
Université de Montréal

Model Checking for a First-order Temporal
Logic Using Multiway Decision Graphs

Par

Ying Xu

Département d'Informatique et de Recherche Opérationnelle

Faculté des Arts et des Sciences

Thèse présentée à la Faculté des études supérieures

en vue de l'obtention du grade de

Philosophi Doctor (Ph. D.)

en Informatique

avril, 1999

@Ying Xu, 1999

d ues r, ie‘s 	04,
Grade Ictroyé a r.r:mptpr du

si;

AOUT 5 999

Io o3o

x,...„7_,......--
ed.........„(ee.,,,...7

.."...e___

président-rapporteur

directeur de recherche

co-directeur de recherche

membre du jury

?-£•-r. - •--A-e*Q Az-' /LA-

,
1...44d.e.c, examinateur externe

e

Université de Montréal
Faculté des études supérieures

Cette thèse intitulée:

Model Checking for a First-order Temporal
Logic Using Multiway Decision Graphs

présentée par:

Ying Xu

a été évaluée par un jury composé des personnes suivantes:

qff. Thèse acceptée le:

Résumé

L'exactitude lors de la conception est une préoccupation majeure pour tout système, et ceci

est d'autant plus vrai pour les systèmes informatiques et les systèmes de circuit intégrés.

Comme nous sommes toujours plus dépendants de ces systèmes, le coût de leur défaillance

devient de moins en moins acceptable.

Traditionnellement, la simulation fut le principal mode de vérification de l'intégrité

d'un système avant sa fabrication. Il existe différentes approches à la vérification d'un

système à l'aide de simulations, chacune visant à explorer différents aspects de la

conception du système. Cependant la méthodologie générale est la même: lorsque la phase

de conception est terminée, l'équipe de vérification crée des bancs d'essais et utilise autant

d'entrées que possible afin d'obtenir un degré de confiance suffisant dans la conception.

Cependant, étant donné la complexité ctoissante des circuits intégrés, il devient rapidement

impossible de simuler un large système de manière adéquate. C'est la raison pour laquelle

il y a maintenant un renouveau d'intérêt de la recherche visant à utiliser la vérification

formelle à titre de complément à la simulation pour vérifier l'intégrité de la conception d'un

système.

La vérification formelle consiste à établir mathématiquement qu'une implantation

d'un système satisfait sa spécification. Dans notre cas, l'implantation correspond à la

description du système à vérifier. Quant à la spécification, elle décrit les propriétés que le

système (c.à.d. l'implantation) doit satisfaire. L'implantation peut correspondre à différents

niveaux d'abstaction du système, et la spécification (propriété) peut être exprimée de

plusieurs manières: description du comportement, contraintes temporelles, formules de

logique temporelle, etc.

La plupart des méthodes de vérification formelle peuvent être regroupées en 3

catégories: les démonstrateurs de théorèmes ("theorem proving"), la vérification

d'équivalences, et la vérification du modèle ("model checking"). Les démonstrateurs de

théorèmes constituent la technique de vérification formelle la plus générale: l'implantation

et la spécification sont habituellement exprimées à l'aide de formules de la logique du

premier ordre ou d'ordre supérieur. La relation entre l'implantation et la spécification est un

théorème de la logique du démonstrateur qu'il faut prouver en utilisant les axiomes et les

règles d'inférence logique. La puissance d'expression de la logique a un impact direct sur

la puissance de cette méthodologie, ce qui permet de prendre en considération des systèmes

avec chemins de données relativement complexes.

La vérification d'équivalences est une technique visant à vérifier l'équivalence de

deux descriptions presque identiques d'un même système. La vérification d'équivalences

est intéressante si on considère son utilisation suite à la synthèse du système, où souvent les

changements manuels du système portent uniquement sur des aspects comme la rapidité, la

puissance ou la testabilité.

La vérification des modèles est une technique visant à prouver des propriétés

temporelles du système sous toutes les conditions possibles et permises. Des propriétés

comme, "lorsqu'une requête pour le bus est émise, elle doit être satisfaite", peuvent être

utilisées pour vérifier le comportement du système à vérifier. En gros, les vérificateurs de

modèle ("model checkers") sont utilisés pour répondre à la question: "Est-ce que j'ai conçu
ce qui était spécifié?"

Quoique les trois méthodes diffèrent sous certains aspects techniques, elles

partagent les deux attributs suivants. Premièrement, aucun vecteur de test n'est requis. Ceci

peut réduire la phase de vérification puisque le temps nécessaire pour la création des

111

vecteurs de test et pour l'évaluation des résultats est supprimé. Deuxièmement, pour les

méthodes de vérification formelles, la preuve est mathématique plutôt qu'expérimentale.

Comme l'exactitude des théorèmes est vraie indépendamment des valeurs pour lesquelles

le théorème s'applique, l'exactitude de la conception d'un système qui a été formellement

vérifié est vraie avec une certitude mathématique indépendamment des entrées soumisses

au système. Cependant, l'expertise de haut niveau requise dans l'utilisation des

démonstrateurs de théorèmes fait que les techniques basées sur ces démonstrateurs de

théorèmes ne sont pas largement utilisées dans l'industrie. Pour cette raison, les

vérificateurs de modèles (qu'on peut exécuter de manière complètement automatique) sont

considérés présentement comme la technique la plus prometteuse qui puisse être utilisée

pour vérifier les propriétés de systèmes complexes [5] [18][20][66][55].

Durant les dernières décades, les chercheurs ont concentré leurs efforts à explorer

les techniques de vérification de modèles. Ces techniques ont d'abord été introduites par

Clarke et Emerson[22], et de manière indépendante par Quielle et Sifakis [61]. Les

premières techniques de vérification de modèles étaient basées sur des graphes de décisions

représentant de manière explicite l'espace d'états du système en utilisant une liste ou un

tableau dont la taille est proportionnelle au nombre d'états dans le système [7]. Le nombre

d'états dans le modèle peut croître de manière exponentielle en fonction du nombre de

composantes dans la conception, ce qui fait qu'habituellement le tableau d'états est un

facteur limitant l'application de ces graphes de décisions à des systèmes réels (à cause du

problème de croissance exponentielle du nombre d'états).

Utilisant les graphes de décisions binaires ordonnés (Ordered Binary Decision

Diagrams (OBDDs)) [11] pour représenter les ensembles d'états, les relations de

transitions, et pour énumérer implicitement l'espace d'états, la vérification symbolique s'est

avérée être une technique pratique pour la vérification automatique des circuits intégrés au

niveau de la logique propositionnelle [14][16][24][31][49] [65]. Cependant, ces méthodes

iv

nécessitent que la description du système soit faite au niveau de la logique booléenne. Par

conséquent, elles ne sont pas en général adéquates pour la vérification de circuits avec de

larges chemins de données, encore une fois dû au problème d'explosion du nombre d'états

dans le modèle. Le nombre d'états dans le modèle croît de manière exponentielle en

fonction du nombre de variables d'états, même avec la technique des OBDDs, les structures

de données deviennent trop grandes pour la taille des mémoires des ordinateurs actuels.

Étant motivé par le désir de combiner l'aspect automatique de la vérification des

modèles avec la représentation abstraite des données des démonstrateurs de théorèmes, ce

qui peut minimiser le problème d'explosion du nombre d'états de manière significative,

nous avons développé un vérificateur de modèles pour la logique temporelle linéaire du

premier ordre. Notre approche est basée sur le modèle de machine à états abstraits (ASMs)

où une donnée peut être représentée par une seule variable de type abstrait, plutôt qu'un

vecteur de variables booléennes. Une opération sur les données est alors représentée par un

symbole fonctionnel non-interprété [26][27][68][2].

Plusieurs résultats rapportés dans la littérature sont reliés aux nôtres. Hungar,

Grumberg et Damm [41] ont proposé une technique appelée "true symbolic model

checking". Ils ont représenté les données et les opérations sur les données à l'aide de

formules logiques du premier ordre et ils ont utilisé la logique FO-ACTL (First-Order

ACTL) pour spécifier les propriétés. La logique FO-ACTL est une logique temporelle du

premier ordre à branchements qui utilise uniquement le quantificateur universel. ils ont

nommé leur méthode "réellement symbolique" (truly symbolic) en contraste avec

l'approche par encodage d'un ensemble d'états de la vérification symbolique de modèles

(symbolic model checldng) présentée dans [49]. Leur méthode est basée sur l'hypothèse

que toutes les boucles de données se terminent, et sur la séparation entre la partie contrôle

et la partie données dans les circuits intégrés typiques. Si les propriétés contiennent

uniquement des signaux de contrôle, alors la méthode classique de vérification booléenne

v

de modèles est utilisée. Lorsque la propriété contient uniquement des données, ils éliminent

d'abord tous les prédicats du premier-ordre de la formule en les remplaçant par la constante

booléenne "True", ce qui résulte en une formule propositionnelle CTL. Si la formule

propositionnelle CTL n'est pas vérifiée par un vérificateur booléen de modèles, alors ils

concluent que la propriété originale a échouée. Sinon (la formule propositionnelle CTL est

vérifiée), ils génèrent à partir du système et de la propriété en question, des conditions de

vérification du premier ordre en utilisant la méthode des tableaux. Ensuite, ils les vérifient

à l'aide d'un démonstrateur de théorèmes, ce qui complète la preuve.

Cyrluk et Narendran [33] ont défini une logique temporelle du premier-ordre

Ground Temporal Logic (GTL), qu'on peut situer entre la logique temporelle

propositionnelle et la logique du premier-ordre. Cyrluk et Narendran ont montré que la

logique GTL est indécidable. Ensuite ils ont identifié un sous-ensemble décidable de GTL,

ce fragment contient des formules de la forme Clp (toujours p), où p est une formule GTL

contenant un nombre arbitraire d'opérateurs (next) o, et aucun autre opérateur temporel.

Cependant, ils n'ont pas montré comment construire la procédure de décision.

Hojati, Brayton et al. ont proposé un modèle concurrent appelé "integer

combinational/sequence" (ICS), qui utilise des relations finies, des fonctions et des

prédicats sur les nombres entiers qui sont interprétés et/ou non-interprétés, et des fonctions

de mémoire interprétées, pour décrire les circuits intégrés avec abstraction des chemins de

données [51][52]. La vérification des modèles ICS est accomplie en utilisant l'inclusion des

langages formels ("language containment"). Ils ont montré que pour une classe de modèles

à contrôle intensif (ICS), les variables entières du modèle peuvent être remplacées par une

énumération finie, ce qui permet d'exécuter la vérification au niveau booléen sans en

sacrifier l'exactitude. Ils ont donné un algorithme avec complexité linéaire pour reconnaître

les formules appartenant à cette classe. Si les circuits contiennent des chemins de données

complexes avec des symboles fonctionnels interprétés et non-interprétés, l'énumération

vi

finie ne peut pas être utilisée. À la place, ils calculent les ensembles d'états atteignables en

n étapes en utilisant les BDDs, et vérifient qu'aucune erreur n'existe pour ces n étapes.

Burch et Dill ont aussi utilisé la logique du premier-ordre sans quantificateur avec

prédicat d'égalité pour vérifier la partie contrôle des microprocesseurs [18]. Ceci est dû au

fait que la partie donnée peut être abstraite dans leur logique. Leur méthode inclut deux

phases. La première phase compile la spécification et l'implantation en une formule

logique; la formule est valide si et seulement si l'implantation satisfait la spécification. La

seconde phase consiste à montrer la validité de la formule par le biais d'une procédure de

décision qu'ils ont implantée. Ils ont appliqué leur méthode pour la vérification d'une

implantation "pipeline" d'un sous-ensemble de l'architecture DLX. Cependant, leur

méthode, contrairement à la nôtre, ne peut pas prendre en compte les propriétés impliquant

des opérateurs temporels, en particulier, les propriétés de "liveness".

Dans cette thèse, nous présentons une logique temporelle branchements du premier

ordre et les procédures de décision qui lui sont associées. En comparaison avec d'autres

recherches, nous élevons le niveau d'abstraction de l'explicitation du problème, et nous

explorons la vérification de modèles à un niveau d'abstraction plus élevé. Notre approche

est basée sur les machines à états abstraits (ASMs). Une machine abstraite ASM est

représentée par des graphes de décisions multi-choix (MDGs) [26][70]. Ces derniers sont

une généralisation des graphes de décisions binaires ordonnés et réduits (ROBDDs) [11].

Les machines abstraites (ASMs) peuvent être utilisées pour décrire les systèmes au niveau

transfert de registres (RTL). La vérification par ASMs est basée sur l'énumération des états

dont la complexité est indépendante des chemins de données. Une implantation de ce

concept existe actuellement et fournit des outils comprenant la vérification d'équivalences

pour les circuits séquentiels, la vérification des processeurs, la vérification des invariants

par exploration des états [69] et la vérification des propriétés temporelles.

vii

Notre objectif principal dans cette thèse est de définir une logique temporelle du

premier-ordre avec branchements appelée Abstract-CTL* et de développer des algorithmes

de vérification des propriétés pour un sous-ensemble de Abstract-CTL*. Ce sous-ensemble

est appelé LmDG. LmDG inclut les propriétés de "safety" et "liveness" avec ou sans

contraintes d'équité. Les propriétés de LmDG incluent Ap, AGp, AFp, ApUq, AG(c

=>(Fp)) et AG(c=>(pUq)), où c, p et q sont Next_let_formulas qui contiennent seulement

l'opérateur temporel X("Next"), G, F, U signifiant respectivement "always", "eventually",

"until", et A signifie "for all computation paths". En général, notre approche consiste à

compiler la propriété à vérifier en un (des) ASM(s), puis à vérifier une propriété plus simple

qui en découle, sur la machine produite par la combinaison de la machine représentant le

modèle et la propriété.

En comparaison avec le travail de [33], nous allons montrer au cours de notre thèse

que le fragment décidable de GTL est actuellement un sous-ensemble de la classe des

propriétés que nous pouvons vérifier; en comparaison avec ICS [51][52], nos modèles

ASM sont plus généraux que les modèles ICS dans le sens que le type de variables

abstraites de notre système (qui correspondent aux variables entières dans les modèles ICS)

peuvent recevoir n'importe quelles valeurs dans leur domaine, plutôt qu'une constante

spécifique ou une fonction des constantes comme dans le modèle ICS. Pour la classe de

modèles ICS où l'énumération finie ne peut pas être utilisée, notre système de vérification

peut calculer tous les états atteignables et vérifier les propriétés de "safety" et aussi

certaines propriétés de "liveness". En comparaison avec [41], notre logique temporelle du

premier-ordre avec temps de branchements LmDG est moins expressive que FO-ACTL,

puisque nous allouons seulement un niveau limité d'imbrication des opérateurs temporels.

Cependant, dans notre approche, la propriété est vérifiée dans tout le modèle de manière

automatique tandis que dans [41], un démonstrateur de théorèmes est éventuellement

nécessaire pour valider les conditions de vérification générées.

viii

La thèse est organisée de la manière suivante: dans le chapitre 2, nous explorons les

techniques de base de la vérification formelle et les logiques utilisées dans ces techniques.

Dans le chapitre 3, nous énonçons les fondements théoriques de cette thèse. Premièrement

nous décrivons la logique formelle utilisée dans notre approche ASM. Deuxièmement,

nous définissons notre modèle de calcul, c.à.d., la définition des machines à états abstraits

et donnerons leur sémantique en termes d'arbre infini de calcul. Nous expliquons également

comment l'énumération abstraite des états est accomplie. Dans le chapitre 4, nous

définissons la syntaxe et la sémantique d'un modèle très général de logique temporelle

appelé Abstract_CTL*, qui est une logique du premier-ordre avec branchements. Dans le

chapitre 5, nous définissons LmDG, qui est un sous-ensemble de Abstract_CTL* contenant

la classe des propriétés pour lesquelles une procédure de décision existe. Dans le chapitre

6, nous présentons en détail les algorithmes de vérification de propriétés. Dans le chapitre

7, nous présentons un algorithme pour générer une description de circuit représentant une

Next_let_formula. Dans le chapitre 8, nous montrons comment imposer des contraintes

d'équité dans notre système de vérification et les algorithmes de vérification des propriétés

de liveness avec des contraintes d'équité. Nous discutons aussi de certaines questions

d'implantation. Dans le chapitre 9, nous démontrons l'exactitude de notre procédure de

vérification. Dans le chapitre 10, nous appliquons le vérificateur de modèle basé sur MDG

à deux exemples: un contrôleur de l'éclairage dans un tunnel, et un compteur abstrait. Dans

le chapitre 11 nous concluons la thèse et nous indiquons des directions futures de recherche.

ix

Abstract

Using Ordered Binary Decision Diagrams (OBDD) to encode sets of states, the transition

relations, and to perform an implicit enumeration of the state space, symbolic model

checking has proven to be a very practical technique for the automatic verification of

hardware designs at the propositional logic level. However, these methods still require the

description of the design to be at the Boolean logic level, and thus in general they are not

adequate for verifying circuits with large datapath again because of the state explosion

problem. That is, the number of states in the model grows exponentially with the number

of state variables and therefore, even with OBDD encoding the data structures become too

large to fit typical current computer memories.

In this thesis, we study the automatic model checking with a first-order branching

time temporal logic. Compared to other researches, we raise the level of abstraction at

which the problem is stated and explore model checking at a higher abstraction level. Our

approach is based on abstract descriptions of state machines (ASMs). An ASM is encoded

using Multiway Decision Graphs (MDGs), of which Reduced Ordered Binary Decision

Diagrams (ROBDDs) are a special case. ASMs can be used to describe designs at Register

Transfer Level (RTL). The verification of ASMs is based on state enumeration whose

complexity is independent of the width of the datapath.

The main task of the thesis is to define a first-order branching time temporal logic

called Abstract-CTL* and develop property checking algorithms for a subset of Abstract-

CTL* called LmDG, which includes safety properties and liveness properties with or

without fairness constraints. The main property templates in LmDG include Ap, AGp, AFp,

ApUq, AG(c =>(F p)) and AG(c => pUq), where c, p and q are Next_let_formulas which

contain only the temporal operator X ("Next"), G, F, U means "always", "eventually",

"until" respectively, and A means "for all computation paths". In general, our approach to

model checking is to automatically build additional ASMs that represent the

Next let_formulas appearing in a property, connect these additional ASMs to the original

one to be verified, and then check a simpler property on the composite machine.

Key words: formal verification, model checking, temporal logic, abstract descriptions of

state machines, property, fairness conseaint

xi

Acknowledgments

I could not have completed this thesis without the assistance of many people. First and

foremost, I would like to thank my supervisors Prof. Xiaoyu Song and Prof. Eduard Cerny

for their constructive technical advice, financial support and constant encouragement

throughout my doctoral studies. I wish to especially thank Prof. Eduard Cerny for his

many suggestions, comments and corrections in the writing of the thesis.

Many thanks also to Dr. Francisco Corella for his valuable discussions during my

research work.

I have enjoyed studying and working with my friends and fellow graduate students

in the Dept. IRO. Although the names are far too numerous to list here, I would like to

thank everyone for making my years here enjoyable.

My special thanks to Dr. Zijian Zhou and his wife Haiyun Ma for their precious

friendship and for always being there when I need their help.

Last but not least, I would like to thank my husband, my two sisters and the rest of

my family for their constant moral support and encouragement, which were invaluable in

completing this thesis.

xii

Table of Contents

Table of Contents 	 xii

List of Tables 	 xvi

List of Figures 	 xvii

1 	Introduction 	 1

1.1 	Related work 	 5

1.2 	Scope of the thesis 	 7

1.3 Contributions 	 9

1.4 Outline 	 9

2 	Formal Verification Techniques 	 11

2.1 	Theorem proving 	 11

2.1.1 First-order predicate logic 	 12

2.1.2 Higher-order logic 	 14

2.1.3 Strength and weakness 	 18

2.2 	Equivalence checking 	 19

2.2.1 FSM-based Equivalence checking 	 19

2.2.2 Structure-based equivalence checking 	 22

2.3 	Model checking and temporal logics 	 23

2.3.1 Temporal logics 	 23

2.3.2 Classification of temporal logics 	 24

2.3.3 Propositional Linear Temporal logic (PLTL) 	 25

2.3.4 Computation Tree Logic (CTL) 	 29

2.3.5 LTTL versus BTTL 	 35

3

	

2.3.6 	Symbolic Model Checking 	

	

2.3.7 	Available Model Checkers 	

	

2.3.8 	Strength and weakness 	

Abstract Description of State Machines

xiii

36

38

39

40

3.1 A many-sorted first-order logic 	 40

3.2 Directed Formulas (DFs) 	 42

3.3 Basic algorithms of DFs 	 44

3.4 Abstract Description of State Machines (ASMs) 	 47

3.5 State Enumeration and Invariant Checking 	 49

3.6 Abstract Computation Forest 	 51

3.7 The MinMax example 	 53

4 A First-Order Branching Time Temporal Logic: Abstract_CTL* 56

4.1 Syntax of Abstract_CTL* 	 57

4.2 Semantics of Abstract_CTL* 	 58

5 Specification Language LmDG: a subset of Abstract_CTL* 61

5.1 Syntax of LA/DG 	 62

5.2 S emantics of LmDG 	 65

5.3 Examples of properties in LmDG 	 66

6 Model Checking for Properties in LmDG 69

6.1 Introduction 	 69

6.2 Model checking algorithms 	 70

6.2.1 	AG(Next_let_formula) 	 71

6.2.2 	A(Next_let_formula) 	 73

6.2.3 	AF(Next_let_formula) 	 74

6.2.4 	A(Next_let_formula)U(Next_let_formula) 	 76

xiv

7 	Construction of an ASM from a Next let formula 	 80 _ _

8 	Verification of Liveness Properties with Fairness Constraints 	 92

8.1 	Fairness constraints 	 92

8.2 	Our approach to imposing fairness constraints 	 94

8.3 	Verification of AFq with fairness constraints 	 96

8.4 	Verification of ApUq with fairness constraints 	 100

8.5 	Implementation issues 	 103

9 	Soundness of the Verification Procedures 	 105

9.1 	Correctness of Algorithm Check_AG(M,C) 	 105

9.2 	Correctness of Algorithm Check_AF(M, C) 	 117

10 	Experimental results 	 125

10.1 Checking Properties of the Island Tunnel Controller 	 125

10.1.1 The Island Tunnel Controller 	 126

10.1.2 Property checking using the MDG package 	 130

10.1.3 Property checking using VIS 	 132

10.1.4 Discussion 	 133

10.2 Verification of Properties of an Abstract Counter 	 134

10.2.1 Property checking using the MDG package 	 135

10.2.2 Property checking using VIS 	 136

10.2.3 Discussion 	 138

11 	Conclusions and Future Work 	 140

11.1 Conclusions 	 140

11.2 Future work 	 141

Bibliography 	 145

XV

A. ITC behavioral description in MDG-HDL 	 156

B. ITC behavioral model with 4 bit counters in Verilog HDL 	 168

C. Behavioral description of the Abstract Counter using MDG-HDL 	174

D. Behavioral description of the Abstract Counter in Verilog HDL 	 178

xvi

List of Tables

TABLE 1. 	Statistics for the ITC property verification in MDG. 	 131

TABLE 2. 	Statistics for the ITC property verification using VIS. 	 133

TABLE 3. 	Statistics for the abstract counter verification in MDG 	 136

TABLE 4. 	Statistics for the abstract counter verification using VIS. 	 138

xvii

List of Figures

Figure 1 - 	Equivalence checking 	 2

Figure 2 	Model checker 	 3

Figure 3 	Implementation of an Exor-Gate 	 17

Figure 4 - 	Moore machine for sequential circuits 	 20

Figure 5 - 	Intuition for linear-time operators 	 26

Figure 6 - 	The intuitive meanings of AXf, EXf, AFf, , EFf, AGf and EGf 	33

Figure 7 - 	A graphical representation of the MinMax state machine 	 53

Figure 8 - 	Abstract computation tree of the MinMax example 	 55

Figure 9 - 	Connection of the ASMs D, Dp1 , ... , Dpn for property checking 	70

Figure 10 - The composite machine for A(Xp=1 I XX q=1) 	 73

Figure 11 - An example of checking AF(Flag=1) 	 76

Figure 12 - The parsing tree of AG(req=1 -> LET (v1=Din) IN (X (Dout =v1))) 	87

Figure 13 - The additional circuit for AG(req=1 -> LET (v1=Din) IN (X(Dout =v1)))..

	 91

Figure 14 - Example of checking AF(FlagQ =1) under fairness constraint

!(Flagl I 1=1) 	 99

Figure 15 - Example of a false negative answer when verifying

(FlagP=1)U(FlagQ=1) under the fairness constraint ! (FlagH = 1) 	102

Figure 16 - A composite machine for checking AG(ti — t2) when t2 is an

ASM_variable 	 106

Figure 17 - A composite machine for checking AG(ti = t2) when t2 is a constant 	106

Figure 18 - 	A composite machine for checking AG(!(ti = t2)) . 	 107

xviii

Figure 19 - 	A composite machine for checking AG((ti = t2) & (t3 = t4)) • 	108

Figure 20 - A composite machine for checking AG(X(ti = t2)) 	 109

Figure 21 - A composite machine for checking AG(LET (v1 = t1) IN (X(t2 = v1)))

	 110

Figure 22 	A composite machine for checking AG(! (q)) when q is a

Next_let_formula 	 111

Figure 23 - A composite machine for checking AG(qi & q2) when (11 , 112 are

Next_let_formulas 	 112

Figure 24 	A composite machine for checking AG(X(q)) when q is a

Next_let_formula 	 113

Figure 25 - A composite machine for checking AG(LET (v1 = t1) &..&(v = trn) IN

(q)) 	 114

Figure 26 - One case of Lemma 1 when IVI = 2 and only one edge leads to each node...

	 117

Figure 27 - One case of Lemma 1 when IVI = n and only one edge points to each node.

	 118

Figure 28 - 	One case of Lemma 2 when 1S11 = 2 ,Is21= 3. 	 119

Figure 29 - A case of non-termination of algorithm Check_AF(M, C) 	 123

Figure 30 - The Island Tunnel Controller 	 127

Figure 31 - 	The specification of the Island Tunnel Controller 	 128

Figure 32 - 	State Transition Graphs of the Island Tunnel Controller 	 129

Figure 33 - 	An abstract counter 	 134

1 Introduction

Correctness is a major consideration in the design of any system, and in particular, those

of our concern - computers and other digital systems. As we become more and more

dependent on such systems, the cost of a failure is becoming unacceptably high.

Traditionally, simulation has been the only means of verifying the integrity of a design

prior to manufacturing. There are different types of simulation to explore different aspects

of the design, but the basic methodology is always the same: once a design had been

developed, the verification team would create test benches and run as many vectors as

needed to achieve sufficiently high confidence in the design. However, because of the

increasing complexity of digital systems, it is rapidly becoming impossible to simulate

large designs adequately. For this reason, there has been a surge of research interest in

formal verification which could be deployed as a complement to simulation for

determining the correctness of a design.

In general, the formal verification problem consists of mathematically establishing

that an implementation satisfies a specification. The implementation refers to the system

design that is to be verified. This entity can correspond to a design description at any level

of the system abstraction hierarchy, not just the final physical layout. The specification

refers to the property with respect to which correctness is to be determined. It can be

1

Revised Design Reference Design

quivalence Checker
Are the two designs batiaviorly equivalent?

2

expressed in a variety of ways, such as behavioral description, an abstract structural

description, a timing requirement, a temporal logic formula, etc.

Most formal verification methods can be classified into 3 classes: theorem proving,

equivalence checking, and model checking. Theorem proving is the most general

verification technique: an implementation and its specification are usually expressed as

first-order or high-order logic formulas. Their relationship, equivalence or implication, is

regarded as a theorem to be proven within the logic system using axioms and inference

rules. Design can thus be represented at different logic levels rather than only at the

Boolean level. Therefore, it allows a hierarchical verification methodology which can

effectively deal with the overall functionality of designs having complex datapaths.

Equivalence checking is a technique to check the equivalence of two designs. In

order for an equivalence checker to work, the designs must be "almost identical" and thus

equivalence checking is most valuable in post synthesis design verification where often

manual design changes focus on speed, power or testability considerations. These post

synthesis iterations make no changes or only small changes to the behavior of the design.

Equivalence checkers answer the question "Did my design iteration introduce any new

errors into the design?", as shown in Figure 1.

Yes / No

Fig-ure 1. - Equivalence checking

Model Cheeker
Is the design a model of the property?

3

Model Checking is a technique to prove temporal properties on a design model

under all possible and allowable conditions. Properties like "after the bus is requested,

then it must be granted" can be used to verify the behavior of the design in question.

Roughly spealdng, model checkers are used to answer the question "Did I design what

was intended or specified?" as shown in Figure 2.

Broadly speaking, equivalence checking can be viewed as a special model

checking technique in which the property to be proven is the equivalence of the two

designs.

Yes / No

Figure 2 - Model checker

Although the three methods differ in technical aspects, they share the following

two common attributes:

First, no test vectors are required. This can shorten the verification phase to some

extent that the large amount of design time needed to create test vectors and to evaluate the

results of the simulations will be saved.

4

Second, with formal verification methods, the proof is mathematical rather than

experimental. Just as the correctness of a mathematically proven theorem holds regardless

of the particular values that it is applied to, correctness of a formally verified system

design holds with mathematical certainty regardless of its input values.

Due to the needed expertise in the use of theorem provers, theorem proving

techniques are not widely accepted in indusnial use. Instead, since model checking can be

carried out fully automatically, it is seen today as the most promising technique that could

be used to verify properties regarding complex designs [5] [18][21][77][51].

Over the last decade, researchers have put much effort to explore model checking

techniques. Model checking was first introduced by Clarke and Emerson[23] and

independently by Quielle and Sifakis [69]. The early model checking methods relied on

decision algorithms that explicitly represent state space, using a list or table that grows in

proportion to the number of states [7]. Because the number of states in the model may

grow exponentially with the number of components in the design, the size of the state

table is usually the limiting factor in applying these algorithms to realistic systems (the so

-called state explosion problem).

Using Ordered Binary Decision Diagrams (OBDDs) [11] to encode sets of states,

the transition relations, and to perform an implicit enumeration of the state space,

symbolic model checking has proven to be a very practical technique for the automatic

verification of hardware designs [14][161[251[32][61][76]. However, these methods still

require the description of the design to be at the Boolean logic level, and thus in general

they are not adequate for verifying circuits with large datapath again because of the state

explosion problem. That is, the number of states in the model grows exponentially with

the number of state variables and therefore, even with OBDD encoding the data structures

become too large to fit typical current computer memories.

Being motivated by a desire to combine the automation feature of model checking

5

and the abstract representation of data in theorem proving which can significantly alleviate

the state explosion problem, we developed model checking for a first-order branching time

temporal logic. Our approach is based on a computation model called an abstract

description of state machines (ASMs) where a data value can be represented by a single

variable of abstract type, rather than by a vector of Boolean variables, and a data operation

is represented by an uninterpreted function symbol[2] [27] [28][79].

1.1 Related work

To our knowledge, three previous developments reported in the literature are directly

related to ours.

Hungar, Grumberg and Damm [47] proposed a "tue symbolic model checking"

technique. They represent data and data operations by first-order formulas and used FO-

ACTL (First-Order ACTL), a first-order branching time temporal logic with only the

universal path quantifier to specify properties. They called their method "truly symbolic"

in contrast to the state set coding approach to symbolic model checking presented in [61].

Their method is based on the assumption that all data loops terminate, and on the

separation of the control part and the data path in typical circuits. If the property only

contains control signals, then Boolean model checking is applied. When the property

contains data, they first eliminate all first-order predicates in the property formula to result

in a propositional Computation Tree Logic (CTL) formula. This is achieved by replacing

those predicates with the Boolean constant true. If the propositional CTL formula is not

verified by a Boolean model checker, then they conclude that the original property fails.

Otherwise (the propositional CTL formula is verified), the tableau method is used to

generate a pure first-order verification condition from the system and the property to be

proven. Then they complete the verification of the property by proving the verification

condition using a theorem proyer.

6

Cyrluk and Narendran [34] defined a first-order temporal logic - Ground Temporal

Logic (GTL), which falls in between the first-order and the propositional temporal logics.

Given a first-order language (FOL) consisting of function symbols, constants (0-ary

function symbols), predicate symbols, equality, but no global variables, they define the

alphabet of GTL as the alphabet of FOL along with the temporal operators 0(Next), o

(Next, only applied to terms), D (always), and a set of state variables Vs whose values can

change over time. The terms of GTL are defined inductively: every state variable is a term;

if f is an n-ary function symbol and t1..... t are terms thenf(ti, 	tn) is a term; if t is a

term then so is ot. An n-ary predicate p(ti , 	tn) is an atomic formula of GTL. Formulas

of GTL are defined inductively: every atomic formula is a formula; if A and B are

formulas, then so are —A, AAB, OA, and DA. A model K = (S, W) for GTL consists of a

model for the first-order language interpretation S and an infinite sequence of states W,

which is a computation path in CTL jargon. A formula A of GTL is valid if and only if A is

true for every model K; and A is satisfiable if and only if A is true in some model K. In

[34], Cyrluk and Narendran showed that the full GTL is undecidable. They then identified

a decidable fragment of GTL, consisting of formulas in the form of Op formulas where p

is a GTL formula containing arbitrary number of the "Next" temporal operators but no

other temporal operators. For this decidable fragment, they said that it was possible to

build an automatic validity checker. However, they did not show how to build the decision

procedure.

Hojati, Brayton et al. proposed a concurrency model called integer combinational/

sequential (ICS), which uses finite relations, interpreted and uninterpreted integer

functions and predicates, and interpreted memory functions to describe hardware systems

with datapath abstraction [43][44][45][50]. Verification of ICS models is performed using

language containment. They showed that for a subclass of "control-intensive" ICS models,

integer variables in the model can be replaced by enumerated variables (i.e., finite

instantiation) and then the property verification can be carried out at the Boolean logic

level without sacrificing accuracy. They gave a linear time algorithm for recognizing those

7

subsets. For verifying properties of circuits with complex datapaths, i.e., the circuit

contains interpreted and uninterpreted functions, finite instantiation cannot be used.

Instead, they compute the set of states reachable in n steps using BDDs, and check that no

error exists in these n steps.

Burch and Dill also used a subset of first-order logic, specifically, the quantifier-

free logic of uninterpreted functions and predicates with equality and propositional

connectives, for verifying microprocessor control circuitry [18]. Their logic is appropriate

for verification of microprocessor control because it allows abstraction of datapath values

and operations. Their method includes two phases. The first phase compiles a behavioral

description of the specification and the implementation into a formula in the logic; the

formula is valid if and only if the implementation is correct with respect to the

specification. The second phase is a decision procedure that checks whether the formula is

valid. They applied their method in the verification of a pipelined implementation of a

subset of the DLX architecture. However, their method, unlike ours, cannot verify

properties involving temporal operators, in particular, liveness properties.

1.2 Scope of the thesis

In this thesis, we study the automatic model checking with a first-order branching time

temporal logic. Compared to other researches, we mise the level of abstraction at which

the problem is stated and explore model checking at a higher abstraction level. Our

approach is based on abstract descriptions of state machines (ASMs) where a data value is

represented by a single variable of abstract type, rather than by Boolean variables, and a

data operation is represented by an uninterpreted or partially interpreted function symbol.

An ASM is encoded using Multiway Decision Graphs (MDGs) [27][81] of which

Reduced Ordered Binary Decision Diagrams (ROBDDs) [11] are a special case. ASMs

can be used to describe designs at Register Transfer Level (RTL). The verification of

8

ASMs is based on state enumeration whose complexity is independent of the width of the

datapath. Thus, the state explosion problem caused by descriptions of large datapaths at

the Boolean logic level is avoided.

The current ASM-based package provides tools for the verification of behavioral

equivalence of sequential circuits, the verification of a microprocessor against its

instruction set architecture, invariant checking using reachability analysis [80], and

temporal property checking. The main objective of the thesis is to define a first-order

branching time temporal logic called Abstract-CTL* and to develop property checking

algorithms for a subset of Abstract-CTL* called LmDG. This includes safety properties

and liveness properties with or without fairness constraints.

Compared to the work of [34], we shall see in the following chapters that the

decidable fragment of GTL is actually a subset of the class of properties that we can

verify; Compared to ICS [43][45], our ASM models are more general in the sense that the

abstract sort variables in our system (corresponding to the integer variables in ICS models)

can be assigned any value in their domains, rather a particular constant or function of

constants as in the ICS model. For the class of ICS models where finite instantiations

cannot be used, our verification system can still compute all the reachable states and check

safety properties as well as certain liveness properties. For example, the abstract counter

presented in Chapter 10 cannot be handled by the ICS model, but it can be described using

the ASM model. Compared to [47], our first-order linear-time temporal logic LmDG is less

expressive than FO-ACTL, since we only allow limited nesting of temporal operators.

However, in our approach the property is checked in the whole model automatically, while

in [47] a theorem proyer is eventually needed to validate the pure first-order verification

condition.

9

1.3 Contributions

The results reported in this thesis were obtained through the collaboration with E. Cemy,

X.Song and F. Corella. I made partial important contributions in item 1 and major original

contributions in 2-5.

1. The definition of a first-order branching time temporal logic Abstract CTL*,

which can be used to specify temporal properties for a system described using

ASM computation model;

2. The definition of LmDG (a subset of Abstract_CTL*) and the development and

implementation of property checldng algorithms for LmDG, including the

algorithms for liveness property checking under fairness constraints;

3. The development and implementation of the ASM construction technique which

efficiently builds an ASM for a property involving only the temporal operator

"Next";

4. Experimentation on some benchmarks.

1.4 Ondine

This thesis is organized as follows:

In Chapter 2, we review the basic formal verification techniques and the logics

used in those techniques.

In Chapter 3, we give the theoretical foundations of this thesis. First, we describe

the formal logic used in our ASM approach. Second, we define the computation model,

10

i.e., the definition of an abstract description of state machines and the definition of an

abstract infinite computation tee. We also explain how abstract state enumeration

proceeds.

In Chapter 4, we define the syntax and the semantics of a very general temporal

logic called Abstract_CTL* , which is a first-order branching time temporal logic.

In Chapter 5, we define LmDG, a subset of Abstract_CTL*, as a property

specification language for which we have been able to develop property checking

procedures.

In Chapter 6, we present in detail the property checking procedures.

In Chapter 7, we give an algorithm for generating a circuit description representing

a Next_let formula, which is a formula including only the temporal operator "Next".

In Chapter 8, we show how to impose fairness constraints in our verification

system and the algorithms for checking liveness properties under fairness constraints. We

also discuss implementation issues.

In Chapter 9, we demonstrate the soundness of our verification procedure.

In Chapter 10, we verify some properties regarding the Island Tunnel Control

bench mark using our model checker and also using VIS from University of California at

Berkley. We also verify several properties regarding an abstract counter in which the value

of the counter is described using a variable of abstract type.

In Chapter 11, we conclude the thesis and outline future directions of research.

2 	Formal Verification Techniques

Since the idea of using formal methods for verifying systems was first introduced,

numerous approaches to this problem have been explored by researchers. These

approaches can be classified into 3 main categories:

• interactive, predicate logic based theorem proving techniques

• finite state automata based equivalence checking techniques

• propositional logic based model checking techniques

In this chapter, we shall review the basic ideas behind these techniques.

2.1 Theorem proving

One of the earliest approaches to formal hardware verification was to describe the

implementation as well as the specification in a formal logic. The correctness result was

then obtained within the logic, by proving that the specification and the implementation

were suitably related (logical equivalence or logical implication). The underlying concept

of this method is the notion offormal theory. A formai theory S is defined by:

11

12

1. A finite alphabet. The symbols of this alphabet are the symbols of the theory. A

finite sequence of these symbols is called an expression of S.

2. A subset of the expressions of S are the well-formed formulas of S.

3. A finite set of the well-formed formulas of S are axioms of S.

4. A finite set of rules of inference. A rule of inference allows the derivation of a

new well-formed formula from a given finite set of well-formed formulas.

A forma/ proof in S is a finite sequence of well-formed formulas:fi , f2 , , fn, such

that for every i, formula fi is either an axiom or can be derived by one of the rules of

inference from the formulas {f i , f 2 , ... ,fi_i }. Traditionally, the last well-formed formula in

a formal proof is called a theorem of S, and the formal proof is a proof of this theorem.

The formal logics that are usually employed in theorem proving can be classified

as first-order predicate logic and high-order predicate logic.

2.1.1 First-order predicate logic

First-order predicate logic is one of the most extensively studied logics. Its language

alphabet consists of a signature (countable sets of symbols for constants, functions, and

predicates), symbols for variables, a set of standard Boolean connectives (-1, V, A, , -E-)

and quantifiers (3, V). There are two main syntactic categories — terms and formulas.

Terms consist of constants, variables, and function applications to argument terms.

Formulas consist of atomic formulas (predicates), Boolean combinations of component

formulas and quantified formulas (with quantification allowed on variables only). An

interpretation for a first-order logic consists of a structure (a domain of discourse and

appropriate mapping of the signature symbols) and an assignment for the variables

13

(mapped to domain elements). Semantically, terms denote elements in the domain, and

formulas are interpreted as true/false. Different first-order languages are developed

depending on the exact set of signature symbols used and their interpretations. Various

proof systems have been studied for first-order logics. A representative one is the Boyer-

Mo ore computational logic [8].

Boyer-Moore computational logic is a restricted form of first-order logic which

was developed for the explicit purpose of reasoning about computations. Here we just give

the brief introduction to this logic. A detailed description can be found in [8].

Boyer-Moore logic is a quantifier-free first-order logic with equality. Its syntax,

which uses a prefix notation, resembles that of Lisp. The logic is mechanized by a

collection of Lisp programs that permit the user to axiomatize inductively constructed data

types, define recursive functions, and prove theorems about them. This collection of

programs is frequently referred to as "the Boyer-Moore theorem proyer". The main

principles of the Boyer-Moore system are:

• The shell principle, which is used to define inductive abstract data types by

means of a bottom object, a constructor and one or more accessors. A Boolean function,

called a recognizer, checks whether an object belongs to the shell.

• The definition principle, which ensures that all new functions are defined either

non-recursively in terms of pre-defined functions, or in the case of recursive definitions, a

well-founded ordering exists on some measure of the arguments that decreases with each

recursive call.

• The induction principle, on which the induction heuristics of the proof

mechanism are based. An induction scheme is automatically generated according to the

definition of the recursive functions involved in the theorem to be proved.

The Boyer-Moore system provides an automated facility for generating proofs in

14

the logic. However, the process of proof generation is not fully automatic, in that the

theorem proyer may need assistance from the user for setting up intermediate lemmas and

helpful definitions. The strong mathematical foundation and heuristics that have been built

into the system make it an effective tool used in a number of application areas.

An important approach to hardware verification within Boyer-Moore logic was

made by W.A. Hunt, Jr. He demonstrated the use of the theorem prover for the verification

of the FM8501, a microprogrammed 16-bit microprocessor similar in complexity to a

PDP-11 [48]. The specification presents a programmer's view of FM8501 in the form of

an interpretation function at the macro-instruction level. The implementation consists of

its description as a hardware interpreter that operates at the micro-instruction level.

Recursive function definitions within the logic are used to represent the varions

combinational and sequential hardware units. Verification is performed by proving a

theorem that states the equivalence of the two descriptions, under an appropriate

assumption on the initial conditions. Later, he extended his work to the verification of the

FM8502, a 32-bit microprocessor with a richer instruction set [49]. Hunt demonstrated the

effectiveness of using a mechanized (though not fully automated) theorem proving facility

and also made a good use of the recursion and induction principles allowed by the Boyer-

Moore logic to reason about hardware functions with arbitrarily-sized arguments.

2.1.2 Higher-order logic

Higher-order logic is a version of predicate calculus with three main extensions [41]:

*Variables can range over functions and predicates (hence "higher order").

• The logic is typed (each theory specifies a signature of type and individual

constants).

15

*There is no separate syntactic category of formulas (formulas are identified with

terms of type bool).

High-order logic allows quantification over arbitrary predicates and functions. This

ability leads to a greater expressive power, but also the increased complexity of analysis

compared to the first-order case. The incompleteness of a sound proof system for most

high-order logics makes logical reasoning more difficult than in the first-order case, and

one has to rely on ingenious inference rules and heuristics. In spite of these difficulties, the

use of high-order logics in formal verification has become increasingly popular in the past

few years. An important consideration in most cases is the use of some controlled form of

logic and inferencing, in order to minimize the risk of inconsistencies, while maintaining

the benefits of powerful representation and inference mechanisms.

Among the higher-order logic theorem proving systems HOL is the most typical

one [411[33]. The HOL system which includes a HOL logic and a theorem proving system

was developed by the Hardware Verification Group at the University of Cambridge,

England. This system is based on a version of high-order logic developed by Gordon for

the purpose of hardware specification and verification.

Syntactically, HOL uses the standard predicate logic notation with the same

symbols for negation, conjunction, disjunction, implication, quantification, etc. There are

four kinds of terms — constants, variables, function applications, and lambda-terms that

denote functional abstractions. Semantically, types denote sets and terms denote members

of these sets. Formulas, sequents, axioms, and theorems are represented by using terms of

Boolean type.

The sets of types, type operators, constants, and axioms available in HOL are

organized in the form of theories. There are two built-in primitive theories, bool and ind,

for Booleans and individuals respectively. Other important theories, which are arranged in

a hierarchy, have been added to axiomatize lists, products, sums, numbers, primitive

16

recursion, and arithmetic. On top of these, users are allowed to introduce application-

dependent theories by adding relevant types, constants, axioms, and definitions. New

types are introduced by specifying an existing representing type, a predicate that identifies

the subset isomorphic to the new type and by proving appropriate theorems about them.

The HOL logic is embedded in an interactive functional programming language

called ML. The overall HOL system supports a natural deduction style of proof, with

derived rules formed from eight primitive inference rules, e.g., a collection of rewrite

rules. All inference rules are implemented by using ML functions, and their application is

the only way to obtain theorems in the system. Once proven, theorems can be saved in the

appropriate theories to be used for future proofs. Most proofs done in the HOL system are

goal-directed and are generated with the help of tactics and tacticals. A tactic is an ML

function that is applied to a goal to reduce it to its subgoals, while a tactical is a functional

that combines tactics to form new tactics. The tactics and tacticals in HOL are derived

from the Cambridge LCF (logic for computable functions) system (which evolved from

the Edinburgh LCF). The strict type discipline of ML ensures that no ill-formed proofs are

accepted by the system.

Verification tasks in the HOL system can be set up in a number of different ways.

The most common one is to prove that an implementation, described structurally, implies

or is equivalent to, a behavioral specification. For example, a behavioral description for an

Exor-gate can be represented as a predicate [42]:

Exor_Spec(a, b, c) E (c = --.(a=b)),

and its structural implementation in terms of simpler Boolean gates (shown in Figure 3)

can be represented as

Exorimp(a,b,c) 	p,q. Nand (a, b, p) A Or (a, b, q) A And (p, q,c).

The correctness theorem can be expressed as Exor_Imp(a,b,c) Exor_Spec(a, b,

17

c).

Figure 3 - Implementation of an Exor-Gate

Since its introduction, the HOL system has been used in the verification of

numerous hardware designs. Camilleri, Gordon, and Melham demonstrated the

correctness of a CMOS inverter, an n-bit CMOS full-adder, and a sequential device for

computing factorial function [20]. Gordon and Herbert described the verification of

memory devices with low-level timing specifications, modeling of combinational delays,

and verification of a network interface chip implemented in ECL logic [40]. Other

researchers outside the group at Cambridge have also used HOL for hardware verification,

for example, the microprocessor called Viper was verified at the Royal Signals and Radar

Establishment in England. Tahar and Kumar at the University of Karlsruhe in Germany

used HOL for the verification of pipelined RISC processors [74].

Compared to the Boyer-Moore system, one important advantage of HOL is the

greater ability to formulate abstractions by exploiting high-order logic. The ability to

reason with high-order functions defined in terms of unspecified but well-typed functions

allows one not only to concentrate on the important aspects of a problem but also to reason

about a class of problems [1].

18

HOL has proved to be a powerful hardware verification system, deriving its

strength on one hand from the expressiveness of higher-order logic, and on the other hand

from the effectiveness of the automated theorem proving facilities it provides. Also, the

ability to work with various abstraction mechanisms and hierarchical descriptions makes

HOL very useful for handling large designs. An attractive feature is its ability to evolve

continuously. New theories and associated theorems become part of the system, which can

be drawn upon for future proofs. Complex derived rules, found useful in a particular

context, can be saved and reused elsewhere.

Besides HOL, there are other higher-order logic theorem proving systems, such as

PVS [63], Nuprl [26][52][53], etc.

2.1.3 Strength and weakness

First, theorem proving systems are usually very general in their applications. The ability to

define appropriate theories and reason about them using a common set of inference rules

provides a unifying framework within which all kinds of verification tasks can be

performed.

Second, most theorem proving approaches find it easy to incorporate hierarchical

verification of hardware systems. A circuit is described hierarchically, where a component

is defined at one level in the hierarchy as an interconnection of components defined at

lower levels. The system specification consists of a behavioral description of the

components at all levels in the hierarchy. Verification involves proving that each

component fulfils its part of the specification, assuming that its constituent components

fulfil their specification. The specification once proven becomes a theorem and can be

used in the proofs at the next hierarchical level.

Third, theorem proving approaches are better at the verification of the datapaths

19

than the control aspects of a circuit.

Finally, theorem proving is a deductive process. This raises both theoretical and

practical complexity. Automation can be and has been provided to some degree. However,

most of the theorem provers today still need much human interaction to guide the proof

searching process, which makes the whole design verification process overwhelmingly

tedious.

2.2 Equivalence checking

The purpose of equivalence checking is to verify that the functionality of a circuit is

exactly the same as the one specified in its complete functional description; e.g., the circuit

described as a gate netlist has the same behavior as its RTL description. There are two

main methods to achieve this goal: FSM-based equivalence checking and structure-based

equivalence checking.

2.2.1 FSM-based Equivalence checking

In this approach, both the implementation and the specification are represented as finite-

state machines. One such model, called the Moore machine, is formally denoted by a 6-

tuple (S, I, 0, NF, OF, s0), where

•S is a finite set of states,

• / is an input alphabet,

• 0 is an output alphabet,

20

• NF: Sxi -> S is a next-state function,

• OF: S -> 0 is an output function and

• so (so E S) is an initial state.

In the Moore machine model, output is a function of the state &Ione. Another

variation in which output is a function of both the state and the inputs is called the Mealy

machine model. It has been proven that for any Moore machine Mmoore, there is a Mealy

machine Mmegy equivalent to Mmoore , and vice-versa [46].

To represent a sequential circuit as a Moore machine, its logic level description is

organized in the form of three basic units as shown in Figure 4 — a set of latches

(memorize s E S), next-state logic NL (purely combinational, corresponds to NF), and

output logic OL (purely combinational, corresponds to OF).

Next States

Inputs
NL LATCHES OL

Outputs

à A

Present States

Figure 4 - Moore machine for sequential circuits

A finite-state machine can be viewed as a transducer, producing a sequence of

21

outputs for each possible sequence of inputs. Thus, two machines are equivalent if they

produce the same output sequence for every possible input sequence.

Two machines with the same input alphabet, M1= (S1 , I, 01, NF1, OF' , s0.1) and

M2= (S2 , I, 02 , NF2, 0F2 , su) can be composed to form a single machine M = (S1xS2, I,

01x02 , NF, OF, (su, su)), consisting of the two machines running in parallel [60]. The

states of M are pairs of states, one from M1 and one from M2. The state transition function

NF of M is defined to map pairs of states to pairs of states by applying NF 1 to the first state

in the pair and NF2 to the second one. The output function is defined in the same way. M is

called the product machine of M1 and M2.

For checking the equivalence of the two machines, we can do a state exploration of

the product machine with all possible input combinations starting from the initial state.

Then, for each reachable state, we check the equivalence of the corresponding outputs of

the two machines.

In this method, it is very important to represent the states and transition functions

efficiently. The main limitation of this method springs from the fact that equivalence is

sometimes a too strict relationship than desired for the satisfaction of a specification by an

implementation.

The early exploration of this method was done by Coudert, Berthet and Madre

[29] [30]. They used the standard algorithm for the comparison of two Mealy machines,

i.e., the output of the two machines should be the same for every transition reachable from

the initial state. The significant contribution of their approach is the idea of using a

symbolic breadth-first search of the state-transition graph of the composite machine,

encoded using ROBDD s, instead of the usual depth-first techniques used in other methods.

The advantage of this method is that it is fully automated and it can handle designs

with different state encoding. The drawback is that it is very costly in memory space and

22

time when the design has too many states.

2.2.2 Structure-based equivalence checking

The verification method first requires to map, one-to-one, the memory elements (flip-

flops) of the two designs. Then, it checks if the corresponding combinational logic cones

bounded by memory elements realize the same Boolean function. This method is normally

used to compare an implementation netlist with an RTL description or with another netlist.

An important structure-based equivalence checking tool was developed by

researchers at the Bull Research Centre in France. They developed a tautology-checker

called PRIAM [3], which was used to verify the equivalence of a specification (expressed

as a program in a hardware description language called LDS) and an implementation (also

an LDS program, extracted from a structural description of the circuit, e.g., layouts, gate-

level descriptions, etc.). Basically, each LDS program is reduced by symbolic execution to

a canonical form of Boolean functions called a Typed Decision Graph (TDG) which is an

improvement over ROBDDs [11], thereby reducing the task of checking equivalence to

that of checking syntactic equality. The main drawback of this work was that both the

specification and the implementation programs had to have the same states and the same

state encoding, thus severely limiting its application.

This method is less prone to the state explosion problem compared to the FSM-

based equivalence checking, and it can also be fully automated. However, it cannot handle

sequential equivalence if the two designs have different state space and sometimes a

helping hand to determine the state mapping is needed.

23

2.3 Model checking and temporal logics

One of the characteristics of the theorem proving approach is its structural rather than

behavioral view of the verification process. Model checking takes the completely opposite

approach. Here only the behavior of a system is checked and verified to satisfy some user-

specified properties. In general, a model checker builds or accepts a finite-automaton

model of the system and checks whether or not the specified property holds on the model.

If it does not, the mode' checker returns a failure trace. Normally, the property is

expressed in a temporal logic. Hence, studying temporal logics is very important for doing

model checking.

2.3.1 Temporal logics

Propositional logic deals with absolute truths in a domain, i.e., given a domain,

propositions are either true or false. Predicate logic extends the notion of truth by making

it relative, in that truth of a predicate may depend on the actual arguments (variables)

involved. Since these arguments can vary over elements in the domain, the truth of a

predicate can also vary across the domain. Extending this notion further, modal logic

provides for additional variability, where the meaning of a predicate (or a function)

symbol may also change depending on what "world" it is in. Variability within a world is

expressed by means of predicate arguments, whereas changes between worlds are

expressed by using modal operators. The dynamic connectivity between worlds

(represented as states) is specified by an accessibility relation.

Temporal Logic is a special type of Modal Logic. It provides a formal system for

qualitatively describing and reasoning about how the truth values of assertions change

over time. There are four basic operators in temporal logic:

24

• D P is true in state s, if P is true in all future states from s (including s)

• OP is tue in state s, if P is tue in some future states from s

• OP is tue in state s, if P is true in the next state from s

• PUQ is true in state s, if either Q is true in s itself, or it is true in some future state

of s, and until then P is true at every intermediate state.

Historically, temporal logic was first applied by Pnueli to the task of specifying

and verifying concurrent programs and reported in a landmark paper [68]. The following

classes of properties were identified, all of which can be easily expressed in temporal

logic:

• Safety properties — assert that nothing "bad" happens, typically represented as

I= D p , i.e., P holds at all times in all models;

• Liveness properties — assert that eventually something "good" happens,

typically represented as I=P 	OQ, i.e., in all models, if P is initially true then Q will

eventually be true;

• Precedence properties — assert the precedence order of events, typically

represented as I= P U Q, i.e., in all models, P will hold until Q becomes true;

Much work has been done in applying these ideas to hardware verification.

2.3.2 Classification of temporal logics

According to the details of the semantic model with respect to which temporal formulas

are interpreted, temporal logics can be classified into different kinds. One important

25

distinction is whether the truth of a formula is determined with respect to a state, or with

respect to the interval between states. The latter has given rise to what is commonly known

as Interval Temporal Logic. Within the former one, there has been further categorization

based on the difference in viewing the notion of time. In one case, time is characterized as

a single linear sequence of events, leading to Linear Time (Temporal) Logic. In the other

case, a branching view of time is taken, such that at any instant there is a branching set of

possibilities into the future. This view leads to Branching Time (Temporal) Logic.

2.3.3 Propositional Linear Temporal logic (PLTL)

In a linear temporal logic the underlying structure of time is assumed to be isomorphic to

the natural numbers with their usual ordering (N, <) [37]. Let AP be an underlying set of

atomic proposition symbols. A linear-time structure M.(S, x, L) is defined such that

• S is a set of states,

• x: N ---> S is an infinite sequences of states, and

• L: S —> 2(AP) is a labelling of each state with the set of atomic propositions in AP

that are eue in the state.

Usually, the notation x = (s0, sl , s2 , ...) = (X(0), x(1), x(2), ...) is employed to denote

the timeline x, which is also referred to as a fullpath, or computation sequence, or
computation.

The basic temporal operators of a Propositional Linear Temporal Logic (PLTL) are

Fp ("sometime p", also read as "eventually p"), Gp("always p"; also read as "henceforth

p"), Xp ("nexttime p"), and p U q ("p until q"). Their intuitive meaning is illustrated in

Figure 5, where a circle represents a state, a solid circle represents a state in which p is

26

true, a shaded circle represents a state in which q is tue, and an arrow represents a state

transition. The formulas of PLTL are built up from atomic propositions, the truth-

functional connectives (A, v, and the above-mentioned temporal operators.

Fp (sometimes p)

Gp (alwaysp)

xp (nexttime p)

pUq (p until q)

Figure 5 - Intuition for linear-time operators.

Syntax. The set of formulas of PLTL is the least set of formulas generated by the

following rules [37]:

(1) each atomic proposition P is a formula;

(2) if p and q are formulas then ling and are formulas;

(3) if p and q are formulas thenp U q and Xp are formulas.

The other formulas can then be introduced as abbreviations in the usual way: For

the propositional connectives, pvq abbreviates 	pq abbreviates -pvq, and pj

27

abbreviates (pq)n(qp). The Boolean constant true abbreviates 	while false

abbreviates 	Then, the temporal connective Fp abbreviates (true U p) and Gp

abbreviates

Semantics. the semantics of a formula p of PLTL with respect to a linear-time

structure M-(S, x, L) is defined as follows [37]. We write M, x 1= p to mean that "in

structure M formula p is true on timeline x." , x denotes the suffix path si , 	, S i+2 	

Although it is not explicitly stated, those PLTL properties are checked on all the paths

(1)M, x 1= P iff P E L(so), for atomic proposition P;

(2) M, x 1=pAq iff M, xl=p and M, xl= q,

(3) M, x 1= - g) iff it is not the case that M, x 1= p;

(4) M, x I= p U q iff 3j (xi 1=q and Vk < j (x1' 1= p)),

(5)M, x 1= Xp iff xi 1=p.

(6)M, x 1= Fp iff 3j (xi 1=p);

(7) M, x 1= Gp iff V,/ (xi 1=p);

The duality between the Linear temporal operators is illustrated by the following

assertions:

1= 	m -.Fp;

1= F-ip

1= X--ip

28

We say that a PLTL formula p is satisfiable iff there exists a linear-time structure

M=(S, x, L) such that M, x I= p, and any such structure defines a model of p.

The following are two examples of PLTL formulas:

• p = Fq intuitively means that "if p is true now then at some future moment q will

be true."

• G(pFq) intuitively means that "whenever p is true, q will be true at some

subsequent moment."

Related work One of the first examples of using PLTL for hardware verification

was provided by Bochmann in manually verifying an asynchronous arbiter through

reachability analysis [4].

To characterize the behavior of concurrent programs in terms of sequences of

states, Pnueli proposed an abstract computational model called "fair transition systems"

(FTS)[67]. An FTS consists of a set of states (not necessarily finite), some of which are

specified to be initial, and a finite set of transitions. Nondeterminism is allowed by

representing each transition as a function from a state to a set of states. In addition, justice

and fairness requirements are included by specifying a justice set J and a fairness set F,

each of which is a set of subsets of transitions. An admissible computation of an FTS is a

sequence of states and transitions, such that the starting state of the sequence is one of

those designated as initial, each state follows from the previous one by an appropriate

transition, and the computation terminates only if no transitions are enabled. It is also

ensured that each admissible computation is just and fair, i.e., if an element of the justice

(fairness) set, which is itself a set of transitions, is enabled continuously (infinitely often),

then a transition belonging to that element will be taken at least once (infinitely often).

PLTL formulas are interpreted over sequences of states that correspond to admissible

computations of an FTS.

29

Lichtenstein and Pnueli presented a model checking algorithm for determining

satisfiability of PLTL formulas with respect of finite state models similar to the fair

transition systems FTS described above [58]. To check if a PLTL formula (I) is satisfied by

a program P, a product graph G is constructed from the states of P and C/(1)) (the closure

of subformulas of cp). The construction of G is such that $1) is satisfied by P if and only if

there is an infinite path in G from a starting state that contains il). This involves finding

strongly connected components of G, and the overall complexity of the method is

0(//3/.2*).

Manna and Wolper used PLTL for the specification and synthesis of the

synchronizafion part of communicating processes [59]. Sistla and Clarke proved that the

problems of satisfiability and model checking in a particular finite structure are NP-

complete for the PLTL logic with only the operator F, and are PSPACE-complete for the

logics with various subsets of operators-{F, X}, {U}, {X, U} [73].

2.3.4 Computation Tree Logic (CTL)

Different ldnds of Branching Time Temporal Logic (BTTL) have been proposed

depending on the exact set of operators allowed. The common feature is that they are

interpreted over branching tree-like time structures, where each moment may have many

successor moments. The structure of time corresponds to an infinite tree. Along each path

in the tree, the corresponding timeline is isomorphic to the natural numbers N. In BTTL,

the usual temporal operators (F, G, X, U) are regarded as state quantifiers. Path quantifiers

are provided to represent all path (A) and some path (E) from a given state. Here we only

concentrate on the so called Computation Tree Logic (CTL), proposed first by Clarke and

Emerson who also presented efficient algorithms for CTL model checking [22][23].

Syntax. CTL severely restricts the type of formulas that can appear after a path

quantifier— only single linear time operator F, G, X, or U can follow a path quantifier and

30

time operators cannot be combined directly with the propositional connectives. The syntax

of CTL [37] is:

1. Every atomic proposition is a CTL formula.

2. Iff and g are CTL formulas, then so are

(fAg), A Xf, EXf, A (fUg), E (fUg)

The remaining operators are derived from these according to the following rules:

fvg = -,(-f A -ig)

AFg = A(true U g)

EFg = E(true U g)

AGf = -E(true U -95

EGf = -4(true U

Since all the operators are prefixed by A or E, the truth or falsehood of a formula

depends only on the given state s, and not on the particular branch.

It was demonstrated by Clarke, Emerson and Sistla that CTL is an efficient means

for verifying finite-state systems. In their approach, a finite-state system is modeled as a

labelled transition graph which can be viewed as a finite Kripke structure represented as a

triple M=(S, R, P) [24], where

• S is a finite set of states,

• R is a total binary relation on states and represents possible transitions, and

31

• P is a mapping that assigns to each state the set of atomic propositions that are

true in the state.

A path within this structure is naturally defined as an infinite sequence of states,

with each adjacent pair related by R.

Semantics. As its name suggests, CTL interprets temporal formulas over

structures that resemble infinite computation tees. In the context defined above, given M

and an initial state so, it considers the infinite computation tree rooted at so, generated by

considering all possible nondeterministic transitions at every state. The truth of a CTL

formula is defined inductively as follows [37]:

• (M, so) 1=p iffp E P(so), wherep is an atomic proposition

• (M, so) 1= --fiff (M, so) I# f

• (M, so) I= fng iff (M, so) I= f and (M, so) I= g

• (M, 4)1= AX f iff for all states t such that (si], t) e R, (M, t) I= f

• (M, s 0) I= EX f iff for some states t such that (so, t) E R, (M, t) I= f

• (M, so) I= A(fUg) iff for all paths (so, sl, s2...), 3k 0 such that (M, sk) I= g, and

Vi, 0_i<lc, (M, s) I= f

• (M, s0) 1= E(f U g) iff for some paths (so, si , s2...), 3k ?_. 0 such that (M, sk) I= g,

and Vi, 0.51<k, (M, s) 1= f

Figure 6 shows the intuitive meaning of AXf, EXf, AFf, EFf, AGf and EGf. A

solid circle represents a state in whichf is trute.

Some examples of interesting properties expressible in CTL are:

• AG(AFf):f holds infinitely often along all paths.

32

• AG(Request = AXAXAXf):f will hold in all the states which are reached by 3

transitions since a state where Request is made.

• AG(Request 	AF Grant): it is always true that if a request is made, there will

eventually be a grant signal.

- EFf: it is possible to reach a state wheref holds.

33

AXf 	 EX f

"\e

11/ l l 'C/\\51)\ 	5(l C' /\ /1\

AFf 	 EFf

M-M-M-M-Millil

Figure 6 - The intuitive meanings of AXf, EXf, AFf, , EFf, AGf and EGf

34

Related work. Clarke, Emerson and Sistla showed that there is an algorithm for

determining whether a CTL formula f is true in state s of the Kripke structure M = (S, R, P)

which runs in time 0(length(f)x(ISI+IR I)) 1j241.

An important consideration in the modeling of concurrency is the notion of

fairness. Among possible faimess constraints, the following are very common ones [37]:

• Unconditional fairness (also known as impartiality): an infinite sequence is

impartial iff every process is executed infinitely often during the computation.

• Weak fairness (also known as justice): an infinite computation sequence is

weakly fair iff every process enabled almost everywhere is executed infinitely

often.

• Strong fairness (also known simply as fairness): an infinite computation

sequence is strongly fair iff every process enabled infinitely often is executed

infinitely often.

Since fairness cannot be expressed in CTL, Clarke et al. modified the semantics of

CTL to introduce the notion of fairness [24]. The new logic, called CTLF, has the same

syntax as CTL, but the structure is now a 4-tuple (S, R, P, F). S, R, P have the same

meaning as in CTL and F is a collection of predicates on S. Fair paths in this context are

defined as those along which states occurring infinitely often satisfy each predicate that

belongs to F. CTL F has exactly the same semantics as CTL, except that the path

quantifiers range over fair paths only. Model checking for CTLF is done by first

identifying fair paths using strongly connected components in the graph of M, followed by

application of the model checking algorithm only to those paths. The time complexity is

0(nxmxp) where n= max(ISI, IR I), rn—length(f) and p=IFI.

35

Since CTLF still cannot express strong fairness, Emerson and Lei defined FCTL by

extending the notion of fairness in CTL to consider fairness constraints that are Boolean

combinations of Fp (infinitely often p, same as GFp) and Gp (almost always p, same as

FGp) operators [38]. Combinations of these operators can express strong fairness as well

as impartiality and weak fairness. Model checking for FCTL is proved to be NP-complete

in general, but it is shown to be of linear complexity when the fairness constraint is in a

special canonical form.

CTL* extends CTL by allowing basic temporal operators where the path quantifier

(A or E) is followed by an arbitrary linear-time formula, allowing Boolean combinations

and nestings, over F, G, X and U. CTL* is sometimes informally referred to as full

branching time logic. For example, EFp is a CTL basic modality; EFAFq is a formula of

CTL (but not a basic modality) obtained by nesting AFq within EFp (by substituting AFq

for p in EFp). E(FpnFq) is a basic modality of CTL*. Emerson and Lei presented a model

checking algorithm for CTL* which is shown to be PSPACE-complete [38].

Queille and Sifakis independently proposed a model checking algorithm for a

logic with CTL modalities (without the "Until" operator) [69]. Formulas are interpreted

with respect to transition systems that are derived from an interpreted Petri-net description

of an implementation, with a verification system called CESAR. In their algorithm,

interpretation of temporal operators is iteratively computed by evaluating fixed points of

predicate transformers. However, they did not provide any means for handling fairness in

their approach.

2.3.5 LTTL versus BTTL

In linear time logics, temporal operators are provided for describing events along a single

future time line, although when a linear formula is used for program specification there is

usually an implicit universal quantification over all possible futures. In contrast, in

36

branching time logics the operators usually refiect the branching nature of time by

allowing explicit quantification over possible futures. One argument presented by the

supporters of branching time logic is that it offers the ability to reason about existential

properties in addition to universal properties [38].

Lichtenstein and Pnueli argued that since most formulas to be checked are small in

practice, using LTTL model checking was a viable alternative to BTTL [58].

Emerson and Lei argued that branching time logic is always better than linear time

logic for model checking [38]. They proved that given a model checking algorithm for an

LTTL logic, there exists a model checking algorithm of the same complexity for the

corresponding BTTL logic (e.g., CTL*), since B'TTL is essentially path-quantification of

LTTL formulas. They demonstrated that handling explicit path quantifiers and even nested

path quantifiers costs (essentially) nothing.

Thus, the real issue is not which of the two (LTTL or BTTL) is better; rather, it is

what basic modalities are needed in a branching time logic, i.e., what linear time formulas

can follow the path quantifiers.

2.3.6 Symbolic Model Checkiing

Symbolic model checking has lately received a great deal of attention from various

researchers. It was initially explored by Coudert, Madre, and Berthet [31], and

independently by McMillan [61] and by Bose and Fisher [6]. The underlying idea

common to these approaches is the use of symbolic Boolean representations for sets of

states and transition functions (or relations) of a sequential system, in order to avoid

building its global state-transition graph explicitly. Efficient symbolic Boolean

manipulation techniques are then used to evaluate the truth of temporal logic formulas

with respect to these models. Symbolic representation allows the regularity in state-space

37

of some circuits (e.g., datapaths) to be captured succinctly, thus facilitating verification of

much larger circuits compared to the explicit state enumeration techniques, as shown by

Burch et al. [17].

McMillan presented a method for model checking that avoids the state explosion

problem by representing the Kripke model implicitly with a Boolean formula described

using Bryant's ROBDDs [11]. It allows a CTL model checking algorithm to be

implemented using well developed automatic techniques for manipulating Boolean

formulas. Since the Kripke model is symbolically represented, there is no need to actually

construct it as an explicit data structure. Hence, the state explosion problem can be

reduced, although there exist pathological examples of explosive growth complexity.

In Carnegie Mellon University, Clarke, McMillan et. al. developed the Symbolic

Model Verifier (SMV) [17][62][61]. SMV is a tool for checking finite state systems

against specifications in CTL. McMillan and Schwalbe successfully applied SMV to the

verification of the Encore Gigamax cache consistency protocol and found some critical

design errors [62], thus demonstrating the effectiveness of symbolic model checking

techniques for industrial applications.

The method used by Burch et al. [17] is very general and can handle

nondeterministic systems, thus allowing its application to both synchronous and

asynchronous circuits. However, this generality is gained at the cost of increased

complexity of representing the complete transition relation symbolically using Bryant's

ROBDDs [11]. Bose and Fisher, on the other hand, model systems as deterministic Moore

machines, and use symbolic representations of the next-state functions (not relations)

using ROBDDs [6]. The latter are derived directly from the symbolic simulation of the

circuit using the switch-level simulator COSMOS [13]. Coudert at al. also used a

deterministic Moore machine model with symbolic representations of the next-state

functions [31]. However, they used more sophisticated Boolean manipulation operations

(e.g. "constraint" and "restrict" operators) to keep down the size of their internai data

38

representations called TDGs (Typed Decision Graphs). 'TDGs are similar to ROBDDs, but

typically they occupy about 1/2 of the space required by ROBDDs.

Bryant and Seger have presented another extreme in this spectrum of symbolic

methods [12]. They avoided explicit representation even of the next-state function.

Instead, they used the simulation capability of COSMOS to symbolically compute the

next-state of each circuit node of interest. This restricts them to using a limited form of

temporal logic that can express properties over finite sequences only (unlike the other

approaches that can handle full CTL). They reason within a symbolic Ternary algebra

(with logic values 0,1 and X) to compute the truth values of formulas.

2.3.7 Available Model Checkers

A number of BDD-based model checking tools have developed over the last 10 years. The

well known ones are as follows:

• SMV (Symbolic Model Verifier) [61][84]: a CTL model checker developed by

McMillan at Carnegie-Mellon University.

• VIS (Verification Interacting with Synthesis) [9] [10][83]: an integrated tool for

verification, simulation and synthesis of finite state systems, developed at

University of California at Berkeley. It contains a Fair CTL Model Checker and

a behavioral equivalence checker for sequential circuits, language emptiness

check for Büchi automata and combinational verification.

• FormalCheck [57][8511861: an co-automata based model checker based on

Cospan developed at Bell Labs Design Automation, Lucent Technologies. The

reduction algorithms and refinement methodologies embedded in FormalCheck

makes the tool applicable to industrial-size designs.

39

• CheckOFF-M [87]; a model checker for a branching time interval logic

developed at Siemens and commercialized by Abstract Hardware Limited

Corporation.

2.3.8 Strength and weakness

The most significative advantage of model checking techniques is that they can be made

completely automatic. The drawback of these approaches is that they are not general in the

way that theorem provers are. A model checking verification system will work only for the

kind of logic and models that it is designed for, and the state explosion problem is a major

obstacle for model checking to be widely used in an industrial design flow.

Compared to theorem proving, model checking approaches are weak for dealing

with hierarchical verification and abstraction; however, they are better at reasoning about

the control aspects of circuits and are more automatic.

Summary

In this chapter, we reviewed the existing formal verification techniques: theorem proving,

equivalence checking and model checking, and especially the different logics deployed in

the various verification techniques. These constitute the theoretical background on which

the thesis is based.

3 	Abstract Description of State
Machines

Abstract description of State Machines (ASMs) is a model used for describing hardware

designs at the Register Transfer Level (RTL). It was first introduced by Corella, Langevin,

Cemy, Zhou, and Song [27] [28]. Using ASMs, a data value can be represented by a

single variable of abstract type, rather than by a vector of Boolean variables, and a data

operation is represented by an uninterpreted function symbol. The model checking method

based on a first-order temporal logic as developed in this thesis allows to verify properties

on designs represented by ASMs. Thus, it is necessary to review first the terminology

related to ASMs. We also give the definition of an abstract computation forest on which

we then define the semantics of our first-order temporal logic.

3.1 A many-sorted first-order logic

As in an ordinary many-sorted first-order logic, the vocabulary consists of sorts,

constants, variables, and function symbols (or operators). Constants and variables have

sorts. An n-ary function symbol (n> 0) has a type a/ x oc2 x x o --> 	where a/ ...

40

41

an+] are sorts. We deviate from standard many-sorted first-order logic by introducing a

distinction between concrete (or enumerated) sorts, and abstract sorts; the difference is

that concrete sorts have enumerations, while abstract sorts do not. The enumeration of a

concrete sort oc is a set of distinct constants of sort oc. We refer to constants occurring in

enumerations as individual constants, and to other constants as generic constants. An

individual constant can appear in the enumeration of more than one sort a, and is said to

be of sort a for each of them. Variables and generic constants, on the other hand, have

unique sorts.

The distinction between abstract and concrete sorts leads to a distinction between

three kinds of function symbols. Let f be a function symbol of type ai x a2 x ... x an

an±i. If ocn+i is an abstract sort thenf is an abstract function symbol. If all the ai ... Œn+1

are concrete, f is a concrete function symbol. If an±/ is concrete while at least one of oci ...

an is abstract, thenf is referred to as a cross-operator. Both abstract function symbols and

cross-operators may be uninterpreted, or partially interpreted by conditional rewrite rules.

However, a concrete function symbol must have an explicit definition, and the symbol as

such never appears in a logic expression.

The terms and their types (sorts) are defined inductively as follows: a constant or a

variable of sort CL is a term of type a; and iffis a function symbol of type oc1 x a2 x ... x an

--> an+i, n 1, and A1,.. ., An are terms of types a1 ... an, thenf(4...,An) is a term of type

ocn+/ . A term consisting of a single occurrence of an individual constant has multiple types

(the sorts of the constant) but every other term has a unique type. We say that a term,

variable or constant is concrete (resp. abstract) to indicate that it is of concrete (resp.

abstract) sort. A term is concretely reduced iff it contains: (i) the individual constants; (ii)

the abstract generic constants; (iii) the abstract variables; and (iv) the terms of the form

f(A/ ,...,An) where f is an abstract function symbol and A1, .. ., An are concretely-reduced

terms. Thus, the concretely-reduced terms are those that have no concrete subterms other

than individual constants. A term of the formf(A/ , ..., An) wheref is a cross-operator and

42

A1 ... An are concretely-reduced terms is called a cross-term. An equation is an expression

A1 = A2 where A1 and A2 are terms of same type a. Atomic formulas are the equations,

plus T (truth), and F (falsity). Formulas are built from the atomic formulas in the usual

way using logical connecfives and quantifiers.

An interpretation is a mapping v that assigns a denotation to each sort, constant

and function symbol such that:

1. The denotation v(oc) of an abstract sort a is a non-empty set.

2. If a is a concrete sort with enumeration 	a2 	an } then v(a) =

lif(a2),...,v(an)} and y(ai) # v(ai) for 1

3. If c is a generic constant of sort a, then v(c) E v(a). Iffis a function symbol of

type ai x 	x an --> Œn+1, then v(f) is a function from the cartesian product

v(oci) x x v(an) into the set V(Œn+i)-

Let X be a set of variables, a variable assignment with domain X compatible with

an interpretation v is a function cp that maps every variable x e X of sort a to an element

9(x) of v(oc). We write ce for the set of v-compatible assignments to the variables in X,

ve I= P if a formula P denotes truth under an interpretation v and a v-compatible

variable assignment q to the variables that occur free in P, I= P if a formula P denotes truth

under every interpretation v and every v-compatible variable assignment to the variables

that occur free in P.

3.2 Directed Formulas (DFs)

Given two disjoint sets of variables U and V, a directed formula of type U V is a formula

43

in disjunctive normal form (DNF) such that:

1. Each disjunct is a conjunction of equations of the form

A = a, where A is a term of concrete sort a of the form "f(Bi , , B)" (fis thus a

cross-operator) that contains no variables other than elements of U, and a is an

individual constant in the enumeration of a, or

w = a, where w c (U u V) is a variable of concrete sort a and a is an individual

constant in the enumeration of a, or

v = A, where v e V is a variable of abstract sort oc and A is a term of type cc

containing no variables other than elements of U.

2. In each disjunct, the left hand sides (LHSs) of the equations are pairwise

distinct.

3. Every abstract variable v e V appears as the LHS of an equation v = A in each of

the disjuncts. (Note that there need not be an equation v = a for every concrete

variable v E V.)

Intuitively, in a DF of type U —› V, the U variables play the role of independent

variables, the V variables play the role of dependent variables, and the disjuncts enumerate

possible cases. In each disjunct, the equations of the form u = a and A = a specify a case

in terms of the U variables, while the other equations specify the values of (some of the) V

variables in that case. The cases need not be mutually exclusive, nor exhaustive.

A DF is said to be concretely reduced iff every A in an equation A = a is a cross-

term, and every A in an equation v = A is a concretely reduced term. It is easy to see that

every DF is logically equivalent to a concretely reduced DF, given complete specifications

of the concrete function symbols and concrete generic constants; the reduction can be

44

accomplished by case splitting.

A concretely reduced DF contains no concrete function symbols and no concrete

generic constants; and, in a concretely reduced DF of type U 	V, if A is the cross-term in

the LHS of an equation A = a, or the concretely reduced term in the RHS of an equation v

= A, then every variable that occuurs in A is an abstract variable u E U. We refer to such an

occurrence of a variable as a secondary occurrence in the DF. A primary occurrence of a

variable, on the other hand, is an occurrence as the LHS of an equation. From now on, by

DF we shall mean concretely reduced DF.

Let P be a DF of type U ---> V. For a given interpretation .111, P can be used to

represent the set of vectors SetNi f() = (I) e el I v, 1i l= (U)P 1.

In the following sections, DFs are used for two distinct purposes: to represent sets

(viz. sets of states as well as sets of input vectors and output vectors) and to represent

relations (viz. the transition and output relations).

3.3 Basic algorithms of DFs

We recall the basic algorithms used in [27] [80], but here we give their definitions in terms

of DFs, since those algorithms will be needed later in the model checking procedures.

Disjunction: The disjunction algorithm is n-ary. It takes as inputs a set of DFs P i ,

1 	i 	n, of types Ui 	V, and produces a DF R = Disj([Pi}i < < n) of type (U i)
1<i<n

V such that

I= R <=> (v 	Pi)
1<i<n

45

Note that this algorithm requires that all the P 1 5_ i n, have the same set of

abstract primary variables. If two DFs P1, P2 do not have the same set of abstract primary

variables, then there is no DF R such that I= R <=> (P1 v P2).

Confunction: The conjunction algorithm takes as inputs a set of DFs Pi, 1 i n,

of types Ui ---> Vi and produces a DF R = Conj({Pi}i < < n) of type

((L..) V.))—*(U V)
1<i<n 	 1<i<n

such that I= R <=> (
1<i<n

Pi) . Note that for 1 i < j n, Vi and yi must not

have any abstract variables in common, otherwise the conjunction cannot be computed.

Relational product: The algorithm takes as inputs a set of DFs Pi, 1 i n, of

types Ui 	Vi, a set of variables E to be existentially quantified, and a renaming

substitution th and produces a DF R = RelP({Pi}i<i<n, E, Ti) such that

I=R 4.> (((3E)(A 	P i)) •) .
1<i<n

The algorithm computes the conjunction of the P existentially quantifies the

variables in E, and applies the renaming substitution TI. For 1 _i<JSn,Vi and Vi must not

have any abstract variables in common.

The result of only computing the conjunction is a DF of type

U.)\(U V.)) --> U V 1) .
1<i<n

46

The set E of variables to be existentially quantified must be a subset of

(V). The result of only computing conjunction and existenfial quantification
1<i<n

would be a DF of type

(((...) V)) 	((U V i)\E) •
1<i<n 	1<i<n 	 1<i<n

The domain of ri must be a subset of ((U V i)\E) . The type of the result R is

then

((U U)\(L.) V i)) 	(((U V)\E) • 11) •
1<i<n 	1<i<n 	 1<i<n

Pruning by subsumption: The algorithm takes as inputs two DFs P and Q of types

U —> yi and U --> V2 respectively, and produces a DF R = PbyS(P, Q) of type U —> V1

derivable from P bypruning (i.e., by removing some of the disjuncts) such that

I=Rv(3U)Q<=>Pv(3U)Q 	 (3.1).

The disjuncts that are removed from P axe subsumed by Q, hence the name of the

algorithm.

Since R is derivable from P by pruning, after the formulas represented by R and P

have been converted to DNF, the disjuncts in the DNF of R are a subset of those in the

DNF of P. Hence

I= R = P. And, from (3.1), it follows tautologically that

47

I= /3 A —,(3U)Q 	R. 	 (3.2).

Thus we have

I= (P A ---,(3U)Q 	R) A (R 	P). 	(3.3).

We can then view R as approximating the logical difference of P and (3U)Q. In

general, there is no DF logically equivalent to P A —1(3U)Q. If R is F, then it follows

tautologically from (3.1) that I= P = (U)Q.

3.4 Abstract Description of State Machines (ASMs)

An abstract description of state machine M is a tuple D = (X, Y, Z, F1, FT, F0), where

1. X, Y and Z are sets of variables, viz. the input, state, and output variables,

respectively. Let ri be a one-to-one function that maps each state variable y to a

distinct variable 11(y) obtained, for example, by adoring y with a prime. The

variables in r= i(Y) are used as the next-state variables. X, Y and Z must be

disjoint from Y.

Given an interpretation Ni, an input vector of the state machine M represented by

D is a v-compatible assignment to the set of input variables X; thus the set of

V 	• 	V i input vectors, or input alphabet, is «lx . Similarly, Oz s the set of output

vectors. A state is a yr-compatible assignment to the set of state variables Y;

V hence, the state space is (Dy . A state cl) can also be described by an assignment

-1 (p° = (I) 0 Ti E ef to the next state variables. Y

48

A variable in Xu Yu Z is called an ASM variable.

2. F1 is a DF representing the set of initial states, of type U ---> Y, where U is a set of

abstract variables disjoint from X uYuru Z. Typically, FI is a one-disjunct

DF representing the set of initial states.

Given an interpretation v, a state (I) e 4141 -f is an initial state iff v, cl) I= (3U)F1.

Thus the set of initial states is SI = SetW(FI) = 	e 07, I v, cl) I= (3U)F1l.

3. FT is a DF of type (X u Y) Y representing the transition relation.

Given an interpretation v, an input vector e X and a state (I)? crelV a state Y'

feylf is a possible next state iff ji,(I) u 	u cro Trl I= FT. Thus the

transition relation of the state machine M represented by D is

RT = { ((IY, g)") E (DI x 	x 011,1 -f iv, () u u ((é" Tri) l= F T l .

4. F0 is a DF of type (X u Y) —> Z representing the output relation.

Given an interpretation v, the output relation of the state machine Mrepresented

byDisRo = { (141Y, (1)")€ (14- x 	x ON; lv, ucrucr1=F0

For every interpretation v of the sorts, constants and function symbols of the logic,

the abstract description D = (X, Y, Z, F1, FT, Fo) represents the state machine M = (x ,

49

V V V Oy , Oz , sI, RT, Ro) with the set of input vectors x , the state space (1)y , the set of

output vectors wz , the set of initial states S1 , the transition relation RT, and the output

relation R0 .

Let P1, P2 be two DFs of type U --> Y. Then for a given interpretation tv, the two

sets of states represented by P1 , P2 are respectively S1 = SetW(P i) = 	E e; I v, (1) I=

(U)/31 } and S2 = SetW (P2) = { e 07 I If, 4) I= (3U)P2 }. We say that P1 and P2 are

equivalent DFs (and furthermore Si and S2 are equivalent sets) if PhyS(Pi, P2) = F and

131:137S(Pi , P2) = F.

3.5 State Enumeration and Invariant Checking

Given an abstract description of an ASM D = (X, Y, Z, F1, FT, Fo), we can compute the set

of the reachable states of the machine M = (, ci , cez , S, RT, Ro) represented by D,

for any interpretation ji, using the DF algorithms of Section 2.3. At the same time we can

check that a given condition on the outputs of the machine, the invariant, holds on all

these states. (When doing state exploration only, steps 6, 7 and 8 in the following

algorithm are skipped.)

An invariant is represented by a DF C of type V ----> Z, where W is a set of abstract

variables disjoint from X, Y, Y', Z and U. For a given interpretation te, an output vector

ef (an assignment to the output variables) is deemed to satisfy the invariant iff Nmp I=

(3V)C; therefore, the set of output vectors that satisfy the invariant is Set‘11 (C) = { E

50

crez I Nf, cp I= (V)C 1.

The invariant checking algorithm based on reachability analysis is as follows:

1. ReAn (D , C)
2. R := Fi; Q := F K := 0;
3. loop
4. K:=K+1;
5. / := Fresh(X, K);
6. 0 := RelP({/, Q,F0 },X u Y, 0);
7. P := PbyS(0, C);
8. if P F then return failure;
9. N := RelP({/, Q, FT }, X u Y, r);
10. Q := PbyS(N, R);
11. if Q = F then return success;
12. R := PbyS(R, Q);
13. R := Disj(R, Q);
14. end loop;
15. end ReAn;

Variables I, N, P, Q and R represent sets of states, and 0 represents a set of output

vectors. Before each iteration, R contains the states reached so far, while Q is the frontier

set, i.e., a subset of Set T, (R) containing at least all those states that entered SetWy (R) for

the first time in the previous iteration. In line 5, Fresh(X, K) constructs a one-disjunct DF

representing a conjunction of equations x = u, one for each abstract input variable x e X,

where u is a fresh variable from the set of auxiliary abstract variables U. The value of the

loop counter K is used to generate the fresh variables. This one-disjunct DF is assigned to

I, which represents the set of input vectors. In line 6, the relational product operation is

used to compute the DF representing the set of output vectors produced by the states in the

frontier set. The resulting DF is assigned to O. Then, in line 7, the pruning-by-

subsumption operation is used to remove from 0 those disjuncts that represent output

vectors which satisfy the invariant C. The resulting DF is assigned to P. In line 8, if P is

51

not F, then the procedure stops and reports failure. If P is F, thenSe (0) c Sel(C) , i.e.,

every output vector produced by a state in the frontier set satisfies the invariant, and the

verification procedure continues. In line 9, the relational product operation is used again,

this time we compute the DF representing the set of states that can be reached in one step

from the frontier set of states. Note that the DF Q representing the frontier set is of type U

Y, the DF I representing the set of input vectors is of type U —> X, and the DF FT

representing the transition relation is of type (X u Y) —> Y. The result of taking the

conjunction of these three DFs would be of type U —> (X u Y u Y'), the result of

subsequently removing the variables in X u Y by existential quantification would be of

type U 	Y', and the result of subsequently applying the renaming substitution 11 is thus

of type U 	Y. The RelP operation performs these three operations in one pass, and

assigns the resulting DF of type U —> Y to N. Lines 10 and 11 check whether

e t(N) c Set," (R)by the same method used in lines 7 and 8 to check whether

Set(0) c Set(C). If this is indeed the case then every state reachable from the frontier

set was already in Set(R) . The fixpoint has been reached and R represents all the

reachable states. Therefore, the procedure terminates and reports success. Otherwise the

DF assigned to Q in line 10 represents the new frontier set. Line 12 simplifies R by

removing from it any disjuncts that are subsumed by Q, using PbyS. There may be such

disjuncts because Q was not computed earlier as an exact difference. Line 13 then

computes the new value of R by taking the disjunction of R and Q which represents the set

of states Set(R) u Set(Q) and assigns it to R.

3.6 Abstract Computation Forest

Given an ASM D = (X, Y, Z, F1, FT, F0), for a given interpretation v, we describe the next-

52

state computation of the machine M = (I, 	, EDI , S , RT, R0) represented by D as a

computation forest F = (V, E) which may contain an infinite number of infinite trees:

• V is a set nodes. Each node in V represents a total_state: which is an v-

compatible assignment to the set of state, input and output variables. A

total_state can be described as s = (g), , 0") E 4[14f X (Dy X (1)z 	 u

u (1)" I= F o.

• Each edge in E is a pair of total_states <si, si>, indicating that total_state si is

derived from total_state si by one transition step. This can be formally described

as follows:

si= (4)i , 	(pi") e (1).2-1 x 011,1 -f x 0111 I v, (pi u 	u (pi" I= Fo;

si = ((pi, 11)1, (pi") e (DI x (Dl x CI 	v, 11)i u 	t" I= F 0;

and v, u u ((Pio T1-1) l= F T .

A computation path in a computation forest is an infinite sequence of total_states

so, si, s2„ sn, 	 such that Vi 0, <si , si+i> Œ E. We use no = (so, s1, s2 ,....) to

denote a full path and ni = (si , si+i , si+2 , ...) a suffix path starting from Si.

53

3.7 The MinMax example

To show how a computation forest is derived, we use a simplified version of the MinMax

state machine which first appeared in {301 The machine has 2 input variables X = Ir, xl

and 3 state variables Y = c, m, MI, where r and c are of the Boolean sort B, a concrete sort

with enumeration {0, 1}, and x, m, and M are of an abstract sort wordn. The intended

interpretation of wordn is a ftnite set equipped with a total order e.g., the set of 64-bit

signed integers. There are no output variables from this circuit, i.e., Z =

A graphical representation of the MinMax state machine is shown in Figure 7: the

circles correspond to the values of the control state variable c and the arrows correspond to

the control transitions of the machine. The transition labels specify the conditions under

which each transition is taken and an assîgnment of values to the abstract next-state

variables m and M.

r = 1,
{m'= max,
M'= min

r = 1, m'= max, M' = min}

tele c
r = 0, {m'= x, M' = x}

= 0,
lm'. if leq(x, m) then x
else m,
M' = if leq(x, M) then M
else xl

F igure 7 - A graphical representation of the MinMax state machine

The machine stores in m and M, respectively, the smallest and the greatest values

presented at the input x since the last reset (r = 1). When the machine is reset, m is loaded

by the maximal possible value max and M by the minimal possible value min. The

54

smallest and greatest values are computed using an operator leq such that for any two

values a and b of sort wordn, leq(a, b) — 1 if and only if a is less than or equal to b.

Formally, the intended denotations of min and max are the smallest and largest elements

of the total order (wordn, ..), and the intended denotation of leq is the characteristic

function of the order relation .5_. In the abstract description of the MinMax state machine,

the abstract sort wordn is uninterpreted, the min and max symbols are uninterpreted

generic constants of sort wordn, and leq is an uninterpreted cross-operator of type wordn x

wordn B.

Assuming that the DF representing the set of initial states is F1: c=1 A m= max A

M= min, where max and min are generic constants, Figure 8 shows a part of one tree in the

infinite computation forest of the MinMax state machine. The dotted lines represent the

continuation of the tree. Each square box in Figure 8 represents a state (G, (p) which is an

assignment (p to the state variables satisfying a guard G. When G is True, it is satisfied by

any assignment. One square box plus the assignment to the input variables indicated on

the arrow from that box can be seen as a total_state. For a variable x of sort ci, the

assignment (p(x) represents any value of v(a); therefore, there may exist an infinite

number of instances of a tee in the computation forest.

Summary

In this chapter, we reviewed the definitions and the formal logic used in our ASM

approach. We also gave the definition of an abstract infinite computation tree. It is based

on this computation model that the first-order temporal logic model checldng method was

developed in this thesis.

cn

90

-

11 	11 	11

e e
9- 9- 9-
C-4

•'‹ 4P 4P

›eFF: <.<.<< <.

<< <

cn

A
bs

tra
ct

 c
om

pu
ta

tio
n

tre
e

of
 th

e
M

in
M

ax
 e

xa
m

pl
e

55

4 	A First-Order Branching Time
Temporal Logic: Abstract_CTL*

As a propositional branching time temporal logic, CTL (Computational Tree Logic)

developed by Clarke and Emerson [22] is widely used as a property specification language

for model checking. CTL severely restricts the type of formulas that can appear after a

path quantifier A or E, namely, only single linear temporal operator F, G, X, or U can

follow a path quantifier, and temporal operators cannot be combined directly using

propositional connectives.

CTL* extends CTL by allowing temporal operators in which a path quantifier (A

or E) is followed by an arbitrary linear-time formula, allowing Boolean combinations and

nesting over F, G, X and U. CTL* is sometimes informally referred to as a full branching

time logic. For example, EFp is a basic CTL modality; EFAFq is a formula of CTL (but

not a basic modality) obtained by nesting AFq within EFp (by substitufing AFq for p in

EFp). E(FpnFq) is a basic modality of CTL*. Below we extend CTL* from the

propositional logic level to the first-order logic level and define a first-order branching

time temporal logic: Abstract CTL*.

56

57

4.1 Syntax of Abstract_CTL*

Given an abstract description of an ASM and a set of ordinary variables which are

available for use in the specification of the property to be verified, the state formulas are

defined as follows:

(S1) if tir is an ASM_variable, t2 is an ASM_variable, or a constant, or an ordinary

variable, then the equation t1 = t2 is a state formula.

(S2) if p, q are state formulas, then so are p&q, plq and p->q;

(S3) if t is an ASM_variable, v an ordinary variable, and p a state formula, then

LET (v = t) IN p is a state formula;

Note: the LET construct allows us to use an ordinary variable v to remember the

value of an ASM_variable t at the current state.

(S4) if p is a path formula, then Ap and Ep are state formulas.

The path formulas are defined as follows:

(P1) each state formula is also a path formula;

(P2) if p, q are path formulas then so are .,p, p&q, plq, p->q,Xp, Gp, Fp and pUq;

(P3) If t is an ASM_variable, v an ordinary variable, and p a path formula, then

LET (v = t) IN p is a path formula.

58

We allow the formula LET (v1 = t1) & & (v„ = tn) IN p as a shorthand for

LET (vi = t1) IN ((LET (vi = t1) IN (
	

LET (vn =) IN p))) . And we call

(v1 = t1) & ...& (v n = tn) a Let_equation.

4.2 Semantics of Abstract_CTL*

A formula of Abstract CTL* is interpreted in terms of a computation forest F derived

from an ASM under a given interpretation y.

A state formula (resp. path formula) has a meaning relative to a total_state (or a

path) and the assignment to the ordinary variables. We use Va/(pG(t) to denote the value of

variable t under a y-compatible assignment to the state, input and output variables, and a

y-compatible assignment cî to the ordinary variables.

We write s, a I= p (resp. ni, a I= p) to mean that a state formula p (resp. path

formula p) is true at a total_state s (resp. along a ni) of the computation forest under an

assignment a to the ordinary variables. We then define I= inductively as follows:

• s, cî I= t1 = t2 iff Va/sua(ti) = Va/(t2).

• s, a I= !p iff it is not the case that s, cî I= p.

• s, cî I= p &qiff s, cî 1=p and s, cî I= q.

• s, cr 1=p l q iff s, cr I= p or s, cî I= q.

• s, a 1= p->q iff s, a I= !p or s, cî I= q.

59

• s, cy l= LET (v = t) IN p iff s, a I= p where cy = (a M (y, a(v))}) u { (v,

Va/sui:T(0)1.

• si , 6 l= Ap iff ni, a 1= p for every path n i = (si , si±/ ,) in the computation

forest.

• si , 6 l= Ep iff ni , a 1= p for some path ni = (si , s i±i ,) in the computation

forest.

• ni, 6 l=p where p is a state formula, iff s1 , cî 1=p.

• ni, a I= !p iff it is not the case that ni , a I= p.

• ni, a I= p&q iff n i, a 1=p and n i, 6 I= q.

• ni , cî 1= plq iff n i, a 1=p or ni, a 1= q.

• ni , a 1= p->q iff n i, a I= !p or ni, a 1= q.

• ni , a I= Xp iff 	, l= p.

• ni, a 1= Gp iff , 1= p for all j

• ni, a 1= Fp iff , 1= p for some j

• ni , a 1= pUq iff for some k , , 6 l= q, and nk, a 1= p for all j (i j < k).

60

• ni, a I= LET (v = t) IN p iff ni, ai I= p, where a = (a \{(v, a(v)))) u {(v,

Va/(t))1.

Summary

In this chapter, we defined the syntax and the semantics of Abstract CTL*, which is a

very general first-order branching time temporal logic. This logic can be used to specify

properties for a system described using ASM computation model. In the next chapter, we

will define a subset of Abstract_CTL*, for which we have been able to develop property

checking procedures.

5 	Specification Language LmDG: a
subset of Abstract_CTL*

Similar to CTL* which is based on propositional logic, Abstract_CTL* subsumes both

linear time temporal and branching time temporal logics at the first-order logic level. As

the model checking problem for CTL* was shown to be PSPACE-complete [38], we

expect that the complexity of model checking for Abstract CTL* would not be less than

that.

Below we define a property specification language LmDG [781 which is a subset of

Abstract_CTL*. Our verification system can verify properties expressed in LmDG.

The basic formulas of LmDG are equations 1-1 = t2, where t1 is an ASM_variable, t2

is an ASM variable, or an ordinary variable, or a constant. The Nextjet _formulas are

defined as follows:

(1) each basic formula of LmDG is a Next_let_formula;

(2) if p, q are Next let_formulas, then so are: !p (notp), p&q (p and q),plq (p or q),

p ->q (p implies q), Xp, LET Let equation IN p.

61

62

In the Next_let_foumulas, we allow finite depth of nesting of the "next-time"

temporal operator. In this sense, it is similar to the Symbolic Trajectory formulas [72].

5.1 Syntax of LmDG

We give the syntax of LmDG in BNF. A terminal symbol is written in bold style, a

nonterminal symbol is written in regular style starting with an upper case letter. Square

brackets denote options. The start symbol is Property_file.

Property_file ::=

Property;

Property ::=

A (Next_let_formula)

I AG (Next_let_formula)

I AF (Next_let_formula)

I A (Next_let_formula) U (Next_let_formula)

I AG ((Next_Let formula) => (F (Next_let_formula)))

I AG ((Next_let_formula) => ((Next_let_formula) U (Next_let_formula)))

Next let_formula ::=

X Next_let_formula

I LET (Let_equation) IN (Next_let_f o r mul a)

I Next_let_formula -> Next_let_formula

(Note: the first Next_let_formula can only contain concrete variables)

I Next_let_formula & Next_let_formula

I Next_let_formula I Next_let_formula

I ! Next_let_formula

(Note: the Next_let_formula can only contain concrete variables)

I (Next let_formula)

I Basic_formula

Basic_formula

Lterm = Rterm I True I False

(Note: True, False are Boolean constants)

Lterm ::= ASM_variable_Name

Rterm ::=

ASM_variable_Name

I OrdVar_Name

I IntegerConstant

63

64

I SymbolicConstant

I Function (only applies in a Next let_formula prefixed by Let_equation)

Let_equation ::=

Let_equation & Let_equation

I (Let_equation)

I OrdVar_Name = ASM_variable_Name

Function ::= Function_Name (Parameter_List)

Parameter_List ::= Parameter I Parameter_List , Parameter

Parameter ::= OrdVar_Name I Function

ASM_variable_Name ::= [a-bd-eg-uw-z][A-Za-z0-9_]*

OrdVar_Name ::= [v][A-Za-z0-9]*

Function_Name ::= [f][A-Za-z0-9]*

IntegerConstant ::= [0-9]*

SymbolicConstant ::= [c][A-Za-z0-9_]*

Though only limited nesting of temporal operators is allowed in the LmDG syntax,

additional formula templates are actually covered based on the following equivalences

[37]. Since both path quantifiers can be prefixed to the following formulas, these

equivalences are valid on both linear and branching time models.

I= FFp E Fp

GGp Gp

I= (Fp Fq) F(p q)

(Gp A Gq) E- G(p A q)

XFp FXp

XGp GXp

I= X(pUq) (Xp)U(Xq)

I= X(p V q) (Xp y Xq)

I= X(p A q) (Xp A Xq)

In LmDG, the existential path quantifier E is not allowed in the language. Given a

property in LmDG regarding an ASM under a given interpretation v, the property holds on

the ASM iff the property is true for all paths starting from each of the initial total_states;

i.e., the property is true for all paths in the abstract computation tree.

5.2 Semantics of LmDG

65

Since LmDG is a subset of Abstract_CTL*, the semantics of Abstract_CTL* applies.

66

5.3 Examples of properties in LmDG

An important verification task in designing correct sequential circuits is the checking of

safety and liveness properties. Intuitively, a safety property asserts that "nothing bad

happens". More precisely, a safety property defines a prefix closed language [16] [751: any

finite prefix 13 of a sequence of states 6 that satisfies the safety property P also satisfies the

property:

6 I= P <=> (V 13 l 13 _. a and 1[31< . , [31= P)

Below we give some examples of properties specified in LmDG. Safety properties

can be expressed using a Next_let_formula prefixed by "AG", as shown in Examples 1 to

4.

Example 1: A traffic light will never show red (red = 1) and green (green = 1) at

the same time:

AG(! ((red = 1) & (green = 1)));

Example 2: If there is a request (req =1) at any time, then an acknowledgment

(ack= 1) should be generated 3 transitions later:

AG((req = 1) -> X(X(X(ack = 1))));

Example 3: Whenever a pedestrian presses the push button of the traffic light

(reque st= 1), he/she will receive green light (p green = 1) within 3 clock cycles:

AG((request = 1) -> (X(p green = 1) I X(X(p green = 1)) I X(X(X(p green = 1)))));

67

Example 4: If there is a request (req =1) at time t, then the data at in port Din at

time t will show up at out port Dout at t+1:

AG((req =1) -> LET (v = Din) IN (X (Dout = v)));

Sometimes, we only want to know that something happens in a fixed amount of

time after the initial state of the transition system. Example 5 illustrates such a situation.

Example 5 : A green light (green =1) always shows up in 3 cycles after the initial

state:

A(X(X(X(green =1))));

The liveness properties are referred to as "eventuality" properties or "progress'

properties. Roughly speaking, a liveness property asserts that "something good will

happen", related to an unbounded but finite temporal interval. Liveness properties are

necessary for expressing that a system, after having received a particular input sequence,

will produce some outputs in a finite amount of time, but the exact amount is not known.

Example 6 : If there is a request (req =1) at time t, then an acknowledgment

(ack=1) will be eventually generated.

AG((req=1) => (F(ack=1)));

68

Summary

In this chapter, we defined LmDG, a subset of Abstract_CTL*, as the property specification

language for MDG-based model checker. Both safety and liveness properties can be

expressed in LmDG. We also gave some examples of properties specified in LmDG. In the

next chapter, we will present in detail the property checking algorithms.

6 	Model Checking for Properties in
LMDG

6.1 Introduction

In general, our approach to model checking is to automatically build additional ASMs that

represent the Next_let_formulas appearing in the property to be verified, connect these

additional ASMs to the original, and then check a simpler property on the composite

machine [78].

Given a Next_let_formula P regarding an ASM D = (X, Y, Z, FI, FT, F0), an ASM

Dp .----(Xp,Yp, Zp, F1 , FTp , Foi) can be constructed to represent the Next_let_formula. The

input variables of D p are the ASM_variables of D which appear in the property, i.e., Xpc

XL.ffuZ. They represent the values at the "current" cycle. Let n be the maximum nesting

number of X operators in the property, the set of state variables Yp and the transition

relation FTI, are constructed so as to "remember" the values of input variables of Dp or the

results of comparison of the variables in the past n (or less than n) cycles. The set of the

69

70

state variables of D contains a special state variable of Boolean type, Flag, which

indicates the truth of the Next_let_formula one cycle earlier. The initial set of states F

are assigned differently depending on which property template the Next_let_formula P

corresponds to. The general idea is that the initial states of Dp should not affect the result

of verifying P on the original ASM D. There is no output from Dp, i.e., Zp is empty.

Hence, there is no output relation either. The details of an algorithm for constructing an

ASM representing a Next_let_formula are given in Chapter 7. Figure 9 shows how the

composite machine is connected.

D
(for the lst
Next let_formula)

D
	 Flag_l

(the original
circuit to be
verified) 	 D Pn

(for the nth
Next_let formula

Flag_n

Figure 9 - Connection of the ASMs D, Dp1 , , Dpn for property checking

6.2 Model checking algorithms

In the following subsections, we describe algorithms for verifying the various forms of the

formulas in LmDG. When our property checking algorithms report success to a query, then

71

the property holds for an ASM under any interpretation. It is possible that a property holds

for the ASM under the intended interpretation of the abstract function symbols and

constants, but not under every interpretation. In that case, we can obtain a false negative

answer with respect to the original, non-abstracted problem. However, if all the data

operations are viewed as black boxes, a property is expected to hold for every

interpretation; it is in this sense that we say that our algorithms are applicable to designs

where data operations are viewed as black boxes.

6.2.1 AG(Next_let_formula)

To check a property of the form AG(Next let_formula) on an ASM D = (X, Y, Z, F1, FT,

Fo), we first construct an ASM Dp ,(Xp, Yp, Zp, F1 FTp, Foi) to represent the

Next_let formula. Second, we construct a composite machine from D and Dp, that is M =

(X,Ym , Zrn , G1 , GT , Go), where

• Xm = X is the set of the input variables of D;

• Ym —Y u Yp is a set of the state variables, containing both the variables in Y and

Yp; However, since M is a composite machine (the states of Dp are derived from

D) rather than the product machine of D and Dp, under each interpretation -y; the

state space of M is actually a subset of 0.1V x 0 	;
Y Yp

• 	Zn, = Z is the set of the output variables of D;

• G1 = F I A F1p is a DF of type U 	m representing the set of initial states of

M;

• GT =FT A FTp is the abstract description of the transition relation of M;

72

• Go = F0 is the abstract description of the output relation of M.

In addition, Ti' is the function that maps each state variable of M to the

corresponding next-state variables.

Finally, we do reachability analysis on the composite machine M and check "Flag

= 1" at each reachable state.

For example, to check the property AG(req=1 -> LET (v =Din) IN (X (Dout

v))) on an ASM D, we build a composite ASM as shown in Figure 13 in Chapter 7, and

then check AG(Flag =1) on that machine.

The algorithm to check a property in the form of AG(Flag=1) is as follows:

(1) Check_AG(M, C)
/* M is the composite machine, G/ is the set of initial states of M, *I
/* GT is the transition relation of M *I
I* C is the DF containing Flag =1. *I

(2) begin
(3) R := Gi; Q := Gi; K := 0;
(4) loop
(5) P := PbyS(Q, C);
(6) if P # F then return failuree if the property is not satisfied, report failure */
(7) K := K + 1;
(8) I := Fresh(Xm, K); 	 /*generate input values */
(9) N := RelP({I, Q, GT }, Xm u Ym,); /* compute next states */
(10) Q := PbyS(N, R); 	 compute frontier set of states */
(11) if Q = F then return success; 	/* if fixpoint reached, report success */
(12) R := PbyS(R, Q); 	I* simplify R by removing states subsumed by Q */
(13) R := Disj(R, Q); 	 compute all states reached so far */
(14) end loop;
(15) end;

reg
q=1?

D
p=1? reg Flag

Dp I
L 	 J

73

6.2.2 A(Next_letiormula)

To check a property in the form of A(Next_let_formula), we need to construct a composite

ASM in the same way as we treated the property AG(Next_let formula) and then transfer

the problem to checking A(Flag = 1) on the composite machine. However, here we only

need to check Flag =1 on the states reached in n+1 transitions from the initial state, where

n is the maximum nesting depth of the X operators in the property. The additional 1 cycle

delay is caused by the fact that Flag is a state variable. For example, to check a property

A(X(p=1) I XX(q=1)), the maximum nesting depth of the X operators is 2. The circuit

representing the composite ASM is shown in Figure 10. We then check (Flag =1) in the

states reached by 3 transitions on the composite machine.

Figure 10 - The composite machine for A(X p=1 I XX q=1)

The algorithm to check a property in the form of A(Flag =1) on a composite

machine with the maximum nesting depth of X in the original property is as follows.

Intuitively, it runs upto depth n and then check if Flag =1 is tue on all the states.

(1) Check_A(M, n, C)
I* M is the composite machine, G1 is the set of initial states of M, *I
/* GT is the transition relation of M, *I
I* n is the maximum nesting depth of X in the property. */
/* C is the DF containing Flag=1. *I

(2) begin

74

(3) Q := Gi ;
(4) for K =1 to n+1 loop
(5) I := Fresh(4, K); 	I* generate input values */
(6) N := RelP({/, Q, GT}, X,n UYrn,11');I* compute next states */
(7) Q :=N;
(8) end loop;
(9) P := PbyS(Q, C);
(10) if P = F then return success;

/* check if Flag=1 is satisfied, if not report failure */
(11) else return failure;
(12) end;

6.2.3 AF(Next_let_formula)

We will also use an additional ASM to represent the Next_let_formula, build the

composite machine M, and then verify that the property AF(Flag = 1) holds at all the

initial states of the composite machine M. The algorithm to check AF(Flag = 1) is as

follows:

(1) Check_AF(M, C)
/* M is the composite machine, */
/* G1 is set of initial states of M, *I
/* GT is the transition relation of M, *I

I* C is the DF containing Flag=1.
(2) begin
(3) E := 0;

is a set containing DFs representing each a set of states not satisfying
Flag=1 after a transition step */

(4) P := Gi;
(5) K := 0;
(6) loop
(7) Q := PbyS(P, C); 	 /* remove states satisfying Flag=1 *I
(8) if Q = F then return success;

75

(9) if 3 T E 1„ PbyS(T, Q) = F return failure;
/*This step checks if DF Q covers any one of the DFs in E, i.e., for each DF T
in E, PbyS(T, Q) = F is checked to detect a cycle over the states that do not
satisfy Flag=1. If there is a cycle, then failure is reported*/

(10) E := E u {Q}; 	/* add DF Q as an element into E */
(11) K := K+1;
(12) I := Fresh(Xm, K); 	I* generate input values */
(13) P:= RelP({/, Q, GT }, Xm U m 11); 	I* compute next states */
(14) end loop
(15) end

The algorithm removes the states satisfying Flag =1 from the reached set of states

at each transition step and keeps the set of states that do not satisfy Flag =1 as the frontier

set for the next-state computation. At each transition step, the frontier set is recorded as an

element of E. If an empty frontier set is reached, then the algorithm succeeds. If the whole

frontier set covers any set in /„ it means that there is at least one cycle and the states in the

cycle do not satisfy Flag=1 (see the proof in Section 10), i.e., there is at least one infinite

path on which F(Flag=1) does not hold, then the algorithm stops and reports failure.

Figure 11 shows an example of checking AF(Flag=1). The labels 1, 2, ..., 6

represent the reachable states, and only state 6 satisfies Flag=1. The computation stops by

reporting failure when it detects that Set(Q) covers a set in E . We can also see that one

cycle exists (3 -> 5 -> 3), and Flag=1 is not satisfied in the states along the cycle.

Furthermore, to check AG(c => (F p)) on ASM D, where c and p are

Next_let_formulas, we can build a composite machine M from D, an ASM of c, and an

ASM of p, and then verify AG((FlagC=1) => (F (FlagP=1))) on M. First, we do

reachability analysis to get all the reachable states of M (represented by W), then we

collect from W the states satisfying "FlagC = 1" (V := Conj(W, Cc) where Cc is a DF

containing FlagC =1), and finally we apply the algorithm Check_AF with the set V as the

set of initial states.

Set(Q):= ln;
:= {{1}1;

Set(Q):= {2, 3};
E := {{1}, {2,3}1;

Set(Q):= {4, 5};
I := {{1}, {2, 3}, {4,5}1;

Set(Q):= {3,5};
E 	{{1}, {2, 3}, {4,5}, { 3, 5}1;

Set(Q):= {3, 5}; ,
stops by reporting failure.

initial: I := 0;

76

Figure 11 - An example of checking AF(Flag=1).

A CTL formula AGAFp is a special case of AG (c => (F p)) in which c is the

Boolean constant True.

6.2.4 A(Next_let_formula)U(Next_let_formula)

We use additional ASMs to represent the Next_let_formulas and then transfer the problem

to checking A(FlagP=1)U(FlagQ=1) on the composite machine.

77

(1) Check_AU(M, Cp, Cq)
/*M is the composite machine */
/*G1 is the set of initial states of M */
/* GT is the transition relation of M, */
/* Cp is the DF containing FlagP = 1. C g is the DF containing FlagQ = 1*1

(2) begin
(3) I, :=ø;

/* E is a set containing DFs representing each the set of states satisfying
FlagP = 1 but not FlagQ = 1*/

(4) P := G1;
(5) K := 0;
(6) loop
(7) Q := PbyS (P, Cq); /*remove from S states with FlagQ = 1*1
(8) if Q = F return success;
(9) if 3 T e E, PbyS(T, Q)= F return failure;

/*This step checks if DF Q covers any one of the DFs in E, i.e., for each DF T
in E, PbyS(T, Q) = F is checked to detect a cycle in which FlagP = 1 is true
but FlagQ = 1 never becomes true. If there is a cycle, then failure is reported*/

(10) R = PbyS (Q, Cp); 	 /*remove from Q states with FlagP = 1*I
(11) if R # F return failure;
(12) I, := E u {Q}; 	/* add DF Q as an element into E */
(13) K := K+1;
(14) I := Fresh(Xm, K); 	 I* generate input values */
(15) P:= RelP({/, Q, GT }, Xm u Ym, in'); 	/* compute next states */
(16) end loop;
(17) end;

The above algorithm removes from the reached set of states those states satisfying

FlagQ=1. If the leftover Set(Q) is empty, then the algorithm stops by reporting success.

Otherwise, if there is at least one cycle where states keep satisfying FlagP=1, i.e.,

FlagQ=1 never becomes true, then there is at least one path starting from the initial state

where pUq does not hold, it stops and reports failure. Otherwise, it checks whether all the

states in Set(Q) satisfy FlagP=1. If there are some states where FlagP=1 does not hold,

which means that there are some path(s) on which FlagP=1 does not hold in every state

before a state satisfying FlagQ=1 is reached, then it also stops and reports failure.

78

Otherwise, it computes the next states reachable from Set(Q) and repeats the process.

To check property AG(c => pUq) on machine D, we need to build a composite

machine M from D, an ASM representing c, an ASM representing p, and an ASM

representing q, and transfer to checking the property AGOEFlagC=1) =>

((FlagP=1)U(FlagQ=1))) on M. We then do reachability analysis to obtain all the

reachable states of M (represented by W), collect from W the states satisfying "FlagC =1"

(V := Conj(W, Cc) where Cc is a DF containing FlagC = 1), and finally apply the

algorithm Check_AU with the set V as the set of initial states.

A CTL formula AGApUq is a special case of AG(c => pUq) in which c is the

Boolean constant Trie.

Summary

In this chapter, we described property checking algorithms for formulas in the form of

AGp, Ap, AFp, and ApUq, where p, q are Next_let_formulas. All the property checking

algorithms are based on the "forward" image computation. That is, at each iteration, we

check whether the property holds on all the current states. If yes, then the reachable states

by one transition step from the current ones are computed and the property checking

continues, otherwise the property checking stops by reporting failure. 'These property

checking algorithms are the basic algorithms in our verification system. They can be used

to check more complicated properties, such as AG (c => (F p)) and AG(c => pUq).

Another point worth mentioning is that even though we do not allow the existential

path quantifier E in LmDG, the above algorithms can be used to verify properties involving

79

E in situations where there is no abstract variable used in the description of the design

being verified. For example, to verify EFp, we can transform the problem to checking

AG(!p), and then reverse the verification result.

7 	Construction of an ASM from a
Next_let_formula

In this chapter, we give a procedure for generating a circuit description representing a

Next_let_formula p. The descriptions are produced in MDG-HDL [80], which is a

hardware description language at the register transfer (RT) level. It allows the use of

abstract variables for representing data. The ASM model of the Next_let_formula is

automatically produced from the circuit description by the parser in the MDG verification

package.

The procedure to generate a circuit description for a Next_let_formula is as

follows.

Stepl: Build a parsing tree for p

1) If p is in one of the following templates: AFp, AqUp, AG(c => (Fp)), or AG(c

=> (qUp)), then rewrite p to p = True & p; (True and False are two Boolean

constants in this procedure.)

If p is in one of the following templates: AGp, ApUq, rewrite p to p' = False I p;

80

81

If p is in Ap, then let p = p.

This is a preliminary step. When we construct the property circuit in Step 3, we

put certain registers connected to a constant signal True or False, with the initial

values False or True respectively, to make sure that the property is checked after

n cycles from the initial state where n is the maximum nesting depth of the X

operators in the property.

2) A parsing tree is constructed to represent p' ; The leaves of the parsing tree are

the constants True, False, the atomic formulas, and the Let_equations; the root

and the internai nodes of the parsing tree can be X, IN, &, I, !, ->. Recursively, a

Next_let_formula is transformed into a parsing tree according to the following

rules:

• " X (Next let_formula) " is transformed to

Next_let_formula

• " LET (Let_equation) IN (Next_let_formula) " is transformed to

LET (Let_equation) 	Next_let_formula

• " (Next_let_formula) ->(Next_let_formula) " is transformed to "

!(Next_let_formula) I (Next_let_formula) " first and then treated as " I " (or)

operation.

82

The constant False replaces ! (True);

• " (Next_let_formula) & (Next_let_formula) ", and " (Next_let_formula) I

(Next_let_formula) " are transformed to

Next_let_formula 	Next_let_formula

• " ! (Next let formula) " is transformed to

Next_ et_formula

The brother of a node v (represented as Brother(v)) in a parsing tree is defined as

the node that shares the same parent node with v. A node may have a brother which

is an empty node.

Step2: Assign attributes to each node of the parsing tree

The attributes include the ID number, the depth of the X operators, the leaf node

flag, and the root node flag.

When the parsing tree is traversed in depth-first postorder, each node is assigned an

83

order number when visited. This order number is referred to as the ID number of

the node.

The depth of the X operators of a node v (represented as DepthX(v)) is defined

recursively as follows:

• 0 if the node is a leaf node or the node is empty; and

• max (DepthX(v1), DepthX(v2)) if the node is not an X node and vl , v2 are the

left and right children of the node; and

• 1+ max (DepthX(v1),DepthX(v2)) if the node is an X node and v/, v2 are the left

and right children of the node;

If a node is a leaf node (root node), then that node is marked with a leaf node flag

(a root node flag).

In addition, a list containing all the leaf nodes is generated.

Step 3: Construct the circuit

Traverse the attributed parsing tree using depth-first postorder:

• If node v contains an atotnic formula which is an equation t" = t2 , then a

comparator is inserted. If th t2 are of concrete sort, then a table is used to

describe the function of the comparator by enumerating all the values that t1 and

t2 can take. For example, if t1 and t2 are of Boolean sort, then the t:ruth table

describing the function of the comparator in MDG_HDL [80] is as follows:

component(comp_Comparator, tablea[tht2 , resuld,

[0,0,11,

[1,1,1],

84

[0,/,0J,

[1,0,0]1)).

If th t2 are of abstract sort, then a partially interpreted cross-operator

AbsComparator (abstract comparator) is used to denote the truth of t/ = t2 in the

current state of the circuit. The following rewriting rule provides a minimum

interpretation of the comparator: AbsComparator(X, X) = 1, which can be

interpreted as " the values of the 2 abstract terms are the same if the 2 terms are

syntactically the same". This rewriting rule is always used before any other

rewriting rules are applied.

In the process of building the circuit, the inputs of the table or the cross_operator

are the variables appearing in the equation. The output of the table or the

cross_operator is given a new variable name. (The variables generated by the

property circuit are named as addedSignalj, addedSignal_2,

addedSignal N). Then, DepthX(Brother(v)) is looked up. Let m =

DepthX(Brother(v)) - DepthX(v), if m> 0 then m registers are added. The input

of the first register is the output of the concrete or the abstract comparator

discussed above. The output of the last register is referred to as the output of

node v. The in registers are initialized to the Boolean constant True.

• If v contains an atomic formula and there is an ordinary variable in the formula,

then we search for an "IN node from v up. The number of X nodes (LetXNum)

along the path is counted. When an 'IN" node is reached, we look up its left

child node (which contains a Let_ equation) to find one equation that contains

the same ordinary variable. If it fails to find it, we keep searching up the tee

until the ordinary variable is found in a Let_equation. LetXNum registers (state

variables that take the sort of the ASM_variable to which the ordinary variable

refers) are now added, such that the input of the lst register is the variable that

the ordinary variable refers to, the output of the last register use the ordinary

85

variable name. The initial values of those added state variables have no affect on

the property verification result (see proof in Chapter 9). If the atomic formula v

contains has an abstract variable, then each of the added state variables is

initialized to a fresh variable which could take any value in its domain; If the

atomic formula has a concrete variable, then each of those added registers is

initialized to the first value in its sort (this is what has been implemented,

actually, those added registers can be initialized to any value in their sorts). A

concrete or an abstract comparator is then constructed, with the inputs being the

variables in the atomic formula and the output being a new variable. Again, Let

m= DepthX(Brother(v)) - DepthX(v), if m > 0 then m registers are added at the

output of the comparator. The input of the lst register is the output of the table or

the crossterm AbsComparator. The output of the last register is referred to as the

output of node v. The m registers are initialized to True.

• If v contains "False", and m > 0 where m = DepthX(Brother(v)) - DepthX(v) ,

then m registers are added, the input of the lst register is a constant False, the

output of the last register has the name of the output of node v. The m registers

are initialized to True. If a node v contains "False", and m 0, then a signal

connecting to the Boolean constant False is the output of node v.

• If v is "I" or "&", then an "OR" or "AND" gate is added, respectively. The inputs

of the gate are the outputs of the two child nodes and the output is given a new

name. Again, let m= DepthX(Brother(v)) - DepthX(v), if m > 0 then m registers

are added at the output of the gate. The input of the lst register is the output of

the gate. The m registers are initialized to True. The output of the last register

has the name of the output of node v. If m 5_ 0, the output of the gate is the output

of node v.

• If v contains "!", then a "NOT" gate is added. The input of the gate is the output

of its child node. The output is given a new variable name. m registers are added

at the output of the gate if m = DepthX(Brother(v)) - DepthX(v) and m > O. The

86

input of the lst register is the output of the gate. The output of the last register

has the name of the output of node v. The m registers are initialized to True.

• If v contains a Let_equation, then nothing is done on this node. This node is used

when a node is visited which contains an atomic formula referring to the

ordinary variables in the Let_equation.

• If v contains "X" and m> 0 where m= DepthX(Brother(v)) - DepthX(v) , then m

registers are added. The input of the lst register is the output of the child of the

"X" node. The output of the last register has the name of the output of the "X"

node. The m registers are initialized to True. If a node contains "X" and m 0,

then the output of its child node is directly referred to as the output of node X.

• If v contains "IN" and m> 0 where m= DepthX(Brother(v)) - DepthX(v) , then

m registers are added. The input of the lst register is the output of the right child

of the "IN" node. The output of the last register has the name of the output of the

"IN" node. The m registers are initialized to True. If a node contains "IN" and m

0, then the output of right child of node "IN" is referred to as the output of

node "IN".

• If v is the root node, then a register is added taking the output of v as the input,

and the output is given the name Flag. If the Next_let_formulap is in one of the

templates AGp, Ap, ApUq, then the register is initialized to True. Otherwise, the

register is initialized to False. The initial value of Flag is such that it does not

affect the verification result.

The following is an example illustrating the construction of a circuit representing a

Next_let_formula.

Given a property AG(req=1 -> LET (v1=Din) IN (X (Dout =v1))), where req is a
Boolean variable, and Din and Dout are of abstract sort, the following steps are used to

construct a circuit of the Next_let_formula p = (req=1 -> LET (v1=Din) IN (X (Dout

(0)
	

False

LET v1 = Din (0) req=1 (0)

(0) 	Dout = v I

87

=v1))):

Step 1: The Next_let_formulap is transformed to

False I (!(req =1)) I LET (v/ =Din) IN (X (Dont = v1))

The following parsing tree is then constructed (Figure 12):.

A square represents a leaf node.

Figure 12 - The parsing tree of AG(req=1 -> LET (v1=Din) IN (X (Dout =v1)))

Step 2: DepthX(v) is associated with each node of the parsing tree. (It is indicated

at the left-hand sicle of a node.)

88

Step 3: Construct the circuit:

The parsing Iree with DepthX marked on each node is traversed in depth-first

postorder:

1) The node "False" is visited first. Since m = 1 - 0 = 1, one register is added. The

input of the register is the constant False, the output of the register corresponds

to the output of this node. The initial value of the register is True.

The MDG-HDL description [80] of a signal connecting to a Boolean constant

False and the added register is as follows:

component(prop_comp_1, constant_signal(value(0), signal(addedSignal01))).

component(prop_comp_2, reg(input(addedSignal01),output(addedSignal02))).

The output of node "False" is the signal addedSignal02.

2) The node "req=1" is visited. Since it is a leaf node and contains an atomic

formula without any ordinary variable, the following tuth table description of a

comparator is constructed (described in MDG-HDL [801):

component(prop_comp3, table([freq,addedSignal031,

[1,1]

/0])).

Since this node has no brother, no register is added at the output of the

comparator.

The output of node "req=1" is the signal addedSignal03.

3) The node "!" is visited. A "NOT" gate is added whose input is the output of

node req=1. The MDG-HDL declaration is as follows:

89

component(prop_comp4, not(input(addedSignal03), output(addedSignal04))).

Since m = DepthX(Brother(v)) - DepthX(v) — 1-0 — 1, one register is added at

the output of the gate:

component (prop_comp5, reg(input(addedSignal04), output(addedSignal05))).

The output of node "!" is the signal addedSignal05;

4) The node "LET vl—Din" is visited. Since it contains a Let_equation, nothing is

done at this moment.

5) The node "Dout — v 1" is visited. Since it contains an ordinary variable yl, we

need to find an "liN" node from the node up and count the number of "X" nodes

along the path. From the left child of the "IN" node, we find the equation "LET

vl = Din". Since LetXNum — 1, one register is added. The input of the register

is Din, and the output is v/. Then an abstract comparator AbsComp is inserted.

The inputs of AbsComp are Dout and Id, the output is addedSignal06. The

MDG-HDL description of the abstract comparator is as follows:

component (prop_comp6, reg(input(Din), output(v1))).

component(prop_comp7, transform(inputs([Dout, v1.1),
function(AbsComparator), output(addedSignal06))).

Since the node "Dout=v1" has no brother, no register is added at the output of

AbsComparator.

6) The node "X" is visited. Since m < 0 , no component is added, and the output of

its child, i.e., addedSignal06 is used as the output of the "X" node.

7) The node "IN" is visited. Again, no component is added since m < 0, but the

90

output of its right child, i.e., addedSignal06 is used as output of the "IN" node.

8) The node "I" is visited. An "OR" gate is added. The inputs of the gate are the

outputs of the nodes "I" and "IN", and the output is addedSignal07. The "OR"

gate is described in MDG-HDL as follows:

component(prop_comp8, or(input(addedSignal05, addedSignal06),
output(addedSignal07))).

9) Finally the root node "I" is reached. An "OR" gate is added. The inputs of the

gate are the outputs of the nodes "False" and "I", and the output is

addedSignal08. Since it is a root node, one register is added. The input of the

register is addedSignal08, and the output is Flag. Since the property is in the

template of AGp, the initial value of Flag is assigned to True.

component(prop_comp9, or(input(addedSignal02 ,addedSignal07),

output(addedSignal08))).

component (prop_complO, reg(input(addedSignal08), output(Flag))).

The resulting circuit is shown in Figure 13.

AbsComparator
(Dout, v1)

False addedSignal02
dedSigna1018

circuit I
to be 	I
verifiedRin

pout

addedSignal07

addedSignal03

addedSignal06

91

Figure 13 - The additional circuit for AG(req=1 -> LET (v1=Din) IN (X (Dout
=v1))).

Summary

In this chapter, we described the procedure of constructing an ASM from a

Next_let_formula. Through this method, we were able to transform the verification of a

more complex property on an ASM to the verification of a simplified property on a

composite ASM built form the original ASM and the ASMs of the Next_let_formulas in

the original property. The correctness of this problem transformation shall be verified in

Chapter 9.

In the next chapter, we will proceed with the definition of fairness constraints in

our verification system and the verification of liveness properties under fairness

constraints.

8 	Verification of Liveness Properties
with Fairness Constraints

When we verify liveness properties, we are usually only interested in fair computation

paths. A fair path is a computation path along which certain states or certain combination

of states are not sustained forever. For example, in a system where a shared memory

resource is accessed by several devices, we are only interested in the computation paths

along which no device occupies the shared memory resource forever.

8.1 Fairness constraints

In the literature, different methods for specifying fairness constraints have been developed

for CTL model checking [38] and for language containment using L-automata [55].

For CTL model checking [15][61], Reference [38] contains model checking

algorithms for the so-called Fair Computation Tree Logic (FCTL). An FCTL specification

(po, eeo) consists of a functional assertion po and an underlying fairness assumption 00.

The functional assertion po is expressed in essentially CTL syntax with basic modalities of

92

93

the form either A (for all fair paths), or E (for some fair path) followed by one of the linear

time operators Gp, Fp, Xp, or pUq. All path quantifies are thus related to the underlying

m fairness assumption 00 specified in the canonical form vin_ i A 	(F °°p v G—qii) where

pi/ and q,j are atomic propositions, and F", G" are two basic infinitary operators: F"f

(infinitely often f) holds for a computation path n in the Kripke structure iff the CTL

formula f holds for an infinite number of times along 7C; G—g (almost everywhere g) holds

for a path iff the CTL formula 	holds for only a finite number of times along 7c, i.e.,

after a finite amount of time g holds forever along

Using language containment [55][56], to verify that a property is satisfied on a

system model, one verifies that the language of the system model is contained in the

language of the property. The system is modeled as L-processes, and the property is

modeled as a L-automata. For both L-automata and L-processes (each of which defines an

co-regular language), the acceptance condition is defined by a set of recur edges, and a set

of cycle sets of states. A sequence of states is accepted by an L-automaton if and only if it

has a run of the automaton which either traverses a given recur edge infinitely often or

eventually enters in some cycle set and remains in the cycle set forever. For an L-process,

the acceptance condition is the negation of that of an L-automaton: a sequence is accepted

if and only if it is a run which traverses no recur edge infinitely often, and does not remain

forever in some given cycle set. Thus, in the case of L-process, the acceptance condition

can be understood as an "exception" condition. L-processes provide a natural mechanism

to model a "system" process, as the exception condition can be interpreted as a "fairness"

property, excepting "unfair" sequences which for example, never leave a set of states (a

cycle set). L-automata provide natural properties, which are to be verified, i.e., a

"liveness" property may be defined in terms of sequences which traverse a given set of

recur edges infinitely often. For example, to check that a process is eventually granted

access to a resource, provided that the process does not remain in a set of states where it

never requests the resource, we can impose this fairness condition on an L-process S

which models the whole system. We then express the liveness property in terms of an L-

94

automaton T and verify that the language containment Language(S) c Language(T) holds.

8.2 Our approach to irnposing fairness constraints

In our verification system, we impose fairness constraints using a subset of the criteria

employed in the method based on language containment, namely, by specifying cycle sets.

Let Hi , i = 1, 	n, be n " exception conditions, and Sco the set of infinitely repeating states

along a computation path. If at least one Hi holds on all states in Sc"), then the computation

path is not fair and need not satisfy the property under investigation. That is, only those

computation paths along which the states satisfy every !(Hi) infinitely often are

considered. Therefore, !(1/1) (1 	n) can be viewed as the fairness constraints for the

property checking. We call the formula representing the exception condition Hi as an

H_formula.

Next we give the syntax of language for specifying fairness constraints. The

terminal symbols are written in bold style, and the nonterminal symbols are written in

regular style starting with an upper case letter. Square brackets denote options. Note that

only concrete ASM_variables may appear in the H_formulas. All the fairness constraints

imposed are stored in a file, which is interpreted in before the model checking procedure is

invoked.

Fairness file ::=
Fairness_constraint_list

Fairness_constraint_list: :=

Fairness_constraint;
[Fairness_constraint_list]

95

Fairness constraint ::=
! (H_Formula)

H_Formula ::=
X H_Formula

I H_Formula -> H_Formula
I H_Formula & H_Formula
I H_Formula l H_Formula
I ! H_Formula
I (H_Formula)
I Atomic_H_formula

Atomic_H_Formula ::=

Lterm = Rterm I True I False

Lterm ::= ASM_variable Name (the ASM variable must be of concrete sort.)

Rterm ::=

ASM_variable_Name 	(the ASM_variable must be of concrete sort.)
I IntegerConstant

I SymbolicConstant

ASM_variable_Name ::= [a-bd-uw-z][A-Za-z0-9_1*

IntegerConstant ::= [0-9]*

SymbolicConstant ::= [c][A-Za-z0-9_]*

96

In the following sections, we will present the algorithms of checking liveness
properties under fairness constraints.

8.3 Vérification of AFq with fairness constraints

To verify that AFq (where q is a Next_let _formula) holds in the initial states of an ASM D

under the fairness constraints 	!H2 , ...,!Hn, we build the additional ASMs to represent

q and H, (1 i n) using the algorithm described in Section 7, merge all the additional

ASMs with the ASM D to build a composte machine M, and then verify that property

AF(FlagQ=1) holds for the initial states of M under the fairness constraints ! (Flagl = 1),

!(FlagHn=1). The algorithm to carry out this verification is as follows:

(1) Check AF fair(M, Cq, H1, Hn)
I* M is the composite machine, */
/* G1 is the set of initial states of M, *I
/* GT is the transition relation of M, *I
I* Cq is the DF representing the formula FlagQ = 1. *I
I* Hi (1 5i 5_ n) is the DF representing the formula Flag11,— 1. *1

(2) begin
(3) I :=I;

/* E is a set containing DFs representing each the set of states not satisfying
FlagQ =1 at each transition step */

(4) S := Gi;
(5) K := 0;
(6) loop I
(7) Snotq := PbyS (S, Cq); /*remove from S states with FlagQ = 1*1
(8) if Snotq = F then return success;
(9) if 3 T E E, PbyS(T, Snotq) = F then return failure;

/*This step is to check if DF Snotq covers any one of the DFs in E, i.e., for each
DF T in I, PbyS(T, Snotq) = F is checked to detect a cycle. If there is a cycle,
then failure is reported*/

97

(10) E := EU {Snotq}; 	/* add DF Snotq as an element into E */
(11) Si := Snotq;
(12) for i=1 to n do
(13) SnotH PbyS(Si, Hi); /*remove from S1 states with FlagHi = 1 *I -
(14) S2 := Conj(Si , Hi); I* S2 represents the states in S1 with Flagil i = 1 *I
(15) if S2 == F then 54notq = F;
(16) if S2 # F then begin
(17) S3 := S2 ; Sf := S2 ; L := O;
(18) 100p2 	/* to compute all the states reachable from S2 with FlagHi = 1 *I
(19) L := L+ 1;
(20) /2 := Fresh(Xm, L); I* generate new input values */
(21) N1 := RelP({/2, Sf,GT}, Xm U m 11); /* compute next states */
(22) N2 := PbyS(Ni , Cq); /* remove from Ni the states with FlagQ = 1 *I
(23) N3 := Conj(N2, Hi); I* pick from N2 the states with FlagHi = 1 *I
(24) Sf := PbyS(N3, S3); /* compute the frontier states */
(25) if Sf = F then exit loop2;

/* if all the states reachable from S2 have been visited, exit loop 2 */
(26) S3 := PhyS(S3 , Sf);
(27) S3 :=Disj(S3 , Sf); /* add the states of Sf to S3 */
(28) end loop2;
(29) S41 := Re1P({/2, S3 , GT}, Xm 1m T1); /* compute the next states of 53 */
(30) 54 := PhyS(S41 , Hi); I* remove from S41 the states with FlagHi = 1 *I
(31) S -4notq:= PbyS(S4 , Cq);
(32) end_if
(33) S := Disj(S4notq , SnotH);
(34) end_for
(35) if Si F then begin
(36) K := K+1;
(37) ././ := Fresh(4, K); I* generate input values */
(38) S:= RelP({4 , S1 , GT}, Xm Ym,);

	/* compute next states */
(39) end_if
(40) end loopl
(41) end

In this algorithm, E is a set containing the DFs representing each a set of states not

satisfying FlagQ = 1 from the states reached after every transition, S represents the

frontier set of states to be further explored, and n is the number of fairness constraints.

98

In 100p 1, Lines (7) - (10) verify whether the states in the frontier set S satisfy

FlagQ = 1. If yes, then the computation stops by reporting success. Otherwise, if the set of

states not satisfying (FlagQ=1) covers any set in 	this means that there is at least one

cycle in which the states do not satisfy (FlagQ=1), i.e., there is at least one path along

which F(FlagQ = 1) does not hold. In this case, the algorithm stops and reports failure.

Otherwise, the set of states not satisfying FlagQ = 1, which is represented by Snotq is

added to

The Lines (13) to (34) form another loop which is executed n times. This loop

deals with each exception condition. At every ith (1 i n)iteration, S2 represents the set

of states in S1 that satisfy the excepting condition FlagHi = 1. If S2 is not empty, all states

that are reachable from the states in S2 by any number of transitions and satisfy FlagHi = 1

but do not satisfy FlagQ = 1 are computed and stored in 83. In other words, S3 could

contain cycles which are formed by the states satisfying FlagHi = 1 but not FlagQ = 1.

(The way to compute S3 is the same as the reachability analysis, hence it may not

terminate.) Then, one more transition is done to compute the set of states reachable by one

transition step from the states of 53, but not satisfying FlagHi = 1. These states are stored

in S4. S4notq represents the set of states in 84 that do not satisfy FlagQ = 1. S1 is the union

of the sets of states represented by 544notq and SnotH at each iteration of the loop.

If S1 is not empty, then S is computed to represent the states reachable in one

transition step from the states in SI . The computation continues in loopl with S being the

new frontier set of states to be checked.

Next we give an example showing how this algorithm works. Suppose we wish to

verify AF(FlagQ = 1) under the fairness constraint !(FlagHi = 1) on the ASM state

transition graph given in Figure 14. In the figure, a node represents a state and an edge

represents a possible transition from one state to another. We also give the values of FlagQ

and FlagHi in each state in the transition graph. We shall see that the algorithm stops and

FlagQ = 0
FlagH j = 0

FlagQ = 0
FlagH j = 1

FlagQ = 0
FlagH =

FlagQ = 1
FlagH1 = 0

99

reports success at the 3rd iteration in loopl. However, checking AF(FlagQ = 1) without

the fairness constraint would fail on the path sl -> s2 -> s3 -> s2 -> s3 -> s2 -> s3 ... if no

fairness constraint is imposed.
initial: /, = 0;

Set(S) = {si};

the lst time in loopl:
Set(Snota) = {si};
I=Ils111;
Set (Si) = {si};
Set (S2) = 0;
Set (S) = { s2 };

the 2nd time in loopl:
Set(Q) = {s2};
1,-1{s1}, {s2}};
Set (Si) = 0;
Set (S2) = {s2};
Set (S3) ={ s2, s3};
Set (S4) = 1 s4 1;
Set (S) = { s4};

the 3rd time in loopl:
Set(Q) = 0, return sucess.

Figure 14 - Example of checking AF(FlagQ =1) under fairness constraint
!(Flag14=1).

To check AG (c => (Fp)) where c and p are Next_let_formulas under the fairness

constraints !111 , !H2 , 	!Hn on an ASM D, we can build a composite machine M from D

and ASMs representing c, p, H (1 i n), and then transfer the problem to checking AG(

(FlagC=1)=> (F (FlagP=1))) on M under the fairness constraints !(FlagHi = 1) (1 i n).

We first carry out reachability analysis to get all the reachable states of M (represented by

100

W), collect from W the states satisfying "FlagC = 1" (V := Conj(W, C), where Cc is a DF

containing FlagC = 1), and finally apply the algorithm Check_AF_fair with the set V as

the set of initial states.

8.4 Verification of ApUq with fairness constraints

To verify that ApUq (where p and q are Next_let_formulas) holds in the initial state of an

ASM D under the fairness constraints !111 , !H2 , 	!Hn , we build additional ASMs to

represent p, q, and Hi (1 	n), and then transfer the problem to checking

A(FlagP=1)U(FlagQ=1) on the initial state of the composite machine derived from D and

the additional ASMs. The algorithm to verify A(FlagP=1)U(F lagQ=1) under the fairness

constraints ! (FlagHi = 1) (1 5_ i n) is as follows:

(1) 	Check_AU_fair(M, Cp, Cg, 111 , 	n)
I* M is the composite machine, */
/* G1 is the set of initial states of M, *I
/* GT is the transition relation of M, *I
I*Cp is the DF containing FlagP = 1. *I
I* C is the DF containing FlagQ = 1* I
I* Hi (1 	5_ n) is the DF representing formula FlagHi= 1. *I
(2) begin
(3) E := 0;

/*I is a set containing DFs representing each the set of states satisfying FlagP
= 1 but not FlagQ = 1 at each transition step */

(4) S := Gi;
(5) K := 0;
(6) 1oop1
(7) Snotq := PbyS (S, Cq); /*remove from S states with FlagQ = 1*/
(8) if Snotq= F then retum success;
(9) if 3 T 1,, PbyS(T, Snotq) = F then return failure;

/*This step checks if DF Snotq covers any one of the DFs in I, i.e., for each DF
T in 1„ PhyS(T, Snotq) = F is checked to detect a cycle. If there is a cycle, then
failure is reported*/

101

(10) R = PbyS (Snotq , Cp); 	/*remove from Snotq states with FlagP = 1 *I
(11) if R # F then return failure;
(12) 1, := u {Snotq}; 	/* add DF Snotq as an element into */
(13) Si := Snotq ;
(14) for i=1 to n do
(15) Snell := PbyS(Sir, Hi); /*remove from Si. states with FlagHi= 1 *I
(16) S2 := Conj(Si , Hi); I* S2 represents the states in Si with FlagHi = 1 *I
(17) if S2 == F then 54noto, = F;
(18) if S2 # F then begin
(19) S3 := 52 ; Sf := S2 ; L := 0;
(20) 100p2 /* to compute al the states reachable from S2 with FlagHi = 1 *I
(21) L := L+ 1;
(22) /2 := Fresh(Xm, L); I* generate new input values */
(23) N1 := RelP({/2, St. , GT}, Xm UIrtn,); /* compute next states */
(24) N2 := PbyS(Ni, Cq); /* remove from Ni the states with FlagQ = 1 *I
(25) N3 := Conj(N2, Hi); /* pick from N2 the states with FlagHi = 1 *I
(26) if PbyS(N3, Go) # F then return failure;

/* if the states in N3 do not satisfyFlagP = 1, report failure */
(27) Sf := PbyS(N3, S3); /* compute the frontier set of states */
(28) if S f= F then exit loop2;

/* if all the states reachable from S2 have been visited, exit loop 2 */
(29) S3 := PbyS(S3 , Sf);
(30) S3 := DiSi(S 3 , Sf); /* add the states of Sf to S3 */
(31) end loop2;
(32) 541 := RelP({/2, S3 , GT}, Xm l.) Ym,r1); /* compute the next states of S3 */
(33) S4 := PbyS(S4/ , Hi); remove from S41 the states with FlagHi = 1 *I

(34) S4notq := PbyS(S4 , Cq);

(35) ifPbYs(s4notq ,
(36) end_if
(37) S i :=Disj(S4notq , SnotH);
(38) end_for
(39) if Si F then begin
(40) K := K+1;
(41) .11 := Fresh(Xm, K); 	I* generate input values */
(42) S := RelP({4 , S1 , GT},X,n u Yrn,); 	I* compute next states */
(43) end if
(44) end loopl
(45 end

Cp)# F then return failure;

FlagQ = 1

FlagP = 1

FlagP= 1,FlagQ = 1, FlagH = 1

102

This algorithm is similar to the algorithm Check_AFlair, except that Lines (10),

(11), (26) and (35) are added. Those four lines verify whether the states along a path

satisfy FlagP = 1 before a state satisfying FlagQ =1 is reached.

It is worth mentioning that the Check_AU _fair algorithm is conservative. It

requires that FlagP=1 be satisfied in all the states along all paths before a state satisfying

FlagQ =1 is reached. Along some paths, if the states repeating forever are covered by a

cycle set and there is no other state reached by those states as shown in Figure 15,

Check _ AU_ fair will report failure. However, it is not necessary that FlagP=1 holds in

these states, since this path should not even be considered. Check_AUlair may thus

return a false negative answer. In models of real systems, this situation happens rarely.

Figure 15 - Example of a false negative answer when verifying
(FlagP=1)U(FlagQ=1) under the fairness constraint !(FlagH =1).

To check AG(c => pUq) where c, p, q are Next_let_formulas under the fairness

constraints !111 ,!H2, ..., !Hi, on an ASM D, we build a composite machine M from D and

ASMs representing c, p, q, Hi (1 i 5_ n), and then transfer the problem to checking AG(

(FlagC=1) => ((FlagP=1) U (FlagQ =1))) on M under the fairness constraints ! (FlagHi =

1) (1 	i n). We then do reachability analysis to get all the reachable states of M

(represented by W), collect from W the states satisfying "FlagC = 1" (V := Conj(W, Cc)

103

where Cc is a DF containing FlagC = 1), and finally apply the algorithm Check_AUlair

with the set V as the set of initial states.

8.5 Implementation issues

To check properties expressed in LmDG automatically, we developed programs that

• check if the signals in a property (except the ordinary variables) are declared in

the original circuit description; report any errors;

• check the syntax of the property; report any errors;

• build additional circuits to represent the Next-let-formulas in the property and

the exception conditions if fairness constraints are imposed;

• merge the description of the additional circuits with the description of the

original circuit, which means adding declarations of components and signals of

the additional circuits to the original circuit description file and the variable

order file;

The above programs were implemented in C with Yacc & Lex. The model

checking algorithms were developed using the current MDGs package implemented in

Quintus Prolog V3.2 [80].

Summary

In this chapter, we gave the definition of fairness constraints in our verification system,

and presented the algorithms of verification of liveness properties under fairness

constraints.

In the next chapter, we show that the verification procedures presented in this

thesis are sound.

104

9 	Soundness of the Verification
Procedures

In this chapter, we show that the verification procedures presented in Chapters 6 and 7 are

sound. This is achieved by stating and proving a number of theorems.

9.1 Correctness of Algorithm Check_AG(VI,C)

Theorem 1: The result of checking AG(p) where p is a Next_let_formula on an

ASM D is the same as the result of checking AG(Flag=1) on the composite

machine M built from D and Dp, where Dp is an ASM derived from the

Next_ let_forrnula p and constructed according to the algorithm in Chapter 7.

PROOF. We prove this theorem by case splitting according to the definition of the

Next let_formula.

According to the algorithm in Section 7, to check a property in the template of

AG(p), we build an ASM of the next_let_formula p = False I p .

105

Reg i 	Flag

Dp
J

comparator D

L 	

a 	

M 	 r 	 1
False

r 	
False

a

-1

I
I

Flagl D
comparator

Reg i

i

I
I

Dp i
l

constant
L 	 _1

106

• Case 1: if p is a basic formula of LmDG, i.e., t1 = t, where ti is an ASM_variable

of D, and if t2 is also an ASM_variable, then the composite machine M is as

shown in Figure 16.

Figure 16 - A composite machine for checldng AG(ti = t2) when t2 is an
ASM_variable.

If t2 is an individual or generic constant, then the composite machine M is as

shown in Figure 17.

Figure 17 - A composite machine for checking AG(ti = t2) when t2 is a constant.

When ti -= t2 is true (or false) at a state s of an ASM D, we can see from Figures 16

and 17 that signal Flag denotes truth (or falsity) of the equality in the subsequent

state of the composite machine M. As Reg i is initialized to Boolean constant True,

1 : M

comparator
D

107

the result of checking AG(ti = t2) on D is the same as that of checking

AG(Flag=1) on M. Without loss of generality, we assume that ti and t2 are

ASM_variables in the following proofs (the signal t2 coould be tied to a constant

value inside D).

• Case 2: if p is !(tii = t2) then the composite machine M is as shown in Figure 18.

Figure 18 - A composite machine for checking AG(!(ti = t2)) .

In Figure 18, Sigl denotes truth (or falsity) of !(t1 = t2) in every state s of D, Flag

denotes truth (or falsity) of !(t1 = t2) in the corresponding state following s of the

composite machine M. By initializing Reg i to True, the result of checking AG(!(ti

= t2)) on D is the same as that of checking AG(Flag=1) on M.

• Case 3: if p is (t1 = t2) & (t3 = t4) then the composite machine M is as shown in

comparator
D

t2

comparator
t4

Flad
Reg i

Sigl

Dp

False

108

Figure 19.

Figure 19 - A composite machine for checking AG((ti = t2) & (t3 = t4)) .

In Figure 19, Sigl shows the truth (or falsity) of (t1 = t2) & (t3 = t4) in any state s of

D, Flag denotes truth (or falsity) of (t1 = t2) & (t3 = t4) in the corresponding next

state of s of the composite machine M. Therefore, if we initialize Reg i to True, the

result of checking AGŒti = t2) & (t3 = t4)) on the original machine D is the same

as that of checking AG(Flag=1) on the composite machine M.

If p = (t1 = t2) I (t3 = t4), then the AND gate is replaced by an OR gate; If p = (t1 =

t2) ->(t3 = t4), we treat p as (! (t1 = t2)) I (t3 = t4).

• Case 4: if p =X(ti = t2) thenp = False I X(ti = t2). The composite machine M is

comparator I

M
DepthX(p) = 1

Regi
ti Reg2

D Sigl

False

—DSig2

I
I
I
I Flag i

I
I

Dp I
L 	 ..1

t2 	I
I

109

as shown in Figure 20.

Figure 20 - A composite machine for checking AG(X(ti = t2)) .

AG(X(ti = t2)) means that X(ti = t2) must hold on every state along all the

computation paths, i.e., (t1 = t2) must hold on every state except that the truth (or

falsity) of (t1 = t2) at the initial states is not in our concern. In the above figure,

Sigl denotes truth (or falsity) of t1 = t2 in every state of D. By initializing Regi to

1, Sig2 denotes truth (or falsity) of t1 = t2 in every state except that it denotes truth

at the initial states. Therefore, with Reg2 being initialized to True, the result of

checking AG(X(ti = t2)) on D is the same as that of checking AG(Flag=1) on M.

• Case 5: if p is of form LET (vi = t1) IN (X(t2 = v1)), then the composite machine

is as shown in Figure 21. If p is of form LET (v] = t1) IN (X(t2 = function(v/))),

i.e., LET (v1 = t1) IN (X(t2 = finc(vi))) , where finc represents the function

"increase by i", then a component representing the function is added and the

output of the function component becomes one of the inputs of the comparator.

False 	 Reg2

Regi V r -11 ftlriCtiOrl—L

t2

comparator

Dp

Flagl
Reg3

110

Figure 21 - A composite machine for checking AG(LET (v1 = t1) IN (X(t2 = v1))) .

AG(LET (v1 = ti) IN (X(t2 = v1))) means that the value of ti in every state si must

be the same as that of t2 in the next state of st. In the composite machine as shown

in Figure 21, the output of the comparator indicates in each state (except the initial

states as the initial value of Regi can be any as long as it fits in the sort of ti) the

equality of comparing the value t1 one transition earlier and the value of t2 (an

ordinary variable v1 is used to remember the value of t1 one transition earlier). By

initializing Reg2 and Reg3 to True, Flag will indicate True for the initial set of

states and the states following the initial states, and then the value of Flag depends

on the output of comparator which depends on the value of t1 and t2 in D. Thus, the

result of checking AG(LET (v1 = ti) IN (X(t2 = v1))) on the original machine D is

the same as that of checking AG(Flag=1) on the composite machine M.

In the above 5 cases, p ranged over the basic structures of the Next_let_formulas.

Below we show that when p is a general Next_let_formula, the result of checking

AG(p) on an ASM D is still equivalent to the result of checking AG(Flag=1) on
the composite machine M.

• Case 6: if p is !(q) where q is a Next_let_formula, then p = False I !(q). The

circuit of q

False a Regi Reg

111

composite machine is as shown in Figure 22.

M
	r 	 1

L 	

n = DepthX(p)

	 Flagi
Regn+1 	

Dp
J

Figure 22 - A composite machine for checking AG(!(q)) when q is a
Next_let_formula.

n = DepthX(p) is the maximum depth of X operators in p (this function DepthX is

defined in Section 7). n registers are added, with the primary input the constant
False. This allows to ignore the output of !(q) in the first n clock cycles, i.e., to
check !(q) n clock cycles later from the initial state. "circuit of q" is built using the

basic components exposed in cases 1 to 5. Corresponding to the truth (or falsity) of

!(q) in a state s of machine D, Flag denotes the truth (or falsity) of !(q) in the

corresponding (n+l)th state after s of the composite machine M. As Regi, ... , Regn

and Regn±i are initialized to True, the result of checking AG(!(q)) on D is exactly

the same as that of checking AG(Flag=1) on M.

• Case 7: if p is of the form q1 & q2 , where q1 and q2 are Next let_formulas, and
assuming that DepthX(q/) DepthX(q2), then the composite machine is as

Regn+i
Flag l

n= DepthX(q2)
m= n - DepthX(q/) I

Dp

Regn False Regi

circuit of q1

circuit of q2

D

Reg 1• Regn,

112

shown in Figure 23.

Figure 2 3 - A composite machine for checking AG(qi & q2) when q1 , q2 are
Next_let_formulas.

The blocks "circuit of q1" and "circuit of q2" are constructed using the basic

components as shown in cases 1 to 5. The truth (or falsity) of q1 & q2 at a state s of

machine D corresponds to the truth of Flag which denotes the truth (or falsity) of

& q2 in the corresponding (n+l)th state after s of M, where n is the maximum

depth of X operators in p. Since Regi, Regn and Regn+i are initialized to True,

the result of checking AG(qi & q2) on D is the same as that of checking

AG(Flag=1) on M.

• Case 8: if p is of form X(q), where q is also a Next_let_formula, then the

Reg.+1
circuit of q D

n = DepthX(p) = DepthX(q) +

	 Flag I

Dp I
1

Reg.
False
	 Regi

tl

113

composite machine is as shown in Figure 24.

Figure 24 - A composite machine for checking AG(X(q)) when q is a
Next_let_formula.

Corresponding to the truth (or falsity) of X(q) in a state s of D, Flag denotes the

truth (or falsity) of X(q) in (n+l)th state after s of the composite machine M. As

Regi, Reg. and Reg.+1 are initialized to True, the result of checking AG(X(q))

on D is the same as that of checking AG(Flag=1) on M.

• Case 9: if p is of form LET (v1 = t1) &..&(vm = tm) IN (q), where q is a

Next_let_formula containing the ordinary variables v1, ...Vm, then p = False I

(LET (v1 = t1) &..&(vm = tm) IN (q)). The composite machine is as shown in

Figure 25.

r 	 -1 Dp I

I
I

Flag I
I
I
I

tin V m 	n = DepthX(q) 	 I
I
I
I

L

M
IFalse

ti 	 Regii Reg i
circuit of q D

Regim Reg i

il: the number of X operators before v1 in q
im: the number of X operators before vin in q

J

Regn±i

Regn

114

Figure 2 5 - A composite machine for checking AG(LET (v1= t1) &..&(vm = tm) IN
(g))

Corresponding to the truth (or falsity) of "LET (v1= t1) &..&(vm = tm) IN (q))" in

state s of machine D, Flag denotes the truth (or falsity) of "LET (v1= t1) &..&(vm

= tm) IN (q))" in the (n+l)th state after s of the composite machine M. Hence,

since Reg i,, Reg, Regn+i are initialized to True, the result of checking

AG(LET (v1 = t1) &..&(vm = tin) IN (q)) on the original machine D is the same as

that of checking AG(Flag=1) on the composite machine M.

From Cases 1 to 9, according to the definition of the Next_let_formula, we have

analyzed all the cases that a Next_let_formula can have. Therefore, we have

proved Theorem 1.

We can also prove in a similar fashion that the result of checking A(p), AF(p),

A(p)U(q) on the original machine D where p, q are Next_let formulas is the same as that

of checking A(Flag=1), AF(Flag=1), A (FlagP=1)U(FlagQ=1), respectively, on M

115

constructed using the algorithm in Section 7.

Definition 9.1: A properly checking algorithm is correct iff the algorithm succeeds

(fails) when the property is true (not true) on the ASM being verified according to

the semantics defined in Section 4.2.

According to the semantics in Section 4.2, when a property is true, it is supposed

to be nue for all the interpretations of an ASM D. When the model checking algorithm

reports failure, which means that the property is not true for all the interpretations, it is still

possible that the property holds for a specific interpretation, hence our model checking

algorithm could give a false negative result for that interpretation. However, this is not of

our concern, because we consider the correctness according to definition 9.1.

Theorem 2: The algorithm Check AG(M,C) given in Section 6.2.1 is correct.

PROOF. The algorithm Check_AG(M, C) verifies if all the reachable states of the

ASM M satisfy the condition C (Flag =1). To prove the correctness of this

algorithm, we do induction on the number of transition steps K.

.When K = 0, Q and R are both DFs of type U 1'm representing the set of initial
states. The following lines are executed:

(5) P := PbyS(Q, C);
(6) if P # F then return failure;
(7) K := K + 1;
(8) I := Fresh(Xin, K); /*generate input values */
(9) N := RelP({/, Q, GT }, Xin Y Yin, Tl); 	/* compute next states */
(10) Q := PbyS(N, R); 	 /* compute frontier set of states */
(11) Q = F then retum success; 	/* if fixpoint reached, report success */
(12)R := PbyS(R, Q); /* simplify R by removing states subsumed by Q */
(13)R := Disj(R, Q); 	 /* compute all states reached so far */

116

At Line (5), according to the definition of PbyS in Section 3.3, we getP as a DF

of type U > m obtained by pruning the disjuncts in Q that are subsumed by C

, i.e., Set(P) = Set(Q) \ Set(C). At Line (6), if P # F, meaning that it is not the

case that all the initial states satisfy Flag = 1, then property AG(Flag =1) does

not hold. Otherwise, if P = F, then necessarily Set(Q) c Set(C), meaning that all

the initial states satisfy Flag = 1. In this case, the computation continues. In

Lines (7), (8), (9), (10), the next states and the frontier set of states reached in

one transition step are computed. At Line (11), if Q = F, which means that set of

states reached from the initial states by one transition step is already covered by

the set of initial states, i.e., no new states have been generated, and it was

already verified that all the initial states satisfy Flag =1, hence AG(Flag =1)

holds in this case. Otherwise, if new states are generated, the algorithm

continues. Therefore, according to the above analysis, the algorithm gives the

correct result at K = 0.

- Suppose that the algorithm produces the correct result up to K = n, thenR is a

DF representing the set of all the reachable states after n+1 transition steps, Q is

a DF representing the frontier set of states generated after n+1 transition steps,

and all the states in Set(R) except those in Set(Q) satisfy Flag =1. At K = n+1, in

Lines (5), (6), all the states in Set(Q) are checked if they satisfy Flag =1. If not,

then AG(Flag =1) does not hold, and the algorithm does stop and report failure;

if yes, meaning that all the reachable states in Set(Q) satisfy Flag =1, the

algorithm continues to compute the frontier set of the states reachable in n+2

transition steps in Lines (7) - (10). At Line (11), if Q= F, meaning that all the

frontier states have been seen (the fixpoint has been reached), then the

algorithm stops by reporting success. Otherwise, the algorithm continues.

Hence, the algorithm gives a correct result at K = n+1.

From the above two cases, it follows by induction on K that Theorem 2 holds.

117

However, if the reachability analysis of a particular ASM does not terminate, i.e.,

new next states are generated at every transition, the algorithm will not stop. The

reasons of non-termination and a proposal for some solutions are addressed in

[82].

9.2 Correctness of Algorithm Check_AF(M, C)

Before we can prove the correctness of the algorithm Check_AF(M, C), we need to prove

the following lemmas.

Lemma 1: Let a directed graph G = <V, E> such that V is a set of nodes and /V/ =

n is the number of elements in V, E is a set of node pairs <vi,vj> representing a

directed edge from node vi to node v1, and there is at least one edge leading to

each node in V, then there exists at least one cycle in G and the cycle consists of

less than n edges.

Figure 26 - One case of Lerruna 1 when IVI = 2 and only one
edge leads to each node.

118

PROOF. To prove this lemma, we have to detect a cycle in the graph.

Take a node from V and mark it as v1 , find the edge pointing to v1 , if the edge is

v 	then a cycle is found. Otherwise, we record the edge as v1 <-- v2. Then

we search for an edge pointing to v2. If the edge is <v1, v2> or <v2, v2>, then a

cycle is found. Otherwise, we have v1 <-- v2 	v3. In general, we may have v1 cz-

- v2 <-- v3 <-- 	v i_1 <-- v (i < n). If vi = v k (k i), then a cycle exists with less

than n edges. Otherwise, we keep following the edges backword until v1 <-- v2

v3 <-- 	<-- vn. Since each node has at least one edge leading to it, there

must exist an edge leading to vn, i.e., there must exist a node vm (1 m n) such

that <vin, vn> c E . Figure 27 illustrates such a case. Therefore, a cycle exists

containing nodes Vm, vrn+i, 	vn_1, vn, consisting of n-m+1 edges. When m = 1,

i.e., vin = v1 , there are n edges in the cycle.

Figure 27 - One case of Lemma 1 when IVI = n and only one edge points to each
node.

Lemma 2: Suppose that Si and S2 are sets of states, 1511 = n, every state s in Si has

a next state s (the next state s' couldbe the same as s), S2 is derived from Si by one

transition, and Si c S2. Starting from any state in Si , there exists a path that forms

a cycle consisting of at most n transitions.

119

00

000
Figure 28 - One case of Lemma 2 when1Sj1= 2 , 1521= 3.

120

PROOF. To prove this lemma, we show that such a cycle can always be

constructed.

We build a graph G = <V, E> such that V is a set of nodes, a node represents a state

in s1, IVI = n; E is a set of directed edges, with each edge <si , si> (1 	n, 1 j

n) indicating that si is reached from si in one transition.

Since S2 is derived from the states in Si by one transition and S./ c 52, then all the

states in Si are again reached from the states in S./ in one transition. In the other

words, there is at least one edge leading to each node in V in G. Figure 28 shows

such a case when 1S11= 2 and IS21 = 3. According to Lemma 1, there is at least one

cycle in G and the cycle consists of at most n edges. Suppose that the cycle
consists of states si+ jr, 5i+2 , 	si+m (i 0, i+m n), starting from state si+i e

and following the edges in the cycle, after at most n transitions, we get a path

containing a cycle.

Lemma 3: Suppose that Si and S2 are sets of states, S2 is reached from Si in m (m

I) transitions, and Si c S2. Starting from any state in S, after n = IS11 x m

transitions, there exists a path that forms a cycle.

PROOF. This lemtna can be proven by viewing the m transition steps from the
states in S1 to the states in S2 as one "macro" transition and then by applying

Lemma 2.

Theorem3: The algorithm Check AF(M, C) given in Section 6.2.3 is correct.

121

PROOF. The algorithm Check_AF(M, C) verifies whether there exists a state

satisfying C (Flag =1) along every path in the infinite computation forest derived

from M. To prove the correctness of the algorithm, we do induction on the

transition step number K.

•When K = 0, P represents the set of initial states, is an empty list. The algorithm

executes the following lines:

(7) Q := PbyS(P, C);
(8) if Q = F then return success;
(9) if 3 T E 1,, PbyS(T, Q) = F return failure;
(10) E := 	[Q];
(11) K := K+1;
(12) I := Fresh(Xm, K);
(13) P:= RelP({/, Q, GT }, Xin UYm,);

At Line (7), Q is a DF representing the set: Set(Q) = Set(P) \ Set(C). At Line (8),

if Q = F, which means Set(P) c Set(C), i.e., all the initial states satisfy Flag = 1

and the property AF(Flag = 1) holds. If it is not true that Q = F, which means that

some of the initial states do not satisfy Flag = 1, the computation continues. Line

(9) is skipped since is empty. At Line 10, the algorithm records Q as an element

in E and computes the next states derived from Set(Q) in Lines (11) (12) (13).

The algorithm thus gives a correct result when K = 0.

•Suppose that the algorithm gives a correct result up to K =n. is then a list

containing n elements, the lst element is the DF representing the initial states not

satisfying Flag = 1, and the ith (2 5_ i n) element in E (which is a DF) represents

the set of states that do not satisfy Flag =1 and are reached in one transition from

the states in the (i-1)th element of E. P is a DF representing the set of states

generated after one transition from the states in the nth element of E.

When K = n+1, at Lines (7), (8), we check if all the states in Set(P) satisfy Flag

122

=1. If yes, then it means that for every computation path a state satisfying Flag =1

is found and AF(Flag =1) holds. Otherwise, we check if Set(Q) covers any set in

1,. At Line (9), if 3 T E 1,, PbyS(T, Q)= F, then Set(T) z Set(Q). Since Set(Q) is

derived from Set(T), then according to Lemma 3 there is at least one cycle in the

computation paths, and the states along the cycle do not satisfy Flag = 1.

Therefore, AF(Flag = 1) does not hold. If no cycle is detected, the computation

continues. It follows that the algorithm gives a correct result at K = n+1.

From the above two cases, by induction on K, we have proven Theorem 3.

However, there still exists the non-termination problem in this algorithm if the

reachability analysis of a particulax ASM does not terminate, and no cycle is

detected among the states not satisfying (Flag =1). Figure 29 shows such a case.

The reasons of non-termination and a proposal for some solutions are addressed in

[821

123

Note: No state in {s0, sl, 	sn, ...} satisfies C.

Figure 29 - A case of non-termination of algorithm Check_AF(M, C)

Summary

We have proven the correctness of the algorithms Check_AG(M, C) and Check_AF(M,
C. The proofs of correctness for Check_A(M, n, C), Check_AU(M, C), Check_EX(M, n,
C), Check_EG(M, C), Check_EF(M, C), Check_EU(M, C), and for the algorithms for
checking AG (c => (F p)) and AG(c => pUq) can be carried out in a similar way as the

124

proofs of Theorems 2 and 3.

In the next chapter, we illustrate the property checking procedures on two

examples.

10 	Experimental results

In this chapter, we apply the MDG-based model checker introduced earlier to two

hardware design examples: the Island Tunnel Controller (TTC) [39], and the Abstract

Counter [34]. Although the two examples are small and do not represent the scale of

designs that MDG-based model checker can verify, they are ideal for illustration purposes.

From the two examples, we can see how the ASMs are used to describe design models,

and how the properties can be stated using LmDG. We also carried out the same

verification using the ROBDD-based verification tool VIS [83]. Both tools showed the

same verification result. However, using the MDG-based method, we were able to use

abstract variables that describe the data path and the first-order temporal logic to state

properties, hence, the performance of the MDG-based model checker is much better than

that of VIS.

10.1 Checking Properties of the Island Tunnel
Controller

The Island Tunnel Controller was originally introduced by Fisler and Johhson [39] to

125

126

illustrate the notation of a heterogeneous logic system supporting diagrams as logic

entities, however, no verification experiment were performed.

10.1.1 The Island Tunnel Controller

Generally speaking, the ITC controls the traffic lights at both ends of a tunnel based on the

information collected by sensors installed at both ends of the tunnel: there is one lane

tunnel connecting the mainland to an island, as shown in Figure 30. At each end of the

tunnel, there is a traffic light. There are four sensors for detecting the presence of vehicles:

one at the tunnel entrance (ie) and one at the tunnel exit on the island side (ix), and one at
the tunnel entrance (me) and one at the tunnel exit on the mainland side (mx). It is assumed

that all cars are finite in length, that no car gets stuck in the tunnel, that cars do not exit the

tunnel before entering the tunnel, that cars do not leave the tunnel entrance without

travelling through the tunnel, and that there is sufficient distance between two cars such

that the sensors can distinguish the cars.

In [39], one more constraint is imposed: "at most sixteen cars may be on the island

at any time". The number "sixteen" can be taken as a parameter and it can be any natural

number. The constraint can thus be read as follows: "at most n (n 0) cars may be on the

island at any time". In our ASM approach, we have the luxury to model an abstract data

path, hence, we used an abstract variable to describe the counter n. For ROBDD-based

verification methods, like VIS, a particular instance of n has to be
given.

•
o

127

Figure 30 - The Island Tunnel Controller

Fisler and Johnson proposed a specification of ITC using three communicating

controllers and two counters as shown in Figure [31]. Their state transition diagrams are

shown in Figure 32. The island light controller (ILC) has four states: green, entering, red

and exiting. The outputs igl and irl control the green and red lights on the island side,

respectively; iu indicates that the cars from the island side are currently occupying the

tunnel, and ir indicates that ILC is requesting the tunnel. The input iy requests the ILC to

release control of the tunnel, and ig grants control of the tunnel from the island side. A

similar set of signals is defined for the mainland light controller (MLC). The tunnel

controller (TC) processes the requests for access issued by the ILC and MLC. The island

counter and the tunnel counter keep track of the numbers of cars currently on the island

and in the tunnel, respectively. For the tunnel controller, at each clock cycle, the counter tc

is increased by 1 depending on tc+ or decremented by 1 depending on tc- unless it is

already O. The island counter operates in a similar way, except that the increment and

Island counter Tunnel counter

Mainland
Light
Controller

(MLC)

mg .4 	
My

17111 r
ITIT

Island
Light
Controller

(ILC)

mrl

mgl

me

mx

Tunnel
Controller 	

ig ep,
(TC)

iu

ir

iy

ie

ix
411 	

ic+
II

tc+ v Ir
ic ic-

tc à
11

tc-

128

decrement signais are ic+ and ic-, respectively.

Figure 31 - The specification of the Island Tunnel Controller

In [39], Fisler and Johnson proposed a set of properties that the ITC design should

satisfy. In the next section, we will show how those properties are specified in LmDG, and

the CPU time and memory used for verifying the properties using the MDG package.

green red

—111110-11111.- iy = T

129

red

< mY T
4F

F 	
‹ me> (mtc-)

(a) Island light controller

dispatch

H Fil 	

reen

mrl = T

>
(b) Mainland light controller

Conventions:

ri F 	T+
-101- my = T101-1

*
L<(mu>1F_

i-clear

iu

F Î state
m-use Fil m-clear

i (c) Tunnel controller

= 0 	`1>_:_oecmg) 	

MU 	 tC =

output

Figure 32 - State Transition Graphs of the Island Tunnel Controller

entering

130

10.1.2 Property checking using the MDG package

We first create an ASM model representing the ITC design which could be read by the

MDG verification system. We created modules representing 1LC, MLC, TC, and the

counters as specified. All the signals are described using concrete variables, except that

two state variables of abstract sort WORDN for n-bit word are used to describe the island

counter (ic) and the tunnel counter (tc). The uninterprested function inc of type WORDN -

> WORDN is used to describe the operation of incrementation by 1, and dec of the same

type to describe the decrementation by 1. The environment (ENV) is built in such a way

that it allows a non-deterministic choice of values on the primary inputs ie, me, lx and mx.

Appendix A contains a listing of the ITC description in MDG-HDL, which is a language

used for hardware description at the register transfer (RT) level. MDG-based symbolic

reachability analysis requires 9 transition steps.

The following properties were verified on the ITC design:

Property 1: The lights at both entrances of the tunnel do not show green at the

same time.

This is a typical safety property that a traffic light controller should satisfy. This

property is described in the specification language LmDG as follows:

AG(! ((igl =1) & (mgl = 1)));

Property 2: The island counter is never ordered to increment and decrement

simultaneously:

AG(! ((ic- = 1) & (ic+ — 1)));

Property 3. The tunnel counter behaves properly if ordered to increment and

decrement simultaneously.

131

AG(((tc+ = 1) &(tc- = 1)) -> (LET (v = tc) IN X (tc = v)));

We used an ordinary variable v to remember the value of tc at the current state, and

compare the value of tc at the next state with v. The property states that if both the signals

tc+ and tc- are set, then the value of tc should not change from current state to the next

state.

Property 4. The tunnel counter is never ordered to increment simultaneously by

both the ILC and the MLC.

AG (Mite+ = 1) & (mtc- = 1)));

Table 1 shows the CPU time and the memory used in building the composite

machine and checldng the simplified property regarding the signal Flag on the composite

machine. The experiment was carried out on a SPARC Station 20 with 128 MB of

memory.

TABLE 1. Statistics for the ITC property verification in MDG.

Verification Building the composite machine
CPU time (sec) 	Memory (MB)

Checking the simplified property
CPU time (sec) 	Memory (MB)

Property 1 0.25 0.95 0.94 3.66

Property 2 0.32 0.98 0.61 3.53

Property 3 0.38 1.02 1.47 5.69

Property 4 0.27 1.03 0.68 4.04

132

10.1.3 Property checking using VIS

Besides the ASM-based verification experiments, we also verified the same set of

properties using VIS [83]. The same ITC behaviour model was recoded in a subset of

Verilog HDL, accepted by VIS. However, silice VIS is based on finite state machines, the

counters tc and ic are now assigned concrete values which indicate the maximum number

of cars that are allowed in the tunnel and on the island. We developed models according to

the number of register bits used for the counters. For example, if 4 bits are used to describe

ic (tc), then the maximum of 16 cars are allowed on the island (in the tunnel). It takes 65

transition steps to compute all the reachable states when 4 bit counters are used. From

Table 2, we can see that the number of transition steps increases when the counter width

increases. Appendix B shows the ITC behavior model with 4 bit counters in Verilog HDL.

The properties were described in CTL as follows:

Property 1: AGO((ig1=1 * mg1=1)));

Property 2: AG(!((ic_minus=1 * ic_plus=1)));

Property 3: In CTL, this property could be expressed as the conjunction of the

following formulas. We have to enumerate all the possible values that tc could

take, i.e., from 0 to 15.

AG(((tc+ = 1) * (tc- = 1) * (tc<O>=0 * tc<1>=0 * tc<2>=0 * tc<3>=0))

-> (A X (tc<O>=0 * tc<l>=0 * tc<2>=0 * tc<3>=0)));

AG(((tc+ = 1) * (tc- = 1) * (tc<O>=1 * tc<l>=0 * tc<2>=0 * tc<3>=0))

-> (A X (tc<O>=1 * tc<l>=0 * tc<2>=0 * tc<3>=0)));

133

AG(((tc+ = 1) * (tc- = 1) * (tc<O>=1 * tc<l>=1 * tc<2>=1 * tc<3>=1))

-> (A X (tc<O>=0 * tc<1>=0 * tc<2>=0 * tc<3>=0)));

Property 4. AG (!((itc+ = 1) * (mtc- = 1)));

Table 2 shows the CPU time and the memory used for verifying all the four

properties on models with different counter widths. We also indicate the number of

transition steps needed for the state exploration and the number of reachable states for the

different models. The experiment was also carried out on a SPARC Station 20 with 128
MB of memory.

TABLE 2. Statistics for the ITC property yerification using VIS.

Counter Width CPU time (sec) Memory (MB) Number of
reachable states

Number of
transition steps
neede,d for state

exploration

4 bits 4 5.67 59808 65

5 bits 15 6.01 234400 129

6 bits 46 6.70 927648 257

7 bits 205 (3:25) 8.35 3.69e+06 513

8 bits 875(14:35) 11 1.47e+07 1025

9 bits 3097(51:37) 22 5.88e+07 2049

10 bits 12697(211:38) 50 2.35e+08 4097

10.1.4 Discussion

From the experimental results shown in Tables 1 and 2, we can see that the MDG-based

model checking can verify a parameterized implementation having n bits, and it does so

134

very efficiently and independently of the datapath width. That is exactly the purpose

behind the development of the ASM-based model checking methods. On the other hand,

using the ROBDD-based tool VIS, the number of transition steps needed for state

exploration and the number of states get doubled, and the resource usage (CPU time and

memory) for the property verification increases exponentially with the counter width.

10.2 Verification of Properties of an Abstract Counter

In this section, we use the MDG-based model checker to verify both safety and liveness

properties on a small design: an abstract counter which was introduced in [34]. The

abstract counter was used in [34] as an example to show how formulas in Ground

Temporal Logic can be used to describe state transitions and to specify design properties.

Figure 33 shows the state transition graph of the counter. There are four control states:

c _ Fetch, c Load, c Incl, and c Inc2. Depending on the input, the counter pc will get a _

new value, or increase by one, or keep the previous value.

--- 	c_No_op

c_Incl
or c_Inc2

Figure 33 - An abstract counter

135

10.2.1 Property checking using the MDG package

To use our model checker, we first describe the behavior of the counter using the MDG-

HDL language [801 The description is shown in Appendix C. The counterpc is of abstract

sort. The control state is initialized to c_Fetch, the initial value of pc is a free variable

called init_pc (i.e., the initial state is generalized to any value). It takes 3 transition steps to

compute all the reachable states. The following properties were verified:

Property 1: From state c_Fetch, if the input is c_Inc2, then the machine goes to

the next state c_Inc1. This property is expressed in LmDG as follows:

AG((state = c_Fetch & input = c_Inc2) -> (X(state = c_Incl)));

Property 2: From state c_Fetch, if the input is c_Inc2, then the machine always

reaches state c_Inc2 in two transition steps. This property is

expressed in LmDG as follows:

AG((state = c_Fetch & input = c_Inc2) -> (XX(state = c_Inc2)));

Property 3: From state c_Fetch, if the input is c_Inc2, then the machine reaches

state c_Fetch in three transition steps and the counter pc has been

increased hy 2. This property is expressed in LmDG as follows:

AG((state = c_Fetch & input = c_Inc2)

-> (LET (v1=pc) IN (XXX(state = c_Fetch & pc = finc(finc(v1))))));

Property 4: From state c_Fetch, the machine will eventually reach state c_Load if

the input is not c_No_op or c_Incl or c_Inc2 forever. The property is

expressed in LmDG as:

AG((state = c_Fetch) => (F(state = c_Load)));

under the following fairness constraint:

((state = c_Fetch)

-> ((input = c_Incl) I (input = c_No_op) I (input = c_Inc2)));

136

These properties were verified by our model checker using less than one second.

Table 3 shows the CPU time in seconds used in building the composite machine and

checking the simplified property regarding Flag on the composite machine. The

experiment was carried out on a SPARC Station 20 with 128 MB of memory.

TABLE 3. Statistics for the abstract counter verification in MDG.

Verification Building the composite machine
CPU time (sec) 	Memory (MB)

Checking the simplified property
CPU time (sec) 	Memory (MB)

Property 1 0.17 0.80 0.04 0.14

Property 2 0.21 0.89 0.04 0.15

Property 3 0.31 0.90 0.12 1.75

Property 4 0.37 1.65 0.06 0.51

Using the decidable fragment of Ground Temporal Logic [34], Property 1, 2 and 3

could be checked, but Property 4 could not be verified since it is a liveness property. Using

the "true symbolic model checking" [47], all the properties could be checked. But when

verifying Property 3, as the abstract data pc appears in the property, we need to first strip

the first-order parts in the formula to obtain a propositional formula G((state = c_Fetch &

input = c_Inc2) -> (XXX(state = c_Fetch))). After the propositional formula has been

verified, a first-order verification condition need to be generated and verified. Using the

ICS model [43][45], it happens that the abstract counter fans into the class of circuits

where finite instantiation cannot be applied and thus it is not possible to compute all the

reachable states; therefore, it appears that none of the above properties could be verified.

10.2.2 Property checking using VIS

To compare the performance of the MDG-based model checker to that of an FSM-based

verification tool, and to partially verify the verification results, we carried out the same

property verification using VIS. Again, for the counter pc, we have to give its upper

137

bound. We modeled the abstract counter in a subset of Verilog (see in Appendix D) using

registers with different width for the counter pc, i.e., registers consisting of 4 bits, 8 bits,

16 bits, and 32 bits. On each model, we verified the same set of properties as in Section

10.2.1. The properties for the model with 4 bit pc register are stated in CTL as follows:

Property 1: AG(((state = c_fetch) * (input_instruction = c_inc2))

-> (AX(state = c_incl)));

Property 2: AG(((state = c_fetch) * (input_instruction = c_inc2))

-> (AX(AX(state = c_inc2))));

Property 3: AG(((state = c_fetch) * (input_instruction = c_inc2)

* (pc<3> = 0 * pc<2> = 0 * pc<l> = 0 * pc<O> = 0))

-> (AX(AX(AX((state = c_fetch)

* (pc<3> = 0 * pc<2> = 0 * pc<l> = 1 * pc<O> = 0))))));

with (pc<3> pc<2> pc<l> pc<O>) ranging over from 0000 to 1111;

Property 4: AG((state = c_fetch) -> (AF(state = c_load)));

under the following fairness constraint:

!((state = c Fetch) -> ((input = c_Incl) I (input = c No_op) I (input = c_Inc2)));

Table 4 shows the number of transitions it takes for each model to compute all the

reachable states, the number of the reachable states, the CPU time, and the memory

needed to verify Properties 1 to 4.

138

TABLE 4. Statistics for the abstract counter verification using VIS.

Counter Width CPU tinte (sec) Memory (MB) Number of
reachable states

Number of
transition steps
needed for state

exploration

4 bits 0.56 2.84 448 6

8 bits 3 3.72 7168 6

16 bits 7 4.80 1.83501e+06 6

32 bits 12 6.12 1.20259e+11 6

10.2.3 Discussion

The statistics shown in Tables 3 and 4 again demonstrate that the MDG-based model

checking can verify both safety and liveness properties on a parameterized

implementation independent of the data path width very efficiently. However, from Table

4, we can see that with the counter width increasing, the number of reachable states

increases exponentially, but the number of transition steps needed for state exploration

stays the same and the usage of CPU time and memory only increases slightly, which was

not the case in the Island Tunnel Controller. The reason is that in this particular example,

the counter pc is independent of the state transitions, i.e., the state transitions are not gated

by the value of pc. Every time when loading in a new value of pc it can take any value

within its range, hence, the node pc will not appear in the BDD expression of the sets of

states. Therefore, no matter how large the width of pc is, the time and memory usage will

not grow significantly. Nevertheless, the MDG-based model checking still outperforms the

ROBDD-based model checker in the sense that one ASM model of the Abstract Counter

and one set of properties automatically cover all the possible pc widths. Using VIS on the

other hand, we have to build separate models and to develop separate sets of properties for

pc instances of different widths.

Summary

In this chapter, we performed property verifications on two examples: the Island Tunnel

Controller and the Abstract Counter. We illustrated how safety and liveness properties can

be described in LmDG. Using MDG_based model checking, we were able to use only one

abstract variable instead of a number of Boolean variables for representing a data value.

Hence, the performance of the MDG-based model checker was better than that of the

ROBDD-based model checker when there is a data path involved in the design.

139

11 	Conclusions and Future Work

11.1 Conclusions

BDD-based symbolic model checking has proven to be a successful verification technique

that can be applied to real life designs. However, since it requires the design to be

described at the Boolean logic level, the state explosion problem caused by large datapath

is often the bottleneck in applying symbolic model checking technique.

In this thesis, we studied model checking for a first-order temporal logic based on

the Abstract description of State Machines (ASMs). Since a data value is represented by a

single variable of abstract type, rather by a vector of Boolean variables, and a data

operation is represented by an uninterpreted funcfion symbol, the width of a datapath of a

design has no affect to the description model of the design. We can then alleviate the state

explosion problem in symbolic model checking caused by a large datapath.

We defined a very general first-order branching-time temporal logic:

Abstract_CTL*. We then defined 4ADG, a subset of Abstract_CTL*, as the property

140

141

specification language and developed property checking algorithms for LmDG. To check a

property of LmDG on an ASM M, we first build additional ASMs for all the

Next_let_formulas (which contain the temporal operator X) that appear in the property.

Then we compose the additional ASMs with M, and finally verify a simpler property on

the composite machine. We only allow universal path quantifier and limited nesting of

temporal operators (other than X) in LmDG, however, useful safety and liveness properties

can be expressed with or without fairness constraints. We use MDGs to encode sets of

states and the transition relations. The property checking procedures are based on implicit

state enumeration and are carried out fully automatically. We have also demonstrated the

soundness of our verification procedures.

We have implemented a parser in the C language using Yacc and Lex to check the

property specification and to automatically build ASMs for the Next_let_formulas. All the

model checking algorithms were implemented using the MDGs operations implemented

in Quintus Prolog V3.2.

We illustrated the application of our model checker on the Island Tunnel

Controller and the Abstract Counter benchmarks. The experimental results demonstrate

that the MDG-based model checking can verify both safety and liveness properties on

parameterized implementations independent of the data path width very efficiently.

11.2 Future work

The ASMs-based model checking for a first-order temporal logic presented in this thesis

showed its potential of automatically verifying properties on designs with large data path.

However, there are areas in which the present work could be improved or extended. Listed

below are some of the future research directions:

• Developing a counter-example facility:

142

A counter-example facility showing a trace from the initial state to a state causing the

property to fail will certainly make debugging of designs a lot easier. Several ROBDD-

based model checkers possess this feature [86][83]. In our MDG package, states are

described in DFs represented by MDGs. When abstract state variables are involved,

we cannot distinguish one computation path from another during the state exploration,

since even a one-disjunct DF represents a set of states. Hence, we cannot provide the

same counter-example facility as an ROBDD-based model checker can.

However, in the MDG package, when a property fails, it is possible to provide traces

from a set of initial states to sets of states in which the property was not satisfied. One

possible solution is as follows: when checking a property, in addition to computing the

next states using RelP, we add a DF Stotai (initialized to the initial set of states) to

record the current states, all the previous states, and the inputs. This can be achieved

by adding the following two statements within the iteration of each property checking

total = 	 -Stotal, 	 -Stotal 	Stotal; algorithm: S 	RelP({/, pre 	GT }, {}, inew); pre

the inputs, GT the transition relation, and tue, a renaming function which substitutes

Y to Yn (n is iteration number). If a safety property (in the template of AG, AX) fails,

a DF Conj(Stotai, {Flagn =O}) contains several counter-example traces. It a liveness

property fails, a DF Conj(Stotai, Flagn =0) when the property is in the template of AF

(or a DF Conj(Stotai, FlagQn =0) when the property is in the template of AU), and the

DF T (when if 3 T 	PbyS(T, Q) = F is detected) should help the user to find the

cycles along which Flag = 1 (or FlagQ = 1) never becomes true.

• Link to theorem provers:

Combining both theorem proving and model checking to resolve the verification tasks

involving large designs becomes an interesting topic in the formal verification

application community[71]. Theorem proving can be used at a higher level of

abstraction than model checking and can augment the verification coverage of the

design hierarchically. In a sense, model checking can be used to verify the low-level

where I are

143

modules until it cannot go higher in the hierarchy.

It is thus desirable to explore the linkages between MDG tools and a theorem proyer

(e.g., HOL). The MDG-based model checker can be used as a decision procedure in a

theorem proving system. Namely, when using the theorem proyer to verify a large

goal, some of the sub-goals or lemmas could be proved using the MDG-based model

checker.

• Experimental verification of the method using industrial and academic benchmarks:

The MDG-based verification package (including the model checker) used variables of

abstract type to represent data and uninterpreted functions to describe data operation.

The data width is no longer the bottleneck to cause the state explosion. This is ideal for

verification of designs with large data path. It would be valuable to test a large number

of industrial scale designs with large data path (most telecommunication circuits

happen to fall into this category) and academic benchmarks using the MDG-based

model checker, in order to evaluate and to improve its performance.

• Solving the non-termination problem:

Some early research has shown that two approaches could solve the non-termination

problem in some situations. The first one is based on the use of p-terms which can

finitely represent infinite sets of state [641. An extension of the syntax of MDGs and

MDG-based algorithms could incorporate p-terms to solve the non-termination

problem when the generated set of states exhibit certain repetitive patterns. The

second approach is to modify the original ASM structural description according to

certain rules to avoid the non-termination problem[65]. It would be valuable to explore

a more general method that could automatically analyze the ASM description, modify

the design description and infer p-terms. Furthermore, implementing these ideas in the

package would extend the applicabifity of the MDG-based verification techniques.

144

• Automatic node ordering:

It is possible to develop an automatic node ordering procedure based on the current

variable ordering heuristics for the MDG package and the experience from ROBDDs

and other decision graphs [191[351[36][661[701. Automatic node ordering would make

the MDG package easier to use and improve the performance of the model checking

procedures.

Bibliography

[1] C. M. Angelo, D. Verkest, L. Claesen, H. De Man. On the Comparison of HOL and

Boyer-Moore for Formai Hardware Verification. In Journal Formai Methods in

System Design, vol 2: pp. 45-72, 1992.

[2] K.D. Anon, N. Boulerice, E. Cerny, F. Corella, M. Langevin, X. Song, S. Tahar, Y.

Xu, Z. Zhou. MDG Tools for the Verification of RTL Designs. In Proceedings of

Conference on Computer-Aided Verification (CAV'96). New Jersey, USA, July

1996.

[3] J. P. Billon and J. C. Madre. Original concepts of PRIAM, an industrial tool for

efficient formal verification of combinational circuits. In Fusion of Hardware

Design and Verification, G. J. Milne (ed.). pp. 487-501. North-Holland,

Amsterdam, 1988.

[4] G.V. Bochmann, Hardware specification with temporal logic: An example. In

IEEE Transactions on Computers, C-31(3): pp.223-231, March 1982.

[5] J. Bormann, J. Lohse, M. Payer, G. Venzl. Model Checking in Industrial Hardware

Design. In Proceedings of the 32th Design Automation Conference (DAC 95). June

1995.

145

146

[6] S. Bose and A.L. Fisher. Automatic verification of synchronous circuits using

symbofic simulation and temporal logic. In Proceedings of the IFIP International

Workshop on Applied Formai Methods for Correct VLSI Design, Leuven, Belgium,

1989, L.J.M. Claesen, (ed), pp.759-764. North-Holland, Amsterdam, 1990.

[7] M.C. Browne, E. M. Clarke, D.L. Dili. and B. Mishra. Automatic Verification of

Sequential Circuits Using Temporal Logic. In IEEE Transactions on Computers,

December 1986.

[8] R.S. Boyer and J.S.Moore. A Computational Logic Handbook. Academic Press,

Boston, 1998.

[9] R.K. Brayton et. al. VIS: A system for verification and synthesis. Technical

Report. UCB/ERL M95. Electronics Research Lab, University of California,

Berkeley. December 1995.

[10] R.K. Brayton et. al. VIS: A system for Verification and Synthesis. In the

Proceedings of the 8th International Conference on Computer Aided Verification,

pp.428-432, Springer Lecture Notes in Computer Science, #1102, Edited by R.

Alur and T. Henzinger, New Brunswick, NJ, July 1996.

[11] R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE

Transactions on Computers, 35(8):pp.677-691, August 1986.

[12] R.E. Bryant and C.-J.H. Seger. Formal verification of digital circuits using

symbolic ternary system models. In Proceedings of the Workshop on Computer-

Aided Verification (CAV 90), E.M. Clarke and R.P. Kurshan (eds.). volume 3 of

DIMACS Series in Discrete Mathematics and Theoretical Computer Science.

American Mathematical Society, Spring-Verlag, New York, NY, 1991.

[13] R.E. Bryant, D. Beatty, K. Brace, K. Cho, and T. Sheffier. COSMOS: A compiled

simulator for MOS circuits. In Proceedings of the 24th ACMIIEEE Design

147

Automation Conference, pp.9-16. IEEE Computer Society Press, Los Alamitos,

CA, June 1987.

[14] J. R. Burch, E. M. Clarke, and D. E. Long. Symbolic model checking with

partitioned transition relations. In VLSI 91, Edinburgh, Scotland, 1990.

[15] J. R. Burch, E. M. Clarke, D. E. Long, K. L. McMillan, and D. L. Dill. Symbolic

model checking for sequential circuit verification. In IEEE Transactions on

Computer-Aided Design, 13(4):401-424, April 1994.

[16] J. R. Burch, E.M. Clarke, and K. L. McMillan. Symbolic model checking: 1020

States and Beyond. In Proceedings of LICS, 1990.

[17] J. Burch, E.M. Clarke, K.L. McMillan, and D.L.Dill. Sequential circuit verification

using symbolic model checking. In Proceedings of the 27th ACMIIEEE Design

Automation Conference, pp.46-51. IEEE Computer Society Press, Los Alamitos,

CA, June 1990.

[18] J.R. Burch and D.L. Dill. Automatic Verification of Pipelined Microprocessor

Control. In Computer Aided Verification. 6th International Conference,1994.

[19] Ney Calazans, Q. Zhang, R. Jacobi, B. Yernaux and A.M.Trullemans. Advanced

Ordering and Manipulation Techniques for Binary Decision Diagrams. In

Proceedings of the 29th Design Automation Conference (DAC'29), June 1992.

[20] A.J. Camilleri, M.J.C. Gordon, and T.F. Melham. Hardware verification using

higher-order logic. In From HDL Descriptions to Guaranteed Correct Circuit

Designs, pp.43-67. D. Borrione(ed.). North-Holland, Amserdam, 1987.

[21] B. Chen, M. Yamazaki, M. Fujita. Bug Identification of a Real Chip Design by

Symbolic Model Checking. In Proceedings of International Symposium on

Circuits and Systems (ISCAS' 94), 1994.

148

[22] E.M. Clarke and E. A. Emerson. Design and Synthesis of synchronization

skeletons using branching time temporal logic. In Proceedings of the Workshop on

Logics of Programs, Volume 131 of Lecture Notes in Computer Science. Springer-

Verlag, pp. 52-71. New York, 1981.

[23] E.M. Clarke and E. A. Emerson. Synthesis of synchronization skeletons for

branching time temporal logic. In Dexter Kozen, editor, Logic of Programs:

Workshop, volume 131 of Lecture Notes in Computer Science, Yorktown Heights,

New York, May 1981. Springer-Verlag.

[24] E.M. Clarke, E. A. Emerson, and A.P. Sistla. Automatic verification of finite state

concurrent systems using temporal logic specifications. ACM transactions on

Programming Languages and Systems, 8(2):pp.244-263 (April 1986).

[25] E. M. Clarke, O. Grumberg, and D. E. Long. Model checking and abstraction. In

Proceedings of the Nineteenth Annual ACM Symposium on Principles of

Programming Languages, January 1992.

[26] R. L. Constable, et al. Implementing Mathematics with the Nuprl Proof

Development System. PrenticeHall, Englewood cliffs, New Jersy,1986.

[27] F. Corella, M. Langevin, E. Cemy, Z.Zhou, X. Song. State enumeration with

abstract descriptions of state machines. In Proceedings IFIP WG10.5 Advanced

Research Working Conference on Correct Hardware Design and Verification

Methods(Charme 95), Frankfurt, Germany, October 1995.

[28] F. Corella, Z.Zhou, X. Song, M. Langevin, E. Cerny. Mulfiway decision graphs for

automated hardware verification. Formai Methods in System Design. 10(1): 7-46,

February 1997.

[29] O. Coudert, C. Berthet, and J. C. Madre. Verification of synchronous sequenfial

machines using symbolic executîon. In Proceedings of the International Workshop

on Automatic Verification Methods for Finite State Systems, Grenoble, France,

149

volume 407 of Lecture Notes in Computer Science. pp. 365 - 373. Spring-Verlag,

New York, 1989.

[30] O. Coudert, C. Berthet, and J. C. Madre. Verification of sequential machines using

boolean functional vectors. In L. Claesen, editor, Proceedings IFIP International

Workshop on Applied Formai' Methods for Correct VLSI Design, pp. 111--128,
Leuven, Belgium, November 1989. North-Holland.

[31] O. Coudert, J.C. Madre, and C. Berthet. Verifying temporal properties of

sequential machines without building their date diagrams. In Proceedings of the

Workshop on Computer-Aided Verification (CAV 90), E.M. Clarke and R.P.
Kurshan (eds.). volume 3 of DIMACS Series in Discrete Mathematics and

Theoretical Computer Science. American Mathematical Society, Spring-Verlag,
New York, NY, 1991.

[32] O. Coudert and J. C. Madre. A unified framework for the formal verification of
sequential circuits. In Proceedings of International Conference on Computer-

Aided Design (ICCAD' 90), 1990.

[33] Paul Curzon. The formal verification of the Fairisle ATM switching element.

Technical Report No.328, No.329, University of Cambridge Computer Laboratory,

1994.

[34] D. Cyrluk and P. Narendran. Ground Temporal Logic: A logic for hardware
verification. In Proceedings on Computer-Aided Verification, 1994.

[35] Rolf Drechsler, Nicole Drechsler, Wolfgang Günther. Fast Exact Minimization of
BDDs. In Proceedings of the 34th Design Automation Conference (DAC' 98),

pp.200. San Francisco, California. June 1998.

[36] Rolf Drechsler, Wolfgang Günther. Linear Transformations and Exact
Minimization of BDDs. In Great Lakes Symposium on VLSI (GLSV'98), pp. 325-
330. Lafayette, 1998.

150

[37] E. Allen Emerson. Temporal and Modal Logic, 16th chapter of HANDBOOK OF

THEORETICAL COMPUTER SCIENCE, edited by Ivan Leeuwen. Elsevier

Science Publishers B.V., 1990.

[38] E. A. Emerson, C. L. Lei. Modalities for Model Checking: Branching Time Logic

Strikes Back. Science of Computer Programming 8, pp. 275-306, Elsevier Science

Publishers, 1987.

[39] K. Fisler and S. Johnson. Integrating design and Verification Environments

Through A Logic Supporting Hardware Diagrams. In Proceedings of IFIP

Conference on Hardware Description Languages and their Applications

(CHDL' 95). August 1995, Chiba, Japan.

[40] M. J. C. Gordon and J. Herbert. Formal hardware verification methodology and its

application to a network interface chip. IEE Proceedings, 133, Part E(5): pp.255-

270 (September 1986).

[41] M. J. C. Gordon, T. F. Melham. Introduction to HOL: A theorem proving

environment for higher order logic. Cambridge University Press, Cambridge, UK,

1993.

[42] A. Gupta. Formal Hardware Verification Methods: A Survey. In Journal Formai

Methods in System Design, vol 1, pp. 151-238 (1992).

[43] R. Hojati, R. K. Brayton. Automatic datapath Abstraction In Hardware Systems. In

Proceedings of Conference on Hardware Description Language (CHDL' 95),

Tokyo, Japan, August 1995.

[44] R. Hojati, A. Isles, D. Kirkpatrick, R. K. Brayton, Verification Using Uninterpreted

Functions and Finite Instantiations, Formai Methods in Computer-Aided Design

(FMCAD), November 1996.

151

[45] R. Hojati, D. L. Dill, R. K. Brayton. Verifying linear temporal properties of data

insensitive controllers using finite instantiations. In Proceedings of IFIP

Conference on Hardware Description Languages and their Applications

(CHDL'97). Spain, April 1997.

[46] J. E. Hoperoft and J. D. Ullman. Introduction to Automata Theory, Languages and

Computation. Addison-Wesley, Reading, March 1979.

[47] H. Hungar, O. Grumberg, and W. Damm. What if Model Checking Must Be Truly

Symbolic. In Workshop on Tools and Algorithms for the Construction and Analysis

of Systems (TACAS' 95), Aarhus, Denmark, May 1995.

[48] W. A. Hunt, Jr. FM8501: A verified microprocessor. Ph.D thesis, Technical Report

ICS CA-CMP-47, University of Texas at Austin, 1985.

[49] W. A. Hunt, Jr. Microprocessor design verification. Journal of Automated
Reasoning, 5(4): 429-460 (1989).

[50] A. Isles, R. Hojati, R. K. Brayton. Reachability Analysis of ICS Models, SRC

Techcon, September 1996.

[51] Jae-Young Jang, Shaz Qadeer, Matt Kaufmann, Carl Pixley. Formal Verification of

FIRE: A Case Study. In Proceedings of the 34th Design Automation Conference

(DAC' 97). Anaheim, CA, June 1997.

[52] P. B. Jackson. Nuprl and its Use in Circuit Design. In Proceedings of the IFIP

TC10IWG10.2 International Conference on Theorem Provers in Circuit Design:

Theory, Practice and Experience, V. Stavridou, T.F. Melham and R.T. Boute

(Editors), pp. 311-336, North-Holland, The Netherlands, 1992.

[53] P. B. Jackson. The Nuprl Proof Development System, Version 4.1 Reference

Manual and User's Guide. Comell University, Ithaca, NY, 1994.

152

[54] J. Joyce, G. Birtwistle, and M. Gordon. Proving a computer correct in higher order

logic. Technical Report 100, University of Cambridge, Computer Laboratory,

December 1986.

[55] R. P. Kurshan. Reducibility in Analysis of Coordination. In LNCIS, volume 103,

pp. 19-39, Springer-Verlag, 1987.

[56] R. P. Kurshan. Automata-Theoretic Verification of Coordinating Processes. UC

Berkeley notes, 1992.

[57] R. P. Kurshan. Formal Verification in a Commercial Setting. In Proceedings of the

34th Design Automation Conference (DAC' 97). Anaheim, California. July 1997.

[58] O. Lichtenstein and A. Pnueli. Checking that finite state concurrent programs

satisfy their linear specifications. In Proceedings of the Twelfth Annual ACM

Symposium on Principles of Programming Language, pp. 196-218. ACM, New

York, 1985.

[59] Z. Manna and P. Wolper. Synthesis of communicating processes from temporal

logic specifications. ACM Transactions on Programming Languages and Systems,

6:pp.68-93 (1984).

[60] M. C. McFarland. Formal Verification of Sequential Hardware: A Tutorial. IEEE

Transaction on Computer-Aided Design of Integrated Circuits and Systems.

Vol.12, No.5, May 1993.

[61] K. L. McMillan. Symbolic model checking, An approach to the state explosion

problem. Ph.D. thesis, School of Computer Science, Carnegie Mellon University,

Pittsburgh, PA,1992.

[62] K. L. McMillan and J. Schwalbe. Formai verification of the Encore Gigamax cache

consistency protocol. In Proceedings of the International Symposium on Shared

Memory Multiprocessing, 1991. pp.242-251.

153

[63] S. Owre, N. Shankar and J. Rushby. PVS: A Prototype Verification System. In

Proc of 1 lth International Conference on Automated Deduction. D. Kapur, Ed.
Saratoga, NY, 1992.

[64] A. Otmane, X. Song, E. Cerny. On the non-termination of MDG-based abstract

state enumeration. In Proceedings of IFIP International Conference on Correct

Hardware Design and Verification Methods, (CHARME'97), pp.218-235,
Montreal, Canada, 1997.

[65] A. Otmane, E. Cerny, X. Song. MDGs-based Verification by Retiming and

Combinational Transformations. In Proceedings of the IEEE 8th Great Lakes
Symposium on VLSI, Louisiana, USA, 1998.

[66] S.Panda, F.Somenzi. Who are the variables in your neighbourhood? In

Proceedings of International Conference on Computer-Aided Design (ICCAD'95),

1995.

[67] A. Pnueli. Applications of temporal logic to the specification and verification of

reactive systems: A survey of current trends. In Current Trends in Concurrency,

J.W. de Bakker, W-P.de Roever, and G. Rozenberg (eds.), volume 224 of Lecture
Notes in Computer Science, pp. 510-584. Springer-Verlag, New York, 1986.

[68] A. Pnueli. The temporal logic of programs. In Proceedings of the Eighth Annual

Symposium on Foundations of Computer Science, pp. 123-144. IEEE, New York,
1984.

[69] J. R Quielle and J. Sifakis. Specification and verification of concurrent systems in
CESAR. In Proceedings of the Fifth International Symposium in Programming,
1981.

[70] Rajeev K. Ranjan, Wilsin Gosti . Speeding up Variable Reordering of OBDDs. In

Proceedings of International Conference on Computer Design (ICCD'97),

Austin,TX, USA 1997.

154

[71] C. Seger. Combining Theorem Proving and Model Checking: How Much Theorem

Proving Is Needed? Invited talk. In Proceedings of Conference on Computer-Aided

Verification (CAV 98). Vancouver, BC, Canada, July 1998.

[72] C. Seger and R. E. Bryant, "Formol Verification by Symbolic Evaluation of

Partially-Ordered Trajectories", UBC Department of Computer Science Technical

Report 93-8, April 1993.

[73] A. P. Sistla and E.M. Clarke. Complexity of propositional linear temporal logic.

Journal of the ACM, 32(3): 733-749 (July 1985).

[741 S. Tahar and R. Kumar: Implementing a Methodology for Formally Verifying

RISC Processors in HOL (Higher Order Logic); In: Joyce, J. and Seger, C. (Eds.),

Higher Order Logic Theorem Proving and Its Applications, Lecture Notes in

Computer Science 780, pp. 281-294. Springer Verlag, 1994.

[75] G. Thuau, B. Berkane. A Unified Framework for Describing and Verifying

Hardware Synchronous Sequential Systems. Format Methods in System Design,

vol 2: pp 259-276, 1993.

[76] H. J. Touati, H. Savoj, B. Lin, R. K. Brayton, and A. Sangiovanni-Vincentelli.

Impficit state enumeration of finite state machines using BDDs. In International

Conference on Computer-Aided Design, 1990.

[77] Y. Xu, E. Cerny, A. Silburt, and R. B. Hughes. Property Verification Using

Theorem Proving and Model Checking. Integrated System Design, November

1997.

[78] Y. Xu, E. Cemy, X. Song, F. Corella, O. Ait Mohamed. Model Checking for a

First-Order Temporal Logic using Multiway Decision Graphs. In Proceedings of

Conference on Computer-Aided Verification (CAV'98). Vancouver, BC, Canada,

July 1998.

155

[79] Z. Zhou. Multiway Decision Graphs and Their Applications in Automatic Formai

Verification of RTL Designs. PhD thesis, D'IRO, University of Monteal, 1997.

[80] Z. Zhou and N. Boulerice. MDG Tools (V1.0) User's Manual. D'IRO, University

of Montreal, June 1996.

[81] Z. Zhou, X. Song, F. Corella, E. Cerny and M. Langevin. Description and

verification of RTL designs using Multiway Decision Graphs. In Proceedings of

the Conference on Computer Hardware Description Languages and their

applications (CHDL'95). Chiba, Japan. August, 1995.

[82] Z. Zhou, X. Song, S. Tahar, F. Corella, E. Cerny and M. Langevin. Formal

verification of the island tunnel controller using multiway decision graphs. In

Proceedings of International Conference on Formal Methods in Computer Aided

Design (FMCAD'96), pp. 233 - 247, Palo Alto, CA, USA, 1996.

[83] The VIS Group web page. VIS: Verification Interacting with Synthesis, 1995.

http://www-cad.eecs.berkeley.edu/Respep/Research/vis.

[84] CMU - School of Computer Science Formal Methods - Model Checking web page.

http://www.cs.cmu.edu/—modelcheck/

[85] FormalCheck web page. http://www.bell-labs.com/org/blda/product_formal.html

[86] FormalCheck User's Guide. Bell labs Design Automation, Lucent Technologies,

V1.1, 1997.

[87] CheckOff User Guide, Siemens Nixdorf Informations Systemen AG & Abstract

Hardware Limited, January, 1996.

156

Appendix A - ITC behavioral description in MDG-
HDL

%
% File: itc_ret_s.pl
% Title: ITC specification.
% 	

% Multifile declaration required by the Prolog system.
%
:- multifile component/2.
:- multifile signal/2.
:- multifile next_state_partition/l.
:- multifile output_partition/l.
:- multifile init_val/2.
:- multifile init_var/2.
:- multifile init_con/2.
:- multifile st_nxsta.
:- multifile outputs/1.
:- multifile par strategy/2.

	

% 	 Inputs and Outputs 	

%--- Input signals---
%
signal(ie,bool).
signal(ix,bool).
signal(me,bool).
signal(mx,bool).

%--- Outputs ---
signal(irl_A,bool).
signal(igl_A,bool).
signal(itc_plus_A,bool).
signal(itc_min_A,bool).
signal(ic_min_A,bool).

signal(mrl_A,bool).
signal(mg1 A,bool).
signal(mtc_plus_A,bool).
signal(mtc_min_A,bool).
signal(ic_plus_A,bool).

signal(tc_plus_A,bool).
signal(tc_min_A,bool).

%--- Outputs ---

signal(ie,bool).
signal(ix,bool).
signal(me,bool).
signal(mx,bool).

% 	 Island Light Controller

%--- Input signals---
%
signal(ig_A,bool).
signal(iy_A,bool).

%--- Outputs ---
%
signal(ir_A,bool).
signal(iu_A,bool).

%--- State variables--
%
signal(is_A,mi_sort).

% 	 Behavioral description for the island light controller----
%
component(is_comp_A,tabled[is A,ig_A,iy_A,ie,ix,n_is_A],

[green,*,0,0,*,green],
[green,*,0,1,*,entering],
[green,*,1,*,*,red],
[entering,*,*,0,*,green],
[entering,*,*,1,*,entering],
[red, 0,*,*,0,red],
[red, 1,*,*,0,green],
[red, *,*,*,1,exiting],
[exiting, *,*,*,0,red],
[exiting, *,*,*,1,exiting]])).

component(ir_comp_A,tablea[is_A,ie,ir_A],
[red,1,1]10])).

157

component(irl_comp_A,tablea[is_A,irl_A],
[red,1],
[exiting,1]101)).

component(igl_comp_A,tablearis_A,igl_A],
[green,1],
[entering, 1] 101)).

component(iu_comp_A,tablea[is_A,iu A],
[green,
rentering,11101)).

component(itc
[green,0,1,1]101)).

component(itc minus_comp_A,tablea[is_A,ix,itc_min_A],
[red,1,1]10])).

component(ic_min_comp_A,tablea[is_A,iy_A,ie,ic_min_A],
[green,0,1,1]101)).

Mainland Light Controller

%--- Input signals---
%
signal(mg_A,bool).
signal(my_A,bool).

%--- Outputs ---
%
signal(mr_A,bool).
signal(mu_A,bool).

%--- State variables---
%
signal(ms_A,mi_sort).

Behavioral description for the mainland light controller----

component(ms_comp_A,tableff[ms_A,mg_A,my_A,me,mx,lessn(ic_A),n_ms_A],
[green,*,*,*,*,0,red],
[green,*,0,0,*,1,green],
[green,*,0,1,*,1,entering],

158

[green,*,1,*,*,1,red],
[entering,*,*,0,*,*,green],
[entering,*,*,1,*,*,entering],
[red, 0,*,*,0,*,red],
[red, 1,*,*,0,*,green],
[red, *,*,*,1,*,exiting],
[exiting, *,*,*,0,*,red],
[exiting, *,*,*,1,*,exiting]])).

component(mr_comp_A,tabled[ms_A,me,mr_A],
[red,1,1110])).

component(mrl_comp A,tabled[ms Amui A],
[red,1],
[exiting,1]10])).

component(mgl_comp_A,tablea[ms_A,mgl_A],
[green,1],
[entering,11101)).

component(mu_comp_A,tablearms_A,mu_A],
[green,1],
[entering,1]10])).

component(mtc_plus_comp_A,tabled[ms_A,my A,mellessn(ic_A),mtc_plus_A],
[green,0,1,1,1]10])).

component(mtc_minus comp A,tablea[ms_A,mx,rntc_min_A],
[red,1,1}10])).

component(ic_plus comp_A,tabled[ms_A,my A,me,lessn(ic A),ic_plus_A],
[green,0,1,1,1]10])).

% 	 Tunnel Controller
/*
%--- Input signals---
%
signal(ir_A,bool).
signal(iu_A,bool).

signal(mr_A,bool).
signal(mu_A,bool).

159

%--- Outputs ---
%
signal(ig_A,bool).
signal(iy_A,bool).

signal(mg_A,bool).
signal(my A,bool).
*/
%--- State variables-- -
%

signal(ts_A,ts_sort).

% 	 B ehavioral description for the tunnel controller-- --
%
component(ts_comp_A,
table (ffts_A,ir_A,mr_A,le s sn(ic_A) ,eqz ret 1 ,iu_A,mu_A,n_ts Al ,

[di spatch,0,0,*,*,*,*,dispatch] ,
[di spatch,O, 1,0,*,*,*,dispatch] ,
[dispatch,0,1,1,*,1,*,iuse],
[di spatch,O, 1 , 1 ,0,0,*,iclear],
[dispatch,O, 1, 1,l ,0,*,dispatch] ,
[dispatch, 1 ,*,*,0,*,0,Inclear] ,
[dispatch,1,*,*, l ,*, 0 ,dispatch],
[dispatch,1,*,*,*,*,1,muse],
[iuse,*,*,*,*,0,*,iclear],
[iuse,*,*,*,*,1,*,iuse],
[muse,*,*,*,*,*,0,mclear],
[muse,*,*,*,*,*,1,muse] ,
[iclear,*,*,*,0,*,*,iclear],
[iclear,*,*,*, 1 ,*,*,di sp atch] ,
[mclear,*,*,*,0,*,*,mclear] ,
[mclear,*,*,*,1,*,*,dispatch]])).

c omponent(ig_comp_A,table a [ts_A,ir_A,eqz_ret 1 ,mu_A,ig_A] ,
[di spatch, 1,1 ,O, 1] ,
[mclear, *, 1,*, 1] 101)).

component(iy comp_A,tabled[ts_A,iy_A],
[iuse,1]10])).

component(mg_comp_A,
tabled[ts_A,ir_A,mr_A,lessn(ic_A), eqz_retl,iu_A,mu_A,mg_A],

[iclear, *,*,*, 1,*,*,1],

160

[dispatch, 0,1,1,1,0,*,1110])).

component(my_comp_A,tablea[ts_A,my_A],
[muse,1]10])).

% 	 Behavioral description for Counters

%inputs and outputs added
signal(eqz_s 1,bool).
signal(eqz_retl,bool).
signal(s1,wordn).
signal(tc_A_sl,wordn).
signal(sig1,bool).
signal(eqz_choicel,bool).

component(signal_l, constant_signal(value(1), signal(sig 1))).
component(itc_A_reg,reg(control(sig1),input(s1),output(tc_A_s1))).
component(equz_comp1,transform(inputs([s11),function(equz),output(eqz_s1))).
component(eqz_reg 1 ,reg(control(sig 1),input(eqz_choice 1), output(eqz_ret 1))).

component(choice,
table([[itc_plus_A, mtc_plus_A, itc_min_A, mtc_min_A, eqz_choicel],

[0, 0, 1, 0,eqz_s1],
[0, 0, 0, 1,eqz_s1],
[1, 0, 0, 0,eqz_s1],
[0, 1, 0, 0,eqz_si]leqz_ret11)).

component(ctrl_tc_A,
tablea[eqz_retl,itc_plus_A, mtc_plus_A, itc_min_A, mtc min A, si],

[0, 0, 0, 1, 0, dec(tc_A_s1)],
[0, 0, 0, 0, 1, dec(tc_A_s1)],
[*, 1, 0, 0, 0, inc(tc_A_s1)],
[*, 0, 1, 0, 0, inc(tc_A_s1)]1tc_A_s1])).

component(ctrl_tc_plus_A, tablea[itc_plus_A, mtc_plus_A, tc_plus_A],
[*, 1, 1],
[1, *, 1110])).

component(ctrl_tc minus A, tabled[itc_min A, mtc min_A, tc_min_A],
[*, 1, 1],
[1, *, 11101)).

st_nxst(tc_A_s1,n_tc_A_s1).
st_nxst(eqz_retl,n_eqz_ret1).

161

162

%counter ic_A

signal(ic_A,wordn).

component(ctrl_ic_A, tablea[equz_new(ic_A),ic_plus_A, ic_min_A, nie A],
[0, 0, 1, dec(ic_A)],
[*, 1, 0, inc(ic_A)]lic_AD).

%--- Initial states ---
%

init_val(is_A,red).
init_val(ms_A,red).
init_val(ts_A,dispatch).

init_val(tc_A_sl,init_tc).
init_val(ic_A,init_ic).

init val(eqz_ret 1 , 1).
init_var(init_tc,wordn).
init_var(init_ic,wordn).

%--- Outputs ---
%
outputs([irl A, igl A, mr1 A, mgl A, itc plus A, mtc plus A, ic plus A, ic min AP.

%--- Partitions ---
%
output_partitiona[[irl_A]],[[igl_A]],[[mrl_A]],[[mgl_A]],

[[mtc_plus_A]],
[[ic_min_A]]]).

next_state_partition([

[[n_ms_A]],
[[n_ts_A]],
[[n_ic_A]],
[[n_tc_A_sl]],
[[n_eqz_retl]]

).

%--- State variable, next state variable mapping---
%
st_nxst(is_A,n_is_A).
st_nxst(ms_A,n_rns_A).
st_nxst(ts_A,n_ts_A).
st_nxst(ic_A,n_ic_A).

%--- Partition stategy---
%
par_strategy(auto, auto).

% File: itc_alg.pl
% Title: Algebraic specification file for the ITC example

% Multifile definition for Prolog predicates

multifile abs_sort/l.
multifile conc_sort/2.
multifile function/3.
multiffie gen_const/2.

multifile rr/3.
multifile ucrr/2.

% Algebraic specification

conc_sort(mi_sort,[green,red,exiting,entering]).
conc_sort(ts_sort,[dispatch,iuse,muse,iclear,mclear]).

% Functions

function(lessn,[wordn],bool).
function(equz,[wordn],bool).
function(equz_new,[wordn],bool).

function(absComp,[wordn,wordn],bool).

163

% Conditional rewrite rules;
% To rewrite the terms of abstract functions, only the conditional
% rewrite rules can be used. For rules which dont have explicit conditions,
% as the following two rudes, the condition set is "[]".

rr([], dec(inc(X)), X).
rr([], inc(dec(X)), X).

% Xterm rewrite rules;

xtrr([],equz(zero),1).
xtrra],lessn(zero),1).
xtrrnabsComp(XX),1).

% File itc_o.pl: Variable order specification file for the ITC example

order_main([
rand_choicel,
rand_choice2,
rand_choice3,
rand_choice4,

sigl,
signal0,
x,

init_is,
init_ms,
init_ts,

tc,
ic,

ts_A,
is_A,
ms_A,

ie,
ix,

164

me,
mx,

cx_A,

n_ts A,
n_is_A,
n_ms_A,

n_ie,
n_ix,
n_me,
n_mx,

is_entering,
is_exiting,
ms_entering,
ms_exiting,

lessn_ic_A,
equz_tc_A,

tc_A_sl,
inc_sl,
dec_sl,
sl,
nic_A_s1,
eqz_sl,
eqz_choicel,
eqz_retl,
n_eqz_retl,

ic_A_s2,
inc_s2,
dec_s2,
s2,
%rand_choice1,
%rand_choice2,
%rand_choice3,
%rand_choice4,
n_ic_A_s2,
eqz_s2,
eqz_choice2,
lessn_s2,

165

166

les sn_choice,
eqz_ret2,
n_eqz_ret2,
les sn_ret,
n_les sn ret,

tc_A,
tc LA,
tcO_A,
ic_A,
icl_A,
icO_A,
n_tc_A,
n_tc LA,
nicO_A,
n_ic_A,
n_ic LA,
n_icO_A,

irLA,
igLA,
itc_plus_A,
itc_min_A,
ic_min_A,

MT LA,
mgLA,
mtc_plus_A,
mtc_min_A,
ic_plus_A,

tc_plus_A,
tc_min_A,

ig_A,
iy_A,
ir_A,
iu_A,

mg_A,
my_A,
mr_A,
mu A,

lessn,
equz,
equz_new,
inc,
dec
1).

167

168

Appendix B - ITC behavioral model with 4 bit
counters in Verilog HDL

/*

*I

/* itc_4b.v1: ITC specification in Verilog */
/*Counters are instantiated to 4 bits */
/* 	

/* Enumerate type definition. This is an extension of Verilog allowed by VIS */
typedef enum {green, entering, red, exiting} ms_sort;
typedef enum {dispatch, iuse, muse, iclear, mclear} ts_sort;

/* 	 Main module

module main(clk,igl,irl,mgl,mr1);
input clk;
output igl,irl,mgl,mr1;

wire ie,ix,me,mx,igl,irl,mgl,mr1;
wire ic_plus,ic_minus,itc_plus,itc_minus,mtc_plus,mtc_minus,tc_plus,tc minus;
wire [3:0] tc,ic;

ms_sort wire is, ms;

sensor sensor(clk, ie,ix,me,mx,is,ms);
counter counter(clk,tc,ic, ic_plus, ic minus, itc plus, itc_minus, mtc_plus, mtc minus,
tc_plus, tc_minus);
island island(clk,ie,ix,igl,irtic_minus,itc_plus,itc_minus,iu,inig,iy,is);
mainland 	mainland(clk,me,mx,mgl,mrtic,ic_plus,mtc_plus,mtc_minus,mu,mr,mg,my,
ms);
tunnel tunnel(clk,iu,ir,ig,iy,mu,mr,mg,my,tc,ic);

endmodule

/* Sensors.
For VIS, a variable in a CTL formula should not have primary
inputs as its supporting variables. So module Sensor simply
simulates the enviroment by modelling the inputs as state
variables in an enviroment state machine.

*I

module sensor(clk, ie,ix,me,mx,is, ms);

*I

*/

input clk,is,ms;
output ie,ix,me,mx;

ms_sort wire is, ms;

wire rand_choicel,rand_choice2,rand_choice3,rand_choice4;
reg ie,ix,me,mx, ie_delayl, me_delayl;

initial ie = 0;
initial ix = 0;
initial me = 0;
initial mx = 0;
initial ie_delayl = 0;
initial me_delayl = 0;

as sign rand_choic e 1 = $ND (0 , 1) ;
as sign rand_choice2 = $ND (0, 1) ;
as sign rand_choice3 = $ND (0,1);
as sign rand_choice4 = $ND (0 ,1) ;

always @(posedge clk) begin
if (rand_choicel == 0)

ie = 0;
else

ie = 1;

if (rand_choice2 == 0)
ix = 0;

else
ix= 1;

if (rand_choice3 == 0)
me = 0;

else
me = 1;

if (rand_choice4 == 0)
mx = 0;

else
mx = 1;

169

end

endmodule

/* 	 Counters

module counter(clk, tc, ic, ic_plus, ic_minus, itc_plus, itc_minus, mtc_plus, mtc_minus,
tc_plus, tc minus);
input clk;
input ic_plus,ic_minus,itc_plus,itc minus,mtc_plus,mtc_minus;
output tc,ic,tc plus,tc_minus;

reg [3:0] tc,ic;
wire ic_plus,ic_minus,itc_plus,itc minus,mtc plus,mtc_minus, tc_plus, tc_minus;

initial tc = 0;
initial ic = 0;

assign tc_plus = (itc_plus 11mtc_plus) ? 1 : 0; //added
assign tc_minus = (itc_minus Ilmtc_minus) ? 1 :0; // added
always @(posedge clk) begin

if ((ic_minus == 1) && (ic > 0) && (ic_plus == 0)) ic = ic - 1;
else if ((ic_plus == 1) && (ic < 15) && (ic_minus == 0)) ic = ic + 1;
else ic = ic;

if 	((tc_minus == 1) && (tc > 0) && (tc_plus == 0)) tc = tc - 1;
else if ((tc_plus — 1) && (tc < 15) && (tc_minus — 0)) tc = tc + 1;
else tc = tc;

end
endmodule

/* 	 Island Light Controller

module island(clk,ie,ix,igl,irtic_minus,itc_plus,itc_minus,iu,ir,ig,iy,is);

input clk;
input ie,ix,ig,iy;
output igl,irLic_minus,itc_plus,itc_minus,iu,ir,is;

wire ie,ix,ig,iy,igl,irl,iu,ir;
wire ic_minus,itc plus,itc_minus;

170

*/

*I

ms_sort reg is;

17 1

initial is = red;

always @(posedge clk) begin
case (is)
green:if ((iy==0)&&(ie==0)) is = green;
else if ((iy==0)&&(ie==1)) is = entering;
else is = red;
entering: if (ie==0) is = green;
else is = entering;
red: if ((ix==0)&&(ig==0)) is = red;
else if ((ix==0)&&(ig==1)) is = green;
else is = exiting;
exiting: if (ix==0) is = red;
else is = exiting;
endcase

end

assign ir = ((is == red)&&(ie == 1)) ? 1 : 0;
assign iu = ((is == green) Il (is == entering)) ? 1 : 0;
assign irl = ((is == red) Il (is == exiting)) ? 1 : 0;
assign igl = ((is == green) Il (is == entering)) ? 1 : 0;
assign itc plus = ((is == green) && (iy == 0) && (ie == 1)) ? 1 : 0;
assign itc_minus = ((is == red) && (ix == 1)) ? 1 : 0;
assign ic_minus = ((is == green) && (iy == 0) && (ie == 1)) ? 1 : 0;

endmodule

/* 	 Mainland Light Controller

module mainland(clk,me,mx,mgl,rrutic,ic_plus,mtc_plus,mtc_minus,mu,mr,mg,my,ms);

input clk;
input [3:0] ic;
input me,mx,mg,my;
output mgl,mrl,ic_plus,mtc plus,mtc_minus,mu,mr,ms;

wire [3:0] ic;
wire me,mx,mg,my;
wire mgl,mrl,ic_plus,mtc_plus,mtc_minus,mu,mr;

ms_sort reg ms;

*I

initial ms = red;

172

always @(posedge clk) begin
case (ms)
green:if (ic >= 15) ms = red;
else if ((my==0)&&(me==0)) ms = green;
else if ((my==0)&&(me-1)) ms = entering;
else ms = red;
entering: if (me-0) ms = green;
else ms = entering;
red: if ((mx-0)&&(mg==0)) ms = red;
else if ((mx-0)&&(mg==1)) ms = green;
else ms = exiting;
exiting: if (mx==0) ms = red;
else ms = exiting;
endcase

end

assign mr = ((ms == red)&&(me == 1)) ? 1 : 0;
assign mu = ((ms == green) Il (ms == entering)) ? 1 : 0;
assign mrl = ((ms == red) Il (ms == exiting)) ? 1 : 0;
assign mgl = ((ms == green) Il (ms == entering)) ? 1 : 0;
assign mtc_plus =((ms == green) && (my == 0) && (me == 1) && (ic < 15)) ? 1 : 0;
assign mtc minus = ((ms == red) && (mx == 1)) ? 1 : 0;
assign ic_plus = ((ms == green) && (my == 0) && (me == 1) && (ic < 15)) ? 1 : 0;

endmodule

/* 	 Tunnel Controller

module tunnel(clk,iu,ir,ig,iy,mu,mr,mg,my,tc,ic);

input clk;
input [3:0] ic, tc;
input iu,ir,mu,mr;
output ig,iy,mg,my;

wire [3:0] ic, tc;
wire iu,ir,mu,mr;
wire ig,iy,mg,my;

ts_sort reg ts;

initial ts = dispatch;

*I

173

always @(posedge clk) begin
case (ts)
dispatch: if ((ir==0)&&(mr-0)) ts = dispatch;
else if ((ir==0)&&(mr==1)&&(ic>=15)) ts = dispatch;
else if ((ir-0)&&(mr==1)&&(ic<15)&&(iu==1)) ts = iuse;
else if ((ir-0)&84(mr==1)&&(ic<15)&&(iu-0)&&(tc HO)) ts=iclear;

else if ((ir==0)&&(mr==1)&&(ic<15)&&(iu==0)&&(tc==0)) ts=dispatch;
else if ((ir==1)&&(mu==1)) ts=muse;
else if ((ir-1)&&(mu==0)&&(tc!=0)) ts=mclear;
else ts=dispatch;
iuse: if (iu==0) ts = iclear;
else ts = iuse;
muse: if (mu==0) ts = mclear;
else ts = muse;
iclear: if (tc!=0) ts = iclear;
else ts = dispatch;
mclear: if (tc!=0) ts = mclear;
else ts = dispatch;
endcase

end

assign ig = (((ts—dispatch)&&(ir==1)&&(tc==0)&&(mu==0)) Il
((ts==mclear)&&(tc==0))) ? 1 : 0;

assign iy = (ts == iuse) ? 1 : 0;
assign mg = (((ts==dispatch)&&(ir==0)&&(mr==1)&&(ic<15)&&(tc-0)&&(iu==0)) Il

((ts==iclear)&&(tc-0))) ? 1 : 0;
assign my = (ts — muse) ? 1 : 0;

endmodule

Appendix C - Behavioral description of the
Abstract Counter using MDG-HDL
% 	
% File: counter_s.pl
% Title: Behavioral description of the Abstract Counter
% 	

% Multifile declaration required by Prolog system.
%
:- multifile component/2.
:- multifile signal/2.
:- multifile next_state_partition/l.
:- multifile output partition/1.
:- multifile init_val/2.
:- multifile init_var/2.
:- multifile init_con/2.
:- multifile st_nxst/2.
:- multifile outputs/1.
:- multifile par_strategy/2.

Inputs and Outputs

sign al(input,in struction S ort).
signal(state, state S ort).
signal(double,bo ol).
signal(load_in,wordn).
signal(pc,wordn).

component(sta_comp,tablea [state,input, double, n_state],
[c_fetch,c_no op, *,c_fetchl,
[c_fetch,c_load,*,c_load],
[c_fetch, c incl, *, c_incl],
[c_fetch, c_inc2, *,c_incl],
[c_load, *,*, c_fetch],
[c_incl, *, 0, c_fetch],
[c_incl, *, 1, c_inc2],
[c_inc2, *, *, c_fetch]
1)).

component(double_comp,tablea [input,n double],
[c_inc2,1]
10])).

174

%

component(pc_comp,tablea [state,n_pc],
[c_load, load_in],
[c_inc I, finc(pc)],
[c_inc2, finc(pc)]
Ipc])).

st_nxst(double,n_double).
st_nxst(pc,n pc).
st_nxst(state,n_state).

%--- Initial states ---
%
init_var(init_pc,wordn).
init val(pc,init_pc).
init val(double,0).
init_val(state,c_fetch).

%--- Outputs ---
%
outputs([]).

%--- Partitions ---
%
output_partition([]).

next_state_partition([
[[n_double]],
[[n_pc]],
[[n_state]]
1).

%--- Partition strategy---
%
par_strategy(auto, auto).

% File: itc_alg.pl
% Title: Algebraic specification file for the ITC example

% Multifile definition for Prolog predicates

multifile abs_sort/l.

175

multifile conc_sort/2.
multifile function/3.
multifile gen_const/2.

multifile rr/3.
multifile ucrr/2.

% Algebraic specification

conc_sort(stateS ort, [c_fetch,c_load,c_incl,c_inc2]).
conc_sort(instructionS ort, [c_no_op,c_lo ad ,c_inc 1,c_inc2]).

% Functions

function(equz,[wordn],bool).

function(finc,[wordn],wordn).

function(absComp,[wordn,wordn],bool).
rr([], dec(inc(Y)), Y).
rra], inc(dec(Y)), Y).

% Xterm rewrite rules;

xtrrd],equz(zero),1).

xtrra],absComp(X,X),1).

% File: counter_alg.pl
% Title: Algebraic specification file for the Abstract Counter example

% Multifile definition for Prolog predicates

multifile abs_sort/l.
multifile conc_sort/2.
multifile function/3.
multifile gen_const/2.

multifile 1r/3.

176

177

multifile ucrr/2.

% Algebraic specification

c o nc_ s ort(state S ort, [c_fetc h, c_lo ad,c_inc 1 ,c_inc2])
conc_sort(instuctionS ort, [c_no_op,c_lo ad,c_incl,c_inc 2]).

% Functions

function(equz,[wordn],bool).
function(finc,[wordn],wordn).

function(absComp,[wordn,wordn],bool).
rr([], dec(inc(Y)), Y).
rr([], inc(dec(Y)), Y).

% Xterm rewrite rules;

xtrr(I],equz(zero),1).
xtrr([,absComp(X,X),1).

% File counter_o.pl: Variable order specification file for the Abstract Counter example

order_main([
init pc,
load_in,
input,
double,
n_double,
state,
n_state,
pc,
n_pc,
finc
]).

Appendix D - Behavioral description of the
Abstract Counter in Verilog HDL
// A behavioral model of the Abstract Counter

Enumerate type definition. This is an extension of Verilog allowed by VIS */
typedef enum {c_fetch, c_load, c_incl, c_inc2} state_sort;
typedef enum fc_no_op, c load, c_incl, c_inc21 instruction_sort;

/* 	 Main module
module main(c1k);
input 	clk;

// as input_instruction needed in th eproperty, it has to be eventually driven by a
// latch. So it cannot be a primary input.

wire [1:0] random_choice;
wire [3:0] load_in;
instruction_sort wire input_instruction;

reg double;
reg [3:0] pc;

state_sort reg state;
instruction_sort reg input_instruction;

initial double = 0;
initial state = c_fetch;
initial pc = 0;
initial input_instruction = c_no_op;

assign random_choice[1] = $ND(0,1);
assign random_choice[0] = SND(0,1);
assign load_in[3] = $ND(0,1);
assign load_in[2] = $ND(0,1);
assign load_in[1] = $ND(0,1);
assign load_in[0] = $ND(0,1);

always @(posedge clk)
begin
if (random_choice == 0)

input_instruction = c_no_op;
else if (random_choice == 1)

178

*/

input_instruction = c_incl;
else if (random_choice == 2)

input_instruction = c_inc2;
else

input_instruction = c_load;
end

always @(posedge clk)
begin
case (state)
c_fetch:

begin
if (input_instruction == c_load) state = c_load;
else if (input_instruction == c_incl) state = c_incl;
else if (input_instruction == c_inc2) state = c_incl;
else state = c_fetch;
pc = pc;

end // case: c_fetch

c_load:
begin

state = c_fetch;
pc = load in;

end // case: c_load

c_incl:
begin

if (double == 1) state = c_inc2;
else state = c_fetch;
pc = pc +1;

end // case: c_incl

c_inc2:
begin

state = c_fetch;
pc = pc + 1;

end // case: c_inc2

endcase // case (state)

if (input_instruction == c_inc2)
double = l'bl;

else

179

double = 1'b0;

end
endmodule

180

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141
	Page 142
	Page 143
	Page 144
	Page 145
	Page 146
	Page 147
	Page 148
	Page 149
	Page 150
	Page 151
	Page 152
	Page 153
	Page 154
	Page 155
	Page 156
	Page 157
	Page 158
	Page 159
	Page 160
	Page 161
	Page 162
	Page 163
	Page 164
	Page 165
	Page 166
	Page 167
	Page 168
	Page 169
	Page 170
	Page 171
	Page 172
	Page 173
	Page 174
	Page 175
	Page 176
	Page 177
	Page 178
	Page 179
	Page 180
	Page 181
	Page 182
	Page 183
	Page 184
	Page 185
	Page 186
	Page 187
	Page 188
	Page 189
	Page 190
	Page 191
	Page 192
	Page 193
	Page 194
	Page 195
	Page 196
	Page 197
	Page 198
	Page 199
	Page 200
	Page 201

