are the minor and

major version numbers of the compiler producing this class file.

constant_pool_count:

It gives the number of entries in the constant_pool table of the class file.
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u

constant_pool:

The constant_pool is a table of variable-length structures representing various

string constants, class names, field names, and other constants that are referred to

within the ciassFile structure and its substructures.

access_fla.gs :

The access_flags item is a mask of modifiers used with class and interface

declarations.

this_class:

The value of the this_class item must be a valid index into the constant^sool

table. The constant_pool entry at that index must be a coNSTANT_ciass_info

structure representing the class or interface defined by current class file.

super_class:

The value of the super_c2ass item either must be zero or must be a valid index

into the constant_pool table to indicate the superclass of the current class or

interface whenever necessary. In Java, only class java.lang.Object has no

superclass.

interfaces_count:

The interfaces_count item gives the number of direct superinterfaces of this

class or interface type.

Interfaces:

Each value in the interfaces array must be a valid index into the

constant_s>ool table to represent an interface that is implemented by current

class file.

fields_count:

Item fields_count gives the number of fields that are defined by this class file.

fields:

item fields represents an array of field_lnfo structures each of which

describes in detail a field declared by this class or interface type. It does not

include items representing fields that are inherited from superclasses or

superinterfaces.

methods_count:

Item inethods_count gives the number of methods that are defined by this class
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file.

methods:

Item methods is an array of method_info structures each of which gives a

complete description of Java Virtual Machine code for a method in the class or

interface.

From the brief description, we can see that the structure of a class file is very complex. If

we are asked to produce such a structure from scratch manually, it is very difficult to get

all the details right and to ensure the integrity and validity of a Java class file. The

package BCEL can bail us out of this hard situation so that we can concentrate better on

high-level language concepts. For example, if we want to remove or add an instruction to

a Java method directly, we must calculate the concrete byte-code offset, which is tedious

and error-prone. If we use the BCEL package, a simple delete or add method call will

handle every detail for us.

BCEL is composed of two main packages: package classfile and package generic.

The package classfile contains the classes that describe the stmcture of a Java class file

and a class file parser. It can analyze and give a static view upon Java classes without

having the source files at hand. While the package generic contains the classes to

dynamically create and modify class objects and byte code instructions, and it may be

used to optimize Java byte code or to implement the back-end (code generator) of a Java

compiler.

u

4.2.2 Sub-package classfile of BCEL

Figure 4.2 shows an UML diagram of the hierarchy of classes of this package.

The most important classes in this package are JavaClass and JavaParser. Objects of

JavaClass in most cases are created by a ClassParser object which is capable of parsing

binary class files and mapping all of the binary components and data structures into all

kinds of classes as described in Fig 4.4. A JavaClass object basically consists of fields,

methods, and symbolic references to the super class and to the implemented interfaces.

JavaClass package has a ConstantPool class to represent a constant pool of a Java class

file. ConstantPool objects contain an array of fixed size of Constant entries, which may



0

42

be retrieved via method getConstantQ which takes an integer index as argument. Class

Methods and Fields represent methods and fields of a class, respectively.
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The package classfile provides a Repository class to read class files and to obtain

JavaClass objects therefore we can interface with existing class files. We need only to

specify the name of the class file to the Repository and it will analyze the class file and

fill all the attributes of the JavaClass object, i.e., all the information of a class file is

stored in the object for future use. The usage oî Repository is as simple as:

JavaClass myclass = Repository.lookupClass("java.lang.String");

Moreover, Repository maintains information about class interdependencies, e.g., whether

a class is a sub-class of another, or whether a class implements a specific interface, etc.

This functionality is very important when we want to do type checking.

After we obtained a JavaClass object, information about the class file components

may be accessed or modified via the set and get methods. All the class file components

like Method, Field, etc., also define a toStringQ which will help to print them out in a

readable way so that we can implement a class viewer easily.

4.2.3 Sub-package generic of BCEL

Figure 4.3 shows an UML diagram of the hierarchy of classes of package generic.

It can help compiler writers to generate Java byte code. The concept of generic is

essential for code generation. For example, in the JVM, there are many variants of

abstract instructions ADD depending on the type, the location and even the value of the

operand. In code generation, we want to build internal representations of the program

using the abstract nodes like ADD and have the generation routines produce the correct

byte codes.

The most important classes are Classgen, ConstantPoolGen, MethodGen, and

FieldGen. They work together to compile methods and fields of a class to constmct a

JavaClass object. The constant pool generation of a class is handled by class

ConstantPoolGen that offers methods for adding different types of constants and

constmcting a constant pool for a Java class. MethodGen and FieldGen are aimed to

construct a Method object and a F/eZrf object, respectively, for a JavaClass object.

J
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4.2.3.1 Types

ClassGen abstracts from the concrete details of types by introducing the Type

class, which is used, for example, by methods to define their return and argument types.

Concrete sub-classes are BasicType, ObjectType, and ArrayType. The last one consists of

the element type and the number of dimensions. For basic types, ClassGen offers some

predefined constants. For example, the return type and argument types of the Java main

method is represented by:

Type return_type = Type.VOID;

Type[] arg_types = new Type[] {new ArrayType(Type.STRING, l)};

Type objects can be converted to textual signatures with getSignatureC).

4.2.3.2 Genericfîelds and methods

Fields are represented by FieldGen objects. Generic methods contain methods to

add local variables, exceptions the method may throw, and exception handlers. Exception

handlers and local variables contain references to byte code addresses. Generic (non-

abstract) methods refer to instruction lists that consist of instruction objects. References

to byte-code addresses are implemented by handles to instruction objects. This will be

explained in more details in the following sections.

J

4.2.3.3 Instruction list ofBCEL

In BCEL, there is a class corresponding to each JVM instruction. Modeling

instructions as objects may look somewhat odd at first sight, but in fact it enables a

compiler writer to obtain a high-level view upon control How without handling details

like concrete byte code offsets.

Instmctions consist of a tag, i.e., an opcode, their length, and an offset (or index)

within the byte code. Instructions are grouped via sub-classing, the type hierarchy of

instmction classes is illustrated by figure 4.4. The most important family of instmctions is

the branch instructions, like goto, that branch to targets somewhere.

An instruction list is implemented by a list of instruction handles encapsulating
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n instruction objects. References to instructions in the list are thus not implemented by

direct pointers to instructions but by pointers to instruction handles. This makes append,

insert, and delete code segments very simple. Since we use symbolic references,

computation of concrete byte code offsets does not need to occur until finalization, i.e.,

until the user has finished the process of transforming or generating code.

The class InstructionList representing an instruction list is one of the most

important classes of BCEL. It has the methods to create a new instruction list, append and

add an instruction or another instruction list, and delete an instruction from an instruction

list anywhere. The following listing is a simple example showing the use of class

InstructionList and some of its methods:

4.2.3.4 Finalizing a JavaClass object

When the instruction list is constmcted, all symbolic references must be mapped

to real byte code offsets. This is done by the method getByte-code () called by the method

getMethodÇ) of class MethodGen. ClassGen object will call method getJavaClassC) to

obtain a JavaClass object, which contains all information about the Java class to be

compiled and can dump valid Java byte code to file, i.e., finish the compiling process.

Thus we can produce byte code in a controlled manner.

4.2.4 An example using BCEL

We return to the simple example used for the JavaCC tutorial to illustrate how to

use the BCEL APIs. Whenever there is an expression recognized, for example 23 + 3, it

will imply a Java class Calculator as follows:

import j ava.io.*;

public class Calculator {
public static void main(String[] args){

int x;
x= 23 + 3;
System.out.println(x);

}
}

J
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0 We will use BCEL to produce Java byte code by hand for the complete short

program shown above. To do this, you must have a good understanding of Java byte code

and the BCEL APIs.

import de.fub.byte-code .generic.*;
import de.fub.byte-code .Constants;

public class CalculatorCompiler {
public static void main(String[] argv) {

/** create a ClassGen object for class Calculator */
ClassGen eg = new ClassGenf

"Calculator", // class_name
"Java.lang.Object", //super_class_name
"<generated>", //file_name to dump class file
Constants.ACC_PUBLIC
Constants.ACC_SUPER, // class access_flags
null); //array of interfaces implemented

//get the constand pool from the ClassGen object
ConstantPoolGen cp = cg.getConstantPool();

//create an instruction list object for the main method
InstructionList il = new InstructionList();

/** compile the main method */
MethodGen mg = new MethodGen(

Constants.ACC_STATIC
Constants.ACC_PUBLIC, // access flags
Type.VOID, // return type
new Type[]{new ArrayType(Type.STRING, l)},

// parameter types array
new String[] { "args" }, //parameter names array

"main", // method name
"Calculator", // within which class
il, // instruction list of method

cp); // associated constant pool

/** Add constants to constant pool
* and later on they can be referenced by index.
*/
int system_out = cp.addFieldref("java.lang.System",

"out", "Ljava/io/PrintStream;");

//compile "int x"
LocalVariableGen 1g;
1g = mg.addLocalVariablef"x", Type.INT, null, null);

/* get the index for local variable x for later reference */
int x = Ig.getlndexf);

/* start to add instructions to instruction list*/

u

//compiler 23+3
//load int constant 23 onto stack
il.append(ICONSTf23));

//load int constant 3 onto stack
il.append( ICONST(3));
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}
}

//add the top two integers in the stack togeter
il.append(IADD ( ) ) ;

//store the top integer in stack into local variable
// and mark the validity beginning of local variable "x"
Ig.setStart(il.append(new ISTORE(x)) ) ;

//load the local variable onto stack
il.append(ILOAD(x));

//call method System.out.println(x)
il.append(new INVOKEVIRTUAL(

cp.adâMethodref("java.io.PrintStream", "print In", "(I)V":

);
)

//add a return instruction to the end of il
il.append(InstructionConstants.RETURN);

//set the max stack size of JVM
mg.setMaxStack(2);

//add the method with its instruction list to the class
eg.addMethod(mg. getMethod());

/* Add public <init> method, i.e. empty constructor */
eg.adaEmptyConstructor(Constants.ACC_PUBLIC);

//Get JavaClass abject and dump it into a class file.
try {

cg.getJavaClass().dump( "Calculator.class");
} catchfjava.io.lOException e) {

System.err.println(e) ;

u

4.3 Espresso

Espresso has a class to represent every Java program component, like the

statement, the expression, the variable, the literal, etc. It uses JavaCC to tokenize and

parse the program, and build an abstract program representation: an AST, according to

the given Java grammar file and the semantic action embedded within the grammar as

well as a symbol table which has information for all the variables and constants. This is

used to handle the package and block structure of Java programs and to do type checking.

Espresso also has a Java import manager to interface between the symbol table

and Java "class" files. In particular, the import manager is used to enter into the symbol

table information about fundamental classes such as String, Object, etc.

After Espresso has finished all the traversais of the AST and attached all needed

information, it uses the generic package of BCEL to produce Java byte code. In the
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0 following sections, we will elaborate on the procedures mentioned above.

4.3.1 Class design of Espresso

The first step of Espresso is to define a hierarchy of Java classes to internally

represent every possible program structure. Some of them are listed in the table below:

CompilationUnitNode TypeDeclarationNode ClassDeclarationNode

Clas sB odyDeclarationNode ConstructorDeclarationNode ConstructorInvocationNode

StatidnitializerNode FieldDeclarationNode MethodDeclarationNode

InterfaceDeclarationNode InterfaceMemberDeclarationNode VariableDeclaratorNode

FormalParameterNode LocalVarDeclarationNode ArrayInitializerNode

In addition, there are 16 different StatementNodes like ForStatementNode,

WhileStatementNode, IfStatementNode, etc., and 44 different ExpressionNodes such as

AndExpNode, AssignmentNode, AdditiveExpNode, etc.

The class hierarchy is quite big and all the classes could be categorized into three

main categories: class-level declaration nodes, statement nodes, and expression nodes

that correspond to Java declarations, statements, and expressions, respectively. Each

CompilationUnitNode represents a Java class or Java interface to be compiled. The

meaning of other classes is evident from the names. All the classes are subclasses of class

SyntaxTreeNode.

J

4.3.2 Program parsing and construction of the AST

Given the above classes, Espresso will add semantic code to the JavaCC grammar

file. The resulting grammar will be fed to JavaCC to construct a LL(k) parser for Java.

The generated Java parser is used to parse the Java source code. First it checks the Java

code conforms to the Java grammar and reports errors and stops the compiling process

whenever it finds one error, which means that the error-tolerance of Espresso is quite

poor and can report only one error at a time. Meanwhile, Espresso constructs an AST to

represent the original source code. Each node of this tree is an object of a class described

in the previous section. If Espresso verifies that the program contains no grammatical

error, it will return an AST as the result of compilation. Later, the type checking and code
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generation will work on AST.

We reuse the calculator example in previous section to demonstrate the procedure.

In order to facilitate the understanding, we repeat the Java code here.

import java.io.*;

class Calculator {
public static void main(String[] args){

int x ;
x = 23 +3;
System.out.println(x);

}
}

Espresso will build an AST shown in Figure 4.5:

ClassDeclarationNode

*
MethodDeclarationNode

^
BlockNode

i
LocalVarDeclarationNode StatementExpNode StatementExpNode

Il
AssignExpNode MethodExpNode

VariableExpNode
x

AdditiveExpNode
+

IntegerLiteralExpNode Integer LiteralExpNode
23 3

Fig. 4.5 The partial AST for the Calculator example

u
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The AST can not keep all the program information by itself and it works together with

symbol table.

u

4.3.3 Symbol table

With the syntax tree, the symbol table is one of the two major data structures used

in the compiler. It is intimately involved with the parser, which may need to enter

information directly into the symbol table or to consult it to resolve ambiguities.

The symbol table is mainly a typical dictionary data structure. The principal

operations are insert and lookup. In some other cases, delete may also be necessary.

Typically, the information which needs to be stored in the symbol table includes data type

information, program scope information, and information on eventual location in

memory. The first two types of information are used mainly for parsing and semantic

analysis like type checking, and the last one is used at the stage of code generation.

In the symbol table, the attributes bound to a name vary with the kind of

declaration. For example, a ClassDeclarationNode has a class name whereas

MethodDeclarationNode has a method name.

Espresso's symbol table is implemented as a flat data structure using a Java

Hashtable. In order to resolve imbricate scope with a flat data stmcture, Espresso uses a

naming convention similar to UNIX paths. Another solution would be to use a tree-

structured table.

All the entries in a symbol table are fully resolved in order to keep them unique.

For example, the name of a field is recorded as packageName.className.fieldName and a

method as packageName.className.methodName. In order to deal with the different

scopes within a method, Espresso uses an integer number scopeid to encode the variable

name in symbol table. The symbol table of Espresso encodes a formal parameter as

packageName.className.methodName.O.formalParameterName and a local variable as

packageName.className.methodName.scopeid.localVariableName. Since the formal

parameter is always at the top level of a method, its scopeid is fixed to 0

For the calculator example, a symbol table as shown by the following table is

constmcted when building the AST.
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Symbol (key) Item

l Calculator class

2 Calculator.main method

3 Calculator.main.O.args formal

4 Calculator.main.O.x Local variable

5 Java.lang.System Class(JIM)

6 java.io.PrintStream.println.0 Method (JIM)

7 java.lang.System.out Field (JIM)

8 java.io.PrintStream Class (JIM)

Given the above encoding schemes, we can guarantee that all the entries in the symbol

table arc unique and original scopes are preserved.

The imported entity is manipulated the same manner in the symbol table as the

user-defined entities present in the compiled unit. It allows for a uniform handling during

type checking and code generation.

4.3.4 Java Import Manager (JIM) of Espresso

JEVI is an interface to the Java library and existing compiled Java class files.

When we encounter a symbol name that is not defined within current compilation unit,

we must use JIM to determine whether it is defined in a certain class imported by the

source code. Then it makes appropriate portions of compiled Java class files available to

the environment of Espresso, specifically, to enter an entry in the symbol table and build

an appropriate Node object to represent the precompiled code.

]ÎM mainly uses class JavaClass of BCEL to achieve this goal. First it constmcts

a JavaClass object from an existing Java class file and uses the facilities of JavaClass to

retrieve class information from the JavaClass object and add appropriate entries into the

symbol table. In this manner, Espresso can treat an imported class (already compiled) the

same way as a user-defined class in the source code.

u
4.3.5 Type checking

One of the principal tasks of a compiler is the computation and maintenance of
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information on data types (type inference) and the use of such information to ensure that

each part of a program makes sense under the type rules of the given language (type

checking). Usually, these two tasks are closely related, performed together, and referred

to simply as type checking.

After the JavaParser parses Java code and constructs an AST successfully, type

checking is performed on the AST with help from symbol table. Each node of the AST

provides a type check method that is responsible to perform the type checking of the

language constmct it represents, and to propagate type checking down to its component

nodes in the AST if required.

During parsing, types declared for methods, fields, formal parameters, and local

variables are collected by the parser, and turned into instance of classes of the type

hierarchy. Constructing type instances also includes encoding these types according to

the encoding scheme defined by the JVM to make them comparable to the ones loaded

from class files.

In addition to detennine the resulting types of expressions, type checker must

verify that access restriction for Java packages, classes, methods, and fields are respected.

This section introduces to the Espresso's type checking concepts and highlights

some difficult or non-standard problems.

4.3.5.1 Type hierarchy of Espresso

The type hierarchy developed for Espresso is one of the most important and

central concepts of Espresso. Almost all non-trivial functions for type checking are

integrated in this hierarchy. It also plays a major role in supporting code generation.

Java's type system distinguishes between two kinds of types: primitive types and

reference types. Primitive types include all the numeric types, void type, and boolean

type. Numeric types are further divided into integral types (which include the types byte,

short, char, int, and long\ and floating point types (float, and double). There are three

kinds of reference types in Java: class types, interface types, and an-ay types. In addition,

a special null type is also defined.

u
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Figure 4.6. UML class diagram of Espresso's type hierarchy

(From the technical report of Espresso)

Espresso's type hierarchy also contains a special type for methods. Although the

Java language has no objects of method type, the availability of this special type provides

an elegant solution for many problems during type checking and code generation.

J

4.3.5.2 Type Relationships

Given the type hierarchy, we must somehow find the relationship between two

types, which is essential in type checking. All these relationships can mainly be divided

into four categories: identical, subtype, supertype and related.

Type distance is invented to quantify the relationship between two types. Table

4.1 defines the distances between all the primitive types.
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0 Table 4.1 the type distance matrix in Espresso

u

boolean byte short char int long Hoat double class

boolean 0 -00 -00 -00 -00 -00 -00 -00 -00

byte -00 0 l -00 2 3 4 5 -00

short
-00 -00 0 -00 l 2 3 4 -00

char
-00 -00 -00 0 l 2 3 4 -00

int
-00 -00 -00 -00 0 l 2 3 -00

long -00 -00 -00 -00 -00 0 l 2 -00

float
-00 -00 -00 -00 -00 -00 0 l -co

double
-00 -00 -00 -00 -00 -00 -00 0 -00

class
-00 -00 -00 -00 -00 -00 -00 -00 7

The distance from type A to type B is indicated by the item (A, B) in the above table,

where A is the row index and B the column index. For example, the distance from byte to

double is the item at the row byte and the column double, i.e., 5.

The distance between class types in the above table is calculated as follows:

a) The distance between two identical class types is 0.

b) The distance between Object and any other class type is -°°.

c) If the class type is a subtype of the other type, then the distance is equal to the number

of levels of subtypes between them. The direct supertype is at distance 1.

d) If none of the above is the case, but the type has superinterfaces, then the first

superinterface that has a distance greater than or equal to 0 with the other type

determines the distance between the two class types.

e) The distance between any two unrelated classes is -oo.

The distance between two method types, say S and T, is defined as the sum of the

distances between the individual arguments of the two method types if they have the

same number of arguments. Otherwise, the distance is -°°. If any single distance between

an argument of the method type S and its corresponding of the method type T is -oo, then

the resulting distance is -oo.
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At this point, espresso has laid out the foundation for type checking.

4.3.5.3 Resolve overloaded methods

Java supports method overloading. Which version of method should be used is

determined by type checking. Java Language Specification (JLS) requires the most

specific method to be used. The method type distance is the measurement of the

specificness of a candidate method definition for a method invocation. Whenever we type

check a method invocation node, we will calculate the type distance between the method

call and each possible overloaded method definition using the concept of method type

distance. The method that has the smallest distance to the type of the invoked method is

the most specific one, which should be used according to JLS.

In Espresso, class ClassType has a method fîndMethodÇ) to look up the symbol

table and to determine the most specific method declaration for a MethodExpNode. Type

checking of MethodExpNode first sets up an instance of class MethodDesc, which

contains a method type describing the signature of the method invocation expression, the

name of the method, and some other fields. Then it passes this object to the initial class

type on which the method is invoked to call the fîndMethod to get the most specific

method definition for the method call.

Within findMethod, methods obtained from the symbol table with a matching

number of arguments are sorted out, and among those, the most specific one is chosen by

applying the distanceTo method of the initial method type to the type of each candidate

method. Once the most specific candidate method definition is determined within a class,

the search continues recursively up to the superclass. The search either stops when an

ambiguity among candidate method declarations is encountered (a type check error), or

when Java's primordial type Object is reached. If searching was successful, the most

specific method is returned to the initial caller.

During the search up the type hierarchy, findMethod also takes care of requesting

JIM to load required class files in order to make the appropriate type information

available in the symbol table.

u
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4.3.5.4 Type checking for primitive operators on primitive types

For all the unary and binary operators on primitive types, an initial environment is

added to the symbol table. This environment defines, for each operator, its possible

operand types, and the resulting primitive type. This is done by adding the primitive

operator to the symbol table as an ordinary symbol, along with a method type for all

possible types supported by the operator describing the types of the arguments and the

result type.

To type check an expression involving a primitive operator, we only need to

determine the types of its arguments, and create an appropriate method type. Then we can

use the definitions given in the initial environment together with the distanceTo function

presented above, to determine whether the expression is correctly typed and what the

resulting type is.

^

4.3.6 Code generation

After Espresso has successfully completed the type checking it will move on to

the last phase of a compiler: code generation.

Espresso uses the package ClassGen, which is available from BCEL. This

package provides a complete infrastructure to build up a constant pool, from which at the

end of the compilation, the content of a class file can be retrieved. It also includes a

complete set of classes representing the instruction set of the JVM.

Generating code for particular type declaration starts by creating an instance of

ClassGen, the top-level class of the package ClassGen, which is used to manage the

construction of the Java class file. It provides methods to add the components of the class

body and to access the class files constant pool directly if needed.

Translation proceeds by adding appropriate code for the entities of the class body.

Generating code for interface declarations mainly consists of adding entries for field

declarations and method declarations to the constant pool. Generating code for class

declarations requires translating the Java code contained in the method body. After

completing translation of all entities of the class body, the content of the generated Java

class is retrieved from ClassGen, obtaining an instance of class JavaClass (contained in

package JavaClass), which provides a method to dump its content to a Java class file.



59

n
4.4 Summary

We have introduced briefly packages JavaCC, BCEL, and Espresso. We would

like to summarize their functionality and the relationships among them. First, Espresso

uses JavaCC to parse input Java source code against Java language grammar. If parsing

successfully, JavaCC will build an internal representation of the source code, an AST.

Then Espresso works on AST and uses ClassGen API to build a JavaClass object out of

the AST with the help of symbol table. Then JavaClass API will dump Java byte code

out of the JavaClass object and finish the compiling process.

^
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Chapter 5

Implementation of the J compiler

The construction of the compiler for J is based on Espresso introduced in chapter

4. We will follow the natural phases of a compiler to explain the compiler construction

for J. In addition to the conventional compiler construction stages, we add a transformer

stage after parser, which will transform all the J extensions back to the standard Java

program stmcture. Most of our J extensions are implemented at phases of parsing,

transformation, and type checking.

The high-level How diagram of the implementation of J compiler is depicted as

below:

u

Lexical analyzer

Parser

Transformer

i
Type checker

Code generation

Source code

Tokens

AST

AST

AST

Java byte-code
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n 5.1 Lexical analyzer and syntactic parser

As we introduced in chapter 4, we use the compiler tool JavaCC to implement the

front-end of our compiler for J. JavaCC combines the lexical analyzer and syntactic

parser together.

First we must modify the JavaCC grammar for Java to implement all the J specific

syntax. It includes modifying both the JavaCC grammar productions and the semantic

actions in each relevant production.

5.1.1 J class declaration

We must change the grammar production ClassDeclaration() as:
ClassDeclaration() :

("abstract"I"final"I"public")* "class" <IDENTIFIER>
[ "extends" ResolvedName() ]
[ "implements" ResolvedNameList() ]
"begin"

( ClassBodyDeclarationO )*
"end"

In order to implement the new syntax for the main method and the factoring of static

members of a class, we add two choices into the grammar production

ClassBodyDeclaraîionÇ). For the static declaration, the match will not return any syntax

tree node, but only make a mark so that the following class body declarations will know

that it should add a static modifier. As to the possible main method in a class declaration,

we must add a mainDeclaration production because its syntax is different from that of a

normal method declaration. Within production mainDeclaration, we must patch the J-

style main method declaration to a nonnal one: add modifiers public, static, and void,

recover the type signature for the formal parameter, and return a standard method

declaration node.

ClassBodyDeclarationO :
(

J

LOOKAHEADC'static" "{") Statidnitializer ( )

LOOKAHEAD(["public"I"protected"I"private"] Name() "("
ConstructorDeclaration()

LOOKAHEADC'static" ":") "static" ":"

LOOKAHEADf MethodDeclarationLookahead() )
MethodDeclaration()

FieldDeclaration()
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n MainDeclaration()
)

5.1.2 If and while statements

For these statements, we remove all the syntactically unnecessary parentheses

enclosing the branch condition expression and introduce keyword "then" for the if

statement and use keyword "do" with while to make program more human readable.

IfStatementO :
"if" Expression() "then"

Statement(true)
[ "else" Statement(true) ]

WhileStatement() :
"while" Expression() "do" Statement(true)

u

5.1.3 Use of traditional operators

In order to use Simula operator ":=" as assignment operator, we must change

several grammar productions where the assignment operator could be used: the variable

declaration (where there could be variable initialization), AssignmentOperator, and

equality expression.

VariableDeclaratorO :
VariableDeclaratorId() [ ":=" Variablelnitializer() ]

Assignment() :
PrimaryExpO AssignmentOperator() Expression() )

AssignmentOperatorO :
( *— II "/=^\ "%=" +; "«="

"»= It>»: Il&=" l "A=" )

EqualityExp() :
InstanceOfExpf) [ ":=" InstanceOfExp() ]

As to the implementation of content identical operators "=" and "!=", it is relatively
simpler, we must add two operators "=" and " !=" into the IdentityExp production.

IdentityExpO :
EqualityExp() ( (" "!=="l"="l"!=") EqualityExpO ) •A-

Though, the syntactic modification is trivial, it needs further processing in the stage of

type checking.
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5.2 Transformer visitor

After parsing a J program, we get an abstract syntax tree and a symbol table

organized as a hash table. They retain all the infonnation of the original code. Before type

checking, we use a transformer visitor to traverse the resulting syntax tree and transform

the J extensions back to standard Java program structure.

5.2.1 Object order comparison

This feature is handled when transformer visitor reaches a RelationalExpNode

such as a > b. First, it will check the type of left and right expressions of this node. If

both of them are of class type and not of primitive type, then it knows that it must do

transformation on this node.

Before any action is taken, the transformer checks whether the left and right

expressions of this node are type compatible. If not, visitor will throw a type checking

error exception. Otherwise, it will transform this node into a MethodExpNode. In order to

make this feature available, the involved class must have implemented the method

compareToÇ) of interface Comparable.

After all these checkings, the transformer starts to do the transformation on syntax

tree. For example, the action for expression a > Jb is to replace it with expression

a.compareTo(b) > 0 as shown in the diagram that follows.

>

>

compareTo 0

ba

ba

J

5.2.2 Content identical comparison

We use two operators ("=" and "!=") and a new expression node class

IdentityExpNode for this purpose. When constructing the IdentityExpNode, for example,

a = jb, we mark the expression node to distinguish different operators. When visiting

this node, transformer will check the type of both operands and the operator type first. If

a and b are not of class type, then a type checking error will be thrown. Otherwise, if the
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n operator is "=" or "!=", then the node will be transformed into another identityExpNode

whose left operand is a MethodExpNode a. equal s (b) and the right is a

BooleanLiteral ExpressionNode of value true, i.e., the content identical comparison of

class object will become : a. equals (b) == true or a.equals(b) '.= true

depending on the type of operator. Note that the class involved must have the method

equals ( ) implemented according to your specific requirements. Otherwise the equalsC)

method of Object will be used. The transformation is demonstrated as follows:

J

^̂̂
-^'

!• true

equalsa

ba

b

5.2.3 Indexing for String and Vector

When visiting the ArrayExpNode, for example a[i], type checker will check the

type of the left operand of this node. If it is of type String, then this node will be replaced

by MethodExpNode: a.charAt(i). If it is of type Vector, then it will be transformed into a

MethodExpNode: a.elementAt(i). The transformation for [] on String is demonstrated as

follows:

a

[ ]

>
a ( charAt ^

l

Note that in order to do this transformation, the visitor must go up a level on the

syntax tree because MethodExpNode and ArrayExpNode are not type compatible. The



0

65

way we process the transformation is that we add a member variable, resul tExp_d, in

class ExpressionNode, which is the super class of all expression nodes. When we detect

that the current ArrayExpNode needs transformation, we create a methodExpNode and

assign it to variable resultExp_d. When the visitor sees this node for the next time, it will

check variable resultExp_d first. If it is not null, then the current node will be replaced by

re su l tExp_d.

5.3 Type checking

Now we must check for the semantic validity of the program, which is the main

purpose of type checking. Furthermore, some of our J extensions to Java are implemented

at this phase.

In addition to the normal type checking, the type checker must detect whether a

program structure is in standard Java or in J extension. If it is the latter, we need to

annotate the AST with some additional information.

5.3.1 Automatic type casting

This feature is mainly handled by the class AssignmentNode. We assume that the

users are conscious of what they are doing and therefore use a very simple algorithm.

When type checker visits this node, it will first find out the type of both left and right

expressions of the assignment. If the types of both sides are different and the distance is

greater than 0, it means that they can be inter-assignable. Then we cast the right side to

the type of the left side by default. This rule applies to both primitive types and class

types.

In case there is a cast needed, we will create a CastExpNode with the type of the

left side and the expression of the right side, and the newly created expression will

replace the original right side expression.

u

5.3.2 The Method selection

In order to relax the method select rules in J, we must redefine the type distance

matrix in chapter 4. The main modification is that we merge integral series of primitive

and Hoating type series into one. The new type distance matrix is shown in the following
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n table:

Table 5.1 Type distance matrix of J

boolean byte short char int long float double class

boolean 0 -00 -00 -00 -00 -00 -00 -00 -00

byte -00 0 l 2 3 4 5 6 -00

short
-00 l 0 l 2 3 4 5 -00

char
-00 2 l 0 l 2 3 4 -00

int
-00 3 2 l 0 l 2 3 -00

long -00 4 3 2 l 0 l 2 -00

Hoat
-co 5 4 3 2 l 0 l -00

double
-00 6 5 4 3 2 l 0 -00

class
-00 -00 -00 -co -00 -00 -00 -00 ?

All the types are represented by a class each, for example, class IntType for int,

FloatType for float, etc. This matrix is implemented by the method distanceToC) in each

type class. Following is the method in class DoubleType:

u

public int distanceTo( Type other ) {
int result = Integer.MIN_VALUE;
if ( other instanceof ByteType ) {

result = 6;
}
else if ( other instanceof CharType ) {

result = 5;
}
else if ( other instanceof ShortType ) {

result = 4;
}
else if ( other instanceof IntType ) {

result = 3;
}
else if ( other instanceof LongType ) {

result = 2;
}
else if ( other instanceof FloatType ) {

result = l;
}

else if ( other instanceof DoubleType ) {
result = 0;

}
return result;

}
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0 While for the standard Java, the counterpart is:

public int distanceTo(Type other) {

int result = Integer.MIN_VALUE;
if ( other instanceof FloatType ) {

result = l;
}

else if ( other instanceof DoubleType ) {
result = 0;

}
return result;

}

We can see from the above example that in Java, double is related to double and float

only, but in J, double is related to all the primitive types (except for boolean).

When looking up for a method definition, J compiler will see all the primitive

types compatible with the new type distance matrix. First it will check the number of

arguments of a method call and the number of fonnal parameters of a method declaration.

If they are not the same, then J compiler will reject the method declaration. Otherwise, it

could accept it as candidate if it can pass some further type checking. Therefore, it will

accept the following sample program given in chapter 2:

ï

J

class Test
begin

int sum;
public void add( short item ) {

sum += item;
}

static:
main(args){

Test t := new Test();
t.add(73);

}
end

5.4 Code generation

Traditionally, this is the most complex part of compiler. However, when we

compile the J program, we retain the internal structure (i.e., AST) of Java. The

transformer pass in our compiling process could be considered part of code generation. It

transforms a J-specific AST to a standard Java AST so that we can reuse the Espresso's

code generation facilities for Java to generate Java byte-code for J.

For the purpose of compatibility and ease of comparison, we implement a pretty

printer that can produce equivalent Java code for each J program.
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Chapter 6

Testing and evaluating of J

In this chapter, we test and evaluate J. To test the system, we choose a set of

programs that exemplify all the new features we implemented. The examples are

compiled first with J then run with the command Java. To evaluate J, we compare the J

version of a program with the equivalent Java code and count the number of tokens in

code of both versions as a measure of complexity.

6.1 Tests

To check out J we choose 5 programs that cover all our language modifications.

Following are what will be tested:

program 1: Syntax modifications

program 2: Object order and equality comparison

program 3: Indexing

program 4: Type cast

Program 5: Method selection.

J

6.1.1 Syntax modifications

We show a small J code example that uses almost all the J specific syntax like the

new assignment operator, static keyword factoring, the main method declaration, class

declaration, etc.

import j ava.io.*;

public class Testl
begin

int i := 0;
static :

String si := "be";
public void print(String msg){

System.out.println(msg);
}

main (args){
String s2 := "abcdef".substring(1, 2);
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n while j <= 2do {
if one = two then

print("si equals to s2");
else if si == s2 then

print("sl and s2 are the same");
J++;

}
Integer vl := new Integer(123);
Integer v2 := new Integer(123);
if vl = v2 then

print("Integers equal " ) ;
if vl == v2 then

print("Integers identical " ) ;

}
end

6.1.2 Test of object order and equality comparison

Class Point is used to test the implementation of object order and equality

comparison. It has two attributes: x and y, for the coordinates. We define a method

distance that measures how far a point is from the origin and is used to specify the

compareTo method so that we can overload comparison operators <, >, >=, and <=

upon Point objects.

J

import j ava.io.*;

class Point
begin

int x, y;
Point(int x, int y){

this.x := x;
this.y := y;

}
int distance(){ // from origin

return x * x+y *y;
}
int compareTo(Point other){

if this.distance() > other.distance() then
return 1;

else if this.distance() < other.distance() then
return -1;

else
return 0;

}
end

public class Test2
begin
static :

public void print(String msg){
System.out.println(msg);

}
main (args){

Point pl := new Point(10, 5);
Point p2 := new Point(5, 10);
if pl > p2 then
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n

}
end

print("Pl is further to the origin than p2")

if new Integer(12) > new Integer(5) then
print("12 is greater than 5");

if "abc" > "zzz" then
print("String abc is greater than string zzz");

6.1.3 Test of String and Vector indexing

Test3 is a simple J class that has a static print method and a main method. The

main method defines a String variable and a Vector variable and then enumerates their

contents with indexing of String and Vector.

import Java.io.*;
import Java.util.*;

public class Test3
begin
static :

public void print(String msg){
System.out.println(msg);

}
main (args){

String str := new String("Hello ");
Vector v := new Vector();
v.addElement(str);
v.addElement(new String("world"));
for (int i := 0; i < str.length;); i++)

print(strCi]);

for (int i := 0; i < v.size(); i++)
str := v[i] ;

}
end

J

6.1.4 Test of automatic type casting

Test4 includes a variable definition and a statement that are illegal in Java but

legal in J. In the definition/iroa?/:-= 0.9, fis a float but 0.9 a double. Therefore they are

not type compatible in Java. But in J, when compiling this definition, 0.9 will be cast into

a float implicitly so that J will accept this variable definition. A similar procedure is

applied to the assignment expression s:=s + l.

import java.io.*;

public class Test4
begin
static :

public void print(String msg){
System.out.println(msg);
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0 }
main (args){

short s ;
float £ := 0.7; //0.7 is a double

:= s + l; //s: short; s+1: int
print(" You should see no error message!");
print (" f= " +f+ " s= " + s);

}
end

6.1.5 Test of new method selection algorithm

The class Test5 overloads the method count several times and then the method is

called with parameters that do not match exactly the formal parameters of any method

definition. It will test whether our new method selection algorithm works or not. The

operation details are explained by the comments in the program.

J

import java.io.*;

public class Test5
begin
static :

public void count(int i, int j){
print("(int, int)");

}
public void count(int i, long j){

print("(int, long)");
}
public void count(double i, double j){

print("(double, double) " ) ;
}
public void print(String msg){

System.out.println(msg);
}

main (args){
short s := 1;
int i := 2;
long l := 23L;
float f := 0.9f;
double d := 0.9;

/* casting: (short->int, short->int) */
count(s, s);

/* (int, short -> int) */
count(i, s);

/* (int, long) */
count(i, 1);

/* (long -> int, long) */
count(l, l);

/* (float -> double, float -> double) */
count(f, f);

/* (float-> double, double) */
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n count(f, d);

/* (long -> int, float-> long) */
count(1, f);

}
end

In the above program, we use the comments to indicate the expected behavior of

J. When selecting the method, we use only one criterion: the specificness of a method

(defined in chapter 4) based on the type distance matrix given in table 5.1.

When we run the above test programs with our J compiler, it does accept these

programs and behaves successfully as we expected.

6.2 Comparisons with Java

An important purpose of J is to simplify the code writing. We will compare J

programs to their Java equivalents to see if J achieves our design goal.

The comparison is done in two ways: first we take a J program and use pretty

printer of J to output its Java equivalent. Then we compare the J program with the

generated Java program (though we may manually make some minor modifications to the

output Java code, for example, changing java.lang.String to String). Second we pick up

some Java code examples from textbooks on data structures because there are many good

examples of complex algorithms. Then we rewrite them in J and compare them with the

original Java code.

The criteria of the comparison are the tokens count and the characters count.

Generally, they are good indicators of program simplicity. We will do some simple

statistics on tokens and characters to see which one is simpler.

J

6.2.1 From J to Java

We pick up all the examples in section 6.1 and rewrite them in Java. The Java

counterparts are listed in appendix A. We count the number of tokens and characters for

each of them and then calculate the benefit of J by counting how many tokens and

characters are saved. The comparison results are listed in tables 6.1 and 6.2.
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Table 6.1 Token number statistics

Examples Tokens count
of Java

Tokens count
of J

Number of J
features

Benefit of J |Improvement|
%

Test 1 287 270 8 17 5.9
Test 2 175 165 5 10 5.7
Test 3 106 97 4 9 8.5
Test 4 96 85 4 11 11.5
Test 5 165 135 4 30 18.2

Average 9.9

Table 6.2 Character number statistics

Example Characters

count of Java

Characters

count of J

Benefit of J Improvement
%

Test 1 417 398 19 4.6
Test 2 584 557 27 4.6
Test 3 343 314 29 8.5
Test 4 220 196 24 10.9
Test 5 476 399 77 16.1

Average 8.9

From the above statistics, we can see that J has 9.9% fewer tokens and 8.9% fewer

characters in average than Java does.

The results are consistent with the design of J since J is only an extension to Java.

Whenever there is a J specific feature involved, the J code always has fewer tokens than

its Java counterpart. If there is no J specific feature, the J code is always the same as that

of Java.

J

6.2.2 From Java to J

We want to know in real Java programs, how often the J specific features could

appear and how much we can benefit from J. Therefore we pick up some representative
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n Java code examples and rewrite them. For objectiveness and randomness, we pick up

some textbooks on data structures using Java, such as [Weiss 99], [Sta 99], and [Gt 01].

We use [Weiss 99] only because it implemented all the sorting algorithms discussed in it

and is therefore suitable for our test. We choose the Java programs for insertion sort, shell

sort, heap sort, merge sort, and quick sort, and rewrite them in J. The statistics result is

shown in tables 6.3 and 6.4:

Table 6.3 Token statistics for all sort examples

Example Tokens count
of Java

Tokens count
of J

Number of J
features

Benefit of J %

Insertion sort 87 81 2 6 6.9

Shell sort 106 100 2 6 5.7

Heap sort 311 298 7 15 4.8

Merge sort 162 158 6 10 6.2

Quick sort 303 275 18 38 12.5

Average 7.2

Table 6.4 Character statistics for all sort examples

J

Example Characters
count of Java

Characters
count of J

Benefit of J

Insertion sort
Shell sort

161
204

144
191

17
13

Heap sort 457 430 27
Merge sort 859 845 14
Quick sort 1596 1459 137

Average

%

10.6
6.4
6.0
1.6
8.6
6.7

This test result also shows that all the examples contain more than one occurrence

of J specific features and we can often have a gain in tenns of tokens count and characters

count: J has 7.2% fewer tokens and 6.7% fewer characters than Java does.

From the comparisons in the above two subsections, we can conclude that the

overall average of the gain of J is: 8.8% fewer tokens and 7.8% fewer characters.

To show the improvement of readability, we rewrite in J the quick sort program in
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n [Weiss99] and list both the Java version and J version in appendix B. In the following

table we list only a code segment that J can simplify most strikingly:

J code

if a[center] < a[left] then
swapReferences(a, left,center);

if alright] < a[left] then
swapReferences(a, left, right);

if a[right] < a[center] then
swapReferences(a, center, right);

Java code

if(a[center].compareTo(a[left]) < 0)
swapReferences(a, left, center);

if(a[right].compareTo(a[le£t]) < 0)
swapReferences(a, left, right);

if(a[right].compareTo(a[center])<0)
swapReferences(a, center, right);

Note that the comparison in J between two Comparables is just like comparing two

numbers. The advantage of J is double-folded: it can both save lots of typing and make

the algorithm much easier to understand.

6.3 Some comments on J

There are some limitations on J that should be noted. First, some features like the

indexing of String and Vector is only partially implemented. The indexing can only

appear at the right hand side of an assignment expression. It may cause some non-

uniformity and confusion.

Second is the precision loss problem. We allow type conversion between any two

types (say A and B) if there is a path from A to B in the type chains, for example, we

allow type conversion from long to byte. Some bits of the long will be lost and the action

may behave different from our expectation. When occurred in the new method selection

algorithm, the situation could be improved (not completely solved) by redefining a new

type distance matrix as follow:

J
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J

boolean byte short char int long float double class

boolean 0 -00 -00 -00 -00 -00 -00 -00 -00

byte -00 0 l 2 3 4 5 6 -co

short
-00 6 0 l 2 3 4 5 -00

char
-00 6 5 0 l 2 3 4 -00

int
-00 6 5 4 0 l 2 3 -00

long -00 6 5 4 3 0 l 2 -00

Hoat
-00 6 5 4 3 2 0 l -00

double
-00 6 5 4 3 2 l 0 -00

class
-00 -00 -00 -00 -00 -00 -00 -00 ?

In the above matrix, whenever the casting is going to lose precision, the distance is

greater than that of any compatible casting. For example, the distance from int to short

(5) is even greater than that from int to double (3). This is the matrix used in our J

compiler.

For the automatic type casting, we do not automate the type conversion for

complicated expressions because it maybe very difficult to derive (not just guess) the

correct target type from the expressions themselves. Programmers have to do it explicitly

when coding the program.

At the beginning of our research, we aimed to make the primitive types and their

corresponding wrapper classes interchangeable. After a second thought, we gave up this

idea. The first reason is that it will entail lots of details while introducing no new concept.

For example, suppose we want to do operation like: new Integer(10) + 2, we

must check all the possibilities when type checking the addition expression. If both two

operands are of Integer, we must transform them into two int numbers; if only one of

Integer, we transfonn it into an int; and if one operand is of type Integer and the other of

type long, then we must change the Integer into a int number first and then cast it to a

long number, etc. The same procedure applies as well to the other primitive operators.

But the intent here is nothing more than transforming an Integer object into an int

number. Second, mixing an object with a primitive number contrasts bluntly to the
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^) object-oriented paradigm and may introduce concept confusion. Therefore, we opt not to

do anything on the wrapper classes.

6.4 Conclusion

From the above tests and comparisons, we can conclude that we have successfully

implemented the language J as designed, and J simplifies the code writing and improves

the code readability. How much it can save depends on how many J- specific features

occurs in the program. The more occurrences, the more J can simplify the code writing.

On average, J has 8.8% fewer tokens and 7.8% fewer characters than Java does.
<--' /

J



n
Chapter 7

Conclusions

J

In this thesis, we designed a new language called J to simplify the Java by

reducing the typing work and making the program more readable. We began with an

overview of Java and its evolution through version 1.0 to version 1.3. Then we discussed

Java's new language concepts that explain why Java achieved success so rapidly. Briefly,

Java is portable so that an application can be developed once and mn everywhere; Java

has such a huge library that users can reuse components and develop applications more

easily with it than with most other languages; and finally, by means of garbage collection,

no explicit pointer, and exception handling, Java can ensure the reliability of applications.

On the other hand, Java has its own weaknesses. Its syntax is both verbose and

cryptic. Java can confuse users by using the same operator "==" to test both object

identity and primitive value equality; it requires too much type casting; and its method

selection algorithm is too rigid when handling overloaded methods with primitive

parameter types.

The language that we designed and implemented, J, simplifies the external form

of Java but retains its internals. J simplifies the Java syntax by introducing keyword

factoring (static), a simplified main method declaration, and changing the syntax for if

and while statements. On the semantic front, we overload order comparison operators and

the indexing operator ([ ]) for String and Vector. These modifications simplify the writing

and the reading of programs. J automates some type casting to minimize the explicit use

of type casting operations in Java. The most complex improvement that J introduces is

the relaxing of the method selection algorithm of Java, especially when the parameter

types are primitive. For this purpose, J redefines the type distance matrix between

primitive types and inter-relates the floating-point types and integral types.

Our implementation uses existing tools and packages found on the Web in

particular: JavaCC, BCEL and Espresso. We gave a short introduction to their

functionality and examples of their use so that readers can follow this thesis smoothly.
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^ The implementation of the J compiler is also based on the JavaCC grammar for

Java. Though we modified the JavaCC grammar file slightly and the associated

embedded semantic actions. We reused the entire class hierarchy for the construction of

an abstract syntax tree at the phase of parsing. An important addition was a J-specific

compiler phase using a "visitor", which transforms all the J-specific syntax features on

the syntax tree into standard Java. It was followed by a phase of type checking, where the

automatic type casting and new method selection algorithm were implemented. At the

last phase, we simply reused the code generator from Espresso because when we reach

this stage every program constituent is in standard Java.

Tests done in chapter 6 demonstrated that a program written in J was both shorter

and clearer than one in Java. On average, J contains 8.8% fewer tokens and 7.8% fewer

characters than Java does. It does not only have fewer tokens but also reduces potential

coding errors by making J code more human-readable.

<J
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Appendix A

Equivalent Java programs for comparison

Testl.java

import j ava.io.*;

public class Testl
{

int i = 0;
static int j = 1;
static String si "bc";

public static void print(String msg){
System.out.println(msg);

}
public static void main (args) {

String s2 = "abcâef".substring(1, 2);
while (j <= 2) {

if (one = two)
print("si equals to s2");

else if (si == s2)
print("sl and s2 are the same");

J++;
}
Integer vl = new Integer(123);
Integer v2 = new Integer(123);
if( vl.equals( v2))

print("Integer equals" ) ;
if ( vl == v2)

print("Integer identical " ) ;

}
}

Test2.java

J

import j ava.io.*;

class Point {
int x, y;
Point(int x, int y){

thi s . x = x ;
this.y = y;

}
int distance(){

return x *x +y *y;
}
int compareTo(Point other){

if (this.distance() > other.distance())
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return 1;
else if ( this.distance()

return -1;
else

return 0;

< other.distance())

}
}

public class Test2 {
public static void print(String msg){

System.out.println(msg);
}
public static void main (args) {

Point pl = new PointflO, 5);
Point p2 = new Point(5, 10);
if (pl.compareTo (p2) > 0 )

print("Pl is further to the origin than p2");

if( (new Integer(12)).compareTo(new Integer(5) ) > 0 )
print("12 is greater than 5");

if ("abc".compareTo("zzz") > 0)
print("String abc is greater than string zzz");

}
}

Test3.java

import j ava.io.*;
import Java.util.*;

public class Test3
{

public static void print(String msg){
System.out.println(msg);

}
public static void main (args) {

String str = new String("Hello ");
Vector v = new Vector();
v.addElement(str);
v.addElement(new String("world"));
for (int i = 0; i < str.length(); i++)

print(str.charAt (i ) ) ;

for (int i = 0; i< v.sizeO; i++)
str = (String) v.elementAt(i);

}
}

J

Test4.java

import j ava.io.*;

public class Test4
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n public static void print(String msg){
System.out.println(msg);

}
public static void main (args) {

short s ;
float f = (float) 0.7;
s := (short) (s + l) ;
print(" You should see no error message!");
print (" f=" +f+ " s= " + s);

}
}

Test4.java

import java.io.*;

public class Test5
{

public static void count(int i, int j){
print("(int, int)");

}
public static void count(int i, long j){

print("(int, long)");
}
public static void count(double i, double j){

print("(double, double) " ) ;
}
public static void print(String msg){

System.out.println(msg);
}

public static void main (args) {
short s = l;
int i = 2;
long l = 23L;
float f = 0.9f;
double d = 0.9;

count((int)s, (int)s);

count(i, (int)s);

count(i, 1);

count((int)l, l);

count((double)f, (double)f);

count((double)f, d);

count((int)l, (long)f);

}
}

J



86

0 Appendix B

Quicksort programs

J

1. Java code for Quicksort

public final class Quicksort {
private static final int CUTOFF 3;

public static void quicksort(Comparable [ ] a){
quicksort( a, 0, a.length - 1 );

}

public static final void swapReferences(Object[] a, int indexl, int
index2){

Object tmp = a[indexl];
a[indexl] = a[index2];
a[index2] = tmp;

}

private static Comparable meaian3(Comparable[] a, int left, int
right){

int center = (left + right) / 2;
if(a[center].compareTo(a[left]) < 0)

swapReferences(a, left, center);
if(a[right].compareTo(a[left]) < 0)

swapReferences(a, left, right);
if(a[right].compareTo(a[cente ]) < 0)

swapReferences(a, center, right);

}

// Place pivot at position right - 1
swapReferences(a, center, right - l);
return a[right - 1];

private static void quicksort(Comparable [] a, int left, int right){
if(left + CUTOFF <= right) {

Comparable pivot = median3(a, left, right);

// Begin partitioning
int i = left, j = right - l;
f or ( ; ; ) {

while(a[ ++i ].compareTo(pivot) < 0) { }
while(a[--j].compareTo(pivot) > 0) { }
if(i < j)

swapReferences(a, i, j);
else

break;
}

swapReferences(a, i, right - l); // Restore pivot
quicksortfa, left, i-1); // Sort small elements
quicksort(a, i + l, right); // Sort large elements

}

}
else // Do an insertion sort on the subarray

insertionSort(a, left, right);

private static void insertionSort(Comparable [] a, int left, int
right){

for(int p = left + l; p <= right; p++)
{

Comparable tmp = a[p];
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}
}

}

int j;
forfj = p; j > left && tmp.compareTo(a[j-l]) < 0; j--)

a[j] = a[j - l];
a [ j] = tmp;

2. Quicksort in J

J

public final class Quicksort
begin
static:

public void quicksort(Comparable[ ] a){
quicksort(a, 0, a.length - l);

}

private final int CUTOFF := 3;

public final void swapReferences(Object [] a, int indexl, int
index2){

Object tmp := a[indexl];
a[indexl] := a[index2];
a[index2] := tmp;

}

private Comparable median3(Comparable [] a, int left, int right){
int center := (left + right) / 2;
if a[ center ] < a[left] then

swapReferences(a, left, center);
if a[right] < a[left] then

swapReferences(a, left, right);
if a[right] < a[center] then

swapReferences(a, center, right);

// Place pivot at position right - 1
swapReferences(a, center, right - l);
return a[right - 1];

}

private void quicksort(Comparable [ ] a, int left, int right){
if left + CUTOFF <= right then
{

Comparable pivot := median3(a, left, right);

// Begin partitioning
int i := left, j := right - l;
for( ; ; ){

while a[++i] < pivot do { }
while a[--j] > pivot do { }
if( i< j )

swapReferences(a, i, j);
else

break;
}

swapReferences(a, i, right - l); // Restore pivot
quicksort (a, left, i-1); // Sort small elements
quicksort(a, i + l, right); // Sort large elements

}
else // Do an insertion sort on the subarray

insertionSort(a, left, right);
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}

private void insertionSort(Comparable [] a, int left, int right){
forfint p := left + l; p <= right; p++) {

Comparable tmp := a[p];
int j ;

for(j := p; j > left && tmp < a[ j - l ]; j--)
a [j] := a [j - l];

a[j] := tmp;

}
}

end

J


