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Résumé 

L'exactitude lors de la conception est une préoccupation majeure pour tout système, et ceci 

est d'autant plus vrai pour les systèmes informatiques et les systèmes de circuit intégrés. 

Comme nous sommes toujours plus dépendants de ces systèmes, le coût de leur défaillance 

devient de moins en moins acceptable. 

Traditionnellement, la simulation fut le principal mode de vérification de l'intégrité 

d'un système avant sa fabrication. Il existe différentes approches à la vérification d'un 

système à l'aide de simulations, chacune visant à explorer différents aspects de la 

conception du système. Cependant la méthodologie générale est la même: lorsque la phase 

de conception est terminée, l'équipe de vérification crée des bancs d'essais et utilise autant 

d'entrées que possible afin d'obtenir un degré de confiance suffisant dans la conception. 

Cependant, étant donné la complexité ctoissante des circuits intégrés, il devient rapidement 

impossible de simuler un large système de manière adéquate. C'est la raison pour laquelle 

il y a maintenant un renouveau d'intérêt de la recherche visant à utiliser la vérification 

formelle à titre de complément à la simulation pour vérifier l'intégrité de la conception d'un 

système. 

La vérification formelle consiste à établir mathématiquement qu'une implantation 

d'un système satisfait sa spécification. Dans notre cas, l'implantation correspond à la 

description du système à vérifier. Quant à la spécification, elle décrit les propriétés que le 

système (c.à.d. l'implantation) doit satisfaire. L'implantation peut correspondre à différents 

niveaux d'abstaction du système, et la spécification (propriété) peut être exprimée de 

plusieurs manières: description du comportement, contraintes temporelles, formules de 

logique temporelle, etc. 



La plupart des méthodes de vérification formelle peuvent être regroupées en 3 

catégories: les démonstrateurs de théorèmes ("theorem proving"), la vérification 

d'équivalences, et la vérification du modèle ("model checking"). Les démonstrateurs de 

théorèmes constituent la technique de vérification formelle la plus générale: l'implantation 

et la spécification sont habituellement exprimées à l'aide de formules de la logique du 

premier ordre ou d'ordre supérieur. La relation entre l'implantation et la spécification est un 

théorème de la logique du démonstrateur qu'il faut prouver en utilisant les axiomes et les 

règles d'inférence logique. La puissance d'expression de la logique a un impact direct sur 

la puissance de cette méthodologie, ce qui permet de prendre en considération des systèmes 

avec chemins de données relativement complexes. 

La vérification d'équivalences est une technique visant à vérifier l'équivalence de 

deux descriptions presque identiques d'un même système. La vérification d'équivalences 

est intéressante si on considère son utilisation suite à la synthèse du système, où souvent les 

changements manuels du système portent uniquement sur des aspects comme la rapidité, la 

puissance ou la testabilité. 

La vérification des modèles est une technique visant à prouver des propriétés 

temporelles du système sous toutes les conditions possibles et permises. Des propriétés 

comme, "lorsqu'une requête pour le bus est émise, elle doit être satisfaite", peuvent être 

utilisées pour vérifier le comportement du système à vérifier. En gros, les vérificateurs de 

modèle ("model checkers") sont utilisés pour répondre à la question: "Est-ce que j'ai conçu 
ce qui était spécifié?" 

Quoique les trois méthodes diffèrent sous certains aspects techniques, elles 

partagent les deux attributs suivants. Premièrement, aucun vecteur de test n'est requis. Ceci 

peut réduire la phase de vérification puisque le temps nécessaire pour la création des 
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vecteurs de test et pour l'évaluation des résultats est supprimé. Deuxièmement, pour les 

méthodes de vérification formelles, la preuve est mathématique plutôt qu'expérimentale. 

Comme l'exactitude des théorèmes est vraie indépendamment des valeurs pour lesquelles 

le théorème s'applique, l'exactitude de la conception d'un système qui a été formellement 

vérifié est vraie avec une certitude mathématique indépendamment des entrées soumisses 

au système. Cependant, l'expertise de haut niveau requise dans l'utilisation des 

démonstrateurs de théorèmes fait que les techniques basées sur ces démonstrateurs de 

théorèmes ne sont pas largement utilisées dans l'industrie. Pour cette raison, les 

vérificateurs de modèles (qu'on peut exécuter de manière complètement automatique) sont 

considérés présentement comme la technique la plus prometteuse qui puisse être utilisée 

pour vérifier les propriétés de systèmes complexes [5] [18][20][66][55]. 

Durant les dernières décades, les chercheurs ont concentré leurs efforts à explorer 

les techniques de vérification de modèles. Ces techniques ont d'abord été introduites par 

Clarke et Emerson[22], et de manière indépendante par Quielle et Sifakis [61]. Les 

premières techniques de vérification de modèles étaient basées sur des graphes de décisions 

représentant de manière explicite l'espace d'états du système en utilisant une liste ou un 

tableau dont la taille est proportionnelle au nombre d'états dans le système [7]. Le nombre 

d'états dans le modèle peut croître de manière exponentielle en fonction du nombre de 

composantes dans la conception, ce qui fait qu'habituellement le tableau d'états est un 

facteur limitant l'application de ces graphes de décisions à des systèmes réels (à cause du 

problème de croissance exponentielle du nombre d'états). 

Utilisant les graphes de décisions binaires ordonnés (Ordered Binary Decision 

Diagrams (OBDDs)) [11] pour représenter les ensembles d'états, les relations de 

transitions, et pour énumérer implicitement l'espace d'états, la vérification symbolique s'est 

avérée être une technique pratique pour la vérification automatique des circuits intégrés au 

niveau de la logique propositionnelle [14][16][24][31][49] [65]. Cependant, ces méthodes 
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nécessitent que la description du système soit faite au niveau de la logique booléenne. Par 

conséquent, elles ne sont pas en général adéquates pour la vérification de circuits avec de 

larges chemins de données, encore une fois dû au problème d'explosion du nombre d'états 

dans le modèle. Le nombre d'états dans le modèle croît de manière exponentielle en 

fonction du nombre de variables d'états, même avec la technique des OBDDs, les structures 

de données deviennent trop grandes pour la taille des mémoires des ordinateurs actuels. 

Étant motivé par le désir de combiner l'aspect automatique de la vérification des 

modèles avec la représentation abstraite des données des démonstrateurs de théorèmes, ce 

qui peut minimiser le problème d'explosion du nombre d'états de manière significative, 

nous avons développé un vérificateur de modèles pour la logique temporelle linéaire du 

premier ordre. Notre approche est basée sur le modèle de machine à états abstraits (ASMs) 

où une donnée peut être représentée par une seule variable de type abstrait, plutôt qu'un 

vecteur de variables booléennes. Une opération sur les données est alors représentée par un 

symbole fonctionnel non-interprété [26][27][68][2]. 

Plusieurs résultats rapportés dans la littérature sont reliés aux nôtres. Hungar, 

Grumberg et Damm [41] ont proposé une technique appelée "true symbolic model 

checking". Ils ont représenté les données et les opérations sur les données à l'aide de 

formules logiques du premier ordre et ils ont utilisé la logique FO-ACTL (First-Order 

ACTL) pour spécifier les propriétés. La logique FO-ACTL est une logique temporelle du 

premier ordre à branchements qui utilise uniquement le quantificateur universel. ils ont 

nommé leur méthode "réellement symbolique" (truly symbolic) en contraste avec 

l'approche par encodage d'un ensemble d'états de la vérification symbolique de modèles 

(symbolic model checldng) présentée dans [49]. Leur méthode est basée sur l'hypothèse 

que toutes les boucles de données se terminent, et sur la séparation entre la partie contrôle 

et la partie données dans les circuits intégrés typiques. Si les propriétés contiennent 

uniquement des signaux de contrôle, alors la méthode classique de vérification booléenne 
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de modèles est utilisée. Lorsque la propriété contient uniquement des données, ils éliminent 

d'abord tous les prédicats du premier-ordre de la formule en les remplaçant par la constante 

booléenne "True", ce qui résulte en une formule propositionnelle CTL. Si la formule 

propositionnelle CTL n'est pas vérifiée par un vérificateur booléen de modèles, alors ils 

concluent que la propriété originale a échouée. Sinon (la formule propositionnelle CTL est 

vérifiée), ils génèrent à partir du système et de la propriété en question, des conditions de 

vérification du premier ordre en utilisant la méthode des tableaux. Ensuite, ils les vérifient 

à l'aide d'un démonstrateur de théorèmes, ce qui complète la preuve. 

Cyrluk et Narendran [33] ont défini une logique temporelle du premier-ordre 

Ground Temporal Logic (GTL), qu'on peut situer entre la logique temporelle 

propositionnelle et la logique du premier-ordre. Cyrluk et Narendran ont montré que la 

logique GTL est indécidable. Ensuite ils ont identifié un sous-ensemble décidable de GTL, 

ce fragment contient des formules de la forme Clp (toujours p), où p est une formule GTL 

contenant un nombre arbitraire d'opérateurs (next) o, et aucun autre opérateur temporel. 

Cependant, ils n'ont pas montré comment construire la procédure de décision. 

Hojati, Brayton et al. ont proposé un modèle concurrent appelé "integer 

combinational/sequence" (ICS), qui utilise des relations finies, des fonctions et des 

prédicats sur les nombres entiers qui sont interprétés et/ou non-interprétés, et des fonctions 

de mémoire interprétées, pour décrire les circuits intégrés avec abstraction des chemins de 

données [51][52]. La vérification des modèles ICS est accomplie en utilisant l'inclusion des 

langages formels ("language containment"). Ils ont montré que pour une classe de modèles 

à contrôle intensif (ICS), les variables entières du modèle peuvent être remplacées par une 

énumération finie, ce qui permet d'exécuter la vérification au niveau booléen sans en 

sacrifier l'exactitude. Ils ont donné un algorithme avec complexité linéaire pour reconnaître 

les formules appartenant à cette classe. Si les circuits contiennent des chemins de données 

complexes avec des symboles fonctionnels interprétés et non-interprétés, l'énumération 
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finie ne peut pas être utilisée. À la place, ils calculent les ensembles d'états atteignables en 

n étapes en utilisant les BDDs, et vérifient qu'aucune erreur n'existe pour ces n étapes. 

Burch et Dill ont aussi utilisé la logique du premier-ordre sans quantificateur avec 

prédicat d'égalité pour vérifier la partie contrôle des microprocesseurs [18]. Ceci est dû au 

fait que la partie donnée peut être abstraite dans leur logique. Leur méthode inclut deux 

phases. La première phase compile la spécification et l'implantation en une formule 

logique; la formule est valide si et seulement si l'implantation satisfait la spécification. La 

seconde phase consiste à montrer la validité de la formule par le biais d'une procédure de 

décision qu'ils ont implantée. Ils ont appliqué leur méthode pour la vérification d'une 

implantation "pipeline" d'un sous-ensemble de l'architecture DLX. Cependant, leur 

méthode, contrairement à la nôtre, ne peut pas prendre en compte les propriétés impliquant 

des opérateurs temporels, en particulier, les propriétés de "liveness". 

Dans cette thèse, nous présentons une logique temporelle branchements du premier 

ordre et les procédures de décision qui lui sont associées. En comparaison avec d'autres 

recherches, nous élevons le niveau d'abstraction de l'explicitation du problème, et nous 

explorons la vérification de modèles à un niveau d'abstraction plus élevé. Notre approche 

est basée sur les machines à états abstraits (ASMs). Une machine abstraite ASM est 

représentée par des graphes de décisions multi-choix (MDGs) [26][70]. Ces derniers sont 

une généralisation des graphes de décisions binaires ordonnés et réduits (ROBDDs) [11]. 

Les machines abstraites (ASMs) peuvent être utilisées pour décrire les systèmes au niveau 

transfert de registres (RTL). La vérification par ASMs est basée sur l'énumération des états 

dont la complexité est indépendante des chemins de données. Une implantation de ce 

concept existe actuellement et fournit des outils comprenant la vérification d'équivalences 

pour les circuits séquentiels, la vérification des processeurs, la vérification des invariants 

par exploration des états [69] et la vérification des propriétés temporelles. 
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Notre objectif principal dans cette thèse est de définir une logique temporelle du 

premier-ordre avec branchements appelée Abstract-CTL* et de développer des algorithmes 

de vérification des propriétés pour un sous-ensemble de Abstract-CTL*. Ce sous-ensemble 

est appelé LmDG. LmDG inclut les propriétés de "safety" et "liveness" avec ou sans 

contraintes d'équité. Les propriétés de LmDG incluent Ap, AGp, AFp, ApUq, AG(c 

=>(Fp)) et AG(c=>(pUq)), où c, p et q sont Next_let_formulas qui contiennent seulement 

l'opérateur temporel X("Next"), G, F, U signifiant respectivement "always", "eventually", 

"until", et A signifie "for all computation paths". En général, notre approche consiste à 

compiler la propriété à vérifier en un (des) ASM(s), puis à vérifier une propriété plus simple 

qui en découle, sur la machine produite par la combinaison de la machine représentant le 

modèle et la propriété. 

En comparaison avec le travail de [33], nous allons montrer au cours de notre thèse 

que le fragment décidable de GTL est actuellement un sous-ensemble de la classe des 

propriétés que nous pouvons vérifier; en comparaison avec ICS [51][52], nos modèles 

ASM sont plus généraux que les modèles ICS dans le sens que le type de variables 

abstraites de notre système (qui correspondent aux variables entières dans les modèles ICS) 

peuvent recevoir n'importe quelles valeurs dans leur domaine, plutôt qu'une constante 

spécifique ou une fonction des constantes comme dans le modèle ICS. Pour la classe de 

modèles ICS où l'énumération finie ne peut pas être utilisée, notre système de vérification 

peut calculer tous les états atteignables et vérifier les propriétés de "safety" et aussi 

certaines propriétés de "liveness". En comparaison avec [41], notre logique temporelle du 

premier-ordre avec temps de branchements LmDG est moins expressive que FO-ACTL, 

puisque nous allouons seulement un niveau limité d'imbrication des opérateurs temporels. 

Cependant, dans notre approche, la propriété est vérifiée dans tout le modèle de manière 

automatique tandis que dans [41], un démonstrateur de théorèmes est éventuellement 

nécessaire pour valider les conditions de vérification générées. 
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La thèse est organisée de la manière suivante: dans le chapitre 2, nous explorons les 

techniques de base de la vérification formelle et les logiques utilisées dans ces techniques. 

Dans le chapitre 3, nous énonçons les fondements théoriques de cette thèse. Premièrement 

nous décrivons la logique formelle utilisée dans notre approche ASM. Deuxièmement, 

nous définissons notre modèle de calcul, c.à.d., la définition des machines à états abstraits 

et donnerons leur sémantique en termes d'arbre infini de calcul. Nous expliquons également 

comment l'énumération abstraite des états est accomplie. Dans le chapitre 4, nous 

définissons la syntaxe et la sémantique d'un modèle très général de logique temporelle 

appelé Abstract_CTL*, qui est une logique du premier-ordre avec branchements. Dans le 

chapitre 5, nous définissons LmDG, qui est un sous-ensemble de Abstract_CTL* contenant 

la classe des propriétés pour lesquelles une procédure de décision existe. Dans le chapitre 

6, nous présentons en détail les algorithmes de vérification de propriétés. Dans le chapitre 

7, nous présentons un algorithme pour générer une description de circuit représentant une 

Next_let_formula. Dans le chapitre 8, nous montrons comment imposer des contraintes 

d'équité dans notre système de vérification et les algorithmes de vérification des propriétés 

de liveness avec des contraintes d'équité. Nous discutons aussi de certaines questions 

d'implantation. Dans le chapitre 9, nous démontrons l'exactitude de notre procédure de 

vérification. Dans le chapitre 10, nous appliquons le vérificateur de modèle basé sur MDG 

à deux exemples: un contrôleur de l'éclairage dans un tunnel, et un compteur abstrait. Dans 

le chapitre 11 nous concluons la thèse et nous indiquons des directions futures de recherche. 
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Abstract 

Using Ordered Binary Decision Diagrams (OBDD) to encode sets of states, the transition 

relations, and to perform an implicit enumeration of the state space, symbolic model 

checking has proven to be a very practical technique for the automatic verification of 

hardware designs at the propositional logic level. However, these methods still require the 

description of the design to be at the Boolean logic level, and thus in general they are not 

adequate for verifying circuits with large datapath again because of the state explosion 

problem. That is, the number of states in the model grows exponentially with the number 

of state variables and therefore, even with OBDD encoding the data structures become too 

large to fit typical current computer memories. 

In this thesis, we study the automatic model checking with a first-order branching 

time temporal logic. Compared to other researches, we raise the level of abstraction at 

which the problem is stated and explore model checking at a higher abstraction level. Our 

approach is based on abstract descriptions of state machines (ASMs). An ASM is encoded 

using Multiway Decision Graphs (MDGs), of which Reduced Ordered Binary Decision 

Diagrams (ROBDDs) are a special case. ASMs can be used to describe designs at Register 

Transfer Level (RTL). The verification of ASMs is based on state enumeration whose 

complexity is independent of the width of the datapath. 

The main task of the thesis is to define a first-order branching time temporal logic 

called Abstract-CTL* and develop property checking algorithms for a subset of Abstract-

CTL* called LmDG, which includes safety properties and liveness properties with or 

without fairness constraints. The main property templates in LmDG include Ap, AGp, AFp, 

ApUq, AG(c =>(F p)) and AG(c => pUq), where c, p and q are Next_let_formulas which 

contain only the temporal operator X ("Next"), G, F, U means "always", "eventually", 



"until" respectively, and A means "for all computation paths". In general, our approach to 

model checking is to automatically build additional ASMs that represent the 

Next let_formulas appearing in a property, connect these additional ASMs to the original 

one to be verified, and then check a simpler property on the composite machine. 

Key words: formal verification, model checking, temporal logic, abstract descriptions of 

state machines, property, fairness conseaint 
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1 Introduction 

Correctness is a major consideration in the design of any system, and in particular, those 

of our concern - computers and other digital systems. As we become more and more 

dependent on such systems, the cost of a failure is becoming unacceptably high. 

Traditionally, simulation has been the only means of verifying the integrity of a design 

prior to manufacturing. There are different types of simulation to explore different aspects 

of the design, but the basic methodology is always the same: once a design had been 

developed, the verification team would create test benches and run as many vectors as 

needed to achieve sufficiently high confidence in the design. However, because of the 

increasing complexity of digital systems, it is rapidly becoming impossible to simulate 

large designs adequately. For this reason, there has been a surge of research interest in 

formal verification which could be deployed as a complement to simulation for 

determining the correctness of a design. 

In general, the formal verification problem consists of mathematically establishing 

that an implementation satisfies a specification. The implementation refers to the system 

design that is to be verified. This entity can correspond to a design description at any level 

of the system abstraction hierarchy, not just the final physical layout. The specification 

refers to the property with respect to which correctness is to be determined. It can be 

1 



Revised Design Reference Design 

quivalence Checker 
Are the two designs batiaviorly equivalent? 

2 

expressed in a variety of ways, such as behavioral description, an abstract structural 

description, a timing requirement, a temporal logic formula, etc. 

Most formal verification methods can be classified into 3 classes: theorem proving, 

equivalence checking, and model checking. Theorem proving is the most general 

verification technique: an implementation and its specification are usually expressed as 

first-order or high-order logic formulas. Their relationship, equivalence or implication, is 

regarded as a theorem to be proven within the logic system using axioms and inference 

rules. Design can thus be represented at different logic levels rather than only at the 

Boolean level. Therefore, it allows a hierarchical verification methodology which can 

effectively deal with the overall functionality of designs having complex datapaths. 

Equivalence checking is a technique to check the equivalence of two designs. In 

order for an equivalence checker to work, the designs must be "almost identical" and thus 

equivalence checking is most valuable in post synthesis design verification where often 

manual design changes focus on speed, power or testability considerations. These post 

synthesis iterations make no changes or only small changes to the behavior of the design. 

Equivalence checkers answer the question "Did my design iteration introduce any new 

errors into the design?", as shown in Figure 1. 

Yes / No 

Fig-ure 1. - Equivalence checking 



Model Cheeker 
Is the design a model of the property? 

3 

Model Checking is a technique to prove temporal properties on a design model 

under all possible and allowable conditions. Properties like "after the bus is requested, 

then it must be granted" can be used to verify the behavior of the design in question. 

Roughly spealdng, model checkers are used to answer the question "Did I design what 

was intended or specified?" as shown in Figure 2. 

Broadly speaking, equivalence checking can be viewed as a special model 

checking technique in which the property to be proven is the equivalence of the two 

designs. 

Yes / No 

Figure 2 - Model checker 

Although the three methods differ in technical aspects, they share the following 

two common attributes: 

First, no test vectors are required. This can shorten the verification phase to some 

extent that the large amount of design time needed to create test vectors and to evaluate the 

results of the simulations will be saved. 
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Second, with formal verification methods, the proof is mathematical rather than 

experimental. Just as the correctness of a mathematically proven theorem holds regardless 

of the particular values that it is applied to, correctness of a formally verified system 

design holds with mathematical certainty regardless of its input values. 

Due to the needed expertise in the use of theorem provers, theorem proving 

techniques are not widely accepted in indusnial use. Instead, since model checking can be 

carried out fully automatically, it is seen today as the most promising technique that could 

be used to verify properties regarding complex designs [5] [18][21][77][51]. 

Over the last decade, researchers have put much effort to explore model checking 

techniques. Model checking was first introduced by Clarke and Emerson[23] and 

independently by Quielle and Sifakis [69]. The early model checking methods relied on 

decision algorithms that explicitly represent state space, using a list or table that grows in 

proportion to the number of states [7]. Because the number of states in the model may 

grow exponentially with the number of components in the design, the size of the state 

table is usually the limiting factor in applying these algorithms to realistic systems (the so 

-called state explosion problem). 

Using Ordered Binary Decision Diagrams (OBDDs) [11] to encode sets of states, 

the transition relations, and to perform an implicit enumeration of the state space, 

symbolic model checking has proven to be a very practical technique for the automatic 

verification of hardware designs [14][161[251[32][61][76]. However, these methods still 

require the description of the design to be at the Boolean logic level, and thus in general 

they are not adequate for verifying circuits with large datapath again because of the state 

explosion problem. That is, the number of states in the model grows exponentially with 

the number of state variables and therefore, even with OBDD encoding the data structures 

become too large to fit typical current computer memories. 

Being motivated by a desire to combine the automation feature of model checking 
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and the abstract representation of data in theorem proving which can significantly alleviate 

the state explosion problem, we developed model checking for a first-order branching time 

temporal logic. Our approach is based on a computation model called an abstract 

description of state machines (ASMs) where a data value can be represented by a single 

variable of abstract type, rather than by a vector of Boolean variables, and a data operation 

is represented by an uninterpreted function symbol[2] [27] [28][79]. 

1.1 Related work 

To our knowledge, three previous developments reported in the literature are directly 

related to ours. 

Hungar, Grumberg and Damm [47] proposed a "tue symbolic model checking" 

technique. They represent data and data operations by first-order formulas and used FO-

ACTL (First-Order ACTL), a first-order branching time temporal logic with only the 

universal path quantifier to specify properties. They called their method "truly symbolic" 

in contrast to the state set coding approach to symbolic model checking presented in [61]. 

Their method is based on the assumption that all data loops terminate, and on the 

separation of the control part and the data path in typical circuits. If the property only 

contains control signals, then Boolean model checking is applied. When the property 

contains data, they first eliminate all first-order predicates in the property formula to result 

in a propositional Computation Tree Logic (CTL) formula. This is achieved by replacing 

those predicates with the Boolean constant true. If the propositional CTL formula is not 

verified by a Boolean model checker, then they conclude that the original property fails. 

Otherwise (the propositional CTL formula is verified), the tableau method is used to 

generate a pure first-order verification condition from the system and the property to be 

proven. Then they complete the verification of the property by proving the verification 

condition using a theorem proyer. 
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Cyrluk and Narendran [34] defined a first-order temporal logic - Ground Temporal 

Logic (GTL), which falls in between the first-order and the propositional temporal logics. 

Given a first-order language (FOL) consisting of function symbols, constants (0-ary 

function symbols), predicate symbols, equality, but no global variables, they define the 

alphabet of GTL as the alphabet of FOL along with the temporal operators 0(Next), o 

(Next, only applied to terms), D (always), and a set of state variables Vs whose values can 

change over time. The terms of GTL are defined inductively: every state variable is a term; 

if f is an n-ary function symbol and t1..... t are terms thenf(ti, 	tn ) is a term; if t is a 

term then so is ot. An n-ary predicate p(ti , 	tn ) is an atomic formula of GTL. Formulas 

of GTL are defined inductively: every atomic formula is a formula; if A and B are 

formulas, then so are —A, AAB, OA, and DA. A model K = (S, W) for GTL consists of a 

model for the first-order language interpretation S and an infinite sequence of states W, 

which is a computation path in CTL jargon. A formula A of GTL is valid if and only if A is 

true for every model K; and A is satisfiable if and only if A is true in some model K. In 

[34], Cyrluk and Narendran showed that the full GTL is undecidable. They then identified 

a decidable fragment of GTL, consisting of formulas in the form of Op formulas where p 

is a GTL formula containing arbitrary number of the "Next" temporal operators but no 

other temporal operators. For this decidable fragment, they said that it was possible to 

build an automatic validity checker. However, they did not show how to build the decision 

procedure. 

Hojati, Brayton et al. proposed a concurrency model called integer combinational/ 

sequential (ICS), which uses finite relations, interpreted and uninterpreted integer 

functions and predicates, and interpreted memory functions to describe hardware systems 

with datapath abstraction [43][44][45][50]. Verification of ICS models is performed using 

language containment. They showed that for a subclass of "control-intensive" ICS models, 

integer variables in the model can be replaced by enumerated variables (i.e., finite 

instantiation) and then the property verification can be carried out at the Boolean logic 

level without sacrificing accuracy. They gave a linear time algorithm for recognizing those 
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subsets. For verifying properties of circuits with complex datapaths, i.e., the circuit 

contains interpreted and uninterpreted functions, finite instantiation cannot be used. 

Instead, they compute the set of states reachable in n steps using BDDs, and check that no 

error exists in these n steps. 

Burch and Dill also used a subset of first-order logic, specifically, the quantifier-

free logic of uninterpreted functions and predicates with equality and propositional 

connectives, for verifying microprocessor control circuitry [18]. Their logic is appropriate 

for verification of microprocessor control because it allows abstraction of datapath values 

and operations. Their method includes two phases. The first phase compiles a behavioral 

description of the specification and the implementation into a formula in the logic; the 

formula is valid if and only if the implementation is correct with respect to the 

specification. The second phase is a decision procedure that checks whether the formula is 

valid. They applied their method in the verification of a pipelined implementation of a 

subset of the DLX architecture. However, their method, unlike ours, cannot verify 

properties involving temporal operators, in particular, liveness properties. 

1.2 Scope of the thesis 

In this thesis, we study the automatic model checking with a first-order branching time 

temporal logic. Compared to other researches, we mise the level of abstraction at which 

the problem is stated and explore model checking at a higher abstraction level. Our 

approach is based on abstract descriptions of state machines (ASMs) where a data value is 

represented by a single variable of abstract type, rather than by Boolean variables, and a 

data operation is represented by an uninterpreted or partially interpreted function symbol. 

An ASM is encoded using Multiway Decision Graphs (MDGs) [27][81] of which 

Reduced Ordered Binary Decision Diagrams (ROBDDs) [11] are a special case. ASMs 

can be used to describe designs at Register Transfer Level (RTL). The verification of 
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ASMs is based on state enumeration whose complexity is independent of the width of the 

datapath. Thus, the state explosion problem caused by descriptions of large datapaths at 

the Boolean logic level is avoided. 

The current ASM-based package provides tools for the verification of behavioral 

equivalence of sequential circuits, the verification of a microprocessor against its 

instruction set architecture, invariant checking using reachability analysis [80], and 

temporal property checking. The main objective of the thesis is to define a first-order 

branching time temporal logic called Abstract-CTL* and to develop property checking 

algorithms for a subset of Abstract-CTL* called LmDG. This includes safety properties 

and liveness properties with or without fairness constraints. 

Compared to the work of [34], we shall see in the following chapters that the 

decidable fragment of GTL is actually a subset of the class of properties that we can 

verify; Compared to ICS [43][45], our ASM models are more general in the sense that the 

abstract sort variables in our system (corresponding to the integer variables in ICS models) 

can be assigned any value in their domains, rather a particular constant or function of 

constants as in the ICS model. For the class of ICS models where finite instantiations 

cannot be used, our verification system can still compute all the reachable states and check 

safety properties as well as certain liveness properties. For example, the abstract counter 

presented in Chapter 10 cannot be handled by the ICS model, but it can be described using 

the ASM model. Compared to [47], our first-order linear-time temporal logic LmDG  is less 

expressive than FO-ACTL, since we only allow limited nesting of temporal operators. 

However, in our approach the property is checked in the whole model automatically, while 

in [47] a theorem proyer is eventually needed to validate the pure first-order verification 

condition. 
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1.3 Contributions 

The results reported in this thesis were obtained through the collaboration with E. Cemy, 

X.Song and F. Corella. I made partial important contributions in item 1 and major original 

contributions in 2-5. 

1. The definition of a first-order branching time temporal logic Abstract CTL*, 

which can be used to specify temporal properties for a system described using 

ASM computation model; 

2. The definition of LmDG  (a subset of Abstract_CTL* ) and the development and 

implementation of property checldng algorithms for LmDG, including the 

algorithms for liveness property checking under fairness constraints; 

3. The development and implementation of the ASM construction technique which 

efficiently builds an ASM for a property involving only the temporal operator 

"Next"; 

4. Experimentation on some benchmarks. 

1.4 Ondine 

This thesis is organized as follows: 

In Chapter 2, we review the basic formal verification techniques and the logics 

used in those techniques. 

In Chapter 3, we give the theoretical foundations of this thesis. First, we describe 

the formal logic used in our ASM approach. Second, we define the computation model, 
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i.e., the definition of an abstract description of state machines and the definition of an 

abstract infinite computation tee. We also explain how abstract state enumeration 

proceeds. 

In Chapter 4, we define the syntax and the semantics of a very general temporal 

logic called Abstract_CTL* , which is a first-order branching time temporal logic. 

In Chapter 5, we define LmDG, a subset of Abstract_CTL*, as a property 

specification language for which we have been able to develop property checking 

procedures. 

In Chapter 6, we present in detail the property checking procedures. 

In Chapter 7, we give an algorithm for generating a circuit description representing 

a Next_let formula, which is a formula including only the temporal operator "Next". 

In Chapter 8, we show how to impose fairness constraints in our verification 

system and the algorithms for checking liveness properties under fairness constraints. We 

also discuss implementation issues. 

In Chapter 9, we demonstrate the soundness of our verification procedure. 

In Chapter 10, we verify some properties regarding the Island Tunnel Control 

bench mark using our model checker and also using VIS from University of California at 

Berkley. We also verify several properties regarding an abstract counter in which the value 

of the counter is described using a variable of abstract type. 

In Chapter 11, we conclude the thesis and outline future directions of research. 



2 	Formal Verification Techniques 

Since the idea of using formal methods for verifying systems was first introduced, 

numerous approaches to this problem have been explored by researchers. These 

approaches can be classified into 3 main categories: 

• interactive, predicate logic based theorem proving techniques 

• finite state automata based equivalence checking techniques 

• propositional logic based model checking techniques 

In this chapter, we shall review the basic ideas behind these techniques. 

2.1 Theorem proving 

One of the earliest approaches to formal hardware verification was to describe the 

implementation as well as the specification in a formal logic. The correctness result was 

then obtained within the logic, by proving that the specification and the implementation 

were suitably related (logical equivalence or logical implication). The underlying concept 

of this method is the notion offormal theory. A formai theory S is defined by: 

11 
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1. A finite alphabet. The symbols of this alphabet are the symbols of the theory. A 

finite sequence of these symbols is called an expression of S. 

2. A subset of the expressions of S are the well-formed formulas of S. 

3. A finite set of the well-formed formulas of S are axioms of S. 

4. A finite set of rules of inference. A rule of inference allows the derivation of a 

new well-formed formula from a given finite set of well-formed formulas. 

A forma/ proof in S is a finite sequence of well-formed formulas:fi , f2 , .... , fn, such 

that for every i, formula fi   is either an axiom or can be derived by one of the rules of 

inference from the formulas {f i , f 2 , ... ,fi_i }. Traditionally, the last well-formed formula in 

a formal proof is called a theorem of S, and the formal proof is a proof of this theorem. 

The formal logics that are usually employed in theorem proving can be classified 

as first-order predicate logic and high-order predicate logic. 

2.1.1 First-order predicate logic 

First-order predicate logic is one of the most extensively studied logics. Its language 

alphabet consists of a signature (countable sets of symbols for constants, functions, and 

predicates), symbols for variables, a set of standard Boolean connectives (-1, V, A, , -E-) 

and quantifiers (3, V). There are two main syntactic categories — terms and formulas. 

Terms consist of constants, variables, and function applications to argument terms. 

Formulas consist of atomic formulas (predicates), Boolean combinations of component 

formulas and quantified formulas (with quantification allowed on variables only). An 

interpretation for a first-order logic consists of a structure (a domain of discourse and 

appropriate mapping of the signature symbols) and an assignment for the variables 
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(mapped to domain elements). Semantically, terms denote elements in the domain, and 

formulas are interpreted as true/false. Different first-order languages are developed 

depending on the exact set of signature symbols used and their interpretations. Various 

proof systems have been studied for first-order logics. A representative one is the Boyer-

Mo ore computational logic [8]. 

Boyer-Moore computational logic is a restricted form of first-order logic which 

was developed for the explicit purpose of reasoning about computations. Here we just give 

the brief introduction to this logic. A detailed description can be found in [8]. 

Boyer-Moore logic is a quantifier-free first-order logic with equality. Its syntax, 

which uses a prefix notation, resembles that of Lisp. The logic is mechanized by a 

collection of Lisp programs that permit the user to axiomatize inductively constructed data 

types, define recursive functions, and prove theorems about them. This collection of 

programs is frequently referred to as "the Boyer-Moore theorem proyer". The main 

principles of the Boyer-Moore system are: 

• The shell principle, which is used to define inductive abstract data types by 

means of a bottom object, a constructor and one or more accessors. A Boolean function, 

called a recognizer, checks whether an object belongs to the shell. 

• The definition principle, which ensures that all new functions are defined either 

non-recursively in terms of pre-defined functions, or in the case of recursive definitions, a 

well-founded ordering exists on some measure of the arguments that decreases with each 

recursive call. 

• The induction principle, on which the induction heuristics of the proof 

mechanism are based. An induction scheme is automatically generated according to the 

definition of the recursive functions involved in the theorem to be proved. 

The Boyer-Moore system provides an automated facility for generating proofs in 
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the logic. However, the process of proof generation is not fully automatic, in that the 

theorem proyer may need assistance from the user for setting up intermediate lemmas and 

helpful definitions. The strong mathematical foundation and heuristics that have been built 

into the system make it an effective tool used in a number of application areas. 

An important approach to hardware verification within Boyer-Moore logic was 

made by W.A. Hunt, Jr. He demonstrated the use of the theorem prover for the verification 

of the FM8501, a microprogrammed 16-bit microprocessor similar in complexity to a 

PDP-11 [48].  The specification presents a programmer's view of FM8501 in the form of 

an interpretation function at the macro-instruction level. The implementation consists of 

its description as a hardware interpreter that operates at the micro-instruction level. 

Recursive function definitions within the logic are used to represent the varions 

combinational and sequential hardware units. Verification is performed by proving a 

theorem that states the equivalence of the two descriptions, under an appropriate 

assumption on the initial conditions. Later, he extended his work to the verification of the 

FM8502, a 32-bit microprocessor with a richer instruction set [49]. Hunt demonstrated the 

effectiveness of using a mechanized (though not fully automated) theorem proving facility 

and also made a good use of the recursion and induction principles allowed by the Boyer-

Moore logic to reason about hardware functions with arbitrarily-sized arguments. 

2.1.2 Higher-order logic 

Higher-order logic is a version of predicate calculus with three main extensions [41]: 

*Variables can range over functions and predicates (hence "higher order"). 

• The logic is typed (each theory specifies a signature of type and individual 

constants). 
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*There is no separate syntactic category of formulas (formulas are identified with 

terms of type bool). 

High-order logic allows quantification over arbitrary predicates and functions. This 

ability leads to a greater expressive power, but also the increased complexity of analysis 

compared to the first-order case. The incompleteness of a sound proof system for most 

high-order logics makes logical reasoning more difficult than in the first-order case, and 

one has to rely on ingenious inference rules and heuristics. In spite of these difficulties, the 

use of high-order logics in formal verification has become increasingly popular in the past 

few years. An important consideration in most cases is the use of some controlled form of 

logic and inferencing, in order to minimize the risk of inconsistencies, while maintaining 

the benefits of powerful representation and inference mechanisms. 

Among the higher-order logic theorem proving systems HOL is the most typical 

one [411[33]. The HOL system which includes a HOL logic and a theorem proving system 

was developed by the Hardware Verification Group at the University of Cambridge, 

England. This system is based on a version of high-order logic developed by Gordon for 

the purpose of hardware specification and verification. 

Syntactically, HOL uses the standard predicate logic notation with the same 

symbols for negation, conjunction, disjunction, implication, quantification, etc. There are 

four kinds of terms — constants, variables, function applications, and lambda-terms that 

denote functional abstractions. Semantically, types denote sets and terms denote members 

of these sets. Formulas, sequents, axioms, and theorems are represented by using terms of 

Boolean type. 

The sets of types, type operators, constants, and axioms available in HOL are 

organized in the form of theories. There are two built-in primitive theories, bool and ind, 

for Booleans and individuals respectively. Other important theories, which are arranged in 

a hierarchy, have been added to axiomatize lists, products, sums, numbers, primitive 
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recursion, and arithmetic. On top of these, users are allowed to introduce application-

dependent theories by adding relevant types, constants, axioms, and definitions. New 

types are introduced by specifying an existing representing type, a predicate that identifies 

the subset isomorphic to the new type and by proving appropriate theorems about them. 

The HOL logic is embedded in an interactive functional programming language 

called ML. The overall HOL system supports a natural deduction style of proof, with 

derived rules formed from eight primitive inference rules, e.g., a collection of rewrite 

rules. All inference rules are implemented by using ML functions, and their application is 

the only way to obtain theorems in the system. Once proven, theorems can be saved in the 

appropriate theories to be used for future proofs. Most proofs done in the HOL system are 

goal-directed and are generated with the help of tactics and tacticals. A tactic is an ML 

function that is applied to a goal to reduce it to its subgoals, while a tactical is a functional 

that combines tactics to form new tactics. The tactics and tacticals in HOL are derived 

from the Cambridge LCF (logic for computable functions) system (which evolved from 

the Edinburgh LCF). The strict type discipline of ML ensures that no ill-formed proofs are 

accepted by the system. 

Verification tasks in the HOL system can be set up in a number of different ways. 

The most common one is to prove that an implementation, described structurally, implies 

or is equivalent to, a behavioral specification. For example, a behavioral description for an 

Exor-gate can be represented as a predicate [42]: 

Exor_Spec(a, b, c) E ( c = --.(a=b) ), 

and its structural implementation in terms of simpler Boolean gates (shown in Figure 3) 

can be represented as 

Exorimp(a,b,c) 	p,q. Nand (a, b, p) A Or (a, b, q) A And (p, q,c). 

The correctness theorem can be expressed as Exor_Imp(a,b,c) Exor_Spec(a, b, 
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c). 

Figure 3 - Implementation of an Exor-Gate 

Since its introduction, the HOL system has been used in the verification of 

numerous hardware designs. Camilleri, Gordon, and Melham demonstrated the 

correctness of a CMOS inverter, an n-bit CMOS full-adder, and a sequential device for 

computing factorial function [20]. Gordon and Herbert described the verification of 

memory devices with low-level timing specifications, modeling of combinational delays, 

and verification of a network interface chip implemented in ECL logic [40]. Other 

researchers outside the group at Cambridge have also used HOL for hardware verification, 

for example, the microprocessor called Viper was verified at the Royal Signals and Radar 

Establishment in England. Tahar and Kumar at the University of Karlsruhe in Germany 

used HOL for the verification of pipelined RISC processors [74]. 

Compared to the Boyer-Moore system, one important advantage of HOL is the 

greater ability to formulate abstractions by exploiting high-order logic. The ability to 

reason with high-order functions defined in terms of unspecified but well-typed functions 

allows one not only to concentrate on the important aspects of a problem but also to reason 

about a class of problems [1]. 
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HOL has proved to be a powerful hardware verification system, deriving its 

strength on one hand from the expressiveness of higher-order logic, and on the other hand 

from the effectiveness of the automated theorem proving facilities it provides. Also, the 

ability to work with various abstraction mechanisms and hierarchical descriptions makes 

HOL very useful for handling large designs. An attractive feature is its ability to evolve 

continuously. New theories and associated theorems become part of the system, which can 

be drawn upon for future proofs. Complex derived rules, found useful in a particular 

context, can be saved and reused elsewhere. 

Besides HOL, there are other higher-order logic theorem proving systems, such as 

PVS [63], Nuprl [26][52][53], etc. 

2.1.3 Strength and weakness 

First, theorem proving systems are usually very general in their applications. The ability to 

define appropriate theories and reason about them using a common set of inference rules 

provides a unifying framework within which all kinds of verification tasks can be 

performed. 

Second, most theorem proving approaches find it easy to incorporate hierarchical 

verification of hardware systems. A circuit is described hierarchically, where a component 

is defined at one level in the hierarchy as an interconnection of components defined at 

lower levels. The system specification consists of a behavioral description of the 

components at all levels in the hierarchy. Verification involves proving that each 

component fulfils its part of the specification, assuming that its constituent components 

fulfil their specification. The specification once proven becomes a theorem and can be 

used in the proofs at the next hierarchical level. 

Third, theorem proving approaches are better at the verification of the datapaths 
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than the control aspects of a circuit. 

Finally, theorem proving is a deductive process. This raises both theoretical and 

practical complexity. Automation can be and has been provided to some degree. However, 

most of the theorem provers today still need much human interaction to guide the proof 

searching process, which makes the whole design verification process overwhelmingly 

tedious. 

2.2 Equivalence checking 

The purpose of equivalence checking is to verify that the functionality of a circuit is 

exactly the same as the one specified in its complete functional description; e.g., the circuit 

described as a gate netlist has the same behavior as its RTL description. There are two 

main methods to achieve this goal: FSM-based equivalence checking and structure-based 

equivalence checking. 

2.2.1 FSM-based Equivalence checking 

In this approach, both the implementation and the specification are represented as finite-

state machines. One such model, called the Moore machine, is formally denoted by a 6-

tuple (S, I, 0, NF, OF, s0 ), where 

•S is a finite set of states, 

• / is an input alphabet, 

• 0 is an output alphabet, 
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• NF: Sxi -> S is a next-state function, 

• OF: S -> 0 is an output function and 

• so  (so E S) is an initial state. 

In the Moore machine model, output is a function of the state &Ione. Another 

variation in which output is a function of both the state and the inputs is called the Mealy 

machine model. It has been proven that for any Moore machine Mmoore, there is a Mealy 

machine Mmegy  equivalent to Mmoore  , and vice-versa [46]. 

To represent a sequential circuit as a Moore machine, its logic level description is 

organized in the form of three basic units as shown in Figure 4 — a set of latches 

(memorize s E S), next-state logic NL (purely combinational, corresponds to NF), and 

output logic OL (purely combinational, corresponds to OF). 

Next States 

Inputs 
NL LATCHES OL 

Outputs 

à A 

Present States 

Figure 4 - Moore machine for sequential circuits 

A finite-state machine can be viewed as a transducer, producing a sequence of 
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outputs for each possible sequence of inputs. Thus, two machines are equivalent if they 

produce the same output sequence for every possible input sequence. 

Two machines with the same input alphabet, M1= (S1 , I, 01, NF1, OF' , s0.1 ) and 

M2= (S2 , I, 02 , NF2, 0F2 , su) can be composed to form a single machine M = (S1xS2, I, 

01x02 , NF, OF, (su, su)), consisting of the two machines running in parallel [60]. The 

states of M are pairs of states, one from M1  and one from M2. The state transition function 

NF of M is defined to map pairs of states to pairs of states by applying NF 1  to the first state 

in the pair and NF2  to the second one. The output function is defined in the same way. M is 

called the product machine of M1  and M2. 

For checking the equivalence of the two machines, we can do a state exploration of 

the product machine with all possible input combinations starting from the initial state. 

Then, for each reachable state, we check the equivalence of the corresponding outputs of 

the two machines. 

In this method, it is very important to represent the states and transition functions 

efficiently. The main limitation of this method springs from the fact that equivalence is 

sometimes a too strict relationship than desired for the satisfaction of a specification by an 

implementation. 

The early exploration of this method was done by Coudert, Berthet and Madre 

[29] [30]. They used the standard algorithm for the comparison of two Mealy machines, 

i.e., the output of the two machines should be the same for every transition reachable from 

the initial state. The significant contribution of their approach is the idea of using a 

symbolic breadth-first search of the state-transition graph of the composite machine, 

encoded using ROBDD s, instead of the usual depth-first techniques used in other methods. 

The advantage of this method is that it is fully automated and it can handle designs 

with different state encoding. The drawback is that it is very costly in memory space and 
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time when the design has too many states. 

2.2.2 Structure-based equivalence checking 

The verification method first requires to map, one-to-one, the memory elements (flip-

flops) of the two designs. Then, it checks if the corresponding combinational logic cones 

bounded by memory elements realize the same Boolean function. This method is normally 

used to compare an implementation netlist with an RTL description or with another netlist. 

An important structure-based equivalence checking tool was developed by 

researchers at the Bull Research Centre in France. They developed a tautology-checker 

called PRIAM [3], which was used to verify the equivalence of a specification (expressed 

as a program in a hardware description language called LDS) and an implementation (also 

an LDS program, extracted from a structural description of the circuit, e.g., layouts, gate-

level descriptions, etc.). Basically, each LDS program is reduced by symbolic execution to 

a canonical form of Boolean functions called a Typed Decision Graph (TDG) which is an 

improvement over ROBDDs [11], thereby reducing the task of checking equivalence to 

that of checking syntactic equality. The main drawback of this work was that both the 

specification and the implementation programs had to have the same states and the same 

state encoding, thus severely limiting its application. 

This method is less prone to the state explosion problem compared to the FSM-

based equivalence checking, and it can also be fully automated. However, it cannot handle 

sequential equivalence if the two designs have different state space and sometimes a 

helping hand to determine the state mapping is needed. 
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2.3 Model checking and temporal logics 

One of the characteristics of the theorem proving approach is its structural rather than 

behavioral view of the verification process. Model checking takes the completely opposite 

approach. Here only the behavior of a system is checked and verified to satisfy some user-

specified properties. In general, a model checker builds or accepts a finite-automaton 

model of the system and checks whether or not the specified property holds on the model. 

If it does not, the mode' checker returns a failure trace. Normally, the property is 

expressed in a temporal logic. Hence, studying temporal logics is very important for doing 

model checking. 

2.3.1 Temporal logics 

Propositional logic deals with absolute truths in a domain, i.e., given a domain, 

propositions are either true or false. Predicate logic extends the notion of truth by making 

it relative, in that truth of a predicate may depend on the actual arguments (variables) 

involved. Since these arguments can vary over elements in the domain, the truth of a 

predicate can also vary across the domain. Extending this notion further, modal logic 

provides for additional variability, where the meaning of a predicate (or a function) 

symbol may also change depending on what "world" it is in. Variability within a world is 

expressed by means of predicate arguments, whereas changes between worlds are 

expressed by using modal operators. The dynamic connectivity between worlds 

(represented as states) is specified by an accessibility relation. 

Temporal Logic is a special type of Modal Logic. It provides a formal system for 

qualitatively describing and reasoning about how the truth values of assertions change 

over time. There are four basic operators in temporal logic: 
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• D P is true in state s, if P is true in all future states from s (including s) 

• OP is tue in state s, if P is tue in some future states from s 

• OP is tue in state s, if P is true in the next state from s 

• PUQ is true in state s, if either Q is true in s itself, or it is true in some future state 

of s, and until then P is true at every intermediate state. 

Historically, temporal logic was first applied by Pnueli to the task of specifying 

and verifying concurrent programs and reported in a landmark paper [68]. The following 

classes of properties were identified, all of which can be easily expressed in temporal 

logic: 

• Safety properties — assert that nothing "bad" happens, typically represented as 

I= D p , i.e., P holds at all times in all models; 

• Liveness properties — assert that eventually something "good" happens, 

typically represented as I=P 	OQ, i.e., in all models, if P is initially true then Q will 

eventually be true; 

• Precedence properties — assert the precedence order of events, typically 

represented as I= P U Q, i.e., in all models, P will hold until Q becomes true; 

Much work has been done in applying these ideas to hardware verification. 

2.3.2 Classification of temporal logics 

According to the details of the semantic model with respect to which temporal formulas 

are interpreted, temporal logics can be classified into different kinds. One important 
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distinction is whether the truth of a formula is determined with respect to a state, or with 

respect to the interval between states. The latter has given rise to what is commonly known 

as Interval Temporal Logic. Within the former one, there has been further categorization 

based on the difference in viewing the notion of time. In one case, time is characterized as 

a single linear sequence of events, leading to Linear Time (Temporal) Logic. In the other 

case, a branching view of time is taken, such that at any instant there is a branching set of 

possibilities into the future. This view leads to Branching Time (Temporal) Logic. 

2.3.3 Propositional Linear Temporal logic (PLTL) 

In a linear temporal logic the underlying structure of time is assumed to be isomorphic to 

the natural numbers with their usual ordering (N, <) [37]. Let AP be an underlying set of 

atomic proposition symbols. A linear-time structure M.(S, x, L) is defined such that 

• S is a set of states, 

• x: N ---> S is an infinite sequences of states, and 

• L: S —> 2(AP)  is a labelling of each state with the set of atomic propositions in AP 

that are eue in the state. 

Usually, the notation x = (s0, sl , s2 , ...) = (X(0), x(1), x(2), ...) is employed to denote 

the timeline x, which is also referred to as a fullpath, or computation sequence, or 
computation. 

The basic temporal operators of a Propositional Linear Temporal Logic (PLTL) are 

Fp ("sometime p", also read as "eventually p"), Gp("always p"; also read as "henceforth 

p"), Xp ("nexttime p"), and p U q ("p until q"). Their intuitive meaning is illustrated in 

Figure 5, where a circle represents a state, a solid circle represents a state in which p is 
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true, a shaded circle represents a state in which q is tue, and an arrow represents a state 

transition. The formulas of PLTL are built up from atomic propositions, the truth-

functional connectives (A, v, and the above-mentioned temporal operators. 

Fp (sometimes p) 

Gp  (alwaysp) 

xp  (nexttime p) 

pUq (p until q) 

Figure 5 - Intuition for linear-time operators. 

Syntax. The set of formulas of PLTL is the least set of formulas generated by the 

following rules [37]: 

(1) each atomic proposition P is a formula; 

(2) if p and q are formulas then ling and are formulas; 

(3) if p and q are formulas thenp U q and Xp are formulas. 

The other formulas can then be introduced as abbreviations in the usual way: For 

the propositional connectives, pvq abbreviates 	pq abbreviates -pvq, and pj 
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abbreviates (pq)n(qp). The Boolean constant true abbreviates 	while false 

abbreviates 	Then, the temporal connective Fp abbreviates (true U p) and Gp 

abbreviates 

Semantics. the semantics of a formula p of PLTL with respect to a linear-time 

structure M-(S, x, L) is defined as follows [37]. We write M, x 1= p to mean that "in 

structure M formula p is true on timeline x." , x denotes the suffix path si , 	, S i+2 	 

Although it is not explicitly stated, those PLTL properties are checked on all the paths 

(1)M, x 1= P iff P E L(so ), for atomic proposition P; 

(2) M, x 1=pAq iff M, xl=p and M, xl= q, 

(3) M, x 1= - g) iff it is not the case that M, x 1= p; 

(4) M, x I= p U q iff 3j (xi 1=q and Vk < j (x1' 1= p)), 

(5)M, x 1= Xp iff xi  1=p. 

(6)M, x 1= Fp iff 3j (xi 1=p); 

(7) M, x 1= Gp iff V,/ (xi 1=p); 

The duality between the Linear temporal operators is illustrated by the following 

assertions: 

1= 	m -.Fp; 

1= F-ip 

1= X--ip 
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We say that a PLTL formula p is satisfiable iff there exists a linear-time structure 

M=(S, x, L) such that M, x I= p, and any such structure defines a model of p. 

The following are two examples of PLTL formulas: 

• p = Fq intuitively means that "if p is true now then at some future moment q will 

be true." 

• G(pFq) intuitively means that "whenever p is true, q will be true at some 

subsequent moment." 

Related work One of the first examples of using PLTL for hardware verification 

was provided by Bochmann in manually verifying an asynchronous arbiter through 

reachability analysis [4]. 

To characterize the behavior of concurrent programs in terms of sequences of 

states, Pnueli proposed an abstract computational model called "fair transition systems" 

(FTS)[67]. An FTS consists of a set of states (not necessarily finite), some of which are 

specified to be initial, and a finite set of transitions. Nondeterminism is allowed by 

representing each transition as a function from a state to a set of states. In addition, justice 

and fairness requirements are included by specifying a justice set J and a fairness set F, 

each of which is a set of subsets of transitions. An admissible computation of an FTS is a 

sequence of states and transitions, such that the starting state of the sequence is one of 

those designated as initial, each state follows from the previous one by an appropriate 

transition, and the computation terminates only if no transitions are enabled. It is also 

ensured that each admissible computation is just and fair, i.e., if an element of the justice 

(fairness) set, which is itself a set of transitions, is enabled continuously (infinitely often), 

then a transition belonging to that element will be taken at least once (infinitely often). 

PLTL formulas are interpreted over sequences of states that correspond to admissible 

computations of an FTS. 
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Lichtenstein and Pnueli presented a model checking algorithm for determining 

satisfiability of PLTL formulas with respect of finite state models similar to the fair 

transition systems FTS described above [58]. To check if a PLTL formula (I) is satisfied by 

a program P, a product graph G is constructed from the states of P and C/(1)) (the closure 

of subformulas of cp). The construction of G is such that $1) is satisfied by P if and only if 

there is an infinite path in G from a starting state that contains il). This involves finding 

strongly connected components of G, and the overall complexity of the method is 

0(//3/.2*). 

Manna and Wolper used PLTL for the specification and synthesis of the 

synchronizafion part of communicating processes [59]. Sistla and Clarke proved that the 

problems of satisfiability and model checking in a particular finite structure are NP-

complete for the PLTL logic with only the operator F, and are PSPACE-complete for the 

logics with various subsets of operators-{F, X}, {U}, {X, U} [73]. 

2.3.4 Computation Tree Logic (CTL) 

Different ldnds of Branching Time Temporal Logic (BTTL) have been proposed 

depending on the exact set of operators allowed. The common feature is that they are 

interpreted over branching tree-like time structures, where each moment may have many 

successor moments. The structure of time corresponds to an infinite tree. Along each path 

in the tree, the corresponding timeline is isomorphic to the natural numbers N. In BTTL, 

the usual temporal operators (F, G, X, U) are regarded as state quantifiers. Path quantifiers 

are provided to represent all path (A) and some path (E) from a given state. Here we only 

concentrate on the so called Computation Tree Logic (CTL), proposed first by Clarke and 

Emerson who also presented efficient algorithms for CTL model checking [22][23]. 

Syntax. CTL severely restricts the type of formulas that can appear after a path 

quantifier— only single linear time operator F, G, X, or U can follow a path quantifier and 
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time operators cannot be combined directly with the propositional connectives. The syntax 

of CTL [37] is: 

1. Every atomic proposition is a CTL formula. 

2. Iff and g are CTL formulas, then so are 

(fAg), A Xf, EXf, A (fUg ), E (fUg) 

The remaining operators are derived from these according to the following rules: 

fvg = -,(-f A -ig) 

AFg = A(true U g) 

EFg = E(true U g) 

AGf = -E(true U -95 

EGf = -4(true U 

Since all the operators are prefixed by A or E, the truth or falsehood of a formula 

depends only on the given state s, and not on the particular branch. 

It was demonstrated by Clarke, Emerson and Sistla that CTL is an efficient means 

for verifying finite-state systems. In their approach, a finite-state system is modeled as a 

labelled transition graph which can be viewed as a finite Kripke structure represented as a 

triple M=(S, R, P) [24], where 

• S is a finite set of states, 

• R is a total binary relation on states and represents possible transitions, and 
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• P is a mapping that assigns to each state the set of atomic propositions that are 

true in the state. 

A path within this structure is naturally defined as an infinite sequence of states, 

with each adjacent pair related by R. 

Semantics. As its name suggests, CTL interprets temporal formulas over 

structures that resemble infinite computation tees. In the context defined above, given M 

and an initial state so, it considers the infinite computation tree rooted at so, generated by 

considering all possible nondeterministic transitions at every state. The truth of a CTL 

formula is defined inductively as follows [37]: 

• (M, so) 1=p iffp E P(so), wherep is an atomic proposition 

• (M, so) 1= --fiff (M, so) I# f 

• (M, so) I= fng iff (M, so) I= f and (M, so) I= g 

• (M, 4)1= AX f iff for all states t such that (si], t) e R, (M, t) I= f 

• (M, s 0) I= EX f iff for some states t such that (so, t) E R, (M, t) I= f 

• (M, so) I= A(fUg) iff for all paths (so, sl, s2...), 3k 0 such that (M, sk) I= g, and 

Vi, 0_i<lc, (M, s) I= f 

• (M, s0) 1= E(f U g) iff for some paths (so, si , s2...), 3k ?_. 0 such that (M, sk) I= g, 

and Vi, 0.51<k, (M, s) 1= f 

Figure 6 shows the intuitive meaning of AXf, EXf, AFf, EFf, AGf and EGf. A 

solid circle represents a state in whichf is trute. 

Some examples of interesting properties expressible in CTL are: 

• AG(AFf):f holds infinitely often along all paths. 
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• AG(Request = AXAXAXf):f will hold in all the states which are reached by 3 

transitions since a state where Request is made. 

• AG(Request 	AF Grant): it is always true that if a request is made, there will 

eventually be a grant signal. 

- EFf: it is possible to reach a state wheref holds. 
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AXf 	 EX f 

"\e 

11/ l l 'C/\\51)\ 	5(l C'  /\ /1\ 

AFf 	 EFf 

M-M-M-M-Millil 

Figure 6 - The intuitive meanings of AXf, EXf, AFf,  , EFf, AGf and EGf 
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Related work. Clarke, Emerson and Sistla showed that there is an algorithm for 

determining whether a CTL formula f is true in state s of the Kripke structure M = (S, R, P) 

which runs in time 0(length(f)x(ISI+IR I)) 1j241. 

An important consideration in the modeling of concurrency is the notion of 

fairness. Among possible faimess constraints, the following are very common ones [37]: 

• Unconditional fairness (also known as impartiality): an infinite sequence is 

impartial iff every process is executed infinitely often during the computation. 

• Weak fairness (also known as justice): an infinite computation sequence is 

weakly fair iff every process enabled almost everywhere is executed infinitely 

often. 

• Strong fairness (also known simply as fairness): an infinite computation 

sequence is strongly fair iff every process enabled infinitely often is executed 

infinitely often. 

Since fairness cannot be expressed in CTL, Clarke et al. modified the semantics of 

CTL to introduce the notion of fairness [24]. The new logic, called CTLF, has the same 

syntax as CTL, but the structure is now a 4-tuple (S, R, P, F). S, R, P have the same 

meaning as in CTL and F is a collection of predicates on S. Fair paths in this context are 

defined as those along which states occurring infinitely often satisfy each predicate that 

belongs to F. CTL F  has exactly the same semantics as CTL, except that the path 

quantifiers range over fair paths only. Model checking for CTLF  is done by first 

identifying fair paths using strongly connected components in the graph of M, followed by 

application of the model checking algorithm only to those paths. The time complexity is 

0(nxmxp) where n= max(ISI, IR I), rn—length(f) and p=IFI. 
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Since CTLF  still cannot express strong fairness, Emerson and Lei defined FCTL by 

extending the notion of fairness in CTL to consider fairness constraints that are Boolean 

combinations of Fp (infinitely often p, same as GFp) and Gp (almost always p, same as 

FGp) operators [38]. Combinations of these operators can express strong fairness as well 

as impartiality and weak fairness. Model checking for FCTL is proved to be NP-complete 

in general, but it is shown to be of linear complexity when the fairness constraint is in a 

special canonical form. 

CTL* extends CTL by allowing basic temporal operators where the path quantifier 

(A or E) is followed by an arbitrary linear-time formula, allowing Boolean combinations 

and nestings, over F, G, X and U. CTL* is sometimes informally referred to as full 

branching time logic. For example, EFp is a CTL basic modality; EFAFq is a formula of 

CTL (but not a basic modality) obtained by nesting AFq within EFp (by substituting AFq 

for p in EFp). E(FpnFq) is a basic modality of CTL*. Emerson and Lei presented a model 

checking algorithm for CTL* which is shown to be PSPACE-complete [38]. 

Queille and Sifakis independently proposed a model checking algorithm for a 

logic with CTL modalities (without the "Until" operator) [69]. Formulas are interpreted 

with respect to transition systems that are derived from an interpreted Petri-net description 

of an implementation, with a verification system called CESAR. In their algorithm, 

interpretation of temporal operators is iteratively computed by evaluating fixed points of 

predicate transformers. However, they did not provide any means for handling fairness in 

their approach. 

2.3.5 LTTL versus BTTL 

In linear time logics, temporal operators are provided for describing events along a single 

future time line, although when a linear formula is used for program specification there is 

usually an implicit universal quantification over all possible futures. In contrast, in 
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branching time logics the operators usually refiect the branching nature of time by 

allowing explicit quantification over possible futures. One argument presented by the 

supporters of branching time logic is that it offers the ability to reason about existential 

properties in addition to universal properties [38]. 

Lichtenstein and Pnueli argued that since most formulas to be checked are small in 

practice, using LTTL model checking was a viable alternative to BTTL [58]. 

Emerson and Lei argued that branching time logic is always better than linear time 

logic for model checking [38]. They proved that given a model checking algorithm for an 

LTTL logic, there exists a model checking algorithm of the same complexity for the 

corresponding BTTL logic (e.g., CTL*), since B'TTL is essentially path-quantification of 

LTTL formulas. They demonstrated that handling explicit path quantifiers and even nested 

path quantifiers costs (essentially) nothing. 

Thus, the real issue is not which of the two (LTTL or BTTL) is better; rather, it is 

what basic modalities are needed in a branching time logic, i.e., what linear time formulas 

can follow the path quantifiers. 

2.3.6 Symbolic Model Checkiing 

Symbolic model checking has lately received a great deal of attention from various 

researchers. It was initially explored by Coudert, Madre, and Berthet [31], and 

independently by McMillan [61] and by Bose and Fisher [6]. The underlying idea 

common to these approaches is the use of symbolic Boolean representations for sets of 

states and transition functions (or relations) of a sequential system, in order to avoid 

building its global state-transition graph explicitly. Efficient symbolic Boolean 

manipulation techniques are then used to evaluate the truth of temporal logic formulas 

with respect to these models. Symbolic representation allows the regularity in state-space 
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of some circuits (e.g., datapaths) to be captured succinctly, thus facilitating verification of 

much larger circuits compared to the explicit state enumeration techniques, as shown by 

Burch et al. [17]. 

McMillan presented a method for model checking that avoids the state explosion 

problem by representing the Kripke model implicitly with a Boolean formula described 

using Bryant's ROBDDs [11]. It allows a CTL model checking algorithm to be 

implemented using well developed automatic techniques for manipulating Boolean 

formulas. Since the Kripke model is symbolically represented, there is no need to actually 

construct it as an explicit data structure. Hence, the state explosion problem can be 

reduced, although there exist pathological examples of explosive growth complexity. 

In Carnegie Mellon University, Clarke, McMillan et. al. developed the Symbolic 

Model Verifier (SMV) [17][62][61]. SMV is a tool for checking finite state systems 

against specifications in CTL. McMillan and Schwalbe successfully applied SMV to the 

verification of the Encore Gigamax cache consistency protocol and found some critical 

design errors [62], thus demonstrating the effectiveness of symbolic model checking 

techniques for industrial applications. 

The method used by Burch et al. [17] is very general and can handle 

nondeterministic systems, thus allowing its application to both synchronous and 

asynchronous circuits. However, this generality is gained at the cost of increased 

complexity of representing the complete transition relation symbolically using Bryant's 

ROBDDs [11]. Bose and Fisher, on the other hand, model systems as deterministic Moore 

machines, and use symbolic representations of the next-state functions (not relations) 

using ROBDDs [6]. The latter are derived directly from the symbolic simulation of the 

circuit using the switch-level simulator COSMOS [13]. Coudert at al. also used a 

deterministic Moore machine model with symbolic representations of the next-state 

functions [31]. However, they used more sophisticated Boolean manipulation operations 

(e.g. "constraint" and "restrict" operators) to keep down the size of their internai data 
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representations called TDGs (Typed Decision Graphs). 'TDGs are similar to ROBDDs, but 

typically they occupy about 1/2 of the space required by ROBDDs. 

Bryant and Seger have presented another extreme in this spectrum of symbolic 

methods [12]. They avoided explicit representation even of the next-state function. 

Instead, they used the simulation capability of COSMOS to symbolically compute the 

next-state of each circuit node of interest. This restricts them to using a limited form of 

temporal logic that can express properties over finite sequences only (unlike the other 

approaches that can handle full CTL). They reason within a symbolic Ternary algebra 

(with logic values 0,1 and X) to compute the truth values of formulas. 

2.3.7 Available Model Checkers 

A number of BDD-based model checking tools have developed over the last 10 years. The 

well known ones are as follows: 

• SMV (Symbolic Model Verifier) [61][84]: a CTL model checker developed by 

McMillan at Carnegie-Mellon University. 

• VIS (Verification Interacting with Synthesis) [9] [10][83]: an integrated tool for 

verification, simulation and synthesis of finite state systems, developed at 

University of California at Berkeley. It contains a Fair CTL Model Checker and 

a behavioral equivalence checker for sequential circuits, language emptiness 

check for Büchi automata and combinational verification. 

• FormalCheck [57][8511861: an co-automata based model checker based on 

Cospan developed at Bell Labs Design Automation, Lucent Technologies. The 

reduction algorithms and refinement methodologies embedded in FormalCheck 

makes the tool applicable to industrial-size designs. 
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• CheckOFF-M [87]; a model checker for a branching time interval logic 

developed at Siemens and commercialized by Abstract Hardware Limited 

Corporation. 

2.3.8 Strength and weakness 

The most significative advantage of model checking techniques is that they can be made 

completely automatic. The drawback of these approaches is that they are not general in the 

way that theorem provers are. A model checking verification system will work only for the 

kind of logic and models that it is designed for, and the state explosion problem is a major 

obstacle for model checking to be widely used in an industrial design flow. 

Compared to theorem proving, model checking approaches are weak for dealing 

with hierarchical verification and abstraction; however, they are better at reasoning about 

the control aspects of circuits and are more automatic. 

Summary 

In this chapter, we reviewed the existing formal verification techniques: theorem proving, 

equivalence checking and model checking, and especially the different logics deployed in 

the various verification techniques. These constitute the theoretical background on which 

the thesis is based. 



3 	Abstract Description of State 
Machines 

Abstract description of State Machines (ASMs) is a model used for describing hardware 

designs at the Register Transfer Level (RTL). It was first introduced by Corella, Langevin, 

Cemy, Zhou, and Song [27] [28]. Using ASMs, a data value can be represented by a 

single variable of abstract type, rather than by a vector of Boolean variables, and a data 

operation is represented by an uninterpreted function symbol. The model checking method 

based on a first-order temporal logic as developed in this thesis allows to verify properties 

on designs represented by ASMs. Thus, it is necessary to review first the terminology 

related to ASMs. We also give the definition of an abstract computation forest on which 

we then define the semantics of our first-order temporal logic. 

3.1 A many-sorted first-order logic 

As in an ordinary many-sorted first-order logic, the vocabulary consists of sorts, 

constants, variables, and function symbols (or operators). Constants and variables have 

sorts. An n-ary function symbol (n> 0) has a type a/  x oc2  x x o --> 	where a/  ... 

40 
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an+]  are sorts. We deviate from standard many-sorted first-order logic by introducing a 

distinction between concrete (or enumerated) sorts, and abstract sorts; the difference is 

that concrete sorts have enumerations, while abstract sorts do not. The enumeration of a 

concrete sort oc is a set of distinct constants of sort oc. We refer to constants occurring in 

enumerations as individual constants, and to other constants as generic constants. An 

individual constant can appear in the enumeration of more than one sort a, and is said to 

be of sort a for each of them. Variables and generic constants, on the other hand, have 

unique sorts. 

The distinction between abstract and concrete sorts leads to a distinction between 

three kinds of function symbols. Let f be a function symbol of type ai  x a2  x ... x an  

an±i.  If ocn+i  is an abstract sort thenf is an abstract function symbol. If all the ai  ... Œn+1 

are concrete, f is a concrete function symbol. If an±/  is concrete while at least one of oci  ... 

an  is abstract, thenf is referred to as a cross-operator. Both abstract function symbols and 

cross-operators may be uninterpreted, or partially interpreted by conditional rewrite rules. 

However, a concrete function symbol must have an explicit definition, and the symbol as 

such never appears in a logic expression. 

The terms and their types (sorts) are defined inductively as follows: a constant or a 

variable of sort CL is a term of type a; and iffis a function symbol of type oc1  x a2  x ... x an  

--> an+i, n 1, and A1,.. ., An  are terms of types a1  ... an, thenf(4...,An) is a term of type 

ocn+/ . A term consisting of a single occurrence of an individual constant has multiple types 

(the sorts of the constant) but every other term has a unique type. We say that a term, 

variable or constant is concrete (resp. abstract) to indicate that it is of concrete (resp. 

abstract) sort. A term is concretely reduced iff it contains: (i) the individual constants; (ii) 

the abstract generic constants; (iii) the abstract variables; and (iv) the terms of the form 

f(A/ ,...,An ) where f is an abstract function symbol and A1, .. ., An  are concretely-reduced 

terms. Thus, the concretely-reduced terms are those that have no concrete subterms other 

than individual constants. A term of the formf(A/ , ..., An) wheref is a cross-operator and 
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A1  ... An  are concretely-reduced terms is called a cross-term. An equation is an expression 

A1  = A2  where A1  and A2 are terms of same type a. Atomic formulas are the equations, 

plus T (truth), and F (falsity). Formulas are built from the atomic formulas in the usual 

way using logical connecfives and quantifiers. 

An interpretation is a mapping v that assigns a denotation to each sort, constant 

and function symbol such that: 

1. The denotation v(oc) of an abstract sort a is a non-empty set. 

2. If a is a concrete sort with enumeration 	a2 	an } then v(a) = 

lif(a2 ),...,v(an )} and y(ai) # v(ai) for 1 

3. If c is a generic constant of sort a, then v(c) E v(a). Iffis a function symbol of 

type ai  x 	x an  --> Œn+1,  then v(f) is a function from the cartesian product 

v(oci) x x v(an) into the set V(Œn+i)- 

Let X be a set of variables, a variable assignment with domain X compatible with 

an interpretation v is a function cp that maps every variable x e X of sort a to an element 

9(x) of v(oc). We write ce for the set of v-compatible assignments to the variables in X, 

ve I= P if a formula P denotes truth under an interpretation v and a v-compatible 

variable assignment q to the variables that occur free in P, I= P if a formula P denotes truth 

under every interpretation v and every v-compatible variable assignment to the variables 

that occur free in P. 

3.2 Directed Formulas (DFs) 

Given two disjoint sets of variables U and V, a directed formula of type U V is a formula 
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in disjunctive normal form (DNF) such that: 

1. Each disjunct is a conjunction of equations of the form 

A = a, where A is a term of concrete sort a of the form "f(Bi , , B)" (fis thus a 

cross-operator) that contains no variables other than elements of U, and a is an 

individual constant in the enumeration of a, or 

w = a, where w c (U u V) is a variable of concrete sort a and a is an individual 

constant in the enumeration of a, or 

v = A, where v e V is a variable of abstract sort oc and A is a term of type cc 

containing no variables other than elements of U. 

2. In each disjunct, the left hand sides (LHSs) of the equations are pairwise 

distinct. 

3. Every abstract variable v e V appears as the LHS of an equation v = A in each of 

the disjuncts. (Note that there need not be an equation v = a for every concrete 

variable v E V.) 

Intuitively, in a DF of type U —› V, the U variables play the role of independent 

variables, the V variables play the role of dependent variables, and the disjuncts enumerate 

possible cases. In each disjunct, the equations of the form u = a and A = a specify a case 

in terms of the U variables, while the other equations specify the values of (some of the) V 

variables in that case. The cases need not be mutually exclusive, nor exhaustive. 

A DF is said to be concretely reduced iff every A in an equation A = a is a cross-

term, and every A in an equation v = A is a concretely reduced term. It is easy to see that 

every DF is logically equivalent to a concretely reduced DF, given complete specifications 

of the concrete function symbols and concrete generic constants; the reduction can be 
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accomplished by case splitting. 

A concretely reduced DF contains no concrete function symbols and no concrete 

generic constants; and, in a concretely reduced DF of type U 	V, if A is the cross-term in 

the LHS of an equation A = a, or the concretely reduced term in the RHS of an equation v 

= A, then every variable that occuurs in A is an abstract variable u E U. We refer to such an 

occurrence of a variable as a secondary occurrence in the DF. A primary occurrence of a 

variable, on the other hand, is an occurrence as the LHS of an equation. From now on, by 

DF we shall mean concretely reduced DF. 

Let P be a DF of type U ---> V. For a given interpretation .111, P can be used to 

represent the set of vectors SetNi f() = (I) e el I v, 1i l= (U)P 1. 

In the following sections, DFs are used for two distinct purposes: to represent sets 

(viz. sets of states as well as sets of input vectors and output vectors) and to represent 

relations (viz. the transition and output relations). 

3.3 Basic algorithms of DFs 

We recall the basic algorithms used in [27] [80], but here we give their definitions in terms 

of DFs, since those algorithms will be needed later in the model checking procedures. 

Disjunction: The disjunction algorithm is n-ary. It takes as inputs a set of DFs P i , 

1 	i 	n, of types Ui 	V, and produces a DF R = Disj([Pi}i  < < n) of type ( 	U i ) 
1<i<n 

V such that 

I= R <=> ( v 	Pi ) 
1<i<n 
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Note that this algorithm requires that all the P 1 5_ i n, have the same set of 

abstract primary variables. If two DFs P1, P2  do not have the same set of abstract primary 

variables, then there is no DF R such that I= R <=> (P1  v P2 ). 

Confunction: The conjunction algorithm takes as inputs a set of DFs Pi, 1 i n, 

of types Ui  ---> Vi  and produces a DF R = Conj({Pi}i  < < n) of type 

(( 	 L..) V.))—*(U V) 
1<i<n 	 1<i<n 

such that I= R <=> ( 
1<i<n 

Pi ) . Note that for 1 i < j n, Vi  and yi  must not 

have any abstract variables in common, otherwise the conjunction cannot be computed. 

Relational product: The algorithm takes as inputs a set of DFs Pi, 1 i n, of 

types Ui 	Vi, a set of variables E to be existentially quantified, and a renaming 

substitution th and produces a DF R = RelP({Pi}i<i<n, E, Ti) such that 

I=R 4.> ( ((3E )( 	A 	P i )) • ) . 
1<i<n 

The algorithm computes the conjunction of the P existentially quantifies the 

variables in E, and applies the renaming substitution TI. For 1 _i<JSn,Vi  and Vi  must not 

have any abstract variables in common. 

The result of only computing the conjunction is a DF of type 

U.)\( U V.)) --> U V 1 ) . 
1<i<n 
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The set E of variables to be existentially quantified must be a subset of 

( 	V). The result of only computing conjunction and existenfial quantification 
1<i<n 

would be a DF of type 

(( 	 (...) V)) 	(( U V i)\E ) • 
1<i<n 	1<i<n 	 1<i<n 

The domain of ri must be a subset of (( U  V i )\E) . The type of the result R is 

then 

(( 	U U)\( L.) V i)) 	((( U V)\E) • 11) • 
1<i<n 	1<i<n 	 1<i<n 

Pruning by subsumption: The algorithm takes as inputs two DFs P and Q of types 

U —> yi  and U --> V2 respectively, and produces a DF R = PbyS(P, Q) of type U —> V1  

derivable from P bypruning (i.e., by removing some of the disjuncts) such that 

I=Rv(3U)Q<=>Pv(3U)Q 	 (3.1). 

The disjuncts that are removed from P axe subsumed by Q, hence the name of the 

algorithm. 

Since R is derivable from P by pruning, after the formulas represented by R and P 

have been converted to DNF, the disjuncts in the DNF of R are a subset of those in the 

DNF of P. Hence 

I= R = P. And, from (3.1), it follows tautologically that 
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I= /3  A —,(3U)Q 	R. 	 (3.2). 

Thus we have 

I= (P A ---,(3U)Q 	R) A (R 	P). 	(3.3). 

We can then view R as approximating the logical difference of P and (3U)Q. In 

general, there is no DF logically equivalent to P A —1(3U)Q. If R is F, then it follows 

tautologically from (3.1) that I= P = ( U  )Q. 

3.4 Abstract Description of State Machines (ASMs) 

An abstract description of state machine M is a tuple D = (X, Y, Z, F1, FT, F0 ), where 

1. X, Y and Z are sets of variables, viz. the input, state, and output variables, 

respectively. Let ri be a one-to-one function that maps each state variable y to a 

distinct variable 11(y) obtained, for example, by adoring y with a prime. The 

variables in r= i(Y) are used as the next-state variables. X, Y and Z must be 

disjoint from Y. 

Given an interpretation Ni, an input vector of the state machine M represented by 

D is a v-compatible assignment to the set of input variables X; thus the set of 

V 	• 	V i input vectors, or input alphabet, is «lx  . Similarly, Oz  s the set of output 

vectors. A state is a yr-compatible assignment to the set of state variables Y; 

V hence, the state space is (Dy  . A state cl) can also be described by an assignment 

-1 (p° = (I) 0 Ti E ef  to the next state variables. Y 
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A variable in Xu Yu Z is called an ASM variable. 

2. F1  is a DF representing the set of initial states, of type U ---> Y, where U is a set of 

abstract variables disjoint from X uYuru Z. Typically, FI  is a one-disjunct 

DF representing the set of initial states. 

Given an interpretation v, a state (I) e 4141 -f  is an initial state iff v, cl) I= (3U)F1. 

Thus the set of initial states is SI  = SetW(FI) = 	e 07, I v, cl) I= (3U)F1l. 

3. FT is a DF of type (X u Y) Y representing the transition relation. 

Given an interpretation v, an input vector e X and a state (I)? crelV  a state Y' 

feylf  is a possible next state iff ji,(I) u 	u cro Trl  I= FT.  Thus the 

transition relation of the state machine M represented by D is 

RT  = { ( (IY, g)" ) E (DI x 	x 011,1  -f  iv, ( ) u u ((é" Tri ) l= F T l . 

4. F0  is a DF of type (X u Y) —> Z representing the output relation. 

Given an interpretation v, the output relation of the state machine Mrepresented 

byDisRo = { (141Y, (1)")€ (14- x 	x ON; lv, ucrucr1=F0  

For every interpretation v of the sorts, constants and function symbols of the logic, 

the abstract description D = (X, Y, Z, F1, FT, Fo ) represents the state machine M = ( x  , 
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V V V Oy  , Oz  , sI, RT, Ro ) with the set of input vectors x  , the state space (1)y  , the set of 

output vectors wz  , the set of initial states S1 , the transition relation RT, and the output 

relation R0 . 

Let P1, P2  be two DFs of type U --> Y. Then for a given interpretation tv, the two 

sets of states represented by P1 , P2  are respectively S1  = SetW(P i ) = 	E e; I v, (1) I= 

(U)/31  } and S2  = SetW (P2) = { e 07 I If, 4) I= (3U)P2 }. We say that P1  and P2  are 

equivalent DFs (and furthermore Si  and S2  are equivalent sets) if PhyS(Pi, P2) = F and 

131:137S(Pi , P2) = F. 

3.5 State Enumeration and Invariant Checking 

Given an abstract description of an ASM D = (X, Y, Z, F1, FT, Fo), we can compute the set 

of the reachable states of the machine M = ( 	, ci ,  cez , S, RT, Ro) represented by D, 

for any interpretation ji, using the DF algorithms of Section 2.3. At the same time we can 

check that a given condition on the outputs of the machine, the invariant, holds on all 

these states. (When doing state exploration only, steps 6, 7 and 8 in the following 

algorithm are skipped.) 

An invariant is represented by a DF C of type V ----> Z, where W is a set of abstract 

variables disjoint from X, Y, Y', Z and U. For a given interpretation te, an output vector 

ef  (an assignment to the output variables) is deemed to satisfy the invariant iff Nmp I= 

(3V)C; therefore, the set of output vectors that satisfy the invariant is Set‘11  (C) = { E 
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crez I Nf, cp I= (V)C 1. 

The invariant checking algorithm based on reachability analysis is as follows: 

1. ReAn (D , C) 
2. R := Fi; Q := F K := 0; 
3. loop 
4. K:=K+1; 
5. / := Fresh(X, K); 
6. 0 := RelP({/, Q,F0 },X u Y, 0); 
7. P := PbyS(0, C); 
8. if P F then return failure; 
9. N := RelP({/, Q, FT }, X u Y, r); 
10. Q := PbyS(N, R); 
11. if Q = F then return success; 
12. R := PbyS(R, Q); 
13. R := Disj(R, Q); 
14. end loop; 
15. end ReAn; 

Variables I, N, P, Q and R represent sets of states, and 0 represents a set of output 

vectors. Before each iteration, R contains the states reached so far, while Q is the frontier 

set, i.e., a subset of Set T, (R) containing at least all those states that entered SetWy (R) for 

the first time in the previous iteration. In line 5, Fresh(X, K) constructs a one-disjunct DF 

representing a conjunction of equations x = u, one for each abstract input variable x e X, 

where u is a fresh variable from the set of auxiliary abstract variables U. The value of the 

loop counter K is used to generate the fresh variables. This one-disjunct DF is assigned to 

I, which represents the set of input vectors. In line 6, the relational product operation is 

used to compute the DF representing the set of output vectors produced by the states in the 

frontier set. The resulting DF is assigned to O. Then, in line 7, the pruning-by-

subsumption operation is used to remove from 0 those disjuncts that represent output 

vectors which satisfy the invariant C. The resulting DF is assigned to P. In line 8, if P is 
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not F, then the procedure stops and reports failure. If P is F, thenSe (0) c Sel(C) , i.e., 

every output vector produced by a state in the frontier set satisfies the invariant, and the 

verification procedure continues. In line 9, the relational product operation is used again, 

this time we compute the DF representing the set of states that can be reached in one step 

from the frontier set of states. Note that the DF Q representing the frontier set is of type U 

Y, the DF I representing the set of input vectors is of type U —> X, and the DF FT 

representing the transition relation is of type (X u Y) —> Y. The result of taking the 

conjunction of these three DFs would be of type U —> (X u Y u Y'), the result of 

subsequently removing the variables in X u Y by existential quantification would be of 

type U 	Y', and the result of subsequently applying the renaming substitution 11 is thus 

of type U 	Y. The RelP operation performs these three operations in one pass, and 

assigns the resulting DF of type U —> Y to N. Lines 10 and 11 check whether 

e t(N) c Set," (R)by the same method used in lines 7 and 8 to check whether 

Set(0) c Set(  C). If this is indeed the case then every state reachable from the frontier 

set was already in Set(R) . The fixpoint has been reached and R represents all the 

reachable states. Therefore, the procedure terminates and reports success. Otherwise the 

DF assigned to Q in line 10 represents the new frontier set. Line 12 simplifies R by 

removing from it any disjuncts that are subsumed by Q, using PbyS. There may be such 

disjuncts because Q was not computed earlier as an exact difference. Line 13 then 

computes the new value of R by taking the disjunction of R and Q which represents the set 

of states Set(R) u Set(Q) and assigns it to R. 

3.6 Abstract Computation Forest 

Given an ASM D = (X, Y, Z, F1, FT, F0 ), for a given interpretation v, we describe the next- 
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state computation of the machine M = (I, 	, EDI , S , RT, R0 ) represented by D as a 

computation forest F = (V, E) which may contain an infinite number of infinite trees: 

• V is a set nodes. Each node in V represents a total_state: which is an v-

compatible assignment to the set of state, input and output variables. A 

total_state can be described as s = (g), , 0") E 4[14f  X (Dy X (1)z 	 u 

u (1)" I= F o. 

• Each edge in E is a pair of total_states <si, si>, indicating that total_state si  is 

derived from total_state si  by one transition step. This can be formally described 

as follows: 

si= (4)i , 	(pi") e (1).2-1  x 011,1 -f  x 0111  I v, (pi  u 	u (pi" I= Fo; 

si  = ((pi, 11)1, (pi") e (DI x (Dl x CI 	v, 11)i  u 	t" I= F 0; 

and v, u u ((Pio T1-1) l= F T . 

A computation path in a computation forest is an infinite sequence of total_states 

so, si, s2„ sn, 	 such that Vi 0, <si  , si+i> Œ E. We use no  = ( so, s1, s2 ,.... ) to 

denote a full path and ni = ( si , si+i , si+2 , ...) a suffix path starting from Si. 
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3.7 The MinMax example 

To show how a computation forest is derived, we use a simplified version of the MinMax 

state machine which first appeared in {301 The machine has 2 input variables X = Ir, xl 

and 3 state variables Y = c, m, MI, where r and c are of the Boolean sort B, a concrete sort 

with enumeration {0, 1}, and x, m, and M are of an abstract sort wordn. The intended 

interpretation of wordn is a ftnite set equipped with a total order e.g., the set of 64-bit 

signed integers. There are no output variables from this circuit, i.e., Z = 

A graphical representation of the MinMax state machine is shown in Figure 7: the 

circles correspond to the values of the control state variable c and the arrows correspond to 

the control transitions of the machine. The transition labels specify the conditions under 

which each transition is taken and an assîgnment of values to the abstract next-state 

variables m and M. 

r = 1, 
{m'= max, 
M'= min 

r = 1, m'= max, M' = min} 

tele c  
r = 0, {m'= x, M' = x} 

= 0, 
lm'. if leq(x, m) then x 
else m, 
M' = if leq(x, M) then M 
else xl 

F igure 7 - A graphical representation of the MinMax state machine 

The machine stores in m and M, respectively, the smallest and the greatest values 

presented at the input x since the last reset (r = 1). When the machine is reset, m is loaded 

by the maximal possible value max and M by the minimal possible value min. The 
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smallest and greatest values are computed using an operator leq such that for any two 

values a and b of sort wordn, leq(a, b) — 1 if and only if a is less than or equal to b. 

Formally, the intended denotations of min and max are the smallest and largest elements 

of the total order (wordn, ..), and the intended denotation of leq is the characteristic 

function of the order relation .5_. In the abstract description of the MinMax state machine, 

the abstract sort wordn is uninterpreted, the min and max symbols are uninterpreted 

generic constants of sort wordn, and leq is an uninterpreted cross-operator of type wordn x 

wordn B. 

Assuming that the DF representing the set of initial states is F1: c=1 A m= max A 

M= min, where max and min are generic constants, Figure 8 shows a part of one tree in the 

infinite computation forest of the MinMax state machine. The dotted lines represent the 

continuation of the tree. Each square box in Figure 8 represents a state (G, (p) which is an 

assignment (p to the state variables satisfying a guard G. When G is True, it is satisfied by 

any assignment. One square box plus the assignment to the input variables indicated on 

the arrow from that box can be seen as a total_state. For a variable x of sort ci, the 

assignment (p(x) represents any value of v(a); therefore, there may exist an infinite 

number of instances of a tee in the computation forest. 

Summary 

In this chapter, we reviewed the definitions and the formal logic used in our ASM 

approach. We also gave the definition of an abstract infinite computation tree. It is based 

on this computation model that the first-order temporal logic model checldng method was 

developed in this thesis. 
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4 	A First-Order Branching Time 
Temporal Logic: Abstract_CTL* 

As a propositional branching time temporal logic, CTL (Computational Tree Logic) 

developed by Clarke and Emerson [22] is widely used as a property specification language 

for model checking. CTL severely restricts the type of formulas that can appear after a 

path quantifier A or E, namely, only single linear temporal operator F, G, X, or U can 

follow a path quantifier, and temporal operators cannot be combined directly using 

propositional connectives. 

CTL* extends CTL by allowing temporal operators in which a path quantifier (A 

or E) is followed by an arbitrary linear-time formula, allowing Boolean combinations and 

nesting over F, G, X and U. CTL* is sometimes informally referred to as a full branching 

time logic. For example, EFp is a basic CTL modality; EFAFq is a formula of CTL (but 

not a basic modality) obtained by nesting AFq within EFp (by substitufing AFq for p in 

EFp). E(FpnFq) is a basic modality of CTL*. Below we extend CTL* from the 

propositional logic level to the first-order logic level and define a first-order branching 

time temporal logic: Abstract CTL*. 

56 
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4.1 Syntax of Abstract_CTL* 

Given an abstract description of an ASM and a set of ordinary variables which are 

available for use in the specification of the property to be verified, the state formulas are 

defined as follows: 

(S1) if tir is an ASM_variable, t2  is an ASM_variable, or a constant, or an ordinary 

variable, then the equation t1  = t2  is a state formula. 

(S2) if p, q are state formulas, then so are p&q, plq and p->q; 

(S3) if t is an ASM_variable, v an ordinary variable, and p a state formula, then 

LET (v = t) IN p is a state formula; 

Note: the LET construct allows us to use an ordinary variable v to remember the 

value of an ASM_variable t at the current state. 

(S4) if p is a path formula, then Ap and Ep are state formulas. 

The path formulas are defined as follows: 

(P1) each state formula is also a path formula; 

(P2) if p, q are path formulas then so are .,p, p&q, plq, p->q,Xp, Gp, Fp and pUq; 

(P3) If t is an ASM_variable, v an ordinary variable, and p a path formula, then 

LET (v = t) IN p is a path formula. 
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We allow the formula LET (v1  = t1) & & (v„ = tn) IN p as a shorthand for 

LET (vi  = t1 ) IN ( ( LET (vi  = t1 ) IN ( 
	

LET (vn  = ) IN p ) ) ) . And we call 

(v1 = t1 ) & ...& (v n = tn ) a Let_equation. 

4.2 Semantics of Abstract_CTL* 

A formula of Abstract CTL* is interpreted in terms of a computation forest F derived 

from an ASM under a given interpretation y. 

A state formula (resp. path formula) has a meaning relative to a total_state (or a 

path) and the assignment to the ordinary variables. We use Va/( pG(t) to denote the value of 

variable t under a y-compatible assignment to the state, input and output variables, and a 

y-compatible assignment cî to the ordinary variables. 

We write s, a I= p (resp. ni, a I= p) to mean that a state formula p (resp. path 

formula p) is true at a total_state s (resp. along a ni ) of the computation forest under an 

assignment a to the ordinary variables. We then define I= inductively as follows: 

• s, cî I= t1  = t2  iff Va/sua(ti ) = Va/(t2 ). 

• s, a I= !p iff it is not the case that s, cî I= p. 

• s, cî I= p &qiff s, cî 1=p and s, cî I= q. 

• s, cr 1=p l  q iff s, cr I= p or s, cî I= q. 

• s, a 1= p->q iff s, a I= !p or s, cî I= q. 
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• s, cy  l= LET (v = t) IN p iff s, a I= p where cy = (a M (y, a(v))}) u { (v, 

Va/sui:T(0)1. 

• si , 6 l= Ap iff ni, a 1= p for every path n i  = (si , si±/  , 	) in the computation 

forest. 

• si , 6 l= Ep iff ni , a 1= p for some path ni  = (si , s i±i  , 	) in the computation 

forest. 

• ni, 6 l=p where p is a state formula, iff s1 , cî 1=p. 

• ni, a I= !p iff it is not the case that ni , a I= p. 

• ni, a I= p&q iff n i, a 1=p and n i, 6 I= q. 

• ni , cî 1= plq iff n i, a 1=p or ni, a 1= q. 

• ni , a 1= p->q iff n i, a I= !p or ni, a 1= q. 

• ni , a I= Xp iff 	, l= p. 

• ni, a 1= Gp iff , 1= p for all j 

• ni, a 1= Fp iff , 1= p for some j 

• ni , a 1= pUq iff for some k , , 6 l= q, and nk, a 1= p for all j (i j < k). 
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• ni, a I= LET (v = t) IN p iff ni, ai I= p, where a = (a \{(v, a(v)))) u {(v, 

Va/(t))1. 

Summary 

In this chapter, we defined the syntax and the semantics of Abstract CTL*, which is a 

very general first-order branching time temporal logic. This logic can be used to specify 

properties for a system described using ASM computation model. In the next chapter, we 

will define a subset of Abstract_CTL*, for which we have been able to develop property 

checking procedures. 



5 	Specification Language LmDG: a 
subset of Abstract_CTL* 

Similar to CTL* which is based on propositional logic, Abstract_CTL* subsumes both 

linear time temporal and branching time temporal logics at the first-order logic level. As 

the model checking problem for CTL* was shown to be PSPACE-complete [38], we 

expect that the complexity of model checking for Abstract CTL* would not be less than 

that. 

Below we define a property specification language LmDG  [781 which is a subset of 

Abstract_CTL*. Our verification system can verify properties expressed in LmDG. 

The basic formulas of LmDG are equations 1-1  = t2, where t1  is an ASM_variable, t2  

is an ASM variable, or an ordinary variable, or a constant. The Nextjet _formulas are 

defined as follows: 

(1) each basic formula of LmDG  is a Next_let_formula; 

(2) if p, q are Next let_formulas, then so are: !p (notp), p&q (p and q),plq (p or q), 

p ->q (p implies q), Xp, LET Let equation IN p. 
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In the Next_let_foumulas, we allow finite depth of nesting of the "next-time" 

temporal operator. In this sense, it is similar to the Symbolic Trajectory formulas [72]. 

5.1 Syntax of LmDG 

We give the syntax of LmDG in BNF. A terminal symbol is written in bold style, a 

nonterminal symbol is written in regular style starting with an upper case letter. Square 

brackets denote options. The start symbol is Property_file. 

Property_file ::= 

Property; 

Property ::= 

A ( Next_let_formula ) 

I AG ( Next_let_formula ) 

I AF ( Next_let_formula ) 

I A ( Next_let_formula ) U ( Next_let_formula ) 

I AG ( ( Next_Let formula ) => (F ( Next_let_formula ) ) ) 

I AG ( ( Next_let_formula ) => (( Next_let_formula ) U ( Next_let_formula )) ) 

Next let_formula ::= 

X Next_let_formula 



I LET ( Let_equation ) IN ( Next_let_f o r mul a ) 

I Next_let_formula -> Next_let_formula 

(Note: the first Next_let_formula can only contain concrete variables) 

I Next_let_formula & Next_let_formula 

I Next_let_formula I Next_let_formula 

I ! Next_let_formula 

(Note: the Next_let_formula can only contain concrete variables) 

I ( Next let_formula ) 

I Basic_formula 

Basic_formula 

Lterm = Rterm I True I False 

(Note: True, False are Boolean constants) 

Lterm ::= ASM_variable_Name 

Rterm ::= 

ASM_variable_Name 

I OrdVar_Name 

I IntegerConstant 
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I SymbolicConstant 

I Function (only applies in a Next let_formula prefixed by Let_equation) 

Let_equation ::= 

Let_equation & Let_equation 

I ( Let_equation ) 

I OrdVar_Name = ASM_variable_Name 

Function ::= Function_Name ( Parameter_List) 

Parameter_List ::= Parameter I Parameter_List , Parameter 

Parameter ::= OrdVar_Name I Function 

ASM_variable_Name ::= [a-bd-eg-uw-z][A-Za-z0-9_]* 

OrdVar_Name ::= [v][A-Za-z0-9]* 

Function_Name ::= [f][A-Za-z0-9]* 

IntegerConstant ::= [0-9]* 

SymbolicConstant ::= [c][A-Za-z0-9_]* 

Though only limited nesting of temporal operators is allowed in the LmDG syntax, 

additional formula templates are actually covered based on the following equivalences 

[37]. Since both path quantifiers can be prefixed to the following formulas, these 

equivalences are valid on both linear and branching time models. 



I= FFp E Fp 

GGp Gp 

I= (Fp Fq) F(p q) 

(Gp A Gq) E- G(p A q) 

XFp FXp 

XGp GXp 

I= X(pUq) (Xp)U(Xq) 

I= X(p V q) (Xp y Xq) 

I= X(p A q) (Xp A Xq) 

In LmDG, the existential path quantifier E is not allowed in the language. Given a 

property in LmDG  regarding an ASM under a given interpretation v, the property holds on 

the ASM iff the property is true for all paths starting from each of the initial total_states; 

i.e., the property is true for all paths in the abstract computation tree. 

5.2 Semantics of LmDG 
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Since LmDG  is a subset of Abstract_CTL*, the semantics of Abstract_CTL* applies. 
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5.3 Examples of properties in LmDG 

An important verification task in designing correct sequential circuits is the checking of 

safety and liveness properties. Intuitively, a safety property asserts that "nothing bad 

happens". More precisely, a safety property defines a prefix closed language [16] [751: any 

finite prefix 13 of a sequence of states 6 that satisfies the safety property P also satisfies the 

property: 

6 I= P <=> (V 13 l 13 _. a and 1[31< . , [31= P) 

Below we give some examples of properties specified in LmDG. Safety properties 

can be expressed using a Next_let_formula prefixed by "AG", as shown in Examples 1 to 

4. 

Example 1: A traffic light will never show red (red = 1) and green ( green = 1) at 

the same time: 

AG( ! ((red = 1) & (green = 1))); 

Example 2: If there is a request (req =1) at any time, then an acknowledgment 

(ack= 1) should be generated 3 transitions later: 

AG((req = 1) -> X(X(X(ack = 1))) ); 

Example 3: Whenever a pedestrian presses the push button of the traffic light 

(reque st= 1 ), he/she will receive green light (p green = 1) within 3 clock cycles: 

AG( (request = 1) -> (X(p green = 1) I X(X(p green = 1)) I X(X(X(p green = 1)))) ); 
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Example 4: If there is a request (req =1) at time t, then the data at in port Din at 

time t will show up at out port Dout at t+1: 

AG( (req =1) -> LET (v = Din) IN (X (Dout = v))); 

Sometimes, we only want to know that something happens in a fixed amount of 

time after the initial state of the transition system. Example 5 illustrates such a situation. 

Example 5 : A green light (green =1) always shows up in 3 cycles after the initial 

state: 

A(X(X(X(green =1)))); 

The liveness properties are referred to as "eventuality" properties or "progress' 

properties. Roughly speaking, a liveness property asserts that "something good will 

happen", related to an unbounded but finite temporal interval. Liveness properties are 

necessary for expressing that a system, after having received a particular input sequence, 

will produce some outputs in a finite amount of time, but the exact amount is not known. 

Example 6 : If there is a request (req =1) at time t, then an acknowledgment 

(ack=1) will be eventually generated. 

AG((req=1) => (F(ack=1))); 
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Summary 

In this chapter, we defined LmDG, a subset of Abstract_CTL*, as the property specification 

language for MDG-based model checker. Both safety and liveness properties can be 

expressed in LmDG. We also gave some examples of properties specified in LmDG.  In the 

next chapter, we will present in detail the property checking algorithms. 



6 	Model Checking for Properties in 
LMDG 

6.1 Introduction 

In general, our approach to model checking is to automatically build additional ASMs that 

represent the Next_let_formulas appearing in the property to be verified, connect these 

additional ASMs to the original, and then check a simpler property on the composite 

machine [78]. 

Given a Next_let_formula P regarding an ASM D = (X, Y, Z, FI, FT, F0 ), an ASM 

Dp  .----(Xp,Yp, Zp, F1 , FTp , Foi) can be constructed to represent the Next_let_formula. The 

input variables of D p  are the ASM_variables of D which appear in the property, i.e., Xpc 

XL.ffuZ. They represent the values at the "current" cycle. Let n be the maximum nesting 

number of X operators in the property, the set of state variables Yp and the transition 

relation FTI, are constructed so as to "remember" the values of input variables of Dp  or the 

results of comparison of the variables in the past n (or less than n) cycles. The set of the 
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state variables of D contains a special state variable of Boolean type, Flag, which 

indicates the truth of the Next_let_formula one cycle earlier. The initial set of states F 

are assigned differently depending on which property template the Next_let_formula P 

corresponds to. The general idea is that the initial states of Dp  should not affect the result 

of verifying P on the original ASM D. There is no output from Dp, i.e., Zp is empty. 

Hence, there is no output relation either. The details of an algorithm for constructing an 

ASM representing a Next_let_formula are given in Chapter 7. Figure 9 shows how the 

composite machine is connected. 

D 
(for the lst 
Next let_formula) 

D 
	 Flag_l 

(the original 
circuit to be 
verified) 	 D Pn 

(for the nth 
Next_let formula 

Flag_n 

Figure 9 - Connection of the ASMs D, Dp1  , , Dpn  for property checking 

6.2 Model checking algorithms 

In the following subsections, we describe algorithms for verifying the various forms of the 

formulas in LmDG. When our property checking algorithms report success to a query, then 
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the property holds for an ASM under any interpretation. It is possible that a property holds 

for the ASM under the intended interpretation of the abstract function symbols and 

constants, but not under every interpretation. In that case, we can obtain a false negative 

answer with respect to the original, non-abstracted problem. However, if all the data 

operations are viewed as black boxes, a property is expected to hold for every 

interpretation; it is in this sense that we say that our algorithms are applicable to designs 

where data operations are viewed as black boxes. 

6.2.1 AG(Next_let_formula) 

To check a property of the form AG(Next let_formula) on an ASM D = (X, Y, Z, F1, FT, 

Fo), we first construct an ASM Dp  ,(Xp, Yp, Zp, F1  FTp, Foi) to represent the 

Next_let formula. Second, we construct a composite machine from D and Dp, that is M = 

(X,Ym , Zrn  , G1 , GT , Go), where 

• Xm  = X is the set of the input variables of D; 

• Ym —Y u Yp is a set of the state variables, containing both the variables in Y and 

Yp; However, since M is a composite machine (the states of Dp  are derived from 

D) rather than the product machine of D and Dp, under each interpretation -y; the 

state space of M is actually a subset of 0.1V  x 0 	; 
Y Yp 

• 	Zn, = Z is the set of the output variables of D; 

• G1  = F I  A F1p  is a DF of type U 	m representing the set of initial states of 

M; 

• GT =FT  A FTp  is the abstract description of the transition relation of M; 
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• Go = F0  is the abstract description of the output relation of M. 

In addition, Ti' is the function that maps each state variable of M to the 

corresponding next-state variables. 

Finally, we do reachability analysis on the composite machine M and check "Flag 

= 1" at each reachable state. 

For example, to check the property AG(req=1 -> LET (v =Din) IN (X (Dout 

v))) on an ASM D, we build a composite ASM as shown in Figure 13 in Chapter 7, and 

then check AG(Flag =1) on that machine. 

The algorithm to check a property in the form of AG(Flag=1) is as follows: 

(1) Check_AG(M, C) 
/* M is the composite machine, G/  is the set of initial states of M, *I 
/* GT is the transition relation of M *I 
I* C is the DF containing Flag =1. *I 

(2) begin 
(3) R := Gi; Q := Gi; K := 0; 
(4) loop 
(5) P := PbyS(Q, C); 
(6) if P # F then return failuree if the property is not satisfied, report failure */ 
(7) K := K + 1; 
(8) I := Fresh(Xm, K); 	 /*generate input values */ 
(9) N := RelP({I, Q, GT }, Xm  u Ym, ); /* compute next states */ 
(10) Q := PbyS(N, R); 	 compute frontier set of states */ 
(11) if Q = F then return success; 	/* if fixpoint reached, report success */ 
(12) R := PbyS(R, Q); 	I* simplify R by removing states subsumed by Q */ 
(13) R := Disj(R, Q); 	 compute all states reached so far */ 
(14) end loop; 
(15) end; 



reg 
q=1? 

D 
p=1? reg Flag 

Dp I 
L 	  J 
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6.2.2 A(Next_letiormula) 

To check a property in the form of A(Next_let_formula), we need to construct a composite 

ASM in the same way as we treated the property AG(Next_let formula) and then transfer 

the problem to checking A(Flag = 1) on the composite machine. However, here we only 

need to check Flag =1 on the states reached in n+1 transitions from the initial state, where 

n is the maximum nesting depth of the X operators in the property. The additional 1 cycle 

delay is caused by the fact that Flag is a state variable. For example, to check a property 

A(X(p=1) I XX(q=1)), the maximum nesting depth of the X operators is 2. The circuit 

representing the composite ASM is shown in Figure 10. We then check (Flag =1) in the 

states reached by 3 transitions on the composite machine. 

Figure 10 - The composite machine for A(X p=1 I XX q=1) 

The algorithm to check a property in the form of A(Flag =1) on a composite 

machine with the maximum nesting depth of X in the original property is as follows. 

Intuitively, it runs upto depth n and then check if Flag =1 is tue on all the states. 

(1) Check_A(M, n, C) 
I* M is the composite machine, G1  is the set of initial states of M, *I 
/* GT  is the transition relation of M, *I 
I* n is the maximum nesting depth of X in the property. */ 
/* C is the DF containing Flag=1. *I 

(2) begin 
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(3) Q := Gi ; 
(4) for K =1 to n+1 loop 
(5) I := Fresh(4, K); 	I* generate input values */ 
(6) N := RelP({/, Q, GT}, X,n  UYrn,11' );I* compute next states */ 
(7) Q :=N; 
(8) end loop; 
(9) P := PbyS(Q, C); 
(10) if P = F then return success; 

/* check if Flag=1 is satisfied, if not report failure */ 
(11) else return failure; 
(12) end; 

6.2.3 AF(Next_let_formula) 

We will also use an additional ASM to represent the Next_let_formula, build the 

composite machine M, and then verify that the property AF(Flag = 1) holds at all the 

initial states of the composite machine M. The algorithm to check AF(Flag = 1) is as 

follows: 

(1) Check_AF(M, C) 
/* M is the composite machine, */ 
/* G1  is set of initial states of M, *I 
/* GT  is the transition relation of M, *I 

I* C is the DF containing Flag=1. 
(2) begin 
(3) E := 0; 

is a set containing DFs representing each a set of states not satisfying 
Flag=1 after a transition step */ 

(4) P := Gi; 
(5) K := 0; 
(6) loop 
(7) Q := PbyS(P, C); 	 /* remove states satisfying Flag=1 *I 
(8) if Q = F then return success; 
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(9) if 3 T E 1„ PbyS(T, Q) = F return failure; 
/*This step checks if DF Q covers any one of the DFs in E, i.e., for each DF T 
in E, PbyS(T, Q) = F is checked to detect a cycle over the states that do not 
satisfy Flag=1. If there is a cycle, then failure is reported*/ 

(10) E := E u {Q}; 	/* add DF Q as an element into E */ 
(11) K := K+1; 
(12) I := Fresh(Xm, K); 	I* generate input values */ 
(13) P:= RelP({/, Q, GT }, Xm  U m 11); 	I* compute next states */ 
(14) end loop 
(15) end 

The algorithm removes the states satisfying Flag =1 from the reached set of states 

at each transition step and keeps the set of states that do not satisfy Flag =1 as the frontier 

set for the next-state computation. At each transition step, the frontier set is recorded as an 

element of E. If an empty frontier set is reached, then the algorithm succeeds. If the whole 

frontier set covers any set in /„ it means that there is at least one cycle and the states in the 

cycle do not satisfy Flag=1 (see the proof in Section 10), i.e., there is at least one infinite 

path on which F(Flag=1) does not hold, then the algorithm stops and reports failure. 

Figure 11 shows an example of checking AF(Flag=1). The labels 1, 2, ..., 6 

represent the reachable states, and only state 6 satisfies Flag=1. The computation stops by 

reporting failure when it detects that Set(Q) covers a set in E . We can also see that one 

cycle exists (3 -> 5 -> 3), and Flag=1 is not satisfied in the states along the cycle. 

Furthermore, to check AG(c => (F p)) on ASM D, where c and p are 

Next_let_formulas, we can build a composite machine M from D, an ASM of c, and an 

ASM of p, and then verify AG((FlagC=1) => (F (FlagP=1))) on M. First, we do 

reachability analysis to get all the reachable states of M (represented by W), then we 

collect from W the states satisfying "FlagC = 1" (V := Conj(W, Cc ) where Cc  is a DF 

containing FlagC =1), and finally we apply the algorithm Check_AF with the set V as the 

set of initial states. 



Set(Q):= ln; 
:= {{1}1; 

Set(Q):= {2, 3}; 
E := {{1}, {2,3}1; 

Set(Q):= {4, 5}; 
I := {{1}, {2, 3}, {4,5}1; 

Set(Q):= {3,5}; 
E 	{{1}, {2, 3}, {4,5}, { 3, 5}1; 

Set(Q):= {3, 5}; , 
stops by reporting failure. 

initial: I := 0; 
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Figure 11 - An example of checking AF(Flag=1). 

A CTL formula AGAFp is a special case of AG ( c => (F p)) in which c is the 

Boolean constant True. 

6.2.4 A(Next_let_formula)U(Next_let_formula) 

We use additional ASMs to represent the Next_let_formulas and then transfer the problem 

to checking A(FlagP=1)U(FlagQ=1) on the composite machine. 
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(1) Check_AU(M, Cp, Cq ) 
/*M is the composite machine */ 
/*G1  is the set of initial states of M */ 
/* GT  is the transition relation of M, */ 
/* Cp  is the DF containing FlagP = 1. C g  is the DF containing FlagQ = 1*1 

(2) begin 
(3) I, :=ø; 

/* E is a set containing DFs representing each the set of states satisfying 
FlagP = 1 but not FlagQ = 1*/ 

(4) P := G1; 
(5) K := 0; 
(6) loop 
(7) Q := PbyS (P, Cq ); /*remove from S states with FlagQ = 1*1 
(8) if Q = F return success; 
(9) if 3 T e E, PbyS(T, Q)= F return failure; 

/*This step checks if DF Q covers any one of the DFs in E, i.e., for each DF T 
in E, PbyS(T, Q) = F is checked to detect a cycle in which FlagP = 1 is true 
but FlagQ = 1 never becomes true. If there is a cycle, then failure is reported*/ 

(10) R = PbyS (Q, Cp ); 	 /*remove from Q states with FlagP = 1*I 
(11) if R # F return failure; 
(12) I, := E u {Q}; 	/* add DF Q as an element into E */ 
(13) K := K+1; 
(14) I := Fresh(Xm, K); 	 I* generate input values */ 
(15) P:= RelP({/, Q, GT }, Xm  u Ym, in' ); 	/* compute next states */ 
(16) end loop; 
(17) end; 

The above algorithm removes from the reached set of states those states satisfying 

FlagQ=1. If the leftover Set(Q) is empty, then the algorithm stops by reporting success. 

Otherwise, if there is at least one cycle where states keep satisfying FlagP=1, i.e., 

FlagQ=1 never becomes true, then there is at least one path starting from the initial state 

where pUq does not hold, it stops and reports failure. Otherwise, it checks whether all the 

states in Set(Q) satisfy FlagP=1. If there are some states where FlagP=1 does not hold, 

which means that there are some path(s) on which FlagP=1 does not hold in every state 

before a state satisfying FlagQ=1 is reached, then it also stops and reports failure. 
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Otherwise, it computes the next states reachable from Set(Q) and repeats the process. 

To check property AG(c => pUq) on machine D, we need to build a composite 

machine M from D, an ASM representing c, an ASM representing p, and an ASM 

representing q, and transfer to checking the property AGOEFlagC=1) => 

((FlagP=1)U(FlagQ=1))) on M. We then do reachability analysis to obtain all the 

reachable states of M (represented by W), collect from W the states satisfying "FlagC =1" 

(V := Conj(W, Cc) where Cc  is a DF containing FlagC = 1), and finally apply the 

algorithm Check_AU with the set V as the set of initial states. 

A CTL formula AGApUq is a special case of AG(c => pUq) in which c is the 

Boolean constant Trie. 

Summary 

In this chapter, we described property checking algorithms for formulas in the form of 

AGp, Ap, AFp, and ApUq, where p, q are Next_let_formulas. All the property checking 

algorithms are based on the "forward" image computation. That is, at each iteration, we 

check whether the property holds on all the current states. If yes, then the reachable states 

by one transition step from the current ones are computed and the property checking 

continues, otherwise the property checking stops by reporting failure. 'These property 

checking algorithms are the basic algorithms in our verification system. They can be used 

to check more complicated properties, such as AG (c => (F p)) and AG(c => pUq). 

Another point worth mentioning is that even though we do not allow the existential 

path quantifier E in LmDG,  the above algorithms can be used to verify properties involving 



79 

E in situations where there is no abstract variable used in the description of the design 

being verified. For example, to verify EFp, we can transform the problem to checking 

AG(!p), and then reverse the verification result. 



7 	Construction of an ASM from a 
Next_let_formula 

In this chapter, we give a procedure for generating a circuit description representing a 

Next_let_formula p. The descriptions are produced in MDG-HDL [80], which is a 

hardware description language at the register transfer (RT) level. It allows the use of 

abstract variables for representing data. The ASM model of the Next_let_formula is 

automatically produced from the circuit description by the parser in the MDG verification 

package. 

The procedure to generate a circuit description for a Next_let_formula is as 

follows. 

Stepl: Build a parsing tree for p 

1) If p is in one of the following templates: AFp, AqUp, AG(c => (Fp)), or AG(c 

=> (qUp)), then rewrite p to p = True & p; (True and False are two Boolean 

constants in this procedure.) 

If p is in one of the following templates: AGp, ApUq, rewrite p to p' = False I p; 
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If p is in Ap, then let p = p. 

This is a preliminary step. When we construct the property circuit in Step 3, we 

put certain registers connected to a constant signal True or False, with the initial 

values False or True respectively, to make sure that the property is checked after 

n cycles from the initial state where n is the maximum nesting depth of the X 

operators in the property. 

2) A parsing tree is constructed to represent p' ; The leaves of the parsing tree are 

the constants True, False, the atomic formulas, and the Let_equations; the root 

and the internai nodes of the parsing tree can be X, IN, &, I, !, ->. Recursively, a 

Next_let_formula is transformed into a parsing tree according to the following 

rules: 

• " X ( Next let_formula) " is transformed to 

Next_let_formula 

• " LET ( Let_equation ) IN ( Next_let_formula ) " is transformed to 

LET (Let_equation) 	Next_let_formula 

• " ( Next_let_formula) ->( Next_let_formula) " is transformed to " 

!(Next_let_formula) I (Next_let_formula) " first and then treated as " I " ( or) 

operation. 
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The constant False replaces ! (True); 

• " ( Next_let_formula ) & ( Next_let_formula) ", and " ( Next_let_formula) I 

(Next_let_formula) " are transformed to 

Next_let_formula 	Next_let_formula 

• " ! ( Next let formula ) " is transformed to 

Next_ et_formula 

The brother of a node v (represented as Brother(v)) in a parsing tree is defined as 

the node that shares the same parent node with v. A node may have a brother which 

is an empty node. 

Step2: Assign attributes to each node of the parsing tree 

The attributes include the ID number, the depth of the X operators, the leaf node 

flag, and the root node flag. 

When the parsing tree is traversed in depth-first postorder, each node is assigned an 
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order number when visited. This order number is referred to as the ID number of 

the node. 

The depth of the X operators of a node v (represented as DepthX(v)) is defined 

recursively as follows: 

• 0 if the node is a leaf node or the node is empty; and 

• max (DepthX(v1), DepthX(v2)) if the node is not an X node and vl , v2 are the 

left and right children of the node; and 

• 1+ max (DepthX(v1),DepthX(v2)) if the node is an X node and v/, v2 are the left 

and right children of the node; 

If a node is a leaf node (root node), then that node is marked with a leaf node flag 

(a root node flag). 

In addition, a list containing all the leaf nodes is generated. 

Step 3: Construct the circuit 

Traverse the attributed parsing tree using depth-first postorder: 

• If node v contains an atotnic formula which is an equation t" = t2 , then a 

comparator is inserted. If th  t2  are of concrete sort, then a table is used to 

describe the function of the comparator by enumerating all the values that t1  and 

t2  can take. For example, if t1  and t2  are of Boolean sort, then the t:ruth table 

describing the function of the comparator in MDG_HDL [80] is as follows: 

component(comp_Comparator, tablea[tht2 , resuld, 

[0,0,11, 

[1,1,1], 
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[0,/,0J, 

[1,0,0]1)). 

If th  t2  are of abstract sort, then a partially interpreted cross-operator 

AbsComparator (abstract comparator) is used to denote the truth of t/  = t2  in the 

current state of the circuit. The following rewriting rule provides a minimum 

interpretation of the comparator: AbsComparator(X, X) = 1, which can be 

interpreted as " the values of the 2 abstract terms are the same if the 2 terms are 

syntactically the same". This rewriting rule is always used before any other 

rewriting rules are applied. 

In the process of building the circuit, the inputs of the table or the cross_operator 

are the variables appearing in the equation. The output of the table or the 

cross_operator is given a new variable name. (The variables generated by the 

property circuit are named as addedSignalj, addedSignal_2, 

addedSignal N). Then, DepthX(Brother(v)) is looked up. Let m = 

DepthX(Brother(v) ) - DepthX(v), if m> 0 then m registers are added. The input 

of the first register is the output of the concrete or the abstract comparator 

discussed above. The output of the last register is referred to as the output of 

node v. The in registers are initialized to the Boolean constant True. 

• If v contains an atomic formula and there is an ordinary variable in the formula, 

then we search for an "IN node from v up. The number of X nodes (LetXNum) 

along the path is counted. When an 'IN" node is reached, we look up its left 

child node (which contains a Let_ equation) to find one equation that contains 

the same ordinary variable. If it fails to find it, we keep searching up the tee 

until the ordinary variable is found in a Let_equation. LetXNum registers (state 

variables that take the sort of the ASM_variable to which the ordinary variable 

refers) are now added, such that the input of the lst register is the variable that 

the ordinary variable refers to, the output of the last register use the ordinary 
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variable name. The initial values of those added state variables have no affect on 

the property verification result (see proof in Chapter 9). If the atomic formula v 

contains has an abstract variable, then each of the added state variables is 

initialized to a fresh variable which could take any value in its domain; If the 

atomic formula has a concrete variable, then each of those added registers is 

initialized to the first value in its sort (this is what has been implemented, 

actually, those added registers can be initialized to any value in their sorts). A 

concrete or an abstract comparator is then constructed, with the inputs being the 

variables in the atomic formula and the output being a new variable. Again, Let 

m= DepthX(Brother(v) ) - DepthX(v), if m > 0 then m registers are added at the 

output of the comparator. The input of the lst register is the output of the table or 

the crossterm AbsComparator. The output of the last register is referred to as the 

output of node v. The m registers are initialized to True. 

• If v contains "False", and m > 0 where m = DepthX(Brother(v) ) - DepthX(v) , 

then m registers are added, the input of the lst register is a constant False, the 

output of the last register has the name of the output of node v. The m registers 

are initialized to True. If a node v contains "False", and m 0, then a signal 

connecting to the Boolean constant False is the output of node v. 

• If v is "I" or "&", then an "OR" or "AND" gate is added, respectively. The inputs 

of the gate are the outputs of the two child nodes and the output is given a new 

name. Again, let m= DepthX(Brother(v) ) - DepthX(v), if m > 0 then m registers 

are added at the output of the gate. The input of the lst register is the output of 

the gate. The m registers are initialized to True. The output of the last register 

has the name of the output of node v. If m 5_ 0, the output of the gate is the output 

of node v. 

• If v contains "!", then a "NOT" gate is added. The input of the gate is the output 

of its child node. The output is given a new variable name. m registers are added 

at the output of the gate if m = DepthX(Brother(v) ) - DepthX(v) and m > O. The 
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input of the lst register is the output of the gate. The output of the last register 

has the name of the output of node v. The m registers are initialized to True. 

• If v contains a Let_equation, then nothing is done on this node. This node is used 

when a node is visited which contains an atomic formula referring to the 

ordinary variables in the Let_equation. 

• If v contains "X" and m> 0 where m= DepthX(Brother(v) ) - DepthX(v) , then m 

registers are added. The input of the lst register is the output of the child of the 

"X" node. The output of the last register has the name of the output of the "X" 

node. The m registers are initialized to True. If a node contains "X" and m 0, 

then the output of its child node is directly referred to as the output of node X. 

• If v contains "IN" and m> 0 where m= DepthX(Brother(v) ) - DepthX(v) , then 

m registers are added. The input of the lst register is the output of the right child 

of the "IN" node. The output of the last register has the name of the output of the 

"IN" node. The m registers are initialized to True. If a node contains "IN" and m 

0, then the output of right child of node "IN" is referred to as the output of 

node "IN". 

• If v is the root node, then a register is added taking the output of v as the input, 

and the output is given the name Flag. If the Next_let_formulap is in one of the 

templates AGp, Ap, ApUq, then the register is initialized to True. Otherwise, the 

register is initialized to False. The initial value of Flag is such that it does not 

affect the verification result. 

The following is an example illustrating the construction of a circuit representing a 

Next_let_formula. 

Given a property AG(req=1 -> LET (v1=Din) IN (X (Dout =v1))), where req is a 
Boolean variable, and Din and Dout are of abstract sort, the following steps are used to 

construct a circuit of the Next_let_formula p = (req=1 -> LET (v1=Din) IN (X (Dout 
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=v1))): 

Step 1: The Next_let_formulap is transformed to 

False I (!(req =1)) I LET (v/ =Din) IN (X (Dont = v1)) 

The following parsing tree is then constructed (Figure 12):. 

A square represents a leaf node. 

Figure 12 - The parsing tree of AG(req=1 -> LET (v1=Din) IN (X (Dout =v1))) 

Step 2: DepthX(v) is associated with each node of the parsing tree. (It is indicated 

at the left-hand sicle of a node.) 
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Step 3: Construct the circuit: 

The parsing Iree with DepthX marked on each node is traversed in depth-first 

postorder: 

1) The node "False" is visited first. Since m = 1 - 0 = 1, one register is added. The 

input of the register is the constant False, the output of the register corresponds 

to the output of this node. The initial value of the register is True. 

The MDG-HDL description [80] of a signal connecting to a Boolean constant 

False and the added register is as follows: 

component(prop_comp_1, constant_signal(value(0), signal(addedSignal01))). 

component(prop_comp_2, reg(input(addedSignal01 ),output(addedSignal02))). 

The output of node "False" is the signal addedSignal02. 

2) The node "req=1" is visited. Since it is a leaf node and contains an atomic 

formula without any ordinary variable, the following tuth table description of a 

comparator is constructed (described in MDG-HDL [801): 

component(prop_comp3, table([ freq,addedSignal031, 

[1,1] 

/0])). 

Since this node has no brother, no register is added at the output of the 

comparator. 

The output of node "req=1" is the signal addedSignal03. 

3) The node "!" is visited. A "NOT" gate is added whose input is the output of 

node req=1. The MDG-HDL declaration is as follows: 
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component(prop_comp4, not(input(addedSignal03 ), output(addedSignal04))). 

Since m = DepthX(Brother(v) ) - DepthX(v) — 1-0 — 1, one register is added at 

the output of the gate: 

component (prop_comp5, reg(input(addedSignal04), output(addedSignal05))). 

The output of node "!" is the signal addedSignal05; 

4) The node "LET vl—Din" is visited. Since it contains a Let_equation, nothing is 

done at this moment. 

5) The node "Dout — v 1" is visited. Since it contains an ordinary variable yl, we 

need to find an "liN" node from the node up and count the number of "X" nodes 

along the path. From the left child of the "IN" node, we find the equation "LET 

vl = Din". Since LetXNum — 1, one register is added. The input of the register 

is Din, and the output is v/. Then an abstract comparator AbsComp is inserted. 

The inputs of AbsComp are Dout and Id, the output is addedSignal06. The 

MDG-HDL description of the abstract comparator is as follows: 

component (prop_comp6, reg(input(Din), output(v1))). 

component(prop_comp7, transform(inputs([Dout, v1.1), 
function(AbsComparator), output(addedSignal06))). 

Since the node "Dout=v1" has no brother, no register is added at the output of 

AbsComparator. 

6) The node "X" is visited. Since m < 0 , no component is added, and the output of 

its child, i.e., addedSignal06 is used as the output of the "X" node. 

7) The node "IN" is visited. Again, no component is added since m < 0, but the 
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output of its right child, i.e., addedSignal06 is used as output of the "IN" node. 

8) The node "I" is visited. An "OR" gate is added. The inputs of the gate are the 

outputs of the nodes "I" and "IN", and the output is addedSignal07. The "OR" 

gate is described in MDG-HDL as follows: 

component(prop_comp8, or(input(addedSignal05, addedSignal06), 
output(addedSignal07))). 

9) Finally the root node "I" is reached. An "OR" gate is added. The inputs of the 

gate are the outputs of the nodes "False" and "I", and the output is 

addedSignal08. Since it is a root node, one register is added. The input of the 

register is addedSignal08, and the output is Flag. Since the property is in the 

template of AGp, the initial value of Flag is assigned to True. 

component(prop_comp9, or(input(addedSignal02 ,addedSignal07), 

output(addedSignal08))). 

component (prop_complO, reg(input(addedSignal08), output(Flag))). 

The resulting circuit is shown in Figure 13. 
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Figure 13 - The additional circuit for AG(req=1 -> LET (v1=Din) IN (X (Dout 
=v1))). 

Summary 

In this chapter, we described the procedure of constructing an ASM from a 

Next_let_formula. Through this method, we were able to transform the verification of a 

more complex property on an ASM to the verification of a simplified property on a 

composite ASM built form the original ASM and the ASMs of the Next_let_formulas in 

the original property. The correctness of this problem transformation shall be verified in 

Chapter 9. 

In the next chapter, we will proceed with the definition of fairness constraints in 

our verification system and the verification of liveness properties under fairness 

constraints. 



8 	Verification of Liveness Properties 
with Fairness Constraints 

When we verify liveness properties, we are usually only interested in fair computation 

paths. A fair path is a computation path along which certain states or certain combination 

of states are not sustained forever. For example, in a system where a shared memory 

resource is accessed by several devices, we are only interested in the computation paths 

along which no device occupies the shared memory resource forever. 

8.1 Fairness constraints 

In the literature, different methods for specifying fairness constraints have been developed 

for CTL model checking [38] and for language containment using L-automata [55]. 

For CTL model checking [15][61], Reference [38] contains model checking 

algorithms for the so-called Fair Computation Tree Logic (FCTL). An FCTL specification 

(po, eeo) consists of a functional assertion po  and an underlying fairness assumption 00. 

The functional assertion po  is expressed in essentially CTL syntax with basic modalities of 

92 
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the form either A (for all fair paths), or E (for some fair path) followed by one of the linear 

time operators Gp, Fp, Xp, or pUq. All path quantifies are thus related to the underlying 

m fairness assumption 00  specified in the canonical form vin_ i  A 	(F °°p v G—qii  ) where 

pi/  and q,j  are atomic propositions, and F", G" are two basic infinitary operators: F"f 

(infinitely often f) holds for a computation path n in the Kripke structure iff the CTL 

formula f holds for an infinite number of times along 7C; G—g (almost everywhere g) holds 

for a path iff the CTL formula 	holds for only a finite number of times along 7c, i.e., 

after a finite amount of time g holds forever along 

Using language containment [55][56], to verify that a property is satisfied on a 

system model, one verifies that the language of the system model is contained in the 

language of the property. The system is modeled as L-processes, and the property is 

modeled as a L-automata. For both L-automata and L-processes (each of which defines an 

co-regular language), the acceptance condition is defined by a set of recur edges, and a set 

of cycle sets of states. A sequence of states is accepted by an L-automaton if and only if it 

has a run of the automaton which either traverses a given recur edge infinitely often or 

eventually enters in some cycle set and remains in the cycle set forever. For an L-process, 

the acceptance condition is the negation of that of an L-automaton: a sequence is accepted 

if and only if it is a run which traverses no recur edge infinitely often, and does not remain 

forever in some given cycle set. Thus, in the case of L-process, the acceptance condition 

can be understood as an "exception" condition. L-processes provide a natural mechanism 

to model a "system" process, as the exception condition can be interpreted as a "fairness" 

property, excepting "unfair" sequences which for example, never leave a set of states (a 

cycle set). L-automata provide natural properties, which are to be verified, i.e., a 

"liveness" property may be defined in terms of sequences which traverse a given set of 

recur edges infinitely often. For example, to check that a process is eventually granted 

access to a resource, provided that the process does not remain in a set of states where it 

never requests the resource, we can impose this fairness condition on an L-process S 

which models the whole system. We then express the liveness property in terms of an L- 
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automaton T and verify that the language containment Language(S) c Language(T) holds. 

8.2 Our approach to irnposing fairness constraints 

In our verification system, we impose fairness constraints using a subset of the criteria 

employed in the method based on language containment, namely, by specifying cycle sets. 

Let Hi  , i = 1, 	n, be n " exception conditions, and Sco  the set of infinitely repeating states 

along a computation path. If at least one Hi  holds on all states in Sc"), then the computation 

path is not fair and need not satisfy the property under investigation. That is, only those 

computation paths along which the states satisfy every !(Hi) infinitely often are 

considered. Therefore, !(1/1) (1 	n) can be viewed as the fairness constraints for the 

property checking. We call the formula representing the exception condition Hi as an 

H_formula. 

Next we give the syntax of language for specifying fairness constraints. The 

terminal symbols are written in bold style, and the nonterminal symbols are written in 

regular style starting with an upper case letter. Square brackets denote options. Note that 

only concrete ASM_variables may appear in the H_formulas. All the fairness constraints 

imposed are stored in a file, which is interpreted in before the model checking procedure is 

invoked. 

Fairness file ::= 
Fairness_constraint_list 

Fairness_constraint_list: := 

Fairness_constraint; 
[Fairness_constraint_list] 
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Fairness constraint ::= 
! (H_Formula) 

H_Formula ::= 
X H_Formula 

I H_Formula -> H_Formula 
I H_Formula & H_Formula 
I H_Formula l H_Formula 
I ! H_Formula 
I ( H_Formula ) 
I Atomic_H_formula 

Atomic_H_Formula ::= 

Lterm = Rterm I True I False 

Lterm ::= ASM_variable Name (the ASM variable must be of concrete sort.) 

Rterm ::= 

ASM_variable_Name 	(the ASM_variable must be of concrete sort.) 
I IntegerConstant 

I SymbolicConstant 

ASM_variable_Name ::= [a-bd-uw-z][A-Za-z0-9_1* 

IntegerConstant ::= [0-9]* 

SymbolicConstant ::= [c][A-Za-z0-9_]* 
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In the following sections, we will present the algorithms of checking liveness 
properties under fairness constraints. 

8.3 Vérification of AFq with fairness constraints 

To verify that AFq (where q is a Next_let _formula) holds in the initial states of an ASM D 

under the fairness constraints 	!H2 , ...,!Hn, we build the additional ASMs to represent 

q and H, (1 i n) using the algorithm described in Section 7, merge all the additional 

ASMs with the ASM D to build a composte machine M, and then verify that property 

AF(FlagQ=1) holds for the initial states of M under the fairness constraints ! (Flagl = 1), 

!(FlagHn=1 ). The algorithm to carry out this verification is as follows: 

(1) Check AF fair(M, Cq, H1, Hn ) 
I* M is the composite machine, */ 
/* G1  is the set of initial states of M, *I 
/* GT  is the transition relation of M, *I 
I* Cq is the DF representing the formula FlagQ = 1. *I 
I* Hi  (1 5i 5_ n) is the DF representing the formula Flag11,— 1. *1 

(2) begin 
(3) I :=I; 

/* E is a set containing DFs representing each the set of states not satisfying 
FlagQ =1 at each transition step */ 

(4) S := Gi; 
(5) K := 0; 
(6) loop I 
(7) Snotq  := PbyS (S, Cq ); /*remove from S states with FlagQ = 1*1 
(8) if Snotq = F then return success; 
(9) if 3 T E E, PbyS(T, Snotq) = F then return failure; 

/*This step is to check if DF Snotq  covers any one of the DFs in E, i.e., for each 
DF T in I, PbyS(T, Snotq ) = F is checked to detect a cycle. If there is a cycle, 
then failure is reported*/ 
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(10) E := EU {Snotq}; 	/* add DF Snotq  as an element into E */ 
(11) Si  := Snotq; 
(12) for i=1 to n do 
(13) SnotH PbyS(Si, Hi); /*remove from S1  states with FlagHi  = 1 *I -  
(14) S2  := Conj(Si , Hi ); I* S2  represents the states in S1  with Flagil i  = 1 *I 
(15) if S2  == F then 54notq  = F; 
(16) if S2  # F then begin 
(17) S3  := S2  ; Sf := S2 ; L := O; 
(18) 100p2 	/* to compute all the states reachable from S2  with FlagHi  = 1 *I 
(19) L := L+ 1; 
(20) /2  := Fresh(Xm, L); I* generate new input values */ 
(21) N1  := RelP({/2, Sf,GT}, Xm  U  m 11 ); /* compute next states */ 
(22) N2  := PbyS(Ni , Cq ); /* remove from Ni  the states with FlagQ = 1 *I 
(23) N3  := Conj(N2, Hi ); I* pick from N2  the states with FlagHi  = 1 *I 
(24) Sf := PbyS(N3, S3 ); /* compute the frontier states */ 
(25) if Sf = F then exit loop2; 

/* if all the states reachable from S2  have been visited, exit loop 2 */ 
(26) S3  := PhyS(S3  , Sf ); 
(27) S3  :=Disj(S3  , Sf ); /* add the states of Sf to S3  */ 
(28) end loop2; 
(29) S41  := Re1P({/2, S3 , GT}, Xm 1m T1 ); /* compute the next states of 53  */ 
(30) 54  := PhyS(S41  , Hi ); I* remove from S41  the states with FlagHi  = 1 *I 
(31) S -4notq:= PbyS(S4  , Cq); 
(32) end_if 
(33) S := Disj(S4notq , SnotH ); 
(34) end_for 
(35) if Si  F then begin 
(36) K := K+1; 
(37) ././ := Fresh(4, K); I* generate input values */ 
(38) S:= RelP({4 , S1 , GT}, Xm  Ym, ); 

	/* compute next states */ 
(39) end_if 
(40) end loopl 
(41) end 

In this algorithm, E is a set containing the DFs representing each a set of states not 

satisfying FlagQ = 1 from the states reached after every transition, S represents the 

frontier set of states to be further explored, and n is the number of fairness constraints. 
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In 100p 1, Lines (7) - (10) verify whether the states in the frontier set S satisfy 

FlagQ = 1. If yes, then the computation stops by reporting success. Otherwise, if the set of 

states not satisfying (FlagQ=1) covers any set in 	this means that there is at least one 

cycle in which the states do not satisfy (FlagQ=1), i.e., there is at least one path along 

which F(FlagQ = 1) does not hold. In this case, the algorithm stops and reports failure. 

Otherwise, the set of states not satisfying FlagQ = 1, which is represented by Snotq  is 

added to 

The Lines (13) to (34) form another loop which is executed n times. This loop 

deals with each exception condition. At every ith (1 i n)iteration, S2 represents the set 

of states in S1  that satisfy the excepting condition FlagHi = 1. If S2 is not empty, all states 

that are reachable from the states in S2  by any number of transitions and satisfy FlagHi = 1 

but do not satisfy FlagQ = 1 are computed and stored in 83. In other words, S3 could 

contain cycles which are formed by the states satisfying FlagHi = 1 but not FlagQ = 1. 

(The way to compute S3 is the same as the reachability analysis, hence it may not 

terminate.) Then, one more transition is done to compute the set of states reachable by one 

transition step from the states of 53, but not satisfying FlagHi = 1. These states are stored 

in S4. S4notq represents the set of states in 84 that do not satisfy FlagQ = 1. S1  is the union 

of the sets of states represented by 544notq  and SnotH  at each iteration of the loop. 

If S1  is not empty, then S is computed to represent the states reachable in one 

transition step from the states in SI . The computation continues in loopl with S being the 

new frontier set of states to be checked. 

Next we give an example showing how this algorithm works. Suppose we wish to 

verify AF(FlagQ = 1) under the fairness constraint !(FlagHi  = 1) on the ASM state 

transition graph given in Figure 14. In the figure, a node represents a state and an edge 

represents a possible transition from one state to another. We also give the values of FlagQ 

and FlagHi in each state in the transition graph. We shall see that the algorithm stops and 
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reports success at the 3rd iteration in loopl. However, checking AF(FlagQ = 1) without 

the fairness constraint would fail on the path sl -> s2 -> s3 -> s2 -> s3 -> s2 -> s3 ... if no 

fairness constraint is imposed. 
initial: /, = 0; 

Set(S) = {si}; 

the lst time in loopl: 
Set( Snota ) = {si}; 
I=Ils111; 
Set (Si) = {si}; 
Set (S2 ) = 0; 
Set (S) = { s2 }; 

the 2nd time in loopl: 
Set(Q) = {s2}; 
1,-1{s1}, {s2}}; 
Set (Si) = 0; 
Set (S2) = {s2}; 
Set (S3 ) ={ s2, s3}; 
Set (S4 ) = 1 s4 1; 
Set (S) = { s4}; 

the 3rd time in loopl: 
Set(Q) = 0, return sucess. 

Figure 14 - Example of checking AF(FlagQ =1) under fairness constraint 
!(Flag14=1). 

To check AG ( c => (Fp)) where c and p are Next_let_formulas under the fairness 

constraints !111 , !H2 , 	!Hn  on an ASM D, we can build a composite machine M from D 

and ASMs representing c, p, H (1 i n), and then transfer the problem to checking AG( 

(FlagC=1)=> (F (FlagP=1))) on M under the fairness constraints !(FlagHi = 1) (1 i n). 

We first carry out reachability analysis to get all the reachable states of M (represented by 
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W), collect from W the states satisfying "FlagC = 1" (V := Conj(W, C), where Cc  is a DF 

containing FlagC = 1), and finally apply the algorithm Check_AF_fair with the set V as 

the set of initial states. 

8.4 Verification of ApUq with fairness constraints 

To verify that ApUq (where p and q are Next_let_formulas) holds in the initial state of an 

ASM D under the fairness constraints !111 , !H2 , 	!Hn  , we build additional ASMs to 

represent p, q, and Hi  (1 	n), and then transfer the problem to checking 

A(FlagP=1)U(FlagQ=1) on the initial state of the composite machine derived from D and 

the additional ASMs. The algorithm to verify A(FlagP=1)U(F lagQ=1) under the fairness 

constraints ! (FlagHi = 1) (1 5_ i n) is as follows: 

(1) 	Check_AU_fair(M, Cp, Cg, 111 , 	n ) 
I* M is the composite machine, */ 
/* G1  is the set of initial states of M, *I 
/* GT is the transition relation of M, *I 
I*Cp  is the DF containing FlagP = 1. *I 
I* C is the DF containing FlagQ = 1* I 
I* Hi  (1 	5_ n) is the DF representing formula FlagHi= 1. *I 
(2) begin 
(3) E := 0; 

/*I is a set containing DFs representing each the set of states satisfying FlagP 
= 1 but not FlagQ = 1 at each transition step */ 

(4) S := Gi; 
(5) K := 0; 
(6) 1oop1 
(7) Snotq  := PbyS (S, Cq  ); /*remove from S states with FlagQ = 1*/ 
(8) if Snotq=  F then retum success; 
(9) if 3 T 1,, PbyS(T, Snotq) = F then return failure; 

/*This step checks if DF Snotq  covers any one of the DFs in I, i.e., for each DF 
T in 1„ PhyS(T, Snotq ) = F is checked to detect a cycle. If there is a cycle, then 
failure is reported*/ 
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(10) R = PbyS (Snotq , Cp); 	/*remove from Snotq  states with FlagP = 1 *I 
(11) if R # F then return failure; 
(12) 1, := u {Snotq}; 	/* add DF Snotq  as an element into */ 
(13) Si  :=  Snotq ; 
(14) for i=1 to n do 
(15) Snell := PbyS(Sir, Hi ); /*remove from Si. states with FlagHi= 1 *I 
(16) S2  := Conj(Si , Hi ); I* S2  represents the states in Si  with FlagHi = 1 *I 
(17) if S2  == F then 54noto, = F; 
(18) if S2  # F then begin 
(19) S3  := 52 ; Sf := S2 ; L := 0; 
(20) 100p2 /* to compute al the states reachable from S2  with FlagHi  = 1 *I 
(21) L := L+ 1; 
(22) /2  := Fresh(Xm, L); I* generate new input values */ 
(23) N1  := RelP({/2, St. , GT}, Xm  UIrtn, ); /* compute next states */ 
(24) N2  := PbyS(Ni, Cq); /* remove from Ni  the states with FlagQ = 1 *I 
(25) N3  := Conj(N2, Hi ); /* pick from N2  the states with FlagHi = 1 *I 
(26) if PbyS(N3, Go) # F then return failure; 

/* if the states in N3  do not satisfyFlagP = 1, report failure */ 
(27) Sf := PbyS(N3, S3 ); /* compute the frontier set of states */ 
(28) if S f= F then exit loop2; 

/* if all the states reachable from S2  have been visited, exit loop 2 */ 
(29) S3  := PbyS(S3  , Sf ); 
(30) S3  := DiSi(S 3  , Sf ); /* add the states of Sf to S3  */ 
(31) end loop2; 
(32) 541  := RelP({/2, S3 , GT}, Xm l.) Ym,r1  ); /* compute the next states of S3  */ 
(33) S4  := PbyS(S4/  , Hi ); remove from S41  the states with FlagHi  = 1 *I 

(34) S4notq := PbyS(S4  , Cq); 

(35) ifPbYs(s4notq ,  
(36) end_if 
(37) S i :=Disj(S4notq , SnotH ); 
(38) end_for 
(39) if Si  F then begin 
(40) K := K+1; 
(41) .11  := Fresh(Xm, K); 	I* generate input values */ 
(42) S := RelP({4 , S1  , GT},X,n u Yrn, ); 	I* compute next states */ 
(43) end if 
(44) end loopl 
(45 end 

Cp)# F then return failure; 
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This algorithm is similar to the algorithm Check_AFlair, except that Lines (10), 

(11), (26) and (35) are added. Those four lines verify whether the states along a path 

satisfy FlagP = 1 before a state satisfying FlagQ =1 is reached. 

It is worth mentioning that the Check_AU _fair algorithm is conservative. It 

requires that FlagP=1 be satisfied in all the states along all paths before a state satisfying 

FlagQ =1 is reached. Along some paths, if the states repeating forever are covered by a 

cycle set and there is no other state reached by those states as shown in Figure 15, 

Check _ AU_ fair will report failure. However, it is not necessary that FlagP=1 holds in 

these states, since this path should not even be considered. Check_AUlair may thus 

return a false negative answer. In models of real systems, this situation happens rarely. 

Figure 15 - Example of a false negative answer when verifying 
(FlagP=1)U(FlagQ=1) under the fairness constraint !(FlagH =1). 

To check AG( c => pUq ) where c, p, q are Next_let_formulas under the fairness 

constraints !111 ,!H2, ..., !Hi, on an ASM D, we build a composite machine M from D and 

ASMs representing c, p, q, Hi  (1 i 5_ n), and then transfer the problem to checking AG( 

(FlagC=1) => ((FlagP=1) U (FlagQ =1))) on M under the fairness constraints ! (FlagHi = 

1) (1 	i n). We then do reachability analysis to get all the reachable states of M 

(represented by W), collect from W the states satisfying "FlagC = 1" (V := Conj(W, Cc) 
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where Cc  is a DF containing FlagC = 1), and finally apply the algorithm Check_AUlair 

with the set V as the set of initial states. 

8.5 Implementation issues 

To check properties expressed in LmDG  automatically, we developed programs that 

• check if the signals in a property (except the ordinary variables) are declared in 

the original circuit description; report any errors; 

• check the syntax of the property; report any errors; 

• build additional circuits to represent the Next-let-formulas in the property and 

the exception conditions if fairness constraints are imposed; 

• merge the description of the additional circuits with the description of the 

original circuit, which means adding declarations of components and signals of 

the additional circuits to the original circuit description file and the variable 

order file; 

The above programs were implemented in C with Yacc & Lex. The model 

checking algorithms were developed using the current MDGs package implemented in 

Quintus Prolog V3.2 [80]. 



Summary 

In this chapter, we gave the definition of fairness constraints in our verification system, 

and presented the algorithms of verification of liveness properties under fairness 

constraints. 

In the next chapter, we show that the verification procedures presented in this 

thesis are sound. 
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9 	Soundness of the Verification 
Procedures 

In this chapter, we show that the verification procedures presented in Chapters 6 and 7 are 

sound. This is achieved by stating and proving a number of theorems. 

9.1 Correctness of Algorithm Check_AG(VI,C) 

Theorem 1: The result of checking AG(p) where p is a Next_let_formula on an 

ASM D is the same as the result of checking AG(Flag=1) on the composite 

machine M built from D and Dp, where Dp is an ASM derived from the 

Next_ let_forrnula p and constructed according to the algorithm in Chapter 7. 

PROOF. We prove this theorem by case splitting according to the definition of the 

Next let_formula. 

According to the algorithm in Section 7, to check a property in the template of 

AG(p), we build an ASM of the next_let_formula p = False I p . 
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• Case 1: if p is a basic formula of LmDG, i.e., t1  = t, where ti  is an ASM_variable 

of D, and if t2  is also an ASM_variable, then the composite machine M is as 

shown in Figure 16. 

Figure 16 - A composite machine for checldng AG(ti  = t2 ) when t2  is an 
ASM_variable. 

If t2  is an individual or generic constant, then the composite machine M is as 

shown in Figure 17. 

Figure 17 - A composite machine for checking AG(ti  = t2 ) when t2  is a constant. 

When ti -= t2  is true (or false) at a state s of an ASM D, we can see from Figures 16 

and 17 that signal Flag denotes truth (or falsity) of the equality in the subsequent 

state of the composite machine M. As Reg i  is initialized to Boolean constant True, 
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the result of checking AG(ti  = t2) on D is the same as that of checking 

AG(Flag=1) on M. Without loss of generality, we assume that ti  and t2  are 

ASM_variables in the following proofs (the signal t2  coould be tied to a constant 

value inside D). 

• Case 2: if p is !(tii  = t2 ) then the composite machine M is as shown in Figure 18. 

Figure 18 - A composite machine for checking AG(!(ti  = t2)) . 

In Figure 18, Sigl denotes truth (or falsity) of !(t1  = t2) in every state s of D, Flag 

denotes truth (or falsity) of !(t1  = t2) in the corresponding state following s of the 

composite machine M. By initializing Reg i  to True, the result of checking AG(!(ti  

= t2)) on D is the same as that of checking AG(Flag=1) on M. 

• Case 3: if p is (t1  = t2) & (t3  = t4) then the composite machine M is as shown in 
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Figure 19. 

Figure 19 - A composite machine for checking AG((ti  = t2 ) & (t3  = t4)) . 

In Figure 19, Sigl shows the truth (or falsity) of (t1  = t2 ) & (t3  = t4 ) in any state s of 

D, Flag denotes truth (or falsity) of (t1  = t2 ) & (t3  = t4) in the corresponding next 

state of s of the composite machine M. Therefore, if we initialize Reg i  to True, the 

result of checking AGŒti  = t2 ) & (t3  = t4)) on the original machine D is the same 

as that of checking AG(Flag=1) on the composite machine M. 

If p = (t1  = t2 ) I (t3  = t4), then the AND gate is replaced by an OR gate; If p = (t1  = 

t2) ->(t3  = t4), we treat p as (! (t1  = t2)) I (t3  = t4 ). 

• Case 4: if p =X(ti  = t2 ) thenp = False I X(ti  = t2). The composite machine M is 
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as shown in Figure 20. 

Figure 20 - A composite machine for checking AG(X(ti  = t2)) . 

AG(X(ti  = t2)) means that X(ti  = t2) must hold on every state along all the 

computation paths, i.e., (t1  = t2) must hold on every state except that the truth (or 

falsity) of (t1  = t2) at the initial states is not in our concern. In the above figure, 

Sigl denotes truth (or falsity) of t1  = t2  in every state of D. By initializing Regi  to 

1, Sig2 denotes truth (or falsity) of t1  = t2  in every state except that it denotes truth 

at the initial states. Therefore, with Reg2  being initialized to True, the result of 

checking AG(X(ti  = t2)) on D is the same as that of checking AG(Flag=1) on M. 

• Case 5: if p is of form LET (vi  = t1 ) IN (X(t2  = v1 )), then the composite machine 

is as shown in Figure 21. If p is of form LET (v]  = t1 ) IN (X(t2  = function(v/))), 

i.e., LET (v1  = t1 ) IN (X(t2  = finc(vi))) , where finc represents the function 

"increase by i", then a component representing the function is added and the 

output of the function component becomes one of the inputs of the comparator. 
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Figure 21 - A composite machine for checking AG(LET (v1 = t1 ) IN (X(t2  = v1 ))) . 

AG(LET (v1 = ti ) IN (X(t2  = v1 ))) means that the value of ti  in every state si  must 

be the same as that of t2  in the next state of st. In the composite machine as shown 

in Figure 21, the output of the comparator indicates in each state (except the initial 

states as the initial value of Regi  can be any as long as it fits in the sort of ti ) the 

equality of comparing the value t1  one transition earlier and the value of t2  (an 

ordinary variable v1  is used to remember the value of t1  one transition earlier). By 

initializing Reg2  and Reg3  to True, Flag will indicate True for the initial set of 

states and the states following the initial states, and then the value of Flag depends 

on the output of comparator which depends on the value of t1  and t2  in D. Thus, the 

result of checking AG(LET (v1 = ti ) IN (X(t2  = v1 ))) on the original machine D is 

the same as that of checking AG(Flag=1) on the composite machine M. 

In the above 5 cases, p ranged over the basic structures of the Next_let_formulas. 

Below we show that when p is a general Next_let_formula, the result of checking 

AG(p) on an ASM D is still equivalent to the result of checking AG(Flag=1) on 
the composite machine M. 

• Case 6: if p is !(q) where q is a Next_let_formula, then p = False I !(q). The 
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composite machine is as shown in Figure 22. 
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Figure 22 - A composite machine for checking AG(!(q)) when q is a 
Next_let_formula. 

n = DepthX(p) is the maximum depth of X operators in p (this function DepthX is 

defined in Section 7). n registers are added, with the primary input the constant 
False. This allows to ignore the output of !(q) in the first n clock cycles, i.e., to 
check !(q) n clock cycles later from the initial state. "circuit of q" is built using the 

basic components exposed in cases 1 to 5. Corresponding to the truth (or falsity) of 

!(q) in a state s of machine D, Flag denotes the truth (or falsity) of !(q) in the 

corresponding (n+l)th state after s of the composite machine M. As Regi,  ... , Regn  

and Regn±i  are initialized to True, the result of checking AG(!(q)) on D is exactly 

the same as that of checking AG(Flag=1) on M. 

• Case 7: if p is of the form q1  & q2 , where q1  and q2  are Next let_formulas, and 
assuming that DepthX(q/) DepthX(q2), then the composite machine is as 
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shown in Figure 23. 

Figure 2 3 - A composite machine for checking AG(qi  & q2 ) when q1  , q2  are 
Next_let_formulas. 

The blocks "circuit of q1" and "circuit of q2" are constructed using the basic 

components as shown in cases 1 to 5. The truth (or falsity) of q1  & q2  at a state s of 

machine D corresponds to the truth of Flag which denotes the truth (or falsity) of 

& q2  in the corresponding (n+l)th state after s of M, where n is the maximum 

depth of X operators in p. Since Regi,  Regn  and Regn+i  are initialized to True, 

the result of checking AG(qi  & q2 ) on D is the same as that of checking 

AG(Flag=1) on M. 

• Case 8: if p is of form X(q), where q is also a Next_let_formula, then the 



Reg.+1  
circuit of q D 

n = DepthX(p) = DepthX(q) + 

	 Flag I 

Dp I 
1 

Reg. 
False 
	 Regi  

tl  

113 

composite machine is as shown in Figure 24. 

Figure 24 - A composite machine for checking AG(X(q)) when q is a 
Next_let_formula. 

Corresponding to the truth (or falsity) of X(q) in a state s of D, Flag denotes the 

truth (or falsity) of X(q) in (n+l)th state after s of the composite machine M. As 

Regi,  Reg. and Reg.+1  are initialized to True, the result of checking AG(X(q)) 

on D is the same as that of checking AG(Flag=1) on M. 

• Case 9: if p is of form LET (v1  = t1) &..&(vm  = tm) IN (q), where q is a 

Next_let_formula containing the ordinary variables v1, ...Vm,  then p = False I 

(LET (v1  = t1) &..&(vm  = tm) IN (q) ). The composite machine is as shown in 

Figure 25. 
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Figure 2 5 - A composite machine for checking AG(LET (v1= t1) &..&(vm  = tm) IN 
(g)) 

Corresponding to the truth (or falsity) of "LET (v1= t1) &..&(vm  = tm) IN (q))" in 

state s of machine D, Flag denotes the truth (or falsity) of "LET (v1= t1) &..&(vm  

= tm) IN (q))" in the (n+l)th state after s of the composite machine M. Hence, 

since Reg i, ...., Reg, Regn+i  are initialized to True, the result of checking 

AG(LET (v1  = t1) &..&(vm  = tin) IN (q)) on the original machine D is the same as 

that of checking AG(Flag=1) on the composite machine M. 

From Cases 1 to 9, according to the definition of the Next_let_formula, we have 

analyzed all the cases that a Next_let_formula can have. Therefore, we have 

proved Theorem 1. 

We can also prove in a similar fashion that the result of checking A(p), AF(p), 

A(p)U(q) on the original machine D where p, q are Next_let formulas is the same as that 

of checking A(Flag=1), AF(Flag=1), A (FlagP=1)U(FlagQ=1), respectively, on M 
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constructed using the algorithm in Section 7. 

Definition 9.1: A properly checking algorithm is correct iff the algorithm succeeds 

(fails) when the property is true (not true) on the ASM being verified according to 

the semantics defined in Section 4.2. 

According to the semantics in Section 4.2, when a property is true, it is supposed 

to be nue for all the interpretations of an ASM D. When the model checking algorithm 

reports failure, which means that the property is not true for all the interpretations, it is still 

possible that the property holds for a specific interpretation, hence our model checking 

algorithm could give a false negative result for that interpretation. However, this is not of 

our concern, because we consider the correctness according to definition 9.1. 

Theorem 2: The algorithm Check AG(M,C) given in Section 6.2.1 is correct. 

PROOF. The algorithm Check_AG(M, C) verifies if all the reachable states of the 

ASM M satisfy the condition C (Flag =1). To prove the correctness of this 

algorithm, we do induction on the number of transition steps K. 

.When K = 0, Q and R are both DFs of type U 1'm  representing the set of initial 
states. The following lines are executed: 

(5) P := PbyS(Q, C); 
(6) if P # F then return failure; 
(7) K := K + 1; 
(8) I := Fresh(Xin, K); /*generate input values */ 
(9) N := RelP({/, Q, GT }, Xin  Y Yin, Tl); 	/* compute next states */ 
(10) Q := PbyS(N, R); 	 /* compute frontier set of states */ 
(11) Q = F then retum success; 	/* if fixpoint reached, report success */ 
(12)R := PbyS(R, Q); /* simplify R by removing states subsumed by Q */ 
(13)R := Disj(R, Q); 	 /* compute all states reached so far */ 
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At Line (5), according to the definition of PbyS in Section 3.3, we getP as a DF 

of type U > m obtained by pruning the disjuncts in Q that are subsumed by C 

, i.e., Set(P) = Set(Q) \ Set(C). At Line (6), if P # F, meaning that it is not the 

case that all the initial states satisfy Flag = 1, then property AG(Flag =1) does 

not hold. Otherwise, if P = F, then necessarily Set(Q) c Set(C), meaning that all 

the initial states satisfy Flag = 1. In this case, the computation continues. In 

Lines (7), (8), (9), (10), the next states and the frontier set of states reached in 

one transition step are computed. At Line (11), if Q = F, which means that set of 

states reached from the initial states by one transition step is already covered by 

the set of initial states, i.e., no new states have been generated, and it was 

already verified that all the initial states satisfy Flag =1, hence AG(Flag =1) 

holds in this case. Otherwise, if new states are generated, the algorithm 

continues. Therefore, according to the above analysis, the algorithm gives the 

correct result at K = 0. 

- Suppose that the algorithm produces the correct result up to K = n, thenR is a 

DF representing the set of all the reachable states after n+1 transition steps, Q is 

a DF representing the frontier set of states generated after n+1 transition steps, 

and all the states in Set(R) except those in Set(Q) satisfy Flag =1. At K = n+1, in 

Lines (5), (6), all the states in Set(Q) are checked if they satisfy Flag =1. If not, 

then AG(Flag =1) does not hold, and the algorithm does stop and report failure; 

if yes, meaning that all the reachable states in Set(Q) satisfy Flag =1, the 

algorithm continues to compute the frontier set of the states reachable in n+2 

transition steps in Lines (7) - (10). At Line (11), if Q= F, meaning that all the 

frontier states have been seen (the fixpoint has been reached), then the 

algorithm stops by reporting success. Otherwise, the algorithm continues. 

Hence, the algorithm gives a correct result at K = n+1. 

From the above two cases, it follows by induction on K that Theorem 2 holds. 
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However, if the reachability analysis of a particular ASM does not terminate, i.e., 

new next states are generated at every transition, the algorithm will not stop. The 

reasons of non-termination and a proposal for some solutions are addressed in 

[82]. 

9.2 Correctness of Algorithm Check_AF(M, C) 

Before we can prove the correctness of the algorithm Check_AF(M, C), we need to prove 

the following lemmas. 

Lemma 1: Let a directed graph G = <V, E> such that V is a set of nodes and /V/ = 

n is the number of elements in V, E is a set of node pairs <vi,vj> representing a 

directed edge from node vi  to node v1, and there is at least one edge leading to 

each node in V, then there exists at least one cycle in G and the cycle consists of 

less than n edges. 

Figure 26 - One case of Lerruna 1 when IVI = 2 and only one 
edge leads to each node. 
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PROOF. To prove this lemma, we have to detect a cycle in the graph. 

Take a node from V and mark it as v1 , find the edge pointing to v1 , if the edge is 

v 	then a cycle is found. Otherwise, we record the edge as v1  <-- v2. Then 

we search for an edge pointing to v2. If the edge is <v1, v2> or <v2, v2>, then a 

cycle is found. Otherwise, we have v1  <-- v2 	v3. In general, we may have v1  cz- 

- v2  <-- v3  <-- 	v i_1 <-- v (i < n). If vi  = v k  (k i), then a cycle exists with less 

than n edges. Otherwise, we keep following the edges backword until v1  <-- v2  

v3  <-- 	<-- vn. Since each node has at least one edge leading to it, there 

must exist an edge leading to vn, i.e., there must exist a node vm  (1 m n) such 

that <vin, vn> c E . Figure 27 illustrates such a case. Therefore, a cycle exists 

containing nodes Vm,  vrn+i, 	vn_1, vn, consisting of n-m+1 edges. When m = 1, 

i.e., vin  = v1 , there are n edges in the cycle. 

Figure 27 - One case of Lemma 1 when IVI = n and only one edge points to each 
node. 

Lemma 2: Suppose that Si  and S2  are sets of states, 1511 = n, every state s in Si  has 

a next state s (the next state s' couldbe the same as s), S2 is derived from Si  by one 

transition, and Si  c S2. Starting from any state in Si , there exists a path that forms 

a cycle consisting of at most n transitions. 
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Figure 28 - One case of Lemma 2 when1Sj1= 2 , 1521= 3. 
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PROOF. To prove this lemma, we show that such a cycle can always be 

constructed. 

We build a graph G = <V, E> such that V is a set of nodes, a node represents a state 

in s1, IVI = n; E is a set of directed edges, with each edge <si , si> (1 	n, 1 j 

n) indicating that si  is reached from si  in one transition. 

Since S2 is derived from the states in Si  by one transition and S./  c 52, then all the 

states in Si  are again reached from the states in S./  in one transition. In the other 

words, there is at least one edge leading to each node in V in G. Figure 28 shows 

such a case when 1S11= 2 and IS21 = 3. According to Lemma 1, there is at least one 

cycle in G and the cycle consists of at most n edges. Suppose that the cycle 
consists of states si+ jr, 5i+2 , 	si+m  (i 0, i+m n), starting from state si+i  e 

and following the edges in the cycle, after at most n transitions, we get a path 

containing a cycle. 

Lemma 3: Suppose that Si  and S2  are sets of states, S2 is reached from Si  in m (m 

I) transitions, and Si  c S2. Starting from any state in S, after n = IS11 x m 

transitions, there exists a path that forms a cycle. 

PROOF. This lemtna can be proven by viewing the m transition steps from the 
states in S1  to the states in S2 as one "macro" transition and then by applying 

Lemma 2. 

Theorem3: The algorithm Check AF(M, C) given in Section 6.2.3 is correct. 
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PROOF. The algorithm Check_AF(M, C) verifies whether there exists a state 

satisfying C (Flag =1) along every path in the infinite computation forest derived 

from M. To prove the correctness of the algorithm, we do induction on the 

transition step number K. 

•When K = 0, P represents the set of initial states, is an empty list. The algorithm 

executes the following lines: 

(7) Q := PbyS(P, C); 
(8) if Q = F then return success; 
(9) if 3 T E 1,, PbyS(T, Q) = F return failure; 
(10) E := 	[Q]; 
(11) K := K+1; 
(12) I := Fresh(Xm, K); 
(13) P:= RelP({/, Q, GT }, Xin  UYm, ); 

At Line (7), Q is a DF representing the set: Set(Q) = Set(P) \ Set(C). At Line (8), 

if Q = F, which means Set(P) c Set(C), i.e., all the initial states satisfy Flag = 1 

and the property AF(Flag = 1) holds. If it is not true that Q = F, which means that 

some of the initial states do not satisfy Flag = 1, the computation continues. Line 

(9) is skipped since is empty. At Line 10, the algorithm records Q as an element 

in E and computes the next states derived from Set(Q) in Lines (11) (12) (13). 

The algorithm thus gives a correct result when K = 0. 

•Suppose that the algorithm gives a correct result up to K =n. is then a list 

containing n elements, the lst element is the DF representing the initial states not 

satisfying Flag = 1, and the ith (2 5_ i n) element in E (which is a DF) represents 

the set of states that do not satisfy Flag =1 and are reached in one transition from 

the states in the (i-1)th element of E. P is a DF representing the set of states 

generated after one transition from the states in the nth element of E. 

When K = n+1, at Lines (7), (8), we check if all the states in Set(P) satisfy Flag 
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=1. If yes, then it means that for every computation path a state satisfying Flag =1 

is found and AF(Flag =1) holds. Otherwise, we check if Set(Q) covers any set in 

1,. At Line (9), if 3 T E 1,, PbyS(T, Q)= F, then Set(T) z Set(Q). Since Set(Q) is 

derived from Set(T), then according to Lemma 3 there is at least one cycle in the 

computation paths, and the states along the cycle do not satisfy Flag = 1. 

Therefore, AF(Flag = 1) does not hold. If no cycle is detected, the computation 

continues. It follows that the algorithm gives a correct result at K = n+1. 

From the above two cases, by induction on K, we have proven Theorem 3. 

However, there still exists the non-termination problem in this algorithm if the 

reachability analysis of a particulax ASM does not terminate, and no cycle is 

detected among the states not satisfying (Flag =1). Figure 29 shows such a case. 

The reasons of non-termination and a proposal for some solutions are addressed in 

[821 
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Note: No state in {s0, sl, 	sn, ...} satisfies C. 

Figure 29 - A case of non-termination of algorithm Check_AF(M, C) 

Summary 

We have proven the correctness of the algorithms Check_AG(M, C) and Check_AF(M, 
C. The proofs of correctness for Check_A(M, n, C), Check_AU(M, C), Check_EX(M, n, 
C), Check_EG(M, C), Check_EF(M, C), Check_EU(M, C), and for the algorithms for 
checking AG (c => (F p)) and AG(c => pUq) can be carried out in a similar way as the 
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proofs of Theorems 2 and 3. 

In the next chapter, we illustrate the property checking procedures on two 

examples. 



10 	Experimental results 

In this chapter, we apply the MDG-based model checker introduced earlier to two 

hardware design examples: the Island Tunnel Controller (TTC) [39], and the Abstract 

Counter [34]. Although the two examples are small and do not represent the scale of 

designs that MDG-based model checker can verify, they are ideal for illustration purposes. 

From the two examples, we can see how the ASMs are used to describe design models, 

and how the properties can be stated using LmDG. We also carried out the same 

verification using the ROBDD-based verification tool VIS [83]. Both tools showed the 

same verification result. However, using the MDG-based method, we were able to use 

abstract variables that describe the data path and the first-order temporal logic to state 

properties, hence, the performance of the MDG-based model checker is much better than 

that of VIS. 

10.1 Checking Properties of the Island Tunnel 
Controller 

The Island Tunnel Controller was originally introduced by Fisler and Johhson [39] to 
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illustrate the notation of a heterogeneous logic system supporting diagrams as logic 

entities, however, no verification experiment were performed. 

10.1.1 The Island Tunnel Controller 

Generally speaking, the ITC controls the traffic lights at both ends of a tunnel based on the 

information collected by sensors installed at both ends of the tunnel: there is one lane 

tunnel connecting the mainland to an island, as shown in Figure 30. At each end of the 

tunnel, there is a traffic light. There are four sensors for detecting the presence of vehicles: 

one at the tunnel entrance (ie) and one at the tunnel exit on the island side (ix), and one at 
the tunnel entrance (me) and one at the tunnel exit on the mainland side (mx). It is assumed 

that all cars are finite in length, that no car gets stuck in the tunnel, that cars do not exit the 

tunnel before entering the tunnel, that cars do not leave the tunnel entrance without 

travelling through the tunnel, and that there is sufficient distance between two cars such 

that the sensors can distinguish the cars. 

In [39], one more constraint is imposed: "at most sixteen cars may be on the island 

at any time". The number "sixteen" can be taken as a parameter and it can be any natural 

number. The constraint can thus be read as follows: "at most n (n 0) cars may be on the 

island at any time". In our ASM approach, we have the luxury to model an abstract data 

path, hence, we used an abstract variable to describe the counter n. For ROBDD-based 

verification methods, like VIS, a particular instance of n has to be 
given. 



• 
o 

127 

Figure 30 - The Island Tunnel Controller 

Fisler and Johnson proposed a specification of ITC using three communicating 

controllers and two counters as shown in Figure [31]. Their state transition diagrams are 

shown in Figure 32. The island light controller (ILC) has four states: green, entering, red 

and exiting. The outputs igl and irl control the green and red lights on the island side, 

respectively; iu indicates that the cars from the island side are currently occupying the 

tunnel, and ir indicates that ILC is requesting the tunnel. The input iy requests the ILC to 

release control of the tunnel, and ig grants control of the tunnel from the island side. A 

similar set of signals is defined for the mainland light controller (MLC). The tunnel 

controller (TC) processes the requests for access issued by the ILC and MLC. The island 

counter and the tunnel counter keep track of the numbers of cars currently on the island 

and in the tunnel, respectively. For the tunnel controller, at each clock cycle, the counter tc 

is increased by 1 depending on tc+ or decremented by 1 depending on tc- unless it is 

already O. The island counter operates in a similar way, except that the increment and 



Island counter Tunnel counter 

Mainland 
Light 
Controller 

(MLC) 

mg .4 	 
My 

17111 r 
ITIT 

Island 
Light 
Controller 

(ILC) 

mrl 

mgl 

me 

mx 

Tunnel 
Controller 	 

ig ep,  
(TC) 

iu 

ir 

iy 

ie 

ix 
411 	 

ic+ 
II 

tc+ v Ir  
ic ic- 

tc à 
11  

tc- 

128 

decrement signais are ic+ and ic-, respectively. 

Figure 31 - The specification of the Island Tunnel Controller 

In [39], Fisler and Johnson proposed a set of properties that the ITC design should 

satisfy. In the next section, we will show how those properties are specified in LmDG, and 

the CPU time and memory used for verifying the properties using the MDG package. 
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10.1.2 Property checking using the MDG package 

We first create an ASM model representing the ITC design which could be read by the 

MDG verification system. We created modules representing 1LC, MLC, TC, and the 

counters as specified. All the signals are described using concrete variables, except that 

two state variables of abstract sort WORDN for n-bit word are used to describe the island 

counter (ic) and the tunnel counter (tc). The uninterprested function inc of type WORDN - 

> WORDN is used to describe the operation of incrementation by 1, and dec of the same 

type to describe the decrementation by 1. The environment (ENV) is built in such a way 

that it allows a non-deterministic choice of values on the primary inputs ie, me, lx and mx. 

Appendix A contains a listing of the ITC description in MDG-HDL, which is a language 

used for hardware description at the register transfer (RT) level. MDG-based symbolic 

reachability analysis requires 9 transition steps. 

The following properties were verified on the ITC design: 

Property 1: The lights at both entrances of the tunnel do not show green at the 

same time. 

This is a typical safety property that a traffic light controller should satisfy. This 

property is described in the specification language LmDG as follows: 

AG(! ((igl =1 ) & (mgl = 1))); 

Property 2: The island counter is never ordered to increment and decrement 

simultaneously: 

AG( ! ((ic- = 1) & (ic+ — 1)) ); 

Property 3. The tunnel counter behaves properly if ordered to increment and 

decrement simultaneously. 
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AG( ((tc+ = 1) &( tc- = 1)) -> (LET (v = tc) IN X (tc = v)) ); 

We used an ordinary variable v to remember the value of tc at the current state, and 

compare the value of tc at the next state with v. The property states that if both the signals 

tc+ and tc- are set, then the value of tc should not change from current state to the next 

state. 

Property 4. The tunnel counter is never ordered to increment simultaneously by 

both the ILC and the MLC. 

AG ( Mite+ = 1) & (mtc- = 1)) ); 

Table 1 shows the CPU time and the memory used in building the composite 

machine and checldng the simplified property regarding the signal Flag on the composite 

machine. The experiment was carried out on a SPARC Station 20 with 128 MB of 

memory. 

TABLE 1. Statistics for the ITC property verification in MDG. 

Verification Building the composite machine 
CPU time (sec) 	Memory (MB) 

Checking the simplified property 
CPU time (sec) 	Memory (MB) 

Property 1 0.25 0.95 0.94 3.66 

Property 2 0.32 0.98 0.61 3.53 

Property 3 0.38 1.02 1.47 5.69 

Property 4 0.27 1.03 0.68 4.04 



132 

10.1.3 Property checking using VIS 

Besides the ASM-based verification experiments, we also verified the same set of 

properties using VIS [83]. The same ITC behaviour model was recoded in a subset of 

Verilog HDL, accepted by VIS. However, silice VIS is based on finite state machines, the 

counters tc and ic are now assigned concrete values which indicate the maximum number 

of cars that are allowed in the tunnel and on the island. We developed models according to 

the number of register bits used for the counters. For example, if 4 bits are used to describe 

ic (tc), then the maximum of 16 cars are allowed on the island (in the tunnel). It takes 65 

transition steps to compute all the reachable states when 4 bit counters are used. From 

Table 2, we can see that the number of transition steps increases when the counter width 

increases. Appendix B shows the ITC behavior model with 4 bit counters in Verilog HDL. 

The properties were described in CTL as follows: 

Property 1: AGO((ig1=1 * mg1=1))); 

Property 2: AG(!((ic_minus=1 * ic_plus=1))); 

Property 3: In CTL, this property could be expressed as the conjunction of the 

following formulas. We have to enumerate all the possible values that tc could 

take, i.e., from 0 to 15. 

AG( ((tc+ = 1) * ( tc- = 1) * (tc<O>=0 * tc<1>=0 * tc<2>=0 * tc<3>=0) ) 

-> (A X (tc<O>=0 * tc<l>=0 * tc<2>=0 * tc<3>=0) ) ); 

AG( ((tc+ = 1) * ( tc- = 1) * (tc<O>=1 * tc<l>=0 * tc<2>=0 * tc<3>=0) ) 

-> (A X (tc<O>=1 * tc<l>=0 * tc<2>=0 * tc<3>=0) ) ); 
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AG( ((tc+ = 1) * ( tc- = 1) * (tc<O>=1 * tc<l>=1 * tc<2>=1 * tc<3>=1) ) 

-> (A X (tc<O>=0 * tc<1>=0 * tc<2>=0 * tc<3>=0) ) ); 

Property 4. AG ( !((itc+ = 1) * (mtc- = 1)) ); 

Table 2 shows the CPU time and the memory used for verifying all the four 

properties on models with different counter widths. We also indicate the number of 

transition steps needed for the state exploration and the number of reachable states for the 

different models. The experiment was also carried out on a SPARC Station 20 with 128 
MB of memory. 

TABLE 2. Statistics for the ITC property yerification using VIS. 

Counter Width CPU time (sec) Memory (MB) Number of 
reachable states 

Number of 
transition steps 
neede,d for state 

exploration 

4 bits 4 5.67 59808 65 

5 bits 15 6.01 234400 129 

6 bits 46 6.70 927648 257 

7 bits 205 (3:25) 8.35 3.69e+06 513 

8 bits 875(14:35) 11 1.47e+07 1025 

9 bits 3097(51:37) 22 5.88e+07 2049 

10 bits 12697(211:38) 50 2.35e+08 4097 

10.1.4 Discussion 

From the experimental results shown in Tables 1 and 2, we can see that the MDG-based 

model checking can verify a parameterized implementation having n bits, and it does so 
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very efficiently and independently of the datapath width. That is exactly the purpose 

behind the development of the ASM-based model checking methods. On the other hand, 

using the ROBDD-based tool VIS, the number of transition steps needed for state 

exploration and the number of states get doubled, and the resource usage (CPU time and 

memory) for the property verification increases exponentially with the counter width. 

10.2 Verification of Properties of an Abstract Counter 

In this section, we use the MDG-based model checker to verify both safety and liveness 

properties on a small design: an abstract counter which was introduced in [34]. The 

abstract counter was used in [34] as an example to show how formulas in Ground 

Temporal Logic can be used to describe state transitions and to specify design properties. 

Figure 33 shows the state transition graph of the counter. There are four control states: 

c _ Fetch, c Load, c Incl, and c Inc2. Depending on the input, the counter pc will get a _ 

new value, or increase by one, or keep the previous value. 

--- 	c_No_op 

c_Incl 
or c_Inc2 

Figure 33 - An abstract counter 
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10.2.1 Property checking using the MDG package 

To use our model checker, we first describe the behavior of the counter using the MDG-

HDL language [801 The description is shown in Appendix C. The counterpc is of abstract 

sort. The control state is initialized to c_Fetch, the initial value of pc is a free variable 

called init_pc (i.e., the initial state is generalized to any value). It takes 3 transition steps to 

compute all the reachable states. The following properties were verified: 

Property 1: From state c_Fetch, if the input is c_Inc2, then the machine goes to 

the next state c_Inc1. This property is expressed in LmDG  as follows: 

AG( (state = c_Fetch & input = c_Inc2) -> (X(state = c_Incl )) ); 

Property 2: From state c_Fetch, if the input is c_Inc2, then the machine always 

reaches state c_Inc2 in two transition steps. This property is 

expressed in LmDG as follows: 

AG( (state = c_Fetch & input = c_Inc2) -> (XX(state = c_Inc2 )) ); 

Property 3: From state c_Fetch, if the input is c_Inc2, then the machine reaches 

state c_Fetch in three transition steps and the counter pc has been 

increased hy 2. This property is expressed in LmDG as follows: 

AG( (state = c_Fetch & input = c_Inc2) 

-> (LET (v1=pc) IN (XXX(state = c_Fetch & pc = finc(finc(v1)))) ) ); 

Property 4: From state c_Fetch, the machine will eventually reach state c_Load if 

the input is not c_No_op or c_Incl or c_Inc2 forever. The property is 

expressed in LmDG  as: 

AG( (state = c_Fetch) => (F(state = c_Load))); 

under the following fairness constraint: 

((state = c_Fetch) 

-> ((input = c_Incl) I (input = c_No_op) I (input = c_Inc2)) ); 
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These properties were verified by our model checker using less than one second. 

Table 3 shows the CPU time in seconds used in building the composite machine and 

checking the simplified property regarding Flag on the composite machine. The 

experiment was carried out on a SPARC Station 20 with 128 MB of memory. 

TABLE 3. Statistics for the abstract counter verification in MDG. 

Verification Building the composite machine 
CPU time (sec) 	Memory (MB) 

Checking the simplified property 
CPU time (sec) 	Memory (MB) 

Property 1 0.17 0.80 0.04 0.14 

Property 2 0.21 0.89 0.04 0.15 

Property 3 0.31 0.90 0.12 1.75 

Property 4 0.37 1.65 0.06 0.51 

Using the decidable fragment of Ground Temporal Logic [34], Property 1, 2 and 3 

could be checked, but Property 4 could not be verified since it is a liveness property. Using 

the "true symbolic model checking" [47], all the properties could be checked. But when 

verifying Property 3, as the abstract data pc appears in the property, we need to first strip 

the first-order parts in the formula to obtain a propositional formula G( (state = c_Fetch & 

input = c_Inc2) -> (XXX(state = c_Fetch ) ) ). After the propositional formula has been 

verified, a first-order verification condition need to be generated and verified. Using the 

ICS model [43][45], it happens that the abstract counter fans into the class of circuits 

where finite instantiation cannot be applied and thus it is not possible to compute all the 

reachable states; therefore, it appears that none of the above properties could be verified. 

10.2.2 Property checking using VIS 

To compare the performance of the MDG-based model checker to that of an FSM-based 

verification tool, and to partially verify the verification results, we carried out the same 

property verification using VIS. Again, for the counter pc, we have to give its upper 
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bound. We modeled the abstract counter in a subset of Verilog (see in Appendix D) using 

registers with different width for the counter pc, i.e., registers consisting of 4 bits, 8 bits, 

16 bits, and 32 bits. On each model, we verified the same set of properties as in Section 

10.2.1. The properties for the model with 4 bit pc register are stated in CTL as follows: 

Property 1: AG( ((state = c_fetch) * (input_instruction = c_inc2)) 

-> (AX(state = c_incl))); 

Property 2: AG( ((state = c_fetch) * (input_instruction = c_inc2)) 

-> (AX(AX(state = c_inc2)))); 

Property 3: AG(((state = c_fetch) * (input_instruction = c_inc2) 

* (pc<3> = 0 * pc<2> = 0 * pc<l> = 0 * pc<O> = 0)) 

-> (AX(AX(AX((state = c_fetch) 

* (pc<3> = 0 * pc<2> = 0 * pc<l> = 1 * pc<O> = 0))))) ); 

with (pc<3> pc<2> pc<l> pc<O> ) ranging over from 0000 to 1111; 

Property 4: AG((state = c_fetch) -> (AF(state = c_load))); 

under the following fairness constraint: 

!( (state = c Fetch) -> ((input = c_Incl) I (input = c No_op) I (input = c_Inc2)) ); 

Table 4 shows the number of transitions it takes for each model to compute all the 

reachable states, the number of the reachable states, the CPU time, and the memory 

needed to verify Properties 1 to 4. 
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TABLE 4. Statistics for the abstract counter verification using VIS. 

Counter Width CPU tinte (sec) Memory (MB) Number of 
reachable states 

Number of 
transition steps 
needed for state 

exploration 

4 bits 0.56 2.84 448 6 

8 bits 3 3.72 7168 6 

16 bits 7 4.80 1.83501e+06 6 

32 bits 12 6.12 1.20259e+11 6 

10.2.3 Discussion 

The statistics shown in Tables 3 and 4 again demonstrate that the MDG-based model 

checking can verify both safety and liveness properties on a parameterized 

implementation independent of the data path width very efficiently. However, from Table 

4, we can see that with the counter width increasing, the number of reachable states 

increases exponentially, but the number of transition steps needed for state exploration 

stays the same and the usage of CPU time and memory only increases slightly, which was 

not the case in the Island Tunnel Controller. The reason is that in this particular example, 

the counter pc is independent of the state transitions, i.e., the state transitions are not gated 

by the value of pc. Every time when loading in a new value of pc it can take any value 

within its range, hence, the node pc will not appear in the BDD expression of the sets of 

states. Therefore, no matter how large the width of pc is, the time and memory usage will 

not grow significantly. Nevertheless, the MDG-based model checking still outperforms the 

ROBDD-based model checker in the sense that one ASM model of the Abstract Counter 

and one set of properties automatically cover all the possible pc widths. Using VIS on the 

other hand, we have to build separate models and to develop separate sets of properties for 

pc instances of different widths. 



Summary 

In this chapter, we performed property verifications on two examples: the Island Tunnel 

Controller and the Abstract Counter. We illustrated how safety and liveness properties can 

be described in LmDG. Using MDG_based model checking, we were able to use only one 

abstract variable instead of a number of Boolean variables for representing a data value. 

Hence, the performance of the MDG-based model checker was better than that of the 

ROBDD-based model checker when there is a data path involved in the design. 
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11 	Conclusions and Future Work 

11.1 Conclusions 

BDD-based symbolic model checking has proven to be a successful verification technique 

that can be applied to real life designs. However, since it requires the design to be 

described at the Boolean logic level, the state explosion problem caused by large datapath 

is often the bottleneck in applying symbolic model checking technique. 

In this thesis, we studied model checking for a first-order temporal logic based on 

the Abstract description of State Machines (ASMs). Since a data value is represented by a 

single variable of abstract type, rather by a vector of Boolean variables, and a data 

operation is represented by an uninterpreted funcfion symbol, the width of a datapath of a 

design has no affect to the description model of the design. We can then alleviate the state 

explosion problem in symbolic model checking caused by a large datapath. 

We defined a very general first-order branching-time temporal logic: 

Abstract_CTL*. We then defined 4ADG, a subset of Abstract_CTL*, as the property 
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specification language and developed property checking algorithms for LmDG. To check a 

property of LmDG on an ASM M, we first build additional ASMs for all the 

Next_let_formulas (which contain the temporal operator X) that appear in the property. 

Then we compose the additional ASMs with M, and finally verify a simpler property on 

the composite machine. We only allow universal path quantifier and limited nesting of 

temporal operators (other than X) in LmDG, however, useful safety and liveness properties 

can be expressed with or without fairness constraints. We use MDGs to encode sets of 

states and the transition relations. The property checking procedures are based on implicit 

state enumeration and are carried out fully automatically. We have also demonstrated the 

soundness of our verification procedures. 

We have implemented a parser in the C language using Yacc and Lex to check the 

property specification and to automatically build ASMs for the Next_let_formulas. All the 

model checking algorithms were implemented using the MDGs operations implemented 

in Quintus Prolog V3.2. 

We illustrated the application of our model checker on the Island Tunnel 

Controller and the Abstract Counter benchmarks. The experimental results demonstrate 

that the MDG-based model checking can verify both safety and liveness properties on 

parameterized implementations independent of the data path width very efficiently. 

11.2 Future work 

The ASMs-based model checking for a first-order temporal logic presented in this thesis 

showed its potential of automatically verifying properties on designs with large data path. 

However, there are areas in which the present work could be improved or extended. Listed 

below are some of the future research directions: 

• Developing a counter-example facility: 
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A counter-example facility showing a trace from the initial state to a state causing the 

property to fail will certainly make debugging of designs a lot easier. Several ROBDD-

based model checkers possess this feature [86][83].  In our MDG package, states are 

described in DFs represented by MDGs. When abstract state variables are involved, 

we cannot distinguish one computation path from another during the state exploration, 

since even a one-disjunct DF represents a set of states. Hence, we cannot provide the 

same counter-example facility as an ROBDD-based model checker can. 

However, in the MDG package, when a property fails, it is possible to provide traces 

from a set of initial states to sets of states in which the property was not satisfied. One 

possible solution is as follows: when checking a property, in addition to computing the 

next states using RelP, we add a DF Stotai  (initialized to the initial set of states) to 

record the current states, all the previous states, and the inputs. This can be achieved 

by adding the following two statements within the iteration of each property checking 

total = 	 -Stotal, 	 -Stotal 	Stotal; algorithm: S 	RelP({/, pre 	GT }, {}, inew  ); pre 

the inputs, GT the transition relation, and tue, a renaming function which substitutes 

Y to Yn  (n is iteration number). If a safety property (in the template of AG, AX) fails, 

a DF Conj(Stotai, {Flagn  =O}) contains several counter-example traces. It a liveness 

property fails, a DF Conj(Stotai, Flagn  =0) when the property is in the template of AF 

( or a DF Conj(Stotai, FlagQn  =0) when the property is in the template of AU), and the 

DF T (when if 3 T 	PbyS(T, Q) = F is detected) should help the user to find the 

cycles along which Flag = 1 (or FlagQ = 1) never becomes true. 

• Link to theorem provers: 

Combining both theorem proving and model checking to resolve the verification tasks 

involving large designs becomes an interesting topic in the formal verification 

application community[71]. Theorem proving can be used at a higher level of 

abstraction than model checking and can augment the verification coverage of the 

design hierarchically. In a sense, model checking can be used to verify the low-level 

where I are 
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modules until it cannot go higher in the hierarchy. 

It is thus desirable to explore the linkages between MDG tools and a theorem proyer 

(e.g., HOL). The MDG-based model checker can be used as a decision procedure in a 

theorem proving system. Namely, when using the theorem proyer to verify a large 

goal, some of the sub-goals or lemmas could be proved using the MDG-based model 

checker. 

• Experimental verification of the method using industrial and academic benchmarks: 

The MDG-based verification package (including the model checker) used variables of 

abstract type to represent data and uninterpreted functions to describe data operation. 

The data width is no longer the bottleneck to cause the state explosion. This is ideal for 

verification of designs with large data path. It would be valuable to test a large number 

of industrial scale designs with large data path (most telecommunication circuits 

happen to fall into this category) and academic benchmarks using the MDG-based 

model checker, in order to evaluate and to improve its performance. 

• Solving the non-termination problem: 

Some early research has shown that two approaches could solve the non-termination 

problem in some situations. The first one is based on the use of p-terms which can 

finitely represent infinite sets of state [641. An extension of the syntax of MDGs and 

MDG-based algorithms could incorporate p-terms to solve the non-termination 

problem when the generated set of states exhibit certain repetitive patterns. The 

second approach is to modify the original ASM structural description according to 

certain rules to avoid the non-termination problem[65]. It would be valuable to explore 

a more general method that could automatically analyze the ASM description, modify 

the design description and infer p-terms. Furthermore, implementing these ideas in the 

package would extend the applicabifity of the MDG-based verification techniques. 
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• Automatic node ordering: 

It is possible to develop an automatic node ordering procedure based on the current 

variable ordering heuristics for the MDG package and the experience from ROBDDs 

and other decision graphs [191[351[36][661[701. Automatic node ordering would make 

the MDG package easier to use and improve the performance of the model checking 

procedures. 
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Appendix A - ITC behavioral description in MDG- 
HDL 

% 
% File: itc_ret_s.pl 
% Title: ITC specification. 
% 	  

% Multifile declaration required by the Prolog system. 
% 
:- multifile component/2. 
:- multifile signal/2. 
:- multifile next_state_partition/l. 
:- multifile output_partition/l. 
:- multifile init_val/2. 
:- multifile init_var/2. 
:- multifile init_con/2. 
:- multifile st_nxsta. 
:- multifile outputs/1. 
:- multifile par strategy/2. 

	

% 	 Inputs and Outputs 	

%--- Input signals--- 
% 
signal(ie,bool). 
signal(ix,bool). 
signal(me,bool). 
signal(mx,bool). 

%--- Outputs --- 
signal(irl_A,bool). 
signal(igl_A,bool). 
signal(itc_plus_A,bool). 
signal(itc_min_A,bool). 
signal(ic_min_A,bool). 

signal(mrl_A,bool). 
signal(mg1 A,bool). 
signal(mtc_plus_A,bool). 
signal(mtc_min_A,bool). 
signal(ic_plus_A,bool). 



signal(tc_plus_A,bool). 
signal(tc_min_A,bool). 

%--- Outputs --- 

signal(ie,bool). 
signal(ix,bool). 
signal(me,bool). 
signal(mx,bool). 

% 	 Island Light Controller 

%--- Input signals---
% 
signal(ig_A,bool). 
signal(iy_A,bool). 

%--- Outputs ---
% 
signal(ir_A,bool). 
signal(iu_A,bool). 

%--- State variables--
% 
signal(is_A,mi_sort). 

% 	 Behavioral description for the island light controller---- 
% 
component(is_comp_A,tabled[is A,ig_A,iy_A,ie,ix,n_is_A], 

[green,*,0,0,*,green], 
[green,*,0,1,*,entering], 
[green,*,1,*,*,red], 
[entering,*,*,0,*,green], 
[entering,*,*,1,*,entering], 
[red, 0,*,*,0,red], 
[red, 1,*,*,0,green], 
[red, *,*,*,1,exiting], 
[exiting, *,*,*,0,red], 
[exiting, *,*,*,1,exiting]])). 

component(ir_comp_A,tablea[is_A,ie,ir_A], 
[red,1,1]10])). 
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component(irl_comp_A,tablea[is_A,irl_A], 
[red,1], 
[exiting,1]101)). 

component(igl_comp_A,tablearis_A,igl_A], 
[green,1], 
[entering, 1] 101)). 

component(iu_comp_A,tablea[is_A,iu A], 
[green, 
rentering,11101)). 

component(itc 
[green,0,1,1]101)). 

component(itc minus_comp_A,tablea[is_A,ix,itc_min_A], 
[red,1,1]10])). 

component(ic_min_comp_A,tablea[is_A,iy_A,ie,ic_min_A], 
[green,0,1,1]101)). 

Mainland Light Controller 

%--- Input signals---
% 
signal(mg_A,bool). 
signal(my_A,bool). 

%--- Outputs ---
% 
signal(mr_A,bool). 
signal(mu_A,bool). 

%--- State variables---
% 
signal(ms_A,mi_sort). 

Behavioral description for the mainland light controller---- 

component(ms_comp_A,tableff[ms_A,mg_A,my_A,me,mx,lessn(ic_A),n_ms_A], 
[green,*,*,*,*,0,red], 
[green,*,0,0,*,1,green], 
[green,*,0,1,*,1,entering], 
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[green,*,1,*,*,1,red], 
[entering,*,*,0,*,*,green], 
[entering,*,*,1,*,*,entering], 
[red, 0,*,*,0,*,red], 
[red, 1,*,*,0,*,green], 
[red, *,*,*,1,*,exiting], 
[exiting, *,*,*,0,*,red], 
[exiting, *,*,*,1,*,exiting]])). 

component(mr_comp_A,tabled[ms_A,me,mr_A], 
[red,1,1110])). 

component(mrl_comp A,tabled[ms Amui A], 
[red,1], 
[exiting,1]10])). 

component(mgl_comp_A,tablea[ms_A,mgl_A], 
[green,1], 
[entering,11101)). 

component(mu_comp_A,tablearms_A,mu_A], 
[green,1], 
[entering,1]10])). 

component(mtc_plus_comp_A,tabled[ms_A,my A,mellessn(ic_A),mtc_plus_A], 
[green,0,1,1,1]10])). 

component(mtc_minus comp A,tablea[ms_A,mx,rntc_min_A], 
[red,1,1}10])). 

component(ic_plus comp_A,tabled[ms_A,my A,me,lessn(ic A),ic_plus_A], 
[green,0,1,1,1]10])). 

% 	 Tunnel Controller 
/* 
%--- Input signals---
% 
signal(ir_A,bool). 
signal(iu_A,bool). 

signal(mr_A,bool). 
signal(mu_A,bool). 
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%--- Outputs ---
% 
signal(ig_A,bool). 
signal(iy_A,bool). 

signal(mg_A,bool). 
signal(my A,bool). 
*/ 
%--- State variables-- - 
% 

signal(ts_A,ts_sort). 

% 	 B ehavioral description for the tunnel controller-- -- 
% 
component(ts_comp_A, 
table ( ffts_A,ir_A,mr_A,le s sn(ic_A) ,eqz ret 1 ,iu_A,mu_A,n_ts Al , 

[di spatch,0,0,*,*,*,*,dispatch] , 
[di spatch,O, 1,0,*,*,*,dispatch] , 
[dispatch,0,1,1,*,1,*,iuse], 
[di spatch,O, 1 , 1 ,0,0,*,iclear], 
[dispatch,O, 1, 1,l ,0,*,dispatch] , 
[dispatch, 1 ,*,*,0,*,0,Inclear] , 
[dispatch,1,*,*, l ,*, 0 ,dispatch], 
[dispatch,1,*,*,*,*,1,muse], 
[iuse,*,*,*,*,0,*,iclear], 
[iuse,*,*,*,*,1,*,iuse], 
[muse,*,*,*,*,*,0,mclear], 
[muse,*,*,*,*,*,1,muse] , 
[iclear,*,*,*,0,*,*,iclear], 
[iclear,*,*,*, 1 ,*,*,di sp atch] , 
[mclear,*,*,*,0,*,*,mclear] , 
[mclear,*,*,*,1,*,*,dispatch]])). 

c omponent(ig_comp_A,table a [ts_A,ir_A,eqz_ret 1 ,mu_A,ig_A] , 
[di spatch, 1,1 ,O, 1] , 
[mclear, *, 1,*, 1] 101)). 

component(iy comp_A,tabled[ts_A,iy_A], 
[iuse,1]10])). 

component(mg_comp_A, 
tabled[ts_A,ir_A,mr_A,lessn(ic_A), eqz_retl,iu_A,mu_A,mg_A], 

[iclear, *,*,*, 1,*,*,1], 
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[dispatch, 0,1,1,1,0,*,1110])). 

component(my_comp_A,tablea[ts_A,my_A], 
[muse,1]10])). 

% 	 Behavioral description for Counters 

%inputs and outputs added 
signal(eqz_s 1,bool). 
signal(eqz_retl,bool). 
signal(s1,wordn). 
signal(tc_A_sl,wordn). 
signal(sig1,bool). 
signal(eqz_choicel,bool). 

component(signal_l, constant_signal(value(1), signal(sig 1))). 
component(itc_A_reg,reg(control(sig1),input(s1),output(tc_A_s1))). 
component(equz_comp1,transform(inputs([s11),function(equz),output(eqz_s1))). 
component(eqz_reg 1 ,reg(control(sig 1),input(eqz_choice 1), output(eqz_ret 1))). 

component(choice, 
table([ [itc_plus_A, mtc_plus_A, itc_min_A, mtc_min_A, eqz_choicel], 

[0, 0, 1, 0,eqz_s1], 
[0, 0, 0, 1,eqz_s1], 
[1, 0, 0, 0,eqz_s1], 
[0, 1, 0, 0,eqz_si]leqz_ret11)). 

component(ctrl_tc_A, 
tablea[eqz_retl,itc_plus_A, mtc_plus_A, itc_min_A, mtc min A, si], 

[0, 0, 0, 1, 0, dec(tc_A_s1)], 
[0, 0, 0, 0, 1, dec(tc_A_s1)], 
[*, 1, 0, 0, 0, inc(tc_A_s1)], 
[*, 0, 1, 0, 0, inc(tc_A_s1)]1tc_A_s1])). 

component(ctrl_tc_plus_A, tablea[itc_plus_A, mtc_plus_A, tc_plus_A], 
[*, 1, 1], 
[1, *, 1110])). 

component(ctrl_tc minus A, tabled[itc_min A, mtc min_A, tc_min_A], 
[*, 1, 1], 
[1, *, 11101)). 

st_nxst(tc_A_s1,n_tc_A_s1). 
st_nxst(eqz_retl,n_eqz_ret1). 
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%counter ic_A 

signal(ic_A,wordn). 

component(ctrl_ic_A, tablea[equz_new(ic_A),ic_plus_A, ic_min_A, nie A], 
[0, 0, 1, dec(ic_A)], 
[*, 1, 0, inc(ic_A)]lic_AD). 

%--- Initial states ---
% 

init_val(is_A,red). 
init_val(ms_A,red). 
init_val(ts_A,dispatch). 

init_val(tc_A_sl,init_tc). 
init_val(ic_A,init_ic). 

init val(eqz_ret 1 , 1). 
init_var(init_tc,wordn). 
init_var(init_ic,wordn). 

%--- Outputs --- 
% 
outputs([irl A, igl A, mr1 A, mgl A, itc plus A, mtc  plus A, ic plus A, ic min  AP. 

%--- Partitions ---
% 
output_partitiona[[irl_A]],[[igl_A]],[[mrl_A]],[[mgl_A]], 

[[mtc_plus_A]], 
[[ic_min_A]] ]). 

next_state_partition([ 

[[n_ms_A]], 
[[n_ts_A]], 
[[n_ic_A]], 
[[n_tc_A_sl]], 
[[n_eqz_retl]] 

). 



%--- State variable, next state variable mapping--- 
% 
st_nxst(is_A,n_is_A). 
st_nxst(ms_A,n_rns_A). 
st_nxst(ts_A,n_ts_A). 
st_nxst(ic_A,n_ic_A). 

%--- Partition stategy---
% 
par_strategy(auto, auto). 

% File: itc_alg.pl 
% Title: Algebraic specification file for the ITC example 

% Multifile definition for Prolog predicates 

multifile abs_sort/l. 
multifile conc_sort/2. 
multifile function/3. 
multiffie gen_const/2. 

multifile rr/3. 
multifile ucrr/2. 

% Algebraic specification 

conc_sort(mi_sort,[green,red,exiting,entering]). 
conc_sort(ts_sort,[dispatch,iuse,muse,iclear,mclear]). 

% Functions 

function(lessn,[wordn],bool). 
function(equz,[wordn],bool). 
function(equz_new,[wordn],bool). 

function(absComp,[wordn,wordn],bool). 
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% Conditional rewrite rules; 
% To rewrite the terms of abstract functions, only the conditional 
% rewrite rules can be used. For rules which dont have explicit conditions, 
% as the following two rudes, the condition set is "[]". 

rr([], dec(inc(X)), X). 
rr([], inc(dec(X)), X). 

% Xterm rewrite rules; 

xtrr([],equz(zero),1). 
xtrra],lessn(zero),1). 
xtrrnabsComp(XX),1). 

% File itc_o.pl: Variable order specification file for the ITC example 

order_main([ 
rand_choicel, 
rand_choice2, 
rand_choice3, 
rand_choice4, 

sigl, 
signal0, 
x, 

init_is, 
init_ms, 
init_ts, 

tc, 
ic, 

ts_A, 
is_A, 
ms_A, 

ie, 
ix, 
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me, 
mx, 

cx_A, 

n_ts A, 
n_is_A, 
n_ms_A, 

n_ie, 
n_ix, 
n_me, 
n_mx, 

is_entering, 
is_exiting, 
ms_entering, 
ms_exiting, 

lessn_ic_A, 
equz_tc_A, 

tc_A_sl, 
inc_sl, 
dec_sl, 
sl, 
nic_A_s1, 
eqz_sl, 
eqz_choicel, 
eqz_retl, 
n_eqz_retl, 

ic_A_s2, 
inc_s2, 
dec_s2, 
s2, 
%rand_choice1, 
%rand_choice2, 
%rand_choice3, 
%rand_choice4, 
n_ic_A_s2, 
eqz_s2, 
eqz_choice2, 
lessn_s2, 

165 



166 

les sn_choice, 
eqz_ret2, 
n_eqz_ret2, 
les sn_ret, 
n_les sn ret, 

tc_A, 
tc LA, 
tcO_A, 
ic_A, 
icl_A, 
icO_A, 
n_tc_A, 
n_tc LA, 
nicO_A, 
n_ic_A, 
n_ic LA, 
n_icO_A, 

irLA, 
igLA, 
itc_plus_A, 
itc_min_A, 
ic_min_A, 

MT LA, 
mgLA, 
mtc_plus_A, 
mtc_min_A, 
ic_plus_A, 

tc_plus_A, 
tc_min_A, 

ig_A, 
iy_A, 
ir_A, 
iu_A, 

mg_A, 
my_A, 
mr_A, 
mu A, 



lessn, 
equz, 
equz_new, 
inc, 
dec 
1). 
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Appendix B - ITC behavioral model with 4 bit 
counters in Verilog HDL 

/* 

 

*I 

 

 

/* itc_4b.v1: ITC specification in Verilog */ 
/*Counters are instantiated to 4 bits */ 
/* 	  

/* Enumerate type definition. This is an extension of Verilog allowed by VIS */ 
typedef enum {green, entering, red, exiting} ms_sort; 
typedef enum {dispatch, iuse, muse, iclear, mclear} ts_sort; 

/* 	 Main module 

module main(clk,igl,irl,mgl,mr1); 
input clk; 
output igl,irl,mgl,mr1; 

wire ie,ix,me,mx,igl,irl,mgl,mr1; 
wire ic_plus,ic_minus,itc_plus,itc_minus,mtc_plus,mtc_minus,tc_plus,tc minus; 
wire [3:0] tc,ic; 

ms_sort wire is, ms; 

sensor sensor(clk, ie,ix,me,mx,is,ms); 
counter counter(clk,tc,ic, ic_plus, ic minus, itc plus, itc_minus, mtc_plus, mtc minus, 
tc_plus, tc_minus); 
island island(clk,ie,ix,igl,irtic_minus,itc_plus,itc_minus,iu,inig,iy,is); 
mainland 	mainland(clk,me,mx,mgl,mrtic,ic_plus,mtc_plus,mtc_minus,mu,mr,mg,my, 
ms); 
tunnel tunnel(clk,iu,ir,ig,iy,mu,mr,mg,my,tc,ic); 

endmodule 

/* Sensors. 
For VIS, a variable in a CTL formula should not have primary 
inputs as its supporting variables. So module Sensor simply 
simulates the enviroment by modelling the inputs as state 
variables in an enviroment state machine. 

*I 

module sensor(clk, ie,ix,me,mx,is, ms); 

*I 

*/ 



input clk,is,ms; 
output ie,ix,me,mx; 

ms_sort wire is, ms; 

wire rand_choicel,rand_choice2,rand_choice3,rand_choice4; 
reg ie,ix,me,mx, ie_delayl, me_delayl; 

initial ie = 0; 
initial ix = 0; 
initial me = 0; 
initial mx = 0; 
initial ie_delayl = 0; 
initial me_delayl = 0; 

as sign rand_choic e 1 = $ND (0 , 1 ) ; 
as sign rand_choice2 = $ND (0, 1 ) ; 
as sign rand_choice3 = $ND (0,1); 
as sign rand_choice4 = $ND (0 ,1) ; 

always @(posedge clk) begin 
if (rand_choicel == 0) 

ie = 0; 
else 

ie = 1; 

if (rand_choice2 == 0) 
ix = 0; 

else 
ix= 1; 

if (rand_choice3 == 0) 
me = 0; 

else 
me = 1; 

if (rand_choice4 == 0) 
mx = 0; 

else 
mx = 1; 
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end 



endmodule 

/* 	 Counters 

module counter(clk, tc, ic, ic_plus, ic_minus, itc_plus, itc_minus, mtc_plus, mtc_minus, 
tc_plus, tc minus); 
input clk; 
input ic_plus,ic_minus,itc_plus,itc minus,mtc_plus,mtc_minus; 
output tc,ic,tc plus,tc_minus; 

reg [3:0] tc,ic; 
wire ic_plus,ic_minus,itc_plus,itc minus,mtc plus,mtc_minus, tc_plus, tc_minus; 

initial tc = 0; 
initial ic = 0; 

assign tc_plus = (itc_plus 11mtc_plus) ? 1 : 0; //added 
assign tc_minus = (itc_minus Ilmtc_minus) ? 1 :0; // added 
always @(posedge clk) begin 

if ((ic_minus == 1) && (ic > 0) && (ic_plus == 0)) ic = ic - 1; 
else if ((ic_plus == 1) && (ic < 15) && (ic_minus == 0)) ic = ic + 1; 
else ic = ic; 

if 	((tc_minus == 1) && (tc > 0) && (tc_plus == 0)) tc = tc - 1; 
else if ((tc_plus — 1) && (tc < 15) && (tc_minus — 0)) tc = tc + 1; 
else tc = tc; 

end 
endmodule 

/* 	 Island Light Controller 

module island(clk,ie,ix,igl,irtic_minus,itc_plus,itc_minus,iu,ir,ig,iy,is); 

input clk; 
input ie,ix,ig,iy; 
output igl,irLic_minus,itc_plus,itc_minus,iu,ir,is; 

wire ie,ix,ig,iy,igl,irl,iu,ir; 
wire ic_minus,itc plus,itc_minus; 

170 

*/ 

*I 

ms_sort reg is; 



17 1 

initial is = red; 

always @(posedge clk) begin 
case (is) 
green:if ((iy==0)&&(ie==0)) is = green; 
else if ((iy==0)&&(ie==1)) is = entering; 
else is = red; 
entering: if (ie==0) is = green; 
else is = entering; 
red: if ((ix==0)&&(ig==0)) is = red; 
else if ((ix==0)&&(ig==1)) is = green; 
else is = exiting; 
exiting: if (ix==0) is = red; 
else is = exiting; 
endcase 

end 

assign ir = ((is == red)&&(ie == 1)) ? 1 : 0; 
assign iu = ((is == green) Il (is == entering)) ? 1 : 0; 
assign irl = ((is == red) Il (is == exiting)) ? 1 : 0; 
assign igl = ((is == green) Il (is == entering)) ? 1 : 0; 
assign itc plus = ((is == green) && (iy == 0) && (ie == 1)) ? 1 : 0; 
assign itc_minus = ((is == red) && (ix == 1)) ? 1 : 0; 
assign ic_minus = ((is == green) && (iy == 0) && (ie == 1)) ? 1 : 0; 

endmodule 

/* 	 Mainland Light Controller 

module mainland(clk,me,mx,mgl,rrutic,ic_plus,mtc_plus,mtc_minus,mu,mr,mg,my,ms); 

input clk; 
input [3:0] ic; 
input me,mx,mg,my; 
output mgl,mrl,ic_plus,mtc plus,mtc_minus,mu,mr,ms; 

wire [3:0] ic; 
wire me,mx,mg,my; 
wire mgl,mrl,ic_plus,mtc_plus,mtc_minus,mu,mr; 

ms_sort reg ms; 

*I 

initial ms = red; 
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always @(posedge clk) begin 
case (ms) 
green:if (ic >= 15) ms = red; 
else if ((my==0)&&(me==0)) ms = green; 
else if ((my==0)&&(me-1)) ms = entering; 
else ms = red; 
entering: if (me-0) ms = green; 
else ms = entering; 
red: if ((mx-0)&&(mg==0)) ms = red; 
else if ((mx-0)&&(mg==1)) ms = green; 
else ms = exiting; 
exiting: if (mx==0) ms = red; 
else ms = exiting; 
endcase 

end 

assign mr = ((ms == red)&&(me == 1)) ? 1 : 0; 
assign mu = ((ms == green) Il (ms == entering)) ? 1 : 0; 
assign mrl = ((ms == red) Il (ms == exiting)) ? 1 : 0; 
assign mgl = ((ms == green) Il (ms == entering)) ? 1 : 0; 
assign mtc_plus =((ms == green) && (my == 0) && (me == 1) && (ic < 15)) ? 1 : 0; 
assign mtc minus = ((ms == red) && (mx == 1)) ? 1 : 0; 
assign ic_plus = ((ms == green) && (my == 0) && (me == 1) && (ic < 15)) ? 1 : 0; 

endmodule 

/* 	 Tunnel Controller 

module tunnel(clk,iu,ir,ig,iy,mu,mr,mg,my,tc,ic); 

input clk; 
input [3:0] ic, tc; 
input iu,ir,mu,mr; 
output ig,iy,mg,my; 

wire [3:0] ic, tc; 
wire iu,ir,mu,mr; 
wire ig,iy,mg,my; 

ts_sort reg ts; 

initial ts = dispatch; 

*I 
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always @(posedge clk) begin 
case (ts) 
dispatch: if ((ir==0)&&(mr-0)) ts = dispatch; 
else if ((ir==0)&&(mr==1)&&(ic>=15)) ts = dispatch; 
else if ((ir-0)&&(mr==1)&&(ic<15)&&(iu==1)) ts = iuse; 
else if ((ir-0)&84(mr==1)&&(ic<15)&&(iu-0)&&(tc HO)) ts=iclear; 

else if ((ir==0)&&(mr==1)&&(ic<15)&&(iu==0)&&(tc==0)) ts=dispatch; 
else if ((ir==1)&&(mu==1)) ts=muse; 
else if ((ir-1)&&(mu==0)&&(tc!=0)) ts=mclear; 
else ts=dispatch; 
iuse: if (iu==0) ts = iclear; 
else ts = iuse; 
muse: if (mu==0) ts = mclear; 
else ts = muse; 
iclear: if (tc!=0) ts = iclear; 
else ts = dispatch; 
mclear: if (tc!=0) ts = mclear; 
else ts = dispatch; 
endcase 

end 

assign ig = (((ts—dispatch)&&(ir==1)&&(tc==0)&&(mu==0)) Il 
((ts==mclear)&&(tc==0))) ? 1 : 0; 

assign iy = (ts == iuse) ? 1 : 0; 
assign mg = (((ts==dispatch)&&(ir==0)&&(mr==1)&&(ic<15)&&(tc-0)&&(iu==0)) Il 

((ts==iclear)&&(tc-0))) ? 1 : 0; 
assign my = (ts — muse) ? 1 : 0; 

endmodule 



Appendix C - Behavioral description of the 
Abstract Counter using MDG-HDL 
% 	  
% File: counter_s.pl 
% Title: Behavioral description of the Abstract Counter 
% 	  

% Multifile declaration required by Prolog system. 
% 
:- multifile component/2. 
:- multifile signal/2. 
:- multifile next_state_partition/l. 
:- multifile output partition/1. 
:- multifile init_val/2. 
:- multifile init_var/2. 
:- multifile init_con/2. 
:- multifile st_nxst/2. 
:- multifile outputs/1. 
:- multifile par_strategy/2. 

Inputs and Outputs 

sign al(input,in struction S ort). 
signal(state, state S ort). 
signal(double,bo ol). 
signal(load_in,wordn). 
signal(pc,wordn). 

component(sta_comp,tablea [state,input, double, n_state], 
[c_fetch,c_no op, *,c_fetchl, 
[c_fetch,c_load,*,c_load], 
[c_fetch, c incl, *, c_incl], 
[c_fetch, c_inc2, *,c_incl], 
[c_load, *,*, c_fetch], 
[c_incl, *, 0, c_fetch], 
[c_incl, *, 1, c_inc2], 
[c_inc2, *, *, c_fetch] 
1)). 

component(double_comp,tablea [input,n double], 
[c_inc2,1] 
10])). 
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% 



component(pc_comp,tablea [state,n_pc], 
[c_load, load_in], 
[c_inc I, finc(pc)], 
[c_inc2, finc(pc)] 
Ipc])). 

st_nxst(double,n_double). 
st_nxst(pc,n pc). 
st_nxst(state,n_state). 

%--- Initial states ---
% 
init_var(init_pc,wordn). 
init val(pc,init_pc). 
init val(double,0). 
init_val(state,c_fetch). 

%--- Outputs ---
% 
outputs([]). 

%--- Partitions ---
% 
output_partition([]). 

next_state_partition([ 
[[n_double]], 
[[n_pc]], 
[[n_state]] 
1). 

%--- Partition strategy---
% 
par_strategy(auto, auto). 

% File: itc_alg.pl 
% Title: Algebraic specification file for the ITC example 

% Multifile definition for Prolog predicates 

multifile abs_sort/l. 
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multifile conc_sort/2. 
multifile function/3. 
multifile gen_const/2. 

multifile rr/3. 
multifile ucrr/2. 

% Algebraic specification 

conc_sort(stateS ort, [c_fetch,c_load,c_incl,c_inc2]). 
conc_sort(instructionS ort, [c_no_op,c_lo ad ,c_inc 1,c_inc2] ). 

% Functions 

function(equz,[wordn],bool). 

function(finc,[wordn],wordn). 

function(absComp,[wordn,wordn],bool). 
rr([], dec(inc(Y)), Y). 
rra], inc(dec(Y)), Y). 

% Xterm rewrite rules; 

xtrrd],equz(zero),1). 

xtrra],absComp(X,X),1). 

% File: counter_alg.pl 
% Title: Algebraic specification file for the Abstract Counter example 

% Multifile definition for Prolog predicates 

multifile abs_sort/l. 
multifile conc_sort/2. 
multifile function/3. 
multifile gen_const/2. 

multifile 1r/3. 
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multifile ucrr/2. 

% Algebraic specification 

c o nc_ s ort( state S ort, [c_fetc h, c_lo ad,c_inc 1 ,c_inc2] ) 
conc_sort(instuctionS ort, [c_no_op,c_lo ad,c_incl,c_inc 2] ). 

% Functions 

function(equz,[wordn],bool). 
function(finc,[wordn],wordn). 

function(absComp,[wordn,wordn],bool). 
rr([], dec(inc(Y)), Y). 
rr([], inc(dec(Y)), Y). 

% Xterm rewrite rules; 

xtrr(I],equz(zero),1). 
xtrr([,absComp(X,X),1). 

% File counter_o.pl: Variable order specification file for the Abstract Counter example 

order_main([ 
init pc, 
load_in, 
input, 
double, 
n_double, 
state, 
n_state, 
pc, 
n_pc, 
finc 
]). 



Appendix D - Behavioral description of the 
Abstract Counter in Verilog HDL 
// A behavioral model of the Abstract Counter 

Enumerate type definition. This is an extension of Verilog allowed by VIS */ 
typedef enum {c_fetch, c_load, c_incl, c_inc2} state_sort; 
typedef enum fc_no_op, c load, c_incl, c_inc21 instruction_sort; 

/* 	 Main module 
module main(c1k); 
input 	clk; 

// as input_instruction needed in th eproperty, it has to be eventually driven by a 
// latch. So it cannot be a primary input. 

wire [1:0] random_choice; 
wire [3:0] load_in; 
instruction_sort wire input_instruction; 

reg double; 
reg [3:0] pc; 

state_sort reg state; 
instruction_sort reg input_instruction; 

initial double = 0; 
initial state = c_fetch; 
initial pc = 0; 
initial input_instruction = c_no_op; 

assign random_choice[1] = $ND(0,1); 
assign random_choice[0] = SND(0,1); 
assign load_in[3] = $ND(0,1); 
assign load_in[2] = $ND(0,1); 
assign load_in[1] = $ND(0,1); 
assign load_in[0] = $ND(0,1); 

always @(posedge clk) 
begin 
if (random_choice == 0) 

input_instruction = c_no_op; 
else if (random_choice == 1) 
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input_instruction = c_incl; 
else if (random_choice == 2) 

input_instruction = c_inc2; 
else 

input_instruction = c_load; 
end 

always @(posedge clk) 
begin 
case (state) 
c_fetch: 

begin 
if (input_instruction == c_load) state = c_load; 
else if (input_instruction == c_incl) state = c_incl; 
else if (input_instruction == c_inc2) state = c_incl; 
else state = c_fetch; 
pc = pc; 

end // case: c_fetch 

c_load: 
begin 

state = c_fetch; 
pc = load in; 

end // case: c_load 

c_incl: 
begin 

if (double == 1) state = c_inc2; 
else state = c_fetch; 
pc = pc +1; 

end // case: c_incl 

c_inc2: 
begin 

state = c_fetch; 
pc = pc + 1; 

end // case: c_inc2 

endcase // case (state) 

if (input_instruction == c_inc2) 
double = l'bl; 

else 
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double = 1'b0; 

end 
endmodule 
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