
,;(k) I ;2q.,/Ô
Université de Montréal

Improvements Brought to Graphical User Interfaces

for Insurance Illustration Systems

Par

Imad Eid

Département d'informatique et de recherche opérationnelle

Faculté des arts et des sciences

Mémoire présenté à la faculté des études supérieures

en vue de l'obtention du grade de

Maître ès sciences (M.Sc.)

Avril 2000

Université de Montréal

Faculté des études supérieures

Ce mémoire intitulé :

'Improvements Brought to Graphical User Interfaces

for Insurance Illustration Systems'

Présenté par:

Imad Eid

a été évalué par un jury composé des personnes suivantes :

M. 	Jean Vaucher 	 President du jury

Mme. Esma Aïmeur 	 Directrice de recherche

M. 	Houari Sahraoui 	Membre du jury

Mémoire accepté le:

A place that I like...

Abstract

This thesis summarizes my experience during an internship at Logisil Consulting Inc. as part

of my Masters in Computer Science. It also describes the projects I worked on, the challenges

faced, lessons learned and where I failed or excelled the most in implementing tasks and

features.
At Logisil, I worked on two projects and was responsible for the Graphical User Interface

(GUI) of a Life Insurance Illustration System (LIIS). The GUI is the level of an application

that allows the interaction of its heart and the end user. LIISs have a GUI that allows the

interaction between the user (Agent) and the Calculation Engine (Calc. Engine) which is the

heart of the application. GUIs for LIISs like most other applications should be user friendly

and should allow the user to get to the end result, the safest, fastest and best way possible.

Developing such systems is time and resource consuming. However maintenance costs can

sometimes exceed development costs. LIISs can include bugs that sometimes are not easy to

fix. Agents could ask for some sophisticated features that require research and analysis before

implementation. In order to facilitate software maintenance and decrease costs, software-

engineering techniques such as reverse engineering are implemented. From the analysis phase

to maintenance, project management implements those techniques to optimize costs and code,

especially in the development phase. I took advantage of software engineering techniques and

of my analytical skills, which are research oriented, to develop and improve LIISs during my

training period at Logisil. In the process of doing these tasks I had to apply software-

engineering techniques and learned that some are crucial for a project's survival such as

resource allocation and testing. The thesis presents the "golden rules" for GUIs and some

software engineering techniques that were used. On an industrial level people talk about

productivity which is a very important element for successful project planning. Resource

attribution, work environment and conceptual choices are essential elements for successful

proj ects.

Key words
Graphical User Interface (GUI), Life Insurance Illustrations Systems (LIIS), Automatic

Language Switching (ALS), Hartford Templates, Compare To feature, Reverse Engineering.

3

Résumé

Ce mémoire résume mon expérience au cours d'un stage à "Logisil Consulting Inc." dans le

cadre de ma Maîtrise en Informatique. Il décrit aussi les applications sur lesquelles j'ai

travaillées, les difficultés rencontrées, leçons apprises ainsi que mes qualités et lacunes dans

l'implémentation de taches et options dans ces applications.
A Logisil j'ai travaillé sur deux projets. J'étais responsable de l'interface graphique de

systèmes d'illustrations d'assurance vie. L'interface graphique d'une application est le niveau

qui permet l'interaction de son noyau avec l'utilisateur. Les systèmes d'illustrations

d'assurance vie ont une interface qui permet l'interaction entre l'utilisateur (l'agent) et le

moteur de calcul qui est le noyau de l'application. Comme pour la plupart des applications,

l'interface graphique des systèmes d'illustrations devrait être conçu pour l'utilisateur et

devrait lui permettre d'arriver aux résultats, d'une façon sure, rapide et simple. Le

développement de tels systèmes, prend beaucoup de temps et de ressources. Cependant les

coûts d'entretien peuvent dépasser parfois les coûts de développement. De tels systèmes

peuvent inclure des problèmes qui ne sont pas toujours faciles à réparer. De même les usagers

peuvent exiger des caractéristiques et options sophistiquées. Ceci incite des recherches et une

analyse avant implantation, quitte à faciliter la maintenance. Des techniques en génie logiciel

telles que 'reverse code engineering sont implantées pour cette fin, et permettent en plus de

diminuer les coûts d'entretien. De la phase d'analyse à l'entretien, la direction de projet se

base sur ces techniques pour optimiser les coûts et le code, surtout dans la phase de

développement. Je me suis servi de ses techniques et j'ai procédé à une phase d'analyse pour

améliorer des systèmes d'illustrations pendant ma période de formation à Logisil. Afin

d'exécuter ces tâches, j'ai utilisé des techniques en génie logiciel, dont quelques-unes sont

cruciales pour la survie des projets telles que l'attribution des ressources et les procédures de

tests. Ce mémoire présente les règles d'or des interfaces graphiques et quelques techniques en

génie logiciel qui ont été utilisées. Dans le milieu industriel on parle de productivité qui est un

élément très important pour la planification de projets prospères. L'attribution de ressources,

l'environnement de travail et les choix conceptuels sont essentiels pour la réussite d'un projet.

Mots Clées
L'Interface Graphique, les Systèmes d'Illustrations d'Assurance Vie, le Changement

automatique de Langue, Les Descripteurs de Hartford, l'Option de Comparaison , la

Réingénierie de Code.

4

Table of Contents

ABSTRACT 	 3

RÉSUMÉ 	 4

TABLE OF CONTENTS 	 5

LIST OF FIGURES 	 9

CHAPTER 1. INTRODUCTION 	 10

1.1. Logisil 	 10

1.2. The GUI Team 	 11

1.3. Projects I worked on 	 13

1.3.1. MetDemo Project 	 13

1.3.2. Hartford Life (Merlin) project 	 13

1.4. Objectives behind each project 	 14

1.4.1. Metdemo project 	 14

1.4.2. Hartford Life (Merlin) project 	 14

1.5. Methods adopted 	 15

CHAPTER 2. STATE OF THE ART 	 17

2.1. Graphical User Interface (GUI) 	 17

2.1.1. Object-Action Interface (0A1) model. 	 18

2.1.2. Golden Rules of User Interface Design 	 19

2.1.2.1. Golden Rule One: Place Users in Control 	 20
2.1.2.2. Golden Rule Two: Reduce Users Memoty Load 	 21
2.1.2.3. Golden Rule Three: Make the interface consistent 	 23

2.2. Code reengineering 	 25

2.2.1. Data restructuring 	 25

2.2.2. Reverse engineering user interfaces 	 26

2.2.3. Restructuring (optimizing) 	 27

2.2.4. Code Restructuring 	 28

2.2.5. Data Restructuring 	 28

5

2.2.6. Forward engineering of user interface 	 28

CHAPTER 3. BILINGUAL VERSION OF METLIFE (METDEMO) 	 30

CHAPTER 4. HARTFORD LIFE PROJECT (MERLIN) 	 39

4.1. Templates Implementation 	 39

4.2. "Compare to" feature 	 47

4.3. Agent problem /Import Export problem 	 52

CHAPTER 5. CODE SIMPLIFICATION 	 56

CHAPTER 6. LOGISIL SOFTWARE ENVIRONMENT 	 58

6.1. Project Management (SourceSafe) 	 58

6.2. Borland C++ & Visual C++ 	 59

6.3. Ecta Class Library (ECL) Administrator (Admin.) 	 60

6.4. Business Rules 	 64

6.5. CALC Engine & "Serf-mapping" 	 65

CHAPTER 7. EVALUATION 	 67

7.1. MetDemo 	 67

7.2. Hartford Life (Merlin) 	 69

CHAPTER 8. CONCLUSION 	 71

BIBLIOGRAPHY 	 75

URLs 	 77

APPENDIX A. DEVELOPMENT STANDARDS AND METHODS 	 78

Programming Standards 	 78

GUI Standards 	 79

Winflex 	 79

ECTA Libraries 	 80

Debugging methods 	 80

APPENDIX B. NAVISYS LIBRARIES HIERARCHY 	 82

6

. . . To My Parents

. . . And All My Beloved

Acknowledgements

I would like to thank my Research Director Prof Esma Ai'meur for all her support. It's

been a successful venture. I really value all you did for me.

I am honored to have Mr. Jean Vaucher as my jury 's president and Mr. Houari Sahraoui

as member.

I would also like to thank all the members of the computer science department at

University of Montreal who made all this possible for me and who gave me the tools and the

background I need to accomplish my dreams.

It's been an honor working with everybody (Staff and Friends) at the computer science

department.

I would also like to sincerely thank my project manager on Hartford Life Mrs. Lorraine

Pitre, our tem manager Miss. Denise Tsakalaki and all the members of the LOGISIL family

for making this period so joyful and fruifful fbr me. The University of Montreal family has

grown at Logisil. This made me feel not very far from my second home.

Thank you Denise for taking such an interest in my training. It's amazing working at

Logisil.

Thank you Sassine Abou Jaoude for introducing me to the Logisil family. You made my

life easier. I will never forget thaL

Thank you all.

8

List of Figures

Figure 1 	 GUI department hierarchy 	 12

Figure 2 	 Windows NT OAI 	 20

Figure 3 	 A Significant GUI message 	 24

Figure 4 	 Reverse engineering process [Breuer & Lano, 1991] 	 26

Figure 5 	 Metdemo Toolbar Menu (shows enabled language option) 	 31

Figure 6 	 MetDemo Diagram 	 33

Figure 7 	 Merlin Tabs 	 45

Figure 8 	 Documents & Containers 	 46

Figure 9 	 Compare To feature behaviour 	 48

Figure 10 	Microsoft Visual SourceSafe 	 58

Figure 11 	ECL Interface 	 61

Figure 12 	Exporting files in ECL Admin 	 62

Figure 13 	Interaction of ECL Admin. and the other system tools [Training,

2000] 	 63

Figure 14 	Components of the Navisys illustration system 	 64

Figure 15 	Communication between the GUI and the CALC. Engine 	66

Figure 16 	Difference between effective and estimated effort (Metdemo) 	 68

Figure 21 	Difference between effective and estimated effort (Merlin) 	 69

Figure 22 	General Class Hierarchy Diagram 	 81

Figure 23 	Hierarchy of Navisys storage system 	 82

Figure 24 	Dialog hierarchy 	 83

Figure 25 	View level 	 83

Figure 26 	Application Hierarchy 	 84

Figure 27 	Data Types Hierarchy 	 84

Figure 28 	Control Types 	 85

9

Chapter 1. INTRODUCTION

In the computer industry, professionals are tending to go from one company to another

looking for more benefits. This creates problems to organizations because they lose expertise

that could affect the schedules and deliveries of their on-going projects. Specialized resources

are hard to find and keep. This is where Software Engineering intervenes to make sure that

projects are done on time by providing the required resources and applying the required

project management techniques.
Logisil, like most companies in the industry, is confronted by this problem. But due to

the awareness of it's managers and the good working atmosphere and benefits they provide to

their employees, they are doing pretty well.
One area of Logisil's expertise lies in Illustration Systems for Life-Insurance

Companies or Annuity Simulation Systems, which allow a broker (agent) to give a policy

illustration to a client. Such systems are composed of four elements:

• Graphical User Interface (GUI)

• Calculation Engine

• Reports

• Business Rules

1.1. Logisil

Logisil <<Good people... in Good time>> [Logisil, 2000]

Since 1986, the company "Logisil Consulting Inc.", specialized in information

technology, has been increasing it's know how. Analysis of needs, concrete computer science

based solutions as well as the efficient implementation of these solutions has anticipated in

developing this one of a kind expertise. This expertise varies from tailored application

development of client-server technologies, to new object oriented tendencies as well as

Internet.
Logisil team is composed of 80 computer science professionals, among which we

number actuaries having a vast expertise in insurance and financial domains. This provides

the company with a unique and highly prized expertise.

Logisil clients, mainly insurance and financial institutions, are also considered as

partners, contributing to the company's growth and expansion.

10

These partners are among the leaders in the field. For example, D3M and Logisil hold

very good relations. Logisil is a member of the programs Best Team and Solution Developer.

Logisil is a subcontractor for Navisys, a leader in the development of Insurance

Illustration systems in the US. Navisys provide Logisil with specific application development

tools as well as assistance and collaboration on different levels.

It is known in the life insurance field that all companies provide their agents and

brokers with customized insurance illustrators. Since each broker is a company of its own,

selling the products of multiple insurance companies, the illustration system should be easy to

use, interesting, portable and reliable. The software does a simplified financial analysis of a

potential customer and prints a report including recommendations as to the amount that

should be invested, which could be taken as is, and included in a life insurance proposal.

Proposals could be printed and handed to the client. The system also takes into consideration

medical constraints, prints special documents that need to be filled out...

All systems are developed to function under Windows3.1, Windows95 or 98, and

Windows NT platforms. They are developed using Borland C++ or Microsoft Visual C++,

ECTA Report Macro Language and InstallShield.

Logisil is growing at the speed of light, because of it's professionalism, expertise, and

it's team dedication.
During my training I was assigned to two projects and on my free time, I participated

in other smaller projects. I also assisted in training new employees. It was a very active year

for all of us at Logisil.

1.2. The GUI Team

Logisil Graphical User Interface (GUI) team is composed of a number of

programmers and insurance consultants. The group has grown drastically in the last few

months because of the growing demand on financial applications. This group handles

insurance and private banking projects mostly for US and Canadian clients. Expansion plans

are set to cover a bigger part of the globe.

Logisil might soon be handling clients in France, which is part of it's plan to cover

Europe. The first application developed to be presented, as a demo in France is the bilingual

version of Metropolitan life (Metlife) called MetDemo.

11

Programmer

(*)

Report Author Consultant

(Combines programming

skills and insurance skills)

/\
Project Manager

Lower Level

Project Manager

Lower Level

(*)

Team

Manager

Project Manager

High Level

Project Manager

High Level

The GUI team is one of the biggest teams at Logisil. It is always in constant

communication with the Engine team. We collaborate together to insure that the job is
perfectly done.

The way projects are distributed in our department depends on the complexity and

importance of the project, and on the revenues that it generates.

Some projects are handled by one or two persons under the supervision of a project

manager and others have a team of five to ten people. The hierarchy of the GUI department is

presented in figure 1 here below. I am at the (*) level.

Figure 1. GUI department hierarchy.

Having introduced the company, I will give a brief description on the projects I

worked on.

12

1.3. Projects I worked on

I worked on two major projects during this period. What was the purpose behind this

work?

1.3.1. MetDetno Project

Metdemo is the French/English version of the Metlife project. This project was

developed to be used as a demo of our illustration systems in France. It was my first project at

Logisil after a three weeks training period. I was lucky enough to be assigned to this project

and furthermore I was nominated to be the project manager.

This came as a sign of the confidence that our higher management confided in its

employees. I was also given the task of the C++ programmer, had a report resource to assist

me in the report translation and was introduced to an insurance consultant who offered his

help in translating technical insurance terms. We also had a backup C++ programmer whose

role was to jump in if things got out of control.

The purpose behind this project was to make the system bilingual. Starting from an

English version of Metlife, we had to translate all the resources to French, make the system

distinguish between English and French depending on the user' s choice, and last but not least,

we had to make the system switch from English to French at runtime and vice versa. We will

introduce the problems and challenges that we faced in this project in the next section and

detail them later on in our thesis.
The Metdemo system was presented in France. By summer 2000 Logisil might sign a

contract which will be its first in insurance illustration systems in Europe.

This project involved software-engineering techniques that allowed us to respect our

deadlines. Resource attribution and project management were mainly applied.

1.3.2. Hartford Life (Merlin) project

Merlin is an insurance illustration system customized for Hartford Life Insurance

Company. I was assigned to Merlin right after finishing Metdemo. Merlin is an old project

that started a few years ago at Navisys and its maintenance and development were confided

to a Logisil project manager. I was the C++ programmer for this project.

I was mainly confided the development of new features that were custom made depending on

the clients needs (Compare to feature and Template implementation). Problem solving was

also one of my tasks.

13

The purpose of assigning a trainee as the C++ main programmer was due to the fact

that Merlin involved some innovations that required research and analysis. It also involved

bugs that required analysis, deep debugging and code tracking.

1.4. Objectives behind each project

In this section we discuss my contribution to the projects.

1.4.1. Metdemo project

The objective behind the Metdemo project was to impress a potential French

customer. Why a bilingual version? Simply because this version is supposed to be our gate to

the European market. Obviously for a French customer a simple French version would have

done the trick.

So why go through all the trouble of implementing a bilingual version that allows the switch

between languages at runtime? Well, the idea was to impress the client. A simple French

version would have provided the potential customer with an idea on our illustration system,

but the version we presented helped the customer see what we were capable of doing, and to

which extent we were ready to go.

1.4.2. Hartford Life (Merlin) project

Merlin enhancements and problem solving were part of our daily preoccupations. We

tried our best and pushed ourselves to the extreme in order to satisfy our client.

Like most customized projects, Merlin involved innovations that came as a results of

our clients requests in response to agents demands Enhancements such as "compare to

feature" came as a result of agents repetitive demands for an option that allow them to

compare the same data using a different product. The idea behind this feature is very

interesting and useful. Agents can provide clients with different insurance plans by just three

mouse clicks.

Templates were introduced to provide agents with defaults that contributed to reduce

their workload.

Once defaults for particular repetitive cases are set, agents can use those defaults without

having to go through the trouble of retyping all the data. The innovation was in the template

implementation. I had to customize the templates to meet our clients needs. This

enhancement will be discussed in details in the templates implementation section.

14

Another enhancement brought to Merlin was code optimization. Since it was an old

project we had to do an extra step to make it compliant with Navisys and Logisil

programming standards.

We also worked on reducing the bugs in the software. Complicated tests (regression

tests) were done before releasing new versions to the field. Unfortunately, sometimes bugs

were found in field versions. Bugs exist in all software applications. And a part of all

programmers job is to fix those bugs the best way possible without damaging saved data. We

will discuss two major bugs that were fixed in Merlin. They were critical because they

affected the system behavior. The first is the agent problem. This involved an Id problem that

caused proposals to be linked to wrong agents... Second is the import/export problem, which

made cases, become inaccessible.

After a brief description of the projects I worked on I will shed a light on the methods

adopted.

1.5. Methods adopted

Conceptual and implementation details depend on the task to be accomplished.

Nevertheless they have to comply with the "golden rules" set for GUIs. The "golden rules"

are covered in chapter 2. They also have to follow software engineering techniques that are

crucial for getting good results and making good decisions as to which implementation

alternative to adopt and how to implement it. Analysis and research are the key that allow us

to choose one specific solution, present among many, and confirm that it is the best.

Sometimes bad decisions are taken because of lack of analysis and understanding of

what the client really wants, out of a certain feature. When I was implementing the templates

on Merlin, the first version I came up with was a complete waste and I ended up re-

implementing the whole feature so that it would meet our clients needs. Lack of specifications

from our clients side contributed in this incident. But I should have known better. After all I

was able to correct my mistake without affecting the flow of the project.

Code reengineering techniques were adopted during Code Optimization. Optimization

was introduced to improve the application runtime. It also contributed in reducing

maintenance costs. All these issues will be covered in details through the thesis.

In the remainder of the thesis, we will provide the reader with an overview on the GUI

in general and Navisys/Logisil GUI in particular.

15

In chapter 2, GUIs golden rules as well as software-reengineering principles are

discussed. Chapters 3 and 4, cover the two projects I worked on (MetDemo and Merlin). In

the scope of our research, code simplification (restructuring) was also part of my involvement

on Merlin. It is elaborated in chapter 5. Chapter 6 familiarizes the reader with the Logisil

Software environment. Having a general understanding of the nature of the projects and

technologies used, the user can finally get an idea of the time that such projects or features

require to be accomplished. This is presented in chapter 7. So the user is left with an idea on

the costs and productivity which are crucial on an organizational level. Chapter 8 finally ends

this thesis by presenting the benefits I got from this internship.

16

Chapter 2. STATE OF THE ART

In terms of GUI, where are we and what are the perspectives? This issue as well as

Software Engineering techniques are covered in this chapter.

2.1. Graphical User Interface (GUI)

It has been proven in the recent years that good, user interfaces produce corporate

success stories and Wall Street sensations such as Netscape, America Online. They also, at an

individual level change many people's lives: doctors can make more accurate diagnostics,

children can learn more effectively, insurance agents can produce life insurance illustrations

in a glance...
New technologies are used to improve the appeal and information content of user

interfaces. We recall the sound (music and voice), three-dimensional representations,

animation, and video. New techniques such as virtual reality may change the ways we interact

with and think about computers.
The U.S. Military Standard for Human Engineering Design Criteria (1989) states the

objectives of a GUI:

• Achieve required performance by operator, control, and maintenance personnel

• Minimize skill and personnel requirements and training time

• Achieve required reliability of personnel-equipment combinations

• Foster design standardization within and among systems

System engineering goals are stated as follows:

• Proper functionality: if the functionality is inadequate, it does not matter how well

the human interface is designed. Excessive functionality is also a danger, and

providing it is probably the more common mistake of designers, because the clutter

and complexity make implementation, maintenance, learning, and usage more

difficult.

• Reliability, availability, security, and data integrity: System reliability and

availability are very crucial to whether the user will or won't be confident in using

a system. Errors are not tolerated in this field.

• Standardization, integration, consistency, and portability: The Standardization of

systems is essential because of the number of application that users are forced to

17

use. This would create room for errors if standards weren't applied, because users

are forced to leam new methodologies constantly.

• Schedules and budgets: Careful planning and courageous management are needed

if a project is to be completed on schedule.

The standard also lists five measurable human factors that are central to evaluation:

• Time to learn: How long does it a user to learn how to use the commands relevant

to a certain task (benchmark task).

• Speed of performance: How long does it take to carry the tasks.

• Rate of errors by users: How many and what kind of errors do people make in

carrying out the task?

• Retention over time: How well will the users maintain their knowledge after an

hour, a day, or a week?

• Subjective satisfaction: How much did users like using various aspects of the

system?

These factors could be thought of as principles that should endure as new user

interface technologies emerge. The principles are so basic that even futuristic dialogue

designs such as three-dimensional interfaces with DataGlove input devices, gesture

recognition, and live video images will always have to take them into account as long as they

are based on the basic paradigm of dialogues and user commands [Nielsen, 1990].

There is always room to improve the user interface. The cluttered displays, complex

and tedious procedures, inadequate functionality, inconsistent sequences of actions, and

insufficient informative feedback can generate debilitating stress and anxiety that lead to poor

performance, frequent minor and occasional serious errors, and job dissatisfaction.

The following section will concentrate on the theories and rules as well as the

strategies used in a successful graphical user interface.

2.1.1. Object-Action Interface (OAI) model.

Graphical User Interfaces (GUI) consist of a visual representation of objects and

actions. The emphasis is now on the visual display of user task objects and actions. Doing

object-action design starts with understanding the task. That task includes the universe of

real-world objects with which, users work to accomplish their intentions and the actions they

apply to those objects. Task action start from high-level intentions that are decomposed into

intermediate goals and individual steps. This would allow the designer to create metaphoric

18

representations of the interface objects and actions. Then the designer must make the

interface actions visible to users, so that users can decompose their plan into a series of

intermediate actions, such as opening a dialog box, all the way down to a series of detailed

keystrokes and clicks. So the theory of decomposing complex problems into several smaller

problems so that they become manageable can be applied. This would force designers who

support professionals to be knowledgeable in the domain they are supporting.

The interface objects and actions are also decomposable. Next is an example that

illustrates how this hierarchical decomposition is done: in writing a business letter using

computer software, users have to integrate smoothly their knowledge of the task object and

actions and of the interface objects and actions. They must have the high-level concept of

writing (task action) a letter (task object), recognize that the letter will be stored as a

document (interface object), and know the details of the save command (interface action).

Users must be fluent with the middle-level concept of composing a sentence, and must

recognize the mechanisms for beginning, writing, and ending a sentence. Finally, users must

know the proper low-level details of spelling each word (low-level task object), and must

know where the keys are for each letter (low-level interface object) [Schneiderman, 1998].

Interface objects and actions help in making the low-level syntactic details disappear

in the systems. This is of great importance since it accelerates the retention process of the

user, who doesn't have to learn combinations of keystrokes for every system that he will

eventually end up using.

An example of an OAI is the Microsoft Windows interface presented in figure 1. We

can also see the hierarchical levels (high, middle, and low) that are behind these icons. For

each one a series of actions is associated. The retention process is accelerated enormously by

this GUI because the desktop theme is common to almost everybody.

2.1.2. Golden Rules of User Interface Design

In his book "The Elements of User Interface Design" [Mandel, 1997], Mandel presents

the "golden rules of interface design which we found very pertinent and therefore used in our

work.

19

Ecrule4
Hartford

egO
Internet
Explorer

Visual
Recycle Bin 	SourceSahe

19! Nevisys Shortcut Io
merlin3

DefComp

TextPed
Command
Prompt

My Computer

Network
Neighborhood

Citrix Program
Neighborhood

Borland

Connect to the
Interner

InstallShield
Express 2.11

Shortcut to
Laurier

DEBUDGER
LAURIER

À §-mi
Shortcut to 	Shortcut to

prot32 	1x1132

DEBUGGER
METDEMO

Shortcut Io
Al3v1

t New Artist

NeWT

TltjTtxnkl7

Qptesehet elP

Exploring - (C:)

• F'tzl 	Bc45
Db2log

	

1 Et 	DefIComp
' 	r_j Dovonloads

Dtext23

	

; 	ECI_Admin_ODBC

	

1+1 	Ecta
toj Li EP
Ij CJ 'Imm.!!!

Ins_Dictionary
• 4 Mein

tfg r 1 Multimedia Files

Ðc45

D DefComp
CJ D:tol,w2it2n'bg3ads

• LJ ECLAdmin_ODBC
c:73D iEEmponng_ta

nt
CJ Ins_Dictionary

CJ MMu'Itirnen dia Files

ExPiofing

WenZip

EL!,
mlersen

My Briefcese
ECL Adrrein

Utddy

Outlook
Express

Ins. Lexicon

Wendows NT
Explorer

DEBUGGER
HARTFORD DEBUGGER

hartdercornp

Figure 2. Windows NT OAI.

2.1.2.1. Golden Rule One: Place Users in Control

It all depends on whether the user is a novice or a professional. Sometimes it would be

best not to give him full control (it is like driving a car or taking the bus).

Wise designers let users do their work for them rather than attempting to figure out what they

want. This is possible through behavioral observation. So the interface would allow the users

to go where they want to go and how they want to get there.

There are ten principles that place users in control:

• Use modes judiciously: an example would be on the difference between using the

insert mode and replace mode.

• Allow users to use either the keyboard or mouse: one of the Key Common User

Access (CUA) design principles is that users must be able to do any action or task

using either the keyboard or the mouse.

• Allow users to change focus: users shouldn't be forced to complete predefined

sequences. They should be given options to cancel or save and return to where

they left off.
20

• Display descriptive messages and text: throughout the interface use terms that

users can understand, rather than system or developer terms.

• Provide immediate and reversible actions and feedback: Every product should

provide undo and redo actions to users.

• Provide Meaningful Paths and exits: users should be able to relax and enjoy

exploring the interface of any software product, even industrial strength products.

The Internet is the best example where navigation is the key. It helps people figure

out the interface and become experienced very quickly.

• Accommodate users with diffèrent skill levels: expert users shouldn't be treated

like casual users. In other words they should be provided with macro commands

allowing them to perform actions that usually take casual users too many steps in

one step.

• Make the user interface transparent: By including a trash or shredder (for

deletion) as well as other meaningful objects, the user is reaching right through the

computer and manipulating the objects directly. That's one of the aspects of

transparency. Users should be free to focus on the work they are trying to perform,

rather than translating their tasks into the functions that the software program

provides.

• Allow users to customize the interface: Operating systems offer a great deal of

customization for interface elements.

• Allow users to directly manipulate interface objects: The interface must be

explorable. Users should feel comfortable picking up objects and exploring

dragging and dropping them in the interface to see what happens.

• At least let users think they're in control: A well-designed interface can comfort

and entertain users while the computer system is completing a process. It gives a

"status" feedback during long operations.

2.1.2.2. Golden Rule Two: Reduce Users Memory Load

The capabilities and limitations of the human memory system are behind the idea of

making computer systems that store and remember information for users. Humans aren't good

at remembering things, so programs should be designed with this in mind.

There are nine principles that reduce users' memory load:

21

• Relieve short-term memory: Users shouldn't be forced to remember and repeat

what the computer could and should be doing for them (E.g. a client name that

should be used in a coming screen...)

• Rely on recognition, not recall: Users should be provided with lists and menus

containing selectable items instead of fields where users must type in information

without support from the system.

• Provide visual cues: Whenever users are in a mode, or are performing actions with

the mouse, there should be some visual indication somewhere on the screen that

they are in that mode. (E.g. the mouse pointer might change to show the mode or

the current action.)

• Provide interface shortcuts: Once users are familiar with a product, they will look

for shortcuts to speed up commonly used actions.

• Promote and object-action syntax: Xerox PARC developers specified the object-

action when they built the Star user interface in the late 1970s. Application and

system features were to be described in terms of the objects that user would

manipulate with the software and the actions that the software provided for

manipulating object [Johnson et al. 1989]. Consistent implementation of object-

action sprtax allows users to learn the relationship between objects and actions in

the product.

• Use real world metaphors: Once a metaphor is chosen for an interface, it should be

followed consistently throughout the interface. A metaphor could be extended, but

should not be broken.

• Use progressive disclosure: Always provides easy access to common features and

frequently used actions. Less common features could be hidden and user should

always be allowed to navigate to them. Secondary information could be affected to

secondary windows so the main window wouldn't have to include everything.

• Promote visual clarity: Visual design principles of human perception should be

applied, such as grouping items on a menu or list, numbering items, and using

headings and prompt text. Graphic designers and book designers are skilled in the

art of presenting appropriately designed information using the right medium.

22

2.1.2.3. Golden Rule Three: Make the interface consistent

Consistency is a key aspect of usable interfaces. One of its major benefits is that users

can transfer their knowledge and learning to a new program if it is consistent with other

programs they already use. However if consistency principles and guidelines dont make

sense in a certain working environment they shouldn't be followed.

There are five principles that make the interface consistent:

• Sustain the context of the users tasks: Users should be provided with points of

reference as they navigate through the interface (E.g. windows titles, navigation

maps and trees...). They should also be provided with cues that help them predict

the results of an action (E.g. dragging an object and dropping it on another should

trigger a certain mouse behavior depending on the result of whether the other

object could or not accept it...).

• Maintain consistency within and across products: Learning how to use one

program should provide positive transfer when learning how to use another similar

program interface. When things that look like and should work the same in a

different situation dont, users experience negative transfer. This can inhibit

learning and prevent users from having confidence in the consistency of the

interface.

• Interface enhancements and consistency: New enhancements should make users

only learn a few behaviors or techniques. This is provided if the interface is

consistent. Users should not be forced to unlearn trained behavior because it is

much more difficult than learning new behavior.

• Keep interaction rules the same: If by design, results might be different from what

users expect, inform them before the action is performed. Give them the option to

perform the action, or cancel the operation, or perhaps perform another action.

• Provide aesthetic appeal and integrity: A pretty interface can't cover up for a lack

of product functionality. Users dont just want "lipstick on the bulldog", they want

a visually pleasing interface that allows them to get the job done.

• Encourage exploration: Interfaces today and in the future must be more intuitive,

enticing, predictable, and forgiving than the interfaces we've designed to date. The

explosion of CD-ROM products and Internet browsers, home pages, and applets

have exposed the user interface to a whole New World of computer users. It's time

23

Hartford Life and Annuity Insurance Company
Stag Variable Life Artisan
Flexible Premium Variable Life Insurance
Draft Numeric Illustration for:

lgot For Use uith the Public"

This illustration is valid only for policies is sue d price to M arch 6, 2000.

WARNING: 	 This drafl illustration is kr agent use only—Use in a saks presentation is sirictly
prolulited.

Invalid Proposai

The request canna befusttated foi polic9 sale becatise the poky lapsed duri
be tkaettedb9 eithei reducinu the face amie 	 easing the pteriunt

IFIPFIJL#IITfieview the II euh Tabla eee the ealettiatect Yelties

Opfioreal Ridersgellefits:
Maturity Date Extension 	The rider allows you to keep your policy in force beyond the policys s che &lied maturity
Rider 	 date. At the s che clu1e d maturity date, the policys de ath benefit will be re duce d to the

Account Value less any indebtedness. The Account Value will continue to be credited
according to the investment performance of the chosen Sub-Accounts. Monthly policy
charges will no longer be assessed and no Rather premium paytnents wil1be allowed.
Withdrawals meg continue to be made.

illustration Benefit Su/1mm

To
Age

95

Anunint

$236,524

Illustrated First
Year Cool

$1,492.00

Maximum First Year
Cosi

$1,492.00

InsurerliCoverag e

Base

Other Riders

I lartlied I ,i Fe

we moved past user-friendly interfaces to user-seductive and fun-to-use product

interfaces, even in the business environment.

During my training I worked on the Logisil/Navisys GUI system which is designed by

a group of highly experienced engineers and specialists in insurance illustration systems. This

state of the art GUI is shown in figure 3.

Figure 3. A Significant GUI message.

24

2.2. Code reengineering

Code reengineering is producing new software source code without changing the

overall system function [Pfleeger, 1998].

2.2.1. Data restructuring

A program with weak data architecture will be difficult to adapt and enhance. In fact

for many applications data architecture has more to do with long-term viability of a program

than the source itself.

When data structure is weak (e.g. flat files are currently implemented when relational

approach would greatly simplify processing), the data are reengineered.

Because data architecture has strong influence on program architecture and the

algorithm that populate it, changes to the data will invariably result in either architectural or

code-level changes [Pressman, 1997].

Breuer and Lano defined the code reverse engineering process in 1991. This process is

described in figure 4.

The first activity in reverse engineering is to understand the code. Overall

functionality of the entire system must be understood before more detailed reverse

engineering work occurs. Benchmarks as well as specifications are used to test if nothing has

been broken in the system functionality after code clean up.

It is important to keep specifications up to date because specifications that are written

early in the life history of a program are never updated. As changes are made, the code no

longer conforms to the specifications. I would like to mention to this regard that when I first

started my training I used to change things without updating the specifications. When I had to

do code reengineering (simplification) I ended up realizing that what I did was wrong because

I needed up to date specification to be able to test if I didn't break anything in my regression

tests.

A technique called program segmentation [Ning et al. 1994] has been suggested. It

consists on grouping code having the same functionality, then re-packing to a new module.

This was previously done at Logisil and had to be re-implemented to some functions.

25

Clean Code

Initial Specification

I
Dirty Code

.1'
Restructure Code

Refine & Simplify

I
Final Specification

+
Figure 4. Reverse engineering process [Breuer & Lano, 1991].

The following approach was suggested for reverse engineering class [Breuer & Lano, 1991].

• Identify flags and local data structures within the program that record important

information about global data structures (e.g. file).

• Define the relationship between flags and local data structures and the global data

structures.

• For every variable within the program that represents an array or file, list all other

variables that have a logical connection to it.

2.2.2. Reverse engineering user interfaces

In order to redevelop UI the structure and behavior of the interface must be specified:

three basic questions must be answered as reverse engineering of the UI commences [Merlo et

al. 1993].

• What are the basic actions that the interface must process (e.g. action associated to

a mouse click).

26

• What is a compact description of the behavioral response of the system to these
actions.

• What is meant by a replacement or more precisely, what concept of equivalences
of interface is relevant here?

In order to implements the templates in the Merlin project these questions had to be answered.

We unfortunately had to implement this feature twice. First time it was a Navisys consultant

and I. It didn't meet the clients expectations. So finally I ended up re-implementing this

feature. It is important to mention that this feature was implemented without detailed

specifications from the client. This kind of relieves us from baring the full responsibility of

having to do the same thing twice. But the Hartford project has and always will be a special

project unlike other projects where tasks are split between Logisil and Hartford Company.

Other projects are directly supervised by Navisys and this leaves no room for error as to

Hartford where the client is always present and sometimes changing his mind about certain

things. This open room for errors but there has always been and will always be a full

understanding from both parts on certain issues (see templates implementation, section 4.1.).

2.2.3. Restructuring (optimizing)

Software restructuring modifies source code and / or data in an effort to make it

amenable to future changes. In general, restructuring does not modify the overall program

architecture. It tends to focus on the design details of individual modules. If the restructuring

effort extends beyond module boundaries and encompasses the software architecture,

restructuring becomes forward engineering.

A number of benefits can be achieved when software is restructured [Arnold, 1989]:

• Lead to programs that have higher quality, better documentation and less complexity;

conformance to modern software engineering practices and standards.

• Reduces frustration among software engineers who must work on the program thereby

improving productivity and making learning easier.

• Reduces the effort required to perform maintenance activities.

• Makes software easier to test and debug.

We experienced this in the Hartford project after doing our code optimization and clean up.

Removing redundancies and grouping common code at the parent level makes maintenance

and adding new features an easier task (see chapter 5).

27

2.2.4. Code Restructuring

It is performed to yield a design that produces the same function but with higher

quality then the general program (code optimization => application runtime optimization).

2.2.5. Data Restructuring

Data restructuring was taken into consideration in the templates implementation and

will be subject to our interest in the conversion from flat files to Database.

Before data restructuring can begin a reverse engineering activity, analysis of source code

must be conducted. All programming language statements that contain data definitions, file

descriptions, I/0 and interface descriptions are evaluated. The intent is to extract data items

and objects, to get information on data flow, and to understand the existing data structures

that have been implemented. This activity is sometimes called data analysis [Ricketts et al.

1989].

2.2.6. Forward engineering of user interface

A model for reengineering user interfaces exists [Merlo et al. 1995].

• Understand the original interface and the data that move between it and the remainder of

the application. If a new GUI is to be developed, the data that flow between the GUI and

the remaining program must be consistent with the data that currently flow between the

character-based interface and the program.

• Remodel the behavior implied by the existing interface into a series of abstractions that

have meaning in the context of a GUI. A redesigned interface must still allow a user to

exhibit the appropriate business behavior.

• Introduce improvements that make the mode of interaction more efficient. The ergonomic

failings of the existing interface are studied and corrected in the design of the new GUI.

• Build and integrate the new GUI. The existence of class libraries and fourth generation

tools can reduce the effort required to build the GUI significantly. However integration

with existing application software can be more time-consuming. Care must be taken to

ensure that the GUI does not propagate adverse side effects into the remainder of the

application.

One thing that I like to mention before ending this chapter is that all projects I worked

on involved software engineering principles:

• Project management concept

28

• Project planning

• Estimations

• Resources

• Risk management

• Project scheduling and tracking

• Software quality assurance

• Software testing methods

• Documentation

• Performance

• Regression testing

Metdemo is a demo based on the Metropolitan Life project. What was the purpose

behind this demo and what challenges did we as a team face to accomplish this demo and me

in particular? This will be the subject of the following chapter.

29

Chapter 3. BILINGUAL VERSION OF METLIFE (1VIETDEMO)

Metdemo is the bilingual version of an insurance related project "Metlife", which

allows agents to create Insurance Illustrations to the clients of the Metropolitan Life Insurance

Company. The goal behind Metdemo is to create a bilingual application that allows users to

change from one language to the other at runtime.

We started from a modified version of Metlife, which was adopted to fit the size of a

demo. We had to translate all the resources (from English to French). This was a long process

that involved three people, worlcing non-stop for a month.

Having the resources translated, we had to find a way to make the system switch

between languages (change from English to French and vice versa) at runtime.

In the first version, users had to restart the application so that they change languages.

The trick is to access the "ML.ini" file where some specific variables are changed depending

on the specified language.
Below are blocks of code used for this purpose, as well as a description of each block.

//--------- Modifications brought in to make the system bilingual -----
// Change language to english

EV_COMMAND(CM_ENGLISH, CMChangeLang),
EV_COMMAND_ENABLE(CM_ENGLISH, CMEnglishEnable),

// Change language to french
EV_COMMAND(CM_FRENCH, CMChangeLang),
EV_COMMAND_ENABLE(CM_FRENCH, CMFrenchEnable),

• EV_COMMAND() and EV_COMMAND_ENABLE() are menu related functions.

• EV_COMMAND() is used to handle the event (CM_ENGLISH or CM_FRENCH) of

choosing a language (English or French) from the main menu.

• EV_COMMAND_ENABLE() enable the menu item...

• CMChangeLang is the function that handles changing the language from English to

French and vice versa.

30

	

Mee, 	14Itebh Yiree 	 -

	

e,CPPie 	[3

Figure 5 shows the toolbar menu option that is associated with these events and functions.

Figure 5. Metdemo Toolbar Menu (shows enabled language option).

I had to find a way to specify to the application which resources to load. I created a

flag in the INI file (ML.ini). This flag is tested when the application is first loaded and each

time the user chooses to change the language from the menu bar, an event is launched and

handled by a function that tests the value of the INI flag and loads the adequate resources.

The following lines of code handle "ML.ini" file, where specific variables were added

in order to test the user's choice. Depending on whether he/she chooses English or French the

value of the Language variable is 1 for English and 3084 for French. (These values where

assigned respecting a certain standard issued by our partner "Navisys" in the United States.)

[APP]
Language=1
ReportLang=1

31

The value of "Language" is affected to "sLang" (which is a string defined in our application

just for the purpose of including the value of Language) using GetPrivateProfileString()

[API, 1999], and GetDLocale()->Load() functions.

Knowing the value of sLang, special tests on which files and DLLs to be loaded are required

depending on the user's choice.

// Modif: for Bilingual 	
char sLANG[80];
GetPrivateProfileString("APP", "Language", "", sLANG, 79, INI NAME);
GetDLocale()->Load(atoi(sLANG));
//Each time you change the librairy check the index he can be 1 or 2 or...
if(atoi(sLANG) == LANG CANFRENCH)

GetDLocale()->SetTypecodeIndex(1);
GetDLocale()->Save();
// Instantiate a Rule Session
if(GetDLocale()->GetLanguage() == LANG_CANFRENCH)

pRuleSession new GAppRuleSession ("MLFR.EBR");
else

pRuleSession = new GAppRuleSession ("MLENG.EBR");

pResourceD11 = NULL;
pMDIFrame = NULL;

• GetPrivateProfileString() allows reading from an "ini" format file.

• GetDLocale() points to a "Rec" (special memory block) which is used to store parameters

related to the chosen language.
Since the content of Listboxes is generated at runtime by pointing to type code set

elements in the .TCC file created by ECL Admin (we will explain this in details in the chapter

that deals with Logisil software environment), we had to find a way to distinguish between

English and French element description. This was handled by using an index. It is set to "0"

for the English version and "1" for the French version. SetTypecodeIndex(1) is used to

modify the index of the type code sets so that it points to the second element definition (which

in this case is the French version).

Depending on the chosen language the corresponding rule session is instantiated. After that

the resource and frame pointers are initialized to NULL.

Figure, 6 presents how the application handles the language switching for this first

version as well as the second version, which is also, discussed in this chapter.

32

Edit Popup

Language
English

French

Modify

Application Running
in French or English

Application Running
In English or French

Change Language

Read Value

.........
. 	...
This part is only 	•

for version 2
••••••• where we reload .

the application at
rnntim

........ ***/
........... 	•

Figure 6. Metdemo Diagram.

33

The second version raised a bigger challenge. We had to reload the resources at

runtime. We had to find a way to delete (unload) the French Dlls and reload the English Dlls

and vice versa. This could be done by using the Object windows related procedures

(LoadLibraries() 8.4, FreeLibraries()). We modified (InitInstance()) in the libraries so that it

handles the bilingual version. LoadLibraries() & FreeLibraries() were added to this function

which is always called by object windows when the application is executed. The major

challenge was to reinitialize and load all the application parameters. The modifications

brought to this function allowed it, on language change, to free the DLLs of the current

application language and load the ones of the user specified language.

InitInstance() is Called by ObjectWindows when the application is initialized. If this

method is overridden, the base class method must be called. This method calls, in order,

InitResourceD110, InitDocIVIanager(), InitControlDocument(), InitSession(), the inherited

InitInstance(), and then the LogOn() method of the session (initialization method). It

launches a CM_STARTUP event, which is used to trigger the startup dialog.

After initializing the application the correspondent resource DLL is loaded using:

if(GetDLocale()->GetLanguage() == LANG CANFRENCH)
{
return pResourceD11 ----- new DOw1D11Loader("ML32RCF.DLL");
}
else
{
return pResourceD11 = new DOw1D11Loader("ML32RC.DLL");
}

Unfortunately for this version we couldn't finish the help of the French application. In order

to fill in this gap we included a dialog that showed the message "under construction!".

34

//------ help dialog for the french version 	
void GApplication::CMHelpSearch()

if(GetDLocale()->GetLanguage() == LANG_CANFRENCH)

Ddialog dHelp(pControlDocument, GetMainWindow(), "HelpConstruction");
dHelp.Center();
dHelp.Execute();

InvokeHelp(HELP_PARTIALKEY);
1

// 	
void GApplication::CMHelpContents()

if(GetDLocale()->GetLang-uage() == LANG CANFRENCH)

DDialog dHelp(pControlDocument, GetMainWindow(), "HelpConstruction");
dHelp.Center();
dHelp.Execute();
1
InvokeHelp(HELP_CONTENTS);

// 	
void GApplication::CMHelpUsingHelp()

if(GetDLocale()->GetLang-uage() == LANG CANFRENCH)

DDialog dHelp(pControlDocument, GetMainWindow(), "HelpConstruction");
dHelp.Center();
dHelp.Execute();

InvokeHelp(HELP_HELPONHELP);

The following fonction handles the event that is triggered when the user chooses the change

language option from the menu.

35

void GApplication::CMChangeLang()
{
char sl[150];
char s2[150];
if(GetDLocale()->GetLanguage() == LANG_CANFRENCH)
{
strncpy(sl, "Vous êtes sur le point de changer le langage de votre application (en
Anglais)AdnEtes vous sûr?", 149);
strncpy(s2, "Changer langage" , 149);
1
else
{
strncpy(sl, "You are about to change your application language (to French).\n\nAre you sure?",
149);
strncpy(s2, "Change language" , 149);
1
char buffer[7];
char 5LANG[80];
GetPrivateProfileString("APP", "Language", "", sLANG, 79, INI NAME);
if(MessageBox(sl, s2, MB YESNOIMB_ICONQUESTION) == IDYES)
1
if(atoi(sLANG) != LANG ENGUSA)// (1)
1
itoa(LANG_ENGUSA, buffer, 10);
ChangeLanguage(buffer);
1
else // (/)
if(atoi(sLANG) != LANG CANFRENCH)// (2)
{
itoa(LANG CANFR_ENCH, buffer, 10);
ChangeLanguage(buffer);
1
else // (2)
{
MessageBox("Language not handled!!!", "ERROR!");

itoa(LANG ENGUSA, buffer, 10);
ChangeLanguage(buffer);

}
}
}

This function stops the user and asks him if he is sure he wants to change the language. If he

confirms (validates) his choice, ChangeLanguage() is called. This function will redo all the

steps that are required to reinitialize the system, and set all the parameters of the chosen

language, then re-executes the application using ShellExecute().

36

//---- In order to reload with language change 	
void GApplication::ChangeLanguage(char* buffer)
{
WritePrivateProfileString("APP", "Language", buffer, INI NAME);
char sLANG[80];
GetPrivateProfileString("APP", "Language", "", sLANG, 79, INI NAME);

GetDLocale()->Load(atoi(sLANG));

//Each time you change the library check the index he can be I or 2 or...
if(atoi(sLANG) == LANG_CANFRENCH)
GetDLocale()->SetTypecodeIndex(1);
GetDLocale()->Save();

//Check for Home Office Mode
char sHOPW[80];
GetPrivateProfileString("SYSTEM", "HOPW", "", sHOPW, 79, INI NAME);
bHomeOfficeMode = !stremp(sHOPW, "OKTOEDIT");

// Instantiated a Rule Session
if(pRuleSession)

delete pRuleSession;
if(GetDLocale()->GetLanguage() == LANG CANFRENCH)

pRuleSession = new GAppRuleSession ("MLFR.EBR");
else

pRuleSession = new GAppRuleSession ("MLENG.EBR");
if (GetPrivateProfileInt("SYSTEM", "Disable Conversion", 0, INI NAME))

DisableDataConversion(TRUE);
pMD1FrameTemp = pMD1Frame;

//- 	Reload the application 	
HWND pParamWindow;
H1NSTANCE hStartup;
hStartup = ShellExecute(pParamWindow, "open", "ML32.exe", "", , SW_SHOWMAXI1VIIZED);
// Delete the old Pointer = clean the old application before language change
delete(pMDIFrameTemp); }

PS: In the first version, CMChangeLang() only changed the values of the variables in the

"ML.ini" file. The user had to restart the application to switch languages.

ChangeLanguage() is the function where:

• The type code sets index is reset. (GetDLocale()->SetTypecodeIndex(1)).

• The rules are reset. (pRuleSession = new GAppRuleSession ("MLFR.EBR")).

• The old frame is deleted:

• pMDIFrameTemp = pMDIFrame;

• delete(pMDIFrameTemp);

• The resources are reloaded at runtime. This is done by ShellExecute() [Newsgroups,

1999] which reopens the application. This force a call to InitInstance().

37

The following functions enable or disable the English or French Menu Items depending on the

current language.

// 	
void GApplication::CMEnglishEnable(TCommandEnabler& ce)
{
char sLANG[80];
GetPrivateProfileString("APP", "Language", "", sLANG, 79, INI NAME);
if(atoi(sLANG) != LANG_ENGUSA)

ce.Enable(TRUE);
else

ce.Enable(FALSE);
}
// 	
void GApplication::CMFrenchEnable(TCommandEnabler& ce)
{
char sLANG[80];
GetPrivateProfileString("APP", "Language", "", sLANG, 79, INI NAME);
if(atoi(sLANG) != LANG_CANFRENCH)

ce.Enable(TRUE);
else

ce.Enable(FALSE);
}

What was described in a few pages is the fruit of five months of hard work. Details on

the terminology used in this chapter will follow. The second version was also known under

Automatic Language Switching (ALS).

This project helped me develop managerial skills. It made me realize that sometimes

decisions are taken based on feasibility and time constraints. So the adopted solutions might

not be the best ones available. On a technical level, the adopted solution proves that changing

from one language to the other is done by simply deleting the resource DLL that points to the

current language (e.g. ML32RCF.DLL) and reloading the DLL of the selected language

(ML32RC.DLL). This is done at runtime and it also involves:

• Deleting the current application frame

• Resetting the rules session

• Reloading (re-executing) the application using ShellExecute(...)

ShellExecute(...) allows re-executing the application from within, so that all required

initializations are done, and without losing the handle of the application. It's an automated

process that only requires a few mouse clicks.

Next I will introduce Hartford Life project and the features that I added to this project.

38

Chapter 4. HARTFORD LIFE PROJECT (MERLIN)

Hartford Life involved the implementation of several features. The first feature was

templates implementation. Templates are default values provided by Hartford to their agents

to help reduce their worldoad. Templates implementation involved a few complications that

we were able to overcome as a result of a mutual agreement that we reached with our client.

This is due to the good relation that is established between our management and Hartford

general management.
The second feature is "Compare to", which allows agents to compare results of different

insurance products and concepts using the same client data by a simple three mouse clicks

procedure.
Work on Merlin also involved problem solving. The agent problem involved a mismatch

between physical ids and memory ids, which made the agents, get assigned to the wrong

proposals.

4.1. Templates Implementation

The templates provide users (agents) with default values. Instead of having to input

data related to cases that are more likely to be reproduced with multiple clients, users can save

this data and just select the corresponding template. Two sorts of templates are introduced:

the market templates and the strategy templates. The market templates are related to concepts

while strategy templates are related to products. So templates help reduce repetitive tasks.

The way templates are implemented in the Navisys system (system that is considered

to be the base ground for all projects) restrict their portability.

In the Navisys illustrator both market and strategy defaults are saved in the proposal

files. This creates certain limitations because templates are saved using the same files that

store proposal related information.

Hartford general management thought of templates as a dynamic means of providing

users with defaults. So they planed to create templates and include them in their new release

(Templates version). If templates were saved in the proposal file, a new release would make

the users lose their saved proposals. Since templates dont use most of the fields that are

usually used in the proposal record, this creates space loses.

39

The solution was to create separate files for the templates. We actually created market

files and strategy files that were added to the already existing proposal files. This maximized

record space usage.

Changes were done to several files in the application, we recall:

//App.cpp
#ifdef USE_STRATEGY
DEFINE_DOC_TEMPLATE_CLASS(GProposalStrategyDocument, GProposalStrategyView,
StrategyTemplate);
StrategyTemplate gStrategyTemplate("Proposai Strategy", "*.STY", 0, "STY", dtAutoOpen I dtAutoDelete
);

DEFINE_DOC_TEMPLATE_CLASS(GMarketStrategyDocument, GMarketStrategyView,
MarketTemplate);
MarketTemplate gMarketTemplate(''AM Strategy", "*.IVIKT", 0, "MKT", dtAutoOpen l dtAutoDelete);
#endif

// Function that gets called for the startup dialog and defines the actions associated to the user selection

void GApplication::NewStartup()

switch(GNewProposalDialog("ProposalNewStrategy").Execute())

case IDOK:
if (pControlDocument->PeekInt(GD_ActionNew))

switch(pControlDocument->PeekInt(CT PropType))

case TC_PropIndiv:

SalesStrategy = FALSE;
SalesMarket = FALSE;
DRec tempkey("PKEY");
tempkey.PokeString(KS_PlanId,
pControlDocument->PeekString(IS NewPlanId));
OpenNewDocument(GetTemplateType(& tempkey,
TC Proposal, FALSE).c_str());
MainWindow->PostMessage(WM_COMMAND,
CM EDIT);
1
break;

case TC_PropGroup:
OpenNewDocument(GetTemplateType(NULL,
TC_Group, FALSE).c_str());
MainWindow->PostMessage(WM_COMMAND,
CM_EDIT);
break;

1
1
else if (pControlDocument->PeekInt(GD_ActionExisting))

switch(pControlDocument->PeekInt(CT_PropType))

40

case TC PropIndiv:
MainWindow->PostMessage(WM_COMMAND,
CM FILEOPENPROPOSAL);
break;

case TC PropGroup:
MainWindow->PostMessage(WM CO1VIMAND,
CM FILEOPENGROUP);
break;

}
}

break;

case GP_OpenAgent:
MainWindow->PostMessage(WM_CO1VIMA1D, CM_FILEOPENAGENT);
break;

case GP_OpenBusiness:
MainWindow->PostMessage(WM_COMMAND, CM FILEOPENBUS1NESS);
break;

case GP AddBusiness:
MainWindow->PostMessage(WM_COMMAND, CM FILENEWBUSINESS);
break;

case GP AddAgent:
MainWindow->PostMessage(WM_COMMAND, CM_FILENEWAGENT);
break;

case GP AddMarket:
{
SalesMarket = TRUE;
MainWindow->PostMessage(WM_COMMAND, CM FILENEWMARKET);
}
break;

case GP_AddStrategy:
{
SalesStrategy = TRUE;
MainWindow->PostMessage(WM_COMMAND, CM_FILENEWSTRATEGY);
}
break;

case GP_OpenMarket:
SalesMarket = TRUE;
MainWindow->PostMessage(WM_COMMAND, CM FILEOPENMARKET);
break;

case GP_OpenStrategy:
SalesStrategy = TRUE;
MainWindow->PostMessage(WM_COMMAND, CM FILEOPENSTRATEGY

);
break;

}
}

41

Basically the code displayed above shows us how documents, views and templates related to

a concept and a product are defined. We can also see the associated events that are related to

opening an existing template (GP_OpenStrategy, GP_OpenMarket) and creating a new one

(GP_AddStrategy, GP_AddMarket).
"LoadDefaults" function was modified by adding a break (return TRUE) so that

template values are not overridden. "LoadDefaults" handles loading default values to fields.

Changes were also made to "Startup.cpp" where we defined the tables

(DMemRecSets) that were related to showing the corresponding templates for selected

products and concepts in the startup screen.

//Startup.cpp
case GY NewMarketCombo:

pMarketBox = TYPESAFE_DOWNCAST(Context.GetWindowPtrO,
DQueryComboBox);
PRECOND(pMarketBox);
pMarketBox->SetDataSource(& Markets);
pMarketBox->SetTemplate("—KS_MSaveAs");
break;

Two files (Market.cpp and Strategy.cpp) were created. They handled the classes in

charge of the documents (Data Warehouses) related to the market and strategy templates.

Here below some bits of code taken from Market.cpp. They basically handle linking

the general proposal document to the corresponding advanced market related document.

// 	
// GlVlarketStrategyDocument -- Implementation
//

	

	
GMarketStrategyDocument::GMarketStrategyDocument(TDocument * parent) :

FMarketStrategyDocument(parent)

GMarketStrategyDocument::—GMarketStrategyDocument()

// 	
DRec * GMarketStrategyDocument::GetMainRec()

PRECOND(pProposalDocument);
PRECOND(pProposalDocument->GetAMDocument());
FAMDocument * pAMDocument = TYPESAFE_DOWNCAST(pProposalDocument-

>GetAMDocument(), FAMDocument);
PRECOND(pAMDocument);
return pAMDocument->GetAMProp();

// 	

42

Another obstacle we had to overcome was the need to keep the templates in future

releases. This could cause losing defaults created by the agents. The idea behind that was to

provide users who didn't install the first release, with the defaults they were supposed to get

had they installed the templates version.

To solve this problem we came with the idea of creating a C++ program (Class) that checks if

the templates are already installed. If they are, the program disregards copying the required

templates files. If not the program copies those files to the cases folder, specified in the

application initialization file.

// 	
// batchApp
// Function that ovewrites Product and Strategy file Templates if they are empty
// 	
void batchApp::FileUpdate 0

struct ffblk ffblk;
char * ini_path;
char szDataPath[80];
int iCDDrv;
OFSTRUCT ofStrSrc;
OFSTRUCT ofStrDest;
HFILE hfSraile, hfDstFile;
char sSreFile[100];
char sDstFile[100];
ini_path = searchpath("Merlin.ini"); //Search for the INI file
//Get the Data path from the INI file
GetPrivateProfileString("PATHS", "DataPath", ''", szDataPath, sizeof(szDataPath), ini_path);
//Check if the files are there and if not or if their size indicates that they are empty
//copy them to the data folder "cases"
BOOL done;
iCDDrv = getdisk();
setdisk(GetDrv (szDataPath));
chdir(szDataPath);
// We only test Market.id3
// If this file doesn't exist or its size is = 8196 (empty) we will copy
// Market.id3, Market.ik3, Mkey.id3, Mkey.ik3 from the Installation cd to
// our current cases folder
done = fmdfirst("Market.id3", &ffblk, 0);
if((!done && ffblk.ff fsize == 8196)11 done)

// Market.id3
strcpy(sSreFile, GetInstDry(iCDDry));
strcat(sSreFile, "\\Templates\\Market.id3");
strcpy(sDstFile, szDataPath);
strcat(sDstFile, "\Market.id3");
hffircFile = LZOpenFile(sSreFile, &ofStrSrc, OF_READ);
hfDstFile = LZOpenFile(sDstFile, &ofStrDest, OF_CREATE);
LZCopy(hfSreFile, hfDstFile);
LZClose(hfDstFile);
LZClose(hfSreFile);

//Same thing for the rest of the files

43

To make our templates similar to the basic system we had to find a way of removing

the report background (View) that is generated each time we created a new template. To do

this we did the following:
When (string GApplication::GetTemplateType(DRec * pRec, int nDocType, BOOL

bHidden)) is called, BOOL variable is set to True (it specifies if we want a hidden view or

not). But the problem is that if this BOOL variable is set to true there wouldn't be a view to

pick up the message posted by CM_EDIT: MainWindow->PostMessage(WM COMMAND,

CM EDIT). So the result would be a blank screen since there is no view to pick up the

message. The solution is to call a specific function that handles the event. So instead of

posting a message, this particular function is called as follows (EditMarket(-1L)).

BOOL GApplication::EditMarket(DRecId id)

BOOL bMarketDocOK = FALSE;
DDocument * pMarketDoc;
string szDocType;
//Save Current Product, and set Product type to NONE so we recognize this as a Market template....
int nSaveProduct = pControlDocument->PeekInt(CT NewProduct);
pControlDocument->PokeInt(CT_NewProduct, PRODUCT NONE);
//Valid ID passed, try to Open existing Market Doc
if(id > -IL)

//Look for the exisiting document in the PKEY table
DRecSet * pPropKey = SESSION.GetPKeyTable();
if (pPropKey->Exec(id)) // ODBC - Recreate the set with the required //ID in it
if (pPropKey->Goto(id)) //Position yourself on the existing Market Doc //record

1
//Get the Document type with a Hidden View
szDocType = GetTemplateType(pPropKey, TC_Proposal, TRUE);
pMarketDoc = OpenExistingDocument(id, szDocType.c_str());
bMarketDocOK -= TRUE;
1

//If no valid Document found, Create new Market Doc
if(bMarketDocOK ==- FALSE)

//Set a temporary PKey Record so we can create a new MarketDoc
DRec tempPKey("PKEY");
tempPKey.PokeString(KS_PlanId, pControlDocument->PeekString(IS NewPlanId));
//Get the Document type with a Hidden View
szDocType = GetTemplateType(& tempPKey, TC_Proposal, TRUE);
pMarketDoc = OpenNewDocument(szDocType.c_str());
1
//Now, show market template dialogs
GAdvancedDialog d(TYPESAFE_DOWNCAST(pMarketDoc, GProposalDocument),
APP.GetMainWindow(),, TRUE);
AddAdvanceMarketTab(d, pMarketDoc);
int nRez = d.Execute();
if (nRez = IDOK)

pMarketDoc->Commit(); //Save Changes to disk

44

MieseoftWord•fernplatL... Hartford Liu Insuran..

r *rad liustr

wnaeTnxack 	rtnstred TaxErack
• LeVet 	40.0% 	eLevti 140%

Varehkr 	5V ile

Edit Illustration: Stag VL Last Survivor

Insured

Fre keuted 	
Frst Narre 11

P.Aga F5—

,Doe

,Lkleei4ngpe

1Preferred Non-Smoker

Name l 	 Last rtarne

StVLLastS&solvor

-Hartford Life

delete pMarketDoc; //Done with document, delete it.
//RESET PRODUCT TYPE TO CORRECT ONE
pControlDocument->PokeInt(CT NewProduct, nSaveProduct);
retum nRez;

This function creates a new Market document.

The AddAdvancedMarketTab is the function where the tabs are added to the dialog (Tabs

such as Insured and Case Input can be viewed in figure 7).

Figure 7. Merlin Tabs.

45

In the previously displayed code, I first experienced a crash when I tried to delete a document.

After analyzing I reached the following deductions:

• If you are deleting a document and you suddenly crash you better:

• Make sure that you didn't ADD a container to the Data Manager.

• This container could be static or have another type... It will get attached to your

document so when you delete the document the container is still there and leads to a

crash!

• So you better delete the container first then delete your document.

This could be compared to memory leaks in C++.

Figure 8 shows us how a document can be related to multiple containers that ought to be

deleted before deleting the document which itself is composed of multiple containers. It

illustrates the separation between the document and the container.

Container

Document

Figure 8. Documents & Containers.

So always delete containers before deleting your document:

//Declaration
DDocument * pStrategyDoc;
GAdvancedDialog * pAdvancedTab =

new GAdvancedDialog(pDoc, APP.GetMainWindow(), 	"", TRUE);

//First, Delete the tab Dialogs
//Note the Document MUST be deleted second, in case the Dialogs have attached
//any temporary datamanagers to it (e.g. DREC may have been added by the dialogs)
delete pAdvancedTab;

//Now, Delete the Document
delete pStrategyDoc; //Done with document, delete it.

46

My second assignment was the implementation of the compare to feature, which was

highly regarded by our client.

4.2. "Compare to" feature

Agents wanted a feature that allows them to view the results of a particular insurance

case using a different insurance concept and product. In other words, after selecting a certain

product from the startup dialog and adding all the required information related to the insured,

the desired benefits, and riders... the agents wanted to be able to change the insurance product

and concept so that they compare results using the same inputs. A dialog was created for this

purpose allowing users to change the concept and related product. Results were displayed

using the previously selected inputs. The behavior of this feature is presented in figure 9.

The complexity of this option prevail in the fact that after generating reports for a

specific product, unsaved information has to be used to generate reports with a different

product. Both reports have to be kept active allowing the user the do a visual screen

comparison and choose to save, print or cancel any of the active insurance illustrations.

After doing the required analysis, we ended up with two solutions.

• The first was to try to recreate a new instance of the object (Document that contains all the

information related to the insurance illustration "GproposalDocument") and just change

the concept and product and recalculate the results. The problem in implementing this

solution was the unfeasibility of recreating a new instance of a complicated object in C++.

Java allows the recreation of object instances using a specific function but not C++.

• The second solution was similar to the first but instead of trying to recreate a new instance

of the generated object, we saved it, reloaded it using a new instance where we replaced

the concept and product with the selected ones, and redisplayed the results by launching a

calculate event.
It took us a couple of weeks to discover and create functions that allowed us to attend the

required results. Here below the code used for this feature. Some of the functions aren't

displayed because of the Copyrights that protect Navisys libraries code.

47

Report
View

_,---
	I>

Click Compare To button
on

Edit case dialog

Pre-filled
May not be able
to Calc. without
additional info.
Data that is not
identified to be
translated is
dropped

Calculate

Report
View

Edit case dialog

Calculate

Map like fields
Translation
required if
identified Select

Product

• Product A
• Product B
(Only list valid
products to convert
to.
This is a dropdown
Listbox)

Y
Compare To Pop-up

y

Figure 9. Compare To feature behaviour.

We had to modify and add the following functions in the "Proposal.cpp" file.

48

// 	
// I.E. 03/11/99 Implementing the Compare To, this leads us to change the
// handling of the Save As function to just allow to save the proposai with another name ...
// 	
BOOL GProposalDocument::SelectSaveAs()

{
string str = PeekString(KS_SaveAs);
if (! PeekString(KS_SaveAs),Iength())

PokeString(KS_SaveAs,
PeekString(KS_FirstName) + " + PeekString(KS_LastName));

if (GetDocPath() == 0) // never saved
{
if(GSaveAsDialog(this, "ProposalSaveFirst").Execute() == IDOK)

return TRUE;
}

else
{
if(GSaveAsDialog(this, "ProposalSaveAs").Execute() == IDOK)

return TRUE;
}

PokeString(KS_SaveAs, str);
return FALSE;
}

"SelectSaveAs" was modified because in previous versions it allowed users to save an

illustration using a different product and once they reloaded it (reopened the proposal), it

appeared with the saved product and corresponding results. The modifications to this function

make it just rename a saved illustration.
"SelectCompareProduct" is the main function that handles the events related to the "Compare

to" feature. The code in this function is unorthodox in the sense that it doesn't really comply

with the standards and conventional methods adopted by Logisil and Navisys.

Next the code of "SelectCompareProduct" is displayed with comments that allow the reader,

who is familiar with our methods and way of coding, to understand how this feature is

implemented.

49

// 	
// I.E. 03/11/99 Compare To product allows to view the current proposai with a
// different product
// 	
BOOL GProposalDocument::SelectCompareProduct()

1
// Keeping old info so that they won't be lost during this process
string sOldConcept = pRuleSession->GetConceptTable()->

PeekString(CS_GroupReportClass);
string sOldName = PeekString(KS_SaveAs);
string sOldPlanld = PeekString(KS Planld);
string sOldClass = pRuleSession->GetPlanTable()->PeekString(CS_DocDialogClass);
string sOldProdName = pRuleSession->GetPlanTable()->PeekString(CS ShortPlanDescription);
int nOldConcept = Peeldnt(KT_Concept);
int nOldProduct = Peeklnt(KT_Product);
//Test to see if the Proposai is already saved
if(! PeekString(KS_SaveAs).1ength())

PokeString(KS_SaveAs, " ");
else

PokeString(KS_SaveAs, PeekString(KS_SaveAs) +);

if(GSaveAsDialog(this, "ProposalCompareProduct'').Execute() == IDOK)

ChangeToSaveAs(); 	// make it a new proposai
Commit(); 	 // save proposai
long 101dId = PeekLong(ICL_PKEYId);
SetAutoStartup(FALSE); // disable startup dialog
TMDIFrame * pFrame = TYPESAFE_DOWNCAST(APP.MainWindow, TMDIFrame);
PRECOND(pFrame);
TWindow pOldMDIChild = pFrame->GetClientWindow()->GetActiveMDIChild();
PRECOND(pOldMDIChild); // get pointer to old MDI Child Window
pOldMDIChild->SetWindowText(sOldProdName.c_str()); // Assign the first window a

// Title
APP.GetRuleSession()->PlanGoToPlanID(PeekString(KS Planld));
long 1TempKey = GetPrimaryKey();
SetPrimaryKey(-1L); 	// to trick 'Application if not we would get a

// message saying that is is already opened...
GProposalDocument * pDocument =

TYPESAFE_DOWNCAST

APP.OpenExistingDocument

1TempKey,
APP.GetRuleSession()->GetPlanTable()->
PeekString(CS_DocDialogClass).c_str()
),

GProposalDocument
);

//Force a delete of the temporary saved proposai
SESSION.GetPKeyTable()->Goto(101dId);
SESSION.GetPKeyTable()->Delete();
SESSION.GetProposalTable()->Goto(101dId);
SESSION.GetProposalTable()->Delete();

50

if(pDocument)

pDocument->SetAutoStartup();
// initialize the required reports for this proposal
DRecSet * pReportTable = SESSION.GetReportTable();
DBlobClipBuffer blob;
pReportTable->Exec("");
pReportTable->Rewind();
//Get the reports that are specific to the selected product
while(pReportTable->Skip())

if(APP.IsReportValid(pDocument->PeekInt(KT_Concept),
pDocument->PeekString(KS PlanId),pReportTable))

1
int nRepReq = pReportTable->PeekInt(Rpt IT ReportReq);
if(nRepReq == TC_RptReqA11 11

nRepReq == TC_RptDefaulted)
blob.Put((long) pReportTable->GetId());

1
pDocument->Poke(IO PrpReports, blob);
APP.MainWindow->PostMessage(WM_COMMAND, CM_CALCULATE);
//This section resets the first document
this->ChangeToSaveAs(); 	// So that we can save again
this->SetPrimaryKey(-1L); 	// Trick the 'Application
this->TDocument::SetDocPath(0); // Call SetDoc from Object Windows so that

// we set the Path to 0 in order to call the
// SelectSaveAs function (Called from the libraries)
this->SetDirty(TRUE); // This will activate the X (close document) on the

// top right of the screen
this->PokeString(KS Plan1d, sOldPlanId); // So that we re-assign old Plan

// Because we are loosing it
this->PokeInt(KT_Concept, nOldConcept);
this->PokeInt(KT_Product, nOldProduct);
this->GetRuleSession()->PlanGoToPlanID(this->PeekString(KS_PlanId));

// This is where we reset the second one
pDocument->ChangeToSaveAs();
pDocument->SetPrimaryKey(-IL);
pDocument->TDocument::SetDocPath(0);
pDocument->SetDirty(TRUE);
pDocument->GetRuleSession()->P1anGoToP1an1D(pDocument->

PeekString(KS_PlanId));
// Assign the second window a title
TMDIFrame * pFrame = TYPESAFE_DOWNCAST(APP.MainWindow,

TMDIFrame);
PRECOND(pFrame);
TWindow * pOldMDIChild = pFrame->GetClientWindow()

->GetActiveMDIChild();
PRECOND(pOldMDIChild); // get pointer to old MDI Child Window
pOldMDIChild->SetWindowText(pDocument->

GetRuleSession()->GetPlanTable()->
PeekString(CS_ShortPlanDescription).c_str());

1
retum FALSE;
1

PokeString(KS_SaveAs, sOldName);
retum FALSE;
1

51

The SetDocPath (indicates the path of the corresponding Document) function as well

as SetDirty (indicates if set to true that the frame top left cross option is available) can both be

found in [Borland, 1991].
In the file "propview.cpp" we had to add the following so that we associate an event to

the Compare To option. When this option is selected from the menu toolbar a message is

posted and then caught by the application. The function CMChangeProduct is associated to

the event CM_PRODUCTCOMPARE that is related to this feature.

EV_COMMAND(CM_PRODUCTCOMPARE, CMChangeProduct), // I.E. 03/11/99 Compare To feature
EV_COMMAND_ENABLE(CM_PRODUCTCOMPARE, CMChangeProductEnable),

Sometimes features are added to please the client. This is the fun part of the job. Other

times there are bugs in the system and the client isn't happy. This is when we should

intervene in a very professional and fast way. This is when the client knows if he could or

could not count on us.

4.3. Agent problem / Import Export problem

The problem is related to agent Ids. This was produced when trying to open a certain

proposal. The proposal was assigned to the wrong agent. Opening existing proposals is

handled using QueryComboBoxes that are related to DMEMRecSets (memory records

specially adapted in the Navisys libraries).
A QueryListBox was required in order to manipulate the Agents (selection & sorting)

for Hartford project. For QueryListBoxes the control is given a data source (usually a

DMemRecSet or a RecSet). We had to distinguish between a QueryComboBox and a

QueryListBox.

It is specified in the ECL Class Library Programmer 's Reference at page 57 [ECL,

1999] that if the Id of the third record in the DMemRecSet is 22, and the user selects the third

item, the value of the QueryComboBox field will be 22L; this is not the case for a

QueryListBox.
So the problem was the discrepancy between the Ids of the DMemRecSet (specially

introduced to sort the QueryListBox) and the Corresponding RecSet (related to the Agents

table).

52

The solution was to modify the code in STARTDLG.CPP so that the Ids always

match. In the Class constructor we tested to see if the active agent was properly set and if not

we affected it with the first agent in the Table.
In the SetupControl function (called when a dialog is built, for each field or control) of the

QueryListBox field the following was done:

• Test to validate the active Agent (necessary in the case of deletion...)

• If Agent not valid it would be affected with the first agent in the Table.

• In order to sort the Agents (in our case by last name) a DMemRecSet is created by

copying data fi-om the Agent' s table.

• It is important, since the Ids are not the same in the Agent table and Agent set, to test if

the Set Id corresponds to the Current Id. This is done while data is being copied to the

Agent set. The context will be affected with the same Id which is = to the position of the

Agent in the QueryListBox.

• The set is sorted afterwards.

In the ControlChange function (called for each field in a dialog when the control changes

from one field to the other) we took the Agent Id by Poking (KL_AKEYId) to the

CurrentAgent. This Id is the same as the one in the Agent table.

So we learned that:

• If you delete a record in a DRecSet, holes are created in the DRecSet. But since a

DMemRecSet is always recreated in the memory, these holes will eventually disappear

creating a discrepancy between the Ids of the DRecSet and the Ids of the DMemRecSet.

So RecIds and Temporary SetIds are not handled in the same manner.

• It is important to know that the KL_AKEYId is the same for both the DRectSet and the

DMemRecSet.

• The Ids after doing a sort are not reassigned. This is very good or else we would have had

another problem.

• Sort can only be done through sets (DMemRecSet).

Another problem was that for certain agents the related proposals weren't showing in the

open proposal dialog.
This is because the AgentID in the QueryListBox is not the same as the AgentID in the

ComboBox.

53

The code before the fix was like this:

BOOL GOpenProposalDialog::AllowKey(DRec * pKey, int nCurrFilter)

if((PeekLong(GY_AgentFilter) != OL) &&
(pKey->PeekLong(KL_AgentId) != PeekLong(GY AgentFilter) - 1L))

return FALSE;

So the filtering wasn't done properly. After the fix the code changed to:

BOOL GOpenProposalDialog::AllowKey(DRec * pKey, int nCurrFilter)

long lAgtTable = pKey->PeekLong(KL AgentId); // Agent Key related to pKey Table
//Position in AKey on the Filtering agent to get the id
AgentKeys.Goto(PeekLong(GY_AgentFilter));
long lAgtFilter = AgentKeys.PeekLong(KL_AKEYId); // Agent Key Used for Filtering
//the Proposals
BOOL bTest = PeekLong(GY_AgentFilter) OL; // is True if not all Producers are
//selected
// bTestl Is False when AgentId in combobox == AgentId in QueryListBox
BOOL bTestl = AgentKeys.PeekLong(KL_AKEYId) != pKey->PeekLong(KL_AgentId
);
if (bTest && bTestl) // F & F == T as well as T & T = T So Return False

return FALSE;
//Ps: If either bTest Or bTestl is False => One of the conditions is True so Continue
//Continue = Fill the QueryListBox

This function is called for each proposal so if the proposal meets the filtering criteria it is

selected and if not we break. If we continue we fill the QueryListBox.
The Import/Export problem is related to Ids conversion. Flat files were considered

because data was saved in flat files in Merlin while other projects involved databases. Since

Ids are generated by ECLAdmin (special tool developed by Navisys and covered in the Logisil

software environment chapter), we had to verify if our problem was directly related to

ECLAdmin, the application itself, the way the conversion was handled or the flat files. After

covering all the possibilities, we finally discovered a table duplication problem generated in

ECLAdmin, which directly affected previously, saved proposals. This was also present in

other projects but it wasn't triggered yet. Our finding was beneficial to other projects and it

ended in an important improvement to ECLAdmin.
54

A small bug in ECLAdmin caused this problem. This taught us to question how to

approach bugs. Sometimes the simplest things could cause serious and critical application

misbehavior. It took us a while to solve this one. On a personal level it helped me understand

the whole process of Ids conversion and how the links are made.

Working on Merlin made us refer to the GUI "golden rides". Golden rule two,

especially relieving short-term memory, was the trigger of the "Compare to" feature.

Software engineering techniques, such as data restructuring, were applied in templates

implementation.

This experience made me realize the importance and seriousness of working on real projects

with deadlines. Bad analysis and implementation decisions can affect the whole project as

well as the future and reputation of a company. Maintaining good relations with the clients

and defining responsibilities are essential for successful projects.

What impact does code reengineering have on a project?

55

void MyFunction(int param)
f

Code();

1

void 1VIyFunction(int param)

Code();

I DO NOT
I USE THIS
I STYLE!!!

I CORRECT WAY
l OF PLACING BRACES.
I ALWAYS USE THIS
METHOD !!!

Chapter 5. CODE SIMPLIFICATION

We, at Logisil, used code optimization to refer to code simplification. This is possible,

knowing the difference between code optimization (which doesn't involve source code

modifications) and code simplification (reengineering).

Code optimization included two steps:

• Step 1 involved code clean up. By code clean up we mean both code display

(comments...) and excluding redundancies, in other words trying to enjoy to the max

object oriented features.

• Step 2 involved code optimization. Code optimization is the fact of arranging code or

even rewriting blocks of code in order to reduce the applications response time. This is

known as code reverse engineering.
Code clean up also involved two-steps. The first was code display, which intended to

improve the shape and not the content. For that I followed Logisil standards. I must admit that

this was a repetitive task. The only benefits of such a task is that it allows you to prepare for

the second step because you would have gone through all the code (line by line). An example

on how code should be is the following:

The second step was trying to group all the common features (validations...) of the child

classes (or objects) in the higher level (parent class or object).
Code optimization involved efforts in removing unnecessary validations and tests. It

also involved grouping these tests and arranging blocks of code.

56

This increased the applications speed, and was appreciated by the users. It is

important to note that sometimes, code optimization could be a complicated procedure

especially if the client sets specific response times for certain tasks.

The application as a whole, included around 1,500,000 lines of code among which I

had to clean about 100,000 and optimize around 5000. This wasn't very obvions and serious

testing was required in order to verify that the system functionality was not affected. If we

refer to the code reengineering section, we recall that most of the requirements needed to

perforai this task are very important since modifying application source code could lead to

serious modifications in it's behavior. The person or team in charge of doing code

optimization must have system specifications, good knowledge of the application and must

implement testing strategies in order to verify that the applications behavior is respected.

Regression tests are required in such cases.

This task made me realize the seriousness of working on big projects and the

implications of code modifications. Regression tests were done after code optimization and

we discovered that some system functionality was broken. Testing is crucial in the software

development process.

Next we will introduce the Logisil software environment used for developing

insurance illustration systems.

57

S

Chapter 6. LOGISIL SOFTWARE ENVIRONMENT

In this section we will talk about the tools that are used for GUI development

6.1. Project Management (SourceSafe)

Microsoft Visual SourceSafe is a version control system for team development of

software applications [SourceSafe, 1998]. Version control systems track and store changes to

a file so developers can review a files history, return to earlier versions of a file, and develop

programs concurrently. 	Microsoft Visual SourceSafe does this using reverse delta

technology, and stores only the changes to a file, not each complete version of the file itself.

And, unlike other version control systems, Visual SourceSafe is project-oriented.

Visual SourceSafe Explorer -- 00
1i _Eck vt SourceSafe Ioo1s Web Help

1%111à

A jecte 	 /ECTAMET4,1FEN/ORK 	 9

Avoyer
Avoyer
Avoyer
Avoyer
Avoyer
Avoyer

El- $/
AXA
ECTA

ANNUITY
BERKSHIRE

Etl-là1 BMA
11-11-ra BOA

CALC_ENG
R-eN CLIENT RATES

— ECLADMIN DATABASE
1?-a HARLEYS
Ep-a LAURIER
c-p-a LOGISIL
E71-Q MET rel 1
El-ââ METLIFE

[—rd IDE
Ed-aj PR OCESS DLL

RESOURCE
Fil-a RUN
D- - N,VORKI

NATIONWIDE
NYLIFE

[713-a REPORT UTILITY
RGA

111-a TEMPLATE

• Rf GIS S.CPP
▪ GISS DLG. opp
RI' PR OPVIEW.CPP
Ri' PR O PVIEW.HPP
eVLPROP.CPP
if\iLPROPDG.CPP

adxrpsel.cpp
adxrpsel.hpp

1:1 AGENT.CPP
▪ AGENT.HPP
▪ AGENTDG.CPP
▪ AGENTDG.HPP
▪ APP.CPP
Ei APP.DEF

APP.HPP
APP16RC.DEF
APP32RC.DEF

II APPDEFS.HPP
▪ APPRC.CPP

BUSDG.CPP
rzb,

Date-Time
12/16/98 11:33a
12/15/98 2:33p
12/15/90 3:36p
12/15/98 2:19p
12/22/98 3:34p
12/22198 3:34p
11/05/99 3:51p
4/21/98 5:17p
8/20/98 9:33a
5/22/98 10:43a
8/12/98 4:05p
5/21/98 11:22a

12/23/98 9:16a
9/12197 10:33a

12209298 3:58p
9212197 10:33a
3223198 11:58a
13/28198 12:07p
9212/97 10:33a

12/09/98 2:46p
^ 07^

Ze>r

Figure 10. Microsoft Visual SourceSafe.

58

Understanding projects is the key to understanding Visual SourceSafe. It is helpful to

think of a project as similar to a file system folder. Like a folder, a project is a collection of

files that you create and maintain. Also, like a folder, a project is hierarchical; that is, you can

place a subproject under another project, another subproject under that one, and so on.

While it is useful to think of a project as analogous to a folder, it is important to

remember that it is not quite the same thing. Unlike a folder, every Visual Source project

keeps a detailed record of its history, can be deleted and then recovered, and can share one file

with many other projects.

There is always one current project, which Visual SourceSafe Explorer displays above

the file list. One can change what is displayed by navigating the project list. Most commands

that are carried out act on files and subprojects inside the current project.

Figure 10 here above shows a project for ECTA Company in the ECTA folder. There

are several different projects like "BERKSHIRE", "BMA", "LAURIER", "METLIFE", etc.

In the Metlife project there are subfolders with the same organization as programmers have on

their hard drives.

So basically Microsoft Visual SourceSafe is a tool that is used by programmers so that

they can safely work on the same projects, modify files and easily merge their changes to

other changes that were made on the same file. Its allows the project manager to monitor who

did what, when and how? And if a certain change breaks the smooth execution of the project

one can always go one step backwards and get back to a previous version...

6.2. Borland C++ & Visual C++

All the excitement surrounding the Java programming language might give you the

idea that C++ should be placed at the head of the endangered species list. But whatever the

future may hold, C++ is still arguably the best way to get top performance and access to

cutting-edge features on today's Microsoft Windows platforms, including Windows 98 and

Internet Explorer 4.0. Microsoft certainly thinks so. The new release of Microsoft Visual C++

6.0 Enterprise Edition illustrates why C++ is likely to continue playing a strong role in today's

Internet and database applications for the enterprise. This package offers a compelling array

of new features that. It also offers unprecedented ease-of-use features for those just starting

out with C++ and the Microsoft Foundation Classes (MFC), as well as significant

improvements for enterprise development [Richard, 1999]. At Logisil we use Visual C++ for

59

all our new projects and some of the old projects that were programmed using Borland C++

are now in the process of being converted to Visual C++.

Borland is based on Object Windows Library (OWL) while Visual C++ is based on

MFC. OWL is a framework (for both C++ and Pascal) for developing applications that will

run under the Microsoft Windows operating system [Borland, 2000]. Borland includes

Resource Workshop, which provides a consistent user interface that makes it easy for users to

switch from one Window to another. It is mainly used for designing the GUI interface. By

designing we mean drawing the fields... We also use it for declaring our error messages.

OWL Variable-Length Decoder (VLD) [Babel, 2000] allows compiling Borland C++

code using Visual C++. This is very powerful since some old projects are being converted to

Visual C++.

6.3. Ecta Class Library (ECL) Administrator (Admin.)

ECL Admin is used to create the data model. Mostly, we use ECL Admin to define

persistent storage variables. It is also being used to define the GUI controls, the labels, the

error messages, the result fields and the set of elements contained in a combo box. ECL

Admin. assigns a specific ID to each control you define. Therefor, instead of using the IDs,

you can use the name you gave the control in your code (which makes it easier to understand).

Before being able to populate the dialogs, you must create the data model your system will

use. The Base data model is already part of the template system.
The data model in ECL Admin. is hierarchically split into containers (Tables that

group information related to a specific topic). By splitting our data (containers, sets, etc.) into

smaller components we can include smaller chunks of information without having to include

everything. Not all users require Advanced Market support, and should not be required to

carry the overhead associated with this application, however, if the client requires Advanced

Markets support, access is available to the already defined containers and sets. This does not

eliminate work associated with the hook up and customization of the "standard Advanced

Markets" model. However, a sigmificant piece of the work can be eliminated.
When a dependency is established on a component, the component will appear in the

tree view. You can browse (but not edit) all of the data associated with the component. You

will be able to "extend" the definition of a container or a set defined by that component.

Additionally, your controls/fields will be able to reference any sets, elements, containers or

other fields defined by that component. This relationship allows you to interact with the

60

Data Type

Title / Name

ef. Set or

eL Element

Ref.

Ref. Field

Ref. String

Edit Controls ln ORMECOMIneendallill11111111111111.111111.11111111
-Field Information 	

5yrnbol 	1GS PSD EEDeI

Custom

1EE Definition = Trust

EADMIN NA -- Not Applicable

Admin Not Applicable

Order

Max. Chars.

ff Control Flenamed. Old Name

SERF Keyword

escription

Figure 11. ECL Interface.

03-Dec-98, 03:58 pm by pleboucl

component almost as if it is yours, with the exception that component data cannot be edited.
Defining a control in ECL Admin. is very easy. All you have to do is create it using the popup
screen here below (figure 11). So basically you only have to specify the data type and the
container where the field is stored. Containers are a broad category of data, with controls
being the individual items stored inside the container. The items stored in containers are data
entry fields and GUI controls. These controls are displayed on the dialogs you create to allow
users to convey information to your illustration system.

After finishing an ECL Admin. session there are four files that need to be generated and in
certain projects they could be more (Projects that have CALC Engines coded in Pascal). In
order to generate these files we use the export command which pops up the dialog in figure 12
here below.

There is one CTL file called ProjectName.CTL, which contains all of the containers

that you have established a dependency upon. The .CTL file contains run-time information
that is read by an ECL application. This information describes the format of each container

61

Export Which Version L Files ?

-Seleoit The Files To Create 	
r Lty;pji;de-Ëïï;fr:id r Control File le et!)
r Header Fde (*.h) 	r, Rosons Header File r.hi

Croate Pascal (*.lino) Files For Selected Header Files ?

	

Supplia= descriptions in CTL 	? (run-time release)

te Files ln Directory
C:\VLAProjects\Balkimore'aLIN

Flelp

Figure 12. Exporting files in ECL Admin.

and the fields/controls that are associated with the container. In addition to the basic

description of a container, information is stored in the CTL that sets the default values,

minimum and maximum values for a field and formatting information. In summary, this file

communicates all of the information that you provide in ECL Admin. that describes a field to

the ECL application.
The .TCC file contains run-time information that is read by an ECL application. This

information describes each set and the language specific text associated with each element.

You extend a set to add and suppress elements. Set views are used to create a variation in the

element labels for the elements that exist in a set (or set extension). What does this have to do

with the TCC file? All applicable set extensions are resolved when the TCC file is written

out. Second, additional sets are generated that match the set views that are described by the

component. The end result of this process is a TCC file that will contain all of the sets (and

views) that have been defined in your component and any component that your component is

dependent upon.
The compiler uses the header files. They are also used in the case of Resource

Workshop to automatically associate the fields to their Ids in ECL Admin.

The .INC files are used in particular projects where the engine is coded using Pascal

programming language. They are the link between some of the Ids used at the GUI level an

engine Ids.

So ECL Admin. is mainly used for managing the data model. All persistent, GUI, or

result fields are declared using this very efficient home made tool. Figure 1 3 here below gives

a general idea on how ECL Admin. is integrated and how it interacts with the other project

modules.

62

Paint Dialogs

V

*.DLG

CRC Compile

	KECL AdminD
Input

+
DataBase

Source.CPP

. . / . .

Codes.H

Library
.‘

• •
•
• BC Compile

,

Ressource.DLL

*.CTL

•

•

Help.HLP

*.RPT

•
•

-•- ------

-------- 	 • ----------

• •
•
•
•
• •

*.OBJ

Link

'V

ECL.DLLs
ECL.EXE

Text Edit

*.TCC Run

or
Figure 13. Interaction of ECL Admin. and the other system tools [Training,

2000].

63

Plan Plan

Coverage Coverage
Benefits Benefits Benefits Benefits

Coverage Coverage
Benefits Benefits Benefits Benefits

Coverage Coverage
Benefits Benefits Benefits Benefits

Concept

Plan

Coverage
Benefits Benefits

Coverage
Benefits Benefits

Coverage
Benefits Benefits

The reports are created by a text editor and are used at runtime to display the results. Dialogs

are compiled as well as the source code with the libraries and are all linked with the ECL

DLLs. Help is independently created as well as the engine which is also presented as a DLL.

All these parts interact together to give the insurance illustration system.

6.4. Business Rules

The mies are a shared database both used by the GUI and the Calculation. The ECTA

Business Rules Database contains many of the rules and parameters, which define a life

insurance policy form with it's associated coverage (base, riders and benefits) as presented, in

figure 14 here below.

The Rules Database contains these tables:

• Engine table

• Jurisdiction table

• Plan table

• Coverage table

• Benefits table

• Fund table

Figure 14. Components of the Navisys illustration system.

64

The Rules are used to externalize the Business Rules. You dont need to recompile

when the rules change (using the .EBR). So it makes it easy to change values once the system

is delivered. Also, it helps in developing the application since you only need to put the values

in one place. Here are the components included in the rules:

• Concepts: A concept defines the way you sell the products.

• Plans: This defines the policy forms (insurance policies) within product families

such as Whole Life, Universal Life, Tenu, Variable Life, etc for the insurance

company.

• Coverage: This defines the base coverage and rider coverage available to make up

plans.

• Benefits: This defines benefits, which can apply to multiple coverage.

• Funds: This defines the mies associated with investment funds available to

variable type policies.

• Jurisdictions: This defines the rules associated with the states or jurisdictions

where the insurance company is authorized to transact business.

• Engines: This contains records that point to and define which product calculation

engine DLLs are available for this insurance company.

Navisys has created specials methods to read or write data stored in ECL Admin. For example

PeekString() and PeekDouble() to peek (read) strings and doubles, PokeString() and PokeDouble() to
poke (write) strings and doubles. So en example of how a value is read from the rules would be as
follows:

String strPlanId;
strPlanId = GetRuleSession0->GetPlanTable()->PeekString(CS_PlanId);

6.5. CALC Engine & "Serf-mapping"

The CALC Engine is like a black box for GUI programmers. The interaction between

the GUI and the CALC Engine is done via "Serf mapping". The way this works is presented

in figure 15 here below. All CALC programmers have solid mathematics background because

their work involves a lot of insurance formulas... There is a distinction between variables

used in the GUI and in the CALC Engine. The reason behind this distinction is making both

teams independent. The CALC Engine person can make his engine work without having to

worry about the GUI person. The only bad thing about that is having to do extra work for

mapping GUI and CALC variables but it was proven to be efficient.
65

Input of
proposal
related
infnrmatinn

The "Serf-mapping" is used to pass and receive data from and to the engine so that the

engine can do calculations. This data communication is done via keyword files. They are files

that contain Keywords. A keyword is a place where you read or write data: it's like a drawer.

A Keyword file contains several drawers. The engine reads data from keywords in the

Keyword files, does the calculation and stores results in other keywords so that the GUI can

display them (.SRF and .SRX files).

The .SRF file is generated using the DoPreCalcProcessing() function. In this function

subclasses are created and correspondent values are set and mapped to the engine variables.

This is a communication protocol between the engine and the GUI.

The DoPostCalcProcessing() is where the results are taken from the engine and

mapped back to the GUI. This method is used to read data from calculation result vectors.

Results are taken from the .SRX file. So as previously stated figure 15 gives a general idea on

how all this process is done.

Figure 15. Communication between the GUI and the CALC. Engine.

66

Chapter 7. EVALUATION

Productivity, costs... are common words used in the industry these days. Projects

should meet deadlines. Eventually a project will end, but will it meet the deadline and will it

be lucrative for the company? These aspects should always be taken into consideration

besides the technical side, which is one of the major constraints in the software industry.

In the following section we try to combine the human factor in terms of hours spent on

a project, and it's expected time so that we define productivity and costs.
We will provide the reader with information on the estimated time (also referred to as

Effort) and the effective time for each project (Metdemo and Hartford Life). This will be

backed up with explanations on why there are differences between the two.

7.1. MetDemo

This project as we already mentioned was intended for a demo of our products in

Europe. So it was an inside financed project. In other words it was important for us to try to

finish within, if not, before the fixed deadline. We were four persons to work on this project,

and were accorded four months.
Since I was in charge of this project I was expected to do most parts, so the other three human

resources were assigned to assist me especially in the translation process which was a very

long process. The project finally took five months.
We notice that it took more then four months to do the project, but less time in teins

of human resources. The extra month we took wasn't critical because the demo was to be

done after 6 months from the day we started the project. The total effort of each person allow

us to get to the following chart (figure 16) which shows in terms of individuals the estimated

and effective time (effort).

67

Total Effort (Time) / Individual

Effective Total Effort Estimated Totai Effort
Person A 750 600
Person B 37,5 150
Person C 37,5 75
l'erson D 75 150

Comparison Between Effective and
Estimated Effort for Metdemo

• Person A
• Person B
D Person C

Person D

800

700

600

500

400

300

200

100

0

A

Effective Total Effort Estimated Total Effort

Figure 16. Difference between Effective and Estimated Effort (Metdemo).

Totals per individual allow us to measure the overall productivity. When the effective

effort is less then the estimated, it means that the productivity is more then average. It is

interesting to mention that the differences between estimated and effective time on a resource

level were due to other project requirements. Since I was in charge of this project I was the

only person fully dedicated to the project, and that's why I overlapped my estimated time by

covering for others.

68

Comparison Between Effective and
Estimated Effort for Merlin

1000
900
800
700
600
500
400
300
200
100

Person A

wiPerson B

D Adv. Markets
Team (T)

EPerson C

Effective Total 	Estimated Total
Effort 	 Effort

7.2. Hartford Life (Merlin)

We were three people on this project and were assisted at a certain point by the

advanced markets team. First estimates were done but we ended up with an extra month

because of the special features that our client asked for along the way.
It was very important to meet the deadlines for the features and functionality that were

mentioned in the contact.
I ended up being the main C++ programmer on this project. This didn't stop me from

doing analytical work that was required for each feature. The project finally took six months.

We notice that it took more then five months to do the project. More time in terms of

resources. The extra month we took wasn't critical, it was beneficial for everybody. Our client

was happy and aware that the delay was caused because of the additional functionality he

asked for along the way.

Total Time / Individual

Effective Total Êifort Estimated Total Effort
Per son A 900 750
Parson 5 900 750
Adv. Markets Team (T.), 300 300
PersonC 150 150

Figure 17. Difference between Effective and Estimated Effort (Merlin).

69

The difference between the estimated and effective time is normal in this project

because it involved lot of communication with the client.

In this chapter we compared the estimated and effective effort required for two

projects. We realize that they differ, depending on the nature of the project. A demo for

internai use cannot be approached the same way a real contract is. The approach is different

because a contract depends most of the time on the client and because of the legal

implications that might occur if the project doesn't meet the deadline.

An internai project that doesn't meet the deadline can only cause financial loses in terms of

efforts while a contract can take the firm to court, and ruin it's reputation.

70

Chapter 8. CONCLUSION

This thesis summarized my experience during an internship at Logisil Consulting Inc.

as part of my Masters in Computer Science. During this year I worked on two projects:

Metdemo for five months and Merlin for seven months. Ive tried to step back, take a general

look on my training, and came utp with a few essential lessons that Ive learned.

I have exposed problems that I solved, enhancements that I brought and features that I

participated in developing. It is important in this whole process to focus on the lessons

learned, obstacles faced, which sometimes I was able to overcome and unfortunately other

times wasn't. Why is it important, because humans are supposed to learn lessons from their

experiences so that the next time they are confronted to a similar situation they can handle it

the right way. Also because this helps in increasing a person's productivity which is crucial

for his survival in the industry. Next is an overall resume of what this thesis handled as well

as the lessons learned through this experience.
Metdemo project was a big challenge for me and the solution I came up with wasn't

even the best. I was confronted by having to switch from one language to the other at runtime.

The way I solved this is by deleting the DLLs and reloading the application. I didn't lose the

handle after deleting the DLLs, which allowed me to re-execute the application and load the

DLLs that are associated with the chosen language. The best solution that I could foresee is to

reload the DLLs without re-executing the application.
This would make the transition from English to French and vice versa transparent to the user.

I wasn't very far from this solution but due to time constraints I had to drop it. I must admit

that I was disappointed of not being able to do what I thought was best. But in the industry

people ask for solutions within time constraints. Of course things have to be done the best

way possible, but first they have to be done on time. I learned to focus more on solutions and

analyze the problems and / or features that I have to implement before getting to the

implementation phase. The time I wasted doing two versions for this project could have been

invested in just one. The first version only allowed the user to switch from one language to

the other after restarting the system by referring to flags in the INI file. The second version is

the current version, which reloads the DLLs at runtime. This version could have been better if

it included this transparency aspect which I almost accomplished. My supervisor nevertheless

appreciated the current version and the feedback after the demo was very positive.

71

Basic software engineering knowledge was required for this project. We had to keep in

mind that the actual performance of the system wasn't to be affected by our modifications.

Regression testing techniques were used to make sure that our version was error free. Not

doing regression tests properly can have serious consequences. For example, Seligman

[Seligman, 1997] and Trager [Trager, 1997] reported that 167,000 Californians were billed

$667,000 for unwarranted local telephone calls because of a problem with software purchased

from Northern Telecom (Nortel). So another lesson that I learned and am still learning day

after day is the importance of testing. I had tendencies of fixing bugs and testing the fix

without focusing on the side effects that it could bring to the application. Regression tests are

mostly done before a field release to be sure that every single validation and detail is there.

In Merlin, my second project, all concepts related to project management such as

scheduling, resources, quality assurance, testing... that were previously mentioned in the state

of the art chapter, were used in the intention of making the development and field

implementation of this project as smooth as possible. This project was directly financed by

our client and room for error wasn't really tolerated.
As previously mentioned through our thesis, Merlin was a project directly supervised

by our client. Working on this project made me develop some managerial skills in order to

deal with our client. Situations involved: acquiring information, replying to a clients

request... We made sure that our client got what he wanted because he was always reasonable

with his requests, which made working on this project a pleasure.
Working on this project made me develop debugging techniques which are essential

for bug fixing [Debug, 2000]. It also made me realize the importance of code reengineering.

This latter affects maintenance, application runtime... To pass from an unstructured code to a

structured code there are three steps (Reverse engineering, updating internai specifications

and regenerating the new system) that need to be achieved [Bohner, 1990]. As to the lessons

that I learned while working on Merlin I can categorize them by problem or feature

developed.

• The agent problem made me realize the difference between DMEMRecSets and DrecSets,

which wasn't mentioned in any reference manual. It made me also realize the impact of a

bug on the whole application. I made other colleagues benefit from my discovery by

issuing a memo that explained the whole issue.

• The Import / Export problem made me realize the importance of first trying to find easy

solutions before starting to complicate things. What I mean by that is that sometimes the

72

solution is right there and it's easy but you dont see it. I must admit that it took us a while

to find all the problems that were related to this nightmare which affected our field

version. I say we because this problem involved senior consultants because of the impact

it had on our client. It made me also realize that if something gets corrupted it might not

be easy to fix, or even impossible to fix, especially if it's a flat file. This also showed us

the gravity if doing mistakes in this domain.

• Templates implementation was where I really improved things to make our client happy.

It's all discussed in the templates implementation section but I can say to this regard that

sometimes you cannot follow others even if they are more experienced then you. Analyze,

first then implement because if you dont, you might have to do the same thing twice.

• Compare to feature made me explore deeper and deeper the higher level of the application

(ECL level). I must say that this is the feature that I did with zero mistakes on an analysis

or implementation level. I guess I learned from my previous mistakes. This feature

required originality. Since it was completely new to our system.

• Code simplification (reengineering) made me learn some software engineering techniques

and realize the importance of a well-structured code.

I had the opportunity to work on projects involving more then one million lines of code.

This widened my scope and made me want to explore more and more the upper level of the

class hierarchy. These projects were for real and included features that were required by our

clients and really counted for our company's reputation. I was fortunate enough to be able to

satisfy both our customers and our management. This is due to my solid analytical

background, which University of Montreal contributed the most in it's development. Analysis

as well as research were required for most of the tasks I worked on, and due to the vast

collaboration of my research director during this period we got the best results out of these

two critical steps in software development. I must also admit that the projects I worked on

during my studies at University of Montreal, even if they were at a lower scale, in terms of

lines of code, taught me a lot on how to approach a problem, analyze it and find the best

solution.
GUI principles and rules such as performance, consistency... were always considered

during our analysis because we had to make sure that our modifications wouldn't affect

negatively the rest of the application. Since our application and interfaces complied to most of

73

these rules and principles, we as analysts and developers had to make sure to maintain our

standards.
To resume the lessons I learned during my training period I can say that the most

valuable things were analyzing and testing. They both involve software engineering, which is

the key for software development and maintenance.
I wish I could improve runtime language switching to make it really transparent to the

user. This could be done in other domains and applications. The challenge is to keep the data

intact.
As to what is next, well we have major contracts with US and Canadian life insurance

companies. This will make us busy for a while. As far as I'm concerned, Hartford life contract

doesn't end before end of summer 2000. I have a training to give for our clients developers,

new features to implement and products to add. Another good news is that our client is

considering going on the web. This should be a great opportunity for me to learn insurance

web applications, which is an expertise that is actually being developed at our premises in

Montreal and in Ambler. We call it the Java, HTML, XML expertise. This is the key for

future technologies.

74

Bibliography

[Arnold, 19891: Arnold, R.S. (1989). Software restructuring. Proceedings IEEE, April 1989.

[Bohner, 1990]: Bohner, S. A. (1990). Technology Assessment on Software Reengineering,

Technical Report, CTC-TR-90-001P. Chantilly, VA: Contel Technology Center.

[Borland, 19911: Borland Object Windows Reference Guide (1991). Vers. 2.5, California.

[Breuer & Lano, 1991]: Breuer, P. T. & Lano, K. (1991). Creating Specifications from

Code: Reverse Engineering Techniques. Journal of Software Maintenance: Research and

Practice, Wiley, Vol. 3, P. 145-162.

[ECL, 1999]: Ecta Class Library Reference Guide (1999). Navisys Corporation. Ambler,

Connecticut.

[Johnson et al. 19891: Johnson, J., Roberts, T. & Verplank, W., Smith, D., Irby, C., Beard,

M. & Mackey, K. (1989). The Xerox Star: A Retrospective. IEEE Computer. Vol. 22, No. 9,

P. 11-29.

[Mandel, 1997]: Mandel, T. (1997). The Elements of User Interface Design. John Wiley &

sons, Inc.

[Merlo et al. 1993]: Merlo, E. et al. (1993). Reverse engineering of user interfaces.

Proceeding working conference on reverse engineering, IEEE, Baltimore, M.D., May 1993, P.

171-178.

[Merlo et aL 19951: Merlo, E. et al. (1995). Reengineering User Interfaces. IEEE software.

January 1995. P. 64-73.

[Nielsen, 1990]: Nielsen, J. (1990). Traditional dialogue design applied to modern user

interfaces. Communications of the ACM. Vol. 33, No. 10, P. 109-118.

[Ning et al. 1994]: Ning, J. Q., Engberts, A., Kozaczynski, W. (1994). Automated support for

legacy code understanding. Communication of the ACM, Vol. 37, No. 5, P. 42-49.

[Pfleeger, 1998]: Pfleeger, S. L. (1998). Software Engineering Theory and Practice. Prentice

Hall Inc, New Jersy.

[Pressman, 1997]: Pressman, R. S. (1997). Software Engineering a Practitioner's Approach

(Fourth edition). Mcgraw-Hill companies Inc.

[Ricketts et al. 19891: Ricketts, J. A., Delmonaco, J. C., Weeks, M. W. (1989). Data

reengineering for application systems. Proceedings of conference software maintenance.

IEEE, P. 174-179.

75

[Seligman, 19971: Seligman, D. (1997). Midsummer madness: New technology is marvelous

except when it isn't. Forbes, September 8, P. 234.

[SourceSafe, 19981: Microsoft Visual Studio Developing for Enterprise (1998). Microsoft

Corporation.
[Trager, 1997]: Trager, L. (1997). Net users overcharged in glitch. Interactive Week,

September 8.

[Training, 20001: Logisil GUI Training Document (2000). Logisil Inc. Montreal, Quebec.

76

URLs

[API, 1999]: API Online. http://www.sourcevault.com/win32api/GetPrivateProfileString.htm.

[Babel, 20001: http://www.telecomm.uh.edu/links/babe196b.html#V.

[Borland, 20001: http://www.borland.co.uk/bcppbuilder/productinfo/competitive.html.

[Debug, 2000]: Debugging C++. http://www.cod.edu/people/faculty/lawrence/debugl 1 .htm.

[Logisil, 2000]: Logisil home page. http://www.logisil.com/index.html.

[Newsgroups, 1999]: Newsgroups. http://www.borland.com/newsgroups/ngsearch.html.

[Richard, 1999]: Richard, V. (1999). Published as PC Tech Feature in the 1/19/99 issue of

PC Magazine. http://www.zdnet.com/pcmag/pctech/content/18/02/tfl 802.001.html.

77

Appendix A. Development Standards and methods

Appendix A handles development standards and methods used by Navisys and Logisil

programmers.

Programming Standards

Programming standards are here to make code cleaner, readable and maintainable.

Typically the parameter declaration list for a method or function should have a one or two-

letter prefix on each parameter that is indicative of its type. References do not need a prefix.

Also, member variables of classes should use the same naming convention.
Constructors often take parameters that are used to initialize member variables. Since there is

a potential conflict with the names of the parameters and the names of the member variables,

constructor parameters should be prefixed with the capital letter A.
Two types of comments should be used inside blocks of code. The first is for short comments

that apply to a specific statement. On the same line as the statement, the developer can put a

comment delimiter '//', and the comment. This style should only be used if the comment does

not pass the right margin. For longer comments, or those that apply to whole sections of code,

the comments should appear flush with the code surrounding it. A line should separate the

comment from the code both above.
Class declarations should be preceded by comments that clearly delineate them from their

surroundings. To increase readability, always separate individual methods or functions from

one another by the addition of comment lines. For the picky ones, they can add a description

of the functions purpose.

One must avoid using ambig-uous variables, serving many different functions. This will cause

confusion during debugging and maintenance, when the meaning of the variable may no

longer be clear.
All code should be easy to follow, and logically grouped together. One should avoid breaking

up the logical flow of the code by inserting unrelated segments in between. Also, always

avoid creating dependencies in unrelated functions and classes.

78

GUI Standards

GUI standards are regulated by copyrights and are mostly tailored to fit the clients

needs. Each project has its own taste and flavors but there are always criteria to be respected

in this regard. We've already discussed in our state of the art section how Logisil GUI met the

golden rules. We would like to emphasize on the fact that the common ground to all projects

is that they all use the same tools, same validation functions... The only difference is in the

interface, which depends on the client. At this level there are also efforts to make a unique

interface for various projects. This interface will always lack features that are specific to big

projects but the idea behind this is to provide an interface that will allow at least to create an

insurance illustration using a company's specific calculation engine. Since each company has

its own products and services it is natural that for each company there would be a particular

CALC Engine. Winflex, which is a GUI standard interface, previously introduced in our state

of the art section, was developed for specific clients who wanted to make their products easier

to use. Certain brokerage companies also imposed on our clients to do the requirements to

have Winflex because they were trying to provide their agents with an easy tool that allows

them to sell insurance illustrations.

Winflex

Winflex was created by Lifelink systems with the collaboration of Navisys. Briefly

Winflex interacts with our system via two files. It's kind of the same scenario as the serf

mapping. So basically Winflex would generate a certain file that is passed to our system. This

is done through a procedure called the handshake. The handshake is done when Winflex

generates the file (with the corresponding information related to the insured...), and passes

the hand to us. In this case we refer to Merlin because it is the first project to have Winflex

(other projects are following). Once the hand is passed to Merlin, it will execute in a silent

mode and does the following:

• First thing is mapping Winflex values.

• Second is passing these values to the engine.

• Third is taking the engine's values and generating the reports.

• Fourth is retuming certain values to Winflex.
After doing these four steps Merlin retum the hand to Winflex which displays the reports that

were generated by Merlin and which were passed to Winflex as image files. Winflex also

generate particular reports by using the values that Merlin passed in the forth step.
79

The problem with Winflex is that it requires a lot of work from Merlin side. Basically we do

more work then the Winflex application.

ECTA Libraries

ECTA libraries are the Navisys libraries that include the parent classes of most of the

common classes that we use in our projects. The children of these classes include all the extra

tests that are needed on an application or single project level. The class hierarchy is presented

in figure 18. The libraries are very useful since they include 70% of the system functionality.

Sometimes we could be limited by the libraries because in a way they set for us some

standards and functions that we cannot ignore and totally overwrite but by doing this they

help keep the code maintainable on a project level. For more details on the libraries hierarchy

please refer to appendix A. It includes charts of the libraries functions and elements.

Debugging methods

Are mainly used for bug fixing. Depending on the debugger used (Visual C++ or

Borland C++) there are certain keywords and certain tricks to be known to make this task as

efficient as possible. Mainly in the case of a crash one can refer to the stack and then put

breakpoints...
There is a special file called (KTrace.TXT) which is mainly used for report problems.

If there is a crash at the reports level (written using a macro language) we set the KTrace flag

to true and can trace where the crash happened.
Ecta also introduced some debugging message (DTDEBUG Message) that can be

activated by setting the (ECTAMESSAGE) flag in the system environment to Y.

We basically covered in those two sections the main tools and software used by

Logisil and Navisys GUI programmers. As previously exposed most of the tools are custom

made to make the programmers tasks as easy as possible. But even if, the system is very

complex and big that it takes time for getting to really manage it.

80

CI'DIALOG_D

À

DDIALOG

CGProposalDialog

GULProposalDocument 	 GVLProposalDocument

Windows Level: TDOCUMENT...

Ecta Level: DDOCUMENT...

Project Level: GProposalDocument...

Project Level: GVLProposalDocument... (Product Level)

Figure 18. General Class Hierarchy Diagram.

81

DRec DDdeHandler

DOdbcRecSet IOLIFERecSet DFlatFileRecSet DMemRecSet IPmRenderRecSet

IUserDocument IPartyDocument 	IProposalDocument

DDdeServer DDataManager
•

DSymTable

DDocument
•

IEngineAdaptor DMacroKemel DResourceStringManager

DVectorRecSet
IControlDocument

A

IOLIControlDocument

IDocument

1\
IDBDocument

•
DTrackedMemoryObject TDocument

•—

DPersistentRec DRecSet
----•---

ISerfEngineAdaptor

IDBSerfAdaptor

Appendix B. Navisys Libraries Hierarchy

Logisil/Navisys Gui structure is composed of a Document, a Dialog and a View that

are represented in the figures (19,20,21) here below.

Figure 19 shows the levels that are derived from DDataManager which as the name indicates

manages data storage. This is where Peek and Poke functions are defined as well as all the

other related storage functionality.

DMemoryObject

IClientDocument

IProducerDocument

Figure 19. Hierarchy of Navisys storage system.

82

TDialog

TPropertyPage •

DDialog
•	

TPropertyDialog •
DPropertyDialog

DModelessMessageBox

IStatusDialog

TWindowView

Il
DFrameView DReportView

DView IView •

IDBView

IProposalView

IPartyView

IClientView IProducerView

As for the Document well it kind of a warehouse that will contain data related to a proposal. It

could contain fields (Integers...) as well as blocks of information (blobs...).
Figure 20 presents the classes that contain the dialog constructors. We start from

TDialog to DDialog and we reach the application level.

Figure 20. Dialog hierarchy.

Figure 21 illustrates certain properties like assigning the canhit property to fields in

reports... are defined... It is basically related to the report view...

Figure 21. View level.

83

In the following we show the application hierarchy (figure 22) as well as the data

types (figure 23) and controls (figure 24).

Figue 22 presents all the application initializations and where DLLs are assigned...

TApplication

DApplication •

IApplication

•

IDBApplication

IOLIApplication

Figure 22. Application

Hierarchy.

Figure 23 is where we can see all the data types that are predefined in ECL Admin.

We also see some of the pointers that could be used to reference certain types

(DblobClipBuffer).

DDataObject •

DString DInt 	DLong 	DDouble 	DJulian DClipboardBuffer 	DVectorHandle DDataManagerPtr •

DTypecode DBool 	DPercent 	DCurrency DTextC ipBuffer 	DB inaryClipBuffer DGridRecSetPtr
• • •

DCsyClipBuffer DX1ClipBuffer DBlobClipBuffer

Figure 23. Data Types Hierarchy.

84

TControl

TButton

L
TECButton

DPushButton
A

DBitMapButton

LDMockBtn

TECCheckBox

TScrollBar
•

TECSpinner
•

DSpinner

TRadioButton

TECGrid

DGrid
•

DRecGrid

TCornboBox

TListBox

TECListBox

TStatic
•

TCheckBox

TECStatic DCheckBox TECRadioButton

•

TECComboBox

A

DListBox

•

TEdit
• 	• 	 A

	 A

DStatic TECEdit
A

DRadioButton DComboBox DQueryListBox

DEdit
A

•

DNumEdit
—• 	À—

r-1 DPatternEdit

DTypecodeComboBox

DTypecodeEditComboBox

D ueryComboBox

FD(1-71FlyValidEdit

DCurrencyEdit DPercentEdit DDateEdit

Figure 24 presents control types. All these types could be found in ECLAdmin and they

would be related to fields in Resource Workshop.

Figure 24. Control Types.

85

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87

